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Abstract 

Human action is a visually complex phenomenon. Visual representation, analysis and 
recognition of human actions has become a key focus of research in computer vision, arti­
ficial intelligence, robotics and other related scientific disciplines. Various applications of 
automated action recognition include but not limited to intelligent health care monitoring, 
smart-homes, content based video search, animation and entertainment, human-computer 
interaction and intelligent video surveillance. The main focus of all these application areas 
surrounds a fundamental question: Given a human subject doing something in the field 
of sensory input, what is the person doing? If machine is able to correctly answer this 
question, it can greatly benefit computer vision system development and practical usage. 

However, machine recognition of human action is a daunting task due to complex 
motion dynamics, anthropometric variations, occlusion and high dependency over camera 
viewpoint. In this thesis, we exploit the importance of rich visual cues from human actions 
and utilize them to propose valuable solutions to human action recognition. The important 
problem of view-invariance under viewpoint variations is taken as a case study. We collect 
and explore these visual cues from geometrical relationships, spatio-temporal patterns and 
features, frequency domain signal analysis, contextual associations of actions and derive 
action representations for machine recognition. 

Actions are known as spatio-temporal patterns and temporal order plays an impor­
tant role in their interpretations. We, therefore, explore invariance property of temporal 
order of actions during action execution and utilize it for devising a new view-invariant 
action recognition approach. We apply order constraint and feature fusion on local spatio­
temporal features. These features are representation of choice for action recognition due to 
their computational simplicity, robustness to occlusion and minor view-point changes. We 
introduce STOPs (spatio-temporal ordered packets) that combine discriminative charac­
teristics of multiple features for better recognition performance. In addition, we introduce 
spatio-temporal ordering constraint that removes discrepancy of orderless formation of 
bag-of-feature framework for action recognition. 

Furthermore, to deal with limitations of feature based approaches, we explore mul­
tiple view geometry which has alleviated various complex problems in computer vision. 
We thoroughly study applications of static and multi-body flow fundamental matrix in 
context of relating across-view information. We introduce spatio-temporally consistent 
dense optical flow to avoid explicit manual human body landmark point detection and 
explicit point correspondences. We employ rank constraint to derive novel tracking and 
training-free action similarity measures across viewpoint variations. 

Next, we investigate that despite the considerable success of geometrical techniques, 
computational complexity due to dense optical flow calculations plays a hindering role. 
Therefore, we study and track frequency domain analysis of action sequences. It leads 
toward the derivation of spatio-temporal correlation filters that use frequency domain 
filtering to give fast and efficient solutions to action recognition. However, these filters are 
originally view-dependent solutions. To achieve this objective, view clustering is explored 
that extends frequency domain techniques to achieve view-invariance. 
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Contextual information is another important cue for interpreting human actions espe­
cially when actions exhibit interactive relationships with their context. These contextual 
clues become even more crucial when videos are captured in unfavorable conditions like 
extreme low light nighttime scenarios. We, therefore, take case study of night vision and 
present contextual action recognition at nighttime. We discover that context enhancement 
is imperative in such challenging multi-sensor environment to achieve reliable action recog­
nition which leads us to develop novel context enhancement techniques for night vision 
using multi-sensor image fusion. 

Extensive experimentation on well-known action datasets is performed and results 
are compared with the existing action recognition approaches in literature. The research 
findings in this thesis greatly encourage the exploitation of spatia-temporal visual cues for 
deriving novel action recognition approaches and increasing their performance. 
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Chapter 1 

Introduction 

All human actions have one or more of 
these seven causes: chance, nature. 
compulsions, habit, reason, passion 
and desire. 

",Aristotle (384 BC - 322 BC) 

Actions are the true manifestation of human qualities, as human desires, hopes, beliefs 
and intentions eventually result in their actions. In his landmark treatise, Ludwig Von 
Mises [1] points to this purposive characteristic of human action in these words, "Human 
action is a purposeful behavior. It is the ego's meaningful response to stimuli and a persons 
conscious adjustment to the state of the universe that determines his life". The ability to 
perceive, interpret, understand and predict human actions is vital to the understanding 
of the nature of human life and it is the very subject of this thesis. 

Since Aristotle's Nicomachean Ethics [2], action analysis has attracted strong atten­
tion of many philosophers. Hegel, Max Weber, Ludwig von Mises, August Cieszkowski, 
John Martin Fischer and Donald Davidson greatly contributed towards the philosophy of 
action [7]. The primary concerns of the philosophy of action are to analyze the nature 
of actions, individuating actions, explaining the relationship between actions and their 
effects, explaining how an action is related to the beliefs and desires, the role of the nature 
of free will and mental or physical states that cause the actions. The concerns of the 
action theorists overlap with those doing work in other areas of the philosophy of mind 
and metaphysics, moral philosophy, the philosophy of religion, logic, epistemology, legal 
philosophy, and with the recent growing interest in social action theory, social and political 
philosophy. Action theory is one of those unique areas in philosophy with a boundary that 
is difficult to fix. 

According to the action theory (philosophy) [3], actions are defined as the behaviors 
caused by the agents( actors) in particular circumstances. These are processes that are 
caused by willful human bodily movements of more or complex nature. More rigorously, 
the actions represent bodily movements that are believed to be driven by the intentions. 
For instance, throwing a ball is an example of action; it involves an intention, a goal, and 
a bodily movement guided by the agent. On the other hand, feeling a headache is not 
considered as an action because it is something which happens to a person, not something 
done by someone. In other words, an agent doesn't intend to get pain or engage in bodily 
movement during an experience of headache that excludes it from being considered as an 
action. 
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Action Analysis in various Scientific Disciplines: 

In psychology and sociology, human action is investigated in the name of behavior 
study and referred to the action and mannerism made by the human in conjunction with 
its environment. The behaviorist school of thought [4] maintains that behaviors can be 
described scientifically without recourse either to internal physiological events or to hy­
pothetical constructs such as the mind. Modern-day behaviorism, known as "behavior 
analysis," is a thriving field. In sociology, behavior in general is considered as having no 
meanings, being not directed at other people, and thus is the most basic human action. 
To many theorists, the locus of interest lies in actors, actions, and interactions between 
actors. Collectively, they try to answer, "What is a human action 7". 

The American sociologist Talcott Parsons [5] created a model of human action which 
stressed that the most basic interesting event to recognize is goal-directed action. It 
was further refined by his student Robert K. Merton. In this model [6], human actions 
are made up of: (i) The actor or agent performing an action (including their intentions, 
schemas, knowledge, motives, and identity); (ii) The goal, or a future state of affairs that is 
desired (which may be human communicative action or be an object-oriented action; and 
be either a creative goal or reaction to a dilemma); (iii) The situation in which action is 
located, including both: the conditions of action that include the normative background, 
the obstacles in the way of achieving the goal, and the human ecology of the setting, the 
means of action and the actual consequences of the action (which may be foreseeable or 
unforeseeable, and either intended or unintended). 

Cognitive neuroscience studies action analysis and recognition functionalities by in­
vestigating the nervous system. An important contribution by neuroscience is the recent 
discovery [8] about mirror neurons which are believed to be fired when when an actor acts 
and when the actor observes the same action performed by another. The neurophysiol­
ogists placed electrodes in the ventral premotor cortex of the macaque monkey to study 
neurons specialized for the control of hand and mouth actions; for example, taking hold 
of an object and manipulating it. During each experiment, they recorded response from 
a single neuron in the monkey's brain while the monkey was allowed to reach for pieces 
of food, so the researchers could measure the neuron's response to certain movements. 
They found that some of the neurons they recorded would respond when the monkey saw 
a person pick up a piece of food as well as when the monkey picked up the food. Further 
experiments confirmed that about 10 percent of neurons in the monkey inferior frontal and 
inferior parietal cortex have 'mirror' properties and give similar responses to performed 
hand actions and observed actions. Brain imaging experiments using functional magnetic 
resonance imaging (fMRI) have shown that the human inferior frontal cortex and superior 
parietal lobe is active when the person performs an action and also when the person sees 
another individual performing an action. It has been suggested that these brain regions 
contain mirror neurons, and they have been defined as the human mirror neuron system. 
Human infant data using eye-tracking measures, suggests that the mirror neuron system 
develops before 12 months of age, and that this system may help human infants understand 
other people's actions. 

The undisputed fact is that actions are essence of human existence and substance of 
great importance. Therefore, action analysis is a subject of primary importance, worth 
of scientific investigation and exploration. It is open for scientific enquiry with no defined 
boundaries. In other words, the analysis of human action is not restricted to some specific 
area of science, it is the subject of study in various scientific disciplines like neuroscience, 
cognitive science, agronomic, economics, psychology, praxeology and (computer vision) 
artificial intelligence (AI). This thesis investigates human actions and their recognition in 
the context of visual analysis, modeling, recognition and understanding by machine vision. 
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These aspects of action analysis research come under the scientific discipline of computer 
vision. 

Computer Vision and Action Understanding: 

Computer Vision is a branch of artificial intelligence (AI) that is intended to develop 
visual perception techniques for computers that are indispensable part of our modern life. 
It is the science and technology of the machines that see, and this capability is possible 
through analysis and interpretation of single image or sequence of images to determine if 
they contain some object, feature or activity of interest. In other words, computer vision 
is the the theory of artificial systems that take information from images with the objective 
of attaining awareness or understanding of sensory information. 

The history of computer vision is bit accidental as it was mistakenly considered as 
simple Artificial Intelligence (AI) problem. A fine historic example is the MIT copy demo 
problem [9J that was given as assignment to students. The idea was to write a computer 
vision program to analyzes an image of a scene containing several stacked blocks, recover 
the structure of the blocks, and generate a code for a robot to build an exact copy of the 
block structure. None of the students was able to solve this problem. Later on researchers 
realized that it was actually a high level vision problem and technology had not yet solved 
low level vision problems. 

Vision is one of the principal senses of the human being. The human vision acts as a 
lower bound on our ambitions with regard to computational image analysis. Giving the 
future robots, a similar vision to the human is a big challenge. It was known that the 
human brain processes visual information in semantic space mainly, that is, extracting 
the semantically meaningful features such as line-segments, boundaries, shape and so on. 
But by recent information processing techniques, these kinds of features cannot be de­
tected by computers robustly so that in computer vision it's still difficult to process visual 
information as humans do. Computers have to process visual information in data space 
formed by the robustly detectable but less meaningful features such as colors, textures 
etc. Therefore, the processing methodology in computers is quite different from that in 
human beings. The trouble is that pixels have no meaning for humans. One must create 
from them other entities that capture properties of a picture that are meaningful to people 
and that is not an easy task. This difference between human perception of pictures and 
pixel statistics is called the semantic gap. However, extensive research on computer vision 
approaches in last three decades has greatly contributed towards its success and it has 
gradually made the transition away from understanding single images to analyzing video 
sequences, or video understanding. 

The closely related research areas to computer vision are image processing. machine 
vision and pattern analysis. There is a significant overlap in the range of techniques and 
applications they cover. This implies that the basic techniques that are used and developed 
in these fields are more or less identical, but with subtle differences. Success in one field 
supports the other. Similarly, when we distinguish each of the fields from the others, the 
following characterizations appear relevant: 

Image processing and image analysis tend to focus on 2D images, how to transform 
one image to another, e.g., by pixel-wise operations such as contrast enhancement, local 
operations such as edge extraction or noise removal, or geometrical transformations such 
as rotating the image. This characterization implies that image processing/analysis nei­
ther require assumptions nor produce interpretations about the image content. Whereas 
computer vision includes 3D analysis from 2D images. This analyzes the 3D scene pro­
jected onto one or several images, e.g., how to reconstruct structure or other information 
about the 3D scene from one or several images. Computer vision often relies on more or 
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less complex assumptions about the scene depicted in an image. Machine vision is the pro­
cess of applying a range of technologies and methods to provide imaging-based automatic 
inspection, process control and robot guidance in industrial applications. 

Machine vision tends to focus on applications, mainly in manufacturing, e.g., vision 
based autonomous robots and systems for vision based inspection or measurement. This 
implies that image sensor technologies and control theory often are integrated with the 
processing of image data to control a robot and that real-time processing is emphasized 
by means of efficient implementations in hardware and software. It also implies that the 
external conditions such as lighting can be and are often more controlled in machine vision 
than they are in general computer vision, which can enable the use of different algorithms. 

Pattern recognition is a field which uses various methods to extract information from 
signals in general, mainly based on statistical approaches. A significant part of this field 
is devoted to applying these methods to image data and computer vision deals visual 
patterns and their interpretations. 

Video understanding addresses the understanding of video sequences, e.g., recognition 
of activities or events inside a video. The main difference between a single image and 
a video (a sequence of images) is motion. Therefore, the major transition in the classic 
paradigm has been from the recognition of static objects in the scene to motion-based 
recognition of actions and events. The most interesting subject of majority of the videos 
are about human, therefore, the analysis of human motion has become a main focus of 
video understanding research. 

In this thesis, we investigate the subject of human action understanding as a research 
problem of computer vision and video understanding. We search important visual charac­
teristics that can help in proposing computer vision algorithms for human action recogni­
tion. We explore rich visual cues from geometrical relationships, spatio-temporal patterns 
and features, frequency domain signal analysis and contextual associations of actions and 
actors to derive action representations for machine recognition. 

1.1 Human Action Recognition: An Overview 

Human action recognition is a problem in computer vision intended to label video se­
quences with action labels. This may be regarded as a classification problem due to 
extraction of corresponding discriminative static or motion features, building a model or 
representation and labeling it into different action classes. 

This recognition can be performed at various levels of abstraction. Different tax­
onomies have been proposed in this regard. A simple hierarchy is based on action prim­
itive/element, action and activity [10]. An action primitive is an atomic movement that 
can be described at the limb level. An action consists of action primitives and describes a, 
possibly cyclic, whole-body movement. Finally, activities contain a number of subsequent 
actions, and give an interpretation of the movement that is being performed. For exam­
ple, left leg forward is an action primitive, whereas running is an action. Jumping hurdles 
is an activity that contains starting, jumping and running actions. These are low level, 
higher level and mid-level vision problems respectively. Once actions are recognized using 
some representation of action primitives, activity recognition can be performed based on 
sequence of actions. 

One common approach [11] is to divide the problem into two phases: (i) action rep­
resentations and (ii) action classification. Both phases have their own significance and 
challenges based on the data and application in hand. Here we introduce some well-known 
achievements in each domain. 
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1.1.1 Action Representation 

Action representation include extraction of important discriminative features from video 
sequences or modeling of representative characteristics of actions suitable for use in action 
classification. In other words, these representations must be sufficiently rich to allow for 
robust classification of the actions. Ideally, they should generalize over small variations 
in actor appearance, background, viewpoint and action execution. Time is an important 
parameter. Some of the action representations explicitly take into account the temporal 
dimension, others extract static features for each frame in the sequence individually and 
deal it at classification stage. We further divide these representations into two categories: 

• global representations 

• local representations 

(i) Global Representations: Global representations work in a top-down fashion 
[12]: first, an actor is localized using background subtraction or tracking. Then, the 
region of interest is encoded as a whole, which results in corresponding descriptor. These 
representations are powerful since they encode much of the relevant information. However, 
they rely on accurate localization, background subtraction or tracking. In addition, these 
representation are more sensitive to viewpoint, noise and occlusions. In case of good 
control of these factors, global representations achieve considerable performance. 

Common global representations are derived from silhouettes, edges or optical flow. 
They are sensitive to noise, partial occlusions and variations in viewpoint. To partly 
overcome these issues, grid-based approaches have been proposed that spatially divide 
the observation into cells, each of which encodes part of the observation locally. Multiple 
frames over time can be stacked, to form a three-dimensional space-time volume, where 
time is the third dimension. 

For instance, the silhouette of a person in the image can be obtained by using back­
ground subtraction. Generally, silhouettes contain some noise due to imperfect extraction. 
Also, they are somewhat sensitive to different viewpoints, and implicitly encode the an­
thropometry of the person. They encode a great deal of visual information. When the 
silhouette is obtained, there are many different ways to encode either the silhouette area 
or the contour. Two popular representations include silhouettes from a single view and 
aggregate differences between subsequent frames of an action sequence [13]. This results 
in a binary motion energy image (MEl) that indicates where motion occurs. Another 
representation is motion history image (MHI) that is constructed where pixel intensities 
are a recency function of the silhouette motion. 

Instead of (silhouette) shape, motion information can be utilized. Motion within the 
region of interest (ROI) can be described with optical flow, the pixel-wise oriented differ­
ence between subsequent frames [102]. Flow information can be used when background 
subtraction is difficult to perform. However, dynamic backgrounds can introduce noise 
in the motion descriptor. Similarly, camera movement results in observed motion, which 
can be compensated by tracking the actor. By dividing the ROI into a fixed spatial or 
temporal grid, small variations due to noise, partial occlusions and changes in viewpoint 
can be partly overcome. Each cell in the grid describes the image observation locally, 
and the matching function is modified accordingly from global to local. These grid-based 
representations resemble local representations, but require a global representation of the 
region of interest (ROI). 

A 3D spatio-temporal volume (STV) is formed by stacking frames over a given se­
quence. Accurate localization, alignment and possibly background subtraction are re­
quired. Motion history volume [15] and 3D maximally stable volume (MSV) [16] are 
examples of 3D spatio-temporal volumes. 
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(ii) Local Representations: Local representations work in a bottom-up fashion 
[12]: first, spatio-temporal interest points are detected, and local patches are calculated 
around these points. Finally, the patches are combined into a final representation in form 
of descriptors. They represent the observation as a group of local independent patches. 
Patches are sampled either densely or at space-time interest points. Local representations 
are comparatively assumption free, less sensitive to noise and partial occlusion, and do 
not strictly require background subtraction or tracking. However, these representations 
depend on the extraction of a considerable amount of relevant interest points. 

For instance, space-time interest points [17] are the locations in space and time where 
sudden changes of movement occur in the video. It is assumed that these locations are 
more informative for the recognition of human action. Space-time interest points are those 
points where the local neighborhood has a significant variation in both the spatial and the 
temporal domain. The scale of the neighborhood is automatically selected for space and 
time individually. Usually, points that undergo a translational motion in time will not 
result in the generation of spacetime interest points. One example of space-time interest 
points is 3D cornet detector. An improved example is 3D cuboid features [18] that use 
Gabor filtering on the spatial and temporal dimensions. The number of interest points 
is adjusted by changing the spatial and temporal size of the neighborhood in which local 
minima are selected. 

Local descriptors restate an image or video patch in a representation that is ideally 
invariant to background clutter, appearance and occlusions, and possibly to rotation and 
scale. The spatial and temporal size of a patch is usually determined by the scale of the 
interest point. One solution is the calculation of the patches of normalized derivatives 
in space and time. Another example is local HOG (histogram of gradients) and HOF 
(histogram of oriented flow) descriptors [14]. Several approaches combine interest point 
detection and the calculation of local descriptors in a feed-forward framework with feature 
matching and bag-of-words model. The comparison and matching oflocal descriptors is not 
straightforward due to the their detections and high dimensionality of the corresponding 
descriptors. Therefore, often a codebook is generated by clustering patches and selecting 
either cluster centers or the closest patches as codewords. A local descriptor is described 
as a codeword contribution. In this way, a frame or video sequence can be represented as 
a bag-of-features, a histogram of codeword frequencies. 

1.1.2 Action Classification 

When a suitable action representation is available for an observed frame or sequence, 
human action recognition remains as a classification problem. An action label or distri­
bution over labels is given for each frame or sequence. There are some classifiers that 
classify image representations into actions without explicitly modeling variations in time 
domain (direct classification) whereas other approaches do model such variations of an 
action (temporal state-space classification). 

Direct classification approaches [19] deal all frames of an observed sequence as a single 
representation or perform action recognition for each frame individually. Dimensionality 
reduction approaches come in this category. In majority of cases, image representations 
are high-dimensional. It makes them computationally very expensive. In addition, these 
representations might contain noisy features. To deal with this problem, a more compact, 
robust feature representation is obtained by embedding the space of image representations 
onto a lower dimensional space. This embedding can be learned from the training data. 
PCA (Principal Component Analysis) [20] is a common linear dimensionality reduction 
method while KPCA (Kernel Principal Component Analysis) [20] is non-linear dimen­
sionality reduction approach. Dimensionality reduction methods learn the embedding in 
an unsupervised manner and do not guarantee good discrimination between classes. 
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Another example is k-Nearest neighbor (kNN) classifier [20] that uses the distance 
between the image representation of an observed sequence and those in a training set. 
The most common label among the k closest training sequences is chosen as the classi­
fication. For a large training set, such comparisons can be computationally expensive. 
Alternatively, for each class, an action prototype can be calculated by taking the mean of 
all corresponding sequences. Their ability to cope with variations in spatial and temporal 
performance, viewpoint and image appearance depends on the training set, the type of 
image representation and the distance metric. KNN classification can be either performed 
at the frame level, or for whole sequences. 

The third example is discriminative classifiers that focus on separating two or more 
classes, rather than modeling them. e.g. Support vector machines (SVM) [20] learn 
a hyperplane in feature space that is described by a weighted combination of support 
vectors. In a boosting framework, a final strong classifier is formed by a set of weak 
classifiers, each of which usually uses only a single dimension of the image representation. 

The time domain consideration is used by temporal state-space models [12] that consist 
of states connected by edges. These edges model probabilities between states, and between 
states and observations. In these models, each state summarizes the action performance 
at a certain moment in time. An observation corresponds to the image representation at 
a given time. Temporal state-space models are either generative or discriminative. 

A generative model is a model for randomly generating observable data, typically given 
some hidden parameters. It specifies a joint probability distribution over observation and 
label sequences. Hidden Markov Models (HMM) [21] use hidden states that correspond to 
different phases in the performance of an action. They model state transition probabilities 
and observation probabilities. To keep the modeling of the joint distribution over repre­
sentation and labels tractable, two independence assumptions are introduced. First, state 
transitions are conditioned only on the previous state, not on the state history. This is 
the Markov assumption. Second, observations are conditioned only on the current state, 
so subsequent observations are considered independent. The independence assumptions 
in HMMs assume that observations in time are independent, which is often not the case. 

Discriminative models [22] overcome this issue by modeling a conditional distribution 
over action labels given the observations. These models can take into account multiple 
observations on different timescales. They can be trained to discriminate between action 
classes rather than learning to model each class individually, as in generative models. 
Discriminative models are suitable for classification of related actions that could easily be 
confused using a generative approach. In general, discriminative graphical models require 
many training sequences to robustly determine all parameters. 

1.1.3 Application Areas 

The application and useability of action recognition is widely recognized. The impor­
tant application areas for automatic human action recognition and understanding include 
human-computer interfaces, content based video indexing, video surveillance, and robotics. 
Various new application areas have been suggested recently by researchers. Here, we briefly 
mention few important application areas: 

(i) Video Indexing and Retrieval: In recent years, internet has emerged with a 
great amount of multimedia content. Popular websites like You Tube , Coogle, Facebook 
provide opportunity to their users to upload and publish their own images and videos. 
The move towards user-generated content is motivated by a number of factors, primar­
ily the decrease in the cost of devices like digital cameras, high quality mobile phones, 
high-bandwidth connections, and great popularity of online social networking web sites. 
The result is an overwhelming increase in the amount of multimedia content mostly in 
form of videos. To make multimedia data effectively available, the high-level indexing 
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aimed at meaningful, semantically-oriented retrieval is a critical goal. While for text, the 
words themselves convey quite directly its semantics, in the case of visual information, 
the connection between low-level encoding (Le., pixels) and semantic meaning is far from 
immediate. In these scenarios, high level computer vision can play its part by introducing 
visual semantics. As principal video subject is human and their actions, automated action 
labeling can speedup video matching and retrieval. 

(ii) Video Surveillance: In the context of smart video surveillance, robust action 
recognition constitutes an essential capability which can improve upon current manual in­
spection processes. Although video surveillance systems are already in use, videos recorded 
by these surveillance systems are usually stored in the form of recording for manual in­
spections later on. This post-processing behavior loses an important benefit as an active 
real-time warning system. Action recognition systems which are both robust and efficient 
will likely have a great impact on the transition of video surveillance from a forensic tools 
that are used after the fact to active crime prevention systems. 

(iii) Human Computer Interface: Action recognition can prove an important ex­
tension to existing speech-based control systems within human-computer interfaces. Ac­
tion recognition provides better detailed visual cues through action and gesture recognition 
as well as facial action classification. Robust methods for recognizing human motion pat­
terns are sources of providing automatic sign-language translation between agents and 
signaling specific instructions in high-noise environments. An example is KidsRoom [23], 
an environment able to interpret and react to specific actions of a group of children in a 
closed space. A similar application is proposed in a system called smart classroom, where 
the actions performed by a teacher are recognized to allow automatic camera motion and 
a virtual mouse. Similarly, facial actions have been recently explored as a tool to enhance 
HeI (human computer interface) to analyze the affective behavior of psychiatric patients 
[24]. 

(iv) Analysis of sports videos: The analysis of sport videos is another useful 
application of automated action recognition. An example is the video summarization in 
which the classification of video segments between play and break intervals is suggested to 
summarize the video, by taking out the breaks. Soccer games are also analyzed, in which 
text and the players trajectories are used to build a system aimed at helping coaches in 
tactical analysis. In a similar system, six actions of a cricket umpire are analyzed using 
an appearance based method similar to eigenspaces (commonly used in face recognition) 
whereas the usage of local motion analysis is employed to identify different swimming 
styles. 

(v) Medical Applications: Most recently, applicability of action is proposed in var­
ious applications of medical science [25]. For example, in the medical area, human motion 
analysis can aid diagnosis of motor problems by comparing patient motion to normality 
patterns. It can be done using analysis of action trajectories and their comparison. An­
other possible medical application is to provide remote assistance to elderly people such 
as fall detection. Automated aged care support is beneficial for old houses to monitor 
their residents in best possible way. Action detection and recognition can help generating 
alarm in situations when patient or the old house residents are unable to inform to fall or 
inactive situation. 

1.1.4 Action Recognition Research Datasets 

In this research work , we have used almost all publicly available action datasets. The 
use of publicly available datasets allows for the comparison of different approaches and 
gives insight into the inabilities of respective methods. These action data sets are well­
known in action recognition community and vary in terms of complexity, type of capturing 
environment and camera setups. The approaches proposed in this thesis are tested for 
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these datasets and compared with state-of-the art research work. We discuss the most 
widely used sets. 

(i) Weizmann human action dataset [26] : The human action dataset recorded 
at the Weizmann institute contains 10 actions (walk, run, jump, gallop sideways, bend, 
one-hand wave, two-hands wave, jump in place, jumping jack and skip), each performed 
by 10 persons. The backgrounds are static and foreground silhouettes are included in the 
dataset. The camera viewpoint is static. In addition to this dataset, two separate sets 
of sequences were recorded for robustness evaluation which include walking movements 
viewed from different angles. The second set shows fronto-parallel walking actions with 
slight variations (carrying objects, different clothing, different styles). This dataset is 
captured in controlled environments and now considered as a primitive but widely used 
benchmark action recognition dataset. Silhouettes and volumetric voxel representations 
are part of the dataset. 

(ii) KTH human motion dataset [27] : The KTH human motion dataset contains 
six actions (walking, jogging, running, boxing, hand waving and hand clapping), performed 
by 25 different actors. Four different scenarios are used: outdoors, outdoors with zooming, 
outdoors with different clothing and indoors. There is considerable variation in the per­
formance and duration, and somewhat in the viewpoint. The backgrounds are relatively 
static. Apart from the zooming scenario, there is only slight camera movement. This is 
comparatively large dataset and used by the majority of the proposed action recognition 
approaches as benchmark. 

(iii) INRIA XMAS multi-view dataset [28] : IXMAS dataset is the widely recog­
nized multiple view action dataset used by the majority of view-invariant action recognition 
approaches. This dataset contains actions captured from five viewpoints. A total of 11 
persons perform 14 actions (check watch, cross arms, scratch head, sit down, get up, turn 
around, walk, wave, punch, kick, point, pick up, throw over head and throw from bot­
tom up). The actions are performed in an arbitrary direction with regard to the camera 
setup. The camera views are fixed, with a static background and illumination settings. 
Silhouettes and volumetric voxel representations are part of the dataset. 

(iv) The UCF sports action dataset [29] : This dataset contains 150 sequences 
of sport motions (diving, golf swinging, kicking, weightlifting, horseback riding, running, 
skating, swinging a baseball bat and walking). Bounding boxes of the human figures are 
provided with the dataset. For most action classes, there is considerable variation in 
action performance, human appearance, camera movement, viewpoint, illumination and 
background. 

(v) Hollywood human action dataset [30]: The Hollywood human action dataset 
contains eight actions (answer phone, get out of car, handshake, hug, kiss, sit down, 
sit up and stand up), extracted from movies and performed by a variety of actors. A 
second version of the dataset includes four additional actions (drive car, eat, fight, run) 
and an increased number of samples for each class. One training set is automatically 
annotated using scripts of the movies, another is manually labeled. There is a huge 
variety of performance of the actions, both spatially and temporally. Occlusions, camera 
movements and dynamic backgrounds make this dataset challenging. Most of the samples 
are at the scale of the upper-body but some show the entire body or a close-up of the face. 

(vi) WVU Multiview Action Dataset [31]: The dataset is collected as part of 
the research work on real-time human action recognition in a camera network at West 
Virginia University, USA. The multi-camera network system consists of 8 cameras that 
provide completely overlapping coverage of a rectangular region R (about 50 x 50 feet) 
from different viewing directions. It contained 11 actions, each performed by 10 actors 
three times and captured from five different views. These actions include nodding head, 
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clapping, waving 1 hand, waving 2 hands, punching, jogging, jumping jack, kicking, pick­
ing, throwing and bowling. This dataset is relatively new but has full potential to be used 
for testing of multi-view action recognition performance. 

1.2 Challenges and Objectives 

Visual recognition of human actions constitutes one of the most challenging problems 
in computer vision. Over the years, several techniques have been developed, yet it is 
widely recognized that effective solutions are needed to be proposed and investigated. It 
is due to the nature of problem that combines the unpredictable human behavior, complex 
human motion dynamics, strong variations in camera environment especially viewpoint, 
occlusion and noise, presence of anthropometric differences and uncertainty associated 
with computational vision. It is now understood that human body has no less than 244 
dof (degree of freedom) and therefore, modeling this non-rigid dynamics is extremely 
difficult task [63]. Anthropometry [64] is another important factor as action dynamics is 
effected due to changes in ethnicity, class, gender, culture and style, circumstances and 
choice. These immense challenges make action recognition a daunting vision problem 
worth consideration of extensive research. 

The gigantic sum of challenges drive us to find solutions. However, it is more beneficial 
to short-list and emphasis certain important aspects to thoroughly investigate a problem. 
Therefore, we select two important factors effecting action recognition performance for 
investigation in this thesis. These important factors include: (i) Viewpoint Variations and 
(ii) Contextual Environment. 

Viewpoint: Machine vision is greatly dependent on the camera viewpoint. It is due 
to the fact that different viewpoints of the same action result in different motion pat­
terns and scene projections and the same action may look quite different when observed 
from different viewpoints. Therefore, to make practical use of action recognition, it is 
inappropriate to place restrictions on the possible viewpoint of the camera which makes 
view-invariant action recognition a quite challenging problem. Except in some specific 
application, it is unreasonable to assume constant camera viewpoint. Unfortunately, ma­
jority of action recognition approaches are dependent on camera viewpoint and restricted 
to single viewpoint and this daunting problem deserves extensive investigation. The prob­
lem of view-invariance is thoroughly investigated in this thesis and different algorithm 
have been proposed to achieve view-invariance in action recognition. 

Contextual Environment: Contextual information is important for interpreting hu­
man actions especially when actions exhibit interactive relationship with their context. A 
broad classification of these environments is: (i) controlled environment, (ii) uncontrolled 
environment and (iii) exceptional environment. The earlier work on action recognition 
has been done considering a controlled contextual environment and action recognition re­
search is performed on action datasets capture in some specific environment. The recent 
trend is to deal uncontrolled environment like YouTube video. Another challenge is to tar­
get most challenging contextual environments like action recognition in night vision video 
sequences. This thesis deals action recognition in all three kind of environments which 
include controlled, uncontrolled environments and a challenging case study of nighttime 
action recognition. 

1.3 Motivations 

Our interests and desired benefits boost our confidence and develop our motivations. The 
motive behind the research work in this thesis is based on the very artifact of interest to 
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work and advantages of the related research work. The factors that motivated us for the 
exploration and research in the area of human action understanding as as follows: 

(1) Action recognition is very active research area in computer vision. Majority of 
low and mid-level vision problems have been solved by computer vision scientists and 
now computer vision is focusing on solving higher level vision problems. Visual action 
recognition is a high level computer vision problem that encapsulates the knowledge, 
scope, achievements and challenges by computer vision. On one hand, the solutions for 
action recognitions are based on low and mid-level vision solutions and on the other hand, 
it can help to achieve higher level computer vision goals. 

(2) An important personal drive for learning a new field is its usefulness and appli­
cability in solving real world problems. Automated action recognition is very rich in its 
application and useability. Action recognition has various important applications. These 
application areas include but not limited to human-computer interfaces, content based 
video indexing, video surveillance, robotics and medical science. The application areas 
are one of the most important motivational factors behind the research on action analysis, 
detection, understanding and recognition. In addition, various other application area are 
being sorted and suggested by computer vision researchers. 

(3) The challenges being faced by robust action recognition are also recognized by 
other areas of computer vision. In case, if we find the solutions for dealing with these 
challenges and problems, other related fields of computer area can get benefit from it. 
The major problems of handling noise, occlusion, temporal variations, feature extraction, 
robust matching, avoiding tracking, intra-class variation handling and accurate classi­
fications methods are universally recognized by computer vision, image processing and 
machine learning research communities. The similar challenges are faced by visual action 
recognition during the development of its solutions. Therefore, the research on action 
recognition is indirectly beneficial to other areas of computer vision and related scientific 
disciplines. 

(4) Over the last few years, several approaches have been devised to address automated 
recognition of human actions. These proposed approaches vary in their accuracy and 
complexity. Despite these solutions, various research gaps are rightly pointed out in our 
research which motivated us to work in this area. In this thesis, we tried to address 
these research gaps by proposing approaches and solutions that can handle these problem 
areas. The detailed discussion of these research gaps and our contribution to propose 
novel solutions would be described in the next section. However, these research gaps are 
related to unexplored or unfulfilled exploitation and utilization of important visual cues 
for automated recognition of human actions in video sequences. 

1.4 Contributions 

During this research work, we have found important research gaps in the area of visual 
action recognition and proposed novel solutions with far-reaching effects on development 
of the respective field. These research gaps and respective solution are the artifacts of this 
thesis. 

Important visual cues and their meaningful representations are of fundamental impor­
tance for visual recognition. We explore rich visual cues from geometrical relationships, 
spatia-temporal patterns and features, frequency domain signal analysis and contextual 
associations of actions to derive action representations for machine recognition. Similar 
to the physical world that is composed of rich structures and documents consist of a large 
number of units (such as characters, words, phrases, and sentences), images and videos can 
also be considered as a collection of elements (pixels, voxels, edges, patches, etc.). Salient 
visual cues expressed into these elements help in development of better representations. 
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We have used these visual cues to develop meaningful representations for better human 
action understanding. Some of the contributions being claimed in this research work are 
as follows: 

1.4.1 Temporal Order Invariance for view-invariant action recognition 
(Chapter 3) 

Action is known as a spatio-temporal phenomenon consisting of various local variations 
and patterns (e.g. spatial and temporal gradients). These local space-time patterns can 
be characterized by defining space-time interest points and action elements can be repre­
sented through these interest points. A pioneer work in this direction is spatio-temporal 
corners [17J. Later on, similar other features are found with improved performance for 
action recognition. These features are characterized by their computational simplicity, ro­
bustness to occlusion, elimination of low level object detection and tracking, and existence 
of scalable matching schemes. After feature extraction from action sequences, represen­
tation framework like bag of visual words [115, 123, 30J is utilized for action matching. 
While similarity / dissimlarity of these interest points is sought during matching same or 
different actions, their mutual relationships like space time organization and ordering is 
ignored. 

In addition, these features lack view-invariance and therefore related action recognition 
approaches are not view-invariant. Most recently, some techniques [51, 52J have been 
developed to increase exploitation of spatio-temporal features for achieving view-invariance 
but these approaches are based on the improvement of matching framework like classifier 
fusion [51J or extended vocabularies rather than a global view-invariant characteristic [52J. 

To address these limitations and complications, we propose a novel spatio-temporal 
action matching framework based on discriminative combination of 3D features, named 
spatio-temporal ordered packets (STOPs), that combines space-time features along with 
their geometric ordering information into spatio-temporal volumes avoiding complex or­
dering constraints. Packaging features into volumes ensures that discriminative power of 
matching is enhanced as whole packets are matched across videos instead of individual 
features. At the same time matching is made much robust by developing simple matching 
criteria that take into consideration spatio-temporal order of features within each volu­
metric packet. 

Considering the fact, that an 'action' is essentially a spatio-temporal construct, ignor­
ing temporal order in which spatio-temporal features occur can affect matching perfor­
mance drastically, especially where various actions have many overlapping low level fea­
tures. Therefore, we focus on global analysis of human actions and seek a view-invariant 
representation. We based our approach on the following conjecture: "The temporal order 
of actions elements within an action is invariant to viewpoint variations". We define ac­
tion elements in terms of local spatio-temporal interest points and define spatio-temporal 
order preservation constraint in matching framework. Spatio-temporal cuboid features 
[18J are taken as space-time interest points as these features are based on maximization of 
discrimination between behaviors. For each action class, we define a feature fusion table. 
A feature fusion table is a defined data structure to encapsulate multiple training exam­
ples against multiple viewpoints for a single action class. It is achieved through features 
fusion based on principal component analysis. A matching score is then calculated based 
on global temporal order constraint and number of common features. Finally, the action 
label of class with maximum value of matching score is assigned to the query action. 

Related pUblications: 

• On Temporal Order Invariance for view-invariant action matching, IEEE Transaction 
on Circuits and Systems for Video Technology, vol. 22, 2012. 
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1.4.2 Tracking-free and Training-free solutions for View-invariant Ac­
tion Recognition (Chapter 4) 

Multiple view geometry has alleviated many hard problems in computer vision [32, 33, 34J. 
Estimation of essential matrix and then fundamental matrix from stereo image pair goes 
back to Longuet-Higgins and eight point algorithm [35J. Therefore, inspired from multi­
view geometry, a successful series of incremental work related view invariant action recog­
nition is addressed in [36-44J which is based on the consideration of action point trajec­
tories by a stationary camera and exploitation of epipolar geometry between trajectories 
of different views of the same action. One of the major benefit of these geometrical based 
methods is that such methods do not need any training. The basic idea originated with 
the use of affine epipolar geometry constraints in a series of work [36, 38J which showed 
that the maxima in space-time curvature of a 3D trajectory are persevered in 2D image 
trajectories. 

The main drawback of these approaches is the assumption of affine cameras. For 
projective camera model, trajectories of 13 anatomical landmarks are matched by [42J 
under viewpoint, anthropometric and temporal transforms. Another related work is the 
use of the point triplets with homography, rank constraint [40J and fundamental ratios [41J 
which consider that the motion of an articulated body can be decomposed into rigid motion 
of planes defined by triplet of body points. The main drawback of the all above approaches 
is the decoupling of tracking and matching. It is assumed that tracking of the landmark 
points on human body has been performed and trajectories are available. Despite its 
success, it is hard to achieve as basic assumption is very strong. Due to occlusion and noise, 
the detection of landmark points is not always robust resulting in manual interventions. As 
a result detection of landmark points and their tracking is performed manually and epipolar 
geometry rank constraints are applied on manually obtained trajectories by almost all the 
representative geometrical based methods [36-44J which lack automation and to make 
practical use of geometrical solutions, this problem is needed to be addressed. 

Recently, [45J has used optical flow based dense correspondences for calculation of static 
fundamental matrix and showed that it is effective than a sparse set of correspondences. 
We try to exploit this estimation to solve view invariant recognition of actions in video 
sequences without tracking. We intend to tackle these drawbacks by proposing a new ap­
proach, AVITAR (Achieving View-invariant tracking-free Action Recognition). We explore 
how dense optical flow can be employed to compensate strong assumptions of landmark 
point extraction and tracking in epipolar geometry based view invariance action recogni­
tion. Taking into consideration that human action is a spatio-temporal phenomenon, we 
apply constraints on optical flow to be spatio-temporally consistent. Spatio-temporally 
consistent optical flow helps us in devising spatio-temporally consistent flow fundamental 
matrix and by defining rank constraints on flow fundamental matrix we are able to derive 
a dissimilarity score for action sequences. 

We proceed incrementally by defining two variants of our approach: (1) We extract 
actor body silhouettes from original video sequences and calculate spatio-temporally con­
sistent optical flow between respective frames of two videos and then fit epipolar geometry. 
As fundamental matrix remains same for static scenes, we can calculate action similarity 
score between two actions bp-ing performed in time domain, (2) In addition, we observed 
that silhouette extraction is not robust in all circumstances especially in case of noise and 
occlusion. Therefore, we remove pre-processing step of silhouette extraction theocratically 
by maximizing the exploitation of epipolar geometry. We take action representation in 
static camera environment as a case of dynamic scene where background is stationary 
and actor is dynamic. As scene is not entirely static, we get inspiration from structure 
and motion recovery for scenes consisting of both static and dynamic parts, also known 
as multi-body segmentation from perspective views without knowing which measurement 
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belongs to which part of the scene. As we consider only static background and dynamic 
actor, it is simplified to two-body fundamental matrix, also known as segmentation matrix 
[46]. It has already been shown [47] that such matrix can linearly be computed from im­
age measurements after embedding all the image points in high dimensional space. Based 
on these investigations, we derive a new similarity measure for matching actions across 
different views, without prior segmentation of actors. 

Related publications: 

• On dynamic view geometry for view-invariant action matching, in Proc. IEEE 
CVPR 2011. 

• A VITAR: Achieving View-invariant Tracking-free Action Recognition, submitted to 
IEEE Transaction on Image Processing, 2012. 

1.4.3 Fast Frequency-domain View-invariant Action Recognition (Chap­
ter 5) 

One of the most successful approaches is the application of space-time pattern templates. 
Earlier work includes temporal matching of periodicity information from a set of optical 
flow frames by [48] and highly cited [13] which presents a two component temporal template 
of motion energy image (MEl) and motion history image (MHI). These representations 
encode, respectively, where motion occurred and the history of occurrences. Another 
work presents actions as space-time shapes [26] induced by the silhouettes in the space­
time volume. It considers space-time saliency utilizing properties of the solution to the 
Poisson equation. A similar work [49] enforces space-time consistency between template 
and the target employing a rank based constraint. However, majority of these template­
based approaches suffer from high computational overhead. 

Recently, the utilization of correlation filters is investigated for recognizing action in­
stances with promising results. The representative work in this regard is the develop­
ment of Action MACH [29] that has generalized traditional Maximum Average Corre­
lation Height (MACH) filter to 3D MACH by including temporal dimension. However, 
the major gain is in terms of low computational cost as response of the filter can be 
analyzed in frequency domain. Despite its success, some researchers [50] have indicated 
inherent discrepancies in MACH filters and questioned their effective utilization for action 
recognition. One of the weaknesses of MACH filters is their ineffectiveness to encapsulate 
inter-class variability. Therefore, these filters are trained only for one class at a time and 
separate MACH filter is needed for every class. Secondly, MACH filters overemphasize 
average training sample, a biased treatment of low frequency components and behave like 
average filter and may loose finer details of the training set. They emphasize high energy 
(low frequency) components and attenuate low energy (high frequency) components of the 
training set leading to poor intra-class discrimination. In addition, as action datasets are 
normally misaligned in space and time, they create problems in learning and testing as 
synthesized filters are not shift-invariant. 

We address above mentioned weaknesses and propose an extended spatio-temporal 
distance classifier correlation filter (Action ST-DCCF filter) for action recognition. Our 
approach offers following advantages: (i) A single Action ST-DCCF filter successfully 
captures inter-class variability and avoids overemphasize on average training sample by 
empirically setting contributions oflow as well as high frequency information. (ii) Secondly, 
it presents a different interpretation of correlation filters as method of applying a spatio­
temporal transformation to the data and transformation matrix is restricted to being 
Toeplitz ensuring shift invariance. It measures similarity between an ideal transformed 
reference and testing action using a shift-invariant mean square distance measure handling 
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misalignments and (iii) Another benefit is that resulting decision boundaries are quadratic 
which are more 'selective' for choosing feature space portions for assigning to various 
classes and utilize entire correlation plane rather than emphasizing only single point like 
correlation peak. These advantages of Action ST-DCCF filter can potentially improve 
action recognition performance. 

Related pUblications: 

• Action recognition using spatio-temporal distance classifier correlation filters, In 
Proc. DICTA 2011. 

1.4.4 Contextual Action Recognition in Nighttime Videos (Chapter 6) 

The need for understanding actions in context is discussed by different researchers. Scene 
context is used for event recognition by [54] but it only applies to static images. Recogniz­
ing actions in context is discussed by [53] which is formulated on bag-of-features framework 
and scene-action SVM- based classifier. It is focused on annotated actions in movies and 
uses script mining for visual learning. A similar approach [55] captures generic object 
based context by detectors and their descriptors are used as input for supervised learning. 
More recently, modeling of scene and object context is discussed by [56] for Hollywood2 
action datatset. All above approaches target action recognition in high-resolution action 
videos in movies. One typical benefit available to these approaches is the ease of finding 
visual interest points and detectors related to actors and their context. Contextual clues 
become even more crucial when videos are captured in unfavorable conditions like extreme 
low light nighttime scenarios. These conditions encourage the use of multi-senor imagery 
and context enhancement. 

None of the above approaches discuss nighttime visual context and recognition of 
actions at nightime. Mostly recently, human action activity recognition is discussed in [57, 
58] which focus recognition in infra-red spectrum. However, these approaches ignore action 
contexts which is not properly captured by infra-red sensors and can not be categorized 
as contextual action recognition approaches. 

We argue that contextual action recognition is not possible using single sensor platform 
due to the limitations of individual sensor to grab all available visual information about 
the scene. This situation motivates the use of multiple sensors often of complementary 
nature. 

We explore the importance of contextual knowledge for recognizing human actions 
in multi-sensor nighttime videos. Information fusion is utilized for encapsulating visual 
information about actions and their context. Space-time action information is contained 
using 3D fourier transform of fused action silhouette volume. In parallel, SIFT context 
images are extracted and fused using principal component analysis based feature fusion 
for each action class. Contextual dissimilarity is penalized by minimizing context SIFT 
flow energy. 

Related pUblications: 

• Contextual Action Recognition in Nighttime video sequences, In Proc. DICTA 2012 

1.4.5 Contextual Enhancement of Nighttime Videos (Chapter 6) 

We explore that robust action recognition in multi-sensor scenario is not possible without 
context enhancement of nighttime video sequence which involves multi-sensor color fusion 
of multi-sensor videos. 

The goal of video fusion is to create a single enhanced video sequence from comple­
mentary video inputs that is more suitable for the purpose of human visual perception, 
object detection and target recognition. Over the years, several image fusion techniques 

15 



are developed which vary in their complexity, robustness and quality. One major trend 
in image fusion research is to sacrifice complexity to gain quality. However, opposed to 
images, complexity criterion has more significance in video domain which is intended for 
real time use. Therefore, video applications do not encourage algorithmic complexity and 
require simple and efficient information fusion. 

Color is another important requirement in addition to fusion but colorization of fused 
grayscale imagery is a daunting task. Most recently, various manual and semi-automatic 
colorization techniques have been reported in the literature to solve this difficulty. A 
highly cited work is colorization based on optimization [60] which needs user defined color 
scribbling. It proves to be an attractive method which requires neither precise image 
segmentation, nor accurate region tracking based on the idea that neighboring pixels in 
space-time with similar intensities should have similar colors. However, one shortcoming 
of this method lies in the requirement that input images are annotated with user defined 
color scribbles and thus lacks full automation. Another popular work is colorization based 
on color transfer [62] using statistical analysis to impose one images color characteristics 
to another image. It uses a de-correlated color space fCt/3 and swatches for color transfer 
from target color image. This technique has the same drawback that it requires manual 
selection of a color target image and swatches. In addition, color space conversions and 
swatches make additional burden in terms of complexity. 

Despite these shortcomings, above approaches have transformed the cumbersome work 
of manual colorization into semi-automatic colorization. Due to their successful application 
in colorization and color correction, these techniques are extended for colorizing night 
vision imagery [181] presenting a software based approach to night vision offering a cheaper 
and reliable solution. Therefore, it is highly desirable that fully automated colorization 
should be introduced to facilitate real-time video processing for night vision applications. 

The quality assessment of color image fusion comes in the category of blind quality 
evaluation methods because of the absence of any reference image with optimal fusion and 
colors. Various blind objective quality measures for grayscale image fusion are available 
in the literature. To the best of our knowledge no appropriate objective quality measure 
exists to address diversity of color image fusion frameworks in night vision applications. 

We propose a software based approach which overcomes above mentioned limitations 
by simultaneously fusing information from forward looking infra-red and low light visi­
ble sensors and introducing automatic colorization for context enhancement at nighttime. 
Firstly, corresponding frames from complementary video streams are fused and pseudo­
colorized using RG B color channel integration. Then, efficient color morphing technique 
is used in RGB color space avoiding any color space conversion. Automation is intro­
duced by integrating source color image selection with contextual features and colorfulness 
characteristics. A night vision system named SCENT is developed based on proposed 
approach. Quality evaluation shows that our approach not only gives promising fusion 
and color quality but also proves to be the efficient in terms of execution time. 

We propose a novel color image fusion quality measure, CFOI (Color Fusion Objective 
Index) which encapsulates the powers of color image quality, image colorfulness and fused 
information index. In addition, it evaluates the gradient structure preservation in color 
fused image. 

Related publications: 

• Automating video fusion and colorization for context enhancement at nighttime, 
Information Fusion, 2012 . 

• Automated multi-sensor color video fusion for nighttime video surveillance, In Proc. 
IEEE ISCC 2010 
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• A novel color image fusion QoS measure for multi-sensor night vision applications. 
In Proc. IEEE ISCC 2010 

• SCARF: semi-automatic colorization and reliable image fusion, In Proc. DICTA 
2010. 

1.5 Organization of the Thesis 

The organization of this thesis is based on the above discussed contributions. All proposed 
approaches have been arranged according to their uniqueness in different chapter. Every 
chapter addresses a new visual cue and support how it can help in providing a better 
solution. The detail of organizational arrangement of chapters is illustrated in figure 1.1. 

VISual Cues for 
Vlew+lnvanant 

Action Recognition 

ConcluSion and 

Future Work 

Figure 1.1 : Organi zat ional Chart showing the flow of research work in this thes is. 

Chapter 2 presents detailed de crip t ion of li terat ure survey related to t he research work 
in this the is. Section 2.1 describe space-time feature based approaches for view- ill vari ant 
action recognition. Section 2.2 presents geometry based action recogniti on and gives detail 
about epipolar geometry con t raint . Section 2.3 discusses act ion recogni ti on approaches 
based on frequency dOJl1a in correlat ion filt eri ng and fin ally techniques about cOlltextu a l 
act ion recogni t ion and context enhancement are mentiolled in sect ion 2.4. 

Chapter 3 presents importance of order infor mation in act ion representat ion. It pro­
poses 3D STOPs (spatio-temporal ordered packets) for improved act ion recogni t ion and 
discusses temporal order invariance for view-invariant act ion I' cognition. 

Chapter 4 discusses multiple-view and dynamic scene geomet ry and proposes solu t ions 
for view-invari ant act ion recognition based on rank constra ints. We discuss how we deri ve 
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action matching scores across different viewpoint by defining rank constraints on flow 
fundamental matrices in static and dynamic two-body scenarios. 

Chapter 5 discusses correlation filters and frequency domain filtering and proposed 
spatio-temporal distance classifier correlation filters. The design and performance of these 
spatio-temporal action filters is presented in detail. It also discusses view clustering for 
achieving view-invariant action recognition. 

Chapter 6 discusses the importance of context for action recognition in challenging 
scenarios such as night. It proposes contextual action recognition at nighttime based on 
contextual enhancement of multi-sensor visual information. The context enhancement is 
proposed based on color video fusion of infra-red and CCD video sequences. In addition, 
quantitative quality evaluation of such techniques is also proposed in this chapter. 

All the chapters present and discuss respective experimental setup, results and conclu­
sion. However, to sum up the detailed results obtained in this thesis, we present conclusions 
of thorough investigation of all the proposed techniques for action recognition in chapter 
7. In addition, we discuss future research directions for the continuity of this research 
work. 

1.6 Conclusions 

In this chapter, we introduced our research problem, background introduction, its signifi­
cance and applications, our motivation to work on this problem and organizational layout 
of this thesis. In the next chapter, we would present literature survey about visual recog­
nition of human actions in detail and would classify and review previous approaches. In 
addition, we would provide a linkage of our research contributions towards the removal of 
the shortcomings present in previous approaches . 
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Chapter 2 

Visual Recognition of Human 
Actions: A Survey 

Research on vision based human action analysis and recognition is increasingly becoming 
the subject of attention in multiple disciplines such as praxeology [1, 7], psychology [65], 
cognitive neuroscience [66, 67] and computer vision [68, 69]. Praxeology presents action 
as an important tool for rational investigation of human decision-making while cognitive 
science presents action as an atomic unit of human activity to understand cognition. In a 
similar manner, computer vision emphasizes the analysis of human actions to achieve its 
high level visual perception. It implies that visual perception of human action is a critical 
function which is meant to interpret actor's intentions and purpose of his behavior while 
simultaneously dealing with the complex nature of non-rigid action dynamics, anthropo­
metric variations and other related cognitive challenges. The recognition of movement 
can be performed at various levels of abstraction. Different taxonomies have been pro­
posed based on full or partial body movements, view dependent or view invariant action 
representation or modeling and recognition frameworks. 

Earlier work on human action recognition goes back to framework of [73, 74] that used 
a simple representation of stick figures to analyze different poses of an actor. It is followed 
by a series of work studying different frameworks to analyze, understand and recognize 
human actions. Until now, several approaches have been proposed on this subject and 
it is extremely difficult to mention all of them individually. There are several existing 
surveys within the area of vision based human motion analysis and recognition. Recent 
surveys include [12, 69, 75, 77, 78, 79,80,81] which review action recognition approaches 
on different bases. This thesis explores important visual cues that can play a primal 
role in recognizing actions in different challenging circumstances. Rich visual cues from 
geometrical relationships, spatio-temporal patterns and features, frequency domain signal 
analysis and contextual associations of actions are used to derive action representations 
for machine recognition. View dependency of action representations as a core problem is 
considered, explored and addressed in this work. In this chapter, we analyze the recent 
approaches in computer vision that are closely related to our work. These approaches are 
categorized based on the action modeling framework. These frameworks include (i) spatio­
temporal feature based framework (Chapter 3), (ii) geometrical modeling (Chapter 4), (iii) 
frequency domain filtering (Chapter 5) and (iv) contextual action recognition (Chapter 
6). 
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2.1 Feature based Approaches 

The use of local spatio-temporal features and their ordering constraint is an important 
visual cue explored in this thesis. This section reviews approaches that utilize local spatio­
temporal features. 

Local spatio-temporal features are fast becoming representation of choice for action 
recognition due to their computational simplicity, robustness to occlusion and minor view­
point changes, elimination of low level object detection and tracking, and existence of 
scalable matching schemes. These space time interest points are discriminative as they 
are computed in a way that they capture not only the pixel intensity information but 
also the motion information (e.g. statistics of optical flow) in the vicinity of the interest 
points. After feature extraction from action sequences, representation framework like bag 
of visual words [115, 123, 30J is utilized for action matching. While similarity/dissimlarity 
of these interest points is sought during matching same or different actions, their mutual 
relationships like space-time organization and ordering is ignored. 

Various space-time feature detectors [18, 17, 91, 133, 92J and descriptors [135, 136, 
53, 96, 133J have been proposed in the past few years. Feature detectors usually select 
spatio-temporal locations and scales in video by maximizing specific saliency functions. 
The detectors usually differ in the type and the sparsity of selected points. Feature de­
scriptors capture shape and motion in the neighborhoods of selected points using image 
measurements such as spatial or spatio-temporal image gradients and optical flow. Laptev 
[17J evaluated the repeatability of space-time interest points as well as the associated ac­
curacy of action recognition under changes in spatial and temporal video resolution as 
well as under camera motion. Similarly, Willems et al. [133J evaluated repeatability of 
detected features under scale changes, in-plane rotations, video compression and camera 
motion. Local space-time descriptors were evaluated by Laptev et al. [136], where the 
comparison included families of higher-order derivatives (local jets), image gradients and 
optical flow. Dollar et al. [18J compared local descriptors in terms of image brightness, 
gradient and optical flow. Scovanner et al. [96J evaluated the 3D-SIFT descriptor and 
its two-dimensional variants. Jhuang et al. [91J evaluated local descriptors in terms of 
the magnitude and orientation of space-time gradients as well as optical flow. KIser et al. 
[135J compared space-time HOG descriptor with HOG and HOF descriptors [53J. Willems 
et al. [133J evaluated the extended SURF descriptor. 

Space-time feature detectors: The Harris3D detector was proposed by Laptev 
and Lindeberg in [17], as a space-time extension of the Harris detector [9J. The authors 
compute a spatio-temporal second-moment matrix at each video point using independent 
spatial and temporal scale values. They proposed an optional mechanism for spatio­
temporal scale selection. The Cuboid detector is based on temporal Gabor filters and was 
proposed by Dollar et al. [6J and has become popular feature detector over the years. The 
Hessian detector was proposed by Williams et al. [26J as a spatio-temporal extension of 
the Hessian saliency measure used in [2, 18J for blob detection in images. The detector 
measures the saliency with the determinant of the 3D Hessian matrix. The position and 
scale of the interest points are simultaneously localized without any iterative procedure. 
In order to speed up the detector, the authors used approximative box-filter operations 
on an integral video structure. Each octave is divided into 5 scales, with a ratio between 
subsequent scales in the range 1.2-1.5 for the inner 3 scales. The determinant of the 
Hessian is computed over several octaves of both the spatial and temporal scales. 

Space-time feature descriptors: The HOG/HOF descriptors were introduced by 
Laptev et al. in [136J. To characterize local motion and appearance, the authors compute 
histograms of spatial gradients and optic flow accumulated in space-time neighborhoods 
of detected interest points. Normalized histograms are concatenated into HOG, HOF as 
well as HOG/HOF descriptor vectors and are similar in spirit to the well known SIFT 
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descriptor. The HOG3D descriptor was proposed by KIser et al. [135]. It is based on 
histograms of 3D gradient orientations and can be seen as an extension of the popular 
SIFT descriptor [100] to video sequences. Gradients are computed using an integral video 
representation. Regular polyhedrons are used to uniformly quantize the orientation of 
spatio-temporal gradients. Williams et al. [133] proposed the extended SURF (ESURF) 
descriptor which extends the image SURF descriptor [180] to videos. Dollar et al. [18] 
proposed the Cuboid descriptor along with the Cuboid detector. Principal component 
analysis (PCA) is used to project the feature vector to a lower dimensional space. 

Considering the fact that an 'action' is essentially a spatio-temporal construct, ignoring 
temporal order in which spatio-temporal features occur, can affect matching performance 
drastically, especially where various actions have many overlapping low level features. In 
addition, the discriminative power of spatial relationships between these low level features 
play an important role when dealing with actions that closely mimic each other e.g., 
jogging and running. To overcome these shortcomings several competing approaches have 
been proposed recently. 

For instance, naive ordering is imposed by dividing the space-time volume of a video 
into space-time bins much like spatial pyramid matching used for images [108, 53, 109, 123]. 
However, as opposed to images, content of a video can vary drastically depending on 
how input video is segmented (along temporal scale), and location and speed of action, 
thus making such rigid binning scheme hard to generalize. Binning neighborhoods of 
interest points at various scales for descriptor computation is another approach [126, 127]. 
However, this approach also suffers from the rigidity imposed by fixed scales at which 
computations are performed. Schemes for large scale image retrieval [124, 125] present 
similar inspiring ideas like bundling spatial features and geometric verification based on 
area ratio of triangle generated by two visual words. Again, these approaches are restricted 
to spatial domain as their application goal is entirely different from action recognition 
which focus more on temporal ordering. In addition, triangle based spatial ordering is 
difficult to visualize in video domain. 

Recently, Kovashka et al.[110] proposed an feature centric approach where each feature 
maintains orientation and location information of neighboring features at various scales in 
spirit of shape context feature [112]. Scales are computed in such a way that makes the 
local groupings of feature discriminative in terms of action specific distance metrics. This 
approach mitigates issues of feature discrimination and spatio-temporal ordering to some 
extent, however, we believe feature groups should be a construct grounded in or associated 
with the object (or space-time segment) inducing the action as oppose to isolated feature 
points. This will have the following benefits: 

• No need to search across scales for locating discriminative groupings. They will 
always be associated with the space-time segment that implicitly captures the shape 
and motion of the object performing an action 

• Ordering will have natural explanation in terms of subunits of an action. For in­
stance, hand going up and down for hand waving action 

• A multi-feature representation that fuses space-time regions with local interest points. 

Part based action representations: Unit formation is fundamental to visual per­
ception. Part based action representations present unit formation of actions. These ap­
proaches can be categorized into two types: first type utilizes visual appearance of parts 
and geometrical constraints. In contrast, the other type relaxes structural constraints and 
represents action video sequence as a set of independent features. The latter approach 
is popular and widely used due to its computational simplicity. It represents action for­
mation in terms of spatio-temporal features [17] that are marked by their elimination of 
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tracking, robustness to occlusion and scalable matching like bag-of features framework. 
The major weakness inherent in these approaches is due to the ignorance of mutual rela­
tionships of features like space time organization and temporal ordering in bag-of-features 
framework. It led to the study of temporal structure of actions. 

Temporal structures of actions: The importance of temporal order is investigated 
by different researchers. Temporal composition of different motion segments for recog­
nizing human activities is studied by [115]. It adopts an action representation based 
on spatio-temporal interest points (STIPs) [17] while video sequence is decomposed into 
temporal segments of various length. Discriminative subsequence mining is proposed in 
[138] to find optimal discriminative subsequence patterns represented by spatio-temporal 
cuboid detectors [18]. Finally, visual words arranged into temporal bins are presented for 
classification. Short subsequences called action snippets of 1-7 frames long are proposed 
in [131] to alleviate temporal segmentation of actions using form and motion features. 
Most recently, ACTOM sequence modeling is proposed by [141] that represents temporal 
structure of actions as a sequence of histogram of actom-anchors visual features using 
spatio-temporal interest points (STIPs) [13]. However, these actom are manually anno­
tated at training level. 

Above mentioned approaches utilize temporal order information for improved action 
recognition performance. Therefore, their objective is to overcome the weaknesses of bag­
of-features framework like spatial bag-of-word [139]. Unfortunately, the success of these 
approaches is marginal as these approaches are not view-invariant. However, our objective 
is different from above approaches as we explore global temporal order within human 
actions to seek view-invariant action recognition which has not been investigated by any 
previous work. Subsequently, we propose a novel notion of temporal order invariance for 
scalable framework for view-invariant action recognition. 

We focus on the global analysis of human actions and seek a view-invariant repre­
sentation. We based our approach on the following conjecture: "The temporal order 
of actions units within an action is invariant to viewpoint variations". We define ac­
tion units in terms of local action dynamics and motion variations encapsulated by local 
spatio-temporal interest points and define spatiotemporal order preservation constraint in 
matching framework. Spatiotemporal cuboid features [18] are taken as space-time interest 
points as these features are based on maximization of discrimination between behaviors. 
For each action class, we define a feature fusion table. A matching score is then calculated 
based on global temporal order constraint and number of matching features. Finally, the 
action label of cla..'>s with maximum value of matching score is assigned to the query action. 

2.2 Geometry based Approaches 

Another visual cue that has been explored in this work is geometrical coherence and mod­
eling for view invariant action recognition. In this section, we only focus on geometrical 
action recognition approaches in literature. 

Multiple View Geometry and its Applications: Multiple view geometry has alle­
viated many hard problems in computer vision [32, 33, 34]. Estimation of essential matrix 
and then fundamental matrix from stereo image pair goes back to Longuet-Higgins and 
eight point algorithm [35]. The fundamental matrix is the algebraic form of the intrinsic 
geometry between two views. Within just a few years, applications of the fundamental ma­
trix were found in 3D scene reconstruction, stereo camera applications, image alignment, 
video synchronization. In [32], Hartley and Zissemman summarized the work related to 
the fundamental matrix between multiple views of the same static scene. Based on the 
significance of the fundamental matrix, researchers tried to extend its use to other types 
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of applications. By relaxing constraints on static camera, researchers explored new ways 
of geometric coherence. 

Avidan and Shashua [82] considered the case where objects can move freely along 
lines or conics in 3D and there is no constraint on the camera motion. In this case, the 
3D motion trajectories can be recovered from sequence of images. Similarly, constraints 
on the object motion along lines in 3D were introduced in [82] but allowed a scene to 
contain both stationary and moving objects. By recovering the camera motion, static and 
moving objects can be automatically segmented out for direct application to 3D scene 
reconstruction. By relaxing the constraint on the constant speed of moving objects and 
imposing planer motion constraint, [72] proposed a multi-view C-tensor similar to multi­
focol tensor. In [84] a case of moving stereo system is considered observing rigid objects 
that move arbitrary along plane. At each time instant the moving stereo system gives 
a 3D view of the scene. A tensor for matching 3D views of a scene is proposed that 
is analogous to the fundamental matrix between two views. Similarly, [85] describe a 
space time projection model for Galilean camera and propose a mapping function between 
the videos of two Galilean cameras when the scene is planer. It proposes a normalized 
linear algorithm for estimating the parameters of the fundamental matrix relating Galilean 
cameras. 

In recent years, inspired from multi-view geometry, a successful series of incremental 
work related view invariant action recognition is addressed in [36, 37, 38, 39, 40, 41, 42, 
43, 44] which is based on the consideration of action point trajectories by a stationary 
camera and exploitation of epipolar geometry between trajectories of different views of 
the same action. One of the major benefits of these geometrical based methods is that 
such methods do not need any training. The basic idea originated with the use of affine 
epipolar geometry constraint.s in a series of work [36, 38] which showed that the maxima 
in space-time curvature of a 3D trajectory are persevered in 2D image trajectories. 

View Invariance Action Recognition: The research on view-invariance action 
recognition now spans almost a decade and several representations have been sorted out. 
Major representations include trajectory based approaches [36, 37, 38, 39, 40, 41, 42, 43, 
44], spatio-temporal templates [28, 49], view invariant features [71] and the exploitation 
of space-time interest points [51, 52]. This increasing interest is due to the objective 
of achieving unconstrained action recognition intended to various applications like video 
surveillance, human computer interaction, video search and retrieval. It demands action 
recognition approaches to be stable to view changes to exploit their practical use. 

Action is known as a spatio-temporal phenomenon consisting of various local variations 
and patterns (e.g., spatial and temporal gradients). These local space-time patterns can 
be characterized by defining space-time interest points and action elements can be repre­
sented through these interest points. A pioneer work in this direction is spatio-temporal 
corners [17]. Later on similar other features [96, 18] are proposed with improved perfor­
mance for action recognition. These features are characterized by their computational 
simplicity, robustness to occlusion, elimination of low level object detection and tracking, 
and existence of scalable matching schemes. However, these features lack view-invariance 
and therefore related action recognition approaches are not view-invariant. An exception 
is the work of [71] that has proposed self-similarity matrices as view-invariant features 
that prove useful in matching actions across different views. 

In addition, some work has emerged with the aim of proposing a view-invariant match­
ing framework in which local space time features playa building role. An approach [51] 
based on local partitioning and hierarchical classification of the 3D Histogram of Oriented 
Gradients (HOG) descriptor to represent sequences of images into a data volume. Action 
classification is achieved through a hierarchy of classifiers. Another work [52] uses view 
knowledge transfer based on bipartite graph to model two view-dependent vocabularies 
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and apply bipartite graph partitioning to co-cluster two vocabularies into visual-word 
clusters called bilingual-words (Le., high-level features) to bridge the semantic gap across 
view-dependent vocabularies. This approach is based on bag-of-feature framework which 
has inherent property of its orderless formation. 

Coming back to geometrical methods that are more closer to our work, we find various 
interesting approaches. For stationary camera based view invariant action recognition sys­
tem, a series of work [36, 38] presents a view invariant action representation consisting of 
dynamic instants and intervals. Motion is represented by a sequence of dynamic instants 
where a dynamic instant is an instantaneous entity representing a significant change of 
any motion characteristic (Le., speed, direction, acceleration) and is detected by identi­
fying maxima in the spatio-temporal curvature. Then with affine camera model, a rank 
constraint is derived to match different trajectories generated by different or same actions. 
Dynamic time warping is used to synchronize trajectories with temporal variations. This 
work is able to match same actions from different viewpoints but use of manual trajectories 
and affine camera model limits its practical use. 

Recently, matching trajectories of anatomical landmarks using projective camera model 
is proposed by [43]. It uses rank constraint based matching score based on condition num­
ber of the observation matrix formed from 13 landmark points and shows robustness to 
viewpoint variations, anthropometric and temporal transforms. The main drawback is 
again the manual use of landmark detection and their trajectories. 

Invariant space trajectories (ISTs) are proposed in [37] with plane formed by five 
landmark points on human body. It models actions in terms of view-invariant canonical 
body poses and trajectories in 2D invariance space, leading to an effective way to represent 
and recognize human actions from a general viewpoint but the way of generating invariant 
space trajectories is not automated. 

The application of multiple view geometry of moving cameras is explored by [44] which 
forms rank constraint on 27 point correspondences based observation matrix. The subject 
of moving camera scenario is quite interesting but the basic framework also assumes that 
trajectories are available. 

The idea of point triplets is utilized by another series of work [40, 41] that states that 
motion of an articulated body can be decomposed into rigid motions of planes defined by 
triplets of body points. Using the fact that the homography induced by the motion of 
a triplet of body points in two identical pose transitions reduces to the special case of a 
homology, it uses the equality of two of its eigenvalues as a measure of the similarity of the 
pose transitions between two subjects, observed by different perspective cameras and from 
different viewpoints. A view-invariant matching framework utilizes fundamental ratios in 
[41] that ratio of 2 x 2 sub-matrix in fundamental matrix is invariant to view changes. 
These approaches can match two different views of an action, however they assume that 
tracking has already been performed and trajectories for point triplets are available which 
is a really strong assumption. 

Therefore, the majority of geometrical view-invariance action recognition approaches 
[36, 37, 38, 39, 40, 41, 42, 43, 44] require detection of individual body parts or salient 
features and their tracking over a long period of time. All approaches try to exploit 
constraints on homography or fundamental matrix but its exploitation is suffered due to 
their initial assumption of available trajectories. An alternative approach is the use of 
space time interest points [17] which avoids tracking but extraction of such feature points 
in case of self-occlusion and noise is not robust and suffers from same dilemma as trajectory 
tracking approaches. In addition, view invariant local space time interest points is still 
absent in literature as it has been established previously that there exist no invariants for 
3D to 2D projection. 
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In forthcoming chapters, we try to maximize the exploitation of multiple view geom­
etry in devising a view invariant action recognition approach. Inspired from the use of 
instantaneous flow correspondences to derive flow fundamental matrix [45], we use spatio­
temporally consistent optical flow on actor silhouettes to get observation matrix and apply 
rank constraint to derive action matching score across varying viewpoints. Getting robust 
extraction of silhouettes in case of occlusion and noise is again a hardship. Therefore, to 
further remove this pre-processing step, we explore dynamic scene geometry. 

Two-view geometry of multiple moving objects is an active research problem. The first 
generalization of eight point algorithm to multiple motions was not known until recently 
[33]. The pioneer work which discussed two- body segmentation from two perspective 
views is presented in [46]. A generalization of this work into multiple moving objects 
in two perspective views introducing multi-body fundamental matrix is given in [47]. A 
similar approach for describing the geometry of dynamic scene is presented in [72]. Due to 
above mentioned work, the concept of multi-body segmentation and multi-body structure 
from motion has established. Our objective is somewhat different as we want to use the 
properties of multi-body fundamental matrix for devising a dynamic scene geometry based 
representation for achieving view invariant action recognition. 

2.3 Template based Approaches 

The second important visual cue addressed in this thesis is the use of space time pattern 
templates. In this section, we review action recognition approaches based on space time 
templates and frequency domain filtering. 

The application of space-time pattern templates is a successful action recognition ap­
proach. Temporal template matching emerged as an early solution to the problem of action 
recognition, and a gamut of approaches which fall under this general denomination has 
been proposed over the years. Early advocates of temporal matching based approaches, 
such as Polana and Nelson [48], developed methods for recognizing human motions by 
obtaining spatio-temporal templates of motion and periodicity features from a set of op­
tical flow frames. These templates were then used to match the test samples with the 
reference motion templates of known activities. Essa and Pentland [86] generated spatio­
temporal templates based on optical flow energy functions to recognize facial action units. 
Efros et al. [102] proposed an approach to recognizing human actions at low resolutions 
which consisted of a motion descriptor based on smoothed and aggregated optical flow 
measurements over a spatio-temporal volume centered on a moving figure. This spatial 
arrangement of blurred channels of optical flow vectors is treated as a template to be 
matched via a spatio-temporal cross correlation against a database of labeled example 
actions. 

In order to avoid explicit computation of optical flow, a number of template-b&<;ed 
methods attempt to capture the underlying motion similarity amongst instances of a 
given action class in a non-explicit manner. Shechtman and Irani [49] avoid explicit flow 
computations by employing a rank-based constraint directly on the intensity information 
of spatio-temporal cuboids to enforce consistency between a template and a target. Given 
one example of an action, spatio-temporal patches are correlated against a testing video 
sequence. Detections are considered to be those locations in space-time which produce the 
most motion consistent alignments. 

Representative work includes temporal matching of periodicity information from a set 
of optical flow frames [48], a two component temporal template of motion energy image 
(MEl) and motion history image (MHI) [13], space-time shapes induced by the silhouettes 
in the space-time volume [49] and space time behavior based correlation [26]. Bobick 
et al [13] computed Hu moments of motion energy images and motion-history images to 
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create action templates based on a set of training examples which were represented by the 
mean and covariance matrix of the moments. Action Recognition was performed using 
the Mahalanobis distance between the moment description of the input and each of the 
known actions. However, majority of these template based approaches suffer from high 
computational overhead due to template matching. 

Given a collection of labeled action sequences, a disadvantage of these methods is their 
inability to generalize from a collection of examples and create a single template which 
captures the intra-class variability of an action. Effective solutions need to be able to 
capture the variability associated with different execution rates and the anthropometric 
characteristics associated with individual actors. Recent popular methods which employ 
machine learning techniques such as SVMs and AdaBoost, provide one possibility for 
incorporating the information contained in a set of training examples. 

To overcome the problems faced by these template based methods, the utilization of 
correlation filters is investigated for recognizing action instances with promising results. 
The representative work in this regard is the development of Action MACH [29, 121] that 
has generalized traditional 2D Maximum Average Correlation Height (MACH) filter to 
3D MACH by including temporal dimension. However, the major gain is in terms of low 
computational cost as response of the filter can be analyzed in frequency domain. Despite 
its success, some researchers [50] have indicated inherent discrepancies in MACH filters 
and questioned their effective utilization for action recognition. One of the weaknesses 
of MACH filters is their ineffectiveness to encapsulate inter-class variability. Therefore, 
these filters are trained only for one class at a time and separate MACH filters are needed 
for each action class. Secondly, MACH filters overemphasize average training sample, a 
biased treatment of low frequency components and behave like average filter and may loose 
finer details of the training set. They emphasize high energy (low frequency) components 
and attenuate low energy (high frequency) components of the training set leading to poor 
intra-class discrimination. Thirdly, as action datasets are normally misaligned in space 
and time, they create problems in learning and testing as synthesized filters are not shift­
invariant. Finally, action recognition frameworks based on these correlation filters are not 
view-invariant that is very desirable aspect for unconstraint action recognition. 

In forthcoming chapters, we address above mentioned weaknesses and propose a new 
view-invariant action recognition approach based on our extended space-time distance clas­
sifier correlation filter (Action DCCF filter) for view invariant action recognition. Our ap­
proach offers following advantages: (i) It provides view-invariance, (ii) Action DCCF filter 
successfully captures inter-class variability and avoids overemphasize on average training 
sample by empirically setting contributions of low as well as high frequency information. 
(iii) It presents a different interpretation of correlation filters as method of applying a 
spatio-temporal transformation to the data, restricted to being Toeplitz ensuring shift in­
variance. It measures similarity between an ideal transformed reference and testing action 
using a shift-invariant mean square distance measure handling misalignments and (iv) 
another benefit is that resulting decision boundaries are quadratic which are more 'selec­
tive' for choosing feature space portions for assigning to various classes and utilize entire 
correlation plane rather than emphasizing only single point like correlation peak. These 
advantages of VIEW DCCF filter can potentially improve performance of view-invariant 
action recognition. 

2.4 Context based Approaches 

Visual cues from the contextual background is the last visual cue addresses in this thesis. 
For this purpose, a case study of night vision vision data is used. In this section, we review 
contextual action recognition and context enhancement at night time. 
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Contextual information is important for interpreting human actions especially when 
actions exhibit interactive relationship with their context. Contextual clues become even 
more crucial when videos are captured in unfavorable conditions like extreme low light 
nighttime scenarios. These conditions encourage the use of multi-senor imagery and con­
text enhancement. 

The need for understanding actions in context is discussed by different researchers. 
Scene context is used for event recognition by [54] but it was only applied to static images. 
Recognizing actions in context is discussed by [53] which was formulated on bag-of-features 
framework and scene-action SVM based classifier. It is focused on annotated actions in 
movies and uses script mining for visual learning. A similar approach [55] captures generic 
object based context by detectors and their descriptors are used as input for supervised 
learning. 

More recently, modeling of scene and object context is discussed by [56] for Hollywood2 
action datatset. All above approaches target action recognition in high-resolution action 
videos in movies. One typical benefit available to these approaches is the ease of finding 
visual interest points and detectors related to actors and their context. 

We present actions in night vision scenario which offers real challenges due to extreme 
low light conditions. None of the above approaches discuss nighttime visual context and 
recognition of actions at nigh-time. Most recently, human action activity recognition is 
discussed in [57, 58] which focuses on recognition in infra-red spectrum. However, these 
approaches ignore action contexts which are not properly captured by infra-red senors and 
can not be categorized as contextual action recognition approaches. 

We argue that contextual action recognition is not possible using single sensor platform 
due to the limitations of individual sensor to grab all available visual information about 
the scene. This situation motivates the use of multiple sensors for context enhancement. 

Contextual Enhancement: The operational requirement to fuse night vision im­
agery is due to the limitations of individual sensor to grab all available visual information 
about the scene [59]. A common multi-sensor night vision system uses infrared images in 
case of forward looking infrared cameras and low light images in case of low light visible 
cameras. The infrared images are maps of infra-red radiation emission which is partly gov­
erned by the temperature of the objects. Therefore, such sensors prove good for perceiving 
hot targets in a busy background, seeing through fog, and monitoring paths through a 
cluttered forest. However, they are not much effective during thermal crossover periods 
at night or after long periods of rain and capturing scenery such as trees, leaves and grass 
in natural scene. On the other hand, low light visible cameras are able to capture sur­
rounding environment but mostly fail to capture specific targets especially hot bodies like 
a person in camouflage. In addition, even in case when targets are not hiding, low light 
conditions make their observation obscure. 

To solve this problem, image fusion is used which extracts meaningful information 
from complementary sensor images and combines visual information into a single output 
image. Over the years, several image fusion techniques are developed which vary in their 
complexity, robustness and quality. One major trend in image fusion research is to sacri­
fice complexity to gain quality. However, oppose to images, complexity criterion has more 
significance in video domain which is intended for real time use. Therefore, video applica­
tions do not encourage algorithmic complexity and require simple and efficient information 
fusion. Furthermore, to meet real time surveillance needs video representation is neces­
sary which gives complete spatio-temporal visual information compared to limited spatial 
information presented by still images. The video fusion is a process of visual information 
integration from a number of registered video sequences without loss of information and 
introduction of distortion. The goal of video fusion is to create a single enhanced video 
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sequence from complementary video inputs that is more suitable for the purpose of human 
visual perception, object detection and target recognition. 

Color is another important requirement in addition to fusion but colorization of fused 
grayscale imagery is a daunting task. Most recently, various manual and semi-automatic 
colorization techniques have been reported in the literature to solve this problem. A 
highly cited work is colorization based on optimization [60] which needs user defined color 
scribbling. It proves to be an attractive method which based on the idea that neighboring 
pixels in space-time with similar intensities should have similar colors and requires neither 
precise image segmentation, nor accurate region tracking. However, one shortcoming of 
this method lies in the requirement that input images are annotated with user defined 
color scribbles and thus lacks full automation. Another popular work is colorization based 
on color transfer [61] using statistical analysis to impose color characteristics from source 
color image to another image. It uses a de-correlated color space faj3 and swatches for 
color transfer from target color image. This technique has the same drawback as it requires 
manual selection of a color target image and swatches. In addition, color space conversions 
and swatches make additional burden in terms of complexity. 

Despite these shortcomings, above approaches have transformed the cumbersome work 
of manual colorization into semi-automatic colorization. Due to their successful application 
in colorization and color correction, these techniques are extended for colorizing night 
vision imagery [62, 181] presenting a software based approach to night vision offering 
a cheaper and reliable solution. Therefore, it is highly desirable that fully automated 
colorization should be introduced to facilitate real-time video processing for night vision 
applications. 

Image fusion is a well established research area within the domain of digital image 
processing. The past decade gave rise to a considerable number of different approaches 
to multi-sensor image fusion which vary in their complexity, robustness and quality. In 
general, depending on the level at which fusion takes place, image fusion can be divided into 
three categories known as pixel level, feature level and decision level fusion [59]. We focus 
on pixel level fusion. The most reliable framework for pixel level image fusion is multi­
resolution based fusion [155] and the most popular approach for image fusion is wavelet 
based fusion [156]. But majority of image fusion approaches deal with grayscale images 
with fused grayscale output and there are few approaches which deal with colorization of 
fused imagery as well. Our work is related to approaches which include fusion as well as 
grayscale colorization in their framework. Therefore, in this section we only mention that 
work which is closely related to our approach. 

In absence of original color sensors, colors are transferred to grayscale images following 
any of these approaches: (1) manual colorization [60, 157],(2) false-colorization [158, 159] 
and (3) color transfer [62, 181, 182, 160]. Manual colorization [60, 157] gives promising 
results but it is time consuming due to intensive manual intervention. In addition, these 
approaches do not deal with multisensory fusion. Therefore, fusion and colorization is 
possible in separate steps. False colorization approaches decrease manual work but provide 
noisy and false colorization far from natural day-like appearance. Color-transfer based 
approaches are advantageous as they result in near natural colors as compared to false 
colorization techniques. 

Color transfer is introduced by Reinhard et a1.[61] for transferring colors between two 
color images using a color space faj3 based on correlation minimization of three color 
coordinate axes. Originaly it did not deal grayscale image colorization as only objective 
was the color correction. Welsh et a1. [62] extended this method for transferring colors 
to grayscale images. On similar footing, Toet [181] employed color transfer technique for 
colorizing grayscale intensified nighttime imagery. Both approaches work in faB color 
space involving multiple intermediate color space conversions. Wang et a1.[182] presented 
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a color fusion algorithm based on color transfer in YUV space and showed that it is 
less computation intensive. In a similar way, Li and Wang [160] presented color transfer 
and fusion algorithm based on a linear IUV color space to overcome the harmfulness of 
the logarithmic transformation to image fusion introduced during the conversion between 
RGB and £0:(3 transformation but this approach is computationally expensive due to 
the use of wavelet transform making it less appropriate for extension to real time video 
domain. All above approaches deal color transfer using different color space conversions 
which contribute to their complexity. In addition, they are restricted to work in image 
domain and do not deal with video processing and its complexity. 

Literature review additionally indicates that a fundamental lack of automation is al­
ways present in all above techniques because they never define the selection criteria for 
color source image in color transfer step which mainly defines the quality of final fused 
image. All approaches use arbitrary target color image based on mere subjective visual 
perception. To deal with this shortcoming, we propose automated selection of source 
color image based on global scene context features and colorfulness. Different color image 
retrieval methods can be considered as alternatives but they are usually complex due to 
object level details and not suitable in real time video surveillance applications. We rather 
focus on main theme or context of images. 

Visual context recognition has a long history of research with earlier work in cognitive 
science. In computer vision, context has been used for understanding of static scenes. 
There are two approaches possible for scene recognition. Traditional conceptions in com­
putational vision have portrayed scene recognition as a progressive reconstruction of input 
from local image characteristics (edges, surfaces), successively integrated into decision 
layer of increased complexity. A new paradigm adopted by [161] suggests the recognition 
of real world scenes from the encoding of the global configuration, ignoring most of the 
detail and object information. The later approach has the advantage that it does not need 
any segmentation of the scene nor object and region detection. Conditional to the scene 
category specification, objects in the scene are independent and context can be defined 
in terms of overall scene category. Therefore, our source image retrieval approach is built 
upon the idea that scene can be categorized without going into detail and decomposing 
them into objects. It uses global scene representations for inferring the main context or 
theme of the image [162]. 

We try to address above mentioned shortcomings by proposing an automated night 
vision system, SCENT (system for color exploitation at nighttime). The major contri­
butions are as follows: It presents a fully automated color night vision system by fusing 
and colorizing grayscale videos simultaneously. It uses color morphing in RG B color 
space without any color space conversion. It additionally introduces a simplistic retrieval 
mechanism for source color image based on global scene characteristics like context and 
colorfulness. To develop better image fusion algorithms, reliable fusion quality assessment 
is crucial. Therefore, quality evaluation of image fusion algorithms is widely investigated. 
Various quality measures have been proposed for multi-sensor grayscale image fusion tech­
niques; but no appropriate quality measure has been devised for the objective quality eval­
uation of multi-sensor color image fusion. We propose a novel color image fusion quality 
measure, Color Fusion Objective Index (CFOI) which encapsulates the powers of color 
image quality, image colorfulness and fused information index. In addition, it evaluates 
the gradient structure preservation in color fused image. An application of information fu­
sion in nighttime imagery is utilized for experimentation. Experimental results show that 
CFOI captures fusion of all three factors, important for color image fusion (colors, high 
frequency edges and low frequency common information). In particular; it is not biased 
toward any of them as previous standards like Petrovic [164] and IQI [165]. In addition, 
it deals with colors which were not consideration of previous image fusion quality metrics. 
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2.5 Conclusions 

In this chapter, we reviewed computer vision literature and presented a survey of previous 
approaches about human action analysis and recognition. We arranged our discussion 
according to the contributions claimed in this research work. We pointed out different 
drawbacks and weaknesses of previous works and briefly mentioned how we are going to 
address these shortcomings in this thesis. Next chapter is our first contribution chapter 
which discusses feature based approaches to recognize actions across different viewpoints. 
It targets temporal ordering of local space-time features and proposes two incremental 
solutions to recognize actions in video sequences. 
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Chapter 3 

Action Analysis using Space-time 
Features 

Good order is the foundation of all 
good things. 

rv Edmund Burke (1729 - 1797) 

The research work presented in this chapter has been published as: 

1. Anwaar-ul-haq, 1. Gondal and M. Murshed, On Temporal Order Invariance for view­
invariant action matching, IEEE Transactions on Circuits and Systems for video 
technology, Vol (22), DOl 1O.1l09/TCSVT.2012.2203213, 2012. 

Visual recognition of human actions is a complex phenomenon due to non-linear dy­
namics of actions, anthropometric variations and strong dependency on camera viewpoint. 
In this chapter, we explore how non-linear action dynamics can be represented by local 
space-time features ( also known as spatio-temporal or 3D features). We discuss how 
bundling and ordering constraints can enhance distinctive characteristics of local space­
time features for increasing action recognition performance. In addition, we investigate 
effects of viewpoint variations on action representation which greatly affects action recogni­
tion performance. It is due to the fact that action scene captured from different viewpoints 
contains different representations of same action posing a high-level challenge to computer 
vision (Figure 3.1). Action recognition approaches which counter the effects of view varia­
tions and recognize actions despite viewpoint changes are referred as view-invariant action 
recognition approaches. In this chapter, we discuss that temporal order of action instances 
has profound effect on action representations and introduce the notion of temporal order 
invariance by exploitation of temporal order of local spatio-temporal features. 

Local spatia-temporal features are fast becoming representation of choice for action 
recognition due to their computational simplicity, robustness to occlusion and minor view­
point changes, elimination of low level object detection and tracking, and existence of 
scalable matching schemes. These space time interest points are discriminative as they 
are computed in a way that they capture not only the pixel intensity information but 
also the motion information (e.g. statistics of optical flow) in the vicinity of the interest 
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Figure 3.1: An illustration of arne action (Kicking) from even different cameras with 
different viewpoints by same actor. It shows how strongly viewpoints variat ion effect the 
description of an action. 

points. After feature extraction from act ion sequences . r presentation framework like bag 
of vi ual words [115.123.30] is utilized for action matching. While. imila ri ty/d issill11arity 
of these intere t points is sought during matching same or different actions. their mutual 
relation hips like space time organization and ordering is ignored. 

Considering the fact that an 'action ' is essenti ally a pat io-tempora l construct. ignori ng 
temporal order in which spatio-temporal feature. occur can affect matching performan ce 
drastically. especially wher variou act ions have many overl apping low level feaL ur s. In 
addition. the discriminative power of spat ial rela tionship ' betw en these low level feature 
play an important role when dealing with action that cia ely mimic each other e.g. jogging 
and running. 

To overcome these shortcomings everal competing approaches have been proposed 
recently. For in tance. naive ordering is imposed by dividing the space- time volume of a 
video into space- time bins much like spat ial pyramid matching used for images [108. 5:1 . 
109. 123]. However. as opposed to images . content of a video can vary dra.'>t ically depending 
on how input video i segmented (along temporal scale). and location and speed of act ion. 
thu making such rigid binning scheme hard to generaliz. Binning neighborh oods or 
interest points at various scales for de crip tor co mputat ion is another approach [126 . 127]. 
However. this approach a lso suffer from the rigidity imposed by fixed scales a l which 
computations are performed. Schemes for large scale image retrieval [124. 125] present 
similar in piring ideas like bundling patial features and geometric verificat'ion based Oil 

area ratio of triangle generated by two visual words. Again. these a pproachcs arc r<'striclcd 
to spatial domain as their application goal is entirely d i ffcrent from act ion rccogn i t ion 
which focus more on temporal ordering. In ad dition. triangle based spati al ordering is 
difficult to visuali zed in video domain. Recently. Kovashka ct al.[110] proposed an feature 
centric approach where each feature maintains orient ation and locat ion in forlil at ion of 
neighboring features at various scales in spirit of shape context feature [112]. Scales arc 
computed in such a way that makes the local groupings of featu re di scriminative ill te rlllS 
of action pecific distance metrics. 

However. we believe that. to mitigate issues of feature d i criminat ion and .. patio­
temporal ordering. feature group should be a constru ct grounded in or a.,>soc iated with the 
object (or space-time segment) inducing the ac ti n a.':l oppose to isolated feature points. 
Thi will have the following benefi t: 
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Figure 3.2: Left to Right: Action volume of v-cycling from You TUbe data set . t he 
respective maximally table volume (MSV) and two different views of STOP features 
which encapsulate spatio - tempor-al cuboids inside M SV s . 

• No need to search acro s cales for locat ing d iscriminative groupings. They will 
always be associa ted with the. pace-t ime segment that implicitly captures the sha pe 
and motion of the object performing an ac tion. 

• Ordering will have natural explanation in terms of subunits of an act ion. For 11l ­

stance, hand going up and down for hand wavin g act ion. 

• a multi-feature representation that fuses space-t im regions with local interC's t poill ts . 

To addres the e limitat ions and compli cations. we propose a novel spa tio- tC' ll1poral 
action matching framework based on discriminative combinatioll of 3D features. mtll lecl 
spatia- temporal ordered packets (STOPs) . that combines space-t illle features a long with 
their geometri c ordering informat ion into spat io-temporal voltl mC's avoiding cOlllplex or­
d ring constraints . P ackaging features in to volumes ensure. that discrimin at ive powC' r of 
matching i enhanced as whole packet are matched across videos instead of illdividu al 
feature . At the same time matching is made mu ch robust by devc· loping simple Ill a tching 
cri teria that take into consideration spat io-temporal order of featurC's within each volu­
metric packet . 

Figure 3.2 prov ide an illustration of volumetri c packet · for cycling from Hollywood 
data set [123] . Volum compu tat ion is carried out by compu t ing maximally stable volullles 
[16]. whi le cuboid features [1 ] wi thin these volumes are u ed as local space-t ime feat ures. 
We al 0 propose an indexing. cheme for fast matching of videos t ha t extends the bag-of­
word model to bag-of- volumetric packet and demonstrate t hat thi s representation is mu ch 
more discriminative. Extensive experimentat ion is performed on fo ur challenging adiotl 
data ets (Weizmann [49]. KTH [27]. Hollywood [123]. and U F YouTubC' [30]) . covC' rillg 
both con. t rained and unconstrained setting. Recogni t ion performance is comparable to or 
exceeds exist ing action recognition approaches. We also demonstrate robustness against 
variou parameter includ ing noise and partial occl usion. 
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Matching Order: I 2 4 5 
Inconsistency 0 + 0 + 0 = 0 

Matching Order: 2 I 5 3 
Inconsistency ( I) + 0 + ( I) = 2 

Figure 3.3: The spatio-temporal ordering const ra in t and Indexing for volumetric I ackets. 
(Above) Consistent relative ordering between matched spatio-temporal features (Below) 
Inconsistent ordering between spatio-temporal feature. 

3.1 Spatio-temporal Ordered Packets (STOPs) 
The key motivation of spatio-temporal ordered packets (STOPs) is to enhance discrimi­
native power of local spatio-temporal features by combining them with sub-video voluilles 
representing shape and motion of the object( ) present in a video. In simple terms. STOP 
is a local group of spatio-temporal feature. within an arbitrary shaped sub-volume of a 
video. 

For computing volumetric STOPs. we usc a combinat ion of spa tio-temporal cuboid 
features [18]. grouped together inside a maximally stable volume [16]. 

Formally. let C = {cd be the i-th spatio-temporal cuboid feature and V = {1Ij} be 
the j-th volume extracted from a video. then a volumetri c packet feat ure 7)j is defined as : 
Pj = {CiICi E Vj, Ci E C}. wh re Ci E Vj denotes spat io-temporal cuboid feature. Ci. thaL 
falls inside the maximally stable volume Vj . A set of a ll 'TOPs extracted from a video is 
represented by P = {pj}. Note that a cuboi I feat ure may belong to mu ltiple packets as 
underlying maximally stable volumes may overl ap each other. 

ext we describe in detai l how volume and features arc computed and how [cat lIres 
are ncapsu lated within a volume. To avoid any confusion in the lise of isola ted term 
'feature' . we will refer to maximally stable volumes as 'envelope feature ' and cuboids i:1S 

'enclosed feature ' for re t of the chapter. 

3 .1.1 Enclosed Features - Spatio Temporal Cuboids 

Spatio-temporal cuboid features a re used as enclosed features. Spatio-temporal in terest 
point are located by convolving video ignal S with a set of separable linear filters [18] . 
and local maxima of the response function is used as interest point location around which 
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Figure 3.4: Inverted file Index: The structure shows how geometri cal order information is 
stored in this data structure. 

descriptors are computed. The response function RJ has the following form: 

RJ = (5 * 9 * hev )2 + (5 * 9 * f ilteTod)2, 

f ilteTev(t ; T, w) = _eos(2ntw )e- t
2
/T

2
, 

f ilteTod(t ; T, w) = _sin(2ntw)e- t2/T2 , 

(3.1) 

(3 .2) 

(3.3) 

where g(x, y ; a) i a 2D Gaussian smoothing kernel applied along spatial dimensions. and 
filt eTev and f ilteTod are the quadrature pair of lD Gabor filter applied temporally. R e­
sponse function RJ has two important parameter. a and T. wh ich corre. pond to spatial 
and temporal scale of the detector , respecti vely. 

These spatio-temporal in terest points effectively discerll local vari at ions in in tensit ies 
under periodic frequency components. re pectively. In addition. they capture other siguif­
ieant variations and motions like pat io-temporal corner. . 

Descriptors : After interest point detection. descrip tors arc computed for cuboid 
patches centered at detected interest poin ts (:1", y, t. a. T). The spa ti al size. ~x(a) . ~y(a) . 

of the cuboid are a function of a while the temporal size. ~t (T) . is a function of T. For 
each interest point. a cuboid is extracted which conta ins the spatio-tem porall y windowed 
pixel values. These cuboid have a 'ide length of approximately 'ix times the scale l'tt 
which they are detected. Th re are different po ible ways to dC'fine t he 'e descriptors: 
The simplest one requires fl attening the cuboid in to a vector. a lthough the resulting vec­
tor is potentially sensitive to mall cuboid perturbat ions. The second method involves 
histogramming the values in the cuboid . Such a representatioll is robu. t to per t urbations 
but casts away all positional information. Local histograms. like 2D SIFT descrip tor [100]. 
offer a reasonable compromise . We have utilized this approach. The cuboid is divided in to 
a number of regions and a local hi togram is created for each region. The objective is to 
achieve robustnes to small perturbations while retaining some positional information. 
Finally, we compute a low dimensional repre. entation of t he desc riptor using locali ty pre­
serving project ion (LPP)[134]. The final de criptor has 100 dim ensions that are sufficient 
to comprise discrimination information. LPP preserves locali ty information and bet ter 
preserves th discriminat ive power of descriptors. 
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3.1.2 Envelope Features - Maximally Stable Volumes 

The goal of maximally stable volume (MSV) detection is to compute stable connected 
region volumes from an input video sequence. A MSV volume is a connected component 
in (x,y,t) space which has homogeneous intensity distribution inside and high intensity 
difference at its boundary. MSV volume is particularly attractive for the current problem 
as their computation does not require any elaborate contour tracking or object detection 
algorithms. They can handle topological changes in the region shape due to articulated 
body or camera motion. By performing computation at various scales, both fine and large 
scale structures can be extracted. In addition, they can be computed automatically in 
real time with low computational complexity. 

We used MSV detection by interpreting the input video as connected weighted graph, 
where video voxels are taken as nodes and edges are relations between voxels with 6, 18 
or 26 neighborhood. A data-structure named component tree is built. Each node of the 
component tree contains a volume. The tree structure allows calculating a stability value 
for every node analyzing the change in size of the volume while moving the component 
tree upwards. The most stable volumes, i.e. the nodes with the highest stability values are 
returned as the detection result. The stability criterion p is defined by the area variation 
as: 

( V;T.~) = IVj'C~I-IV~~1 
p t' Iv?I' (3.4) 

where Vl is connected volume obtained by thresholding intensity value at intensity 
T. Here operator 1.1, is the cardinality and ~ is the importance parameter which sets 
the threshold range and the number of component tree levels for computation of stability. 
Higher values means more stable MSV. Higher values also result in detection of fewer 
volumes. 

3.2 Bag-of-Volumetric Packets 

In this section, we describe the indexing and matching scheme that exploits weak spatio­
temporal geometric consistency while matching volumetric packets. We call it bag of 
volumetric packets. We start by quantizing local spatio-temporal descriptors into visual 
words. Visual vocabulary is learned using hierarchical K-means and Kd-tree is used 
to quantize descriptors. For each volumetric packet, its enclosed cuboid descriptors are 
quantized using this vocabulary. For volumetric packet matching, we exploit two weak 
geometrical constraints. First constraint ensures, a minimum number of common visual 
words exist between two packets, while the second constraint ensures that spatial and tem­
poral configuration of visual words is consistent. Next, this matching scheme is described 
in more detail. 

3.2.1 Volumetric Packet Matching 

Let Q = qj and T = ti denote a query and a target volumetric packet with enclosed visual 
words, qj E Wand ti E W, where W is the visual vocabulary. A matching score S between 
these two packets is defined as; 

S(q, t) = m(q, t) -,.g(q, t), (3.5) 

where m(q, t) is the matching score obtained by counting the number of concurring 
visual words, while g(q, t) is the geometric score obtained by looking at the spatio-temporal 
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Figure 3.5: Top: Action volumes of jack. wave2 and run from Weizmann dataset and their 
re pective STOP features . Below: Action volumes of boxing, waving and clapping from 
KTH dataset and their STOP features. (Note that horizontal axis is X, vert ical axis is Y 
and temporal axis i T. and lack of clarity is due to scale of volumes in low re. olution. ) 

con istency of matched vi ual words. Her. "( is weight parameter which cont rols the 
influence of defined constraints on final matching. 

Now. we explain how each component of score, S. is compu ted. Enclosed fea t ure ' in 
Q = {qj } and T {td are sorted according to their x . y and t coordinates . respectively. and 
any ti E T that does not have matching qi E Q is discard ed. Then first component of S is 
computed by counting the number of common visual words in two packets: 

m(q, t ) = I{td l. (3 .6) 

Geometric component exploits a weak spatio-tempora l const rain t betwe n qu C' ry and 
target packet using relative spatio-temporal ordering informat ion. It pena lizes ma tching 
score betw en packets where visual words do not obey t he spatio-te mporal order. Since . 
coordinates x, y and t are used for definin g the ordering. for every visual word /,1/1 E T 
and its corresponding visua l word . q' E Q. we denote the geometric locat ion by Lq [td and 
find inconsistency I as : 

(3. 7) 

where Dim is any spatio-temporal dimension. x. y or t . Here. f . is t hE' indicator 
function measuring the consistency or relative ordering in two respect ive packets. The 
final geometric core is defined as: 

g(q, t ) = min(I x (q, t ), J)/ (q. t )) + JT(q. t) (3.8) 
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This geometric score finds the geometrical inconsistency in relative ordering for two 
packets Q and T. Note that due to importance of temporal consistency, temporal incon­
sistency term is weighted more than spatial inconsistency terms. Figure 3.3 shows relative 
ordering used for enforcing weak spatio-temporal geometric constraint and inconsistency 
computation. 

3.2.2 Action Matching 

In order to find the best matching action volume for a query action, we use a voting-based 
framework that utilizes inverted file index for efficient and fast matching. 

The structure of the inverted file is shown in figure 3.4. Each visual word has a single 
entry in the index and points to structure containing information such as video in which 
it has appeared, appearance count, volumetric packet it belongs to within the video, and 
its spatial-temporal order. This indexing scheme efficiently stores order information of all 
STOPs in a video sequence. We use in total 29 "STOP bits" to encode information on 
STOP features. Of these 29, 5 bits are used to represent "STOP ID" , 8 each for "X Order" , 
"Y Order" and "T Order". This allows 32 STOP features per videos with maximum of 
256 visual words per STOP. 

Each visual word in the query action video casts its vote for a potential matching 
video. The matched videos are ranked based on the votes and the best ranked video is 
selected as the correct match. The voting scheme for finding the best matching action is 
summarized as follows: 

Algorithm 1 Given a target database of n videos,v = l.. ... n with m visual words, as Piv is 
visual word i of video v, constituent visual word q~ of a query video, tf as term frequency 
and df as document frequency of visual words [114], then the best matching video j in 
database based on similarity score 0' is determined as: 

1: Initialize O'v = 0 for all dataset videos. 
2: For each query visual word and for each visual word in target video j. 
3: Update O'j = O'j + t;S(q~, tiv) using equation 3.5. 
4: Best matching video is the video with the highest value of 0'. 

5: Assign action label of query to the best matched video. 

3.3 Experimental Results and Discussion 

A comprehensive set of experiments are performed on four standard human action data 
sets. The data sets represent actions performed both in constrained and unconstrained 
settings and represent different set of challenges when it comes to recognizing actions. 

3.3.1 Dataset and Experimental Setup 

The data sets used for our experimentations include Weizmann [49], KTH [27], Hollywood 
[123], and UCF YouTh be [30]. First two data sets are well known data sets and present 
controlled experimental settings, and therefore, can be used to benchmark our algorithm 
against existing algorithms. Hollywood and Youtube data sets are relatively challenging as 
they contain actions performed in presence of clutter, interacting objects, camera motion 
and captured from arbitrary viewing angles. 

Recognition is performed in leave one out cross validation (LOOCV) setting. Each 
action video is used as a query once and the best matching video is selected using the 
voting strategy described above. Action label of the best matching video is assigned to the 
query video. In order to test the contribution of spatio-temporal geometrical consistency, 
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each experiment is performed with and without using geometrical constraint. Comparison 
against existing techniques is performed in terms of recognition accuracy. Furthermore, 
experiments are carried out to investigate the dependence of our algorithm on various 
algorithmic parameters (e.g. weight of geometric component, volume stability, noise and 
occlusion). Next, we describe experimental setup for each data set, present results, and 
discuss the outcomes. Note that horizontal axis is X, vertical axis is Y and temporal axis 
is T and lack of clarity is due to scale of volumes in low resolution. 

Weizmann Action Dataset: This data set contains 90 low-resolution (180 x 144, 
50fps) video sequences of 10 natural actions performed by 9 different actors. Actions are: 
run, walk, skip, jumping-jack, jump, pjump, side, wave-two-hands or wave2, wave-one­
hand or wavel and bend. For this dataset, a visual vocabulary of 1080 words is learned 
and an inverted file index is created as described above. Volumetric packets are extracted 
by encapsulating visual words inside MSVs. Due to simplicity of the data set and lack 
of clutter, MSV extraction is quite straight forward. We extracted MSVs with minimum 
300 voxels and stability factor of 10. MSVs with less than five enclosed visual words are 
ignored while packet construction. Figure 3.5 presents some representative MSVs and 
extracted volumetric packets. 

KTH Dataset: This data set contain 600 low resolution (160 x 120, 25fps) video 
sequences containing six action categories: walking, running, jogging, boxing, clapping and 
waving. In total, there are 100 video sequences for each action performed by 25 different 
actors. Every actor performs each action four times in four different backgrounds. As each 
video contains repetition of actions, we extract sub-volumes of 80 frames each for stable 
extraction of MSVs and volumetric packets. The choice of number of frames is motivated 
by the work of Schindler et al. [131 J which elaborates on how many frames are sufficient 
to extract meaningful information from action sequences. For this data set, we learned a 
visual vocabulary of 2400 visual words and corresponding inverted file index is created. 
Volumetric packets are extracted by encapsulating visual words inside MSVs. MSVs with 
minimum of 250 voxels and stability factor 10 are used packet construction. Packets with 
less than five enclosed visual words are ignored. Figure 3.5 shows some representative 
action volumes and extracted STOP features for boxing, waving and clapping action. We 
found that MSVs extraction for this data set is very robust resulting in excellent 3D 
segmentation of action which helped in obtaining improved results. 

Hollywood Data set: This data set consists of realistic and challenging video se­
quences from 32 Hollywood movies. It contains 8 actions, namely, 'Answer Phone', 'Getout­
of Car', 'HandShake', 'HugPerson', 'Kiss', 'SitDown', 'SitUp' and 'StandUp'. These actions 
mostly contain interactions of an individual with other individuals or objects. Some of 
these actions are hard to classify without contextual information. In addition, occlusion 
and pose variation becomes a significant challenge. We again start by computing MSV. In 
this case the stability parameter was kept at 5 to generate increase number of volumes per 
video to cater for multiple moving objects. A visual vocabulary of 2000 words is learned 
and an inverted file index is created. Following the previously defined protocol, we per­
formed experiments with and without using geometrical constraint for packet matching. 
Best matching action video is retrieved for each query action and its label is assigned. 

Youtube Dataset: This dataset contains complex and challenging video collection 
from YouTube (resolution 320 x 240) representing action in unconstrained environment 
(camera shake, cluttered background, variations in viewpoint, scale and illumination). The 
dataset contains 1600 video sequence of 11 actions: v-shooting (basketball shooting, 141 
videos), v-biking (145), v-diving (156), v-golf (142), v-riding (horse riding, 198), v-juggle 
(football-juggling, 156), v-swing (137), v-tennis(167), v-jumping (trampoline jumping, 
119), v- spiking (116) and v-walk-dog (123). A visual vocabulary of 6400 visual words is 
learned and an inverted file index is created. 
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Figure 3.6: (Three Left Columns) Volumetric Packets. First column: Video sequences 
from Hollywood data set ; Middle column: Maximally stable volume corre ponding to t he 
sequence; Third column: Volumetric packet wi th local features encapsulated wi thin the 
volume.) 

3.3.2 Action Recognition Performance 

Recognition is performed using LOOCV (leave oneout cro s va lidation) settings (one 
verses all) and confusion matrices are displayed. First we describe resul ts for Weizmann 
dataset. First confusion matrix shows result · obtained using geometric consistency for 
packet matching. while the second matrix shows results obtained wi thout using any ge­
ometric con i tency. We obtained average recognition accuracy of 100o/c using geometric 
con istency, while recognition accuracy is 94.44% wi thout it. ote that ., in the absence of 
geometric consistency constra int . there was mix-up in kipping and hand waving ac tions 
which we believe is due to t he fact that "frequency" information dominates in absence of 
geometric constraint and causes confusion among these very similar act ions. This points 
to the fact that geometric consistency constraint can play critical role in distinguishing 
actions that have similar human body motion and action peed . Figure 3. 7 and 3.8 present 
confusion matrices with and wi t hout geometri c constraint. 

Two confusion ma trices are displayed . First matrix shows resul ts obtained us ing ge­
ometric consistency for packet matching. while the second matr ix shows resul ts obtained 
wi thout using any geometri c consistency. We obtained average recognition acc uracy of 
95.3% using geometric consistency. while recogni t ion acc uracy was 92.1G% wi t hout it. 
Average recogni tion accuracy comparison for KTH dataset wi th other exist ing techniques 
i as follows: Neibles [140]: 83 .33%. Dollar [18]: 81.17%. Cao[1l9]: 95.02%. Liu [87]: 94.01 o/c 
and our proposed: 95.3% percent. Our results are better than most of the existing ap­
proaches. We again observed that geometric constraint helped in remov ing ambigui t ies 
between actions which are very similar in terms of limb motion and speed (e .g. cla pping. 
boxing. or running. jogging etc .) . It is important to note that distinguishing these minor 
variation and gett ing them right are cri tical for any action recogni t ion system. From 
thi point of view. getting classification of strikingly difFerent actions (e.g . hand-waving 
& running) is not interesting and we believe even simple classif1er can correct ly classify 
action wi th such large variations. 

The average cl ass precision for each action in Hollywood dataset i shown in figure 3.9. 
Our mean average precision is 40.4% which is better than the average precision of 38.4o/c 
as reported in the original paper [123]. In thi . experiment . geometri c ordering resul ted in 
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Figure 3.7: (Top Left)Confusion Matrices for Weizmann dataset without using geometric 
constraint (accuracy 94.44%). (Top Right) Confusion Matrices for KTH data set without 
using geometric con traint (accuracy 92.16%). (BeloW) Confusion matrices for YouTube 
dataset with mean accuracy of 65.6% without geometric constraint. 

degradation of average class precision for 'AnswerPhone' and 'Kiss action while improved 
precision for 'Standup'. 'Sitdown' , 'Standup'. 'HugPerson' and 'HandShake' action are 
observed. 

The last and most realistic dataset is YouTube dataset. On this data set, robust ex­
traction of MSVs was a challenging task. We used a malleI' stabili ty value of 5. which 
increased the number of MSV per video and t herefore allows match ing to carried out 
over many packets per video. Again. we conducted experiments with and without using 
geometrical constraint and computed confusion matrices. We observed that 'v- ·hooting'. 
'v-juggling' and 'v-spiking' proved difficul t as MSV extraction suffered due to background 
cluttered environment (e.g. pool. crowd etc.) . Another challenge is the presence of ji ttery 
motion in some of the videos which requires video stabilizat ion. We used ofl' the shelf Vir­
tualDub Deshaker [120] for removing shaky motion. We obtained mean average acc uracy 
of 66.8% which is better than 64.3% [118] and 65.4% (using only motion features) [30]. 

3.3.3 Robustness against noise and occlusions 

The robustness of the proposed matching scheme is evaluated by in trod ucing noise and 
partial occlusions to the original video sequences . Int roduction of noise and occlusion wi ll 
effect the computation of MSVs. We wanted to observe how t he variations in MSVs effects 
the matching performance. 
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Figure 3.8: ((Top Left) Confusion Matrices for Weizmann datasct with gcomet ric con­
straint (accuracy 100%). (Top Right) Confusion Matrices for KTH data set with geo­
metric constraint (accuracy 95.3%).(Below) Confusion matrices for YouTubc dataset with 
mean accuracy of 65.6%. 

We observed that recognition accuracy remains vcry high up till noi 'e density levels 
of 0.25 after which we observed severe dcgradation in MSV computat ion . Simil arlyocclu­
sion , discrimination of volumetric packets dccrease in pre. ence of ocd usion as MSV starts 
breaking up into smaller chunks and many local spatio-temporal features gct mis ·ed . the 
occlusion is artificial generated creating horizontal and vertical st rips (kccping intcnsity 
vales equal to zero in this range)according to act ion video. 

Similar to Weizman data set . we tested the robustness ofKTH datasct for our algorithm 
by introducing noise and ocdu ion. Effects of applied occlusion and Hoi e dcer'cascd 9o/c, 
7% percent accuracy for Weizmann an 1 7%. 5% percent for KTH dataset. 

3.3.4 Computation Time 

On Intel (R) CoreTM 2 Duo system with 4GB RAM and unoptimizcd Matlab code. wc 
get average query processing t ime of 6.2 seconds excluding feature extraction t ime. Thc 
summarized effects of geometric weight on overall accuracy are as follows: The average 
recognit ion accuracy of all datasets is 74.9% for weight 2. 75.6o/c for weight 2.5 and 73.1 o/c 
for weight 4 which suggest. that 2.5 is found suitable empirically. 

42 



Average Class Precision 

Ad lons 

Figure 3.9: Average class precision for 8 actions in Hollywood data set with mean average 
precision as 36.06% and 40.4% for without and with geometric constraint , respectively. X­
axis shows action 1-8, which include. AnswerPhone, getoutofCar. HandShake, HugPerson. 
Kiss, SitDown. SitdUp and StandUp actions and Y-axis is the precision for recognition. 

3.4 Seeking Temporal Order Invariance for View-invariant 
Action R ecognition 

Imagine the sequence of an activity: A standing person bends to pick up a ball. holds it , 
stands up and throws the ball while five different cameras observe his activity from five 
different viewpoints. The captured actions differ from each other especially when displayed 
in digital images due to the differences in viewpoint . This visual difference cau es enormou 
difficulty for recognizing actions in view-invariance sense which motivates us to find an 
invariant action property unaffected by the var iations in viewpoints (see Figure 3.10). 
However, if we divide the whole activity into constituent actions and note their temporal 
order or sequence (e.g., 1: bend , 2: pick-up, 3: stand-up and 4: throw) , we find a view­
invariant property. The temporal order of these actions remains same. no matter from 
which viewpoint they are captured . No camera can capt ure ' throw' action before the 'pick­
up ' action. Similar i the case of individual act ion instances as constituent action un its 
(e.g .. representation of local motion and posture variations) within an action preserve 
a temporal order irrespective of the camera viewpoints. In this section. we investigate 
part based action repre entat ion and temporal order invari ance to devise a view-invariant 
action recognition approach based on the above conjecture where "view-invariant" act ion 
recognition is defined a the visual recognition of actions that is unaffected by viewpoint 
variations. 

P art based action representations: Unit formation i fund amental to visual per­
ception. Part based action representations pre ent unit formation of actions. These ap­
proaches can be categorized into two types: first type utilizes visual appearance of parts 
and geometrical constraints. In contrast . the other type relaxe structural constrain ts and 
represents action video sequence as a set of independent features. The latter approach 
is popular and widely used due to its computat ional simplicity. It repre. ents action for­
mation in terms of spatio-temporal features [17] that are marked by their eliminat ion of 
t racking. robustness to occlusion and scalable matching like bag-of-features framework . 
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Figure 3.10: Temporal Flow within an Activity: Pick-up, Stand-up and Throw actions 
from three different cameras with different viewpoints. (Sample frames from IXMAS 
dataset, only three views are shown). It shows that temporal order of actions remains 
same with the whole activity irrespective of viewpoint variations. 

The major weakness inherent in these approaches is due to the ignorance of mutual rela­
tionships of features like space-time organization and temporal ordering in bag-of-features 
framework. It leads to the study of temporal structure of actions. 

Temporal structures of actions: The importance of temporal order is investigated 
by different researchers. Temporal composition of different motion segments for recog­
nizing human activities is studies by [140]. It adopts an action representation based on 
spatio-temporal interest points (STIPs) [17] while video sequence is decomposed into tem­
poral segments of various length. Discriminative subsequence mining is proposed in [138] 
to find optimal discriminative subsequence patterns represented by spatiotemporal cuboid 
detectors [18]. Finally, visual words arranged into temporal bins are presented for classifi­
cation. Short subsequences called action snippets of 1-7 frames long are proposed in [131] 
to alleviate temporal segmentation of actions using form and motion features. Most re­
cently, adom sequence modeling is proposed by [141] that represents temporal structure of 
actions as a sequence of histogram of adom-anchors visual features using spatio-temporal 
interest points (STIPs) [17]. However, these actom are manually annotated at training 
level. 

The Contribution: Above mentioned approaches utilize temporal order information 
for improved action recognition performance. Therefore, their objective is to overcome the 
weaknesses of bag-of-features framework like spatial bag-of-words [139] . Unfortunately, 
the success of these approaches are marginal as they are not view-invariant. However , 
our objective is different from the above approaches as we explore global temporal order 
within human actions to seek view-invariant action recognition, which has not been inves­
tigated by any previous work (to the best of our knowledge). Subsequently, we propose a 
novel notion of temporal order invariance for scalable framework for view-invariant action 
recognition. 
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Figure 3.11: The Proposed Framework: (above) Training is performed for all available 
viewpoints for getting fusion tables for each action class by repeating described steps for 
each action class in the dataset (sample instance of scratch-head is shown) , and (below) 
Testing sequence for unknown query action video from an arbitrary viewpoint. 

In this work, we focus on global analysis of human actions and seek a view-invariant 
representation. We based our approach on the following conjecture: "The temporal order 
of actions elements within an action is invariant to viewpoint variations". We define 
action elements in terms of local spatio-temporal interest points and define spatiotemporal 
order preservation constraint in matching framework. Spatiotemporal cuboid features [18] 
are taken as space-time interest points as these features are based on maximization of 
discrimination between behaviors . For each action class, we define a feature fusion table. 
A feature fusion table is a defined data structure to encapsulate multiple training examples 
against multiple viewpoints for a single action class. It is achieved through feature fusion 
based on principal component analysis. A matching score is then calculated based on 
global temporal order constraint and number of common features. Finally, the action 
label of the class with maximum value of matching score is assigned to the query action. 

3.5 The Proposed Approach 

Actions are spatia-temporal patterns which can be characterized by a set of discrimina­
tive parts or components. We call these discriminative parts as action elements. These 
discriminative parts can be detected by spatio-temporal interest points and thus action 
elements can be represented by small patches around detected interest points based on 
various measures namely saliency, cornerness, periodicity or motion activity. 

Let V be a volume representing a set of consequent input frames , defined on a set 
of points P where p = (x , y , t) E P is an individual space-time point or voxel. We 
intend to find a set of space-time interest points F within this volume and use temporal 
order information to seek view-invariance. We use spatio-temporal patches around these 
interest points and build descriptors. To deal with view-invariant action recognition , our 
proposed approach uses view information fusion with spatiotemporal feature fusion to 
develop feature fusion tables and enforces geometrical order consistency during matching. 
The flowchart of our proposed framework is shown in figure 3.11. Training is performed 
for all actions for all available viewpoints to get fusion tables for each action class. It is 
archived by repeating described steps (1: spatio-temporal feature extraction, 2: multi-view 
feature fusion and 3: construction of feature fusion table) for each action class in dataset. 
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Figure 3.11 shows sample instance of scratch-head only. Testing sequence for unknown 
query action video from arbitrary viewpoint is used and matching score is calculated for 
every fusion table and action label of the table with maximum matching score is assigned 
to the query action. In the following subsections, we give detail of the used space-time 
features, feature fusion, feature fusion tables and matching framework. 

3.5.1 Spatio-temporal Feature Fusion using Principal Component Anal­
ysis 

For all training video sequences related to the same action captured from the same view­
point, we use spatio-temporal information fusion. This information fusion is done by fusing 
spatiotemporal features in training videos using principal component analysis (peA). 

The fusion strategy is simple. An action video sequence contains many spatiotemporal 
features. (i) We arrange all video sequences of the same action class and the same view 
into the same group; (ii) We extract cuboid features from video sequences and sort features 
according to their temporal order; (iii) For all video sequences (same view, same class), we 
fuse features according to their position in temporal order; (iv) Feature fusion is achieved 
through peA. For instance, all features (position 1 in temporal order, 1st feature of all 
videos) of wave action in view 1 are concatenated into a single feature vector and principal 
component analysis is used to reduce its dimensionality to a single feature. (v) Finally, 
fused features for each class are arranged into fusion tables (to be described in the next 
section). 

Suppose we represent a set of training videos as V. For K action classes, V = 
VI, V2 ,.·., VK. For each of v different views of original datum, we use m spatio-temporal 
features in a single fusion table and the number of features remains same for all views in 
a single fusion table. To achieve it, we set m as the minimum number of spatiotemporal 
features extracted for a training viewpoint. However, value of m varies for each action 
class as number of spatiotemporal features is different for different actions. Let fi~r de­
note the j-th feature, by temporal order, of the l-th training video for the i-th viewpoint 
in the k-th action class for all 1 :S i :S v, 1 :S j :S m, 1 :S k :S K, and 1 :S n :S N(k, i) 
where N(k, i) denotes the number of training videos used for viewpoint i in action class 
k. Features at the same temporal order in all the training videos of the same action class 
and viewpoint are fused using peA to obtain a single feature of reduced dimensionality 
as: 

Fk. = PCA(fk,l jk,N(k,i)) 
~,] I,] , ..• , I,] , (3.9) 

for all 1 :S i :S v, 1 :S j :S m, 1 :S k :S K. 
Spatio-temporal features are key players in this information fusion. However, this 

fusion framework is independent of the type of spatio-temporal features. We have used 
cuboid features [18] due to their remarkable success in capturing local variations in action 
instances as described in previous section. 

3.5.2 Multiple View Feature Fusion Tables 

The spatio-temporal feature fusion described above is performed separately for each view. 
We combine information for all views related to an action class. For this purpose, we use 
spatio-temporal feature fusion table for each action class. A feature fusion table is a defined 
data structure to encapsulate multiple training examples against multiple viewpoints for 
a single action class. These tables are kind of feature matrices whose rows are ordered 
fused space time features related to a view and columns are respective fused feature for 
different views. We represent collection of training feature fusion table as matrix T. For 
K action classes, T = TI , T2, ... , TK . Each of these matrices have i = 1, ... , v rows and 
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j = 1, ... , m columns. Table 3.1 shows an illustration of spatio-temporal feature fusion 
table. 

Table 3.1: The general structure of Feature Fusion Table Tk, 1 ~ k ~ K. Each of 
these matrices have i = 1, ... , v rows (viewpoints) and j = 1, ... , m columns (number of 
features). 

Ffl Ff2 .. . " . Ffm 
F~l F~2 .. . ... F~m 
.. . .. . .. . " . . .. 
.. . " . .. . .. . . .. 
F: 1 F: 2 .. . " . F,!;m 

3.5.3 Action Classification 

Let Q = (ql, ... ,qm) denote the feature vector from a query action video sequences with 
m enclosed features. For each fusion table Tk of action class 1 ~ k :S K, Q is matched 
against every row of Tk and a matching score S between them is calculated. The maximum 
matching score among all the rows of the corresponding feature fusion table is selected 
as the matching score of the corresponding class. It describes which view in respective 
multi-view fusion table is closer to the viewpoint of the query action. However, it should 
be noted that matching score does not correspond to the sum of all rows of a fusion table; 
but a single row with the maximum score. The class with the maximum matching score 
is considered as the action class and its label is attached to the query action. 

Considering action class k, the matching score Sk,i for the i-th viewpoint, obtained 
from the i-th row Tk,i = (Fi~l"'" Fi~m) of the feature fusion table Tk, is defined as: 

(3.10) 

where M(Q, n,i) is the matching score obtained by counting the number of concurring 
features and G(Q, n,i) is the geometric score obtained by looking at the temporal incon­
sistency of the matched features. Here, 'Y is the weight parameter, which controls the 
influence of the defined constraints on the final matching. A sensitivity analysis on 'Y is 
presented in Table 3.3. 

Similarity Score Calculation: Here, we explain how each component of score, Sk,i is 
computed. Enclosed features in Q and Tk,i are sorted in temporal order according to their 
t, x, y coordinates, in order. Then, the first component of Sk,i in equation 3.7 is computed 
by counting the number of matching spatia-temporal features: 

m 

M(Q, Tk,i) = L Iq)=Fk 
',) 

(3.11) 
j=1 

where IB is the Boolean-to-integer conversion function defined as IB = 1 if B is true; 0 
otherwise. 

Geometric component exploits a weak temporal constraint between the query and 
target viewpoint using relative temporal ordering information. It penalizes matching score 
where corresponding spatia-temporal features do not obey the temporal order. Let vector 
LQ,n,i denote the temporal order of matching in Tk,i of the matched features of Q, in 
their temporal sorted order, where ILQ,Tk,i I ~ m denotes the number of matched features. 
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We can then use LQ,Tk,i to measure the temporal inconsistency as: 

ILQ,Tk,i l - 1 

]t(Q, Tk,i) = L ILQ,Tk,i (l»LQ,Tk,i (1+1) 
1=1 

(3.12) 

where the superscript t is used to identify temporal ordering. The final geometric incon­
sistency score is defined as 

(3.13) 

This geometric score finds the geometrical inconsistency in relative ordering of match­
ing spatio-temporal features. 

3.6 Temporal Order Invariance: Experimentation 

A comprehensive set of experiments is performed on publicly available multi-view ac­
tion datasets. These are standard multi-view human action datasets and pose significant 
challenges to action recognition. In next subsections, we give a brief description of the 
datasets, experimental settings, recognition accuracy, performance comparison and discuss 
the effects of important parameters. 

3.6.1 Multi-view Action Datasets 

In this experimentation, we have used Multi-view WVU Action Dataset for initial investi­
gation and used well-known Inria multi-view IXMAS Dataset [15] for extensive validation 
of our approach. 

IXMAS Action Dataset: The Inria Xmas Motion Acquisition Sequences (IXMAS) 
is widely used dataset for view-invariant action recognition. It contained 11 actions, 
each performed by 10 actors three times and captured from five different views. We 
collected 1650 video sequences. These actions include check-watch, cross-arms, scratch­
head, sit-down, get-up, turn-around, walk, wave, punch, kick and pick-up. The variations 
in viewpoints between five different cameras pose significant challenge. 

WVU Multiview Action Dataset: The dataset was collected as part of the research 
work on real-time human action recognition in a camera network. The multi-camera 
network system consists of 8 cameras that provide completely overlapping coverage of a 
rectangular region R (about 50 x 50 feet) from different viewing directions. It contained 11 
actions, each performed by 10 actors three times and captured from eight different views. 
These actions include nodding head, clapping, waving 1 hand, waving 2 hands, punching, 
jogging, jumping jack, kicking, picking, throwing and bowling. This dataset is available 
from [31]. 

3.6.2 Experimental Setup 

Most of the previous approaches use leave one out cross validation (LOOeV) setting. 
Therefore, we use the same setting to facilitate performance comparison. Each action 
video is used as a query once and matched with each multi-view fusion table to calculate 
a matching score. Every multi-view fusion table has an action label. Action label of the 
best matching (the highest matching score) fusion table is assigned to the query video. 
The confusion matrices are displayed to demonstrate the recognition accuracy. Multi-class 
SVM is used for classification using one-against rest approach. 
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3.6.3 Performance Comparison 

Performance comparison against the existing techniques is performed in terms of recogni­
tion accuracy. Recognition accuracy is calculated for each individual camera setting and 
average recognition accuracy for all cameras is displayed'. 

Average Recognition Accuracy: The confusion matrix in figure 3.12 shows results for 
WVU action dataste while figure 3.13 shows results for IXMAS action dataset. This 
performance is calculated by averaging the performance accuracy of all camera viewpoints 
of WVU and IXMAS dataset. We achieve 92.04% performance accuracy for WVU and 
recognition accuracy of 83 .5% for IXMAS. This performance for IXMAS is comparable to 
the existing techniques of [52], [51] and [71] which show average recognition accuracy of 
82.8%, 83.4% and 71.2% respectively. 
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Figure 3.12: Confusion matrix for WVU dataset which shows average recognition accuracy 
of all viewpoints. 
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Figure 3.13: The Confusion Matrix for IXMAS Action dataset (with geometric consis­
tency) with recognition accuracy (83.51 %). 
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Figure 3.14: Recognition performance of IXMAS dataset from five different cameras with 
different viewpoints with geometric consistency ON. 
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Figure 3.15: Actions instances ofIXMAS dataset from five different cameras with different 
viewpoints with geometric consistency OFF. 

Recognition A ccuracy vs Camera Viewpoints: In addi tion to average recogn it ion ac­
curacy. we have shown recognition against individual camera ettings and compared it 
with other exiting techniques. Table 3.2 shows performance comparisoll with the exist ing 
techniques. 

Figure 3.14 and 3.15 show recogni t ion performance of individual actions vs five camera 
viewpoints. Majority of the action classes show higher recognit ion results except act ion 
captured from camera5. One explanation is that this camera sett ing is exactly above the 
actor and due to the nature of complex action dynamics. it is difficu lt to comprehend 
actions properly by spatio-temporal feature '. 

To effectively te t the performance of our approach. we have included further experi­
mentat ion on mult i-view WVU dataset. We used seven views for training and eight h one 
for testing and displayed our re ul t in fusion table from (T1· .. Tll) are t rained for seven 
different view and labeled for respective action cla.'3se . nodding head. clapping. waving 
1 hand. wav ing 2 hands. punching. jogging. jumping-jack. kicking. picking. throwing and 
bowling. It show that score is maximum for the respective query class. a throwing act ion 
for different view. Table 3.2 indicates performance comparison with other compet it ive 
approaches. 
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Figure 3.16: Action matching score for individual Action (Throwing) in WVU dataset. 
Fusion table from (TI - T ll ) are trained for even different views and stand for respective 
action classes, nodding head, clapping . waving 1 hand,waving 2 hands. punch ing. jogging. 
jumping-jack, kicking. picking. throwing and bowling. It shows that score i maximum for 
the respective query class, a throwing action for different view. 

Table 3.2: Performance comparison with the existing techniques. Average recognition is 
the average performance for all five cameras. 

Method Caml Cam2 Cam3 Cam4 Cam5 Avg 
Ours 89.2 84.7 86.9 87.0 69.7 83.5 
Ref. [52] 86.6 81.1 80.1 83.6 82.8 82.8 
Ref. [51] 86.7 89.9 86.4 87.6 66.4 83.4 
Ref. [71] 74.8 74.5 74.8 70.6 61.2 71.2 

3.6.4 Importance of Geometrical Order Consist ency 

T he most important setting is the matching with order consistency constraint. To know 
the importance of geometry constraint. we turn-off' the geometric consistency. We ob­
tained average recognition accuracy of 74.27o/c for IXMAS action dataset which shows a 
degradation of 9.2% when order con istency is OFF . This large degrad ation shows the 
importance of order consistency in devising a view-invariant action representat ion and 
greatly validates our conjecture that: " The tempoml oTdeT of actions units within an 
action is invaTiant to viewpoint vaTiations" . 

3.6.5 Impact of Important paramet ers 

An important parameter in our approach is the value of , which effects the contr ibu­
tion of geometrical consistency. The performance increases as , increases with in a small 
range then for a long range of , . the performance remains, table and then again shows 
a degradation in performance. The reason is that as the value of , increases to a certa in 
range, the order consistency constraint would be overemphasized leading to degradat ion 
of performance. Table 3.3 indicates performance against three different value's of , for 
IXMAS dataset. 

The extraction of spatia-temporal cuboid features is an important part of our approach. 
The spatial size. b.x(a). b.y(o-). of t he cuboid is a function of a while the temporal size. 
b.t(T ). is a function of T. We use standard values of a = 2 and T = 4 [18] . In our 
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Table 3.3: The effect of different values of 'Y on average recognition accuracy comparison 
for IXMAS dataset. 

I Values of'Y I Accuracy I 
1.5 80.2 
2.5 83.5 
4.5 75.1 

experimentation, adequate value of minimum number of features m was found to be 5. 
Below this value recognition accuracy begins to suffer. At m = 4, average accuracy for 
IXMAS dataset is decreased by 9.8 percent. 

3.6.6 Limitations and Average Computation Time 

In case of very complex action dynamics and difficult camera viewpoint, number of spatio­
temporal features decrease and too few features can effect performance. Therefore, one 
limitation is the high dependence on spatio-temporal feature extraction. Some viewpoints 
make their extraction really difficult like camera 5 viewpoint in IXMAS. We have used a 
consistency constraint that is not affine invariant. Therefore, improvements are possible 
by devising new feature extraction technique and consistency constraint. 

On Intel (R) CoreTM 2 Duo system with 4GB RAM and un-optimized Matlab code, we 
get average run-time of 6.3 seconds excluding feature extraction time. To calculate feature 
extraction time, we utilize 1200 frames of resolution 480 x 360, and get 0.8 frames/sec for 
cuboid features. 

3.7 Conclusions 

In this chapter, we proposed the concept of temporal order invariance and investigated our 
conjecture that: "The temporal order of action units within an action is invariant to view­
point variations". To ensure global temporal order in part-based action representation, we 
utilize spatio-temporal features, feature fusion and geometrical order constraint. For each 
action class, we construct a feature fusion table to facilitate feature matching. A matching 
score is then calculated based on global temporal order consistency constraint and number 
of matching features. Finally, the action label of the class with maximum value of match­
ing score is assigned to the query action. Experimentation is performed on challenging 
multiple view IXMAS and WVU action datasets with encouraging results comparable to 
the existing view-invariant action recognition techniques. Our framework is independent 
of the type of spatio-temporal detectors. The reason for selection of cuboid features is 
their remarkable success in part based action recognition approaches and robustness to 
noise and occlusion. 

However, in case of very complex action dynamics and difficult camera viewpoint, 
number of spatio-temporal features decrease and too few features can effect performance. 
In addition, if some motion is present in background context of videos, it also generates 
spatio-temporal features which may lead to wrong interpretation of actions. To deal these 
limitations offeature extraction, we explore epipolar geometry. In the next chapter, we ex­
ploit epipolar geometry for extracting view-invariant action recognition without trajectory 
tracking, feature extraction and training by using spatio-temporal optical flow. 
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Chapter 4 

Action Analysis using Epipolar 
Geometry 

Nobody untrained in geometry may 
enter my house. 

",Plato (428 BC - 348 BC) 

The research work presented in this chapter has been published as: 

1. Anwaar-ul-Haq, Iqbal Gondal and Manzur Murshed, "On dynamic scene geometry 
for view-invariant action matching", In Proc. CVPR 2011. 

2. Anwaar-ul-Haq, Iqbal Gondal and Manzur Murshed, "AVITAR: Achieving view­
invariant tracking-free action recognition" , submitted to IEEE Transaction on Image 
processing, 2012. 

In previous chapter, we proposed the concept of temporal order invariance to solve 
view-invariant action recognition and pointed out its limitations due to feature extrac­
tion. An alternative way of achieving view-invariant action recognition is the exploitation 
of geometrical models between different views of the same action. However, geometrical 
approaches heavily rely on tracking. For instance, these approaches consider detection of 
landmark points on human body and their tracking by assuming that motion trajectories 
for all landmark points are available throughout the course of an action ( figure 4.1 ). Un­
fortunately, due to occlusion and noise, detection and tracking of these landmark points 
is not robust. To alleviate this problem, majority of the work assumes that point trajec­
tories are manually marked which is a clear drawback and lacks automation claimed by 
computer vision. This chapter presents important visual cues extracted from geometrical 
constraints and flow correspondences to avoid landmark point detection and their tracking 
for extraction action dissimilarity measures. 

Our geometrical model is based on multiple view geometry fitting between action 
instances. The benefits of using multiple view geometry is that it simplifies hard problems 
related multiple views [32, 33, 34]. Estimation of essential matrix and then fundamental 
matrix from stereo image pair goes back to Longuet-Higgins and eight point algorithm 
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Figure 4.1: Traditional trajectory based action representations which show landma rk dc­
tection on actor body and tracking of landmark points. (a) walking action tracking, (b) 
complex trajectories for an activity and (c) trajectories within an action volumc. 

[35]. Therefore, inspired from related geometrical models. a successful series of incremental 
work related view invariant action recognition is addresses in [36 . 37. 3 . 39. 40. 41. 42. 
43, 44] which is based on the consideration of action point trajcctories an I exploitation 
of geometry between trajectories of different views of thc same action. Onc of thc major 
benefit of these geometrical based methods is that such methods do not need any training. 
The hasic idea originated wi th the use of affine epipolar geometry constrain ts in a . erics 
of work [36 , 38] which howed that t he maxima in spacc-t imc curvature of a 3D trajectory 
are persevered in 2D image trajectories. 

The main drawback of these approaches is the assumption of affine camcras. For 
projective camera model. t rajectories of 13 anatomical landmarks arc matchcd by [42] 
under viewpoint , anthropometric and temporal t ransforms. Anothcr related work i t hc 
use of the point triplets with homography. rank con traint [40] and fund amental rat ios [41] 
which consider that the mot ion of an art iculated body can be decompo cd in to rigid motion 
of planes defined by triplet of body points. The main drawback of the a ll above a pproachcs 
i the decoupling of tracking and matching. It is as 'ume I that tracking of the landmark 
points on human body has been performed and t rajectori e. a re avail ablc. Dcspi tc its 
success, it is hard to achieve as basic assumption is very strong. Due to occlusion and noise . 
t he detection of landmark points is not a lway robust re ult ing in manual intc rventions. 
As a result detection of landmark points and thcir tracking is performed manually and 
epipolar geometry rank constraint are applied on manually obtained trajectories by almost 
all the representative geometrical based methods [36. 37. 38. 39. 40. 41. 42. 43 . 44] which 
lack automation and to make pract ical use of geometrical solu tions. this problem is needed 
to be addressed and its solution becomes the objective of our work. 

The novelty of our work is t he development of view-invariant act ion dissimila ri ty 
measures without any tracking. It avoids the lise of salient point detection on human 
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Figure 4.2: Flow diagram of general framework of our approach. A VITAR (achieving view­
invariant tracking-free action recognition) . It show how two video sequences are processed 
to calculate action matching core is calculated from a series of steps. Fir t . based on 
option (AVITAR1- AVITAR2). silhouettes are extracted or mul ti-frame feature matches 
are calculated and corresponding opt ical flow is u ed for calculation of flow correspondences 
then score is calculated based on rank of corresponding observation mat rix. 

body, t rajectory calculation and t rajectory matching which are long standing assumptions 
in geometrical based action recogni t ion methods. This i achi eved u ing spatio-temporal 
optical flow and rank constraint defined to establi h epipolar geometry between video 
sequences containing similar or di imilar actions. In addi tion. we explore Iynamic scene 
geom try using two-body epipolar constraint which facili tates to work on original act ion 
volumes without prior segmentation of actors. We show that mul t i-body flow fund amental 
matrix captures the geometry of dynamic scenes and help in devi ing an action matching 
score across different views. 

Given two video equence cap tured from unknown viewpoint and containing unknown 
action by same or different actors. our object ive i to determi ne that act ions are same or 
different. We fur ther extend it to develop a framework for action retrieval and recogui t ion. 
We di cuss t hat we have to modify our geometrical model accordi ng to available action 
repre enta tions. In addition. the use of rank con "t raints can save compu tat ional efforts 
such as the calculat ion of fund amental matrix and only observat ion or mea.c;uremC' nt mat rix 
is sufficient to determine if epipolar geometry can be established . 

Taking into consideration that human action is a patio-temporal phenomenon. we 
apply constraints on optical flow to be patio-temporally consistent . Spatio-temporally 
consistent optical flow helps us in devising spatio-temporally consistent flow fundamental 
matrix and by defining rank constra ints on flow fundamental matrix we are able to deri ve a 
dissimilari ty score for action sequences . Vve proceed incrementally by defining two vari ants 
of our approach: (1) We ext ract actor body ilhouettes from original video sequences and 
calculate spatio- temporally consistent opt ical flow between respective frames of two videos 
and then fit epipolar geometry. As fundamental matrix remains same for static scenes . we 
can calculate action similari ty score between two actions being performed in t ime domain . 
(2) In addi tion. we observed that silhouett extraction is not robust in all circum tances 
especially in case of noise and occlusion. Therefore. we remove pre-processing tep of 
silhouet te extraction theocratically by maximizing t he exploitation of epipolar geometry. 
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The flow diagram illustrating the general framework of our approach is shown in figure 
4.2. 

We take action representation in static camera environment as a case of dynamic scene 
where background is stationary and actor is dynamic. As scene is not entirely static, we 
get inspiration from structure and motion recovery for scenes consisting of both static and 
dynamic parts, also known as multi-body segmentation from perspective views without 
knowing which measurement belong to which part of the scene. As we consider only static 
background and dynamic actor, it is simplified to two-body fundamental matrix, also 
known as segmentation matrix [46]. It has already been shown [47] that such matrix can 
linearly be computed from image measurements after embedding all the image points in 
high dimensional space. Based on these investigations, we derive a new similarity measure 
for matching actions across different views, without prior segmentation of actors. 

Our contributions are threefold: 

• We try to address strong assumption of landmark point detection and tracking in 
geometrical based methods and propose a tracking-free training-free approach for 
view-invariant action matching maximizing the exploitation of multiple view geom­
etry. Therefore, rather than decoupling the problem of tracking and matching, we 
solve the problem in a single go (Section 4.1), 

• We explore and introduce a novel application of multi-body fundamental matrix 
and propose a novel similarity score for action matching based on the property 
of segmentation matrix or two-body fundamental matrix (Section 4.2). It helps 
establishing view invariant action matching framework without any preprocessing 
on original video sequences, 

• We apply optical flow on stereo images (corresponding frames of two action videos) 
to achieve observation matrix but apply consistency constraint on four images (one 
image in advance) to get spatio-temporally consistent optical flow. Spatio-temporally 
consistent optical flow based on loop consistency of four images (combination of 
consecutive and corresponding images) is introduced. It help in devising a robust 
observation matrix free from outliers caused by redundancy in optical flow (Section 
4.3). 

4.1 Calculating Action Matching Score using Static Funda­
mental Matrix 

The epipolar geometry is the intrinsic projective geometry between two views and fun­
damental matrix encapsulates this intrinsic geometry, a 3 x 3 matrix of rank 2. In this 
section, we show how epipolar geometry can be employed to extract action matching score. 
However, unlike previous trajectory based approaches [36, 37, 38, 39, 40, 41, 42, 43, 44], 
actions are not represented by trajectories. 

4.1.1 Action Representation 

We represent the current pose and posture of an actor in terms of all body points in 
3D space A = AI, A2··· An where Ai = (x, y, z), n is equal to size of frame (number 
of pixels). We calculate flow correspondences based on dense and consistent optical flow 
between aligned and normalized actor silhouettes from respective frames of two video 
sequences. 
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Figure 4.3: Static epipolar geometry with two fixed cameras. A denotes 3D point (point 
on actor body) , Ar and Al denote projections on right and left image planes. As cameras 
are static, fundamental matrix should be satisfied between respective fram es if sufficient 
correct correspondences are available. 

4.1.2 Establishing Fundamental Matrix 

Assume two static cameras view a 3D point A as shown in figure 4.3 The vectors Al and 
Ar refer to same 3D point in left and right camera frames. The vectors al,ar are the 
projection of 3D point A to the left and right reference camera frames. 

The left and right reference frames of camera are related by xtrinsic parameters 
defining a rigid tran formation in 3D space as [32. 34]: 

Ar = R(Al - T), (4 .1 ) 

where R is the rotation from left to right camera reference frame. and T is translation 
vector connecting centers of two cameras. 

The equation of epipolar plane through A can be written as the coplanar ity condition 
of vectors Pl ,T , and Al - Tor 

(4 .2) 

Using equation 4.1 . we get 
T T (R Ar) x Ai = 0 (4.3) 

As vector product can be written as a mul t iplication by a rank deficit matrix. 

( 4.4) 

where 

S= [~z 
-Ty 

-Tz Ty 1 o -Tx E 1R3 X 3
. 

Tx 0 
(4.5) 

By virtue of this fact. we can write equation 4.3 as: 

T T Ar RSAl = 0, Ar EAl = 0, E = RS (4.6) 
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The matrix E is called the essential matrix. By perspective projection, we can write: 

(4.7) 

where Jz, ir are focal lengths and Z is the distance between A and baseline T of stereo 
system. Therefore, we can write equation 4.6 as: 

a~RSal = O,a~Eal = O,E = RS (4.8) 

Let Ml and Mr are intrinsic camera parameters. We can write a relationship for 
image coordinates in left and right views of the scene as Ar = MIPI and Al = MrPr, 
where Ar = (x, y, 1) and Al = (x', y', 1) are homogeneous pixel coordinates. Putting these 
relations, we can write equation 4.7 as: 

(4.9) 

which presents epipolar constraint where F E 1R.3x3 is the fundamental matrix. 

4.1.3 Derivation of Action Matching Score 

Action matching score is based on the assumption that in case of static camera, funda­
mental matrix must be satisfied between two action instances represented in respective 
frames of two video sequences containing only intensity based human silhouettes. To de­
termine that if fundamental matrix is satisfied, it is not necessary to calculate it as rank of 
measurement matrix is enough to determine that fundamental matrix exists. Therefore, 
defining a rank constraint, we can derive action matching score. The only worry is the 
calculation of measurement matrix based on reliable correspondences. Rather than using 
manual correspondences or trajectories, we use dense flow correspondences that further 
eliminate the need of tracking. 

Optical flow establishes relationship between moving actor body between two respec­
tive frames of two video sequences. We use flow correspondences between respective frames 
as Ar = (x, y, 1) and Al = (x + u, y + v, 1). To find meaningful correspondences, we as­
sure that both silhouettes are spatially aligned and normalized which we attain through 
aligning centroid of region of interest (ROI) in respective frames. In addition, rather than 
using binary values we use intensity values for calculating reliable optical flow. 

For Xi where i = 1··· n, n ~ 8, we can write an expression OF = 0 where 0 E 

lR.nx3 is the observation or measurement matrix based on image correspondences between 
corresponding silhouette frames as: 

c: +,UIXI 
X!YI + UIYI Xl + UI X!YI + VIXI y~ + V!YI YI + Xl Xl YI 

;) F~O 
XnYn + UnYn Xn + Un XnYn + VnXn 

2 
Yn + Xn Xn + UnXn Yn + VnYn Xn Yn 

(4.10) 

For unique solution, rank of 0 has to be eight. Unfortunately, due to noise it may not 
be exactly eight. In this case, the smallest 9th singular value of 0 should be close to zero. 
Based on the property that fundamental matrix F remains the same for static scenes, we 
can use this property for matching different view actions across different video sequences 
without any tracking. 
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4.2 Calculating Action Matching Score using Multi-body 
Fundamental Matrix 

In previous section, we have assumed that actor silhouettes are available which require fine 
segmentation of actors from t heir background scene. In t his section, we explore how we can 
use epipolar geometry without segmentation of actors from their background . The need for 
extending epipolar geometry based action matching score to two-body case is t he removal 
of actor silhouet te ext raction as pre-processing assumption which is difficult to achieve 
in scenarios of noise and occlusion. Therefore, compared to previous section which uses 
extracted actor silhouet tes, here we use original video frames containing complete scene 
including actor as well as background. 

Let (Xl , X 2) be image point pair associated wi th two frames of a scene belonging to any 
of n independent moving objects. According to mult i-body epipolar geometry constraint 
[47], there exists fundamental matrix Fi E R 3 such that following constraint is satisfied : 

n 

( 4.11) 
i=l 

regardless of the object to which this image pair belongs. 

4.2.1 Establishing Two-body Fundamental Matrix 

Now, imagine the simplest case of mult i-body epipolar geometry with n = 2. Fig. 4.4 
represents two frames of a scene wi th static (background) and dynamic (actor) points . 
Image points pair (xl'x~), (x~,x~) as subscript is image number and superscrip t is the 
type of object; actor (dynamic) and background (static). Equation can be written as: 

(4. 12) 

This equation is no longer bilinear but rather bi-quadratic of any point X one of the 
points associated to either actor or background . Furthermore . the equation is no longer 
linear in FI and F2 but rather bilinear in FI and F2. However. if sufficiently many image 
correspondences are given, we can still recover FJ and F2 despi te the fact t hat we do not 
know the object or motion to which each image pair belongs [47] . 

a 
X 

• 
b 

X 

Figure 4.4: Two views of two independent objects in each image . one static (belonging to 
background) and other dynamic ( belonging to actor) and two-body epipolar geometry is 
explored in this scenario. 

To convert a nonlinear problem into linear problem. polynomial embedding of image 
points to high dimensional space can be u 'ed. Veronese map of degree 2 can be us d. Let 
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x = (x, Y, z) be any image point belonging to either actor or background, Veronese map 
of degree 2 for X is given as: 

( 4.13) 

Definition 1: Veronese Map 

The Veronese Map of degree n Vn : p2 ~ pMn-1 be the nth order lifting giving: 

with total of 

different monomials. 

(n + 1)(n + 2) 
2 

(4.14) 

( 4.15) 

The Veronese map can convert the multi-body epipolar constraint into a bilinear ex­
pression. The Knonecker product of Veronese map V2(XI) E ]R6 and V2(X2) E ]R6 is a 
vector in ]R36 whose entries are exactly the same as monomials given in (18): 

V2(XI ) ® V2(X2) = [ml, m2, ... , m36f E ]R36 

where m~s are the monomials sorted in the degree-lexicographic order: 

222 222 2 2 2 
XIX2'XIX2Y2'XIX2Z2'XIY2,XIY2Z2'XIZ2 
222 

XIYIX2,XIYIX2Y2,XIYIX2 Z2,XIYIY2,XIYIY2Z2,XIYIZ2 
222 

XIZIX2,XIZIX2Y2,XIZIX2 Z2,XIZIY2,XIZIY2 Z2,XIZIZ2 
222 222 2 2 2 

YIX2,YIX2Y2,YIX2 Z2'YIY2,YIY2Z2'YIZ2 

YIZIX§,YIZIX2Y2,YIZIX2 Z2,YIZIY§,YIZIY2 Z2,YIZIZ§ 
222 222 2 2 2 

Zlx2,Zlx2Y2,zlx2 Z2,zlY2,zlY2Z2,zlz2 

(4.16) 

( 4.17) 

These 36 monomials are 'basis' in the space ]R36. Finally, two-body epipolar constraint 
now can be written as: 

( 4.18) 

We call F E ]R6x6 as two-body fundamental matrix. 

4.2.2 Derivation of Action Matching Score 

This section uses rank constraint on polynomial embedding of flow correspondences for 
matching actions across different viewpoints. The action matching score is calculated by 
satisfying the existence of two-body fundamental matrix but we do not need to calculate 
two-body fundamental matrix as rank of measurement or observation matrix is sufficient 
to tell if two-body fundamental matrix is satisfied. However, as this observation matrix is 
calculated by complete two-body scenario (dynamic actor and static background) rather 
than single body (actor silhouettes), defined rank constraint is also different. Reliable 
flow correspondences in this case are possible by using feature matching based consistent 
optical flow to be described in next section. 

Given a collection of N image point pairs (X'j, Xj)f=l' the vector f satisfies the system 
of linear equations: 
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( 4.19) 

In order to recover F uniquely from above, we need: 

rank(O) = M~ - 1 ( 4.20) 

In our special case, n = 2, therefore, for linear solution to exist, F must have at most 
rank thirty five according to [47, 72], and we can take the smallest singular value of 0 as 
similarity measure for view invariant action recognition. Unfortunately, due to noise, the 
rank of matrix F may not be exact. In this case, the smallest singular value of 0 should 
be close to zero. This is the similarity score derived from two-body epipolar geometry to 
be employed on original action volumes without any pre-processing on videos for matching 
actions. 

4.3 Seeking Spatio-temporally Consistent Flow Correspon­
dences 

Actions are spatio-temporally dynamic patterns for which we get dense stereo flow cor­
respondences. Several optical flow algorithms are now present in literature. However, 
due to temporal variations and movements of actor body parts, majority of optical flow 
algorithms are unreliable in our case. We want these flow correspondences to remain 
consistent within consecutive stereo pairs of respective action sequences that is possi­
ble only by using multi-image spatio-temporally consistent optical flow. Most recently, 
spatio-temporally consistent optical flow [88] have been proposed based on loop consis­
tency of three images (two consecutive from one sequence and third from respective stereo 
sequence). To accommodate these algorithms to serve our need, we had to extend loop 
consistency to four image (two respective frames from each stereo sequence). 

Similarly, three image based feature matching [89] is extended to four-image feature 
matching to be used for feature based spatio-temporally consistent optical flow. This 
extension increases performance in terms of average angular (AAE) and average endpoint 
error (AEE) as shown in Fig. 4.5 which presents and compares motion field, AAE, AEE 
for standard stereo video sequences of waving. Standard stereo video sequence is used as 
its benchmark (ground truth motion field) is available. 

4.3.1 Multi-frame Spatio-temporally Consistent Optical Flow 
Frame Case 

Four 

We consider a stereo video setup with two cameras providing un-calibrated and not nec­
essary synchronized image sequences. We refer two frames as It = n c ]R2 ---+ ]R and 
12 = n c ]R2 ---+ ]R and the forward flow between them is h,2 : n c ]R2 and backward flow 
as hI : n c ]R2. We build our four image based optical flow based system by enforcing 
the symmetry between forward and backward flow. It means that if a point x in the first 
image It does not become occluded, following its flow to the second image h and then 
returning with the backward flow should remain exactly the same at the starting point. 
This forward and backward flow can be written with a symmetry condition as: 

( 4.21) 

61 



If we extend it further and consider four temporally and spatially neighboring frames 
i.e. h, 12 , Ia and 14. For a point that is visible in all four frames, a loop from hover 
h, Ia and 14 and going back to h should end exactly at the starting place. This loop 
consistency can be written as: 

fl(X) h2(X) + h3(x + h2) + h,4(x + h2 + 12,3) 

+/4,1 (X + h2 + 12,3 + /3,4) ~ 0. 

( 4.22) 

All four flows involved in this loop consistency are unknown initially as an iterative 
strategy is defined by following the TV - L2 (total variation- L2 norm) framework [88], an 
optimized differential optical flow framework for stereo videos. Accordingly, the update is 
defined as : 

f k+1 - fk dlf .. - .. + a iJ·. ZJ ZJ ' ( 4.23) 

where a = 'I/J(fs)'I/J(fI) is weighting parameter with 'I/J = 1 - exp( -II:"~) with constant 
d > 0. To update the flow li~j' other unknown flow are kept fixed. Using a quadratic 
energy function E with differentiable L 2 norm 

( 4.24) 

setting 8~~q = 0, resulting 2 x 2 linear system is solved for the update dAj. e is 
V1-,) 

auxiliary variable and \7 is smoothness parameter. The current estimate Itt is used to 

calculate TV-optimized version Hj. Then all other unknown flow fields are updated. Flow 
fields are updated only when the symmetry and loop consistency constraints are satisfied. 

4.3.2 Spatio-temporally Consistent Optical Flow based on Multi-frame 
Matching 

Multi-image feature point matching can be helpful for optical flow calculation on unsyn­
chronized stereo sequences. Usually, feature matching is performed between two images at 
a time like nearest neighbor matching that compares the distance of the nearest neighbor 
to the distance of the second nearest neighbor and only accepts a match if their ratio is be­
Iowa threshold [100] but recently three-image feature matching has been proposed by [89]. 
We build upon this idea to extend feature matching framework to four spatio-temporally 
neighboring stereo video frames described in Appendix A. Now, we can include matched 
features into optical flow for stereo sequences described in the previous section. 

4.4 Robustness to Anthropometric Variations, Occlusion and 
Noise 

In addition to temporal synchronization, our approach shows considerable robustness to 
anthropometric variations, occlusions and noise. Here is the detail how we deal these 
factors: 
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(a) 

(e) AAE= 2.75, AEE= 0.98 (d) AAE= 2.59, AEE= 0.92 

(e) AAE= 2.51, AEE= 0.89 (f) AAE= 2.45, AEE= 0.87 

Figure 4.5: Spatio-temporally Consistent Optical Flow Multi-frame Setup: It utilizes four 
frames, two consecutive frames from each stereo video sequence. It is calculated between 
two stereo frames but temporal consistency constraint is used obtain only temporally 
consistent flow values. Fig. shows the original setup but as AVITAR 1 uses intensity 
based silhouettes, it utilizes silhouettes. 
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Algorithm 2 AVITAR (A generic snapshot of pseducode for matching actions in two 
videos.) 

1: procedure CALCULATESCORE(Vl, V2, nframes) 
2: for i +- 1, frames do 
3: 11 +- VI [i] 
4: 12 +- V2[i] 
5: 13 +- V2[i + 1] 
6: h +- Vl[i + 1] 
7: [U, V] +- consistentflow(h, h, h, 14) 
8: [Xl, X 2] +- findMatches(h, h, U, V) 
9: 0 +- calObservationMatrix(Xl,X2 ) 

10: E +- SVD(O) 
11: Score[i] +- min(E) 
12: end for 
13: end procedure 

4.4.1 Dealing Anthropometric Variations 

Human action is very complex in nature which is affected by different anthropometric 
variations. To deal these variations, we base our approach on posture constraint [43] in 
multiple view geometry which articulates that fundamental matrix is satisfied between 
two actors if their postures are same irrespective of their anthropometric variations (scale, 
clothing etc.). 

Postural constraint is based on the conjecture that two actors performing the same 
action have similar postures at a corresponding time instant giving a clue that actions can 
be recognized by measuring the dissimilarity of postures based on epipolar geometry. 

Fundamental matrix does not encapsulate only the relative position in different views 
but relative poses of actors and their anthropometric variations as well. Therefore, fun­
damental matrix should be satisfied between similar postures of different actors. 

4.4.2 Dealing Noise 

Noise is inherent problem of almost every system. In our case, dense flow correspondences 
may contain noise. It is handled in two fashions: (i) Consistent optical flow based on loop 
consistency removes outliers and shows robustness to noise, (ii) Only 8 correct correspon­
dences in case of static F and 35 in case of two-body F are required to find a unique 
solution. 

Ideally the smallest singular value of A should be zero but in case of noise it can deviate 
from zero. Even if it is close to zero, it demonstrates good differentiation characteristics 
which is utilized by our approach. 

4.4.3 Dealing Ocd usion 

In real world scenarios, occlusion is unavoidable. Occlusion handling is not directly ad­
dressed in this work but our algorithm has sufficient support for occlusion handling due 
to loop consistency constraint in consistent optical flow calculation. 
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Figure 4.6: Effect of anthropometric variations. Epipolar geometry is fitted between 
points on two subjects with physical differences in structure but with similar pose. In this 
experiment, we click points on body left subject and respective epipolar line is automati­
cally drawn on right subject passing through respective body point. It validates posture 
constraint. 

4.4.4 Dealing Temporal Synchronization 

Temporal un-synchronization of actions may be caused due to execution of actions or the 
different frame rates of the camera. To deal these anthropometric variations , we base 
our approach on posture constraint [43] in multiple view geometry which articulates that 
fundamental matrix is satisfied between two actors if their postures are same irrespective 
of their anthropometric variations (scale, clothing etc .). 

Postural constraint is based on the conjecture that two actors performing the same 
action have similar postures at a corresponding time instant giving a clue that actions 
can be recognized by measuring the dissimilarity of postures based on epipolar geometry. 
Fundamental matrix does not encapsulate only the relative position in different views but 
relative poses of actors and their anthropometric variations as well. Therefore, fundamen­
tal matrix should be satisfied between similar postures of different actors. This scenario is 
presented in figure 4.6 in which epipolar geometry is satisfied between two different actors 
with different clothing and body variations but having same posture. 

4.5 Experimental Results 

4.5.1 Datasets and experimental Set-up 

For experimentation and performance comparison, we have used standard action datasets: 
(1) IXMAS Dataset [15], and (2)Multi-view WVU Action Dataset [31]. These are bench­
ma.rk data.sets for view-invariant action recognition. Our experimentation includes both 
variants of our approach: (1) AVITAR 1: which uses static F based matching score using 
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algorithm 1 and (2) AVITAR 2: which uses two-body F based matching score using algo­
rithm 2. We present recognition results for our approach in terms of confusion matrices 
and video retrieval results. We also do robu tnes analysis to different effects of noi e. 
occlusion and viewpoint variations. First . we give a brief description of our data sets: 

View Invariant Action Matching against Query Achon 
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Figure 4.7: The video matching result again. t the query act ion sequence for WVU multi­
view dataset 

IXMAS A ction Dataset: The Inria Xmas Motion Acquisition Sequences (IXMAS) is 
widely used data set for view-invariaut action recognition. It contained 11 action . . each 
performed by 10 actors three t imes and captured from fi ve different views. We collected 
1650 video sequences. The e actions include check-watch. cross-arms. scratch-head . sit­
down . get-up. turn-around. walk. wave. punch. kick and pick-up. 

The variations in viewpoints between five different cameras pose ignificant challenge 
e pecially in ca e of cam4 which is placed above the actor. All actions are temporally 
synchronized. 

WVU Multiview Action Dataset: The dataset was collected as part of the research work 
on real-t ime human act ion recognition in a camera network. T he multi-camera network 
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Figure 4.8: Video Retrieval results for walking action of Alba action against different view 
long video sequence which contains 1200 frames . 

system consists of 8 cameras that provide completely overlapping coverage of a rectangular 
region R (about 50 x 50 feet) from different viewing directions . 

It contained 11 actions, each performed by 10 actors three times and captured from five 
different views . These actions include nodding head, clapping, waving 1 hand, waving 2 
hands, punching, jogging, jumping jack, kicking, picking, throwing and bowling. However, 
we exclude standing sequences as standing do not represent any action . 

4.5.2 Action matching and retrieval 

In these experiments, we show how action similarity scores demonstrate their discrimi­
native property to match similar actions in the presence of different actions in the same 
view as well as same action captured from different viewpoints. for better understanding, 
we present both microscopic and macroscopic analysis of our experiments. We show that 
discriminative property of our measures is helpful in retrieval of similar actions against an 
action query similar to leave one out cross validation strategy. 

In microscopic analysis , we take only few frames (35 frames for each action sequence) 
and calculate action similarity scores proposed above in AVITAR 1 and AVITAR 2 that 
uses the smallest singular value of respective observation or measurement matrix displayed 
in figure 4.7. In this experiment , 9 action sequences are matched against test sequence 
of throwing action. These 9 sequences are comprising four (1 for each action of kicking, 
punching, running and jumping) and five sequences of throwing action captured from 
different viewpoints (0,45 ,90 , 180, 360). X-axis in figure 4.7 shows frame numbers and Y­
axis shows respective matching score. It shows that throwing sequences from all viewpoints 
are clearly differentiable (contain lower values) against test throwing action by different 
actor. This experiment is performed severalty for AVITAR 1 and AVITAR 2. 
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Figure 4_9: Confusion matrix for IXMAS dataset against AVITAR1 and AVITAR2 

In macroscopIC analysis , we additionally retrieve individual action from long video 
sequence comprising all 11 actions in the sequence. We use Alba action sequence in 
IXMAS multi-view data set for this experiment. The query action is taken as walking 
action and retrieval results against different view test sequence based on the smallest 
singular-values of measurement matrices are shown in figure 4.8. X-axis in figure 4.8 
shows frame numbers and Y-axis shows respective matching score. AVITAR1 , AVITAR 2 
and comparable trajectory based approaches [36 , 37, 38, 39 , 40, 41, 42, 43 , 44] are used 
in this experiment. The smallest singular values of observation matrix should be lower 
(value approaching to zero) when matching action segment starts and higher elsewhere. 
Therefore, action segment can be retrieved for values below a given threshold. A threshold 
of 0.4 is set for this experiment. All approaches were able to extract action segment. 
However , advantage of our approaches is the achievement of goal without tracking. 
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Figure 4.10: Confusion matrix for WVU dataset against AVITARI and AVITAR2 

4.5.3 Action recognition 

For action recognition, We use entire data from IXMAS and WUV dataset. We calculate 
the confusion matrices in both cases. Confusion matrices are standard way of representing 
recognition accuracy. We divide each action into fixed number of frames and repeat 
recognition based on average value of matching scores form complete sequence. We use 
leave one out cross validation (LOOCV) strategy and match each action from arbitrary 
viewpoint against all other actions including same action from all viewpoints. The diagonal 
values comprising higher average recognition results show success of our approaches. These 
confusion matrices are shown in figure 4.9 and figure. 4.10 respectively. 

For WVU multiview dataset, we take actions from viewpoint VI as query and match 
it against all 7 different views separately. We calculate action matching scores using both 
algorithms, (AVITAR 1, AVITAR 2). Finally, we calculate confusion matrices based on av­
erage recognition accuracy against all five cameras which are shown in figure 4.11. V5 and 
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Figure 4.11: Effect of occlusion on recognition accuracy of two datasets used: IXMAS and 
WVU using AVITAR 1 and AVITAR 2 approaches. 

V6 proved different viewpoints while actions nodd-head and wavcl showed compara tively 
low accuracy as other actions . 

Similarly, for IXMAS dataset. we take cam1 a query and match it against all 5 different 
view separately. We calculate action matching scores using both algorithms. (AVITAR 
l. AVITAR 2) . 

Finally. we calculate confusion matrices based on average recognition accuracy against 
all five cameras which are shown in figure 4.11 . In additi on, we show performance of our 
approach for each of five camera eparately shown in fi gure 4. 13 and 4.14. 

The cam5 proved to be the most difficult viewpoint as it is placed exactly above t he 
actor. The average accuracy for all five viewpoints for static and two-body cW 'e is 83.69% 
and 79.45% respectively which is comparabl e to the. tate of the ar t as shown in table 4.5 .5. 
Two-body case came with lower accuracy which i due to large var iat ion in background 
scenes. Another explanation is that most frame came wi th less reli able matches and we 
had to kip these frames. 

4 .5.4 Robustness to noise and occlusion 

Due to unavailability of action dataset with known effects of noise and occlusion. we 
decided to use artificial effects to introduce no is and occlusion in the data: et. 
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Figure 4.12: Effect of noi e on recogni tion accuracy of two datasets used: IXMAS and 
WVU using AVITAR 1 and AVITAR 2 approache . 

Figure 4.13: Performance for five views of IX 1AS dataset against static fund amental 
matrix based metric. 

For noise. we follow t he footsteps of [43] and de igned an experiment . We added 
noi e sampled from zero mean normal distribu tion wi th (J from 0.8 to 0.32 in to fl ow 
correspondences and recalculated the matching cores (AVITARl. AVITAR2) for actions 
bowling and turn around respectively and similar action video from taken from different 
viewpoints. Results are shown in figure 4.12 in which X-axi show. frame numbers and 
Y-axis shows respective matching score. It shows that, hows , mall average divergences 
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of 0.14 if (J from 0.0 to 0.16 (robustness to certain level)and rise sharply afterwards (due 
to large number of false correspondences) for AVITAR 1. Thi trends is followed by 
AVITAR2 that shows small divergences of 0.22 if (J from 0.0 to 0.16 (robustness to certain 
level)and rise sharply afterwards (due to large number of false correspondences). We 
repeat this experiment for other dataset videos that resulted in decrease of 7.8% and 9.1 % 
in recognition rate using AVITAR1 and AVITAR2 respectively. 

Figure 4.14: Performance for five views of IXMAS dataset against two-body fundamental 
matrix based metric. 

For occlusion, we artificially added occlusion by introducing horizontal and vert ical 
linea. It is done by setting middle 35 rows and columns values to zero. Figure 4.11 shows 
the reconstructed videos as well as their effects on recognition rate. It resulted in decrease 
of 4.2 and 7.9 percent in recognition rate using AVITAR1 and AVITAR2 respectively. 
We observed that AVITAR2 is more effects by both noise and occlusion than AVITAR 
1. One possible reason is that addition and occlusion effects the number of correct flow 
correspondences in this case. 

4.5.5 Comparison to other approaches 

We used leave one out cross validation in our experimentation , therefore , we compare our 
approach to t hose approaches in li terature that have used the same strategy. 

Method Cam1 Cam2 Cam3 Cam4 Cam5 I Avg I 
AVITAR 89.0 84.6 86.2 85.0 72.7 83 .5 
Ref. [52] 86.6 81.1 80.1 83 .6 82.8 82.8 
Ref. [51] 86.7 89 .9 86.4 87.6 66.4 83.4 
Ref. [71] 74.8 74.5 74.8 70.6 61.2 71.2 

Table 4.1: Performance comparison with the existing techniques. Average recognition is 
the average performance for all five cameras. 

The comparison is taken in terms of average recogni t ion rate. The most of analysi 
experimental data and results are available about IXMAS action dataset and its five view 
In t able 4.5.5, we give a detailed comparison in terms of recognition rate. 

4.5.6 Discussion and limitations 

In this chapter. we explored the use of epipolar geometry for view-invariant action recog­
nition without tracking and training and showed how we maximize it exploitation by 
defining different variants of geometrical models according to the available input . 

We showed that den e optical flow based fund amental matrix can help in devising a 
tracking free solut ion to view invariant action recognition. Additionally. in case when 
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exact segmentation of actor and background is not available, constraints based on static 
F are no more applicable. It deals correspondences from actor body and background at 
the same time leading to errors in fitted epipolar geometry. This problem can be solved 
using two-body fundamental matrix or segmentation matrix. 

During experimentation, we also observed a small trade-off between automation pro­
vided and recognition accuracy achieved. In case of A VITAR1, we need actor silhouettes 
but the recognition rate is quite high as we are using only interesting part from original 
video sequences. On the other hand, for AVITAR2, recognition is slightly lower but it 
provides an additional ease of fitting epipolar geometry without actor segmentation from 
original videos. However, the objective and theme of both AVITAR1 and AVITAR 2 is 
same: (i) They both are based on epipolar geometry, (ii) They both need no tracking 
involved and (iii) They both need no training to achieve recognition. 

Some limiting aspect of our approach is its computational time which is mostly due to 
computation of dense optical flow but the rest of calculations and computations are very 
fast (steps after the calculation of flow correspondences). On Intel (R) CoreTM 2 Duo 
system with 4GB RAM and Matlab code, we get average run-time for testing video of 35 
frame is 179.3 seconds for AVITAR1 and 285.2 seconds for AVITAR2 in processing time. 
Experimental results show that further improvement in recognition accuracy is possible if 
more accurate optical flow and robust features extraction techniques are used. 

4.6 Conclusions 

In this chapter, we propose a method to achieve view invariance in action recognition 
without any tracking. The smallest singular value of measurement matrix is sorted out in 
static and two-body fundamental matrices and used as action matching score. New action 
matching scores have been proposed based on efficient utilization of multiple view geom­
etry constraints. The optimal utilization of different preprocessing options is investigated 
and ways of their minimization are sorted out theocratically and experimentally. The 
experimental evaluation against well known action datasets validates the fact that actions 
can be matched across different views without tracking and other strong assumptions. 

However, inherent issues of time complexity for optical flow and addition assumption 
of temporal synchronization of actions are considerable obstacles using geometrical ap­
proaches. Both of these problems are dedicated research fields in computer vision. There­
fore, to further exploration of view-invariance, we try to exploit those approaches which 
overcome limitations of optical flow measurements and feature extraction. In next chap­
ter, we discuss 3D frequency domain filtering which tries to fix these issue by providing a 
better solution without feature extraction and optical flow calculations. 
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Chapter 5 

Action Analysis using 3D 
Frequency-Domain Filtering 

By nature, men are nearly alike; by 
practice, they get to be wide apart. 

'" Confucius (551 479 BC) 

The research work presented in this chapter has been published as: 

1. Anwaar-ul-haq, I. Gondal and M. Murshed, Action recognition using spatio-temporal 
distance classifier correlation filters, In Proc. DICTA, Noosa Resort, 201l. 

2. Anwaar-ul-haq, I. Gondal and M. Murshed, VIEW-DCCF: Space Time correlation 
Filter for View-invariant Action Recognition, submitted to pattern recognition Let­
ters, 2012. 

In previous chapter, we discussed visual cues for action recognition build on geometrical 
modeling based on multiple view geometry. We pointed out computational complexity 
of optical flow and restriction of temporal synchronization associated with geometrical 
methods. Despite its success in matching actions across different viewpoints, practical 
applicability is hard to visualize due to initial assumptions and optical flow. In this chapter, 
we explore a global action representation based on 3D frequency domain information 
analysis and filtering. On one hand, it is free from complication of feature extraction and 
restriction of number of features and on the other hand, it is faster as compared to optical 
flow based geometrical modeling due to fast frequency domain phase matching. 

One successful approach is the application of space-time pattern templates. Represen­
tative work includes temporal matching of periodicity information from a set of optical 
flow frames [48]; two component temporal template of motion energy image (MEl) and 
motion history image (MHI) [13], space-time shapes induced by the silhouettes in the 
space-time volume [49] and space-time behavior based correlation [49]. However, majority 
of these template based approaches suffer from high computational overhead due to spatial 
template matching. 

To overcome the problems faced by these template based methods, the utilization of 
correlation filters is investigated for recognizing action instances with promising results. 
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The representative work in this regard is the development of Action filters [29, 121] that 
has generalized traditional 2D Maximum Average Correlation Height (MACH) filter into 
3D MACH filters by including temporal dimension. However, the major gain is in terms 
of low computational cost as response of the filter can be analyzed in frequency domain. 
A similar frequency domain action matching strategy has been proposed by [50] which 
addresses inherent discrepancies in MACH filters. Despite promising results for action 
recognition, these techniques provide no support for recognition actions across different 
viewpoint variations. As compared to template based view invariant action matching 
framework like motion history volumes [1 5], a research gap in present for the development 
of space-time action filters for matching actions across different viewpoints. It motivates us 
to propose frequency domain action filtering strategy with robustness to view variations. 
In addition , we address the inherent discrepancies in traditional filters like ActionMACH 
filters [29 , 121]. 

One of the weaknesses of MACH filters is their ineffectiveness to encapsulate inter-class 
variability. Therefore, these filters are trained only for one action class at a time and sep­
arate ActionMACH filters are needed for each action class. Secondly, ActionMACH filters 
overemphasize average training sample, a biased treatment of low frequency components 
and behave like average filter and may loose finer details of the training set. They empha­
size high energy (low frequency) components and attenuate low energy (high frequency) 
components of the training set leading to poor intra-class discrimination. Thirdly, as 
action datasets are normally misaligned in space and time, they create problems in learn­
ing and testing as synthesized filters are not shift-invariant. Finally, action recognition 
frameworks based on these correlation filters are not view-invariant. Therefore, to fully 
utilize the benefits of correlation based action filtering, it is highly desirable to develop 
correlation filters for unconstraint action recognition. Some representative actions scenes 
are shown in figure 5.1. 

,- -. ---,. 

Figure 5.1: Two representative action classes, (Lifting, Walking) show strong intra-class 
similarity and inter-class discrimination which should be encapsulated by a discriminative 
fil ter. 

In this chapter, we address above mentioned weaknesses and propose an extended 
spatio-temporal distance classifier correlation filter (Action ST-DCCF filter) for action 
recognition. Our approach offers following advantages: (i) A single Action ST-DCCF filter 
successfully captures inter-class variability and avoids overemphasize on average training 
sample by empirically setting contributions of low as well as high frequency information. 
(ii) Secondly, it presents a different interpretation of correlation filters as method of apply­
ing a spatio-temporal transformation to the data and transformation matrix is restricted 
to being Toeplitz ensuring shift invariance. It measures similarity between an ideal trans­
formed reference and testing action using a shift-invariant mean square distance measure 
handling misalignments and (iii) Another benefit is that resulting decision boundaries are 
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quadratic which are more 'selective' for choosing feature space portions for assigning to 
various classes and utilize entire correlation plane rather than emphasizing only single 
point like correlation peak. These advantages of Action ST-DCCF filter can potentially 
improve action recognition performance. 

In addition, we address above mentioned weaknesses and propose a new view-invariant 
action recognition approach based on our extended space-time distance classifier correla­
tion filter (VIEW DCCF filter) for view invariant action recognition. Our objective is 
to recognize an unknown test action category taken from arbitrary viewpoint against 
space-time action filters, each trained for given action categories taken from a specific 
viewpoint. Our approach offers following advantages: (i) It provides view-invariance, 
(ii) Action DCCF filter successfully captures inter-class variability and avoids overem­
phasize on average training sample by empirically setting contributions of low as well as 
high frequency information. (iii) It presents a different interpretation of correlation filters 
as method of applying a spatio-temporal transformation to the data, restricted to being 
Toeplitz ensuring shift invariance. It measures similarity between an ideal transformed 
reference and testing action using a shift-invariant mean square distance measure handling 
misalignments and (iv) another benefit is that resulting decision boundaries are quadratic 
which are more 'selective' for choosing feature space portions for assigning to various 
classes and utilize entire correlation plane rather than emphasizing only single point like 
correlation peak. 

These advantages of VIEW DCCF filter can potentially improve performance of view­
invariant action recognition. Finally, we extract an action similarity score based on class 
votes and within-cluster distance ratio. It helps us to recognize actions from an arbitrary 
viewpoint not present in training view clusters. Class votes help setting priority for class 
with maximum votes in all view clusters and within-cluster distance ratio highlights margin 
of selected class from other classes in a view cluster. All these contributions successfully 
fill up the research gap present in space-time filtering based action recognition. 

5.1 The Action ST-DCCF filter 

The problem of action recognition can be considered as multi-class discrimination problem 
by simultaneously including all the classes to be separated. By applying global transfor­
mations to the input data, inter-class distance can be increased while making classes as 
compact as possible. To achieve this objective, correlation can be visualized as a linear 
transformation and filtering process can be mathematically expressed as multiplication 
by a diagonal matrix in the frequency domain [116J. For a correlation filter to be used 
as transform, we require that instances of different classes become as different as possible 
after filtering. Then, shift-invariant mean square error distances can be computed between 
the filtered class instance and the transformed references of different classes and input is 
assigned to the class to which the distance is the smallest. Distance classifier correlation 
filter is a filter with the above mentioned objective. 

Human action is a spatio-temporal construct and therefore, temporal information is 
an important attribute of action instance. To visualize a distance transform for action 
instances, we need to extend it in spatio-temporal sense. We name this extension as 
spatio-temporal distance classifier correlation filter (ST-DCCF). 

Mathematically, distance of input action instance A(x,y,t) to a reference R(x,y,t) of class 
c under a linear transformation H can be described as: 

(5.1 ) 

where A is a d-dimensional column vector constructed from a spatio-temporal volume of 
action instance with d = x * y * t pixels with x horizontal axis, y vertical axis and t as time 

76 



test(-.Ik) 
z H • _Ik .m1 m3. jump 

m • 
m2 

_VI • 
H"m2 

Figure 5.2: The schematic diagram of Action ST-DCCF filtering showing Transformation 
H which increases inter-class distance while simultaneously making each class more com­
pact. It shows that after the t ransformation. distance dl is the smallest making test action 
closest to walking class. 

axis, H is a linear global transform to maximally eparate the clas es and the superscript 
'+' represents the complex conjugate t ran pose. Figure 4.2 schematically depicts the basic 
idea of 3-class Action ST-DCCF filter. 

A general C class distance classifier problem is formulated as: Let aic be the d­
dimensional column vector containing 3D FFT (Fourier Transform) [117] of the ith training 
action volume of cth class. 1 ~ i ~ Nand 1 ~ c ~ C 

Let mc be the mean 3D-FFT of class c such that: 

1 N 
m c = N LAiC 

i= l 

(5. 2) 

Under a linear transformation H. t he difference between the mean of any two cla. es 
Cl and C2 can be written as: 

(5.3) 

Taking the expectation of the elements of Vel over all frequencies yields 

(5.4) 

The quantity in eq . 5.4 is a measure of the spectml sepamtion between classless C] and 
C2 over all frequencies. We want IVC1C2 12 to be large. Taking all pos'ible pair of cla'ses 
into consideration. we define spectml sepamtion (SS) criterion as: 

1 c 
88(h) = h+[C L (c - Ci)(C - ci)+]h = h+Th 

i = l 

(5 .5) 

where T = [b 2::;:1 (C - Ci)(C - Ci)+] is a d x d non-di agonal matrix of rank ~ (C - 1) and 

C = b 2::;:1 Ci is the mean of the entire dataset. If 88 is maximized by appropriate choice 
of h , the average content of the classe will differ greatly and become well separated. At 
the same t ime. we want to improve intra-class compactness by creating balance between 
low and high frequency components by similarity m easure (SM) given as: 
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SM(h) 
1 c 1 N 
C L N L h+[Xie - (1 - ,B) Mc] [Xie - (1 - ,B) Mc]+ h 

e= l i= l 

= h+Sh 

(5.6) 

This step is different from traditional DCCF filter [116] which overemphasizes low 
frequency components (average training sample) only. The value of ,B varies from 0 and 
2 and by controlling its value, the filter can be prevented from the biased t reatment of 
low frequency information. Other objective is to maximize spectral separation (SS) and 
minimize similarity measure (SM), thus maximizing the ratio R (h) as: 

SS(h) h+Th 
R (h) = SM(h) = h+Sh (5 .7) 

(5 .8) 

We refer optimum h as the spatio- temporal distance clas ifier correlation fil ter (ST­
DCeF). This filter deals with entire correlation pace and not j list one point at the origin. 

5.1.1 Action Classification 

Given a test action input z . we determine its distance (shift-invariant mean square error) 
from other classes, say ideal reference for class c as: 

de IH*z - H *mel
2 

= IH *z I2 + IH *me12 - 2R{ z+ HH*me } 

= p + be - 2R{z+ HH*me } 

(5 .9) 

where H is a diagonal matrix wi th h along its diagonal. R denote real part. p = IH * zl2 is 
the energy of the transformed input. b = IH *me1 2 is the energy of transformed class mean 
me and H H*m e is t he effective fil ter for class c. 

(9) (b) 

( e ) 

Figure 5.3: The simplest case of 2-class ST-DCCF fil ter. (Above (a).( b)) sample action 
volumes of wave and bend action (Bottom) A synthesized ST-DCCF transformation for 
two classes. (c) is visually ambiguous due to encapsulation of many t raining samples. 
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For shift-invariant distance calculation, we are interested in the smallest value of dc 

over all possible shifts of the target with respect to the class references. For simplest case 
of only two classes (Cl' C2), we get distances, (dcl'dc2) and input sequence is assigned to 
class Cl if (dcl < dc2 ) and to class C2 if (dc2 < dcl ). In this way, action class label attached 
to the found class (action class with the smallest distance) is assigned to the query action. 
A simple case of 2 class action ST-DCCF filter is presented in figure 5.4. 

5.2 Action Representation 

We represent action sequences with the creation of spatio-temporal volumes by concate­
nating the frames of a single complete cycle of an action. We begin the process of training 
the Action ST-DCCF filter from the training action sequences. We compute the temporal 
derivative of each pixel resulting in a volume for each training sequence. Following the 
construction of the spatio-temporal volumes for each action in the training set, we proceed 
to represent each volume in the frequency domain by performing a 3-D FFT operation 
[117] where 3D-FFT operation for action volume a(x, y, t) is given by: 

~~~ . uv vy wi 
A(u,v,w) = ~ ~ ~ a(x,y,t)exp(-J21r( X + Y + T)' 

t=o y=o x=O 

(5.10) 

where A( u, v, w) is the resulting volume in frequency domain, X is the number of columns, 
Y is the number of rows and T is the number of frames of the volume. 

5.2.1 ST-DCCF for Vector Value data 

ST-DCCF can be used with scalar data (e.g., intensity values, temporal derivative) as 
well as vector value data (e.g. optical flow) but the process of synthesizing a filter on 
vector value data can not employ traditional Fourier Transform for scalar data. The class 
of Fourier transform for vector value data is refereed as "Clifford Fourier Transform". A 
similar approach has been used by [29]. Elements belonging to this algebra are known as 
multi-vectors. The Clifford Fourier Transform for multi-valued functions in 3D is defined 
as: 

~F(u) = J F(x)exp( - 21ri3(X, u) )Idxl (5.11) 

where i3 represents a complex number in Clifford algebra, such as i3 = ele3 and i~ = -1. 
the inverse transform is given by: 

~-l F(x) = J F(x)exp( -21ri3(x, u) )Idxl (5.12) 

The rest of filter synthesis remain same as in scalar data case. 

5.3 VIEW-DCCF: View-invariant Space-time distance clas­
sifier correlation filtering 

Temporal information is an important attribute of action instance. To visualize a distance 
transform for action instances, we need to extend it in spatio-temporal sense. We name 
this extension as space-time distance classifier correlation filter. 

The problem of action recognition can be considered as multi-class discrimination 
problem by simultaneously including all the classes to be separated. By applying global 
transformations to the input data, inter-class distance can be increased while making 
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VI~w clust~r 1 

walk H 

test 

Figure 5.4: The schematic diagram of VIEW-DCCF filtering for single viewpoint showing 
Transformation H which increases inter-class distance while simultaneously making each 
class more compact. It shows that after the transformation, distance d1 is the smallest 
making test action closest to walking class. Similar t ransformation are required for each 
view cluster. 

classes as compact as possible. To achieve this objective, correlation can be visualized as 
a linear transformation and filtering proces can be mathematically expressed as multipli­
cation by a diagonal matrix in the frequency domain. For a correlation filter to be used 
as transform, we require that instances of different classes become as different as possible 
after filtering. Then, shift-invariant mean square error distances can be computed between 
the filtered class instance and the t ransformed references of different classes and input is 
assigned to the class to which the distance is the smallest. Di tance classifier correlation 
filter is a filter with the above mentioned objective. 

5.3.1 Filter Theory 

Let A ik be the d-dimensional column vector containing 3D FFT (Fourier Transform of 
space-time action volume) of the ith training action volume of kth class, 1 ::; i ::; Nand 
1 ::; k ::; C. Let mk be the mean 3D-FFT of class k such that: 

1 N 
mk = N 2:= Aik , 1 ::; k ::; C 

i = ] 

(5.13) 

Maximizing Spectral Separation: Under a linear transformation H. the differ­
ences between the means of any two classes i and k can be written as: 

(5.14) 

Taking the expectation of the elements of Vi over all frequencies yields 

(5.15) 

The quantity in eq. 5.15 is a measure of the spectral separation between classes i and 
k over all frequencies. We want IVik I to be large. 

Taking all possible pairs of classes into consideration . we define spectral separation (SS) 
criterion in proposed filter as below: 
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c 
SS(h) = ~ L 1 h+m - h+mi 12 

i=l 

1 C 
= h+ {- L(m - mi)(m - mi)+}h 

C i=l 

= h+Th 

(5.16) 

where T = [b L:~l (m-mi)(m-mi)+ is a dx d non-diagonal matrix ofrank ::; (C-l) 

and m = b L:~l mi is the mean of the entire dataset. If SS is maximized by appropriate 
choice of h, the average content of the classes will differ greatly and become well separated. 

Minimizing Within-Class Similarity: At the same time, we want to improve 
intra-class compactness by creating balance between low and high frequency components 
by Within-class similarity measure (W8) given as: 

WS(h) 
C N 

~ L {~ Z)Aih* - (1 - a)Akh*)+(Aih* - (1 - a)Akh*)} 
k=l i=l 
1 C 1 N _ _ 

= C L{h+(N L(Ai - (1- a)Ak)*(Ai - (1- a)Ak))h} 
k=l i=l 

= h+Skh 

(5.17) 

where Sk = (iJ L:i:l(Ai - (1 - a)Ak)*(Ai - (1 - a)Ak)), a is emphasis parameter, its 
value ranges from 0 to 2 and is set imperially. By controlling its value, the filter can be 
prevented from the biased treatment of low frequency information. Other objective is to 
maximize spectral separation (88) and minimize Within-class similarity measure (W8), 
thus maximizing the ratio R( h) as: 

R(h) = SS(h) = h+Th 
WS(h) h+Sh 

(5.18) 

The solution that maximizes this ratio is given by: 

(5.19) 

In multi-class setup, the optimum solution is the dominant eignvector of S-lT with 
the largest eignvalue. We refer optimum h as the space-time distance classifier correlation 
filter or Action-DCCF. This filter deals with entire correlation space and not just one 
point at the origin. 

5.3.2 View-invariant Action Classification 

To deal view variations, we divide the action training set into view clusters where ev­
ery view cluster contains data in range of certain view range or specific viewpoint. For 
every view cluster, we design Action-DCCF filter as described in the previous section. 
It encapsulates all action classes within a view cluster. For testing, we rely on using a 
shift-invariant mean square distance measure of test sequences from other action classes 
in a view cluster. For shift-invariant distance calculation, we are interested in the smallest 
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value of dk over all possible shifts of the target with respect to the class references. The 
algorithmic steps has been described in Algorithm presented below: 

Algorithm 3 Action-DCCF algorithm 

1: procedure VDCCF(JftVols, nClass, nViews) 
2: for i t-- 1, n View do 
3: for j t-- 1, nClass do 
4: Cm t-- get mean of each f ftVols 
5: Vm t-- get variance of each f ftVols 
6: end for 
7: M mean t-- get overall mean of all classes 
8: M var t-- get overall variance of all classes 
9: d t-- size of single fft Vol ume in f f tV ol s 

10: H t-- zeros(d + 1, nClass) 
11: h t-- get DCCF transform from Eq.5.19 
12: H(l : d, 1) t-- h 
13: for k t-- 1, nClass do 
14: b t-- get class constant for class k from Eq.5.20 
15: f t-- get effective filter for class k from Eq.5.20 
16: H(:, k + 1) t-- [I; bj 
17: end for 
18: V dccf t-- concatenate all H 
19: end for 
20: end procedure 

21: procedure DETECTA(Qf ftVol, nClass, nView, Adccf) 
22: for i t-- 1, n View do 
23: fptr t-- pointer to all Action-DCCF 
24: h t-- V dccf (1 : d, fptr) 
25: for k t-- 1, nClass do 
26: H (k) t-- get effective filter for each class 
27: b( k) t-- get class constant for each class 
28: g(k) t-- real(ifft3(QfftVol. * conj(H(k)))) 
29: d(k) t-- calculate distance from each class using Eq.5.20 
30: D t-- sort calculated distances from each class 
31: d1 t-- D(l), d2 t-- D(2), r(i) = d1/d2 
32: S(k) t-- calculate score for each class using Eq.5.21 
33: end for 
34: end for 
35: DetectA t-- class label with max-score in all clusters 
36: end procedure 

Given a query action input q, we determine its distance dk (shift-invariant mean square 
error) for class k in a view cluster as: 

dk = IH*q - H*mkl2 

= IH*qI2 + IH*mk12 - 2R{q+ HH*md 

= p + bk - 2R{q+ HH*md 
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where R denotes real part, p = IH*qI2 is the energy of the transformed input, b = IH*mk1 2 

is the energy of transformed class mean me (also known as class constant) and HH*mk 
is the effective filter for class k. 

Calculation of Action Similarity Score: We calculate similarity score (S) for each 
class. This similarity score is based on two calculations named within-cluster distance 
ratio (W) and class vote (V), both in range [0 - 1]. A within-cluster distance ratio (W) is 
computed for each Action-DCCF as ratio of the smallest distance to next (2nd) minimum. 
Smaller distances show better matches (ideally zero if there is an exact match with one of 
the classes within a view cluster) while larger ratios indicate greater ambiguity (the ratio 
is 1 when distances to both classes are equal). Its value may be different for different view 
clusters. Class vote (V) is the count of winning, vote counter for success of a class in all 
given view clusters. Its value is equal to 1 only if the respective class is the winner (gets 
the minimum distance score from query) in the respective view cluster else its value is 0 
(loser). The similarity score S for each class k is calculated as: 

M 

S = LV(c) - W(c) (5.21) 
e=l 

where c is cluster ID and M is number of view clusters. Finally, the label of the class with 
maximum score is assigned to the query action. 

5.4 Experimental Results and Discussion 

A comprehensive set of experiments are performed on two well-known human action data 
sets. The data sets represent actions performed both in constrained and unconstrained 
settings and represent different set of challenges for recognizing actions. In this chap­
ter, we have used temporal derivatives for ST-DCCF filter synthesis but other different 
data representations like optical flow and spatia-temporal regularity flow can be used in­
stead. The reason for using a simpler data representation is to get real information about 
improvement in performance of extracting discriminative information. 

5.4.1 Dataset and Experimental Setup 

The data sets used for our experimentations include KTH [27] and UCF Sports Action 
[29]. First data set is well known data sets and present controlled experimental settings, 
and therefore, can be used to benchmark our algorithm against existing algorithms. The 
second dataset is UCF Sports Action dataset which is relatively challenging due to its 
unconstraint settings. 

KTH Dataset: This data set contain 600 low resolution (160 x 120, 25fps) video 
sequences containing six action categories: walking, running, jogging, boxing, clapping and 
waving. In total, there are 100 video sequences for each action performed by 25 different 
actors. Every actor performs each action four times in four different backgrounds. We 
trained ST -DCCF filter for 500 video sequences and used rest of 100 videos for testing 
purpose. The sample detected action instances for KTH dataset are shown in figure 5.5 
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Figure 5.5: The detected action classes in KTH action dataset which include 6 action 
categories. This dataset is quite well known as a benchmark. 

UCF Sports Action Dataset: This dataset contain 197 video sequences with reso­
lution of 720x480. This dataset is really challenging as it contains actions performed in 
presence of clutter, interacting objects, shaky camera motion and captured from arbitrary 
viewing angles. We used off-the shelf VirtualDub Deshaker [120] for removing shaky mo­
tion. In addition , to negate background interference, we applied background substraction 
as pre-processing for this dataset. The actions include 10 action classes of running,walking, 
diving, kicking, high-bar ,lifting, skating, swinging, horse riding and golf actions. We used 
180 videos for training and remaining videos for testing purposes. The sample detected 
action instances for lICF sports action dataset are shown in figure 5.6 

Running Walking Golf High -bar Skateboard 
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-'7"'''' :.: .:- "" ,-, ", ... . ~~ 
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Horse Riding Lifting 
Kicking Diving Swinqinq 

.rt .-. i , r. 
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Figure 5.6: The detected action classes in lICF-Sports Action dataset which contain 
collection of broadcast sports action videos of 10 action classes including running,walking, 
diving, kicking, high-bar,lifting, skating, swinging, horse riding and golf actions. 
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5.4.2 Performance Comparison 

Recognition is performed in leave one out cross validation (LOOCV) setting. Each action 
video is used as a query once and the best matching video is selected using the smallest 
value of distance described above. Action label of the best matching clas is a signed to 
the query video. Comparison against the existing techniques is performed in terms of 
recognition accuracy. Recognition is performed and confusion and distance matrices are 
displayed. 

First confusion matrix shows resul ts obtained using ST-DCCF filter for KTH data et. 
We obtained average recognition accuracy of 93.16% for KTH action dataset. The similar 
nature of (jogging, running) and (clapping. boxing) i one cause of their lower performance. 
The clear defining boundary between such actions is difficult to vi uali ze. The rest of 
actions show higher recognit ion rate. Performance compari on with compet it ive techniques 
is shown in Table 5.1 in terms of average recognition accuracy. 

Boxing 

Clapping 

Waving 

Jogging 

Walking 

Running 

Figure 5.7: The Confusion Matrix for KTH Action dataset with recognition acc uracy 
(93.16%) for actions . I-boxing. 2-clapping. 3-waving. 4-jogging. 5-walking and 6-run ning . 

The pair of recognition matrices show results for UCF Sports action dataset which 
shows recognit ion accuracy is 74.44% for UCF sports dataset which is improved compared 
to 69.44o/c pre ented in [29]. Most of the action cla ses show higher recogn ition results 
except diving. lift ing and pole-vaulting. One explanation is th ir mix-up with each other 
due to similar motion patterns. Another reason is the nature of their com plex dynamics 
which are difficult to comprehend. 
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Diving .06 .00 .00 .00 .00 .19 

Golf .08 .00 .00 .00 .16 .00 .00 

Kicking .00 .00 .00 .00 .04 .00 .04 

Lifting .07 .00 .00 .00 .13 .00 .20 

Riding .14 .00 .00 .00 .00 .07 

Running .00 .00 .07 .00 .00 

Skating .00 .00 .13 .00 .00 

Swinging .06 .03 .03 .00 .00 

Walking .00 .05 .00 .00 .00 .00 

P-vaulting .20 .00 .00 .13 .00 .00 .00 

O/~ . Go -t6 ~/1, . ~i;t, ~v. 15'1: 15'1j., . Vv. ,0, 
II? v,... 1i' II? I~ " I? ' ~~. II? ~4: ' v~ 
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Figure 5.8: T he Confusion Matrix for UCF Sports Action Dataset (accuracy 77.66%) 
for actions, I-diving. 2-golf. 3-kick, 4-1 ifting. 5-riding. 6-running. 7-skating, 8-swinging. 
9-walking and lO-pole-vaulting. 

Method Accuracy I 
ST-DCCF 93.16 
Action MACH [29] 8 .66 
Cuboid Features [1 ] 81.17 
Bag-of-words [115] 83.33 

Table 5.1: Average recognition accuracy comparison for KTH dataset wit h other tate of 
the art technique . 

5.4.3 Impact of Important pa ram eter s 

An important parameter in act ion ST-DCCF fi lter i the value of (3 which effects the con­
tribution of frequency information. The performance of action ST-DCCF fi lter increases 
as (3 increases within a small range. Th n for a long range of (3 . the performance remains 
stable and then again show a degradat ion in perform ance. The reason is that (3 con­
trols the contribution of low-frequency compon nt '. A. th value of (3 increa.'3es a certain 
range, the high frequency component wou ld be overemphasized over the low- frequency 
components leading to degradat ion of fi.Jter performance. Table 5.2 indicate ' perform ance 
against three different value of (3 for KTH dataset. variations. 

Values of (3 

0.5 
0.9 
1.5 

Accuracy 

92.8 
93.0 
90.1 

Table 5.2: The effect of different values of (3 on average recognition accu racy compari son 
for KTH dataset, 
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5.5 VIEW DCCF Experimentation 

A wide range of experiments are performed on publicly available multi-view action datasets. 
These are standard multi-view human action data sets and pose significant challenges to 
action recognition. In the next subsections, we give a brief description of datasets, exper­
imental settings, recognition accuracy, performance comparison and discuss the effects of 
important factors. 

-. 

..... " 

I 
I 

Figure 5.9: An illustration of Different actions of IXMAS dataset by same actor. These 
actions include 1-check-watch, 2- cross-arms, 3- scratch-head, 4-sit-down, 5-get-up, 6-turn­
around, 7-walk, 8-wave, 9-punch, 10-kick and 11-pick-up. 

5.5.1 Multi-view Action Datasets 

In this experimentation, we have used Multi-view WVU Action Dataset for initial investi­
gation and used well-known Inria multiview IXMAS Dataset [15J for extensive validation 
of our approach. 

WVU Multiview Action Dataset: 
The dataset is collected as part of the research work on real-time human action recog­

nition in a camera network. The multi-camera network system consists of 8 cameras that 
provide completely overlapping coverage of a rectangular region R (about 50 x 50 feet) 
from different viewing directions. It contained 11 actions, each performed by 10 actors 
three times and captured from eight different views (see Fig. 1 for a single action). These 
actions include nodding head , clapping,waving 1 hand , waving 2 hands, punching, jogging, 
jumping jack, kicking, picking, throwing and bowling. This dataset is available from [31J. 

[XMAS Action Dataset: 
The Inria Xmas Motion Acquisition Sequences (IXMAS) is widely used dataset for 

view-invariant action recognition. It contained 11 actions, each performed by 10 ac­
tors three times and captured from five different views. We selected 1650 video se­
quences. These actions include check-watch, cross-arms, scratch-head, sit-down, get-up, 
turn-around , walk, wave, punch, kick and pick-up. The variations in viewpoints between 
five different cameras pose significant challenge. 

Experimental Setup: 
We use leave one out cross validation setting (LOOCV) to facilitate performance com­

parison. Action video is used as a query once and correlated with VIEW DCCF for each 
view cluster according to the detection algorithm described above. 
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The confusion matrices are calculated to demonstrate the recognition accuracy. For 
comparison for cross-view settings, we train ViewDCCFs for four cameras of IXMAS data 
and use fith for testing and train seven ViewDCCFs for WVU data and use eighth view 
for testing. 

5.5.2 Performance Comparison 

Performance comparison against the existing techniques is performed in terms of recogni­
tion accuracy. Recognition accuracy is calculated for each individual camera setting and 
average recognition accuracy for all cameras is displayed. 

A verage Recognition Accuracy: 
The confusion matrix in figure 5.10 shows results for WVU action dataset while figure 

5.11 shows results for IXMAS action dataset. This performance is calculated by averaging 
the performance accuracy of all camera viewpoints of WVU and IXMAS dataset. We 
achieve 89.86% for WVU and recognition accuracy of 82.9% for IXMAS. This performance 
for IXMAS is comparable to the existing techniques of [15] , [71] and [87] which show 
average recognition accuracy of 72.7%, 71.2% and 82.8% respectively. These matrices 
show only best obtained results with vector data and optimal parameter setting. With 
temporal derivatives , we get average accuracy recognition of 84.92% for WVU and 78.5% 
for IXMAS. 

nodd-head 

clapping 
wave 1 

wave2 

punching 

jogging 

jumping-jack 

kicking 

pick-up 
throwing 

bowling 

Figure 5.10: The Confusion matrix for WVU dataset which shows average recognition 
accuracy of all viewpoints (89.8%). 

Method Cam1 Cam2 Cam3 Cam4 Cam5 Avg 
Ours 85.7 81.6 84.9 81.8 80.7 82.9 
Ref. [15] 65.4 70.0 54.3.4 66.0 33.6 72.7 
Ref. [71] 74.8 74.5 74.8 70.6 61.2 71.2 
Ref. [87] 86.6 81.1 80.1 83.6 82.8 82.8 

Table 5.3: Performance comparison with the existing techniques. Average recognition is 
the average performance for all five cameras. 
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check-watch 
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scralch-head 

sit-down 

get-up 
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walk 
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kick 
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Figure 5.11: The Confusion Matrix for IXMAS Action dataset with recognition accuracy 
(82.9%). 

Recognition Accuracy vs Camera Viewpoints: 

In addition to average recognition accuracy, we have shown recognition against indi­
vidual camera settings for the purpose of comparison to other exiting techniques. Table 
5.3 shows performance comparison with the existing techniques. 

Figure 5.11 shows recognition performance of individual actions vs five camera view­
points. Most of the action classes show higher recognition. One notable thing is the 
excellent performance for actions captured from cameraS for which the camera setting 
is exactly above the actor and is sharp contrast to other camera settings. Majority of 
approaches show less performance for this camera viewpoint. 

Figure 5.12: Recognition performance of IXMAS dataset from five different cameras with 
different viewpoints 

5.5.3 Action Retrieval 

To effectively test the performance of our approach, we have retrieved action instances 
from multi-view WVU dataset using proposed similarity score. We used seven views for 
training and eighth one for testing and displayed our result in figure 5.13. 

ST-DCCFs (spatio-temporal distance classifier correlation filters) are trained for seven 
different views containing all action classes, nodding head, clapping, waving 1 hand, waving 
2 hands, punching, jogging, jumping-jack, kicking, picking, throwing and bowling. Figure 
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5.13 shows that score is maximum for the respective query class , punch action for different 
view. 

Matching lcores rot Punch &",lIon r es, from seven VlBW-ckJslltJ'l 
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Figure 5. 13: Action matching score for individual Action (Punch) in WVU dataset. View­
DCCFs are trained for seven different views. each containing respective action cla.: ses, 
nodding head , clapping,waving 1 hand,waving 2 hands, punching. jogging. jumping-jack. 
kicking, picking, throwing and bowling. It show that core is maximum for the respective 
query class , a punch action for different view not used in training phase. 

5.5.4 Impact of Important parameters 

An important parameter in VIEW-DCCF filter is the value of emphasis parameter a which 
effects the contribut ion of freq uency information. The performance of VIEW-DCCF filter 
increases as a increases within a small range. then for a long range of a. the performance 
remains stable and then again shows a degradation in performance. The reason is that 
a controls the contribution of low-frequency components. As the value of a increases 
a certain range, the high frequency components would be overemphasized over the low­
frequency components leading to degradation of fi lter performance. Table 5.4 indicates 
performance against three different values of a for WVU and IXMAS act ion datasets. 

Value of a Accuracy 

0.5 86.1. 80.1 
0.9 89.6. 82.8 
1.5 84.2. 81.3 

Table 5.4: The effect of different values of a on average recognition accuracy comparison 
for WVU and IXMAS datasets respectively. 
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5.5.5 Computational Time 

On Intel (R) CoreTM 2 Duo system with 4GB RAM and un-optimized Matlab code, we get 
average run-time for testing video as 14.38 seconds compared to 18.65 seconds described 
in [29] which shows improvement in processing time. 

5.6 Conclusions 

In this chapter, we propose the concept of space time correlation filtering for matching hu­
man actions captured from different views. It is based on spatio-temporal correlation that 
is very useful for separating multiple classes. The proposed space-time frequency domain 
filter overcomes the weaknesses of existing correlation filters by presenting improvements 
which include: (i) support for view invariance action recognition framework, (ii) single 
space-time filter for multiple action classes in single view cluster decreasing computational 
overhead, (iii) shift-invariant distance providing more generalization for misaligned test 
sequences and (iv) improved intra-class similarity measure contributing balanced treat­
ment of low and high frequency information. Experimentation has been performed on 
challenging action datasets which validates the utilization of our proposed VIEW-DCCF 
filter for view invariant action recognition. 

However, in all previous chapters including this chapter, context of action sequence 
was not given enough consideration for action recognition. Although context is not always 
important for recognition but it becomes a valuable visual cue in unfavorable visual con­
ditions like night vision. In next chapter, we investigate contextual action recognition by 
taking a challenging case study of night vision. 
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Chapter 6 

Action Analysis using Contextual 
Associations 

Always design a thing by considering 
it in its next larger context - a chair in 
a room, a room in a house, a house in 
an environment, an environment in a 
city plan. 

rv Eliel Saarinen ( 1873 - 1950) 

The research work presented in this chapter has been published as: 

1. Anwaar-ul-haq, I. Gondal and M. Murshed, Contextual Action Recognition in Night­
time video sequences, In Pmc. DICTA, Noosa Resort, 2011. 

2. Anwaar-ul-haq, I. Gondal and M. Murshed, Automated multi-sensor color video fu­
sion for nightime video surveillance, In Pmc. IEEE ISCC, Riccione, Italy, 2010. 

3. Anwaar-ul-haq, I. Gondal and M. Murshed, A novel color image fusion QoS measure 
for multisensor night vision applications, In Proc. IEEE ISCC, Riccione, Italy, 2010. 

4. Anwaar-ul-haq, I. Gondal and M. Murshed, SCARF: semi-automatic colorization 
and reliable image fusion, In Pmc. DICTA, Sydney, 2010. 

Our visual world experience is captured in scenes where visual dynamics occur in 
rich surroundings, exhibiting in-between contextual associations. It indicates that con­
textual analysis and scene perception can provide powerful clues for recognizing visual 
events which seldom occur without any background or related objects. Human actions are 
spatia-temporal visual events and recognizing human actions is an important computer 
vision research problem. It has a large number of potential applications in the areas of 
visual surveillance, video retrieval, sports video analysis, human computer interfaces, and 
smart rooms. These applications also represent action contexts and contextual cues which 
can provide a priori knowledge for modeling action representations. In previous chapters, 
we restricted our discussion about action recognition in presence of viewpoint variations. 
In this chapter, we extend this investigation by including the context of actions. Due to 
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variety of possible contexts, we focus our investigation towards less explored and challeng­
ing context of night vision . We show how contextual association and their enhancement 
enhances action recognition performance. 

The need for understanding actions in context is discussed by different researchers. 
Scene context is used for event recognition by [54] but it was only applied to static images. 
Recognizing actions in context is discussed by [53] which is formulated on bag-of-features 
framework and scene-action SVM- based classifier. It is focused on annotated actions in 
movies and uses script mining for visual learning. A similar approach [55] captures generic 
object based context by detectors and their descriptors are used as input for supervised 
learning. 

Figure 6.1: A nighttime scenario of waving action captured by low light visible and infra­
red sensors which presents visual information of complementary nature and lack certain 
visual information on individual basis. 

More recently, modeling of scene and object context is discussed by [56] for Hollywood2 
action dataset. All above approaches target action recognition in high-resolution action 
videos in movies. One typical benefit available to these approaches is the ease of finding 
visual interest points and detectors related to actors and their context. 

In this work, we present actions in night vision scenario which offers real challenges due 
to extreme low light conditions. None of the above approaches discuss nighttime visual 
context and recognition of actions at nighttime. Mostly recently, human action activity 
recognition is discussed in [57, 58] which focus recognition in infra-red spectrum. However, 
these approaches ignore action contexts which is not properly captured by infra-red senors 
and can not be categorized as contextual action recognition approaches. 

V./e argue that contextual action recognition is not possible using single sensor plat­
form due to the limitations of individual sensor to grab all available visual information 
about the scene. This situation motivates the use of multiple sensors of complementary 
nature. A common multi-sensor night vision system uses infrared images in case of forward 
looking infrared cameras and low light images in case of low light visible cameras. The 
infrared images are maps of infra-red radiation emission which is partly governed by the 
temperature of the object. Therefore, such sensors prove good for perceiving hot targets in 
a busy background, seeing through fog, and monitoring paths through a cluttered forest . 
However , they are not much effective during thermal crossover periods at night or after 
long periods of rain, as well as capturing scenery such as trees, leaves and grass in natural 
scene. On the other hand, low light visible cameras are able to capture surrounding en­
vironment but most of the time fail to capture specific targets especially hot bodies like 
a person in camouflage. In addition , even in case when targets are not hiding, low light 
conditions make their observation obscure. 
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Figure 6.1 shows a nighttime scenarios of waving action captured by low light visible 
and infra-red sensors. While actor and his motion is quite visible in infra-red spectrum, it 
obscures the context. On the other hand , actor hands which represent waving action are 
not visible while scene context is relatively visible in low light visible spectrum. 

The chapter is organized as follows: In next subsection , we describe the context en­
hancement of multi-sensor videos. Contextual action recognition of multi-sensor nighttime 
videos is presented in next section. Finally, experimental results and conclusion is pre­
sented. 

6.1 Context Enhancement 

The objective of context enhancement is to give day-like appearance to nighttime videos. 
Another justification behind this step is the limitation of individual sensor to present com­
plete information about the scene. It is possible through video fusion of registered video 
streams from infra-red and visible or transfer of nighttime motion contents to daytime 
static background images of the same scene. Although the color information is not ex­
plicitly used in our method but it gives general look and feel of daylight images. Due to 
variability and original quality issues with different datasets, we used different ways for 
context enhancement. Here we discuss these approaches briefly. 

6.1.1 Through Video Fusion 

The video fusion is a process of visual information integration from a number of regis­
tered video sequences without loss of information and introduction of distortion. The goal 
of video fusion is to create a single enhanced video sequence from complementary video 
inputs that is more suitable for the purpose of human visual perception, action and con­
text recognition. To achieve better quality and computation trade-off, we divided videos 
into low and high resolution and used different fusion approaches for their enhancement. 
For low visual quality videos, we used wavelet based fusion framework [145] in which ap­
proximation fusion is performed using principal component based fusion while absolute 
maximum rule is used for detail information. Figure 6.2 gives an illustration of video 
fusion results in this category. 

(8) (b) (c) 

Figure 6.2: An illustration of video fusion : (a) An infra-red video stream (b) A registered 
video stream from low light visible and (c) A fused video sequence from (a) and (b). 

For high visual quality videos, we used automatic color transfer based video fusion 
[146] which enhances video context by color transfer from a source image. The illustration 
of this approach is given in figure 6.3. 
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Figure 6.3: Color Transfer based Video Fusion: (a) An infra-red video stream 
(b) Registered video stream in low light visible spectrum (c) a source color image for 
color transfer and (d) a color fused video stream which contains structural fusion from (a) 
and (b) and color transfer from (c). 

6.1.2 Through Dynamic Contents Transfer 

We propose an alternative way of context enhancement for those videos for which we are 
not able to find nighttime visible counterpart. This is based on motion transfer from one 
video to another video and inspired from image blending [147]. The first video is infra­
red containing actor motion and the second video is stack of static background images 
captured at daytime. The motion transfer method is as follows: 

1- For each frame .h E F, create a video sequence V in which the ith frame Vi is 
generated as given below: 

2- Calculate optical flow between frame fi and fi+l to estimate temporal motion field 

3- Obtain the mask of moving pixels: ti = Imil > T where T is a threshold . 
4- Treat q as background, Ii for foreground, ti the mask of foreground , and apply 

Poisson blending [147] to obtain Vi. 

The example of motion transfer based video generation is shown in figure 6.4. in which 
motion of action captured in infra-red video is transferred to a static scene video (a stack 
of static background images). 

6.2 Contextual Action Recognition 

Our contextual action recognition is based on action matching score calculated from action 
similarity score while penalizing contextual dissimilarities. The flow diagram of our system 
is shown in figure 6.5. It is based on information fusion and action similarity estimation. 
The detailed description of these steps is as under. Information fusion and frequency 
domain matching are core points of our recognition system. 
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(I) (b) (e) 

Figure 6.4: Dynamic Content Transfer: (a) A static scene video sequence ( a stack of static 
scene frames), (b) An infra-red video stream with dynamic scene of actor performing an 
action and (c) Video sequence (a) after transferring motion contents from (b). 

Background subtraction is used as a pre-processing step for dealing action and context. 
There are numerous ways to achieve background subtraction, we have used mixture of 
Guassians for background subtraction [148]. After building Guassian model of background, 
for a foreground frame , we can estimate for each pixel whether it belong to background 
or foreground by comparing mean and standard deviation of values at that pixel position. 
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Figure 6.5: The flow diagram of our contextual action recognition system for context 
enhanced multi-sensor videos which includes background subtraction, information fusion, 
action and context similarity estimation. However, it shows offline training for only one 
action class and every action class needs to be trained separately in a similar manner. 

6.2.1 Action Silhouette Processing, Information Fusion and matching 

Background subtraction provides us foreground object information. We extract action 
silhouettes from these foreground frames for space-time information fusion related action 
instance. 
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For action silhouette fusion, actor silhouettes are first spatially aligned to a center 
position and then binary OR-based-fusion rule is applied to combine binary action silhou­
ettes from all training examples related a single action class to create a single fused action 
silhouette volume. OR-based-fusion rule is applied at each frame level to form a video 
sequence of fused silhouettes to be represented as a fused action silhouette volume. An 
illustration of action silhouette volume is shown in Fig. 6.6. 

A 3D FFT is applied to actor silhouette volume gives a frequency domain representa­
tion, 3D-FFT operation for action volume a(x, y, t) is given by: 

~~~ uv vy wt 
A(u,v,w) = ~ ~ ~ a(x,y,t)exp(-j27r( X + Y + T)' 

t=O y=o x=O 

(6.1 ) 

where A( u, v, w) is the resulting volume in frequency domain, X is the number of columns, 
Y is the number of rows and T is the number of frames of the volume. 

For matching 3D FFT volumes, we first convert 3D FFT volumes into 1D column 
vectors. These FFT column vectors are extracted from text sequence and fused action 
volume which gives us initial action matching score as. 

(6.2) 

where SA is similarity score for action class between test sequence T and fused action 
class volume A. FA, FT are 1D FFT column vector for fused action class volume and test 
sequence. 

o 

20 
I-

o 

40 80 

Figure 6.6: A fus,ed action silhouette volume for wave1 action class based on OR-based­
fusion rule applied at every frame instance from all training examples related wave1 action 
class. 
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6.2.2 Context Processing, Information Fusion and matching 

We encapsulate contextual visual information in background images in SIFT context im­
ages. In a SIFT context image, a SIFT descriptor [100] is extracted at each pixel to 
characterize local image structures and encode contextual information. 

We use median of five video frames from each video sequence (rather than using each 
frame) and call it context image. For all training videos in a single action category, we 
generate SIFT context images for each context image. Fig. 6.7 shows a visualization of 
SIFT context image. This visualization is obtained by mapping the first three principal 
components of each descriptor into the principal components of the RGB color space (i.e. 
the first component is mapped into R + G + B, the second is mapped into R - G and the 
third into R/2 + G /2 - B). 

(01 (hI 

Figure 6.7: An example of SIFT context image. SIFT descriptors are computed on a 
regular dense grid (for each pixel in an image). This visualization is obtained by mapping 
the first three principal components of each descriptor into the principal components of 
the RGB color space. 

Context in every training video is now represented by SIFT context image of dimension 
h x w x 128 where h, w stand for height and width respectively. For n training videos 
related an action category, we get n SIFT context images. This high dimensionality 
creates computational burden for any further processing. To deal with this problem, we 
use principal component analysis (PCA) based feature fusion. 

For n SIFT context images, we build a feature vector at every SIFT position by 
concatenating their descriptors and apply principal component analysis to obtain a fused 
SIFT descriptor of 128 dimension. The combined result of feature fusion generates a single 
fused SIFT context image for all instances of single action class. We use this fused SIFT 
context image for matching. 

We match SIFT context image from test video and fused SIFT context image using 
SIFT flow energy employed by [87] for SIFT flow, we rather use negative energy function 
as context matching score. For two SIFT context images T, F, test and fused context 
images, we define context matching score as: 

98 
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p,qEE: 

+min(alv(p) - v(q)l, d))} 

(6.3) 

where p, q are two neighboring pixels in c which is 4 x 4 neighborhood, w is a flow vector 
at p. Other threshold parameters are () = 300, a = 0.5, d = 2. To speed up SIFT image 
matching, we used coarse-to-fine matching scheme described by [150]. 

6.2.3 Contextual Action Matching Score 

The final contextual action matching score S is calculated by combining action similarity 
score and contextual matching score as: 

(6.4) 

where 'Y is contextual weight which controls influence of contextual cues in recognizing 
actions and would be discussed in the next section. 

6.3 Contextual enhancement using Video Fusion 

In this section, we extend the discussion about contextual enhancement using video fusion 
and propose automated color video fusion approach for night vision. In addition, we 
propose an objective quality index for objective evaluation of these approaches. 

Our visual world is furnished with colors which aid in visual perception as human eye 
can perceive only 100 shades of gray comparative to more than 400 hues (dominant color) 
and about 20 saturation (degree of delusion) levels per hue [154]. The color information is 
badly affected at nighttime due to the absence of sunlight creating a natural obstacle for 
attaining color night vision as conventional camera model is based on processing of sunlight 
and its dispersion into different colors. Specially designed night vision devices like light 
intensifiers use star or moonlight to gather few photons, convert photons into electrons, 
amplify electrons and convert them back into photons to get visible light for capturing 
views of the night scenes. State of the art hardware approaches like fourth generation 
night vision devices can act even in very low light conditions but these systems are very 
expensive. On the other hand, as electrons are hurled against a phosphorus screen, a 
green color image is produced which is far from day like color appearance. An alternative 
and cost effective approach is the use of multiple sensors and fusion of captured nighttime 
imagery. 

The operational requirement to fuse night vision imagery is due to the limitations of 
individual sensor to grab all available visual information about the scene [59]. A common 
multi-sensor night vision system uses infrared images in case of forward looking infrared 
cameras and low light images in case of low light visible cameras. The infrared images 
are maps of infra-red radiation emission which is partly governed by the temperature 
of the objects. Therefore, such sensors prove good for perceiving hot targets in a busy 
background, seeing through fog, and monitoring paths through a cluttered forest. However, 
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they are not much effective during thermal crossover periods at night or after long periods 
of rain and capturing scenery such as trees, leaves and grass in natural scene. On the 
other hand, low light visible cameras are able to capture surrounding environment but 
mostly fail to capture specific targets especially hot bodies like a person in camouflage. 
In addition, even in case when targets are not hiding, low light conditions make their 
observation obscure. 

To solve this problem, image fusion is used which extracts meaningful information 
from complementary sensor images and combines visual information into a single output 
image. Over the years, several image fusion techniques are developed which vary in their 
complexity, robustness and quality. One major trend in image fusion research is to sacri­
fice complexity to gain quality. However, oppose to images, complexity criterion has more 
significance in video domain which is intended for real time use. Therefore, video applica­
tions do not encourage algorithmic complexity and require simple and efficient information 
fusion. Furthermore, to meet real time surveillance needs video representation is neces­
sary which gives complete spatia-temporal visual information compared to limited spatial 
information presented by still images. The video fusion is a process of visual information 
integration from a number of registered video sequences without loss of information and 
introduction of distortion. The goal of video fusion is to create a single enhanced video 
sequence from complementary video inputs that is more suitable for the purpose of human 
visual perception, object detection and target recognition. 

Color is another important requirement in addition to fusion but colorization of fused 
grayscale imagery is a daunting task. Most recently, various manual and semi-automatic 
colorization techniques have been reported in the literature to solve this difficulty. A 
highly cited work is colorization based on optimization [60] which needs user defined color 
scribbling. It proves to be an attractive method which based on the idea that neighboring 
pixels in space-time with similar intensities should have similar colors and requires neither 
precise image segmentation nor accurate region tracking. However, one shortcoming of 
this method lies in the requirement that input images are annotated with user defined 
color scribbles and thus lacks full automation. 

Another popular work is colorization based on color transfer [61] using statistical anal­
ysis to impose one images color characteristics to another image. It uses a de-correlated 
color space fa/3 and swatches for color transfer from target color image. This technique 
has the same drawback that it requires manual selection of a color target image and 
swatches. In addition, color space conversions and swatches make additional burden in 
terms of complexity. Despite these shortcomings, above approaches have transformed the 
cumbersome work of manual colorization into semi-automatic colorization. Due to their 
successful application in colorization and color correction, these techniques are extended 
for colorizing night vision imagery [62, 181] presenting a software based approach to night 
vision offering a cheaper and reliable solution. Therefore, it is highly desirable that fully 
automated colorization should be introduced to facilitate real-time video processing for 
night vision applications. 

In this chapter, we build upon the idea of [146], and propose a software based approach 
which overcomes above mentioned limitations by simultaneously fusing information from 
forward looking infra-red and low light visible sensors and introduce automatic colorization 
for context enhancement at nighttime. In addition, we restrict our colorization in RG B 
color space avoiding different color space conversions. At First, corresponding frames from 
complementary video streams are fused and pseudo-colorized using RG B color channel in­
tegration. Then, efficient color morphing technique is used in RG B color space avoiding 
any color space conversion. Automation is introduced by integrating source color image se­
lection with contextual features and colorfulness characteristics. A prototype night vision 
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sy tern named SCENT i developed based on proposed approach. The abstract visualiza­
tion of our proposed system for color exploitation at night-time (SCENT ) is presented in 
figure 6.9 which describes how original grayscale vid 0 sequence from two differ nt modal­
it ies are simultaneously integrated and colorized into a colorful representation. Extensive 
experimentation i performed on different nightime datasets which comprise registered 
video streams from forward looking infer-red and low light visible ensors and perfor­
mance is compared to state of the art approaches in terms of objective quality measur s. 
Quality evaluation show t hat our approach not only give promising fusion and color 
quality but also proves to be efficient in terms of execution time. 

6.4 System Architecture 

In thi ection. we present the system archi tecture of our propos d night vi ion sy tcm. 
SCENT with a flowchart and briefly describe its funct ional components .The fl owchart is 
shown in figure 6.9. The inputs to our ystem are regi tered video strcam captured from 
infra-red and low light vi ible en ors. We have used already regi tered video streams 
filtered with median filter for noi e removal. 

IR Stream 

r;======;)j 

Visible 
Stream 

False Color Fusion Unit Color Morphlng Unit t::::::=:::!)1 

Reference Image :===========~~ 
Database 

Color Fused Video 

Figure 6.9: Flow chart of the color morphing based video fus ion and co lor izati on SystClI1 : 
SCENT (system for color exploitat ion at nighttime). 

The e video treams are fed in to fa l e color fu ion unit whi ch i res ponsible for effic ient 
fusion and false-colorization u ing RGB color channcl fu ion. This uni t produ ces a fu sed 
and false colored vid 0 str am which is then fed into color morphing uniL. T he color 
morphing uni t i t he backbone of our system which tran form s col I' distribu tion of fa lse 
video treams according to a reference (source) color image. This source color im age 
is selected from source color image selection uni t which effi cient ly selects it fro11l color 
image collection based on contextual features and colorfulnes . . Bru ed on selected target 
color image. color morphing uni t generates color fused video st ream as final output of our 
system which resembles day-like color appearance . The detailed proce. sing involved in 
t hese fun ctional uni ts is described in the next section. 
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6.5 The Proposed Video Fusion and Colorization Approach 

In this section, we present algorithmic steps of our approach to apply natural day-like 
color appearance to grayscale nighttime video streams with color morphing. In addi­
tion, we describe the selection of color target image based on contextual association and 
colorfulness. 

6.5.1 Fusion and colorization in RGB color space 

Color transfer methods [61, 62, 181] use multiple color space conversions e.g. RGB to 
£a{3 color space conversion to get minimum correlation between color coordinate axes. 
This de-correlation is required to manipulate colors to individual color channels without 
changes into color distribution of other channels. For instance, in RG B color space, most 
pixels will have large values for the red and green channel if the blue channel is large which 
suggests that to change the appearance of a pixel's color in a coherent way, we need to 
modify all color channels in aggregation. It makes any color modification a difficult pro­
cess and thus an orthogonal color space is required without correlations between the axes. 
Color channels in RG B color space are correlated which complicates the manipulation of 
individual color channels. To deal this problem, a color space, called £a{3 was proposed 
in [163], which minimizes correlation between channels for many natural scenes and is 
being used for color transfer between color images. The steps include many intermediate 
color space conversions like RGB to to device independent XY Z tristimulus values, XY Z 
to LMS, LMS to logLMS and logLMS to £a{3 transformations which involve many 
matrix multiplications increasing computation complexity of the original algorithm. An­
other disadvantage is the color contrast loss due to logrithmic transformation of logLMS. 
Therefore, we avoid color space conversions by restricting color transformation in RG B 
color space. In following subsections, we describe video fusion and colorization in RG B 
color space. 

RGB Color Channel Fusion 

The objective of this step is to generate a fused and false colored video stream from two 
grayscale video inputs. To achieve this objective, we integrate infrared and low light 
visible video streams in a meaningful way. We generate single RG B fused representation 
from sensor outputs, consisting of three channels, FR,Fa,FB. Frames from infra-red video 
stream are assigned to FR while visible sensor output is assigned to Fa and FB channels, 
respectively. This step is efficient enough to integrate visual information from two inputs 
and introduces false colorization as well. 

(6.5) 

where n denotes frame number and I R, V I S stand for infra-red and visible inputs. 
False color video is generated in this step to get a color input for color transformations 
which are usually defined between two color inputs, the color target and color source. This 
step is illustrated in figure 6.10 which displays both input and output frames. 

RGB Color Channel De-correlation 

This step aims to attain de-correlation in RGB color channels for additional color process­
ing without color space conversions. It can be achieved by eigen value decomposition of 
covariance matrices between RG B components of source and target farmes. We calculate 
mean and covariance matrices along RGB axis for both target and source (false-fused) 
frames. We denote (Tt, gt, tit),(rs, fis, tis) as mean and C t and Cs as covariance matrices for 
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(a) (b) (e) 

Figure 6.10: RGB color channel Fusion: (a) infrared input , (b) low light visible input ,(c) 
pseudo-fused color output 

target (false-color) and source (reference daytime color)frames. Eigen value decomposition 
can be used to further decompose the covariance matrices as: C = U AU- 1 where A is the 
diagonal matrix of eigenvalues of matrix U, having dimension M x M. We can represent 
A = diag(AR, AG, AB) where AR, AG, AB are eigenvalues. The eigen values and eigenvectors 
are ordered. The mth eigen value corresponds to mth eigenvector. These eigenvectors are 
orthogonal to each other, de-correlated and can be used for further processing. 

Color Thansfer through Color Morphing 

To give day-like color appearance to target (false-fused) video sequence according to color 
distribution of source (reference daytime color) image, we use color transformations and 
call this process as color morphing. It contains ellipse fitting to original color distribution 
of the target and its transformation according to source color distribution which generates 
similar color look and feel. This transformation includes translation , rotation and scaling 
applied to color distribution of target frames as defined below: 

Ffinal = (T8·R8·SS·St·Rt.TdFt (6.6) 

where notation of Ffinal = (R, G, B, I)T and Ft = (Rt, Gt, B t , I)T are RGB homoge­
neous coordinates of final output and target (pseudo-fused) frames while T , R, S stand for 
translation, rotation and scaling matrices defined below: 

fl 0 o ~1 fl 0 o n1 o 1 o T; 0 1 o T9 
T8 = 1 Ti ,Tt = 0 0 

t 
o 0 1 Tb t 
0 0 o 1 0 0 o 1 

(6.7) 
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S~ = A~, sf = A~, S~ = A~ and S[ = 1/~, Sf = 1/ y'>:f, Sf = 1/ [>.i. 
Above transformations modify the color distribution of source (false-fused) frames 

according to color distribution of target image. This color morphing to false colored video 
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sequence results in better and natural color appearance like source which indicates the 
importance of reference(source) color image selection which we discuss in next subsection. 

Automated Color Source Image Selection 

The strength of color morphing lies in the fact that irrespective of contents of source color 
image, color look and feel is transformed from source to target. Our visual experience tells 
that context plays an important role in color distribution of the scene which implies that 
if context of source and target finds similarity, better results can be anticipated. 

A research gap is discussed earlier about the lack of automation in previous approaches 
[61,62, 181] about the automated selection of suitable source color image for color transfer. 
A straight-forward solution is the use of image retrieval framework based on recognition 
of objects and similarity detection. However, it involves computational complexity related 
object detection and recognition. Based on the requirement of our approach, we do not 
focus on finding exact structural match between source and target but on oVf~rall scene 
context. To attain this objective, we take advantage of global contextual features which 
estimate the shape or structure of the scene with few perceptual dimensions e.g spatial 
properties of the scene made by composite set of boundaries like walls, sections, ground 
elevation, slant of the surfaces. Generally, three level of abstraction are required to model 
the scene structure: 

• subordinate level: analysis of local structure e.g. objects, 

• basic level: similarity in shape, 

• super-ordinate level: highest level of abstraction like scene category. 

In our approach, we focus on super-ordinate level of abstraction and use global scene 
categorization based on GIST features[161]. The GIST feature is a vector of features f, 
where each individual feature fk is computed as: 

(6.10) 
x,y 

Where 0 denotes image convolution, x presents pixel wise multiplication, I(x, y) de­
notes luminance channel of input image, hk(x, y) is filter from a bank of multi scale-oriented 
Gabor filters (6 orientation,4 scales) and w is a spatial window that would compute the 
average output energy of each filter at different image locations. The window w(x, y) 
divides the image in a grid of 4 x 4 non-overlapping windows resulting in a descriptor of 
size 4 x 4 x 6 x 4 = 384. 

Figure 6.12 illustrates the amount of context information preserved by GIST features. 
It shows original scene, the output magnitude of multi-scale oriented filters on a polar plot 
and abstract GIST descriptor. The average response of each filter is computed locally 
by splitting the image into 4 x 4 windows. Each different scale is color coded (red for 
high spatial frequencies, and blue for low spatial frequencies) with intensity proportional 
to the energy of each filter output. This illustration shows that GIST features provide 
a course description of the texture present in images and their spatial organization by 
preserving relevant information needed for categorizing scenes into categories which can 
potentially be used for establishing contextual association between source color image and 
target frames. 
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Figure 6.12: Illustration of global scene information encapsulated by respective GIST 
features. 

The remaining challenge is to establish matching and retrieval framework efficiently. To 
reduce the dimension of original GIST descriptor , we use Locality Preserving Projections 
[134J to get a column vector of 100 x 1 for each descriptor. We use Euclidean-distance 
based nearest- neighbor approach for matching descriptors. To increase robustness, ratio 
of the nearest neighbor distance is utilized and any match for which the ratio of the 
nearest neighbor distance to the second nearest neighbor distance is greater than 0.6 is 
discarded . It helps in discarding many of the false matches, arising from background 
clutter. After matching the GIST descriptors from source and target images, each source 
image is assigned a matching score that denotes the Euclidean distance between source 
and the target images. To refine our selection, we use another criterion, the colorfulness 
of source image which is defined as: 

Cf = ) a;g + a~b + 0.3)11;'9 + l1~b' (6.11) 

where 11 , a are mean and standard deviations of the pixel cloud along two axes in 
opponent space, rg = R - B , yb = 0.5(R + G) - B , respectively. The final matching score 
is calculated as: 

Smatching = wCf + Mf (6.12) 

Where w is the weight parameter for colorfulness and Mf is matching score between 
contextual GIST descriptors. The final color source image with largest matching score 
is selected as potential reference color image for color transfer. This selection process is 
embedding simplicity, efficiency and automates colorization using contextual information. 

The algorithmic steps involved in video fusion and colorization can be summarized as: 

Algorithm 4 Video Fusion and Colorization 

1: rgbC olorC hannelFusion 
2: rgbColorChannelDe - correlati()'fl 
3: ColorSourceImageSelection 
4: ColorM orphing 

6.6 Objective Quality Evaluation 

Visual quality assessment has subjective nature but the subjective image quality assess­
ment requires a large number of images and human observers making it less suitable in 
real world applications. For this reason, objective image quality assessment techniques are 
being investigated and widely used with additional benefits like simplicity and fair sagac­
ity. The goal of color fusion quality evaluation is to quantify the quality of information 
fusion and colorization in a precise and accurate manner. It falls in the category of blind 
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quality evaluation methods because of the absence of any reference image with optimal 
fusion and colors. 

6.6.1 Color Similarity Measure (CSM) 

This objective quality measure is based on structure and color similarity. Color similarity is 
computed by calculating similarity in hue, saturation and intensity. The original approach 
[167] assumes that initial inputs during information fusion are colored, so it cannot be used 
for quality evaluation of color transfer based techniques in its original form where initial 
inputs are grayscale which are colorized later on. To achieve this objective we modify this 
measure to serve our needs. 

If two target images, color fused image and source color image are represented by A, 
B, F and S, the color similarity measure, CSM is defined as: 

where 

CSM(A B SIF) = CS(F, S) + SS(A, BIF) 
, , N' 

SSIM(A,F) 
SS(A,BIF) = SSIM(A,F) + SSIM(B,F) 

(6.13) 

(6.14) 

where SSI M is structural similarity metric [172], N is normalizing factor with value calcu­
lated from sum of maximum values of C S (color similarity) and S S (structural similarity), 
while CS (range 0- 1) is defined as: 

CS(a, b) = QI * r(a, b) + Q2 * IS(a, b), (6.15) 

where r(a, b) represents the correlation coefficient of two color vectors with QI + Q2 = 

1, QI > 0, Q2 > 0, QI > Q2· The similar coefficient of intensity similarity, IS is computed 
as: 

IS(a, b) = 1 _ lar + ag + ab - br - bg - bbl , 
c 

(6.16) 

where c = 3 * 255 = 765. In this way, color and structural similarity is used to quantify 
the quality of color information fusion. 

6.6.2 Color Fusion Quality Index (CFO!) 

The proposed color fusion quality measure (CFOI), quantifies color information fusion 
considering structural distortion, blurring as well as color degradation and colorfulness of 
final fused image. In addition, it deals efficiency and reusability for use in diverse forms 
of color image fusion schemes, described in the introduction. Therefore, two different 
versions are given according to fusion framework with slight variations. 

6.6.3 Case1: Color image fusion with original color sensors 

First, we consider a general case when both input and output are colored as illustrated 
in figure 6.13. We divide our measurement into two phases: (1) color quality measure­
ment and (2) fusion quality measurement and develop final metric by combining both 
measurements. 
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Cal Cd 

Figure 6.13: Color Image Fusion with Color Sensors 

One difficulty associated with RG E color space is highly correlated color channels. It 
means that if we do some change in R channel , it would effect G and E channels as well. 
It requires de-correlation by orthogonalization of RG E color channels. For this purpose, 
we use eigenvalue decomposition of co-variance matrix calculated along RGE axis. Eigen­
vector are sorted according to eigenvalues and transformation matrix is formed by first 
three orthogonal eigenvectors. This transformation matrix is applied to original RG E color 
space to get de-correlated version. The algorithmic steps for this orthogonalization are 
presented in Algorithms 1. An alternative is the use of de-correlated YUV [154] or t a ,8 
[61] color space conversion. The result is three de-correlated channels denoted by Chi, 
Chel , Chc2 where first channel is luminance while other two are chrominance channels. 

Algorithm 5 :Orthogonalization of RGB color space 

1: Input:RGE color pixel cloud 
2: Calculate co-variance matrix along RGB axis 
3: Get eigen value decomposition of covariance matrix 
4: Generate transform matrix from first three eigenvectors 
5: Apply transform matrix to RGE correlated color space 
6: Output:Three de-correlated channels (orthogonal to each other) 

We denote two RGE color inputs as A, E, RGE fused output as F, SQ as structural 
quality, CQ as color quality, CF as colorfulness, FQ as fusion quality and our proposed 
color fusion objective index as CFOI . First , we calculate color quality C given as: 

CQ (A , E , F) = w.C(A , F) + (1- w.C(E , F)), (6.17) 

where for two image signals, x and y , the color quality C of x w.r.t y is : 

(6.18) 

and structural quality, SQ is defined as: 

_ 4crxy/-Lx/-Ly 
SQ(x, y) - (cri + cr~)(/-Li + /-L~) (6.19) 

For chrominance channels, we take original pixel values while for luminance channel we 
use gradient values calculated from Sobel operator [154] . It increases the robustness of 
quality measure against blurring effects. The relative colorfulness is calculated as: 

Cn(F) 
CF(A, E, F) = w.Cn(A)) + (1 - w.Cn(E) ' (6.20) 
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where Cn is given as: 
Cf 

Cn(A,B,F) = -Cf 
max 

(6.21) 

where C fmax = 109 is maximum value of colorfulness defined in [169J and colorfulness C f 
is given as: 7 

(6.22) 

where (J and J.L are standard deviation and mean along two axis in opponent color space 
with rg = R - Band yb = 0.5(R + G) - B, respectively. The values of colorfulness come 
in the range of [0 109J where 0 means no color and 109 means extreme colorful image.To 
make it compatible for use in our quality measure, we have normalize its values to lie in 
the range [0 1 J. 

For information fusion quality evaluation, we employ mutual information which cap­
tures the common fused information. 

FQ(A, B, F) = w.MI(A, F) + (1 - w.MI(B, F)), (6.23) 

where M I(A, B) is the mutual information which is the amount of information gained 
about A when B is learned, and vice versa. M(A, B) = 0 if and only if A and Bare 
independent. In case of two images F (fused) and B (input image), we can write it as: 

(6.24) 

where hF,B is the normalized joint gray level histogram of images F and B, hF and hB 
are the normalized marginal histogram of two images and L is the number of gray levels. 

We also use local weighting procedure in color image fusion quality calculation. A local 
weight w is used in our measure which tells about the relative importance of one image 
compared to the other one. The value of w depends on the color fusion application. In case 
of visible difference in color significance, w is assigned a lower value. For instance, visual 
inspection of figure 6.13 shows that one of the input images(e.g infra-redimage, imageA), 
does not contain suitable colors. In this case local weight w would be assigned a lower 
value (e.g w = 0.2) which would automatically boost the importance of imageB. In case 
of no significant color difference, we utilize special frequencies of the images to calculate 
the value of w. 

Spatial frequency is the measure of activity level of an image, and can be defined as: 

sf = J(r f)2 + (cf)2, (6.25) 

where rf (row frequency) and cf (column frequency) are defined as: 

M N 

rf(A) = ~N LL[A(i,j) - A(i,j -1)]2, 
i=l j=2 

(6.26) 

and 
N M 

cf(A) = ~N LL[A(i,j) - A(i -l,j)]2, 
j=l i=2 

(6.27) 

If sf(A), sf(B) are spatial frequencies of input images, A and B then local weight A is 
defined as: 

sf(A) 
w= ~~~~~~ 

[sf(A) + sf( B)J 
(6.28) 
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Then, the quality of fused image, color fusion objective index CFOI can be calculated 
from combining equations 6.17,6.20 and 6.23 as: 

CFOI = CQ + CF + FQ 
3 

(6.29) 

The CFOI value remains in the range of [0 1]. When value approaches to 1: means 
better image fusion has taken place and vice versa. 

6.6.4 Case2: color image fusion without color sensors 

Another scenario is false color image fusion illustrated in Fig. 6.14 which is based on false 
colorization and color transfer from a target color image. The major difference is now 
inputs are grayscale while output is colored. Our proposed color fusion objective index 
CFOI can be extended to this color fusion framework as well. 

(h) 

(e) (tI) 

Figure 6.14: Color Image Fusion by Color Transfer 

For this purpose, we consider following changes. Now T (target) and F (fused) are 
color images and color distribution of F should resemble that of T.Therefore, for color 
evaluation we consider T as reference image. Equation 6.17 is no more needed as Equation 
6.18 can be used for color quality assessment of F w.r.t T as: 

Similarly, equation 6.20 is modified to: 

Cf 
C(F, T) = 0.5(Ct + 1) 

(6.30) 

(6.31 ) 

Therefore, modified color fusion objective index CFOI in equation 6.29 can be written by 
combining equation 6.30, 6.31. The rest of calculations remain same. 
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Algorithm 6 :CFOI: Algorithmic Steps 

1: Input:RGB image A,B,F,(T) 
2: Calculate color quality of F (Equation: 6.17) 
3: Calculated colorfulness of F (Equation: 6.20) 
4: Calculate fusion quality of F (Equation: 6.23) 
5: Calculate CFOI (Equation: 6.29) 
6: Output:CFOI [Range 0-1] 

6.7 Experimental Results and Discussion 

6.7.1 Contextual Action recognition 

A comprehensive set of experiments are performed on challenging human action data sets 
captured during nighttime. The video streams show actions performed both in constrained 
and unconstrained settings and represent different set of challenges for recognizing actions 
at nighttime. Infra-red and low light visible sensors are used in these video sequences and 
videos are registered before use. 

6.7.2 Dataset and Experimental Setup 

The video sequences used for our experimentations are collected from different sources. It 
includes 600 collected [151, 152, 153] and captured videos. The idea behind using different 
sources was to try different contextual setting of similar actions. This data set contains 
video sequences containing eight action categories: walking, wave1, wave2, stand-up, sit­
down, clapping and pick-up by different actors. Five hundred videos are used for training 
and remaining 100 are used for testing. 

The videos were recorded using two separate cameras. The IR camera is Raytheon 
Thermal IR-2000B and the visual camera is Panasonic WV-CP470. Alignment of the 
thermal and visual videos is done by manually selecting corresponding points in both 
views and computing a least-squared error fitting homography for each sequence. The 
infrared video frames are warped to align with the visual pixels. Pixels that are outside 
the infrared image are marked with value 255 (unknown). 

The data primarily includes scenarios of short range surveillance type applications 
filmed under varying illumination conditions. Scenes include people (who are dressed in 
both civilian dress and camouflage, stationary, walking or running, or carrying various 
objects), vehicles, foliage and buildings/structures. 

6.7.3 Action recognition 

Recognition is performed in leave one out cross validation (LOOCV) setting. Each action 
video is used as a query once and the best matching video is selected using the contextual 
action matching score described above. Action label of the best matching class is assigned 
to the query video. Recognition is performed and confusion and distance matrices are 
displayed. 

First confusion matrix shows results without contextual cues. We obtained average 
recognition accuracy of 84.87% for given action dataset. The second confusion matrix 
shows results with contextual cues. We obtained average recognition accuracy of 91.75% 
for given action dataset with performance gain of 7% percent. The clear gain in perfor­
mance is visible in those actions which show interacting relationship with their context. 

Most of the action classes show higher recognition results except stand-up, sit-down 
and pick-up. One explanation is their mix-up with each other due to similar motion 
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Figure 6.15: The Confusion Matrix without contextual cues (84.87%) for actions, 1-
walking, 2-wavel, 3-wave2, 4-stand-up, 5-sit-down, 6-hands-up, 7-clapping and 8-pick-up 

patterns. Another reason is the nature of their complex dynamics which are difficult to 
comprehend properly. 
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Figure 6.16: The Confusion Matrix with contextual cues (91.75%) for actions, I-walking, 
2-wavel, 3-wave2, 4-stand-up, 5-sit-down, 6-hands-up, 7-clapping and 8-pick-up 

6.7.4 Automatic Contextual Action Annotation 

We also present an interesting application of our work in this section. In addition to 
contextual action matching score, we can add context category using context matching 
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using same approach. It can help achieving automatic contextual action annotation of 
multi-sensor video data. An illustration of automatic contextual action annotation is 
presented below in figure 6.17. 

Figure 6.17: An illustration of automatic contextual action annotation of multi-sensor 
video data in which action and its contextual scene is rightly recognized. 

6.7.5 Contextual Enhancement Using Color Transfer: Experimentation 

In this section, we present experimental results, quality evaluation, discussion and future 
work. We have used registered video datasets with avi video format. The datasets are 
collected from www.imagefusion.org provided by TNO Human Factor Research Institute, 
Netherlands, Octec Ltd. and Ohio State University, USA. The original videos are taken in 
Common Intermediate Format (CJ F , 352 x 288). We have collected arbitrary color source 
images from www.freefoto.com for color morphing. Un-optimized MATLAB code is used 
for implementation of our system. We conducted different experiments to validate our 
system. In this section, we give illustration of these experiments. 

6.7.6 Illustrations for Visual Inspection 

First, we generate video outputs by applying our approach on grayscale video inputs and 
present their results for visual inpection. Figure 6.18 presents first illustration which shows 
four frames from infrared and low light visible video streams and output video frames from 
our color fusion system as well. The scenario shows that a camouflage person is walking 
along the fence while part of building, path and trees are visible in the scene. Figure 
6.18(a) presents thermal midwave 3 - 5f.Lm version. Hot target like person is visible in 
frames but background imagery is cluttered and shows lesser details. The corresponding 
low light visible input is (0.7 -If.Lm) version in which it is difficult to distinguish a person 
in camouflage from the rather clear scene of background. Both inputs are incomplete and 
colorless. The final color fused output of our proposed system is presented in figure 6.18(c) 
which looks more complete, colorful and natural. 
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Figure 6.18: Four frames of video sequence and results (Scene A). (Above) grayscale 
frames from infra-red video sequence, (Middle) grayscale frames from low light visible 
video sequence and (Below) fused and colorized frames as result of SCENT. 

Figure 6.19: Four frames of video sequence and results (Scene B). (Above) grayscale 
frames from infra-red video sequence, (Middle) grayscale frames from low light visible 
video sequence and (Below) fused and colorized frames as result of SCENT. 

A similar cluttered scene is presented in figure 6.19 in which a person is running through 
the jungle. Figure 6.19(a) presents thermal midwave 3 - 5/-Lm version. The corresponding 
low light visible input is 0.7 - l/-Lm version and presented in figure 6.19(b). Although the 
person is present in both input videos inputs but background is much cluttered. Both 
inputs are noisy and colorless. The final color fused output from our proposed system is 
presented in figure 6.19(c) which looks complete, colorful and near natural. 

6.7.7 Qualitative and Quantitative Comparison 

We also present the subjective and objective comparison of our approach with state of the 
art color transfer based fusion methods. First, we present results for visual inspection of 
the reader and additionally present quantitative results for objective evaluation with color 
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similarity measure (CSM) and color fusion quality index(CFOI) . We compare our re ults 
with Wang [182]' Li [160], Toet [181] . Waxman [158] which are colorization based image 
fusion methods. The first row in figure 6.19 shows original grayscale . infrared and visible 
and false color fused frames. The second row presents fused color representation from 
Wang [182]' Li [160], Toet [181]' Waxman [158] and our result. A clear difference is visible 
from the natural color appearance of our proposed method. Figure 6.21 and figure 6.22 
show the graphical objective comparisons. Graphical results describe the performance 
of our proposed system against both measures (CSM and CFOI) outperforms previous 
approaches for different datasets. 

CSM Comparison 
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Figure 6.21: CSM comparison of our propo ed y tern SCENT with other competitive 
techniques. The values of objective quali ty measure are in t he range [0-1]. The large value 
are indication of better quali ty 

6.7.8 Selection of Source Color Image 

The selection of source color image i an important part of a utomation in t roduced in our 
approach. Therefore. we present its illust ration in Figure 6.23. T he query image is t he 
false color frame from video sequence and sorted images are potential reference color im­
ages . The election is based on contextual association and colorfulness. This pxperimeut 
de cribes that contextual association play an important ro le to Ie t a daytime reference 
color image to be used for color morphing. For query image fi gure 6.23.(a) recision-recall 
curves are shown in figure 6.23.(b) . For proposed contextual matching and stru ctural 
matching [146] which shows that global contextual features prove bet ter in . electing sui t­
able source color image than mere structural similarity based selection. 

6.7.9 The significance of SCENT 

The above experimentation proves th ignificance of our developed video fusion and col­
orization system. SCENT (system for color exploitation at nightt ime). With system 
specifications of Intel (R) Core (TM) 2 Duo CP U E8400. 3.00 GHz. 2.99 GHz and 3.43 
GB RAM. our ystem is implemented u ing Matlab 7.0 un-optimized code. Table 6.1 
shows CPU breakdown time for diff rent involved ub- tasks in SCENT which gives u. 
inspiration to port it in real- t ime u ing optimized C code which can provide significant 
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Figure 6.22: CFOI comparison of our proposed ystem SCENT with other competitive 
techniques. The values of objective quality measure are in the range [0-1]. The large value 
are indication of better quality 

boost-up in speed and efficiency. It how that maximum time is taken by source image 
selection which is performed only single time during color morphing. It does not include 
feature extraction t ime. Figure 6.24 presents the GUI (Graphical User Interface) of our 
proposed fusion and colorization system, SCENT. One limitation of our system is that it 
is designed to deal with stationary camera environment in which background scene does 
not change. In future, we want to extend th is approach to moving camera scenario where 
scene changes with the passage of time. 

Table 6.1: Breakdown of CPU T ime 

Task II Time 

False Color Fusion 

Color Channel De-correlation 

Source Image Selection 

Color Morphing 

0.06 ms 

0.09 ms 

0.24 m. 

0.40 m 

6.7.10 An interesting Application: Contextual Action R ecognition at 
Nighttime 

To introduce usabili ty of our approach. we present an interesting application and show that 
enhanced situational awareness through information fusion and colorization can greatly 
benefi t visual surveillance applications. Recogni zing human act ions and activit ies in videos 
is an important research problem with potential applications in area of vi .. ual surveill ance 
and evolving from simpler constraint action data sets to challenging cenario at daytime. 
We intend to experiment the contextual awareness at nighttime with combination to action 
recognition. This application explores importance of semanti cally meaningful structure 
and dominant color context of environment in which action is taking place. T he context 
becomes more important due to night. To the best of our knowledge. this application is 
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Figure 6.23: Color source Image Selection showing query image. Precision-recall curve 
and selected images from color image collection by (c) proposed contextual associat ion (d) 
structural association [146]. False po itive. are shown in red bounding boxes 

novel as no work exists in li terature which deals action recognition at night time. Due to 
lack of sui table nighttime action data et . we present resul ts for only walking act ion. 
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Figure 6.26: (a) 3D MSV for moving actor. (b) spatio-temporal cuboid. encapsu lated 
within 3D MSV 
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Figure 6.24: Snapshot of GUI (graphical user interface) developed for SCENT 

Figure 6.25 illustrates such a scenario where a person is walking. Our objective is to 
find action and its contextual label. This experiment shows that colorization is an impor­
tant clue to refine and find spatial context of presented scene. Two stage classification 
is involved in this application: (1) assigning action label, (2) assigning scene label. We 
present brief description of the implementation and detailed description of constituent 
techniques is out of the scope of this chapter. The first task is to segment spatio-temporal 
contents of an action from the scene using 3D segmentation. We use 3D MSVs(maximally 
stable volme)[16] extraction for 3D segmentation of action. The extracted 3D MSV of 
walking person in video sequence is shown in figure 6.26a. We extract spatio-temporal 
cuboids features [18] from given 3D MSV as shown in figure 6.26 b and action matching 
is performed on trained action dataset. For finding global context of an action, we utilize 
contextual modeling. A similar idea of contextual modeling is presented in [175]. we clas­
sify global scene content using dominant color descriptor (DCD) [174] and GIST features. 
Dominant color is an important global features in images which describes the salient color 
distributions in an image. Dominant color descriptor (DCD) is one of the color descriptors 
proposed by MPEG-7 that has been extensively utilized for image retrieval. Dominant 
color descriptor is used to find clue of probable candidate classes in first stage. GIST 
features are used for final refinement which labels the global context of scene. Finally, a 
combined semantic label is assigned to video sequence: walking, building. This labeling 
can be used for automated contextual action annotation. 

6.7.11 CFOI: Experimentation 

The performance of the proposed CFOI measure is evaluated on standard image fusion 
data sets.The datasets are collected from www.imagefusion.org provided by TNO Human 
Factor Research Institute, Netherlands, Octec Ltd . and Ohio State University, USA. 
Image Processing Toolbox in MATLAB R2008b is used for implementation. A set of 
experiments is designed to evaluate both types of color image fusion techniques described 
earlier in introduction using proposed CFOI with available blind (without reference) image 
fusion quality evaluation techniques. In all graphical representations, vertical columns in 
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Figure 6.25: Scene Description for Contextual Action Recognition at Nighttime, (a) IR 
frame , (b) low light image, (c )color source (d) colorized frame 

graph show color fusion quality values which is in range [0 1] while horizontal axis shows 
different results or different quality measures. 

(a) (b) 

(el (d) 

Figure 6.27: Color Image Fusion results with Color Distortions 

First experiment deals with evaluation of colorization, the colors of final fused color 
image are modified by using different target color images (Figure 6.27a,6.27b), and also 
by changing their hue and saturation values (Figure 6.27c, 6.27d). First we subjectively 
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evaluated and assigned quality labels a ,b,c,d accordingly. A good measure should capture 
these color variations. Figure 6.28. gives the graphical representation which compares 
CFOI and CSM to capture these color variations. Results show that CSM captures color 
varia.tion but falsely gives more value to image (c) than image (a) which subjectively looks 
better with more colorfulness and natural colors unlike false distortions as in image (c). 
The results of CFOI are consistent with the subjective results . 

Color Distortion Capture 
O.9r---~----------'---=='----' 

CFOI 
Qualily Metric 

Figure 6.28: CFOI comparison for color distortions 
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Figure 6.29: Origina.l images (a,b), color fused image (c) and blurred images (d,e,f) 
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Figure 6.30: CFOI comparison for edge burring effect 

(II) 

(c) 

(d) (.) 

Figure 6.31: Original images (a,b), color fused with averaging (c), Laplacian (d) and 
wavelet (e) 

Second experiment is related to capturing of structure distortion and blurring. Dif­
ferent level of blurring by low pass filtering is introduced to final color fused image and 
ranked according to degree of blurring. CFOI is employed to capture the change along 
with other measures, CSM, Petrovick and IQI. Petrovick and IQI work for only grayscale 
images. Therefore, images are converted to grayscale before their calculation. Figure 
6.29 describes color image fusion scenario for this experiment. First two images (Figure 
6.29a,6.29b) are color infra-red and CCD images, respectively. Third ima.ge (c) is color 
fused image and fourth image (Figure 6.29d) is the blurred image generated for experi­
mentation. 

CFOI is applied, compared to Petrovic [164] and IQI measure [165J. Finally, graphical 
representation of results is presented in figure 6.30. CFOI and Petrovic measure (based 
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on sobel gradients). both use gradient or edge information for image fusion measurement. 
Therefore, blurring effect is reasonably captured by both as compared to IQI which uses 
SSIM which is less robust to blurring [167]. Results show the CPOI i comparable to 
Petrovick measure and performs better than IQI for capturing blurring effect. 

Third and the last experiment , is about capturing of common fused information. CPOI 
is employed on different image fusion methods like imple averaging, Laplacian pyramid 
fusion [186] and wavelet based fusion methods [145] presented in figure 6.31. Graphical 
results in figure 6.32 show that Petrovic measure [164] is ba ed on edge information only; 
therefore it is more biased towards contemporary information like fused high frequency 
edge information than common low frequency information. CFOI u es mutual information 
for getting common information in addition to edge information; it captures common 
information as well compared to Petrovick measure. Therefore. it gives more value to 
wavelet fusion than Laplacian fusion which was higher in case of Petrovick measure. At 
the same time, its results are comparable to IQI [1 65] for capturing common information. 
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Figure 6.32: CFOI com pari ons for image visual information integration 

Experimental results show that CFOI capture fu , ion of all three factors. important for 
color image fusion (colors, high frequency edges and low frequency common information). 
In particular ; it i ' not biased toward any of them as previous standard like Petrovic [164] 
and IQI [165]. In addition , it deals wi th colors which were not con, ideration of previous 
image fusion quality metrics . 

6.8 Conclusions 

In this chapter. we propose a method of recognizing act ions with th help of t heir context . 
We take a case study of mul ti- ensor night vision consist ing of infra- red and low light 
visible spectrum . We show how context i enhanced in such video sequences. \Ve then 
use t hese context enhanced videos for contextual action recognition at nighttime. Our 
recognition cheme is based on information fusion and frequency domain matching. We 
show action recognition results for a large video collection. Performance comparison with 
t he baseline shows that recogni t ion accuracy i great ly increase for action which show 
interactive relationship with their context. In addi t ion. we propose an automated color 
video fusion approach for contextual enhancement at nigh- t ime and discu s its objective 
quality evaluation. 

In next chapter. we conclude all the chapters by pre enting an overall pict ure of our 
work. In addit ion . we would describe possible future work directions. 
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Chapter 7 

Conclusion and Future Work 

Begin thus from the first act, and 
proceed; and in conclusion, at the ill 
which thou hast done, be troubled, 
and rejoice for the good 

""Pythagoras (570 BC - 495 BC) 

In this chapter, we restate the definition of our research, describe the importance of 
our approach and proposed solutions, take a recap of proposed approaches with a brief 
individual review and conclude our findings. In addition, we mention how each individual 
approach and solution can be investigated further and what overall future research work 
is possible. 

7.1 A Recap of our Research Problem 

The visual perception of human action is indeed a difficult phenomenon due to complex 
dynamics of human action, action context and scene capturing framework. One obstacle in 
the way of machine vision of human actions is lack of information about visual invariants. 
For instance, viewpoint variations cause huge problem to machine recognition of human 
actions because of insufficient information about viewpoint invariants. Although different 
visual cues and direction are helpful to devise techniques for recognizing human actions 
but majority of them are unable to cope with viewpoint variations which points towards 
a huge research gap. Can we explore and investigate salient visual cues deeply, search 
new viewpoint invariants and enhance the capability of their frameworks to cope with 
viewpoint variations? 

7.2 The Significance and Impact of our Research Method­
ology 

Due to three-dimensional nature of action video sequences, any general viewpoint invariant 
feature for action representation is undefined. Therefore, we exploit important visual cues 
that can be helpful in devising view invariant action recognition framework. The important 
visual cues explored for solving view-invariance include multiple view geometry, temporal 
order information and view clustering or information fusion. In our research work, we have 
investigated these visual cues and proposed view-invariant action recognition approaches, 
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contributing to view-restriction free action recognition. It is valuable because it can further 
contribute towards unrestricted action and activity recognition in computer vision. 

Understanding human activity from video is one of the central problems in the field of 
computer vision. It is driven by a wide variety of applications in communications, enter­
tainment, security, commerce and athletics. We have identified and focused on solution 
of a key problem of view-invariant action recognition to visualize practical application of 
action recognition in other related disciplines to broaden its impact. 

7.3 A Re-cap of our proposed Approaches 

We studied and explored our research problem in its deeper context and came up with the 
development of following new approaches: 

• View-invariant action recognition framework using temporal order invariance (pre­
sented in Chapter 3) 

• View-invariant action recognition using multiple view geometry (presented in Chap­
ter 4) 

• View-invariant action recognition using 3D frequency domain filtering (presented in 
Chapter 5) 

• Context enhancement for contextual action recognition (presented in Chapter 6) 

7.4 A Brief Review of our Proposed Approaches 

A brief review and description of important findings is as follows: 

• View-invariant Action Recognition Framework using Temporal Order In­
variance: 

Description: This approach investigates the conjecture that temporal order of ac­
tion elements (action sub-divisions) remains invariant for different viewpoints and it 
can help us to devise temporal order invariance constraint for view-invariant action 
recognition. Individual action instances as constituent action units (e.g., represen­
tation of local motion and posture variations) within an action preserve a temporal 
order irrespective of the camera viewpoints. 

To recognize and represent action subdivisions or local dynamics, we focus on global 
analysis of human actions and seek a view-invariant representation. We based our 
approach on the following conjecture: "The temporal order of actions elements within 
an action is invariant to viewpoint variations". We define action elements in terms 
of local spatio-temporal interest points and define spatio-temporal order preserva­
tion constraint in matching framework. Spatio-temporal cuboid features are taken 
as space-time interest points as these features are based on maximization of discrim­
ination between behaviors. 

For each action cla.',s, we define a feature fusion table. A feature fusion table is a 
defined data structure to encapsulate multiple training examples against mUltiple 
viewpoints for a single action class. It is achieved through feature fusion based 
on principal component analysis. The fusion strategy is simple. An action video 
sequence contains many spatia-temporal features. (i) We arrange all video sequences 
of the same action class and the same view into the same group; (ii) We extract 
cuboid features from video sequences and sort features according to their temporal 
order; (iii) For all video sequences (same view, same class), we fuse features according 
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to their position in temporal order; (iv) Feature fusion is achieved through peA. 
For instance, all features (position 1 in temporal order, 1st feature of all videos) of 
wave action in view 1 are concatenated into a single feature vector and principal 
component analysis is used to reduce its dimensionality to a single feature. (v) 
Finally, fused features for each class are arranged into fusion tables (to be described 
in the next section). 

A matching score is then calculated based on global temporal order constraint and 
number of common features. Finally, the action label of the class with maximum 
value of matching score is assigned to the query action. The only bottleneck of this 
work is insufficient set of feature in most difficult viewpoint like a front-head camera 
which does not openly provide action dynamic clues. Dealing with action dynamic 
features in difficult viewpoints ia a possible future work direction. 

Conclusion: The success of our approach validates the importance of temporal 
order of action instances in terms of their primitive dynamics. It concludes that if 
temporal order of action dynamics is ensured, better discriminative action classifi­
cation can be achieved . 

• View-invariant Action Recognition using Multiple View geometry: 

Description: This approach explores multiple view geometry and devises two in­
cremental approaches based on exploitation of geometric constrains between action 
instances. In addition, these approaches address the weakness of trajectory based 
action recognition approaches and describe how tracking-free framework can be de­
vised. 

We explore how dense optical flow can be employed to compensate strong assump­
tions of landmark point extraction and tracking in geometry based view invariant 
action recognition. Taking into consideration that human action is a spatio-temporal 
phenomenon, we apply constraints on optical flow to be spatio-temporally consis­
tent. Spatio-temporally consistent optical flow helps us in devising spatio-temporally 
consistent flow fundamental matrix and by defining rank constraints on flow funda­
mental matrix we are able to derive a dissimilarity score for action sequences. 

We proceed incrementally by defining two variants of our approach: (1) We extract 
actor body silhouettes from original video sequences and calculate spatio-temporally 
consistent optical flow between respective frames of two videos and then fit epipolar 
geometry. As fundamental matrix remains same for static scenes, we can calculate 
action similarity score between two actions being performed in time domain, (2) In 
addition, we observed that silhouette extraction is not robust in all circumstances 
especially in case of noise and occlusion. Therefore, we remove pre-processing step 
of silhouette extraction theocratically by maximizing the exploitation of epipolar 
geometry. 

We take action representation in static camera environment as a case of dynamic 
scene where background is stationary and actor is dynamic. As scene is not entirely 
static, we get inspiration from structure and motion recovery for scenes consisting 
of both static and dynamic parts, also known as multi-body segmentation from per­
spective views without knowing which measurement belong to which part of the 
scene. As we consider only static background and dynamic actor, it is simplified to 
two-body fundamental matrix, also known as segmentation matrix. It has already 
been shown that such matrix can linearly be computed from image measurements 
after embedding all the image points in high dimensional space. Based on these in­
vestigations, we derive a new similarity measure for matching actions across different 
views, without prior segmentation of actors. 
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These proposed approaches has been named as AVITARI and AVITAR2 (Achiev­
ing View-invariant Tracking-free Action recognition). However, despite this success, 
some bottleneck issues have also been identified. These include dealing temporal 
un-synchronization and computational complexity associated with optical flow mea­
surement. Both of these issue are very generic to all computer vision areas and 
they themselves are separate research problems away from our main research focus. 
However, future research work is possible in these directions. 

Conclusion: The success of our approach validates the importance of multiple 
view geometry for achieving view invariant action recognition. It inherits the benefit 
that rank constraint based matching score can be calculated and used for action 
classification. It avoids various assumptions and simplifies the solution. 

• View-invariant Action Recognition using 3D Frequency Domain Filtering: 

Description: This approach is based on frequency domain correlation filtering. In 
this regard, it proposed 3D distance classifier correlation filter named Action DCCF. 
This correlation filter is able to exploit intra as well as inter-class variations in 3D 
visual information of action sequences. This filter is further exploited for devising 
a view-invariant action recognition framework using view clustering mechanism. It 
successfully recognize actions despite viewpoint variations. 

To achieve this objective, we perform following steps: (i) We introduce space-time 
View-DCCP filter that can be trained for a specific viewpoint for all given action 
categories, it is done by establishing view clusters of action categories, (ii) View­
DCCP filter successfully captures inter-class variability that is achieved by avoiding 
overemphasize on average training sample by empirically setting contributions of 
low and high frequency information, (iii) It presents a different interpretation of 
correlation filters as method of applying a spatio-temporal transformation to the 
data, restricted to being Toeplitz ensuring shift invariance. It measures similarity 
between an ideal transformed reference and testing action. 

In this way, it can handle linear action misalignments using a shift-invariant mean 
square distance measure, (iv) It utilizes entire correlation plane rather than empha­
sizing only single point like correlation peak as resulting decision boundaries are 
quadratic that are more 'selective' for choosing feature space portions for assigning 
to various action classes, and (v) finally, we extract an action similarity score based 
on class votes and within-cluster distance ratio. It helps us to recognize actions 
from an arbitrary viewpoint not present in training view clusters. Class votes help 
setting priority for class with maximum votes in all view clusters and within-cluster 
distance ratio highlights margin of selected class from other classes in a view cluster. 
All these contributions successfully fill up the research gap present in space-time 
filtering based action recognition. 

It also avoids bottlenecks faced by multiple view geometry based methods and spatio­
temporal feature framework. It is faster in computational time and does not depend 
on feature extraction. 

Conclusion: The success of our approach validates the importance of frequency do­
main matching and its efficiency. We conclude that frequency domain signal analysis 
can guarantee suitable solution to action recognition even in presence of viewpoint 
variations . 

• Context Enhancement for Contextual Action Recognition: 

Description: An additional but important aspect of action recognition is action 
context. Its importance increases in unfavorable circumstances like the challenging 
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case of night vision. We take this challenge and propose contextual action recognition 
at nighttime. To achieve this goal, we propose contextual enhancement of nighttime 
imagery. 

We argue that contextual action recognition is not possible using single sensor plat­
form due to the limitations of individual sensor to grab all available visual informa­
tion about the scene. This situation motivates the use of multiple sensors often of 
complementary nature. A common multi-sensor night vision system uses infrared 
images in case of forward looking infrared cameras and low light images in case of low 
light visible cameras. The infrared images are maps of infra-red radiation emission 
which is partly governed by the temperature of the object. Therefore, such sensors 
prove good for perceiving hot targets in a busy background, seeing through fog, and 
monitoring paths through a cluttered forest. 

However, they are not much effective during thermal crossover periods at night or 
after long periods of rain, as well as capturing scenery such as trees, leaves and 
grass in natural scene. On the other hand, low light visible cameras are able to 
capture surrounding environment but most of the time fail to capture specific targets 
especially hot bodies like a person in camouflage. In addition, even in case when 
targets are not hiding, low light conditions make their observation obscure. The 
objective of context enhancement is to give daylike appearance to nighttime videos. 

We propose automated color night vision methods for context enhancement using 
video fusion. The video fusion is a process of visual information integration from a 
number of registered video sequences without loss of information and introduction of 
distortion. The goal of video fusion is to create a single enhanced video sequence from 
complementary video inputs that is more suitable for the purpose of human visual 
perception, action and context recognition. We also deal with the objective quality 
measurement of these methods which are not available in literature. We further 
propose contextual action recognition framework to show that how context can be 
a helpful visual cue for action recognition. The exploration about the importance of 
contextual view information to devise view-invariant action recognition framework 
is a possible research direction. 

Conclusion: The success of our approach validates the importance of contextual 
information for action recognition. We conclude that contextual information is an 
important clue for achieving better recognition performance in action recognition 
especially in unfavorable visual conditions. 

7.5 Future Research Directions 

Many research problems still exit in computer vision and future directions of our work can 
be very helpful to solve these problems. A few of possible work directions are as under: 

• View-invariant Action Recognition in Restriction-free Real-time Video 
sequences: The main goal of all action recognition research is to get rid of all re­
striction which we assume in our works. Our actions recording setting are restricted 
and majority of all action recognition datasets are recorded in specific requirement. 
On the other hand, human visual system easily recognizes any action in any circum­
stances. 

• View-invariant Action Recognition in Crowd Video Sequences: A recent 
trend in action recognition research community is to deal situation of crowded sce­
narios rather than individual actions. Thus the overall objective is different that 
is the crowd action detection rather than individual action detection. However, 
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the visual cues from individual action can become helpful to devise overall crowd 
behavior. 

• View-invariant Complex Activity Recognition: Another important research 
area is activity recognition which comprises combination of different actions and 
their overall interpretation. The focus of our work, however was consideration of 
individual actions, an important problem in this regard is the presence of scenarios 
which offer viewpoint variations. 

7.6 Concluding Remarks 

Human actions are fundamental to human existence and substance of great importance. 
Action analysis is a subject of primary importance, worth of scientific investigation and 
exploration. It is open for scientific enquiry with no defined boundaries. In other words, 
the analysis of human action is not restricted to some specific area of science, it is the sub­
ject of study in various scientific disciplines like neuroscience, cognitive science, agronomic, 
economics, psychology, praxeology and artificial intelligence. 

Therefore, intelligent machines should be capable of interpreting visual scenes contain­
ing human actions. However, it is a very high level vision problem and a lot of research 
effort is still required to fulfill this dream. Over the years, several techniques have been 
developed, yet it is widely recognized that effective solutions are needed to be proposed 
and investigated. It is due to the nature of problem that combines the unpredictable 
human behavior, complex human motion dynamics, strong variations in camera environ­
ment especially viewpoint, occlusion and noise, presence of anthropometric differences and 
uncertainty associated with computational vision. 

This thesis has mainly addressed an important problem of view-invariance, a neces­
sary requirement for unconstrained action recognition. Multiple applications like action 
retrieval from video sequences and contextual action recognition at nighttime can be used 
for intelligent video surveillance and multimedia search. View-invariant action recogni­
tion can be used for developing interesting video games and human computer interface. 
Therefore, this research work has wider impact not only on computer vision research but 
also for other related disciplines. 
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Chapter 8 

Appendix 

Appendix A: 
Multi-frame (four-frame) Feature 

Matching 

Let h = 0 1 --+ JR, h = O2 --+ JR, h = 03 --+ JR and 14 = 04 --+ JR be four frames of 
a multi-view video sequence with some common field of view on a dynamic scene. These 
images can be obtained from one or more unsynchronized cameras. 

For each image Ii, i E {1, 2, 3, 4}, a feature detector determines features fi,k, k E 

{1, ... ,Nd with corresponding descriptors 8i,k and descriptor distance function with 
d(8i,k,8j,m). We look for quadruple (hk, hm, hn, /4,0) such that each (!i,j) is present in 
at most one quadruple. 

For every quadruple, a cost d is assigned that is the sum of the distances of all de­
scriptors d(8l,k, 82,m, 83,n, 84,0) = d(8l,k, 82,m) + d(8l,k, 83,n) + d(8l,k, 84,0) + d(82,m, 83,n) + 
d(82,m, 84,n) + d(83,n, 84,0)' In this way, the distances between each pair of features is con­
sidered in the cost function making it independent of the ordering of the images. The four 
image matching algorithm can be written as : 

l.(a) Match the features in hand h, using nearest neighborhood matching [100], 
optionally with distance check to the second nearest neighbor. (b) Match the features in 
hand h, using nearest neighborhood matching, optionally with distance check to the 
second nearest neighbor. (c) Accept only symmetrically matched features. 

2. Remove unmatched features in h and merge the remaining features on the basis of 
the matching in step (1) such that the new cost function between matched features in h 
and features in h is d(8l,k, 83,n) = d(8l,k, 82,m, 83,n, 84,0)' 

3. (a)Match the features in hand h, using nearest neighborhood matching, optionally 
with distance check to the second nearest neighbor. (b) Match the features in hand h, 
using nearest neighborhood matching, optionally with distance check to the second nearest 
neighbor. (c) Accept only symmetrically matched feat ures. 

4. Remove unmatched features in h and merge the remaining features on the basis of 
the matching in step (3) such that the new cost function between matched features in II 
and features in 14 is d(8l,k, 84,0) = d(8l,k, 82,m, 83,n, 84,0)' 

5. (a) Match the features in hand 14, using nearest neighborhood matching, optionally 
with distance check to the second nearest neighbor. (b) Match the features in 14 and II, 
using nearest neighborhood matching, optionally with distance check to the second nearest 
neighbor. (c) Accept only symmetrically matched features. 
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6. Interchange the role of h, h, h,14 and restart at step (I). 
7. Merge the four matchings and return only those matches that are assigned in all 

four matching directions. 

129 



Appendix B: 
Tables of Abbreviations 

Table 8.1: List of Abbreviations for Chapter 3 
I Abbreviation I Denoting 

C Set of spatio-temporal cuboid features 
P Set of STOP features 

P 
L 
I 
S 
(7 

K 
F 
T 

'Y 

Stability criterion of MSV 
Geometric location of features 

Geometric inconsistency of features 
Matching score between two videos 

Overall Matching score from all videos 
N umber of action classes 

Fused features from one class 
Feature fusion table 
Weighting parameter 

Table 8.2: List of Abbreviations for Chapter 4 
I Abbreviation I Denoting 

A 3D point on human body 
T 
R 
E 
F 
M 
o 
v 
o 
[2 

TV-L2 

\1 
() 

d 
1/J 
E 

Translation vector connecting two cameras 
Rotation vector between two cameras 
Essential Matrix between two views 

Fundamental matrix between two views 
Intrinsic camera parameters 

Observation or measurement matrix 
veronese mapping 

The Knonecker product 
Matrix to vector conversion 

Total variation, L2 Norm 
smoothness term 

Auxiliary variable for flow 
Flow update 

Flow update weighting parameter 
Quadratic Energy function 
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Table 8.3: List of Abbreviations for Chapter 5 
I Abbreviation I Denoting 

a 

r 
H 
A 
88 
8M 
d 

W 
V 
b 
p 

Action instance 
Reference action 

linear transformation 
3D FFT of original action volume 

Spectral seperation 
Similarity Measure 

3D distance between classes 
Within cluster distance ratio 

Class vote 
Energy of the transformed class mean 

Energy of the transformed input 

Table 8.4: List of Abbreviations for Chapter 6 
I Abbreviation I Denoting 

C Covariance matrix 
U Data matrix 
A diagonal matrix of eigen values of Covariance matrix 
A Eigen values 
f GISt feature vector 
C 8 M Structural Similarity Measure 
C8 Color Similarity 
18 Intensity Similarity 
8Q Structural Quality 
M I Mutual Information 
C f Colorfulness of an image 

131 



References 

[1] 1. Von Mises. Human action: A treatise on economics. In Chicago: Henry Regnery, 1966. 

[2] M. Pakaluk, Aristotles Nicomachean Ethics: An Introduction. Chicago: University of Chicago 
Press, 2005. 

[3] A. R. Mele, The Philosophy of Action, Oxford University Press, Oxford, 1997. 

[4] B.F. Skinner, The operational analysis of psychological terms, Behavioral and brain sciences, 
7 (4): 54781,1984. 

[5] T. Parsons, The Present Status of "Structural-Functional" Theory in Sociology, In Talcott 
Parsons, Social Systems and The Evolution of Action Theory, New York: The Free Press, 
1975. 

[6] R. K. Merton, The Unanticipated Consequences of Purposive Social Action. American Socio­
logical Review 1 (6): 894904, 1936. 

[7] A. Goldman. A theory of human action. In Englewood Cliffs, Prentice Hall, 1970. 

[8] G. Rizzolatti, L. Craighero, The mirror-neuron system, Annual Review of Neuroscience, 27:169-
192,2004. 

[9] M. Shah, Guest Introduction: The Changing Shape of Computer Vision in the Twenty-First 
Century, IJ CV, 2002. 

[10] T. B. Moeslund, A. Hilton, V. Krger, A survey of advances in vision-based human motion 
capture and analysis, Computer Vision and Image Understanding, 104 (23), 90126, 2006. 

[11] A. P. Brandao, E. A. do Valle Jr., J. M. Almeidal, A. A. de Araujo, Action Recognition in 
Videos:from Motion Capture Labs to the Web, Computer Vision and Image Understanding, 
2010. 

[12] R. Poppe, A survey on vision-based human action recognition, Computer Vision and Image 
Understanding, 28, 976990, 2010. 

[13] A. F. Bobick and J. Davis, The Recognition of Human Movement using Temporal Templates, 
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No.3, 2001. 

[14] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of 
the Conference on Computer Vision and Pattern Recognition (CVPR05), vol. 1, pp. 886893, 
San Diego, CA, June 2005. 

[15] D. Weinland, R. Ronfard, and E. Boyer. Free Viewpoint Action Recognition Using Motion 
History Volumes, CVIU 2006. 

[16] M. Donoser and H.Bischof, 3d Segmentation by Maximally Stable Volumes, In Proc. ICPR 
2006. 

[17] 1. Laptev. On Space-Time Interest Points, IJCV 2005. 

[18] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, Behavior Recognition Via Sparse Spatio­
temporal Features, In Pmc. VS-PETS, 2005. 

132 



[19] D. Weinland, R. Ronfard, E. Boyer, A Survey of Vision-Based Methods for Action Represen­
tation, Segmentation and Recognition, Computer Vision and Image Understanding, 2010. 

[20] R. O. Duda, P. E. Hart, D. G. Stork, Pattern classification (2nd edition), Wiley, New York, 
2001. 

[21] J. Yamato, J. Ohya, K. Ishii, Recognizing human action in timesequential images using hidden 
Markov model, in: Proceedings of the Conference on Computer Vision and Pattern Recognition 
(CVPR92), pp. 379385, Champaign, IL, June 1992. 

[22] L. Wang, D. Suter, Visual learning and recognition of sequential data manifolds with applica­
tions to human movement analysis, Computer Vision and Image Understanding (CVIU), 110 
(2), 153172, 2008. 

[23] A. F. Bobick, S. S. Intille, J. W. Davis, F. Baird, C. S. Pinhanez, L. W. Campbell, Y. A. 
Ivanov, A. Schutte, A. Wilson, The kidsroom: A perceptually-based interactive and immersive 
story environment, Presence: Teleoper. Virtual Environ. 8 (4), 369393, 1999. 

[24] F. Tsalakanidou, S. Malassiotis, Robust facial action recognition from real-time 3d streams, 
Proceedings of IEEE CVPRW 09,0,411,2009. 

[25] A. Branzan Albu, T. Beugeling, N. Virji Babul, C. Beach, Analysis of irregularities in human 
actions with volumetric motion history images, in: Motion 07, 2007. 

[26] L. Gorelick, M. Blank, E. Shechtman, M. Irani and R. Basri. Actions as Space-Time Shapes, 
TPAMI2007. 

[27] C. Schiildt, 1. Laptev, and B. Caputo. Recognizing Human Actions: A Local SVM Approach, 
In Proc. International Conference on Pattern Recognition, 2004. 

[28] D. Weinland, E. Boyer, and R. Ronfard, Action recognition from arbitrary views using 3D 
exemplars, IEEE ICCV, Rio de Janeiro, pp. 17, Oct. 2007. 

[29] M. Rodriguez, J. Ahmad, and M. Shah, Action MACH: A Spatio-temporal Maximum Av­
erage Correlatio Height filter for Action recognition, In Proc. Computer Vison and Pattern 
Recognition, 2008. 

[30] J. Liu, J. Luo and M. Shah, Recognizing Realistic Actions from Videos "in the Wild", In 
Proc. Computer Vison and Pattern Recognition, 2009. 

[31] http://www.csee.wvu.edu/ vkkulathumani/wvu-action.html 

[32] R. Hartley, A. Zisserman., A., Multiple View Geometry in Computer Vision. Cambridge 
University Press, 2004. 

[33] M. Han and T. Kanade. Multiple motion scene reconstruction from un-calibrated views, In 
Proc. ICCV 2001. 

[34] E. Trucco and A. Verri, Introductory techniques for 3d computer vision. Prentice Hall,1998. 

[35] H. Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections. 
Nature 198!. 

[36] T. S-Mahmood, A. Vasilescu, S. Sethi, 1. Center, and C. San Jose. Recognizing Action Events 
from Multiple Viewpoints. in Proc. WDREV 200l. 

[37] V. Parameswaran and R. Chellappa. View Invariance for Human Action Recognition. IJCV 
2006. 

[38] C. Roo, A. Yilmaz and M. Shah. View Invariant Representation and Recognition of Actions. 
IJCV 2002. 

[39] A. Yilmaz and M. Shah. Actions as objects: A novel action representation. IEEE Proc. CVPR, 
2005. 

[40] Shen, Y. and H. Foroosh. View-Invariant Action Recognition from Point Triplets. TPAMI 
2009. 

133 



[41] Yuping Shen and Hassan Foroosh. View Invariant Action Recognition Using Fundamental 
Ratios. In Pmc. CVPR 2008. 

[42] M. Shah A. Gritai, Y. Sheikh. On the use of anthropometry in the invariant analysis of human 
actions. In International Conference on Pattern Recognition, 2004. 

[43] A. Gritai, Y. Sheikh, C. Rao, and M. Shah. Matching trajectories of anatomical landmarks 
under view-point, anthropometric and temporal transforms. IJCV 2009. 

[44] A. Yilmaz and M. Shah. Matching actions in presence of camera motion. Computer Vision 
and Image Understanding, 104(2-3}:221231, 2006. 

[45] M. Mainberger, A. Bruhn and J. Weickert. Is dense optical flow useful to compute the funda­
mental matrix? LNCS 2008. 

[46] 1. Wolf and A. Shashua. Two-body Segmentation from Two Perspective Views. In Pmc CVPR 
2001. 

[47] R. Vidal,Y. Ma,S. Soatto and S. Sastry. Two-view Multibody Structure from Motion. IJCV 
2002. 

[48] R. Polana and R. Nelson, Low level recognition of human motion, In Proc. IEEE Workshop 
on Motion of Non-rigid and Artculated Objects, pp. 77-82, 1994. 

[49] E. Shechtman and M. Irani; Space-time behaviour based Coorelations, In Proc. Computer 
Vison and Pattern Recognition, 2005. 

[50] S. Ali , and S, Lucey Are correlation filters useful for human action recognition, In Proc. 
International Conference on Pattern Recognition, 2010. 

[51] D. Weinland, O. Mustafa, and P. Fua, Making Action Recognition Robust to Occlusions and 
Viewpoint Changes,In Pmc. ECCV 2010. 

[52] J. Liu, M. Shah, B. Kuipers and S. Savarese. Cross-view Action Recognition via View Knowl­
edge Transfer. In Pmc. CVPR 2011. 

[53] M. Marszalek, I. Laptev, and C. Schmid, Actions in Context, In Proc. Computer Vison and 
Pattern Recognition, 2009. 

[54] L. Li and L. Fei-Fei. What, where and who? classifying events by scene and object recognition. 
In Pmc. ICCV, 2007. 

[55] D. Han, 1. Bo, and C. Sminchisescu, Selection and context for action recognition, In pmc. 
CVPR 2009. 

[56] Y. Jiang, Z. Li, and S. Chang, Modeling Scene and Object Contexts for Human Action 
Retrieval with Few Examples, IEEE Transactions on circuits and systems for video technology, 
vol. 21, NO.5, 2011. 

[57] Jian F. Li, Wei G. Gong, Application of Thermal Infrared Imagery in Human Action Recog­
nition, Advanced Materials Research, 121-122, 368, 2010. 

[58] J. Han; B. Bhanu, Human Activity Recognition in Thermal Infrared Imagery, In Pmc. CVPR 
Workshops 2005. 

[59] L. A. Klein, Sensor and Data Fusion: A Tool for Information Assessment and Decision 
making, SPIE publishers, 2004. 

[60] A. Levin, D. Lischinski and Y. Weiss, "Colorization using optimization", ACM Trans. on 
Graph., vo1.23, no.3, 2004. 

[61J E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, "Color Transfer between Images", 
IEEE Compo Graph. and Appl., vol. 21, pp. 34-41, 2001. 

[62J T. Welsh, M. Ashikhmin, and K. Mueller, "Transferring color to greyscale images", ACM 
Trans. on Graph., vol. 21, pp. 277-280,2002. 

134 



[63J V. Zatsiorsky, Kinematics of Human Motion, In AHuman Kinetics, 2002. 

[64J B. farnell, Moving bodies, Acting selves, In Annual review of Anthropometry, 1999. 

[65J K. Verfaillie. Variant points of view on viewpoint invariance. In Canadian Journal of Psychol­
ogy, 1992. 

[66J L. Fogassi, V. Gallese, L. Fadiga and G. llizzolatti. Action recognition in the premotor cortex. 
In Brain, 1996. 

[67J G. Johansson. Visual perception of biological motion and a model for its analysis. Perception 
and Psychophysics, 14:201211, 1973. 

[68J J. Decetyand J. Grezes. Neural mechanisms subserving the perception of human actions. In 
Trends in Cognitive Sciences, 1999. 

[69J J. Aggarwal and Q. CaL Human motion analysis: A review. In Computer Vision and Image 
Understanding, 1999. 

[70J J. Aggarwal and S. Park. Human motion: Modeling and recognition of actions and interac­
tions. In Second International Symposium on 3D Data Processing, Visualization and Trans­
mission, 2004. 

[71J I. N. Junejo, E. Dexter, I. Laptev and P. Prez. View-Independent Action Recognition from 
Temporal Self-Similarities. TPAMI2010. 

[72J A. Bartoli. The geometry of dynamic scenes-On coplanar and convergent linear motions em­
bedded in 3D static scenes. CVIU 2004. 

[73J M. Herman. Understanding body postures of human stick figures. In PhD Thesis, University 
of Maryland, 1979. 

[74J D.C. Hogg. Interpreting Images of a Known Moving Object. PhD thesis, University of Sussex, 
1984. 

[75J C. Cedras and M. Shah. Motion-based recognition: A survey. In Image and Vision Computing, 
1995. 

[76J J. Davis and M. Shah. Three-dimensional gesture recognition. In Proc. of Asilomar Conference 
on Signals, Systems and computers, 1994. 

[77J B. Farnell. Moving bodies, acting selves. In Annual Review of Anthropology, 1999. 

[78J D. M. Gavrila. The visual analysis of human movement: A survey. cvm, 73(1):8298, 1999. 

[79J W. Liao, J. Aggarwal, Q. Cai and B. Sabata. Articulated and elastic non-rigid motion: A 
review. In Workshop on Motion of Non-Rigid and Articulated Objects, 1994. 

[80J S. Ju, M. Black, and Y. Yacoob. Cardboard people: A parameterized model of articulated 
image motion. In Proc. IEEE Int. Conf. on Automatic Face and Gesture Recognition, pages 
3844, 1996. 

[81J W. Hu L. Wang and T. Tan. Recent development in human motion analysis. In Pattern 
Recognition, 2003. 

[82J S. Avidan and A. Shashua. Trajectory Triangulation of Lines: Reconstruction of a 3D point 
Moving along a Line from a Monocular Image Sequence. IEEE Conf. on Computer Vision and 
Pattern Recognition (CVPR), June, 1999. 

[83J S. Avidan and A. Shashua. Trajectory Triangulation: 3D Reconstruction of Moving Points 
from a Monocular Image Sequence. IEEE Transactions on Pattern Analysis and Machine In­
telligence (PAMI), Vol. 22(4), pp. 348-357, 2000. 

[84J P. Lenz, J. Ziegler, A. Geiger and M.Roser, Sparse Scene Flow Segmentation for Moving 
Object Detection in Urban Environments, IEEE Intelligent Vehicles Symposium (IV), 2011 

135 



[85J Y. Sheikh, A. Gritai, M. Shah, On the Spacetime Geometry of Galilean Cameras, CVPR 2007 

[86J 1. Essa and A. Pentland, A Vision System for Observing and Extracting Facial Action Pa­
rameters, In CVPR 1994. 

[87J J. Liu, M. Shah. Learning human actions via information maximization. In Proc. CVPR 2008. 

[88J A. Sellent, C. Linz, M. Magnor. Consistent Optical Flow for Stereo Video. In Proc. ICIP 2010. 

[89J A. Sellent, M. Eisemann, M. Magnor. Robust Feature Matching in General Multi-Image Se­
tups. In Proc. WSCG, Plzen, Czech Republic,2011. 

[90J M. Black and A. Jepson. Eigentracking: Robust matching and tracking of articulated objects 
using a view-based representation. pages 6384, in Proc. ECCV 1998. 

[91J H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically inspired system for action recog­
nition. In ICCV, 2007. 

[92J A. Oikonomopoulos, 1. Patras, and M. Pantic. Spatia-temporal salient points for visual recog­
nition of human actions. IEEE Trans. Systems, Man, and Cybernetics, Part B, 36 (3}:710719, 
2006. 

[93J S. F. Wong and R. Cipolla. Extracting spatia-temporal interest points using global informa­
tion. In ICCV, 2007. 

[94J S. Venkatesh, N. Nguyen, D. Phung and H. H. Bui. Learning and detecting activities from 
movement trajectories using the hierarchical hidden markov models. IEEE Proc. CVPR, San 
Diego, CA, 2005. 

[95J H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recog­
nition. IEEE Trans. on ASSPR, Vol. 26, No.1, 1978. 

[96J P. Scovanner, S. Ali and Mubarak Shah, A 3-Dimensional SIFT Descriptor and its Application 
to Action Recognition, ACM Multimedia, 2007. 

[97J P.Yan, S aad M. Khan and Mubarak Shah, Learning 4D Action Feature Models for Arbitrary 
View Action Recognition, Proc. CVPR , Alaska, 2008. 

[98J Y. Ukrainitz, M. Irani: Aligning Sequences and Actions by Maximizing Space-Time Correla­
tions. Proc. ECCV, 2006. 

[99J F. Lv and R. Nevatia. Single View Human Action Recognition using Key Pose Matching and 
Viterbi Path Searching. Proc. CVPR, pages 18, 2007. 

[100J D. G. Lowe, Object recognition from local scale-invariant features. In: Proc. ICCV , Kerkyra, 
Greece, pp. 11501157, 1999. 

[101J G. Zhu, C. Xu, W. Gao, and Q. Huang. Action Recognition in Broadcast Tennis Video Using 
Optical Flow and Support Vector Machine. Lecture Notes in Computer Science, 3979:89, 2006. 

[102J A. Efros, A. Berg, G. Mori, and J. Malik. Recognizing action at a distance. Proc. IEEE 
ICC V, pages 726733, 2003. 

[103J L. Wang. Abnormal Walking Gait Analysis Using Silhouette-Masked Flow Histograms. Proc. 
ICPR, pages 473476, 2006. 

[104J C. Liu, J. Yuen and A. Torralba. SIFT flow: dense correspondence across different scenes and 
its applications.lEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Vol 
33, No.5, 2011. 

[105J J. Sullivan and S. Carlsson. Recognizing and tracking human action. In Proc. ECCV, pages 
629644, 2002. 

136 



[106J Anwaar-ul-Haq, I. Gondal, and M. Murshed, On Dynamic scene Geometry for View-invariant 
Action Matching , In Pmc. CVPR, 2011. 

[107J J. Little et al., Recognizing People by Their Gait: The Shape of Motion, Journal of Computer 
Vision Research, 1998. 

[108J J. Choi, W. Jeon, and S.-C. Lee, Spatia-temporal Pyramid Matching for Sports Videos, ACM 
Multimedia, 2008. 

[109J J. Sun, X. Wu, S. Yan, L.-F. Cheong, T.-S. Chua, and J. Li. Hierarchical Spatio-temporal 
Context Modeling for Action Recognition, In Proc. Computer Vison and Pattern Recognition, 
2009. 

[110J A. Kovashka and K. Grauman, Learning a Hierarchy of Discriminative Space-Time Neigh­
borhood Features for Human Action Recognition, In Proc. Computer Vison and Pattern Recog­
nition, 2010. 

[111J S. Ali and M. Shah, Human Action Recognition in Videos Using Kinematic Features and 
Multiple Instance Learning, IEEE Transactions on Pattern Analysis and Machine Intelligence, 
2010. 

[112J S. Belongie, J. Malik, and J. Puzicha, Shape Matching and Object Recognition Using Shape 
Context, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4), 2002. 

[113J A. Yilmaz and M. Shah, Actions Sketch: A Novel Action Representation, In Proc. Computer 
Vison and Pattern Recognition, 2005. 

[114J J. Sivic, A. Zisserman, Video Google: A Text Retrieval Approach to Object Matching in 
Videos, In Proc. International Conference on Computer Vision, 2003. 

[115J J. C. Niebles, H.Wang, and L. Fei-Fei, Unsupervised Learning of Human Action Categories 
Using Spatial-Temporal Words, In Proc. British Machine Vision Conference, 2006. 

[116J B. V. Kumar et al., Correlation Pattern recognition, Cambridge University Press, 2005. 

[117J A. V. Oppenheim, Signal and Systems, Prentice Hall, 1996. 

[118J Q. Hu et al., Action Recognition Using Spatial-Temporal Context, In Proc. International 
Conference on Pattern Recognition, 2010. 

[119J L. Cao; Zicheng Liu; Huang, T.S.; Cross-dataset action detection, In Proc. Computer Vison 
and Pattern Recognition, 2010. 

[120J http://guthspot.se/video/deshaker.htm 

[121J M. Rodriguez, CRAM: Compact representation of actions in movies, In Pmc. CVPR, 2010. 

[122J Y. O. Alatas and M. Shah, Spatio-temporal Regularity Flow (STRF): Its estimation and 
applications, IEEE Trans. on circuits and systems for video technology, 2007. 

[123J I. Laptev, M.Marszalek, C.Schmid, and B. Rozenfeld, Learning Realistic Human Actions 
from Movies. In Proc. CVPR 2008. 

[124J Z. Wu, Q. Ke, M. Isard, and J. Sun, Bundling Features for Large Scale Partial-duplicate 
Web Image Search, CVPR 2009. 

[125J Z. Wu, Q. Xu, S. Jiang, Q.Huang, P.Qui and L. Li, Adding Affine Geometric Constraint for 
Partial-duplicate Image retreival, ICPR 2010. 

[126J A. Fathi and G. Mori, Action Recognition by Learning Mid-Level Motion Features, In Proc. 
CVPR,2008. 

[127J A. Gilbert, J. Illingworth, and R. Bowden, Fast Realistic Multi-Action Recognition Using 
Mined Dense Spatio-Temporal Features, In Proc. ICCV, 2009. 

[128J J. Liu, S. Ali, and M. Shah, Recognizing Human Actions Using Multiple Features, In Proc. 
CVPR,2008. 

[129J Y. Yacoob and M. Black, Parameterized Modeling and Recognition of Activities, Computer 
Vision and Image Understanding, 1999. 

137 



[130] J. Matas, O. Chum, M. Urba, and T. Pajdla, Robust wide baseline stereo from maximally 
stable external regions. In Proc BMCV, 2002. 

[131] K. Schindler, L. Van Gool, Action Snippets: How Many Frames Does Human Action Recog­
nition Require? In Proc CVPR 2008. 

[132] H. Riemenschneider, Donoser, M. and Bischof, H., Bag of Optical Flow Volumes for Image 
Sequence Recognition" , BMVC 2009. 

[133] G. Willems et al. An efficient dense and scale-invariant spatio-temporal interest point detec­
tor, ECCV, 2008. 

[134] X. He, P. Niyogi . Locality Preserving Projections, In Advances in Neural Information pro­
cessing Systems, Cambridge, M.A. MIT Press, 2000. 

[135] A. KIser, M. Marszalek, and C. Schmid. A spatio-temporal descriptor based on 3Dgradients. 
In BMVC, 2008. 

[136] I. Laptev and T. Lindeberg. Local descriptors for spatio-temporal recognition. In First Inter­
national Workshop on Spatial Coherence for Visual Motion Analysis, LNCS. Springer, 2004. 

[137] C. Harris and M.J. Stephens. A combined corner and edge detector. In Alvey Vision Con­
ference, 1988. 

[138] S. Nowozin, G. Bakir, K. Tsuda, Discriminative Subsequence Mining for Action Classifica­
tion, In Proc. ICCV, 2007. 

[139] Y. Cao, C. Wang, Z. Li, L. Zhang, Spatial-bag-of-features, In Proc. Computer Vision and 
Pattern Recognition, 2010. 

[140] J. C. Niebles, C.-W. Chen and L. Fei-Fei, Modeling temporal structure of decomposable 
motion segments for activity classification, In Proc. ECCV, 2010. 

[141] A. Gaidon, Z. harchaoui, C. Schmid, Actom Sequence Models for Efficient Action Detection, 
In Proc. Computer Vision and Pattern Recognition, 201l. 

[142] A. Gupta and L. Davis, Objects in action: An approach for combining action understanding 
and object perception, in Proc. Conf. Comput. Vision Patt. Recog., 2007. 

[143] S. Tran and L. S. Davis, Visual event modeling and recognition using Markov logic networks, 
in Proc. ECCV, 2008. 

[144] J. Wu, A. Osuntogun, T. Choudhury, M. Philipose, and J. Rehg, A scalable approach to 
action recognition based on object use, in Proc. Int. Conf. Comput. Vision, 2007, pp. 361368. 
CVIU 2006. 

[145] Anwaar-ul-Haq, I.Gondal and M. Murshed, A Novel Image Fusion Algorithm based on 
Kernel-PCA, DWT and Structural Similarity, In Proc. VIIP Benidorm, Spain, 2005. 

[146] Anwaar-ul-Haq, I.Gondal and M. Murshed, Automated multi-sensor color video fusion for 
nighttime video surveillance, in: Proc. of IEEE international symposium on computers and 
communications (ISCC), Riccione, Italy 2010. 

[147] P. Perez, M. Gangnet, and A. Blake. Poisson image editing. ACM SIGGRAPH, 22(3):313318, 
2003. 

[148] I. Pavlidis, V. Morellas, P. Tsiamyrtzis, and S. Harp, Urban surveillance systems: from the 
laboratory to the commercial world, In Proc. of the IEEE, vol. 89, no. 10, pp. 1478 -1497,2002. 

[149] D. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vision, 
vol. 60, no. 2, pp. 91110, 2004. 

[150] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman. SIFT flow: dense correspondence 
across different scenes. In proc. European Conference on Computer Vision (ECCV), 2008. 

[151] C. Conaire, N. E. O'Connor, A. Smeaton. Thermo-Visual Feature Fusion for Object Tra<:king 
Using Multiple Spatiogram Trackers. Journal of Machine Vision and Applications, 2007. 

138 



[152J J. Davis and V. Sharma, Background-Subtraction using Contour-based Fusion of Thermal 
and Visible Imagery, Computer Vision and Image Understanding, Vol 106, No. 2-3, 2007. 

[153J J. J. Lewis, S. G. Nikolov, A. Loza, E. Fernandez Canga, N. Cvejic, J. Li, A. Cardinali, 
C. N. Canagarajah, D. R. Bull, T. Riley, D. Hickman, M. I. Smith, The Eden Project multi­
sensor data set, Technical report TR-UoB-WS-Eden-Project-Data-Set, University of Bristol 
and Waterfall Solutions Ltd, UK, 2006. 

[154J R.C.Gonzalez and R.E. Woods, Digital Image Processing, Prentice Hall,2nd ed. 2002. 

[155J G. Piella, A general framework for multiresolution image fusion: from pixels to regions, 
Information Fusion, vol.4, no.4, 2003. 

[156J H. Li, B. S. Manjunath and S. K. Mitra, Multi-sensor image fusion using the wavelet trans­
form, Graph. Mod. and Img. Proc.,. vol. 57, no.3, pp.235-245, 1995. 

[157J Anwaar-ul-Haq, I. Gondal and M. Murshed, Scarf: Semi-automatic Colorization and Reliable 
Image Fusion, in: Proc. of IEEE DICTA, Sydney, Australia, 2010. 

[158J A. Waxman, M. Aguilar, D. Fay, A. N. Gove, M. Seibert, J. P. Racamato, J. E. Carrick 
and E. D. Savoye , Color Night vision:Fusion of intensified visible and thermal IR imagery, in: 
Proc. of SPIE, vol. 2463, pp.58-68, 1995. 

[159J D.A.Fay, A.M. Waxman, M.Aguilar,D.B.lreland,J.P.Racamato,W.W.Streilien, and 
M.I.Braun, Fusion of multi-sensor imagery for night vision: color visualization,target 
learning and search, in: Proc. of 3rd Int. Con! on Inform. Fus., Paris, 2000. 

[160J G. Li and K. Wang, Applying daytime colors to nighttime imagery with an efficient color 
transfer method, in: Proc. of Enh. and Synth. Vis., pp. 65590L-12, Orlando, FL, USA, 2007. 

[161J A. Oliva and A. Torralba, Building the gist of a scene, the role of global image features in 
recognition, Prog. in Br. Res., Vo1.155,2006. 

[162J A.Oliva and A.Torralba, The role of context in object recognition, Tren. in Cogn. Sc., vol. 11 , 
no.12, 2007. 

[163J D. 1. Ruderman, T. W. Cronin, and C.C. Chiao, Statistics of cone responses to natural 
images: implications for visual coding, J. Opt. Soc. of America, vo1.15, no.8, pp. 2036-2045, 
1998. 

[164J V. Petrovic, C. Xydas, Objective evaluation of signal level image fusion performance. Opt. 
Eng., vo1.44. 2005. 

[165J G. Piella, and H. Heijmans. A new quality metric for image fusion, in:Proc. of Int. Con! of 
Img Proc., 2003. 

[166J N. Cvejic, A. Loza, D. Bull, and N.Canagarajah, A similarity metric for assessment of image 
fusion, Int. J. of Sig. Proc., vol.2, pp.178-182, 2005. 

[167J X. Zhang, A novel quality metric for image fusion based on color and structural similarity, 
in: Proc. of Int. Con! on Sig. Proc. Sys., Singapore, 2009. 

[168J Anwaar-ul-Haq, I. Gondal and M. Murshed, A novel color image fusion QoS measure for 
multisensor night vision application, in: Proc. of IEEE Int. symp. on Comput. and commu., 
Italy, 2010. 

[169J D. Hasler, and S. E. Suesstrunk, Measuring colorfulness in natural images, in: Proc. of Hum. 
Vis. and Elec. Imag. VIII. Santa Clara, CA, USA, 2003. 

[170J G. H. Chen., Y. Chun-Ling, and X. Sheng-Li, Gradient-based structural similarity for image 
quality assessment, in: Proc. of IEEE Int. Conf. on Img. Proc.,2006. 

139 



[171] D. B. Russakoff, C.Tomasi, T. Rohlfing and C. R. Maurer Jr., Image similarity using mu­
tual information of regions, Lee. Notes in Compo Be., vol.3023, pp. 596-607, Springer Berlin­
Heidelberg, 2004. 

[172] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli , Image quality assessment: from error 
visibility to structural similarity", IEEE 'JIrans. on Img Proc., vo1.13, no.4, pp.600-612, 2004. 

[173] A. Eskicioglu, P. Fisher, Image quality measure and their performance, IEEE Trans. on 
Comm., vo1.43, no.12, pp. 2959-2965, 1995. 

[174] N. Yang et al."A fast MPEG-7 dominant color extraction with new similarity measure for 
image retrieval J. Vis. Commun. Image R., vo1.19. pp.92105, 2008. 

[175] J. Vogelbernt, B. Schille, Semantic Modeling of Natural Scenes for Content-Based Image 
Retrieval, Int. J. of Comput. Vis. vol. 72, no.2, pp.133157, 2007. 

[176] M. Choi, A New Intensity-Hue-Saturation Fusion Approach to Image Fusion With a Tradeoff 
Parameter, IEEE Transactions on geoscience and remote sensing, 44(2006). 

[177] L. Bogoni, M. Hansen, Pattern-selective color image fusion, Pattern Recognition, 34(2001), 
1515-1526. 

[178] N. Mitianoudis,T. Stathaki, Optimal Contrast for Color Image Fusion using ICA 
bases,Proceedings of international conference on imformation fusion, 2008. 

[179] 1. Shen and Y. Niu, Blind Color Image Fusion Based on the Optimal Multi-objective Particle 
Swarm Optimization, International Journal of Multimedia and Ubiquitous Engineering, 2007 

[180] H. Bay, T. Tuytelaars, and 1. Van Gool. SURF: Speeded up robust features. In ECCV, 2006. 

[181] A. Toet, Natural colour mapping for multi band night vision imagery, Information Fusion, 
4(2003)155-166. 

[182] L. Wang, et al. Color fusion algorithm for visible and infra-red images based on color transfer 
in YUV color space. in: Proceedings of Multispectral Image Processing. Wuhan, China, 2007. 

[183] Y. Chen, Z. Xue, R. S. Blum, Theoretical analysis of an information-based quality measure 
for image fusion, Information Fusion, 9(2)(2008), 161-175. 

[184] T. D. Dixon et al. Selection of image fusion quality measures:objective, subjective, and metric 
assessment, Journal of Optical Society of America, 2007. 

[185] Y. Zheng, Z. Qin, Objective Image Fusion Quality Evaluation Using Structural Similarity, 
Tsinghua Science and Technology, 703-709, 2009. 

[186] P. J. Burt and E. H. Adelson, Merging images through pattern decomposition, In Proc. 
SPIE, 173-182, 1985. 

140 




