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Abstract

Understanding the interactions of genes plays a vital role in the analysis of complex
biological systems. The gene regulatory networks (GRNs) are representations of
gene-gene regulatory interactions in a genome and display relationships between
various gene activities. GRN modeling and inference is carried out mainly with the
help of gene expression microarray data. The microarray data is characterized as
massive, heterogeneous and high-dimensional in nature. In a typical dataset, the
number of samples » (with an order of tens) is substantially smaller than the number
of genes p (with an order of hundreds or even thousands) which makes it very
difficult to reconstruct a GRN from this data.

The aim of the thesis is develop a novel causal model for GRN inference which
exploits the naturally existing causal gene interactions (i.e. expression of gene V¥ is
caused by interaction with another gene X) thereby resulting in higher accuracies in
reconstruction. The method is based on the decomposition of the entire GRN into
sub-networks which are basically the Markov Blankets (MB) of each gene. The
causal GRN model is accomplished by applying a minimal set of constraints which
reduces the extremely large search space to a smaller set of possible models. These
reconstructed networks are pruned further to eliminate false positives resulting in
minimal connectivity and best fit GRN for the data.

Synthetic datasets allow validating new techniques and approaches since the
underlying mechanisms of the GRNs, generated from these datasets, are completely
known. The realistic synthetic datasets validate the robustness of the method by

varying topology, sample size, time-delay, noise, vertex in-degree and presence of



hidden nodes. We present a novel approach for synthetically generating gene
networks using causal relationships.

To accurately and efficiently reverse engineer the gene network from time-
course expression data, a Guided Genetic Algorithm (GGA) is developed to carry a
heuristic search through the space of qualitative causal networks incorporating the
causal relationships between genes. The GGA exploits characteristics of diversity
and high level heuristics to generate fit networks quickly (less iterations) and is
shown to have a superior performance compared to simple GA (SGA) that is
currently applied by researchers. Building upon GGA, we further improve search
process by another new technique, which we refer as FOMBGA (Frequently
Occurring Markov Blanket Genetic Algorithm). The FOMBGA replaces crossover
and mutation operators with a probabilistic model on frequency of occurrence of fit
Markov blankets (MBs).

Estimation of GRN parameters is basically the estimation of conditional
probability distributions (CPD) of the given GRN. Due to high dimensional data,
exact computation of the CPDs is infeasible and computationally expensive. In the
thesis work presented, given the network structures, we deduce a unique minimal I-
map of the GRN by estimating the conditional probability distribution of each
variable (gene) from the data set. This is achieved by using a novel variant of the
Markov Chain Monte Carlo (MCMC) method whereby the search space is gradually
reduced resulting in the convergence to occur quickly and in a reasonable
computation time. The performance of the parameter estimation technique is further
improved by integrating regulatory sequence motif data and GO annotations.

Investigations are carried out using both the synthetic dataset as well as yeast
cell-cycle gene expression datasets. Experiments carried out show that the proposed
modeling approach has excellent inferential capabilities and high accuracy even in
the presence of noise. The gene network inferred from yeast cell-cycle data is
investigated for its biological relevance using well-known interactions, sequence
analysis, motif patterns and GO data available in literature. The studies resulted in

discovering the known interactions and predicting novel interactions.
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Chapter 1

1. Introduction

1.1 Introduction

In the post-genomic era, holistic understanding of biological systems in all their
complexity is critical in comprehending nature’s way of creating life. To create a
complete biological system, the biological processes and systems can be abstracted
as multi-layered networks [1, 2] interacting with each other as shown in Fig. 1.1.
Among these interactions, understanding the interactions amongst genes plays a vital
role in the analysis of complex biological systems. Thus, gene regulatory networks
(GRNs) are of tremendous importance in uncovering the underlying biological
process of living organisms, providing new ideas for treating complex diseases, and
the designing of new drugs. To understand and explain the underlying mechanisms

of a GRN, we next present a brief description of important terms.
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Fig. 1.1 Fundamental Interactions

1.1.1 Central dogma of molecular biology

Although a cell is the fundamental unit of all living organisms, it is complicated in
terms of both its structure and function. Such complexities are mainly embodied in
and regulated by three biological sequences: DNA, RNA and Protein. The DNA
(DeoxyriboNucleic Acid) is a linear, double stranded polymer in which the monomer
subunits are four chemically distinct nucleotides (Adenine (A), Cytosine (C),
Guanine (G), Thymine (T)).

DNA is the carrier of genes and other regulatory information. A gene is a piece of
DNA fragment which contains genetic information. The whole set of genes in a cell,

called the genome, defines the structure and function of the cell. The functions



described by genes get implemented via proteins, which are linear polymers
composed of 20 different types of amino acids. Proteins play a central role in
virtually all aspects of cell structure and functions. The RNAs (Ribonucleic Acid)
copy the genetic information of a gene after which some RNAs translate the
information into proteins. This RNA is called as messenger RNA (mRNA). The
process of flow of genetic information from a gene to mRNA and a protein is called
the gene expression. In this process, the DNA serves as the template to make RNA.
This process is known as franscription. The RNA then serves as the source of
information to make proteins in a process called #ranslation. The process of
conversion of DNA to protein is known as the “central dogma in molecular
biology”. This is shown in Fig. 1.2. While the sequence (and its function) of a
protein is defined by the sequence of a corresponding gene in nature, the expression
of the gene is regulated by an expression of set of parent genes which are known as

transcription factors. This process is called gene regulation.

Protein DNA (gene)

promotes or
represses * transcription
transcription

MRNA

1 translation

protein

Protein goes M

off to work

Fig. 1.2 Central Dogma of Molecular Biology

Gene expression is regulated both temporally and spatially [3, 4]. The temporal
expression of a gene refers to the process that a gene expresses (or is regulated) at

the appropriate time and keeps itself silent otherwise [4, 5]. It also indicates a gene



has different expression patterns at different times [6]. For example, the expression
patterns of tumor suppressor gene p33 are different at different stage in modulating

cellular functions such as DNA repair, cell cycle arrest, and apoptosis.

There is also spatial control of gene expression [4, 7]. Although cells from the same
organism have identical genomes, cells in the different parts of an organism may
have different gene expression patterns due to the various functions they fulfill.
Therefore, the regulation of gene expression is an essential part of life [8-10]. There
are two types of regulations: positive and negative. Given two genes X and Y, if an
expression level of ¥ is affected by the expression level of X, we say X regulates V. If
an increase in the expression level of X leads to an increase of expression level of ¥,
it 1s a positive regulation; otherwise, it is a negative expression. DNA microarray
technology allows us to measure the amount of RNA associated with many genes in
parallel (using gene chips) and determine which are expressed in a particular cell
type. The data accumulated using the microarray technology is commonly
represented as shown in Fig. 1.3. The rows represent the genes and the columns

represent the conditions which can be either temporal or spatial.

Con?tion J Condition
Gene 1 | s A A

J: % 1// 1™
Gene | B
— = l
Geénel | = 1A A

I e : .
Gene § \
Géne N | | Ay A

‘ ; | \

Could be time, tissue, organ,

cancerous, individual, strain, etc.. Usually log ratio of expression with
respect to Control. +/- suggests
whether over or under expressed.

Fig. 1.3 Example Gene Expression Data



Regulatory events in a set may depend on each other and form some regulatory
chains, named regulatory pathways. Moreover, a chain may form a loop. There are
two types of loops: negative and positive. If the sum of the negative regulations of
the loop is odd, it is a negative loop; otherwise, it is positive. Regulatory loops
maintain the stability or development of cells [11, 12] and are necessary to

understand the gene regulation system.

1.1.2 Gene networks

The network of relationships among the genes is known as a gene network or a gene
regulatory network (GRN). It is a representation of gene-gene regulatory interactions
in a genome that display relationships between various gene activities. It is estimated
that each gene on average interacts with four to eight other genes, and is involved in
10 biological functions [3]. The illustrative Fig. 1.4 shows the regulatory
relationships (represented by arrows) between pairs of genes to form a gene
regulatory network of 6 genes. The complexity of a living cell is achieved by the
concentrated activity of many genes and their products (proteins). This activity is
often coordinated by the organization of the genome into regulatory modules, or sets
of co-regulated genes that share a common function [13]. The global gene expression
pattern is therefore the result of the collective behavior of individual regulatory
pathways. In such highly interconnected cellular signaling networks, gene functions

depend on the cellular context.

Genes (proteins) work together as a team to accomplish certain processes that no
single protein can do alone, such as metabolism, detoxification, and various
responses to the environment. This partially explains why many novel “gene
targeted” drugs have failed during clinical trials because of side effects and poor
specificity. Thus, understanding a gene network as a whole is essential, and learning

gene networks is an important central theme in post genomic research [10, 14-16].
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Fig. 1.4 Gene network

This thesis is devoted to the study of gene networks. There can be several

applications and advantages of this study, for example,

e Gene networks provide a large-scale, coarse-grained view of the
physiological state of an organism at the mRNA level [16]. Gene networks
describe a large number of interactions in a concise way. They also present
the dynamic properties of the gene regulatory system. They are capable of
being the annotation of genomics and functional genomics data.

e It is an important step to uncover the complete biochemical networks of cells
[17].

e Knowledge about gene networks might provide valuable clues for the
therapeutics of complex diseases [18-20].

e As most phenotypes are the result of the collective response of a group of
genes, gene networks help to explain how complex traits arise and which
groups of genes are responsible for them [21, 22].

e Gene networks are well suited for comparative genomics [23]. Comparing
gene networks from different genomes helps with the understanding of

evolution.



1.2 Motivation

The early work on understanding of gene regulation had taken a biological
experimental approach. This traditional approach was inherently local: examine and
collect data on a single gene, a single protein or a single reaction at a time, then
analyze the binding sites and reactions one by one. With this approach, it would
normally take one or more years to discover the regulation of a gene. Over the years,
this ‘manual’ lab-based approach did make remarkable achievements, and allowed in
inferring highly accurate biochemical models of individual genes for small sized

genome, such as the bacteria phage lambda [24, 25].

However, taking into account the huge information stored in a genome (there are
thousands or even tens of thousands of genes in a genome [26]), it is far from
possible to construct a network by the conventional way. The number of experiments
that are necessary for constructing a network are far too many. In addition, a network
learnt by the experimental approach can only describe the regulation relationship but
does not have the ability to predict the properties which have not been observed. To
obtain a full picture of even a medium size genome using the experimental approach
is not only time consuming but also expensive [27, 28]. Therefore, it is unrealistic to
obtain a holistic understanding of a regulation by analyzing regulation pathways one
by one [29].

With the development of high-throughput genomics and functional genomics,
massive data on thousands of cellular species are being gathered. This is a significant
shift from the traditional molecular biology approach of focusing on single
molecules and reactions. The need is now data-driven, and there is great urgency to
find methods that can handle the massive data in a global manner and that can

analyze large systems at some intermediate level [7].



A gene network can be represented by various mathematical models. A model is a
representation of reality used to simulate a process, understand a situation, predict an
outcome, or analyze a problem. The success of the computational approach in
learning gene networks has been proven biologically, with many exciting results
reported in recently published literature [30-35] and reviewed in detail in next
chapter. Furthermore, the models have levels of abstractions and have assumptions

for simplifying the problem under study.

Early computational approaches were based on learning the relationships among
genes either by studying mutual information or the correlation among their
expression values. The representatives of such approaches are pair-wise interaction
[35, 36] and clustering [13, 37, 38], which seek to directly find correlations among
genes. Since then, Boolean networks [39, 40] have been used in several works,
where gene expression levels are represented by Boolean values and the gene
regulatory relationship is represented by a set of Boolean functions. Linear and
nonlinear models followed, and they represent regulatory relationships by linear

functions and non-linear functions.

Recently, Bayesian networks are being investigated for modeling GRNs. In the
well-known seminal paper by Friedman ef al. [17], an algorithm for learning gene
networks using the Bayesian network was presented. Since then, several extensions
of the Bayesian network have been proposed, such as the Bayesian network
integrated with nonparametric regression [41], Dynamic Bayesian network (DBN)
[42-45], etc. However, to the best of our knowledge, these Bayesian models had
some critical limitations including,

¢ Biologically significant results were obtained from small datasets.

e Gene networks were learnt by making time series gene expression data

discrete rather than continuous
e Scalability: failed to learn gene networks from medium or large datasets due

to inefficient search techniques.



e Some important biological factors (including: variable time delays in the
gene regulatory system, the effect of noise (both biological and technical) in
the prediction of gene regulation, various topological structures, the number
of parent genes per gene in the network, and so on) were overlooked.

e Parametric estimation was erroneous due to small sample sizes available in

the real dataset.

1.3. Aims and Objectives

To resolve the problems outlined above, we set out the following aims and

objectives of this thesis:

e To develop a novel Bayesian model (referred as causal Bayesian model) for
modeling gene regulatory network and identifying regulatory interactions.

e To refine the model further to identify spurious relationship in the model by
the application post processing path analysis technique

e To speed up the process and support large scale data by minimizing the
computation overhead.

e To develop synthetic benchmark datasets for testing and validating the model
for parametric variations such as noise, number of samples, delay, structure,
number of parent genes and scalability.

e To develop fast and efficient search technique that can explore the space of
gene networks efficiently and accurately.

e To investigate further model enhancement by sampling and estimation of
parameters and deducing a minimal network with minimal set of important
interactions

e To improve biological accuracy of the model by integration of the prior

parameters using data from sequence analysis, GO and motif analysis.



1.4

Contributions

To achieve the aims and objectives outlined above, we proposed and developed the

following model and related techniques in this thesis:

A causal model learning framework based on the Bayesian network: This
framework represents various aspects such as network structure, direction,
time delay and sign/ orientation of regulation (i.e. up/down regulation). We
present a method where the predicted network is decomposed into triplets of
genes, and causal inferences using partial correlation is applied in order to
detect whether or not connections are direct or indirect with either partial or
full or no effect (explanation). Partial correlation constraints allow us to
recover much of the network structure given the data. The direction and sign
of regulation are recovered by estimating the time delay and time correlation
between expression profiles of pairs of genes. All the aspects are modeled as
flexible scoring metric which reflects the goodness of fit of a putative
structure to the data. A set of improvements are made to increase the
efficiency and accuracy of the learning process: (i) an improved Markov
blanket based approach is presented which decomposes the network into
Markov blankets of each gene (comprising of parents, children and parents of
children); (ii) a new structure learning search algorithm which is suited to
learning gene networks; (iii) a constraint minimization technique to speed up
in the case of large datasets. In addition, unlike the traditional Bayesian
network, the proposed framework uses real continuous values rather than

discrete values of the data.

Path Analysis post processing Method: Traditional Bayesian network
learning methods that use partial correlations to help find regulatory
relationships [46] can predict meaningful relationships. However, it is

reported that nearly 80% regulation relationships can be found to be false
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positive or spurious due to the nature of the gene expression data being noisy
and high dimensional. Hence a barrier exists, preventing the use of partial
correlations to infer large regulatory pathway [47]. We propose a path
analysis algorithm as a post processing step to the learning step. The path
analysis is based on conditional dependence/independence d-separation rule
together with rules based on alternative hypothesis of paths and time delays
to extract more regulatory relationships. Basically, if two genes X and Y are
connected or regulated by a path Z, a series of tests are carried out on the
path Z for its validity and as a combined effect of the tests a decision is taken
as to whether or not the path needs to be pruned for prevented spuriousness.

This idea enables us to find regulations that are highly accurate.

Synthetic data generation: As there are no suitable benchmark datasets
available for validation and evaluation of GRN reconstruction techniques, it
becomes difficult to analyze the model for its robustness and to compare
against other techniques. Synthetic datasets allow validating new techniques
and approaches since the underlying mechanisms of the GRNs, generated
from these datasets, are completely known. We present an approach for
synthetically generating gene networks using causal relationships. The
synthetic networks can have varying topologies such as small world, random,
scale free, or hierarchical topologies based on the well-defined GRN
properties. These artificial but realistic GRN networks provide a simulation
environment similar to a real-life laboratory microarray experiment. These
networks also provide a mechanism for studying the robustness of the
proposed causal model reconstruction method to individual and combination
of parametric changes such as topology, noise (background and experimental

noise) and time delays.

Frequently occurring Markov Blanket Genetic Algorithm technique: A
Bayesian network is represented as a directed acyclic graph (DAG). As the
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number of possible BN structures fitting microarray data is astronomically
large and the search problem is NP-hard, the strategies for structure search
have to be advanced and robust. Therefore, an efficient search technique is an
important factor in learning gene network and demands a tailored search
mechanism. We identified the complexities involved in developing such a
search technique and then developed a Guided Genetic Algorithm (GGA).
The GGA uses a high level guided crossover and mutation operators, a
diversity switch, a rank based knowledge acquisition process and ambiguity
decision maker. Further improvement was made on this algorithm to sample
a population using a probability distribution. This learning algorithm was
called Frequently occurring Markov Blanket Genetic Algorithm (FOMBGA)
as the proposed technique uses the frequency of occurrence of Markov
Blankets to estimate the probability distribution in extracting the underlying
structure of a gene network. Compared to the GGA, this method is more
appropriate for learning a large sized gene network as it is not random

sampling.

Parameter estimation and Integration of related data: A Markov chain
Monte Carlo (MCMC) algorithm is proposed to infer the parameters of the
Bayesian gene networks obtained using the search technique. Due to the size
and quality of the data that is currently available, the search results in many
plausible structures that equally satisfy the dataset. Therefore, the parameter
estimation process is challenging. Markov Chain Monte Carlo (MCMC)
method is run parallel across three best network structures obtained from the
search technique. The samples accumulated in a combinatorial fashion. A
Markov Blanket based ranking technique is used for the order in which the
samples are drawn. The parameter space is iteratively reduced by clamping
values to converged genes resulting in the required convergence within a
reasonable computation time. We then estimate the conditional probability

distribution of each variable (gene) from the samples data set and deduce a
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unique minimal I-map (Independence map). The inferred GRN is closer to
the real gene regulatory process and gives better learning performance. An
uniform prior probability is used in the estimation of probabilities of each
gene. To make the reconstruction more realistic, related data such as data
from sequence analysis and Gene Ontology annotations are combined and
used to vary the prior probabilities of the genes based on their position on the

network and their biological significance.

1.5 Organization of the thesis

The various chapters in this thesis contain a number of related themes for the
investigation of modeling GRN. As a common goal, these chapters together present
an effort for investigating both the structure and parametric learning for the
modeling of GRN based on the causal modeling approach. Chapter 2 gives a detailed
literature review covering the research area. Some existing models and algorithms
for learning gene networks are introduced. Chapter 3 models a gene network as a
Bayesian network composed of Markov Blanket’s that represent parents, children
and neighbors of each gene, specifies the time delays and the orientation
(positive/negative) of regulation. Chapter 4 deals with the generation of synthetic
datasets and robustness evaluation of the modeling technique. Chapter 5 describes
the use of guided search technique in learning gene networks. Chapter 6 describes a
Markov chain Monte Carlo sampling technique used to estimate the parameters of
the model and the integration of related biological data. Chapter 7 concludes the

thesis and gives some further perspectives to the project.

13



Chapter 2

2. Background and related work

2.1 Introduction

As early as 1969, mathematical formalism was proposed to describe gene regulatory
networks [24]. Traditionally, the emphasis has been on simulation techniques [10,
48] instead of structure reconstruction. With more experimental data available,
automatic structure reconstruction techniques are gaining popularity. In recent years,
the number of papers in learning gene networks has grown exponentially. In this
chapter, we briefly review the mathematical techniques in reconstructing gene
networks from microarray gene expression data. But, firstly we look at the

microarray technology which is used in the production of gene expression data.
A gene network is observed by monitoring expression levels of its elements. Thus, to

learn a gene network, one important prerequisite is the availability of the expression

data of elements in the gene network. The main measurable variables in the gene
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regulation system are the level of protein synthesized and mRNA transcribed. A
widely used method to measure protein level is 2D-PAGE which separates proteins
on a two-dimensional sheet of gel, first in one direction based on their iso-electric
point, and then in the other direction based on their molecular weight. The result is a
two-dimensional image with a large number of protein “spots". The intensity of each
spot is proportional to the amount of the specific protein present. However, the
sensitivity and accuracy of this method are not high enough to identify all proteins.
Besides, the high time expense makes it difficult to obtain a genome-wide scale
profile using this method. Meanwhile, mRNA levels are measurable on a genome
wide scale using the new DNA microarray technology. Thus, the only available large
scale data for learning gene regulation is mRNA data, which represent gene
expression levels. Therefore, most learning methods are based on gene

transcriptional data, with few using protein levels.

2.1.1 Microarray Technology

Microarray technology is a high throughput experimental method, where mRNA
expression levels of a number of genes can be measured simultaneously on a single
chip. The underlining principle of microarray technology is base-pairing (i.e., A-T
and G-C for DNA; A-U and G-C for RNA). Probes with known identity are planted
on the microarray chips in very high density, and used to determine complementary
binding. The expression of each gene is reflected by the accumulation level of the
corresponding mRNA. There are two major application forms of microarray
technology:
(1) Identification of sequence, and

(i)  Determination of expression level of genes.
In genetic network inference, the microarray is used to measure the gene expression

levels. There are two variants of the microarray technology: The first method is

traditionally called cDNA microarray, or spotted microarray.

15



For a cDNA microarray, probe cDNA is immobilized to a solid surface such as glass
using robot spotting and exposed to a set of targets either separately or in a mixture.
Usually two samples, dyed with different dyes (Cyanine 3 and Cyanine 5), are
hybridized to a single slide. One of the samples is treated as reference. The dyes
fluoresce at different wavelengths, so it is possible to get separate images for each
dye. The colour strength of each spot image on the microarray slide reflects the
mRNA accumulation level of the particular gene corresponding to the spot probe.
The ratio of the colour strength of two dyes reflects the relative change of mRNA
accumulation levels between the sample and the 11 reference sample. Data analysis
of cDNA microarray data is usually based on the colour strength ratios of the two
dyes. The second method uses DNA chip, also called Affymetrix Gene Chips. In this
method, an array of oligonucleotide or peptide nucleic acid (PNA) probes is
synthesized either on-chip or by conventional synthesis followed by on-chip
immobilization. The array is exposed to labelled sample DNA, hybridized, and the
identity/abundance of complementary sequences is determined. Unlike the cDNA
microarray, Affymetrix only use one sample during hybridization, and the colour
strength of the dye reflects the relative level of mRNA accumulation. The
manufacture and design of Affymetrix chips is more complex than cDNA
microarray. The main shortcoming of microarray is that the measured values are not

quite accurate, i.e., microarray data is noisy.

The measured expression values are a highly asymmetric distribution, and large
variations in expression values can lead to inferring spurious causal relationships.
Log transformation is one major preprocessing step to gene expression data as the
distribution of data values is approximated as symmetric and normal. There are two
main types of gene expression microarray data: static and time series microarray
data. In static expression experiments, a snapshot of the expression of genes in
different samples at a given instant in time is measured while in time series

expression experiments, the expression values over a period of time are measured.
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For this thesis work, we choose time series data source to learn a gene regulatory

network since gene expression itself is a temporal process [49].

The rest of the chapter is organized as follows. Section 2.2 briefly presents the
various models used in the reconstruction of GRN. In Section 2.3 the wvarious
methods of learning Bayesian network from data is presented. In Section 2.4, special
emphasis is laid on the Bayesian network modeling used for reconstruction of GRN.

Finally Section 2.5 gives the summary of the chapter.

2.2 Literature Review

2.2.1 Pair-wise Methods

Pair-wise methods seek to discover the relationships among genes solely by pair-
wise comparisons. They do not take into account interactions where the expression
of one gene is achieved by the combined effects of multiple other genes. Arkin ef al.
[25, 50] proposed correlation metric construction (CMC). CMC computes the
magnitude of gene pairs by cross-correlation. A distance matrix is constructed for
each gene pair by comparing their similarities to other genes. Then a diagram is
constructed to summarize the strength of interaction and predict mechanistic
connections between the genes. Chen er al. [51] proposed activation/inhibition
networks to find regulation based on whether peaks in one signal precede peaks in
another signal. Chen et al. [51] proposed grouping the genes with similar expression
profiles. Then a prototype is generated for each group of genes by averaging the
expression values of genes in the group. Each prototype represents a group of genes
with similar expression patterns and is represented as a series of peaks. The
correlations between prototype pairs are calculated to determine the type of
regulatory relationships (activation, inhibition or unmatched) and measure the
strength of the regulatory relationship between any two prototypes. Finally, the

regulation matrix is generated by the scores.
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2.2.2 Clustering

One of the main problems that hinder research on gene network reconstruction is the
dimension problem, i.e. there are many genes with a few replicates. A useful
approach is to cluster genes with similar expression patterns into clusters, then infer
the regulatory relationship among the clusters. Researchers believe genes with
similar expression patterns have similar functions or are involved in the same
biological events [37]. Currently, several clustering methods are used for this
purpose. Different clustering methods can generate very different results. Each
combination of distance measurement and clustering algorithm tends to emphasize a
different type of regularities in the data. There is no single criterion for choosing the
best clustering method. Given clusters, there are also several methods to find the
interactions among them. Wahde and Hertz [16] clustered 65 genes from rat CNA
datasets into four waves using the FITCH hierarchical clustering algorithm. Then, by
a genetic algorithm, they built a four-node continuous time recurrent neural network.
Chen ef al. [52] reduced 3131 yeast genes into 308 clusters by average linkage

clustering.

Later, simulated annealing was to optimize a qualitative network based on the timing
of peaks in the data. Someren [15] reduced 2467 yeast genes into clusters and
represented each cluster by a “prototype” gene calculated from the cluster. A linear
model of the prototype genes is then generated by linear regression. D’Haeseleer and
others [13, 36, 38, 47, 53] proposed grouping genes into clusters, and then find the
representative genes for the clusters. The connections among the representative
genes are modeled by differential equation. Toh ef al. [54] proposed averaging the
gene expression values of each cluster, and then discover the regulatory relationships
by Graphical Gaussian Modeling (GGM). During the initial stages of the thesis, we

experimented with a novel fuzzy-logic clustering method and the results were
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reported in [55]. Since then there have been several improvements based on our

work published by various authors in this field.

In summary, the pros and cons of clustering are:
e Pros: Groups together genes with similar expression patterns

e (ons: Does not reveal structural relations between genes

2.2.3 Boolean model

The Boolean network model is the simplest network model, and was first proposed
by Kauffman [24]. It uses a binary variable to define the state of a gene and uses
Boolean functions (AND, OR, NOR, NAND) to define the gene relationships. In a
simplified way, gene expression level can be roughly represented as a binary state:
either active (i.e. on or 1) or inactive (i.e. off or 0). The interactions among genes can
be represented by Boolean functions which calculate the state of a gene from the
activation of other genes regulating it. The result is a Boolean network. Due to its
simplicity, a Boolean network can analyze large-scale networks in an efficient way,
but its simplicity makes a Boolean network waste a lot of useful information, for
example, the detailed quantity information and time delay information for time

series.

The general approach of a Boolean network is to discretize gene expression values
into Boolean values, then find a set of Boolean functions which describe the state
changes of each gene. Liang ef al. [40] proposed REVEAL (REVerse Engineering
ALgorithm) to resolve the problem. REVEAL uses information theoretic principles
to reduce the search space and establish how the given genes are connected in the
networks, and then determines the functions that specify the interactions among
genes. REVEAL needs to enumerate all possible state transitions to build a Boolean
network. To decrease complexity, a maximum fan-in, & (/ < k < N where N is the

number of genes in the dataset), is applied to each gene. For each gene, all possible
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subsets with less than £ genes are considered to be its candidate regulators. If a
subset is found fully determining the state changes of the given gene, it is said to be
the regulator of the gene. An implementation of the algorithm proved to be capable
of reliably reproducing networks with N = 50 and & = 3 given 100 state transition
pairs (out of 1015 possible pairs). Working on a similar idea, Akutsu ef al. [6, 39]
proposed a simpler algorithm which proves that only O(log N) state transition pairs
(from 2" pairs) are necessary and sufficient to identify the original Boolean network
of N genes with high probability. Furthermore, Akutsu e al. [6, 39] extended a
Boolean network to a qualitative network to model a gene network. Corresponding
algorithms have also been proposed to learn the qualitative model. The Boolean
system oversimplifies the gene regulation system and assumes the transitions to take
place simultaneously, which is not the usual case in reality. Several improvements of
Boolean networks have been proposed, such as Fuzzy Logic Models [55-58] and

Probabilistic Boolean Networks [59].

In summary, the pros and cons of Boolean model are:
e Pros: Simplicity, can analyze large-scale networks in an efficient way
o (ons: Static network structure, a lot of useful information like: the detailed

quantity information and time delay information for time series is “wasted”.

2.2.4 Linear model

Based on the assumption that the expression level of a gene at one time point is the
weighted sum of expression levels of all genes at the previous (or current) time
point, a gene network can be modeled as a set of linear equations. A linear genetic
network directly models the effects of the combination of different input genes by
means of a weighted sum of their expressed levels. The weights represent the
relationships among genes. Zero weights indicate the absence of interaction and
positive or negative weights corresponds to stimulation or repression. The absolute

value of a weight corresponds to strength.
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A general linear genetic network model is represented in the following equations

[10, 15]:

xi(t+1) = i Wi () 2.1)
xi(t) = i Wi, 2xi(f) (2.2)

where x;(?) 1s the gene expression level of gene 7 at time instance 7 and W;; is the

influence weight of control of gene j on gene i.

In summary, the pros and cons of linear model are:
e Pros: Deterministic fully-connected network, scalable

e (Cons: Under-constrained, assumes linearity of interactions

2.2.5 Differential equation model

Using a differential equation to model a gene network is computationally more
intensive and requires the assumption of specific kinetic schemes. However, using
smaller time-steps and continuous variables, a differential equation may get a more

accurate physical representation of a gene network [10, 15, 52, 60].

A popular model is the linear differential equation [52]. Chen et al. [52] proposed a
linear differential equation to model gene expressions. Both transcription and
translation are modeled in the dynamic system by kinetic equations with feedback
loops from translation product proteins to transcription, and incorporating the
degradation of proteins and mRNAs; the system is as follows:

dr

A (23)
%:Lr—Up (2.4)

where the variables are functions of time 7 and defined as follows:
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n: Number of genes in the genome

r: mRNA concentrations, n-dimensional vector-valued functions of #

p: Protein concentrations, n-dimensional vector-valued functions of 7

f(p): Linear transcription functions, n-dimensional vector polynomials on p
L: Translational constants, # x n non-degenerate diagonal matrix

V. Degradation rates of mRNAs, 7 x n non-degenerate diagonal matrix

U: Degradation rates of Proteins, 7 x n non-degenerate diagonal matrix

Two methods are employed to construct the model from experimental data:
Minimum Weight Solutions to Linear Equations (MWSLE), which determine the
regulation by solving under-determined linear equations and Fourier Transform for
Stable Systems (FTSS), which refines the model with cell cycle constraints. Several
extended models, the RNA model, the Protein Model and the Time delayed model

have also been proposed.

Watanabe and Maki [61] proposed an S-System to infer a gene network from sets of
time-course data, each of which has resulted when a specific is disrupted. They
proposed that the expression level of a gene is computed by the power-law function:

d
d

)G:aiﬁXf” —ﬂzﬁXJhy (2.5)
j=1 j=1

where n is the total number of state variables or reactants. g; and A; are the
interactive affectivity of X; to X;. The first term represents all influences that increase
X; whereas the second term represents all influences that decrease X; and X are some
positive coefficients. The parameters are inferred by genetic algorithm [62]. Wahde
and Hertz [16] built a non-linear differential equation based on continuous- time

recurrent neural networks:
T+ xi= g(bi+ > wix) (2.6)
-

where for i = /,...,n, i is a rate constant, x; is the expression level and x; is its

derivative with respect to time. For a set of n genes, there are n x n weights (wy), n
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bias terms (b;) and » time constants x;. The equation can be extended to include
higher order terms in a network. The non-linear activation function g is defined as:

1

l+e*
kis set to /. A genetic algorithm is used to determine the parameters of the network.

g(z)= (2.7)

In summary, the pros and cons of linear model are:
e Pros: Model detailed quantities changing over time, dynamic
e (ons: As there are many parameters, they need more measurements; used for
small scale network; assumption the concentrations of the substances change
continuously and deterministically. Numerical simulation shows that in many
cases that there are no qualitative differences between differential equation

solutions and those based on the linear approximation.

2.2.6 Bayesian network model

In recent years, several models based on the Bayesian network (belief networks)
have been proposed for learning gene networks [17, 19, 33, 41, 42, 44, 45, 59, 63-
65]. Because of its suitability for learning gene networks, the Bayesian network is
one of the most widely used models in the research area nowadays. In this section,
we will define what a Bayesian network. In the next section, we see how a Bayesian
network is learnt, and finally, in Section 2.4 we see how gene networks are learnt

using a Bayesian network.

Bayesian Network

In probabilistic reasoning, random variables are used to represent events and/or
objects in the world. A random variable can be thought of as the numeric result of

operating a non-deterministic mechanism or performing a non-deterministic

experiment to generate a random result. Computing the joint probabilities of given
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random variables requires the probabilities of every instantiation combination which
is astronomically explosive. Chain rule simplifies it by the following form:
XL Xy =[P X, Xi) (2.8)

i=1
or

P(X,. LX) = [ [P X,y X (2.9)
i=1

Where X}, ..., X, are the random variables.

e Example: As shown in Fig. 2.1, the probability of the variables X, ¥, Z and W
can be represented as follows:

PX,Y,Z,\W,Q)=P(X|Y,ZW)YPX |ZW)P(Z|W)P(W) (2.10)

Bayesian networks take this process further by making the important observation
that certain random variable pairs may become uncorrelated once information
concerning some other random variable(s) is known. If P(YX, .., XU =
P(Y| Xy, ..., X,), it can be interpreted that ¥ is determined by X, ..., X, regardless of
the random variable U. With these conditional independencies, it is possible to
simplify the computation of joint probabilities. A Bayesian network is defined as

follows.

A Bayesian network is an annotated directed acyclic graph that encodes a joint
probability distribution over a set of random variables X = X}, ..., X,, where each X
has a set of discrete values or continuous values. Formally, a Bayesian network for X
is represented by B = {G; 0} where G = {V; £} is a directed acyclic graph, V' =
Vi, ..., Vu is the vertex set and V; ¢ V corresponds to a random variable X;, £ = ey, ...,
e, 1s the edge set and e; = (vy; v,) ¢ F 1s a dependence between v, and vy, and 0 = 0
1., 8, 1s the parameters sets storing the conditional joint probability distribution
over X and 6; = 0 (Xi| Pa(X;)) is the conditional probability distribution of X; given
all the parents Pa(X;) (denoted by P(X;|Pa(X;)). Each variable X; is independent of its

non-descendant(s) given all of its parents are instantiated in G.
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In the network G, any joint distribution can be decomposed in the product form:

P(X,.., X)) = ﬁP()G | Pa( X)) (2.11)

where Pa(X;) are the parents of X; in G.

Fig. 2.1 Sample Bayesian network for illustration

Example: As shown in Fig. 2.1, the probability of the variables X, ¥, Z and W can be
represented as:

P(X,Y,Z,W,0)=P(X)P(Y)P(Z | XY)P(W | Z) (2.12)

Given D and the corresponding structure (5, the parameter set # can be estimated
[66] by encoding @ in a prior distribution P(8). The distribution is then updated using
D, thereby obtaining the posterior distribution P(@|D) by applying the following

Bayes' rule:

PD16)P©O)

P@|D)= D)

(2.13)

Based on Equation 2.10, €; can be estimated independently.

Before, we go into further details about learning Bayesian network; we look at a
comparative analysis of the various models discussed above. Fig. 2.2 briefly shows
various types of models with varying degree of abstraction of modeling and also the
amount of information needed. The Fig.2.2 is a result of conceptual comparison and

is not empirical. Ordinary differential equations (ODEs) models are used for small
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scale network that require least amount of information. Although gene regulations
modeled via ODEs are successful to represent some reactions like linear production
and degradation, they cannot describe the small system variability of the actual
reactions. The system variability can be modeled using Markov chain models where
there are sets of states and sets of state transitions along with their associated

probabilities.

Abstracted Specified
High level models low level models

Statistical Mining
A Bayesian Networks

Fuzzy Boolean Models

Markov Chain Models

Differential equation

I

Components Influences Reaction Structure
and connections and Information flow Mechanisms

Information Needed

Fig. 2.2 Abstraction of GRN modeling

Next level of abstraction for inferring genetic regulatory interaction is the well
accepted Boolean network model. Each gene is modeled as being either "ON" or
"OFF" and the state of each gene at the next time step is determined by a Boolean
function of its inputs at the current time step. In a real cell, however, gene expression
is a continuous variable. So, fuzzy models have been proposed as alternatives where
membership functions for the expression levels are classified as, for example, high,
medium and low. The fuzzy and Boolean models are capable of modeling influences
(activation/repression) and their corresponding direction of information flow, but
require significant amount of data in order to deliver valid models. Bayesian
networks give a more accurate model of network behaviour, based on Bayesian

probabilities for the variables [66]. In the graphical representation of a Bayesian
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network, variables (genes) are represented as nodes and edges between nodes
represent conditional dependence and causal relations. Bayesian networks include
most of the previously proposed models as special cases and are inherently capable
of incorporating existing knowledge. The Bayesian model is by far the most
complicated and probably most efficient way of gene network modeling in the
presence of noise. However, the accuracy of the results relies on quantity of data.
Well established statistical data mining techniques can deliver the highest level of
abstraction in modeling, however they are not tolerant to noise in the data. The
domain expert’s acceptance of Bayesian network models is a good choice as it
provides a graphical representation of a GRN and is facilitated by the stochastic and
white-box nature of Bayesian networks (BNs). The advantages of using Bayesian
network for GRN modeling is presented in Section 2.3.3. In the next section we will

look at the two types of learning mechanisms in Bayesian networks.

2.3 Learning Bayesian Network

Given D, the problem of learning a Bayesian network structure can be stated as
follows: Given a training set D = Dy, ..., D, of independent instances of X, find a
network B ={G; 6} that best explains D. There are two main approaches for finding
structures. The first approach learns a Bayesian network as a constraint satisfaction
problem [46, 54, 67-77]. In this approach, properties of conditional independence
among variables are estimated by a statistical hypothesis test, such as T-test or chi-
square test [67]. A network is then built to exhibit the observed dependencies and
independencies. The second approach, which is more popular, learns a Bayesian

network as an optimization problem [14, 30, 31, 33, 41, 42, 64, 66, 78].

2.3.1 Constraint based Learning

Using constraints is another way of learning BN structure. The constraints are

typically conditional independence statements. The conditional independence tests
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that are used in practice are statistical tests on the data set. In order to use the results
to reconstruct the structure, several assumptions have to be made [67, 77]: Causal
Sufficiency, Causal Markov, and Faithfulness defined below.

o The Causal Sufficiency Assumption: It states that there are no unobserved
variables in the domain that might explain the independencies that are
observed in the data, or lack thereof It is a crucial assumption for
applications that need to determine the true underlying (causal) structure of
the domain.

o The Causal Markov Assumption: It expresses a minimum set of
independence relations that exist between every node and its non-
descendants, given a BN model. From these, and a set of axioms described in
[67, 77], one can produce the entire set of independence relations that are
implied by that BN model.

o Faithfulness Assumption: A BN graph G and a probability distribution P are
faithful to one another if and only if every one and all independence relations

valid in P are those entailed by the Markov assumption on G.

With these assumptions in place, one can ascertain the existence of an edge between
two variables and the direction of that link. Before going further, we briefly look at
the concept of d-separation which is vital for understanding constraint based

learning.

A path is a sequence of consecutive edges (of any directionality) in the graph. Two
nodes X and Y in a directed acyclic graph are d-separated if every path between them
is blocked. As an example, considering 3 disjoint sets of variables X, ¥, and Z,
represented as nodes on a DAG, we say a path is said to be d-separated, or blocked,
by a set of variables Z iff the path (a) contains a chain (b) or a fork (c) contains an
inverted fork, or collider, such that the middle variable m is not in Z and such that no
descendant of m is in Z. (see Fig. 2.3). Further, a set Z is said to d-separate X from ¥

iff Z blocks every path from a variable in X to a variable in V.
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Fig. 2.3 D-separation Illustrative example figure

The Fig. 2.3 (A) shows a no descendant example. If d is in Z, then the path from 7 to

j 1s unblocked even if m is not in Z.

Based on these definitions of d-separation, the useful theorem can be stated as

follows.

Theorem: 1f X and Y are d-separated by Z in a DAG, then X L ¥ | Z
Conversely, if X and Y are not d-separated by Z in the DAG, then X and ¥ are

dependent conditional on Z.

To help understanding this theorem, four basic graphical structures (Fig. 2.3 (B)) and

the independences implied by each.

(2)

(b)

(©)

(d)

X2 is an intermediate variable. The only independence implied by this
structure is X7 4L X3 | X2. 1t is NOT true that X7 L X3.

X2 is a common cause. The only independence implied by this structure is
X714 x3|X2. Tt is NOT true that X7 L X3.

X2 1s a common effect. The only independence implied by this structure is
X174 X3, Tt is NOT true that X7 4 X3 | x2.

X2 is a common effect. X4 is an effect of a common effect. The
independences implied by this structure are X7 4 X3, X4 L x| X2, and X4 L
X3 | X2. Tt is NOT true that X7 1L X3| X2 or that X7 L X3 | X4. This is the

trickiest structure you will find.
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Paths in a Markov Blanket

To search a set of d-separating paths inside a sub-model such as a Markov Blanket
(see Chapter 3 Section 3.3.3) is by separating them as upward, downward and
sideway paths (Fig. 2.4). The upward path (red arrows) is the blocking path to a node
from the parents, the downward path (green arrows) is the open path from the node
through its children and sideway path (blue arrows) is the path between the node and

its spouse node.

—» Downward
—» Upward
—» Sideways

Fig. 2.4 Paths in Markov Blanket

SGS Algorithm (Sprites — Glymour — Scheines)

In that, the existence of an edge between two variables, say X and 7, is tested using a
number of conditional tests. Each of these conditions is a subset of universal subset
U. If Faithfulness holds and there exists an edge, then all these independence tests
should be false. If there is no edge, then there must exist a subset d-separating them.
Assuming that there is no direct edge between X and Y in the true model, one such
subset is the set of parents of one of the nodes. By trying all possible subsets of U,
the SGS algorithm can make a conclusion on the existence of an edge between every
pair of variables in the domain. After the undirected connectivity is determined, SGS

attempts to determine the directionality of these edges. This is done by examining
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triples of variables X, ¥, and Z, such that there are no subset that includes Z can d-
separate X and ¥, then the directionality of respectively. This is repeated for all such

triples, and is followed verifying acyclic behavior of the graph.

As we mentioned above, the algorithm and any other independence-based algorithm
for that matter cannot necessarily assign directions to every edge. Doing so depends
on the true underlying structure of the BN model. For example for a BN of three
variables, Z, the direction of either edge cannot be determined by any set of
independence statements, because two other networks with the same undirected
structure, namely belong to the same equivalence class with respect to conditional
independence statements implied by their respective structures. (See Chapter 3

Section 3.5 for more details)

Another algorithm, similar in flavor to the SGS is the IC, or “inductive causation”
algorithm by Pearl and Verma [67, 79]. Other algorithms exist in the literature that
do not make use of independence tests but take into account d-separation in order to
discover structure from data. Cheng ef al. [63] for example uses mutual information
instead of conditional independence tests. The algorithm requires the ordering of the
variables to be given to the algorithm in advance. Constraint-based algorithms have
certain disadvantages. The most important one, manifesting frequently in practice, is
their poor robustness. By the term “robustness” here we mean large effects on the
output of the algorithm i.e. the structure of the BN, for small changes of the input i.e.
single errors in the independence tests. The problem seems to have its roots on the
dependency of later parts of the algorithms to earlier ones, something that seems
difficult to avoid. For example, step 2 of the IC algorithm [67, 79] determines the
direction of pairs of edges that were found in step 1. Therefore a missing edge might
prevent another edge's direction to be recovered. In addition, step 3 propagates the
directions of edges determined in step 2, so an error in step 2 might be propagated in
step 3, possibly resulting in a structure with directed cycles which is illegal under the

present BN formulation. Another disadvantage is that the SGS (and the IC)
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algorithm, as we can see from its algorithmic description, is exponential in time in
the number of variables of the domain, because it is conducting independent tests
conditional on all 2 subsets of set S with S containing n® variables. This makes it
impractical for large domains of tens or even hundreds of variables. A more efficient
algorithm is the PC algorithm. Its efficiency comes from ordering the conditional
independence tests, from small to large. The algorithm is presented in detail in

Spirtes ef al. [77].
2.3.2 Score based Learning

A statistically motivated scoring function, termed scoring metrics, such as Minimum
Message Length (MML) [80] or Bayesian score [66], is introduced to evaluate a
network with respect to D, and the optimal network according to this score is
computed. Bayesian Score (ScoreB) [47, 66] is a popular score metrics and it is

defined as follows.

ScoreB(G : D) =log P(G | D)

~log PD|G)P(G)
P(D)

=log P(D|G)+log P(G) +C (2.14)

where P(D|G) = Il P(D|G; 0) P(0|G) dO is the marginal likelihood which averages
the probability of the data over all possible parameter assignments to G and C =
logP(D) is a constant independent of (G. The particular choices of priors P((G) and
P@0|G) for each G are important to avoid over fitting and to determine the exact

Bayesian score.

An important property of Bayesian score or Minimum Distance Length (MDL) is

decomposability in the presence of some priors:

Scores(G : D)= Scores(X:| Pa(X:): D) (2.15)
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It is not feasible to compute maximum likelihood as it involves computing marginal
likelihood P(D) = P(G) P(D; (G) which is the sum over an exponential number of
models. Bayesian Information Criterion (BIC) is proposed to approximate the

posterior.

log P(G| D) ~log P(D| G,gc) _logN

AG (2.16)
log P(G | D) = ZlogP(Xi | Pa(Xi): D) (2.17)

where N is the number of samples, G is the dimension of the models (the number of
free parameters if D is fully observed, i.e. without hidden variables) and 0(G) is the
Maximum Likelihood (ML) estimate of the parameters. The decomposability of the
score is crucial to learning a Bayesian network. With it, the learning problem, which

is known to be NP-hard [81], can be solved by a set of local searches.
2.3.3 Advantages of Bayesian network for GRN modeling

When applying the Bayesian network to gene network learning, there are several

advantages compared to other methods:

e Bayesian networks are particularly useful for describing processes composed
of locally interacting components [67]. That is, the value of each component
directly depends on the values of a relatively small number of components.

o Statistical foundations for learning Bayesian networks from observations, and
computational algorithms to do so are well understood and have been used
successfully in many applications [66, 82, 83].

e Bayesian networks provide models of causal influence [5, 67, 68, 74, 76, 77,

84]. Although Bayesian networks are mathematically defined strictly in terms
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of probabilities and conditional independence statements, a connection can
be made between this characterization and the notion of direct causal
influence.

e Because of its firm statistic basis, the Bayesian network can deal with the
stochastic aspects of gene expression and the noisy measurements of
microarray data in a natural way [85, 86].

e Bayesian networks are able to handle a large number of variables with only a
few replicates [33, 47, 68, 71, 87]. It is especially useful when learning gene
networks, since microarray data generally have thousands or even tens of
thousands genes but only tens of replicates. Besides, Bayesian networks are
capable of estimating the confidence of different features in networks [36].
The absence of data often leads to the consequence that many networks
explain the data equally well. The confidence is useful for measuring to
measure whether a statistic feature of the network is likely to be true.

e Learning gene networks is NP-hard [81]. The decomposability [77] of
Bayesian networks ensures local searches achieve global optimization, thus
making the learning easier.

e Hidden variables in a network and missing values in gene expression data are
easy to handle with the Bayesian network. Many methods have been
established for in learning Bayesian network with latent variables and

missing values.

Bayesian networks can capture many types of relationships among genes: linear,
non-linear, combinatorial, stochastic and so on. It remains unclear which types of
relationships a gene regulatory system may pursue. The ability of Bayesian networks
to grasp various types of relationships makes it appropriate for learning gene
networks. The problems with using Bayesian networks is discussed in a very early

paper by Henrion [88]
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2.4 Learning Gene Network Using Bayesian Network

Friedman [17] proposed modeling a gene network as a Bayesian network. The
variables of the BN are the genes from the gene expression data chip. The space of
the values that each variable gets is specified using two approaches. The first one is
the discrete approach, in which each variable gets three values: under-expressed,
normal and over expressed (compared to a control that could define the normal value
as the average expression value of each gene over all experiments or the average
expression value of all gene expression measurements in each experiment). The
second one is the linear Gaussian approach, in which a linear regression model is
learnt for each variable given its parents. Since the data contains only a few dozen
samples and thousands of variables, it is not possible to learn the exact structure of
the network from the data (in order to learn the exact structure of a BN with
thousands of variables one needs many more samples). Thus, only small features of
the network could be learnt. Each feature is a pair of genes related in one of two
possible ways. The first relation, called Markov relation, contains pairs of genes
having an edge between them in the BN or genes which are parents of a third gene in
the BN. The second relation, called order relation, contains pairs of genes with a path
between them in the BN. In order to understand to what extent the data supports a
certain feature a bootstrap method was applied, in which "pertubed" versions of their
data (smaller data sets that contain part of the samples of the full data, chosen
randomly) was generated and the BN structure was learnt. The confidence of the
feature was measured as the percentage of the number of times it appeared in the BN
structures learned from the "pertubed" data versions. In order to learn the BN
structure from data, an algorithm was developed that reduced the graphs search
space, by identifying a relatively small number of candidate parents for each gene,
and restricting the search space to networks with these parents. The search algorithm
developed is an iterative with each stage adding more candidate parents to each
gene, if they contribute to the gene score. Friedman showed that the results obtained

by the sparse candidate learning algorithm are biologically meaningful results by
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examining the results with a set of statistic measurements: robust test, order relation,
Markov relation, and so on. Since then, many works based on the Bayesian network
frame work have been proposed, and biologically relevant results have been

obtained.

Hartemink [89] extended Friedman's work by adding these annotations to edges:
"+" "-" or "+/-" which represent positive, negative or unknown regulation. Beal ef al.
[31] proposed including the unmeasured genes as the hidden factors to learn a gene
network. They proposed implementing the step by state-space models (SSMs). Lee
et al. [90] proposed a modularized learning approach based on the assumption that
most genes are likely to be related to other genes in the same biological modules
rather than the genes in different modules. They proposed finding overlapping
modules in the genes, and learning the sub-networks in modules with a Bayesian
network. Murphy & Mian [42] used the Dynamic Bayesian Network (DBN), which
is an extension of the Bayesian network, to model gene networks. In this model, a
gene at a time point is regulated by its parent in the previous time point. Thus, the
acyclic limitation of the Bayesian network is overcome in DBN. Murphy ef al. gave
a thorough report in [42, 43] on the application of DBN in learning gene networks.
Imoto ef al. [41] further extended Bayesian networks and DBN by integrating
nonparametric regression into the models, so that the methods can use continuous
gene expression values instead of the discrete values in the general Bayesian
network approaches. Their method is capable of capturing the non-linear
relationships among genes. Yu ef al. [91] presented an influence score to measure
the magnitudes of regulatory strength of the edges. It is useful for eliminating the

false positives as well as distinguishing the positive or negative regulation of edges.

With more and more works using Bayesian networks as the framework to tackle the
gene network reconstruction problem [17, 19, 33, 41, 42, 44, 45, 59, 63-65], it can be
seen that the Bayesian network is becoming a widely used approach in learning gene

networks.
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2.5 Summary

In this chapter, we briefly discussed the models used in gene regulatory network
reconstruction. While comparing the different models and their advantage and
disadvantages, we can observe that Bayesian network model is a suitable candidate
for effective reconstruction of realistic gene network models. Various methods that
involve Bayesian network have also been presented. Although the existing methods
have their merits they are still faced with problems related to accuracy of
reconstruction, handling noise, searching through an enormous space of structures,
complexities associated with the gene network structures, parameter learning and so
on. To cope with these limitations, there is a need for a novel sophisticated
intelligent method which can bring out the essence of a realistic gene regulatory
network that could provide insight into the complexities in the nature. The suitability
of a constraint based approach for learning Bayesian network is highlighted due to
its flexibility and reliability in providing robust results. In the next chapter we
present the novel causal modeling method for reconstruction of gene regulatory

network models.
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Chapter 3

3. Causal Learning and inference of GRN Structure

3.1 Introduction

As stated in previous chapters, a gene regulatory network (GRN) represents a set of
all interactions among genes determining the temporal and spatial patterns of
expression. Early attempts to reverse engineer gene networks from microarray were
somewhat limited. For example, although real gene expression data showed that
gene expression levels tend to be continuous rather than discrete, a discretized data
was often used to simplify evaluation [17, 40, 61, 72, 73, 92, 93]. Further, many
researchers assumed either a no-time delay or a constant-time delay in gene
expression [46, 70, 94, 95] in spite of different gene pairs having varying time delays
for gene regulation [3]. Chen ef al. [52] amongst others attempted to incorporate
various time delay factors into the gene network learning process by using
differential equations. However, the algorithm was of high computational

complexity and without any suitable experiments being reported. Although the effect
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of regulation is likely to be nonlinear [10], linear causal models can provide the
necessary simplification for any biological system which they represent. With the
number of samples available from most microarray experiments being limited (often
as few as six or seven samples), causal models appear promising because they use a
small number of parameters to represent activation and repression relationships
between genes. Complex models can better represent a wider range of relations such
as thresholds or combinatorial interactions, but there is an increased risk of over
fitting with small sample sizes. Recently, a variety of linear models have been
presented for modeling gene regulation [10, 14, 16, 37, 47, 60, 96] which essentially
represent the expression (or a change in expression) of a gene as a linear function of
the expression levels of other genes. Some approaches focus on finding predictive
(but not necessarily causal) relations between genes. For example, D’Haeseleer e al.
[47] used a multiple regression method that identifies correlation between gene
expression levels but could not determine whether genes are linked directly or
indirectly connected through other genes. The major reasons for these above
mentioned difficulties are: (1) microarray datasets contain thousands of genes (fields,
attributes) and only a few time steps (records) (ii) presence of noise in expression
values (iii) existence of splice variants, etc. Moreover, significant computational
time is required to analyse large volumes of data, and the complexity of a regulatory
network model increases with the number of genes used for the model which results

in longer execution time and poor scalability.

In this chapter we present a novel method for learning the structure of a causal
Bayesian network for GRN because in a BN (as mentioned in Chapter 2), learning
structure and learning probabilities are treated as two separate problems where the
former is considered to be much more challenging and known to be NP-hard [81].
The causal model aims at representing the underlying physical mechanisms that
generated the data. The model represents the independency/ dependency relations
among genes and nature of regulation (down or up). The correspondence of the

conditional independencies (CI) (see Section 2.3.1) in the graph and the data is
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called faithfulness. Causal structure learning algorithms try to construct a faithful
graph based on the conditional independencies found in the experimental data.
Knowledge about the independencies among the genes that exist in a GRN domain is
an extremely useful piece of information that researchers need to elicit during their
investigation. The reason for this is the fact that conditional independence statements
concerning observed quantities in GRNs (i.e. genes) can reduce the number of
parameters under consideration and greatly aid in the understanding of the

interactions or significant insights to the interactions occurring amongst the genes.

In this chapter, we present Markov blanket based GRN learning algorithm and Path
analysis algorithm for inference of the structure of a BN from conditional
independence tests. We first describe an approach based on Markov blanket (MB). It
operates by identifying the local neighborhood of each variable in the Bayesian
network as a preprocessing step, in order to facilitate the recovery of the exact
structure around each variable in subsequent steps. A flexible qualitative measure is
formulated to determine how well a putative MBG (Markov Blanket Graph) fits the
gene expression data. In our work, the first and second order partial correlations are
used as tools in comparing the putative network model against the data. Although
these correlations have a high false discovery rate, they are known to have excellent
capabilities for entailing meaningful relationships [46]. Further, a suitably designed
genetic algorithm (GA) (presented in Section 3.3) is applied to efficiently search the
solution space of BN structures. In the first step of the GA, the search aims to
increase the correctness of the network structure by maximizing the overall network
score and in doing so the search can ignore the occurrence of false edges in the
optimal solution. Hence, in the second step, using a set of tests, these reconstructed
networks are pruned of the false positives resulting in minimal connectivity and best
fit GRN for the data. The Markov Blanket method has the added advantage of being
easier to verify and possibly minimize the number of CI tests needed. When there are
large number of variables densely connected (e.g. in yeast where there are 6000

genes), a Constraint Minimization version of the algorithm is proposed which
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employs a K-map minimization technique to minimize the computation and still

ascertains the same result with high accuracy in the presence of noise.

The rest of the chapter is organized as follows. Section 3.2 presents an outline of
causal modeling of GRN. In Section 3.3, the various V, Y and MB causal methods of
learning GRN are presented and a comparison is shown between the 3 methods. In
Section 2.4, a Markov Blanket based method for learning GRN structure is
presented. Section 3.5 presents a optimized version of the Markov Blanket method
by incorporating constraint minimization. Section 3.6 presents a path analysis
pruning algorithm to eliminate spurious interactions. Section 3.7 presents
experiments and results using yeast cell cycle datasets. Finally Section 3.8 gives the

summary of the chapter.
3.2 Causal GRN modeling preliminaries

A linear causal model represents relationship between a node v; and its parents Pa(v;)

using the following Eqn. 3.1.

Vi = 3 arPar(vi)+ Ri
; ) 3.1

Here, k; is the number of parents to the node v, a; is the path coefficients
representing the causal effect of variable in Pa(v,) on v; and finally R; is the error
term. Fig. 3.1 shows a graphical representation of the causal model, where nodes
represent the expression profiles, the arrows represent path coefficients and the
direction of causal influence and sign on the arrow represents activation or

repression. No sign represents positive influence (activation) by default.

(a) (b) (©)

Fig. 3.1 Three node causal models of gene regulation
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The causal model can specify the exact influence between the genes. For example,
the model in Fig. 3.1 (a) indicates that the expression of gene Z is directly influenced
by the expression of gene X and gene Y. However, the model in Fig. 3.1 (b) indicates
that the expression of gene Z is directly influenced by expression of gene ! and
indirectly influenced by expression of gene X through gene Y. In other words, gene ¥
is an intervening gene. In Fig. 3.1 (c), the expression of gene X and gene Z are
independent of each other and are directly influenced by gene Y. Here gene 1 is
anteceding gene. At a more detailed level, the sign on a causal arrow (e.g. the sign
on ¥ — Zin Fig. 3.1 (b)) specifies type of causal interaction. A positive or no sign
on the link ¥ — Z signifies that expression of gene Z should increase with increase in
expression on gene Y (activation), while a negative sign on the link signifies that
expression of gene Z should decrease with increase in expression of gene V
(repression). All the models given in Fig. 3.1 are acyclic graphs as they do not
include any feedback loop. To reduce complexity, in this thesis work, we will restrict
our attention to models without a feedback. Further, the network learned is a
Bayesian network (as defined by Eqn. 3.1), and acyclic behavior is essential for

ensuring consistency.

Linear causal models make predictions that can be scored against data. In the
approach presented, three scores are assigned to a model for a given expression

profile data, namely structure, direction of causality and the sign on causal arrow.

i) Scoring predicted structure

As the putative gene network is usually an extremely large model, we propose to
decompose it into a series of three-variable sub-models similar to those shown in
Fig. 3.1. Each sub-model is assigned a score and the sum of the scores indicates how
well the sub-model structure fits the data. Partial correlation is used to evaluate the

sub-models.
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A partial correlation corresponds to the correlation between two variables when one
variable controls the effect of the other variable. Partial correlations are significant
because they help in determining whether correlated variables are linked directly or
otherwise and to detect whether the correlation is spurious [5]. For example, in Fig.
3.1 (b), the partial correlation coefficient (r.y) between gene X and gene Z

controlling the effect of gene y is calculated using the following Eqn. 3.2.

(rxy_rxzrzy)

Fxy.z =
Ja=r*e)1-r5)

(3.2)

where 7y, 1y, and r,, are Pearson correlation coefficients over the expression profiles
of pairs of genes. A zero or a small partial correlation coefficient indicates that the
variables are connected by a path that does not have a third variable involved. In the
case under consideration, the model entails that gene X and gene Z are intervened
through Y and if data implies .-, = 0, it can be concluded that the structure fits the
data. However, in case of the model shown in Fig. 3.1 (a), 7, >> 0 is because there

is a direct link between gene X and gene Z.

Table 3.1 explains various outcomes while evaluating a three gene sub-model using
partial correlation. The causal inferences evaluated are as follows.

1)  No effect occurs when the original and partial correlations are equivalent in
magnitude and sign.

i)  Explanation occurs when the control variable is an anteceding cause of the
independent and dependent, or when it is an intervening variable on the path
from the independent to the dependent, and there is no direct causal path
from the independent to the dependent. In this case, the partial correlation
approaches 0 and for random samples should test as not significant. This is
also called a control effect.

iil)  Partial explanation occurs when there is a direct path from the independent

to the dependent variable, but the control variable is also either an anteceding
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or intervening cause. In this case, partial correlation drops only part way to 0
compared to the original bi-variate correlation.

iv)  Spurious correlation is a computational correlation without actual causal
connection, such as that which occurs when the effect tested by partial

correlation is partial or full explanation.

Given a model and data, the score function will be of the following form.

n

Score, = Z (tei+tpei - fei* ai) — (fpei * Pi) — nfi — sci)
i1 (3.3)

Table 3.1 Comparing model and data for causal inference

Model Causal Inference Outcome
@ 1. No Effect

If model entails Effect

and data implies Noeffect

2. Explanation
If model entails
Explanation
and data implies False

Anteceding Ty #0 Explanation

If model entails
Explanation
and data implies
Inzy™ 0

True
Explanation

P

Intervening

3. Partial explanation

o If model entails
’ Partial Explanation False Partial

° e and data implies Explanation
() e
’ Else True Partial
° Q If data implies Explanation
Ixzy >> 0
4. Spurious correlation
G If model entails partial or

full explanation and data Spurious

implies correlation
e e sz:()&‘rxz.y‘>0

where n is the number of sub models and fe;, tpe, fe, fpei, are respectively the
number of true/false, partial and full explanation. The selection of partial or full
explanations is based on the sub-model structure shown in Table 3.1. The terms nf;

and sc; respectively denote no effect and spurious correlation causal influences
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inferred for the sub-model 7. These variables are assigned a value of either 1 or O
based on the condition they satisfy. The value of a; and f; are derived from the
partial correlation of the sub-model and corresponds to the extent to which the model
is predicted falsely. This enables assigning higher scores to networks having higher
probability to predict the correct structure for the given data compared to the

networks that have a poorer structure.
i) Scoring direction of causality

Partial correlation constraints let one recover much of the structure as most graphs
will imply different constraints. However, the model X — ¥ — Z has equivalent
partial correlation constraints as X <— ¥ «<— Z, which is a special case of the concept
of equivalent graphs [66]. This can be resolved by estimating the time delay between
expression profiles X, ¥ and Z. The time correlation between gene x and gene y can
be expressed as shown in Eqn. 3.4

r(7) = 2 gr(m)gr(n-7) G.4)
Here, gr and gy are expression profiles of genes X and Y. The term n is the time point
and 7 is time delay. For a periodic time profile, the expression values of time points
at the end of the time series are rewound to the beginning of series after time
shifting. The time delay 7’ between the two expression profiles, is the value of t for
which maximum value of |ry(z)| occurs. It enables to determine the direction of

causality.

If 7'<0 then X >V (i.e. gene x regulates gene y)
If7'>0 thenX 7Y (i.e. gene y regulates gene x)

If 7'=0 then X ¥ (i.e. x and y are co-regulated)
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With the sub model and direction assignments known, the score function for

direction is formulated as follows.

Score, = > f(dirn(X,Y),dira(X,Y))
XY . X#Y (3 ) 5)

Here, dirm(X, ) returns the direction between genes X and Y for the model and
dirg(X, T) returns direction between the same genes from data. The function f returns
a value 1 if both directions are identical and O if they are different. The score is

calculated as a summation over all the edges in the sub model.
iii) Scoring sign of regulation

The sign on a causal edge shows its regulation type. A positive sign indicates an up

regulation and a negative sign indicates a down regulation.

Considering a three gene sub-model, suppression occurs when partial correlation
ryv.z 18 higher than the original bivariate correlation, ryy (see Eqn. 3.2). In this case,
either one connection or all three possible causal connections will have a negative

sign.

‘ Ixvz ‘ > ‘ Ixy ‘ (36)

It the above condition is satisfied, then to specifically identify the sign of regulation
from the sign of the time correlation between expression profile of two genes X and

Y at time delay ©’. That is,

1t72(7) <0 then there is negative regulation

1t >0 then there is positive regulation
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With model and sign assignments known, the scoring function will be of the

following form.

Score, = > f(senm(X,Y),sgna(X,Y))
XY X#¥ (3.7)

Here, sgny,(X, ) returns sign of the causal edge between genes X and Y as specified
by the model and sgn4(X,¥) returns sign between the genes as determined from data.
The function f returns a value 1 if both these signs are identical and O if they are
different. The score is calculated as a summation over all the edges in the network

model.

The score of the overall putative network is obtained as a weighted linear

combination of the MBG consistency scores.

Fitness Score = Z:(w1 *Score, +w, * Score, +w, * Score, )
i (3.8)

Here wi, w, and w3 are weights assigned to each of the three sub model scores such
that w;+w,+w;=1. The weights are adjusted to scale the individual sub scores so that

they do not dominate the overall fitness score.

3.3 Genetic Algorithm

A simple genetic algorithm (GA), applied to explore this structure space, begins with
a sample population of randomly selected network structures and their fitness
calculated. Iteratively, random crossovers and mutations of networks within a
population are performed and the best fitting individuals of the population are kept
for future generations. As generations pass, the population evolves leaving the fitter

structures while those performing poorly become extinct.

47



The hypothetical network structures are constructed with each gene having a set of
M parents, where the value of M ranges between 2 and 7 [16]. The nxn chromosome
matrix, encodes the network structure with each row corresponding to a tail of an
edge and each column corresponding to the head. The chromosome encodes the
presence of a directed edge between two genes, its direction and sign of regulation
using values {1, 0,-1}, where 1 indicates positive regulation, -1 indicates negative
regulation and O indicated no regulation. If for example, there is an edge between
gene X to gene Y, with a negative sign of regulation, the chromosome encodes

Chromosome (X, ¥) = —1.

The crossover operations between two networks can be explained with the aid of
Fig. 3.2. Taking two random individuals from the population, gene edges (3, 4) and
(3, 2) are selected at random as shown in Fig. 3.2 and are swapped between the pair

of networks.

Mutation is applied on an individual edge of a network. For our study, we
incorporate the following four types of mutations.
1)  Deleting a randomly selected existing edge from the network
ii))  Randomly creating a new edge to the network
iii))  Change direction of a randomly selected edge and

iv)  Change sign of regulation on a randomly selected edge.

As both the crossover and mutation operations directly impact the structure of the
network, the following issues need to be satisfied before an edge is created or
manipulated so as to maintain the stipulations of a Bayesian network structure.
1)  The addition or manipulation of an edge leaves the number of parents, M to a
gene (which ranges between 2 and 7) unaffected.

i1)  The addition or manipulation of an edge does not create a directed cycle
(feedback loop).
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Fig. 3.2 Crossover: (a) Two four gene network structures before crossover. The
nodes represent genes and edges represent regulatory connections. (b) Network

structures after crossover where in edges between nodes 3-4 and 2-3 are swapped

The overall algorithm that includes the causal modeling of the GRN and the

stochastic search of the network space using GA is as follows.

1. Create initial population of network structures. For each individual, genes
and set of parent genes are selected (within the range from 2 to 7) based on a
random Poisson distribution and edges are created such that the resulting
network has no directed cycle.

2. From each chromosome, decompose the network structure into sub-models
containing triplets of genes suitable for evaluation using the causal model

explained before.

49



3. Evaluate each network using the fitness function given by Eqn. 3.8 and sort
the chromosomes based on the fitness value.

a. Generate new population by applying cross over and mutation on the
previous population (as shown in Fig. 3.2).

b. Evaluate each individual using the fitness function and use it to sort
the individual networks.

c. Take best individuals from the two populations based on fitness score
and create the population of elite individuals for next generation.

4. Repeat steps a) - c¢) until either of the stopping criteria (given below) is
reached. As the evolution goes on, the emerging new edges will increase the
average score of the population of networks.

5. When the GA stops, due to stopping criteria, save the best chromosome and
reconstruct a gene network.

6. Repeat steps 1)-5) recurrently a specified number of times (5 in our study)
and generate specified number of different gene networks. Combine the

results obtained to reconstruct the final gene network.

Depending on the problem domain, genetic algorithms are repeated from 5 to 10
runs, obtain robust results. Due to the stochastic nature of GA, we repeated our
experiments for 5 times for this thesis work. The repetitions are also useful for
discovering most significant connections in the network i.e. repeated occurrences of
connections in each GA run. Such connections can then be combined to reconstruct

the predicted genetic network.

The following two criteria are applied for stopping the genetic algorithm.

1)  Maximum Limit. When the iteration reaches a predefined maximum number

of generations or
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i1)  No Improvement. When the difference between the current fitness average
and previous fitness total is less than a specified value (= 0.0001 in our case),

the GA search is stopped.

In the next sub-section, we analyze three variants of sub-model fitness metrics that
prove effective for structure discovery and which will be useful in the development
of the MB algorithm presented in Section 3.4). These variants of sub-model are
namely, the “V” sub-structure (triplets), “Y” sub-structure (quadruplets) inference
and the Markov Blanket (MB) sub-structure (i.e. set of direct causes, direct effects,
and direct causes of the direct effects) inference. Much of our work in learning the
V., Y and MB BN sub-models has been devoted to the derivation of their individual
scoring metrics. The objective is to induce a network (or a set of sub-networks) that
“best describes” the training data. This optimization process was implemented by
using heuristic search technique (GA) to find the best candidate over the space of
possible networks. This search process relies greatly on the derived scoring function
that assesses the merits of each candidate network. For the work being presented
here, all aspects are handled conveniently while integrating scoring functions into
the GA.

3.3.1 The V-structure

As shown in Fig. 3.3, a V-structure forming the sub-network of the putative
Bayesian network contains three nodes X, ¥ and Z which are node labels to represent
the genes in the network. While traversing the path from node X to node Y, three
types of connection patterns may be encountered in a GRN as illustrated in Fig. 3.3
(a-c). These are called as serial, diverging, and converging connections. However,
due to the nature of representations, they are also known as chain, fork, and collider
connections. Generally, if the two parent nodes of a collider are not directly

connected by an arrow, this structure is termed an unshielded collider, or a V-
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structure. However, a chain or a fork can also be considered as a V-structure when

nodes are oriented in a V shape.

A V-structure is inferred from the data, if the following conditions hold:

YAz
Y 4 X
ZHX
YL Z|X

where L indicates independence and A indicates dependence.

(b)

(a) ©
Fig. 3.3 V-Structures (a) Chain (b) Fork (c¢) Collider

In the case of a chain or a fork, X and ¥ are d-separated (independent) through X
whereas for a collider, X and Y are d-connected (dependent) through X. To learn V-
structures, it is necessary to test conditional independencies among the random
variables in V structure with the help of the training data [77]. When such CI tests
are carried out on all three node models shown in Fig. 3.3, we found that the
algorithm had to perform unnecessary CI tests on non-essential variables leading to
reduced causal performance. This is because of the fact that, the more the CI tests
that have to be performed, the lower is the accuracy in the results. This will be

confirmed experimentally later in Section 3.3.4, where we show that this loss of

52



accuracy may lead to more spurious relations compared to the proposed two new

variants under study
Next we look at the Y- structure.
3.3.2 The Y-Structure

A Y-structure sub-network of a Bayesian network contains four nodes and has the

Fig. 3.4 Y- Structure

structure shown in Fig 3.4.

Y-structure is inferred from the data, if the following conditions hold true.

ZUW ZAY
ZHX WY

WH X ZLY|X
ZAW|X WYX
XY

Y-Structure includes three V-structures: Z—X«—W, Z—X<—W and Z—X<Y. The
node X is the middle node in all the three V-structures. We investigate Y-structures
because, CI tests based upon the middle node X of the Y-structure, can alone help
determine the causal faithfulness of the whole Y-structure using the training data,
clearly avoiding unnecessary CI tests over three different V-structure. This results in
performing tests using smaller condition sets and eventually three times

computationally faster. However, in practice, there are several different variants of Y
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structures encountered. For example, the V-structure Z—X«W in Fig 3.4 can appear
as a serial, fork, shielded collider, etc. as shown in Fig 3.4 (a) and (b). Considering
another example, X«<—Y in Fig 3.4 can appear as X—7Y in the Y-structure. The eftect
of this will be to vary the size of condition sets needed for performing CI tests and
thus result in varying computational and causal performance compared to V-

structures. This is investigated further in Section 3.3 .4.
3.3.3 Markov Blanket

The concept of the Markov blanket [67] of a variable or a set of variables is central
to this thesis work. The Markov blanket comprises the parents, the children, and the
parents of the children of the node of interest. In Fig. 3.5, a Markov blanket of a
node X, denoted as MB(X) is a minimal set of variables, such that every other

variable is independent of X given MB(X), 1.e.

Fig. 3.5 Markov Blanket of X

A Markov Blanket Graph (MBG) of gene X, comprising of a gene and its MB
neighbors is illustrated in Fig. 3.5. The genes (black) are considered as MB
neighbors of gene X as there is an edge between them, or if they have a child in
common. The gene ¥ (white) are independent of gene X given the MB neighbors of
X. AMB DAG is formed by combining the MB of all nodes in the dataset D.
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The notion of a Markov Blanket (MB) for a node X in a dataset D is significant in
GRN context for two reasons. First, the nodes within each Markov blanket have a
similar set of dependencies and therefore exhibit a similar behavior. Similarly, many
genes in a cell are organized into small groups, in which sets of genes required for
the same biological function or response are co-regulated by the same inputs in order
to coordinate their joint activity. Second, they can also have a causal interpretation: a
directed edge from one variable to another, X—Y, represents the claim that X is a
direct cause of ¥ with respect to other variables in a DAG, i.e., if other variables
were to be held fixed at appropriate values, and X were varied by an intervention
(e.g., activation/repression), X and ¥ would co-vary [67, 77]. A MB DAG can thus

provide both biological and causal insight into relations between a reduced set of

predictor nodes and the target node.

3.3.4 Comparison of V, Y and MB methods

Searching the space of causal models is often performed as an optimization process,
that is, the algorithm looks for a structure optimizing some goodness of fit measure,
the latter being a decomposable scoring function that involves several tests. In the
previous work, a GA was developed for performing this optimization task. In this
chapter we continue to use the same algorithm and only varying the fitness function.
The fitness involves three score, score for structure, score for direction of regulation
and score for sign of regulation. As the goal is to exploit the structure discovery
module, we derive learning algorithms for various sub-models using statistical CI
tests based on partial correlation. In the algorithms presented below, partial

correlation upto 2nd order has been used.
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Table 3.2 Algorithm to learn V-structure
Algorithm V
Input: database D, putative v-structure I,
Output: Fitness-Score, E

1. E;<0

2. compute Fxy, Fxy,z

3. Ifry=ry o thenz lLx, z Y
s.t.if 3 (X,Z) €T, then E, « E; -1
s.t.if 3 (¥,2) €T, then E, < E; -1

4. Lim ¥ —0

Ifry:ZWwthenX Ly |z v Hz x Kz

st if 3 (X, Y) €T, then Eg < E, -1
else E, — E; +1

6. Ifrw:? WwthenX Ly Y HZ X L7

Butif 7w = thenX L V| Z v K7 X H 7

st.if A (X, Y) €T 5.t then Ey < E;-1
else B, — E, +1

Otherwise
if 3X,¥) T, then E, < E; -1 else E,
— E;+1
7. return Eg
End of algorithm

Table 3.3 Algorithm to learn Y-Structure
Algorithm Y
Input: database D, putative Y-structure ['y
Output: Fitness-Score, E;

1. E;<0

2. compute Fxy, Fay, Foy, Fay,x, Fby,x

3. if ry = O0thenx AL ¥
st.if 3 (X, ¥) €T, then E, < E -1
4. Lim ¥ —0
ifray.xgwandrby.xgwthel’lXJ'-{-KAJ.LY‘
X,B ALY |Xandhence A L B|X
st if 3 (X, ¥) €T, then E, < E, +1
6. ifray.x? Wand rby.x? /4
a. but Fay = ¥/ and ¥py = I/ then
XHy Al Y IX,BH Y|Xandhence A K. B]|
X

st if 3 (X,¥) € T, then E, < E, +1
b. otherwise
AKX Y,BH YandhenceA AL X, B AL X
s.t.if 3 (X, 1) €T, then E, < E, -1
7. return Eg
End of algorithm

The equation for partial correlation of first order is given by Eqn.3.2. However, the

equation for partial correlation of second order is given below.
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(rxy.z — rxz.wryz.w)

JA=Fen)(1=12) (3.10)

Fxy.zw =

Table 3.2, shows the algorithm for learning V-structure (Fig. 3.3) from data named

D. ¥ is the significance threshold which is set close to 0 in order to avoid false
positives. In the V algorithm, the fitness score goes negative if the putative structure
does not agree with the data. Table 3.3, shows the algorithm for learning Y-structure
(Fig. 3.4) from data named Y. The Y-structure has interesting dependence and
independence properties which lead to reduction in the condition set compared to
learning V-structure Table 3.4, shows the algorithm for learning Markov blanket

structure (Fig. 3.5) from data.

Table 3.4 Algorithm to Learn Markov Blanket structure
Algorithm MB
Input: database D, putative structure I'yp
Output: Fitness-Score, E
1. E;<0
2. foreachnode V € {I'yg—X}s.t. V € {parents of X)
a. Search node set C, in I'yp that are directly
conditional on X, s.t. V AL Cy | X
b. compute Fvex where i=1..|C|
if Fva.x = I/ then Eg < E +1
c.  Search parent node set Pc, of Ci that are
conditional on X and Ci, st. V AL P, | X, G
d. ForeachPey st. X M Pg, | C; wherei=1..| Pgy
i. Compute Fxpe.c
if Papeia ? W/ and Fxpa = I/ then
By« Es+1
ii. Compute Fvpe.xei (second order)
if Pvpeixei = Y/ then Eg «— E +1
e. {R} € T'yp that contains nodes that are not
comply with the condition set.
3. Ey<E-|R|
4. return Eg
End of algorithm

MB algorithm involves iterative application of conditional independence (CI) tests
of increasing orders of partial correlation. The fitness score determines the number
of correct independencies and dependencies identified from the input putative

structure. Now, in order to compare the performance of the V, Y and MB algorithm,
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we test the algorithm using a synthetic dataset. The synthetic dataset used is obtained

from [97].

i) Experiments

The expression data for the 40 gene artificial network is taken from Gupta ef al. [97]
is where 6 genes have 3 regulatory inputs, 10 genes have 2 regulatory inputs, while
the remaining genes have a single regulatory input. We design for 33 interactions to
have a time delay of zero, 21 interactions have a time delay of one and 9 have a time
delay of two time points. Given this topology of the regulatory network, gene
expression values are computed for each one of the 40 genes at 10 time points. The
derivatives are computed by employing forward difference. The starting value for
the bound for each gene is set to 1.0 and a bound increment value 6=0./ is employed
for computation. The assumed network constituted 63 interactions with known

regulatory weights and time delays associated with these interactions.

Recovering the correct structure was evaluated using this artificial network. The
algorithm V, Y and MB were compared using data generated by the network. For
comparison, we selected the threshold of 0.005 for testing V and Y and a threshold
Y of 0.003 for the MB algorithm providing better accuracy for this algorithm than
using a threshold of 0.005.

Structural correctness for the algorithms is evaluated using two types of errors due to
extra edges (EE) and missing edges (ME). The total structural error accounting for

both errors was evaluated using Eqn.3.10.

SE = VEE* + ME" (3.11)
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Fig. 3.6 Plot of structural error (SE)

As shown in Fig. 3.6, the algorithm evaluated over 10 trials and the MB algorithm
yielded structures with the smallest total structural error over other algorithms under
study. Further, we evaluated the algorithm by performing three trials for identifying
computational complexity. First trial involves a node and its Markov blanket as input
to the algorithms. Second trial involves groups of 3 interconnected V-structures (in
order to form Y-structures) as input and third trial involves Y-structures as input.
The trials are independently performed exhaustively over the entire artificial network
and the average of the number of CI tests performed by individual algorithms in each
trial is calculated. This is plotted in Fig. 3.7. The MB performed least number of CI
tests during first trial because a MB’s (Markov Blankets) were given as input. The
reduction in CI tests achieved by the Y algorithm compared to the V algorithm for
trial 1 is shown in Fig. 3.7. However, this is not consistent with trial 3. This may be
due to the variations in the Y-structures, present in the artificial network. The MB
algorithm uses CI tests of order 2 which causes an increase in the computation
complexity during trials 2 and 3. However, there is almost no reduction in CI tests of
order 1 in V and Y algorithms. As a result, complexity of V and Y are almost equal
to the CI tests of MB algorithm except for their structure accuracy and fewer

numbers of nodes under consideration.
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Fig. 3.7 Average number of CI tests observed for 3 sub-model cases

Based on the experimental results, it is clearly evident that the MB method has good
computational and causal performance. In the next section, we present a detailed

description of the MB method.

3.4 The Markov Blanket-based Method for GRN Inference

The schematic of the proposed causal modeling approach is shown in Fig. 3.8 below.
The method requires decomposing a putative network (an individual GRN) into sub
models which are the Markov blanket graphs of the type illustrated in Fig. 3.5. To
each of the MBs of the network, following steps are then sequentially applied.

Gene Expression Matrix E Adjacency Matrix A
e e Samples Causal Relation R - H(X) vz Tw
9 ” I::> Y affects X I::> (R | ERE
1o} X affects W
g Z affects X | Y \{jojojo
@ Z |1(0]0|D
H(X) wi|1]|o|0|0
Skeleton Matrix S
Constraint Set C x|vy|zlw
Score Reduced 0 order constraint X |op11]
Calculati <::| Evaluation <:| Constraint <::| 1:‘dorder constraint <::I Y [1]0]1.8
T Corstant set Time deay oonarait z 1)1 0]
Direction / Sign constraint W1 a1 |0

Fig. 3.8 Schematic diagram of the proposed MB method
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A) Gene Expression Matrix E

Using dataset [, obtain a matrix £ corresponding to the set of genes that are affected
by gene X (i.e. MB of gene X). This set will contain parents, children and spouse of
gene X.

B) Causal relation R
For the MB of the network H(X), (as shown in Fig. 3.8), the causal relationships
between genes are defined as gene X affecting gene Y either directly or indirectly.

We thus create n binary causal relations R.

C) Adjacency matrix A
The adjacency matrix 4 (of size n X n where n 1s the number of nodes in the MB) is
based directly on the binary relation R and is populated according to Eqn. 3.11

below.

—

, 1— ] regulation is positive
Ay=< 0, otherwise (3.12)
-1, 1— jregulation is negative

For example, if a causal relation exists in R that a gene X affects gene Y, then the
value of element (7, j) corresponding to row 7 and column j in the adjacency matrix 4
is set to 1, i.e. A(i, j) = 1. For example, in Fig. 3.8, the shaded cell of the adjacency

matrix 4 shows a direct relationship between gene X and gene Y.

D) Skeleton matrix S

A skeleton matrix S is developed from the adjacency matrix 4 to include both, the
direct and indirect effects observed in a putative MB. While matrix element A(7, j)
represents only the direct relationship, the corresponding element of skeleton matrix
S also includes the indirect causal relationship between genes corresponding to X and
Y. For example, consider an indirect relationship between gene X and Y via gene Z

(where Z is any gene other than gene X or gene ¥) such that A(i, k) and A(j, k) are
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both equal to 1. Then S(7, j) is evaluated from Binary {A(i, k) AND A(j, k)} (for k=1,
.., n). For example, in Fig. 3.8, the shaded cell of the skeleton matrix S shows the
indirect relationship between gene ¥ and gene W. In this manner, all indirect effects

are also captured in the skeleton matrix .S.

E) Constraints set C

From skeleton matrix S, the direct and indirect effects are respectively converted as
conditional dependence (CD) and conditional independence (CI) constraints. These
constraints are of the type, “II' model and data are known, THEN how well the
model fits the data”. The zero order constraint are obtained from the direct
interactions while higher order constraints are obtained from the indirect interactions
via a condition set. For example, if the condition set contains a single gene, it results
in a first order constraint. For our analysis, we have considered up to 2nd order
constraints. The CI and CD constraints evaluate to either true (constraint fits the

data) or false otherwise.

F) Reduced Constraint set C’

Some tests are not necessary to be implemented and can be eliminated from the
constraint set C. For example, in Fig. 3.8, we note that gene Y and W are
conditionally independent being conditioned on X (i.e. connected via X) and further,
gene Z and W are also conditionally independent (conditioned on gene X). Hence,
gene ¥ and Z become conditionally dependent (conditioned on gene X). Hence the
constraint involving gene Y and gene Z can be eliminated providing a reduction in
the constraint set. Further, instead of conditioning on a single gene X, the constraint

reduction is also done considering a condition set with more than one gene [67].

G) Constraints Evaluation:
The consistency of the constraints with respect to data is evaluated using the MB
fitness scores of Eqn. 3.5 — Eqn. 3.7) explained in the following step viii). Statistical

significance test, namely F-test is conducted to check if the correlation coefficients
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differ significantly from zero value. These tests apply an appropriate threshold p-
value to produce satisfactory correlations. Conducting Bonferroni-corrected p-value

on few genes, it is thus possible to select a-priori the required threshold p-value.

H) Fitness Score:
As mentioned earlier, the putative network is decomposed into sub models (i.e. the
Markov blanket graphs of the type illustrated in Fig. 3.8). Each sub-model is scored

for quality of MB structure, direction of causality and sign of regulation.

The score of the overall putative network is obtained as a weighted linear
combination of the MBG consistency scores as shown in Eqn. 3.9 and repeated

below for easy reference.

Fitness Score = Z:(w1 * Score, +w, * Score, +w;, *Score, )

The algorithm 1s computationally efficient as the order of the number of tests is O(n
log n). However, it is possible to further improve its efficiency by applying
optimization techniques. An opportunity for computational pay-off exists, stemming
from the idea of Constraint Logic Minimization (CLM) which is a form of digital
logic circuit. It is believed that conditional independence tests follow a logical
pattern [17]. Using this technique, we obtain a lesser number of tests which results in
higher accuracy due the presence of noise in data and reduced computation power

involved. This is explained in the next section below.

3.5 Constraint Logic Minimization

Although the above presented algorithm is efficient enough, due to the huge size of
network search space and the limited amount of microarray data, it is impractical to

test each and every constraint. Moreover, with the increase in the condition set

needed for causal discovery, more and more CI tests had to be performed, resulting
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eventually in lower accuracy. By simplifying the complex logic involved with the
constraints in the Markov blanket algorithm, the computational efficiency of the MB

algorithm can be further enhanced by applying optimization.

The technique to model the Bayesian network accurately by Markov blanket (MB)
graph was first proposed by Sprites ef al. [77] who stated that MB can adequately
represent all connections and interactions in a network. Since then, the work on MB
has been rapidly expanding with a focus on the study of causality which plays an
important role in modeling, analysis and designs of GRNs. Learning any Markov
blanket Bayesian network structure and inferring gene networks involves application
of constraints. These constraints are typically conditional independence statements.
The conditional independence tests used in practice are statistical tests such as partial
correlation, mutual information, and conditional probabilities etc. that indicate a
causal influence. In order to use the conditional independence tests to reconstruct the
structure, several assumptions have to be made, e.g. causal sufficiency, causal
Markov and faithfulness [67]. With these assumptions, we can ascertain the
existence of an edge, its direction and whether it is positive or negative. The Sprites-
Glymour-Scheines (SGS) algorithm [77], used for obtaining a causal DAG from a
dataset, assumes that graphs are acyclic. It is formulated using the concept of d-
separation in which all possible combinations are tried before determining the
existence of an edge between every pair of variables in the dataset. However, the
SGS algorithm fails to always assign directions to each of the edges. This limitation
of SGS algorithm is overcome by the inductive causation (IC) algorithm, which is
capable of assigning directions. Some algorithms do not make use of independence
tests but take into account d-separation in order to discover structure from data. For
example, Cheng et al. [63] applied mutual information instead of conditional
independence tests. All these algorithms are referred as constraint based algorithms.
Constraint-based algorithms have certain limitations such as poor robustness or
computation time which increases exponentially with the number of constraints.

These limitations make these approaches impractical for large datasets of tens or
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even hundreds of variables.

In our proposed causal model approach for constructing GRN explained above and

also reported elsewhere [98, 99], the network was inferred by applying the following

three sequential steps to identify the sub-structures of a larger network:

1) Perform conditional independence (CI) tests for each node’s Markov blanket

i) Assign direction to the edges and

1i1) Assign sign of regulation to the edges. However, due to the huge size of
network search space and the limited amount of microarray data, it was

impractical to test each and every constraint.

Moreover, with the increase in the condition set needed for causal discovery, more
and more CI tests had to be performed, resulting eventually in lower accuracy. By
simplifying the complex logic involved with the constraints in the Markov blanket
algorithm, the computational efficiency of the MB algorithm (see Section 3.4) can
be enhanced thereby resulting in improved accuracy for network reconstruction. In
this chapter, we propose a technique for minimizing the constraints and hence the
condition set needed for testing the structure with respect to data. The statistical
tests following the logic are translated into a Boolean function after which a logic
gate minimization technique such as K-map [100] is applied and the minimized
logic is translated back to the constraints and used on the data. We have achieved
this by a novel independence based algorithm which we refer here as the Markov
blanket-Constraint Logic Minimisation (MB-CLM) algorithm. The MB-CLM
algorithm heuristically uses Markov Blanket neighborhood of a node and makes
model evaluation simple. In order to evaluate and validate a Markov Blanket, there
is invariably a need for checking a set of conditions. However, from the available
set of alternatives, it is possible to have a potentially smaller set of conditions that
can establish the desired conclusion for the given network but with a faster
computation speed and increased reliability. This is because a conditioning set S

splits the data set into 2 partitions. With a smaller conditioning set, the data set is
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split into larger partitions thereby making dependence tests more reliable. This
smaller or minimal set will fulfill the necessary and sufficient conditions required

for GRN reconstruction.

By decomposing the investigation of a large putative network into problem of
investigation of smaller MBs, the recovery of the local structure around each node
gets greatly facilitated due to the knowledge of the nodes' Markov blankets. Hence,
what would otherwise have been a daunting task of employing dependence tests
conditioned on an exponentially large number of subsets of large sets of variables
(even though most of their members may be irrelevant), we now focus only on the
Markov blankets of the nodes involved, making structure discovery faster. We
present below the plain version of the MB algorithm that utilizes blanket information

for inducing the structure of a Bayesian network.
K-MAP Minimization

The proposed CLM algorithm explained above is based on the well known K-map
technique used for logic gate minimization. To illustrate the minimization technique,
let us consider an arbitrarily chosen four input (Boolean) network as shown in Fig.
3.9.

Fig. 3.9 Boolean Network

Let the network have four independent inputs a, b, ¢ and d are characterized by, say,
the following Boolean function to give an output of logic:

f(a,b,c,d)= > m(0,3,4,7,8,11,15) (3.13)
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Here, f is the boolean function. The numbers on the RHS are minterms (i.e. decimal
value equivalent of the 4 bit inputs). For example, the value 3 on RHS, means that
the four bit input combination 0011 (i.e. input a’b ‘cd or the value 3) results in logical

1. The term m indicates that all the values within bracket are minterms.

The above equation, give Eqn 3.12, indicates that any combination of the inputs with
values of 0, 3, 4, 7, 8, 11 or 15 would result in an output. Noting that a=/ and a’=0,
the above function in Eqn. 3.12 can be expanded as

f=a'b'c'd+a'b'cd+a'be'd'+ a'bed+abe'd+ab'cd+abed (3 . 14)

The above Eqn.3.13 is known as a Sum of Product (SOP) of Eqn. 3.12 and the

products are the minterms mentioned above.

cd
ab 00 [0l |11 [10
00 |1 1
ol |1 1
1 1
0 |1 1

Fig. 3.10 K-Map for the function given by Eqn. 3.14

The K-map for the above function is shown in Fig. 3.10. All rows and columns in
the K-map above are unique since only one variable changes its value within its
square. The K-map elements are given a value of 1 in such a way that all possible
network outputs included in the matrix. The first row, for example has input a=0
(i.e. a’) and input b equals O (i.e. 5’). Similarly, column 3 for example has both c¢= /
and d =1. Thus, an element, for example in row 1, column 3 corresponds to input
a’b’cd =1. This is the second term on RHS in Eqn. 3.14 above. It can be further
noted that between two adjacent elements, only one of the variables changes its

value. For example, in Fig. 3.10, the order for input cd given as 00, 01, 11, 10
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ensures that there is a change of only one input between the adjacent columns. Now
let us consider grouping the common terms and minimization of the function using

the K-map shown in Fig. 3.10. By grouping:

Four 1s in column 3 for all rows, we get the common term cd
Two 1s in column 1 for row 1 and row 2, we get the common term a'c’d’

Two 1s in column 1 for row 1 and row 4, we get the common term b'c’d’

Considering the above groupings, we can rearrange the RHS terms from Eqn.3.14
appropriately to facilitate logic minimization.
Further, noting that

a+a’=1 (3.15)

We can simplify Eqn. 3.12 as follows.

fla,b,c,d) = (a'b’cd+abcd+a'bed+ab’cd)+(a'b'c'd'+a’be'd) +ab'c'd’
= cd(a'b’+ab+a'b+ab’)+ a'c'd (b+b')+ ab'c'd’
=cd +a'’cd +ab'c'd (3.16)

Since the constraint minimization when applied to the Markov blanket scoring for
GRN reconstruction will result in an outcome which is either true or false, the
principles of logic gate minimization presented in this section are easily extended
and applied to GRN modeling. The variables a, b, ¢, d in Eqn. 3.15 above correspond

to constraints that can be either CI tests or tests involving delays and directions.

In the GRN reconstruction method presented earlier (Section 3.4), the network is
evaluated at the Markov Blanket (MB) of every node with respect to data resulting in
a set of constraints to be satisfied per MB. In general, all these constraints should
always be satisfied to validate a true MB with respect to data. Since the dataset under

consideration is noisy and high dimensional, it is acceptable if all the constraints are
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not necessarily satisfied MB validation. For example, consider a MB having, say
three constraints. A combination of say two constraints may leave the evaluation of
third constraint (don’t care value) unnecessary. However, if the two constraints fail,
only then the third constraint may need to be evaluated. Since the Markov blanket
scoring can be viewed as a logic circuit minimization, we can get a function similar
to Eqn. 3.11 and the underlying logic constraints can thus be represented as a logic

diagram explained in the previous section resulting in optimizing the computations.

The Constraint minimization version is given as follows:

1. Obtain the Markov blanket H(X). Let the set of constraints be C.

il. Get the constraint set C from step (v) of MB algorithm in Section 3.4

1ii. Assign binary codes for constraints in constraint set C. Use the constraint
evaluation table to generate a truth table and logic diagram.

iv. Perform minimization with the help of K-map.

v. Remove the unnecessary constraints from the constraint evaluation step.

vi. Execute the minimized logic on the dataset D.

In Fig. 3.11, C represents the set of constraints. Initially the constraints are obtained
from the MB algorithm. The above mentioned CLM approach is shown as a CLM
phase which takes the constraint set C as input and returns a minimized set C,,;, back

to the MB algorithm for evaluation and validation.

1.C « 0

2.LEARN_MB Step F » C
3.CLM phase < C

4. LEARN_MB Step G < Cain

Fig. 3.11 MB Algorithm and CLM Algorithm integration step

The order of complexity for each conditional dependence/independence test taken is
OmD), where D 1is the dataset of input to the algorithm. The computations are
required for constructing the table of constraints and for each combination of the

variables (genes) included in the constraint test that exists in the data set. As a worst
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case scenario, each dependence test uses O(D) space to store each variable

combination of the conditioning constraint set that appears in the data.

The number of constraints tested is usually reported as a measure of the performance
of Bayesian net reconstruction algorithms [63, 67, 77, 79]. To determine the number
of tests in this algorithm, we assume that the steps 2 and 3 go through MB variables
(parents, children, spouses) in an unspecified but fixed order. Therefore, the order of
the entire algorithm is O(n) in the number of independence tests. The algorithm
benefits by further computational optimizations from constraint minimization using

the proposed K-map technique.

The Eqn. 3.8 giving the fitness score maximizes true positives. However, it penalizes
false positive interactions only to a limited extent due to the presence of a; and S
factors. This 1s because the partial correlations used in the modeling approach, in
spite of providing excellent capabilities for entailing meaningful relationships, cause
high false discovery rate [46]. As a result, spurious edges may still be present in the
final gene network obtained from GA. Hence, an analysis and post processing of the
network is necessary to not only eliminate spurious edges for getting a minimal
network but also to account for signal transition time delays. This post processing

method is presented next.

3.6 Path Analysis — Pruning of false positive edges

In this section, we propose path analysis approach for incorporating missing d-
separation, multiple paths, alternative causal explanation, and effect of path time
delay. The background on d-seperation and paths in a Markov blanket are provided
in Section 2.3.1. The d-separation path analysis algorithm is extended to handle
signal transition time delays, and to propagate their effects in the circuit using the
‘If.. Then’ time functions. This algorithm has four phases: searching, marking for arc

deletion, thinning (actual deletion) and finalizing the network. In the first phase, this
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algorithm finds the sets of paths for each node using its Markov blanket. In Phase 2,
each of the paths is analyzed for missing d-separation and d-separation for
compliance with important property. This is done using the functions described
below. Following that, each of the paths is analyzed for variance conformance and
the arcs that are non-conforming are marked for deletion. The result of Phase 2 is a
list of arcs marked to be deleted under various conditions. The Phase 3 performs the
actual deletion of those arcs which actually affect the fitness of the network. The
result of Phase 3 is the final network and Phase 4 finalizes the network and if any

errors are identified, the network is sent back to Phase 3.

3.6.1 The d-separation Algorithm

The selection of Markov blanket is based on the d-separation rule of the Bayesian
network. When a specific node in the Bayesian network 1s given, Markov blanket for
the attribute is the set of nodes composed of the attribute's parents, its children, and
its children's parents. Theoretically, given a Bayesian network structure of the
training data set, those nodes that are identified by the Markov blanket indeed block
all the influence of the other nodes in the network. This helps to identify the d-
separation condition set. The problem is to obtain a network that is minimal in the
number of links, or representation size, necessary to fit the data. The properties of

Markov blanket and d-separation are combined for this reason.

Concept of missing d-Separation: D-separation property in a DAG implies
conditional statistical independence, and missing d-separation implies missing
conditional independence D-Connection: X and 1 are d-connected if and only if
either (i) there is a causal path between them or (ii) there is evidence that renders the

two nodes correlated with each other.

Missing d-Separation
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Let G be a complete network (path diagram)

1. Initialize counter £=0 indicating the maximum number of nodes in the steps
below.

2. For each pair of nodes XY, connected in G by an egde and possessing more than
k neighbors in Markov blanket each, check if for any subset of neighbors of X
with cardinality (size) exactly £, the variables XY are conditionally independent.
If so, mark the arc (X)) for DELETION from G.

3. k=k+1.if more than k neighbors each, go to step 2. Otherwise go to step 4.

4. Repeat for 3 wvariables XY, Z paths, where the end nodes of the path
(unconnected edges) are checked for D-separation with their respective
neighbors

5. Repeat for each four variables XY, Z, T’

Similarly, missing D-Connection algorithm can be formulated by replacing the word

“separated” with “connected” in the above algorithm.

3.6.2 Pruning Algorithm

The false positive pruning algorithm has the following four phases.

Phase-1 (Searching):

Starting with a fully connected network G from the GA output, search for paths of
the type (X, Z, ¥) for each gene pair (X, ¥) € G from gene’s Markov blanket. The
term Z denotes a gene or a set of genes which provide connection between the two
genes X and Y under consideration. In Bayesian terminology, the set Z is commonly
referred as the d-separating set. A non-zero Z indicates that, “X is dependent on Y
given Z”.

From the search, list all the d-separation rules for each of the paths in the network
which need to be tested. For each of the paths identified in Phase-1 above, list all the

edges appearing in these paths.
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Phase-2 (Identifying edges for deletion)

We apply the following tests (called beliefs in BN terminology) and identify edges
for deletion.

Test 1: Test for missing d-separation and missing d-connection [67] on the condition
set obtained in Phase-1. By comparing the d-separation rules (step 2 of Phase-1) and

actual reconstructed model, we then evaluate Test1 as either a pass or a fail.

Test 2: Test alternative path hypothesis by considering various alternative paths
possible between pair of genes X and Y. By comparing each of these alternative paths
with the path in the actual model, we evaluate Test2 as either a pass or a fail. This
information will be used in Phase-3 to identify those edges for deletion which are

contradictory in the alternative paths.

Test 3: Test for alternative explanation hypothesis (see step viii) of Section 3.4 for
clarification). As we apply partial correlation up to 2nd order, we can test paths
having a maximum of 4 nodes. The pre-calculated partial coefficients are used to
develop a hypothesis for the different possible paths. From this, we identify the path
which is statistically most significant. This path is then compared with the

corresponding path of the actual model. Test 3 is evaluated as either a pass or fail.

Test 4: Test for the time delay propagation in all the paths identified in step 1 of
Phase-1. This is then converted to time dependent “If... Then” statements. The
analysis is again limited up to 4 nodes. This limitation allows us to restrict the path
delay calculations as computation of max and min delays. If the path delays match
the real network, we evaluate the Test4 as a pass, otherwise it is fail. All the non-

conforming edges are identified for deletion.

Phase 3 (Thinning edges by deletion):
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It is necessary to avoid contradictory deletions based on four tests given above. For
this, with the edges marked for deletion, we perform the following checks.
1)  Check whether the deletion of an edge results in the network acquiring:
i1)  Island property which causes a section of the network being isolated
ii1)  Sink property which causes a node to become isolated

iv)  Acyclic property which introduces a directed cycle.

If the deletion is acceptable, then we proceed to step-2. Otherwise, the edge is
unmarked for deletion. The outcomes of the four tests result in 2% (=16)
combinations which provide a final decision on deletion of an edge. For example, if
outcome of Test 1 and Test 3 are pass and the edge is marked for deletion by both

models, then permanently delete the edge.

Phase-4 (Validating the network)

For validating the network, we perform the following steps.

Simulate the reconstructed network model in entirety by implementing all the valid
arcs and genes with their expression values at a time 7.

Test and validate the network at a time (#+A#) by examining the pattern of the output
responses of various genes.

If errors present, carry out the necessary corrections to fine tune the network

followed by revalidation.

3.7 Experiments and Results

Next, using the real life yeast cell cycle data set (see Appendix 1 for details), we

carry out following experiments.
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3.7.1 MB Method without path analysis

As the MB approach performed better compared to the other two with the artificial
dataset (see Section 3.3.4), we further applied this algorithm to cell cycle expression
data of Spellman ef al. [49]. The dataset contains 76 gene arrays of 6177 S.
cerevisiae ORFs. Gene expression levels are taken as continuous values. All the 76
samples from cdcl5, alpha-factor and cdc28 datasets were used to determine the

Markov Blanket structure between genes.

Even without expert knowledge, visual inspection of these sub-networks provides us
with ready hypotheses as to why their genes are related. Particularly, inspection of
the results from Markov blanket specific to CLB1 (YGR108W ORF) (see Fig. 3.12)
is presented in a combination of three transcription factors CLB6, MCM1 and SFF
(Swi five factor) and children genes CLB2, CLN2 and SWIS. The parents of children
genes, CLNI1 (cyclin) and CDC6 (DNA replication initiator) are also interesting to
note. The gene regulatory interactions described above find support in the literature
[90, 101]. Hence, the study shows that we can recover intricate structures with more

accuracy using MB method.

Fig. 3.12 Markov Blanket of gene CLB1
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3.7.2 Effect of CLM on MB algorithm

Fig. 3.13 shows an example reconstruction of an artificially constructed synthetic
network using MB-CLM technique. Fig. 3.13 (a) shows the original synthetic
network, then Fig. 3.13 (b) is the logic circuit corresponding to the constraints
involved and Fig. 3.13 (c) shows the reconstructed network using MB-CLM
algorithm. Amongst various network architectures possible, we have generated a
type referred as random network. The generated network (Fig. 3.13 (a)) is of 3x3
dimensions with an up/down branching factor of 2. The branching factor refers to the
number of parents, children and spouses connected to a node. The up branching
factor specifies the number of parents of each node directly above it, excluding

nodes near the left and right border of the grid, and on the top row.

(a) Synthetic network (b) Logic circuit (c)Reconstructed Network

Fig. 3.13 Synthetic network and minimized constraint logic

In our simulations, we used plain MB algorithm and MB-CLM algorithm with a MB
threshold value of 0.90 in both cases and tested the algorithms using synthetic
network 5x4 nodes and corresponding synthetic data of upto 100 samples. Fig. 3.14
(a) shows a plot of the number of nodes of the MB incorrectly included or excluded
for plain MB algorithm and MB-CLM algorithm, averaged over all nodes in the
domain. It can be observed that due to the constraint minimization, the accuracy of
results have increased, as a result the number of nodes incorrectly included is less for

the MB-CLM algorithm compared to the MB algorithm.
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Fig. 3.14 Simulation results

Fig. 3.14 (a) shows the number of nodes incorrectly included and incorrectly
excluded during the Markov blanket. Fig. 3.14 (b) shows results for a 20 separate
Markov blankets with branching factor 3 (in all three (upward, downward and
sideways) directions, corresponding blanket size 9). Fig. 3.14 (c) shows the results
from using a 5 x 5 network which generated 100 samples that are used for edge

direction reconstruction. The branching factor has a threshold value of 0.90

Hence, there is better accuracy and reliability with the MB-CLM algorithm. On the
other hand, as can be seen from Fig. 3.14 (a) the use of MB algorithm resulted in a
slightly higher number of missing nodes. Although the nodes incorrectly included
are very low for both MB and MB-CLM algorithm, the nodes incorrectly excluded
fall more rapidly with increasing sample size in the case of MB-CLM algorithm
compared to MB algorithm. From Fig. 3.14 (b), it can be observed that MB has very
high constraints which are minimized by MB-CLM algorithm. The CLM algorithm
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thus helps with large reduction of constraints in certain circumstances. The effect on
percentage Direction Error (DE) by increasing MB (via branching factor increase) is
shown in Fig. 3.14 (c). DE for the MB and the MB-CLM algorithm remains close for
lower branching factors but decreases slightly for MB-CLM algorithm with increase
in branching factor. The decrease is due to the large number of parents for each node
(i.e. more V structures) which provides greater opportunities to recover the

directionality of an edge with increased number of tests.

3.7.3 Experimental Results of Path Analysis

Fig.3.15 is the section of the actual yeast network structure and the network after
post processing step is carried out where the thick dark lines indicate the barrier and
arcs cutting through the barrier were deleted after post processing step. When the
fitness measure was re-computed after post processing was carried out, nearly 20%
accuracy improvement was noticed in result. This shows that the algorithm delivers

more plausible networks close to the actual network.

Fig. 3.15 Results from pruning the yeast network
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3.8 Summary

In this chapter, we present a novel Markov blanket based approach to learning gene
regulatory network which decomposes the network into Markov blankets of each
gene (comprising of parents, children and parents of children). To minimize the
computational overhead, a constraint minimization technique to speed up in the case
of large datasets is also proposed. Further, a novel post processing path analysis
technique to prune the network of spurious interactions. The preliminary results
using real yeast dataset test the modeling technique. The results are promising as
they not only identify selected biological interactions reported in the literature but
were also able to detect spurious regulatory relationships predicted by the model. For
more rigorous experiments, it is necessary to develop realistic synthetic datasets
which can enable variation of parameters. In the next chapter, we propose techniques
for generation of these datasets as well as its application for conducting detailed

experiments.
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Chapter 4

4 Synthetic Dataset and Model Analysis

4.1 Introduction

In the previous chapter, the development of causal model and associated algorithms
were studied with the aid of real life dataset. However, with the documentation of
real life dataset not always complete; the underlying network that produces the data
remains unknown. This makes any validation, robustness analysis of models and
algorithms or their comparison with other existing techniques quite difficult. A
synthetically reconstructed GRN, while preserving the characteristics of the
underlying data generation system, allows experiments to be performed using any
new method to investigate the effect of parametric variations. These artificial but
realistic GRN networks provide a simulation environment similar to a real-life
laboratory microarray experiment and a mechanism for robustness studies
reconstruction methods to individual and combination of parametric changes.

Studies involving complicated interactions as well as parametric variations such as
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topology, noise (background and experimental noise) and time delays or number of

samples can be carried out by the proposed synthetic GRN networks.

Limited literature for generating synthetic data for GRN reconstruction is available.
Mendez ef al. [2] proposed a method based on differential equations for generating
synthetic microarray data. The method allowed variation of only noise and topology
parameters and did not include the flexibility of varying single or combination of
parameters for validating individual features of the GRN methods. Eisen ef al. [38]
generated synthetic dataset and applied for studying hierarchical clustering for gene
expression data. As the method suffered from the lack of knowledge about the GRN
under study, any conclusion vis-a-vis the underlying biology became uncertain.
Further, because the data sets were different in each of the studies carried out, it was
not possible to make any comparisons amongst studies that employed this approach.
Friedman ef al. [17] generated a Boolean synthetic data to validate the robustness of
their Bayesian methods. Although useful for generating synthetic datasets, none of
these techniques were suitable to examine model specific features such as time-
delays, feedback loops, dynamic behavior, etc. Furthermore, all these techniques
were limited in their ability to generate a variety of synthetic networks at different

stages of refinement of GRN reconstruction methods.

In this chapter, in Section 4.2 we present a new approach for synthetically generating
gene networks using causal relationships. The generated synthetic networks
presented in Section 4.3 are realistic have varying topologies such as small world,
random, scale free, or hierarchical topologies based on the well-defined GRN
properties. The proposed method for generation of synthetic networks allows for
various parametric variations, such as, network topology, varying levels of
complexity of interaction, time delays, number of samples and amount of noise in
the data. In Section 4.4, the datasets are also applied for validation of the robustness
of the causal GRN modeling method presented in Chapter 3. Section 4.5 provides a

discussion of the results and Section 4.6 gives the summary of the chapter.
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4.2  Generation of Synthetic Data

The synthetic network generator, written in MATLAB, offers an option for choice of
topologies that determines the structure of the network and specifies interactions
between the genes. With this option, we can generate any number of networks
having different topologies. In the next step, by choosing interactions and setting
equation parameters, the full dynamics of the gene network (such as feedback loops,
oscillations and so on) is described and can be implemented in specified pre-defined
ways to produce a required level of complexity of gene interactions. Next, for
generating discrete samples, the continuous responses of the genes in the synthetic
network are sampled at different time instants which produce a noiseless time course
data. Next, to make the sampled data realistic, time delays are added to the samples
in a specified manner. Following this, noise is added to the data according to the
Gaussian or gamma distributions. Finally, gene expression ratios are calculated
which realistically represent the real-life microarray data set. The flow chart of the
mechanism of proposed system for synthetic network generation is shown in Fig.
4.1. The entire process of generating the network topology and corresponding gene

interactions is described in detail in following sub sections.

4.2.1 Network Topology

As mentioned earlier, the first step of synthetic data generation is to define a network
topology. A topology is chosen by setting following three parameters:
i. Total number of genes in the network,
ii. Distribution of the in-degree of connectivity (i.e. the distribution of the
number of parents per gene) and
iii. Distribution of the outgoing degree of connectivity (i.e. the distribution of the

number of children per gene).
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Based on the incoming and outgoing degree distribution parameters mentioned
above, four different topologies are available for selection (with corresponding
distribution provided in parenthesis):
e Random topology (Poisson distribution)
e Scale Free topology (power law distribution)
o Small World topology (power law distribution with small average distance
between genes)

e Hierarchical topology (power law distribution with inherent modular

structure)
Synthetic GRN Generator
START

n T Choice of Network Topology b
1

! Hand-Crafted topology Random topology Scale free topology '
i |
1 I
1 I
X Hierarchical topology Parameters: n, ¢, d, d, Small World topology '
I I
1 1
I 1

Gene Interactions & Setting Transition Function Parameters
Addition of loops, oscillations, dynamics behavior, positive/negative signs, Parameter: ¢

!

Simulation setting to Sample the data at various intervals

Parameters: N,_Conditions (N)

U

Network Transmission Delay
Parameters: di, F/

J

Biological and Experimental Noise
Parameters: B, E

Il

Calculating Synthetic GRN data

Fig. 4.1 Proposed methodology of synthetic gene expression data generation, The
symbols used are: n - number of genes, e — number of edges, di — incoming degree
distribution, do — outgoing degree distribution, ¢ — percentage of complex
interactions, N — number of samples, Condition (N) — specifies experimental
conditions for each sample as in real each sample is an experiment, dl — delay levels,
F — probability distribution of delays, B — percentage of biological noise in terms of
hidden nodes, E — percentage of experimental noise
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In random topology (RND), the connectivity degree follows a Poisson distribution.
The nodes that deviate from the average are rare and decrease exponentially and the
clustering coefficient is independent of a node’s degree of connectivity [102]. In
Scale Free (SF) topology [103], the connectivity degree follows a power law
distribution, i.e. the behavior of a network system is controlled by few important
nodes. Majority of nodes have only a few connections, while some special nodes
connect with many other nodes forming a hub, i.e., most nodes are poorly connected,
while a few are highly connected (Hubs). In a Small World networks (SW) [104],
the mean shortest path is / ~ log(N) indicating that most nodes are connected by a
short path. The SW networks are characterized by large Clustering Coefficient and
small Average Path Length. The Hierarchical network (HR) [105] integrates a scale-
free topology with an inherent modular structure by generating a network that has a
power-law degree distribution with degree exponent y = / + [n4/[n3 = 2.26. In cases
where the aforementioned topological types are not appropriate due to the
uncertainty of GRN topology, we propose another topology, which we will refer

henceforth as, ‘handcrafted topology’(HC).

The choice of any of the network topology is user-definable and can be used for
checking robustness of algorithm against topology. To generate a network topology
close to real life GRN, network structures previously described in biological
literature such as E. coli [25] and S. cerevisiae [51] were taken into account. These
networks are partially random and partially scale free i.e. the distribution of the
incoming degree of connectivity follows a Poisson distribution (random topology)
while the distribution of the outgoing degree of connectivity follows a power-law
(scale free topology). A single topology or combinations of two or more topologies

to generate the gene network structure is user definable.
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At this stage, the network structure is without any complex interactions, such as self
loops, oscillations and dynamic behaviour. In the next section, we present the

inclusion of these features to the network topology.

4.2.2 Gene Interactions and Transition Function Parameters

After generating the topology, transition functions representing the regulatory
interactions between the genes are assigned to the edges in the network as follows:
1. Choosing the regulatory interactions

ii. Setting the transition function parameters

The entire synthetic modeling of gene networks essentially considers a causal
interaction of genetic regulation. It considers each gene to be directly affected by
number of other genes and represents the interaction as directed edges. A transition
function defines the relationship between gene and its parent genes. The genes are
represented as continuous variables rather than discrete variables, i.e. synthetic gene
expression values are continuous rather than O or 1. First, while choosing the
regulatory interactions, the genes are represented as activators or repressors. Our
proposed method of network modeling allows for this positive or negative linear
causal relationship between the input (i.e. parent) genes and the gene under
consideration. Mathematically, these network models are based on set of linear
causal equations. Each equation corresponds to gene expression which is a function
of a positive (activation) and negative (repression) terms. When a given gene
interacts with more than one regulator, different regulators can either act
independently or in a more complex manner (such as complex combinational, short
term co-activation, co-repression or a combination) on the target genes resulting in

different interactions such as feedback loops, oscillations and dynamic behavior.

To incorporate such complexities, for each combination of a gene and its regulators,

appropriate equation is selected, depending on the number of activators and
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repressors and on the user-defined settings that control the fraction of complex
interactions. For genes involved in cycles, it is possible that not all inputs of their
transition function are known during loop propagation. To model these loops, an
approximation compatible with the steady-state transition functions is chosen. This
approximation is represented by a parameter to represent complex interactions. It is
an extremely useful parameter because it allows initial performance evaluation of a
method to be done on relatively easy problems (e.g. small noiseless networks
without complex interactions between regulators). Increasingly difficult data sets can
subsequently be generated as the GRN inference method is improved or refined.
Again, setting transition function parameters involves choosing appropriate
correlation parameter settings of the transition function equations. The strength of
correlation is an important parameter and is chosen from a distribution that allows a
large variation of interaction that are likely to occur in true networks (including
linear activation functions, sigmoid functions, sinusoidal functions, etc.), while
avoiding very steep transition functions. To explain a simple chain interaction in the

network considers, for example, that x causes y and y causes z. Thatis,x -y — z
x(0 = Asin(BY) : y(0) = X(O): 2(0) = ¥(9) @1

The expression x(7) is a sinusoid with amplitude 4, time period 2z/B where B is
angular frequency. In this case, the strength of correlation between x and y is 1, so

the signals are equal, but varied based on parametric specification.

4.2.3 Data Samples

Using the continuous gene expression output (resulting from the equations written
for each node of the synthetic network), data is sampled at either fixed or irregular
time spacing between gene expressions. The number of samples and the time step for
sampling can be chosen either randomly or it can also be user defined. The sampled

data represents the temporal state of synthetic network under different experimental
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conditions. This is similar to real microarray experiments where each sample of the
dataset is an experiment that is repeated at fixed or irregular intervals of time. At this
stage, various settings needed for simulation of the network per each sample
(simulating a real experiment setup) for N samples are complete. However, note that
the data representing real life conditions is not yet generated as time delay and noise

component are yet to be added.

4.2.4 Network Transmission Delays

A delay in transmission of signals emitted by genes, being an important
characteristic of all gene networks; it is important to realistically implement this
feature in synthetic datasets. In the proposed modeling approach, we implement the
delay levels as a user defined parameter which is nothing but the maximum number
of samples on which the delay can be experienced. Further, to make the modeling
more realistic, we have also made it possible to specify the fraction of interactions
which have delays. Based on the choice of this parameter, a delay distribution is
obtained for the links between the genes. Delays are implemented by simply
reassigning a new simulation setting for a particular sample explained in Section
4.2.4 based on the delays assigned. This simulates the delay in the real microarray
dataset. The fraction of links involved in time delay is determined using a known
probability density in case it is not user defined. Investigations involving time delay
parameter variation can thus be carried out on the datasets by

incorporating/eliminating time delays.

4.2.5 Biological and Experimental Noise

A real life microarray data contains two types of noises, namely biological and
experimental. The biological noise corresponds to stochastic variations in gene
expression, and this noise is unrelated to the applied experimental procedures. It is

present due to, for example, environmental conditions such as temperature, pressure,
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etc. While experimental noise is the noise due to the technique used to extract the

data. Both these noises also should be appropriately included in the simulated data.

Briefly, biological noise is added by the presence of hidden background nodes which
are either genes or conditions and experimental noise is added as Gaussian white
noise. First, the background hidden node (for incorporating biological noise), which
is a parameter to choose the amount of background noise, is user defined. The
equations of the background noise nodes are generally uncorrelated to the genes on
which they are acting. A limited number of input nodes are selected that mimic the
external conditions and consider the genes not linked to these input genes act as
background nodes. These are now part of the simulation set up while the data is not

generated.

As the real microarray data also has experimental noise, three user defined choices
for addition of experimental noise are made available:

1) Log normal

11) Gaussian

iii)) Gamma distributions
All these distributions take a percentage of the amount of noise as input which is
then applied to make the final output data noisy. However, this experimental noise is
added only after the simulated microarray data is generated. This is explained in

Section 4.2.7.

4.2.6 Synthetic Network Generator Parameters

The entire flow chart for the generation of synthetic data is given in Fig. 4.1 which
also shows the system and the parameters controlling the synthetic data generation at
every step of the process. These parameters which are listed below can each be
varied independently either before or during the simulation process for conducting
simulated experiments with synthetic data:

1)  Choice of source network
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i1)  Size of the network in number of nodes

ii1))  Number of background nodes

iv)  Number of available experiments and samples for each condition
v)  Level of stochastic and experimental noise

vi)  Fraction of complex interactions
4.2.7 Calculating Synthetic GRN data

Using the synthetic network generator described earlier, simulations are next
performed to generate the synthetic microarray data. The genes without regulatory
inputs are assigned an arbitrary expression level which can be changed during an
experiment (sample). The expression levels of the genes in the network are
calculated, as specified by their transition functions, starting from the input genes.
After these noise-free expression values are computed, noise is then appropriately
incorporated in the data to reflect noise present in the real microarray data. These
computed noisy expression values can be used for analyzing the noise which a GRN
reconstruction method under investigation can handle. This feature of adding noise
enables the comparison of level of noise in dataset on the reconstruction algorithms.
A gene expression profile experiment for different time 7 corresponds to a vector
[x1(1) ... xn(1)]. For a set of N samples, a » x N matrix is constructed which is the
final synthetically generated microarray dataset. This dataset can be used for
investigation and evaluation of various GRN reconstruction algorithms. In the next

section we present the synthetic datasets generated for the testing of the model.

4.3 Synthetic Datasets

In order to conduct tests using synthetic data set, several datasets are created by
varying network generator parameters (one or two at a time). The groups of data sets
which have similar variations are categorized into one of the four groups 4, B, C or

D (see Table 4.1). Although the experiments involved significantly large number of
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data sets to test robustness of GRN methods, due to space restriction, only a limited
number of important models have been included in the paper and shown in Table

4.1.

The Group A consists of a set of synthetic network models which are used for
investigating methods for their robustness against network topology. With this
group, we carry out an initial level of testing since it contains no complex
interactions and also because the effect of the noise is kept low. Different sample
sizes help determine accuracy of reconstruction as generally most methods require

higher sample size data to make accurate estimations.

The Group B networks compare two different network topologies, namely SF and
RND. Compared to Group 4, these are large sized networks of 500 genes and 500
interactions. Fig. 4.2 (a) shows networks that follow a random topology (RND)
while the network shown Fig. 4.2 (b) is a scale-free (SF) network. From the figure,
we can observe the differences resulting due to two differing topologies. The random
topology has arbitrary arrangement of links throughout the network while the scale
free network has hubs with large proportion of links in the top right corner of the
figure while lesser number of links in the rest of the figure. Note that the number of
genes and gene interactions is the same for the two cases under consideration. Since
scalability is an important feature of GRN algorithms, this group enables to justify if

the algorithm is robust in terms of size.

In Group C, the number of genes in the networks is kept fixed at 50 and the topology
chosen for study is Scale Free. The number of links is varied as 50, 100, 200. This
group is useful for checking robustness of methods with respect to density of
connectivity (i.e. no. of parents per gene) along with accuracy with respect to
number of samples. The Group D is designed to test the combinational effect of
density of connectivity and also to include varying delays and noise intensity

parameters resulting in an increasing average number of connections per gene.
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Table 4.1 The Synthetic data sets are organized in four groups A, B, C, D. Column 2
gives different network topologies: Scale Free (SF), Small World (SW), Random
(RND) and Handcrafted (HC). For each group, column 3 shows the number of
repeated models for a given experiment. Column 4 and column 5 respectively give
the number of genes and the edges in a given model. Column 6 gives the % fraction
of complex interactions. Column 7 gives the network transmission delay. Column 8
gives the number of parents while column 9 gives the %ge noise of each model.
Column 10 gives number of samples for each condition.

1 2 3 4 5 6 7 8 9 10
No. of % No.of| %
Group Topology Models Genes Edges Complexity Delay parents|Noise Samples
SF 50 100 | 200 20 0 2 1 120,50, 100
A SW 50 100 | 200 20 0 2 1 20,50, 100
RND 50 100 | 200 20 0 2 1 120,50, 100
HC 50 100 | 200 20 0 2 1 120,50, 100
B SF 5 500 | 500 40 2 5 5 50
RND 5 500 | 500 40 2 5 5 50
SF 50 50 50 20 1 3 5 50
C SF 50 50 | 100 20 1 4 5 50
SF 50 50 | 200 20 1 7 5 50
D SF 10 100 | 200 40 1 1 5 20, 50
SF 10 100 | 200 30 2 2 1 20, 50
SF 10 100 | 200 50 -2 3 5 20, 50
SF 10 100 | 200 10 3 4 1 20, 50
SF 10 100 | 200 40 -3 4 5 20, 50
SF 10 100 | 200 30 4 5 1 20, 50
SF 10 100 | 200 50 0 3 10 20, 50
SF 10 100 | 200 10 0 2 1 20, 50

The D group tests are for advanced level testing of GRN algorithms as the data
generated is from a complex complicated network of interactions. Because these
gene networks are generated with random connectivity for each of the experiment
rows in Table 4.1, we repeated the generation of models for specified number of
times (see column 3) and took the average results from each row to get a synthetic

dataset which is close to real dataset.
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Fig. 4.3 Simulation results: (a) A subset of genes of the example network (labeled A
fo ). This sub-network has two input genes and contains repressor gene D. (b) The
different noise functions used in the simulation. (c) The expression gene A with and
without addition of noise. (d) Shows phase shift (time delay) and plus/ minus
regulation between B—A—D

The simulation results are provided above in Fig. 4.3.

4.4  Analysis of Proposed Causal Model

We note that the synthetic datasets are useful as they facilitate evaluation of
robustness by variation of parameters to generate large number of related synthetic
data. For our investigations on the robustness of the proposed Markov blanket based
causal model presented in Chapter 3, the synthetic data generation is performed
using the technique presented in the previous section. A 40 gene artificial network

containing 200 edges, 5 hidden nodes and 2 hidden node combinations is generated.
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It is built with a topology referred to as hand crafted in which its parameters are
randomly assigned. The dataset generated has 150 samples. For evaluating the
proposed method and its robustness to parametric variations, number of artificial
networks and corresponding datasets are also generated using the parameter settings
from Table 4.2. Since the networks are significantly different from each other, the

error measured is normalized to enable comparison.

Table 4.2 Simulation Setting: Synthetic Dataset Variations
Synthetic delay No.of Noise% % Edges

Network parents Add  Remove
0 - 2 1% - -

1 1 2 1% 5% 5%

2 2 3 1%- - 10%

3 -2 3 5% 10% -

4 3 4 1% 5% 10%

5 -3 4 5% 10% 5%

6 4 5 1% 5% 5%

The search for optimal network structure was carried out by implementing following

parameter settings for the GA.

Table 4.3 Genetic Algorithm Settings

Parameter Value

Crossover probability 0.1

Mutation probability 0.8 (evenly distributed over 4 types of
mutation)

Population Size 200 - 600

Iterations 50 - 100 / based on improvement
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These structures are independently evaluated by the Receiver Operating
Characteristic (ROC) and the Area Under Curve (AUC). The ROC curve is obtained
by plotting the sensitivity versus (I-specificity) for different values of the error term
and describes the trade off between sensitivity and specificity. From the inferred
model, each pair of genes that contain an edge and relative delay time can be
represented by a relationship consisting of a leading gene, a lagging gene, a relative
lag time, a co-regulation/causal value (which we call as influence score), and the
direction of association (positive or negative). When the relative lag time is zero, the
leading gene and the lagging gene are interchangeable except for causal faithfulness.
For scoring, the input genes receive higher scores compared to output genes and are
selected according to the MB cut-off parameter. Next, genes that are highly and
consistently expressed over the conditions identified in the first step are selected
according to a second cutoff parameter (the path analysis threshold). The algorithm
ensures a robust identification of relevant conditions (and hence of the output genes)
in spite of unrelated ‘noise’ genes to the input. This results in a model which consists
of a set of genes along with the regulating conditions. However, due to the
difficulties posed in estimating delay and direction of orientation, it is possible that
two genes that appear to be associated with each other, in reality, may be lacking
such an association. It is also probable that a time ordering (observed for two
associated genes) is misleading, either because they are not associated or because

they are associated without a lag in time.

For this reason, following classification is applied in calculating the error.

1)  Correct: the edge is present and oriented in the same direction in both the
graphs (reference and observed) or it is absent in both the networks
i1)  Committed: the edge is absent in the reference network but present in the
selected graph
ii1)  Omitted: the edge is present in the reference graph but absent in the selected

graph
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Vi)

vii)

Reversed: the edge is present in both network but points in opposite
directions (referred negative lag)

Unresolved: the edge is oriented in the reference graph and although present
in the selected graph, it cannot be oriented (referred zero lag)
Over-determined: the edge cannot be oriented in the reference graph but is
oriented in the selected graph (referred non zero lag)

Lag error: the edges are oriented similarly in the two networks but their lags

are different.

These error properties fall into the following three groups.

iii)

Errors of commission: Outcome (i1) can occur only if a edge is missing in the
true (and therefore, reference) graph.

Edge errors: Outcomes from (iii) till (vi) can occur only if an edge is present
in the reference graph.

Lag or delay error: Outcomes (iv), (v), (vi) and (vii) can occur only if the

delay is greater than O.

For GRN modeling, the sensitivity can be considered as a measure of the proportion

of true regulations that are correctly predicted with their sign and lag. Similarly, the

false positive rate (Table 4.4) is a measure of the proportion of non-regulations that

are wrongly predicted as regulations. Some false positives are more informative than

others, since they link genes that are not in a direct parent—child relationship but are

still nearby in the pathway. Hence, we categorize false positives as those appearing

either from relatives (i.e. informative) or from strangers (i.e. uninformative). The

relatives consist of siblings, uncles and children while strangers consist of all those

genes that are not relatives. The most informative false positive edges of a gene are

from its grandparents, since they are upstream in the pathway and only one step

removed from the true parent.
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Table 4.4 Equations: Sensitivity and Specificity
FN={X— Y| X — Yis in the original graph and

X — Yis not in the obtained graph}
TP = {X — ¥ | X — Y is in the original graph and
also in the obtained graph}

TN ={X — ¥ | X — Y is not in the original graph
and X — Y is not in the obtained graph}
FP={X — ¥ | X — Yis not in the original graph
and X — Y is in the obtained graph}

To evaluate the accuracy of a recovered network, we use two general measures
defined as follows:

Sensitivity = TP/TP+FN

Specificity = FP/TN+FP

Precision = TP/TP+FP

For ROC curves, AUC (ROC) close to 0.5 corresponds to a random forecast,
AUC(ROC)< 0.7 1s considered poor, AUC(ROC) < 0.8 is fair and AUC(ROC) > 0.8
is good. Robustness analysis is carried out by considering following perturbations in
the system parameters:

1)  Length of time series, i.e. delay, structure and vertex in-degree

ii))  Noise

ii1)  Network size and topology.

We have divided the synthetic data experiments into two parts, based on the two
datasets given in Table 4.2 and Table 4.6 respectively. Comparison of the proposed
method with two well known methods [17, 54] is also carried out. These perturbation

analyses are presented next.

97



4.4.1 Effect of number of time points in the time series

An artificial network of 40 genes and 200 connections having arbitrary number of
parents per gene, arbitrary delays and noise, and without any cycles is investigated
(Table 4.2). A time series data with the number of samples N>= 50 is usually not
available from a wet lab experiment. Hence simulations are performed for datasets
with N =<50 for three different length of time series N = /0, N = 25, and N = 50.
The TP and FP values for the 3 settings are given below.

Table 4.5 Results: Effect of Samples

Samples/Accuracy TP FP
50 200 0
25 153 0
10 95 52

For the dataset with N = 50 generated with a noisy regulation, it is observed that all
true edges can be recovered without incurring any false spurious edges. With N=235,
we were able to recover 75% of the true edges with a zero FP rate. With N decreased
further to a very low N=10, there were 25% FPs observed. The tabulated results

given in Table 4.5 clearly show that these models perform satisfactorily.

4.4.2 Effect of delay

The effect of delay is determined by computing the Root Mean Square Error
(RMSE) as follows.

\/ > (observed delay — actual delay )2

RMSE (edge delay )= 42)
He .

where n is total number of edges. The RMSE values shown in Fig. 4.4 are the

averaged values obtained from 20 runs. The figure shows that the edge delay error
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increases linearly with increase in complexity of dataset but it is robust with
increase/decrease in the number of samples. However, if there are fewer samples, it

is difficult to estimate delays accurately.

IS

&)

N

Fig. 4.4 Variation of RMSE with delay settings. Legend: Axes: X-axis - delay
settings, Y-axis - RMSE. Plots: © — 50 samples, o0 — 25 samples and * —10 samples

4.4.3 Effect on structure

The ability of the method to provide structural correctness is evaluated by
considering two types of errors, i.e. error due to extra edges (£F) and error due to
missing edges (ME). The total structural error, accounting for both the errors, is

evaluated in a manner similar to RMSE as follows:

SE =+ EE* + ME* (4.3)

This structural error metric, SE determines the error on the entire topology of the
network. The results are shown in Fig. 4.5 and are plots of SE vs synthetic dataset
variations in Table 4.4. (Note: x-axis refers to the index of the synthetic networks).
From the figure, we can see that the structure error increases linearly with an
increase in the complexity of dataset but it is robust and remains constant with an

increase/decrease in the number of samples.
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Fig. 4.5 Variation of Structure Error (SE) with the structure Legend: X-axis:
Structure settings, Y-axis: Structure Error Plots: o — 50 samples, o — 25 samples
and * —10 samples

4.4.4 Effect of vertex in-degree

To determine errors in the number of parent genes recovered, following metric is

considered.

\/Z(observed parents — actual parents)2 (44)

RMSE (palents / gene) =
e

Fig. 4.6 shows that the error due to the vertex in-degree increases with an increase in
the complexity of dataset. Since some datasets have same in-degree, these results are
not shown in the figure. The model is still robust and remains equal with an

increase/decrease of number of samples with the variation in in-degree.

RMSE

0 1 2 3 4 5 6
Synthetic Dataset

Fig. 4.6 Variation of samples with Vertex in-degree settings Legend: X-axis: vertex
in-degree settings, Y-axis: RMSE Plots: o — 50 samples, o0 — 25 samples and *—10
samples
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4.4.5 Effect of noise

Noise plays a major role during inferring the structure of gene regulatory network.
While generating synthetic dataset described earlier, a Poisson distribution was used
to vary the amplitude of the gene expression. The proposed approach for model
reconstruction is based on the structure of the sub-model which usually contains
around 10 nodes. For the studies performed here, for the sub-model, we keep the
numbers of nodes = 10, edges = 20, parents/node = 3, delay = 2 and samples = 25.
The noise level is increased from 1% to 40% on the average amplitude (expression)
of the genes by varying the mean of the Poisson distribution function as shown in the

Fig. 4.7.

b d
Noise measure (SNR) = log,, =

(4.5)

Where e is the deviation (of structure and parameters) between the observed network

and actual network

Poisson pdf

-10 0 10 20 30 40
Noise

Fig. 4.7 Noise Variation of Poisson probability distributions with noise inclusion of
10%(steep curve) and 20% (rounded curve)

In the experiments carried out, noise is added in steps of 1% for noise levels from
1% till 5%. For higher noise levels, namely 15%, 25%, 30% and 40%, the step size
is made larger. Again, the number of runs for each noisy data was maintained at 20.
Fig. 4.8 plot shows the min and max values of SNR for the 20 runs carried out for

each noise level. As expected, the measure of signal to noise ratio of Eqn. 4.5
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indicates a decrease in performance with the increase in noise level. However, we
observe that the decrease in performance with the increase in noise is not constant.
The performance deterioration is relatively less at higher noise levels compared to
the condition when the noise is less. This indicates some robustness of the method

against noise variations.

Fig. 4.8 Average SNR at each noise % value. Legend: X-axis: Noise in %, Y-Axis:
SNR

4.4.6 Effect of network size and topology

To evaluate the method for structural variation, two sets of networks are generated.
The first set consists of five random networks with 100 nodes and 200 edges and the
other set has 200 nodes and 400 edges. Table 4.6 below shows the five 100 node and

four (2-5) 200 node networks configurations used.

Table 4.6 Simulation Settings: Synthetic Network Structure
Network Path % arcs % arcs 5% Noise

lengths removed added

1 3 No No Yes
2 3 10% 5% No
3 4 5% 10%  No
4 4 10% 5% Yes
5 5 5% 5% Yes
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The threshold of ROC curve is chosen to be the significance measure (Bonferroni-
corrected p-value) which was presented in Section 3.4 (step vii). We emphasize that
this significance measure is not arbitrarily chosen, but the choice was based on few

initial simulation results.

All values of the threshold with increment at the rate of 1% are used to plot the ROC
curve in each of the experiments. The ROC curves are plotted for the two sets of
randomly generated artificial networks [106]. For computing the significance of
proposed method, all simulations are repeated 3 times. It can be clearly seen that all
the ROC curves lie above the diagonal which is the ROC curve of a random model.
In Fig. 4.9, the ROC curves for reconstruction of random and scale free networks of
100 genes are shown. A powerless method has an ROC score close to 0.5. The mean
of the ROC curves gives a ROC score close to 0.8 which shows that the model is
robust with respect to size of network and irrespective of the topology used. The 200
gene network with a scale-free topology yields AUC (see Fig. 4.10) that is
comparable to the 100 gene network. The errors (i.e. TP/FP/TN/FN) have been
computed by taking the final solution and comparing its structural difference with
the target network. The results obtained for a 100-gene network are similar to those
for larger networks. Thus, we observe that the performance of the model does not

deteriorate with increase in number of genes.

4 - 200 Node Networks

Sensitivity
o o
o [o=]

<2
~

o
N

0

0 0.2 0.4 0.6 0.8 1
1-Specificity

Fig. 4.9 ROC curves for 200 gene network. Legend, X axis: (1-specificity) and Y
axis: sensitivity
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The average TP/FP for all such networks for the 10 runs is calculated which best
specifies error for the network generated with the highest fitness score among all 10
runs. For gene networks, as adjacency matrix is generally sparse, the ROC curve is
susceptible to the high number of false positives as these edges might be getting
included to improve the final score. Fixing a cut-off threshold only alters the tail of

the ROC curves.

5 - 100 Node Networks

Sensitivity

0.4

0 0.2 0.4 0.6 0.8 1
1-Specificity

Fig. 4.10 ROC Curves for 100 node network. X axis: is (1-specificity) and Y axis:
sensitivity

4.4.7 Comparison

Using the synthetic data, the proposed method is next compared to two known
existing methods namely, the Graphical Gaussian model (GGM) proposed by Toh et
al. [54] and the Bayesian network method proposed by Friedman et al. [17]. For
comparison, three sets of synthetic data are generated. As in previous experiments,
we chose the sum of FP rate and FN rate as the measure of error. The three ROC
curves shown in Fig. 4.11 provide the comparison of reconstruction ability for a
small sample size (compared to the number of network genes). For a small sample
size, both the proposed approach and the GGM approach are able to recover the true
network topology with high accuracy. However, for higher cut off values, the GGM
approach degrades in quality compared to our approach. For the BN method,

although the AUC is within the acceptable range, it has considerable lower accuracy.
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Fig. 4.11 Comparisons based on 100 gene network with 40 samples and without
noise.

The three ROC curves shown in Fig. 4.12 compare the robustness of approaches
towards noise. The well known GGM method 1s found to reconstruct the network
with moderate accuracy compared to the proposed method due to its underestimating
the true noise. It appears that GGM method requires more than second-order
dependence (partial correlation) for elucidation of the relationship between the
genes. However, the proposed method effectively copes with the noise variations at

different rates as shown in Fig. 4.7.
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False positive rate (1-specificity)

Fig. 4.12 Comparison based on 100 gene network with 40 samples with 10% noise

The BN method is not completely accurate and showed a moderate reconstruction in
the presence of noise. Robustness against the scale of network is presented in Fig.

4.13 based on a network of the order of 200 genes. The BN method tends to provide
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very poor reconstruction. We also observe the GGM method’s failure to capture
many interactions as the number of genes in the network increases, because the order
of partial correlations used becomes very complex and the accuracy of the
dependencies identified becomes very less. With a threshold value of 0.62, the FPs
produced are exceeding half the total number of edges and the reconstruction by
GGM becomes less acceptable. The proposed method again shows a superior
capability in capturing gene interactions and not only copes with small samples and
noise but also shows suitability for larger networks. The approach can predict
regulatory networks with significantly improved accuracy and reduced

computational time compared with the two existing approaches.
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Fig. 4.13 Comparisons with a large 500 gene network, 100 samples and without
noise

True positive rate (sensikility)

4.5 Discussion

With any GRN reconstruction techniques, the validation of results and predicted
interactions using the real microarray dataset for inferring the underlying real
network is restricted due to the limited availability of data for validations [17].
Hence, the synthetic networks which capture crucial elements of transcriptional
regulation have been used for validating the GRN reconstruction of complex
biological networks generate networks. Although simple, they thus provide realistic

test beds for our new algorithm and enable us to conduct experiments by parametric
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variations for assessing effects of small perturbations of gene expressions. From
these investigations, we were able to clearly establish that the proposed method is
not only robust but is also able to discover connections with relatively low false

discovery rate.

All the accurately inferred interactions and the predicted edges having causal
influence value, direction, sign and delay are significant since the synthetic data used
for testing the model simulates a real microarray experiment by including for
example, noise, delays etc. The edges are identified with high confidence even with
the test being carried out for a small proportion of all interactions O(nxn). The use of
existing knowledge in the Markov blanket algorithm reduces the Markov blanket

condition set which also results in low false discovery rate.

While complex GRN models which fit micro-arrays can represent a wide range of
relations, e.g. thresholds or combinatorial interactions, there is always a risk of over-
fitting with small sample sizes. For example, Graphical Gaussian models (GGM)
[54] suffer from unreliable estimates of the full partial correlation coefficients if the
number of samples is relatively small in comparison with the number of genes
because the dependency between two genes is controlled by all other genes (full
partial correlation coefficients). Linear causal models provide a vital middle path
between quantitative models requiring many observations to fit parameters, and
typical Bayesian networks which generally rely on discrete variables (excluding
certain Bayesian methods [17] involving continuous responses). The assumption of
linearity also enables many techniques [7, 17, 107] in accurately finding
independence in gene expression data. Due to simplifications, we also eliminate
statistically unreliable and computationally costly search for conditional
independence in large subsets since only a subset of conditional independence
models need be considered to enable us to study the effect of the sample size,
number of parents (or children/spouses) per node, noise level, accuracy in estimating

delay and the level of conditional independencies. The experiments carried out have
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also been able to establish this lack of benefit from increased order of independence
testing. Although the causal model is a simplification of real biological networks, it
captures complex interactions including elements of transcriptional regulation

accurately and efficiently thus showing it to be suitable for reconstructing GRN.

Compared to the existing Bayesian and GGM approaches, the proposed method
based on causal relationships is simple, reliable and flexible for scoring. It differs
from other existing approaches both in the application of novel scoring technique as
well as the learning algorithm and provides the flexibility to perform on-the-fly
modifications to improve the structural accuracy with less computational effort. The
qualitative scoring method is effective since higher-order statistical tests become
unreliable due to the usually small sample size in functional genomics. It shows
promise even with limited number of samples because the approach inherently
requires a small number of parameters to represent relationships between genes. This
is also confirmed from studies which involved small to medium sample sizes, in
which the causal models proved to be better estimators compared to the results from
GGM modeling. In contrast to de la Fuente approach [46, 54, 67, 76, 93, 108], in
which the undirected graph (UDG) is inferred first by the brute-force search method,
the proposed GA estimates the direction and sign of regulations after the UDG.

4.6 Summary

The network generator system presented in this chapter generates synthetic GRN
datasets which are used for validation of the methods and techniques proposed in this
thesis. Investigations using the network generator show the significance of the
application of system for synthetic data generation. The proposed system can
generate four different network topologies, namely scale free, small world, random
and hierarchical. Further, the generated synthetic network is made realistic by
incorporating complex network characteristics such as transmission delays,

biological and experimental noise. These datasets are generated for evaluation of
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methodologies based on these synthetic datasets. The system will help other similar
methods to computationally determine the robustness and also establish comparisons
between the methods. In comparison to other existing methods, the proposed system
is useful in carrying out rigorous studies about the GRN methods. The generated
synthetic but realistic datasets was applied in validating the robustness of the
proposed method for GRN reconstruction by varying topology, time-series size,
delay effect, noise, vertex degree, and presence of hidden nodes. The experiment
results show that the proposed approach has excellent inferential power and also low

specificity even in the presence of noise.

Apart from mathematical representation of GRN and the synthetic dataset
generation, another important aspect of network reconstruction is the computational
time which depends not just on the size of the dataset but also on the design of the
suitable search algorithm. In next chapter, we present two novel search techniques,
namely guided GA and FOMBGA techniques, to improve the performance of simple
GA which was applied in this chapter.
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Chapter 5

5.  Guided Genetic Algorithm

5.1 Introduction

A Markov blanket based approach for constructing a Bayesian gene regulatory
network inference and its application to noisy high dimensional microarray data was
presented. As explained earlier, the structure search, in general, can be stated as,
“Given a data set, a score metric, and a set of possible structures, find the network
structure with maximal score”. As the number of genes n for GRN inference is of
the order of thousands in a gene expression data, the number of possible structures
explodes to a large astronomical value. For this reason, search for biologically
significant investigations was usually limited to small subsets of selected genes, i.e.
on a small scale mainly to as the search strategy to find the best candidate network
structure were not very effective. Since exhaustive search in the structure space can
be impractical and exact inference with BNs is known to be NP-hard [81], stochastic

approximation to the search for high-scoring network structure is often necessary to
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obtain results. Many search strategies are available for learning general Bayesian
networks in various domains including GRN [30, 34, 59, 64, 69, 77, 109, 110].
However, attempts to obtain an optimal skeletal structure (the essential edges in a
network) that accurately reproduces the continuous time-course microarray data have

mostly remained unsuccessful.

In Chapter 3, we presented a simple genetic algorithm for the structure search. The
chosen approach, 1.e. GA, performs a global search and can simultaneously estimate
many (causal) sub-model parameters [62]. Although GA has been successfully
applied in many cases, its implementation is often challenging. For example,
designing an effective mutation operator in order to ensure a correct neighborhood
search becomes difficult because most operators usually search in the local
neighborhood and do not take into account the global neighborhood information.
When GA is applied to learning static Bayesian networks, the application of various
operators is required. Although randomness prevalent in GA provides it with the
ability to escape local maxima [77], in practice, an appropriate tuning of the GA by
incorporating domain knowledge is often necessary to enhance its performance. For
example, application of a guided mutation operation [111] could successfully
generate new individuals which were observed to be close to the best solution. In
[112], Larranaga ef al., used a genetic algorithm to evolve BN structures and a
‘repair’ operator is applied to remove cycles because BNs are acyclic. Lam et al.
[113] used the Minimum description length (MDL) principle with a GA to evolve
BNs with the help of three operators: freeze, defrost and a Knowledge Guided
Mutation (KGM) to improve the scalability and speed of convergence as well as
remove any cycles. The freeze and defrost operators are used to engage and
disengage the KGM operator. Using a KGM involves generating a list of all single
edges, ordered on their description length (DL). This list guided the mutation within
GA by adding edges which appear in the higher ranks of the list and removing edges
which appear in the lower ranks. Sahami [114] used the mutual information between

a node and its parents as an operator to select networks.
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In this chapter, we propose to enhance the performance of simple GA presented in
the previous chapter. In Section 5.2 we briefly study the simple GA scheme. We
investigate a novel technique to guide the simple GA by including the knowledge of
execution history for making the search effective in finding a high-scoring network
structure. The knowledge acquisition process provides information to make
decisions while performing guided crossover and mutation operations. As the
proposed approach can have ambiguity as to whether or not an edge can be added or
deleted, a technique is further applied where the randomness in carrying out an
operation is varied according to the level of ambiguity in the knowledge acquired for
guidance. These details are given in the Section 5.3. The advantage of the proposed
strategy 1s that it offers the possibility of determining more efficient structure
learning with necessary tradeoffs between the reduction in false positives, diversity,
random/guided operations, multiple paths and best solution. The process is based on
a ranking schema and standard Gaussian function which is also subsequently
explained (see Section 5.3). Subsequently, in Section 5.4 we further refine the
algorithm to a probabilistic model based GA called as Frequently occurring Markov
Blanket Genetic Algorithm or simply FOMBGA. Finally Section 5.5 gives the

summary of the chapter.

The simple GA on which the proposed guided GA and the FOMBGA are based is

explained next.

5.2 Simple Genetic Algorithm

Finding an optimal causal structure for gene regulatory network using GA can have

several problems. Some of these are given below.
o Lack of data problem: 1t is well known that BN learning algorithms perform

better with larger quantities of data. However, with microarrays, the quantity

of data is often limited to a few samples resulting in the network having false
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positives. Yu ef al. [115] infer DBN models of gene expression networks
where they use influence score to help improve the relevance of edges from
recovered networks, and thus reduce false positive (extraneous) edges.
Although reduction of false positives is important, increasing true positives 18

equally important.

Diversity problem: Maintaining high diversity is particularly important for
optimization of NP-hard problems because high diversity increases the
probability of relocating the peak after a change in the landscape because the
population covers a larger part of the search space. Diversity is undoubtedly
closely related to the performance of evolutionary algorithms, especially
when attempts are made to overcome the problems of escaping local optima.
As our fitness works on sub-networks, the diversification of the search
process i1s important in order to escape from local optima and the simplest
mechanism to diversify the search is to consider false positives during the
process. In order to make a trade off between the reduction in false positives
and diversity, the average quality of the population can be made adaptive by
alternating between guided and random genetic operations using diversity
measures. Diversity measures have been traditionally used to analyze the
performance of GA’s. Although, diversity measures such as Hamming
distance [116, 117] have been used in the literature for controlling the EA’s,
these are not suitable for our problem because we are dealing with networks.
We therefore propose a novel diversity measure where a skeleton network is
obtained for each generation and the average deviation of the individuals

from the skeleton forms the diversity measure.

Dead Node problem: The occurrence of dead nodes, defined as a node which
has no connectivity to the network, is also important issue to be considered.
The occurrence of dead nodes can be attributed to randomness in the deletion

of edges during the evolution process. In this case, we have to look at the
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connectivity, or topology, of the network. Each node has the potential to be
in contact with every other node in the network either directly or indirectly. If
one edge is deleted from the network during a genetic operation, and if the
network is still connected, then the deleted edge neither plays a vital role nor
has little effect in the network. If the deleted edge leads to a dead node, the
edge may have a greater effect in the network. A path in network is defined
as a sequence of edges or nodes without any repetition of nodes. Our
proposed guided strategy overcomes this problem by checking alternative

paths before deleting an edge.

Ambiguity problem: Finally, the knowledge acquired for performing a guided
operation can be ambiguous. For example, the KGM operator uses a rank list
of edges. The topmost and bottom most edges in the list have absolutely no
ambiguity, while rest of the edges have some percentage of ambiguity in
providing guidance to either adding or deleting an edge leading the search to

get trapped in a local optima.

In the previous chapter, due to the sparse nature of GRNs [71, 93, 118], we reduced
a bigger network into smaller networks, called sub-networks. The sub-networks, as
mentioned, are nothing but the Markov Blanket (MB) networks of genes in the
network. A fitness score is assigned to each of these MB networks. This is done by
performing a series of Conditional Independence (CI) tests in order to detect whether
or not connections are direct or indirect according (see Section 3.4) and thereby
assigning a score for each node. Further, direction and sign of the edges are analyzed
for each MB. The summation of the scores yields the fitness of the total network.

The fitness equation, given in Eqn. 3.7, is repeated below for easy reference.

Fitness Score = Z:(W1 *Score, +w, * Score, +w, * Score, )

1

(5.1)
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Here w;, w, and w; are fractional weights assigned to each score such that
w+wotws;=1. This weighting is incorporated to adjust the growth rate of the
individual scores as a function of the number of edges. Score; ascertains the
structure of the network given the structure, direction and sign of regulation. Score,
and Scores ascertain the direction and sign respectively. Though for any given graph
there is only one possible direction and sign for each edge, it does not hold good for
our model in selection of best individual among the population as Scores, and Score;

give additional flexibility towards the search for optimal solution.

The candidate network structures are constructed with each gene having a set of A/
parents, where the value of M ranges between 2 and 7 on an average as specified by
Hertz ef al. [16, 119]. The feedback loops and auto-regulation (gene regulating
themselves) connections are not constructed in the putative structure since their
presence have been ignored for the sake of simplicity. The nxn chromosome matrix,
encodes the network structure with each row corresponding to a tail of a edge and
each column corresponding to the head. The chromosome encodes the presence of a
directed edge between two genes, its direction and sign of regulation using values
{1, 0,-1}, where 1 indicates positive regulation, -1 indicates negative regulation and
0 indicated no regulation as shown in Eqn. 5.2. If for example, there is a edge
between gene X to gene ¥, with a negative sign of regulation, the chromosome

encodes Chromosome (X, V) = —1.

1, 11— jregulation is positive
mi-< 0, otherwise (5.2)
-1, 11— jregulation is negative

A simple genetic algorithm (GA), applied to explore this structure space, begins with
a sample population of randomly selected network structures and their fitness
calculated. TIteratively, random crossovers and mutations of networks within a
population are performed and the best fitting individuals of the population are kept

for future generations. As generations pass, the population evolves leaving the fitter
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structures while those performing poorly become extinct. Due to the stochastic
nature of the GA, it is repeated for a number of times and the resulting network

structures are combined to reconstruct the final gene network.

The details of the overall method are available in Section 3.3. However, the results
of the method are given below. These results will be used to compare with our

proposed GGA and FOMBGA method.

5.2.1 Experiments and Results — Simple Genetic Algorithm

To investigate the impact of simple GA in the causal modeling process, we studied
the well known Saccharomyces cerevisiae microarray dataset [120]. In DeRisi’s
experiment [ 120] with this dataset, DNA microarrays containing almost all genes of
S. cerevisiae were used to monitor the temporal changes of gene expression levels
accompanying the metabolic shift from fermentation to respiration upon glucose
exhaustion. Data consist of 7 time point profiles of logarithmic expression level
ratios. The full data set is available at the Gene Expression Omnibus website [121]
(Omnibus ID: GSE28; PMID: 9351177). The UNF_VALUE column in the dataset
contains the expression values of each of the genes at all seven time points
measured. The data preparation step involves creation of a table with rows
corresponding to genes and columns corresponding to time points and

UNF_VALUE as the data.

Since regulatory and signal relationships are currently not sufficiently known and
because of the size limitation imposed by the relatively small number of time points,
we restricted our analysis to 77 genes involved in the major metabolic energy
pathways given in [120] (i.e. glycolysis, gluconeogenesis, pentose phosphate
pathway, TCA cycle, glyoxylate shunt and fermentation). The experiment involved
transcriptions of the glycolytic genes for glucose metabolism and the response of the

cells to the stress of nutritional starvation toward time point 6. Amongst others, the
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77 genes include ACO1, ACS1, FRDS1, GPM3, ICL1, IDP2, MLSI1, PCKI1, PDAI,
PYCI, PYC2, YOR283w, YOR297c, FBP1, CIT2, IDP2, YJL045w, PCK1, HXKI1,
HXK?2, GLKI1, PGI1, PFK1, PFK2, FBA1, TPI1, TDH1, TDH2, TDH3, PGKI1,
GPM1, ENOI1, ENO2, PYK1, GCR1, GCR2, RAP1, MSN2, MSN4, GCR3, MSNI,
MSNS5, etc....

The raw data used in this experiment was transformed by taking the log of the
expression levels. Table 5.1 shows ranges of the GA parameters used in this
experiment. The mutation probability was evenly distributed over the four mutation
techniques. The genetic algorithm was run 5 times. Fig. 5.1 shows the increase in
the best score of the networks in the population as the population evolves for the first
GA run. Fig. 5.2 shows the average number of edges over the generations during the
first GA run. The GA is stopped when there is no improvement in the average score,

which on an average occurred at the 45™ generation.

Table 5.1 Genetic Algorithm Parameter Settings

Parameter Value
Crossover probability 0.1
Mutation probability 0.8 (evenly distributed over 4 types of mutation)

Population Size 200 — 600
Iterations 50 - 100 / based on improvement
800 | 1
o
S 600 1
w
D 400} 1
m
200 1
0 10 20 30 40
generations

Fig. 5.1 The plot shows the improvement in the best scores. There is a large
improvement in score between generations 18 and 23. The GA was terminated when
there was no improvement in the average score
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250 -
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generations

Fig. 5.2 Variation of average of edges with generation. The average number of arcs
increase up to generation 30 beyond which there is no further increase

There were 385 connections (edges) inferred on an average over all GA runs. As
diagrammatic representation of the entire network with large number of edges is
difficult to visualize; in Fig. 5.3, we plot only a part of the genetic network compiled
from the results obtained from the networks with highest scores in the population of
the last GA generation for each of the five GA runs. It was also observed that in a
single GA run, the highest scoring network differs from other networks by only a
few edges. Hence we quantify the significance of an edge based on its number of
occurrences within each GA run as well as over all five GA runs. The edges with
high frequency are thus seen to comprise the skeleton of the reconstructed network.
There were a total of about 178 highly significant connections compiled from the

results obtained from repeated GA runs.

In Fig. 5.3, the reconstruction of the edges in relation to genes involved in the
Glycolysis/Gluconeogenesis  pathways, for example, GCR2—HXKI1 and
RAP1—PGKI1 are consistent with experimental findings [122]. In relation to genes
involved in the Glyoxylate Shunt, repression PCK1 — IDP2 is also consistent with
the literature. Many highly significant edges such as ENO2— GCR2, PFK1—GCRI,

etc..

2

which were identified by computational methods [123] and have also been
verified. Other remaining edges could not be verified as there is little evidence in

literature supporting these remaining edges.
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Fig. 5.3 A section of the reconstructed genetic network of S. cerevisiae during
metabolic shift from fermentation to respiration upon glucose exhaustion. (a)
Reconstructed Glycolysis / Gluconeogenesis & Pentose Phosphate Pathway (b)
glyoxylate shunt

In Fig. 5.3, the reconstruction of the edges in relation to genes involved in the
Glycolysis/Gluconeogenesis  pathways, for example, GCR2—HXKI1 and
RAP1—PGKI1 are consistent with experimental findings [122]. In relation to genes
involved in the Glyoxylate Shunt, repression PCK1 — IDP2 is also consistent with
the literature. Many highly significant edges such as ENO2— GCR2, PFK1—GCRI,
etc..., which were identified by computational methods [123] and have also been
verified. Other remaining edges could not be verified as there is little evidence in

literature supporting these remaining edges.

Although a simple GA above is seen to be effective in finding useful networks, it
does have some limitations, such as
1. The random creation of initial populations and the randomness of subsequent
exploration.

2. The tendency to focus too closely on a single, high-quality solution.
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3. The tendency to carry out redundant computation, as it re-evaluates large

populations after making small changes to the individuals.

The next Section 5.3 describes the Guided GA method to eliminate the above

mentioned limitations.

5.3 Guided GA

In this section, instead of the simple genetic algorithm, a guided GA (GGA) is used
to perform a heuristic search through the space of gene regulatory networks. The
fitness used 1s the same as given by Eqn. 5.1. The proposed algorithm works as

follows.

1. Initialization and Fitness Function

The gene regulatory network consists of a set of nodes, which represent genes; and a
set of directed edges between nodes, which describe dependencies involved. The
nodes and edges form a Directed Acyclic Graph (DAG). To represent a gene
network as a GA individual, an edge matrix or adjacency matrix is needed. The set
of network structures characterized by n variables can be represented by an nxn
connectivity matrix M. Each element in M, m; where i, j € {1, 2,..., n}, represents the
edge between two nodes such that it satisfies Eqn. 5.2. It can be noted that values of
my; for i=j can be ignored during the search process because it presents an edge

between a node and itself.

With the representation of individuals worked out, we next devise the generation of
the initial population. Amongst several ways for generation, in this approach, we
generate individual matrices randomly. For each individual, a node and set of parent
nodes are selected (with an average number of parents per node as 4 and a variance

of 3) based on a random Poisson distribution and edges are created accordingly. The
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simple approach can create cyclic sub networks. As these are illegal DAGs, an

algorithm is also proposed to remove these cycles.

Now that the initial population is generated, a fitness function is defined to
determine the fitness of the individual. We use the fitness function that is specified in
Eqn. 5.1. The network is decomposed into nodes and their corresponding Markov
blankets. The Markov blanket, as explained in Section 3.3.3, comprises of the
parents, the children, and the parents of the children of the node of interest. The
Markov blanket of a node can be easily identified from the network topology. These
putative sub-networks are evaluated for the fitness of their structure, and also the
fitness of the direction and the sign of their regulation. Hence, a fitness score is
assigned for each node and simple summation of scores on all nodes in the dataset

will determine the fitness of the entire DAG, i.e. an individual.

Low Level High Level f\f{oisgver
Heuristics Heuristics uilon
p| Guide < | Knowledge | —p O
Healthy Population Acquisition End
y n
Search Knowledge . . .
Sta@ > ’O > Acquisition _”CD Diversity Switch Sond .
Initial gen en results
Crossover > Search
Mutation
T High Level
Crossover Heuristics
Mutation

Fig. 5.4 Novel Guided GA strategy

With the initial population is evaluated, the evolution (the iteration process involving

crossover and mutation) is carried out. This is explained next with the aid of Fig. 5.4.
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ii. Low level Search heuristics

The low level heuristics refer to random crossover and random mutation operations
performed during the initial stages of the GA run. The crossover operation between
two networks involves taking two random individuals from the population, randomly
selecting two gene edges and then swapping these between the pair of networks.
Mutation is applied on individual networks by randomly adding a new edge or

deleting an existing edge.

The low level heuristics (see Chapter 3 Fig. 3.2), when performed later in the guided
algorithm, acts as heuristics needed to increase the diversity of the population

because of their randomness.
iii. Knowledge acquisition process

This part of the algorithm 1s responsible for collecting and storing information that is
intended to provide knowledge to guide the search operation. For a n-node gene
network, at any /" generation G(i), and with a population size of N, fitness of n x N
nodes and their corresponding Markov blanket structures are to be evaluated.
Hence, there are / x N set of Markov blanket structures for each node at a given
generation. These are rank ordered over the period of execution to form a rank list of
Markov Blankets for each node. The methodology for ranking is done by a simple
algorithm 1illustrated in Table 5.2. The algorithm accepts the population of
individuals as input and produces an array of ranks and corresponding MB structures
as output. As the generations are incremented, both the ranks and MB structure
arrays evolve in such a way that information needed to perform a guided operation is

latest up to the present generation.

Though the execution is altered between low level heuristics and guided heuristics

(explained later), the knowledge acquisition process is kept informed of the changes
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and the rank tables are constantly updated. This is shown in Fig.5.4 as “Send

results”.

Table 5.2 Algorithm to Rank MB’s

Algorithm Rank MB
Input: Population
Output: rank(), MBstructures()
Curr Rank =1
N =num_nodes
m = Population_size
While N ~=0
Fori=1:m % Add new rank to table
If MBi is nondominated
rank(MBi) = Curr Rank
End If
End For
Fori=1:m
if rank(MB1) = Curr Rank
Remove MBI from array rank()
N=N-1
End If
End For
Curr_Rank = Curr_Rank + 1
m=N
End While
End of algorithm

iv. Diversity Switch

The action of the diversity switch is based on a diversity measure to switch between
low level heuristics for improving diversity and guided heuristics for improving the

best solution. The diversity measure is defined as follows:

Dn(G(i)) = %i \ (Undv — skel)’ 53
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where N is the population size, /ndy is the individual adjacency matrix and ske/ is the
adjacency matrix of the skeleton network for generation GG(i). The diversity measure
involves estimating the skeleton network. A skeleton network is defined as a
network containing edges that are present significantly in the population of a given
generation. In other words, for a population of N individuals, an edge is part of its

skeleton network if it occurs in /2 or more individuals.

The deviation of the skeleton network from an individual (/ndv-skel) is modeled as a
score, which is assigned O initially and incremented for every edge that is not in
common or is extra and not present in the skeleton whilst being present in the
individual. The average of this deviation is equal to the diversity measure. If the
population loses diversity, the diversity measure approaches zero, as the individuals
become similar to the skeleton network. The diversity score is normalized within a
range O to 1, in order to set a threshold over diversity as a GA parameter. When the
diversity measure drops back below this threshold value, the operators responsible
for increasing diversity are used, and above the threshold, the guided operators
which tend to decrease diversity are activated. The adaptation and guidance is
suitable only at a later stage of the evolution and hence the diversity switch comes

into action only after completing initial GA runs.

v. High level Search heuristics

The operators used in high level search heuristics are similar to the low level
operators as explained in Fig. 3.2. The main difference is that, the high level

operators perform a series of algorithm steps before addition or deletion of an edge

during crossover and mutation as detailed in Fig. 5.5 instead of the randomness.
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\> Markov Blankeif

Edge score l Path score >1

Random generator

for f(x) LD

Add / Delete?
Fig. 5.5 High level heuristics

Heuristic algorithm steps shown in Fig. 5.5 are as follows:

Select two nodes, say ‘@’ and ‘b’. Once the two nodes are selected for an edge
addition or deletion during crossover or mutation, the list (array) of nodes Markov
blankets are extracted along with their ranks. This information is used in the
computation of the edge score and path score as explained below.

e [udge Score: The top half of the rank ordered MBs is considered as best while
the MBs in lower half are considered worst. For an edge which is a member
of an MB in the top half, we add 1 to the edge score and for the edge which is
a member of lower half, we subtract 1. The resulting score is the edge score
assigned to a variable x (which is used in the subsequent steps).

e Path score: From the two individuals (DAG) from whom nodes ‘a’ and ‘b’
are selected for crossover or mutation, the topology of the two networks are
searched to determine the number of direct and indirect paths between them.
The number of path equals the path score. If the path score is greater than 1,

then continue, otherwise add the edge between ‘a’ and ‘A’ and exit this
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algorithm without proceeding to the next step (as otherwise this could lead to

a dead node[66]).

The resulting edge score x is normalized and given as a input to Gaussian function

ftx). The Gaussian function is defined as

f(x) _ aef(xfb)z/cz (5.4)

Where b is the mean value which is O and ¢ is the deviation on either side of the bell-
shape curve shown in Fig. 5.6. The returned value lies in the range O-1 which

represents the amount of ambiguity in the knowledge.

0.8
0.6
0.4

-3 -2 -1 0 1 2 3

Fig. 5.6 Gaussian function

A random normal variable generates a random number according to a normal
distribution
X=N (mean, variance)

The density function for 0 mean and 1 variance is given as

_1
e 2%

px)=——
V2z (5.5)

The density function for different mean and variance are plotted in Fig. 5.7. The
random function’s mean is shifted according to amount of ambiguity determined by
the Gaussian function. A detailed explanation of working of this algorithm is given

below.
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Fig. 5.7 Probability Distribution Functions of Normal Random variable

v. Detailed Explanation of the Algorithm

The edge score mentioned in the algorithm above is a counter that increments the
score every time the edge is encountered in the first half (best) of individuals and
penalized every time the edge is encountered in the next half (worst). This score,
when normalized (with maximum and minimum scores that can reach —N and +N
respectively), will lie in the range of [-3, 3] with O mean and unit standard deviation.
In Eqn. 5.4, mean is set to O (i.e. & = 0) and standard deviation is set 1 (1.e. ¢ = /)
and the value of ‘a’ is adjusted to produce a bell curve as shown in Fig. 5.7. The
normalized edge score (i.e. x) is given to Gaussian function f{x) of Eqn. 5.4. The
value of f(x) will lie in the range [0, 1]. Here, for f(x) = I, the knowledge is 100%
ambiguous as the edge score is zero and the decision to add or delete the edge is
completely a random choice. The edge score of zero can either mean the edge has
occurred equal number of times in the best half as well as in the worst half or the
edge never occurred at all. The path score, which works on the connectivity of the
network, will result in a O for the case where the edge never occurred in both
individuals involved in either the crossover or mutation, thus preventing a
completely random decision leading to dead nodes and ensuring complete
connectivity of the network. Similarly, for f(x) = 0, the knowledge is 100%
unambiguous and the decision as to add or delete the edge is known for certain and
there is no randomness involved. This is because the Gaussian function returns zero
for values of x at the edges of the bell. For, f{x) = (0,1), exclusive of 0 and 1, the

knowledge is partially ambiguous. In this situation, a standard normal random
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variable generator is implemented. This random variable is restricted to generate
non-zero random numbers within the range (-3, 3). The probability density function
of the random variable (given by Eqn. 5.5) for 0 mean and unit standard deviation
gives equally likely chances for the generated random number to lie on either sides
of the bell curve. This is suitable for a 100% random decision (i.e. f{x) =) because,
for the value of random number 7 < 0, the edge can be deleted and for » > 0, the edge
can be added. For a 100% unambiguous decision, the mean of the random generator
can be placed at +3 or -3 based on the (+/-) sign of the edge score, and O standard
deviation. For the rest of the values of f{x), the mean and variance are varied
appropriately to make a partially ambiguous decision as to whether or not add or
delete the edge. As for an example, f{x) = 0.8 and edge score x > 0, the partial
ambiguousness can be defined as, there is 80% that edge be added and there is 20%
chance that edge be deleted. So the random variable should have 80% chance to
generate a random number >0 and 20% chance to generate »<0. Here, the generated
random number should lie between +2.4 (= 80/100*3) and -0.6 (= 20/100%*(-3)), with
mean placed at 0.9 (= (2.4-0.6)/2) and unit standard deviation. Similarly, the random

number generator function is modified to take a partially ambiguous decision.

Following are several possible operations during crossover and mutation
(Search/Guide mode):
1. Add-random (Search)
Remove-random (Search)
Add-swap-random (Search)
Add-remove-random (Search)
Add-Add-best(Guide)
Add-remove-worst(Guide)
Remove-add-best(Guide)

remove-remove-worst(Guide)

o N kW

Add-swap-remove-worst (Guided crossover) and so on. ...
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The best solution found through the overall search is presented as the final solution
when the next stopping criterion is reached. The stopping criterions are:
1. Maximum Limit. When the iteration reaches a predefined maximum number
of generations or
2. No Improvement. When the difference between the current fitness average

and previous fitness total is less than 0.0001, the GA is stopped.

5.3.1 Experiments and Results

We now study the effectiveness of the guided genetic algorithm with the aid of both
the synthetic data and real data. The underlining structures and parameters of the
synthetic dataset are generated using the method discussed in Section 4.2. The

details of the dataset used are presented next.

A. Synthetic Dataset

The expression data for the 40 gene network is generated by assuming that 6 genes
have 3 regulatory inputs, 10 genes have 2 regulatory inputs, while the remaining
genes have a single regulatory input. 33 interactions are designed to have a time
delay of zero, 21 have a time delay of one and 9 have a time delay of two time

points.

Table 5.3 GA parameter setting

Parameter Value

Crossover probability 0.4
Elite Rate 0.1
Mutation probability 0.8 (evenly distributed over 4 types of

mutation)
Population Size 150 — 200
Iterations 100
Diversity 0.7 (70%) (not applicable for ordinary GA)
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Given this topology of the regulatory network, gene expression values are computed
for each one of the 40 genes at 10 time points. The derivatives are computed by
employing forward difference. The starting value for the bound for each gene is set
to 1.0 and a bound increment value 6 = 0./ is employed for computation. The
synthetic network constituted 63 interactions with known regulatory weights and

time delays associated with these interactions.

To evaluate the algorithm, we also executed the simple genetic algorithm which
incorporates only the low level heuristic operators. Table 5.3 shows the parameter
settings of the GA. The Fig. 5.8 shows the plot of the best fitness value for the whole
evolution process of 100 generations for guided GA and simple GA. From Fig. 5.8,
it can be seen that GA with guided strategy performs better than simple GA after the
initial 0- 20 generations. For the first 20 generations, both the SGA and the GGA
perform in a similar manner as GGA adaptation can only be performed in the later
stages of the evolution. It can be noted that, between generations 40 and 50, the best
value of fitness of the guided GA was lower than the ordinary GA and later followed
by an increase in the fitness of guided GA. This increase is attributed to the diversity
switch which indicates the previous generations between 40 and 50 had less diverse
individuals. This is further witnessed in Fig. 5.9 which shows the diversity measures
throughout the evolution from generations 20 to 100, and a diversity measure of 0.98

was recorded during generations 40 and 50.

As seen in nature, many genes of an organism stay inactive through its lifetime and
are passed to further generations for later mutations or crossovers to activate, which
is very well performed by the diversity switch and so this is seen as safeguarding
diversity of the population. Both algorithms were restricted to runs of 100
generations. The guided GA converged at the top score at the 81st generation when
all edges were recovered while the simple GA improvement had stopped

prematurely at the 5S5th generation.
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Fig. 5.8 Plot of best fitness values for SGA and GGA

From Fig. 5.9, it can be noted that diversity switch has alternated from low level

heuristics to high level heuristics a total of 9 instances

during the entire evolution of 100 generations.
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Fig. 5.9 Diversity measures from generations 20 to 100

Fig. 5.10 shows the histogram of the normalized fitness values for the individual

Markov blanket structures at the end of 100 generations. Normalization is done for

the range from O to 1 based on the maximum and minimum value of fitness

calculated during the evolution. The fitness in the range of 0.8 to 1 are alone taken

into consideration as they constitute the best scores and it can be seen that most of

the Markov Blankets inferred lie in the range of 0.99 and 0.96. This shows most of

the sub-networks have achieved their maximum fitness values.
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Fig. 5.10 Histogram of fitness values in the final generation

These results show that guided GA discovers causal GRN structures with a greater
accuracy than the simple genetic algorithms. The accuracy improvement does not
require any increase of search space. In all experiments carried out, only 150 to 200
individuals were considered during each of the 100 generations. Thus, 15,000 to
20,000 networks are totally searched to learn the causal structure. Considering the
exhaustive search space of networks, the algorithm needs only a small percentage of

the entire search space to learn the causal structure.

B. Yeast cell cycle dataset

After establishing the improvement in performance of the guided GA approach, we
next applied this approach to the cell cycle expression data of Spellman ef al. [49],
containing 76 gene arrays of 6177 S. cerevisiae ORFs. The gene expression levels
are taken as continuous values. We make use of all 76 samples from cdcl15, alpha-
factor and cdc28 datasets to determine the gene network structure. Since regulatory
and signal relationships are currently not sufficiently known and because of the size
limitation imposed by the relatively small number of time points, the analysis is
restricted to 55 genes involved in the major cell cycle pathways given in [49]. The
55 genes include STE2, SWI5, CLN1, CDC6, YBL032W, STE6, STE3, AGAL,
MFALPHA?2, STE3, MFA1, STE6, FARI, CLB1, CLB6, MCMI, SFF, CLB2,
CLN2, SWI5, CLN1, AGA2, FARI, TECI, CDC6, SAGI, SST2, YBLO32W,
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YDL165W, YILO10W, YPRO66W, YOL129W, YELO71W, YOR045W, YCL064C,
YILO66C, YMR226C, YCLO21W, YGL139W, YKL141W, etc....

As 1s commonly done, the raw data used in this experiment was transformed by
taking the log of the expression levels. The GA parameter settings are shown in
Table 5.3. The GA was stopped at the 100th generation. The resulting Markov
blanket substructures were of equal maximal score. There were a total of 281
interactions recovered from the final results. Out of the list of edges recovered are as

follows.

STE2—STE6,STE3—SAG1,CLB6—CLB1,SST2—~AGA1,YPL256C—YIL0O66C,M
FALPHA2—STE3,MCM1—CLB1,CDC6—SWI5,MFA1—>AGA2,FAR1>TEC1,S
TE6—FARI1,TUP1—>MCMI.

The existence of above interactions is validated from the literature [49, 124].

Although performance of GGA is superior to SGA, its success is still limited since
the search is based on the use of adjacency matrix in which the network interactions
are simply recorded as binary elements (1= edge present and O = edge absent). Due
to this, the context of each bit (i.e. occurrence of edges in relation to other edges or
the nodes as is the case in a network structure) is igored while the search is being
performed. Since both SGA and GGA are unable to treat the constraints explicitly
and both these algorithms ignore the context in which the search (GRN) is being
carried out, there is need for further enhancement of the search technique. To deal
with this problem, we next propose a probabilistic model based GA which we will
refer as the Frequently Occurring Markov Blanket Genetic Algorithm (FOMBGA)

approach.
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5.4 Frequently Occurring Markov Blanket Genetic Algorithm

We see that, although GAs are capable of efficient search, they are inherently limited
due to the randomness and intuitive manner of parameter setting, namely crossover,
mutation and selection rate. Further, when using GA for Bayesian structural
optimization (search) problem, we have other major issues to be taken into
consideration:

(1 Several types of constraints, e.g. structure, sign, time delay, feedback

(1)  Large number of design variables, and

(1) Due to (1) and (i), a narrow feasible region compared to search

landscape.

The proposed Frequently Occurring Markov Blanket Genetic Algorithm (FOMBGA)

replaces the process of offspring generation (i.e. crossover and mutation) in GA by

(1) construction of a probabilistic model based on the estimated distribution of
the selected individuals

(i1) generation of offspring according to the probabilistic model.

The FOMBGA approach continues to apply the GGA technique presented in the
previous section. However, to further increase the effectiveness of the method, it
eliminates the cross over and mutation operation resulting in a probabilistic model in
which the children are generated stochastically. The MB based proposed FOMBGA
technique finds local maxima for the MB of each node in the network. In a particular
GA iteration, all the MBs of a given node obtained from different individuals of GA
population form a set of MBs or a set of graph transactions. Such a set of graph
transactions for a node under consideration can typically be of the order of 200,000
for a GA of population size 200. The frequency of occurrence of a particular MB
sub-graph i.e. an edge or a V-structure (V-structure is one of the few standard

structures existing within a GRN), is determined by the number of graph transactions
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in which the MB sub-graph occurs. In order to count and compute the frequency, a

probabilistic method is used. We present the method next.

5.4.1 The FOMBGA method

Briefly, the proposed FOMBGA technique completely avoids the necessity of
specifying set of standard GA parameters (crossover, mutation and selection) by
replacing these operations with a process of probability estimation and sampling.
The FOMBGA search uses a probability vector from a population of selected fit

solutions for creating additional new solutions (offspring) for the next generation.

A. Schematic

A schematic showing probabilistic model GA is given in Fig. 5.11 below. A
probability vector is applied to learn the probabilistic model from the distribution of
promising solutions in each generation (i.e. iteration). This vector is updated by
applying global statistical information extracted from the current population. Then,
the offspring are generated by sampling this vector. From this perspective, the

proposed approach is seen to be a probabilistic GA.

Each generation of the GA consists of the following steps:
1. Select promising individuals
2. Estimate the probability distribution

3. Based on this distribution, generate new individuals

The proposed stochastic search method, FOMBGA, employs the probabilistic model
based on the above schematic. The algorithm examines various available fit models
of a specific generation having different network connectivity around the nodes’
Markov Blanket. To fully understand the operation of FOMBGA, we next consider

the construction of a probability vector. Although the algorithm is based on Markov
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blankets (MBs) of the nodes in the GRN, for the sake of simplicity, we will initially
explain the approach with the aid of individual edges in the network below. It will be

extended below (in Section C) to the use of MBs leading to the FOMBGA algorithm.

(1) Select promising individuals y Estimation of the distribution
OO

Individual

(2) Construct a
Probabilistic model

Population

Probability vector

(3) Generate new individuals
and substitute them for old individuals

Fig. 5.11 Schematic representation

B. The Probability Vector

The GRN modeling tasks usually involves the generation of an adjacency matrix (4)
(see Eqn. 3.12). As a result, each network (individual) in the GA population can be
represented as a string of 1s and Os. To elaborate further, consider an illustrative
example of a six-edge gene network shown in Fig. 5.12 below. When the algorithm
begins, the current population of binary strings is initialized randomly. In this
example, the current population is shown to consist of four randomly generated
members (110011, 111011, 010111, and 110001) whose elements are either 1
indicating presence of an edge and O otherwise, representing four small gene
networks. The individuals are sorted according to the fitness score with highest

scoring member ranked first.

The selection is limited to first 50%, i.e. top 50% of the best fitting population is
chosen to be carried forward to the next generation. These selected individuals of the
current population are also used as parent set for estimating and updating the
probability distribution (vector). In Fig. 5.12, these samples are shown as 110011
and 101011.
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With the single bit probability estimation that we are currently considering, given a
n-bit gene network (#= total number of edges in the network), the approach involves
creation of a n-bit probability vector p = (p;, p2, ps, ..., Pi, ..., P»). The probability p;
is the probability of occurrence of 1 (existence of an edge) in the i bit position. The
probability p; is learnt by finding the number (i.e. the percentage) of 1s’ in position 7
from the selected population. For example, we can see in Fig. 5.12 that 1 exists in
position 2 only for sample 1 but sample 2 has a O in that position. Hence, the
probability of having a 1 (i.e. finding an edge) in position 2 is 0.5. Similarly, in
position 4, both the samples indicate the non-existence of an edge. This is
represented in the probability vector by a 0 in the fourth position. Since we are
considering only two samples, the probability vector consists of 1, 0.5 or O in this
case. However, if the sample numbers is large, the probability vector would be
distributed between values 0 and 1. The probability vector is learned and updated at

each GA’s iteration for modeling the distribution of promising solutions.

Current New
population Selection population

‘110011 110011 Probab|||tyVect0r 101011

101011 101011 -100011
Hm 0505 05 00 1.0 10H
010111 | 111011 ;‘

| 110001 | | 110011 |

Fig. 5.12 Probability vector and generation of new population for a toy 6 gene
network

After completing the first step of learning the probabilities, the next step is sampling.
Since half (i.e. two samples in Fig. 5.12) of the samples were removed during the
selection process, we need to additionally create the same number of samples for the
new population. The general idea is to sample the vector in position 7 with

probability p;. For example, consider sampling the bit for position 2 of a new
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individual. Since the probability of an edge being present in position 2 is p,=0.5
(from the probability vector), 1’s and 0’s are equally sampled in position 2.
Similarly, we can sample the probability vector for other positions. From the
illustrative example of Fig. 5.12, the newly added samples shown are samples 2 and
3. It may be noted that since the elements of the offspring are sampled from the
probability vector, these are expected to be highly fit (i.e. being close to the

promising solutions).

The probability vector discussed so far has been explained in the context of
considering one bit at a time (single edge) in the network. It 1s applied to an overall
putative network. With this, the bits that perform better get more copies and are
combined in new ways with other bits of an individual. This technique may work in
some cases, especially in a scenario where on an average, bit 1 (i.e. edge present)
will outperform bit O (edge absent). However in many cases, the technique may not
work because the context of each bit (i.e. occurrence of edge in relation to other
edges or the nodes Markov blanket) which has significant effect on GRN
construction gets ignored. Hence, working with single bits can produce misleading
results. However, if in the approach, the context for each position (bit) could be
learnt and utilized, then it can be very effective in the generation of probability
vector and help solve the decomposable problem with greater computational speed
and accuracy. The context of each bit can be obtained by the decomposition of the
network based on the Markov blanket of each node and grouping the n-bit strings
based on these Markov blankets. In the next section, we discuss this is in more detail
and explain how the probabilistic approach can be easily extended and applied to the

Markov blankets of the GRN.

C. Markov Blankets and Probability Vector

Referring to Fig. 5.13, we restate that the solutions are represented as the n-bit binary

strings and appear as input to the probability vector. Each individual solution is
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actually representing a putative network. However, since all these putative networks
are Bayesian networks, each of its nodes is independent of all other nodes given its
MB. Hence, if we decompose the putative networks into smaller manageable
networks which are MB for each gene, it will be equivalent to grouping the set of
edges belonging to each MB together into a sub-string. Markov Blanket sub-
networks are potentially more suitable for local search, as these networks are treated
as independent of each other and hence it can be expected that the effectiveness of

FOMBGA search will also increase significantly.

String MB1 MB2 MB3
more (mom (@)
A\ 4
00 21% 0 86% 000 12%
01 40% 1 14% 001 4%
10 31%
11 8% 111 21%

Fig. 5.13 Markov Blanket Probability vector

To clearly understand the application of Markov blankets for probabilistic modeling
over the individual edge (1-bit) explained in Section B above, consider any randomly
generated 6-bit binary string representing a 6 edges gene network. If we learn the
probability vector based on network edges, we are computing probabilities such as
p(000000), p(000001), ..., p(111111). However, if all the bits are considered
together, we have to sample the vector considering all the 6 bits together, i.e. we are
generating the entire network (i.e. string 000000) together with a probability of
p(000000). Similarly, string 000001 is generated with a probability p(000001), and

SO On.

As we have seen before, the representation of an individual within a population is
obtained by a n-bit binary strings. These individual can also be shown as a string of
shaded blocks (see Fig. 5.13). Each block is representing one bit (i.e. 1 or 0) of the

string. In Fig. 5.13, we show a randomly chosen solution represented as a string of
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six shaded blocks. Let us now consider the development of MBs from this six block
string. Consider, the grouping together (i.e. generate a MB) of the edges as follows:
(1) Groupl (or MB1) consisting of first two edges, (ii)) Group2 (or MB2) has only
edge 3 and (ii1) Group3 (MB3) comprising of last three edges. For the two edges of
MB 1, there are altogether four structures (combinations) possible: 00, 01, 10 and 00.
These combinations can occur throughout the entire GA population with their
respective probabilities. For example, considering MB1 of the entire population, we
may find that in 16% of population, MB1 has both these edges absent. Thus, we
have p(00) = 0.16. Similarly, for the other combinations, we may get, p(0/) = 0.45,
p(10)= 0.35 and p(.11) = 0.04. Again for MB3 containing 3 bits, we can see that it
will have 9 structures or combinations (such as 000, 001 ... 111) possible. In this

case, the probability of occurrence can be, say p(000) =0.17, p(001) =2%.

It 1s important that the essential edges in a network remain intact. Using GA, this is
easily done by obtaining various skeletal structures by repeated trials with different
initial values. From this, we select the high ranking individuals for estimating the
probability distribution as explained earlier. In our experience, we have observed
that all these high ranking individuals essentially have common edges. With the
skeletal structure containing essential edges obtained, a knowledge acquisition
process is then carried out as follows. Since it is difficult to simultaneously optimize
all the MBs, we work with individual MBs within a network and determine their
relative significance. From the highly fit and selected GRNs obtained above, each of
the MBs are ranked individually. Similar to the single edge method explained in
Section B earlier, we then apply the probability vector method to the highly ranked
MBs (which form the initial individual set) and generate the probability vector from
which we then obtain the highly fit offspring. Working with MB eliminates the
optimization difficulty of the single-edge method occurring due to the n-bit string
representing an individual may sometime contain many O values due to presence of
futile edges. Moreover, working with MBs, a given problem gets divided into several

simple problems, and the importance of each edge gradually becomes clear.
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D. Guided FOMBGA search

To further enhance the effectiveness of the FOMBGA method, we next incorporate
the heuristics to guide the search process. For this, the GGA technique presented in
the previous section is extended for application to FOMBGA. It is schematically

shown in Fig. 5.14 and works as follows.

; FOMB- GA
LowLevel i High Level
Heuristics Heuristics +
: p| Cuide <> | Knowledge | — 3 O
Healthy Population Acquisition End
A n
Search ) O ) Knowledge N )
Acquisition ’( ) Diversity Switch Sond |
Initial gen en results
Probability » Search
Distribution i
T High Level
FOMB-GA Heuristics

Fig. 5.14 The FOMGA strategy

Like GGA, the FOMBGA allows simple GA to initially control the first 20
generations to obtain a population containing relatively fit individuals. As shown in
the Fig. 5.14, the main loop involves only the low level heuristic operators, namely
random crossover and mutation for generating population. To implement crossover,
gene edges from two random members of the population are randomly selected and
swapped between the pair of networks. Mutation is applied on individual networks
by random deletion of an edge or random addition ensuring that a directed cycle is
not created. Usually, the individuals whose fitness values are high are chosen. Using
these individuals, the knowledge acquisition is performed. Briefly, an ongoing
knowledge acquisition process keeps track of each node’s Markov blanket that
passes through the GA. These MBs are ranked according to their dominance (by

means of individual fitness score) to appear in the final network. A table containing

141



MB of each node in the network is prepared. During the high level GA heuristic
operations (after first 20 iterations), the probability vector is learned from the ranked
MB’s and are sampled to generate the new population. The diversity switch selects
between a low level and a high level GA heuristic operation. Diversity is a measure
of variation between two individuals in a population. To calculate diversity, a mean
skeleton network which is the basis for all networks for a population is obtained. The
difference in the number of edges calculated between an individual network in the
GA population and the skeleton gives the diversity value. The iteration repeats
through the diversity switch and operators until the stopping criterion is reached.
Since the GGA is stochastic in nature, the algorithm is repeated number of times and

the resulting network structures are combined to reconstruct the final gene network.

5.4.2 Experiments and Results

The entire FOMBGA search technique described earlier is next evaluated by initially
using the synthetic dataset. After validating the technique with synthetic data set, as
an application of the technique, we also investigate the well understood yeast cell

cycle data set and further examine various known and unknown gene interactions.

A. Synthetic Data

As stated earlier, since the synthetic network allows parametric variations[106], e.g.
variation of sample size, they are appropriate for studying the robustness of the
proposed method using large number of datasets obtained by parametric variation.
For our experiments, we will apply the synthetic time series data obtained from
synthetic networks to reconstruct GRN using the proposed probabilistic method.
Then, the actual synthetic network is compared against the reconstructed network on
an edge by edge basis with observations referred either as (i) positive (presence of an
edge) i.e. P or (ii) negative (no edge present) i.e. N. Establishing whether the edge

between node and rest of the network is positive P or negative N, is achieved by
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applying a statistical test on the node’s conditional independence statement, “Given
a node X and its Markov Blanket, the node is independent of rest of the network T, if

the test results in a value less than a specified threshold value y.”

Put mathematically, this can be stated as:

Test (X;TMB) <y (5.6)

Since, multiple linear regressions are involved in computation of partial correlation
coefficients, statistical tests such as t-test, chi-square test, F-test or p-value test can
also be applied to determine the significance of a null hypothesis on the correlation
coefficients. In our work, we used the stringent p value[71] and multiple-testing
procedures for controlling the false discovery rate. To evaluate a realistic p value for
the given data set, the target networks are initially chosen in a random manner.
From this, the actual value of p was determined to be around a value of 0.4. Once a
decision is made regarding the edge being positive or negative, it can be further

classified into one of the following four categories of TP, TN, FP, and FN.

TP: True positive (edge exists in the original GRN and it is correctly identified to
exist in the reconstructed GRN)

IN: True negative (edge does not exist in the original GRN and it is correctly
identified not to exist)

FP: False Positive (edge does not exist in the original network and it incorrectly
identified to exist)

FN: False Negative (edge exists in the original network and it incorrectly identified

not to exist)

From these values, sensitivity and specificity is calculated as follows.

sensitivity = TP/(TP+FN)
(1-specificity) = FP/(TN+FP)
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By varying the threshold value y, we can change the values of TP, FN, FP, and TN
with corresponding changes in sensitivity and specificity. ROC curves, which are
plots of (sensitivity) versus (1-specificity), are then obtained.

The area under the curve (AUC) from the ROC plots is used as a metric for
evaluating the reconstructed network and is a measure of test accuracy. Higher the
AUC, better is the GRN reconstruction. As done conventionally, we apply the

following classification for GRN reconstruction.

AUC=< 0.5 random
0.5<AUC<=0.7 poor

0.7 < AUC <=0.8 satisfactory
0.8 <AUC good

In the two different experiments utilizing the synthetic networks, we apply the ROC
curves for establishing the improvements in accuracy of the reconstructed network

using the FOMB GA method.

i) Effect of Markov blanket

The FOMBGA method in which the probability vector is developed on a single edge
will be referred as the single edge method. Similarly, when the method uses Markov
blankets of the nodes for generation of probability vector, the method will be
referred as the MB method. While single edge approach will consider single edge on
its own, the MB approach will consider a set of edges within a MB will be grouped
together. For conducting experiments, three 40 gene synthetic networks are
arbitrarily generated with sample sizes of 200, 100 and 50. The parameters (sample
size and number of genes) are chosen such which it will results in networks

facilitating easy experimentation.
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Fig. 5.15 ROC plots. Legend: X-axis -- (1-specificity), and Y-axis -- (sensitivity).
The dotted line (1) indicates the ROC curve for the single edge approach while the
dark continuous line (2) refers to ROC curve of MB method.

Fig. 5.15 summarizes the results for varying sample sizes. Fig. 5.15 (a), (b) and (c)
are respectively for gene networks with samples sizes of 200, 100 and 50. To make
the observations statistically meaningful, each data point in the Fig. 5.15 is obtained
by averaging the values of 5 repetitions of data generation and network estimation.
The dotted line (1) indicates the ROC curve for the single edge approach while the
dark continuous line (2) refers to ROC curve of MB method. For sake of
comparison, a ROC curve of a random network (diagonal line in the Fig. 5.15) is
also shown. It can be clearly seen that both the ROC curves appear above the
diagonal confirming that the reconstruction of GRN in both these cases is not
random. The area under the curve (AUC) is a measure of accuracy of reconstruction.
From Fig. 5.15 (a), we observe that with 200 samples, the curve for the single edge
method is slightly above 0.75 (calculated by estimating the probability of presence
and absence of edges in the network). However with the frequent MB method, we
note that it produces a 100% accurate reconstruction of the synthetic network
(AUC=1). Further, from the three figures, we can observe that as the number of
samples is reduced from 200 to 100 or 50, the ROC curve corresponding to ‘single
edge’ method degrades significantly in comparison to the MB method. These results
are consistent with our above discussion of demerits with the use of single bits. The

increase in reliability comes at the expense of increased computation cost however
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reliability might be of higher priority, considering the high complexity of gene
network models and the noisy data. Hence, there is better accuracy and reliability

with the FOMBGA algorithm with MB based probability vector.

The Fig. 5.16 below is a bar graph plot of the Markov Blanket scores for the 40 gene
synthetic network with 200 samples. The plot is for the best fitting solutions of the
three search approaches, namely SGA, GGA and FOMBGA. The fitness scores are
computed using the scoring method stated in Chapter 3 Section 3.4. Briefly, a series
of conditional independence tests are carried out to check the compatibility between
the model and the data. The score is incremented by 1 if the test is passed with a
certain degree of statistical significance and penalized by 1 if the test fails. The
larger the Markov blanket, more the number of tests to be carried out and hence
higher the score. From Fig. 5.16 it is seen that, in general, all larger MBs with high
value of scores are inferred correctly by the FOMBGA method. However, for nodes
with smaller MB, (e.g. node 23), the FOMBGA score is slightly lesser than GGA
and SGA. This should not be construed as failure of algorithm for smaller MBs.

The reason for the smaller FOMBGA score for smaller nodes is because the working
of the algorithm is based on the “frequency” of occurrence of MB in generating new
offspring. This forces more frequent (and hence important) MBs of the network to
get optimized first with a much higher score causing the less frequent MBs to
become smaller in size leading to a significantly smaller score. However, since the
overall fitness score of the network is formulated as a linear summation of individual
MB scores, it causes the network fitness score obtained by FOMBGA to be higher

SGA or GGA resulting in a more accurate reconstruction of the network.
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Fig. 5.16: Bar plot of the MB fitness score for the 40 gene synthetic network. MB
fitness score of each node for the three search methods, SGA, GGA and FOMBGA

are shown.

ii) Comparison with other GAs

The performance of FOMBGA is compared with simple GA and guided GA. The
population and the probability vector are initialized for the search to a randomly
generated 200 individuals (networks). The population is evaluated for fitness and
ranked accordingly. The top 50% of the population is selected as the fittest strings to
become parents and then update. The elite rate is initially set to 20% and then
subsequently reduced to 10%. Thus, the similarity between an offspring and its
parent is, to an extent, controllable. The resultant offspring networks join 10% of
their parents to form the population of the next generation. The larger the percentage,
the more elements are sampled from the probability vector. In other words, similar to
the mutation rate in conventional mutation, the algorithm controls the similarity
between offspring and the parent, while the parent can be chosen from the best
solutions found so far. The migration interval is set to 10 generation. If all the
members in the current population are identical, the search will migrate to a new area

in the search space.
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Fig. 5.17 Comparison between FOMBGA, GGA and SGA for the GRN modeling
problem for 100, 200 and 500 gene networks. X-axis: represents generation and Y-
axis represents the best fitness scores per generation of population.

In order to compare the GA, GGA and FOMBGA algorithms, we varied the network
size (number of genes) as shown in Fig. 5.17 summarizing the results obtained from
these experiments. Fig. 5.17 (a), (b) and (c) show the ROC curves respectively for a
series of experiments on synthetic data of the gene networks of 100, 200 and 500
genes. First, because of the less number of genes in the data (Fig. 5.17 (a)), all GA's
showed almost identical curves, making a more detailed analysis difficult. However,
when the number of genes was increased to 200, for example in Fig. 5.17 (b), the
FOMBGA converges faster than SGA and GGA. Similarly, with 500 genes (Fig.
5.17 (c)) the FOMBGA converges faster and results in even higher score. On the
contrary, the GGA resulted in a suboptimal performance and the SGA resulted in a

still poorer solution.

We have restricted the experiments to just varying the number of genes rather than
including the variation of samples, as varying number of samples would have the
same impact on all three algorithms since the same fitness metric is used in all three
cases (SGA, GGA and FOMBGA). In other words, the differences between the
optimal networks do not depend on the number of samples. Further, although there
are several other techniques such as simulated annealing (SA) and ant colony

optimization (ACO) [77] applied for synthetic GRN reconstruction, comparison with
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them is not possible as these models use Boolean variables instead of continuous

values used in our model.

Since there is lack of a benchmark dataset to compare various GRN reconstruction
methods[17, 46, 54], the comparison becomes difficult overall and painstaking.
Hence we justify the methods performance with the use of synthetic datasets.
Furthermore, most methods work with discrete data and perform experiments on
small toy networks. Hence we are able to do a one to one comparison with other

works.

B. Real life dataset

A real dataset is far more complex than the synthetic data studied earlier. To
demonstrate the learning capabilities of FOMB GA approach and also as a practical
application of the method on a real biological dataset, we consider the yeast dataset
[49] containing 800 genes and 77 samples comprising of a comprehensive catalogue
of cell cycle-regulated genes in the yeast Saccharomyces cerevisiae. The dataset
includes three long time course expression values representing three different ways
of synchronizing the normal cell cycle, and five shorter time courses representing the
altered environmental conditions. These results were combined with those by [125])
to produce a more comprehensive collection of data. The test samples were
synchronized so that all the cells would be at the same stage in their cell cycle. Using
this data set, gene networks have already been reconstructed [17]. We also note that
the Spellman dataset has classified the 800 genes in different phases of cell cycle
such as G1, G2, S and M/G1 and G2/M.

The measurement noise level in the data is usually accounted by modeling it as
Gaussian noise s which helps eliminate genes with a significantly small SNR (signal
to noise ratio) thereby increasing the accuracy of our reconstruction. In our work, the

Gaussian noise modeling is carried out by obtaining a histogram of the genome-wide
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expression ratios taken at the first time point when the cells are just about to grow.

Normalized gene expressions with no noise have values are close to the mean values.

To the Gaussian distribution obtained, we apply a standard deviation =0.19 to

eliminate the noisy genes. Further, the data set is partitioned into categories referred

as alpha-factor, elutriation, CDC15, and CDC28 temperature-sensitive mutants.

(i) Experiments and results

The S.cerevisiae gene expression data mentioned above was obtained by disrupting

100 genes containing the known transcription factors.

Table 5.4 Five significant genes under investigation

Gene Description/Regulators from YPD | Predicted interactions
database from the reconstructed
GRN
MCMI1 | Transcription factor of the MADS box | YGR177C, YLR131C,
family YGR108W, YMROOI1C,
CDCe6, CDCs, SIC1, STE6, CLN2, | YOL158C, YOR274W,
STE2, ACE2, SWIS5, CLB1, CLB2 YOL043C, YLRO71C,
YIL158W, YJLOSTW
SWIS Transcription factor YBR158W, YLR295C,
CDCe6, SIC1, CLN2, PCL2, PCL9, | YKL185W, YOR264W,
EGT2, RMEL, CTS1, HO YNRO67C, YDRS12C,
YDRS516C, YOR31W
ACE2 Metallothionein expression activator YER124C, YGL028C
CLN2, EGT2, HO, CTS1, RME1
SNF2 Component of SWI/SNF  global
transcription activator complex
CTS1, HO
STE12 | Transcriptional activator
STE6, FAR1, KAR3, SST2, FUSI,

STE2, BAR1, AGA1, AFRI, CIK1

We now apply the FOMBGA method to micro array data of these 100 genes from

which we estimate the 100 gene network. From this reconstructed GRN, based on

the Markov blankets (which include other genes as parents, children etc.) of the 5
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regulatory genes, we extract the combined 36 gene network. Fig. 5.18 shows the
reconstructed regulation network. By comparing the relationships in the 36 gene
network with the regulatory relationships from Yeast Proteome Database (YPD), we
are able to validate the presence of 15 target genes (CLN1, CLN2, CLBS, CLB6,
GIN4, SWE1, CLB4, CLB1, CLB2, TEMI1, APC1, SPO12, CDC20, SIC1, FAR1)
and 19 edges. These interactions are shown in Fig. 5.18. The Figure also shows 11
yeast transcription factors (SWI4, SWI6, STB1, MBP1, SKN7, NDDI1, FKHI,
FKH2, MCM1, SWI5, ACE2) and one cyclin gene (CLN3) which are known to

activate the cell-cycle dependent genes [51].

Again, from the 800 genes dataset, it is also possible to obtain periodic interactions
during the cell cycle [49]. However, only some of the activators-target pairs of these
interactions are known interactions. For our studies, only the 15 target genes

mentioned earlier whose transcription activators are known are analyzed further.

i1) Validation
From the reconstructed network shown in Fig. 5.18, we note the following

interactions taking place.

e MBF (a complex of MBP1 and SWI6) and SBF (a complex of SWI4 and
SWI6) controls the late G1 genes (e.g. CLN2 and NDD1).

e MCMI, together with FKH1 or FKH2, recruits the NDD1 protein in late G2
and controls the transcription of G2/M genes.

o SWIS and ACE2 regulate genes at M/G1.

e MCMI regulates SIC1 and ACE2.

151



Fig. 5.18 Gene Regulatory network reconstruction

These observed interactions are in complete agreement with the information
obtained from the Spellman’s dataset. We note further that the relationships around
MCMI has improved significantly because FOMBGA has been able to model the
MCM1 Markov blanket more accurately than the SGA or GGA techniques that we
had applied earlier. Further, we find that 10 genes (Table 5.4, Column 2), out of 24
genes that are listed as co-regulated genes of MCMI1 in the YPD database are also

identified correctly along with their interactions.

A positive (negative) edge weight represents activation (repression) in the causal
model. In Fig. 5.18, these are shown as continuous (for positive) and dotted (for
negative) lines. We observe that repressions through some of the transcription
factors are actually activating target genes in the cell cycle. For example, from Fig.
5.18, it is evident that the edge FKH2—CLB?2 is a negative regulatory relationship
indicating a dominating role of FKH2 on CLB2 compared to the positive influence

of MCM1, FKHI1, and NDD1 on CLB2. The influence of FKH2 on CLB2 that we
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have identified is dominating since the transcriptions of genes such as CLB2 are
more likely to be effected by the joint binding of multiple transcription factors on the
promoter region of the gene in the DNA.

Again, the relationships surrounding STE12 have become more accurate with the
FOMBGA method. Before adding FOMBGA, the previously estimated networks in
Chapter 3 incorrectly concluded that STE12 regulates genes from amongst FUSI,
AFR1, KAR3, BAR1, MET4, MET16 and MCM1, and that STE12 is controlled by
HO, STE6 and MET3. However, the network of Fig. 5.18 obtained by application of
FOMBGA clearly shows STEI12 regulating FUSI, AFR1, KAR3, CIK1, STE2,
STE6, HO and MCMI1. The correctness of this regulatory interaction is validated
with the latest information available from YPD database thereby confirming further

the superiority of the FOMBGA search approach over other techniques.

5.5 Summary

Since exhaustive search in the structure space is impractical and exact inference with
BNs is NP-hard, stochastic approximation to the search for high-scoring network
structure is necessary. A novel guided GA strategy for learning causal Bayesian
network structures is presented. The approach employs a diversity switching to
adaptively alternate between ordinary operators and guided operators. The algorithm
also combines a ranking schema; multiple path constraint and standard Gaussian
function to perform high level heuristic operations. We have conducted experiments
using artificial data and real world microarray data which demonstrate the superior
performance of our GGA with SGA. To further enhance GGA performance, we
proposed a Frequently Occurring Markov Blanket Genetic Algorithm (FOMBGA).
The FOMBGA replaces crossover and mutation operators with a probabilistic model
on frequency of occurrence of fit Markov blankets (MBs). The experiments were
carried on various synthetic datasets as well as a real life yeast cell cycle data. The
studies on synthetic data show the superiority of FOMBGA over both SGA as well
as the GGA. The results of yeast cell cycle regulatory network appear promising
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since 15 genes and 19 reconstructed regulatory interactions are found to be
consistent with the known biological findings and also because of the new plausible

interactions that have been predicted for the network.
Other than development of a suitable model and an associated search technique, it is

also important to investigate the mechanism of parametric learning of the BN based

GRN. This is the focus of next chapter.
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Chapter 6

6. Parameter Learning based on Markov Chain Monte

Carlo approach

6.1 Introduction

At a qualitative level, the structure of a Bayesian network describes the relationships
between these genes in the form of conditional independence relations. At a
quantitative level, relationships between the interacting genes are described by
conditional probability distributions (CPDs). The probabilistic nature of this
approach is capable of handling both biological and technical noise and makes the
inference scheme robust and allows the confidence in the inferred network structures
to be estimated objectively. However, the application of BN learning to gene
expression data in understanding the mechanism of GRN is particularly hard because

the data sets are very sparse, typically containing only a few dozen samples but
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thousands of genes. Here, we devise computational methods that consistently

identify causal and dependence relationships between expressions of different genes.

Estimation of parameters is the estimation of conditional probability distributions
(CPD) of the given GRN. Due to high dimensional data, exact computation of the
CPDs is infeasible and computationally expensive. Hence, the joint distribution can
be approximated by stochastic simulation commonly referred as sampling. Using the
well known Monte Carlo algorithm based on random sampling, we can fit a
distribution to the data and retain the samples. However, random sampling from the
GRN is not the best strategy since the state space is enormous with large number of
samples needed to approximate the probabilities reasonably well. Hence, many times
most representative samples are picked which increases efficiency and creates a
'‘Markov Chain'. This approach has resulted in Markov Chain Monte Carlo (MCMC)
method and its variants [72, 73, 83, 92].

In this chapter, we propose a new MCMC approach to approximate the conditional
probability distributions of complex GRN models. The proposed approach is
essentially based on two novel concepts. The first is an efficient computation of
CPDs based on the ordered ranking of Markov Blankets (MB). We choose MB for
ranking, because it is aligned with our work for structure search, reported in previous
chapters, produced promising results. The genes with high scoring MBs tend to be
more accurate allowing much faster convergence compared with a stationary
distribution of the Markov chain. The second novelty of the approach is
progressively reducing the space by clamping those variables whose samples have
converged to a fixed distribution thereby limiting convergence process to a
increasingly narrower region. Empirical results are presented to illustrate the
superiority of the approach over direct MCMC and random sampling. Furthermore,
we extend our work and create networks at higher levels of detail by integrating the
regulatory sequence analysis and the GO data. Although interacting genes usually

have similar gene expression patterns, their profile similarity varies widely mainly
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due to their complexity of regulation. Studies are performed using not only the
synthetic data sets but also the real life Saccharomyces cerevisiae (yeast) [49]
microarray dataset. From the significant motifs identified by carrying out regulatory
sequence analysis over all genes at different levels, the most significant genes which
characterize the degree of relationship among the genes are selected. The resulting
genetic networks are refined by combining the results with regulatory sequence

analysis. Gene ontology information is next used to annotate these groups of genes.

The chapter is organized as follows. Section 6.2 gives a brief outline of probability
distribution and sampling techniques. In Section 6.3 the concept of markov chain
and gibbs sampling is explained. The proposed MCMC method is presented in
Section 6.4. Section 6.5 presents the experiment and results using both synthetic and
real data. Section 6.6 deals with integration of biological knowledge to the inferred

network. Section 6.7 provided the summary of the chapter

6.2 Probability distribution and Sampling

As stated above, estimation of parameters is basically the estimation of conditional
probability distributions (CPD). Estimating CPDs involve specifying P(X | pa(X))
for each of the gene (variable) X where the term pa(X) refers to parents of variable X
in the given structure. Assuming that the inferred structure G, is an Independence-
map (I-map) of a probability distribution P, we note that /(G)cI(P) where I(G)
represents independence assertions in graph G and /(P) is the independence
assertions in the probability distribution P. Since G is an I-map of P, P factorizes

according to joint probability distribution (JPD) given by Eqn. 6.1.

P(X,, ... X,) = [[P(X.parX) (6.1)

The network is a pair (G, P) where G is specified in edges and P is specified in
CPDs. With several optimal graphs G equally representing the distribution P, /(G)
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becomes a subset of /(P) as shown in the Fig 6.1 below implying that we can obtain
P(X;...X,) from G. Once we obtain P, it is possible to deduce a unique minimal I-
map G. Removing any edge from the minimal G then induces conditional

independencies that do not hold in P.

Fig. 6.1 Independence Assertions

Next, we briefly elaborate on the probability distribution and sampling for GRN with
a focus on Gibbs sampling which is a type of Markov Chain Monte Carlo (MCMC)

sampling.

6.2.1 Probability distribution

A GRN based on Bayesian network specifies a probability distribution through a
directed acyclic graph (structure) and a collection of conditional probability
distribution (parameters) for each gene X; in the graph G. The graph G captures
conditional independence relationships in its edges. A gene (node) is conditionally
independent of all other genes (nodes) in network given its Markov Blanket (parents,
children, and children’s parents). The probabilities summarize a potentially infinite
set of circumstances that are not explicit in the model but rather appear implicitly in
the probability. If each gene (variable) is influenced by at most & others and we have
n random genes (variables), then we only need to specify n*2* probabilities instead
of 2". Succinctly, conditional probability distribution shows the probability
distributions over all values of gene X given the values of its parent genes.

Conditional probability distribution of X=x given Y=y is given by Eqn 6.2.
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P(x|y) = p(x.p) _ p(y| %) p(x) (6.2)
P(y) )

If genes x and y are independent, then P(x | y) = p(x) since p(x, y¥) = p(x) p(y). The
Eqn. 6.2 above is repeated to condition X on all parent genes of X. The parents of
gene X; are all those genes that directly influence gene X; from the set of genes X,
...,X:;. Since large GRN models will have more parameters, the exact computation
is, therefore intractable and in such cases simulation (sampling) technique becomes
suitable for approximating conditional distribution. The structure G, necessary for
sampling, is obtained by applying a structure search over the entire space of all
possible structures. Hence, given structure G with genes X={X;, X.....X,}!, we can

draw a sample from the joint probability distribution as follows:

1)  Instantiate randomly all except one of the genes, X;
i1)  Compute the probability distribution over the states of X}, i.e. P(X;|X;.. X
])AX;+]) Xn)

ii1))  From the probability distribution, randomly select a state of X;

If all genes in the network except the gene X; are instantiated, then due to the
factorization of the joint probability distribution, the full conditional for a given gene
in the DAG involves only a subset of genes participating in its Markov blanket (i.e.

the set of parents, children and other parents of the children for the gene).
PX)|X; .. X1, X1, .. Xiy) = P(Xi|MB(X) (6.3)

Here, MB(X,) is the Markov Blanket of gene X;. Since gene JX; is independent of rest

of the genes in the network (except its Markov blanket), it is necessary to consider

only the partial conditional conditioning on the Markov blanket.

Furthermore,
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PXIMB(X) = P(X,\Pa(X)) [IP(Yi|Pa(Y)) (6.4)

Here, ¥, i = 1, ...k are the children of gene X..
6.2.2 Sampling

The sampling using Monte Carlo methods involve drawing n samples from the GRN
with the instantiated genes fixed at their values as explained above. From these
samples, the probability distributions are estimated based on frequency of occurrence
of genes. Since our model involves continuous expression values, we plot these
samples as a histogram and then smooth the histogram to give the probability density
function of the genes. The instantiation of the genes is done using the distribution
available from the data set. However, due to typically large number of genes in a
GRN, random sampling methods are not suitable because they can be slow and the
posterior distribution estimated may not be reliable. Markov Chain Monte Carlo
(MCMC) approach is suitable in such cases for approximating the difficult high
dimensional distributions. From amongst the many MCMC methods available, we
choose Gibbs sampler which results in obtaining samples asymptotically from the
posterior distribution and can provide convergence in reasonable computation time.

The Markov chain and Gibbs sampler is discussed in detail in the next section.

6.3 Markov Chain and Gibbs Sampling

A MCMC method such as Gibbs sampler which is applied for sampling probability
distributions is based on constructing a Markov chain. We briefly present the

concept of Markov chain followed by the Gibbs sampling technique.
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6.3.1 Markov Chain

The Markov chain includes the probability of transitioning the variables from their
current state s to the next state s’ based on the transition probability g(s — ). If the
state distribution 7,(s) describes the probability of genes being in state s at the t-th
step of the Markov chain, then the stationary (equilibrium, invariant) distribution

*(s) will occur when 7,=7;4;, 1.€.

Vs' 7(s") =Y 7(s)q(s —> 5" (6.5)

We note that the stationary distribution also satisfies the detailed balance Eqn. 6.6

given below.
Vs, s' z(s)q(s = s)Y=x(s)q(s'—s) (6.6)

No matter what the initial state distribution is, a Markov chain converges to 7*(s) if
it fulfils the following conditions: uniqueness, aperiodicity and irreducibility. The
condition of aperiodicity ensures that the chain can not get trapped in cycles or the
state transition graph is connected. The irreducibility condition ensures that for any
state, there is a positive probability to visit all other states. An aperiodic and
irreducible Markov chain is called ergodic [126] and ensures that every state much

be reachable from every other and there can be no strictly periodic cycles.

Using Gibbs sampling, we propose to design a Markov chain whose stationary
distribution is the target (desired) distribution such that gene X; quickly converges to
the stationary distribution irrespective of the initial distribution. From this, we then
run the chain to produce a sample; throwing away the initial (burn-in) samples as
these is likely to be influenced by the initial distribution. The sampling method for

the target distribution 7* on y, constructs a Markov chain SOo8t ., S5 .. with
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7*(s) as equilibrium distribution. Since the distribution 7*(s) is a unique equilibrium,

and the Markov chain is ergodic, we have
" " l m+n .

Vs 7 (s)=limx, (s)=1im— Z 2,08 (6.7)

n—>o n—0 B Fawe

Where n is the number of iterations. The state of the chain obtained after a large
number of steps is then used as a sample and its quality improves with the increase
in the number of iterations. When a dynamic equilibrium is reached, the long-term
fraction of time spent in each state is exactly its posterior probability for the given

conditions. As number of iteration tends towards infinity, all statistically important

regions of state space will be visited.
6.3.2 Gibbs Sampling

To perform a MCMC simulation on GRN where the target distribution is the joint
probability distribution, we design a Markov chain where each state is a full joint
instantiation of the distribution (i.e. values are assigned to all variables). Hence, a
transition is a move from one joint instantiation to another. The target sampling
distribution 7*(x) of the GRN is the posterior joint distribution P(x | ¢) where x is the
set of unknown variables and e is the set of evidence variables. It is typically the
unknown we want to evaluate. Although sampling methods such as logic sampling
[88], rejection sampling [127] and importance sampling [48] are available to sample
P(x|e), in the absence of evidence e or with the probability of evidence being small
(ie. if P(e) ~=0), these algorithms result in many wasted samples. The Gibbs
sampling overcomes these limitations as it specifically uses conditional distribution

P(s’ | s) to define state transition rules.
In Fig 6.2, an example of Markov Chain for a 4 gene GRN is shown. We have

specifically fixed the Gene B and D values and Gene 4 and C are varied to produce 4

states.
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Fig. 6.2 Example Markov Chain for a toy 4-gene network. The genes B and D are
instantiated as true while the genes A and C are false.

The working of the Gibbs sampling algorithm is shown by the flow chart in Fig. 6.3.
Consider a GRN with # unknown variables X;, X, ....X,, which appears as input to the
algorithm. We now recall that a gene .X; is independent of rest of the network given

the variables in the Markov blanket (MB) of X}, i.e.

P(X,| X, X,) = P(X; | MB (X)) (6.8)

The Markov condition that a variable is independent of all other variables (except its
neighbors) reduces significant computational overhead especially for large scale
problems. Calculating P (Xi | MB (Xi)) can be done using Eqn. 6.4 and Eqn.6.6. The
initial states of all the variables can be chosen randomly or these can be chosen from
the original small sample dataset. If the current state is X; = x;, Xo = x5, ..., X, = x5,
then we can sample a new value x’; for X; from P(X;|X> = x5, . .., X, = x,). In
similar manner, we can sample the remaining new values for X5, X; ... X, until we
have a new state X; = x’;, X> = x5, ..., X, = x’,. The initial samples are influenced
by the initial distribution. At every step, we weigh our selection towards the most
probable sample using the transition probability so that the samples follow the most
common states accurately. Moreover, as the process is ergodic (i.e. it is possible to
reach every state), it will ensure convergence to the correct distribution if sufficient

number of iterations are carried out.
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Fig. 6.3 Gibbs Sampling

However, the application of Gibbs sampling for GRN estimation is somewhat
limited due to the high dimensional data where number of genes is significantly
higher than the samples. This means that the variance in the values taken by the
variable 1s high, and can increase dramatically for thousands of genes and may
prohibit producing independent uniform samples during sampling. The proposed
new methodology for based on novel Gibbs sampling for the GRN estimation

problem can overcome this limitation.

6.4 Proposed MCMC Sampling Scheme

The proposed MCMC sampling scheme is shown in the Fig. 6.4 below. In our earlier
work, we employed a guided GA [128] search strategy where we had obtained a set
of 10 dissimilar high scoring network structures closely representing the probability
distribution using the gene expression data. With the aid of proposed methodology,
we will now calculate the Bayesian posterior probability distribution of all the
variables (genes) of the ten gene network structures. From the samples drawn from a
network structures, we can obtain the posteriors after convergence, and then

determine the state sequence and probability estimates of the model in a straight
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forward manner. Although the inferred high scoring network structures are disjoint
(i.e. cannot be combined into one network structure), they can all be combined
independently to the underlying probability distribution. Hence, all these network
structures are sampled to estimate the probability distribution accurately. The
important feature of our approach is the use of high scoring initial networks and a
rank ordering on the network genes using Markov blankets. The convergence is
obtained by running several Markov chains in parallel. Let us briefly discuss the

major ‘constituents’ of the proposed method as they occur in Fig. 6.4.

Original Data

Histogram
| Gibbs S Burn-in Collect
Sampler 1000 samples samples l

Fix values to =~ Smoothing
some variables X
Rank MB g
Sample variables with <
high ranking MB Convergence <

Fig. 6.4 Proposed MCMC Sampling Scheme

6.4.1 Rank ordering of the variables

As explained before, an ordinary Gibbs sampler (MCMC) chooses genes at random
and then samples a new value from the estimated posterior of the neighbouring
variables (i.e Markov Blanket variables). Friedman and Koller [64] argued that
sampling from the space of (total) orders on variables rather than directly sampling
DAGs was more efficient than application of ordinary MCMC directly in random
manner. In our previous work [129], evaluating a network structure was based on the

summing of scores of the individuals genes in Markov Blankets. Since the Gibbs
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sampler also samples the new value of a gene based on the MB variables, we will

order the rank of the Markov Blankets based on their scores.

6.4.2 Gibbs Sampler

Before we proceed with the Gibbs sampling scheme, we need to specify a uniform
prior distributions for all the genes in the domain. Rather than a random initial state
of the network, we apply a standard prior which is a multivariate Dirichlet
distribution [64]. This distribution is assigned to initial state distribution and also to
the state transition distribution of the Markov chain. The initial distribution of the
variables in the network (from which the initial state is sampled) 1s assigned using
the density function estimated after smoothening of the histogram of normalized
gene expression data. Sampling is straightforward as there is no evidence in the
network and 1s done by sampling each variable in the specified rank order. For nodes
without parents, sampling is done from their initial distributions while for nodes with
parents, we sample from the conditional distribution of their MBs. Similarly, »
independent and identically distributed samples are drawn from the target
distribution P(x). Since the samples drawn are continuous (through the normal range
of -3 and +3) rather than discrete, the sampling precision is restricted to two decimal
places to reduce the space of complexity. The samples collected are plotted using a
histogram with n bins as shown in Fig. 6.4 above. The probability density function
P(x) of a continuous variable (gene expression) x is approximated by smoothening of
the histogram of samples as shown in the Fig. 6.4. Similarly, the conditional

probability distribution of all variables is estimated.
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6.4.3 Burn-in and Convergence

The process of achieving stationary probability distribution is called as convergence
while the initial phase of convergence is called the ‘burn-in’ phase. In the proposed
method, the convergence is improved by running several parallel Markov chains
each using a different network structure representing the probability distribution as
the starting point. The idea of running multiple chain using different Bayesian
network structures is mainly to obtain samples from the entire sample space of the
probability distribution underlying all the structures. The chains are merged together

at a certain stage of the iterations and made into a single chain.

During the process of multiple chain runs, samples are exchanged between the
chains and the overall samples of a number of variables in the top of the specified
order are monitored for autocorrelation and stationary distribution. A sample
variation factor is introduced to determine the fraction of samples that go out of
range. When the sample values do not go above a variation factor after significant
number of iterations, we assume the samples have converged. From there onwards,
the variable is clamped to the stationary value. This allows the sampling to be carried
out on the variables that are in the lower in the rank order of the variables. In our
experiments we find that the rank ordering of variables, multiple Markov chain runs
and clamping also improves the mixing of samples for the unknown variables

improves the mixing of samples more efficiently than an ordinary MCMC approach.

6.5 Experiments and Results

The validation of new techniques by comparing with other GRN reconstruction
methods becomes difficult and painstaking due to non-availability of suitable
benchmark dataset. Furthermore, most methods work with discrete data or perform
experiments on small toy networks which also make comparisons difficult. For this

reason, in this section, we validate the method’s performance by investigations of
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synthetic datasets. The presented method is compared with a plain MCMC method

which does not incorporate the improvements.

6.5.1 Experiments with Synthetic Dataset

For the work reported in this paper, three 40 gene synthetic networks were arbitrarily
generated with sample size of 100. From the set of reconstructed networks using the
guided GA [128, 130] approach, we choose the first 10 high scoring networks. The
probability distribution is then estimated using the proposed MCMC method. For
each of the 10 structures of the networks, samples from the probability distribution
were obtained with MCMC, after discarding those from the burn-in phase. All
simulations were repeated three times for different training data generated from
synthetic networks. The results of experiments are summarized in Fig. 6.5. First we
carry out single MCMC simulation runs instead of proposed multiple parallel

MCMC runs.

From the estimated probabilities, a set of all edges whose posterior probability
exceeds a given threshold @ € [0, 1] is taken for comparison with actual network.
For a given threshold 6, we count the number of true positive (7P), false positive
(FP), true negative (7N), and false negative (FN) edges. We then compute the
sensitivity = TP/ (TP + FN), the specificity = TN/(IN + FP), and the complementary
specificity = (1 — specificity) = FP/(IN + FP). Rather than selecting an arbitrary
value for the threshold 6, we repeat this scoring procedure for several different
values of @ €' [0, 1] and plot the ensuing sensitivity scores against the corresponding
complementary specificity scores. This gives the receiver operator characteristics
(ROC) curves of Fig. 6.5 (a). The diagonal dashed line indicates the expected ROC
curve for a random predictor. The ROC curve of Fig 6.5 (a), top left, shows that we
can recover more than 80% of the true edges at approximately zero FP rate. We note
that the ROC curve corresponds to the network structure obtained based on the

estimated probability distribution and not based on the network reconstructed by our
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earlier GGA causal modeling method. The MCMC trace plot between the objective
function verses cycle number for 1000 cycles for the synthetic network of 40 genes
is shown in Fig 6.5 (b). For this plot, the joint probability distribution is considered
as the evaluation criterion after every run. The plot shows good mixing with a very
low burn-in period. The same synthetic dataset is repeated on a plain MCMC
simulation which does not incorporate the presented improvements. The trace plot of
the plain MCMC simulation is shown in Fig 6.5 (c) for 1000 cycles. It is clearly
evident that mixing is poor and has a longer burn-in period. Also the simulation is
oscillating around sub-optimal values of the objective function while the proposed
method quickly reaches the higher values of the objective function confirming that
proposed method is better than the simple MCMC. The proposed method is repeated
for 500 gene synthetic network dataset and its trace plot is shown in Fig 6.5 (d). This
shows the method is easily scalable for thousands of gene as is the case of gene

expression data at a comparatively feasible.

With sufficient improvements identified using single MCMC runs of the presented
method over the plain MCMC method, we proceed to parallel MCMC runs as
presented in Section 6.3. We obtained 3 different network structures for the same
synthetic dataset using the GGA [128] search method and applied the network
structures in a parallel MCMC runs with exchange of samples. Fig 6.5 (e) shows the
trace plot of 3 parallel MCMC runs where each chain corresponds to an individual
network. From the results, it was found that the auto-correlation between the samples
produced from the 3 chains was far apart during the initial 1000 samples after which
the correlation increased at 2000 cycles which is an indication of convergence. The

parallel runs uncovered the entire probability distribution.
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Fig. 6.5 Simulation results: (a) ROC plot of sensitivity versus (1-specificity) for a
synthetic dataset MCMC simulation. (b) Trace plot of proposed MCMC method on
synthetic network of 40 genes (¢) Trace plot of plain MCMC method on synthetic
network of 40 genes (d) Trace plot on synthetic network of 500 genes (e) Trace Plot
of Parallel MCMC runs on 3 different network structures.
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Although the experiments on synthetic data are successful, the time series of 100
gene expression measurements is significantly larger than what is usually available
from real world wet lab experiments; hence we also test the approach using real

yeast dataset [49].

6.5.2 Experiments with Real Dataset

To demonstrate the performance of the MCMC approach and also as a practical
application of the method on a real biological dataset, we consider the yeast dataset
[49] containing 800 genes and 77 samples comprising of a comprehensive catalogue
of cell cycle-regulated genes in the yeast Saccharomyces cerevisiae. The dataset
includes three long time course expression values representing three different ways
of synchronizing the normal cell cycle, and five shorter time courses representing the
altered environmental conditions. These results were combined with those by Cho e?
al. [125], to produce a more comprehensive collection of data. The test samples were
synchronized so that all the cells would be at the same stage in their cell cycle. Using
this data set, gene networks have already been reconstructed [25]. We also note that
the Spellman dataset has classified the 800 genes in different phases of cell cycle
such as G1, G2, S and M/G1 and G2/M. Using the MCMC based probability
inference; the minimal I-map of the inferred yeast network is obtained. It is shown in
Fig. 6.6.

From the reconstructed network shown in Fig. 6.6, we note the following
interactions taking place which is in confirmation with the available literature [51].
e MBF (a complex of MBP1 and SWI6) and SBF (a complex of SWI4 and
SWI6) controls the late G1 genes (e.g. CLN2 and NDD1).
e MCMI, together with FKH1 or FKH2, recruits the NDD1 protein in late G2
and controls the transcription of G2/M genes.
o SWIS and ACE2 regulate genes at M/G1.
e MCMI regulates SIC1 and ACE2.
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Fig. 6.6 Yeast Gene Regulatory network Minimal I-map.

6.6 Integration of Biological Data

From the yeast cell cycle data experiment, we observe that the minimal network
derived using real life yeast dataset has more accurate reconstruction of regulatory
interactions. However, due to the nature of the microarray data set, the resulting
minimal GRN is not unique. Hence with integration of other related data such as
sequence analysis in the form of prior probability, it is possible to recover unique
minimal network which represents the underlying structure of gene expression. This
work is presented in this section. Since biological integration is only possible on a
real data, we have integrated information from sequence motifs and GO with the
recovered yeast cell cycle network. Before we proceed to the experiments we briefly

review the methods used to identify regulatory sequence motifs next.

6.6.1 Methods to identify regulatory sequence motifs

There are several methods to search over-represented motifs at the sequence

upstream of co-regulated genes [27]. These approaches can roughly be categorized
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into two classes: word frequency based and probabilistic sequence models [131-

137].

The frequency based methods are based on the frequency analysis of
oligonucleotides in the upstream regions of co-regulated genes. The statistical
significance of a site is calculated based on oligonucleotide frequency tables
observed in all non-coding regions of the specific organism’s genome. Usually, the
length of oligonucleotide is varied from 4 to 9. Hexanucleotide (with oligonucleotide
length equal to 6) analysis is most widely used. The identified significant
oligonucleotides can be grouped as longer consensus motifs. The word counting
based methods are not only simple and efficient but also rigorous (compared with
heuristic methods) and exhaustive (all over-represented patterns of chosen length are
detected). Price to pay is that it is limited to the detection of short and relatively
conserved motifs and is not effective at identifying complex motif patterns.

For the probabilistic based methods, the motif is represented as a position probability
matrix, Position Specific Scoring Matrix (PSSM), and the motifs are assumed to be
hidden in the noisy background sequences. Maximum likelihood estimation is used
to estimate model parameters. Heuristic methods, like Expectation Maximization
(EM) [18, 138] and Gibbs sampling methods [127, 139, 140], are usually adopted to
perform optimization. Actually Gibbs sampling is a stochastic equivalent of EM.
One of the strengths of probabilistic based methods is the capability to identify
motifs with complex patterns. Many potential motifs can also be identified, which
actually is also a weakness, because it is difficult to distinguish the real one among
them. Other limitations include: longer computational time, lack of unique solution
due to the inherent randomness of the procedure, and the requirement of multiple
runs. In this work, we will adopt the word frequency based method and use the
online regulatory sequence analysis tool (BLAST). The analysis results show
significant motifs tifs and consensus with a significant coefficient sig > 0. sig = 0
means one expects one pattern to occur at random within each family. The increment

of 1 for the significant coefficient sig represents a drop of 10 times in the occurrence
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probability. A higher significant coefficient indicates a more significant motif. Next

we look at the gene ontology data.

6.6.2 Gene Ontology

Gene Ontology (GO) [21, 26, 141] annotations are used for validation (and also
describing their functions) of such genes with high scores (with 95% statistical
significance) and belong-ing to any of the small networks. The GO comprises three
orthogonal taxonomies corresponding to three domains: biological process (BP),
molecular function (MF), and cellular component (CC). The work involves
compiling annotations regarding the gene and its regulators in a tabular form. Below

in Fig. 6.7 1s a screen shot of a GO data.

Using this information, a search for keywords is carried out to find similarities
between genes and their putative regulators predicted from the GRN as they may
share common functionality. Approximately 80 percent of the regulatory relations
were validated using the above method. Thus, it is shown that the proposed method
has successfully inferred relations that are plausible and bio-logically significant.
Next, we look at some of the well know yeast cell cycle networks available in the

literature.
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Gene Locus Id Biological Process GO Term

TSL1 YMLI100W response to stress: trehalose biosynthesis

STE6 YKL209C  peptide pheromone export

GAT3 YLRO13W  transcription

KRE6 YPR159W  beta-1.6 glucan biosynthesis; cell wall organization
and biogenesis

YFLO64C YFL0G4C  unkown

TEL2 YGRO99W  telomerase-dependent telomere maintenance

HSL7 YBR133C  G2/M transition of mitotic cell cycle; regulation of
progression through cell cycle

GIC1 YHRO61C  Rho protein signal transduction; axial bud site
selection, establishment of cell polarity (sensu Fungi);
regulation of exit from mitosis

NDD1 YOR372C  G2/M-specific transcription in mitotic cell cycle

HOS3 YPL116W  histone deacetylation

ARP7 YPRO34W  chromatin remodeling

STBI YNL309W  G1/S transition of mitotic cell cycle

CLB4 YLR210W  G2/M transition of mitotic cell cycle; S phase of
mitotic cell cycle; regulation of cyclin dependent
protein kinase activity

SIM1 YIL123W  microtubule cytoskeleton organization and biogenesis

YER189W YERIBOW unknown

PDR16 YNL231C  phospholipid transport; response to drug; sterol
biosynthesis

CHS1 YNL192W  cell budding; cytokinesis, completion of separation

OPY2 YPRO75C  cell cycle arrest in response to pheromone

SWI6 YLRI182W  G1/S-specific transcription in mitotic cell cycle

SKN7 YHR206W response to osmotic stress; response to oxidative

stress; transcription

Fig. 6.7 Gene Ontology
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6.6.3 Liet al. / Chen et al.’s yeast network

This section describes the Boolean model of the cell-cycle network in
Saccharomyces cerevisiae developed by Li ef al. [101]. Modifications to the GRN
model carried out for its application for this thesis are discussed in the next section.
There are 800 genes associated with the yeast cell cycle (Spellman ez al., [25]). 1t is,
however, likely that the majority of these genes are controlled by a relatively small
set of regulators [101]. The model of the yeast cell cycle under consideration
involves a hand-constructed network of 11 key regulatory factors [101] (see Fig. 6.8
adapted from [101]). The constructed yeast cell cycle network consists of 12 nodes
(the 11 regulatory factors identified and a ‘cell size’ signal node) and 30 links
between network nodes. Links in the network have an associated weight of either +1
or —1, with a positive value indicating an excitatory interaction, and a negative value

indicating an inhibitory interaction.

The model of Li et al. used different node functions to that of Chen ef al.’s model
[51]. Li et al’s model used summative activation instead of the inhibition overrides
activation paradigm used by Chen ef al’s model [51], and also Li ef al. assumed that
node activations were maintained rather than Chen ef al’s model [51] assumption
that activation automatically decayed (described in detail below). In addition, while
Chen ef al’s model [51] customized differential equations used for individual nodes,
all nodes in Li ef al.’s network share the same node function. The node function in
Li et al’s model uses threshold summative activation based on the activation of
input nodes and the weight of input connections. A positive summed input to a node
gives an activation of 1, a negative summed input gives an activation of 0, and a

zero-sum input maintains the activation of the node at the previous time step.
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Fig. 6.8 Li ef al’s yeast cell cycle network

6.6.4 Experiments and Results

We next show experiment results on integrating motif analysis and GO data to
inferred budding yeast S. Cerevisiae cell cycle gene regulatory network shown in
Fig. 6.9 below.  While integration, we further observe four different types of
regulations to be present in the inferred network:
o Forward Activation (FA): Gene X positively activates the subsequent gene Y
X+ve2>Y)
o Forward Inhibition (FI): Gene X inhibits the subsequent gene Y (X -ve 2>
Y)
e Backward activation (BA): Latter gene Y activates a former gene X (X €
+ve Y)
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e Backward inhibition (Bl): Latter gene Y inhibits the former gene X such that
the former gene does not repeat (X € -ve Y).

Fig. 6.9 The yeast Gene Network. Acronyms CLN1, SWI4 etc. denote various genes.

Brazhnik ef al. [1] have emphasized that the interactions in any GRN are
complicated actions occurring through more complex regulatory pathways involving
the proteome and metabolome. The interactions observed in the GRN may (1) not
necessarily correspond to direct physical interactions between the genes (2) be
unknown and unverified. Thus the task of establishing a biological relevance of the
recovered interactions tends to be quite difficult. For validating our approach, we
choose a set of known genes identified by Spellman ez al. [49] and which were later
refined further by Gardner ef al. [32, 101, 142] to result eventually in a set of 19
important genes. For validation, we will separate the GRN into 4 sub-networks (SN)
based on the four phases (G1, M, S and G2). The sub-network1 (SN1) is simplest to
validate since G1 phase involves cyclin genes which have well known simple
interactions while SN3 is complex as it involves complicated spindle formation

during the S phase.
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The validation of the four SNs is carried out using

(1) interactions reported by Chen ef al. [S1] in which they used a set of differential
equations (DE) to define the topology of the GRN containing 56 interactions that
will serve as our first step of validation

(i1) known yeast cell cycle pathway diagram interpretation [51]

(1i1) Motif data analysis and Gene Ontology data [51]

(iv) Saccharomyces Genome Database (SGD11) using software tools TRANSFAC,
Entrez Gene [107, 131].

A. Integrating known interaction

First, we consider SN1 (Genes near G1 in Fig. 6.9) which is simplest of all sub-
networks to validate as it essentially involves cell cycle genes of the type CLNx. We
consider MBs of the genes from the inferred network of the G1 cyclin genes (CLN1,
CLN2, CLN3, SWI4) which forms the basis for our verifying the G1 phase
interactions. For example, from the inferred network, we find that SBF (Swi4, Swi6)
and MBF (Swi6 and MBP1) are the Gl-specific transcription factors (TF) that
activate, directly and indirectly, genes in the G1 phase including the genes NDDI1
and CLN2. This interaction is consistent with the observations of Chen ef al. [51].
Further, in our inferred GRN, we observe that CLN3 and BCK2 act as parents of
SBF and MBF TF genes, which in turn is indirectly causing CLN2 and CLBS to
forward activate (FA) or increase its expression. This interaction is also found to be
in agreement with the pathway diagram given in [49]. Other interactions were also

similarly found to be consistent with the previously reported results.

Further validation of G 1 phase interactions
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Further investigations of the validated interactions presented above reveals the
following which are also in confirmation with the experimental observations of G1
phase.

CLN2 activates CLB2. CLB2 inactivates SBF and MBF which shuts off the G1/S
events and goes to G2 phase.

CLb2 activates MCM1, FKH1 and NDDI1. These three genes form a TF which
activates SWIS and SEC2.

SEC2 activate SIC1.

SIC1 inhibits CLB2. Hence, NDD1, MCM1 and FKHI1 form a TF complex which
regulates SWIS. FKH1 has similar expression as that of SWi5 while NDD1 and
MCMI1 do not correlate and thus are weak parents of SWIS. NDD1 and FKH]1 have
no regulatory relationship and are regulated by SWi5.

CLN2 interactions: An activated CLN2 gene initiates bud formation as stated in
SGD. The CLN2 has a negative relationship (FI) with CDH1, where CDH1 has a FI
relationship with CLB2.

Cell cycle interactions. The interactions CLN3— SIC1, CLN2 — SIC1, CLN2 and
SWi5 — ACE2 and SBF/MBF and SFF find support in the work for regulatory
relations reported by Forster ez al. [143].

B. Delays

Inferring delays correctly leads to a very significant understanding of the GRN.
Since one cell cycle takes about 120 minutes, we use 4 steps for time delays for a
total of 30 minutes and number these delays as DL-1, DL-2, DL-3 and DL-4 with
DL-0 indicating no delay. Some of the significant time delayed relationships that
were inferred are as follows:

(1) No delay DL-0: MCM1 -> Swi5 -> SIC1

(i)  Delay DL-1: MCM1 -> CLB2

(iii))  Delay DL-2: SWI5 -> SIC1
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(iv)  Delay DL4: SIC -> CLN3.

Further, we know that the genes involved in the initiation of S phase (i.e. SN3) are
Sicl and CIbS. We find a FA between Sicl and Clb5 which also indicates the start of
S phase. When Sicl and Cdhl act as parents (when they both are down regulated) of
CLB2, we see that CLB2 begins to activate (FA) transcription factors Mcml and
SFF. CLB2 has activation (FI) on SBF and simultaneously, MBF is also inactivated
with the CIbS expression level beginning to fall. Rise in CLB2 starts mitosis M

phase. Further investigation of M phase is provided in the next section.

C. Investigating unknown interaction patterns

Let us now investigate in detail the Spindle formation (i.e. SN2) which is a complex
system with many of its interactions unknown. We will show that our proposed
technique is able to correctly recover many of the important features of the spindle
formation. Some of these interactions reported here are hitherto unknown and hence
the capability of the proposed approach to make these predictions may find

significant applications in future GRN research.

Known interactions

The genes involved in this spindle formation are: MAD2, SRL 1, 2, 3, TEMI,
MCMI1, CDHI1, BUB2, LTE1, CDC15, RADS53. These genes have been selected
from the yeast dataset [49] and are those genes having spindle as keyword in their
description. In brief, the interactions during the spindle formation assembly are as
follows. As CLB2 is an important gene in switching off the S phase as mentioned in
[51], we begin from this gene in exploring the spindle formation. When CLB2
activates Lte2, Lte2 in turn activates TEM1. When TEMI1 is suppressed by Bub2
later, the spindle checkpoint is exited. However, when CLB2 activates CDC20,
MAL2 suppresses CLB2, which indicates the spindle checkpoint is active, as
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otherwise the CLB2 will be activated and exit. When the spindle is active, gene
SRL2 controls the activities of the regulatory proteins (TEM1 and MCMT1). Hence
SRL2 is the switch of the DNA checkpoint system, controlling the spindle formation
and spindle checkpoint processes. Now, the interactions from our inferred GRN are
Srl2 -=> Teml, Srl2 -> Mcml, Srl2->cdc36, Cdcl16->srl2, indirect interaction with
Smc3 through Rad53, indirect interaction with CLB2 through MCM1 and TEM1
(see Fig.6.9).

Unknown interactions

Next, let us consider the unknown interactions. Due to the organization and
interaction of the genes in the spindle formation assembly being very complex,
existing reconstructions methods have been unable to capture and report these
interactions. For our investigations, we look into two uncharacterized ORFs:
YPRO97C and YCL167A. Both these ORFs are classified as dubious in the
Saccharomyces Genome Database [131] since their functions are unknown.
However, we observe that both these genes were found to be directly connected to
TEMI1 and thus may also have been active during the formation process and the
controlling of TEM1. Again, consider another interesting regulatory relationship
between genes CIn3 with the two genes Cln2/1, Swi4 and also the interaction of
Clb5/6 with the two other genes Tem1 and Cln1/2 predicted from the network. These
unknown interactions, although not cited anywhere in the literature, indicate that
gene TEM1 is active between spindle formation phase and the cell cycle phase.

Apart from this, there are some interactions which are not found in literature and
hence have remained unexplained so far. However, from our inferred GRN, we
observe these other additional interactions are statistically highly significant and
biologically plausible (see the motif data analysis in Sec. 3.2.3 below). Since all our
results are statistically highly significant and over 90% of network interactions
recovered using the proposed method are accurately inferred, we can consider that

these remaining inferences could also be biologically plausible. For example,
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1)  Genes Smcl, Smc3 acting as parents with FI (forward inhibition) for
CLB2
i1)  Genes Mcm2, Mcm6 of the DNA replication which is forward inhibiting
the budding genes (Clnl, Cln2)
ii1))  Genes Pol2, Dbf4 having a FA relationship with Cln1/Cln2.
Further, a difference in the inferred direction of regulation involving gene CLB2
(shown in Fig. 6.9) compared with the direction given in the pathway diagram [51]
may indicate the existence of some unproven phenomena happening in the network

(e.g. areverse cell cycle).

D. Motif data analysis

Motif data analysis involves finding conserved residues from DNA sequences
commonly related to TF protein functions. Some of the methods used for motif data
analysis are finding consensus sequences, alignment, position specific weight matrix
and hidden Markov models (HMM). As next stage of investigation, we use the
inferred GRN for motif data analysis. The motif data used in this study is obtained
from a comparative genome analysis between distinct yeast species (phylogenetic
shadowing) performed by Kellis ef al. [131]. These motifs, available online as
regular expressions, are transformed into their corresponding weight matrices by
selecting, for each motif, the 20 Saccharomyces cerevisiae genes in which the motif
was most reliably detected [131]. In our investigations, we validate the presence of
common regulator motif only from the Markov blanket of four major genes Cln3,
FKH2, SWi5 and CLB2 that includes well known transcription factors. The results
are displayed in Table 6.1 in which the motif sequences of the genes are specified
and also the putative regulators in which the motifs were found. For example, we can
see that for the CIn3 gene, the regulator motif is ACCAGC and the target genes are
SW15, CLN2, SWE1, CLB6, CDC46. Hence, the predicted unknown interactions

involving genes CIn3 and CLB2 are validated on the basis of motif pattern analysis.
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Table 6.1 Motif Data Analysis

Gene Regulator motif Target Genes
Cln3 ACCAGC SWIS CLN2, SWE1, CLB6, CDC
46
Fkh2 GTAAACA CLB2,SWI5,CDC2, SPO1
SWIS ACCAGC SIC1, CLN3
CLB2 TTACCNAATTNGGTAA; MCM1,SWIS,
GTMAACAA CDC46, (-CLN2), SFF

It is also significant to investigate the binding site which is a region on DNA to
which specific TF proteins form a chemical bond to initiate gene regulation. To
extract the binding sites, we restrict the search upto 500 bp upstream sequence. The
500 bp promoter sequences of all genes are downloaded from SGD (Saccharomyces
Genome Database). For each of these sequences, we search for transcription factor
(TF) binding sites using the PATCH software, a part of the TRANSFAC [131]
having a library of known TF binding sites. Initially, all 532 binding site motif
patterns available in TRANSFAC were used for motif finding. After removing
redundant and rare binding sites, the total binding sites is reduced 354. Using
PATCH, counts of motif occurrences in the promoter regions of the 19 select genes
were obtained based on which we get 10 motifs that have high frequency of

occurrence. Using this set of 10 motifs, our motif analysis is carried out next.

Many of the small sub-networks (other than the 4 SNs mentioned earlier) within the
reconstructed GRN also contain genes that are uncharacterized or characterized as
dubious. Our studies indicate that these networks can either interact with each other
or remain autonomous. Gene Ontology (GO) annotations are used for validation (and
also describing their functions) of such genes with high scores (with 95% statistical
significance) and belonging to any of the small networks. The GO comprises three
orthogonal taxonomies corresponding to three domains: biological process (BP),

molecular function (MF), and cellular component (CC). The work involves
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compiling annotations regarding the gene and its regulators in a tabular form. Using
this information, a search for keywords is carried out to find similarities between
genes and their putative regulators predicted from the GRN as they may share
common functionality. Approximately 80 percent of the regulatory relations were
validated using the above method. Thus, it is shown that the proposed method has

successfully inferred relations that are plausible and biologically significant.

6.7 Summary

Estimation of parameters, which involves estimation of conditional probability
distributions (CPD), is an important aspect of GRN modeling. In this chapter, a new
Markov chain Monte Carlo approach using Gibbs sampling is presented for
estimating the conditional probability distribution underlying gene regulatory
network structures. The approach is novel as it performs the rank ordering of genes
based on the Markov Blanket scoring metric, applies parallel Markov chains using
different high scoring starting network structures and clamps genes which are higher
in the order for faster and efficient convergence. Rather than initializing the Markov
chains with randomly chosen networks, our GGA proposed in previous chapter is
used to generate the high scoring initial networks and the probability distribution.
Both synthetic and real world yeast cell data sets have been applied in the
investigations. The experiment on synthetic data set shows that the proposed
technique performs significantly better than the standard MCMC algorithm for
estimating probability distributions of the genes in the network. From the yeast cell
cycle data experiment, we observe that the minimal network derived using real life
yeast dataset has more accurate reconstruction of regulatory interactions. However,
due to the nature of the microarray data set, the resulting minimal GRN is not
unique.

However, the integration of other related data such as regulatory motif sequence
analysis and GO data in the form of prior probability allowed us to recover a unique

minimal network which represents the underlying structure of gene expression data.
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Gene Ontology annotation results show very significant GO Biological Processes in
these networks reconstructed. Detailed interactions and highly connected genes can
be identified as a future work. A similar situation occurs for the integration of
regulatory sequence analysis which helped in significant regulatory sequence motifs
to be identified. By combining motif information with the genetic network, we were
able to obtain biological explanations which are in agreement with the available
literature. In the next chapter, we summarize the work reported in the thesis and also

provide future direction of research.
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Chapter 7

7 Conclusion

7.1 Conclusion

Gene regulatory network is the interconnection between the genes and its
transcription factor genes. Since the high-throughput data acquisition technology for
gene expression measurement known as the biological microarray technology
emerged in the late 1990s, applications of computational intelligence techniques to
microarray data analysis have drawn attention of the bioinformatics community.
Microarrays allow the monitoring of expression levels of thousands of genes
simultaneously and the data provide the basis to discover gene regulation networks,
life evolution, and other important bio-problems. Modeling of gene regulatory
networks is a challenging task because gene expression microarray data is
characterized as massive, heterogeneous (high dimension), NP-hard, stochastic, and
has irregular sampling rate and also has measurement errors (leading to noisy data).

Due to the nature of data, its analysis is apparently beyond the ability of traditional
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analysis methods as they are not able to capture many of the system intricacies, e.g.
the time-varying dependencies between the different genes in the gene regulatory
network. Further, researchers are faced with enormous quantity of data in which lies

important hidden information including, e.g. the transcription factor activity profiles.

Many methods presented for inference of gene networks have focused on statistical
methods, such as, Bayesian networks [17], dynamic Bayesian networks [42],
relevance networks[30] and graphical models [73, 83, 92, 144-146]. Graphical
models have emerged as powerful tools for learning, description and manipulation of
conditional independencies among the genes. However, these approaches overlooked
many important issues including, e.g. time delays, direction and sign of regulation,
interactions amongst parents, children and spouse genes in a biological regulation
system. Further, other important issues for accurate GRN modeling, e.g. suitable
search techniques to explore the astronomically large space of networks, parameter

learning of GRNs was not investigated in greater detail..

This thesis has made efforts to address these problems as follows:

o Causal model learning framework based on the Bayesian network: The
proposed method considers various GRN modeling aspects, namely network
structure, direction of regulation, time delay and sign/orientation of
regulation (i.e. up/down regulation). The method decomposes the entire
network into sub-models based on Markov Blanket of each gene. We observe
that, in terms of accuracy, robustness, noise and scalability, the proposed
method is superior to the widely used simple Bayesian network model and
the Graphical Gaussian model. The computational increase due to the
scalability is dealt effectively by the new constraint minimization technique.
Further, unlike the traditional Bayesian network, the proposed framework
uses continuous rather than discrete data values. A set of experiments using
the synthetic datasets were carried out by varying topology, interaction types,

noise levels, time delay of the interactions and so on to see the effect on
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accuracy of reconstruction. From the results, it is evident that modeling
technique has very low spurious relationships in the reconstructed network
even in the presence of noise.

Path analysis post processing method: Due to stochastic nature and high
dimensionality of the microarray data, a large number of regulation
relationships (from 60% to 80%) can be found to be false positive or
spurious. As a part of the overall causal model design of GRN, the proposed
post processing step, incorporating d-separation, alternative causal hypothesis
and time delay as its tools, greatly improves the accuracy of the inferred
network by pruning the network of the false positives. Experiments with the
synthetic and real life yeast networks have shown overall accuracy of the
inferable network structure improved by up to 40%. The performance of
method is maintained even with network parametric variations, namely,
network topologies, structure, delays and noise.

Synthetic Data generation: The network generator system presented in this
thesis generates synthetic datasets based on causal modeling approach for
GRN reconstruction. The proposed system can generate four different
network topologies, namely scale free, small world, random and hierarchical.
Further, the generated synthetic network is made realistic by incorporating
complex network characteristics such as transmission delays, biological and
experimental noise. The datasets permit large scale experimental
investigations. These datasets are generated for rigorous evaluation of
methodologies presented in this thesis. The system also allowed comparisons
between different methods, namely, GGM and conventional BN techniques.
Guided Genetic Algorithm technique (GGA):. The GGA approach employs a
diversity switching to adaptively alternate between the ordinary operators and
the guided operators. An important characteristic of GGA approach is that it
combines a ranking schema; multiple path constraint and standard Gaussian
function to perform high level heuristic operations. Experiments using

artificial data and real yeast data demonstrate the superior performance of
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GGA approach compared with the commonly used simple GA approach.
Based on the tested data sets, the experiments revealed the folowing
interesting features:

o GGA approach generates superior quality of GRN

o Fitness evaluations reduced by approximately 25% compared with the

simple GA resulting in reduced computational time

o Diversity measure allows the search to escape local optima.
Frequently occurring Markov Blanket Genetic Algorithm (FOMBGA): The
proposed FOMBGA technique avoids the necessity of specifying set of
standard GA parameters (crossover, mutation and selection) by replacing
these operations with a process of probability estimation and sampling. The
entire FOMBGA search technique is successfully evaluated by the synthetic
dataset and its superiority established over both the SGA and GGA. As an
application of the technique, we have also investigated the well understood
yeast cell cycle data set and examined various known and unknown gene
interactions that were found to be in agreement with the information from
well known datasets.
Parameter estimation using MCMC: The new Markov chain Monte Carlo
approach using Gibbs sampling proposed for estimating the conditional
probability distribution underlying gene regulatory network structures
performs the rank ordering of genes based on the Markov Blanket scoring
metric, applies parallel Markov chains using different high scoring starting
network structures and clamps genes which are higher in the order for faster
and efficient convergence. Rather than initializing the Markov chains with
randomly chosen networks, our GGA is used to generate the high scoring
initial networks and the probability distribution. Both synthetic and real
world yeast cell data sets have been applied in the investigations. Synthetic
data set experiments show that proposed MCMC technique performs
significantly better than the standard MCMC algorithm. From the yeast cell

cycle data experiment, we observe that the minimal network derived using
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7.2

real life yeast dataset has more accurate reconstruction of regulatory
interactions compared to previously reconstructed using FOMBGA method.

Biological data Integration: Due to the nature of the microarray data set, the
resulting minimal GRN is not unique. To overcome this, we integrate gene
regulatory sequence information with genetic network inference to obtain a
unique network. Based on the results for parameter estimation using Markov
chain Monte Carlo results , all major cell cycle related motifs were identified.
By combining the genetic networks with the promoter information
corresponding to the motifs, we obtained a reasonable biologically plausible

gene regulatory network.

Future Work

The major contributions of this thesis, such as the Markov blanket based causal

model, the GGA and FOMBGA search techniques and fixing parameters for MCMC

based parameter learning, are investigated for the first time in the context of GRN

reconstruction. Aside from the synthetic data sets, real yeast cell cycle data set has

been investigated to establish the advantages of these concepts over existing

techniques. The research presented in this thesis can be presented in several

directions.

Increasing model complexity: Although the proposed model is more
sophisticated than other state of the art models, it is possible to enhance it
further by additional information. A gene regulation and expression systems
are complicated. For example, proteins or metabolites can be included as
hidden variables to improve the model accuracy. Further, methods to include
feedbacks can also be studied.

Improving FOMBGA: As we have seen, the MB approach had a better
performance than the single arc approach for constructing the probability
vector. It will be worthwhile to investigate whether the Markov blankets can

be further combined with one another resulting in small sub-networks which
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can then be utilized for generating the probability vector. This may not only
improve the accuracy but also the computational speed.

Improving computational speed by implementation on grid: Like all
bioinformatics computations, experiments for modeling GRN require
excessively massive computational power, specially if the order of genes in a
genome reach hundreds of thousands. Further, the procedure of inferencing
parameters using MCMC is computationally expensive. Hence, a grid based
computing algorithm can be investigated to further improve the speed of
computations.

Integrating additional biological information: Currently, data integration is
one of the major tasks of system biology. Efforts to integrate genomics
(genome sequence), transcriptomics (microarray), proteomics and
metabolomics data, effect of non coding RNA on regulation and related prior

knowledge can further enhance the accuracy of the reconstructed GRN.
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Appendix 1

Al Yeast Cell Cycle Dataset

In this thesis we investigate the well known budding yeast S.Cerevisiae data set for
the study of eukaryotic cell cycle in which majority of yeast cells divide every 120

minutes under suitable conditions.

The eukaryotic cell division cycle consists of four phases: G1, S, G2, and M as
shown in Fig. Al.1. The two major steps in cell division are DNA replication (S
phase) and mitosis (M phase). These two steps are separated by gap phases G1 and
G2. G1 phase is a period during cell cycle when the major part of the cell grows and
the bud emerges. The ending of G1 phase is indicated by the bud emergence. There
is a point when the cell becomes irrevocably committed to entering the S (Synthesis)
phase and traversing the rest of the cycle. The major event in the S phase is
chromosome replication. At the end of S phase, each chromosome has two identical
DNA double helix molecules. The S phase is followed by G2 phase when the bud

gets larger as the cell continues to grow resulting in a part of nucleus gradually
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migrating into the daughter cell. This is then followed by M (mitosis) phase, where a
series of events happen: spindle formation, chromosome segregation, nuclear
division, and eventually cytokinesis which cause the daughter cell to finally separate
from the mother cell. The daughter cell which is smaller than its mother must grow
to a consider-able size before it can make any attempt to divide. Both mother and
daughter cells remain in the G1 phase while growing, although it takes mother cells a

shorter time to reach a size compatible with cell division.

Fig. Al1.1 Cell cyle

A gene whose expression level varies periodically with the cell cycle can be
considered to be cell cycle regulated. However, not all such genes are functionally
involved in mechanisms of the cell cycle, nor is it possible to say with certainty that
all genes involved in the cell cycle necessarily display periodic behaviour [24]. The
cell cycle has been studied extensively by molecular biologists and is relatively well
understood. Spellman et al. [25] identify approximately 800 putative cell cycle
regulated genes in Saccharomyces cerevisiae based on analysis of microarray time-
series data. A scoring method is also devised to assess whether a gene is cell cycle
regulated based on Fourier analysis and Pearson correlation coefficients. A score
threshold was selected, whose value if exceeded by 91% of known cell cycle genes,
were thus classified all those genes that scored above this threshold as cell cycle
regulated. The resulting 800 genes (out of approximately 6200 genes) were clustered
hierarchically by Spellman et al. From these 800 genes, Spellman et al. then

identified and analyzed nine functionally related clusters of genes. The microarray
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hybridization data used consists mainly of four independent time-series datasets,
which is referred to as alpha-factor, cdc15, cdc28, and elutriation. The cdc28 dataset,
coming originally from Cho ef al. [24], has each time-series measuring the mRNA
transcript levels for the same set of genes, but synchronized using a different
method. It must be noted that yeast cultures must be synchronized so that all cells are
at the same point in the cell cycle before transcript levels are measured. Significant
synchrony was achieved for one to three cell cycles, depending on the method. The
number of time points in each time series varied from 14 to 24. In addition to the
four time courses, Spellman et al. examined the response of genes to the cyclins
CIn3p and CIb2p, two known cell cycle regulators. More than half of the 800
putative cell cycle regulated genes responded to at least one of these cyclins. The
genes were clustered using the hierarchical clustering method described by Eisen e
al. [26], and nine clusters were identified empirically. The genes in each cluster were
functionally related and substantially co-regulated based on analysis of the promoter
regions. For each cluster, Spellman et al. identified known and hypothesized binding
sites for possible regulators, and described any significant regulatory effects of
CIn3p and CIlb2p. In addition, they discussed which genes take part in major
functions of the cell cycle, such as DNA replication, budding, glycosylation, and

nuclear division.
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