
DOCTORA L T H E S I S

Department of Computer Science, Electrical and Space Engineering
Division of Computer Science Situation Awareness in Pervasive

Computing Systems: Reasoning,
Verification, Prediction

Andrey Boytsov

ISSN: 1402-1544
ISBN 978-91-7439-639-3 (print)
ISBN 978-91-7439-640-9 (pdf)

Luleå University of Technology 2013

A
ndrey B

oytsov Situation A
w

areness in Pervasive C
om

puting System
s: R

easoning, Verification, Prediction

ISSN: 1402-1544 ISBN 978-91-7439-XXX-X Se i listan och fyll i siffror där kryssen är

Copyright Notices

Notice 1

Under the Copyright Act 1968, this thesis must be used only under the normal
conditions of scholarly fair dealing. In particular no results or conclusions should be
extracted from it, nor should it be copied or closely paraphrased in whole or in part
without the written consent of the author. Proper written acknowledgement should be
made for any assistance obtained from this thesis.

Notice 2

I certify that I have made all reasonable efforts to secure copyright permissions for
third-party content included in this thesis and have not knowingly added copyright
content to my work without the owner's permission.

Situation Awareness in Pervasive Computing

Systems: Reasoning, Verification, Prediction

Mr Andrey Boytsov

Submitted in partial fulfillment of the requirements for the

Doctor of Philosophy (Dual Award) (Lulea University of Technology)

Department of Computer Science, Electrical and Space Engineering

Luleå University of Technology

SE-971 87 Luleå, Sweden

Caulfield School of IT

Monash University (MU)

VIC 3145, Australia.

October 2012

Supervisors

Professor Arkady Zaslavsky, Ph.D.,

Luleå University of Technology and CSIRO

Docent Kåre Synnes, Ph.D.,

Luleå University of Technology

Assoc. Professor Shonali Krishnaswamy, Ph.D.,

Monash University

ii

Declaration

I declare that the thesis contains no materials that have been accepted for the award of
any degree or diploma at any university unless regulated by LTU requirements towards
Licenciate degree. I declare that, to the best of my knowledge, the thesis contains no
materials previously published or written by any other person except where due
reference is made in the text.

Si

Date: October, 30, 2012

Luleå University of Technology,
Luleå, Sweden.

Printed by Universitetstryckeriet, Luleå 2013

ISSN: 1402-1544
ISBN 978-91-7439-639-3 (print)
ISBN 978-91-7439-640-9 (pdf)

Luleå 2013

www.ltu.se

iii

To my family.

iv

v

Abstract

The paradigm of pervasive computing aims to integrate the computing technologies in

a graceful and transparent manner, and make computing solutions available anywhere

and at any time. Different aspects of pervasive computing, like smart homes, smart

offices, social networks, micromarketing applications, PDAs are becoming a part of

everyday life.

Context can be defined as information that can be of possible interest to the system.

Context often includes location, time, activity, surroundings among other attributes.

One of the core features of pervasive computing systems is context awareness – the

ability to use context to improve the performance of the system and make its behavior

more intelligent.

Situation awareness is related to context awareness, and can be viewed as the

highest level of context generalization. Situations allow eliciting the most important

information from context. For example, situations can correspond to locations of

interest, actions and locomotion of the user, environmental conditions.

The thesis proposes, justifies and evaluates situation modeling methods that allow

covering broad range of real-life situations of interest and reasoning efficiently about

situation relationships. The thesis also addresses and contributes to learning the

situations out of unlabeled data. One of the main challenges of that approach is

understanding the meaning of a newly acquired situation and assigning a proper label

to it. This thesis proposes methods to infer situations from unlabeled context history, as

well as methods to assign proper labels to the inferred situations. This thesis proposes

and evaluates novel methods for formal verification of context and situation models.

Proposed formal verification significantly reduces misinterpretation and misdetection

errors in situation aware systems. The proper use of verification can help building more

reliable and dependable pervasive computing systems and avoid the inconsistent

context awareness and situation awareness results. The thesis also proposes a set of

context prediction and situation prediction methods on top of enhanced situation

awareness mechanisms. Being aware of the future situations enables a pervasive

computing system to choose the most efficient strategies to achieve its stated objectives

and therefore a timely response to the upcoming situation can be provided. In order to

become efficient, situation prediction should be complemented with proper acting on

prediction results, i.e. proactive adaptation. This thesis proposes proactive adaptation

solutions based on reinforcement learning techniques, in contrast to the majority of

current approaches that solve situation prediction and proactive adaptation problems

sequentially. This thesis contributes to situation awareness field and addresses multiple

aspects of situation awareness.

The proposed methods were implemented as parts of ECSTRA (Enhanced Context

Spaces Theory-based Reasoning Architecture) framework. ECSTRA framework has

proven to be efficient and feasible solution for real life pervasive computing systems.

vi

vii

Table of Contents

Declaration ... ii

Abstract .. v

Table of Contents ... vii

Table of Figures ... xii

Table of Tables .. xiv

Preface .. xv

Publications ... xvi

Acknowledgements ... xviii

Introduction.Situation Awareness in Pervasive Computing Systems:

Definition, Verification and Prediction of Situations 1

1 Pervasive and Ubiquitous Computing ... 3

2 Context, Context Awareness and Situation Awareness 4

3 Research Questions ... 6

4 Thesis Overview and Roadmap ... 8

Chapter I Situation Awareness in Pervasive Computing Systems:

Principles and Practice .. 13

Foreword ... 14

1 Context Awareness and Situation Awareness in Pervasive

Computing .. 15

2 Defining Situations .. 16

2.1 Deriving Situations from Expert Knowledge 16

2.1.1 Logic-based Approaches to Situation

Awareness .. 16

2.1.2 Fuzzy Logic for Situation Awareness ... 19

2.1.3 Ontologies for Situation Awareness .. 21

2.1.4 Theory of Evidence for Situation

Awareness .. 22

2.1.5 Spatial Representation of Context and

Situations .. 24

2.2 Learning Situations from Labeled Data .. 26

2.2.1 Naïve Bayesian Approach for Situation Awareness 26

2.2.2 Bayesian Networks for Situation Awareness 28

viii

2.2.3 Dynamic Bayesian Networks for Situation Awareness 29

2.2.4 Logistic Regression for Situation Awareness 31

2.2.5 Support Vector Machines for Situation Awareness 33

2.2.6 Using Neural Networks for Situation Inference 35

2.2.7 Decision Trees for Situation Awarenes 36

2.3. Extracting Situations from Unlabeled Data 37

3Summary. Challenges of Situation Awareness in Pervasive Computing .. 41

Chapter II ECSTRA – Distributed Context Reasoning Framework for

Pervasive Computing Systems.. 45

Foreword ... 46

 1 Introduction ... 47

 2 Related Work .. 47

 3 Theory of Context Spaces .. 48

 4 ECSTRA Framework ... 49

 5 Distributed Context Reasoning .. 52

 5.1 Context Aware Data Retrieval ... 52

 5.2 Reasoning Results Dissemination ... 53

 5.3 Multilayer Context Preprocessing ... 54

 6 Evaluation of Situation Reasoning ... 55

 7 Conclusion and Future Work ... 56

Chapter III From Sensory Data to Situation Awareness: Enhanced

 Context Spaces Theory Approach .. 59

Foreword ... 60

 1 Introduction .. 61

 2 Related Work ... 62

 3 The Theory of Context Spaces ... 63

 4 CST Situation Awareness Challenges – Motivating Scenario 64

 5 Enhanced Situation Representation ... 67

 6 Reasoning Complexity Evaluation ... 70

 7 Summary and Future Work .. 72

Chapter IV Where Have You Been? Using Location Clustering and

Context Awareness to Understand Places of Interest. 75
Foreword ... 76

1 Introduction .. 77

2 Mobile Location Awareness .. 78

3 ContReMAR Application .. 79

3.1 ContReMAR Architecture ... 79

3.2 Context Reasoner ... 80

3.3 Location Analyzer ... 81

4 Evaluation ... 82

4.1 Experiments ... 82

4.2 Demonstration and Evaluation Summary .. 84

5 Related Work ... 85

6 Conclusion and Future Work ... 85

Acknowledgements ... 86

ix

Chapter V Structuring and Presenting Lifelogs based on Location

Data. .. 89
Foreword ... 90

1 Introduction .. 91

2 Recognizing places of importance ... 92

3 Calibrating the Place Recognition Algorithm .. 94

3.1 Data Collection .. 94

3.2 Error Types .. 95

3.3 Parameter Values ... 95

4 Inferring Activities ... 99

5 Implementation and Deployment ... 101

5.1 Reviewing Places ... 102

5.2 Reviewing Activities ... 102

6 Related work .. 102

7 Discussion .. 105

8 Conclusion and Future Work ... 106

Chapter VI Formal Verification of Context and Situation Models in

 Pervasive Computing .. 109

Foreword ... 110

1 Introduction .. 111

2 The Theory of Context Spaces ... 112

2.1 Basic Concepts ... 112

2.2 Context Spaces Approach Example ... 115

2.3 Additional Definitions .. 116

3 Situation Relations Verification in CST .. 118

3.1 Formal Verification by Emptiness Check .. 118

3.2 Motivating Example .. 120

4 Orthotope-based Situation Representation ... 120

5 Orthotope-based Situation Spaces for Situation Relations Verification. 122

5.1 Conversion to an Orthotope-based Situation Space 123

5.2 Closure under Situation Algebra.. 126

5.3 Emptiness Check for an Orthotope-based Situation Space 140

5.4 Verification of Situation Specifications ... 143

6 Formal Verification Mechanism Evaluation and Complexity Analysis . 143

6.1 The Conversion of Situation Format ... 143

6.2 Orthotope-based Representation of Expression 144

6.3 Emptiness Check ... 147

6.4 Verification of Situation Definitions – Total Complexity 149

7 Discussion and Related Work .. 150

7.1 Formal Verification in Pervasive Computing 150

7.2 Specification of Situation Relationships .. 150

7.3 Situation Modeling .. 151

7.4 Geometrical Metaphors for Context Awareness 152

8 Conclusion and Future Work ... 152

Chapter VII Correctness Analysis and Verification of Fuzzy Situations

in Situation Aware Pervasive Computing Systems 155

x

Foreword ... 156

1 Introduction .. 157

2 Background ... 159

2.1 Spatial Representation of Context ... 159

2.2 Fuzzy Situations .. 161

2.3 Verification of Context Models and Motivating Scenario 165

3 Verification of Fuzzy Situations .. 166

3.1 Additional Assumptions .. 166

3.2 Utilizing DNF representation... 167

3.3 Handling Non-numeric Context Attribute Values 169

3.4 Subspaces of Linearity – Single Situation 172

3.5 Subspaces of Linearity – Conjunction of Situations 175

3.6 Constrained Optimization in the Subspace 179

3.7 Verification Approach – Summary .. 182

4 Evaluation .. 183

4.1 Complexity Analysis for Generation of Subspaces 183

4.2 Complexity Analysis of Defining and Solving Linear

Programming Task .. 186

4.3 Accounting for Non-numeric and Mixed Context Attributes 190

4.4 Complexity Analysis – Summary .. 191

5 Discussion and Related Work .. 193

5.1 Formal Verification of Pervasive Computing Systems 193

5.2 Fuzzy Logic for Context Awareness in Pervasive Computing 195

6 Conclusion and Future Work ... 195

Chapter VIII Context Prediction in Pervasive Computing Systems:

 Achievements and Challenges .. 199

Foreword ... 200

 1 Context and Context Prediction ... 201

 2 Context Prediction in Pervasive Computing .. 202

2.1 Context Prediction Task .. 202

2.2 From Task Definition to Evaluation Criteria 204

 3 Context Prediction Methods .. 207

3.1 Sequence Prediction Approach .. 208

3.2 Markov Chains for Context Prediction .. 209

3.3 Neural Networks for Context Prediction ... 213

3.4 Bayesian Networks for Context Prediction 213

3.5 Branch Prediction Methods for Context Prediction 214

3.6 Trajectory Prolongation Approach for Context Prediction 214

3.7 Expert Systems for Context Prediction .. 215

3.8 Context Prediction Approaches Summary 216

 4 General Approaches to Context Prediction .. 216

 5 Research Challenges of Context Prediction ... 218

Chapter IX Extending Context Spaces Theory by Predicting Run-time

 Context .. 223

Foreword ... 224

 1 Introduction ... 225

xi

 2 Definitions .. 226

 3 Context Spaces Theory ... 226

 4 Context Prediction for Context Spaces Theory 227

 5 Testbed for Context Prediction Methods ... 232

 6 Conclusion and Future Work .. 234

Chapter X Extending Context Spaces Theory by Proactive

 Adaptation ... 237
Foreword ... 238

 1 Introduction ... 239

 2 Context Prediction and Acting on Predicted Context 240

 3 Proactive Adaptation as Reinforcement Learning Task 240

 4 Context Spaces Theory – Main Concepts .. 242

 5 Integrating Proactive Adaptation into Context Spaces Theory 243

 6 CALCHAS Prototype .. 244

7 Reinforcement Learning Solutions ... 246

7.1 Q-learning in Continuous Space ... 246

7.2 Actor-Critic Approach in Continuous Space 247

 8 Conclusion and Future Work ... 249

Chapter XI Conclusion. ... 251

1 Thesis Summary and Discussion ... 253

2 Research Progress .. 255

3 Possible Future Work Directions ... 256

Acronyms .. 259

Glossary .. 261

References .. 263

Appendix Statement of Accomplishment from INRIA 279

xii

Table of Figures

Introduction. Fig. 1. Smart home environment ... 4

Introduction. Fig. 2. Context processing ... 5

Introduction. Fig. 3. Thesis roadmap .. 10

Chapter I. Fig. 1. An example of a membership function ... 19

Chapter I. Fig. 2. An example of a situation awareness ontology 21

Chapter I. Fig. 3. Context Spaces Approach – an example ... 25

Chapter I. Fig. 4. Bayesian network example ... 28

Chapter I. Fig. 5. Dynamic Bayesian network example .. 30

Chapter I. Fig. 6. Sigmoid function example .. 31

Chapter I. Fig. 7. Separating line in 2-dimensional context space 32

Chapter I. Fig. 8. SVM example for the case of two relevant context features 34

Chapter I. Fig. 9. Decision tree example ... 37

Chapter II. Fig.1. Enhanced Context Spaces Theory-based Reasoning Architecture

(ECSTRA). ... 50

Chapter II. Fig. 2. Reasoning Engine Structure. ... 51

Chapter II. Fig. 3. Context Aware Data Retrieval – Architecture. 53

Chapter II. Fig. 4. Context Aware Data Retrieval – Protocol... 53

Chapter II. Fig. 5. Sharing of Reasoning Results. .. 54

Chapter II. Fig. 6. Multilayer Context Preprocessing... 55

Chapter II. Fig. 7. Situation Reasoning Efficiency... 56

Chapter II. Fig. 8. Situation Cache Efficiency. .. 57

Chapter III. Fig. 1. Constructing ConditionsAcceptable situation. 66

Chapter III. Fig. 2. ConditionsAcceptable situation. .. 66

Chapter III. Fig. 3. An orthotope in the context space. .. 67

Chapter III. Fig. 4. ConditionsAcceptable situation – simplified. .. 69

Chapter III. Fig. 5. Situation Reasoning Time – Original CST Definition 71

Chapter III. Fig. 6. Situation Reasoning Time - Dense Orthotope-based Situation

Spaces. ... 72

Chapter III. Fig. 7. Situation Reasoning Time - Sparse Orthotope-Based Situation

Spaces. ... 72

Chapter IV. Fig. 1. ContReMAR Application Architecture. .. 79

Chapter IV. Fig. 2. Context Reasoner Architecture. .. 80

Chapter IV. Fig. 3. Location Analyzer Architecture. ... 81

Chapter IV. Fig. 4. Proportion of GPS data in location measurements. 82

xiii

Chapter IV. Fig. 5. Recognized places over time for random user, depending on the

time threshold. .. 83

Chapter IV. Fig. 6. ContReMAR application detected the workplace of the user. 85

Chapter V. Fig. 1. New Places Recognition – Action Flow. .. 93

Chapter V. Fig. 2. Recognized places. ... 94

Chapter V. Fig. 3. DBSCAN implemented in a web application. .. 97

Chapter V. Fig. 4. Reachability plot visualization when using OPTICS. 98

Chapter V. Fig. 5. Recognized activities within a place. .. 100

Chapter V. Fig. 6. SenseCam worn around the neck. ... 101

Chapter V. Fig. 7. The main interface of the lifelogging application. 103

Chapter V. Fig. 8. Reviewing a place within the lifelogging application. 103

Chapter V. Fig. 9. Reviewing an activity within the lifelogging application. 104

Chapter VI. Fig. 1. Confidence level of LightMalfunctions(X) .. 121

Chapter VI. Fig. 2. The complexity of the algorithm 5.1. .. 144

Chapter VI. Fig. 3. The complexity of the algorithm 5.2 for AND operation. 146

Chapter VI. Fig. 4. The complexity of the algorithm 5.2 for OR operation. 147

Chapter VI. Fig. 5. The complexity of the algorithm 5.2 for NOT operation. 147

Chapter VI. Fig. 6. The complexity of the algorithm 5.3. .. 148

Chapter VII. Fig. 1. Example of Spatial Representation of Context. 160

Chapter VII. Fig. 2. Popular shapes of a membership function. .. 162

Chapter VII. Fig. 3. Membership functions of ConditionsAcceptable situation. 163

Chapter VII. Fig. 4. Membership functions of LightMalfunctions situation. 164

Chapter VII. Fig. 5. Time required to generate subspaces of linearity. 186

Chapter VII. Fig. 6. Time to solve linear programming task, depending on

various factors. .. 189

Chapter VIII. Fig. 1. Context prediction – general structure. ... 204

Chapter IX. Fig. 1. Context spaces theory.. 227

Chapter IX. Fig. 2. Markov model for Fig.1. .. 230

Chapter IX. Fig. 3. "Moonprobe" system architecture. .. 233

Chapter IX. Fig. 4. "Moonprobe" system working. .. 234

Chapter X. Fig. 1. CALCHAS general architecture. .. 245

Chapter X. Fig. 2. CALCHAS adaptation engine. ... 245

xiv

Table of Tables

Chapter II. Table 1. Situation Reasoning Complexity.. 55

Chapter II. Table 2. Situation Cache Efficiency ... 56

Chapter III. Table 1. Original CST Situation Reasoning Complexity 65

Chapter III. Table 2. Reasoning over Dense Orthotope-based Situation Spaces.................. 68

Chapter III. Table 3. Reasoning over Sparse Orthotope-based Situation Spaces 70

Chapter IV. Table 1. Proportion of revisited places ... 84

Chapter V. Table 1. Summarization of the logs analyses ... 96

Chapter VI. Table 1. The Complexity of the Algorithm 5.1 .. 145

Chapter VI. Table 2. The Complexity of the Algorithm 5.2 .. 146

Chapter VI. Table 3. The Complexity of the Algorithm 5.3 .. 148

Chapter VII. Table 1. ConditionsAccetable – expanded formula 173

Chapter VII. Table 2. LightMalfunctions – expanded formula .. 173

Chapter VII. Table 3. Subspaces of linearity –

ConditionsAcceptable & LightMalfunctions ... 176

Chapter VII. Table 4. ConditionsAcceptable(X)&LightMalfunctions(X) –

Maxima within subspaces ... 181

Chapter VIII. Table 1. An overview of context prediction approaches 220

Chapter IX. Table 1. Context prediction approaches summary.. 232

xv

Preface

Since I got my first computer (Intel 80286 with 1MB RAM and EGA display) at the

age of 11, I knew that after school I am going to continue my education in the area of

computer science and technology. The interest of exploration lead my first efforts in

computer science during the school years, starting with extracurricular BASIC classes

for schoolchildren at the age of 12 and proceeding to enrollment into BSc course in

computer science at the age of 17.

I obtained BSc and MSc degrees with distinction in computer science from Saint-

Petersburg State Polytechnical University in 2006 and 2008 respectively. By that time I

already had some positive experience working as a software developer, but what I

really wanted was to become a researcher in that field.

In late 2008 I was offered a position of PhD student in LTU and I pursued that

opportunity. Later I also joined Monash University as a double degree student. It was a

good chance to make some contribution into an emerging area and become a part of the

research community.

I defended my licentiate thesis in June, 2011 and continued towards doctoral thesis.

Internship in INRIA in November-December 2011 gave me valuable experience and

improved my practical knowledge of pervasive computing area. My PhD studies were

positive and valuable experience of how the academic world looks like and how the

research is carried out.

Luleå, October 2012

Andrey Boytsov

xvi

Publications

This thesis consists of introduction, conclusion and 11 chapters, which comprise the

contribution of 11 publications. Thesis also contain appendix, which includes a

statement of accomplishment from INRIA.

Publications, included in this thesis:

Paper A (reference [BZ10a], chapter I and chapter VIII). Boytsov, A. and

Zaslavsky, A. Context prediction in pervasive computing systems: achievements and

challenges. in Burstein, F., Brézillon, P. and Zaslavsky, A. eds. Supporting real time

decision-making: the role of context in decision support on the move. Springer p. 35-

64. 30 p. (Annals of Information Systems; 13), 2010.

Paper B (reference [BZ11a], chapter II). Boytsov, A. and Zaslavsky, A. ECSTRA:

distributed context reasoning framework for pervasive computing systems. in Balandin,

S., Koucheryavy, Y. and Hu H. eds. Proceedings of the 11th international conference

and 4th international con ference on Smart spaces and next generation wired/wireless

networking (NEW2AN'11/ruSMART'11), Springer-Verlag, Berlin, Heidelberg, 1-13.

Paper C (reference [BZ11b], chapter III). Boytsov, A. and Zaslavsky, A. From

Sensory Data to Situation Awareness: Enhanced Context Spaces Theory Approach, in

Proceedings of IEEE Ninth International Conference on Dependable, Autonomic and

Secure Computing (DASC), 2011, pp.207-214, 12-14 Dec. 2011. doi:

10.1109/DASC.2011.55.

Paper D (reference [BZ12a], chapter IV). Boytsov, A., Zaslavsky, A. and Abdallah,

Z. Where Have You Been? Using Location Clustering and Context Awareness to

Understand Places of Interest. in Andreev, S., Balandin, S. and Koucheryavy, Y. eds.

Internet of Things, Smart Spaces, and Next Generation Networking, vol. 7469, Springer

Berlin / Heidelberg, 2012, pp. 51–62.

Paper E (reference [KB12], chapter V). Kikhia, B., Boytsov, A., Hallberg, J., ul

Hussain Sani, Z., Jonsson, H. and Synnes, K.. Structuring and Presenting Lifelogs

based on Location Data. Technical report. 2012. 19p. URL=

http://pure.ltu.se/portal/files/40259696/KB12_StructuringPresentingLifelogs_TR.pdf,

last accessed October, 30, 2012.
1

1
 The revised technical report was submitted to Personal and Ubiquitous Computing

journal.

xvii

Paper F (reference [BZ12b], chapter VI). Boytsov, A. and Zaslavsky, A. Formal

verification of context and situation models in pervasive computing. Pervasive and

Mobile Computing, Volume 9, Issue 1, February 2013, Pages 98-117, ISSN 1574-1192,

10.1016/j.pmcj.2012.03.001.

URL=http://www.sciencedirect.com/science/article/pii/S1574119212000417, last

accessed May, 08, 2013.

Paper G (reference [BZ11c], chapter VI). Boytsov, A. and Zaslavsky, A. Formal

Verification of the Context Model - Enhanced Context Spaces Theory Approach.

Scientific report, 2011, 41 p.

URL=http://pure.ltu.se/portal/files/32810947/BoytsovZaslavsky_Verification_TechReport.pdf,

last accessed October, 30, 2012.

Paper H (reference [BZ12c], chapter VII). Boytsov, A. and Zaslavsky, A.

Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems. Scientific report, 2013, 30p.

URL= http://pure.ltu.se/portal/files/42973133/BoytsovZaslavsky_FuzzyVerifReport.pdf,

last accessed May, 08, 2013.
2

Paper I (reference [BZ09], chapter IX). Boytsov, A., Zaslavsky, A. and Synnes, K.

Extending Context Spaces Theory by Predicting Run-Time Context, in Proceedings of

the 9th International Conference on Smart Spaces and Next Generation Wired/Wireless

Networking and Second Conference on Smart Spaces. St. Petersburg, Russia: Springer-

Verlag, 2009, pp. 8-21.

Paper J (reference [BZ10b], chapter X). Boytsov, A. and Zaslavsky, A. Extending

Context Spaces Theory by Proactive Adaptation. in Balandin, S., Dunaytsev, R. and

Koucheryavy, Y. eds. Proceedings of the 10th international conference and 3rd

international conference on Smart spaces and next generation wired/wireless

networking (NEW2AN'10/ruSMART'10), Springer Berlin / Heidelberg, 2010, pp. 1-12.

Paper K (reference [Bo10], chapter X). Boytsov, A. Proactive Adaptation in

Pervasive Computing Systems, in ICPS '10: Proceedings of the 7th international

conference on Pervasive services, Berlin, Germany: ACM, 2010.

Some introductory and concluding sections are partially based on the content of the

licentiate thesis:

Licentiate thesis (reference [Bo11]). Boytsov, A. Context Reasoning, Context

Prediction and Proactive Adaptation in Pervasive Computing Systems. Licentiate

thesis. Department of Computer Science, Electrical and Space Engineering, Luleå

University of Technology, 2011.

URL=http://pure.ltu.se/portal/files/32946690/Andrey_Boytsov.Komplett.pdf, last

accessed October, 30, 2012.

2
 The revised technical report is planned for submission to Personal and Ubiquitous

Computing journal.

xviii

Acknowledgements

I’d like to thank my supervisor Arkady Zaslavsky for his guidance, support, and

discussion and comments on my work. I also want to thank Arkady for the provided

opportunities to join LTU and to enroll in a double-degree program with Monash

University. And I’d like to thank Arkady for helping me to settle in Luleå and in

Melbourne.

I’d also like to thanks my co-supervisors Kåre Synnes and Shonali Krishnaswamy

for their guidance, discussion and comments, numerous valuable advices, and constant

positive attitude.

I want to thank Christer Åhlund for his assistance and support throughout the

project.

I want to thank Josef Hallberg for his assistance and encouragement.

I’d like to thank WATTALYST project for providing the fundings for my research.

I want to thank Miguel Castano, Tatiana Boytsova, Natalia Dudarenko, Johan

Carlsson, Campbell Wilson and all others who provided me helpful advices and fruitful

discussions. Their valuable input inspired the creativity and allowed the research to

progress.

I’d also like to thank my colleagues from Monash University, Melbourne, who

promoted the collaboration between Monash University and LTU, and provided me the

chance to enroll in a double degree program. In particular, I’d like to thank Shonali

Krishnaswamy and Mark Carman from Monash University, who provided valuable

inputs about my work and encouraged the research collaboration. I’d also like to thank

Zahraa Abdallah for her collaboration efforts.

I’d like to thank Sven Molin for his assistance and for governing LTU-Monash

collaboration program.

I want to thank Basel Kikhia for his efforts to establish the collaboration between

projects and for his numerous ideas for joint research work. I’d also like to thank all

those who contributed to our collaborative research.

I want to thank Yuri Karpov and Department of Distributed Computing and

Networking of Saint-Petersburg State Polytechnical University for providing education

and constant support throughout Bachelors and Masters Studies.

I’d also like to thank Mikael Larsmark for numerous fixes of my equipment.

I’d like to thanks Johan Borg for providing me soldering lessons.

I want to thank Michele Dominici, Fredrik Weis and INRIA for providing me the

internship opportunity, which improved my research.

I’d like to thank all my friends and co-workers, who created warm and friendly

social environment.

Once again I’d like to thank Arkady Zaslavsky, Kåre Synnes and LTU for their

understanding and acting on compassionate grounds.

I want to thank my family, for always being there for me. Especially I want to thank

my wife, Renata Esayan, for her patience, encouragement and constant support.

 Luleå, March 2013

 Andrey Boytsov

xix

Introduction

Situation Awareness in Pervasive

Computing Systems: Definition,

Verification and Prediction of

Situations.

Introduction – Situation Awareness in Pervasive Computing Systems: Definition,

Verification and Prediction of Situations.

2

Introduction – Situation Awareness in Pervasive Computing Systems: Definition,

Verification and Prediction of Situations.

3

Situation Awareness in Pervasive Computing. Definition,

Verification and Prediction of Situations.
3

1 Pervasive and Ubiquitous Computing

The first research efforts in the field of ubiquitous computing started in 1988, at Xerox Palo

Alto Research Center (PARC) [WG99]. What began as an idea of a “computer wall”,

emerged into a novel computing paradigm.

The paradigm of desktop computing focuses on the use of personal computers – general

purpose information processing devices with high computational power. That paradigm is

still in use and it functions well for a wide range of tasks. However, the researchers from

PARC identified the following shortcomings of the personal computers: “too complex and

hard to use; too demanding of attention; too isolating from other people and activities; and

too dominating as it colonized our desktops and our lives.”[WG99].

The paradigm of ubiquitous computing aims to address those problems by intertwining

the computing technologies with everyday life to the extent when the technologies become

indistinguishable from it [We91].

Ubiquitous computing solutions are now becoming an integrated part of the everyday

environment. Various implementation of ubiquitous computing paradigm include smart

homes (see figure 1), smart offices and other ambient intelligence solutions, wearable

computing devices, personal digital assistants, social networks. However, there is still much

research to be done in the area.

The concept of pervasive computing is connected to the concept of ubiquitous

computing so closely, that those terms are sometimes used interchangeably even in the

research community [Po09]. It was noted that ”the vision of ubiquitous computing and

ubiquitous communication is only possible if pervasive, perfectly interoperable mobile and

fixed networks exist…” [IS99].

Although often used as synonyms, the term pervasive computing is often preferred when

discussing the integration of computing devices and weaving them into the everyday

environment, while the term ubiquitous computing is usually preferred when addressing the

interfaces and graceful interaction with the user. Based on the provided definitions, this

thesis is mostly focused on pervasive computing challenges, and therefore the term

“pervasive computing” is used in most cases.

The paradigm of pervasive computing pursues two main goals:

1. Graceful integration of computing technologies into everyday life.

2. High availability – the computing services should be available everywhere and at

any time.

3
 The introduction is partially based on the introductory part of the licentiate thesis [Bo11].

Introduction – Situation Awareness in Pervasive Computing Systems: Definition,

Verification and Prediction of Situations.

4

Pervasive computing systems often deal with enormous amounts of information, and

tend to utilize the large amount of small, highly specialized and highly heterogeneous

devices, and those features make the achievement of those goals especially complicated.

The area of pervasive computing proposes new research tasks for the computer science

community, and this thesis contributes to overcoming those challenges.

2 Context, Context Awareness and Situation Awareness

Context is a key characteristic of any pervasive computing system. According to the

widely acknowledged definition given by Day and Abowd [DA00], context is “any

information that can be used to characterize situation of an entity”. In plain words, any

piece of information that the system has is a part of the system’s context. The aspects of

context include, but are not limited to, location, identity, activity, time. In this thesis the

terms “context”, “context data” and “context information” are used interchangeably.

The system is context aware “if it uses context to provide relevant information and/or

services to the user, where relevancy depends on the user’s task.”[DA00]. In simple words,

the definition means that the system is context aware if it can use the context information to

its benefit. Although recognized as an interdisciplinary area, context awareness is often

associated with pervasive computing. Context awareness is core functionality in pervasive

computing, and any pervasive computing system is context aware to some extent.

Figure 2 provides an overview of how the context is processed and how the pervasive

computing system actions emerge from context processing efforts. On figure 2 the context

processing is viewed from the aspects of algorithms and information flows, and that aspect

is in the focus of this thesis. For simplicity the aspects like hardware, physical

communications, interaction protocols are intentionally left out from figure 2.

Fig. 1. Smart home environment. (a) Kitchen; (b) Fridge; (c),(d) Control panels. Photos taken at DAI -

Labor, TU Berlin, Germany in 2010.

Introduction – Situation Awareness in Pervasive Computing Systems: Definition,

Verification and Prediction of Situations.

5

Fig. 2. Context processing

Sensors are the devices that directly measure the environment characteristics (like

temperature, light, humidity). Direct user input is provided by such devices as keyboards,

touchscreens, and voice recognition solutions. Sensor information and user input are often

processed in a similar manner, and in this thesis when talking about sensor information or

the input data, both sensory originated information and user input are referred to, unless the

distinction is explicitly specified.

After highly heterogeneous input data is delivered, the first processing step is the data

fusion and low-level validation of sensor information. Sometimes raw sensor data, collected

in a signle vector of values, are already viewed as low-level context.

The distinction between different levels of context grounds in the amount of

preprocessing performed upon the collected sensor information. Usually raw or minimally

preprocessed sensor data is referred to as low-level context, while the generalized and

evaluated information is referred to as high-level context [YD12].

The situation awareness in pervasive computing can be viewed as the highest level of

context generalization. Situation awareness aims to formalize and infer real-life situations

out of context data. From the perspective of a context aware pervasive computing system,

the situation can be identified as “external semantic interpretation of sensor data”, where

the interpretation means “situation assigns meaning to sensor data” and external means

“from the perspective of applications, rather than from sensors” (definitions quoted from

the article [YD12]). Therefore, the concept of a situation generalizes the context data and

elicits the most important information from it. Properly designed situation awareness

Introduction – Situation Awareness in Pervasive Computing Systems: Definition,

Verification and Prediction of Situations.

6

extracts the most relevant information from the context data and provides it in a clear

manner. Multiple aspects of situation awareness are the focus of this thesis.

Context prediction aims to predict future context information. It can be done on any

level of context processing, starting from low-level context prediction and ending with

situation prediction. Different aspects of situation prediction and acting on predicted

situation are addressed in the thesis.

Adaptation block defines the response of the pervasive computing system to the

provided input, and provides the commands to the actuators. Actuators are the devices that

do actions on behalf of pervasive computing environment. For example, a relay that turns

switch on or off according to the commands of context aware system is a simple actuator.

Or the display that provides the information from context aware system to the user is also

an actuator. Or the conditioner that adjusts the temperature on request of smart home

environment is also an example of actuator.

The main focus of this thesis is situation awareness. This thesis addresses several

important challenges of situation awareness area:

- Properly defining the situations using the expert knowledge.

- Learning the situations from unlabeled context history.

- Ensuring correctness of the obtained situation models.

- Predicting future situations and properly adapting to prediction results

Next section provides more details on what challenges this thesis addresses and what

research questions this thesis answers.

3 Research Questions

One of the main goals of situation awareness functionality is sematic interpretation of

context information. However, in order to interpret context information, situation aware

system needs a mapping between context data and corresponding ongoing situations. For

example, if a wearable computing system aims to detect the locomotion of the user, the

system needs a model which takes entire set of current sensor readings as input and

produces the outputs like “User sits”, “User stands” or “User walks”. Interpretation

functionality is the core of situation awareness, and designing that mapping is a challenging

and error-prone task. The first research question of this thesis addresses some aspects of

that challenge.

Question 1: How to derive a mapping between context information and ongoing

situations?

Two possible answers to that question were proposed by research community (for

example, see [YD12]).

The first method is to derive the mapping manually using expert knowledge of the

subject area. The models based, for example, on ontologies [St09], first order logic [RN09]

or fuzzy logic [Pi01] allow the expert to formalize the knowledge of the subject area. At the

runtime pervasive computing system can use those formalizations to reason about context

and situations. Chapter III of this thesis addresses the challenge of designing situation

models in order to achieve ease of development, flexibility and efficient runtime reasoning.

Another option is to learn the mapping from examples. The option of learning the

mapping usually refers to supervised learning methods. On the first stage developers

observe the situation in practice and create a training set [RN09] – a set of context

measurements labeled with an ongoing situation. On the second stage the developers

Introduction – Situation Awareness in Pervasive Computing Systems: Definition,

Verification and Prediction of Situations.

7

employ various supervised learning methods to derive the formula, which maps context

information to a situation.

This thesis explores a different option of learning the situation, which is less frequently

seen in practice – learning situations from unlabeled data. Advantages of that approach

include possible learning of new situations at the runtime and becoming aware of the

situations that were not considered at the design stage.

One of the main challenges of learning the situations from unlabeled data is the

challenge of labeling. For example, cluster of location measurements can correspond to a

location of interest to the user, but what kind of location is that? Labeling can be done

either manually by the user or automatically. Chapters IV and V of this thesis address both

manual and automated labeling.

Both developing and learning the models of situations are complex tasks, and they are

prone to various kinds of errors. Those errors can significantly disrupt situation awareness

functionality. Research question 2 addresses the methods to detect and fix situation

definition errors.

Question 2: How to prove, that the derived mapping is correct?

Consider an example of a wearable computing system, which aims to detect locomotion

of the user. Situations like “User sits”, “User stands” or “User walks” are represented as

formulas, which take sensor readings as inputs and produce probability of a situation as an

output. Those formulas can be the subject of expert error, if they are defined by hand. If the

formulas are learnt, mistakes can appear, for example, due to overfit or underfit.

Testing the situations is a viable option to detect possible errors, but still sometimes it is

not enough. There is no guarantee that a failure scenario will be encountered during testing.

This thesis proposes verification of situation models – a novel method of formally

proving situation correctness. Inspired by verification of protocols and software [CG99],

verification of situation allows to specify the expected properties of situations and either

formally prove that the situations comply with the properties, or derive counterexamples –

particular context features that will lead to inconsistent situation awareness.

Situation awareness functionality can be improved by situation prediction. Situation

prediction and related aspects constitute research question 3.

Question 3: How to predict future situation and how to act according to prediction

results?

Situation prediction is a recognized functionality of pervasive computing systems, and

many context prediction systems employ situation prediction. However, there is a lack of

general approaches to situation prediction. Many situation prediction solutions were

designed to fit their particular tasks and did not mean to be generalized for the entire

situation prediction field. Addressing the situation prediction problem in general sense can

provide important insights in the area, find the techniques to address common problems of

pervasive computing field and derive the methods that are applicable for wide class of

situation prediction tasks. This thesis addresses situation prediction challenge and proposes

architecture and algorithms to solve situation prediction task.

In order for situation prediction to have any value, pervasive system has to properly act

according to prediction results. This task is usually referred to as proactive adaptation task.

This thesis addresses the challenge of proactive adaptation and proposes algorithms and

architecture to achieve efficient proactive adaptation.

Introduction – Situation Awareness in Pervasive Computing Systems: Definition,

Verification and Prediction of Situations.

8

4 Thesis Overview and Roadmap

This thesis consists of 11 chapters, which comprise the contribution of 11 articles.

Numeration of figures, formulas and tables is separate for every chapter. The chapters share

common references, which are explained in references section at the end of the thesis.

According to LTU dissertation standards thesis includes publications as chapters (except

for chapters I and XI). It explains minor formatting differences. The chapters are arranged

in the order determined by the research questions. The chosen order is not the chronological

order of publications, but it ensures full understanding of how the research proceeds and

how the directions of research depend on each other. Chapters II-X are based on my

publications with minor modifications. Chapter VI and chapter X contain the results of two

merged articles each. The chapters are arranged as follows.

Chapter I sets the necessary background for further work. Chapters I and II address

mainly the research question 1, although chapter II is related to all the research questions.

Chapter I contains an overview of situation awareness methods. It discusses the

methods to define the situations at the design time or runtime, and elicit the situation out of

context data at the runtime. Chapter I describes related work dedicated to defining

situations using expert knowledge, learning the situations from labeled data and learning

situations from unlabeled data. Chapter I also discusses the challenges of situation

awareness and, hence, introduces the background necessary for understanding subsequent

chapters and their contribution.

Chapter II proposes ECSTRA (Enhanced Context Spaces Theory-based Reasoning

Architecture) – the framework for context awareness and situation awareness. The

architecture and implementation of ECSTRA provide solid bases for situation awareness,

and gracefully address the problems of context dissemination, multiple agent support and

reasoning results sharing. Most of the testing and evaluation, done in this thesis, used either

ECSTRA or extensions of it. In collaboration with INRIA, ECSTRA was incorporated in a

smart home solution for situation awareness. There ECSTRA has shown practical

usefulness, which is certified by INRIA (see appendix).

Chapters III-V address the research question 1.

Chapter III addresses the challenge of defining situations and contains the work to

provide extensive situation awareness support for the theory of context spaces. Chapter III

proposes enhanced situation models and addresses the aspects of their flexibility, clarity

and reasoning complexity.

Chapter IV contributes to one of the least frequently used approaches to situation

awareness – learning and labeling situations at the runtime. Chapter IV proposes and tests a

novel method to fuse and cluster location information, and then extract relevant places from

location data. It views high level location awareness task as situation awareness, and

employs situation awareness techniques for location awareness.

Chapter V proposes and proves an alternative approach to the one proposed in chapter

IV. Chapter V proposes and evaluates novel location awareness techniques and activity

recognition techniques for lifelogging task. Activity recognition and high-level location

awareness are viewed as situation awareness tasks. Locations are learned at the runtime, but

in contrast with Chapter IV the labels are chosen manually by the user. The application in

chapter V aims to make labeling as easy and non-intrusive as possible by providing proper

description of locations and activities in terms of location convex hulls and corresponding

pictures.

Chapter VI and chapter VII address the research question 2.

Introduction – Situation Awareness in Pervasive Computing Systems: Definition,

Verification and Prediction of Situations.

9

Chapter VI proposes and proves the novel technique that allows formal verification of

context and situation models in pervasive computing environments. Chapter VI addresses

and solves an important problem of context and situation awareness – the plausibility of

context model and situation model errors. Once being introduced at the design time, the

specification error can lead to inconsistent context awareness and situation awareness

results and those results constitute the background of context prediction and proactive

adaptation efforts.

Chapter VII continues the research from chapter VI and proposes and proves formal

verification method for fuzzy situations. Fuzzy logic is a frequently used technique for

situation awareness, and enhancing it with verification capabilities can significantly reduce

the number of errors in real life pervasive computing systems.

Chapters VIII-X address the research question 3.

Chapter VIII contains an overview of context prediction and situation prediction in

pervasive computing systems. It extensively addresses the massive amount of related work

in the area, identifies the features of context prediction task in pervasive computing,

proposes the prediction methods comparison criteria and addresses the possible context and

situation prediction solution approaches.

Chapter IX addresses the research to apply various context prediction approaches on

top of situation awareness capabilities of context spaces theory. The theory of context

spaces provides the formalized context awareness and situation awareness approach that

can relief the problems of context prediction and proactive adaptation in pervasive

computing area. The chapter discusses the possible applications of context prediction

techniques both on the level of context models, as well as on the top of situation awareness

mechanisms.

Chapter X continues the research direction and introduces proactive adaptation

techniques into the context spaces approach. The chapter formally states the task of

proactive adaptation, and proves the necessity of an integrated approach to context

prediction and proactive adaptation. Chapter X also proposes the possible reinforcement

learning mechanisms that can be applied to context spaces theory, and discusses the

necessary architectural support for it. As well as in chapter IX, proactive adaptation

methods are discussed both at the context model level and on top of situation awareness

techniques. Chapter X also proposes CALCHAS (Context Aware Long-term aCt aHead

Adaptation System) middleware – an extension of ECSTRA, which aims to improve

ECSTRA functionality by context and situation prediction and proper acting according to

predicted context.

Chapter XI summarizes the results of the thesis, provides the discussion and possible

future work directions.

Figure 3 depicts the roadmap of the thesis, shows the correspondence between the

research questions and chapters of the thesis and identifies the connection between the

chapters.

Introduction – Situation Awareness in Pervasive Computing Systems: Definition,

Verification and Prediction of Situations.

10

Fig. 3. Thesis roadmap.

Question 1. Chapter II. ECSTRA –

Distributed Context Reasoning

Framework for Pervasive Computing

Systems [BZ11a]

Question 3. Chapter IX. Extending

Context Spaces Theory by Predicting

Run-time Context [BZ09]

Question 3. Chapter VIII. Context

Prediction in Pervasive Computing

Systems: Achievements and Challenges

[BZ10a]

Question 2. Chapter VI. Formal

Verification of Context and Situation

Models in Pervasive Computing

[BZ12b]

Question 1. Chapter I. Situation Awareness in Pervasive Computing Systems: Principles

and Practice [BZ10a]

Question 1. Chapter III. From

Sensory Data to Situation

Awareness – Enhanced Context

Spaces Theory Approach

[BZ11b]

Question 1. Chapter IV. Where

Have You Been? Using Location

Clustering and Context Awareness

to Understand Places of Interest

[BZ12a]

Question 1. Chapter V.

Structuring and Presenting

Lifelogs based on Location Data

[KB12]

Question 2. Chapter VII. Correctness

Analysis and Verification of Fuzzy

Situations in Situation Aware

Pervasive Computing Systems [BZ12c]

Question 3. Chapter X. Extending

Context Spaces Theory by Proactive

Adaptation [BZ10b][Bo10]

Introduction – Situation Awareness in Pervasive Computing Systems: Definition,

Verification and Prediction of Situations.

11

Chapter I

Situation Awareness in Pervasive

Computing Systems: Principles and

Practice

Based on:
1. Boytsov, A. and Zaslavsky, A. Context prediction in pervasive computing

systems: achievements and challenges. in Burstein, F., Brézillon, P. and

Zaslavsky, A. eds. Supporting real time decision-making: the role of context in

decision support on the move. Springer p. 35-64. 30 p. (Annals of Information

Systems; 13), 2010.
4

4
 The content of chapter I is largely new. It contains literature review and related work, as

well as elements of the article [BZ10a].

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

14

Foreword

This chapter contains a survey and classification of existing situation awareness

approaches. It overviews related work and discusses current challenges of situation

awareness field. Therefore, this chapter provides background information, which is

necessary for understanding the contributions of subsequent chapters.

This chapter also starts the answer to the first research question, proposed in this thesis:

how to derive a mapping between context information and ongoing situations? Chapter I

overviews main groups of methods used to map context features to situations and analyzes

main challenges of those methods.

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

15

Situation Awareness in Pervasive Computing Systems:

Principles and Practice.

1 Context Awareness and Situation Awareness in
Pervasive Computing

Context awareness is one of the most important features of pervasive computing system.

Context can be defined as “any information that can be characterized situation of an entity”

[DA00]. The definition means that any piece of information that can be potentially used to

pervasive computing system is a part of system context. For example, location, time and

activity can be parts of context. Pervasive computing system is context aware “if it uses

context to provide relevant information and/or services to the user, where relevancy

depends on the user’s task.”[DA00]. Any pervasive computing system is context aware to

some extent.

Situation can be defined as “external semantic interpretation of sensor data”[YD12]. In

this definition interpretation means that from computational perspective situation is a

formula that takes sensor readings as input and returns inference result as output. Semantic

in the definition means that “situation assigns meaning to sensor data”. External means

“from the perspective of application, rather than from sensors”, i.e. situation awareness

functionality aims to benefit higher level applications. For example, application that

automatically set profile of the phone might benefit from situations like Noisy or

InAMeeting. Application that monitors and logs health of a user can benefit from situations

Hypertension, Tachycardia and UserFalls. If the situation is of no use to any application,

there is no reason to infer it at all.

From the perspective of two groups of definitions, related to context awareness [DA00]

and to situation awareness [YD12], it can be concluded that situation awareness is the part

of context awareness, which provides the uppermost layer of context generalization –

generalization in terms of meaning of context.

The concepts related to situation awareness are activity recognition and location

awareness. In pervasive computing human activity recognition aims to “recognize common

human activities in real life settings”[KH10b]. The examples of recognized activities are

locomotion like UserSitting, UserStanding or UserWalking [BI04], simple actions like

“Opening door” or “Taking cup”, or even complex actions like “Cooking” or

“Cleaning”[KH10b]. The example activities can be viewed as “semantic interpretations of

sensor data”. Therefore, in pervasive computing activity recognition and situation

awareness significantly overlap, and their common part is interpreting the sensor

information in terms of its general meaning.

Location is one of the most important components of context. From pervasive

computing perspective location awareness can be viewed as an aspect of context awareness,

responsible for inferring and utilizing location information of users and objects in pervasive

computing system. Location awareness overlaps with situation awareness on high levels of

generalization. Generalizations of location like “At home”, “In the office” or “At friend’s

place” belong to the field of location awareness. However, those generalizations also are

“external semantic interpretation of sensor data”[YD12], i.e. situations.

Still situation awareness is not restricted to location awareness or activity recognition.

For example, consider a wearable healthcare system that can detects situations like

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

16

Tachycardia or Hypertension. Generalization capabilities of the system are examples of

situation awareness, but not an example of activity recognition or location awareness.

For more details about foundational aspects of context and context awareness an

interested reader is referred to the paper by Dey and Abowd [DA00], which inroduced

widely accepted definition of context and context awareness. The article by Ye et al.

[YD12] provides a detailed introduction to the topic of situation awareness, as well as a

comprehensive survey of situation awareness techniques. For the detailed information about

activity recognition an interested reader is referred to the article by Kim et al. [KH10b].

Next section addresses situation definition methods in more details.

2 Defining Situations

From computational perspective every situation is described by a model, which takes raw

or preprocessed sensor readings as input and produces reasoning result as output.

Reasoning result might be probability of situation occurrence, fuzzy confidence or Boolean

answer that identifies whether the situation is recognized or not. Obtaining the model of

situation is one of the main challenges of situation awareness. The model should give

correct reasoning results (i.e. it should not misinterpret sensor readings) and also it should

be computationally feasible for runtime use (i.e. reasoning should not be too slow). We can

obtain situation definitions in several ways.

1. Situations can be manually defined using the expert knowledge of the subject area.

2. Situations can be learned from labeled data.

3. Situations can be learned from unlabeled data.

From the perspective of entire pervasive system the approaches are not mutually

exclusive. Situation aware system can include a multitude of situations, each of which is

obtained by different method. Three approaches to situation have their own benefits and

challenges. Next sections describe the methods to define the situations in more details.

2.1 Deriving Situations from Expert Knowledge

Sometimes human expert can just compose the formula by hand. For example, the formula

of a situation, which takes blood pressure sensor readings as input and returns confidence in

situation Hypertension, is relatively clear [DZ08]. Manual definition might be very

efficient, but it is prone to human errors and restricted only to the formats that can be

manually defined. For example, human expert can manually define a fuzzy set [DZ08], but

manually defining the coefficients of neural network [Ha09] is often practically not

possible.

This section overviews several approaches to situation awareness, which rely on manual

definition of situations by human experts. This section introduces situation awareness

concepts based on propositional and first order logic, belief function theory and Dempster-

Shafer approach fuzzy logic and ontologies. This section also overviews spatial

representation of context and situations.

2.1.1 Logic-based Approaches to Situation Awareness

Russel and Norvig [RN09] describe logic as “a general class of representation to support

knowledge-based agents”. Logic allows the system not only to store the knowledge, but

also to reason on it and properly infer new facts out of existing data.

One of the types of logic extensively used in situation awareness is propositional logic.

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

17

According to Kleene [Kl02] propositional logic is “a part of logic that deals only with

connections between the propositions, which depend only on how some propositions are

constructed out of other propositions that are employed intact, as building blocks, in the

construction”. The basic propositions, for which their internal structure can be ignored, are

called prime formulas. In situation awareness scenario prime formulas can be, for example,

UserInTheLivingRoom, UserInTheKitchen, TVisON. More complex propositions are called

composite formulas, and they are defined as operations over other propositions. Composite

formula in situation awareness can look like, for example,

SomeoneInTheLivingRoom|SomeoneInTheKitchen|SomeoneInTheHall – there is either

someone in the living room, or someone in the corridor, or someone in the kitchen. Each

proposition is either true or false, but the value of particular proposition is not always

known. In situation awareness scenarios the value of proposition can be known directly

either from sensor values (e.g. pervasive system can detect that TVisON) or from expert

knowledge and common sense (e.g. expression like (SomeoneInTheLivingRoom|

|SomeoneInTheKitchen|SomeoneInTheHall)→ SomeoneInTheHouse can be asserted as true

– if someone is in the kitchen, corridor or hall, it means that there is someone in the house).

Propositions, for which the values are not asserted explicitly, can be inferred from the

propositions with a known value.

While propositional logic can reason only about facts (i.e. prime formulas) and their

relationships (i.e. composite formulas), the language of first order logic is built around

facts, objects and relations. It is achieved by using quantifiers and predicates. Quantifiers

include existence quantifier (∃) and universal quantifier (∀). An example of predicate in

situation awareness scenario can be Room(X) (whether some object X is a room), IsAt(X,Y)

(whether some object X is at a place Y), User(X) (whether some object X is a user of

situation aware pervasive system).

The model in first order logic contains the following elements [RN09]:

1. Domain. Domain is the set of object that the model contains. For example, in

pervasive comnputing domain can contain the objects corresponding to different users,

rooms, appliances.

2. Relations between objects. Relations take one or more objects as arguments and

produce Boolean output. For example, there can be a unary relation User(X) to determine

whether object X is a user, unary relation Room(X) to determine whether the object X is a

room or binary relation IsAt(X,Y) to determine whether user X is at room Y.

3. Knowledge base. Like in propositional logic, knowledge base is a set of sentences.

Once the model is specified, the language of first order logic allows making certain

assertions. First order logic allows using universal quantifier and existence quantifier in

order to express the properties of collections of objects. For example, the sentence can be ∀

X, ∀Y, User(X) & Room(Y) & IsAt(X,Y) & TvOn(Y) → WatchingTV(X) – for any user X and

room Y, if user X is at room Y and the TV in room Y is on, then user X is watching TV.

Once the model is specified, it can be used to infer new facts and answer the queries.

For more information about predicate logic (which incorporates first-order logic) refer to

Kleene [Kl02], for more specific information about first order logic refer to Enderton

[En01] or Russel and Norvig [RN09][RN06]. For temporal logic refer to the book [CG99].

Situation awareness systems based on fuzzy logic are discussed in the next section.

Logic-based solutions were used multiple times in context awareness and situation

awareness systems. Henricksen and Indulska [HI06] proposed graphical context modeling

language, and defined situations as logical expressions over the context model. An example

of a situation “person is occupied” in provided in expression (1) (the expression is quoted

from [HI06]).

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

18

Occupied(person) :

∃t1,t2,activity, such that

engagedIn[person,activity,t1,t2] (1)

(t1 ≤ timenow() ∧ (timenow() ≤ t2 ∨ isnull(t2))∨

(t1 ≤ timenow() ∨ isnull(t1)) ∧ timenow() ≤ t2)∧

(activity = “in meeting” ∨ activity = “taking call”)

The meaning of situation definition (1) is following. The person is occupied, if there

exist an “in meeting” of “taking call” activity for that person (line 6 of expression (1)).

Lines 4 and 5 of expression (1) effectively mean that activity should start before current

time and end after current time, but line 4 allows the ending time of an activity to be

unspecified, while line 5 allows start time of an activity to be unspecified. However, either

starting or ending time should be specified.

The permitted assertion included equality, inequality and relation (like

“engagedIn[person,activity,t1,t2]” from expression 2). For evaluation purposes the use of

quantifiers was restricted: the definition of every situation could begin with multiple

existence quantifiers or with multiple universal quantifiers. Possible relations between

different elements of context were defined in context model, which was designed by the

means of context modeling language.

Seng W. Loke [Lo04b] proposed logic-based context awareness and situation awareness

system for pervasive computing. The proposed system aimed to answer two types of

queries:

1) Given an entity (which can be user, device or software agent) possible situations and

contextual information (sensor readings and results of their processing), determine what

situations are occurring.

2) Given a situation, an entity and contextual information, determine if the situation is

occurring.

In order to design a system, which could handle those queries, the author proposed

LogicCAP (Logic programming for Context Aware Pervasive application) – an extension of

Prolog language with an operator that can handle type (2) quaries (see [RN09] for more

details on Prolog). Type (1) queries could be handled by executing type (2) queries for all

involved situations. The situations were defined in terms of rules. For example, the

situation WithSomeone(person, place) could be defined according to expression (2) as a

sufficient condtion and expression (3) as a necessary condition (example adapted from

[Lo04b]).

If (Location(person, place))&&

 (PeopleInRoom(place,N))&& (2)

 (N > 1)

 then WithSomeone(person, place)

If WithSomeone(person, place) then

 (Location(person, place)),

 (PeopleInRoom(place,N)), (3)

 (N > 1)

Expression (2) asserts that if a person is at some place, there are N people at that place

and that numer of people is more than 1, then it means that person is not alone in that room.

Expression (3) asserts that if a person is not alone in a room, then there should be more than

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

19

1 person in that room. The argumets within condition can be sensor readings or other

situations. Apart from inferring the situations, the same kind of rules was used to determine

necessary actions that pervasive system should take.

Augusto et al. [AL08] proposed logic-based approach to context modeling in smart

home systems. The authors represented expected behavior in terms of rules. However, they

augmented logic with additional operators to represent temporal dependency. Tose

operators included ANDlater (one condition is satisified later than the other) and ANDsim

(both conditions are ssatisfied simultaneously). Expression (4) shows the rule to detect the

situation “occupant fainted”. The example is adapted from the paper [AL08].

IF at_kitchen_on ANDlater tdRK_on ANDlater no_movement_detected (4)

 THEN occupant_fainted

Rules for actions can be composed in a similar manner.

To summarize, many situation aware systems in pervasive computing use logic-based

knowledge representation and reasoning. A distinct type of logic is fuzzy logic, which is

overviewed in the next section.

2.1.2 Fuzzy Logic for Situation Awareness

Fuzzy logic originates from the works of L. Zadeh [Za65], who introduced the concept

fuzzy sets. Fuzzy set is “a class of objects with a continuum of grades of

membership”[Za65]. In an original set an object either belongs to the set or does not belong

to it. In a fuzzy set every object belongs to a set with a certain degree of membership,

which can vary from 0 to 1. Zadeh concludes that in real life objects sometimes do not have

precise criteria of membership. The author argues that the classes like “tall men” do not

consititue sets in original sense, but still play an important role in human thinking. Fuzzy

sets provide the tool to describe the classes like “tall man”, “cold day”, “dark place”, and

fuzzy logic allows additional reasoning with these classes.

Every fact in fuzzy logic is treated as a degree of belonging to some fuzzy set. Figure 1

describes an example membership function for a certain room to be a member of the set

“dark room”. As figure 1 shows, membership function depends on the iluminance in the

room. If illuminance is less than 350 Lx, the room is definitely dark (membership function

1). If the illuminance is above 500 Lx, the room is definitely not dark (membership function

0). If the illuminance is between 350Lx and 500Lx the room is considered to be somewhat

dark, and degree of membership varies.

Fig. 1. An example of a membership function

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

20

The shapes of membership function might vary. For example, the shape of membership

function “temperature is approximately 25°C” will most likely be triangular depending on

temperature with a peak at 25°C. Or, for example, the shape of the membership function

“morning” will most likely have trapezoidal shape depending on time of the day. Popular

shapes of membership functions are presented in [HM93]. From situation awareness

perspective genralizations in terms of fuzzy set membership can already be viewed as a

situation.

Fuzzy logic can work with relations between different classes. For example, smart home

developer can assert that the room is suitable for work if it is silent and not dark. Therefore,

it can be asserted that RoomSuitableForWorkSilentRoom&(¬DarkRoom). Those

relations can be described in terms of Zadeh operators [Za65] (expression (5)). Zadeh

operators represent interactions between fuzzy sets, e.g. degree of membership in an

intersection of fuzzy sets SilentRoom and WellIlluminatedRoom is the minimum of two

degrees of memebrship.

𝐴𝑁𝐷: 𝐴 & 𝐵 = 𝑚𝑖𝑛(𝐴, 𝐵)

𝑂𝑅: 𝐴 | 𝐵 = 𝑚𝑎𝑥(𝐴, 𝐵)

𝑁𝑂𝑇:¬𝐴 = 1 – 𝐴

 (5)

For more details on fuzzy logic, fuzzy control and decision making refer to the works

[Pi01][RN09][Za65][HM93].

Some situation awareness systems in pervasive computing are based on fuzzy logic. An

example of fuzzy logic-based approach to situation awareness is the work by

Anagnostopoulos et. al [AN06]. The authors introduced a framework for context awareness

and proposed situation reasoning mechanisms. A situation in [AN06] is viewed as a

conjunction of context features (see expression (6), quoted from [AN06]).

⋀ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑥𝑖, 𝑢𝑠𝑒𝑟) → 𝐼𝑠𝐼𝑛𝑣𝑜𝑙𝑣𝑒𝑑𝐼𝑛(𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛, 𝑢𝑠𝑒𝑟), 𝑁 > 1𝑁
𝑖=1 (6)

In a similar manner the framework [AN06] decides, what action the system should take

if certain situations take place.

The paper [MS02] used fuzzy logic to provide context aware control to mobile

terminals. On the first stage of context processing the proposed system extracted context

features out of raw measurements. On the subsequent step the features underwent fuzzy

quantization (i.e. representation in terms of fuzzy set membership). One of the aspects of

fuzzy quantization was recognition of user’s activities: whether the user walks and whether

the user runs. Another aspect was generalization of sound level (silence, modest sound,

loud sound) and environment illumination level (bright, moderate or dark). As a result, the

system was able to control the settings of mobile terminal based on the perceived

conditions.

Cao et al. [CX05] used fuzzy logic for pervasive service adaptation. The authors applied

fuzzy quantization to the characteristics like network delay, clock rate or free space in the

RAM. The proposed system used fuzzy logic in order to adapt the services like chat service

or e-mail service to current condition.

Acampora et al. [AG10] used fuzzy logic to actuate proper services in ambient

intelligence systems. Sensor information was generalized using fuzzy quantization. It

produced such generalizations like “Internal temeprature is high” or “time is evening”,

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

21

which can be viewed as situations. Subsequent logical inference was used to infer the

suitable adaptation policy. It should be noted that both the papers [CX05] and [AG10] used

the term “context situation”, which they defined as “a combination of context

information”[CX05]. This term differs from the term “situation” in this thesis and should

not be confused with it.

Fuzzy logic is popular and powerful method both for generalization of context

information and for adaptation in pervasive computing system. Next section discusses

situation awareness using ontologies – a popular knowledge engineering concept, which is

closely related to logic-based inference.

2.1.3 Ontologies for Situation Awareness

Ontologies in computer science provide generic domain independent way to represent,

share and reason about knowledge [Gr93]. One of the most popular definitions of

ontologies is provided by Gruber [Gr93]. Gruber defines ontology as “explicit

specifications of a conceptualization”. The author further explains the concept of ontologies

by adding the notion of universe of discourse and the notion of vocabulary. The article

[Gr93] defines universe of discourse as “the set of objects that can be represented” and

vocabulary as “set of objects, and the describable relationships among them”. Most

important relations include “is-a” relation (e.g. accelerometer is a sensor) and “instance-of”

relation (room A3304b is an instance of a room). As a result, the author proposes the

following expanded definition of ontology: ontology is “a specification of a

representational vocabulary for a shared domain of discourse — definitions of classes,

relations, functions, and other objects”[Gr93]. An example of ontology is presented in

figure 2. The ontology in figure 2 is a simplified situational context ontology, which was

used in the article [AN06].

Fig. 2. An example of a situation awareness ontology

The ontology in figure 2 describes the realtions between different types of situations,

aspects of context and information about users of the system. For example, when a meeting

is added to the system, corresponding node is added below a “Meeting” node with

“instance-of” relation. Ontologies allow inferring the facts. For example, it can be

straightforwardly inferred that meeting hour is a part of context.

Ontologies provide techniques to share knowledge between several reasoning agents,

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

22

infer new information and detect incomsistencies in a knowledge base. For more details on

ontological engineering, languages to describe ontologies and inference methods for

ontologies, refer to the handlbook [St09].

Ontologies are widely used in context awareness and situation awareness in pervasive

computing. Anagnostopoulos et al. [AN06] proposed ontology-based situation awareness

technique, which was partically described in section 2.1.2 and earlier this section. Wang et

al. [WZ04] introduced context ontology for logic based context reasoning ans situation

awareness. Chen et al. [CF05] proposed SOUPA – Standard Ontology for Ubiquitous and

Pervasive Applications. Dimakis et al. [DS07] proposed ontology-based mechanisms to

provide necessary information to pervasive services. Ejigu et al. [ES07] proposed general

purpose ontology-based context modeling system. For more details and more examples of

ontologies in pervasive computing, refer to the survey by Ye et al. [YC07b] and the survey

by Bettini et al. [BB10].

Next section introduces situation awareness methods based on combining the evidences.

In particular, next section overviews the methods based on Dempster-Shafer approach and

belief function theory.

2.1.4 Theory of Evidence for Situation Awareness

Theory of evidence [Sh76], also known as Dempster-Shafer theory [Sh76] or theory of

belief functions [YL08], aims to combine the evidences and fuse the data from various

senors [Sh76][RN09]. Also Dempster-Shafer approach aims to draw a distinction between

uncertainty and ignorance. It is achieved by transitioning from probability that a proposition

is true to the probability that the evidence supports the proposition. That measure is referred

to as belief function [RN09].

The concept of belief function can be illustrated with a following example. Assume that

there is an area, out of which 50% is known to be land, 30% is known to be water and the

remaining 20% area is unknown. In that case, if a random point is uniformly picked in the

area, the probability that this point is on the land is at least 0.5 (assuming that all unknown

area is covered by water) and at most 0.7 (assuming that all unknown area is also land).

Therefore, the belief in the fact that point is on the land is 0.5, and the plausibility that the

point is on the land is 0.8. Belief and plausibility in the fact that the point is on the land can

be written as [0.5; 0.8].

In order to formally define belief and plausibility and overview some advanced cases,

consider a more complicated example. Now there are three mutually exclusive options:

some area is either plain, or covered by water, or covered by hills. From the whole area

20% is known to be water, 25% to be plain, 15% to be hills. For 10% of the whole area it is

known for sure that there is no water there, but it is unclear to what extent the terrain is flat

and to what extent it is covered with hills. For the remaining 30% of the area nothing is

known – it can contain water, plains or hills in any proportion. Once again, consider that a

random point is unformly picked on that area.

The set {Plain, Water, Hills} from the example is referred to as frame of discernment. In

pervasive conmputing the elements of frame of discernment are events or situations. The

elements of frame of discernment should be mutually exclusive.

The set of all subsets is referred to as power set. For the example the power set is

{Water, Plain, Hills} the power set will be {Ø, {Plain}, {Water}, {Hills}, {Plain, Water},

{Plain, Hills}, {Water, Hills}, {Plain, Water, Hills}}. Empty set ususally corresponds to

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

23

contradictive evidences. Size of a power set is 2
D
, where D is the size of frame of

discernment. Therefore, power set grows exponentiallywith the set of frame of discerment.

Mass function assigns value from the interval [0,1] to every element of a power set. In

the example the mass m({Plain}) is 0.25, the mass m({Water}) is 0.2, the mass m({Hills}) is

0.15, the mass m({Plain, Hills}) is 0.1 and the mass m({Plain, Water, Hills}) is 0.3. The

remaining masses are 0.

The formal definition of belief and plausibility is defined in expressions (7) and (8)

respectively.

𝑏𝑒𝑙(𝐴) = ∑ 𝑚(𝐵)𝐵⊆𝐴,𝐵≠ (7)

𝑝𝑙(𝐴) = ∑ 𝑚(𝐵)(𝐵∩𝐴)≠ (8)

As follows from expression (7), belief for some element A of the power set is a sum of

masses of all the other elements of a power set, which are contained by A (excluding the

empty set). For example, consider the belief that a randomly picked point is on the plain.

The sum will contain only one summand – m({Plain}). Therefore, bel({Plain}) = 0.25. As

for the belief that a randomly picked point is either on the plain or in the hills, according to

expression (7) that belief consists of m({Plain}), m({Hills}) and m({Plain, Hills}).

Therefore, bel({Plain, Hills})=0.25+0.15+0.1=0.5. Belief in the fact that randomly chosen

point is either on the land, or in the hills, or on the water is equal to 1. One of those options

is definitely true, and formula (7) reflects that. The belief bel({Plain, Hills, Water}) is the

sum of all the masses except for the mass of empty set (that is 0 is our case).

Formula (8) shows that plausibility of some element A of a power set is equal to the sum

of masses for all the sets, which have non-empty intersections with A. For example, the

plausibility that some random point is on the plain will consist of m({Plain}), m({Plain,

Hills}), m({Plain,Water}) and m({Plain,Water,Hills}). Therefore, the plausibility

pl({Plain}) = 0.25+0.1+0.3=0.65. The plausibility that a randomly picked point is in the

hills or on the plain consists of evey mass except m({Water}) and the mass of empty set.

Therefore, the plausibility pl({Plain,Hills})=0.8.

Multiple evidences can be combined in a following manner. Several evidences

correspond to several mass functions over the same power set. A single mass function,

corresponding to the combined evidences, is calculated using Dempster’s rule of

combination. Dempster’s rule of combination is presented in expression (9).

𝑚(𝐶) =
∑ 𝑚1(𝐴)∗𝑚2(𝐵)𝐵∩𝐴=𝐶≠

1−∑ 𝑚1(𝐴)∗𝑚2(𝐵)𝐵∩𝐴=
 (9)

In expression (9) the terms m1 and m2 refer to the mass functions that come from two

evidences that need to be combined. The function m refers to the resulting mass function. If

the conflicts between evidences should be ignored, then expression (9) is applied to all the

elements of a power set except for Ø, and the mass m(Ø) is set to 0. The term

∑ 𝑚1(𝐴) ∗ 𝑚2(𝐵)𝐵∩𝐴= in the denominator in expression (9) is the measure of conflict

between two pieces of evidence.

For more details on Dempster-Shafer approach, its extensions and modifications refer to

[Sh76][RN09][Ra07][YL08].

Pervasive computing systems usually contain a variety of sensors, which provide

multiple evidences for situations. Some pervasive computing systems used Dempster-

Shafer approach to combine the evidences and generalize sensor information.

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

24

Padovitz [PZ06][Pa06] proposed to use Dempster-Shafer theory in combination with

context spaces approach in order to fuse context information and achieve efficient situation

awarenes. Hong et al. [HN09] proposed to use Dempster-Shafer approach to recognize

activities of daily living in a smart home. Zhang et al. [ZG10] proposed CRET approach

(Context Reasoning using extended Evidence Theory). In order to account for possible

conflicting evidences, the authors proposed new evidence selection and conflict resolution

strategies. McKeever et al. [MY10] proposed a method to recognize the activities of

inhabitants in smart home. As part of the approach, the authors introduced an extension of

Dempster-Shafer theory to take into account temporal aspects of activities. Dominici,

Pietropaoli and Weis [DP11] used theory of evidence for sensor fusion in a smart home

environment. Evidence theory allowed combining data from multiple sensors and inferring

contextual abstractions such as presence of someone in the room. Situation awareness was

achieved by combination of evidence theory and context spaces approach [PL08b].

In pervasive computing Dempster-Shafer approach has been successfully used because it

allows fusing the information from multiple sensor readings and context features. Next

section introduces a way to fuse sensor readings and context features by representing

possible context as multidimensional space. This method can be combined with other

situation awareness approaches, and it has been successfully used in conjunction with with

fuzzy logic [DZ08] and Dempster-Shafer approach [PZ06] [Pa06].

2.1.5 Spatial Representation of Context and Situations

Spatial representation of context and situations emerges from a straightforward idea that a

set of important context parameters can be represented as a vector of values. It can be

illustrated by a following example. Consider a context of a room in a smart home. That

context includes number of people, level of noise and the position of the door (open or

closed). Other context characteristics are omitted for the purpose of simplicity. The

considered parameters can be either measured directly (e.g. the level of noise), or inferred

out of sensed information (e.g. number of people can be estimated by processing indoor

positioning information for all people in the building). At any particular time context

features can be combined into a single vector. In the example a vector can look like [3; 40

dB; Closed] – there are three persons in the room, noise level is 40 dB and the door is

closed. Note that elements in a vector can as well be non-numeric.

The set of all possible vectors can be viewed as multidimensional space. A

multidimensional for the considered example is proposed in figure 3. The point in figure 3

represents the ealier mentioned vector [3; 40 dB; Closed]. In some practical cases the

position of the point can be unclear due to sensor uncertainty, or the value for some

dimensions can be unknown due to sensor unavailability.

One of the most prominent methods for spatial representation of context is context

spaces approach [PL04][PL08b][Pa06]. The context spaces approach extensively uses

spatial metaphors to represent context and situations. A multidimensional space like the one

presented in figure 3 is referred to as application space or context space. Every axis of

application space is referred to as context attribute. So in the example context attributes are

the number of people, noise level and door position. A point in a multidimensional space is

referred to as context state. Therefore, at any moment context of pervasive computing

system corresponds to some context state, and functioning of pervasive computing system

over time can be characterized by a trajectory of context state in an application space.

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

25

Fig. 3. Context Spaces Approach – an example

In order to reason about situations, context spaces approach introduced the concept of

situation space. The confidence in a situation was calculated as weighted sum of

contributions of different context attributes. Generic formula of a situation is presented in

expression (10).

N

=i

iiS,iS)(xcontrw=(X)conf
1

 (10)

In expression (10) the term confS(X) corresponds to the confidence that situation S is

occurring (depending on the context state X), wi corresponds to the weight of i-th context

attribute and contrS,i(X) corresponds to the contribution of i-th context attribute to the

situation S. For example, for the situation Hypertension [DZ08] the contributing context

attributes can be SistolicPressure and DiastolicPressure, both with the weights 0.5. Weights

sum up to 1, and the value of contribution function is between 0 and 1. Therefore,

confidence is between 0 and 1.

Generic contribution function for numeric context attribute is presented in expression

(11). For numeric context attribute different contribution values are assigned to different

intervals of a context attribute. For non-numeric context attributes different contribution

values are assigned to different non-numeric values of a context attribute.

]

...

]

]

1

322

211

+mmm b,(bx,a

b,(bx,a

b,(bx,a

=contr(x) (11)

Situation algebra allows reasoning about the relationships between situations. For

example, situation algebra allows finding the confidence in the fact that user is either

walking or running (UserWalking|UserRunning). The operations AND, OR and NOT of

situation algebra are based on Zadeh operators [Za65] (expression (5)), and more

complicated logical expression can be claculated using operators (5) as basis.

The provided definition of situation is flexible enough to represent a broad class of real

life situations. Moreover, it allows fast reasoning algorithms and still the concept of

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

26

situation space is clear enough for the situations to be composed by human expert.

Delir et al. [DZ08] proposed fuzzy situation inference - an extension of the context

spaces approach. The main difference was that instead of original contribution function (11)

the authors used a degree of belonging to a fuzzy set.

Padovitz et al. [PZ06], the developers of original context spaces approach, proposed an

extension to context spaces approach, which combined spatial representation of context

with situation reasoning based on Dempster-Shafer theory.

A different way to combine context spaces approach and evidence theory was proposed

by Dominici et al. [DP11]. The authors used the methods of evidence theory to estimate

context features, and then applied extended context spaces-based situation reasoning.

Another example of spatial representation of context is the work by Anagnostopulous et

al. [AM05]. The authors represented possible context as a multidimensional space and

current condition as a point in multidimensional space. However, in contrast with context

spaces approach and subsequent works, the work [AM05] did not generalize context in

situations. The paper [AM05] proposed context prediction by extrapolating the trajectory in

the space of context. The similar principle in application to context spaces approach was

proposed by Padovtiz et al. [PL07].
Although the term “context space” is specific to context spaces approach, graphical

representation of context provides useful inutitions in many cases. Throughout the thesis
the space formed by context features will be referred to as context space, even outside the
context spaces appoach.

This concludes the topic of defining situations using expert knowledge. Defining
situations manually can be very efficient, but it is not always possible. Learning the
definition of a situation is often a viable option if a developer cannot define the mapping
between sensor readings and situation.

2.2 Learning Situations from Labeled Data

Sometimes the list of situations is known, and the sensors provide enough information for
reasoning, but still the formula is unclear. For example, consider a wearable computing
system with multiple accelerometers and orientation sensors attached to the smart clothes
(example close to [BI04]). The provided information might be enough to detect situations
like UserStanding, UserSitting or UserWalking, but the formulas of those situations are not
clear. The solution is to design an experiment and collect labeled data – sensor readings
annotated with information about situation. In the example the solution is to watch testers
wearing the system in a lab, and log both the sensor readings and occurring situations. Real
occurring situations can be extracted manually, for example, from camera image of the
tester. Once enough labeled data are collected, developers can use multiple supervised
learning methods [RN06] to extract the formulas of situations.

This section contains some practical examples of that approach. Following subsections
provide brief overview of supervised learning techniques, which were used to infer
situations in pervasive computing. In particular, several subsequent sections discuss
learning the situations in the form of Bayesian networks [RN09] – one of the most popular
probabilistic graphical formalism.

2.2.1 Naïve Bayesian Approach for Situation Awareness

Naïve Bayesian approach is a relatively simple, yet very efficient way to combine the
evidence from multiple sources. This method relies on a strong assumption, that evidences
are conditionally independent from one another having the situations [RN09]. Consider the

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

27

following illustration: a smart home system evaluates the presence of people in the room.
The used sensors include sound sensor and pressure sensors on the floor. In order to
mitigate possible challenging scenarios (like sound from TV left on, which can lead to
evidences of presence from sound sensors), pervasive system should combine the evidences
from multiple sensors. So, the involved situation is presence, and the task is to combine the
evidences and calculate the probability of presence of one or more persons in the room.
First step to solve the task is applying the rule of Bayes. Rule of Bayes, applied to
illustration scenario, is presented in formula (12).

𝑃(𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 | 𝑠𝑜𝑢𝑛𝑑, 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒) =
𝑃(𝑠𝑜𝑢𝑛𝑑,𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒| 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒)∗𝑃(𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒)

𝑃(𝑠𝑜𝑢𝑛𝑑,𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒)
 (12)

In the illustration scenario it is safe to assume that when there is no one in the room, the

readings of pressure sensor and sound sensor are independent from each other. The same
applies for the case when someone is in the room. The resulting conditional independence
is presented in formula (13).

𝑃(𝑠𝑜𝑢𝑛𝑑, 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒|𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒) =

 = 𝑃(𝑠𝑜𝑢𝑛𝑑|𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒) ∗ 𝑃(𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒|𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒) (13)

Formula (13) illustrates the main assumption of naïve Bayesian approach – evidences

are independent give the situation. Learning the probabilities 𝑃(𝑠𝑜𝑢𝑛𝑑|𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒),
𝑃(𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒|¬𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒), 𝑃(𝑠𝑜𝑢𝑛𝑑|¬𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒) and 𝑃(𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒|𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒) requires
much less training data than learning the joint probability 𝑃(𝑠𝑜𝑢𝑛𝑑, 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒| 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒)
and 𝑃(𝑠𝑜𝑢𝑛𝑑, 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒| ¬𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒). The remaining terms of formula (12) can be
obtained in a following manner: 𝑃(𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒) can be inferred directly from the training
data (as well 𝑃(¬𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒)). As for denominator of (12), it is a sum of numerator (12) and
similar numerator for probability of non-presence.

The benefits of naïve Bayesian approach include efficient learning, as well as fast
runtime inference. Every learning task for naïve Bayesian approach requires learning a
distribution function of one variable. The distribution can be learned using maximum
likelihood approach. Exact learning method depends on chosen distribution function
[RN09]. More variables (sensors or context parameters) the task has, more training data is
required to learn the distribution and, hence, more benefit naïve Bayesian approach
provides. However, failing to satisfy a very strong assumption of conditional independence
can lead to problems.

Once the probabilities are learned, formula (12) can be used at runtime to calculate the
probability of a situation given the sensor data.

Naïve Bayesian approach was used in multiple pervasive computing tasks. In the paper
[BI04] authors used naïve Bayesian approach to infer user locomotion from acceleration
data. The authors used five wearable accelerometers to recognize the activities of the user.
Twenty recognized activities included walking, riding the escalator, vacuuming, lying
down. The authors used a following assumption: having the situation, the sensor readings
are distributed normally and independently of each other. The authors learned probability
distributions out of training data and tested the performance in the lab. However, the
performance of naïve Bayesian was unsatisfactory. According to authors’ analysis,
conditional assumption was not satisfied in practice.

In the paper [MB04] authors used Naïve Bayesian approach to detect activity and
availability of the user. Possible activity included using PC, using PDA, talking on the
phone, meeting, walking. The authors used naïve Bayesian method to extract this
information from the observable values like PC usage, ambient sound, iPAQ location, time
of the day. Possible avalability values were “available for a quick question”, “available for

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

28

a disscussion”, “to be available soon” and “not available”. The paper [MB04] proposed to
infer availability value using naïve Bayesian approach. The considered observable
information included user’s activity, user’s location and time of the day.

In the paper [TI04] authors aimed to explore whether activities of daily living can be
inferred using massive amounts of simple sensors. One of the considered options was naïve
Bayesian approach. The activities included “preparing breakfast”, “watching TV”,
“listening to music”.

An example of naïve Bayesian approach applied to pervasive computing is presented in
the paper [KK07]. The authors applied naïve Bayesian approach to recognize activities of
daily living in the residence for elders. As a baseline model they used Naïve Bayesian
approach, and then augmented it with time dependencies and transformed into dynamic
Bayesian network. In their subsequent work [KK08] the authors proposed CARE (Context
Awareness in Residence for Elderly) system. The activity recognition techniques once again
included naïve Bayesian approach.

Naïve Bayesian model can be viewed as a very simple case of Bayesian network. More
general examples of Bayesian networks are described in the next sections, as well as the
examples of Bayesian networks used in situation awareness.

2.2.2 Bayesian Networks for Situation Awareness

The Bayesian network is a direct acyclic graph where every node is associated with a fact

and every directed edge represents the influence on one fact by another. Nodes of the

Bayesian network have local Markov property: each variable is independent of its non-

descendants given its parents. For basic information on Bayesian networks refer, for

example, to Russel and Norvig [RN06][RN09].

A classic example of a Bayesian network is the sprinkler and rain network depicted in the

figure 4.

Fig. 4. Bayesian network example

The following interpretation begins by examining three facts – whether there was rain

(node R), whether the sprinkler was working (node S) and whether the grass is wet (node

W). Every node has probability distribution depending on its parents; for example, if it is

both raining and the sprinkler is working, then the grass is wet with a probability of 99 per

cent; if it is just raining – a 95 percent probability; if just the sprinkler works – 90 per cent

probability; and if there is no rain and sprinkler is off – a probability of three per cent.

Nodes with no parents have only prior probability (for rain it is 50 per cent). Some facts are

directly observed (e.g., we see or hear that the sprinkler is working). The system can

compute the posterior probabilities of unobserved facts using either the formula of Bayes

(up the graph – whether it is raining) or direct probability calculations (down the graph –

whether the grass is wet).

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

29

A learning task is quite common for Bayesian networks. Users sometimes do not have

complete information about the network and need to infer probability distributions of the

nodes (parameters learning task) or even the structure of Bayesian network graph itself

(structure learning task). For more details refer to the book by Russel and Norvig

[RN06][RN09].

Ye et al. [YC07a] proposed a concept of situation lattice. In brief situation lattice can be

defined as follows: “Situation lattice L, is defined as L = (S, ≤), where S is a set of

situations and the partial order ≤ is a generalisation relation between situations"[YC07a].

The authors mentioned that the concept of situation lattice was inspired by the concept of

lattice in linguistics. The authors also noted that the semantics of situation lattice is

effectively captured by Bayesian network, and that situation lattice can be converted to

Bayesian network for further reasoning by a straightforward algorithm.

Among multiple other methods in the paper [DP07] the authors used Bayesian networks

for context reasoning in smart homes. As an example authors used automatically inferred

Bayesian network, which connected the characteristics like motion detection, time of the

day, blinds position in a room, luminosity. That Bayesian network also included situations

like user presence in the room or user actions.

In the paper [ZS11] authors used Bayesian networks to detect when the user falls. Falling

was detected using sensors like gyroscopes and accelerometers, and additional Bayesian

network was used to validate the results. In the Bayesian network the node “Fall detection

alarm” (i.e. that sensors detected the fall) was a child node to the “Fall” node (i.e. that the

fall has really occurred). The parents of “Fall” node were the nodes corresponding to

physiological condition, physical activity and location. Physiological condition in turn

depended on health record and age of a user. The observable information was user profile

and the fact whether sensors detected the fall or not. Using observable information

Bayesian network could determine whether the fall has really occurred.

For more examples of Bayesian networks in situation awareness refer to survey by Ye et

al. [YD12]. A distinct type of Bayesian network is dynamic Bayesian network (DBN).

Dynamic Bayesian networks allow capturing time dependencies between the variables, and

multiple works used DBN for situation awareness [KK07][DP09][IN09][LO11] and

situation prediction [AZ98][PP05] task.

2.2.3 Dynamic Bayesian Networks for Situation Awareness

A dynamic Bayesian network (DBN) is an extension over of Bayesian network that takes

timing into account. Consider time being discrete (t=1,2,3….) the dynamic Bayesian

network can be defined as a pair of B1,B->, where B1 is the Bayesian network which defines

all prior probabilities on time t=1 and B-> defines several-slice (as usual, two-slice)

temporal Bayesian network, where all time dependencies are represented in terms of

directed acyclic graph. For example, it can look like this (see figure 5).

Dashed lines in Figure 5 represent temporal dependencies. B1 is the initial graph of t=1

with all the necessary starting probability distributions, B-> being a combined graph of t=1

and t=2 (with all the necessary distribution functions).

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

30

Fig. 5. Dynamic Bayesian network example.

Learning tasks in dynamic Bayesian networks (DBNs) are the straightforward

generalisation of learning tasks for simple Bayesian networks: parameter learning and

structure learning. In context prediction the tasks structure of a dynamic Bayesian network

is usually known and the system needs to infer parameters. For more information on

dynamic Bayesian networks see, for example, the work [RN06][RN09].

Dynamic Bayesian networks have been used in practice for situation awareness and

activity recognition purposes. For example, in the paper [KK07] the authors used dynamic

Bayesian network to recognize activities in the residence for elderly. The authors started

with naïve Bayesian model for activity recognition and then procceded to the connection

between activities – activity on the previous step influenced activity on the subsequent step,

and the dependency formed dynamic Bayesian network.

The paper [IN09] proposed using dynamic Bayesian network to recognize activity from

sensed interactions with objects. The system was designed to facilitate the work of a nurse.

The authors used RFID sensors to detect interaction of nurse with tool and materials: RFID

tags were attached to the objects, while RFID reader was munted on a wrist of a user. The

authors used dynamic Bayesian network to fuse sensed information and infer the ongoing

activity. For different activities of drip injection task the paper [IN09] claims over 95%

recognition accuracy.

Dimitrov et al. [DP07] used dynamic Bayesian networks in their context reasoning

framework. As the authors noted, Bayesian network, which they also used, was unable to

reason over time, and they resorted to dynamic Bayesian network to encode timing

dependencies. Inferred situations included, for example, “user leaving the house”[DP07].

In the paper [LO11] authors used dynamic Bayesian network for human activity

recognition. The authors used the dataset collected by van Kasteren [KA08]. During dataset

collection a set of state-change sensors was attached to multiple places in a smart home

including doors, cupboards and refrigerator. The recognized activities were "Leave house",

"Toileting", "Showering", "Preparing breakfast", "Preparing dinner", "Preparing a

beverage", "Sleeping" and “Idle”. In the paper [LO11] the authors achieved ~80% precision

and recall on the mentioned dataset. However, dynamic Bayesian network was used only as

a benchmark for comparison, and the main focus was on the techniques featuring sliding

window and decision trees, which gained over 90% of precision and recall.

Dynamic Bayesian networks conclude the overview of Bayesian network-based

approaches to situation awareness. The next sections discuss logistic regression and support

vector machines. Those two approaches usually separate context space (see section 2.1.5)

by a hyperplane into two parts – the part where the situation occurs and part where situation

does not occur.

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

31

2.2.4 Logistic Regression for Situation Awareness

As previous sections have shown, the task of situation inference can be viewed as the task

of estimating the probability of a situation. Logistic regression emerges from the task of

estimating the probability, and enables a practical solution both for learning situation

definitions and for inferring situations during the runtime. The basic concepts of logistic

regression are presented, for example, in the book [RN09][HL00].

Usually logistic regression relies on the use of sigmoid function. The formula of sigmoid

function is presented in the expression (14).

𝑠𝑖 𝑚𝑜𝑖𝑑(𝑥) =
1

1 ()
 (14)

The plot of sigmoid function is presented on figure 6. The function can be skewed or/and

moved by using linear function a*x+b as an argument instead of x. Sigmoid lies between 0

and 1 and, therefore, can represent probability.

Fig. 6. Sigmoid function example.

Probabilistic estimation can be converted into Boolean decision. Usually if probability

reaches some threshold (often 0.5) the situation is claimed to occur, while if the probability

is below the threshold the situation is counted as non-occurring. Sigmoid is ascending

function, so a threshold for sigmoid value effectively means a threshold for sigmoid

argument. For example, sigmoid is greater than 0.5 when the argument is greater than 0.

Logistic regression aims to learn the probability model in the form of sigmoid function.

Consider a multidimensional context space like the one presented in the section 2.1.5. The

probability is estimated as a sigmoid of linear combination of context features:

sigmoid(W
T
*X+b), where X = [1 x1 x2 … xN] is the vector of context state and W = [wo w1

… wN] is the vector of weights. Usually an input vector starts with the value x0 = 1 in order

to gracefully incorporate the bias term. Just as described in previous paragraph, if we use

the threshold 0.5, the situation is claimed to occur if W
T
*X ≥ 0 and is claimed not to occur

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

32

if W
T
*X < 0. However, W

T
*X defines a hyperplane in multidimensional space, and

expressions W
T
*X ≥ 0 and W

T
*X < 0 define two sides of that hyperplane. To summarize,

logistic regression approach separates multidimensional context space by hyperplane; if

current context reading is on the side of the hyperplane where W
T
*X ≥ 0 the situation is

counted as occurring, otherwise – as non-occurring. However, the challenge is to find a

vector of weights, which fits the training data best.

A generic illustration is provided in figure 7. A line (in general case – a hyperplane)

separates labeled data. Context readings, where the situation has occurred, are marked by o.

Context readings, where the situation did not occur, are marked by x. Those are training

data, which were used to construct the hyperplane. When new context state arrives at the

runtime, it is tested against the hyperplane. If context state is on top-right of separating line

(or exactly on the line), the situation is counted as occurring, otherwise – as non-occuring.

Fig. 7. Separating line in 2-dimensional context space

Coefficients of the separating hyperplane can be learned in the following manner.

Assume that the pervasive system developers have M points of training data. For example,

the developers could aim to infer situation “sitting”, and collected some wearable

accelerometer readings when the situation “sitting” has occurred and some wearable

accelerometer readings when the situation “sitting” did not occur. Particular context

readings used for training are denoted as Xi (where i is an index from 1 to M) and the

corresponding label is denoted as Yi. If the situation occurred (points o in figure 7) the real

probability of occurence is one (Yi=1). If the situation did not occur (points x in figure 7)

the real probability of occurence is zero (Yi=0). A frequently used error estimation for a

single example is following (expression (15)).

𝑐𝑜𝑠𝑡(, ,) = [
− (𝑠𝑖 𝑚𝑜𝑖𝑑(∗)) , 𝑖 = 1

− (1 − 𝑠𝑖 𝑚𝑜𝑖𝑑(∗)) , 𝑖 =
 (15)

The total error estimation is the sum of estimations for evey learning example (formula

(16)). The use of cost function (16) makes error estimation a convex function of weights,

which makes optimization significantly easier.

 () = ∑ 𝑐𝑜𝑠𝑡(, ,))

 =1
 (16)

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

33

The error function depends on the weights of sigmoid argument. This error function can

be minimized using, for example, gradient descent (note that linear separability is not

required for the method to work). The optimal weights, corresponding to mimum error Wopt

= argmin(J(W)) are learned during the development of situation aware system. At the

runtime those weights are incorporated into the system as constants. For every new sensor

reading X probability of a situation occurrence can be estimated merely as sigmoid(W
T
*X),

and then this probability can be compared against the probability threshold.

For more information on logistic regression refer to the books [HL00] and [RN09].

Logistic regression was used for situation awareness in pervasive computing on multiple

occasions. Kwapisz et al. [KW10] used cell phone accelerometers to infer the activities of a

user. The system extracted a set of features out of raw accelerometer data. Those features

were input of activity recognition algorithm, which needed to distinguish between walking,

jogging, going up and down the stairs, standing and sitting. Logistic regression was one of

the investigated activity recognition options, along with decision tree and multilayer

perceptron. The performance of logistic regression varied a lot between different activities:

it has achieved accuracy of 98% for jogging, but for going downstairs only 12% accuracy

was achieved.

Al-Bin-Ali and Davies [AD04] proposed to use logistic regression for activity

recognition purpose. The authors used three light intensity sensors – kitchen sensor,

bathroom sensor and bedroom sensors. As a result, they were able to infer the activities like

bathing, cooking, watching movie or sleeping. The accuracy was 60.8% when using

bathroom sensor only, 98% whn using bathroom and kitchen sensors and 99.2% when

using all thress sensors.

Ryoo and Aggrawal [RA09] used logistic regression to estimate the probabilities of

high-level user activities. The system used computer vision as a sensor input, and then on

lower level it hierarchically ecognized body parts positions, then posture, and then basic

human gestures. On higher level logistic regression was used to to recognize activities and

interactions between users (like “greeting” or “fighting”). Probability of activity was

estimated as a value of sigmoid function, which used weighted sum of gesture features as

an input.

Next section discusses support vector machines and their application to situation

awareness task. SVM has some similarity with logistic regression, but it uses different

criteria for constructing the separating hyperplane.

2.2.5 Support Vector Machines for Situation Awareness

Support vector machine (SVM) is a supervised learning method for linear and, whith some

extensions, non-linear classification. Russel and Norvig [RN09] claim that SVM is

currently the most popular approach for off-the-shelf supervised learning. SVM made its

way into the context awareness and situation awareness fields as well.

Like logistic regression, SVM method learns from labeled data and builds classifier,

which distinguishes situation occurrence from situation non-occurrence (in our case). And

like logistic regression SVM ends up with a separating hyperplane. However, criteria for

constructing the separating hyperplane are different. SVM aims to find a linear separation

with maximum margin – the distance between the recognized classes. Figure 8 provides an

illustration. The axes correspond to different context features (in a way similar to section

2.1.5). Line (for more dimensions – plane or hyperplane) separates the cases of situation

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

34

occurrence and non-occurrence. Here occurrence is claimed if a context state is on top-right

of the separating line. Labeled data, used to learn the separating line position, are marked as

o (situation occurred) and x (situation did not occur). Margin is the area between two

classes (in the figure 8 – between two grey lines on both sides of separating line, those lines

are parallel to the separating line). The distance from the separating hyperplane to each

class is denoted as d. The hyperplane is in the center of margin area, for both classes

because it results in greater distance from separating hypeplane to the closest example

point, and as a result in safer classification. The size of margin in figure 8 it is equal 2*d.

The goal of support vector machines method is to find the way of linear separation, which

maximizes the margin. Refer to the tutorial [BU98] and book [RN09] for more details on

support vector machines.

Fig. 8. SVM example for the case of two relevant context features.

Note that depending on how the hyperplane is drawn, different sample will be the closest

ones. Finding separating hyperplane with the largest margin can be reduced to quadratic

programming task, for which there exist multiple efficient algorithms. Some techniques are

availablr for the case if labeled data are not completely linearly separable (see [BU98] for

more details). Kernel trick allows extending SVM to non-linear cases and find non-linear

separators. Refer to [BU98][RN09] for more information on kernel trick.

Support vector machines were used multiple times in context awareness and situation

awareness. For example, Kanda et al. [KG08] used SVM to categorize the motion of

customers in a smart shopping mall. The authors employed multiple laser finders to provide

location readings. The recognized motion patterns included going straight, making right

turn, making left turn, making U-turn, and stopping. Combined with other context

awareness techniques, this information was used to deduce customer anticipations and

proactively provide service to the customer.

In the paper [PR07] Patel et al. designed a system for activity recognition in a smart

home home. SVM was used to classify the powerline transients, produced by home

appliances. Therefore, the system was able to detect what appliances were turned on and

off. In turn, this information was used to infer the activities of smart home inhabitants. The

authors claim that they achieved 85-90% accuracy in detecting electrical events in a smart

home.

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

35

Lee et al. [LL12] also used SVM to detect the appliances which smart home inhabitant

uses. This information, combined with activity recognition, allowed detecting non-essential

appliances, which do not participate in user activities and can be turned off. As an input the

system used information from non-intrusive power meter. The accuracy of SVM

recognition was around 88%. However, precision and recall were just around 52% and 43%

respectively.

Next section discusses using neural netowrks for situation awareness in pervasive

computing systems.

2.2.6 Using Neural Networks for Situation Inference

Neural networks are formal mathematical models that imitate biological neural structures.

Starting back in the 1940s with the first models of neuron, it became one of the most

popular ways of solving artificial intelligence related tasks. Learning capability allows

neural networks to solve a variety of problems including pattern association, pattern

recognition, function approximation.

Neural network can be defined as “a machine that is designed to model the way in which

the brain performs particular task or function of interest” [Ha09]. A comprehensive list of

neural network benefits is presented in the guide [Ha09]. The benefits relevant for

pervasive computing task are following.

1. Nonlinearity. Neural networks can represent the situations that depend non-linearly

from context features.

2. Adaptivity. Neural networks are well suited for supervised learning techniques.

[Ha09].

3. Evidential response. Single neural network can be used to reason about several

situations, whether the situations are mutually exclusive or not. Neural network both infer

the ongoing situations and provide the confidence in the decision.

For comprehensive neural networks overview refer, for example, to the work by Russell

and Norvig [RN09] or to the book [Ha09].

Neural network house [MD95] is one of the earliest examples of context aware smart

home environment. The authors proposed ACHE system (Adaptive Control for Home

Environments). ACHE aims to control all the aspects of comfort in smart home: ventilation,

lighting, air and water temperature. Neural networks were the core of the algorithms for

inferring inhabitants’ lifestyle and for controlling smart home resources. The used sensors

included light sensors, room temperature, sound level sensors, motion detectors, sensors for

statuses of all doors and windows, illuminance sensors and many more. ACHE employed

some situation awareness aspects as well. For example, it implemented occupancy model –

for each zone (where each zone usually corresponded to a particular room) the system

recognized, whether it is occupied by the user or not.

In the paper [KW10] authors proposed an activity recognition system that inferred user

activities using cell phone accelerometers. The system extracted a set of features out of raw

accelerometer data, and compared the performance of different activity recognition

alogirthm on top of those features. The compared options were logistic regression, decision

tree and multilayer perceptron, which is a very commonly used type of a neural network.

The accuracy of multilayer perceptron reached 44% and 61% for the activities “going

upstairs” and “going downstairs” respectively, but for all the other activities it exceeded

90% (activity “jogging” was recognized with over 98% accuracy).

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

36

Favela et. al [FT07] used neural networks for activity recognition in context aware

hospital applications. The authors tracked the activities of hospital staff, and the recognized

activities included patient care, information management, clinical case assessment. Four

contextual variables were used as neural network input: location, artifcats, role and time.

The feedforward neural network with 16 hidden units was trained using backpropagation

algorithm. Overall, the authors achieved 75% activity recognition accuracy.

Neural networks are robust and versatile tools for learning various dependencies.

However, neural networks contain some disadvantages as well. The main disadvantage of

neural network is that it is a blackbox. The methods like decision trees, naïve Bayesian

approach or logistic regression enable clear representation of situation formula. Human

expert can interpret the learned dependencies and find out how exactly the situation is

inferred. Neural networks are much less prone to human analysis.

Next section discusses the use of decision trees for situation awareness in pervasive

computing. As opposed to neural netowrks, decision trees can be easily read and

understood by the human expert.

2.2.7 Decision Trees for Situation Awarenes

Decision tree is a tree-like structure, which is used in decision support. Decision tree

represents a function that uses a vector of attributes as an input and produces single output

value – a decision. A simple example can be found in Figure 9. The figure shows a decision

tree, which decides whether to give a loan to the customer. The input includes several facts

about the customer: whether he/she is employed, the customer’s salary and wehther

customer has some assets. The graph in figure 9 is a tree graph. Decision making starts

from the root node and proceeds on different directions depending on the input. For

example, if the customer is employed, has high salary and asks for loan, on the first step

decision making will take “Employed - Yes” direction from the root node and it will end up

in the node “Salary”. On the next step decision making will take “Salary - High” direction

and end up in a decision node ”Loan: Accept”. It is a terminal node, and accepting the loan

request is a final decision. Therefore, every node in a decision tree corresponds to an input

feature to test, and the outcomes of testing determine, which child node should be taken

next. For more details on decision trees and decision tree learning refer to [RN09].
Hong et al., [HS09] provided several reasons to use decision trees: they are easily

understandable; they are capable of processing non-linear interactions among variables;
they have very low sensitivity for the outliers; they can handle large amounts of data; and
they can process both categorical and numerical data. Therefore, decision trees made their
way into context awareness and situation awareness systems. In context awareness and
situation awareness the input vector is a vector of context features, and the final decision is
an occuring situation.

Kwapisz et al. [KW10], among other methods, used decision trees to recognize activity

of a user from cell phone accelerometer readings. The activities included walking, standing,

sitting, running, ascending and descending stairs. The authors designed 43 features of

accelerometer readings, and those features were input of a decision tree. The accuracy of

decision trees heavily depended on activity and varied from 55% (for going downstairs) to

96% (for jogging).

Bao and Intille [BI04] investigated several approaches to recognize user locomotion out

of aceelerometer data. One of the inverstigated approaches was decision trees. Sensor

readings from five wearable accelerometers gave enough information to recognize twenty

locomotion activities. The recognized activities included walking, running, vaccuming,

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

37

standing still, climbing stairs, strength training. The authors claimed that decision trees

have shown the best performance (compared to naiva Bayesian approach, instance-based

learning and decision tables) and achieved around 84% accuracy.

In the paper [LO11] authors compared multiple approaches to human activity recognition

on the dataset from the work [KA08]. The task was to infer user activities using the

readings of many relatively cheap state change sensors. Sensors were attached to doors,

furniture and appliances, and those sensors allowed to detect when an object is used by the

user. Decision trees were one of the considered activity recognition approaches. Decision

trees gained over 90% precision and recall.

Fig. 9. Decision tree example.

It concludes the overview of the methods, which allow extracting situations out of

labeled data. Next section discusses the methods to extract situation definitions out of

unlabeled data. Those methods should overcome not only the challenge of extraction itself,

but also the challenge of labeling the newly acquired situation.

2.3 Extracting Situations from Unlabeled Data

In previous sections we viewed manually defining the situations and learning the situations

from labeled data. Manual definition of situation requires human expert to define the

formula. Learning situation models from labeled data requires collecting training

information, and then the formula can be obtained using supervised learning methods.

Learning situations from unlabeled data is mostly (but not exclusively [Ma04a][SL09])

used in location awareness. For example, location aware systems might need situations

corresponding to the places that user frequently visits. Those situations can be AtHome,

AtWork or VisitingFriend. However, the boundaries of the places are unknown in advance.

The places like AtHome or AtWork are different for every user, so training sets collected in

the lab are of no use for those situations. Requiring user to specify the information like

home place, work place, locations of friends, places of interest in the city. is very intrusive

and impractical. The same applies to creating labeled training set by periodically asking the

user where he/she is.

A feasible solution is to find the clusters of location information and define the situations

on that basis. Clusters of location readings are likely to correspond to places where user

spends significant time, i.e. places of interest to the user. However, naming the newly

acquired situation might be very challenging.

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

38

Learning situations from unlabeled data has the following advantages comparing to

manual definition of situations and supervised learning:

- Situations can be learned at runtime. It is suitable for the cases when the definitions of

situations heavily depend on the user, and prior training is impractical.

- The list of situations is not required. In previously mentioned examples the list of

situations was pre-defined, and the main goal was to find the formulas, which transformed

context into situations. However, in some situation aware systems even the number of

situations is unknown in advance. For example, in context aware system that learns the

hobbies of the user, or in location aware system that learns places of interest to the user

there is no way to tell in advance, how many distinct hobbies will be detected, or how many

places does the user often visit. For those cases unsupervised learning is a very efficient

option.

Despite those advantages, the concept of learning situations from labeled data is used

less frequently then the other methods of defining the situations. There are numerous

challenges related to unsupervised learning of situation definitions, and those challenges

make the application of unsupervised learning complicated. The main challenges are

following:

- Possible slow start. The method requires multiple sensor readings sometimes over

long time in order to identify the clusters.

- Clustering takes time and computational resources.

- Labeling the situation is additional challenge. Cluster of sensor readings might

correspond to some situation of interest, but to what situation do they correspond? For

example, it requires additional analysis to determine whether newly acquired cluster of

location information is user’s home, user’s workplace or a shop that user often visits. Two

possible options are asking the user and trying to label automatically.

- Distance metrics can be unclear. Clustering methods usually rely on the metrics of

distance between sensor readings. For location aware systems the metrics is quite clear – it

is real distance between locations. However, the distance metrics is unclear for two sets of

sensor readings containing, for example, statuses of household appliances and wearable

accelerometers on the user.

- Unknown number of situation restricts the scope of learning methods. Some

clustering methods require the number of clusters as input (for example, K-means

[WH07]), while other methods do not rely on that information (for example, DBSCAN

[EK96] or growing neural gas [Fr95]). In some systems, like location awareness example in

this section, the number of future situations is unknown, and it significantly restricts the

scope of learning methods.

- Some sensor readings do not belong to any situation, and it can also restrict the scope

of clustering methods. For example, location aware system can use clustering to identify

multiple places of interest. However, some location measurements will correspond to the

user moving from onew important location to another.

- It might be challenging to produce definitions of situations, which are suitable for

runtime inference. Some clustering algorithms (like DBSCAN [EK96]) attribute all the

points from the training set to some cluster or identify it as noise. However, when a new

point arrives, it can be challenging to determine to what cluster it belongs.

The identified challenges are solvable for many practical applications, but the exact way

to overcome the challenge depends on particular task.

Mayrhofer [Ma04a] performed a comprehensive work on context prediction, and

addressed situation awareness questions as part of that work. In [Ma04a] the author viewed

context prediction problem as situation prediction, and the situations were identified as

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

39

clusters in the space of context features. Mayrhofer compared multiple methods to cluster

the sensor data and infer situations. The survey in [Ma04a] contained many clustering

methods, out of which three were chosen for final implementation and evaluation in context

prediction system: Kohonen’s self-organizing maps [Ha09], K-means [WH07] and growing

neural gas [Fr95][Ha01]. Distance metrics was Euclidean distance in a multidimensional

space. Growing neural gas can learn the clusters of arbitrary shapes and it does not require

knowing the number of clusters in advance (unlike K-means). The work [Ma04a] chose

lifelong growing neural gas for situation recognition and namedtwo more reasons for that:

growing neural gas is easy to use in online mode (unlike K-means and self-organizing

maps) and also growing neural gas provides more stable cluster trajectories (i.e. much less

jumps from cluster to cluster). After the situations are obtained by clustering, they are

manually labeled and then used in context prediction effort. Mayrhofer’s work will be

addressed in more details when discussing context prediction.

Ashbrook et al. [AS02] employed the variation of K-means algorithm to cluster the GPS

data and define and predict the location of the user. Original K-means algorithm has pre-

defined number of clusters, which is ususally unsuitable for situation awareness approach.

The version of K-means algorithm proposed in [AS02] is capable of handling variable

number of clusters. For each cluster the algorithm marks all the points within a defined

radius, and computes the mean of all the points. Then the system draws new radius from

new mean, and repeats it until mean no longer changes. The algorithm [AS02] keeps adding

the clusters untril there are no GPS points left. The system proposed in [AS02] also looks

for sublocations within each location (i.e. subclusters within each cluster) in the same

manner. The radius of clusters is determined by analyzing the dependency between the

cluster radius and number of clusters. When the radius grows, the number of clusters

decreases. This plot has a “knee”, when the decreasing becomes slower. As Ashbrook et al.

argue, at that point the number of cluster converges to the number of real meaningful

location. Locations then can be labeled by the user; automated labeling is out of scope of

[AS02]. Once locations and sublocations are found, the system uses Markov model [RN09]

for location prediction.
Andrienko et al. [AA11] proposed the system, which extracts significant events and

relevant places out of mobility data. Mobility data is aggregated from multiple users. On
the first step the system extracted m-events (movement events) out of mobility information.
Movement characteristics, which were used for event extraction, included speed, travelled
distance, direction and temporal distances to the beginnings and ends of the trajectories. On
the second step the system attempts to detmine place and time of likely event occurences,
and the authors proposed two-stage clustering for that purpose. On the first stage the
authors implemented spatio-temporal clustering of events – events are clustered according
to their positions in space and time. The main purpose of the first stage is to remove the
“noise” – occasional events that occur closely in space but at different time. The work
[AA11] investigated the choice of distance function, which included space, time and
thematic attributes of events. The considered options included distance on Earth for
locations, distance in time for time properties (with some modigfications for cyclic
properties like the day of the week) and Euclidean distance otherwise. The authors used
density base clustering (DBSCAN [EK96] and OPTICS [AB99]), but defined the
neighbourhood using the combination of spatial distance and distance thresholds for every
considered attribute (note that for this approach single distance function is not required, and
it overcomed one of the problems of clustering in situation awareness). On the second stage
of clustering the system [AA11] applied spatial clustering, but only to the events that were
not ruled out as noise on the first stage. Events then were further aggregated for subsequent
analysis. The approach in [AA11] considered multiple possible user interventions for

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

40

choosing the attributes for events or for setting the distance thresholds. The collected and
aggregated information can be used for multiple purposes. The authors provided examples
of traffic congestion analysis and flight analysis.

Sometimes context awareness and situation awareness framework combine supervised
learning and unsupervised learning in a single system. Siirtola et al. [SL09] combined
supervised and non-supervised learning for activity recognition. The recognized activities
included football, basketball, walking, running, Nordic walking, pedaling (spinning or
cykling), gym training, roller skating, racket sports (tennis or badminton), floor ball and
aerobics. The authors used the data from just one 2-dimensional wrist-worn accelerometer,
which every user wore while perfoming the activities. The list of features used for
clustering and classification included mean, variance, averga change between subsequent
measurements. For clustering the authors used expectation-maximization algorithm
[DL77]. The authors determined the correspondence between clusters and activities using
the count of labeled points inside the clusters. C4.5 algorithm [Qu93] was used to construct
decision tree, which takes a measurement as an input and attributes it to certain obtained
cluster. Within the cluster another decision tree is constructed to determine the activity. As
a result, the accuracy of activity recognition was increased from 80% for straightforward
application of decision tree to 85% for the proposed combination of clustering and decision
trees.

Van Kasteren et al. [KE11] proposed activity recognition mechanism that clusters sensor
data into the clusters of actions, and then uses those clusters of actions to infer the activity.
The final model is 2-layer hierarchical hidden Markov model. The model contains activities
on the upper layer and sensor readings on the observation layer. Action cluster acts as an
intermediate layer between raw sensor readings and activities. Timing dependencies are
introduced between action clusters and activities. Refer to [KE11] for more details on the
nodes and dependencies of the model. The authors claim that the proposed model
outperforms straightforward hidden Markov model and hidden semi-Markov model.

Gordon et al. [GH12] proposed a system, which recognizes individual and group
activities using the sensor data from smart coffee mugs and using mobile phone as a
computational center. The auhors learned the activities out of labeled data and compared
multiple algorithms for that purpose: K nearest neighbors, naïve Bayesian and decision
trees (the book [RN09] contains an overview for all of those approaches). However, the
authors used also unsupervised learning to aid the classification of activities. The authors
compared several options of what to send from local activity recognition units to group
activity recognition system. The options included raw sensor data, sensor signal features,
local activity label and clustering results. The authors concluded that for now clustering-
based approach results in sharp accuracy rate decrease (from 96% to 76%), but still it has
some potential due to not requiring separate phase for local training and due to energy
consumption reduction by 33%.

To summarize, learning the situations from unlabeled data poses multiple challenges,
mostly related to labeling the clusters and defining the distance function. Still, unsupervised
learning was used as situation inference method on multiple occasions
[Ma04a][AS02][AH11][BZ12a][KB12]. In some cases supervised learning-based situation
inference used unsupervised learning as an intermediate step [SL09][KE11][GH12]. Next
section summarizes situation awareness techniques in pervasive computing, discusses the
challenges of situation awareness and concludes chapter I.

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

41

3 Summary. Challenges of Situation Awareness in Pervasive

Computing
Previous sections provided an overview of the methods used for situation awareness in
pervasive computing area. The field of situation awareness contains multiple challenges.
The challenges analyzed in this section are specific to entire group of approaches, or even
to the whole field of situation awareness itself. The challenges outlined in this section are
addressed later in the thesis.

The analysis of the overviewed situation awareness methods shows the following
benefits and challenges of situation awareness approaches.

Definition of situations by human expert has the following benefits:
- It can be an efficient way to formalize the knowledge that the expert has. Sections

2.1.1-2.1.5 show a wide range of situation awareness applications. The situations were
defined by experts in activity recoginiton scenario [HI06], service adaptation scenario
[CX05], smart home systesm [DP11] and many more. In each of the provided examples the
developers already know the mapping between sensor data and situations, and the task
mainly involves formalizing that knowledge properly.

- Manual definition of a situation allows representing situations in a clear and insightful
manner. Sections 2.1.1-2.1.5 overview multiple methods of sitation awareness, and in all
those methods the final situation can be read and understood by the expert. For example,
the expert can understand the situation by reading logic formula or by visulaizing the graph
of ontology.

However, manual definition of situation has also multiple challenges, which need to be
addressed in order to use increase the approach efficiently.

- Manual definition has limited applicability. Developer can use the models described in
sections 2.1.1-2.1.5 to define the situations manually. However, many other models (e.g.
most of the models described in sections 2.2.1-2.2.6 and 2.3) are not suitable for manual
definition.

- Manual defitinion is prone to human errors. The methods described in section 2.1.1-
2.1.5 do not contain methods for automatically proving that the proposed situation
definition matches expert knowledge.

- There migh be a tradeoff between complexity of development, complexity of reasoning
and flexibility. When defining the situations, pervasive computing developer should take
into account the following considerations:

1. Complexity of development. If the definition is complicated for a human expert to

understand or compose, it can result in increased development efforts and in definition

errors.

2. Flexibility. The model of a situation should be robust enough to infer real life

situation out of sensor data.

3. Complexity of reasoning. At the runtime situation aware pervasive computing

system constantly uses situation model to detect whether the situation occurs or not. If the

model is too complex and the reasoning is too slow, it can significantly hamper situation

awareness functionality and disrupt other functions of pervasive computing system.
Sometimes the aspects of development complexity, reasoning complexity and flexibility

form a tradeoff, and this tradeoff is one of the challenges of situation awarenes. Chapter III
of the thesis addresses this challenge, proposes a set of flexible situation models and
analyzes the question of reasoning complexity.

As section 2.3 shows, unsupervised learning in situation awareness is primarily used in
location awareness or in combination with supervised learning techniques. Many
researchers decided to infer situations out of unlabled data for following resons:

Chapter I – Situation Awareness in Pervasive Computing Systems: Principles and Practice

42

- It is initially unclear how many situations are there going to be (e.g. how many

importnat locations does the user visit). For example, refer to the article [AS02] or to the

work [Ma04a] , both of which were overviewed in section 2.3.

- The definitions of each situation significantly depend on the user, and cannot be

learned at the design time (e.g. important locations for every person are not the same). For

example, refer to the articles [AS02] and [AA11].
One of the main challenges of unsupervised learning in situation awareness is the

necessity of labeling. That challenge may result either in intrusiveness (if user performs the
labeling [Ma04a]) or in additional efforts to design automated labeling system [BZ12a].
Sometimes if clustering is used as an intermediate step the clusters do not require labels and
the challenge is avoided [KE11][GH12].

Chapters IV and V of the thesis address the challenges of learning situations in
unsupervised manner and labeling those situations. The sections solve two different
location awareness and activity recognition tasks by learning the situations from unlabeled
data. Both sections address the challenge of proper clustering location information. Chapter
IV proposes a method to automatically label the identified situations, while chapter V
employs manual labeling and addresses the challenge of presenting the information to the
user in a clear and meaningful manner in order to make labeling easier and more precise.

A challenge common for all proposed approaches is ensuring the correctness of situation
definition. If a model of a situation is incorrect, it can lead to erroneous situation awareness
results and, in turn, inadequate actions of pervasive computing system. Errors in situation
model can be, for example, a result of human expert error or a result of overfit or underfit
when learning the situation. Situation awareness functionlaity can be tested, but sometimes
testing is not sufficient. Chapters VI and VII of the thesis propose, develop and evaluate
situation verification – the technique to formally prove that the definition of situation is
correct.

Chapters VIII-X address the challenge of context prediction, which is mostly represented
by situation prediction techniques. Being able to predict future situations is of much use to
pervasive computing systems.

The resolution of mentioned challenges will lead to more efficient situation awareness
and, as a result, to significant improvements in pervasive computing.

Chapter II

ECSTRA – Distributed Context

Reasoning Framework for Pervasive

Computing Systems

Based on:

1. Boytsov, A. and Zaslavsky, A. ECSTRA: distributed context reasoning framework

for pervasive computing systems. in Balandin, S., Koucheryavy, Y. and Hu H.

eds. Proceedings of the 11th international conference and 4th international con

ference on Smart spaces and next generation wired/wireless networking

(NEW2AN'11/ruSMART'11), Springer-Verlag, Berlin, Heidelberg, 1-13.

Chapter II - ECSTRA – Distributed Context Reasoning Framework for Pervasive

Computing Systems

46

Foreword

This chapter presents ECSTRA – general purpose context awareness and situaiton awareness

framework. ECSTRA provides a distributed context awareness and situation awareness engine, which

can process both low-level and high-level context information. This chapter describes the foundations

of ECSTRA, its architecture and implementation features.

ECSTRA framework was developed as part of PhD research project, and it provided a solid

fundament for implementation and evaluation of the proposed algorithms and approaches. Most of the

solutions proposed in the subsequent chapters, are implemented as extensions of ECSTRA

framework, so ECSTRA is an important background for understanding the rest of the thesis.

Among other topics, this chapter describes the evaluation of ECSTRA framework. The goal of

evaluation was to determine whether ECSTRA is suitable for real-time situation inference. In order to

perform evaluation multiple different realistic situations and multiple different realistic context states

were generated. The context attributes for evaluation were taken from common sense and from

practice. For every generated situation the generated contribution functions were practically plausible

(in terms of intervals and corresponding contribution values). Generated context states were given

practically plausible values as well. Therefore, the evaluation provided some representation of how

ECSTRA can work in practical scenario.

ECSTRA has proven its practical usefulness in smart home environment. In collaboration with

INRIA, ECSTRA was incorporated as a context awareness and situation awareness tool in a smart

home solution. The usefulness of ECSTRA was certified by INRIA (see appendix).

Chapter II - ECSTRA – Distributed Context Reasoning Framework for Pervasive

Computing Systems

47

ECSTRA – Distributed Context Reasoning Framework for

Pervasive Computing Systems

Abstract. Pervasive computing solutions are now being integrated into everyday

life. Pervasive computing systems are deployed in homes, offices, hospitals,

universities. In this work we present ECSTRA – Enhanced Context Spaces Theory-

based Reasoning Architecture. ECSTRA is a context awareness and situation

awareness framework that aims to provide a comprehensive solution to reason about

the context from the level of sensor data to the high level situation awareness. Also

ECSTRA aims to fully take into account the massively multiagent distributed nature

of pervasive computing systems. In this work we discuss the architectural features

of ECSTRA, situation awareness approach and collaborative context reasoning. We

also address the questions of multi-agent coordination and efficient sharing of

reasoning information. ECSTRA enhancements related to those problems are

discussed. Evaluation of proposed features is also discussed.

Keywords: Context awareness, situation awareness, context spaces theory, multi-

agent systems, distributed reasoning, collaborative reasoning.

1 Introduction

Pervasive computing paradigm focuses on availability and graceful integration of

computing technologies. Pervasive computing systems, like smart homes or

micromarketing applications, are being introduced into everyday life. Context awareness is

one of the core challenges in pervasive computing, and that problem has received

considerable attention of the research community.

The majority of pervasive computing systems are massively multiagent systems – they

involve potentially large number of sensors, actuators, processing devices and human-

computer interaction.

In this paper we present ECSTRA - system architecture for multiagent collaborative

context reasoning, and situation awareness. ECSTRA builds on context spaces approach

[PL08b] as context awareness and situation awareness backbone of the system.

The paper is structured as follows. Section 2 discusses the related work. Section 3 briefly

addresses context spaces theory, an approach that constitutes the basis for low-level context

reasoning and situation awareness in ECSTRA. Section 4 describes the structure of

ECSTRA framework and addresses each of its architectural components in details. Section

5 describes the implemented mechanism for collaborative context reasoning and context

information dissemination in ECSTRA. Section 6 provides and analyzes evaluation results.

Section 7 discusses the directions of future work and concludes the paper.

2 Related Work

The research community proposed various approaches to address the problems of context

awareness, situation awareness and distribution of context information.

Chapter II - ECSTRA – Distributed Context Reasoning Framework for Pervasive

Computing Systems

48

Padovitz et. al. in [PL08b] propose ECORA architecture. Being a predecessor to

ECSTRA, ECORA utilizes situation awareness mechanism on the basis of context spaces

approach. ECORA was a source of an inspiration for ECSTRA, but no code was reused.

Comparing to ECORA, our approach has extended support for multiagent reasoning,

enhanced support for sharing and re-using reasoning information and also natural support

for context prediction and proactive adaptation integration [BZ09][BZ10b].

In the paper [KK05] authors introduced ACAI (Agent Context-Aware Infrastructure)

system. ACAI approach introduced multiple types of cooperating agents: context

management agent, coordinator agents, ontology agents, reasoner agents and knowledge

base agents. Context is modeled using ontologies. Comparing to ACAI, our approach

features less specialized agents that are less coupled with each other. Agents are acting and

sharing information without establishing sophisticated hierarchy. It makes our approach

more robust and flexible to common disturbing factors like agent migration or

communication and equipment failures. Instead of using the ontologies like ACAI,

ECSTRA uses the methods of context spaces theory, that provide integrated solution from

low-level context quality evaluation to situation awareness.

The work [XP08] featured CDMS (Context Data Management System) framework. That

approach introduced the concept of context space (the set of context parameters needed by

context aware application) and physical space (the set of raw sensor data provided by

environment). Dissemination of context data from physical spaces is arranged using the

P2P network. The approach [XP08] provided very advanced solutions for context data

retrieval: query evaluation, updates subscription, matching between context spaces

elements and relevant physical spaces elements. Comparing to CDMS, our approach

features much higher degree of independence between context aware agents. It ensures

better capabilities of information exchange between peer reasoning agents, and it ensures

the robustness to different agent entering or leaving the system. In our framework context

reasoning is completely decentralized. Context aware agents are capable of exchanging the

information between each other, not just from-bottom-to-top manner. We utilize relatively

flat publish/subscribe system, which allows us to employ loose coupling between multiple

context aware applications, and make the system even more robust to reasoning agent

migration. Our approach to context reasoning is based on context spaces theory and

situation awareness principle, which provides simple, but yet flexible and insightful way to

reason about real life situations.

The work [SW11] proposed MADIP multiagent architecture to facilitate pervasive

healthcare systems. As a backbone MADIP utilized secure JADE [BC11] agent framework

in order to maintain scalability and security criteria. ECSTRA uses Elvin publish/subscribe

protocol [E11], which provides sufficient functionality for the search and dissemination of

necessary context information, and also ensures independence and loose coupling of

reasoning agents. Exact mechanisms for context awareness and situation awareness are not

in the focus of [SW11], while it was the main concern when developing ECSTRA.

3 Theory of Context Spaces

The context reasoning and situation reasoning mechanisms of ECSTRA framework are

based on context spaces theory. The context spaces theory is an approach that represents the

context as a point in a multidimensional space, and uses geometrical metaphors to ensure

clear and insightful situation awareness. The main principles of context spaces theory are

Chapter II - ECSTRA – Distributed Context Reasoning Framework for Pervasive

Computing Systems

49

presented in [PL04].

A domain of values of interest is referred to as a context attribute. For example, in smart

home context attributes can be air temperature, illuminance level, air humidity. Context

attributes can as well be non numerical, like on/off switch position or open/closed window

or door.

In spatial representation a context attribute is an axis in multidimensional space.

Multiple relevant context attributes form a multidimensional space, which is referred to as

context space or application space.

The set of values of all relevant context attributes is referred to as a context state. So, the

context state corresponds to a point in the multidimensional application space. Sensor

uncertainty usually makes the point imprecise to a certain degree. Methods to represent

context state uncertainty include context state confidence levels and Dempster-Shafer

approach [Sh76].

The real life situations are represented using the concept of a situation space. Reasoning

over the situation space converts context state into a numerical confidence level, which falls

within [0;1] range. In context spaces approach a situation confidence value is viewed as a

combination of contributions of multiple context attributes.

Confidence level can be determined using formula (1).

N

=i

iiS,iS)(xcontrw=(X)conf
1

 (1)

In formula (1) confidence level for situation S at context state X is defined by confS(X).

The context state vector X consists of context attribute values xi, the importance weight of

i-th context attribute is wi (all the weights sum up to 1), the count of involved context

attributes is N, and the contribution function of i-th context attribute into situation S is

defined as contrS,i(xi).

Contribution function is often a step function that is represented by formula (2).

]

...

]

]

1

322

211

+mmm b,(bx,a

b,(bx,a

b,(bx,a

=contr(x) (2)

Practically, any boundary can be included or excluded, for as long as the set of intervals

covers entire set of possible values and the intervals do not overlap. For non-numeric

context attributes the intervals are replaced with the sets of possible values.

Next section discusses our proposed ECSTRA framework.

4 ECSTRA Framework

ECSTRA (Enhanced Context Spaces Theory-based Reasoning Architecture) is a distributed

mutiagent context awareness framework, with its architectural elements distributed across

the pervasive computing system. ECSTRA is presented in figure 1.

Chapter II - ECSTRA – Distributed Context Reasoning Framework for Pervasive

Computing Systems

50

Fig. 1. Enhanced Context Spaces Theory-based Reasoning Architecture (ECSTRA).

Environmental parameters are measured and supplied by sensors. From the perspective

of this research, human-computer interaction can be viewed as providing sensor input as

well. However, raw sensor data is not the context information yet. Pervasive computing

system needs to label that information, put necessary tags on it, evaluate its uncertainty and

reliability, and distribute it within the system. These functions are carried out by the

gateways. Gateways process information obtained through sensor networks, translate it into

context attributes (most importantly, assign the unique names and define the uncertainties)

and publish it to the special publish/subscribe service. Therefore, gateways process the

sensor readings and create low-level context information out of it. Sensor uncertainty

estimations can be either provided by sensors themselves or calculated by the gateway.

Usually gateways are deployed on the devices directly connected to the sensor network

base stations.

Context information is distributed using the publish/subscribe service. ECSTRA uses

Avis open source implementation [A11] of Elvin publish/subscribe protocol [E11] for

context information distribution. Reasoning agents subscribe to necessary context attributes

information, and gateways publish the data they have. With separate publish/subscribe

approach the context dissemination process becomes very flexible and almost transparent.

Both the gateways and the reasoning agents can migrate freely, and it takes just

resubscription in order to restore the proper information flow.

Reasoning engines are container entities that consist of one or more reasoning agents.

The structure of reasoning engine and reasoning agents is depicted in figure 2.

Reasoning agents directly perform the context processing and situation reasoning. Every

reasoning agent works with some part of the context. Sharing reasoning process between

several reasoning agents can help to make reasoning agents more lightweight and

parallelize the reasoning process.

Reasoning agent comprises context collector and application space.

Context collector block has the following functions:

1. Aggregating context data to a single context state. Sensor readings arrive one at a

time, but application space requires the entire context state vector at any moment.

Chapter II - ECSTRA – Distributed Context Reasoning Framework for Pervasive

Computing Systems

51

Fig. 2. Reasoning Engine Structure

2. Delivering new context states to the application spaces. Context collectors update

the context state upon receiving of any new context attribute from publish/subscribe engine.

3. Managing the subscription to context information. It is the responsibility of

context collector to subscribe to the necessary context information and to re-subscribe after

the agent migration or restart.

4. Track the deterioration of quality of context over time. If there is no information

received in a while, the context collectors update the context quality estimations and

increase the expected uncertainty.

The application space block and the situation space blocks within it correspond to

application space and situation spaces of context spaces theory. Application space handles

context reasoning process and defines all the questions of situation algebra syntax and

semantics. Situation space handles all the questions of situation representation. Currently

ECSTRA supports original context spaces theory situation definition, fuzzy situation

inference [DZ08], and a set of specially developed flexibility-optimized situation space

formats, which are the subjects of ongoing work.

Another function of application space is sending notification to the clients that new

context data have arrived. Application space operates only with context states as input data,

and between the changes of context state the reasoning results remain the same. The client

does not have to be subscribed to context data change, in order to request reasoning from

application space. If the client is interested in receiving the context state itself right after the

update, it can subscribe directly to the context collector using the application space to

context collector interface.

As it was noted before, the context state within the application space does not change in

the time between the notifications of context collector. That allows reducing the reasoning

efforts by introducing the cache of reasoning results. If any ECSTRA client requested the

reasoning about the certain situation, either like a single situation or within the situation

algebra expression, the reasoning results are put into reasoning results cache. Later, if the

context state did not change yet, but the same situation is requested again (once again,

either as a single situation or a situation within algebra expression), ECSTRA takes the

information from the cache. After context state changes, situation confidence levels might

change as well, and cached results can no longer be trusted. Therefore reasoning results

cache is cleaned when the new context state is received.

External clients are not a part of ECSTRA (some exceptions are provided in section 5).

They connect to the application space, send reasoning requests and obtain the result of

reasoning. For example, CALCHAS context prediction and proactive adaptation framework

[BZ10b] can be a client of ECSTRA. Usually reasoning requests are presented in the format

Chapter II - ECSTRA – Distributed Context Reasoning Framework for Pervasive

Computing Systems

52

of situation algebra expression, and reasoning results are either confidence level or Boolean

value, that represents the validity of requested expression with respect to current context

state.

As a part of this work, we implemented several enhancements to original ECSTRA

architecture, which take the advantage of multi-agent and distributed nature of pervasive

computing system.

5 Distributed Context Reasoning

The architecture of ECSTRA was designed to allow distributed reasoning and information

sharing between agents. ECSTRA allows sharing high-level reasoning results. This

approach encapsulates low-level reasoning efforts of different agents and reduces the

amount of overlapped reasoning efforts between several reasoning agents.

Several particular features of ECSTRA enable distributed context reasoning. Those are

context aware data retrieval, subscription-based reasoning result sharing and multilayer

context preprocessing.

5.1 Context Aware Data Retrieval

Consider the following motivating scenario: the user is in a smart home. User’s context is

managed by PDA and the light level is requested from the sensor in the room. Practically it

makes sense to treat the current light level around the user as a user’s context attribute.

However, the context attribute “CurrentLightLevel” will be represented by different sensors

depending on the context. Here the required sensor will depend on user location.

To summarize, sometimes single context attribute corresponds to different sensors in

different occasions. The context aware data retrieval aims to overcome that problem. The

idea is to adaptively resubscribe to different context sources, depending on the current

context information itself.

The method is to enhance collector with two additional functions: resubscription on

request, and masking the global name of context attribute to replace it with its local name.

As a result, for the application space the technique is completely transparent, and the

computational core does not require any modifications. New block, subscription manager is

introduced to manage the subscription switching.

Context aware data retrieval architecture is depicted in figure 3.

Context collector accepts commands from subscription manager. Subscription manager,

in turn, contains the set of rules that define resubscription procedures. Subscription

manager acts as a client to the application space.

The simplified protocol of resubscription decision making is depicted in figure 4.

The efficient use of that technique can allow to significantly reduce the number of

context attributes under consideration, and to bring the number of involved context

attributes down to the tractable numbers even for large-scale systems. Also it can

significantly simplify the development of situation spaces.

Chapter II - ECSTRA – Distributed Context Reasoning Framework for Pervasive

Computing Systems

53

Fig. 3. Context Aware Data Retrieval – Architecture.

Fig. 4. Context Aware Data Retrieval – Protocol.

5.2 Reasoning Results Dissemination

In practice several remote clients can be interested in the results of reasoning agent work.

Moreover, situation reasoning results can be taken as context attributes by other reasoning

agents (if carried out properly, it can simplify the reasoning activities). The possible

enhancement for that case is to reason about the situation and then to return the reasoning

result into publish/subscribe engine. In ECSTRA it is implemented in a manner, presented

in figure 5.

Chapter II - ECSTRA – Distributed Context Reasoning Framework for Pervasive

Computing Systems

54

Fig. 5. Sharing of Reasoning Results.

As depicted in figure 5, situation sharing block returns the results of situation reasoning

to publish/subscribe system. The subscribers to those results can be either other reasoning

agents, or remote external clients themselves. The outer interface of situation sharing block

resembles the interface of a gateway. It allows packing the shared information in context

attribute-like format. This format allows managing context attributes and shared situations

in a unified manner. The situation reasoning results (in the format of confidence level or

binary occurrence) can be subscribed to and taken as an input by other reasoning engine,

and this can create hierarchical distributed reasoning structure.

This approach can significantly reduce the necessary amount of reasoning activities and

allow efficient sharing of information between reasoning agents and the external clients.

Also this approach can naturally construct a hierarchy of reasoning activities, and this

hierarchy will be relatively flexible and robust to agent migration and replacement,

especially if combined with context aware data retrieval.

5.3 Multilayer Context Preprocessing

If both the number of context attributes and the number of reasoning agents are large, the

efforts for context preprocessing might be significant. Context preprocessing efforts can be

reduced by applying the multilayer context preprocessing technique, depicted in figure 6.

If N reasoning agents within reasoning engine have the common subset V of context

state vector, the system can construct the context collector for context state V. Then

obtained context state V can be used by all N context collectors directly. As a result, instead

of N times preparing the vector V, that vector will be derived just once, and then distributed

among all the interested reasoning agents.

So, multilayer context preprocessing approach can reduce the context preparation efforts.

It is completely tolerant to the migration of context sources. However, multilayer structure

can cause problems during the reasoning agents migration. As a result, multilayer context

preprocessing should be used when there are many reasoning agents, but those reasoning

agents are not likely to migrate separately.

Chapter II - ECSTRA – Distributed Context Reasoning Framework for Pervasive

Computing Systems

55

Fig. 6. Multilayer Context Preprocessing.

6 Evaluation of Situation Reasoning

The theoretical analysis of situation reasoning complexity is presented in table 1. The

definition of the situation space is presented in section 3 in expressions (1) and (2). We

refer to the total number of involved context attributes as N, to the number of involved

intervals on i-th context attribute as mi, and to the total number of involved intervals on all

the context attributes as M = ∑
i= 1

N

m
i .

It should be noted that N ≥ M – there is at least one interval per context attribute. In

practice often N>>M. Summarizing table 1, we expect that reasoning time will be linearly

dependent on the number of intervals.

The experiment was performed as follows. Situation spaces and context states were

randomly generated. There were 1000 randomly generated situations in a single application

space. For every generated situation the number of intervals was generated uniformly

between 1 and 60. Then the distribution of intervals between context attributes was

generated uniformly. For every situation the reasoning was performed 10000 times without

using the results cache, and then average reasoning time was taken as a result. Testing was

performed on Lenovo ThinkVantage T61 laptop. The results are depicted in figure 7.

Table 1. Situation Reasoning Complexity

Operation Order Details

+ O(N) On formula (1) the sum contains N summands. There are

no more additions involved.

* O(N) On formula (1) every summand has one multiplication

within. There are no more multiplications involved.

comparison O(M) Consider formula (2). For every context attribute the

necessary interval will be taken the last in the worst case.

That gives O(P) comparisons as the worst case estimation.

Chapter II - ECSTRA – Distributed Context Reasoning Framework for Pervasive

Computing Systems

56

Fig. 7. Situation Reasoning Efficiency

The exact analysis of hetersocedactic properties of situation awareness complexity is

being done as a part of advanced situation awareness, which is mentioned as future work

direction in section 8. For the purpose of current research averaging out the results for

every number of intervals (right plot in figure 7) provides enough accuracy.

Situation cache provides significant improvement in reasoning time, in comparison with

straightforward situation reasoning. The experiment was performed in a similar manner on

similar equipment. The reasoning time was calculated as an average for 1000 reasonings.

The results are presented in figure 8 and table 2.

Table 2.Situation Cache Efficiency

Cache Size

(situations)
25000 26000 27000 28000 29000 30000 31000

Average

Reasoning

Time (ms)

0.0653 0.0628 0.0623 0.0623 1.1836 1.1972 1.4400

As expected, if the reasoning result is taken from the cache, reasoning time does not

depend on the size of situation space, but it does depend on the number of situations in the

cache. As it is shown in table 2 and figure 8, until the amount of situations in the cache

reach 29000, reasoning time is ~0.06 ms, which is less than time for reasoning about 1-

interval situation. However, when the number of situations in the cache reaches 29000, the

reasoning time starts to grow rapidly.

So the general recommendation is to use the situation cache even for the situations with

low number of intervals, unless the count of situations in the cache exceeds 28000.

7 Conclusion and Future Work

In this work we presented the pervasive ECSTRA computing framework and application,

that is capable of context reasoning and situation reasoning. ECSTRA is designed to fit

multi-agent and highly distributed nature of pervasive computing systems.

We identified the following possible directions of future work:

Chapter II - ECSTRA – Distributed Context Reasoning Framework for Pervasive

Computing Systems

57

Fig. 8. Situation Cache Efficiency

1. Advanced context aware data retrieval. Currently the context aware

resubscription technique is defined by static rules. It might work well for the relatively

small systems, but for large-scale pervasive computing systems like smart towns it will

result in enormous amount of rules. In order to address large-scale context aware data

retrieval problem, we need advanced language of re-subscription rules, combined with

efficient context attribute naming technique.

2. Advanced situation awareness. The situation reasoning techniques of context

spaces theory provide a memory efficient and fast situation awareness solution, but

sometimes they lack flexibility, and many real-life situations cannot be defined in the terms

of expressions (1) and (2). The search of new situation definitions and analysis of its

efficiency is the subject of ongoing work.

3. Reliable distributed context delivery. Reasoning agents are mostly vulnerable

when they are migrating. If the context information update arrives during the migration of

the agent (after unsubscribing, but before subscribing), it can as well be lost. In that case,

loose coupling between sender and receiver, the important benefit of publish/subscribe

system, becomes a disadvantage. The possible remedy for that problem is establishing some

kind of knowledge storage agents that contain up-to-date data. Another possible option is

introducing the request for data within publish/subscribe space.

4. Smart situation cache. Currently situation cache can be either on or off. If

situation cache is on, it stores any situation reasoning results. In section 6 we proved that

situation cache significantly reduces reasoning time, unless there are tens of thousands of

situations in it. Situation cache can be further enhanced by smart decision making about

whether to put the situation in it or not. Situations in the cache can be preempted depending

on number of intervals (and, therefore, expected saved time). Another possible

enhancement is to allow entire situation algebra expressions in the cache. The

implementation details of those techniques, as well as efficiency of those methods, are yet

to be determined.

Chapter III

From Sensory Data to Situation

Awareness: Enhanced Context Spaces

Theory Approach

Based on:
1. Boytsov, A. and Zaslavsky, A. From Sensory Data to Situation Awareness:

Enhanced Context Spaces Theory Approach, in Proceedings of IEEE Ninth

International Conference on Dependable, Autonomic and Secure Computing

(DASC), 2011 , pp.207-214, 12-14 Dec. 2011. doi: 10.1109/DASC.2011.55.
5

5
 The paper [BZ11b] has won the Best Paper Award of the Ninth International Conference

on Pervasive Intelligence and Computing (PICom2011). PICom2011 and DASC2011

conferences have joint proceedings.

Chapter III – From Sensory Data to Situation Awareness: Enhanced Context Spaces

Theory Approach

60

Foreword

This chapter addresses the research question 1 – how to derive a mapping between context

information and ongoing situations? As Chapter I identified, one of the possible approaches is to

define the mapping using expert knowledge. However, in order for that approach to be effective the

situation models need to be flexible enough to represent real life situations, the situation models needs

to be clear enough to be composed by human expert and the reasoning complexity of the situations

should be suitable for real time situation inference.

This chapter proposes an enhancement of context spaces theory approach with new situation

modeling techniques. New situation types provide a robust solution to represent broad class of real

life situations. Moreover, otrthotope-based situation spaces provide a background for the verification

approach, which is proposed in subsequent chapters as an answer to the research question 2. The

proposed enhancements are implemented as an extension of ECSTRA framework, which was

described in chapter II.

Chapter III – From Sensory Data to Situation Awareness: Enhanced Context Spaces

Theory Approach

61

From Sensory Data to Situation Awareness: Enhanced

Context Spaces Theory Approach

Abstract. High-level context awareness can be significantly improved by the

recognition of real-life situations. The theory of context spaces is a context awareness

approach that uses spatial metaphors to provide integrated mechanisms for both low-

level and high-level context awareness and situation awareness. Taking context spaces

theory situation awareness as a baseline, we propose and analyze the enhanced

situation awareness techniques, which allow us to reason about broad class of real-life

situations. We also improve reasoning about the relationships between situations, and

discuss how it relates to newly proposed situation awareness approaches. Practical

evaluation of the results is also discussed.

Keywords: context awareness, situation awareness, context spaces theory, pervasive

computing.

1 Introduction

Context awareness is a key feature of pervasive, ubiquitous and ambient computing. For
example, ambient intelligence systems (like smart homes or smart offices), social networks
and micromarketing applications extensively utilize context awareness methods.
High-level context awareness can be enhanced by situation awareness – the recognition of
real-life situations.

Consider an example scenario. John works in the office at the construction site, and his
workplace environment is at constant risk of problems: surrounding works can produce
excessive noise, air might get dusty and polluted, power outages can lead to illuminance
problems. In order to provision environmental conditions for his work, pervasive system
needs to be aware of situations like “Light_Level_Insufficient”, “Noise_Level_Too_High”
or “Workplace_Environment_OK”. If there are any problems, system should take corrective
actions: for example, switch to backup power supplies, engage additional ventilation, close
doors and windows to reduce noise. So, situation awareness is important enhancement of
context awareness and backbone functionality for further decision making.

The situation from context awareness perspective can be defined as «external semantic
interpretation of sensor data» [YD12]. The situation model is a method to represent a
situation in a manner plausible for automated inference. The situation can be modeled as a
cluster in a space of context features [Ma04a], as an entity in the ontology
[DZ08][ES07][WZ04], as a conjunction of context properties [AN06], among other non-
exhaustive definitions. The important features of a situation model include acceptable
reasoning complexity, clarity and readability by the expert, and the flexibility to represent
the wide class of real-life situations.

Context spaces theory (CST) [Pa06][PL04] is a context awareness approach that uses
spatial metaphors to reason about context and situations. Using context spaces theory as a
baseline, this paper proposes qualitative extension and novel situation awareness techniques
that achieve flexibility, concise and clear situation representation and tractable reasoning
complexity.

The paper is structured as follows. Section 2 describes the related work. Section 3
addresses the basics of context spaces theory, describes situation reasoning approach and
derives the complexity evaluation for it. Section 4 provides the sample motivating scenario.

Chapter III – From Sensory Data to Situation Awareness: Enhanced Context Spaces

Theory Approach

62

Section 5 proposes and analyzes the enhanced situation awareness approaches. Section 6
contains the practical evaluation of new situation awareness methods. Section 7 provides
summary, further work directions and concludes the paper.

2 Related Work

Detecting real-life situations received considerable attention in context awareness research
community.

The solutions presented in this paper are based on context spaces theory. The theory of
context spaces was proposed by Padovitz et. al. [Pa06][PL04]. In context spaces approach
the context information was viewed as a vector in multidimensional space of context
attributes, and situations were viewed roughly as subspaces in that space. The paper by
Delir et. al. [DZ08] proposes fuzzy set based extension to situation definitions for context
spaces theory. Comparing to the original context spaces approach, we propose more
powerful situation awareness techniques that address broader class of real-life situations
and significantly enhance reasoning about the relationships between situations.

Anagnostopoulos et. al. [AN06] proposed the situation awareness technique that
inferred the situation as the conjunction of Boolean context features. This approach
resembles the CST method of confidence level calculation (see section 3). However, the
situation awareness methods of CST work with confidence levels, and that provides more
flexibility when working with real-life situations. Moreover, CST is capable of handling
unequal importance of different context features and, using the results of this paper, can
avoid the independent contribution assumption.

The papers [BI04][IS09][KK07][RA04] perform situation and activity inference using
naïve Bayesian approach. Despite the seeming similarity, CST situation awareness and the
Bayesian approach employ different semantics. The Bayesian approach assumes that
situation either occurs or not, and estimates the probability of occurrence. Context spaces
theory uses semantics of uncertainty (in particular, fuzzy logic [DZ07] and Dempster-
Shafer [Pa06] approaches) and degree of occurrence.

Mayrhofer [Ma04a] viewed context as a vector in a multidimensional space of context
features. Situations were represented as the clusters in that space. That approach enabled
automated situation detection with clustering algorithms, so the method proposed in the
work [Ma04a] is effective if initially the situations of interest are unknown. In addition, that
solution works well if context prediction is involved. Comparing to [Ma04a], our concept
of situation enables more clear and more concise situation definition, as well as simpler
situation reasoning. Moreover, our approach features situation algebra, which allows us to
reason about relationships between situations. Context spaces approach can also integrate
context prediction and acting on predicted context [BZ09][BZ10b] (but context prediction
is out of the scope of this paper).

Papers [DS07][ES07][WZ04] suggested ontology-based situation reasoning. Ontologies

provide powerful solutions to represent the relationships between different situations.

However, context ontologies usually do not address the level of raw sensory data, and

therefore ontology-driven situation awareness requires additional complementary low-level

reasoning. Comparing to ontology-based situation awareness our approach addresses all

levels of context and features an integrated set of reasoning methods for both high-level

context and low-level context.

Chapter III – From Sensory Data to Situation Awareness: Enhanced Context Spaces

Theory Approach

63

3 The Theory of Context Spaces

The context spaces theory (CST) is an integrated approach for context awareness and
situation awareness. CST uses spatial metaphors to achieve clear and insightful context
representation. The foundations of context spaces theory are provided in the article by
Padovitz et. al. [PL04]. In this section we define a set of related terms that will be used
throughout the paper.

A domain of values of interest is referred to as context attribute. Context attributes can
be either measured by sensors directly, or derived from sensory data. For example, air
temperature, light level, noise level, air humidity can be the context attributes for a smart
office.

Context attribute can be viewed as an axis. The exact value on the axis (e.g. particular
air temperature at certain time or particular light level at certain time) is referred to as
context attribute value.

An entire set of relevant context attributes constitute a multidimensional space. This
space is referred to as application space or context space.

A set of all relevant context attribute values at a certain time is referred to as a context
state. So, a context state represents a point in the context space. Context state point is
usually imprecise due to sensor uncertainty.

Situation space is designed to represent real life situation. Reasoning about the situation

in original context spaces theory worked in a following manner [PL04]. The input data for
the reasoning process is the context state. The reasoning result is a confidence level – a
value within the range [0;1] , that numerically represents the confidence that the situation is
occurring. Confidence level can be calculated according to formula (1).

conf𝑆() = ∑
i=1

𝑁

𝑤 ∗ contrS,i(𝑥) (1)

In formula (1) confS(X) is a confidence level for situation S at context state X, a

particular context attribute within X is referred to as xi, the importance weight of i-th

context attribute is referred to as wi (all the weights sum up to 1), the number of relevant

context attributes is N, the contribution value of certain context attribute into total
confidence value of the situation is referred to as contrS,i(xi).

Contribution function is usually a step function over certain context attribute. It can be
expressed by formula (2).

contrS,i =

[

𝑎1,𝑥 ∈ (𝑏1,𝑏2]

𝑎2,𝑥 ∈ (𝑏2,𝑏3]
...

𝑎𝐾𝑖
,x ∈ (𝑏𝐾𝑖

,b𝐾𝑖 1]

𝑎 ,𝑑𝑒𝑓𝑎𝑢𝑙𝑡 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

In formula (2) the values a
j
 are the contribution values, corresponding to certain

interval. If the i-th context attribute value does not correspond to any interval, ai,default

contribution is assigned. Contribution values are within the range [0;1]. The boundaries of
the intervals (b

j
, b

j+1
] can be either included or excluded, as long as the intervals do not

overlap with each other. The total number of intervals for all context attributes from now

and on will be referred to as P=∑
i=1

𝑁

𝐾 .

Chapter III – From Sensory Data to Situation Awareness: Enhanced Context Spaces

Theory Approach

64

So, according to formula (1), the original CST situation implies that the total situation
confidence level comprises independent contributions of various context attribute values.
Independent contributions of different context attributes can be a benefit from the
perspective of reasoning complexity and memory consumption. However, the independence
of contributions can result in significant lack of flexibility, especially for representing the
relationships between the situations. We are going to address this problem in more details in
sections 4 and 5.

As a part of this work, we analyzed the complexity of original CST situation reasoning.

The results are depicted in table 1. If there exist at least one interval per context attribute, it

means that 𝑃 ≥ 𝑁. In practice often P>>N, and therefore the expectation is to have O(P)

reasoning time – linear dependency between reasoning time and number of intervals.

Practical evaluation of that claim is provided in section 6.

In order to reason about situation relationships, original CST provides the following

situation algebra operations.

1. AND: Confidence in the fact that all situations occur simultaneously.
2. OR: Confidence in the fact that at least one of the situations occurs.
3. NOT: Confidence in the fact that situation is not occurring.

Expressions (3) present the definitions of the operations.

AND: c nfA & 𝐵(X) = min(c nfA(X), c nfB(X))

OR: c nfA | B(X) = max(c nfA(X), c nfB(X))

NOT: c nf! A(X) = 1 – c nfA(X)

 (3)

More complex situation algebra expressions can be calculated recursively, using the set
of operations (3) as a basis.

4 CST Situation Awareness Challenges – Motivating Scenario

CST situation representation provides a set of tools, useful for many practical situation
awareness cases. However, when the situation relationships are involved, the capability of
original CST situation definition might be insufficient.

Consider a sample scenario – a smart office that monitors the workplace environment.
Smart office has a light sensor and a sound sensor deployed. Each of those sensors has a
directly corresponding context attribute: respectively LightLevel (measured in lx) and
NoiseLevel (measured in dB).

Consider two CST situations: LightLevelOK and NoiseLevelOK. They define
respectively whether the workplace has sufficient illuminance and whether the noise level
at the workplace is acceptable. Expressions (4) and (5) represent situations LightLevelOK
and NoiseLevelOK.

LightLevelOK= [

0,LightLevel<350

 .5,LightLevel ∈ [350,500)

1, therwise
 (4)

NoiseLevelOK= [

1,NoiseLevel 40

 .7,NoiseLevel ∈ (40,50]

 .3,NoiseLevel ∈ (50,60]

0, therwise

 (5)

Chapter III – From Sensory Data to Situation Awareness: Enhanced Context Spaces

Theory Approach

65

Table 1. Original CST Situation Reasoning Complexity

Operation Order Explanation

+ O(N) Sum in formula (1) has N summands.

* None Sum in formula (1) has N summands. Every summand has 1

multiplication operation. However, if the weights are

multiplied by corresponding contribution levels in advance,

there is no need for multiplication at all.

comparison O(P) Consider formula (2). In the worst case Ki comparisons will

be required to find the contribution level. For N context

attributes the number of comparisons is ∑
i=1

𝑁

𝐾 =P.

memory O(P) For every context attribute situation needs to store Ki

contribution values and Ki+1 interval borders and inclusion

levels per every axis. That gives O(∑
i=1

𝑁

𝐾) = O(P) memory

consumption. The situation also needs to store N weights, but

if they are applied in advance, no additional memory is

needed.

A compound situation ConditionsAcceptable determines whether the workplace has
acceptable environmental conditions for the office worker. The proposed example is
simplified, so in this scenario ConditionsAcceptable comprises only illuminance level and
noise level. We define ConditionsAcceptable as LightLevelOK & NoiseLevelOK, where
AND operation is performed according to the rules of CST situation algebra, presented in
formulas (3).

The construction of ConditionsAcceptable situation is depicted on figure 1.
In order to derive ConditionsAcceptable, situation algebra was applied to expressions

(4) in a straightforward manner. The resulting situation ConditionsAcceptable is depicted in

figure 2. In a formal way ConditionsAcceptable situation can be defined according to

formula (6).

ConditionsAcceptable ==

[

1,(LightLevel ≥ 500) ∧ (NoiseLevel 40)

 .7,(LightLevel ≥ 500) ∧ (NoiseLevel ∈ [40,50))

 .5,(LightLevel ∈ [350,500)) ∧ (NoiseLevel 50)

 .3,(LightLevel ≥ 350) ∧ (NoiseLevel ∈ [50,60))
0,(LightLevel<350) ∨ (NoiseLevel>60)

 (6)

So, ConditionsAcceptable can be viewed as real life situation from common sense point

of view. Moreover, situation ConditionsAcceptable is a result of a simple situation algebra
expression over original CST situations. But the distribution of confidence levels, provided
in formula (6), is unrepresentable in terms of the original CST situation definition.

Chapter III – From Sensory Data to Situation Awareness: Enhanced Context Spaces

Theory Approach

66

Fig. 1. Constructing ConditionsAcceptable situation

Fig. 2. ConditionsAcceptable situation

For the reasons of memory efficiency and reasoning complexity in original CST
situations every context attribute contributes independently to the total confidence level.
However, sometimes this assumption is too restrictive, especially if situation algebra is
involved. For example, in this scenario LightLevel has zero contribution to
ConditionsAcceptable if noise level is high and non-zero contribution otherwise.

We are going to refer to that sample scenario throughout the paper.

Chapter III – From Sensory Data to Situation Awareness: Enhanced Context Spaces

Theory Approach

67

5 Enhanced Situation Representation

In order to make situation reasoning faster and cover the broader range of possible
situations, we propose additional types of situation representation.

Dense orthotope-based situation space. Consider the situation ConditionsAcceptable

from the example scenario presented in section 4. The distribution of confidence levels for

ConditionsAcceptable is depicted in figure 2. The structure presented in figure 2 can be

straightforwardly formalized into formula (7).

C nditi nsAcceptab e =

[

 , (Li htLeve < 35) ∧ (N iseLeve 4)

 , (Li htLeve < 35) ∧ (N iseLeve ∈ [4 ,5))

 , (Li htLeve < 35) ∧ (N iseLeve ∈ [5 ,6))

 , (Li htLeve < 35) ∧ (N iseLeve > 6)

 .5, (Li htLeve ∈ [35 ,5)) ∧ (N iseLeve 4)

 .5, (Li htLeve ∈ [35 ,5)) ∧ (N iseLeve ∈ [4 ,5))

 .3, (Li htLeve ∈ [35 ,5)) ∧ (N iseLeve ∈ [5 ,6))

 , (Li htLeve ∈ [35 ,5)) ∧ (N iseLeve > 6)

1, (Li htLeve ≥ 5) ∧ (N iseLeve 4)

 .7, (Li htLeve ≥ 5) ∧ (N iseLeve ∈ [4 ,5))

 .3, (Li htLeve ≥ 5) ∧ (N iseLeve ∈ [5 ,6))

 , (Li htLeve ≥ 5) ∧ (N iseLeve > 6)

 (7)

Original CST situation space uses separate contribution levels for every interval of

every context attribute. In order to achieve more flexibility, a separate confidence level can
be defined for every combination of context attribute intervals. Every row of formula (7) is
a Cartesian product of intervals, and thus defines an orthotope [Co73]. Orthotopes are the
basis of situation awareness improvements proposed in this paper.

By definition an orthotope is a Cartesian product of intervals [Co73]. So, for example,
one dimensional orthotope is a line segment, two dimensional orthotope is a rectangle, three
dimensional orthotope is rectangular parallelepiped. The example orthotope is provided on
figure 3.

Fig. 3. An orthotope in the context space. It corresponds to intervals [20;25] on temperature axis,

[50;60] on NoiseLevel axis and [350;500] on LightLevel axis.

Chapter III – From Sensory Data to Situation Awareness: Enhanced Context Spaces

Theory Approach

68

In formula (7) the orthotopes densely cover (tesselate) the entire application space, so

that any context state belongs to some orthotope. Therefore, this kind of situation

representation is referred to as dense orthotope-based situation space.
Formal definition of generic dense orthotope-based situation space can be represented

as follows. Consider that there are N context attributes involved in the situation. For the
situation ConditionsAcceptable from the sample scenario, N=2 (LightLevel and
NoiseLevel). Without the loss of generality, we can consider that the relevant context
attributes correspond to positions 1...N in the context state vector. Let LightLevel and
NoiseLevel be the values number 1 and 2 in the vector respectively. The number of
intervals, defined over i-th context attribute, is referred to as ri. In the sample scenario, r1 =
3 and r2 = 4. The boundaries of i-th interval for j-th context attribute are referred to as lowj,i
and highj,i. Every boundary of every interval can be either included or excluded, as long as
every possible context state is included in one and only one orthotope. We define the total

number of orthotopes as 𝐿 = ∏ 𝑟𝑖
𝑁
i=1 . For ConditionsAcceptable situation L=12. The total

number of involved intervals is referred to as R=∑
i=1

𝐿

𝑟 . For ConditionsAcceptable situation

R=7.
Dense orthotope-based situation space is defined according to formula (8).

c nf(X) =

[

a1,(x1 ∈ [w1,1, hi h1,1]) ∧. . .∧ (xN ∈ [wN,1, hi hN,1])

a2,(x1 ∈ [w1,1, hi h1,1]) ∧. . .∧ (xN ∈ [wN,2, hi hN,2])
. . .

aL, (x1 ∈ [w1,r1 , hi h1,r1]) ∧. . .∧ (xN ∈ [wN,rN , hi hN,rN])

 (8)

For every involved context attribute the set of intervals should cover the entire set of

possible context attribute values. Also for every involved context attribute the intervals
should not overlap with each other.

Table 2 presents reasoning complexity analysis for dense orthotope-based situation
spaces. Table 2 shows that reasoning complexity is O(R). This claim is practically tested in
section 6. Also table 2 shows that the major drawback of this situation representation is
high memory consumption. In practice reasoning about orthotope-based situation space is
done using decision trees. Pruning the decision tree is a way to improve both memory
consumption and reasoning time. The exact potential benefit of decision tree pruning is a
subject of future work.

Table 2. Reasoning over Dense Orthotope-based Situation Spaces

Operation Order Explanation

comparison O(R) In the worst case the proper interval will be

encountered the last for every axis. In that case ri

interval inclusion tests will be performed for every

context attribute, and it will result in ∑ 𝑟
𝐿
i=1 =R total

comparisons.

memory O(L+R) Confidence level for very cell needs to be stored, as

well as all the boundaries.

In order to improve memory consumption while retaining the flexibility, we developed

another kind of situation representation.

Chapter III – From Sensory Data to Situation Awareness: Enhanced Context Spaces

Theory Approach

69

Sparse orthotope-based situation space. Consider the situation ConditionsAcceptable,
defined in the sample scenario in section 4. Formula (7) was derived by straightforward
formalization of figure 2. But it is clearly visible that formula (7) is redundant, and formula
(6) represents ConditionsAcceptable situation in a much more concise manner. Formula (6)
can be derived from formula (7) by merging the neighboring orthotopes, if those orthotopes
have the same associated confidence level. Situation algebra operators, presented in
formulas (3), make it likely that the adjacent orthotopes will share the confidence level.

Formula (6) can be even further simplified, and the situation ConditionsAcceptable can
be defined according to formula (9) or figure 4.

ConditionsAcceptable =

[

1,LightLevel ≥ 500 ∧ NoiseLevel 40

 .7,LightLevel ≥ 500 ∧ NoiseLevel ∈ [40,50)

 .5,LightLevel ∈ [350,500) ∧ NoiseLevel 50

 .3,LightLevel ≥ 350 ∧ NoiseLevel ∈ [50,60)
0,otherwise

 (9)

In formula (9) the entire situation space is defined as a set of orthotopes in the context

space, and each orthotopes is assigned a confidence level. But in contrast with dense
orthotope-based situation space, the orthotopes are sparsely scattered throughout the
context space, and the default confidence level is associated with the context state that do
not belong to any orthotope. This kind of situation representation is referred to as sparse
orthotope-based situation space.

Generic sparse orthotope-based situation space can be formally defined as follows.
Consider that situation space is defined over N context attributes. Without the loss of
generality, we can consider that the relevant context attributes correspond to positions 1...N
in the context state vector. For the situation ConditionsAcceptable, similarly to dense
orthotope-based situation representation, N=2 (LightLevel and NoiseLevel). Let LightLevel
and NoiseLevel be the values number 1 and 2 in the context state vector respectively. The
number of orthotopes is referred to as Q. For the situation ConditionsAcceptable Q=4.
Every orthotope is defined over N context attributes and contains one interval for each
context attribute. Let the boundaries of i-th orthotope for j-th context attribute be lowj,i and
highj,i. Every boundary of every orthotope can be either included or excluded, as long as
orthotopes do not overlap.

Fig. 4. ConditionsAcceptable situation – simplified

Sparse orthotope-based situation space can be defined according to formula (10).

Chapter III – From Sensory Data to Situation Awareness: Enhanced Context Spaces

Theory Approach

70

c nf(X) =

[

a1,(x1 ∈ [w1,1, hi h1,1]) ∧ …∧ (xN ∈ [w1,N, hi h1,N])

a2,(x1 ∈ [w2,1, hi h2,1]) ∧ …∧ (xN ∈ [w2,N, hi h2,N])
…

aQ, (x1 ∈ [wQ,1, hi hQ,1]) ∧. . .∧ (xN ∈ [wQ,N, hi hQ,N])

ad fault, therwise

 (10)

We performed complexity analysis for reasoning over sparse orthotope-based situation

spaces. The results are given in table 3 and some necessary explanations are provided

below.

Table 3. Reasoning over Sparse Orthotope-based Situation Spaces

Operation Order Explanation

comparison O(Q*N) At most N interval inclusion checks are required for each of

Q subspaces.

memory O(Q*N) Situation space stores Q contribution levels and Q*N

interval boundaries. The total order is O(Q*N).

Comparing to dense orthotope-based situation space, sparse orthotope-based situation

space often represents situations in more clear and concise manner, and yet provides the
same level of flexibility. Transitioning from dense to sparse orthotope-based situation space
might improve memory consumption and reasoning time, but it depends on how many
neighboring orthotopes share the same confidence level.

Situations of different types can be combined in the same application space and,
moreover, different kinds of situation spaces can be combined in situation algebra
expressions without altering the original concepts of CST situation algebra. Mixed situation
spaces that have the features of original CST situation spaces on high level and dense
orthotope-based or sparse orthotope-based situation spaces on low level are the subject of
future work (see section 7).

Practical evaluation of different situation representation techniques is presented in

section 6.

6 Reasoning Complexity Evaluation

The theoretical evaluation of situation inference complexity is presented in section 3
and section 5 (particularly, in table 1, table 2 and table 3). In this section we will address the
practical aspects of situation reasoning.

Original situation space. Figure 5 shows testing results of ECSTRA reasoning for
original context spaces theory situation space. Every point of the plot is the testing results
for randomly generated situation. Abscissa contains the number of intervals for the situation
(value P), and ordinate contains the average reasoning time in milliseconds. We generated
60000 random situations. For every situation the total number of intervals was chosen from
[1;60] range uniformly. The distribution of intervals between context attributes was
generated uniformly. The reasoning was performed at 1000 random context states for every
situation. The result of every experiment is the average reasoning time.

The plot on figure 5 has visible heteroscedasticity, and it can obscure the results and
mislead the analysis. The reason for heteroscedasticity is following: for any situation with P
involved intervals, if P=N (one interval per axis) there are P inevitable interval inclusion

Chapter III – From Sensory Data to Situation Awareness: Enhanced Context Spaces

Theory Approach

71

checks. It is the worst case for a situation. In the best case there are P/2 interval inclusion
checks in average: if N=1 the number of comparisons varies from 1 to P with average at
P/2. So the expected lower border and upper border are linear, with the upper border around
twice higher than the lower border. And that is visible on figure 5.

Fig. 5. Situation Reasoning Time – Original CST Definition

In order to have reliable estimations in presence of heteroscedasticity, we used the
weighted regression technique. We used the method suggested, for example, in [Do07]. In
addition we took the advantage of discrete explanatory variable, which allowed us to have
variance estimations for every relevant point on abscissa. Regression analysis was
performed using R [VS12] statistical software. The testing have shown that R

2
 coefficient

of weighted regression is equal to 96.18%, which shows good fit and practically proves the
claims about linear algorithm complexity.

Dense orthotope-based situation space. The experiment settings for dense orthotope-
based situation reasoning evaluation were similar to those for original CST situation
reasoning evaluation. We generated 60000 random situations, where every situation
contained up to 40 intervals.

The testing results are presented on figure 6. The abscissa contains R – the number of
involved intervals, while the ordinate contains average reasoning time in milliseconds.

In order to prove linear trend, we performed regression analysis over testing results. To
overcome heteroscedasticity weighted regression technique was used. R

2
 coefficient is 0.87,

and it shows good fit and practically proves linear dependency between reasoning time and
total number of intervals.

Sparse orthotope-based situation space. Figure 7 contains evaluation results for
reasoning over sparse orthotope-based situations. The experiment settings were similar to
the experiments for evaluating original CST situation space and dense orthotope-based
situation space. Test engine generated 60000 random situations with up to 60 intervals.

Figure 7 shows clearly visible heteroscedasticity. The reasons for heteroscedasticity are
quite similar comparing to other experiments, but the features of situation representation
introduce more variability in reasoning time. In order to analyze the data in presence of
heteroscedasticity, we employed weighted regression technique. R

2
 coefficient is 0.82, and

it practically proves the linear trend.
To summarize, for all three mentioned situation representations, theoretical claims about

reasoning complexity were proven practically. In addition, for all situation definitions the
testing results showed heteroscedasticity: with growing explanatory variable, the variability
of reasoning time grows as well. It makes reasoning time less predictable when the number
of involved intervals increases.

Chapter III – From Sensory Data to Situation Awareness: Enhanced Context Spaces

Theory Approach

72

Fig. 6. Situation Reasoning Time - Dense Orthotope-based Situation Spaces

Fig. 7. Situation Reasoning Time - Sparse Orthotope-Based Situation Spaces

7 Summary and Future Work

In this paper we addressed the problem of situation awareness and made significant
improvement to the situation awareness technique based on context spaces approach.
Taking context spaces theory as a baseline, we developed enhanced situation awareness
techniques that can address the broad class of real-life situations and reason about situation
relationships in more efficient manner. The increasing flexibility of situation representation
enables more versatile situation awareness, better generalization of context information and
more intelligent decision making.

We consider the following directions of further work in situation awareness area:

1. Mixed situation representation. Situation space can be defined by combining the
elements of original, sparse orthotope-based and dense orthotope-based situation spaces.

Chapter III – From Sensory Data to Situation Awareness: Enhanced Context Spaces

Theory Approach

73

However, in order to construct mixed situation space, we need to identify which context
attributes have mutually dependent contributions.

2. Automated situation space definition. Situations in CST are currently defined
manually. This process can be cumbersome and prone to errors. Existing knowledge bases
(e.g. ontologies of the subject area) might already have the necessary information to
generate the situations, and extracting the situations from knowledge bases can eliminate
the need for manual work.

3. Run-time situation inference. Situations of interest can as well be unclear during
the system startup. Identifying the areas of context space that are likely to be the situations
of interest is a subject of future work. For example, it can be achieved by clustering context
states history.

4. Situation awareness in absence of information. Due to the sensor uncertainty and
unreliability, the sensory data can become erroneous or missing. The goal of situation aware
system is to retain as much situation awareness capability as possible in these
circumstances.

5. Context prediction and proactive adaptation. Some papers addressed the problem
of context prediction and acting on predicted context in context spaces theory
[BZ09][BZ10b], but still there is a large room for improvements in the field. In particular,
situation awareness advancements can enhance situation prediction area.

Chapter IV

Where Have You Been? Using

Location Clustering and Context

Awareness to Understand Places of

Interest

Based on:

1. Boytsov, A., Zaslavsky, A. and Abdallah, Z. Where Have You Been? Using

Location Clustering and Context Awareness to Understand Places of Interest. in

Andreev, S., Balandin, S. and Koucheryavy, Y. eds. Internet of Things, Smart

Spaces, and Next Generation Networking, vol. 7469, Springer Berlin / Heidelberg,

2012, pp. 51–62.

Chapter IV – Where Have You Been? Using Location Clustering and Context Awareness to

Understand Places of Interest

76

Foreword

Chapter I classified situation awareness approaches and identified a clear distinction between defining

situations using expert knowledge and learning the situation definitions. This chapter answers the

research question 1, but it takes another approach comparing to chapter III. While chapter III

investigates defining the situations by hand, this chapter proposes an approach to learning the

situations.

Most of situation awareness approaches require labeled data to learn the situation definitions, but

this chapter proposes an approach to infer the situations out of unlabeled data. The solution proposed

in this chapter chapter infers most important places that a user visits and autolabels the identified

place, hence addressing both important problems of learning situations from unlabeled data. The

proposed algorithms are implemented in ContReMAR application, which is based on ECSTRA

framework.

Chapter IV – Where Have You Been? Using Location Clustering and Context Awareness to

Understand Places of Interest

77

Where Have You Been? Using Location Clustering and

Context Awareness to Understand Places of Interest

Abstract. Mobile devices have access to multiple sources of location data, but at any

particular time often only a fraction of the location information sources is available.

Fusion of location information can provide reliable real-time location awareness on

the mobile phone. In this paper we propose and evaluate a novel approach to detecting

the places of interest based on density-based clustering. We address both extracting

the information about relevant places from the combined location information, and

detecting the visits to known places in the real time. In this paper we also propose and

evaluate ContReMAR application – an application for mobile context and location

awareness. We use Nokia MDC dataset to evaluate our findings, find the proper

configuration of clustering algorithm and refine various aspects of place detection.

Keywords: context awareness, contextual reasoning, location awareness, sensor

fusion.

1 Introducton

Present day mobile devices have access to multiple sources of location information. The

possible sources include GPS sensors, WLAN location information, GSM localization,

indoors positioning systems, dead reckoning. However, the sources of information are not

always available. For example, GPS sensor is unstable indoors, it is battery consuming, and

users usually turn it on only for driving from one place to another. In turn WLAN is often

available at home and in office buildings, but it is rarely used outdoors. Therefore, for

location awareness it is vital to fuse the location measurements from different sources.

Location data fusion can remedy both with the unavailability of location information

sources and the lack of precision of location information.

The area of mobile location awareness faces two major challenges that we are going to

address in this paper:

- Detecting the places of interest out of location measurements that are fused from

multiple sources.

- Finding the model of places of interest that allows feasible mobile real-time

recognition using the measurements from multiple sources.

We used Nokia Mobile Data Challenge (MDC) dataset [LG12] as a benchmark, in order

to evaluate location awareness algorithms, as well as to test the long-run performance of the

application by imitating the sensor feed. We used ECSTRA toolkit [BZ11a] for context

awareness and context information sharing.

The paper is structured in the following way. Section 2 proposes the approach to extract

relevant places from location information. Section 3 discusses the architecture of

ContReMAR – mobile context awareness application that we developed to evaluate the

proposed approaches. ContReMAR has embedded capabilities for location awareness and

location data fusion. Section 4 provides evaluation and demonstration of the proposed

application. We use Nokia MDC data [LG12] in order to configure the parameters of

clustering algorithms and increase the precision of place recognition. Section 5 discusses

the related work. Section 6 summarizes the results, provides further work directions and

concludes the paper.

Chapter IV – Where Have You Been? Using Location Clustering and Context Awareness to

Understand Places of Interest

78

2 Mobile Location Awareness

Location awareness is an important part of context awareness. The information about

current or previously visited places can be used to provide timely assistance and

recommendation for the user. The outcomes of location awareness can be also used as a

baseline for activity recognition or context prediction. One of the main aspects of location

awareness is detecting and labeling the places of interest.

In order to detect the relevant places, we need to identify the concept of a relevant place

first. The place where the user has spent significant time is likely to be the place of interest

for the user. The latter can be obtained by clustering the location measurements. We

propose the following algorithm for extraction and identification of the relevant places.

Evaluation of the proposed approach is provided in section 4.

Place Recognition Approach.

Step 1. Fusion of location measurements. We complemented the information obtained

from GPS data with the location information obtained from WLAN. The GPS entries,

which corresponded to high-speed movement, were removed from consideration.

Step 2. Cluster the location information. When logging is complete (e.g. at the end of

the day), the application finds the clusters of location measurements to detect the places of

interest. The nature of the task enforces following requirements for the clustering approach:

1. The user stays in the relevant place for significant time. So, the place of interest can

be characterized by a relatively dense cluster of location measurements.

2. The number of places, that user has visited during a day, is not known in advance.

Therefore, the number of clusters is initially unknown.

3. Some measurements do not correspond to any place of interest (e.g. user just walks

on a street). Therefore, the clustering algorithms should not try to attribute all points to

some cluster.

The approach, which satisfies all the constraints, is density-based clustering. DBSCAN

[EK96] and OPTICS [AB99] are the most well-known algorithms of that approach. Those

algorithms have the following parameters:

- MinPts – minimum number of points in vicinity, in order for the point to be in the

core of the cluster.

- Eps – vicinity radius.

Step 3. Analysis of relevance. This step identifies, whether the detected clusters are the

places of interest or not. For example, staying at the traffic light can result in multiple GPS

measurements around the same spot, but it is not a place of interest. Irrelevant places can be

filtered out by applying a threshold on the time spent at the place. More advanced aspects

of relevance analysis are discussed in section 4.

Step 4. Auto-labeling the detected places. The detected place should be presented to

the user in a meaningful way. Our approach combines two ways to auto-label the detected

places.

Step 4.1. Obtain the list of possible relevant places. We use Google Places API

[GP12] to detect the relevant places in the vicinity. The obtained list of places can be then

filtered and ordered depending on at what time user was at that place.

Step 4.2. Analyze the time spent at a certain place of interest. In order to identify,

what place of interest does the cluster correspond to, it is important to notice when the user

was at that place. For example, if the user spent entire Wednesday at some place, it is very

likely to be his/her work or study place, any night is very likely to be spent at home, and

break in the middle of the working day is very likely to be lunch.

Chapter IV – Where Have You Been? Using Location Clustering and Context Awareness to

Understand Places of Interest

79

Step 5. Save the place description for later real-time recognition.
Section 3 discusses ContReMAR application, in which we implemented this location

awareness approach. The evaluation of the proposed approach is presented in section 4.

3 ContReMAR Application

In order to prove, test and validate our approach, we designed and developed ContReMAR

(CONText REasoning for Mobile Activity Recognition) application – a solution for mobile

context awareness. The scope of ContReMAR is broader than just location awareness.

However, in this paper we are going to focus on location awareness capabilities of

ContReMAR, and its other aspects of mobile context awareness are out of scope of this

paper.

The location awareness approach, proposed in section 2, was embedded into the

ContReMAR application. The architectural and implementation solution are addressed in

details in the subsections 3.1-3.3.

3.1 ContReMAR Architecture

The structure of ContReMAR application is depicted in figure 1. The blocks, which we

designed and implemented specially for ContReMAR are depicted in green. The third-party

solutions that we used are presented in yellow.

The application is divided into server part (which resides, for example, on a stationary

computer or a laptop) and client part (which resides on the user device). Server side is

responsible for computationally heavy and memory heavy parts of the work: logging the

GPS data and identifying the clusters. The client side is responsible for real-time activity

recognition. ECSTRA (Enhanced Context Spaces Theory Based Reasoning Architecture)

framework [BZ11a], which is the basis of context reasoner, is available for Android

platform. In order to evaluate the algorithms, we also used a simulation of mobile device,

where the sensor feed was replaced with Nokia MDC [LG12] data flow.

Fig. 1. ContReMAR Application Architecture

Figure 1 illustrates that ContReMAR application consists of the following components:

Chapter IV – Where Have You Been? Using Location Clustering and Context Awareness to

Understand Places of Interest

80

- ECSTRA-based context reasoner. We developed context reasoner for real-time

location awareness, situation awareness and activity recognition. The detailed description

of context reasoner component is provided in the section 3.2.

- Location Analyzer. We implemented location analyzer in order to infer new

meaningful places from raw location data. Location analyzer is discussed in details in

section 3.3.

- User Interface. It is a currently prototyped application component, which shows the

results of context reasoning. The design of user-friendly interface is a subject for future

work.

- Elvin publish/subscribe environment. In order to facilitate the communication

between mobile device and the server side, we employed Elvin publish/subscribe protocol

[E11]. Our application used Avis [A11] open source implementation of Elvin protocol. The

proposed solution ensures seamless communication, even if both mobile device and server

(which can be situated on a laptop) are moving between the coverage areas of different

WLAN spots.

- Sensors. In non-simulated environment the sensors are merely the sensors situation on

a mobile device. In order to evaluate our approach using Nokia MDC data [LG12] we also

developed a simulated mobile device, which imitates sensor feed by substituting it with

Nokia MDC data flow.

The application uses Google Places API [GP12] in order to detect the possible places of

interest in the vicinity of the location.

3.2 Context Reasoner

We proposed and developed context reasoner for real-time inference of location, situations

and activities. Context reasoner is based on ECSTRA framework [BZ11a], and has many of

it components reused or extended from ECSTRA. ECSTRA is a general purpose context

awareness and situation awareness framework, which acts a backbone for context reasoning

in ContReMAR. The structure of context reasoner is depicted in figure 2.

Fig. 2. Context Reasoner Architecture

In figure 2 the components specially designed for ContReMAR are depicted in green.

Components reused from ECSTRA framework are depicted in blue.

Context reasoner consists of following components:

- Context collector. We redeveloped context collector component based on the similar

component of ECSTRA framework. It is responsible for sensor fusion, proper reporting of

Chapter IV – Where Have You Been? Using Location Clustering and Context Awareness to

Understand Places of Interest

81

the newly arrived sensor data and preliminary analysis.

- Application space. Application space was reused from ECSTRA framework.

Application space is responsible for handling the reasoning requests, which come from UI

component. Application space contains complete current context information and

encompasses situation spaces – the possible interpretations of sensor data.

- Situation spaces. Situations are generalizations of sensor information. Situation

spaces are ESCTRA components, which are responsible for reasoning about one situation

each. The situations of interest for this paper are the relevant places. However, in general

case situations can also represent, for example, activities or events.

- Location importer. We developed location importer to ensure proper introduction of

new places of interest (i.e. new situation spaces) into the application space.

- Elvin connector. Elvin connector is ECSTRA component (part of Elvin support in

ECSTRA), designed to send and receive context information. It was extended comparing to

ECSTRA in order to incorporate exporting and importing the place descriptions.

More details on ECSTRA and its components can be found in [BZ11a].

3.3 Location Analyzer

We designed and implemented location analyzer for extracting relevant places out of

location data. Location analyzer is also responsible for relevance analysis, place type

analysis and interacting with Google Places to detect the places in proximity of the location

measurements cluster. Figure 3 shows location analyzer architecture. ContReMAR-specific

components are depicted in green. The components, reused from ECSTRA, are depicted in

blue. Location analyzer contains the following components:

- Elvin connector. The component originates in ECSTRA, but it was extended to

handle new functionality of exchanging the situation descriptions. Elvin connector was

already described in section 3.2.

Fig.3. Location Analyzer Architecture.

- Clusterer. The clusterer component is one of the core components in ContReMAR.

We designed the component to cluster location measurements in order to define the places

of interest. Clustering was facilitated by the libraries of Weka toolkit [HF09]. Our

application use density-based clustering, which was justified in section 2. The parameters

of clustering algorithms are discussed in section 4. The clusterer is also responsible for

analyzing the type of the place and communicating with Google Places service in order

identify possible places, which the cluster can correspond to.

- Location exporter. Location exporter is responsible for translating clusters of points

into situation descriptions and providing the descriptions to Elvin connector for further

sharing with user device.

- Logger. We implemented loggesr component to provide detailed reports of how the

application worked. It is mostly used for monitoring, debugging and evaluation purposes.

Chapter IV – Where Have You Been? Using Location Clustering and Context Awareness to

Understand Places of Interest

82

Next section discusses the advanced aspects of location analysis and provides the

evaluation of ContReMAR application.

4 Evaluation

The proposed location awareness approach contains multiple parameters, like the minimum

number of points for the cluster core, radius of the location point proximity, minimum time

for the place to be relevant. In order to determine the best values of the parameters,

extensive user studies are needed. Still unlabeled data, provided by Nokia MDC [LG12],

allow performing some analysis and establishing some error bounds and parameter

recommendations.

4.1 Experiments

We performed a series of experiments to prove and evaluate our approach. We used

ContReMAR application with imitated user device as a testbed. During the experiment we

simulated the mobile device and used Nokia MDC [LG12] data as an imitated sensor feed.

The settings of every experiment, as well as the results, are reviewed in the subsequent

subsections.

Experiment 1. Shall the location information be fused from multiple sources? Or is

there any dominant source of location information? Location measurements come from

two sources: GPS measurements and WLAN access at known spots. Figure 4 shows

proportion of GPS location data in the total number of location measurements. The users to

be depicted on the plot in figure 4 were chosen randomly (uniformly among all users in the

Nokia MDC database [LG12]).

Fig 4. Proportion of GPS data in location measurements

The absence of obvious pattern in figure 4 allows deriving an important conclusion.

Figure 4 proves that there is no dominant source of location information. Therefore, as it

was expected, in practice we have to analyze both sources of location information and

cannot simply use just one of those. This conclusion justifies the need for further

experiments in order to determine, whether density-based clustering works well in presence

of multiple-source location measurements.

Experiment 2. Can we use time thresholds to increase the precision of place

recognition and minimize the number of false recognitions? What threshold value

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Location Measurement Preferences

Chapter IV – Where Have You Been? Using Location Clustering and Context Awareness to

Understand Places of Interest

83

should it be? The relevance of the place is influenced by the amount of time that the user

spends at that place. If the user spends less than a minute at some place, most likely the user

just passed it by. However, if the user spends around 15 minutes at some place, it is usually

worth noticing. In the testbed application we implemented the following criterion – if the

user spends less than certain amount of consecutive time at the location cluster, then the

cluster is rejected and removed from consideration. The dependency between the number of

detected clusters over time and the consecutive time threshold is presented in figure 5. The

user was chosen randomly, but the trend holds for the vast majority of the users. We

analyzed the possible time threshold values of 1 minute, 3 minutes, 5 minutes, 10 minutes

and 15 minutes. The analysis of the trends in the number of recognized places allowed us

adjusting the value of the time threshold.

We analyzed figure 5 according to the following criteria. The proper identification of

relevant places should notice the most frequently visited places (like home, work or favorite

lunch place) in first week or few weeks. After that the rate of detecting new places should

slow down. If the rate stays high all the time, it can be a sign of numerous false

recognitions. To summarize, if the number of recognized places grows with constant trend,

it is a sign of possible massive false recognitions.

Figure 5 shows that the threshold of 1 minute leads to constant growth of recognized

places. The threshold of 3 or 5 minutes also shows the same problem for most users. For the

thresholds of 10 minutes of 15 minutes the number of recognized places almost stops

growing in the first three weeks, and it matches the expected behavior of the correct

location awareness algorithm. Therefore, the time threshold values of 10-15 minutes should

be preferred.

Experiment 3. How can we configure clustering algorithm using unlabeled data?

Can we do it by analyzing the fraction of revisited places? The efficiency of the place

recognition algorithm can be evaluated by analyzing the number of revisited places. If the

place is visited only once, it means that this place will just hamper recommendation and

prediction algorithms. The possible unsupervised criterion for place recognition efficiency

is the count of places, which were later revisited. Higher is that count, more significant

places are detected.

Fig. 5. Recognized places over time for random user, depending on the time threshold.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50Days

Recognized Places

1 min 3 min 5 min 10 min 15 min

Chapter IV – Where Have You Been? Using Location Clustering and Context Awareness to

Understand Places of Interest

84

In table 1 we show the results of location measurements analysis for four randomly

chosen users. We took all the places recognized in the first 25 days and analyzed how many

times were they re-encountered during the first 50 days (i.e. during the 25 of active place

recognition and 25 days after that, when we only analyzed the visits to the already

recognized places). For the experiment we used the clustering algorithm with parameters

Eps=50m, MinPts=3 and without consecutive time restrictions. Due to the very relaxed

constraints the algorithm tends to recognize as a place everything that even remotely

resembles a place of interest. We are going to refer to that algorithm as the benchmark

clustering algorithm.

Table 1. Proportion of revisited places.

User (anonymized) a b c d

Revisited places (%) 49% 53% 38% 19%

As table 1 shows, the benchmark clustering algorithm will result in 50-60% of false

recognitions (up to 80% in some cases). This information can be later used for auto-

configuration purposes of location awareness algorithms. The parameters of the clustering

algorithm can be preliminary evaluated by comparing it to the benchmark clustering

approach. If the clustering approach under consideration leaves out in average 50-60% of

clusters, recognized by the benchmark clustering algorithm, then it shows the expected

behavior of a correct place clustering approach. Still, it should be noted that this criterion

can be used only for preliminary estimation, and more precise parameter choice needs

extensive user studies.

4.2 Demonstration and Evaluation Summary

To summarize, the experiments and demonstration lead to the following conclusions:

- GPS and WLAN location measurements are equally important for location awareness

on the mobile phone. Density-based clustering is a feasible approach for detecting relevant

places.

- In order to avoid false recognitions, the threshold can be put on the consecutive time

that the user remained at some area. Using the threshold values of 1-5 minutes exhibits the

signs of massive false recognitions, while the threshold values of 10-15 minutes show no

visible problems.

- The clustering algorithm parameters can be evaluated by comparing its results to the

benchmark clustering algorithm. The benchmark clustering algorithms is likely to produce

from 50-60% to 80% of false recognitions. If the clustering algorithm differs from

benchmark by that amount, it can be a preliminary indication of appropriate performance.

The space requirements do not allow extensive demonstration. For the proof of concept

we show the following example. Figure 6 shows the results of location measurements

analysis for randomly chosen user for day one. The system was able to determine most

likely home and work places. For example, the application detected that the user works in

EPFL Lausanne. The system suggested 3 possible places, where the user is likely to work

(all of them are subdivisions of EPFL) and filtered out the places which couldn’t be user’s

workplace (like the nearby streets).

Chapter IV – Where Have You Been? Using Location Clustering and Context Awareness to

Understand Places of Interest

85

5 Related Work

There is a large body of work in various techniques for trajectory mining, e.g. pattern

discovery, similarity measures, clustering and classification for GPS data streams [HL08,

JY08, LJ10].

Spaccapietra et. at [SP08] introduced “stops and moves” model for reasoning from GPS

data. The application allowed detecting user visits to place of interest, but the user had to

specify the relevant places manually. Palam et. al. [PB08] proposed spatio-temporal

clustering method, based on speed in order to find interesting places automatically. SeMiTri

system [YC11] focused on processing heterogeneous trajectories, integrating information

from geographic objects and accommodating most existing geographic information sources.

The GeoPKDD1 [AB07] address semantic behaviors of moving objects. Andrienko et. al.

[AA11] developed a generic procedure for analyzing mobility data in order to study place-

related patterns of events and movements.

An important novelty of our approach is fusion of information from multiple sources to

build a comprehensive picture of user’s location. Our approach also scales to large amounts

of data to find the model of places of interest that allows feasible mobile real-time

recognition using the measurements from multiple sources. One more novel feature of our

approach is auto-labeling the places of interest based on both location and time analysis.

Fig. 6. ContReMAR application detected the workplace of the user

Next section concludes the paper and provides the direction of future work.

6 Conclusion and Future Work

In this paper we proposed a novel technique for mobile location awareness. In order to

prove the feasibility and efficiency of the proposed approach we developed an application

called ContReMAR. The outcomes of ContReMAR can enhance mobile activity

recognition, context prediction and mobile context-driven recommender systems.

We used Nokia MDC dataset [LG12] as a simulated sensor feed in order to prove the

soundness of our approaches, configure the proposed algorithms and evaluate the

application performance. The evaluation showed the feasibility of density-based clustering

approach to place identification and place recognition. Subsequent analysis led us to

designing a set of experiments in order to test and evaluate the algorithms in absence of

labeled data. In turn, it allowed us to configure the parameters of the algorithms.

We identified the following major directions of the future work:

- Improving the quality of place recognitions by performing user studies.

- Location-driven mobile activity recognition.

Chapter IV – Where Have You Been? Using Location Clustering and Context Awareness to

Understand Places of Interest

86

- Designing friendly user interface.

Present day mobile phones are able to sense the large amount of location information, as

well as other diverse context. The proper analysis and verification of that information will

significantly improve the capabilities of mobile devices and enable full-scale mobile

location and context awareness, as well as support for advanced services and applications

as has been demonstrated in [BZ12b].

Acknowledgements

We’d like to thank Shonali Krishnaswami for her support and mentorship. We’d also like to

thank Basel Kikhia for providing valuable testing and visualization tools.

Chapter IV – Where Have You Been? Using Location Clustering and Context Awareness to

Understand Places of Interest

87

Chapter V

Structuring and Presenting Lifelogs

Based on Location Data

Based on:
1. Kikhia, B., Boytsov, A., Hallberg, J., ul Hussain Sani, Z., Jonsson, H. and Synnes, K.

Structuring and Presenting Lifelogs based on Location Data. Technical report. 2012. 19p.

URL=http://pure.ltu.se/portal/files/40259696/KB12_StructuringPresentingLifelogs_TR.pdf,

last accessed October, 30, 2012
67

.

6
 Planned for submission to Personal and Ubiquitous Computing journal.

7
 My contribution to the report can be summarized as follows:

1. I proposed and prototyped place recognition approach.

2. Basel Kikhia and me together developed activity recognition method, analyzed

evaluation results and calibrated the algorithms.

My input to the text of the article was second only to the first author, B. Kikhia. Together

we wrote most of the text.

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

90

Foreword

This chapter addresses the research question 1 – how to find a mapping between context information

and ongoing situations? Like chapter IV, this chapter addresses the approach of learning situations

from unlabeled data. However, this chapter proposes an alternative approach comparing to chapter IV.

The solutions proposed in both chapters investigate learning situations out of unlabeled data and

both solutions use density-based clustering for location inference. However, chapters IV and V take

different approach to labeling.

Among other contributions chapter IV proposed a viable method for automated situation labeling

in location awareness scenario. Manual labeling introduces intrusiveness, but can potentially provide

more meaningful situation names. Labeling is not restricted to naming. For example, in the

lifelogging scenario in this chapter locations and activities are first labeled using pictures from a

SenseCam, and only then user gives meaningful names to them. For manual labeling the learned

situations need to be presented to the user in an understandable manner. Moreover, intrusiveness

should be kept to minimum. This chapter addresses lifelogging scenario and proposes an approach for

learning important locations and activities out of unlabeled data. Also this chapter proposes an

approach and an application, which ensure comfortable labeling and easy retrieval.

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

91

Structuring and Presenting Lifelogs based on Location

Data

Abstract. Lifelogging techniques help individuals to log their life and retrieve

important events, memories and experiences. Structuring lifelogs is a major

challenge in lifelogging systems since the system should present the logs in a

concise and meaningful way to the user. In this article the authors present a novel

approach for structuring lifelogs as places and activities based on location data. The

structured lifelogs are achieved using a combination of density-based clustering

algorithms and convex hull construction to identify the places of interest. The

periods of time where the user lingers at the same place are then identified as

possible activities. In addition to structuring lifelogs the authors present an

application in which images are associated to the structuring results and presented to

the user for reviewing. The proposed approach allows automatic inference of

information about significant places and activities, which generates structured
image-annotated logs of everyday life.

Keywords: activity recognition, activity inference, lifelogging, clustering

algorithms, SenseCam, GPS.

1 Introduction

Lifelogging is the act of digitally recording aspects and personal experiences of someone’s

life. Some people are interested in logging their life’s activities for fun, medical purposes or

diary applications [BL07]. It is important for many individuals to retrieve moments and

events such as trips, weddings, concerts, etc. Reminiscing previous events among a group

of people not only helps in remembering those events, but it also creates tighter social

bonds and improves relationships among them [Do09]. Aiding memory is also one of the

benefits that people gain by logging their life. For example, a lifelogging system can be

used as an external memory aid that supports a person with memory problems by using

reminiscence therapy [KH10a]. In reminiscence therapy the user reviews and talks about

the day with someone, such as a caregiver. The review and discussion act both as a social

activity and as assistance for the user to remember. For this purpose, and to improve events

retrieval using lifelogging in general, lifelogs need to be properly structured. Structuring

lifelogs is the primary issue being addressed in this article.

A natural way to structure lifelogs is in the form of activities; for example having lunch,

sitting in the park, shopping, attending a seminar, etc. This structuring requires techniques

for reasoning and inferring of activities from the logged data. The logged data is part of the

lifelogs and the granularity, as well as the types of data, can vary. However, the basic

context should be captured to infer activities. This basic context have been analysed and

identified as identity, location, activity and time, where locations and activities are of

special importance [KH10a][DA00]. Context data could be captured by mobile devices

carried by the user such as wearable sensors. It is good, however, to use a single mobile

device when logging as the number of devices the user needs to carry should be kept to a

minimum.

Just structuring data into activities based on context may not be sufficient for efficient

retrieval and to support people reviewing their life experiences. Both context (e.g. time,

locations and places) and content (e.g. images) need to be aggregated and segmented into

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

92

the activities and be given semantic meaning. In previous work the authors have explored

using known places to create this semantic meaning [KH10a]. However, this approach is

limited to predefined places. A desired solution would be finding places of importance and

then inferring activities automatically. In this article the authors introduce an approach to

detect new places and then infer activities automatically relying solely on time-stamped

location data. Location and time are rich and easily accessible sources of context

information that are relevant to find places of importance, where the user spent significant

time. Being for a period of time in a significant place might be an indication of some

activities happened in the place. The first problem that the article addresses is: “How can

places of importance be recognized and activities be inferred based on location data and

time?”
Once lifelogs are segmented into activities, they can be annotated with content, such as

images and descriptions. Images play a vital role in enriching the logs and in supporting

reminiscence processes in a lifelogging system [FK02][Ch97]. Images can be captured

automatically by purpose-built devices (e.g. SenseCam which is further described in

Section 5) or by a smart-phone carried in a way that allows it to capture images. However,

the information and the images still need to be presented to the user in a way that takes

advantage of the structured lifelogs. The second problem that this article addresses is:

“How can structured lifelogs be presented so the user can review and retrieve the life

experiences?”
The rest of this article presents the work done to address the problems listed in the

introduction and is organized as follows: section 2 shows what algorithms have been used

in this work to recognize new places. The calibration of the chosen place recognition

algorithms is presented in section 3. Section 4 discusses the algorithm that has been used to

infer activities. The development and deployment of the prototype application, which

organizes the logs and presents them to the user, is the topic of section 5. Section 6 presents

some of the related work and section 7 discusses the research questions. Finally, section 8

concludes the paper and presents the future work.

2 Recognizing places of importance

One of the problems addressed in this article is how to recognize places of importance for

the purpose of structuring lifelogs. This is important because the places people visit contain

hints towards the activities taking place. In fact, time-stamped location data can be used to

recognize relevant places, and then infer activities based on identified places and time. In

practice, areas where the user spends a significant amount of time can be seen as important

locations or as activities done by the user at a specific location. One of the common

approaches for discovering interesting patterns and data distributions from location data is

density-based clustering algorithms [EK96][AB99]. For instance, these algorithms can infer

information of areas where the user spent significant time when having location data logged

by a mobile sensor carried by the user [PB08][AA02].

The proposed Place Recognition Algorithm relies on GPS points as a source of location

data. The algorithm, however, is not restricted to GPS location information only. The

adopted approach is depicted in Figure 1 and works as follows:

1. Raw time-stamped location data are used as an input for the approach.

2. Location data are clustered to identify places.

3. A convex hull is constructed over each cluster to estimate the geographical boundaries

of the place.

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

93

Fig. 1. New Places Recognition – Action Flow

The aim of the clustering algorithm is to identify places of importance to the user, which

are previously unknown in the system. These places can be confirmed and labeled by the

user while reviewing the lifelogs. If the user confirms a place, the system will add the

coordinates that correspond to this place and define the place as a known one. The

algorithm compares each GPS point with all previously known places. If the point belongs

to a known place, the algorithm will remove it from the input set, but keep it for inferring

activities later on. If the point does not belong to a known place, the algorithm will keep it

in the input set for clustering. The GPS points in the input set are then clustered and

aggregated regardless of time. Such clusters are signs of places where the user spent

significant time. For example, the user might go to the office at different times of the day

but the place is still the same.

The following requirements should be taken into consideration when choosing the

clustering algorithm:

 The number of clusters is initially unknown. Different users have different numbers of

visited places. The user can also visit a place that is never visited before. Algorithms which

have pre-defined number of clusters will consequently not work in that case.

 Some GPS points might not correspond to a significant place for the user. For

instance, the user might walk home from the working place. The location data, captured on

the way home, do not belong to a significant place. The clustering algorithm should

therefore allow a point not to be a part of any cluster.

 The algorithm should be noise-tolerant and resistant to outliers. Even though GPS

points correspond to the user’s position, outliers can appear when the user is inside a

building when there are not enough satellites detected. These outliers should be identified

as noise.

Density-based clustering algorithms satisfy all the aforementioned requirements. Two

algorithms of density-based clustering approach were used by the authors: Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) [EK96] and Ordering Points To

Identify the Clustering Structure (OPTICS) [AB99]. OPTICS can be viewed as extension of

DBSCAN. While DBSCAN provides faster runtime clustering, OPTICS supplies the

developers with additional analysis tools and better visualization of the results [AB99].

Therefore, DBSCAN was implemented to cluster location data and then OPTICS-based

analysis was used for algorithm configuration and parameters adjustment.

After the clusters are identified, the system constructs the convex hulls to estimate the

geographical boundaries of the places. The convex hull of a set of points Q is the smallest

convex polygon P for which each point of Q is either on the boundary of P or in its interior

[CL09]. It is usually assumed that points in the set Q are unique and that Q contains at least

three points that are not collinear. Rubber band analogy is often used for better

understanding. Each point in Q is considered as being a nail sticking out from a board. The

convex hull is then the shape formed by a tight rubber band that surrounds all the nails

[CL09]. Figure 2 illustrates the view of the place clusters after implementing DBSCAN

over the location data and constructing the convex hull.

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

94

Fig. 2. Recognized places

3 Calibrating the Place Recognition Algorithm

Algorithms like the aforementioned density-based clustering algorithm have parameters

that should be set in advance. Therefore, the parameters’ values should be calibrated and

tuned so the algorithm produces a minimum number of errors.

DBSCAN algorithm uses two parameters: the Radius, the range around a point where

other points in that range are considered neighbours, and MinPts, minimum number of

neighbours that a point needs in order to not be declared as noise. After setting the

parameters, the algorithm forms clusters using the density of local neighbourhoods of

points. This is done by selecting a point and then assigning all the points within its Radius

(high destiny neighbours) to the same cluster. This approach is repeated for all the points

resulting in many clusters with different arbitrary shapes. All points that do not belong to

any cluster are considered noise.

A suitable set of parameters is the set that results in fewer numbers of place recognition

errors. In order to evaluate the number of place recognition errors that correspond to

different parameter sets, real-life data were collected and labeled manually, the possible

error types were defined and then the performance of different parameter sets was estimated

with respect to the identified error types.

3.1 Data Collection

A Windows Mobile application has been developed to log GPS tracks periodically every 30

seconds. If there are no satellites detected when logging, the application will do nothing and

wait another 30 seconds to look for satellites. When connecting the logging device to a

computer, the application transfers the logs as an XML file that contains longitude, latitude,

logging time, speed, and number of satellites. The application then deletes the logs from the

logging device so they do not interfere with new logs. Three users have done the data

collection over a period of six months. The users were asked to carry a mobile device, with

the application installed, during the day. By the end of the day, the user connects the mobile

to a computer to transfer the logs.

Relying on time-stamped GPS data has some limitations. Firstly, GPS data might be

noisy and not accurate if few satellites were detected when logging the location. To

overcome this limitation, the logged GPS data with less than 4 satellites are ignored.

Having 4 satellites or more showed good results when doing manual analysis. Blocking the

view of the GPS receiver by another object is another limitation. This happens sometimes

when the user has keys, for instance, together with the mobile device in the same pocket.

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

95

This case results in missing some location data or having noisy data. During the data

collection period, the users were advised to not have any other object next to the mobile

device to reduce the risk of blocking the access to satellites.

The users were also involved in the evaluation process to ensure that the algorithm’s

results correspond to significant places.

3.2 Error Types

Manual analysis of the collected data revealed that there are 4 types of possible errors:

1. The algorithm detected a cluster that does not correspond to any real-life place. The

impact of this error is the least severe of all four. It is possible for the user to manually fix

this by discarding this cluster when reviewing the lifelogs. This kind of error can also result

in detecting non-existent activities on later activity inference steps, but this can be also

fixed when reviewing the logs. However, this problem can still result in distraction and

waste time for the user. The amount of errors of this kind tends to grow with increasing the

Radius or with decreasing MinPts.

2. The algorithm merged two places into one. This problem causes distraction to the

user and it can disrupt the activity inference process. The number of errors of this kind

tends to grow with increasing the Radius or with decreasing MinPts.

3. The algorithm separates one place into two different ones. This problem is opposite

to the previous one. The number of errors of this kind tends to grow with decreasing the

Radius or with increasing MinPts.

4. The algorithm did not detect an essential place. This error type is the most serious

one because the activities in that place will be lost as well. The number of errors of this

kind tends to grow with decreasing the Radius or with increasing MinPts.

3.3 Parameter Values

25 randomly chosen logs were analysed to determine the best parameter values of the

DBSCAN algorithm. Each log has data collected during one day. Logs were manually

analysed and essential places were identified based on observation.

The DBSCAN algorithm has been implemented using JavaScript and the results have

been shown through a web application and manually processed to identify errors of

different types. The application shows a map with all collected points during the day on the

left side, and the clustering results after applying DBSCAN based on the Radius and

MinPts on the right side. Figure 3 presents part of the results when running DBSCAN on

one selected log with 20 meters as a Radius and 3 points as MinPts. The points that are

marked by 1 belong to one cluster while the points that are marked by 2 belong to another

cluster.
Different reasonable values of the Radius and MinPts were tested to find out what errors

they produce. For each log, the following parameters sets were considered: every possible
MinPts from 2 to 20 with the step of 1, combined with every possible Radius from 5 meters
to 30 meters with the step of 5. The aforementioned trends of errors (error types in section
3.2) allowed finding the best values without checking all the combinations of every MinPts
with every Radius. Those heuristics significantly reduce the number of parameter
combinations for manual testing, and practically allow to check just ~10-30 parameter
combinations per log. The aim is to find the minimum values of MinPts and the Radius that
result in fewer numbers of errors for each log. The priority is to reduce the errors of type 4
when the algorithm does not detect essential places. After determining the best values for
each log, the average of those values is calculated to find out a representative value for the

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

96

whole set of logs. Table 1 shows the best combination for minimum values of the Radius
and MinPts for each log followed by the average values.

The average value for MinPts is 3.24, while it is 12.8 for the Radius. Since increasing

MinPts might result in increasing the number of undetected places, the value 3.24 is

rounded to 3. Thus the parameter values that yield the best results for the DBSCAN

algorithm are: 3 for MinPts and 12.8 meters for the Radius.

As an additional method of parameters adjustment the OPTICS algorithm was used

[AB99]. OPTICS operates with the same parameters as DBSCAN, but while MinPts should

be specified manually, the neighbourhood radius can be adjusted by the analysis of

reachability plots. The plots visualize the structure of clusters and sub-clusters. Analysis of

OPTICS reachability plots can confirm the values of the DBSCAN parameters. The

analysis also gives an indication of how stable the clustering approach is. To perform

OPTICS-based analysis, the WEKA toolkit was used [HF09]. WEKA is a machine learning

software that has a collection of visualization tools and algorithms for data analysis and

predictive modelling.

Table 1. Summarization of the logs analyses

GPS Log# MinPts Radius (meters)

1 2 10

2 4 10

3 2 15

4 3 10

5 3 5

6 2 10

7 3 30

8 4 5

9 3 5

10 5 10

11 2 5

12 3 30

13 2 20

14 2 5

15 4 15

16 3 10

17 3 5

18 2 15

19 3 10

20 6 20

21 4 5

22 3 15

23 2 10

24 5 25

25 6 20

Average 3.24 12.8

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

97

Fig. 3. DBSCAN implemented in a web application

Two sample reachability plots are depicted in figure 4. Reachability plots (a) and (b)
correspond to two different GPS logs chosen out of the 25 logs of testing. MinPts is set to 3
and the green threshold lines correspond to the Radius value of 12.8 meters. The plot
areas below the threshold line correspond to clusters. In the reachability plot (a) there are 8
clusters, while there are 2 clusters in the reachability plot (b). This visualization can
identify how significant change of the neighbourhood radius is required to obtain different
clustering results. For example, the leftmost cluster of the figure 4 (b) would have been
recognized as 3 separate clusters if the neighbourhood radius is set below 10 meters. If the
reachability plots contain many values near the threshold, it means that the clustering is
unstable, and the number and the structure of the clusters can be heavily influenced by
random fluctuations in GPS measurements. The analysis of reachability plots allowed the
authors to conclude that for the vast majority of the testing samples it takes significant
change of the neighbourhood radius to alter the clustering results. Therefore, the chosen
parameter values provide stable clustering and low sensitivity to random factors.

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

98

Reachability Plot (a). The green line represents the threshold value of the Radius 12.8

meters. 8 clusters are recognized (the white areas below the threshold)

Reachability Plot (b). The green dashed line represents the threshold value of the Radius if

it is changed from 12.8 meters to less than 10 meters. The leftmost cluster will be

recognized as 3 clusters.

Fig. 4. Reachability plot visualization when using OPTICS

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

99

4 Inferring Activities

Once places of importance have been identified then they can be used to infer activities. To

reason about activities, the following properties of an activity are identified:

1. An activity occurs at a place. The place can be a new one, which was just obtained by

the place recognition algorithm, or a previously known one for which the geographical

boundaries are known. This property leads to several important consequences:

 The GPS points that correspond to the same activity are defined as a subset of the

GPS points that correspond to the same place. This reduces the scope of the algorithm from

the entire set of GPS points to just points within places.

 If the user leaves a place, even for a short time, the activity is interrupted. This

consequence can help in distinguishing several activities that happened in the same place at

different times.

2. An activity takes a certain amount of time.

Based on these properties, a set of GPS points is an indication of an activity if:

 The points belong to the same place.

 The points are sequential in time.

The main idea of the activity inference algorithm is to decompose all place clusters into

sub-clusters that do not overlap with each other in time. Place cluster refers to the set of

GPS points within the place. Overlapping occurs when the user leaves place A, for example,

to place B then comes back later to place A. For instance, the user spends time in the office

from 8 AM to 1 PM, goes to a restaurant for lunch from 1 PM to 2 PM, back to the office

from 2 PM to 5 PM and finally goes to the same restaurant from 5 PM to 7 PM for dinner.

The timeframe of the GPS points captured when being in the office will be from 8 AM to 5

PM while the ones captured when being in the restaurant will be from 1 PM to 7 PM.

Decomposing the office cluster and the restaurant cluster into sub-clusters that do not

overlap in time will result in 4 sub-clusters that represent 4 different activities:

 From 8 AM to 1 PM (being in the office)

 From 1 PM to 2 PM (being in the restaurant)

 From 2 PM to 5 PM (being in the office)

 From 5 PM to 7 PM (being in the restaurant)

To identify activities that happened at certain places based on the definitions in this

section, the following algorithm has been introduced. For any place A, the earliest captured

GPS point at this place is marked as A.begins, and the latest captured GPS point at this

place is marked as A.ends. The fact that GPS points are naturally ordered by time makes

calculating the timeframe easy. Clusters that correspond to the visited places are added to

the input set of the activity inference algorithm.

Algorithm:

1. Take the first element of the input set (and remove it from the set). Let it be

cluster A.

2. Search through the entire remaining parts of the input set. Search goes on

until we find another element whose timeframe overlaps with the timeframe of

A. Let it be cluster B.

3. If no overlapping cluster can be found:

3.1. Add cluster A to the result set.

3.2. If the input set is not empty, go to step 1.

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

100

3.3. If the input set is empty, go to step 5.

4. If an overlapping cluster can be found:

4.1. Remove cluster B from the input set.

4.2. Order the following points in time in ascending order: A.begins,

B.begins, A.ends, B.ends. Let's refer to the ordered time variables as time1

≤ time2 ≤ time3 ≤ time4.

4.3. Add to the input set the following sub-clusters of cluster A:

 1) Sub-cluster within timeframe [time1, time2]

 2) Sub-cluster within timeframe [time2, time3]

 3) Sub-cluster within timeframe [time3, time4]

4.4. Add to the input set the following sub-clusters of cluster B:

 1) Sub-cluster within timeframe [time1, time2]

 2) Sub-cluster within timeframe [time2, time3]

 3) Sub-cluster within timeframe [time3, time4]

4.5. If the input set is not empty, go to step 1.

5. End the algorithm and return the result set.

Output: a set of sub-clusters that do not overlap in time, each sub-cluster

represents an activity.

The final timeframe of an activity can be obtained in a straightforward manner after the

GPS points are attributed to activities; the time between the earliest point and the latest

point of the activity. If a sub-cluster contains only one GPS point (lets refer to this only

point as P), then the timeframe for this activity is counted as follows:

 If the sub-cluster is the earliest one, the timeframe of the activity is counted as the time

between P and the next collected point after P.

 If the sub-cluster is the latest one, the timeframe of the activity is counted as the time

between P and the previous collected point before P.

 If the sub-cluster is not the earliest or the latest one, the timeframe of the activity is

counted as the time between the previous collected point before P and the next

collected point after P.

Figure 5 illustrates the view of activities after decomposing Place 1 (which is shown in

figure 2) to sub-clusters that represent activities.

Fig. 5. Recognized activities within a place

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

101

5 Implementation and Deployment

For lifelogs to be useful they need to be structured and presented to the user in a way that

will give a good overview of content and data. The proposed solution for structuring

lifelogs is to identify places of importance, infer activities, and then associate images with

the places and the activities. A prototype application to demonstrate how this could be

done, used with six months’ worth of captured lifelog data, is therefore presented in this

section.

The prototype consists of mobile devices for capturing images and contexts, and an

application for reviewing the gathered data. The mobile device for capturing images that is

being used in this prototype is called SenseCam, which is depicted in Figure 6.

SenseCam is a wearable digital camera, which keeps a digital record of the activities that

the person experiences [KB10][GW04][BD08][DC08]. All recordings are automatically

logged without the user’s intervention and therefore without any conscious effort [GW04].

SenseCam contains a number of different electronic sensors which can be used to collect

data for the lifelogs: light-intensity and light-color sensors, a passive infrared (body heat)

detector, a temperature sensor, and a multiple-axis accelerometer. Certain changes in sensor

readings can also be used to automatically trigger a photograph to be taken [HW06] which

helps capturing things of significant importance. SenseCam does not feature a GPS sensor,

so location data was instead captured by a smartphone, synchronized with the SenseCam.

When connecting the two devices, the SenseCam and the smartphone, to a computer

with the prototype application installed, the system performs the following steps:

Fig. 6. SenseCam worn around the neck

1. Transferring the logs in the form of XML. The logs consist of time-stamped GPS data

and time-stamped images.

2. Analyzing the GPS data to identify periods of time where the user visited known places

during the day.

3. GPS points that do not correspond to any of the known places are aggregated, using the

DBSCAN algorithm, into clusters that represent new places. The Radius is set to 12.8

meters and MinPts is set to 3.

4. Inferring activities based on the places using the method presented in section 4.

5. Associating SenseCam images with the recognized places and the inferred activities

based on time.

6. Showing the results on the main interface in a chronological order.

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

102

The prototype application associates SenseCam images with auto-recognized places and

inferred activities. The middle image of each group of images that belongs to a place or to

an activity is chosen as a representative image. When reviewing, the application shows not

only the images, associated with places and activities as content, but also the location

context data. This can improve the reviewing process as it combines context with content

data. Figure 7 shows the main interface of the application after transferring the logs of one

day. This interface consists of 2 columns, where one column presents places and the other

one presents activities.

5.1 Reviewing Places

Figure 8 shows the place page when reviewing. When reviewing a place, the system shows
the constructed convex hull from the GPS points that correspond to the place. In addition,
SenseCam images that have been captured when the user was in the place are shown.

The user can choose a representative image for the place using the available SenseCam
images. The user can also upload own images from an external source. If the user confirms
the place, the system will save the chosen image as the representative one together with the
coordinates that correspond to this place. Thus the place will be known and detected
automatically by the system if the user visits it again. As the user continues to review the
data, more places will be added to the list of known places of importance. This will
improve the system’s knowledge of important places, which will increase the level of
automation in detecting the user’s movements.

5.2 Reviewing Activities

When reviewing an activity, the system presents all SenseCam images that have been
captured during that activity. The system also shows all the GPS points that correspond in
time to this activity on a map. It is possible for the user to choose certain images to
associate with the activity among the whole set of images. Figure 9 shows the activity page
when reviewing.
Reviewing activities differs from reviewing places in the following aspects:

 It is possible to annotate an activity with many images, while a place can be annotated

only with 1 image.

 The coordinates that correspond to an activity will not be saved in the system if the

user chooses to save the activity.

 All the activities that happened in a place will be associated with this place for later

context-dependent retrieval.
Saved activities can be retrieved later based on date/time or places. This means that the

user can recall all the activities that happened at a certain time or in a certain place.

6 Related work

In this article the authors have shown how to recognize places of importance, how to use

them to structure lifelogs in the form of activities, and how to present lifelogs to the user in

a structured way. This section describes some of the work that has been done by others,

which is related to the work presented in this article.

The DBSCAN algorithm, together with OPTICS, was used by the authors when

clustering the location data. Another common clustering approach is K-means. K-means is

a method of cluster analysis that aims to partition n observations into k clusters [WX07].

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

103

Fig. 7. The main interface of the lifelogging application

Fig. 8. Reviewing a place within the lifelogging application

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

104

Fig. 9. Reviewing an activity within the lifelogging application

This method assigns k initial means randomly, and then it goes over all the observations

and assigns them with the nearest mean, which results in having k clusters. The mean value

of each cluster is calculated, and then the method is repeated until the error term is deemed

small or the decrease is below a threshold. This method is very sensitive to noise, and the

number of the clusters must be known in advance. K-means also rely on the random

initialization of the means that makes it non-deterministic [ZF04]. Ashbrook et al. [AS02]

used a variant of the k–means clustering algorithm that used GPS data in defining locations

of the user. All the points within a pre-defined Radius are marked, and the mean of these

points is computed. The system will do calculation again based on the mean and the given

Radius to find a new mean value. When the mean value is not changing any more then all

points within its Radius are placed in a cluster and removed from consideration. This

approach is repeated until there are no more GPS points left. The main limitation of this

approach is that the Radius should be set in advance and then the clustering algorithm will

rely on that value. Density-based algorithms overcome the limitations of the K-means

clustering method [EK96]. The advantages of using DBSCAN over K-means are mentioned

by Zhou et al. [ZF04]: DBSCAN is less sensitive to noise, it allows clusters of arbitrary

shape, and it provides deterministic results.

Alvares et al. [AB07] presented an approach to add semantic information to trajectories.

Trajectories are decomposed into stops and moves where a stop is a set of points that is

transformed into a geographic object with a meaning, and a move is a small part of a

trajectory between two stops. Candidate stops are identified in advance and the output of

the work was a semantic trajectory dataset. Palma et al. [PB08] extended the work

presented in the paper [AB07]. Palma et al. used a variation of the DBSCAN algorithm to

discover interesting places in trajectories, which are previously unknown. Trajectories are

observed as a set of stops and moves, where stops are more important. The authors in

[PB08] calculated the distance between points along the trajectory instead of using

Euclidean distance, and they used minimal time instead of using minimal number of points

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

105

MinPts, for a region to be dense. The absolute distance (Eps) is used to calculate the

neighbourhood of a point. The choice of Eps requires knowing the percentage of location

points, which corresponds to stops. In our work the choice of Eps is based on analysis and

observation of real-life data. In contrast to [AB07] and [PB08], our work considers activity

inference and contains the methods to visualize and label the found places and activities.
Andrienko et al. [AA11] defined the trajectory of an object as temporally ordered

position records of that object. The authors in [AA11] looked at the characteristics of the
movement such as instant speed, direction, travelled distance, displacement and the
temporal distances to the starts and ends of the trajectories. These characteristics are then
represented as dynamic attributes that can give an indication of movement events. For
instance, having low speed in some areas can be an indication of specific events belonging
to those areas. The events are clustered according to their positions and time, and then used
to extract places. Repeated occurrences of events in places are calculated by means of
density-based clustering, and those places are defined as interesting ones to the user. The
result was defining places of interests from mobility data by analysing place-related
patterns of events and movements. However, the work presented in [AA11] relied on the
data collected by many users in the area, while our work is designed for detecting and
logging personal preferences, so activities in our work represent the personal life
experiences of the user. In addition, no prototype application was done in [AA11] so the
user cannot review and save the detected places and events for later retrieval.

Another work was presented by Wolf et al. [WG01] that relied on the loss of the GPS
data as indication of buildings. Losing GPS signals within a given Radius on three different
occasions is interpreted by the system as a building has been entered. This work identified
only buildings and provided no detection for outdoor places or any activities.

The effect of using locations and images on memory recall has been tested by Kalnikaite
et al. [KS10]. In their work, SenseCam images are associated with locations based on time
and then presented to the user through an application. However, images are associated
without the use of any particular clustering techniques. Thus if a SenseCam timestamp falls
within 50 seconds of a GPS timestamp, that image and the GPS point will be paired
together. Another application that presents groups of images on a map based on their
locations has been created by Toyama et al. [TL03]. All the images are tagged by the
location data and stored in a database, and then the application groups the images and
shows them on the map based on the tagged location. Locations can be cities, streets, or
user-defined places. This application lacks the automatic detection of important places as it
relies mostly on the tagged data of the images.

In summary, the work presented in this paper extends the previously mentioned works
by presenting techniques that cluster location data and then grouping a sequence of images
based on the clustering results. The authors combine recognition of places with inference of
activities relying solely on time-stamped location data. Context and Content data are also
combined and visualized through a prototype application, so the user can mark places and
activities that happened at interesting stops to retrieve them later on. In addition, having a
stream of images can help the user, when reviewing through the proposed application, in
naming what activity happened in the place.

7 Discussion

This section discusses the results of the efforts with respect to the research questions.

The first addressed question is: “How can places of importance be recognized and

activities be inferred based on location data and time?”

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

106

Places can be recognized relying solely on time-stamped location data using the

DBSCAN algorithm. DBSCAN aggregates GPS points into clusters based on the density of

points. The authors calibrated the density-based algorithm based on data collected by three

users over a period of six months. The best parameter values for DBSCAN that result in

fewer numbers of place recognition errors are 12.8 meters for the Radius and 3 points for

MinPts. OPTICS algorithm is also used to ensure that the chosen parameters values for

DBSCAN provide stable clustering results. The DBSCAN algorithm results in clusters that

represent places visited by the user. After the clusters are identified, the system constructs

the convex hull to estimate the geographical boundaries of the recognized places.

Activities are inferred based on the known places and the essential places that are

defined in the previous step. An activity is represented by a set of GPS points which belong

to the same place and which are sequential in time. The system searches within the defined

place clusters and splits them into sub-clusters that do not overlap in time. Each sub-cluster

represents an activity that happened in a certain place at a certain time. The timeframe of

each activity is the time between the earliest point and the latest one within the sub-cluster.

A cluster, which represents a place, might be divided into several sub-clusters, which

represent activities happened in the same place at different time.

The second addressed question is: “How can structured lifelogs be presented so the

user can review and retrieve the life experiences?”
The lifelogs, which are structured based on places and activities, are presented through a

prototype application that answers the following questions:

 When did the activity take place? The timeframe of the activity is presented based on

the identified corresponding time-stamped GPS points.

 Where was the activity? The place where the activity happened is presented on the map

based on a convex hull of the corresponding GPS points.

 What was the user doing? The presentation of the activity is based on the auto-captured

images, which were taken at the time of the activity.

A SenseCam can be used to capture images automatically while a mobile device can

collect GPS points during the day of the person. The system transfers all the logs when

connecting those portable devices to a computer, and then defines places and activities

based on the GPS data. SenseCam images are then associated with those places and

activities based on time and presented to the user for reviewing and adjustment. Adding

SenseCam images, as content, to the clustering results helps the user in naming places and

activities when reviewing.
If the user confirms a cluster as a place, the coordinates that correspond to this place are

saved and the place will be known and detected automatically next visit. Therefore the
system can improve its knowledge about the user’s preferable places. Saving activities will
just save the data and make it available for later retrieval. The system thus presents the
structured lifelogs as places and activities associated with SenseCam images. The system
helps the user to retrieve or share previous moments in life based on places or time. For
example, the user can review all the activities that happened in a certain place, such as the
university, or at a certain time, such as the New Year eve.

8 Conclusion and Future Work

This article presented a novel approach that relies on location data and images to organize

the lifelogs of someone’s life. Location data provides a context source that can be used to

Chapter V – Structuring and Presenting Lifelogs Based on Location Data

107

recognize places and infer activities. Images, as content data, can be then associated with

those recognized places and inferred activities, and be presented to the user for reviewing

and adjustment. The introduced prototype system structures and presents lifelogs based on

places, activities and images that can be available for later retrieval. The system therefore

provides a digital tool for people to reminisce and share their life.

The next stage of our work is improving the inference of activities within the lifelogging

system using the same set of devices. Sensor-readings in SenseCam can be used with image

processing techniques to better reason about daily activities. This will also help the system

distinguishing between different activities that usually happen in the same place, which will

improve the activity inference task.

Chapter VI

Formal Verification of Context and

Situation Models in Pervasive

Computing

Based on:
1. Boytsov, A. and Zaslavsky, A. Formal verification of context and situation models

in pervasive computing. Pervasive and Mobile Computing, Volume 9, Issue 1,

February 2013, Pages 98-117, ISSN 1574-1192, 10.1016/j.pmcj.2012.03.001.

URL=http://www.sciencedirect.com/science/article/pii/S1574119212000417, last accessed

May, 08, 2013.

2. Boytsov, A. and Zaslavsky, A. Formal Verification of the Context Model – Enhanced

Context Spaces Theory Approach. Scientific report, 2011, 41 p.

URL=http://pure.ltu.se/portal/files/32810947/BoytsovZaslavsky_Verification_TechReport.pdf, last

accessed October, 30, 2012.

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

110

Foreword

Previous chapters addressed different ways of defining situations and answered the first research

question: how to derive a mapping between context information and ongoing situations? This chapter

addresses the second research question: once the situations are identified, how to prove, that the

derived mapping is correct? This chapter answers the research question 2 by proposing, proving and

evaluating a novel concept – verification of situation models. Verification allows formally proving

that a situation definition does not have error of certain kind, or (if there is an error) derive a

counterexample – particular context features that will cause situation awareness inconsistency.

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

111

Formal Verification of Context and Situation Models in

Pervasive Computing
8

Abstract. Pervasive computing is a paradigm that focuses on availability of

computer resources anytime anywhere for any application and supports non-

intrusive integration of computing services into everyday life. Context awareness is

the core feature of pervasive computing. High-level context awareness can be

enhanced by situation awareness that represents the ability to detect and reason

about the real-life situations. In this article we propose, analyze and validate the

formal verification method for situation definitions and demonstrate its feasibility

and efficiency. Situations are often defined manually by domain experts and are,

therefore, susceptible to definition inconsistencies and possible errors, which in turn

can cause situation reasoning problems. The proposed method takes as an input

properties of situations and dependencies among them as well as situation

definitions in terms of low-level context features, and then either formally proves

that the definitions do comply with the expected properties, or provides a complete

set of counterexamples – context parameters that prove situation inconsistency.

Evaluation and complexity analysis of the proposed approach are also presented and

discussed. Examples and evaluation results demonstrate that the proposed approach

can be used to verify real-life situation definitions, and detect non-obvious errors in

situation specifications.

Keywords: context awareness; situation awareness; context spaces theory; situation

algebra; verification.

1 Introduction

Pervasive computing paradigm aims to integrate computing services gracefully into

everyday life, and make them available everywhere and at any time. Partial

implementations of this approach are, for example, ambient intelligence systems (like smart

homes or smart offices), PDAs, social networks. One of the foundational features of

pervasive computing is context awareness. Context awareness can be further enhanced by

the concept of situation awareness – generalization of context information into real-life

situations.

Manually-defined specifications of situations are usually clear to understand and easy to

reason about. However, the creation of situation specifications is a resource and effort

consuming work. One of the main problems of manual definition is the possibility to

introduce a situation specification error. The specification errors can result in inadequate

situation reasoning and internal contradictions in context reasoning results. The theoretical

solution and practical implementation presented in this article allow formally verifying

specifications of situations using the expected situation relationships, and, if the verification

detected an error, allow deriving counterexamples – the exact context properties that will

lead to inadequate situation awareness results. The relationships that are being verified may

include contradiction (e.g. verify that the situation “Driving” cannot co-occur with the

8
 This part contains merged publications [BZ11c] and [BZ12b]. The article [BZ12b] was

taken as a baseline, but the proofs of lemmas and algorithms were taken from the report

[BZ11c]. References and formulas were renumbered accordingly.

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

112

situation “Walking”), generalization (e.g. verify that by specification the situation

“InTheLivingRoom” implies the situation “AtHome”), composition (e.g. verify that by

specification the situation “InTheCar” consist of “OnBackSeat” and “OnFrontSeat”). The

detailed description of possible relationships that can be verified is formulated in section

3.1 and the motivating example is provided in section 3.2.

To the best of our knowledge this research is a pioneering approach for verification of

integrity, consistency, non-contradiction and adequacy of a context model, which represents

the understanding of internal and external environment of a pervasive system. The proposed

capability to verify the context model detects and eliminates errors during pervasive

computing system development and at runtime, and therefore results in more reliable and

dependable systems. This approach is applicable to context models based on context space

theory and in general to broader class of context models, e.g. decision trees.

This article is structured as follows. Section 2 addresses the basics of context spaces

theory, the background theory of this article, and introduces some additional definitions that

will be used throughout the article. Section 3 introduces the challenge of formal situation

verification and proposes the general approach to address that challenge. Section 4 proposes

and analyzes improved situation representations using context spaces theory, which later

will be used as a basis for the verification algorithms. Section 5 proposes the verification

approach. Section 6 contains theoretical complexity analysis and practical evaluation of the

proposed verification approach. Section 7 discusses related work and distinctive and unique

features of the proposed verification approach. Section 8 contains summary, future work

directions and concludes the article.

2 The Theory of Context Spaces

2.1 Basic Concepts

The context spaces theory (CST) was introduced by Padovitz et. al. [PL08a][PL08b]. CST

uses spatial metaphors to represent context as a multidimensional space and to achieve

insightful and clear situation awareness. In this section we summarize the definitions and

concepts of context space approach. These concepts were redeveloped and enhanced to

provide more solid basis for the verification techniques, which are the focus of this article.

A context attribute [PL08a] is a feature of context and context can be represented by

multiple context attributes. Context attributes correspond to respective domains of values of

interest. For example, in smart home environment information like air temperature, energy

consumption and light level can be taken as context attributes. Context attributes can be

numeric (e.g. noise level, air humidity, illuminance level, water temperature), non-numeric

(e.g. on/off switch position, door open/closed) and mixed (that can have both numeric and

non-numeric values at different time, e.g. air conditioner setup – particular temperature or

the value “Off”). In case if a context attribute is missing (for example, due to unavailability

of the sensor), its value is usually set to undefined, which is treated just as a possible non-

numeric value.

A context attribute can be metaphorically represented as an axis in a multidimensional

space. In this article a certain value of context attribute, taken with respect to uncertainty, is

referred to as context attribute value. In the simplest case context attribute values are

particular points on the context attribute axis – single values, numeric or non-numeric,

without any attached estimations of uncertainty.

Situation reasoning requires testing, whether the context attribute value is within some

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

113

interval. Generalized concept of interval over some context attribute ca can be defined in

one of the following ways:

1. If ca is numeric or mixed, the interval is just a numeric interval. The borders can be

included or excluded arbitrary. The possible formats are: [a;b], (a;b), [a;b) or (a;b], where

a,b R,and a≤ b.

2. If ca is non-numeric or mixed, there are 2 possible formats for a generalized interval.

2a. The generalized interval contains a set of possible values: {a1, a2, …, aN}, where

ai are non-numerical context attribute values. If the context attribute has one of those

values, it falls within the interval. It should be specifically noted, that checking for

undefined context attribute also falls under that category.

2b. The generalized interval contains a set of prohibited values: ¬{a1, a2, …, aN},

where ai are non-numerical context attribute values. If the context attribute does not match

any of the values a1, a2, …, aN, it falls within the interval.

From now and on, when referring to any interval over context attribute axis, the

generalized concept of interval will be implied.

Two generalized intervals overlap, if there exists a context attribute value that belongs to

both intervals.

A multidimensional space, which comprises multiple context attributes as its axes, is

referred to as application space or context space [PL08a].

The entire vector of relevant context attribute values at a certain time is referred to as

context state [PL08a]. In spatial representation, the context state can be viewed as a point in

multidimensional context space.

The concept of situation space is developed in order to generalize context information

and provide higher-level reasoning. Situation spaces are designed to formalize real-life

situations and allow reasoning upon real-life situation using the sensory data. A situation

space in original CST situation definition can be identified as follows [PL08a]:

N

=i

iiS,i)(xcontrw=S(X)
1

 (1)

In formula (1) S(X) is a confidence level of situation S at a certain state X. The context

state X includes context attribute values xi that are relevant for situation S. The coefficient

wi represents the weight of i-th context attribute contribution to the total confidence of the

situation S. The number of relevant context attributes is N, and contrS,i(xi) is a function that

measures the contribution of i-th context attribute to the total confidence of the situation S.

Usually the contribution function resembles a step function over a certain context

attribute. Formula (2) shows the contribution function format.

mim

i

i

iS

Ix,a

Ix,a

Ix,a

=(x)contr

,

2,2

1,1

,
...

 (2)

In formula (2) Ii,j are various generalized intervals over i-th context attribute (possibly

including the test for missing context attribute value). Intervals over the same context

attribute should not overlap. Also the intervals Ii,1…Ii,m should cover entire i-th context

attribute, i.e. any possible context attribute value x should belong to an interval from

Ii,1…Ii,m set. Contribution levels ai are usually within [0;1] range. A contribution level ai

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

114

can as well be set to UD (undefined) for some intervals. Usually undefined contributions

correspond to missing context states. The presence of any undefined contribution makes the

entire situation confidence value undefined.

In order to achieve Boolean situation reasoning results, a threshold is often applied on

top of the confidence level. A situation with Boolean reasoning results is presented in

formula (3).

𝑆() = [
𝑡𝑟𝑢𝑒, ∑ 𝑤 ∗ 𝑐𝑜𝑛𝑡𝑟𝑆, (𝑥) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑁

 =1

 𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3)

In formula (3) the contribution function is defined according to formula (2). If only

Boolean values are acceptable as a reasoning result, then undefined confidence level of a

situation is usually counted as non-occurrence (which is implied by formula (3)).

Otherwise, undefined confidence level usually results in undefined reasoning result.

Sometimes suitable weights, contributions and threshold can be defined by hand, but

there also exist some techniques to facilitate setting the parameters of a situation. The

techniques for choosing situation parameters include:

1. Defining the constraints on parameters. For some context states the fact of

occurrence/non-occurrence of the situation is known. Those known states can be obtained

by analyzing the subject area or by testing. Together they define a set of inequalities, which

provides the limitations on parameters.

2. Voting for fixing option. If some test fails, there exist multiple possible methods to fix

the situation parameters. For example, unexpected occurrence of the situation can be fixed

by reducing the contribution of the triggered intervals, by redistributing the weights in favor

of the context attributes with lower contribution on this testing sample or by increasing the

threshold. Multiple testing results “vote” for taking or not taking different option to fix the

parameters, and the option with good tradeoff between positive and negative votes is

attempted first.

3. Learning situations from labelled data. The labeled data can be obtained by subject

area analysis or by testing.

The choice of situation parameters is a large and relatively unexplored area, which

mostly lies beyond the scope of this article. However, verification is a powerful way to

prove that the parameters are defined correctly, or to identify the error.

It should also be noted that any situation can be transformed to have the any threshold

between (0;1), and after the transformation the situation will be triggered at the same

context state as before and remain well-defined (i.e. all the contributions are within [0;1],

all the weights are within [0;1] and the weights sum up to 1). Those transformations are

often used to achieve the same threshold for all the situations within the context space.

For example, one of the possible transformations is performed as follows. In order to

change the threshold from the old value thold to the new value thnew the developer can

introduce an artificial context attribute, which has a single generic possible value (for

example, non-numeric value Stub). The weight of the newly introduced context attribute is

w0. Other weights are multiplied by (1- w0) for normalization. The contribution of the

newly introduced context attribute is 1 if the threshold is increased (thnew> thold) and 0 if the

threshold is decreased (thnew< thold). It can be straightforwardly proven that the proper value

is 𝑤 =
𝑡 𝑡

𝑡
 if the threshold is decreased (0<thnew< thold ≤ 1) and 𝑤 =

𝑡 𝑡

1 𝑡

if the threshold is increased (0 ≤ thold< thnew < 1). Note that it is enough to introduce a

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

115

single context attribute stub, and use it for all the situations that undergo the threshold

modification.

In this article we view all the situations within the application space as having the same

threshold. As we proved above, it can be considered without any loss of generality. Usually

the threshold is defined for an application space, and then if any situation has different

threshold, the transformation is applied.

In order to detect the confidence values of various situation relationships, CST is

supplied with situation algebra concept. Operations, that constitute the basis of situation

algebra, are presented in formula (4). The definitions comply with Zadeh operators [Za65].

𝐴𝑁𝐷: (𝐴 & 𝐵)() = 𝑚𝑖𝑛(𝐴(), 𝐵())

𝑂𝑅: (𝐴 | 𝐵)() = 𝑚𝑎𝑥(𝐴(), 𝐵())

𝑁𝑂𝑇: (¬𝐴)() = 1 – 𝐴()

 (4)

Any arbitrary situation algebra expression can be evaluated, using the operations (4) as a

basis. If a situation, provided as an argument for AND, OR or NOT operation, is undefined

at some context state X, than the whole situation algebra expression is undefined at the

context state X as well.

The situation awareness concepts, provided in the context spaces approach, have

numerous benefits, including the following:

1. Integrated approach. CST contains the methods that lead reasoning process from raw

sensory data up to the situation confidence interpretation.

2. Uncertainty integration. The situation reasoning can handle imprecision and even

possible unavailability of sensor data.

3. Unified representation. Different situations might have different semantics. For

example, situations can represent certain location, certain condition, certain activity.

Context spaces theory allows defining and reasoning about the situations in a unified

manner.

4. Clarity. Situations are human readable and can be relatively easily composed

manually by the expert.

In the next sections we are going to provide an example scenario to clarify the concepts.

2.2 Context Spaces Approach Example

For the demonstration of the context spaces approach we developed an illustrative example.

In the section 3.2 this example will be extended to the motivating scenario for the

verification approach. We apply the theory of context spaces and its situation awareness

capabilities in smart office environment.

Consider a smart office that monitors the conditions at the workplaces. A separate CST

application space is associated with any arbitrary workplace. In that application space the

situations are triggered if the confidence level reaches 0.7.

There are three context attributes of a particular interest: sensor measurement for light

level (numerical), sensor measurement for noise level (numerical) and sensed light level

switch (non-numeric On/Off). For simplicity we do not take into account possible sensor

uncertainty or sensor unreliability.

Consider the CST situation ConditionsAcceptable(X). The situation represents the fact

that the light and noise levels at the workplace are acceptable. The situation

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

116

ConditionsAcceptable(X) is presented in the expression (5). We consider that the noise level

and the luminance are of equal importance for evaluating the workplace conditions, so both

weights are assigned at 0.5.

C nditi nsAcceptab e(X) =
 .5 ∗ contr𝐿 𝑡(Li htLeve) .5 𝑐𝑜𝑛𝑡𝑟N (N iseLeve)

contr𝐿 𝑡(Li htLeve)= [

0,LightLevel<350

 .5,LightLevel ∈ [350,500)

1,Li htLeve ≥5
 (5)

𝑐𝑜𝑛𝑡𝑟N (N iseLeve)= [

1,NoiseLevel 40

 .7,NoiseLevel ∈ (40,50]

 .3,NoiseLevel ∈ (50,60]

0,N iseLeve >6

Consider also the situation LightMalfunctions(X), which is presented in the expression

(6). Light malfunction is detected, if the light switch is on, but still there is insufficient light

at the workplace. The contribution of the light level is inversed comparing to the expression

(5), because now the impact means unacceptability of the light level, not its acceptability

(somewhat equivalent to the NOT operation from formula (4)). The contribution of the light

switch position is straightforward – it has full impact if it is on, and if it is off it has no

impact on the LightMalfunctions(X) situation.

As for the weights for the expression (6), the weight for the light level should not reach

0.7: otherwise with the luminance of lower than 350 lx the lamp will be counted as

malfunctioning, but it could just be turned off. Both the position of the switch and

insufficiency of the light are important in order to detect, so equal weights are chosen.

Li ht a f ncti ns(X) = .5 ∗ contr𝐿 𝑡(Li htLeve) .5 ∗ 𝑐𝑜𝑛𝑡𝑟N (N iseLeve)

contr𝐿 𝑡(Li htLeve)= [

1,LightLevel<350

 .5,LightLevel ∈ [350,500)

0,Li htLeve ≥5
 (6)

𝑐𝑜𝑛𝑡𝑟 t (witch siti n)= [
1,SwitchPosition ∈ 𝑂𝑛

 ,SwitchPosition ∈ 𝑂

We are going to refer to this example throughout the article. In section 3 this example

will be expanded to the motivating scenario for the verification approach. But in order to do

that, we need to provide some additional definitions and formalize the verification concept.

2.3. Additional Definitions

In order to proceed further, we propose several more definitions and formally present the

entities we are going to work with.

Let C be the set of all possible confidence values that can be returned by any situation

space after reasoning. The formal definition of the set C is presented in formula (7).

C RU{UD} (7)

A confidence value is a real value that numerically represents the confidence in the fact

that a situation is occurring. In formula (7) UD (undefined) is a special value that shows

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

117

that confidence of the situation cannot be calculated. Usually confidence level, if defined,

falls within the range [0;1], but in this article we will not restrict those boundaries.

Two confidence values c1 C and c2 C are equal if and only if they either both have

the same numeric value, or they are both undefined. Inequalities are considered only for

numeric confidence values. Any inequality between confidence values holds false, if there

is UD on either side of it.

Let the set of all possible context states be St. Therefore, an expression like X ∈ St
merely means that X is a context state.

An arbitrary function f, that takes context state as an input and outputs a confidence

level, will be referred to as a situation. A situation can be formally defined as f: St→C .

Ye et. al. [YD12] define a situation as “external semantic interpretation of sensor

data”[YD12], where the interpretation means “situation assigns meaning to sensor

data”[YD12] and external means “from the perspective of applications, rather than from

sensors”[YD12]. Our general concept of a situation can be viewed as an application of that

definition to the CST context model – the situation interprets low-level context information

in a meaningful manner, and the rules of interpretation are given externally (by the expert)

from an application perspective.

If for two situations f1 and f2 the expression (8) holds true (i.e. if for any context state X

situations f1(X) and f2(X) produce the same output confidence value), we consider that

situation f1 is a representation of f2 (or, symmetrically, f2 is a representation of f1). The

situations f1 and f2 are considered to be different representations of the same situation.

∀ St, 1() = 2() (8)

Obviously, any situation is a representation of itself (it directly follows from the

definition).

To summarize, the term situation is used for any function that takes a context state as

input and produces a confidence level as the output. The terms situation space or CST

situation are used for the situations that can be represented in terms of the CST definition

(expressions (1) and (2)). It means that any situation algebra expression can be called a

situation, but it is not necessarily a situation space.

In order to supply CST with verification capabilities, we also need to introduce the

definition of an empty situation. Situation S is empty with respect to threshold f if and only

if there exists no context state, for which the confidence level of the situation S reaches f.

Formally the definition is represented in formula (9).

S is empty w.r.t. f ∈ St, 𝑆() ≥ (9)

For example, the situation (AtHome & ¬AtHome)(X) is empty w.r.t. any threshold

greater than 0.5. The concept of an empty situation will be of much practical value for the

task of situation relations verification that will be introduced in the next section.

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

118

3. Situation Relations Verification in CST

3.1 Formal Verification by Emptiness Check

In this section we will justify the need to verify situation definitions, identify the challenges

of that task and propose the general solution direction.

The methods to identify the situation can be classified into two groups [YD12]: learning-

based approaches (definition by a set of examples, using supervised or unsupervised

learning) and specification-based approaches (manual definition by an expert).

Specification-based approaches do not require any training data beforehand and they often

feature clearer situation representation and easier reasoning. On the other hand, learning-

based approaches do not require preliminary manual situation definition (and therefore

avoid most definition errors) and can automatically identify possible situations of interest

that were not taken into account manually.

Context spaces theory follows specification-based approach. Situations in context spaces

theory are defined manually, and the concept of the situation space is optimized to make the

situations human-readable and easy to compose. Still the process of situation composition is

prone to errors, and it will be highly beneficial if the user could formally verify, whether

the defined situations and situation relations comply with certain properties.

Ye et. al. [YD12] identified multiple possible relationships between situations. Here we

analyze the application of those relations to CST situation spaces. Temporal properties are

out of scope of our article, so any relationships that involve timing or sequence of

occurrence are intentionally left out.

1. Generalization. The occurrence of less general situation implies the occurrence

of more general situation. For example, the situation Driving implies the situation

InTheCar, which is more general.

In context spaces theory the generalization relations can be defined in a following

manner (expression (10)).

∀ St, 𝐿𝑒𝑠𝑠 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛() → 𝑜𝑟𝑒 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛() (10)

Using the situation algebra definitions (4) as a basis, the expression (10) can be rewritten

as expression (11), and then converted to the expression (12).

∀ St, ¬(𝐿𝑒𝑠𝑠 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛()& (¬ 𝑜𝑟𝑒 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛())) (11)

 St, 𝐿𝑒𝑠𝑠 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛()& (¬ 𝑜𝑟𝑒 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛()) (12)

The expression (12) means that the situation

𝐿𝑒𝑠𝑠 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛()& (¬ 𝑜𝑟𝑒 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛() should never occur, i.e. that

the situation 𝐿𝑒𝑠𝑠 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛()& (¬ 𝑜𝑟𝑒 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛() should be

empty. The exact definition of an empty situation is provided in expression (9) in section

2.3.

So, the task of verifying generalization relationship was reduced to the task of checking

the emptiness of a situation algebra expression.

2. Composition. Some situations can be decomposed into sub-situations. For

example, the situation AtHome can be decomposed into the situations like

InTheLivingRoom, InTheKitchen, InTheBathroom. For the context spaces theory it might be

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

119

formalized either as expression (13) or as expression (14).

∀ St, 𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛() →
𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡1() | 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ()|… | 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑁() (13)

∀ St, 𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛()
𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡1() | 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ()|… | 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑁() (14)

The expression (14) implies that all particular sub-cases of the situation

ComposedSituation do belong to at least one of the components, while the expression (13)

does not have that assumption.

The expressions (13) and (14) can be rewritten as the expressions (15) and (16)

respectively:

 St, 𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛()& ¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡1() &¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ()…& ¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑁() (15)

 St, (𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛()&¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡1()& ¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ()…& ¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑁())|

(¬𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛()& 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡1()& 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ()…&𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑁()) (16)

Both expressions (15) and (16) can be viewed as an emptiness check task. It means that

the task of verifying composition relationship can also be represented as a task of emptiness

check.

3. Dependence. Ye et. al. [YD12] have concluded that “A situation depends on

another situation if the occurrence of the former situation is determined by the occurrence

of the latter situation” [YD12]. In terms of the context spaces theory it can be presented in

the form of the expression (17).

∀ St, 𝐷𝑒𝑝𝑒𝑛𝑑𝑠𝑂𝑛𝑆𝑖𝑡() 𝑆𝑖𝑡() (17)

The expression (17) can be rewritten as the expression (18), which in turn can be viewed

as an emptiness check task.

 St, (¬𝐷𝑒𝑝𝑒𝑛𝑑𝑠𝑂𝑛𝑆𝑖𝑡())& 𝑆𝑖𝑡() (18)

So, the task of verifying the dependence can be represented as the task of situation

emptiness check as well.

4. Contradiction. Contradicting situations should not occur at the same time. For

example, the situation Running should not co-occur with the situation Sitting. The

contradiction relationship for two generic situations is presented in the expression (19). The

contradiction relations between multiple situations can be viewed as multiple contradictions

between every pair of situations (i.e. every involved situation contradicts every other).

 St, 𝑆𝑖𝑡1() & 𝑆𝑖𝑡 () (19)

The expression (19) shows that the test for contradiction can also be viewed as

emptiness check.

It should be noted that the same kinds of relationships can apply not only to the single

situations, but to the situation expressions as well. For example, the relationship (InTheCar

& Moving)<=>(Driving | CarPassenger) can be viewed as slightly more complicated case

of composition relationship: the joint situation (InTheCar & Moving) is composed of the

sub-situations Driving and CarPassenger.

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

120

To summarize, if the expected relationship is represented as a situation algebra

expression that should never hold true, then it is ready to be an input for the verification

process (which, as we will show further, has emptiness check as its essential part). If the

property under verification is represented as a situation algebra expression that should

always hold true, then it can be converted to another format using the relationship (20).

∀ St, Expression (X) <=> St, ¬(Expression (X)) (20)

As a result, the analysis of possible situation relations, presented in this section, implies

an important conclusion: formal verification of situation relationships can be viewed as

an emptiness check of a situation algebra expression. If the task of emptiness check is

solved for any arbitrary situation algebra expression, it will allow deriving a solution for the

verification task.

3.2 Motivating Example

In order to demonstrate the functionality of the approach, we developed the following

illustrative example.

Consider the smart office scenario presented in the section 2.2. The smart office is aware

of two situations: ConditionsAcceptable, which implies that the light and noise conditions

are acceptable for work, and LightMalfunctions, which says that despite the light is on, the

illuminance level is still insufficient. So, LightMalfunctions(X) implies that the light level is

insufficient to resume the work. In turn, light level insufficiency means that the conditions

at the workplace are not acceptable. So, if the situation spaces are defined correctly, the

situations LightMalfunctions(X) and ConditionsAcceptable(X) should not co-occur. There is

a contradiction relationship between those situations. The formalization of that relation is

presented in the expression (21).

 St, 𝐿𝑖 ℎ𝑡 𝑎𝑙 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠()& 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒() (21)

According to the application space definition, the threshold 0.7 is used to identify the

occurrence, so in the expression (21) the situation is considered to be occurring if its

confidence level reaches 0.7. The aim is to verify the relations between

LightMalfunctions(X) and ConditionsAcceptable(X) and, therefore, check for emptiness the

situation (𝐿𝑖 ℎ𝑡 𝑎𝑙 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠& 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒)() with respect to threshold

0.7.

In the next section we are going to discuss the solution approach for the emptiness check

problem. This motivating scenario will be used as an illustration throughout the article.

4 Orthotope-based Situation Representation

In the section 3.1 we derived a conclusion, that in order to verify the situation relationships,

we need to develop an efficient algorithm to check the emptiness of an arbitrary situation

algebra expression. However, direct application of the situation algebra (formula (4))

allows reasoning only about the confidence level for a particular context state. It does not

allow checking, whether certain condition holds for every possible context state.

As a solution approach we chose to enhance the situation representation for context

spaces theory with a new situation format that will be able to represent any particular

situation algebra expression as a situation and have a tractable algorithm for emptiness

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

121

check. Therefore, we introduced the following new situation space type – orthotope-based

situation space.

In order to provide clear understanding of orthotope-based situation spaces concept we

are going to refer to the example presented in the sections 2.2 and 3.2. The confidence level

of LightMalfunctions(X) can be plotted using context attributes LightLevel and

SwitchPosition as axes. The resulting plot is presented in the figure 1. The formal definition

of the situation LightMalfunctions(X) and the corresponding values are derived from

formula (6).

In the figure 1 it is clearly visible that the confidence levels are constant, if the context

state is inside a certain combination of intervals over context attributes. Actually, this fact is

true for any arbitrary situation, and it follows directly from formulas (1) and (2).

Straightforward formalization of the figure 1 allows formulating the situation

LightMalfunctions(X) as described in the expression (22).

Fig. 1. Confidence level of LightMalfunctions(X)

Li ht a f ncti ns(X) =

[

 .5,(LightLevel<350) ∧ (witch siti n ∈ Off)

 . 5,(LightLevel ∈ [350,500)) ∧ (witch siti n ∈ Off)

 ,(Li htLeve ≥5) ∧ (witch siti n ∈ Off)

1,(LightLevel<350) ∧ (witch siti n ∈ On)

 .75,(LightLevel ∈ [350,500)) ∧ (witch siti n ∈ On)
 .5,(Li htLeve ≥5) ∧ (witch siti n ∈ On)

 (22)

Each condition in the expression (22) is a Cartesian product of generalized intervals (the

concept of a generalized interval was presented in the section 2.1), i.e. a generalized

orthotope [Co73].

The expression (22) provides representation of LightMalfunctions(X) as an orthotope-

based situation space. General orthotope-based situation space can be defined according to

the formula (23).

𝑆() =

[

𝑎1,(𝑥1 ∈ 𝐼1,1) ∧ (𝑥2 ∈ 𝐼2,1)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1)

𝑎2,(𝑥1 ∈ 𝐼1,2) ∧ (𝑥2 ∈ 𝐼2,1)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1)
…

𝑎r1,(𝑥1 ∈ 𝐼1,𝑟1) ∧ (𝑥2 ∈ 𝐼2,1)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1)

𝑎r1 1,(𝑥1 ∈ 𝐼1,1) ∧ (𝑥2 ∈ 𝐼2,2)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1)
…

𝑎𝐿 , (𝑥1 ∈ 𝐼1,𝑟1) ∧ (𝑥2 ∈ 𝐼2,𝑟2) ∧ …∧ (𝑥𝑁 ∈ 𝐼𝑁,𝑟𝑁
)

 (23)

In the formula (23) Ii,j represents the j-th generalized interval over i-th context state. For

i-th involved context attribute there are in total ri non-overlapping intervals (numbered from

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

122

Ii,1 to Ii,ri), which cover the entire range of possible context attribute values. The number of

context attributes, involved in a situation is referred to as N. The total number of the

involved orthotopes (rows in the formula (23)) is referred to as 𝐿 = ∏ 𝑟𝑖
𝑁
i=1 . The total

number of involved intervals is referred to as R=∑
i=1

𝑁

𝑟 . The symbol ∧ refers to the

conjunction (the symbol was chosen in order to avoid the confusion with situation algebra

AND).

Every row inside the formula (23) defines a condition as a Cartesian product of multiple

generalized intervals over N context attributes, i.e. an orthotope [Co73] in the application

space. Therefore, every row of the formula (23) is referred to as an orthotope, and the

situation itself is referred to as an orthotope-based situation representation.

For the situation LightMalfunctions from the example scenario (section 3.2), the number

of involved context attributes is N=2 (LightLevel and SwitchPosition). Let LightLevel and

SwitchPositions be the context attributes number 1 and 2 respectively. Therefore, the

number of intervals for context attributes, r1 = 3 (LightLevel<350; LightLevel ∈ [350;500)

and LightLevel≥500) and r2 = 2 (witch siti n ∈ On and witch siti n ∈ Off). The

number of orthotopes is L=6 and the total number of intervals is R=5.

In subsequent sections we are going to prove several important properties of the

orthotope-based situation space. In order to do that, we need to prove additional lemmas.

Lemma 4.1. Any particular context state belongs to some orthotope of the orthotope-

based situation space.

Proof. Consider an arbitrary orthotope-based situation space S(X), defined over context

attribute CA1…CAN. For context attribute CAi the sets of intervals is 𝐼(𝑖, 1)… 𝐼(𝑖, 𝑟).

Consider an arbitrary particular context state X.

Consider the context attribute CAi from the set CA1…CAN. Let’s define the value for

context attribute CAi within context state X as xi. The value xi can as well be undefined. By

definition the set of intervals 𝐼(𝑖, 1)… 𝐼(𝑖, 𝑟) cover all possible set of context attribute

values, i.e. any particular context attribute value belongs to some interval of that set. It

applies to xi as well. Let’s define the interval xi belongs to as 𝐼(𝑖, 𝑝).

To summarize: (𝑥1 ∈ 𝐼(1, 𝑝1)) ∧ (𝑥2 ∈ 𝐼(, 𝑝2)) …∧ (𝑥𝑁 ∈ 𝐼(𝑁, 𝑝𝑁)). By definition of

orthotope-based situation space, all the combinations of intervals for different context

attributes have the corresponding orthotope in the situation (formula (10)). It applies as

well to (𝑥1 ∈ 𝐼(1, 𝑝1)) ∧ (𝑥2 ∈ 𝐼(, 𝑝2))…∧ (𝑥𝑁 ∈ 𝐼(𝑁, 𝑝𝑁)). And that is the orthotope

that context state X belongs to.

So for any arbitrary orthotope-based situation space and for any arbitrary particular

context state X it was proven that it belongs to some orthotope of the orthotope-based

situation space.

Q.E.D.■

Orthotope-based situation space is the key concept for verification. In the next section

we are going to propose the verification algorithm using orthotope-based situation spaces as

a useful intermediate representation.

5 Orthotope-based Situation Spaces for Situation Relations Verification

In this section we are going to propose and prove the approach to the formal verification of

an arbitrary situation relation.

In general, verification can be performed as follows. In the subsections of this section we

are going to discuss each step of this algorithm in details.

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

123

Step 1. Represent the property under verification as a situation algebra expression that

should be checked for emptiness. This step was discussed in section 3, but, as will follow in

section 5.4, the applicability of verification is not restricted to the properties described in

3.1.

Step 2. Convert the involved situations to orthotope-based situation spaces. Section 5.1

proposes the conversion algorithm from an original CST situation space to an orthotope-

based situation space and discusses the algorithm correctness. The practical evaluation of

the algorithm is provided in the section 6.1.

Step 3. Using the situation algebra expression under test and the converted input

situations, derive the orthotope-based representation of the verified expression. Section 5.2

proposes the algorithm to derive the representation of the expression. Complexity of the

proposed algorithm is defined in the section 6.2.

Step 4. Check orthotope-based representation for emptiness, and, if necessary, find the

counterexamples. Section 5.3 proposes the emptiness check algorithm and discusses the

algorithm correctness. The complexity of that algorithm is evaluated in the section 6.3.

Section 5.3 also addresses the problem of counterexamples and proposes possible solutions.

As a result, the algorithm determines whether the expression under verification is empty

(according to the definition (9)).

Section 5.4 summarizes the results of the sections 5.1-5.3, summarizes the integrated

verification approach and discusses advanced practical aspects of the verification.

5.1 Conversion to an Orthotope-based Situation Space

The conversion from original CST situation space to orthotope-based situation space can

be performed in a manner, described in the algorithm 5.1. In order to provide clear

explanation of the algorithm, we need to propose the following lemma.

Lemma 5.1. Premise. Consider an arbitrary original CST situation space sit(X), defined

over N context attributes CA1…CAN according to the formula (24).

𝑠𝑖𝑡() = ∑ 𝑤
𝑁
 =1 t (𝑥) ; contr (𝑥)= [

a(i, 1), 𝑥 ∈ I(i,1)

a(i,), 𝑥 ∈ I(i,)

…
a(i,r(i)), 𝑥 ∈ I(i,r(i))

 (24)

In formula (24) the weight of context attribute CAi is referred to as wi. Within the

arbitrary context state X the value of context attribute CAi is referred to as xi. The number

of involved intervals over context attribute CAi is r(i). According to the definition of

original CST situation space (section 2.1), the intervals over every involved context

attribute cover the entire set of possible values of that context attribute, and do not overlap.

It means, any particular value xi of context attribute CAi (i=1..n) does belong to one and

only one interval in the set I(i,1)…I(i,r(i)). Any contribution value a(i, j) can as well be

undefined. If the contribution is undefined, then any sum involving that contribution will

result in undefined confidence level.

Consider also a situation space orthotope(X) that is designed in a following manner

(expression (25)). In expression (25) if the sum on any of the rows contains at least one

undefined summand then the whole sum is undefined as well for that row.

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

124

𝑜𝑟𝑡ℎ𝑜𝑡𝑜𝑝𝑒() =

[

∑ w ∗ a(i,)

N
 =1 , (𝑥1 ∈ 𝐼(1, 𝑘1)) ∧ (𝑥2 ∈ 𝐼(, 𝑘2)) ∧ …∧ (𝑥𝑁 ∈ 𝐼(𝑁, 𝑘𝑁));

𝑘1 = 1, 𝑘2 = 1,… , 𝑘𝑁 = 1

∑ w ∗ a(i,)
N
 =1 , (𝑥1 ∈ 𝐼(1, 𝑘1)) ∧ (𝑥2 ∈ 𝐼(, 𝑘2)) ∧ …∧ (𝑥𝑁 ∈ 𝐼(𝑁, 𝑘𝑁));

𝑘1 = , 𝑘2 = 1,… , 𝑘𝑁 = 1
 …
∑ w ∗ a(i,)

N
 =1 , (𝑥1 ∈ 𝐼(1, 𝑘1)) ∧ (𝑥2 ∈ 𝐼(, 𝑘2)) ∧ …∧ (𝑥𝑁 ∈ 𝐼(𝑁, 𝑘𝑁));

𝑘1 = 𝑟(1), 𝑘2 = 1,… , 𝑘𝑁 = 1

∑ w ∗ a(i,)
N
 =1 , (𝑥1 ∈ 𝐼(1, 𝑘1)) ∧ (𝑥2 ∈ 𝐼(, 𝑘2)) ∧ …∧ (𝑥𝑁 ∈ 𝐼(𝑁, 𝑘𝑁));

𝑘1 = 1, 𝑘2 = ,… , 𝑘𝑁 = 1
 …
∑ w ∗ a(i,)

N
 =1 , (𝑥1 ∈ 𝐼(1, 𝑘1)) ∧ (𝑥2 ∈ 𝐼(, 𝑘2)) ∧ …∧ (𝑥𝑁 ∈ 𝐼(𝑁, 𝑘𝑁));

𝑘1 = 𝑟(1), 𝑘2 = 𝑟(),… , 𝑘𝑁 = 𝑟(𝑁)

 (25)

Actually, the orthotopes of situation (25) are obtained using brute-force iteration through

every possible Cartesian product of intervals, mentioned in situation (24).

Lemma statements: 1) orthotope(X) is an orthotope-based situation space.

2) orthotope(X) and sit(X) represent the same situation.

Proof:

We can prove the statement 1 as follows. Formula (25) is compliant with the definition

formula (22) - every i-th context attribute is divided into the set of intervals

I(i,1)…I(I,r(i)), and by construction the situation space orthotope(X) assigns the confidence

level to every combination of those intervals. Every set of intervals I(i,1)…I(i,r(i)) (i=1..N)

over context attribute CAi covers the entire set of possible context attribute values and does

not overlap within each other – both those facts are the part of the definition of original

CST situation space Sit(X). All those facts combined make the definition of orthotope(X)

fully compliant with the definition of an orthotope-based situation space provided in the

section 4. It means, that orthotope(X) is an orthotope-based situation space. Q.E.D. for

statement 1.

Statement 2 can be proven as follows. By definition the situation orthotope(X) is a

representation of situation sit(X), if for any arbitrary particular context state X the

confidence levels of the situation spaces sit(X) and orthotope(X) are equal.

Consider a random particular context state X. Consider an arbitrary context attribute CAi

from the set CA1…CAN. The value of context attribute CAi in the context state X is referred

to as xi. According to the definition of sit(X), the set of intervals, I(i,1)…I(i,.r(i)) covers the

entire context attribute CAi and do not overlap, i.e. any particular context attribute value

belongs to one and only one of the intervals. So, xi belongs to one of the intervals

I(i,1)…I(i,.r(i)). That interval will be referred as I(i,pi).

So, xi ∈ I(i,pi) and that applies to any context attribute CAi within the set of CA1…CAN.

The results for all the involved context attributes are summarized in the expression (26).

 : (𝑥1 ∈ 𝐼(1, 𝑝1)) ∧ (𝑥2 ∈ 𝐼(, 𝑝2)) ∧ …∧ (𝑥𝑁 ∈ 𝐼(𝑁, 𝑝𝑁)) (26)

The expression (26) identifies one of the orthotopes in orthotope(X) according to the

expression (25). In particular, it is the orthotope where k1=p1, k2=p2,…,kN=pN. So,

according to the expression (25) the confidence value of orthotope(X) at state X is

𝑜𝑟𝑡ℎ𝑜𝑡𝑜𝑝𝑒() = ∑ w ∗ a(i, p)
N
 =1 .

The context attribute value xi belongs to the interval I(i,pi), and therefore according to the

expression (24) the contribution of the context attribute CAi is 𝑎(i, p) (i=1..N). The total

confidence level for sit(X) is a weighted sum of contributions, so according to the formula

(24) sit() = ∑ w ∗ a(i, p)
N
 =1 .

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

125

To summarize, 𝑜𝑟𝑡ℎ𝑜𝑡𝑜𝑝𝑒() = ∑ w ∗ a(i, p)
N
 =1 = 𝑠𝑖𝑡(). If any of the a(i,pi) is

undefined, then the confidence level will be undefined for both of the situations, and the

results will remain equal..

As a result, for an arbitrary context state X the reasoning result of orthotope(X) is the

same as reasoning result of sit(X). It means that orthotope(X) and sit(X) represent the same

situation.

Q.E.D. for statement 2. ■

The situation sit(X) is an arbitrary original CST situation, and for any sit(X) the

orthotope-based representation orthotope(X) can be composed. Therefore, lemma 5.1

directly implies that for any original CST situation space there exists an orthotope-based

representation.

Lemma 5.1 also proposes the equivalent representation of an arbitrary original CST

situation space in an orthotope-based format. Therefore, any algorithm that takes a situation

like expression (24) (and that can be any original CST situation) as an input and provides a

situation like expression (25) as an output, is a correct algorithm: it takes arbitrary original

CST situation space as an input and returns orthotope-based (according to lemma 5.1.

statement 1) representation of the same situation (according to lemma 5.1. statement 2) as

an output, and that is what we expect from a conversion algorithm.

For example, orthotope-based situation can be built by composing orthotope after

orthotope (i.e. row after row in formula (25)) using the algorithm 5.1.

Algorithm 5.1. Input. Any arbitrary original CST situation sit(X), defined according to

the formula (24).

Algorithm pseudocode:

//Consitruction the situation from formula (25) row after row

SituationSpace orthotope = new SituationSpace(); //Creating new situation space

for every combination k1,k2,…,kN where k1 = 1..r(1), k2 = 1..r(2),...,kN=1..r(N)

 //Start constructing the new orthotope

 OrthotopeDescription oDescription = new OrthotopeDescription();

 ConfidenceLevel confidence = 0;

 //Creating the orthotope and confidence – one context attribute after another

 for j=1..N

 orthotopeDescription.addContextAttributeInterval(CAj, I(j,kj));

 confidence += wj*a(j,kj);

 end for

 orthotope.addOrthotope(oDescription, confidence);

end for

Output. Situation orthotope(X).

The complexity of the algorithm 5.1 is evaluated in section 6.

Consider an example of the algorithm 5.1, applied to the situation LightMalfunctions(X)

(expression (6)) from the sample scenario presented in section 3.2. There are 3 involved

intervals for the light level (LightLevel<350; LightLevel ∈ [350;500) and LightLevel≥500)

and 2 involved intervals for the switch position (witch siti n ∈ On and

 witch siti n ∈ Off). The possible combinations of intervals and the corresponding

confidence levels are provided in the expression (27).

(LightLevel<350) (witch siti n ∈ Off): .5 ∗ 1 .5 ∗ = .5
(LightLevel ∈ [350,500)) (witch siti n ∈ Off): .5 .5 .5 = . 5
(Li htLeve ≥5) (witch siti n ∈ Off): .5 .5 = (27)

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

126

(LightLevel<350) (witch siti n ∈ On): .5 ∗ 1 .5 ∗ 1 = 1
(LightLevel ∈ [350,500)) (witch siti n ∈ On): .5 .5 .5 1 = .75
(Li htLeve ≥5) (witch siti n ∈ On): .5 ∗ .5 ∗ 1 = .5

The result of the transformation of the situation LightMalfunctions(X) is presented in the

expression (22). Using the similar methods, the situation ConditionAcceptable(X) can be

represented in an orthotope-based situation format in a manner described in expression

(28).

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒() =

[

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 4)

 .35, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5))

 .15, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6))

 , (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6)

 .75, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5)) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 4)

 .6, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5)) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5))

 .4, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5)) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6))

 . 5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5)) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6)

1, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 4)

 . 5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5))

 .65, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6))

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6)

 (28)

In the next section we demonstrate that any arbitrary situation algebra expression over

the orthotope-based situation spaces can be represented as an orthotope-based situation

space. The orthotope-based situations LightMalfunction(X) (expression (22)) and

ConditionsAcceptable(X) (expression (28)) will be used for illustration purposes.

5.2 Closure under Situation Algebra

In order to derive the expected conclusion about the closure under situation algebra, several

additional lemmas are required. Lemma 5.2.1 provides the method to preprocess the

involved situations properly. Lemma 5.2.2 facilitates the new situation composition.

Lemma 5.2.3 provides the sufficient conditions for the closure under an operation for

orthotope-based situation spaces. Lemma 5.2.4 proves the closure under any situation

algebra expression (with certain requirements for the situation algebra basis), and concludes

the closure proof. The algorithm 5.2 for deriving the orthotope-based situation

representation of an arbitrary situation algebra expression emerges as a result of the proof.

Lemma 5.2.1. Premise.

Consider a function a(l1,l2,…,lN), that accepts N integer arguments and returns a

confidence level. Any input argument li can have a value within the range [1;ri].

Consider an arbitrary set of context attributes CA1...CAN+1. For every context attribute

CAi there is a set of intervals Ii,1…Ii, ri defined. Those intervals cover the entire set of

possible values for context attribute CAi and do not overlap.

Consider situation A(X), defined by formula (29) over the context attributes CA1…CAN.

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

127

𝐴() =

[

𝑎(1,1, … ,1), (𝑥1 ∈ 𝐼1,1) ∧ (𝑥2 ∈ 𝐼2,1). . .∧ (𝑥𝑁 ∈ 𝐼𝑁,1)

𝑎(,1, … ,1), (𝑥1 ∈ 𝐼1,2) ∧ (𝑥2 ∈ 𝐼2,1). . .∧ (𝑥𝑁 ∈ 𝐼𝑁,1)
…

𝑎(𝑟1, 1, … ,1), (𝑥1 ∈ 𝐼1,𝑟1) ∧ (𝑥2 ∈ 𝐼2,1)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1)

𝑎(1, , … ,1), (𝑥1 ∈ 𝐼1,1) ∧ (𝑥2 ∈ 𝐼2,2)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1)
…

𝑎(𝑟1, 𝑟2, … , 𝑟𝑁), (𝑥1 ∈ 𝐼1,𝑟1) ∧ (𝑥2 ∈ 𝐼2,𝑟2) ∧. . .∧ (𝑥𝑁 ∈ 𝐼𝑁,𝑟𝑁
)

 (29)

Consider the situation B(X), defined according to formula (30) over the context attributes

CA1…CAN+1

𝐵() =

[

𝑎(1,1,… ,1), (𝑥1 ∈ 𝐼1,1) ∧ (𝑥2 ∈ 𝐼2,1). . .∧ (𝑥𝑁 ∈ 𝐼𝑁,1) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,1)

𝑎(,1,… ,1), (𝑥1 ∈ 𝐼1,2) ∧ (𝑥2 ∈ 𝐼2,1). . .∧ (𝑥𝑁 ∈ 𝐼𝑁,1) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,1)
…

𝑎(𝑟1, 1,… ,1), (𝑥1 ∈ 𝐼1,𝑟1) ∧ (𝑥2 ∈ 𝐼2,1)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,1)

𝑎(1, ,… ,1), (𝑥1 ∈ 𝐼1,1) ∧ (𝑥2 ∈ 𝐼2,2)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,1)
…

𝑎(𝑟1, 𝑟2, … , 𝑟𝑁), (𝑥1 ∈ 𝐼1,𝑟1) ∧ (𝑥2 ∈ 𝐼2,𝑟2) ∧ …∧ (𝑥𝑁 ∈ 𝐼𝑁,𝑟𝑁) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,1)

𝑎(1,1,… ,1), (𝑥1 ∈ 𝐼1,1) ∧ (𝑥2 ∈ 𝐼2,1)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,2)
…

𝑎(𝑟1, 𝑟2, … , 𝑟𝑁), (𝑥1 ∈ 𝐼1,𝑟1) ∧ (𝑥2 ∈ 𝐼2,𝑟2) ∧ …∧ (𝑥𝑁 ∈ 𝐼𝑁,𝑟𝑁) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,2)

𝑎(1,1,… ,1), (𝑥1 ∈ 𝐼1,1) ∧ (𝑥2 ∈ 𝐼2,1)…∧ (𝑥𝑁 ∈ 𝐼𝑁,1) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,3)
…

𝑎(𝑟1, 𝑟2, … , 𝑟𝑁), (𝑥1 ∈ 𝐼1,𝑟1) ∧ (𝑥2 ∈ 𝐼2,𝑟2) ∧ …∧ (𝑥𝑁 ∈ 𝐼𝑁,𝑟𝑁) ∧ (𝑥𝑁 1 ∈ 𝐼𝑁 1,𝑟𝑁 1
)

 (30)

So, situation B is defined over context attributes CA1…CAN+1. The context attributes

CA1…CAN are divided into the same intervals, as for situation A. The entire set of possible

values for context attribute CAN+1 is decomposed into intervals IN+1,1… 𝐼𝑁 1,𝑟𝑁 1
. As

follows from formula (30) the confidence level of B does not depend on the CAN+1 context

attribute value.

Lemma statements: 1) A(X) and B(X) are different representations of the same

situation.

2) Both A(X) and B(X) are orthotope-based situation spaces.

Before the proof starts, consider some clarifications. Lemma 5.2.1 allows to derive

more concise representations of the situations (use A(X) instead of B(X)), and to get rid of

the context attributes that do not influence the confidence level. This transformation

provides more concise and clear representation and reduces the efforts for situation

reasoning.

For example, if by some calculations, the user finds out that the situation

NoiseLevelOK(X) can be represented by formula (31) then the same situation

NoiseLevelOK(X) can be represented in a simpler manner, by the expression (32) (for

simplicity undefined context attributes are not considered in the example).

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

128

 N iseLeve O (X)=

[

1,(N iseLeve 4) ∧ (Li htLeve < 3)

 .7,(N iseLeve ∈ (4 ,5]) ∧ (Li htLeve < 3)

 .3,(N iseLeve ∈ (5 ,6]) ∧ (Li htLeve < 3)
 ,(N iseLeve >6) ∧ (Li htLeve < 3)
1,(N iseLeve 4) ∧ (Li htLeve ≥ 3)

 .7,(N iseLeve ∈ (4 ,5]) ∧ (Li htLeve ≥ 3)

 .3,(N iseLeve ∈ (5 ,6]) ∧ (Li htLeve ≥ 3)
 ,(N iseLeve >6) ∧ (Li htLeve ≥ 3)

 (31)

N iseLeve O (X)= [

1,N iseLeve 4
 .7,N iseLeve ∈ (4 ,5]

 .3,N iseLeve ∈ (5 ,6]

 , therwise

 (32)

Lemma 5.2.1 can also be used in another direction and introduce new context attributes

into consideration, without altering the situation itself (use B(X) instead of A(X)). That

transformation does not add any information, and might seem unnecessary complication at

the first glance. However, the possibility of that transformation means that when working

with a set of orthotope-based situation spaces, we can treat them as if they were all defined

over the same set of context attributes. It will allow simplifying the subsequent algorithms.

Whichever way the transformation proceeds, the statement 2 allows stating that the

transformation result is an orthotope-based situation space.

Proof. Let’s start with statement 2.

The definition of A(X) and B(X) is compliant with the formula (23). By definitions of

A(X) and B(X) the set of intervals for every involved context attribute covers the entire

possible set of context attribute values, and the intervals do not overlap with each other.

According to the definitions in expressions (29) and (30) the corresponding confidence

level is defined for every combination of intervals. Taken together, those facts imply that

both A(X) and B(X) entirely comply with the definition provided in section 4, and therefore

both A(X) and B(X) are orthotope-based situation spaces. Q.E.D. for statement 2.

Consider the proof for statement 1. The situations A(X) and B(X) are the representations

of the same situation if and only if for any arbitrary particular context state X the

confidence levels of A(X) and B(X) are equal.

Consider an arbitrary particular context state X. For any context state CAi (i=1…N+1)

context state X has particular context attribute value xi (if the value for context state CAi is

missing from context state X, it will result just in having undefined as a value for xi, which

is the special case of particular context attribute value).

By definition of lemma the set of intervals 𝐼 ,1 … 𝐼 ,𝑟𝑖
 covers the entire range of possible

values of context attribute CAi (i=1…N+1). Also by definition the intervals 𝐼 ,1 … 𝐼 ,𝑟𝑖
 do

not overlap. It means that context attribute value xi belongs to one of those intervals. Let’s

refer to the number of that interval as ki (and thus the interval itself is Ii,ki). Summarizing

those facts for all the involved context attributes, allows deriving the confidence level A(X)

using the formula (29) directly. Expression (33) presents the confidence value calculation.

𝑥1 ∈ 𝐼1, 1

𝑥2 ∈ 𝐼2, 2…
𝑥𝑁 ∈ 𝐼𝑁,𝐾𝑁

} => 𝐴(X) = a(1, 2, … , N) (33)

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

129

However, context states CA1…CAN in the situation B(X) are divided using the same

intervals as for the situation A(X) and those intervals are assigned the same numbers. It

allows, in turn, calculating confidence value using the formula (30). The calculation process

is presented in expression (34).

𝑥1 ∈ 𝐼1, 1

𝑥2 ∈ 𝐼2, 2…
𝑥𝑁 ∈ 𝐼𝑁,𝐾𝑁

𝑥𝑁 1 ∈ 𝐼𝑁 1,𝐾𝑁 1}

=> 𝐵(X) = a(1, 2, … , N) (34)

Expressions (33) and (34) imply that B(X) = a(1, 2, … , N) = A(X).

So, for any arbitrary context state X, the confidence level B(X) is equal to the confidence

level of A(X), and by definition it means that A(X) and B(X) represent the same situation.

Q.E.D. for statement 1.

Lemma 5.2.1 was derived in order to facilitate further proofs. However, the results of

lemma 5.2.1 can be used separately in order to detect the unimportant context attributes and

remove them from consideration without changing the situation itself.

Lemma 5.2.2 is an auxiliary lemma that proves some features of multiple interval

intersections. Those features are used in subsequent proofs.

Lemma 5.2.2. Premise.

Consider an arbitrary context attribute CA.

Consider K sets of intervals (see expression (35)).

𝑆𝑒𝑡1: 𝐼(1,1), 𝐼(1,), … , 𝐼(1, 𝑟1)

𝑆𝑒𝑡2: 𝐼(,1), 𝐼(,), … , 𝐼(, 𝑟2) …
𝑆𝑒𝑡𝐾: 𝐼(𝐾, 1), 𝐼(𝐾,), … , 𝐼(𝐾, 𝑟𝐾)

 (35)

Every set of intervals 𝐼(𝑖, 1), 𝐼(𝑖,), … , 𝐼(𝑖, 𝑟) (i=1..K) covers the entire set of possible

context attribute values of CA, i.e. any particular value x of context attribute CA belongs to

some interval of set Seti. Intervals within one set do not overlap with each other.

Consider a new set of intervals SetNew, defined according to formula (36):

 𝐼(1, 𝑙1) ∩ 𝐼(, 𝑙2) ∩ …∩ 𝐼(𝐾, 𝑙𝐾) |𝑙1 = 1. . 𝑟1, 𝑙2 = 1. . 𝑟2, … , 𝑙𝐾 = 1. . 𝑟𝐾 (36)

Consider also the set of intervals SetNew2. The set SetNew2 is derived from the set

SetNew by removing all the empty intervals.

Lemma statements:

1. SetNew covers all possible values of context attribute CA, i.e. every possible

particular value x of context attribute CA belongs to at least one of the intervals.

2. The intervals within SetNew do not overlap, i.e. any particular value x of context

attribute CA belongs to at most one interval.

Statements 1 and 2 together imply that the intervals from SetNew can be used for an

orthotope-based situation space.

3. Statements 1 and 2, as well as their implication, hold true for SetNew2 as well.

Proof:

Consider an arbitrary particular value x of context attribute CA.

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

130

By definition of the set Seti (i=1..K) its intervals cover the entire sent of possible context

attribute values and do not overlap, so the context attribute value x belongs to one interval

of that set: either I(i,1), or I(i,2), …, or I(i,ri). Let’s refer to that interval as I(i,pi).

Taking all the set together, context attribute value x belongs to all of those intervals

I(1,p1), I(2,p2),…, I(K,pK) (every pi is in range [1;ri]). And the value that belongs to several

intervals at once, belongs to the intersection of those intervals.

So, 𝑥 ∈ (1, p1) ∩ (, p2) ∩ …∩ (, p). But by definition of SetNew the interval

 (1, p1) ∩ (, p2) ∩ …∩ (, p) belongs to that set (it is the case when l1=p1, l2=p2, etc.).

It proves that x belongs to one of the intervals for SetNew. So, any arbitrary particular

context state x belongs to some interval of the set SetNew and it means that the set SetNew

covers the entire set of possible values for context state CA. Q.E.D. for statement 1.

Consider arbitrary particular context attribute value x. That context attribute value

belongs to some interval of SetNew according to statement 1: 𝑥 ∈ (1, p1) ∩ (, p2) ∩
…∩ (, p). Let’s prove statement 2 by contradiction. Consider that there is another

interval within the set SetNew and context attribute value x belong to that interval as well.

Let it be the interval (1,m1) ∩ (,m2) ∩ …∩ (,m), and for at least one index mj ≠ pj.

However, if the context state x belongs to the intersection of intervals (1,m1) ∩
 (,m2) ∩ …∩ (,m), it means that it belongs to any interval in that intersection (by

definition, belonging to intersection means belonging to all the intervals). In particular, it

means that 𝑥 ∈ (, m). But according to our pervious definitions 𝑥 ∈ (, p). By definition

the intervals within the set Setj do not intersect with each other, it means that if mj ≠ pj, than

the intersection of (, p) and (, m) is empty, i.e. there is no particular context attribute

value that belongs to both of those intervals. However, the context attribute value x belongs

to both of those intervals. It is a contradiction. The contradiction shows that the assumption

was wrong, and x belongs to at most one of the intervals within the set SetNew. So, there is

no context state that belongs to two or more intervals of SetNew, and it means that the

intervals of that set are non-overlapping. Q.E.D for statement 2.

Let’s proceed to the implication. The set SetNew decomposes the context attribute CA to

the set of non-overlapping intervals (statement 2), that cover the entire set of possible

context state values (statement 1). It is enough for compliance with the requirements for

interval set of an orthotope-based situation space definition (see the definition in section 4).

It should be noted that many intervals of SetNew are likely to be empty. For an

orthotope-based situation space it will just result in unreachable and therefore useless

orthotopes, but the definition will still be consistent. However, the unreachable orthotopes

will result in the waste of memory and the waste of processing time, and therefore

unreachable orthotopes should be removed from the consideration, if possible.

Consider the proof for statement 3. Statement 3 contains 2 sub-statements:

Sub-statement 3.1. The statement 1 still holds true for the set SetNew2, which consists

of all non-empty intervals of the set SetNew. Let’s prove it by contradiction. It is already

proven that statement 1 is true for SetNew. Assume that several empty intervals were

removed, and after that the statement 1 is no longer true. It means that there exists

particular context attribute value x that does not belong to any of the remaining intervals.

However, before the intervals were removed from the SetNew, that context state did belong

to some interval in that set (according to already proven statement 1). It implies that the

context attribute value x did belong to one of the removed intervals. But the removed

intervals are empty by definition of SetNew2, and no context state belongs to them. It is a

contradiction. That means, the assumption is wrong and the intervals for SetNew2 cover the

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

131

entire set of possible context attribute values. Q.E.D for sub-statement 3.1.

Sub-statement 3.2. The proof of statement 2 for the set SetNew2 can be done in exactly

the same manner as for SetNew. The fact that some intervals were removed from the set

will not change anything in the proof. Sub-statement 3.2. is proven.

The proven sub-statements 3.1 and 3.2 show that the set SetNew2 is suitable for

orthotope-based situation space for exactly the same reasons as SetNew. And it proves the

implication from statement 3.

As a result, all three statements and their implications are proven. The proof is complete.

Lemma 5.2.2 is proven.■

The results of lemma 5.2.2 facilitate the proof of lemma 5.2.3. Lemma 5.2.3 is probably

the most important lemma in the section 5. Orthotope-based situation spaces are closed

under specific kinds of operations, and lemma 5.2.3 proposes the sufficient conditions for

the operation, in order for an orthotope-based situation space to be closed under it. Later it

can be relatively easily proven that any kind of situation algebra expressions over different

kinds of basis functions do comply with that sufficient condition.

Lemma 5.2.3. Premise: Consider the function presented in formula (37).

func: C K → C , 𝑢𝑛𝑐(𝑐1, 𝑐2, … , 𝑐𝐾) = 𝑐 (37)

As presented in formula (37), the function func takes K arguments of confidence value

type. The returned value is of a confidence type as well.

Consider a set of K arbitrary orthotope-based situation spaces: Sit1(X), Sit2(X), …, SitK(X)

Consider a situation op(X) defined in formula (38).

∀ St, 𝑜𝑝() = 𝑢𝑛𝑐(𝑆𝑖𝑡1(), … , 𝑆𝑖𝑡𝐾()) (38)

Lemma statement: For op(X) there exists an orthotope-based situation representation.

Proof.

Let’s introduce a set of context attributes CA1...CAN. An arbitrary context attribute is

added to that set, if it is mentioned in at least one of the situations Sit1, Sit2, …, SitK.

According to lemma 5.2.1 without the loss of generality we can consider that every

situation space from Sit1, Sit2, …, SitK set is defined over CA1...CAN. If situation space Siti

does not involve some context attribute CAj, that context attribute can be added into

consideration using the transformation rules from lemma 5.2.1. Also according to lemma

5.2.1 after the transformation all the situations Sit1, Sit2, …, SitK will still retain the

orthotope-based situation space format.

We are going to prove lemma 5.2.3 by construction, i.e. by showing and proving the

algorithm that will derive orthotope-based representation of op(X).

Let’s introduce new situation space orthotope(X) in a following manner. The situation

space orthotope(X) will be defined over context attributes CA1…CAN. At first, for the

situation space orthotope(X) let’s introduce sets of intervals over the context attributes.

Consider the method to derive the set of intervals for arbitrary context attribute CAi from

the list of CA1…CAN. For any context attribute from that list the procedure is the same.

Let’s refer to the number of intervals that situation Sitj(X) has over the context state CAi as

r(i,j) and refer to the intervals themselves as I(i,j,1) …I(i,j,r(i,j)). That means, different

situation spaces have the following intervals over context attribute CAi (see expression

(39)).

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

132

𝑆𝑖𝑡1(): 𝐼(𝑖, 1,1), 𝐼(𝑖, 1,), … , 𝐼(𝑖, 1, 𝑟(𝑖, 1))

𝑆𝑖𝑡2(): 𝐼(𝑖, ,1), 𝐼(𝑖, ,), … , 𝐼(𝑖, , 𝑟(𝑖,))
…

𝑆𝑖𝑡𝐾(): 𝐼(𝑖, 𝐾, 1), 𝐼(𝑖, 𝐾,), … , 𝐼(𝑖, 𝐾, 𝑟(𝑖, 𝐾))

 (39)

Every set of intervals (i.e. every row of expression (39)) is an entire interval set of an

orthotope-based situation space for a certain context attribute. So, every set is compliant

with the definition of an orthotope-based situation space, and that means that any set of

intervals from expression (39) covers the entire set of possible context state attributes, and

does not have the overlaps. It means that lemma 5.2.2 is applicable. Let’s construct the set

of intervals, according to the lemma 5.2.2. The result is the expression (40).

 𝐼(𝑖, 1, 𝑙1) ∩ 𝐼(𝑖, , 𝑙2) ∩ …∩ 𝐼(𝑖, 𝐾, 𝑙𝐾) |𝑙1 = 1. . 𝑟(𝑖, 1), 𝑙2 = 1. . 𝑟(𝑖,),
 … , 𝑙𝐾 = 1. . 𝑟(𝑖, 𝐾) (40)

According to the lemma 5.2.2, the constructed set will divide the entire context attribute

CAi into the set of non-overlapping intervals. Let’s consider only non-empty intervals from

that set. According to lemma 5.2.2 statement 3 the set of intervals will still divide the entire

context attribute CAi into the set of non-overlapping intervals. Let the remaining number of

intervals be 𝑟 (𝑖), and let’s refer to those remaining intervals as

𝐼 (𝑖, 1), 𝐼 (𝑖,),…, 𝐼 (𝑖, 𝑟 (𝑖)).

It should be noted that 𝑟 (𝑖) ∏ 𝑟(𝑖,)𝐾
 =1 – in a special case there will be no empty

intersections, and the number of resulting intervals will be ∏ 𝑟(𝑖,)𝐾
 =1 (all possible

combinations), in other cases some intervals will be removed if they are empty.

So, applying the procedure from lemma 5.2.2 will allow dividing the set of all possible

context attribute values of every involved context attribute to the set of non-overlapping

intervals. Applying the same procedure for every context attribute CA1..CAN will construct

N sets of intervals over N context attributes. Each of those sets will be suitable for an

orthotope-based situation space (according to the implication of statement 3 from lemma

5.2.2). So, taken together they will construct the structure of orthotopes for an orthotope-

based situation space orthotope(X).

Before advancing further, we need to derive a sub-statement 5.2.3.1.

Sub-statement 5.2.3.1.: every orthotope of the orthotope(X) is reachable, i.e. for every

orthotope there exists a particular context state that belongs to it. The proof is following. If

the orthotope consists of non-empty intervals for all involved context attributes, then the

orthotope is reachable - context state can be composed by taking arbitrary particular context

attribute value within the interval (and taking the particular value within the interval is

possible, as the intervals are non-empty, i.e. there exist a value or values that belong to the

interval). It means that if the orthotope is completely unreachable, that orthotope contains at

least one empty interval for a context attribute. However, there are no empty intervals

involved for any context attribute in orthotope(X) – they all were removed according to the

rules provided in statement 3 of lemma 5.2.2. It means that all the orthotopes of

orthotope(X) are reachable. Q.E.D. for sub-statement 5.2.3.1.

In order to complete the definition of orthotope(X), for every orthotope in the situation

the confidence level should be defined. Let’s do it in a following manner: for every

orthotope take an arbitrary particular context state that belongs to it. At least one such state

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

133

does exist according to the sub-statement 5.2.3.1, so it is possible to do so. Let it be the

context state X’. Then the confidence level of that orthotope should be defined as 𝑜𝑝() =
 𝑢𝑛𝑐(𝑆𝑖𝑡1(), … , 𝑆𝑖𝑡𝐾()).

As a result, we defined an orthotope-based situation space orthotope(X) in a specific

manner. Now let’s prove that orthotope(X) and op(X) are different representations of the

same situation. If they are, that will complete the proof.

By definition two situations are the representations of each other if for any arbitrary

particular context state X the confidence levels of those situations are equal.

Consider an arbitrary context state Y. By definition, the confidence level of situation

space op(X) can be calculated according to formula (38). Expression (41) provides the

confidence for this case.

op(Y) = 𝑢𝑛𝑐(𝑆𝑖𝑡1(), … , 𝑆𝑖𝑡𝐾()) (41)

Context state Y falls into some orthotope of orthotope-based situation space

orthotope(X) according to lemma 4.1 (see section 4). When assigning the confidence value

to that orthotope, we used an arbitrary context state within that orthotope. Let it be state Y’.

It means that the confidence level is following (expression (42)).

orthotope(Y) = 𝑢𝑛𝑐(𝑆𝑖𝑡1(), … , 𝑆𝑖𝑡𝐾()) (42)

Consider any arbitrary situation Siti(X) from the list Sit1(X)…SitK(X). By definition the

situation Siti(X) is an orthotope-based situation space, that means according to the lemma

4.1 context state Y belongs to some orthotope of it. Let’s refer to that orthotope as:

 1 ∈ 𝐼(1, 𝑖, 𝑝1) ∧ 2 ∈ 𝐼(, 𝑖, 𝑝2). . .∧ 𝑁 ∈ 𝐼(𝑁, 𝑖, 𝑝𝑁) (the intervals I(a,b,c) are numbered in

the same manner as in the expression (39), first index refers to the context attribute, second

index refers to the situation in the set, third index refers to particular interval). The same

method applies to the context state Y’. It belongs to some orthotope of the orthotope-based

situation space Siti(X), and let’s refer to that orthotope as 1 ∈ 𝐼(1, 𝑖, 𝑝 1) ∧ 2 ∈
𝐼(, 𝑖, 𝑝 2). . .∧ 𝑁 ∈ 𝐼(𝑁, 𝑖, 𝑝 𝑁).

Sub-statement 5.2.3.2: Context states Y and Y’ belong to the same orthotope of all the

situations Sit1(X)…SitK(X). Let’s prove it by contradiction. Let the orthotopes for Y and Y’

be different for some situation Siti(X) from that list. The orthotopes are different, i.e. for at

least one context attribute CAj ∈ 𝐼(, 𝑖, 𝑝), ∈ 𝐼(, 𝑖, 𝑝) and 𝑝 𝑝 . By definition

of orthotope-based situation space, the intervals 𝐼(, 𝑖, 𝑝) and 𝐼(, 𝑖, 𝑝) do not overlap.

Now consider the intervals, that situation space orthotope(X) has over context attribute

CAj. Consider the formula (40) that shows how those intervals were constructed. Context

state attribute yj belong to some of those intervals, let’s refer to it as 𝐼(, 1, 𝑙1) ∩ 𝐼(, , 𝑙2) ∩
…∩ 𝐼(, 𝐾, 𝑙𝐾). For the context state attribute y’j let’s refer to thatinterval 𝐼(, 1, 𝑙 1) ∩
𝐼(, , 𝑙 2) ∩ …∩ 𝐼(, 𝐾, 𝑙 𝐾).

Sub-statement 5.2.3.3. Consider the interval 𝐼(, 1, 𝑙1) ∩ 𝐼(, , 𝑙2) ∩ …∩ 𝐼(, 𝐾, 𝑙𝐾),

described in previous paragraph.

Assertion to prove: the interval (, 𝑖, 𝑝) , defined above, and the interval 𝐼(, 𝑖, 𝑙) is the

same interval, i.e. pj = lj.

Proof. Let’s prove it by contradiction. Consider the opposite, i.e. intervals 𝐼(, 𝑖, 𝑝) and

𝐼(, 𝑖, 𝑙) are different. However, the common first index j shows that they are both over the

same context attribute, and commons second index i shows that they are both from the

orthotope-based situation space Siti(X). And, by definition of orthotope-based situation

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

134

space, within an orthotope-based situation space the intervals over the same context

attribute do not overlap. That means, 𝐼(, 𝑖, 𝑝) and 𝐼(, 𝑖, 𝑙) do not overlap, and no

particular context attribute value can belong to both of those intervals 𝐼(, 𝑖, 𝑝) and

𝐼(, 𝑖, 𝑙). However, the context attribute value yj belongs to the intersection 𝐼(, 1, 𝑙1) ∩

𝐼(, , 𝑙2) ∩ …∩ 𝐼(, 𝐾, 𝑙𝐾), i.e. belongs to every interval in that intersection including

𝐼(, 𝑖, 𝑙). And ∈ 𝐼(, 𝑖, 𝑝) by definition of that interval. So, yj belongs to both of the

intervals, and therefore they cannot be non-overlapping. It is a contradiction. It means that

initial assumption was wrong, and 𝐼(, 𝑖, 𝑝) and 𝐼(, 𝑖, 𝑙) are the same interval.

Q.E.D. for sub-statement 5.2.3.3.

For the same reasons the intervals 𝐼(, 𝑖, 𝑝) and 𝐼(, 𝑖, 𝑙) are the same. In order to

derive that fact, the proof of sub-statement 5.2.3.3 can be applied to context attribute value

y’j and the intervals 𝐼(, 𝑖, 𝑝) and 𝐼(, 𝑖, 𝑙).

Consider the expression (43). It shows the intervals of situation space orthotope(X) over

context attribute CAj, that include yj and y’j. The intervals 𝐼(, 𝑖, 𝑙) and 𝐼(, 𝑖, 𝑙), are

replaced with the equivalents 𝐼(, 𝑖, 𝑝) and 𝐼(, 𝑖, 𝑝) respectively.

 ∈ 𝐼(, 1, 𝑙1) ∩ 𝐼(, , 𝑙2) ∩ …∩ 𝐼(, 𝑖 − 1, 𝑙 1) ∩ 𝐼(, 𝑖, 𝑝)

∩ 𝐼(, 𝑖 1, 𝑙 1) ∩ …∩ 𝐼(, 𝐾, 𝑙𝐾)

 ∈ 𝐼(, 1, 𝑙 1) ∩ 𝐼(, , 𝑙 2) ∩ …∩ 𝐼(, 𝑖 − 1, 𝑙 1) ∩ 𝐼(, 𝑖, 𝑝) (43)

∩ 𝐼(, 𝑖 1, 𝑙 1) ∩ …∩ 𝐼(, 𝐾, 𝑙 𝐾)

The expression (43) shows that one of the intersections contain 𝐼(, 𝑖, 𝑝), and another

intersection contains 𝐼(, 𝑖, 𝑝). And, as it was already derived, the intervals 𝐼(, 𝑖, 𝑝) and

𝐼(, 𝑖, 𝑝) do not overlap (see sub-statement 5.2.3.2, paragraph 1).

It means that the intersections from expression (43) do not overlap: there is no particular

context attribute value that belongs to both of those intersections, because every particular

context attribute value, that belongs to both of those intersections, should belong to every

single interval of both of the intersections, including 𝐼(, 𝑖, 𝑝) and 𝐼(, 𝑖, 𝑝)

simultaneously, and there is no particular context attribute value, that belongs to both

intervals 𝐼(, 𝑖, 𝑝) and 𝐼(, 𝑖, 𝑝).

As follow from the previous paragraph, y and y’ belong to non-overlapping intervals of

orthotope(X) along the context state CAj. So, the context states Y and Y’ cannot be in the

single orthotope for situation space orthotope(X) – according to formula (22), in order to be

in the same orthotope they have to belong to the same intervals for every context attribute,

and for at least for CAj it is not true. However, the context states Y and Y’ by their

definition (expression (42)) do belong to the same orthotope of orthotope(X). It is a

contradiction, and it means that the assumption was wrong, and context state Y and Y’ do

belong to the same orthotope of any situation Siti(X) from the list Sit1(X)…SitK(X). It

completes proof by contradiction. Q.E.D. for sub-statement 5.2.3.2.

As follows from sub-statement 5.2.3.2, for any situation space Siti(X) the context states

Y and Y’ belong to the same orthotope of the orthotope(X). And according to the formula

(22), the confidence level is the same within the orthotope in the situation. Let’s refer to it

as Ci. It means that 𝑆𝑖𝑡 () = 𝑆𝑖𝑡 () = 𝐶 for any i=1..K.

Summarizing the implications above, the confidence levels of op(Y) and orthotope(Y)

can be rewritten according to the expression (44):

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

135

𝑜𝑝() = 𝑢𝑛𝑐(𝑆𝑖𝑡1(), … , 𝑆𝑖𝑡𝐾()) = 𝑢𝑛𝑐(𝐶1, 𝐶2, … , 𝐶𝐾)

𝑜𝑟𝑡ℎ𝑜𝑡𝑜𝑝𝑒() = 𝑢𝑛𝑐(𝑆𝑖𝑡1(), … , 𝑆𝑖𝑡𝐾()) = 𝑢𝑛𝑐(𝐶1, 𝐶2, … , 𝐶𝐾)
 (44)

According to expression (44), for any arbitrary context state Y the confidence levels of

op(Y) and orthotope(Y) are equal. And by definition it implies that the situation

orthotope(X) is a representation of op(X).

To summarize, for every arbitrary situation op(X), defined according to the conditions of

the lemma 5.2.3, there exists a representation of that situation in the form of orthotope-

based situation space. Q.E.D. for lemma 5.2.3■

As a result, lemma 5.2.3 implies sufficient conditions for the closure of the orthotope-

based situation spaces under a certain operation. Lemma 5.2.4 shows that any arbitrary

situation algebra expression is compliant with those sufficient conditions.

Lemma 5.2.4. Premise: Consider an arbitrary situation algebra expression that involves

K arbitrary situation spaces. The situation algebra under consideration relies on N basis

functions b1…bN, and those basis functions can be represented as follows (expression (45)).

∀ St, 𝑏1(𝑆𝑖𝑡1, 𝑆𝑖𝑡2, … , 𝑆𝑖𝑡𝑟1)() =

= 1 (𝑆𝑖𝑡1(), … , 𝑆𝑖𝑡𝑟1()) ; f1: C
r

1 → C

∀ St, 𝑏2(𝑆𝑖𝑡1, 𝑆𝑖𝑡2, … , 𝑆𝑖𝑡𝑟2)() =

= 2 (𝑆𝑖𝑡1(), … , 𝑆𝑖𝑡𝑟2()) ; f2: C
r

2 → C
… (45)

∀ St, 𝑏𝑁(𝑆𝑖𝑡1, 𝑆𝑖𝑡2, … , 𝑆𝑖𝑡𝑟𝑁)() =

= 𝑁 (𝑆𝑖𝑡1(), … , 𝑆𝑖𝑡𝑟𝑁()); fN: C
r

N → C

So, according to expression (45) every i-th basis function takes ri situations as an input,

and returns a situation as an output. It should be noted that situation (see definition in

section 2.2) is merely a function that takes context state as an input and provides a

confidence level as an output. For a situation, which can be represented in CST format, the

term situation space is reserved. The functions fi , as follows from expressions (45), take ri

confidence levels as an input and provide a confidence level as an output. The functions fi

does not depend on the context state itself.

Lemma statement. Any arbitrary situation algebra expression over orthotope based

situation spaces can be represented as an orthotope-based situation space, if for that

situation algebra there exists a basis compliant with the definition (45).

Before the proof starts, consider an illustration. Consider the function AND from

formula (4). It is compliant with the requirements for a basis function, presented expression

(45): by definition for any context state X the confidence of situation (A & B)(X) is the

minimum of the confidence levels A(X) and B(X). It can be formalized as expression (46):

 ∀ St, (𝑆𝑖𝑡1 & 𝑆𝑖𝑡2)() = 𝑚𝑖𝑛(𝑆𝑖𝑡1(), 𝑆𝑖𝑡2()) (46)

For the function AND the count of involved situations is r=2. The function f for it is

f(a,b) = min(a,b) (minimum of confidence levels, or undefined if any of the confidence

levels is undefined). Therefore, function AND with the definition presented in formula (45)

can be one of the basis functions without breaking the compliance with the definition (45).

Reasoning in the same manner, we can prove that NOT function (formula (4)) is also

compliant with the definition (45): for NOT situation algebra function r=1 and f(a)=1-a (or

undefined if the input is undefined). Taken together, functions AND and NOT constitute

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

136

AND-NOT basis, and it means that for the situation algebra definitions presented in

formula (4) the basis is compliant with the definition (45), and therefore any situation

algebra expression over orthotope-based situation spaces (original CST situation spaces

also have orthotope-based representations according to lemma 5.1) is compliant with the

conditions of lemma 5.2.4.

Proof. In order to proceed further, we need to prove a sub-statement.

Sub-statement 5.2.4.1. Consider an arbitrary situation algebra expression

Expression(X), defined over some situations Sit1(X)…SitK(X). The situations

Sit1(X)…SitK(X) can be arbitrary, it is not required for them to be situation spaces of any

kind. The basis of situation algebra is compliant with requirement (45).

Assertion to prove (sub-statement 5.2.4.1): For any context state X the expression

Expression(X) can be viewed as a function of the confidence levels Sit1(X)…SitK(X). It can

be formalized as expression (47).

∃ 𝑢𝑛𝑐: C K → C ; s.t. ∀ St, 𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛() =
= 𝑢𝑛𝑐(𝑆𝑖𝑡1(), 𝑆𝑖𝑡2(), … , 𝑆𝑖𝑡𝐾()) (47)

Proof (sub-statement 5.2.4.1). According to the given information the functions b1…bN

constitute a basis of situation algebra, i.e. any situation algebra expression can be

represented as a recursive superposition of those basis functions. We are going to prove the

sub-statement by mathematical induction over the recursion depth. This depth will be

referred to as n.

Induction basis. The depth n=0 means a degenerate situation algebra expression that

consists of just an input situation itself, and does not require any basis functions:

 𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛()=𝑆𝑖𝑡1(). Therefore, 𝑢𝑛𝑐(𝑆𝑖𝑡1()) = 𝑆𝑖𝑡1()fits the requirements (47),

and the fact that we found the function proves its existence. Q.E.D. for induction basis.

Induction step. Consider that the functions exist for the situation algebra expressions

that can be calculated by applying basis function recursively, if the recursion depth is not

more than n-1. Let’s prove that the function exists for the expressions that require n depth

of recursion.

Consider an arbitrary situation algebra expression Expression(X), defined over situations

Sit1(X)…SitK(X), and the situation Expression(X) can be calculated using basis functions

recursively with the depth not more than n. During the calculations, some basis function

from the set b1…bN is going to be calculated last, let’s refer to that function as bi. In this

case, using the conditions (45), the expression Expression(X) can be represented as follows

(formula (48)).

∀ St, 𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛() = 𝑏 (1, 2, … , 𝑟𝑖
)() = (1(), 2(), … , 𝑟𝑖

()) (48)

The sub-expressions Gj(X) are later going to be calculated recursively using the basis

functions.

The depth of recursion for expression Expression(X) exceeds by one the maximum depth

of recursion, required to calculate any Gj(X) (calculation of bi on top of entire Gj(X)

recursive calculations). And by definition the depth of Expression(X) is not greater than n.

It means that for the situations Gj(X) recursion depth is not more than n-1 (if n-1=0, it

means that Gj(X) are just the input situations). Therefore, according to induction

assumption, for any situation Gj(X) there exist a function, compliant with properties (47).

Let’s refer to it as funcj(Sit1(X), Sit2(X),…,SitK(X)). Without the loss of generality, we can

consider that funcj(…) is defined over all the situation spaces Sit1(X), Sit2(X),…,SitK(X) (if

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

137

any of those do not influence the funcj(…) output, it does not break the proof). Therefore,

the expression (48) can be rewritten as expression (49).

∀ St, 𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛() = 𝑏 (1, 2, … , 𝑟2)() =

 = (𝑢𝑛𝑐1(𝑆𝑖𝑡1(), 𝑆𝑖𝑡2(), … , 𝑆𝑖𝑡𝐾()), (49)

… , 𝑢𝑛𝑐𝑟𝑖
(𝑆𝑖𝑡1(), 𝑆𝑖𝑡2(), … , 𝑆𝑖𝑡𝐾())

Consider a definition of function func(𝑐1, 𝑐2, … , 𝑐𝐾), that takes K confidence levels as an

input and produces confidence level as an output (expression (50)).

 𝑢𝑛𝑐: C K → C ; 𝑢𝑛𝑐(𝑐1, 𝑐2, … , 𝑐𝐾)

 (𝑢𝑛𝑐1(𝑐1, 𝑐2, … , 𝑐𝐾), … , 𝑢𝑛𝑐𝑟𝑖
(𝑐1, 𝑐2, … , 𝑐𝐾)) (50)

Using the definition (50), the expression (49) can be rewritten as formula (51):

∀ St, 𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛() = 𝑢𝑛𝑐(𝑆𝑖𝑡1(), 𝑆𝑖𝑡2(), … , 𝑆𝑖𝑡𝐾()) , (51)

where 𝑢𝑛𝑐: C K → C

Expression (51) directly shows that the function func(𝑐1, 𝑐2, … , 𝑐𝐾) fits the requirements

(47). And the fact that we found the function proves its existence.

Q.E.D. for induction step, and that completes the proof of sub-statement 5.2.4.1.

Now let’s return to the proof of the main part of lemma 5.2.4.

Consider an arbitrary situation algebra expression Expression(X), defined over some

orthotope-based situations Sit1(X)…SitK(X). The basis of situation algebra is compliant with

the properties (45).

Consider several already proven statements:

1. By definition there exists a set of K orthotope-based situation spaces

Sit1(X)…SitK(X).

2. According to the sub-statement 5.2.4.1, there exists a function 𝑢𝑛𝑐: C K → C,

so that ∀ St, 𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛() = 𝑢𝑛𝑐(𝑆𝑖𝑡1(), 𝑆𝑖𝑡2(), … , 𝑆𝑖𝑡𝐾())

The statements 1 and 2, taken together, constitute the conditions of lemma 5.2.3,

where 𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛() stands for op(X). Therefore, according to lemma 5.2.3 the situation

 𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛() has an orthotope-based representation. Q.E.D. for lemma 5.2.4■

Lemma 5.2.4 shows that the orthotope-based situation space is closed under any

situation algebra expression, if the basis functions of the situation algebra are compliant

with expression (45). For example, all the situation algebra methods from formula (4) are

compliant with those conditions. See expressions (52).

AND: (Sit1&Sit2(X)) = f(Sit1(X), Sit2(X))),

 where f(a,b) = min(a,b) (or UD if either a or b is UD).

OR: (Sit1|Sit2)(X) = f(Sit1(X), Sit2(X))), (52)

 where f(a,b) = max(a,b) (or UD if either a or b is UD).

NOT: (¬Sit)(X) = f(Sit(X)), where f(a) = 1-a (or UD if a is UD).

Lemma 5.2.4 also implies the closure, if instead of Zadeh operators [Za65] from formula

(4) the user chooses the functions like expressions (53), or expressions (54).

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

138

AND: (Sit1&Sit2(X)) = f(Sit1(X), Sit2(X))),

where f(a,b) = min(0;a+b-1) (or UD if either a or b is UD).

OR: (Sit1|Sit2)(X) = f(Sit1(X), Sit2(X))),). (53)

where f(a,b) = max(1;a+b) (or UD if either a or b is UD).

NOT: (¬Sit)(X) = f(Sit(X)), where f(a) = 1-a (or UD if a is UD).

AND: (Sit1&Sit2(X)) = f(Sit1(X), Sit2(X))),

where f(a,b) = a*b (or UD if either a or b is UD).

OR: (Sit1|Sit2)(X) = f(Sit1(X), Sit2(X))), (54)

where f(a,b) = a+b-a*b (or UD if either a or b is UD).

NOT: (¬Sit)(X) = f(Sit(X)), where f(a) = 1-a (or UD if a is UD).

Lemma 5.2.4 ensures the existence of orthotope-based situation representation.

However, in order to derive the verification result, that orthotope-based situation

representation needs to undergo an emptiness check. And in order to do this, the orthotope-

based situation representation needs to be derived explicitly. Consider the algorithm 5.2

that originates in the proofs of lemma 5.2.3.

Algorithm 5.2. Input. A set of orthotope-based input situations Sit1(X)…SitK(X) and a

situation Expression(X), that complies with the property (55).

∀ St, 𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛() = 𝑢𝑛𝑐(𝑆𝑖𝑡1(), 𝑆𝑖𝑡2(), … , 𝑆𝑖𝑡𝐾()) (55)

It should be specially noted that the knowledge of function func(…) is not required, the

condition is just that it exists. The situation Expression(X) can as well be a blackbox. For

example, the situation Expression(X) can be a situation algebra expression, calculated

directly using the superposition of formulas (4).

Expected output: orthotope-based representation of Expression(X).

Algorithm steps. For better understandability, the algorithm is presented as a set of

steps.

Step 1. Construct a set of involved context attributes CA1…CAN. The context

attribute is added to the set, of it is involved in at least one of the situations Sit1(X)…SitK(X).

Step 2. For every situation Siti(X) within Sit1(X)…SitK(X) and for every context

attribute CAj within CA1…CAN do step 2.1.

Step 2.1. If the situation Siti(X) does not involve context attribute CAj, add it into

consideration in compliance with lemma 5.2.1. For numeric context attribute the interval

𝑥 ∈ (-∞,+∞) can be added to the description of every orthotope. For non-numeric context

attribute the interval 𝑥 ∈ ¬{} (the list of non-included non-numeric values is empty, i.e. all

non-numeric values are included) can be added to the description of every orthotope, or it

can be the interval that contains all possible non-numeric values explicitly. The number of

orthotopes will not be increased in those cases. For mixed context attributes, those methods

should be combined, and thus the number of the orthotopes will double. Let’s refer to the

count of intervals that the situation Siti(X) has over context state CAj as r(i,j) and to the

intervals themselves as I(i,j,1)… I(i,j,r(i,j)).

Step 3. Create an orthotope-based situation space orthotope(X) over the context

attributes CA1…CAN.
Step 4. For every context attribute CAj within CA1…CAN do step 4.1.

Step 4.1. For any combination of intervals I(i,1,p1), I(i,2,p2), …, I(i,K,pk), where

p1 = 1..r(i,1), p2 = 1..r(i,2), …, pK = 1..r(i,K) do the steps 4.1.1.-4.1.2.

Step 4.1.1. Calculate an interval I(i,1,p1)∩I(i,2,p2) ∩ …∩ I(i,K,pk).

Step 4.1.2. If it is not empty, add it to orthotope(X) as a part of

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

139

decomposition of CAj.

Step 5. For every orthotope of orthotope(X) do steps 5.1.- 5.3.

 Step 5.1. Generate a random context state X’ within the considered orthotope.

 Step 5.2. Calculate the confidence level Expression(X’).

Step 5.3. Assign confidence value Expression(X’) to the orthotope under

consideration.

Output. Situation orthotope(X)

Correctness Proof. The correctness of the algorithm is implied by lemma 5.2.3. The

algorithm 5.2 represents in details the steps of lemma 5.2.3 to construct the orthotope-based

representation orthotope(X) out of the situation space op(X) (here – Expression(X)). And

the equivalence of orthotope(X) and op(X) is proven as a part of lemma 5.2.3. Q.E.D. ■

The complexity of the algorithm 5.2 is evaluated in section 6. Consider an illustration of

the algorithm 5.2. Refer to the sample scenario, presented in section 3.2. In that scenario

we need to verify whether the situation LightMalfunctions(X) (definition (20)) and

ConditionsAcceptable(X) (definition (19)) are in a contradiction. The contradiction

verification implies checking that the expression (LightMalfunctions &

ConditionsAcceptable)(X) is empty.

Having the orthotope-based representations for the involved situations (formulas (23)

and (28)), let’s derive the situation (LightMalfunctions & ConditionsAcceptable)(X) in an

orthotope-based format, using the algorithm 5.2. Each step of the algorithm is addressed

briefly.

Step 1. The involved context attributes are CA1=LightLevel, CA2= NoiseLevel and

CA3=SwitchPosition.

Step 2. Adding the interval NoiseLevel∈ (-∞,+∞) to LightMalfunctions(X) and

SwitchPosition ∈ {On,Off} to ConditionsAcceptable(X). The results (in a concise manner)

are presented in the expression (56).

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒() =

=

[

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 4) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂𝑛, 𝑂)

 .35, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5)) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂𝑛, 𝑂)
…

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂𝑛, 𝑂)

𝐿𝑖 ℎ𝑡 𝑎𝑙 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠() = (56)

= [

 .5,(Li htLeve <35) ∧ (witch siti n ∈ Off) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ (− ,))

 . 5,(Li htLeve ∈ [35 ,5)) ∧ (witch siti n ∈ Off) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ (− ,))
. . .

 .5,(Li htLeve ≥5) ∧ (witch siti n ∈ On) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ (− ,))

Step 3. Creating orthotope(X) over context attributes are CA1=LightLevel,

CA2=NoiseLevel and CA3=SwitchPosition.

Step 4. The possible combinations of intervals over the context attributes are following

(expression (57), the empty intervals are already removed):

LightLevel: I(1,1) – 𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35 ; I(1,2) – Li htLeve ∈ [35 ,5); I(1,3) – Li htLeve ≥5

NoiseLevel: I(2,1) – Noise𝐿𝑒𝑣𝑒𝑙 4 ; I(2,2) – NoiseLeve ∈ (4 ,5]; (57)

I(2,3) – NoiseLeve ∈ (5 ,6]; I(2,4) – NoiseLeve >6

SwitchPosition: I(3,1) – SwitchPosition ∈ 𝑂𝑛 ; I(3,2) - SwitchPosition ∈ 𝑂

Therefore, the context attributes of orthotope(X) are decomposed into intervals,

presented in expression (57). The situation orthotope(X) will consist of 24 orthotopes –

every orthotope will correspond to a combination of one interval over LightLevel, one

interval over NoiseLevel and one interval over SwitchPosition..

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

140

Step 5. Let’s illustrate the step 5 on one of the orthotopes. The remaining orthotopes are

processed in a similar manner. Consider the orthotope: Li htLeve ∈ [35 ,5);

Noise𝐿𝑒𝑣𝑒𝑙 4 ; SwitchPosition ∈ 𝑂 .
Step 5.1. Generate random context state inside the orthotope. Let it be: X’ =

{Li htLeve = 4 ; Noise𝐿𝑒𝑣𝑒𝑙 = 3 ; SwitchPosition= 𝑂 }.

Step 5.2. Calculate the confidence value of the expression at the generated context

state X’. The calculation process is presented in the expression (58).

(LightMalfunctions & ConditionsAcceptable)(X’) =

= min(LightMalfunctions(X’); ConditionsAcceptable(X’)) = (58)

= min (0.25; 0.75) = 0.25

Step 5.3. Assign the obtained confidence value to the orthotope under

consideration. It means, one of the rows of orthotope(X) definition will be following

(expression (59)).

0.25; Li htLeve ∈ [35 ,5); Noise𝐿𝑒𝑣𝑒𝑙 4 ; (59)

SwitchPosition ∈ 𝑂

The orthotope-based representation of (LightMalfunctions & ConditionsAcceptable)(X)

emerges as the results of the algorithm 5.2. We will need that situation to illustrate

emptiness check, so we present the complete result of the algorithm in the expression (60).

(𝐿𝑖 ℎ𝑡 𝑎𝑙 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 &𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒)() =

=

[

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 4) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂𝑛)

 .35, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5)) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂𝑛)

 .15, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6)) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂𝑛)

 , (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂𝑛)

 .75, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5)) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 4) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂𝑛)

 .6, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5)) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5)) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂𝑛)

 .4, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5)) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6)) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂𝑛)

 . 5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5)) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂𝑛)

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 4) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂𝑛)

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5)) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂𝑛)

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6)) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂𝑛)

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂𝑛)

 .5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 4) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂)

 .35, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5)) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂)

 .15, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6)) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂)

 , (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 < 35) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂)

 . 5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5)) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 4) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂)

 . 5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5)) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5)) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂)

 . 5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5)) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6)) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂)

 . 5, (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5)) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂)

 , (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 4) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂)

 , (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [4 ,5)) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂)

 , (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 ∈ [5 ,6)) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂)

 , (𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ≥ 5) ∧ (𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 > 6) ∧ (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂)

 (60)

5.3 Emptiness Check for an Orthotope-based Situation Space

As proposed in section 3.1, the verification of situation relationship can be viewed as an

emptiness check of a certain situation algebra expression. Any situation algebra expression

over original CST situation spaces can be represented as an orthotope-based situation space

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

141

in two steps. At first, the involved situations should be represented in an orthotope-based

situation space format using the algorithm 5.1. Then the orthotope-based representation of

the situation algebra expression can be derived using the algorithm 5.2. After that, when the

orthotope-based representation of situation algebra expression is obtained, it requires only

emptiness check of that situation space in order to complete the verification.

Emptiness of the orthotope-based situation space can be checked using the algorithm

5.3.

Algorithm 5.3. Input.

1. Orthotope-based situation space S(X), that is defined over the context attributes

CA1…CAN according to the definition (22).

2. Threshold th. The emptiness is checked with respect to that threshold (see (9)).

3. The flag searchAllCounterexamples. The algorithm can either perform an

extensive search and find all possible counterexamples, or just derive yes/no

answer.

Expected output: The set of counterexamples, i.e. the definitions of context states,

where the situation is occurring. All possible counterexample should be in the

counterexample set.

Algorithm pseudocode.

CounterexampleSet cs = new CounterexampleSet(); //Initializing the empty set

for every Ci from S.orthotopes() //For every orthotope, L orthotopes in total

 //If the orthotope has the confidence over the threshold

 L1: if (Ci.confidence() >= th) then

 //Add the definition of orthotope to the counterexamples

 cs.add(Ci.orthotopeDescription());

 //Return cs, if only yes/no answer is needed.

 L2: if (¬searchAllCounterexamples) then return cs;

 end if

end for

return cs;

Output. Counterexample set cs, that contains the definitions of all the orthotopes, which

have the confidence value over the threshold.

Correctness proof.

The correctness proof consists of 2 asserted statements:

Statement 1. The algorithm cannot take a wrong value in the counterexample set.

Statement 2. The algorithm cannot skip the counterexample, if

searchAllCounterexamples is on.

Proof of statement 1. Let’s prove it by contradiction. Consider that there exists a

context state X, for which the confidence value S(X) is lower than threshold, but the value

itself does belong to the counterexample set.

According to lemma 4.1 the context state X belongs to some single orthotope. Let’s refer

to it as the orthotope Ci. By definition of the algorithm, the counterexample set is the set of

orthotopes of S(X). It means, that in order for context state X to belong to counterexample

set, the whole orthotope that contains it should belong to counterexample set. And the only

set that contains X is the set Ci, so it should be in the counterexample set.

According to formula (22) the confidence level at context state X is equal to the

confidence level associated with the orthotope Ci. By definition of the algorithm, if the

orthotope confidence is lower than threshold, it is not added to the counterexample set: it

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

142

will either fail the condition at label (L1), or the return will be triggered earlier at label

(L2). But in either case the orthotope Ci should not have been added to the counterexample

set.

As a summary, the orthotope Ci should and should not be in the counterexample set at

the same time. It is a contradiction. So, initial assumption was wrong, and there is no

context state X, that belongs to the counterexample set, but has the confidence value S(X)

below the threshold. Q.E.D. for statement 1.

Proof of statement 2. Statement 2 applies only to the case when

searchAllCounterexamples=true, so the condition at label (L2) is always false. Let’s take

an arbitrary counterexample and prove that it will belong to the counterexample set.

Consider an arbitrary context state X, for which the S(X) reaches the threshold: S(X)≥th.

According to lemma 4.1 the context state X belongs to some orthotope of the S(X). Let’s

refer to that orthotope as Ci. According to the definition (22), the confidence level at state X

is the confidence level, associated with the corresponding orthotope. It implies that S(X) =

Ci.confidence, which in turn means that Ci.confidence ≥th.

However, if searchAllCounterexamples=true than the algorithm will parse through all

the orthotopes. Without triggering the condition at label (L2), the loop cannot end before

iterating through all the orthotopes. Consider the iteration of the loop, that concerns the

orthotope Ci. As it was already proven, Ci.confidence ≥th. It means, condition at label (L1)

will be triggered, and as a result the whole orthotope will be added to the counterexample

set.

As a result, the orthotope Ci is a sub-state of the counterexample set. The context state X

belongs to the sub-state Ci of the counterexample set, and therefore to the counterexample

set as well.

So, if searchAllCounterexamples is on, than any arbitrary context state X, for which

S(X)≥th, will belong to the counterexample set. Q.E.D. for statement 2. ■

Consider an example of the algorithm 5.3 applied to the example scenario from section

3.2. The situation of LightMalfunctions(X) should be contradictory with

ConditionsAcceptable(X), and therefore the situation of (LightMalfunctions &

ConditionsAcceptable)(X) should be empty w.r.t. to the chosen threshold 0.7. Using the

algorithm 5.2, the situation (LightMalfunctions & ConditionsAcceptable)(X) was

represented as an orthotope-based situation space in expression (60).

The algorithm 5.3 iterates the situation orthotope after orthotope (i.e. row after row in

formula (22)), and adds orthotope description to the counterexample set, if the orthotope

confidence level reaches the threshold. As follows from formula (60), the only orthotope

where the confidence level reaches the threshold 0.7 is the orthotope 𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈

[35 ,5) ∧ 𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 4 ∧ 𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂𝑛 . It is a counterexample.

The verification of the example scenario is complete. The results of the verification

process are following:

1. The specification does not comply with the expected relationship. The situations

LightMalfunctions(X) and ConditionsAcceptable(X) do not have contradiction

relationship over the entire application space.

2. For any particular context state within the orthotope 𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 ∈ [35 ,5) ∧

𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 4 ∧ 𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑂𝑛 the contradiction relationship between

LightMalfunctions(X) and ConditionsAcceptable(X) will be broken.

3. For any other context state, the contradiction relationship will hold true.

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

143

In the next section we are going to summarize the approach and propose the method for

the verification of an arbitrary situation relationship.

5.4 Verification of Situation Specifications

According to the set of algorithms and lemmas, provided in the sections 5.1-5.3, the formal

verification of an arbitrary situation relation can be performed as follows:

1. Represent the property under verification as a situation algebra expression that should

be checked for emptiness. The guidelines for deriving the representations are given in

section 3.

2. Convert the involved situations to orthotope-based situation spaces using the

algorithm 5.1.

3. Using the situation algebra expression under test and the converted input situations,

derive the orthotope-based representation of the expression using the algorithm 5.2.

4. Check orthotope-based representation for emptiness using the algorithm 5.3 and

obtain the counterexamples, if needed.

The theoretical complexity analysis and the evaluation of the verification approach is

provided in section 6.

6 Formal Verification Mechanism Evaluation and Complexity Analysis

The proposed formal verification mechanism consists of three algorithms 5.1-5.3,

respectively the conversion of situation format, retrieving the orthotope-based

representation of the expression and emptiness check. Those algorithms will be analyzed in

detail in sections 6.1-6.3. The summary of verification evaluation and complexity analysis

will be provided in the section 6.4.

6.1 The Conversion of Situation Format

The first step of the verification process is the conversion of the involved situations into the

orthotope-based format using the algorithm 5.1. Theoretical and practical evaluation of the

algorithm 5.1 is discussed below. For evaluation we used ECSTRA (Enhanced Context

Spaces Theory Reasoning Architecture) – a context spaces theory based framework for

context awareness and situation awareness. The verification mechanisms were implemented

as an extension of ECSTRA. Due to the space requirements the detailed description of

ECSTRA framework is omitted, an interested reader can refer to [BZ11a][BZ11c]. The

experiment was carried out as follows: 50000 original CST situations were generated

randomly using the specially developed ECSTRA add-on. For each situation the number of

involved context attributes was generated uniformly then each context attribute was

decomposed into the set of intervals, which were also generated uniformly. Using the

algorithm 5.1, implemented as a part of ECSTRA verification mechanism, each of the

situations was converted into the orthotope-based format. The practical complexity in terms

of different operations was calculated using the counters. The experiments were conducted

on Lenovo ThinkPad T61 (2.50GHz processor, 2GB RAM, Ubuntu Linux OS). We used R

[VS12] and Octave [Ea11] applications for data processing and generating the plots. The

experimental results are presented in the figure 2 and analyzed in table 1.

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

144

 (a) Additions, Multiplications, Comparisons, Assignments (b) Divisions

Fig. 2. The complexity of the algorithm 5.1

Table 1 contains the explanation and theoretical analysis of the results, presented in

figure 2. For every involved operation the table 1 contains the order of the operation,

practical R
2
 and theoretical evaluations. The coefficient R

2
 is calculated from the

experimental data using R [VS12] statistical package. The data used for constructing figure

2 and for calculating R
2
 are the same. R

2
 coefficient practically proves the theoretically

expected order of operations by showing the fit between the expected order and the number

of operations of certain kind. In compliance with the definition of orthotope-based situation

space (section 4), N stands for the number of involved context attributes and L stands for

the number of orthotopes in resulting orthotope-based situation space.

To summarize, the complexity of the algorithm is O(N*L) – the order of count of

orthotopes multiplied by the number of involved context attributes.

6.2 Orthotope-based Representation of Expression

As the section 6.1 demonstrates, the involved situations can each be converted to the

orthotope representation at the order of O(N*L), where N is the number of involved context

attributes, and L is the number of orthotopes. After all the situations are converted into the

orthotope-based situation spaces, the resulting situation can be derived using the algorithm

5.2.

The algorithm 5.2 takes as an input all the involved situations and the situation

Expression(X) = func(Sit1(X), Sit2(X), …, SitK (X)), that can as well be a blackbox. For

evaluation purposes we estimate the complexity for the operations AND, OR and NOT,

defined by formulas (4). The experiment was carried out in a similar manner as in the

section 6.1. The algorithm 5.2 was implemented as a part of ECSTRA verification

extension, and the random situation generation was done using the specially designed add-

on. CST situation spaces were randomly generated in a manner, similar to the experiment in

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

145

Table 1. The Complexity of the Algorithm 5.1

Operation Order R2 Explanation

Additions O(N*L) 0.9999 The resulting situation space contains L orthotopes. For every orthotope

the calculation of the confidence value contains a sum with N summands.

Also the algorithm contains numerous auxiliary additions, related to

various loops.

Multiplications O(N*L) 1 The resulting situation contains L orthotopes and in order to determine

the confidence level of each orthotope, a sum with N summands should

be calculated. Every summand involves one multiplication, so the

complexity is O(N*L) for multiplications.

Divisions O(N) 1 The division operations is used to normalize the weights of the basic

situation spaces (make them sum up to 1) before the conversion starts.

There are N weights, and each of the weights is divided by the sum of

other weights.

Assignments O(N*L) 0.9999 The main portion of the assignments appears as the part the orthotope

description creation. For each of the L orthotopes the description is

composed of N intervals, and that results in O(N*L) order.

Comparisons O(N*L) 0.9997 Although the comparisons are not explicitly present in the algorithm 5.1,

they are involved in the loops. Each iteration of the loop contains a

comparison in order to test for the exit condition. The most comparison-

heavy part, which explains the order, is the calculation of the confidence

levels. For each of the L orthotopes there is a nested loop, which

calculates the weighted sum of N contributions. It makes the number of

comparisons O(N*L).

section 6.1 (50 000 situations for NOT, 10 000 situation pairs for AND and OR). The

conversion of the situations into orthotope-based situation spaces was evaluated in section

6.1, and therefore the operations for conversion are not counted in this experiment. The

converted situations (or a single situation in case of NOT) were used as an input for the

algorithm 5.2. The results of the experiment are presented in the figures 3 (AND), figure 4

(OR) and figure 5 (NOT). The theoretical complexity calculations and their connection to

the practical results are discussed in table 2, which is designed similarly to table 1. There

are three coefficients R
2
 provided – one for each of for the experiments (for AND, OR and

NOT respectively).

To summarize, the theoretical complexity of the representation algorithm is O(N*L) and,

according to the figures 3-5 and R
2
 coefficient in table 2, the practical evaluation is

absolutely compliant with the theoretical results.

It might seem counterintuitive that there is no dependency on the number of involved

situations (let’s refer to that number as K, in compliance with the section 5.2). However,

that number is implicitly contained in various characteristics and heavily influences the

total complexity of the algorithm. The number of the involved situations K and the structure

of those situations do influence the decomposition of context attributes into resulting

intervals. In turn, that decomposition defines the number of resulting orthotopes, and

therefore has a determining influence on the total complexity of the algorithm. The number

of situations also can influence the complexity of the expression call. The influence of

number of involved situations will also be addressed as the part of the final complexity

evaluation in section 6.4.

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

146

Table 2. The Complexity of the Algorithm 5.2

Operation Order R2 Explanation

Additions O(N*L) AND: 0.9994

OR: 0.9994

NOT: 0.9979

The main sources of additions are the nested loops, which

use additions to increase the counters. Calculation of

confidence levels involves context state generations. To

generate the context state for each of the L orthotopes N

context attribute values need to be generated. The nested

loop gives N*L additions for the counters, and that results

in O(N*L) order.

Assignments O(N*L) AND: 0.9995

OR: 0.9995

NOT: 0.9987

As well as for the addition operation, the part of the

algorithm, which determines the order of assignments, is

generation of context state. The nested loop for context

state generation adds O(N*L) assignments to the total

algorithm complexity.

Comparisons O(N*L) AND: 0.9994

OR: 0.9994

NOT: 0.9982

The most comparison-heavy part of the algorithm is the

nested loop for generating the test context state. It results in

the order O(N*L).

Expression

calls

O(L) 1 (in all

cases)

In the algorithm 5.2 the confidence level of the situation

op(X) is calculated exactly once for every orthotope, in

order to determine the confidence value.

Random value

generation

O(N*L) 1 (in all

cases)

Random value generation is performed N times for each of

the L orthotopes, in order to generate N-valued context

state and use it as an input for the expression calculation.

 (a) Additions, assignments, comparisons (b) Expression calls, context state generation

Fig. 3. The complexity of the algorithm 5.2 for AND operation.

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

147

 (a) Additions, assignments, comparisons (b) Expression calls, context state generation

Fig. 4. The complexity of the algorithm 5.2 for OR operation.

 (a) Additions, assignments, comparisons (b) Expression calls, context state generation

 Fig. 5. The complexity of the algorithm 5.2 for NOT operation.

6.3 Emptiness Check

After the orthotope-based representation of the situation space is produced using the

algorithm 5.2, it should be checked for emptiness using the algorithm 5.3. The experiment

was carried out in a similar way as the experiment for conversion test in the section 6.1.

The algorithm 5.3 was implemented as a part of ECSTRA verification extension, and the

random situation generation was performed using the specially designed add-on. The

results of the evaluation of the algorithm 5.3 are presented in the table 3 and the figure 6. In

the figure 6 blue marks identify the case when all the counterexamples had to be explicitly

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

148

computed (searchAllCounterexamples=true in the algorithm 5.3). The red marks of the

figure 6 represent the case when the algorithm stops after finding a single counterexample

(searchAllCounterexamples=false in algorithm 5.3). It should be noted that the cases

searchAllCounterexamples=true and searchAllCounterexamples=false had different sets of

generated situations. As expected, the practical complexity in the case

searchAllCounterexamples=false varies between a single loop iteration as the lower bound

and the complexity of searchAllCounterexamples=true as the upper bound. The table 3

refers both to the case searchAllCounterexamples=true and to the upper bound of the case

searchAllCounterexamples=false.

The analysis of emptiness check algorithm, presented in table 3, shows O(L) complexity.

This estimation is true for both the case searchAllCounterexamples=true, and the upper

border for the case searchAllCounterexamples=false. This result finalizes the complexity

evaluation of the algorithms 5.1-5.3 of the verification process. Section 6.4 summarizes the

verification mechanism evaluation and discusses the derived total complexity of the

verification process.

 (a) Additions (b) Comparisons

 Fig. 6. The complexity of the algorithm 5.3.

Table 3. The Complexity of the Algorithm 5.3

Operation Order R2 Explanation

Comparisons O(L) 1 In the algorithm 5.3 The main loop contains L iterations. In

every iteration of the main loop the confidence level is tested

against the threshold, and also the loop condition is tested against

the exit condition. It makes the number of comparison operations

at the order of O(L).

Additions O(L) 1 Additions are used within the main loop, in order to increase the

loop counter, once per iteration.

Assignments O(L) 1 The assignments are used as the part of the main loop in order to

increase the loop counter.

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

149

6.4 Verification of Situation Definitions – Total Complexity

The complexity of the formal verification mechanism aggregates the complexity of the

algorithms 5.1-5.3, which is evaluated in the sections 6.1-6.3. Combination of the results,

provided in sections 6.1-6.3, allows us to derive the following complexity of the

verification process (formula (61)).

O(∑ 𝑁 𝐿
𝐾
 =1 + NresLres + Lres) (61)

In formula (61) Ni and Li (i=1..K) stand for the number of orthotopes and number of

context attributes for the i-th situation involved in the situation algebra expression. The

number of orthotopes and the number of involved context attributes for the resulting

situation is referred to as Lres and Nres respectively.

If the situation is converted from original CST representation into the orthotope-based

representation, then the number of the orthotopes in the converted situation is equal to the

number of combinations of intervals (see the expressions (24) and (25) and algorithm 5.1

for the proof). It allows expressing the formula (61) as the formula (62).

O(∑ 𝑁 ∗ (∏ 𝑟(𝑖,)
𝑁𝑖
 =1)𝐾

 =1 + NresLres + Lres) (62)

In formula (62) the term 𝑟(𝑖,) refers to the number of intervals for the i-th situation

over j-th context attribute (within the situation). Formula (62) provides the final result of

the complexity estimation. The formula (63) is used just for illustration purposes, in order

to provide rough estimation of the total complexity order. Expression (63) is derived from

formula (62) using the assumptions that the number of context attributes is the same for

every involved situation (we refer to it as N), and the number of intervals over any context

attribute is the same for any of the involved situations: Ni = Navg, r(i,j) = r, i=1…K,

j=1…Ni) We also assumed that the number of intervals is the same for every context

attribute in the resulting situation, and refer to that number as rres.

O(𝐾 ∗ 𝑁𝑎 ∗ 𝑟𝑎
𝑁 + Nres * 𝑟𝑟𝑒𝑠

𝑁 + 𝑟𝑟𝑒𝑠
𝑁) (63)

The algorithm is supposed to work offline, and it makes the complexity requirements

milder. However, the formula (63) very roughly shows that the worst case rate of growth of

the straightforward verification can be roughly estimated as K*Navg*exp(Navg) +

(Nres+1)*exp(Nres) function of the involved context attributes and the number of involved

situations. The complexity still remains tractable for the realistic situations (which are

usually defined over small number of context attributes), but the fast verification algorithms

are considered to be the high priority item of the future work.

In this section we theoretically calculated the complexity of the verification process and

tested it practically. Formula (62) contains the final result of the verification complexity

calculation, and it finalizes the complexity evaluation of the algorithm.

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

150

7 Discussion and Related Work

In this article we presented the approach for formal verification of situation models. In the

following section we are going to discuss the several aspects of the proposed approach,

compare the approach with related work and provide some discussion.

7.1 Formal Verification in Pervasive Computing

The techniques of formal verification have received some attention of the pervasive

computing research community, and various aspects of pervasive computing systems were

enhanced with applicable verification methods.

Cardelli and Gordon [CG00] proposed the ambient logic – a specially designed calculus

that can describe multiple moving and interacting entities. That approach was improved and

extended in subsequent works. For example, Coronato and Pietro [CP10] used ambient

logic techniques to specify pervasive healthcare applications. Also Coronato and Pietro

[CP11] proposed the extensions of ambient calculus and ambient logic. The main difference

between the ambient logic-based approaches and our article is that the specification aspects

under verification are different. Ambient logic based approaches view the pervasive system

as the set of interacting agents, and thus aim to verify the spatial and temporal interactions

between devices, processes and services. In contrast, our article proposes a solution to

verify the integrity of the context model – the underlying formal representation of internal

and external environment.

Ishikawa et. al. [IS09] proposed methods to verify and specify pervasive computing

systems. Their verification approach is based on the event calculus formalism. Event

calculus allows representing the behavior of the system and the assumptions about the

behavior, and then formally verify, whether the behavior matches the assumptions. The

article [IS09] addresses the interaction of pervasive computing system with an external

environment. In contrast, our method allows the verification of system understanding of

internal and external environment, and that understanding is the root cause of system

behavior. Therefore, our approach allows deeper insight into the context awareness and

situation awareness, its problems and risks.

To summarize, the related work did address the verification of internal communications

[CG00, CP10, CP11] and user interactions [IS09] in pervasive computing systems. To the

best of our knowledge our article is the first to address the verification of the integrity,

consistency, non-contradiction and adequacy of the context model – the system

understanding of internal and external environment.

7.2. Specification of Situation Relationships

The verification approach presented in this article uses the expected situation relationship

as the part of the input information. Those relationships can be obtained using expert

knowledge and common sense, but there are multiple solutions to produce the relationships

automatically. Different approaches to situation awareness focus on the relationships

between different situations rather than on inferring the situations from low-level context

(e.g., sensor) data. Those approaches supply the properties for the formal verification

mechanism. The approaches rely on some low-level inference of the atomic facts, events

and situations, but on top of that they provide powerful tools to assert and facilitate the

verification of various relationships between the situations.

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

151

The articles [DS07, ES07, WZ04] proposed to use the ontologies to reason about the

situations. Ontologies provide the powerful tools to represent and reason about the

relationships between different entities, facts, events and situations. Still many ontologies

for representing the context work on the high-level context awareness level and consider

the inference of low-level facts as being out of scope of the work. Therefore, ontology-

based solutions require the low-level inference model, and that model should be consistent

with the ontology itself. The consistency of the low-level model and the ontology can be

verified using the methods presented in this article.

Ranganathan et. al. [RA04] used the predicate logic to define the events and situations.

Moreover, the predicate logic was used to define the relationships between situations, such

as mutual contradiction. However, those relationships were used not for the verification, but

mainly for addressing context uncertainty.

The articles [AL08][GG06] proposed the solutions based on temporal logic. Logic-based

expressions often can be the property under verification. However, working with the

temporal logic is the part of future work. Neither the context spaces theory model, nor the

situation algebra do not involve any timing or sequential dependencies. Sequential and

timing dependencies can be analyzed using the concept of the trajectory in the application

space.

7.3. Situation Modeling

Various ways of defining situations have received considerable amount of attention from

pervasive computing research community. A number of methods of situation specification

either originate in the context spaces theory, or have some degree of similarity with context

spaces theory situation awareness approach.

Delir et. al. [DZ08] proposed improved situation specifications for the context spaces

approach. Instead of step functions, the authors suggest to use standard fuzzy logic based

contribution functions (like trapezoid). This approach leads to more natural and flexible

situation specifications. However, the use of step functions as contribution functions also

have some benefits. For example, the verification method proposed in this article heavily

relies on the fact that contribution function is a step function, and therefore the confidence

levels remain constant within certain orthotopes.

The papers [BI04][KK07][KK08][MB04][TI04] use naïve Bayesian approach to define

the situations and activities. Naïve Bayesian approach assumes the independence of various

context features, having the situation occurrence/non occurrence as a fact. It can be viewed

as somewhat similar to the approach of context spaces theory, where the situation has

independent contributions from various context attributes. In both cases the independence

assumption ensures memory efficient and computationally tractable situation specifications,

but in turn can lead to limited flexibility. The main difference in our approach to situation

specification and the Bayesian approach is the difference in semantics. The Bayesian

approach is purely probabilistic – it assumes that in underlying real world the situation is

either occurring or not, and provides the method to evaluate the probability of occurrence.

Context spaces theory, in contrast, uses fuzzy logic semantics, where the situation can occur

with some confidence level, and it does not mean probability. For example, if the noise

level is 50 dB, the confidence level of situation Noisy can be evaluated as 0.7, but stating

that it is noisy with probability 70% is semantically wrong. Another serious difference is

that the context spaces theory features specification-based approach, where the situations

are defined manually, while the naïve Bayesian approach is better suited for learning the

situation.

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

152

Anagnostopoulos et. al. [AN06] proposed the advanced situation awareness framework

that leads the context reasoning from the low-level situation representation to properly

acting on the situation awareness results. On the lowest levels the situation was inferred as

the conjunction of multiple context features (see formula (64), quoted from [AN06]).

⋀ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑥 , 𝑢𝑠𝑒𝑟) → 𝐼𝑠𝐼𝑛𝑣𝑜𝑙𝑣𝑒𝑑𝐼𝑛(𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛, 𝑢𝑠𝑒𝑟), 𝑁 > 1𝑁
 =1 (64)

Similar to the context spaces theory, the approach [AN06] to situation definition utilizes

the contribution from multiple context features. However, the context spaces theory allows

working with confidence levels and representing unequal importance of the different

context features for the situation.

7.4. Geometrical Metaphors for Context Awareness

Our article uses geometrical metaphors in order to represent the context and reason about

the situations. The idea of collecting the entire set of low-level data into the single vector is

straightforward. That vector can be viewed as a point in a multidimensional space.

However, many context reasoning approaches immediately advance further to higher level

context awareness, and do not take the full advantage of spatial representation.

Anagnostopoulos et. al. [AM05] modeled the context as a multidimensional space, the

current conditions of the context as the point in the space, and utilized this representation

for context prediction. The authors predicted the context using the extrapolation of context

trajectory in the multidimensional space. However, that paper did not provide any concept

of the situation and did not generalize the context data in any manner, and the

generalization in terms of situations provides the mechanism to extract the most important

information from the context. The context prediction approach similar to [AM05] was

proposed for the context spaces theory by Padovitz et. al. [PL08b].

The article by Mayrhofer [Ma04b] utilized the geometrical metaphors and viewed

context as a vector in a multidimensional space of context features. The clusters in the

space of context features were considered to be the possible situations of interest. That

solution allowed learning the situations and then manually labeling them in a meaningful

manner. Also that approach provided the solid background for context prediction. However,

clustering methods usually result in situation definition being a blackbox and the situations

being human-unreadable. Learning-based and specification-based approaches to the

situation definition can be combined within one system.

8 Conclusion and Future Work

In this article we propose, develop and evaluate the mechanism for formal verification of

context model and situation definitions. Using the situation definitions in terms of low-level

context features and the expected situation relationships as an input, the mechanism can

either formally prove the compliance between the properties and the definitions, or identify

the entire set of possible context states, that can serve as a counterexample that proves

situation inconsistencies and exposes a contradictory context model.

As a part of verification method, we propose the novel situation model, an orthotope-

based situation space, which provides sufficient flexibility to reason about a broad class of

real-life situations and their relationships, retain the human-readable representation of the

situation, and have a set of properties that are very important for the verification process.

We develop, implement and evaluate the algorithm to represent arbitrary situation algebra

Chapter VI - Formal Verification of Context and Situation Models in Pervasive Computing

153

expression as an orthotope-based situation space. We develop, implement and evaluate the

algorithm to check an orthotope-based situation space for emptiness and detect the entire

set of counterexamples.

The final contribution of this article is the context model verification method. The

proposed mechanism can formally verify that the context model does not have internal

contradictions, that it implies the necessary knowledge about the environment and that it

does not contradict the real world facts. The verification method can detect the specification

errors during the design of the context model, help an expert to properly fix the

specification, and therefore improve the reliability of the system and reduce the risk of the

pervasive system design error.

We consider the following directions of the future work:

1. Fast verification algorithms. The verification algorithm has roughly exponential

dependency on the number of involved context attributes and, therefore, will highly benefit

from the algorithms optimization.

2. Verification of dynamic and temporal situation properties. The properties that

involve sequence or time (like “If the situation is PhoneCall, it means that there was a

situation PhoneRings or Dialing before”) are currently out of scope of the verification

process. The ability to incorporate the temporal relationships into the verification

significantly broadens the verification capabilities.

3. Automated situation fix. The current version of the verification approach

verifies if there is a specification error and describes the context attributes that can lead to

the context model inconsistency. However, the counterexamples only give the clue about

how the specification error can be fixed. If the verification algorithm could provide

suggestions for the situation specification fix on its own, it can facilitate the work of the

expert.

4. Combining verification and uncertainty. The approach proposed in this article

assumes that the context state is a particular point in a multidimensional space, and the

specifications of the uncertainty are not provided. For different ways of uncertainty

representation there should be either a proof that the verification approach is still

applicable, or the amended verification algorithm.

5. Context quality evaluation. The expected relationships between situations can

be viewed from different perspective. For example, the situation “SunnyDay &

BlindsOpen” practically implies “LightLevelOK”, but it is not implied by the model

directly. These relationships can be asserted into the context model, and then be used to

verify the consistency of the context state. For example, if the situations SunnyDay(X) &

BlindsOpen(X) & ¬LightLevelOk(X) holds true, it means a problem with either of the

sensors, that is involved in those situations. The algorithm that can identify the

inconsistency and propose the solution to fix the context model can improve the run-time

context awareness reliability and efficiency.

6. Learning the situations. Context spaces theory features the specification-based

approach to the situation awareness. The ability to detect the possible presence of situation

of interest, and suggest the specification of that situation, can significantly facilitate the

work of the expert and improve the context model.

Chapter VII

Correctness Analysis and Verification

of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

Based on:
1. Boytsov, A. and Zaslavsky, A. Correctness Analysis and Verification of Fuzzy

Situations in Situation Aware Pervasive Computing Systems. Scientific report,

2013, 30p.

URL= http://pure.ltu.se/portal/files/42973133/BoytsovZaslavsky_FuzzyVerifReport.pdf, last

accessed May, 08, 2013.

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

156

Foreword

This chapter addresses the research question 2 and continues the research direction described in

chapter VI. Fuzzy logic complements situation awareness with versatile and robust situation concepts.

This chapter proposes, proves and evaluates a novel verification algorithm for fuzzy situations.

Chapter VII uses basic concepts of verification originating in chapter VI, but in order to apply

verification principles to fuzzy situations a completely different algorithm is proposed, implemented

and evaluated.

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

157

Correctness Analysis and Verification of Fuzzy Situations in

Situation Aware Pervasive Computing Systems

Abstract. Context awareness is one of the central features of pervasive computing

systems. From pervasive computing perspective a situation can be defined as

external semantic interpretation of context. Situation awareness aims to infer

situations out of context. Developing situation awareness is a challenging task,

which can be significantly hampered by errors during design stage. In this article we

propose a novel method for verification of fuzzy situation definitions. Fuzzy logic is

a powerful mechanism for reasoning in pervasive computing systems and

verification of situation models is a new method of formally ensuring correctness of

context awareness and situation awareness. Verification is applied at the design time

to check that definitions of situations are error-free. Verification approach allows

developers to rigorously specify expected relationships between situations and then

formally check that definitions of situations comply with expected relationships. If

an error is found, then additional task is to find counterexamples - particular context

attribute values, which can cause situation awareness inconsistency.

Counterexamples provide additional insight into the cause of error and help

repairing situation definitions. We also discuss a method to formalize requirements,

as well as propose and formally prove the novel verification algorithm for fuzzy

situation models. Last, but not least, we analyze theoretical and practical complexity

of the proposed solution.

Keywords: context awareness; situation awareness; fuzzy logic; fuzzy situation

inference; situation algebra; verification

1 Introduction

Context awareness is one of the foundational principles of pervasive computing. Context is

the key characteristic of every pervasive computing system and, according to predictions

[GP09], by 2015 context will be as influential in mobile consumer services, as search

engines are influential to the web.

Situation in pervasive computing can be viewed as a higher level of generalization of

context. For example, multiple wearable accelerometers on user’s arms and legs produce

enough information to detect situations like “user walking”, “user running”, “user standing”

or “user sitting” (see [BI04]), in the room the data from noise sensors, movement sensors

and appliance usage sensors can be generalized into situations “nobody in the room”, “one

person in the room” or “several people in the room” (see [DP11]), blood pressure sensory

data in mobile healthcare can be generalized into situations “hypertension”, “hypotension”

and “normal pressure” (see [DZ08]). Situation awareness functionality extracts most

general relevant information from context and provides it in a clear manner to the

applications.

Practically used situation modeling methods include Naïve Bayesian approach

[BI04][KK07], fuzzy logic [AN06][DZ08], belief function theory [DP11], context spaces

[PL08a], neural networks [YW08], and many more (see [YD12] for a comprehensive

survey). Situation models can be either learned from labeled [BI04][KK07] or unlabeled

[HM06][Ma04a][Ma04b] data, or designed manually [DZ08][DP11] using the expert

knowledge of the subject area. Situation reasoning result might be, for example, a Boolean

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

158

value (whether the situation occurs or not), probability that the situation is occurring, fuzzy

level of confidence.

Design of a situation aware system is a complex and error-prone task. Developing

situation definitions manually may be hampered by expert errors. Errors in training data,

overfits or underfits, as well as choice of an unsuitable learning approach can hamper

automated learning of situation models. Incorrect situation awareness results are transferred

to applications, and in turn it leads to improper adaptation actions. For example, if the

situations “one person in the room” and “two people in the room” are triggered

simultaneously, it might be a result of sensor error, but it as well might be a result of an

improper generalization, i.e. it can happen if the sensor readings are not translated into

situations correctly. Or, for example, definition mistake might result in triggering together

situations “user sitting” and “user walking” even if the sensor error has no impact. As

another example, situation “driving” should imply situation “in the car”, and if for some

reliable sensor data it is possible to have the “driving” situation, but not “in the car”

situation, this points to a definition mistake. Consider also one more example: a smart

office, where there are two situations of interest associated with each workplace. One

situation is “conditions acceptable for work”, which means that the workplace environment

(including light level and noise level) is sufficiently good to continue working at that

workplace. The second situation is “light malfunctions”, and it is triggered if the light is on,

but the level of light is still insufficient to continue: the lamp may produce too dim light or

be just off. According to their meaning, those situations should not co-occur – by definition

“light malfunctions” implies insufficiency of light level, while “conditions acceptable”

implies that all the workspace parameters are sufficient. Triggering both situations means

contradictive situation awareness result, which might propagate further and lead to

erroneous adaptation actions. This scenario will be a motivating example throughout the

article. This example was inspired by the example from our previous article [BZ12b], but in

this work it is redeveloped for fuzzy situation inference and analyzed by completely

different approach.

In order to avoid definition errors, situation models often undergo extensive testing:

developers thoroughly check that the situation awareness recognize proper situation for

certain sensor inputs. Sensor inputs can be from real sensors or imitated sensors in

simulated environment. However, the capabilities of testing are limited. The sensor values,

which trigger certain problems, might as well not be considered during the testing.

Verification is an acknowledged opportunity of reducing the amount of errors in protocols

and programs. Usually verification ensures that the program has a certain property, like “if

a request comes, it will be processed” (see [CG99] for more details on verification of

software). In order to prove that a program has certain property, corresponding assertion

under verification has to be expressed in a formal manner (e.g. as a temporal logic

formula). Verification procedure then rigorously proves that for the given program the

assertion is always true, or finds counterexamples – precise description of cases, where

assertion fails. In pervasive computing some articles proposed methods to verify behavior

rules [AC09][IS09] or multi-agent interaction aspects [CP10][CP11]. However, the

plausibility of situation definition verification is often overlooked.

Some situation awareness-related articles, including our previous article [BZ12b],

defined the problem of verification of situation models, i.e. detection of errors in the

formulas of the situations. This article in comparison with [BZ12b] proposes novel methods

to verify the situations, which are defined using fuzzy logic.

The paper is structured as follows. Section 2 introduces the background of the work. It

provides an overview of spatial representation of context, introduces fuzzy situation

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

159

inference and recaps the concept of verification of situation models. Section 2 also contains

multiple examples, which emerge into the motivating scenario – a running example, which

we are going to use throughout the article in order to illustrate the proposed approach.

Sections 3 proposes and proves step-by-step algorithms, which allow verification and,

hence, detection of errors in the definitions of fuzzy situations. Section 4 describes

evaluation results and provides complexity analysis of the proposed approach. Section 5

provides description of related work and discussion of the achieved results. Section 6

proposes future work directions and concludes the paper.

2 Background

This section provides the background to the challenges of verifying fuzzy situation models.

It starts with discussing spatial representation of context, proceeds with fuzzy situation

inference and introduces the concept of situation verification. The motivating example,

which is briefly mentioned in the introduction, is built throughout the entire background

section. The section is concluded with fully formalized and detailed motivating scenario

that will be used as an illustration in the rest of the paper.

2.1 Spatial Representation of Context

Spatial representation of context emerges from a relatively straightforward idea of

collecting all context attributes into a single vector of values. Context attributes include

relevant sensor readings and the values derived from them. For example, in a mobile device

with accelerometer and orientation sensor, a vector of context values can include readings

of accelerometer, readings of orientation sensor, and absolute acceleration values,

calculated from relative acceleration and orientation. All possible context vectors define

multidimensional space of possible context.

Representing context as a vector ensures clarity and allows efficient situation awareness

using subspaces in multidimensional space [BZ12b][DZ08][Ma04a][Ma04b][PL08a]. Also

it enables context prediction based on extrapolation of context trajectory [AM05][PL08a].

However, despite seeming simplicity, spatial representation of context contains some

challenges related to missing sensor readings, non-numeric values, sensor uncertainty and

the fact that sensor readings arrive at different time and may get outdated.

The terminology, which we are going to define in this section, is based on terms

established in the articles [BZ12b][DZ08][PL08a]. Comparing to the background work, in

this article the terms are defined in a rigorous manner, in order to use them for formal proof

and analysis of the verification algorithms.

An example of multidimensional context space in figure 1 is related to previously

mentioned motivating scenario. The figure depicts a simple context space for a workspace

in a smart office. Current context is represented as a point in the multidimensional space. In

figure 1 at the workplace there is currently luminance of 500 Lx, noise level of 30 dB and

the light switch is on. Those values can be raw sensor readings, or they can be the result of

sensor data processing.

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

160

Fig.1. Example of Spatial Representation of Context

A multidimensional space, like in figure 1, is referred to as application space or context

space [PL08a]. Axes in the multidimensional space of figure 1 are context attributes.

Formally context attribute is defined as domain of values of interest [PL08a]. Context

attributes can as well be non-numeric: weather context attribute can have values like

“sunny”, “rainy” or “cloudy”, tap valve context attribute can have values “open” and

“closed”, any appliance can be “On” or “Off”. Some context attributes can have both

numeric and non-numeric values. Those context attributes are referred to as mixed. For

example, air conditioner can be configured to maintain certain temperature or it can be just

off. Mixed context attributes allow graceful integration of missing context information: if

some parameter is unknown, then the value for corresponding context attribute can be set to

the special non-numeric value Undefined [BZ12b]. In order to simplify the example, in

figure 1 Undefined values are omitted and context attributes NoiseLevel and LightLevel are

considered to be numeric.

Context attribute value is a value of context attribute taken at a certain time [BZ12b].

Figure 1 shows that at present the value of NoiseLevel context attribute is 30 dB, the value

of LightLevel context attribute is 500Lx and the value of SwitchPosition context attribute is

On. In reality context attribute value takes uncertainty into account, but the questions of

sensor uncertainty are out of scope of this article. Therefore, for the purpose of this article

context attribute value is viewed just as a value on context attribute axis.

A point in the multidimensional context space is referred to as a context state [PL08a].

Therefore, a context state is a vector of context attribute values. The set of all possible

context states will be referred to as St. The fact that some entity X is a context state is

formally expressed as X ∈ St. Any context state X can be described like {c1=x1, c2=x2, … },

where ci is a name of a particular context attribute. For example, the context state in figure

1 can be denoted as {LightLevel=500, NoiseLevel=30, SwitchPosition=On} or just

{500,30,On}, if the order of context attributes in a vector is pre-defined.

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

161

2.2 Fuzzy Situations

Fuzzy logic is extensively used for context awareness and situation awareness purposes

[AG10][AN06][CX05][DZ08][MS02]. In this article we use fuzzy situation format that was

proposed in the paper in [DZ08]. Fuzzy situation is a versatile fuzzy logic-based situation

awareness concept, and the algorithms developed for fuzzy situations can be applied to

many other situation awareness techniques with minor modifications or no modifications at

all.

Situation in pervasive computing is “external semantic interpretation of sensor data”

[YD12]. From context reasoning perspective situation is a formula, which takes context

state as an input and produces reasoning result as an output [BZ12b]. Reasoning result is

often a numeric value, representing either probability of the situation occurrence or

confidence in the fact that the situation is occurring. Also reasoning result can be Boolean,

representing whether the situation occurs or not. Situations with Boolean reasoning results

can be viewed as subspaces of the context space.

Fuzzy situation is a situation of a special format, which is presented in expression (1).

The format of fuzzy situation was proposed in the paper [DZ08] in order to simplify the

design of situations, prevent possible design mistakes and ensure readability.

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛() = ∑ 𝑤 ∗ 𝜇 (𝑥)
𝑁
 =1 (1)

The term Situation(X) refers to the result of situation reasoning. This result is referred to

as certainty or confidence value. Originally certainty was defined as numeric [DZ08]. In

this article we augment it with a special value UD, which stands for undefined. It allows

accounting for missing sensor readings and handling the cases when there is not enough

information to reason about the situation.

Input parameter X in expression (1) is a context state. Vector X includes a set of values

of relevant context attributes. Those values are referred to as xi, where i = 1…N and N is

the number of relevant context attributes.

In formula (1) coefficient wi is the weight of i-th context attribute contribution to the

final confidence. All the weights sum up to one. The function µi(xi) is a membership

function, which defines the contribution of i-th context attribute value. Every membership

function depends on the value of only one context attribute. The term membership function

comes directly from fuzzy logic - contribution is determined by the degree of belonging of

a context attribute value to a specially designed fuzzy set [HM93]. The most popular shapes

of membership functions are depicted in the figure 2 [DZ08][HM93]. In case if context

attribute is non-numeric or mixed, there is a fixed value of the membership function

associated with every possible non-numeric value.

For this article we enforce only the following requirements on membership functions:

1. Membership functions should be continuous in the numeric part of respective

context attributes.

2. Derivatives of membership functions should be piecewise constant.

Given requirements encompass all functions depicted in figure 2, as well as all polygonal

curve shaped membership functions. In a very general form we assume that a membership

function over a numeric context attribute (or over numeric part of a mixed context attribute)

is defined according to formula (2).

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

162

Fig. 2. Popular shapes of a membership function. (a),(d) Step membership function; (b),(e)

Triangle membership function; (c),(f) Trapezoid membership function.

µ(𝑥) =

[

𝑎1 ∗ 𝑥 𝑏1, 𝑥 ∈ (− , 𝑝(1)]

𝑎2 ∗ 𝑥 𝑏2, 𝑥 ∈ [𝑝(1), 𝑝()]
…

𝑎𝐿 ∗ 𝑥 𝑏𝐿 , 𝑥 ∈ [𝑝(𝐿 − 1), 𝑝(𝐿)]

𝑎𝐿 1 ∗ 𝑥 𝑏𝐿 1, 𝑥 ∈ [𝑝(𝐿),)

 (2)

In formula (2) the points p(1)…p(L) are referred to as breakpoints. The number of

breakpoints L usually varies from 2 (in step function – figures 2a and 2d) to 4 (in trapezoid

– figures 2c and 2f). For particular membership function µ (𝑥)of i-th context attribute the

breakpoints will be referred to as p(i,1)…p(i,Li), where Li is the number of breakpoints in

the membership function µ (𝑥).

Additional requirement for the membership function is continuity. Note that the intervals

in formula (2) overlap on the boundaries. Compliance with formula (3) ensures that there

are no contradictions. It shows that different parts of the piecewise linear functions connect

at the breakpoints.

{

𝑎1 ∗ 𝑝(1) 𝑏1 = 𝑎2 ∗ 𝑝(1) 𝑏2

𝑎2 ∗ 𝑝() 𝑏2 = 𝑎3 ∗ 𝑝() 𝑏3

…
𝑎𝑙 ∗ 𝑝(𝐿) 𝑏𝐿 = 𝑎𝐿 1 ∗ 𝑝(𝐿) 𝑏𝐿 1

 (3)

A special case of L=0 is acceptable. In practice it is often a constant membership

function with zero value. It does not contradict formulas (2) and (3), and it acts as a stub

membership function.

Non-numeric values can be incorporated into membership function by assigning

membership function value for every non-numeric parameter. An example is depicted in

formula (4).

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

163

µ(𝑥) = [
…

𝑈𝐷, 𝑥 ∈ 𝑈𝑛𝑑𝑒 𝑖𝑛𝑒𝑑 (4)

For examples of fuzzy situations, refer to the context space depicted in figure 1. In that

context space we can define two situations. A first situation under consideration is the

situation, reflecting whether the workplace conditions are sufficient for normal work. For

the purpose of illustration we consider only light level and noise level at the workplace.

Membership functions of light and noise levels are presented in figure 3 and formalized

into formula (5). In order to distinguish between membership functions of different

situations over the same context attribute, the superscript over µ contains abbreviation of

the situation name (CA stands for ConditionsAcceptable).

µL t
 𝐴 (Li htLeve) = [

 , Li htLeve 35
𝐿 𝑡𝐿𝑒 𝑒𝑙 3

1
, Li htLeve ∈ [35 ,5]

1, Li htLeve ≥ 5

 (5)

µN
 𝐴 (N iseLeve) = [

1, N iseLeve 4
(6 − 𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙) , N iseLeve ∈ [4 ,6]

 , N iseLeve ≥ 6

Fig. 3. Membership functions of ConditionsAcceptable situation

Light level and noise level are equally important characteristics at the workplace and,

therefore, they are assigned the same weight. We define situation ConditionsAcceptable

according to expression (6).

C nditi nsAcceptab e(X) = .5 ∗ µL t
 𝐴 (Li htLeve) .5 ∗ µN

 𝐴 (N iseLeve) (6)

Another situation under consideration is whether the light is malfunctioning. The

problem is detected if lamps are on, but still provide insufficient light. For example, the

lamps can be too dim due to internal malfunction, or they can become unpowered due to

wire problems. The contributing parameters are position of light switch and light level.

Contributions are depicted in figure 4 and formalized into expression (7). Superscript on

top of membership function distinguishes the situation (LM stands for LightMalfunctions).

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

164

Fig. 4. Membership functions of LightMalfunctions situation

µL t
𝐿 (Li htLeve) = [

 , Li htLeve 35
(5 − 𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙) 15 , Li htLeve ∈ [35 ,5]

1, Li htLeve ≥ 5
 (7)

µ t
𝐿 (witch siti n) = [

1, witch siti n ∈ 𝑂𝑛

 , witch siti n ∈ 𝑂

Final formula of the situation is depicted in expression (8).

Li ht a f ncti ns(X) = .5 ∗ µL t
𝐿 (Li htLeve) .5 ∗ µ t

𝐿 (witch siti n) (8)

The situations, defined in expressions (5)-(8), will be used throughout this article as

running examples. Several more definitions are necessary to proceed to verification of

situation models.

Fuzzy situation inference uses certainty threshold to decide whether the situation occurs

or not. If the certainty reaches the threshold, situation is counted as occurring. If the

certainty is below the threshold or the certainty is undefined, then occurrence is not

claimed.

Situation algebra was developed in order to reason about relationships between

situations [PL08a]. Situation algebra procedures resemble Zadeh operators [Za65]. Details

are provided in expression (9).

𝐴𝑁𝐷: (𝐴 & 𝐵)() = 𝑚𝑖𝑛(𝐴(), 𝐵())

𝑂𝑅: (𝐴 | 𝐵)() = 𝑚𝑎𝑥(𝐴(), 𝐵())

𝑁𝑂𝑇: (¬𝐴)() = 1 – 𝐴()

 (9)

If the certainty value of A(X) or B(X) is undefined, then the result of situation algebra

operation is undefined as well. The notations like (A | B)(X) and A(X) | B(X) are equivalent

and just represent different styles.

Next section uses the definitions from this section and on their basis defines the

essentials of verification of situation definitions.

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

165

2.3 Verification of Context Models and Motivating Scenario

Boytsov and Zaslavsky [BZ12b] analyzed and formalized possible relationships between

situations and utilized them for context model verification. One of the main outcomes of the

article [BZ12b] is that non-temporal situation relationships can be expressed as assertions

of emptiness for some situation algebra expressions. The relationships between situations,

as well as the corresponding assertions are presented in formula (10).

Generalization: St,
 (𝐿𝑒𝑠𝑠 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛& ¬ 𝑜𝑟𝑒 𝑒𝑛𝑒𝑟𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛)() ≥ th

Composition: St, (10)

 (𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 & ¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡1 & ¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 …& ¬𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑁)() ≥ th

Dependence: St, (𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 & ¬𝐷𝑒𝑝𝑒𝑛𝑑𝑠𝑂𝑛)()≥ th

Contradiction: St, (𝑆𝑖𝑡1 & 𝑆𝑖𝑡)() ≥ th

The term th in formula (10) denotes certainty threshold. Expressions (10) are assertions

of emptiness with respect to the threshold. Empty situation algebra expression [BZ12b] is

an expression that cannot reach certainty threshold for any input context state. Therefore,

empty expression will never be recognized as occurring.

In formula (10) generalization means that one situation is less general than the other, e.g.

a situation InTheLivingRoom is less general then a situation AtHome. Corresponding

assertion states that less general situation should not occur without more general situation,

or, rigorously, for no context state should the certainty of having less general situation and

not more general situation reach the certainty threshold. Composition means that the

situation is built from several components. The assertion states that for no context state

should the situation be recognized without any of its components. For example, situation

InTheHouse is composed of situations like InTheLivingRoom, InTheHall, InTheBathroom.

Dependence means that one situation is a prerequisite to another (e.g. situation

UserWatchingTV depends on situation TVisOn). Contradiction means that situations should

not occur simultaneously, and the motivating scenario is a good example of it. More

sophisticated assertions can be verified by using situation algebra expressions as arguments

for the formulas (10).

A context state, for which the assertion under verification is false, is referred to as a

counterexample. If a developer needs to know, whether the assumption is satisfied or not, it

is enough to find at least one counterexample or prove that there are none. Finding as many

counterexamples as possible might provide better insight on how to fix the definition error,

but in turn searching for more counterexamples might require more time and computational

resources.

We demonstrate the approach by applying it to illustrative example. The motivating

scenario is built on top of the example context and situations, which were defined in earlier

sections. The example was inspired by [BZ12b], but we use different and more advanced

concept of a situation, and it results in more realistic situation representation. Moreover,

different concept of a situation results in entirely different verification algorithm, which is

proposed and proved in this article.

Consider the context space, depicted in figure 1. It has three context attributes: numeric

attributes NoiseLevel and LightLevel and non-numeric context attribute SwitchPosition. The

situations LightMalfunctions and ConditionsAcceptable, are defined in expressions (6) and

(8) respectively. As we mentioned in the introduction, the situations ConditionsAcceptable

and LightMalfunctions should not co-occur: ConditionsAcceptable implies illuminance

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

166

sufficiency, while LightMalfunctions implies illuminance insufficiency. In terms of

situation relations (10), ConditionsAcceptable and LightMalfunctions are in a contradiction.

The value 0.7 is frequently chosen as confidence threshold in practice, and we are going to

choose it for the motivating example. As a result, assertion (11) should be maintained.

 St, (𝐿𝑖 ℎ𝑡 𝑎𝑙 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 & 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒)() ≥ 0.7 (11)

Assertion (11) states that for no context state the confidence level of the situation algebra

expression ConditionsAcceptable&LightMalfunctions exceeds the threshold, i.e. for no

context state the two mentioned situations are triggered together.

This section provided rigorous formalization of the necessary terms and defined a

motivating scenario. The next section proposes verification algorithm for fuzzy situations

and uses verification of assertion (11) as a running example.

3 Verification of Fuzzy Situations

In this section we propose a method of emptiness check for a situation algebra expression

that involves fuzzy situations. Section 3.1 describes additional assumptions and notation

agreements. Section 3.2 proposes a general method to utilize DNF representation of the

verified assertion. Section 3.3 describes the method to handle non-numeric and mixed

context attributes. Sections 3.4 and 3.5 propose the method to find subspaces of context

space, where all the involved situations are linear functions. Section 3.6 proposes a method

to find the maximum confidence values within those subspaces. Section 3.7 summarizes the

verification approach. Every step of verification is illustrated in details using the motivating

scenario from section 2.3.

3.1 Additional Assumptions

In order to simplify further proofs and analysis, we make several additional assumptions.

Those assumptions do not result in any loss of generality, and can be viewed more as

notation agreements.

Assumption 1. All the mentioned situations are defined over the same set of context

attributes.

This assumption simplifies the proofs without reducing generality of the methods: if

needed, additional context attributes with zero weight and constant zero membership

functions can be introduced into any situation. In the motivating scenario we can rewrite the

situations in the following manner (expressions (12) and (13)).

C nditi nsAcceptab e(X) = .5 ∗ µL t
 𝐴 (Li htLeve)

 .5 ∗ µ𝑁𝑜 𝑠𝑒
 𝐴 (N iseLeve) ∗ µ t

 𝐴 (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛) (12)

µ t
 𝐴 (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛) = 0

Li ht a f ncti ns(X) = .5 ∗ µL t
𝐿 (Li htLeve)

 ∗ µN
𝐿 (N iseLeve) .5 ∗ µ t

𝐿 (𝑆𝑤𝑖𝑡𝑐ℎ𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛) (13)

µN
𝐿 (N iseLeve) =

Expressions (12) and (13) are equivalent to the definitions (6) and (8) respectively. In

expressions (12) and (13) both situations, involved in the motivating scenario, are defined

over the same set of context attributes: LightLevel, NoiseLevel and SwitchPosition. If a

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

167

context attribute influences at least one involved situation, it is added to all the other

situations. Note that even if newly added context attribute is Undefined (e.g. due to

unavailable sensor), the membership function is still zero.

Assumption 2. Context space has only context attributes, which belong to at least one

situation. Only those context attributes influence certainty levels, and, therefore, only those

context attribute values determine whether any given context state is a counterexample or

not.

In the motivating example the only relevant context attributes are LightLevel, NoiseLevel

and SwitchPosition. Other context attributes do not influence assertion (11) and, therefore,

are omitted from context space by this assumption.

Assumption 3. Context attributes within context state are ordered and numbered. It will

ensure that when referring to i-th element of input context state, the same context attribute

is implied for different situations. According to assumption 1, for all the situations the list

of context attributes is the same. Therefore, choosing any arbitrary order will satisfy the

assumption.

In the motivating scenario we define the following order: {LightLevel, NoiseLevel,

SwitchPosition}. For example, the point from figure 1 is {500,30,On}. Other context

attribute values are omitted according to assumption 2.

Further sections propose and prove the verification algorithm, and the derivations imply

the assumptions 1-3.

3.2 Utilizing DNF representation

Disjunctive normal form (DNF) [RN06] is a way to represent logical expression as a

disjunction of conjunction clauses. A generic example of DNF situation algebra expression

is presented in formula (14).

(Sit1(X)&Sit2(X)) | (Sit3(X)&(¬Sit4*(X))) | ((¬Sit5(X))&Sit1(X)) (14)

The whole expression (14) is a disjunction, where every disjunct is conjunction of single

situations or their negations. The disjuncts in expression (14) are Sit1(X)&Sit2(X),

Sit3(X)&(¬Sit4*(X)) and (¬Sit5(X))&Sit1(X).

In formalized situation relations (10) expressions are naturally in DNF format. In the

motivating example (11) expression is in DNF format as well. If needed, the following

properties can assist DNF conversion. Those properties straightforwardly follow from

formulas (9).

1. AND and OR are commutative:

(A & B)(X) = (B & A)(X), and (A | B)(X) = (B | A)(X).

2. Distributive property holds for AND over OR:

(A & (B | C))(X) = (A&B | A&C)(X).

3. DeMorgan laws do apply:

a. ¬ (A | B)(X) = (¬A & ¬B)(X).

b. ¬ (A & B)(X) = (¬A | ¬B)(X).

Lemma 3.2 shows how DNF representation can be utilized for verification purposes. The

main idea is to find maximum achievable certainty for each disjunct, and obtain the context

state where the maximum certainty is achieved. Lemma 3.2 shows that if counterexamples

do exist, some of them will be at those context states.

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

168

Lemma 3.2. Any arbitrary DNF situation algebra expression is non-empty w.r.t. to some

threshold, if and only if the maximum certainty value of at least one DNF disjunct is greater

or equal to the threshold.

Proof. Consider an arbitrary DNF situation algebra expression Expr(X), presented in

formula (15).

Expr(X) = Disj1(X) | Disj2(X) | … | DisjN(X) (15)

Every disjunct Disji(X) is a conjunction of single situations or their negations, and for

this lemma no further details are required. The chosen threshold is denoted as th.

Part 1. Sufficiency proof. The proof of sufficiency assumes that for at least one disjunct

the maximum value reaches the threshold th, and derives that the whole expression is non-

empty w.r.t. to that threshold. Let for some disjunct Disjk(X) the maximum achievable

certainty value be d, which is not less than the threshold th. Let’s also denote as Xk the

context state, at which the maximum certainty value d is achieved by Disjk(X). It can be

summarized in formula (16).

Disjk(XK) = d, d ≥ th (16)

Now let’s find the certainty of the expression Expr(X) at context state XK. The derivation

is presented in (17). OR situation algebra operation is expanded according to definition (9).

Expr(Xk) = Disj1(Xk) | Disj2(Xk) | … | DisjN(Xk) =

 = max(Disj1(Xk), Disj2(Xk),…,DisjN(Xk)) = (17)

 = max(Disj1(Xk), Disj2(Xk),…, DisjK-1(Xk), d, DisjK+1(Xk),…,DisjN(Xk)) ≥ d ≥ th.

Summarizing the derivation (17), at the context state XK the certainty of expression

Expr(X) reaches the threshold th. Therefore the expression is not empty w.r.t. to the

threshold th. It completes the sufficiency proof.

Part 2. Necessity proof. Necessity proof assumes that expression (15) is non-empty

w.r.t. to the given threshold th, i.e. there exist some context state X’ such that Expr(X’) ≥ th.

The task is to prove that for at least one disjunct the maximum confidence value is greater

or equal than the threshold th. Initial conditions for necessity proof can be summarized in

expression (18).

∃ St, Expr(X’) ≥ th (18)

For a proof by contradiction assume that the opposite is true – the maximum values of

all disjunct are less than the threshold th. If this assumption results in a contradiction, it will

prove that for some of the disjuncts the threshold will be reached. The assumption for proof

by contradiction is summarized in expressions (19).

max(Disji(X)) < th, i=1…N (19)

Consider the derivation (20). It follows from expressions (18) and (19) and situation

algebra definitions (9).

th ≤ Exp (X’) = Disj1(X’) | Disj2(X’) | … | DisjN(X’) =

 = max(Disj1(X’), Disj2(X’),…,DisjN(X’)) ≤ (20)

 ≤ max(maxx(Disj1(X)), maxx(Disj2(X)),…, maxx(DisjN(X))) <

 < max(th, th,…, th) = th

Derivation (20) leads to summary th<th, which is a contradiction. It proves that

assumption (19) is wrong and completes proof by contradiction. Therefore, for at least one

disjunct the maximum confidence value should reach the threshold. Q.E.D.■

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

169

To summarize lemma 3.2, in order to check DNF situation algebra expression for

emptiness it is sufficient to find the maximum certainty values of every disjunct separately

and compare them against the threshold. If the threshold is exceeded for at least one

disjunct, then the expression is not empty, and verification has detected an error. The

context state, where maximum is achieved for that disjunct, is a counterexample. If all the

maxima are below the threshold, then the situation definitions comply with the assertion

under verification.

Subsequent sections propose and prove a detailed method to find the maximum value of

any disjunct. Next section discusses the influence of non-numeric context values on the

maximization task.

3.3 Handling Non-numeric Context Attribute Values

In section 3.2 we proved that for verification of DNF assertion it is sufficient to find

maximum achievable certainty of every disjunct. The presence of non-numeric values in

non-numeric or mixed context attributes poses a challenge to searching for maximum. A

plausible solution is to reduce the task to multiple maximization tasks with numeric input.

For example, in the motivating scenario we can view two cases with purely numeric

remaining context attributes: the case when SwitchPosition=On and the case when

SwitchPosition=Off. The final task is to find two maximums for two numeric functions.

Those functions are presented in expressions (21) (for SwitchPosition=On) and (22) (for

SwitchPosition=Off). In expressions (21) and (22) the contributions of SwitchPosition are

replaced by their exact values due to the fact that the value of SwitchPosition context

attribute is fixed.

min (.5 ∗ µL t
 𝐴 (Li htLeve) .5 ∗ µN

 𝐴 (N iseLeve), .5 ∗ µL t
𝐿 (Li htLeve) .5) (21)

min (.5 ∗ µL t
 𝐴 (Li htLeve) .5 ∗ µN

 𝐴 (N iseLeve), .5 ∗ µL t
𝐿 (Li htLeve)) (22)

Mixed context attributes can be processed in similar manner. For example, consider a

mixed context attribute AirConditionerSetting, which can have the values Off if the

conditioner is off, Undefined when the settings are unknown (e.g. due to connection

problems), or have a numeric value – the temperature set for the air conditioner. Three

special cases need to be investigated in that case.

1. AirConditionerSetting=Off

2. AirConditionerSetting=Undefined

3. AirConditionerSetting ∈ R

The general case of the described approach is proposed in operation 3.3. The goal of

operation 3.3 is to reduce verification involving non-numeric context attributes to multiple

verifications involving only numeric context attributes.

Operation 3.3. Consider a situation algebra expression Expr(X). It is asserted that the

certainty of Expr(X) does not reach the threshold, and in order to test it we need to find the

maximum achievable certainty value. Among other context attributes, expression Expr(X)

is defined over context attribute cL, which can take non-numeric values a1…aK (and,

possibly, numeric values as well).

Proposition. In order to find maximum certainty of Expr(X), it is sufficient to find

maximum certainty for the following cases.

Subtask 1. Find maximum certainty of Expr(X) with the constraint cL= a1.

Subtask 2. Find maximum certainty of Expr(X) with the constraint cL= a2.

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

170

…

Subtask K. Find maximum certainty of Expr(X) with the constraint cL= aK.

Subtask K+1. Find maximum certainty with a condition that cL is numeric (if cL is a mixed

context attribute).

Output. The largest of obtained maximums and the corresponding context state, where

it is achieved.

The resulting expressions under maximization are denoted as Expr(X | cL= ai) or Expr(X

| cL∈ R).

In the motivating scenario two resulting constrained optimization tasks are represented

by the formulas (21) and (22). They respectively correspond to

(ConditionsAcceptable&LightMalfunctions)(X|SwitchPosition=On) and

(ConditionsAcceptable&LightMalfunctions)(X| SwitchPosition=Off).

Proof. Let the maximum certainty value of Expr(X) be achieved at a context state X’. If

in context state X’ the value of context attribute cL is equal to ai, then this context state will

be found while solving i-th subtask. If in context state X’ the value of context attribute cL is

numeric, then it will be found while solving (K+1)-th subtasks. Therefore, if all the maxima

for Expr(X | cL= ai) and Expr(X | cL∈ R) are found, the global maximum can be obtained in

a straightforward manner – it is the highest maximum value among the obtained maxima

for tasks 1…K+1. Moreover, if any maximum for Expr(X | cL= ai) or Expr(X | cL∈ R)

exceeds the threshold, then it is already a counterexample.

Q.E.D.■

The main outcome of operation 3.3 is reducing the number of non-numeric parameters.

On the first run of the operation, one context attribute cL will be eliminated from the

subtasks 1...K (just like SwitchPosition was eliminated from the input of expression

(ConditionsAcceptable & LightMalfunctions)(X)). For the subtask K+1 the context attribute

cL will be reduced to numeric, and still the number of non-numeric inputs will be reduced

by one. If there are many non-numeric or mixed context attributes involved, operation 3.3

should be applied recursively until all of those context attributes are processed. Next

iteration is applied to all the subtasks, which emerged from previous iteration. After

multiple iterations of operation 3.3 the resulting subtasks will contain only numeric

parameters as inputs.

It should be specifically noted that after applying operation 3.3 the situations might no

longer comply with definition (1). For example, in expression (21) the situation

LightMalfunctions effectively becomes .5 ∗ µL t
𝐿 (Li htLeve) .5.

Weights no longer sum up to 1, and a bias term is introduced. In order to proceed with the

proof, we need a more general formula of a situation, which stays unaltered after applying

operation 3.3. After the substitutions like cL= ai, which are part of operation 3.3, the

involved situations comply with definition (23) instead of definition (1). Membership

functions in the definition (23) are compliant with formulas (2) and (3).

 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛() = ∑ 𝑤 ∗ 𝜇 (𝑥)
𝑁
 =1 + 𝑤 (23)

Fuzzy situations, which comply with the definition (1), do comply with the definition

(23) as well. The term 𝑤 for them is equal to zero. Negated situations also comply with the

definition (23), if the situation is defined according to expression (1) and negation is

defined according to formula (9). For that case 𝑤 is equal to 1 and all the coefficients wi

change the sign comparing to original, non-negated situation. In definition (23) the

coefficients wi no longer have to be positive and no longer have to sum up to 1.

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

171

After one iteration of operation 3.3 the involved situations undergo substitution (24).

Subscripts denote the subtask, and xL denotes the value of expanded context attribute.

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛1() = ∑ 𝑤 ∗ 𝜇 (𝑥)
𝐿 1
 =1 𝑤𝐿 ∗ 𝜇𝐿(𝑎1) ∑ 𝑤 ∗ 𝜇 (𝑥)

𝑁
 =𝐿 1 𝑤

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝐾() = ∑ 𝑤 ∗ 𝜇 (𝑥)
𝐿 1
 =1 𝑤𝐿 ∗ 𝜇𝐿(𝑎𝐾) ∑ 𝑤 ∗ 𝜇 (𝑥)

𝑁
 =𝐿 1 𝑤 (24)

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝐾 1() = ∑ 𝑤 ∗ 𝜇 (𝑥)
𝑁
 =1 𝑤 , where xL is restricted to

 numeric values (if possible).

The (K+1)-th situation of formula (24) is directly compliant with definition (23). Let’s

prove that other situations of (24) remain compliant as well. Consider i-th expression of

(24), where i is any integer value between 1 and K inclusively. The term 𝑤𝐿 ∗ 𝜇𝐿(𝑎) is a

constant. Let’s define the term 𝑤 as 𝑤 𝑤𝐿 ∗ 𝜇𝐿(𝑎). Also let’s redefine the terms in a

following manner:

- 𝑤 = 𝑤 for j=1..i-1 and 𝑤 = 𝑤 1 for j= i…N.

- 𝜇 = 𝜇 for j=1..i-1 and 𝜇 = 𝜇 1 for j= i…N.

With redefined notation, i-th row of formula (24) can be rewritten as expression (25).

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 () = ∑ 𝑤 ∗ 𝜇 (𝑥)
𝑁 1
 =1 𝑤 (25)

Expression (25) is straightforwardly compliant with the definition (23). It proves that

situations from formula (24) are all compliant with definition (23). To summarize, we have

proven that after applying operation 3.3 the formulas of individual situations remain

compliant with the expression (23).

In the motivating scenario for the situation LightMalfunctions the term 𝑤 is equal to 0.5

for the case SwitchPosition=On and is equal to 0 for the case SwitchPosition=Off. For the

situation ConditionsAcceptable the term 𝑤 is equal to 0 in both cases.

The case where w0 is undefined (UD) is a special case. It can appear in some subtasks

when considering missing sensor values (see formula (4)). In that case the certainty of a

situation is undefined. The whole conjunction of DNF expression, containing this situation

is undefined, and so is the entire DNF expression. Whether to count undefined value as a

counterexample or not is a matter of developer’s choice, but in any case no further

calculations are necessary for that subtask. Therefore, the case w0 = UD is trivial and from

now and on we consider only the cases when w0 is not UD (i.e. numeric), unless explicitly

mentioned otherwise.

To summarize, the propositions, proven in this section, have the following implications

for further proofs:

1. The search for maximum certainty can be performed separately for all possible

combinations of non-numeric values. For mixed context attributes both possible numeric

and non-numeric values should be taken into account. Operation 3.3 can generate a set of

subtasks, which should be solved separately.

2. Within every subtask the input arguments are numeric only. Also within every

subtask the situations, involved in the expression under verification, are compliant with

definition (23). Compliance with definition (1) is not guaranteed.

The next section describes the search for maximum for every mentioned subtask, with

respect to the implications summarized above.

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

172

3.4 Subspaces of Linearity – Single Situation

The extended definition of fuzzy situation (expression (23)) shows that the situation is a

weighted sum of membership functions. In turn, expressions (2) and (3) show that

membership functions are continuous piecewise linear functions, which depend only on a

single context attribute. The input context state is numeric – otherwise the operation 3.3

should be applied first.

A membership function of any arbitrary context attribute contains a set of breakpoints,

and between those breakpoints (as well as before the first breakpoint and after the last one)

a membership function linearly depends on a single context attribute value. The whole

situation formula becomes a linear function if the context state is bounded within Cartesian

product of intervals between the breakpoints. Consider an illustration from the motivating

example.

The situation ConditionsAcceptable can be correctly described both by definitions (26)

and (27) for both cases SwitchPosition=On and to SwitchPosition=Off. Expressions (26)

and (27) emerge from substituting expression (5) into expression (6).

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒() =

= [

 .5 ∗ µN
 𝐴 (N iseLeve), Li htLeve 35

1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 .5 ∗ µN

 𝐴 (N iseLeve) −

, Li htLeve ∈ [35 ; 5]

 .5 ∗ µN
 𝐴 (N iseLeve) .5, Li htLeve ≥ 5

 (26)

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒() =

= [

 .5 ∗ µL t
 𝐴 (Li htLeve) .5, N iseLeve 4

−
1

𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 .5 ∗ µL t

 𝐴 (Li htLeve)
3

2
, N iseLeve ∈ [4 ,6]

 .5 ∗ µL t
 𝐴 (Li htLeve), N iseLeve ≥ 6

 (27)

Expressions (26) and (27) can be merged in order to find the situation formula within

various Cartesian product of intervals on LightLevel and NoiseLevel axis. The result of the

merging, which straightforwardly follows from formulas (26) and (27), is presented in table

1. The formulas from table 1 apply to both cases SwitchPosition=On and

SwitchPosition=Off.

The intervals in expressions (26) and (27) do overlap and, hence, the subspaces in table 1

do overlap as well. However, compliance with conditions (3) ensures continuity and

protects from contradictions on the boundaries. As table 1 shows, for any context state,

which belongs to several Cartesian products of intervals, it does not matter which line of

table 1 to use for calculations – the resulting confidence value is the same.

For LightMalfunctions situation the formulas are presented in expressions (28) and (29).

They correspond to the cases SwitchPosition=On and SwitchPosition=Off respectively.

Note that those two cases correspond to different subtasks, generated by operation 3.3

(subtasks (21) and (22) respectively).

Li ht a f ncti ns(X) =

= [

 .5, Li htLeve 35 , witch siti n = On

−
1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙

13

, Li htLeve ∈ [35 ,5], witch siti n = On

1, Li htLeve ≥ 5 , witch siti n = On

 (28)

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

173

Table 1. ConditionsAccetable – expanded formula.

Subspace ConditionsAcceptable

Li htLeve 35 , N iseLeve 4 0.5

Li htLeve 35 , N iseLeve ∈ [4 ,6] −
1

4
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙

3

Li htLeve 35 , N iseLeve ≥ 6 0

Li htLeve ∈ [35 ; 5], N iseLeve 4
1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 −

3

Li htLeve ∈ [35 ; 5], N iseLeve ∈ [4 ,6]
1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 −

1

4
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙

1

3

Li htLeve ∈ [35 ; 5], N iseLeve ≥ 6
1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 −

7

6

Li htLeve ≥ 5 , N iseLeve 4 1

Li htLeve ≥ 5 , N iseLeve ∈ [4 ,6] −
1

4
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙

Li htLeve ≥ 5 , N iseLeve ≥ 6 0.5

Li ht a f ncti ns(X) =

= [

 , Li htLeve 35 , witch siti n = Off

−
1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙

3
, Li htLeve ∈ [35 ,5], witch siti n = Off

 .5, Li htLeve ≥ 5 , witch siti n = Off

 (29)

Expressions (28) and (29) are summarized in table 2.

As follows from table 1, there exists a set of subspaces within the context space, where

the situation ConditionsAcceptable is linear. Every context state belongs to some subspace

of that set (and, possibly, more than one subspace). The same conclusion regarding the

situation LightMalfunctions follows from table 2, but the set of subspaces is different. And,

actually, the same conclusion applies to any arbitrary situation – for any situation there

exists a set of subspaces, which cover the entire context space. Within each of those

subspaces the situation is linear. Those subspaces are referred to as subspaces of linearity –

subspaces where the situation formula is a linear function. The proof that subspaces of

linearity exist for any situation is presented in lemma 3.4.

Table 2. LightMalfunctions – expanded formula.

Subspace
LightMalfunctions

(SwitchPosition=On)

LightMalfunctions

(SwitchPosition=Off)

Li htLeve 35 ,N iseLeve ∈ (− ,) 1 0.5

Li htLeve ∈ [35 ; 5],
N iseLeve ∈ (− ,)

−
1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙

13

6
 −

1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙

5

3

Li htLeve ≥ 5 ,N iseLeve ∈ (− ,) 0.5 0

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

174

Lemma 3.4. For any context space and any situation Situation(X) (defined by formula

(23)) there exist a set of subspaces, with following properties:

1) Any context state is within some subspace of the set.

2) The situation is a linear function in any subspace of the set.
The input to the situation Situation(X) is numeric. Otherwise, operation 3.3 should be

applied first.

Proof.

An arbitrary situation Situation(X), compliant with the definition (23): 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛() =
∑ 𝑤 ∗ 𝜇 (𝑥)

𝑁
 =1 + 𝑤 . Membership functions are compliant with the definition (2). Let the

breakpoints of membership function 𝜇 (𝑥) be p(i,1)…p(i,Li), the linear coefficients be

a(i,1)..a(i,Li+1) and the bias terms be b(i,1)..b(i,Li+1). Let’s denote the intervals in a

following manner: the interval (− , 𝑝(𝑖, 1)] is denoted as I(i,1), the interval

[𝑝(𝑖, 1), 𝑝(𝑖,)] is denoted as I(i,2) and so on. The last interval of the context attribute,

[𝑝(𝐿),) is denoted as I(i, Li+1). Formula (30) shows membership function for i-th

context attribute. The meaning does not differ from formula (3), the only difference is new

notation, which will simplify further proofs.

µ (𝑥) =

[

𝑎(𝑖, 1) ∗ 𝑥 𝑏(𝑖, 1), 𝑥 ∈ 𝐼(𝑖, 1)

𝑎(𝑖,) ∗ 𝑥 𝑏(𝑖,), 𝑥 ∈ 𝐼(𝑖,)
…

𝑎(𝑖, 𝐿) ∗ 𝑥 𝑏(𝑖, 𝐿), 𝑥 ∈ 𝐼(𝑖, 𝐿)

𝑎(𝑖, 𝐿 1) ∗ 𝑥 𝑏(𝑖, 𝐿 1), 𝑥 ∈ 𝐼(𝑖, 𝐿 1)

 (30)

Consider the following set of subspaces, defined by expression (31).

𝑥1 ∈ 𝐼(1, 𝑘1) 𝑥2 ∈ 𝐼(, 𝑘2) … ^ 𝑥𝑁 ∈ 𝐼(𝑁, 𝑘𝑁) (31)

In formula (31) every index ki can have any integer value between 1 and Li+1 (for

i=1…N). The subspace is defined as Cartesian product of intervals over different context

attributes. The formula of a situation (32) is applicable within any arbitrary subspace.

Formula (32) is the result of direct substitution of (30) into the formula (23).

Situation(X) = ∑ 𝑤 ∗ 𝑎(𝑖, 𝑘) ∗ 𝑥
𝑁
 =1 + 𝑤 ∑ 𝑤 ∗ 𝑏(𝑖, 𝑘)

𝑁
 =1 , (32)

𝑥1 ∈ 𝐼(1, 𝑘1) 𝑥2 ∈ 𝐼(, 𝑘2) … ^ 𝑥𝑁 ∈ 𝐼(𝑁, 𝑘𝑁)

The term 𝑤 ∑ 𝑤 ∗ 𝑏(𝑖, 𝑘)
𝑁
 =1 is a constant and the coefficients 𝑤 ∗ 𝑎(𝑖, 𝑘) are linear

coefficients for i-th context attribute value xi. Therefore, formula (32) depends linearly on

all context attribute values xi, and it proves proposition 2 of the lemma. Every formula from

tables 1 and 2 are, actually, the applications of formula (32) to the situations

ConditionsAcceptable and LightMalfunctions respectively.

In order to prove proposition 1, consider arbitrary context state {x1, x2, …, xN}. By the

construction, the set of intervals I(1,0), I(1,1), …, I(1,L1), I(1, L1+1) covers all possible

values of 1
st
 context attribute, from -∞ to +∞. Therefore, x1 belongs to one of those

intervals. Actually, if the value x1 it is equal to p(1,1), p(1,2), … p(1,L1), then x1 can belong

to two intervals at once, in that case, we choose arbitrary interval. Let the interval be I(1,k1)

where k1 can be any value between 1..L1+1.

The same derivations can be applied to 2
nd

 context attribute. Therefore, the value x2

belongs to the interval I(2,k2) where k2 can be any value between 1 and L2+1. And so on

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

175

until xN. As a summary, the context state belongs to the subspace 𝑥1 ∈ 𝐼(1, 𝑘1) 𝑥2 ∈
𝐼(, 𝑘2) … ^ 𝑥𝑁 ∈ 𝐼(𝑁, 𝑘𝑁), where every index ki can have any integer value between 1

and Li+1 (for i=1…N). So, any arbitrary context attribute belongs to some subspace,

defined by (31). It proves proposition 1 of the lemma and completes the proof.

Q.E.D.■

To summarize, this section has proven that for any situation there exist a set of

subspaces, where the situation is a linear function. Next sections extend this solution for the

case of conjunction of several situations, and utilize it to find the maximum value of a DNF

disjunct.

3.5 Subspaces of Linearity – Conjunction of Situations

As section 3.2 shows, in order to verify situations and find a counterexample, we need to

find the maximum values of every disjunct of the DNF expression under verification. A

disjunct in the DNF situation algebra formula is a conjunction of situations and their

negations, generic example is presented in expression (33)

Disj(X) = Conj1(X) & Conj2(X) & … & C jK(X) (33)

Combined with the situation algebra logic formulas (9), the final value is the minimum

value between all the conjuncts (expression (34)).

∀ St, Disj(X) = min(Conj1(X),Conj2(X), …,C jN(X)) (34)

Every conjunct Conji(X) is either a single situation, or a negation of a single situation. As

section 3.3 shows, in both cases the definition is compliant with formula (23). Therefore,

lemma 3.4 can be applied to every conjunct, and for every conjunct the context space can

be divided into a set of subspaces, where in each subspace the conjunct is a linear function.

All the conjuncts are linear functions in the intersections of the corresponding subspaces.

Consider the following example.

The expression ConditionsAcceptable(X) & LightMalfunctions(X) should be tested for

emptiness. As table 1 and table 2 show, in some subspaces of the context space the situation

ConditionsAcceptable(X) and the situation LightMalfunctions(X) are linear. All the

intersections of the subspaces from tables 1 and 2 are presented in table 3. The intersections

are the same for the cases SwitchPosition=On and SwitchPosition=Off.

1. Any context state belongs to some subspace of the set.

2. In every subspace all the situations, mentioned in conjunction

ConditionsAcceptable(X) & LightMalfunctions(X) are linear.

The approach can be generalized for any arbitrary conjunction. Consider a generic

conjunction, defined according to formula (33). Algorithm 3.5 proposes a solution to find

the mentioned subspace intersections.

Algorithm 3.5. Consider a conjunction, defined according to expression (33). The

conjuncts Conj1, Conj2, …, ConjK each are defined according to formula (35).

The most important properties of the subspaces defined in table 3 are following:

𝐶𝑜𝑛 𝐾() = ∑ 𝑤 ∗ 𝜇 , (𝑥)
𝑁
 =1 𝑤 , (35)

The membership function 𝜇 , (𝑥) is the function for k-th conjunct over i-th context

attribute. Let the breakpoints be p(i,k,1)…p(i,k,L(i,k)). Variable L(i,k) denotes the number

of breakpoints.

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

176

Table 3. Subspaces of linearity – ConditionsAcceptable & LightMalfunctions

Subspace ConditionsAcceptable LightMalfunctions

(SwitchPosition=On)

LightMalfunctions

(SwitchPosition=Off)

Li htLeve 35

N iseLeve 4
0.5 1 0.5

Li htLeve 35

N iseLeve ∈ [4 ,6]
−

1

4
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙

3

 1 0.5

Li htLeve 35

N iseLeve ≥ 6
0 1 0.5

Li htLeve ∈ [35 ; 5],
N iseLeve 4

1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 −

3
 −

1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙

13

6
 −

1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙

5

3

Li htLeve ∈ [35 ; 5]
N iseLeve ∈ [4 ,6]

1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 −

−
1

4
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙

1

3

−
1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙

13

6
 −

1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙

5

3

Li htLeve ∈ [35 ; 5]
N iseLeve ≥ 6

1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 −

7

6
 −

1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙

13

6
 −

1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙

5

3

Li htLeve ≥ 5 ,
N iseLeve 4

1 0.5 0

Li htLeve ≥ 5

 N iseLeve ∈ [4 ,6]
−

1

4
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙 0.5 0

Li htLeve ≥ 5

N iseLeve ≥ 6
0.5 0.5 0

Algorithm pseudocode.

// Step 1. Generate breakpoints.

for i = 1 to N //For every context attribute

 p’(i) = ew B eakp i tList(); //Establish a ew list f b eakp i ts f i-th context

attribute

 for j = 1 to K //For every situation

 p’(i).addAll (p(i,k,1…L(i,k))); //Add all breakpoints to a resulting list

 end for //End for every situation

 p’(i).s t();//S t the b eakp i ts i as e di g de

 p’(i). em veDuplicates(); //All breakpoints should be distinct.

end for //End for every context attribute

//Step 2. Generate the intervals.

for i = 1 to N //For every context attribute

 Interval I(i,1) = (-∞, p’(i,1)];//Fi st i te val – from negative infinity to the first

breakpoint

 f j = 2 t p’(i).le gth

 Interval I(i,j) = [p’(i,j-1), p’(i,j)] //Subsequent intervals – between the breakpoints

 end for

 Interval I(i, p’(i).le gth+1) = [p’(i,L),+∞);//Last i te val – from the last breakpoint and

further

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

177

end for //End for every context attribute

//Step 3. Generate the subspaces.

SubspaceList resultingList = new SubspaceList();

 //Generate new subspace by

for i1 = 1 t I(1).le gth // … mbi i g eve y i te val ve fi st text att ibute…

 for i2 = 1 t I(2).le gth // … with eve y i te val f se d text att ibute

 …

 for iN = 1 t I(N).le gth // … with eve y i te val f N-th context attribute

 resultingList.add (new Subspace(I(1,i1), I(2,i2),…, I(N,iN))); //add to the list

 end for

 …

 end for

end for

return resultingList;

Let us consider an application of the algorithm to the motivating scenario. Breakpoints

over the context attribute LightLevel are {350,500}, the same for ConditionsAcceptable and

LightMalfunctions. In the first step of the algorithm the breakpoints are merged into a single

list: {350, 500, 350, 500}. The procedure p’(i).s t() sorts the breakpoint array and

transforms it into {350, 350, 500, 500}. The procedure p’(i). em veDuplicates() removes

duplicated breakpoints and makes the breakpoint array for LightLevel look like {350, 500}.

The breakpoints over the context attribute NoiseLevel are {40, 60} for the situation

ConditionsAcceptable. For LightMalfunctions the set of breakpoints for NoiseLevel is

empty. Therefore, the resulting set of breakpoints is {40, 60}. Removing duplicated

breakpoints and sorting them does not change the array, it still remains {40, 60}.

Step 2 of the algorithm composes the intervals. For the context attribute LightLevel the

intervals are (-∞, 350], [350,500] and [500, +∞). For the context attribute NoiseLevel the

intervals are (-∞, 40], [40,60] and [60, +∞).

Step 3 composes the subspaces out of intervals, obtained in the step 2. The generated

subspaces are illustrated in table 3. Also table 3 shows that all the mentioned situations are

linear inside those subspaces. The proof of the algorithm shows that for an arbitrary

conjunction all the conjuncts are linear inside the subspaces, generated by the algorithm

3.5.

Proof. In order to prove the correctness of the algorithm, it is sufficient to prove that the

algorithm complies with two properties.

1. Any context state is inside at least one subspace of the set.

2. In every subspace all the situations within the conjunction are linear.

Property 1 can be proven as follows, it slightly resembles the proof of lemma 3.4.

Consider an arbitrary context state {x1, x2, …, xN}. Consider the value of 1
st
 context

attribute x1. By the construction (see step 2), the set of intervals I(1,1), …, I(1,I(1).length)

covers all possible values of 1
st
 context attribute, from -∞ to +∞. So, x1 belongs to at least

one of those intervals. Let it be the interval I(1,k1). The same logic can be applied to any

arbitrary context attribute: the context attribute value xi belong to the interval I(i,ki).

Therefore, context state {x1, x2, …, xN} belongs to the subspace x1 ∈ I(1,k1)^ x2 ∈

I(2,k2)^…^ x𝑁 ∈ I(1,kN). According to the step 2 of the algorithm, that subspace was

generated in the nested loops where i1=k1, i2=k2, …, iN=kN. Therefore, an arbitrary context

state belongs to one of the generated subspaces, Q.E.D. for property 1.

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

178

Property 2 can be proven as follows. According to lemma 3.4, for any situation there

exist a set of subspaces, where the situation is linear for every subspace in the set. As a

consequence, the situation is linear in every subspace of that subspace. We need to prove

that any subspace, generated by the algorithm, is a subspace of a subspace of linearity for

any conjunct. Consider the proof of a following hypothesis.

Hypothesis 3.5.1. Any interval over any context attribute, generated in the step 2 of the

algorithm, does not contain any breakpoints (except for on the boundaries) of any conjuncts

of that context attributes. Consider a proof by contradiction. Let there be some generated

subspace x1 ∈ I(1,k1)^ x2 ∈ I(2,k2)^…^ x𝑁 ∈ I(1,kN). Let pi be the breakpoint of conjunct

Conjt(X) on i-th context attribute. Let pi be inside the interval I(i,ki) and not on its

boundaries. However, according to the step 2 of the algorithm any breakpoint is a boundary

of some interval - the breakpoint p should have been added as a breakpoint in the step 1

and could not have been removed by removeDuplicates() operation (if it is a duplicate, one

of the pi points is preserved to become a boundary of the interval in the step 2). Therefore,

the point p should have become a boundary of some interval, let it be the interval I(i,m).

According to the assumption of proof by contradiction the point p belongs to the interval

I(i,ki), therefore, the intervals I(i,m) and I(i,ki) do overlap. Also according to the assumption

of proof by contradiction the point p is not on the boundary of I(i,ki), therefore the

intersection of I(i,m) and I(i,ki) is not restricted to the boundary point. However, by the

construction in the step 2 of the algorithm, the intervals can intersect only on boundary

points. It is a contradiction, therefore, such breakpoint p does not exist. Q.E.D. for

hypothesis 3.5.1.
Consider a proof of proposition 2 for an arbitrary conjunct Conjt(X) and an arbitrary

generated subspace x1 ∈ I(1,k1)^ x2 ∈ I(2,k2)^…^ x𝑁 ∈ I(1,kN). Consider an arbitrary i-th

context attribute and the interval I(i,ki). According to the hypothesis 3.5.1, membership

function of Conjt(X) over the first context attribute contains no breakpoints inside the

interval I(i,ki) (except for, possibly, on the boundaries). There can be three cases:

1. The interval I(i,ki) is situated before the first breakpoint p(i,t,1), including the case

when the first breakpoint is an upper boundary of the interval I(i,ki). In this case the interval

I(i,ki) belongs to the interval (-∞;p(i,t,1)], where Conjt(X) linearly depends on i-th context

attribute value according to definitions (23) and (2). Therefore, inside the interval I(i,ki) the

conjunct Conjt(X) linearly depends on i-th context attribute value.

2. The interval I(i,ki) is after the last breakpoint, including the case when the last

breakpoint is on the lower boundary of the interval I(i,ki). If Conjt(X) contains no

breakpoints for i-th context attribute, it can be viewed as a special case of this point or

previous point. In this case the interval I(i,ki) belongs to the interval [p(i,t,L(i,t)); ∞), where

Conjt(X) linearly depends on i-th context attribute value. As well as for case 1, inside the

interval I(i,ki) the conjunct Conjt(X) linearly depends on i-th context attribute value due to

definitions (23) and (2).

3. The interval I(i,ki) is between the breakpoints and, hence, inside the interval [p(i,t,m);

p(i,t,m+1)]. But inside [p(i,t,m); p(i,t,m+1)] the conjunct Conjt(X) linearly depends on i-th

context attribute value, and the same applies to the subinterval I(i,ki).

The remaining options are ruled out by the hypothesis 3.5.1. If the interval does not

contain any breakpoint, then it is either before the first breakpoint, after the last breakpoint

or between the breakpoint.

Therefore, in the interval I(i,ki) the conjunct Conjt(X) linearly depends on i-th context

attribute value. By applying the same proof to all conjuncts and all context attributes, we

can state that in the subspace x1 ∈ I(1,k1)^ x2 ∈ I(2,k2)^…^ x𝑁 ∈ I(1,kN) all the conjuncts

linearly depend on all context attribute values. And it can be applied to any subspace,

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

179

generated by the algorithm. As a summary, for all subspaces generated by the algorithm all

the conjuncts linearly depend on all context attribute values. It completes the proof of

proposition 2 and, hence, completes the proof of algorithm 3.5.

Q.E.D.■

The next section discusses searching for the maximum point of a conjunction within

every subspace, generated by the algorithm 3.5. Global maximum can be obtained

straightforwardly by comparing the maxima within the subspaces, and it completes

emptiness test of a DNF situation algebra expression.

3.6 Constrained Optimization in the Subspace

Previous section described the algorithm to divide a context space into a set of subspaces

with special properties. In the subspaces, generated by the algorithm 3.5, all the conjuncts

are linear functions. The task of finding a maximum of a conjunction inside the subspace

can be reduced to the linear programming task. Consider an example from motivating

scenario, before we proceed to the proof for an arbitrary conjunction.

In the motivating scenario the conjunction under testing is ConditionsAcceptable(X) &

LightMalfunctions(X). Context space can be divided into the set of subspaces, where both

ConditionsAcceptable(X) and LightMalfunctions(X) are linear. The subspaces, as well as

linear functions, are presented in table 3. For illustration, let’s find maximum value within

the subspace (Li htLeve ∈ [35 ; 5]) (N iseLeve ∈ [4 ,6]) in case when

SwitchPosition=On. Expression (36) formalizes the maximization task.

Maximize: min (
1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 −

1

𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙

1

3
 , −

1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙

13

)

w.r.t. constraints:

Li htLeve 5 (36)

Li htLeve ≥ 35

N iseLeve ≥ 4

N iseLeve 6

Actually, the task (36) is a piecewise linear programming task [BV04], which can be

reduced to the linear programming tasks. Task (36) can be rewritten as task (37) by

introducing the artificial intermediate variable t=min(
1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 −

1

𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙

1

3
,

−
1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙

13

).

Maximize: t

w.r.t. constraints:

𝑡
1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙 −

1

4
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙

1

3

𝑡 −
1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙

13

 (37)

35 Li htLeve 5

4 N iseLeve 6

New maximization objective is the result of direct substitution of new variable t. The

two uppermost constraints directly follow from the definition of t. Task (37) can be further

rewritten as task (38).

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

180

Maximize: t

w.r.t. constraints:

𝑡 −
1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙

1

4
𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙

1

3

𝑡
1

3
𝐿𝑖 ℎ𝑡𝐿𝑒𝑣𝑒𝑙

13

 (38)

35 Li htLeve 5

4 N iseLeve 6

The task (38) is not yet a canonical form of the linear programming task. However, for

many linear programming solvers the format (38) is already acceptable as an input. For this

article we use the implementation of interior point method, embedded in the GNU Linear

Programming Kit [M12], which in turn is embedded in GNU Octave [E08]. The maximum

values, obtained by solving of piecewise linear maximization task for different subspaces,

generated by algorithm 3.5, and different subtasks, generated by operation 3.3, are

presented in table 4.

Now the verification of motivating scenario is complete. Rows 4 and 5 of table 4 show

that for the values LightLevel=425, NoiseLevel=40 and SwitchPosition=On the confidence

level for the expression ConditionsAcceptable(X) & LightMalfunctions(X) is equal to 0.75.

It is above the threshold of 0.7, therefore, for the expression the

ConditionsAcceptable(X)&LightMalfunctions(X) verification has detected an error. A

straightforward test can show, that it is really a counterexample: for the context state {425;

40; On} certainty of ConditionsAcceptable(X) and certainty of LightMalfunctions(X) will

be both 0.75. Both situations will be triggered in that case, and it will cause inconsistent

situation awareness results.

Table 4 shows that the counterexample is detected twice (rows 5 and 6). The reason is

that the counterexample lies on the border of the subspaces. It is quite common case and it

does not hamper verification in any way. The found counterexample is not the only

counterexample available – within some subspace around the counterexample the

confidence value of ConditionsAcceptable(X) & LightMalfunctions(X) is above 0.7.

Consider a sequence of steps for any arbitrary conjunction. Let the conjunction be

Conj1(X) &Conj2(X) &…&C jK(X). Let the subspace be (low1 ≤ x1 ≤ high1) ^(low2 ≤ x2 ≤

high2)^…(lowN ≤ xN ≤ highN). Any lower or upper boundary can as well be infinite, in that

case inequality sign is not inclusive. The subspace is generated by the algorithm 3.5 for the

conjunction. Therefore, every conjunct is linear inside the subspace. Let’s denote the linear

coefficients of an arbitrary l-th conjunct according to formula (39).

Conjl(X) = ∑ 𝑎(𝑙, 𝑖) ∗ 𝑥
𝑁
 =1 𝑏(𝑙) (39)

The maximization task looks as follows (formula (40)).

Maximize: min (∑ 𝑎(1, 𝑖) ∗ 𝑥
𝑁
 =1 𝑏(1), ∑ 𝑎(, 𝑖) ∗ 𝑥

𝑁
 =1 𝑏(),

… , ∑ 𝑎(𝐾, 𝑖) ∗ 𝑥
𝑁
 =1 𝑏(𝐾))

w.r.t. constraints: (40)

low1 ≤ x1 ≤ high1

low2 ≤ x2 ≤ high2
 …

lowN ≤ xN ≤ highN

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

181

Table 4. ConditionsAcceptable(X)&LightMalfunctions(X) - Maxima within subspaces.

№ Subspace
Maximum

(t-value)

Context

State

[LightLevel;

NoiseLevel]

1 Li htLeve 35 ,N iseLeve 4 , SwitchPosition=On 0.5 [350; 40]

2 Li htLeve 35 ,N iseLeve ∈ [4 ,6], SwitchPosition=On 0.5 [350; 40]

3 Li htLeve 35 ,N iseLeve ≥ 6 , SwitchPosition=On 0 [350; 60]

4
Li htLeve ∈ [35 ; 5], N iseLeve 4 ,

SwitchPosition=On
0.75 [425; 40]

5
Li htLeve ∈ [35 ; 5], N iseLeve ∈ [4 ,6],
SwitchPosition=On

0.75 [425; 40]

6
Li htLeve ∈ [35 ; 5], N iseLeve ≥ 6 ,

SwitchPosition=On
0.5 [500; 60]

7 Li htLeve ≥ 5 ,N iseLeve 4 , SwitchPosition=On 0.5 [500; 40]

8 Li htLeve ≥ 5 ,N iseLeve ∈ [4 ,6], SwitchPosition=On 0.5 [500; 40]

9 Li htLeve ≥ 5 ,N iseLeve ≥ 6 , SwitchPosition=On 0.5 [500; 60]

10 Li htLeve 35 ,N iseLeve 4 , SwitchPosition=Off 0.5 [350; 40]

11
Li htLeve 35 ,N iseLeve ∈ [4 ,6],
SwitchPosition=Off

0.5 [350; 40]

12 Li htLeve 35 ,N iseLeve ≥ 6 , SwitchPosition=Off 0 [350; 60]

13
Li htLeve ∈ [35 ; 5], N iseLeve 4 ,

SwitchPosition=Off
0.5 [350; 40]

14
Li htLeve ∈ [35 ; 5], N iseLeve ∈ [4 ,6],
SwitchPosition=Off

0.5 [350; 40]

15
Li htLeve ∈ [35 ; 5], N iseLeve ≥ 6 ,

SwitchPosition=Off
0.25 [425; 60]

16 Li htLeve ≥ 5 ,N iseLeve 4 , SwitchPosition=Off 0 [500; 40]

17
Li htLeve ≥ 5 ,N iseLeve ∈ [4 ,6],
SwitchPosition=Off

0 [500; 40]

18 Li htLeve ≥ 5 ,N iseLeve ≥ 6 , SwitchPosition=Off 0 [500; 60]

Task (40) is a piecewise linear programming task. Piecewise linear programming task

can be reduced to linear programming task by introduction of slack variable [BV04]. The

result looks as follows (task (41)).

Maximize: t

w.r.t. constraints:

t + ∑ (−𝑎(1, 𝑖)) ∗ 𝑥
𝑁
 =1 ≤ 𝑏(1)

t + ∑ (−𝑎(, 𝑖)) ∗ 𝑥
𝑁
 =1 ≤ 𝑏()

…

t + ∑ (−𝑎(𝐾, 𝑖)) ∗ 𝑥
𝑁
 =1 ≤ 𝑏(𝐾) (41)

low1 ≤ x1 ≤ high1

low2 ≤ x2 ≤ high2
 …

lowN ≤ xN ≤ highN

Task (41) can be further reduced to the canonical form of linear programming task (see

[BV04]). However, linear programming solvers often can work with the task in (41) format

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

182

already. As a result of solving task (41), the variable t will contain the maximum

confidence value of the conjunction min (∑ 𝑎(1, 𝑖) ∗ 𝑥
𝑁
 =1 𝑏(1), ∑ 𝑎(, 𝑖) ∗ 𝑥

𝑁
 =1

𝑏(), …, ∑ 𝑎(𝐾, 𝑖) ∗ 𝑥
𝑁
 =1 𝑏(𝐾)), which should be tested against the threshold. The

solution of task (41) in the values x1…xN will also contain a set of context attribute values,

for which the maximum certainty is achieved. If the maximum certainty exceeds the

threshold, this set of values is a counterexample.

This section completes the description and proof of the verification algorithm. Next

section summarizes the entire verification procedure.

3.7 Verification Approach – Summary

Summarizing the information of sections 3.1-3.6, the final verification procedure looks as

follows.

Input. The property under verification should be represented as emptiness assertion for

DNF situation algebra expression. The guidelines for composing the expression are

presented in section 2.3 and section 3.2.

Step 1. Use operation 3.3 to define the subtasks for every combination of non-numeric

and mixed context attributes.

Step 2. For every subtask and for every disjunct of the DNF expression, find the

subspaces where all the conjuncts are linear. It can be done using the algorithm 3.5.

Step 3. For every subtask, for every disjunct of the expression and for every subspace,

identified in the step 2, define and solve linear programming task to find the maximum

certainty. The procedure for defining and solving linear programming task is defined in

section 3.6.

Linear programming solution contains maximum certainty value, as well as the context

state where the maximum is achieved. If the certainty is above the threshold, then the

corresponding context state is a counterexample. Counterexample is added to the list. If the

developer needs just a Boolean answer whether the verification found any errors, then

verification can stop upon finding the first counterexample. If after all iterations of step 3

no counterexamples are found, it means that the context model complies with the assertion,

and the verification detected no errors.

Output. The list of counterexamples – context states where the expression under

emptiness exceeds the threshold. If the list is empty, then verification has found no errors.

The verification algorithm can be described in a following pseudocode.

Algorithm 3.7.

// Step 1. Define subtasks (use operation 3.3).

subtasks = defineSubtasks(expression, situations);

//Step 2. For every subtask and for every disjunct of DNF expression, find the

subspaces of linearity.

for i = 1 to expression.getDisjuncts()

 for j = 1 to subtasks.getCount()

 //Use algorithm 3.5 to get subspaces of linearity

 subspaces[i,j] = subtasks[i].getSubspaces(expression.disjunct[j]);

 end for; // End for every subtask

end for; // End for every disjunct

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

183

//Step 3. For every subspace of linearity – find maximum confidence value.

for i = 1 to expression.getDisjuncts()

 for j = 1 to subtasks.getCount()

 for k = 1 to subspaces[i,j].length //For every subspace

 //Define linear programming subtask according to guidelines (41)

 linearProgrammingTask = defineLPTask(subspaces[i,j,k], expression.disjunct[i],

subtask[j]);

 //Solve linear programming task, find maximum confidence value and corresponding

context state

 [value contextState] = solveLinearProgrammingTask(linearProgrammingTask);

 if (value >= threshold)

 counterexamples.add(contextState, expression.getConfidence(contextState));

 end if

 end for; // End for every subspace

 end for; // End for every subtask

end for; //End for every disjunct

//Output: a list of counterexamples. An empty list means that verification found no

errors.

return counterexamples;

As for the motivating scenario, the proposed algorithm found a counterexample

{LightLevel=425, NoiseLevel=40, SwitchPosition=On}, for which both situations have

certainty of 0.75. The verification has detected an error.

The next section discusses theoretical and practical complexity of the proposed solution.

4 Evaluation

In section 3 we proposed, discussed and proved the sequence of the steps of the verification

approach for fuzzy situation models in pervasive computing. Complexity of the steps of the

verification algorithm consists of following components:

- Generation of possible combinations of non-numeric parameters.

- Generation of subspaces.

- Defining and solving linear programming task for every subspace and every

combination.

The verification mechanisms were implemented as an extension over ECSTRA

(Enhanced Context Spaces Theory-based Reasoning Architecture) situation awareness

framework, and all the practical tests were performed inside that framework as well. For

more details on ECSTRA refer to the paper [BZ11a].

Next sections discuss the components of complexity in more details. Section 4.1 and 4.2

prove the complexity of subspace generation and working with linear programming tasks

respectively. Section 4.3 generalizes the result for non-numeric and mixed context

attributes. Section 4.4 provides the summary and finalizes complexity estimation.

4.1 Complexity Analysis for Generation of Subspaces

Algorithm 3.5 is responsible for decomposition of context space into the subspaces. The

algorithm is prone to multiple ways of enhancement, which we leave for the future work.

Here we analyze the complexity of the algorithm 3.5 in a way it is presented in section 3.5.

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

184

The notation is as follows. Consider that algorithm 3.5 has an input like expression (33) – a

conjunction containing K conjuncts, which are defined over N context attributes. Let’s

denote the number of breakpoints over i-th context attribute for j-th conjunct as L(i,j).

Assume that the input is correct and all the conjuncts are defined properly, without

duplicate breakpoints.

Step 1 of the algorithm 3.5 involves merging the breakpoints, sorting them and removing

the duplicates. Consider the complexity of that operation for an arbitrary context attribute.

Let’s denote it as i-th context attribute, where i can be any integer from 1 to N. Sorting can

be efficiently done, for example, by Quicksort algorithm [Ho62] in, effectively, O(T*logT)

time, where T is the number of elements in an array. The number of elements in array is,

actually, the number of breakpoints before removing the duplicates, which is the sum of all

breakpoints of all the conjuncts. Therefore, the complexity is

O((∑ 𝐿(𝑖,)𝐾
 =1)*log(∑ 𝐿(𝑖,)𝐾

 =1)). In the worst case Quicksort can reach O(T
2
) time.

In a sorted array the duplicates can be found in O(∑ 𝐿(𝑖,)𝐾
 =1) time with a trivial

algorithm. So, out of two sequential substeps of step 1 of algorithm 3.5, sorting substep has

polylogarithmic complexity (quadratic in the worst case) and the substep of removing

duplicates has linear complexity. The total complexity for a single context attribute is,

therefore, polylogarithmic O((∑ 𝐿(𝑖,)𝐾
 =1)*log(∑ 𝐿(𝑖,)𝐾

 =1)) in average case or quadratic

O((∑ 𝐿(𝑖,)𝐾
 =1)

2
) in the worst case. For all context attributes the complexity is illustrated

in expression (42).

Average case complexity: O(∑ [(∑ 𝐿(𝑖,)𝐾
 =1) ∗ (∑ 𝐿(𝑖,)𝐾

 =1)]𝑁
 =1) (42)

Worst case complexity: O(∑ [(∑ 𝐿(𝑖,)𝐾
 =1)

2
]𝑁

 =1)

Complexity of the steps 2 and 3 of the algorithm 3.5 depends on the final number of

breakpoints. That number can be estimated as follows. The total number of breakpoints

over i-th context attribute we denote as L(i). By the construction of algorithm 3.5, every

breakpoint of every conjunct becomes a breakpoint for defining subspaces. The operation

removeDuplicates() then removes duplicate values, which might appear from different

conjuncts, and does not change previously mentioned fact – if a breakpoint appeared in a

conjunct, it will appear in the final set of breakpoints. Therefore, total number of

breakpoints cannot be smaller than the number of breakpoints for any of the conjuncts, and

we can estimate that the total number of breakpoints L(i) ≥ maxj(L(i,j)). The lower

boundary is achieved in motivating scenario for both context attributes. For context

attribute LightLevel there are two breakpoints both for ConditionsAcceptable(X) and for

LightMalfunctions(X) (350 Lx and 500 Lx in both cases). Therefore, it can’t be less than

two breakpoints in final breakpoints set, and those breakpoints are 350 Lx and 500 Lx. For

the context attribute NoiseLevel the number of breakpoints also reach lower boundary –

there are zero breakpoints for LightMalfunctions(X) and two for ConditionsAcceptable(X)

(30 dB and 60 dB). The final number of breakpoints is two – those are 30 dB and 60 dB.

The largest number of breakpoints will be generated in the case when there are no

duplicates (i.e. removeDuplicates() does not change anything). In that case the number of

breakpoints for i-th context attribute is ∑ 𝐿(𝑖,)𝐾
 =1 . In motivating scenario in some way it

happens for the context attribute NoiseLevel (lower and upper boundaries are the same for

that case). The situation ConditionsAcceptable(X) has two breakpoints over NoiseLevel (30

dB and 50 dB) and the situation LightMalfunctions(X) has zero breakpoints over that

context attribute. The total number of breakpoints is two.

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

185

To summarize, for i-th context attribute the number of breakpoints can be estimated as

expression (43).

maxj(L(i,j)) ≤ L(i) ≤ ∑ 𝐿(𝑖,)𝐾
 =1 (43)

Step 2 of the algorithm 3.5 generates intervals from the breakpoints. Generation of an

interval takes constant time, so the time complexity is proportional to the number of

iterations in the nested loops: O(∑ 𝐿(𝑖)𝑁
 =1), where according to (43), ∑ 𝐿(𝑖)𝑁

 =1

≤ ∑ ∑ 𝐿(𝑖,)𝐾
 =1

𝑁
 =1 . Therefore, the complexity of step 2 in the worst case is

O(∑ ∑ 𝐿(𝑖,)𝐾
 =1

𝑁
 =1), which is of lower order comparing to complexity of step 1 (both

average and worst cases of expression (42)). The order of total complexity of steps 1 and 2

is determined by complexity of step 1 and is still represented by expression (42).

Step 3 of the algorithm 3.5 generates all the subspaces by calculating Cartesian product

of intervals between the breakpoints, which were identified in the previous step. Once

again, generating the subspace is a constant time operation. Therefore, the time complexity

is determined by the number of iterations of the nested loops. The number of iterations is

∏ (𝐿(𝑖)𝑁
 =1 1), which in the worst case is ∏ (1 ∑ 𝐿(𝑖,)𝐾

 =1)𝑁
 =1 (new summand +1

appears because the number of intervals is equal to the number of breakpoints plus one).

This value is of higher order comparing to the total complexity of first two steps, presented

in expression (42). The order of this term determines total complexity of the algorithm 3.5.

To summarize, the time complexity of the algorithm 3.5 is presented in expression (44).

Complexity: O(∏ (𝐿(𝑖) 1)𝑁
 =1) = O(S)

Worst case complexity: O(∏ (1 ∑ 𝐿(𝑖,)𝐾
 =1)𝑁

 =1) (44)

Best case complexity: O(∏ 𝑚𝑎𝑥 (𝐿(𝑖,)
𝑁
 =1 1)

In the expression (44) we denoted ∏ (𝐿(𝑖)𝑁
 =1 1) as S, which means the number of

subspaces. Actually, the number of iterations of the nested loops of step 3 in algorithm 3.5

is the number of generated subspaces. The time complexity of the algorithm 3.5 has linear

dependency on the number of subspaces, and best and worst cases of expression (44) put

boundaries on the number of subspaces depending on the number of breakpoints.

The summary of expression (44) is that running time of the algorithm 3.5 linearly

depends on the number of subspaces. We practically proved the time complexity of the

algorithm using the following testing procedure. The testing involved 1000 experiments,

where every experiment was conducted as follows.

1. Generate K random situations, which contain a random subset of N context attributes.

K and N are random and vary from 1 to 6. Situations follow the definition (23): 𝑆𝑖𝑡() =
∑ 𝑤 ∗ 𝜇 (𝑥)

𝑁
 =1 + 𝑤 . The weights, the bias term and the breakpoints of membership

functions are generated randomly in realistic manner. The shape of every membership

function 𝜇 (𝑥) is uniformly randomly chosen among the options presented in figure 2.

2. The generated K situations form a conjunction. Algorithm 3.5 is applied to detect the

subspaces of linearity. The time, taken by the algorithm 3.5 is an outcome of the

experiment.

We summarized the outcomes of all 1000 experiments in the figure 5 and processed the

results using R toolkit [VS12]. The plot in figure 5 was generated by R toolkit as well;

minor manual interventions were restricted to improving readability of the figure.

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

186

The points in figure 5 exhibit clear linear dependency. The coefficient R
2
 between the

time, required to generate subspaces, and the number of subspaces is 0.9995, and it

practically proves the linearity. These results completely confirm our theoretical

estimations of the algorithm complexity, summarized in expression (44).

It should be noted that it is enough to generate the breakpoints (step 1) and intervals

(step 2) once for all the involved context attributes (including mixed). Later the same

breakpoints can be used when applying algorithm 3.5 to another disjunct or another

combination of non-numeric values. Subspaces can be also generated only once, if there are

no mixed context attributes involved (and significantly reused if there are any). However,

solving linear programming task should be done separately for every subspace and for

every combination of non-numeric/mixed context attributes anyway, and, as will be proven

further, it is the main source of complexity. So, those obvious enhancements do not reduce

the order of complexity and, therefore, can be omitted from complexity analysis.

In order to reduce memory requirements it is possible to generate the subspaces and for

every generated subspace right away calculate the maximum value of every disjunct in the

DNF expression under test.

Next section discusses the verification steps after the algorithm 3.5 – defining and

solving piecewise linear programming tasks.

Fig. 5. Time required to generate subspaces of linearity.

4.2 Complexity Analysis of Defining and Solving Linear Programming Task

Next step of the verification algorithm involves defining and solving linear programming

task for every subspace, derived in previous section. Consider complexity analysis for a

single subspace, later it will be expanded for the case of all subspaces.

The definition of linear programming task requires constructing the description in the

format (41). There are 2*N inequalities that emerge from subspace definition (expressions

like lowi ≤ xi ≤ highi count as two inequalities), where N is the number of context attributes.

There are also K inequalities (equal to the number of conjuncts) that result from

transformation of piecewise linear minimization task into linear programming task, and

each of those inequalities contain N+1 terms (the coefficients for x1…xN and t). The

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

187

construction of latter inequalities is the most computationally heavy operation (order of

N*K, opposed to order of N in the previous step), and it determines the order of complexity

for the whole task construction algorithm. To summarize, straightforward construction of

linear programming task requires O(N*K) time, and it should be done for every subspace.

The standard form of linear programming task is defined in expression (45) [BV04].

Maximize: C
T
*X

w.r.t. constraints: (45)

A*X = b

X ≥ 0

In the task (45) C and b are constant vectors and A is a matrix. Conversion of the task

from format (41) into format (45) requires several steps. The inequalities lowi ≤ xi can be

transformed into x’i ≥ 0 by introducing the variable x’i = xi - lowi. We also need to introduce

new variables for all the other N+K inequalities in order to transform them into equalities.

The main idea is to transform an inequality ∑𝑎 ∗ 𝑥 𝑏 into an equality ∑𝑎 ∗ 𝑥 𝑥 =
𝑏, which becomes a part of A*X = b, and inequality x0 ≥ 0, which becomes a part of X ≥ 0

constraints (see [BV04] for more details). The newly introduced variables like x0 are

referred to as slack variables. Some linear programming solvers, including GLPK [M12],

can handle the transformation automatically. The very process of transformation does not

add much complexity, but the fact that the number of variables changes can be important

for complexity analysis. In order to transform task (41) into task (45) N slack variables

need to be introduced for inequalities like t + ∑ (−𝑎(, 𝑖)) ∗ 𝑥
𝑁
 =1 ≤ () , and K slack

variables need to be introduced for inequalities like xi ≤ highi. Together with N initial

variables, it makes the total number of variables 2*N + K.

A linear programming task can be solved by polynomial complexity algorithms. For

example, Karmarkar’s algorithm [K84] estimates the complexity of the method as

O(n
3.5

*B), where n is the number of variables (after introducing slack variables), and B is

the number of bits in the input. Many more polynomial algorithms can solve linear

programming tasks (see [BV04][W97] for more information).

ECSTRA extension, which implements fuzzy situation verification approach, employs

GLPK [M12] toolkit and its implementation of interior point method. According to GPLK

reference manual [M12], the toolkit uses a version of primal-dual interior point methods,

implemented according to Mehrotra’s technique [M92].

In order to estimate practical complexity, we performed a set of 1000 experiments,

where every experiment was conducted as follows:

1. K random situations are generated over a random subset of N context attributes. K and

N were random values uniformly chosen from 1 to 50. Situations are defined according to

expression (23): 𝑆𝑖𝑡() = ∑ 𝑤 ∗ 𝜇 (𝑥)
𝑁
 =1 + 𝑤 . The weights and the bias term are

generated randomly in a realistic manner. The shape of membership functions 𝜇 (𝑥) is

randomly chosen among several options presented in figure 2. The breakpoints of

membership functions are chosen randomly.

2. The situations, generated in the step 1, are merged in a conjunction. The subspaces of

linearity are obtained using the algorithm 3.5.

3. A single random subspace of linearity is uniformly chosen from the set, obtained in

the step 2.

4. For the subspace, chosen in the step 3, linear programming task was constructed and

solved. Solution time is the outcome of the experiment. In order to mitigate possible

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

188

random disturbances, calculations for every experiment were conducted 10 times and

averaged.

We summarized the outcomes of the experiment in the figure 6. The plots were created

using R toolkit [VS12]; minor manual changes to the plots were restricted to improving the

readability.

The main purpose of the experiment was to find out how well does the linear

programming solver algorithm scale with the growing size of the task. Figure 6 shows the

following results. The plot on figure 6a depicts dependency of linear programming solution

time on the number of context attributes involved in subspace definition. The number of

variables in linear programming task is equal to the number of context attributes plus one

(variable t). The number of variables tends to be close to the upper boundary. When there

are multiple situations, each defined over a random subset of context attributes, the number

of context attributes mentioned at least once grows fast. And the subspaces have to account

for every context attribute, which is mentioned in at least one situation.

Figure 6b depicts dependency between the number of constraints (i.e. number of rows of

matrix A in the standard format (45)) and the time to solve linear programming task. The

number of constraints is N+K: there are K constraints of type t + ∑ (−𝑎(, 𝑖)) ∗ 𝑥
𝑁
 =1 ≤ 𝑏()

and N constraints of type xi ≤ highi. Inequalities are later transformed into equalities by

introduction of slack variables, but the number of equalities still remains N+K.The

lower boundaries of the variables constitute X ≥ 0 restriction of task (45), and are not

counted. The dependency on figures 6a and 6b is not straightforward, but the results of

experiments are fully explained by the subsequent plots 6c and 6d.

The plot on figure 6c illustrates the dependency between the number of conjuncts K and

the time to solve linear programming task. The coefficient R
2
 is equal to 0.9142, and it

practically shows linear dependency with some variance. However, it turns that the results

are better explained by the subsequent plot 6d.

The Y-axis of plot 6d, as in all plots of figure 6, is the time required to solve linear

programming task. The X-axis of plot 6d is the multiplication of number of conjuncts K

and number of involved context attributes N. This value corresponds to the size of the input

required to define the task. In order to specify the linear programming task the following

information is required. Each of K inequalities t + ∑ (−𝑎(, 𝑖)) ∗ 𝑥
𝑁
 =1 ≤ 𝑏() contains N+1

coefficients on the left side and one term b(j). The boundaries of the variables require

2*(N+1) more values (infinite boundaries on t are implied in formula (45), but should be

supplied explicitly to linear programming solver). The maximization objective requires

N+1 more values for specification (the function C
T
X to maximize is just t, so C = [1 0

0…0]). It makes the number of parameters to specify equal to (N+2)*K+2*(N+1)+(N+1).

Those parameters are necessary (i.e. no parameter can be deduced from the values of other

parameters) and sufficient (i.e. they define linear programming task unambiguously). The

number of parameters is the value of order O(N*K), and N*K is the X-axis of the plot 6d.

The coefficient R
2
 is equal to 0.9148, and it practically shows even more pronounced linear

dependency comparing to the figure 6c. The dependency 6c, can be explained by the fact

that the number of involved context attributes tend to be close to maximum value (this

effect was already described when discussing plot 6a), therefore N*K is close (and often

equal) to NMAX*K, where NMAX is the total number of available context attributes (50 for

the conducted experiments).

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

189

 (a) (b)

 (c) (d)

Fig. 6. Time to solve linear programming task, depending on various factors: (a)

Depending on number of involved context attributes; (b) Depending on number of

inequality constraints; (c) Depending on number of conjuncts; (d) Depending on

multiplication of number of conjuncts and number of context attributes.

To summarize, the algorithm for defining linear programming task requires O(N*K)

time. The testing has shown, that practical complexity of solving linear programming task

also have the complexity of order O(N*K). Therefore, the total complexity of defining and

solving LP task can be estimated as O(N*K). Combining with, estimations (43) and (44),

the total complexity can be estimated as expression (46).

Complexity: O(S*N*K) (46)

∏ 𝑚𝑎𝑥 (𝐿(𝑖,) 1)𝑁
 =1 ≤ S ≤ ∏ (1 ∑ 𝐿(𝑖,)𝐾

 =1)𝑁
 =1

Expression (46) defines the verification complexity for a single conjunction with K

conjuncts, defined over N context attributes that result in S subspaces of linearity.

Moreover, the complexity estimate (46) implies that the verification continues until the

maximums for all subspaces are found. This approach is advisable if the goal is to collect as

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

190

many counterexamples as possible. The identified counterexamples help to narrow down

and fix one or multiple situation modeling problems. However, sometimes the developer

might need just yes/no answer – whether the verification has detected an error or not. In this

case verification can be stopped when the first counterexample is detected in some

subspace. The detected counterexample provides sufficient information to claim

verification has found an error, and still even a single counterexample points to what exact

situation modeling error was detected. As a result, the estimation (46) is precise for the case

when all the subspaces are processed, and it is an upper boundary for the case when

verification continues until the first detected counterexample.

Also it should be noted that expression (46) deals with numeric context attributes only.

Next section provides more general complexity estimations for the case of non-numeric and

mixed context attributes.

4.3 Accounting for Non-numeric and Mixed Context Attributes

Section 3.3 points out that non-numeric context attributes can be handled in a following

manner: the task should be solved separately for every combination of non-numeric values

of all non-numeric context attributes. Consider that in addition to all numeric parameters of

formula (46) there is a set of Q non-numeric context attributes, and each of them can take

Rq possible values. In that case the task is solved separately for each of ∏

 =

combinations of those parameters, and complexity estimation look like formula (47).

Complexity: O(∗ N ∗ ∗ ∏ R

 =1) (47)

∏ 𝑚𝑎𝑥 (𝐿(𝑖,) 1)𝑁
 =1 ≤ S ≤ ∏ (1 ∑ 𝐿(𝑖,)𝐾

 =1)𝑁
 =1

Mixed context attributes can contain both numeric and non-numeric possible values. In

the verification approach accounting for mixed context attributes slightly differs from

accounting for non-numeric context attribute: the verification task is solved separately for

all possible non-numeric values of the context attribute, then it is solved for the case when

mixed context attribute is restricted to numeric values. Consider there is a single mixed

context attribute, which can take RQ+1 non-numeric values, as well as numeric ones.

Formula (48) illustrates complexity estimates for that case. When the context attribute takes

numeric values, it is counted as context attribute number N+1. Every j-th conjunct have

L(N+1,j) breakpoints over that context attribute. The total number of breakpoints over

context attribute number N+1, after merging and removing redundant ones, is referred to as

L(N+1), just like for any other context attribute.

Complexity: O((RQ+1∗ ∗ N ∗ ∗ ∏ R

 =1) + (∗ (N 1) ∗ ∗ ∏ R

 =1)) (48)

∏ 𝑚𝑎𝑥 (𝐿(𝑖,) 1)𝑁
 =1 ≤ S ≤ ∏ (1 ∑ 𝐿(𝑖,)𝐾

 =1)𝑁
 =1

∏ 𝑚𝑎𝑥 (𝐿(𝑖,) 1)𝑁 1
 =1 ≤ S’ ≤ ∏ (1 ∑ 𝐿(𝑖,)𝐾

 =1)𝑁 1
 =1

In estimation (48) the terms S’ refers to the number of subspaces where mixed context

attribute is restricted to numeric values. As derived in section 4.1, the number of subspaces

S = ∏ (𝐿(𝑖)𝑁
 =1 1). In the similar manner, S’ = ∏ (𝐿(𝑖)𝑁 1

 =1 1). Therefore, S’ =

S*(L(N+1)+1) and, consequently, S’ ≥ S. As a result, for the first summand of calculation

(48) the it is true that RQ 1 ∗ ∗ N ∗ ∗ ∏ R

 =1 ≤ RQ 1 ∗ ∗ (N 1) ∗ ∗ ∏ R

 =1 .

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

191

Also in (48) for the second summand ∗ (N 1) ∗ ∗ ∏ R

 =1 ≤ RQ+1∗ ∗ (N 1) ∗ ∗

∏ R

 =1 . Therefore, the order O((R 1 ∗ ∗ N ∗ ∗ ∏ R

 =1) + (∗ (N 1) ∗ ∗

∏ R

 =1)) has the upper bound of O(2*RQ+1∗ ∗ (N 1) ∗ ∗ ∏ R

 =1), which is

O(RQ+1∗ ∗ (N 1) ∗ ∗ ∏ R
 1
 =1). Formula (48) can, therefore, be transformed into

formula (49).

Complexity: O(∗ N ∗ ∗ ∏ R
 1
 =1) (49)

∏ 𝑚𝑎𝑥 (𝐿(𝑖,) 1)𝑁 1
 =1 ≤ S’ ≤ ∏ (1 ∑ 𝐿(𝑖,)𝐾

 =1)𝑁 1
 =1

Note that RQ+1 in formula (49) is under the multiplication. The interesting note about

formula (49) is that mixed context attribute was accounted twice. First it was accounted as a

N+1
st
 numeric context attribute, which lead to increased S and N. Second it was accounted

as Q+1
st
 non-numeric context attribute, which resulted in additional Q+1

st
 term in the

multiplication ∏ R
 1
 =1 . The same principle can be applied all involved mixed context

attributes. As a result, upper bound of complexity can be estimated as formula (50).

Complexity: O(∗ N ∗ ∗ ∏ R

 =1) (50)

∏ 𝑚𝑎𝑥 (𝐿(𝑖,) 1)𝑁
 =1 ≤ S ≤ ∏ (1 ∑ 𝐿(𝑖,)𝐾

 =1)𝑁
 =1

Estimate (50) looks much like formula (47), but the notation has different semantics. In

formula (50) N is the number of both numeric and mixed context attributes. The same

applies to the number of breakpoints L(i,j) – it still means the number of breakpoints of j-th

conjunct over i-th context attribute, but now the context attribute can be mixed as well.

Also in formula (50) the number Q refers to the total number of non-numeric and mixed

context attributes, and the number Rq refers to the number of possible non-numeric values,

that q-th context attribute can take. All mixed context attributes are intentionally accounted

as both numeric and non-numeric context attributes.

Formula (50) is quite pessimistic upper boundary. However, it is correct and easy to

work with. Formula (50), like estimation (46), is also an upper boundary for complexity in

case if verification proceeds until the first counterexample. Once a counterexample is found

for any combination of non-numeric and mixed context attribute, the verification process

can stop.

Formula (50) provides an estimate for a single conjunction. Next section generalizes the

estimates for an entire DNF expression under verification and concludes the complexity

analysis.

4.4 Complexity Analysis - Summary

In order to complete the complexity analysis, estimation (50) should be generalized to

account for multiple disjuncts. The analysis can proceed as follows. Consider that the whole

DNF expression under verification contains M disjuncts, each of which is a conjunction of

Ki terms, defined over Ni context attributes. According to the developed verification

approach, each conjunct can be verified separately, in sequence or in parallel. Formula (50)

contains the complexity estimates for every disjunct. The complexity of sequential

verification of M disjuncts is presented in formula (51).

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

192

Complexity: O(∑ 𝑚 ∗ N𝑚 ∗ 𝑚 ∏ R ,𝑚

 =1

𝑚=1) (51)

∏ 𝑚𝑎𝑥 (𝐿𝑚(𝑖,))
𝑁
 =1 ≤ Sm ≤ ∏ ∑ 𝐿𝑚(𝑖,)

𝐾
 =1

𝑁
 =1

The notation in formula (51) is quite similar to the notation of formula (50). The terms

Nm refers to the number of involved numeric and mixed context attributes in m-th disjunct,

Km refers to the number of conjuncts in m-th disjunct and Sm refers to the number of

subspaces in m-th disjunct. The same refers to the number of breakpoints: the term 𝐿𝑚(𝑖,)

refers to the number of breakpoints over i-th numeric or mixed context attribute in j-th

conjunct of m-th disjunct in the expression under verification. The term Qm refers to the

number of non-numeric and mixed context attributes in m-th disjunct. The value R ,𝑚 is the

number of non-numeric values, which q-th non-numeric or mixed context attribute of m-th

disjunct can take.

It should also be noted that, like formula (50), estimation (51) is an upper boundary of

complexity, if the verification proceeds until the first detected counterexample. As lemma

3.2 shows, a counterexample for any disjunct is a counterexample for entire expression, so

if a single counterexample is detected in any disjunct, the verification can be stopped.

In order to preliminary estimate the influence of various parameters on the complexity,

consider a simplified case where all the disjuncts have similar properties: they have the

same number of numeric and mixed context attributes N, the same number of conjuncts K,

the same number of subspaces S, and the same number of non-numeric or mixed context

attributes Q, each of which can take one of R values. In that case the complexity can be

estimated as O(M*S*N*K*R
Q
). It points that in average the complexity increases linearly

with growing number of disjuncts, although in practice it depends a lot on the configuration

of every disjunct: how many conjuncts are there, how many context attributes are involved

and how many subspaces of linearity can be generated (which in turn depends on the

configuration of breakpoints). The growth of complexity with growing N and K heavily

depends on the configuration of breakpoints – in addition to their direct linear influence on

formula (51), they can also influence the number of subspaces. For example, adding one

new context attribute of interest to one of the situations under consideration will multiply

the number of subspaces in that conjunct by the number of breakpoints of newly introduced

membership functions plus one. However, adding into account a context attribute, which is

already considered by another situation in a conjunct, might have less severe consequences

on the total complexity. The dependency on number of non-numeric and mixed context

attributes is exponential. The dependency on the geometrical average number of values in

mixed or non-numeric context attribute is polynomial.

Despite having some exponential dependencies, the approach works well on the tasks of

practical size. One of the reasons is that the breakpoints overlap relatively often due to the

features of situation design (see the motivating example). Also complexity requirements are

influenced by the fact that verification process should be done only once at the design time.

The verification algorithms are prone to numerous enhancements and can be successfully

parallelized, but we leave those enhancements out of scope of current article.

To summarize, formula (51) is the final estimation of verification complexity, which

takes into accounts all the aspects of verification process. Next section discusses the related

work in the area and provides the discussion of the proposed approach.

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

193

5 Discussion and Related Work

5.1 Formal Verification of Pervasive Computing Systems

In this article we propose a novel method to verify the context models, based on fuzzy

situations. Our previous article [BZ12b] introduced some basic concepts that we use in this

article. In the article [BZ12b] we introduced the task of situation models verification,

formulated it as emptiness test of an arbitrary situation algebra expression, and solved the

emptiness test task for situation models based on context spaces theory. In this article we

significantly extend that work and develop verification principles for fuzzy situation

models. Fuzzy situations are much more versatile and realistic than original context spaces

situations, considered in [BZ12b]. However, the verification of fuzzy situation models is a

more complicated task and it requires a completely different emptiness test approach, which

has nearly nothing in common with the algorithms defined in [BZ12b]. That approach to

emptiness test of situation algebra expressions over fuzzy situations constitutes one of the

main contributions of this article.

Pervasive computing research community is showing increased interest in formal

verification. However, our article aims to verify the models of situations and their

relationships, and the related work aims to verify other aspects of pervasive computing, e.g.

agent interaction and behavior rules. As a consequence, this leads to completely different

approaches to specification and verification themselves. Usually verification was a method

of choice to detect the errors in the behavior specifications of pervasive computing system,

while the way pervasive system generalizes incoming context information was out of

verification scope.

The paper [IS09] proposed a novel approach to modeling and verification of pervasive

computing systems. The authors employed event calculus – an AI formalism [RN06],

which allows reasoning about actions and their consequences. Among other uses, in [IS09]

the authors used event calculus for expressing undesired behavior of applications, which

should be avoided (like “user receives simultaneous audio input from multiple

sources”[IS09]). The authors also used assumptions to specify the behavior like “no

unauthorized user can enter the room”[IS09]. In the paper [IS09] verification of whether the

undesirable situation might ever happen or whether the assumption holds is performed by

translating event calculus model into SAT problem, and then applying SAT solvers. The

main difference of our article and the approach defined in [IS09] is different aspect under

verification. In [IS09] authors aim to verify the behavior of pervasive computing

applications, often in terms of activating and deactivating devices and handling user

requests. Our approach works on lower level – this article proposes a method to verify

whether the transition from sensor values and low level context to further generalizations

(i.e. situations) is correct. These generalizations are the basis for behavior of pervasive

computing system. In turn, the difference in scope determines completely different

approach to verification.

Ambient calculus is designed to specify interaction between multiple agents. The

essentials of ambient calculus were introduced in the paper [CG00]. Pervasive systems

consist of multiple interacting agents, and some researchers considered ambient calculus as

a possible description formalism. The article [CP10] proposes ambient calculus-based

approach to specify pervasive healthcare system. The subsequent article [CP11] extended

ambient calculus, introduced enhancements to previous approach and introduced

verification mechanisms. Once again, the main difference between this article and the

approach proposed in [CP10][CP11] is different aspects under verification. Ambient

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

194

calculus allows specifying spatial and temporal interactions between multiple agents, which

constitute pervasive computing system. Our article proposes a solution to verify the

integrity of a context model of a reasoning agent, i.e. whether the agent correctly

generalizes context information.

The paper [AC09] considered verification of security, safety and usability properties of

pervasive computing systems. For example, possible assertions can be “If a patient is in

danger, assistance should arrive in a given time with a probability of 95%”[AC09] or “No

component will take an action that it believes will endanger the patient”[AC09]. The

authors formalized the properties of pervasive systems in terms of temporal logic. Temporal

logic is substantially used in specification and verification of protocols and programs (see

[CG99]), and numerous techniques and tools were developed to verify properties expressed

in terms of temporal logic. In [AC09] authors also presented an overview of tools, which

can be used for verification of temporal logic properties of pervasive computing systems.

The paper [AC09] considered only adaptation and temporal properties of pervasive

computing systems. The paper [AC09] did not specify, how the generalizations like “patient

is in danger”[AC09] (which is effectively a situation) are achieved or how to verify whether

the system detects this situation correctly. In contrast, this article verifies situation models,

which are specified and, hence, verified using completely different techniques comparing to

[AC09].

The paper [CG09] proposed an approach to verify the action rules of pervasive

computing system. The examples of rules, which the paper [CG09] worked with are “If my

webcam detects movement then display a pop-up message on my screen and display a

message on the screen list”[CG09] or, more complicated example of context-sensitive rule,

“If the red button is pressed, then if the webcam recently detected movement inform me

with synthesized speech else send me an e-mail”[CG09]. The verification was used, for

example, for following purposes.

- Detecting rule redundancy. Redundancy may range from simple repeat to overlap with

multiple other rules.

- Making sure that modalities work well together. For example, if the system reports two

events simultaneously using speech synthesizers, it can just confuse the user and neither of

the reports will be understood.

- Making sure that priorities are handled correctly. High priority messages should be

reported first and no lower priority message should take over while high priority message is

being reported.

In the paper [CG09] authors proposed a mechanism to derive temporal logic

specification from Promela rules, and that specification was used as an input for SPIN

[Ho97] model checker.

It should be noted that the approaches proposed in [AC09][CG09][IS09] and the

technique presented in this article might complement each other well. They don’t overlap in

scopes and together they cover verification of both situation awareness and acting on

perceived situations.

To summarize, multiple approaches have considered verification as an essential

component of pervasive computing development. Different articles proposed verification

methods for different aspects of pervasive computing systems. Different aspects under

verification resulted in different required approaches to verification and specification.

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

195

5.2 Fuzzy Logic for Context Awareness in Pervasive Computing

The concept of fuzzy situations, used in this article, was inspired by fuzzy situation

inference (FSI) concept proposed by Delir et. al. [DZ08]. In [DZ08] the authors proposed a

combination of context spaces theory approach to context modeling and fuzzy logic-based

approach to situation awareness. The paper [DZ08] also introduced an extension to account

for sensor uncertainty. In [DZ08] the authors applied newly proposed situation awareness

mechanisms for health reasoning on ECG-capable mobile device. In this article we extend

the situation model, proposed in [DZ08], in order to account for non-numeric sensor

readings and possible sensor unavailability. Fuzzy situation concept proposed in [DZ08] is

a subset of fuzzy situation models used in this article, so the proposed verification

techniques can without any modification be applied to non-extended FSI models.

The paper [DZ08], in turn, extends the context spaces approach, described in [PL08a].

Original context spaces theory also features situation algebra based on Zadeh operators, and

the situations in original context spaces approach are modeled as weighted sum of

contributions. However, original context spaces approach uses piecewise constant as the

contribution function (contribution function is replaced by fuzzy membership function in

[DZ08] and this article). The verification methods provided in this article are not suitable

for original context spaces situation models. However, the suitable verification mechanisms

were proposed and proved in our previous works [BZ11c][BZ12b].

Multiple related work examples applied fuzzy control process for context awareness and

acting on context information. For example, the paper [MS02] applied fuzzy logic to

context aware control of mobile terminals. In the paper [CX05] the authors applied fuzzy

control to the adaptation of pervasive services. In the paper [AG10] authors used fuzzy

engine to control the actuation of proper services. Fuzzy situations in this article were

inspired by fuzzy logic techniques, and many aspects of fuzzy context awareness can be

represented in terms of fuzzy situations. For example, membership functions (figure 2) are

widely used membership functions for fuzzy sets [HM93], and therefore membership in

fuzzy set is effectively the same as fuzzy situation over a single context attribute.

Therefore, multiple aspects of fuzzy context awareness can be translated into fuzzy

situation terms and then verified by the approach proposed in this article.

To summarize, the context model, presented in this article, in some aspects resemble

various classes of context awareness mechanisms used in related works. Therefore,

verification technique, presented in this article, is likely to be applicable to multiple classes

of existing context awareness methods with minor adaptation efforts. The exact methods of

adaptation and required modifications are the subject of future work.

6 Conclusion and Future Work

In this article we propose and prove a novel method for formally verifying correctness of

fuzzy situation models. We extend and enhance the notion of fuzzy situations in order to

achieve robust situation awareness and mitigate the consequences of unavailable sensor

data. In this article we also prove that verification by assertion of emptiness is applicable

for fuzzy situations. We propose and prove a novel step-by-step approach for emptiness test

of a situation algebra expression, which is the core of our verification technique. As part of

this work we implement the verification approach as an extension for ECSTRA [BZ11a]

context awareness framework, and analyze practical efficiency of the proposed method. We

analyze complexity of the verification approach and discuss its applicability to other

context awareness approaches. The proposed methods can impact the design and running of

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

196

pervasive computing systems in a major way due to their potential of detecting pervasive

system design mistakes, which are not detected by testing, and due to their capabilities of

proving that certain kind of error is not present in system design. Two major future work

directions include: improving the fuzzy situation verification method; improving general

aspects of situation models verification. Future improvements of the proposed approach

include the following research directions.

Efficient ordering of subspaces and combinations. The subspaces of linearity and

non-numeric combinations, which are more likely to contain counterexamples, should be

generated and analyzed first. It will significantly reduce the running time for the use cases

when verification proceeds until the first counterexample is computed.

Parallelization. Efficient parallelization can significantly improve the performance of

verification algorithms, since different subtasks of the verification task can be run in

parallel.

Verification in general can be improved in following ways.

Verification of temporal properties. Current verification approach cannot analyse

timing dependencies between situations. Improvement of verification techniques to

incorporate temporal properties can be of much use to pervasive computing area.

Automated repair. If the verification has detected an error, even with the

counterexamples it can be complicated to narrow it down and repair the definition mistake.

It can be highly beneficial if the repair is suggested by the verification algorithm itself. The

suggestion for the repair should take into account all the properties that should be

maintained, not only the one that caused an error.

Automated situation generation. This future work direction is the continuation of

previous task. As an input, the developer specifies multiple requirements that situations

should comply with. Those can be emptiness assertions like described in section 2.3, or

expected testing results, like “if the light level is above 500Lx and noise is below 30dB,

situation ConditionsAcceptable(X) should have certainty1”. The expected output is a list of

situation specifications. For example, for fuzzy situations it can be a list of involved context

attributes, weights and membership functions.

Chapter VII - Correctness Analysis and Verification of Fuzzy Situations in Situation Aware

Pervasive Computing Systems

197

Chapter VIII

Context Prediction in Pervasive

Computing Systems: Achievements

and Challenges

Based on:

1. Boytsov, A. and Zaslavsky, A. Context prediction in pervasive computing

systems: achievements and challenges. in Burstein, F., Brézillon, P. and

Zaslavsky, A. eds. Supporting real time decision-making: the role of context in

decision support on the move. Springer p. 35-64. 30 p. (Annals of Information

Systems; 13), 2010.
9

9
 This chapter is based on the article [BZ10a]. The fragments of the arctile [BZ10a] that

were included in chapter I are omitted from chapter VIII.

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

200

Foreword

Previous chapters addressed the problems of defining situations and checking that the definition is

correct. Therefore, previous chapters answered the research questions 1 and 2. Chapters I-VII also

built a solid foundation for investigating subsequent research question: how to predict future

situations and how to properly act according to prediction results? This chapter answers the first part

of the research question 3: how to predict future situations? Chapter VIII represents a survey of

context prediction research area and introduces the classification of context prediction approaches.

This chapter also allows concluding that context prediction efforts are mainly focused in situation

prediction area. Also chapter VIII identifies open challenges of situation prediction, and those

challenges will be addressed in subsequent chapters.

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

201

Context Prediction in Pervasive Computing Systems:

Achievements and Challenges

Abstract. Context awareness is one of the core principles of pervasive

computing. Context prediction is also recognized as a challenge and an

opportunity. Numerous approaches have been applied to resolve context

prediction. This work develops and justifies the principles to analyze and

compare context prediction methods, analyses the development in the area,

compares different context prediction techniques to identify their benefits and

shortcomings, and finally identifies current challenges in the area and proposes

the solutions.

Keywords: Pervasive Computing; Context Awareness; Context Prediction;

Sequence Prediction; Markov Model; Bayesian Network; Neural Network;

Branch Prediction; Expert System.

1 Context and Context Prediction

Pervasive computing paradigm is a relatively recent approach where computing systems

are integrated into everyday life and the environment in a transparent, graceful and non-

intrusive manner. An example of a pervasive computing system can be a smart home that

adjusts lights and temperature in advance before the user enters the room, which increases

the efficiency of energy and water consumption. Or it can be an elderly care system that

decides whether the user needs advice or assistance. Or it can be a smart car that proposes

the best route to the destination point and that assesses its own condition and provides a

maintenance plan. Many pervasive computing systems are now being introduced into our

lives.

One of the grounding principles of the pervasive computing system is context awareness.

Earlier works on context and context awareness proposed numerous different definitions of

the context. A. Dey and G. Abowd [DA00], performed a comprehensive overview of those

efforts. From now on their definitions of context and context awareness will be used:

“Context is any information that can be used to characterize the situation of an entity”

[DA00]. So, in fact, every piece of information a system has is a part of that system’s

context.

“A system is context-aware if it uses context to provide relevant information and/or

services to the user, where relevancy depends on the user’s task” [DA00]. Or, in more

simple words, the system is context-aware if it can use context to its benefit. Context

awareness is one of the main principles of pervasive computing.

Reasoning about the context is the process of obtaining new information from the

context. Context model, in that case, becomes an intuitively understandable term that can

be formally defined as a way of context representation that is used for further reasoning.

Context prediction, therefore, does not need any special definition and merely means the

activities to predict future context information.

Context awareness and context prediction are relatively new areas. However, they

already have some methods developed for reasoning about the context and prediction of the

context.

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

202

Cook and Das [CD05] give a quite comprehensive overview of the context prediction

area with a focus on smart home environments and location prediction. Pichler et al.

[PB04] provide a context prediction overview, focusing on artificial intelligence-based

techniques; they discuss not only the examples, but further possibilities as well. [Z08]

contains another context prediction overview with the focus on user behavior modeling;

Hong et al., [HS09] focuses on user preferences inference and utilizing the context history;

Cook et al., [CA09] focuses on ambient intelligence systems; and Boytsov et. al [BZ09]

focuses on machine learning based techniques. One of the most comprehensive works

regarding general approach to context prediction is [Ma04a], which will be mentioned

further in more details.

2 Context Prediction in Pervasive Computing

2.1 Context Prediction Task

Context awareness is one of the core features of any pervasive computing system. Context

prediction is acknowledged as both a challenge and an opportunity. Some works provide

comprehensive lists of context prediction use case scenarios. Those use cases include (list

partially based on [NM05][Ma04a]):

1. Reconfiguration. Sometimes configuration-related tasks take a while to complete. This

includes installation of updates, loading and unloading libraries, starting new

applications, processing the infrastructure changes related to node mobility, searching

in large databases. If the system can predict the need for those tasks in advance, it can

perform the work beforehand and avoid unnecessary delays.

An application specific example was presented by Mayrhofer, [Ma04a]. When the

key appears near upper-class BMW cars, the car predicts that it is going to be started

and the on-board navigation system initiates boot-up. Therefore, when the user enters

the car, the navigation system is already fully functional. Otherwise, it would have

taken extra 30 seconds to complete.

2. Device power management. Device that are unused and will not be used in near future

can be shut down or switched to sleep mode.

There are other scenarios that fall under that category as well. For example [NM05],

if the user attempts to send a large multimedia message while in an area of bad radio

reception, the system can predict that the user is going to enter a better reception area

soon and will delay sending the message (and therefore saving power).

3. Early warning of possible problems. Context prediction can determine whether the

system is about to enter an unwanted state and act accordingly. For example, a

pervasive system can predict that it is going to run out of memory or computation

power soon and act proactively to counter that problem – for example, find the devices

to share the computations, offload the data and drop unnecessary applications. Or, for

example, a pervasive system can predict that user is going to enter a traffic jam soon. In

that case, the system can find a way around the traffic jam and provide it to the user

before the traffic jam area is entered. Different cases of accident prevention also fall

under the category of early warning of possible problems.

6. Planning aid. If a user’s needs can be predicted, a pervasive system can meet them

proactively. For example, an air conditioner in a smart home can be launched in

advance to have a certain air temperature when the user returns from work. Or in a

smart office, the door can be opened right before the person enters.

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

203

7. Inferences on other’s future contexts. User can actually be influenced by the future

context of another user. For example [NM05], a user may have confidential

information on the screen. Therefore, when someone passes by, the screen should be

hidden. Prediction of other people’s interference can help to hide the image proactively

and in a timely fashion.

8. Early coordination of individuals. This can be viewed as a consequence of the previous

point. If the needs of several users in a group can be predicted, the system can act to

satisfy the interests of the group as a whole.

Future context can be predicted using a large variety of models. However,

implementation of context prediction faces challenges that distinguish context prediction

from many other kinds of prediction tasks. The challenges include the following (partially

based on the papers [NM05] [Ma04a]):

1. Pervasive systems work in real time.

2. Pervasive systems need to predict human actions. This is one of the main reasons why

most of context prediction techniques are grounded in machine learning. Human

actions depend on human habits and personal features which, in turn, often cannot be

guessed beforehand but can be inferred during the run time.

3. The systems work in discrete time. All context data are provided by sensors and

sensors work in an impulse manner which provides the measurements in certain points

of time.

4. The data are highly heterogeneous. Lots of data of different nature and different type

are coming from different sources. For example, context data can be numerical and

non-numerical; context data can come periodically or when a certain event occurs.

5. Sometimes hardware capabilities are limited. Using lots of small and preferably

inexpensive devices is very common in pervasive computing. Many devices have to be

relatively autonomous and use wireless interfaces for interactions. Devices of that kind

have limited power supply and limited computational capacity.

6. Connectivity problems are possible which can cause problems including data loss and

sensor unavailability.

7. The learning phase should be kept to a minimum. Often a pervasive computing system

needs to start working right away. Ability to incorporate prior assumptions about the

system is also highly desired in order to achieve a fast system start.

8. Sensors are uncertain. Not taking that into account can lead to reasoning and prediction

problems.

9. There is a need for automated decision making.

So far there are some works that address context prediction challenges, but there still is

a definite lack of universal approaches to the problem.

In this chapter context prediction techniques will be classified according to the formal

models and approaches which inspired them. This is an insightful way that can provide a

direction for new techniques research. Sometimes those approaches can overlap and,

therefore, some approaches can be associated with several classes.

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

204

2.2 From Task Definition to Evaluation Criteria

To develop a basis for context prediction methods classification, we need a formal

definition of the context prediction task. It will help to identify criteria for classification

and evaluation of context prediction approaches.

Let S1, S2, be the context data at a certain moment in time. As usual, every portion of

context data Si is a vector that contains sensor data and the results of sensor data

preprocessing.

A context predictor in most general sense can be viewed in following manner (formula

(1)).

Pr = G(S1, S2, …,St) (1)

In formula (1) t is current time and Pr is prediction result, the prediction result can be

either just a set of expected future context features, or their distribution, or a future event,

or a future state. Context prediction operation is represented by operator G. Initial

knowledge and assumptions about the system are also included in G. To summarize,

context prediction results depend on the context prediction method and possibly on context

history and current context data. Questions of context history awareness will be addressed

later in this section.

In more details, the context predictor can be viewed in following manner (see Figure 1).

Fig. 1. Context prediction – general structure

Several parts of the context predictor can be identified.

Part 1. Context prediction core. It implements the exact context prediction method. This

can be an ad hoc method defined for an exact case or any kind of well-known approach

(like neural network, Markov model, Bayesian network, sequence predictor). Actually, the

method used as the context prediction core is the main criteria of distinguishing one method

of context prediction from another.

To define the context prediction method, we need to define its main principle (e.g.,

Bayesian network, Markov model, neural network) and its parameters. Those parameters

can be, for example, transition probabilities for Markov chain, neural network coefficients,

or distributions for Bayesian network. The context predictor can obtain the parameters as

prior knowledge or infer the parameters during run time. Here are the suggested evaluation

criteria:

Criterion 1. Determine whether prior estimations about a pervasive system can be

incorporated into the method. If the method cannot do that, it might result in low

effectiveness at the startup. Sometimes prior training can be a workaround for that problem:

to pre-train the context predictor, the trainer system needs to generate training data

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

205

according to prior estimations and present it as pre-training before the system actually

starts.

Criterion 2. Determine whether prior estimations about the pervasive system can be

incorporated into the method. In pervasive computing systems the problem of having

numerous unknown parameters is quite common. For example, pervasive computing

systems often involve user behaviour prediction. User behaviour depends on user habits;

the system usually cannot guess those habits in advance and needs to learn them during the

run time. Practically, in pervasive computing there are almost no methods that are

incapable of incorporating run time knowledge.

Criterion 3. Determine whether white box/black box. Another criterion, closely correlated

with two aforementioned ones, is whether the method is a “black box” or “white box.” If

the method is a white box, method parameters usually show in a quite insightful manner

how the system really works. By looking at system parameters the expert can tell what

exactly the system has learnt or, in turn, having some prior estimation, the expert can

configure the system parameters accordingly. If the method is a black box, it is capable of

prediction, but an expert cannot see the underlying reasons for the current prediction even

if that expert knows the complete set of method parameters. Black box methods are

generally unlikely to be able to incorporate prior knowledge about the system.

For example, transition probabilities of the discrete time Markov chain explicitly reveal the

chance for the system context to be in a particular state at a particular time; the state, in

turn, corresponds to certain context features. And, having the transition probability, expert

can easily understand what kind of regularity is found (at least in terms like “if context at

current time t has features a1, a2, a3, …, that means that it will have features b1, b2, b3, … at

time t+t’ with probability p”). So, Markov chain-based methods are white box methods. As

for neural networks, even though the expert knows all the weights for every neuron, it is

usually impossible to tell what kind of regularities it corresponds to. So, neural network-

based methods are black box methods.

Criterion 4. Determine whether estimation of prediction reliability is incorporated into

the method. In practice if the method is capable of estimating its own reliability, the

predictor usually returns the distribution of predicted value (e.g., Markov models, Bayesian

networks), not just the value itself. If reliability estimation is not possible in the method,

such method usually returns just predicted value with no probabilistic estimations.

Criterion 5. Determine outlier sensitivity. All sensors have some degree of uncertainty.

Moreover, the sensors can become unavailable or the measurement results can be lost in

transfer. In that case, an outlier appears. The outlier can significantly alter the prediction

results. In a very general sense we can classify outlier sensitivity in the following groups.

• No sensitivity. Outliers will not affect prediction effectiveness in any way. No

examples so far. Theoretically it is possible if, for example, we have just a prediction

formula which does not take any current data into account (formula (2)).

Pr = G(S1, S2, …,St) = G(t) (2)

But practically that kind of predictor is very inflexible and, therefore, is not used.

• Moderate sensitivity. Outliers do affect prediction effectiveness, but over time the

influence of the outlier fades. For example, the neural network of the Markov

predictor learns over time, and if there is an outlier in the training sequence, it will

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

206

have an effect. However, the amounts of data in the training sequence will be growing

and the influence of the outlier will be decreasing.

• High sensitivity. One outlier can significantly influence subsequent results of context

predictions; the effect of the outlier will not decrease until the outlier value is

completely excluded from the history. For example, the values of sensor

measurements over time can be treated as function and interpolated. Later that

function can be extrapolated to the future and it will be the prediction result. But

outlier presence can significantly alter the resulting function and the effect will not be

reduced until that point is out of the history range (which will happen practically, at

least due to memory limitations).

Criterion 6. Determine what types of incoming data are supported by the context

predictor. Context can contain data of several types: real, integer and non-numerical (e.g.,

room in smart office or the position of the switch). If some data type of the context is not

accepted by the context prediction method, preprocessing needs to be performed.

Part 2. Preprocessing block. The preprocessing block transfers incoming sensor data to

the format that is applicable to the context prediction core. In a very general sense it can be

represented in the following manner:

S’ = Prep(S)

Where S – current received context data, S’ – preprocessed context data for further usage

by context prediction core. Prep() represents preprocessing operator. Preprocessing

operation also can theoretically be dependent on historical data, but practically it is not

likely.

Criterion 7. Determine preprocessing information loss. The more information lost during

preprocessing, the greater the chance to miss significant information, not use it during

context prediction and therefore get reduced context prediction capability. So here is one

more context prediction method evaluation criterion: whether the information is lost during

preprocessing.

• No information loss. For example, context can be left as is (it can be represented as

state-space model with later prediction using filter theory or context data can be used

directly as an input for the neural network). Or new context attributes can be

introduced during preprocessing (e.g., one of the environmental characteristics can be

estimated in two different manners to detect sensor failure or use filtering to combine

two sources of data). So, processing in this case can require some efforts as well. The

criterion for the method to be included in this category is following: for every S’ there

should be at most one value of S.

• Information loss present. Denotes all other cases. For example, some values can be

aggregated, or context can be completely reduced to a finite number of states of the

Markov model or probabilities of Bayesian network nodes, or the context can be

decomposed into event flow and timing information can be lost, and many more

examples.

Usually the presence of information loss depends both on the prediction method and on

sensor data the system obtains. For example, if there are only a few sensors with a small set

of discrete non-numerical data coming from them, the Markov model can be created

without information loss – every predictor state (S’) will correspond to every possible

combination of sensor values (S). However, even if the system has just one real-valued

sensor, creating the Markov model without information loss is impossible – there is an

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

207

infinite number of possible values of S and it cannot be covered by any finite number of

states in S’.

Part 3. Memory. The predictor might need to store history or parameters in an

applicable manner. Some methods require only current value and do not store history in

any manner. Some of the methods are capable of handling all the history and using it to its

benefit.

Criterion 8. Determine constant or variable amount of memory needed. For example, a

neural network needs only memory to store weight coefficients for neurons. The Markov

model needs only a fixed amount of memory to store transition probabilities and some

intermediate data to obtain them. However, an expert system-based context predictor that

constantly introduces new rules or a sequence predictor-based approach with growing

prediction tree requires a variable amount of memory and the memory demand can grow

over time.

In summary then, here are the defined criteria for evaluation of context prediction methods:

1. Prior knowledge accumulation? Yes / No.

2. Real-time knowledge accumulation? Yes / No.

3. “Black box” / “White box”?

4. Prediction reliability estimation? Yes / No.

5. Outlier sensitivity? No / Medium / High.

6. Types of data supported?

6.1 Real? Yes / No.

6.2 Integer? Yes / No.

6.3 Non-numerical? Yes / No.

7. Information loss on preprocessing? Yes / No (usually it depends on certain conditions).

8. Memory amount needed? Fixed, Variable.

3 Context Prediction Methods
In practice, the methods used most frequently are:

1. Sequence prediction approach.

 This approach to context prediction is based on the sequence prediction task from

theoretical computer science and can be applied if the context can be decomposed into

some kind of event flow.

2. Markov chains approach.

 Context prediction techniques based on Markov chains are quite widespread. Markov

chains provide an easily understandable view of the system and can be applied if the

context can be decomposed into a finite set of non-overlapping states.

3. Bayesian network approach.

 This can be viewed as the generalisation of the Markov models. It provides more

flexibility but requires more training data in turn.

4. Neural networks approach.

Neural networks are biologically inspired formal models that imitate the activity of an

interconnected set of neurons. Neural networks are quite popular in machine learning.

Context prediction approaches based on neural networks exist as well.

5. Branch prediction approach.

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

208

 This approach initially comes from the task of predicting the instruction flow in a

microprocessor after the branching command. Some context prediction systems use

similar algorithms.

6. Trajectory prolongation approach.

 Some context prediction approaches treat the vector of context data as a point in

multidimensional space. Then the context predictor approximates or interpolates those

points with some function, and that function is extrapolated to predict future values.

7. Expert systems approach.

 Based on expert systems and rule-based engines, the expert systems approach appears

in some works on context prediction. The goal of the approach is to construct the rules

for prediction. It provides a very clear view of the system.

Subsequent chapters address those approaches in more details.

3.1 Sequence Prediction Approach

The sequence prediction task is a quite researched problem in theoretical computer science.

Generally, the problem is as follows: having the sequence of symbols <S(1), S(2), …,

S(t)>, received at the time from 1 to t, the task is to predict next symbol S(t+1).

If the context of pervasive computing systems can be represented as a flow of symbols

(e.g., flow of events or state of Markov model in particular time), the context prediction

problem can be viewed as a sequence prediction task.

D. Cook and S. Das [CD05] provided quite a comprehensive overview of sequence

prediction techniques used in context prediction (particularly in smart home environments).

So far the earliest works which treated the problem of user activity prediction as

sequence prediction tasks were the works of Davidson and Hirsh, related to command

prediction in the UNIX environment [DH97, DH98]. Those works inspired subsequent

research in the area of user activity prediction, including context prediction in pervasive

computing systems and particularly smart home systems.

In a number of works [Ma04a][BD09][DC03][RB03] algorithms from the Lempel-Ziv

family were suggested as a means of context prediction. In practice, the LZ78 algorithm

was a baseline for a set of context prediction algorithms. For more details refer to Ziv and

Lempel [ZL78] for the description of the algorithm; to Feder et al. [FM92] for subsequent

researches; and to Gopalratnam and Cook [GC03] for the overview of enhancements

related to context prediction.

Bhattacharya and Das [BD99] introduced the LeZi update, which addressed the problem

of predicting the next location of the user in a cellular network. Proactivity in that case

could benefit the cellular system by enhancing paging and location updates. The paper

[BD99] also inspired the subsequent work of Das et. al. [DC02], where the authors used the

LeZi update algorithm for the smart home environment. The work was further enhanced in

Roy et al. [RB03], where the authors addressed the questions of energy consumption

prediction based on path prediction.

Compared to the classical LZ78 approach, the LeZi-Update approach tried to keep a

track on all contexts within a phrase. The idea of enhancement is as follows: on every step

update frequency – not only for every prefix like in LZ78, but for every suffix of this

prefix. E.g., if the received phrase is “ABC”, then the frequency should be updated not only

for ”ABC”, but for “C” and “BC” as well.

LeZi-Update inspired further enhancements including Active LeZi. Gopalratnam and

Cook [GC03] introduced the Active LeZi algorithm in order to predict the actions of

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

209

inhabitants in smart home environments. Authors identified several shortcomings of the

initial LZ78 algorithm:

1. The algorithm will lose any information that will cross the boundary of the phrase.

2. There is a low rate of convergence.

The authors proposed a solution to the shortcomings. Using the LeZi Update as a basis,

they introduced a sliding window of previously seen symbols to be able to detect patterns

that cross phrase boundaries. During a testing scenario without any noise or sensor

uncertainty on highly repetitive data, Active LeZi reached almost 100 per cent prediction

rate after around a 750-symbol training sequence. However, when noise was introduced

into testing scenarios in practical implementations, the prediction rate began to float around

86 per cent. Testing on real data has shown that Active LeZi has around 47 per cent

prediction rate after around 750 symbols. Mayrhofer [Ma04a] suggested using Active LeZi

in a more general case of context prediction task. In Section 4 more details on that work

will be given.

Therefore, sequence prediction turns out to be a feasible and widely used approach for

context prediction and this approach has shown good performance practically. Moreover,

some theoretical enhancements in the sequence prediction area were made while

researching the context prediction problem (e.g., Active LeZi development). However, the

sequence prediction approach has several shortcomings. Generally, reduction of the entire

context to the mere sequence of symbols introduces the possibility of losing valuable

information on preprocessing. Another problem is that the system cannot deal with levels

of confidence when a situation has occurred. Prediction reliability can be computed, but the

reliability of observed data cannot be taken into account. One more major shortcoming is

that this approach generally does not deal with time (although some exceptions do exist). It

won’t detect timing-dependent regularities like “If engine is overheated, it will break down

in 10 minutes”. The duration of a situation occurring can also be important. It is not

considered in the sequence learning approach as well. However, although the sequence

prediction approach has its shortcomings, it still turns out to be a good choice for many

practical tasks.

3.2 Markov Chains for Context Prediction

The discrete time first order Markov chain is a model that consists of following parts:

1. Finite number of possible model states: S = {S0, S1, …, Sn-1}.

2. The probability of the system to transition from one state to another is presented in the

expression (3).

Pij = P(S(t+1) = Sj | S(t) = Si), i,jϵ[0..n-1] , t=0,1,2,… (3)

Markov property is the property of the system’s future states to be dependent on the

current state only (and not on the history). In a more general case of Markov chains of

order K, transition probabilities depend not only on current state, but on the history of

states down to time t-(K-1). From now on we are going to refer only to discrete time

Markov chains unless explicitly stated otherwise.

The transition probabilities are stationary – Pij does not depend on time.

3. Initial probability of the model to be in certain state: P(S(0)=Si) i = 0,1,…, -1

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

210

Pervasive systems usually employ discrete time models due to the nature of sensory

originated data, which usually arrive at certain moments in time, either in some period or at

the occurrence of some event. So from now on we are going to refer only to discrete time

Markov chains, unless explicitly stated otherwise.

Markov chains are widely researched formal models that were applied to numerous

practical tasks. See, for example, Russel and Norvig [RN06] for more details on Markov

chains, and Baum and Petrie [BP66], Rabiner [R90] on more details on hidden Markov

models.

Some projects applied Markov chains to address context prediction problems. For

example, in Kaowthumrong et al. [KL02] addressed an active device resolution problem. A

device resolution problem is a problem when the user has a remote control to interact with

a set of devices, but there are always several devices in user proximity. The system needs to

determine to what device the user is referring. The proposed solution was to predict the

next device to which the user is likely to refer and use this information to resolve ambiguity

on the next step. The authors proposed the hypothesis that the next device depended on the

current device only. That hypothesis is actually Markov property. The context prediction

system is built into the Markov chain; devices show states and transition between the states

representing the order of device access. E.g., if the user turns on the light (state L) and then

turns on the TV (state T) that means that the model transitioned from state L to state T. The

model continued being in that state until a new action was performed by the user. The goal

was to infer user habits from observed action sequence. Initially, transition probabilities

were unknown. During the run time, the system inferred transition probabilities by

calculating relative transition frequency (expression (4)).

 =
N(∀t , (t 1)= , (t)=)

N(∀t , (t)=)
 (4)

In the formula (4) is the count of cases.

Having several devices in proximity of remote control, the system chose the one with the

highest probability among them. Prediction accuracy was estimated at 70-80%.

Another example is the work by Krumm [Kr07], where the author used discrete time

Markov chain for driving route prediction. Road segments were states in Markov chain and

the transitions were the possibilities to enter another road segment e.g. at the crossroad.

Probabilities were inferred from the history in a manner similar to Kaowthumrong et. al.,

[KL02]. Author used Markov chains of different orders and compared the results. One-step

prediction accuracy exceeded 60% for 1
st
 order Markov model. Prediction accuracy

exceeded 80% and tended to 90% when Markov model order grew to 10. Overall, the

system was able to predict one segment ahead (237.5 meters in average) with 90%

accuracy and three segments ahead (712.5 meters in average) with 76% accuracy.

Zukerman et. al. [ZA99] used Markov models for prediction of next user request on

WWW.

Using discrete time Markov chains in context prediction is plausible and easy way when

the system is fully observable and when the context can naturally be represented as a

limited set of possible states changing over discrete time. However, more complicated

cases require the extension of Markov chain approach.

Hidden Markov model extends Markov chains to the case of partial observability.

Hidden Markov models (HMM) were introduced in the work [BP66]. HMM can be defined

as Markov models, where the exact state of the system is unknown. One of very popular

example is urns with colored balls (according to [R90], introduced by J. Fergusson in his

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

211

lectures on information theory). Each urn contains many balls of different colors, and the

distribution of colors is different between the urns. The user sees the color of the ball, but

she does not know which urn the ball is taken from. In this example exact urn stands for

hidden state and the color of the ball stands for output. Comparing to fully observable

Markov chain description, HMM also requires following distribution (expression (5)).

P’jk = P (Y(t) = k | S(t) = Sj) (5)

In expression (5) the term Pjk represents the probability of seeing output k in state j at

time t.

Several tasks are quite common for HMM:

1. Given the model and the output, identify underlying sequence of states and

transitions.

2. Given the model and the output, identify the probability of an output to

correspond that model. One of the special cases of that task is following: given a set of

possible underlying models, choose a model that matches the output sequence best.

3. Given a model without transition probabilities and given some output, find the

missing probabilities. The process of detecting those probabilities is usually referred as

training HMM. This HMM use case is the most common one for context prediction task.

For more information on the algorithms for different tasks, refer, for example, to the

work by Rabiner [R90].

HMMs were used for context prediction in several projects. For example, Gellert and

Vintan [GV06] used hidden Markov models to obtain the prediction of the next room a

person was likely to visit. The resulting HMM represented every room as a possible state.

Simmons et al. [SB06] the authors used HMMs for route prediction. The prediction system

represented the road structure as a graph where nodes were crossroads and edges were

roads between crossroads. The state of HMM was the combination of the position on the

road (which was observed) and destination point (which was not observed, but could be

guessed). According to the authors, prediction accuracy was up to 98 per cent in most

cases. Hidden Markov models are rather popular for the cases when the Markov model is

applicable and the system is partially observable; partial observability often appears either

due to sensor uncertainty or due to taking into account such parameters as user intentions or

user emotions which are not directly measureable.

One more extension of the Markov chain is the Markov decision process (MDP). MDP is

a formal model that consists of following parts:

1. Finite number of possible model states: S = {S0, S1, …, Sn-1}.

2. A set of possible actions to be taken in state Si: A(i) = {ai1, ai2, …}, i = 0,1,…, -1.

3. The probability of the system to transition from one state to another on particular action

is presented in expression (6).

Pij(k) = P(S(t+1) = Sj | S(t) = Si , a(t) = k), i,jϵ[0..n-1] , t=0,1,2,… (6)

4. Initial probability of the model to be in certain state: P(S(0)=Si) i = 0,1,…, -1.

5. A reward or cost for transferring from state Si to Sj on choosing certain action a: R(Si, Sj,

a).

There are often considered simpler cases when the reward depends only on next state and

action (R(Sj, a)) or even next state only (R(Sj)).

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

212

Partially observable MDP (POMDP) is an extension of MDP idea for partially

observable systems. POMDP extends the concept of MDP in the same manner like HMM

extends the concept of the Markov chain. POMDP also requires the distribution of possible

observations depending on the state (formula (7)).

P’jk = P (Y(t) = k | S(t) = Sj) (7)

Usually the goal of MDP processing is to find a policy – principles of choosing the

action to maximise the rewards. Policy can be defined as π = {π0, π1, π2, …}, where πi =

πi(hi) is a probability distribution of choosing certain actions depending on observed

history.

Sometimes the objective is to resolve an inverse problem with one or both of the

following considerations: the system needs to find cost or reward function R(i,a) that

explains user behaviour. This task is usually referred to as apprenticeship learning. Refer to

Abeel and Ng, 2004 for more details on the apprenticeship learning problem.

To compare different policies several methods are available:

1. Discounted expected total reward (expression (8)).

R = R() ∑ R((i − 1), (i), A(i))L
 =1 (8)

In formula (8) the term β ϵ [0,1] is a discount factor, S(t) stands for the state at time t,

A(t) stands for action at time t, R stands for reward function and L stands for horizon (it is

often infinite).

1.Average reward criterion (expression (9)).

R = imN→ (
 () ∑ ((1), (), ())N

 =1)

N
 (9)

Refer to the book by Russell and Norvig [RN06] for more details on MDP theory.

Markov decision processes were used in location prediction and gained some popularity

in driving route prediction. For example, Ziebart et. al., [ZM08] proposed PROCAB

method (Probabilistically Reasoning from Observed Context-Aware Behavior) and used it

for vehicle navigation. More specifically, authors addressed three issues: turn prediction,

route prediction and destination prediction. The system represented user behavior as

sequential actions in Markov decision process. Authors adopted apprenticeship learning

approach: at first, system observes driver actions and infers driver preferences. After some

training the system is able to predict driver actions. Inferred cost function is used to

compare the significance of route benefits and shortcomings according to the opinion of the

driver (which is very different from person to person). For apprenticeship learning, authors

adopted the approach proposed by Abbeel and Ng [AN04]. As a result, system became

capable of predicting route, turn or destination and providing services and suggestions

proactively. Hoey et. al. [HP07] authors used partially observable Markov decision

processes in elderly care systems for people with dementia. The system tracked the process

of handwashing of people with dementia and decided whether to call a caregiver, give and

advice or just do not interfere. Using the camera, elderly care system could observe some

information like the stage of handwashing process (e.g. turned the water on, watered the

hands, soaped the hands) , and some information like the stage of the disease was

considered to be hidden state.

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

213

So, Markov decision processes are plausible and practically effective way to predict the

context in the situations when Markov models are applicable and control actions can

significantly affect prediction results.

3.3 Neural Networks for Context Prediction

Neural networks are formal mathematical models that imitate biological neural structures.

Starting back in the 1940s with the first models of neuron, it became one of the most

popular ways of solving artificial intelligence related tasks. Learning capability allows

neural networks to solve a variety of problems including pattern association, pattern

recognition, function approximation. For comprehensive neural networks overview refer,

for example, to the works by Russell and Norvig [RN06][RN09] or to the book [Ha09].

Neural networks were used for context prediction as well. For example, Mozer [Mo98]

described smart house that predicts expected occupancy patterns in the house, estimates hot

water usage, estimates the likelihood for a zone to be entered soon, etc. In that project

authors used feedforward neural networks trained with back propagation. Indoor movement

prediction related projects considered neural network approach as well. For example, in the

work Vintan et. al. [VG04] addressed the problem of finding next room the person is going

to visit. Predictor took current room number as an input and was expected to give most

probable next room number as an output. For prediction method authors chose multi-layer

perceptron with one hidden layer and back propagation learning algorithm. System used

log of movement for training. Al-Masri and Mahmoud [AM06] authors suggest to use

artificial neural networks for providing mobile services. Authors presented SmartCon

application that is capable of learning user needs and dynamically providing applicable

mobile services. Authors elicited relevant information by training neural network with

device-specific features (all the information about user’s device: hardware type, terminal

browser, software platform), user-specific features (learned user preferences) and service

specific-features (service provider preferences). Later this information is user to suggest

proper mobile service to user. Lin et. al. [LW08] suggested to use neural network for smart

handoff. The process of handoff occurs when mobile device is moving away from coverage

area of one base station under coverage area of another. Handoff decision is usually based

on such characteristics like signal strength, bit error rate, signal to noise ratio. However,

sometimes user is moving close to the borders of coverage area of different base stations

and lots of unnecessary handoffs appear. The goal is to predict whether user is likely to

move under the coverage area of any base station completely. Prediction results will affect

handoff decision. Authors proposed to use multilayer perceptron to detect the correlation

between packet success rate and a certain set of metrics. According to Lin et. al., [LW08]

their algorithm outperforms current common handoff algorithms.

As a result, neural networks turned out to be a feasible way of context prediction for

many practical use cases. There are various types of neural networks available and they can

provide a flexible tradeoff between complexity and effectiveness. The major shortcoming

of the neural network approach is that it is a black box – by examining neural network

structure it is not possible to say what exact regularities are detected.

3.4 Bayesian Networks for Context Prediction

The approach of Bayesian networks generalizes Markov models and avoids some of the

Markov model shortcomings. For more details on Bayesian networks and dynamic

Bayesian networks refer to the books [RN06][RN09] and to chapter I sections 2.2.1-2.2.4.

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

214

Numerous projects have used dynamic Bayesian networks for context prediction. For

example, in Petzold et al. [PP05], the authors used dynamic Bayesian networks to predict a

person’s indoor movement. Context was represented as DBN, where the current room

depends on several rooms visited previously and the duration of staying in the current room

depends on the current room, time of the day and day of the week. The context predictor

achieved high prediction accuracy (floating between around 70 per cent and around 90 per

cent for different persons and tasks). However, retraining the system in case of user habit

change turned out to be cumbersome. Dynamic Bayesian networks were also widely used

to recognise user plans and infer user goals. The example of user modelling and user goals

inference using a Bayesian network is the work by Albrecht et al. [AZ98]. The authors used

DBNs to predict further user actions in an adventure game. This task can still be viewed as

context prediction – the fact that context is completely virtual does not really affect the

essense of the method. Horvits et al., 1998 describes another example of DBNs – the

Lumiere project. The project intended to predict the goals of software users and provide

services proactively. Nodes of DBN were user profile, goals and actions.

Numerous projects used Bayesian networks for context prediction. Bayesian networks

have a broad range of possible use cases and good opportunities to incorporate any kind of

prior knowledge.

3.5 Branch Prediction Methods for Context Prediction

Historically, branch prediction algorithms are used in microprocessors to predict the future

flow of the program after branch instruction. By their nature, branch prediction methods are

fast and simple and designed for fast real-time work. Refer to the work by Yeh and Patt

[YP03] for more details on branch prediction techniques.

Petzold et al. [PB03] used branch prediction algorithms for context prediction in

pervasive computing systems. Authors used branch prediction to predict moving of the

person around the house or office. The system described in [PB03] used several kinds of

predictors: state counter-based predictor; state counter-based predictor; local two-level

context predictors; and global two-level context predictors. Counter-based predictors were

much faster in training and retraining while two-level predictors were much better at

learning complicated patterns. The authors also developed some suggestions for

enhancements that can take into account time and confidence level.

Context prediction using branch prediction algorithms is not a widespread approach.

Algorithms are generally very simple and fast, but they can detect only very simple

behaviour patterns.

3.6 Trajectory Prolongation Approach for Context Prediction

Context prediction by trajectory prolongation works in the following manner:

1. Consider every context feature as an axis and construct multidimensional space of

context features.

2. Consider the observed context features at a certain moment in time as a point in that

multidimensional space.

3. Consider the set of those points collected over time as a trajectory in multidimensional

space.

4. Interpolate or approximate that trajectory with some function.

5. Extrapolate that function further in time to get the prediction results.

Some projects used this approach to context prediction. For example, Anagnostopoulos

et al., [AM05] suggest a special architecture and approach for context prediction. The

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

215

authors validate their approach on location prediction methods for longitude and latitude.

For validating and testing, the authors used GPS trace files. According to the authors,

Newton and Lagrange’s interpolation methods proved to be inappropriate for that purpose

due to oscillatory behaviour on a high amount of points. Cubic Bezier splines in turn

appeared to be promising and moreover had the complexity only O(n). Regression-based

techniques fall under that category as well. For example, Karbassi and Barth [KB03]

addressed vehicle time of arrival estimation. The system built linear regression between a

congestion factor and time of arrival and inferred the parameters from the history. Some

works [SH06][Ma04a] suggested use of autoregressive models to resolve context prediction

task.

Trajectory prolongation approach initially comes from a location prediction area which is

adjacent to context prediction and can be viewed as its sub task. However, trajectory

prolongation can face numerous shortcomings when applied to a general context prediction

task. The most important shortcoming for the trajectory prolongation approach is that it is

not capable of handling non-numerical data, which are quite common for pervasive

computing environments.

3.7 Expert Systems for Context Prediction

Expert systems theory is a branch of the artificial intelligence area which attempts to

imitate the work of a human expert. Usually an expert system represents the regularities in

terms of rules. For example, it can look like this: (t>37
o
C)&(caugh) -> (ill)

Which means “if the person has body temperature over 37
o
C and cough, s/he is ill”.

Large number of projects applied expert systems to different fields. For more details on

expert systems refer to [GR04]. Expert systems are sometimes used for context inference

and context prediction. For example, Hong et al. [HS09] use rule engines for context

prediction. The system inferred rules in the runtime to determine user preferences and

provide services proactively. For example, having user age, gender and family status, the

engine can infer what kind of restaurant a user is likely to look for this evening. It is done

in terms of rules like:

(age>23)&(age<32)&(gender=male)&(status=married)→(preference=familyRestaurant).

Then, for example, the system can predict that the user is going to the restaurant in the

evening, proactively provide the choice and find the route in advance. A context aware

system employs decision tree learning and rule learning techniques to mine for user

preferences.

The system described in [HS09] used Apriori algorithm to infer association rules.

Initially that algorithm was developed to mine the data from database transactions and find

sets of features that appear together. The main idea of the algorithm is to find the sub sets

of facts of different length incrementally starting from single facts. On every step, bigger

sub sets are generated and the sub sets with frequency below some thresholds are dropped.

For more details on the algorithm and its enhancements refer to the work by Agrawal and

Srikant [AS94].

Williams et al. [WM08] discuss forecasting a person’s location using the context

prediction approach. The system collects the log of household activities and elicits

sequential association rules using a generalised sequential patterns (GSP) technique. See

[SA96] for more details on the rule mining method.

In another example [Va08] the author considered mining the rules to learn user habits

and implement fuzzy control in smart home environments. The pervasive system learns by

example from user actions. In brief, their approach looks like this: All the day is divided

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

216

into the set of timeframes. The system detects association rules within the timeframe. Every

rule has sensor conditions as an input and triggered actuators as an output. The system also

maintains a weight coefficient for every rule: triggering the rule increases the weight, not

triggering the rules decrease the weight. Rules with 0 weights are removed. If both the

weight and the degree of membership for the rule are high enough, the system starts

executing the actions proactively, instead of the user, according to the rule.

One more notable work in the area of rule-based systems is the work by S. W. Loke

[Lo04a]. The author addressed the questions of proactivity and the questions of action

consequences. The author also proposed to determine whether the action was worth

performing by comparing the uncertainty of the context and the severity of the action in the

form of a rule (expression (10)).

IF Uncertainty(Context) < U AND Severity(Action) < S THEN DO Action (10)

That work [Lo04a] addresses not just rules for taking actions, but different

argumentation techniques to define those rules (based on different sources of knowledge)

and to determine what action to take.

To summarize, the approach to context prediction based on expert systems is quite

promising. It allows quick and natural integration of prior knowledge, it allows relatively

easy integration of adaptation actions, and it can contain learning and self-correcting

capabilities.

3.8 Context Prediction Approaches Summary

Table 1 presents the comparison of context prediction approaches according to the criteria

identified in section 2. It should be noted that different kinds of predictors can be combined

to improve prediction quality, enhance each others’ strength and compensate each others’

weaknesses.

4 General Approaches to Context Prediction
One of the context prediction research challenges is the development of a general approach

to context prediction. Many context prediction approaches were designed to fit the

particular task and most of them were not designed to be generalizeable (although some of

them have generalization capability).

A quite notable attempt to look at the context prediction problem in general was made by

R. Mayrhofer who developed a task-independent architecture for context prediction

[Ma04a].

As a result, the context prediction process consists of several steps:

1. Sensor data acquisition. This step takes data received from multiple sensors and arranges

them into the vector of values.

2. Feature extraction. This step transforms raw sensor data for further usage. From vector of

sensor data, vector of features is formed.

3. Classification. Performs searches for recurring patterns in context feature space. Growing

neural gas was considered to be the best choice. See [Fr95] for more details on that

algorithm. The result of the classification step is a vector of values that represents

degrees of membership of current vector to certain class.

4. Labeling. This is the only step that involves direct user interaction. The frequency of

involvement depends on a quality of clustering step if classes are often overwritten and

replaced that will result in more frequent user involvements.

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

217

5. Prediction. This step takes the history of class vectors and estimates a future expected

class membership vector. For this step the author researched numerous prediction

approaches and, according to evaluation results presented in [Ma04a], an active LeZi –

combined with a duration predictor – slightly outperformed other evaluated algorithms.

Many context prediction applications provided the architecture for some particular

context prediction tasks. The work by Mayrhofer [Ma04a] was one of the first works which

addressed the context prediction task in a general sense and provided complete architecture

to handle that challenge. The architecture is well-developed and well-reasoned and it

ensures pluggability of different context prediction methods and non-obtrusiveness for the

user. The author put large research efforts into estimating the effectiveness of different

context prediction approaches and provided quite comprehensive overview of those. The

shortcoming here is that the problem of acting on predicted context was not recognised as a

challenge and, moreover, using the rules to act on predicted context was considered the

only option without any reasoning. That drawback is quite common throughout many

general case context predictors. One more minor shortcoming is that feature extraction was

restricted only to clustering of sensor data and no other preprocessing was considered.

Several other works addressed general case of context prediction as well. For example,

Nurmi et al. [NM05] developed their architecture for context prediction for a MobiLife

project. The authors suggested that the process of context prediction consists of several

steps: data acquisition, preprocessing, feature extraction, classification and prediction.

Actually, the view is quite similar to the one provided in [Ma04a]. However, there are some

differences. One of them is that in [NM05] the authors introduced a preprocessing step. As

the authors noticed, in [Ma04a] some preprocessing was included into the sensor data

acquisition step. However, separating preprocessing and data acquisition can provide more

insightful view on the system and make it more flexible. Also Nurmi et al. [NM05]

included a labeling step with the classification step and provided some techniques to make

labeling even less obtrusive. The shortcomings are generally the same compared to

[Ma04a]. The problem of acting on predicted context was slightly mentioned, but no exact

solution was proposed.

One more notable work on context prediction architecture is the Foxtrot framework

described by Sigg et al. [SH06]. There, authors presented a quite different view of the

context prediction problem. Authors focused their efforts on treating the context as time

series and applying time series forecasting techniques such as Markov predictors, an

autoregressive moving average model or alignment methods. The Foxtrot project

represented the context as a multilayered structure where higher level context information

was obtained from lower level context information using preprocessing. Context prediction

worked on every context layer and provided the prediction for every layer. The approach

itself was quite novel. The authors made an extensive research to theoretically estimate the

possible error of such an approach. Also, the authors defined a context prediction task in a

very general sense and did not make any unnecessary assumptions (like restricting

preprocessing to clustering or having only high level context features and low level context

data), therefore implicitly assuming only two context layers. The Foxtrot framework

implemented prediction on every layer of context data and did not restrict it to higher level

context only. However, the choice of possible context prediction methods was relatively

small (just autoregressive methods, alignment methods or Markov predictor) and the

architecture itself took almost no context prediction specifics into account. The problem of

how to use predicted information (including the questions of labeling context classes to

achieve meaningful and understandable output of predicted information and the questions

of acting on predicted context) was not considered at all.

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

218

Anagnostopoulos et al. [AM05] present one more general approach to context prediction.

They treat context data as time series, interpolate the trajectory and extrapolate it further for

prediction. However, although stated as a general context prediction method, the approach

was derived from location prediction techniques validated on location prediction problems

and does not take into account general context prediction specifics. Prediction methods

were restricted to interpolation (which generally has numerous shortcomings, see sections

3.6 and 3.8), the questions of preprocessing and different layers of context were not taken

into account, and the questions of meaningful output or acting on predicted context were

not considered as well.

Context prediction and proactivity problems were also addressed in the works regarding

context spaces theory. The overview of theory of context spaces can be found in [PL08a].

The theory itself represents the context as a multidimensional space and uses geometrical

metaphors to improve context awareness. The situations are represented as subspaces.

Context spaces theory was used as a basis for some context prediction and proactive

decision-making mechanisms. Padovitz et al. [PL08a] discuss the questions of proactive

behavior of a mobile reasoning agent that migrates between different information sources

to collect additional information and reason about the situations. In [PL07] the authors

provide the concept of natural flow – pre-defined likely sequence of situations over time.

Natural flow was used as a verification technique if there were uncertainty about the

current situation. Situations that fit the flow are considered to be more likely. Although not

used for context prediction directly, the natural flow concept has definite context prediction

potential. One more work regarding context prediction and proactivity in context space

theory is the work of Boytsov et al. [BZ09]. There the authors provide the techniques to

adopt different machine learning based context prediction techniques to context spaces

theory.

To summarize, there do exist some projects that address the problem of context

prediction in a general sense. However, their number is small and still the development of a

general approach to context prediction task is a challenge. The most serious common

shortcoming is that acting on predicted context is not recognized as a problem and either is

not mentioned at all or considered as a task subsequent to the context prediction step.

Meanwhile, in many cases, system actions can influence prediction results and therefore

treating context prediction and acting on predicting as independent sequential tasks can

severely limit the scope of possible use cases.

5 Research Challenges of Context Prediction
Context prediction is a relatively new problem for computer science. Now the area of

context prediction is just being developed and still there are numerous challenges yet to be

addressed. Those challenges include:

1. Lack of general approaches to the context prediction problem.

Most current solutions predict context for particular situations. There have been only a

few attempts to define and solve the context prediction task in general.

2. Lack of automated decision-making approaches.

Most context prediction-related works focused the efforts on prediction itself, but

proper acting on prediction results usually was not considered. Most context prediction

systems employed an expert system with pre-defined rules to define the actions based

on prediction results. With one notable exception of Markov decision processes, almost

no systems considered a problem like “learning to act”.

3. Mutual dependency between system actions and prediction results is not resolved.

Chapter VIII – Context Prediction in Pervasive Computing Systems: Achievements and

Challenges

219

This challenge is somewhat related to the previous one. Many context prediction

systems considered the tasks of predicting the context and acting on predicted context

in sequence: predict and then act on prediction results. That approach can handle only

simplified use cases when actions do not affect prediction results. For example, in a

smart home the system can employ any policy for switching the light or opening the

door in advance, depending on user movement prediction results. But whatever the

system does, it will not affect user intentions to go to a particular room. However, in a

general case system, actions do affect prediction results. For example, consider which

is capable of automatic purchases to some degree and which needs to plan the

expenses, or in a more serious use case, consider a pervasive system that is capable of

calling the ambulance and that needs to decide whether to do it or not depending on

observed user conditions. In those and many more use cases, prediction results clearly

will depend on what the system does. However, there are almost no works which

considered the problem of mutual dependency between system actions and prediction

results. So far, the only works which did address that problem were the works on the

Markov decision processes (see section 2.3). The task of resolving that dependency is

actually a special case of a reinforcement learning task. In our opinion, although

comparing to most reinforcement learning task pervasive computing systems have their

own specifics (e.g., relatively obscure cost and reward functions, high cost of errors

and therefore very limited exploration capabilities), recent advancement in the

reinforcement learning area can help to overcome that problem.

If all those context prediction challenges are resolved, it will let pervasive computing

systems handle more sophisticated use cases, enhance the applicability and the

effectiveness of context prediction techniques and therefore enhance overall usability of

pervasive computing systems.

 T
a
b

le
 1

.
A

n
 o

v
er

v
ie

w
 o

f
co

n
te

x
t

p
re

d
ic

ti
o
n

 a
p
p

ro
ac

h
es

.1
0

A
p

p
ro

ac
h

P
ri

o
r

K
n

o
w

le
d

g
e

In
fe

re
n

ce

R
u

n
-t

im
e

K
n

o
w

le
d

g
e

In
fe

re
n

ce

R
el

ia
b

il
it

y

E
st

im
at

io
n

O
u

tl
ie

r

S
en

si
ti

v
it

y

O
b

se
rv

ab
il

it
y

In
fo

rm
at

io
n

 l
o

ss
 o

n

p
re

-p
ro

ce
ss

in
g

D
at

a
S

u
p

p
o

rt
ed

M

em
o

ry

A
m

o
u

n
t

N
ee

d
ed

N

u
m

er
ic

N

o
n

-

n
u

m
er

ic

P
at

te
rn

M
at

ch
in

g

Y
es

Y

es

Y
es

M

o
d

er
at

e
W

h
it

e
b

o
x

Y
es

N

o

Y
es

V

ar
ia

b
le

M
ar

k
o

v

M
o

d
el

s
Y

es

Y
es

Y

es

M
o

d
er

at
e

W
h

it
e

b
o

x

Y
es

N

o

Y
es

F

ix
ed

B
ay

es
ia

n

n
et

w
o

rk
s

Y
es

Y

es

Y
es

M

o
d

er
at

e
W

h
it

e
b

o
x

Y
es

 (
u

su
al

ly
)

Y
es

Y

es

F
ix

ed

N
eu

ra
l

N
et

w
o

rk
s

N
o

Y

es

N
o

M

o
d

er
at

e
B

la
ck

 b
o

x

N
o

Y

es

N
o

F

ix
ed

B
ra

n
ch

P
re

d
ic

to
rs

Y

es

Y
es

A

lm
o

st
 n

o

M
o

d
er

at
e

W
h

it
e

b
o

x

Y
es

N

o

Y
es

F

ix
ed

T
ra

je
ct

o
ry

In
te

rp
o
la

ti
o
n

N
o

Y

es

N
o

M

o
d

er
at

e

o
r

H
ig

h

B
la

ck
 b

o
x

N
o

Y

es

N
o

V

ar
ia

b
le

T
ra

je
ct

o
ry

A
p

p
ro

x
im

at
io

n

Y
es

Y

es

Y
es

M

o
d

er
at

e
W

h
it

e
b

o
x

N
o

Y

es

N
o

U

su
al

ly
 f

ix
ed

E
x
p

er
t

S
y
st

em
s

Y
es

Y

es

Y
es

M
o

d
er

at
e

(p
ra

ct
ic

al
ly

–
 l

o
w

)

W
h

it
e

b
o

x

Y
es

N

o

Y
es

V

ar
ia

b
le

1

0
 C

o
m

p
ar

ed
 t

o
 t

h
e

ar
ti

cl
e
 [

B
Z

1
0

a]
,

T
ab

le
 1

 i
s

am
e
n
d

ed
 d

u
e
 t

o
 s

p
ac

e
re

q
u
ir

e
m

e
n
ts

.
In

 D
a

ta
 S

u
p

p
o

rt
ed

 c
o

lu
m

n
 I

n
te

g
er

 a
n
d

 R
ea

l
d

at
a

ty
p

es

ar
e

m
er

g
ed

 i
n
to

 N
u

m
e
ri

c.
 T

h
e

d
at

a
in

 b
o

th
 c

o
lu

m
n

s
w

er
e

si
m

il
ar

 a
n
d

,
th

er
e
fo

re
,

th
e
y
 w

er
e

m
er

g
ed

 w
it

h
o

u
t

b
ei

n
g
 a

lt
er

ed
.

2
2

1

Chapter IX

Extending Context Spaces Theory by

Predicting Run-time Context

Based on:

1. Boytsov, A., Zaslavsky, A. and Synnes, K. Extending Context Spaces Theory by

Predicting Run-Time Context, in Proceedings of the 9th International

Conference on Smart Spaces and Next Generation Wired/Wireless Networking

and Second Conference on Smart Spaces. St. Petersburg, Russia: Springer-

Verlag, 2009, pp. 8-21.

Chapter IX - Extending Context Spaces Theory by Predicting Run-time Context

224

Foreword

Previous chapter provided an overview of context and situation prediction research area. This chapter

continues addressing the research question 3 and improves situation awareness and context prediction

techniques by combining versatile situation awareness tools of context spaces approach with various

context prediction mechanisms, identified in the previous chapter. Chapter IX is based on the paper

[BZ09]. By the time of writing the paper [BZ09] context prediction approaches were considered as a

plausible extension of ECORA framework, but eventually became the core of CALCHAS – proactive

adaptation framework on top of ECSTRA situation awareness application.

Chapter IX - Extending Context Spaces Theory by Predicting Run-time Context

225

Extending Context Spaces Theory by Predicting Run-time

Context

Abstract. Context awareness and prediction are important for pervasive computing

systems. The recently developed theory of context spaces addresses problems related

to sensors uncertainty and high-level situation reasoning. This paper proposes and

discusses componentized context prediction algorithms and thus extends the context

spaces theory. This paper focuses on two questions: how to plug-in appropriate

context prediction techniques to the context spaces theory and how to estimate the

efficiency of those techniques. An overview of existing context prediction methods is

presented, including Markov chains, Bayesian reasoning and sequence predictors. The

paper also proposes and presents a testbed for testing a variety of context prediction

methods. The results and ongoing implementation are also discussed.

Keywords: context awareness, context prediction, context spaces theory, pervasive

computing, Markov model, Bayesian network, branch prediction, neural network.

1 Introduction

Pervasive computing is a paradigm where computing systems are integrated into the

everyday life and environment in a non-intrusive, graceful and transparent manner. For

example, it can be a smart home or office, where doors are automatically opened and light

is automatically turned on right before a person enters the room [PB03]. Or it can be a

smart car, which suggests the fastest way to the destination and which assesses its own

condition and proposes maintenance plan. Many pervasive computing systems are now

being introduced into our life.

Context awareness and context prediction are relatively new research areas, but they are

becoming an important part of pervasive computing systems. This paper analyzes various

context prediction techniques and proposes a plug-in approach to context prediction for

pervasive computing systems at run-time. This approach is proposed as an extension of

context spaces theory [Pa06][PL04]. This paper focuses on how to apply various available

context prediction techniques and how to estimate the efficiency of those techniques. This

paper also proposes validation of the pluggable context prediction techniques using the

“Moonprobe” model and application scenario that imitates movement of vehicle over a

sophisticated landscape.

The article is structured as follows. Necessary definitions are included in section 2.

Section 3 provides a brief overview of the context spaces theory – its essence, addressed

problems, proposed solutions and current research challenges. In section 4 we propose

context prediction methods and develop the algorithms for their adaptation to the theory of

context spaces. In section 5 we introduce “Moonprobe” model and application scenario – a

testing framework that we developed to estimate context prediction efficiency. Section 6

summarizes the paper and proposes future work.

Chapter IX - Extending Context Spaces Theory by Predicting Run-time Context

226

2 Definitions

This paper addresses many important issues of pervasive computing systems. Generally,

pervasive systems comprise many small and inexpensive specialized devices. If a device is

used to specifically obtain information from the environment that device is usually referred

to as a sensor. Each device performs its own functions, but to be able to perform them

effectively the device usually needs to communicate with other devices and process the

information that it obtains from them.

One of the most important characteristics of a pervasive computing system is its context.

In earlier works on context awareness different definitions of context were proposed.

Comprehensive overview of those efforts was presented by Dey and Abowd [DA00]. They

define context as “any information that can be used to characterize the situation of an

entity.” In fact, every piece of information that a system has is a part of that system’s

context. The system is context aware if it can use context information to its benefit.

Reasoning about context is the process of obtaining new knowledge from current and

possibly predicted context. Context model is a way of context representation that is used for

further reasoning. We assume that context aware pervasive computing systems have the

following features:

1. Sensors supply data that will be used by pervasive system for further reasoning.

Examples of sensors include light sensors, altitude sensors and accelerometers.

2. Sensors transfer all the data to reasoning engine via a sensor network.

3. The reasoning engine, which can possibly be a distributed system, performs

reasoning, makes context predictions and produces some output that can be used

for modifying system’s behavior.

Many important issues of pervasive computing systems are left out of scope of this

paper, for example, security, privacy, need for distributed computations and other related

problems.

3 Context Spaces Theory

The theory of context spaces [Pa06][PL04] is a recently developed approach for context

awareness and reasoning which addresses the problems of sensors uncertainty and

unreliability. It also deals with situation reasoning and the problems of context

representation in a structured and meaningful manner.

Context spaces theory is designed to enable context awareness in clear and insightful

way. This theory uses spatial metaphors for representing context as a multidimensional

space. To understand context spaces theory we need to introduce several new terms. Any

kind of data that is used to reason about context is called context attribute. Context attribute

usually corresponds to a domain of values of interest, which are either measured by sensors

directly or calculated from other context attributes. It can be either numerical value or a

value from pre-defined set of non-numerical options.

Context state represents the set of all relevant context attributes at a certain time. A set of

all possible context states constitutes application space. Therefore, application space can be

viewed as a multi-dimensional space where the number of dimensions is equal to the

number of context attributes in the context state. The state of the system is represented by a

Chapter IX - Extending Context Spaces Theory by Predicting Run-time Context

227

point in the application space and the behavior of the system is represented by a trajectory

moving through the application space over time.

Situation space is meant to represent real life situation. It can be defined as subspace of

the application space. So if context state is in the subspace representing situation S, it

means that situation S is occurring. Situation S has the level of occurrence certainty. It

depends on the probability of the context state to be within S and it also depends on the

subspace within S. See figure 1 for simple illustration. We’ll keep referring to that example

for context prediction approaches illustration throughout the article.

Fig. 1. Context spaces theory

In context spaces theory several methods were developed for reasoning about the context.

Bayesian reasoning [RN06] or Dempster-Shafer algorithm [Sh76] are used to get overall

confidence in the fact that a situation is occurring. Algebraic operations on situations and

some logic-based methods were developed for reasoning in terms of situations.

Context spaces theory was implemented in ECORA [PL08b] – Extensible Context

Oriented Reasoning Architecture. ECORA is a framework for development of context-

aware applications. That framework provides its functionality as a set of Java classes to be

integrated into the prototypes of context-aware systems.

The research presented in this paper develops context prediction methods that can be

used to extend the context spaces theory and benefit ECORA-based applications.

4 Context Prediction for Context Spaces Theory

The ability to predict future context will benefit runtime performance of context aware

applications. For example, use cases for context prediction can be found in [NM05].

Predicted context can be used, for example, for early warnings, for power management, for

system reconfiguration. Context prediction is one of research challenges for context spaces

theory.

In practice, most of current context prediction approaches involve inferring various

context features during run-time. The results of inference are then used for context

prediction. That inference is actually a machine learning task. For this purpose neural

networks [Ha99], Markov chains [CM05] and Bayesian networks [RN06] might be

sufficiently effective tools. Here we analyze possible context prediction techniques and

develop the appropriate algorithms for two-way mapping between the context spaces theory

and the analyzed context prediction technique.

Chapter IX - Extending Context Spaces Theory by Predicting Run-time Context

228

Sequence predictors for context prediction. Many context prediction approaches were

inspired by research in UNIX next command prediction [DH97][DH98]. There authors

suggested to represent each UNIX command as a symbol and the whole command flow – as

symbol sequence. Also they proposed a set of algorithms for sequence prediction. Sequence

prediction techniques were later used in a variety of systems from “Smart Home”

architectures to prediction of movement in cellular networks. Various modifications of

LZ78 algorithm [ZL78] were used in various papers

[AS02][BD99][DC02][GC03][MR04][RD03]. It is worth noting the paper [MR04] which

presents general application-independent architecture for context prediction. The paper

[MR04] also suggests that Active LeZi algorithm can be used to predict future situations

(note that the concept of a situation in [MR04] differs from the concept of a situation in

context spaces theory). The Active LeZi algorithm itself is described in [GC03]. According

to [MR04], Active LeZi provides up to 99% of accuracy on 1-step prediction.

Sequence prediction techniques are feasible in context spaces theory as well. For

prediction purpose context can be represented as a sequence of situations. When situation

occurs, a special symbol is added to the sequence. When situation is over, another special

symbol can be added to the sequence as well. Sequence prediction techniques can be

applied to predict the next symbol in that sequence and, therefore, to predict the occurrence

of a situation. For example, context state flow in Fig. 1 can be described by following

sequence: (SS3-in)(SS4-in)(SS3-out)(SS4-out)(SS1-in)

Sequence prediction algorithms should be adjusted to the fact that situations have

certain levels of confidence. It can be done by introducing the threshold for the level of

certainty. We consider that the situation is occurring if its level of confidence is above the

threshold and we consider that the situation is over if its level of confidence drops below

the threshold. In [MR04] active LeZi showed very good performance in a variety of cases.

Incorporation of active LeZi algorithm into context spaces theory is in progress. Its

efficiency is currently being investigated.

Neural networks for context prediction. Some techniques of context prediction use

neural networks to learn from user behavior. For example, [Mo98] describes “Neural

Network House” project where special equipment predicts expected occupancy patterns of

rooms in the house, estimates hot water usag and estimates the likelihood for a room to be

entered soon. In [Mo98] authors used feedforward neural networks trained with back

propagation. Projects related to indoor movement prediction considered neural network

approach as well. In [VG04] authors addressed the problem of predicting next room the

person is going to visit. A neural network took current room number as an input and

produced the most probable next room number as an output. Logs of user movement were

used to train the network. For prediction purposes authors chose multi-layer perceptron

with one hidden layer and back propagation learning algorithm.

Neural networks adaptation for context spaces theory can use several approaches. For

example, the neural network can accept current situation (with its level of confidence) and

predict next situation to occur. Alternatively, the neural network can accept the whole set of

current situations and return a whole set of situations expected over a period of time.

Additionally, neural network can accept context coordinates and infer the expected future

coordinates or expected future situations.

Markov models for context prediction. Markov models proved to be a feasible way of

context prediction. In [AZ99][Be96] authors used Markov chains to predict what internet

site user is likely to visit next. Context prediction using Markov chains based techniques

and Bayesian networks based techniques were considered in the [KL02]. Authors addressed

the active device resolution problem, when the user has a remote control to interact with a

Chapter IX - Extending Context Spaces Theory by Predicting Run-time Context

229

set of devices, but there are always several devices in user proximity. Some papers use

hidden Markov model to learn from user behavior. For example, in [GV06] hidden Markov

models are used to obtain prediction of next room that the person is likely to visit. The

layout of rooms in the house, represented as a graph, is handled as a hidden Markov model,

and the history is used to obtain the probabilities of moving from one room to another.

Context in our approach can be viewed as a Markov model as well. For that we need to

represent the context as a graph where every node represents a situation. However, Markov

model states have to be mutually exclusive. It is not generally so in context spaces theory.

To make situations mutually exclusive, we need to find all kinds of situations intersection

and extract them as new situations. To do this we developed the following algorithm.

Algorithm MM4CS.

Step 1. Create three entities:

Entity 1: set of situations. Initially it contains all defined situations. From now on initial

situations will be referred to as S1, S2, S3, …, SN. Also they will be referred to as old

situation spaces. Newly acquired situations may appear as a result of situation

decomposition. They will be referred to according to the situation algebra expressions they

were obtained from, for example, S1∩S2∩!S3 or S10∩S8. From now on, for simplicity, when

talking about situations and it does not matter whether those situations are initial or newly

acquired we’ll refer to them as A,B,C,etc. Subspace of application space that includes

whole application space except the situation A will be referred to as !A.

Entity 2: set of situation pairs. Elements of the set will be referred like (A, B), where A

and B are some situations. Expression (A,*) is a joint name of all elements containing the

situation A. Pair of situation with itself like (A,A) are not supported. Situation pairs are

unordered, i.e. (A,B) and (B,A) both identify the same set element. Initially the set contains

all available pairs of starting set of situations, i.e. (Si, Sj) for every i,j ϵ [1.. N] and i≠j.

Entity 3: dependency graph. Initially it has 2 sets of vertices. Each vertex of each set

represents a situation. Vertex will be referred as (A)
j
 where the A represents situation and

the superscript represents the set number (1 or 2). Dependency graph will be used for

prediction in terms of old situation spaces. Initially it has only vertices (Si)
1
 and (Si)

2
 and

edges between (Si)
1
 and (Si)

2
 (i ϵ [1.. N]). Edges are undirected. Also in the graph special

temporary vertices can appear during the runtime. They will be referred as (A)
j:B

.

Step 2. Take any element from a situation pairs set. Let’s say, it is element (A, B). See,

if situation spaces A and B have any intersections in application space. It can be done using

situation algebra provided in [Pa06]. If there are no intersections between A and B – just

remove the element (A, B) from the situation pair set. If there are any intersections, a set of

substeps has to be performed:

Substep 2.1. Remove element (A, B) from the set.

Substep 2.2. Iterate through the situation pairs list and perform following changes:

Substep 2.2.1. Every (A,*) element should be replaced with two new elements.

Element (A∩B, *) is created in all cases and element (A∩!B, *) is created if the

subspace A∩!B is not empty.

Substep 2.2.2. Every (B,*) element should be replaced with two new elements as

well. Element (A∩B, *) is created if it was not created on substep 2.2.1 and element

(!A∩B, *) is created if the subspace !A∩B is not empty.

Substep 2.3. Update dependency graph:

Substep 2.3.1. Vertex (A)
2
 should be removed and several new vertices should be

created instead. Vertex (A∩B)
2:A

 should be created in all cases and vertex (A∩!B)
2

should be created if subspace A∩!B is not empty. Newly created vertices should

have the edges to every element that (A)
2
 had the edge to.

Chapter IX - Extending Context Spaces Theory by Predicting Run-time Context

230

Substep 2.3.2. Vertex (B)
2
 should be removed and several new vertices should be

created instead. Vertex (A∩B)
2:B

 should be created in all cases and vertex (!A∩B)
2

should be created if subspace !A∩B is not empty. Newly created vertices should

have the edges to every element that (B)
2
 had the edge to.

Substep 2.3.3. Vertices (A∩B)
2:A

 and (A∩B)
2:B

 should be merged to new vertex

(A∩B)
2
. All the edges leading to either (A∩B)

2:A
 or (A∩B)

2:B
 should be redirected to

(A∩B)
2
 instead.

Substep 2.4. In situation set remove situations A and B and introduce all non-empty

situations of these: A∩B, !A∩B, A∩!B.

Step 3. If situation pair list is not empty – go to step 2. If situation pair list is empty –

add new situation to the situations list: !S1∩!S2∩!S3∩!...∩!SN. Also add corresponding

vertex to the dependency graph: (!S1∩! S2∩!S3∩!...∩!SN)
2
. It has no edges. Another option

is not to mention !S1∩! S2∩!S3∩!...∩!SN situation and consider the system being in process

of transition when no situation is triggered. ■

Resulting list of situations will now be referred to as new situation spaces. Resulting

dependency graph will have old situation spaces in one set of vertices and new situation

spaces in another. Edges between the vertices mean that old situation space has

corresponding new situation space as a part of its decomposition.

Algorithm has to be applied to the system only once – before the runtime. When this

algorithm is complete, mutually exclusive set of situations is obtained. Now this new set of

situation spaces can be represented as states of the Markov model. All Markov model based

context predictors are applicable for it.

For illustration see Fig. 2. There are two options of Markov models for the system

described in Fig. 1 and it depends on what option do we take on step 3 of an algorithm.

Fig. 2. Markov model for Fig.1

Reasoning in terms of old situation spaces can be easily done using new situation

spaces. Let’s say, we need prediction for the situation Si from old situation spaces. It can be

done in the following manner.

Step 1. Find (Si)
1
 vertex. It is connected to some other vertices. Let them be (D1)

2
, (D2)

2
,

(D3)
2
, … (Dk)

2
,etc.

Step 2. Take predicted levels of confidence for those vertices. It is done using Markov

predictor directly.

Step 3. Infer the level of confidence of situation:

P(Si) = P(D1U D2U D3U…U Dk)

Chapter IX - Extending Context Spaces Theory by Predicting Run-time Context

231

Where P(Si) – predicted level of confidence in situation Si, and sign U is a operator for

uniting situations. Uniting situations can be done by the means of situation algebra

provided by [Pa06]. P(Si) is the demanded result. However, these 3 steps should be done on

every case of prediction and therefore they will introduce some run-time overhead.

So, Markov models seem to be feasible way of context prediction for context spaces

theory. However, to make it applicable for context spaces some pre-processing is needed.

Some computation overhead in the run-time will be introduced as well to transition from

new situation spaces to old ones.

Bayesian networks for context prediction. Bayesian network approach for context

prediction was considered in the paper [PP05]. That research addressed the problem of

predicting next room person is likely to visit. Context was represented as dynamic Bayesian

network, where current room depended on several rooms visited previously and duration of

staying in current room depended on current room itself, time of the day and week day. In

[PP05] dynamic Bayesian network learned from the history of indoor movements. One

more case of context prediction using Bayesian networks was described in [KL02]. There

authors addressed active device resolution problem. The paper [KL02] was already

discussed in previous section.

Context within context spaces theory can actually be represented by dynamic Bayesian

network. In a simplest form it can allow to establish correlations between situations in time

(and situations do not have to be mutually exclusive in this case). Dynamic Bayesian

networks can also help if there are any additional suggestions about factors that influence

the context but are not included directly in the application space.

Branch prediction for context prediction. Paper [PB03] considered applying branch

prediction algorithms for context prediction in pervasive computing systems. Branch

prediction algorithms are used in microprocessors to predict the future flow of the program

after branch instruction. In [PB03] the authors consider another example: branch prediction

is used to predict moving of the person around the house or office.

Branch prediction algorithms can be applied to context spaces theory as well. Once

again, context should be represented in terms of situations, and the situations should be

represented as a graph. One option is to use mutually exclusive situation decomposition that

was presented for Markov model predictors. Then we can predict moving through the graph

over time using branch prediction techniques. Another option is to use the same approach

like we took to apply sequence predictors: when situation happens or wears off, special

symbol is added to the sequence. Branch predictors can be used to predict next symbol

there.

Summary. The features of different approaches to context spaces theory can be

summarized in following way (see table 1).

Common challenges and future work directions. As it was shown all context

prediction methods have to overcome some specific challenges to be applied to context

spaces theory. But there is one common challenge, which was not yet addressed: all the

defined context prediction methods deal with a discrete set of possible events or situations.

So to apply the prediction methods context should be represented as a set of situations. But

the flow of any prediction algorithm depends on how we define situation spaces within

application space. Different situation spaces will result in different algorithm flows, even if

application space is generally the same. This effect might be vital. So the question arises:

what is the best way to define situations inside context space for prediction purposes?

Results can depend on exact prediction algorithm or exact application. Situations should be

both meaningful for the user and good for prediction. This question needs further research.

Chapter IX - Extending Context Spaces Theory by Predicting Run-time Context

232

Table 1. Context prediction approaches summary

Approach Benefits and shortcomings Summary

Sequence

predictors

Good results are proven in practice. Low

adaptation efforts are needed.

This approach

is the most

perspective .

Neural

networks

Large variety of options to choose and low

adaptation efforts needed. However, additional

thorough testing is needed by every application to

determine what exact neural network type is the

most feasible.

The approach is

quite

perspective.

Markov

chains

They can be applied. However, this approach

requires splitting the application space in a set of

non-overlapping situations, which is not natural

for context spaces theory and requires significant

pre-processing

The efficiency

of this approach

is questionable.

Bayesian

networks

Approach is able to estimate the influence of

different factors, not depending on whether they

are in the context or not yet. Low adaptation

efforts are needed.

The approach is

very

perspective.

Branch

predictors

The algorithms are simple. However, prediction

results are influenced only by small part of the

history and the algorithms are capable of working

with simple patterns only.

In general case

that approach is

not perspective.

5 Testbed for Context Prediction Methods

For validating context prediction methods proposed above we introduce “Moonprobe”

model and application scenario. “Moonprobe” is a model that simulates vehicle going over

some sophisticated landscape in 2D environment. The aim of the vehicle is to reach some

destination and not to crash or run out of fuel on its way. This model was developed using

XJ Technologies AnyLogic modeling tool [A12].

The “Moonprobe” model deals with the problems that every pervasive system deals

with, inclufding sensor uncertainty, sensor outages, determining environment

characteristics, fusing heterogeneous sensor data. Also the moonprobe has a set of specific

situations to be aware of. These are not just sensor outage situations, but also current

progress of going to the destination point and safety conditions. By now the moonprobe

uses around 20 context parameters to reason about the situations.

In a very simplified manner the model can be described by the following set of

equations (see formula (1)).

Chapter IX - Extending Context Spaces Theory by Predicting Run-time Context

233

{

𝑑 ̅

𝑑𝑡
= ̅

𝑑 ̅

𝑑𝑡
=

 ∗ ̅ N̅ ̅

N̅ = [

 f pr be is in the air:

 f pr be is n the r nd: pr ecti n f [− ∗ ̅ − ̅en]

 n the axis perpendic ar t the r nd
𝑑 𝑙

𝑑𝑡
= − 𝐶𝑅 ∗ | ̅en|

 . (1)

Where t is time, X is probe coordinate, V is probe velocity, M is mass of the probe

(known system parameter), N is support reaction (directed perpendicular to the ground), Fl

– fuel level remained, g – gravity, FCR – fuel consumption rate (known system parameter),

Fen – engine force vector (value and direction set by probe).

In some cases probe can leave the ground. When probe lands, it will experience ground

collision. Ground collisions are dangerous for the probe. Engines can be used to slow down

the landing and avoid the crash.

The architecture of the model is following (see Fig. 3). System consists of several

components.

1. “Environment and probe” component. It implements the physical model of the

system. Also it monitors what happens to the probe (e.g. crash, sensor outage).

1. “Sensors” component. Sensors measure the data from the probe in certain moments

of time and introduce some errors.

2. “Controlling engine” component. It takes sensed data and provides control

information (e.g. desired engine power).

3. “Main” component provides overall assessment of experimental results.

All the context prediction methods described in section 4 can be applied to moonprobe

scenario. They can be incorporated in “Controlling engine” component and then be used to

find optimal values of engine power to minimize crash risk and reduce fuel consumption.

The development of the “Moonprobe” testbed is now complete. Screen dump of running

“Moonprobe” is depicted on Fig 4.

Model evaluation has shown that the “Moonprobe” model is really capable of estimating

prediction results and that context prediction and context awareness algorithms are really

pluggable into it. Exact measurements of the result of different context prediction methods

are in progress.

Fig. 3. “Moonprobe” system architecture

Chapter IX - Extending Context Spaces Theory by Predicting Run-time Context

234

6 Conclusion and Future Work

Context spaces theory is a promising approach, which addresses many problems of context

awareness in pervasive computing. Adding accurate and reliable context prediction

methods is one of the research challenges of that theory.

In this paper a set of available context prediction techniques was proposed. Two-way

mapping algorithms were developed to apply these context prediction methods to context

spaces theory. Efficiency of context prediction methods was addressed. A special testbed

was developed to evaluate the effectiveness of context prediction methods. Feasibility of

the proposed testbed has been also proven.

As a result, context spaces theory was enhanced with context prediction algorithms and

their applicability and feasibility were demonstrated. By extending context spaces theory

with context prediction techniques it can address not only problems of uncertain sensors or

situation reasoning, but context prediction problem as well. It will benefit ECORA-based

applications and widen the applicability of ECORA to new class of tasks – the tasks which

require prediction capability. The proposed approach incorporates pluggable algorithms of

context prediction, so for every application it can be defined what exact context prediction

approach is the best.
Future work will concentrate on accuracy metrics and analytical comparison of the

efficiency of context prediction methods. Another interesting challenge for future work is
how to define the situation spaces in a manner that both grants usability and enhances
context prediction.

Fig. 4. "Moonprobe" system working

Chapter IX - Extending Context Spaces Theory by Predicting Run-time Context

235

Chapter X

Extending Context Spaces Theory by

Proactive Adaptation

Based on:

1. Boytsov, A. and Zaslavsky, A. Extending Context Spaces Theory by Proactive

Adaptation. in Balandin, S., Dunaytsev, R. and Koucheryavy, Y. eds.

Proceedings of the 10th international conference and 3rd international

conference on Smart spaces and next generation wired/wireless networking

(NEW2AN'10/ruSMART'10), Springer Berlin / Heidelberg, 2010, pp. 1-12.
2. Boytsov, A. Proactive Adaptation in Pervasive Computing Systems. in ICPS '10:

Proceedings of the 7th international conference on Pervasive services, Berlin,

Germany: ACM, 2010.

Chapter X - Extending Context Spaces Theory by Proactive Adaptation

238

Foreword

Chapters VIII and IX mainly addressed the first part of the research question 3 – how to predict future

situations? Those chapters proposed the techniques for situation prediction by combining various

predictive models with situation awareness approach of context spaces theory. However, situation

prediction should be complemented by properly acting according to prediction results.

As chapter VIII concluded, most current context prediction and situation prediction approaches

consider context prediction and proactive adaptation tasks as sequential. This approach does not work

if prediction results can be influenced by pervasive system actions. Chapter X conlcudes addressing

the research question 3 and answers the second part of the research question 3 of how to properly act

according to predicted context. This chapter continues the research started in chapter IX and addresses

the challenge identified in chapter VIII. The proposed CALCHAS application is integrated as an

extension of ECSTRA framework.

Chapter X - Extending Context Spaces Theory by Proactive Adaptation

239

Extending Context Spaces Theory by Proactive

Adaptation
11

Abstract. Context awareness is one of the core features of pervasive computing

systems. Pervasive systems can also be improved by smart application of context

prediction. This paper addresses subsequent challenge of how to act according to

predicted context in order to strengthen the system. Novel reinforcement learning

based architecture is proposed to overcome the drawbacks of existing approaches to

proactive adaptation. Context spaces theory is used as an example of how existing

context awareness systems can be enhanced to achieve proactive adaptation. This

recently developed theory addresses problems related to sensors uncertainty and high-

level situation reasoning and it can be enhanced to achieve efficient proactive

adaptation as well. Possible reinforcement learning solutions for pervasive computing

area are elaborated.

Keywords: context awareness, context prediction, context spaces theory, pervasive

computing, reinforcement learning, proactive adaptation, act-ahead adaptation.

1 Introduction

Pervasive computing is a paradigm where computing systems are integrated into the

everyday life in a non-intrusive, graceful and transparent manner. Some implementations of

pervasive computing paradigm include smart homes, elderly care systems, smart mobile

devices, GPS navigators, RFID tracking systems, social networks.

Context awareness is one of the basic features of pervasive computing. Context

prediction is also recognized as a challenge and an opportunity. However, for context

prediction and especially for acting on predicted context there is a definite lack of universal

approach to the problem.

This paper proposes and motivates the approach for contextual act-ahead adaptation –

proactive adaptation to predicted context. The strengths and challenges of proposed

approach are discussed.

The article is structured as follows. Section 2 describes related work and current

challenges of proactive adaptation to predicted context. Section 3 further elaborates

identified challenges and proposes and explains the solution approach. Section 4 describes

the essentials of context spaces theory and introduce ECORA framework. Sections 5 and 6

discuss the integration of proposed approach into context spaces theory and introduce

CALCHAS – Context Aware aCt aHead Adaptation System. Section 7 discusses the

plausible reinforcement learning methods and their application to the context model.

Section 8 makes a summary, provides future research plans and concludes the paper.

11

 The publications [BZ10b] and [Bo10] were merged to create this chapter. References and

formulas were renumbered accordingly. Sections 1-6 correspond to sections 1-6 of the

publication [BZ10b], while the section 7 corresponds to section 7 of the publication [Bo10].

Chapter X - Extending Context Spaces Theory by Proactive Adaptation

240

2 Context Prediction and Acting on Predicted Context

Most of context prediction approaches use machine learning techniques. Predictive models

that were applied to context prediction task include sequence predictors [DC02], neural

networks [TW08], Bayesian networks [PP05], branch predictors [PB03], decision tree

learning [HS09], time series prediction [SH07], Markov models [GV06], trajectory

extrapolation [AM05].

Some authors actually do recognize acting on predicted context as a specific problem

[CA09][CD07], but still there is not much research done for the challenge of proactive

adaptation. Generally most of the ways to act on predicted context can be classified in two

groups.

1. Rule-based engines. For every particular prediction result there is a rule that defines

an action. Improving behavior of the system is achieved by improving efficiency of context

prediction.

2. Learning by example. That approach was applied mostly in smart home

environments. Pervasive computing system tracks user actions and then it starts executing

the actions for the user.

On the basis of studying and analyzing existing approaches, summary representation can

look like expression set (1).

state(t)=SenseAndProcessData(t)

prediction(t)=PredictionModel(state(t),history(t),prediction(t-1)

history(t+1)=addToHistory(state(t),history(t))

action(t)=actOnPrediction(state(t),prediction(t),history(t)) .

(1)

Where state(t) is entire context state at the time t, including the results of sensor data

acquisition, validation and processing. Entire aggregated history up to time t, but not

including time t, is stored in history(t). Prediction results at time t for time t+1 and maybe

subsequent steps are referred to as prediction(t). Usually they depend on the current state

and on the dependencies learned from history. Sometimes previous prediction results can

influence them as well, if time horizons of prediction attempts do overlap. System is acting

on predicted context, so action at time t action(t) depends on prediction results and current

state. In case learning by example is implemented, action also has some learning

mechanisms and therefore depends on history.

The model presented in (1) has a very serious drawback – it cannot handle mutual

dependency between system actions and prediction results. Those drawbacks and solution

opportunities will be addressed in section 3.

Notable exceptions that do not fall in that model are the applications of Markov decision

processes and Q-learning based approaches to context prediction [FL07][Mo04][ZM08].

They will be mentioned further in section 3 when discussing reinforcement learning

solutions.

3 Proactive Adaptation as Reinforcement Learning Task

Sometimes the system has to provide results of context prediction in quite specific

conditions. Here are some motivating use cases. Consider elderly care system. Users need

some assistance in accomplishing everyday tasks. System is able to give an advice, call a

Chapter X - Extending Context Spaces Theory by Proactive Adaptation

241

caregiver or just do nothing if the user is performing quite well. The task is to predict the

probability of successful outcome of the activity and to act to maximize that probability, but

not at the cost of wasting the time of the caregiver or annoying the user with unnecessary

advices. Use case is partially based on [HB07].

Another motivating use case can be a smart home, where user satisfaction can be

estimated according to both direct questioning and the number of user manual interventions

into a configuration of home parameters. The task is to predict user’s cumulative

satisfaction and act to increase it. Also the system should do its best to behave in non-

intrusive manner and not to annoy the user with too many questions.

One more example might be prediction and prevention of memory shortage in pervasive

system. If memory shortage was predicted with the certainty above the threshold, the

system takes actions to avoid memory shortage condition (e.g. searches for additional

resources to share the work). But if those preventive actions are successful, the predictor

would have learning problem. Formally if there was no memory shortage, it is a prediction

failure. In reality most likely it is not, but we cannot claim it for sure. Actually, when the

system starts decision making, predictor becomes unable to learn properly - predictor

cannot distinguish between prediction failure and successful prevention.

For all those cases, neither rule-based system, nor learning by example can solve the

problem completely. The solution for this and many similar use cases is to take decision

making process into account while making predictions.

The dependencies for those use cases can be described like the expressions (2).

state(t)=SenseAndProcessData(t)

prediction(t)=PredictionModel(state(t),history(t),prediction(t-1),

action(t))

history(t+1)=addToHistory(state(t),history(t))

action(t)=actOnPrediction(state(t),prediction(t),history(t)) .

(2)

The meaning of state(t), history(t), action(t) and other elements in (2) is the same as in

expressions (1). The difference between (2) and (1) is marked in bold. The additional

dependency makes most current proactive adaptations methods inapplicable. System acts

on predicted context, but in turn predicted context depends on system actions. Most of the

context prediction approaches we mentioned previously use predictive models, which do

not take into account the mutual dependency between system actions and prediction results.

Usually this problem is avoided by completely splitting the context in two independent

parts: the one that is affected by actions and the one that is predicted. For example, if the

system intends to proactively open the door before the user comes into the room, the choice

whether the system opens the door or leaves it closed will not change user intentions and,

therefore, prediction results.

Learning by example is also the way to avoid mutual dependency problem, but this

approach has very limited applicability: it works only if possible user actions and system

actions significantly overlap and only with the assumption that imitating user actions grants

acceptable effectiveness of the system.

We propose an enhanced method to solve mutual dependency problem between actions

and predictions. That problem can actually be viewed as reinforcement learning task.

Reinforcement learning problem is a problem faced by an agent that should find an

acceptable behavior in a dynamic environment and learn from its trial and errors [KL96].

Reinforcement learning in application to pervasive computing task is almost not researched.

Notable exceptions are Markov decision processes and Q-learning approaches

[FL07][Mo04][ZM08]. However, as it will be discussed further in this section, Markov

Chapter X - Extending Context Spaces Theory by Proactive Adaptation

242

decision processes have very limited applicability due to the features of pervasive

computing systems. Recent advancements in reinforcement learning include the

approaches, which to the best of our knowledge were not applied to pervasive computing at

all, including predictive state representation [WJ08], most cases of neural network control

[HD99], different applicable cases of actor-critic model (like [HW07]), self-organizing

maps and Q-learning integration [S02] and many more.

To the best of our knowledge, there was no attempt to address particular features of

reinforcement learning in pervasive computing area. Those features are:

1. Continuous action spaces. Actuators sometimes provide the choice from practically

continuous range of values.

2. Continuous state spaces. Many kinds of sensors produce values from practically

continuous range as well. However, this problem can be resolved by the means of

situation awareness.

3. Mobility of nodes. Mobility of nodes in pervasive computing system can cause the loss

of connection to certain sensors and actuators. Or, on the contrary, new connections to

different sensors and actuators can be established.

4. High dimensionality. The count of sensors and actuators in pervasive computing system

can be very high.

5. High heterogeneity of data. Discrete-valued, continuous-valued or event-based sensors

and actuators can appear in any combination.

6. Ability to incorporate prior knowledge. Sometimes common sense or expert estimations

can give some sketches of good acting strategies. Ability to incorporate them can

significantly reduce learning time.

7. Explicit prediction result can also provide some insight into the problem.

8. Limited exploration capabilities. Pervasive system cannot just do a random thing to see

what happens.

9. Limited time for decision making.

10. Goals of the user can change instantly.

The features mentioned above seriously limit the scope of reinforcement learning

solutions that we can try. In particular, those features mean that Markov decision process –

the dominating model for reinforcement learning – can be used only in limited set of special

cases. The main reason here is MDPs’ discrete state and action spaces, which might be not

suitable for pervasive computing solutions.

In sections 4-7 we will discuss in more details, how we can address pervasive computing

challenges presented in the list above.

4 Context Spaces Theory – Main Concepts

Some features of proactive adaptation in pervasive computing can be addressed by

improving context spaces theory. The theory of context spaces [PL04] is a recently

developed approach for context awareness and reasoning which addresses the problems of

sensors uncertainty and unreliability. It also deals with situation reasoning and the problems

of context representation in a structured and meaningful manner.

Context spaces theory is designed to enable context awareness in clear and insightful

way. This theory uses spatial metaphors for representing context as a multidimensional

Chapter X - Extending Context Spaces Theory by Proactive Adaptation

243

space. To understand context spaces theory we need to introduce several new terms. Any

kind of data that is used to reason about context is called context attribute. Context attribute

usually corresponds to a domain of values of interest, which are either measured by sensors

directly or calculated from other context attributes. It can be either numerical value or a

value from pre-defined set of non-numerical options.

Context state represents the set of all relevant context attributes at a certain time. A set of

all possible context states constitutes application space. Therefore, application space can be

viewed as a multi-dimensional space where the number of dimensions is equal to the

number of context attributes in the context state. The state of the system is represented by a

point in the application space and the behavior of the system is represented by a trajectory

moving through the application space over time.

Situation space is meant to represent real life situation. It can be defined as subspace of

the application space. So if context state is in the subspace representing situation S, it

means that situation S is occurring. Situation S has the level of occurrence certainty. It

depends on the probability of the context state to be within S and it also depends on the

subspace within S. See Figure 1 of chapter IX for simple illustration.

In context spaces theory several methods were developed for reasoning about the

context. Bayesian reasoning [RN06] or Dempster-Shafer algorithm [Sh76] are used to get

overall confidence in the fact that a situation is occurring. Algebraic operations on

situations and some logic-based methods were developed for reasoning in terms of

situations [PL04].

Some solutions were developed to integrate various context prediction methods into the

theory of context spaces [BZ09]. However, those prediction methods are based on pure

forecasting and do not take into account decision making aspects.

Context spaces theory was implemented in ECORA [PL08b] – Extensible Context

Oriented Reasoning Architecture. ECORA is a framework for development of context-

aware applications. That framework provides its functionality as a set of Java classes to be

integrated into the prototypes of context-aware systems.

The presented research introduces proactive adaptation methods that can be used to

extend the context spaces theory and enhance ECORA-based applications.

5 Integrating Proactive Adaptation into Context Spaces

Theory

Context spaces theory has all the necessary capabilities to ensure context awareness.

However, when it comes to proactive adaptation, some enhancements have to be made. At

first, the actuators need to be introduced into the model. Actually, those actuators can

constitute a separate space in the manner much like the context space itself. That actuator

space can be treated as action space for reinforcement learning. Considering different

meaning of sensors and actuators, it seems that the better solution is to separate the spaces

for sensors and actuators. Situation spaces in the space of actuators are not likely to have

any value (or, in case a set of discrete actions can be elicited, those situations will just look

like points, not spaces).

In case of the lost connection to actuator, the corresponding axis is removed. Most

likely, it will take some time for the system to learn how to act in new conditions, but

previously learnt data can provide a good starting point and reduce adaptation time. Similar

Chapter X - Extending Context Spaces Theory by Proactive Adaptation

244

refers to introducing new actuators – combining old data with exploration can provide

adaptation to new capabilities.

Another question is how to define reinforcement learning state space for context spaces

theory. Having discrete state space is likely to make the task simpler. One solution is to

take situations as states for reinforcement learning and trigger the state if the certainty of

situation occurring is above some threshold. To fit the Markov property (that is essential for

different kinds of Markov decision processes), situation decomposition algorithm presented

in [BZ09] can be used. That kind of situation decomposition approach can also help to

overcome node mobility problem from sensor point of view: if the sensor loses the link or if

new sensor is introduced, situation properties are recalculated (see [PL04] for the details),

but it is transparent for the upper layer, including the proactive adaptation.

Also taking context space as state space for reinforcement learning is an option. One

more option is to take the degrees of certainty in different situations as continuous state

space.

To summarize, context spaces theory can be enhanced to incorporate proactive

adaptation solutions. Those context spaces theory enhancements can deal with one of the

main features of pervasive computing – the mobility of sensors and actuators – using

geometrical metaphors and situation awareness. Addressing other features of proactive

adaptation depends mostly on exact reinforcement learning method and the architecture of

proactive adaptation solutions of upper layers.

 6 CALCHAS Prototype

The proposed approach can be implemented by creating a general-purpose middleware

for context prediction and proactive adaptation based on context spaces theory. CALCHAS

(Context Aware Long-term aCt aHead Adaptation System) prototype is now under

development. Integrated with ECORA, it will allow achieving efficient proactive adaptation

for context spaces theory.

The architecture was designed to address all the features of pervasive computing area

that were mentioned in section 3.

That middleware solution should incorporate a library of different context prediction and

proactive adaptation methods. Middleware development is in progress and the prototype is

being implemented.

We propose the following architecture for CALCHAS (see Figure 1).

The architectural blocks have following purpose. Run-time goal and efficiency engine

translates user input into exact goals for pervasive system in terms of context and timing.

Sensor fusion and low-level validation block provides preliminary low-level processing of

context data. Retraining database provides bulk of recent low-level data on request, in case

there is a need to retrain the model (e.g. due to goal change) or provide faster model start.

Feedback is implicit – every actuator action will affect future state of the system, which

will in turn be tracked by sensors. Adaptation and prediction engine is responsible for

inferring adaptation sequences – sequences of actions for the actuator to do. Also it is

responsible for providing explicit prediction results. Adaptation engine has the following

structure (see Figure 2).

Chapter X - Extending Context Spaces Theory by Proactive Adaptation

245

Fig. 1. CALCHAS general architecture.

Fig. 2. CALCHAS adaptation engine.

All the translation blocks are used to translate between the format of internal model (e.g.

states of Markov decision process, its reward functions) and the format of the outer system

(e.g. vectors of values of sensor data and exact commands for actuators). The adaptation

core is responsible for generating the actions according to the model and learning engine is

responsible to adapt the model to new data.

All translation blocks are heavily dependent on specific task, but for most of other

blocks general purpose solutions can be developed. Supplied with a comprehensive library

of reinforcement learning methods, the system can facilitate the development of pervasive

computing applications, which will be aware of current and predicted context and which

will be capable of smart proactive adaptation to predicted context.

Chapter X - Extending Context Spaces Theory by Proactive Adaptation

246

7 Reinforcement Learning Solutions12

Now we can estimate what kind of reinforcement learning solutions can be plugged into

CALCHAS. Features of pervasive computing, identified in section 3, should be also taken

into account.

To discuss reinforcement learning approaches we’ll need to introduce some definitions.

Refer to [SB98] for general reinforcement learning overview.

Reinforcement learning problem is the problem of an agent that acts in unknown

environment. It can execute the actions and receive the observations (e.g. new state,

immediate reward or cost). The majority of reinforcement learning solutions were designed

for the case when the environment can be modeled by Markov decision process (MDP). A

particular finite MDP is defined by its set of states S, action set A, one-step dynamics of the

environment P(St+1 | St, a) and cost/reward function R(s) (sometimes – R(s,a) or even

R(st,a,st+1)). From here and now we consider that the time in the model is discrete.

The method to choose the actions depending on a state is usually referred to as a policy.

The policy might as well be stochastic. Usually it is considered that the optimal policy is

the policy that maximizes expected discounted sum of rewards. The state value function of

the state Vπ(s) is the expectation of future sum of rewards, if in state s we follow policy π.

In turn, V(s) is value function of an optimal policy. Action-value function Qπ(s,a) of the

state s and action a means the expected future reward of taking action a in state s and

following policy π afterwards. Action-value function Q(s,a) of the state s and action a

means the system takes action a in a state s and follows optimal policy π after. If action-

value function is known, the optimal action for state s will be argmaxa(Q(s,a)). However, in

practice Q-function is usually unknown, and the strategies are more complicated.

In contrast to the model defined above, in pervasive computing the sensors and actuators

usually have practically continuous range of available values and discretization is not

always possible. So, continuous ranges of state and actions fit the features of pervasive

computing area in a better way. All the concepts defined above can be generalized for

continuous range of state and actions in a straightforward manner. However, it introduces a

set of new challenges.

Here we present some attempts of generalization of reinforcement learning solutions to

continuous space. Now most of them are under development in CALCHAS system.

7.1 Q-learning in Continuous Space
Q-learning approach is relatively simple, yet very effective way to learn action-value

function from interacting with the environment. Initially Q(s,a) can have any values. On

subsequent steps the agent updates Q-function in a following way (formula (3))

Q (st,at) <– (1- α)*Q(st,at) + α*(R + γ*max Qt(st+1,a t+1)) (3)
13

Where γ is discount factor and α – learning rate. See [S02] for more detailed description

of the method.

12

 Comparing to the publication [Bo10], numbering of formulas was introduced to this

section. The text was amended accordingly.

13
 Original publication [Bo10] contained a typo in the corresponding formula. For clarity, in

this chapter the formula is corrected.

Chapter X - Extending Context Spaces Theory by Proactive Adaptation

247

In continuous state and action space action-value function is usually approximated. The

most serious problem for continuous Q-learning generalization is the choice of actions to

take. When the set of available actions is finite, searching for the action with largest Q-

value can be straightforward. However, when the actions can be chosen from continuous

range, exhaustive search does not work. There were some attempts to avoid that problem

and generalize Q-learning approach to continuous state and/or action spaces. For example,

those are:

1. Wire fitting approach. The approach learns the state-action function Q(s,a) in a

format that allows finding the maximum easily. In brief, this method learns a set of

functions Ai(s) and Yi(s), that are referred to as control wires. Action-value function Q(s,a)

is approximated in such a way that for every state the maximum of function Q(s,a) is the

highest value of a wire function: maxi(Yi(s)) and corresponding Ai(s) contains the action

which leads to Q(s,a)=Yi(s). The detailed description of the method can be found in

[BC93].

2. Q-AHC. That method which combines Q-learning with actor-critic learning. Q-

learning is used to choose between a set of actor-critic learners. However, the work

[GW99] claims that this method did not show good results and tended to set the actions to

constant settings or use only one actor-critic model. See [GW99] for more details about the

method.

3. CMAC integration. Being applied to reinforcement learning, CMAC (Cerebellar

Module Articulation Controller) approach divides the entire state and action space into cells

by a set of overlapping grids (tilings). Each cell has an associated weight. As the tilings

overlap, every point (s,a) in the combined state and action space corresponds to several

cells at once. If the system is in state (s,a), those corresponding cells are counted as

triggered. Action-value function is approximated by a sum of weights for all triggered cells.

On every step the weights of tiles are adjusted according to state, actions and received

rewards. See [SS98] for more details on the method. The major drawback for CMAC

integration method is that there is no efficient way for action selection in continuous action

space.

4. Memory-based Function Approximators. In this method algorithm stores the

database of experiences. Every experience record contains state, action and estimated Q-

value. For every state and action the expected Q-value is approximated as a weighted

average of Q-values in proximity. Further details might vary. See [SS98] for the details

about the method.

5. Q-learning and neural networks. There is a large variety of methods that

combine neural network approaches and Q-learning to achieve the generalization to

continuous state space and, sometimes, to continuous action space. For example, in [To97]

author suggested a method for integration of Q-learning and Kohonen’s self-organizing

maps (SOM). Another kind of SOM and Q-learning integration was suggested in [S02]. In

[GW99] authors provided an overview of neural field Q-learning and Q-radial basis

approach. See [Ha99][Ha09] for more details on neural network theory.

To summarize, there is a number of methods that can generalize Q-learning approach for

continuous set of states and actions, but there are much less methods that can provide

efficient action choice for continuous action space.

7.2 Actor-Critic Approach in Continuous Space
Actor-critic method is reinforcement learning method that separates explicit

representation of the policy and the representation of the value function. Actor is the policy

Chapter X - Extending Context Spaces Theory by Proactive Adaptation

248

representation structure – it is used to select actions. The estimated value function is usually

referred to as the critic, because it evaluates (“criticizes”) the actions provided by the actor.

Detailed description of the approach can be found in [SB98].

In more details, on every step critic estimates the difference between expected state

value and obtained one (formula (4)).

δ(t) = rt+1 + γ * V(st+1) - V(st) (4)

In formula (4) δ(t) is error estimation, rt+1 is obtained immediate reward, γ is discount

factor and V(s) is estimated state-value function. Critic also updates the state value function

in a following manner (formula (5)). In formula (5) α stands for learning rate.

V(st) = V(st) + α * δ(t) (5)

Actor, in turn, uses the information provided by critic to improve the policy (expression

(6)). In formula (6) β is a step-size parameter and p(s,a) is an intermediate function that is

used to calculate exact policy.

p(st,at) <– p(st,at) + β* δ(t) (6)

The policy is calculated according to formula (7).

πt(s,a) = exp(p(s,a)) / Σb exp(p(s,b)) (7)

In formula (7) πt(s,a) is a probability of choosing action a in state s. See [SB98] for more

details on actor-critic approach.

So, actor-critic model learns the policy at once and does not work with explicit Q-

functions. Therefore there is no need to search for Q-function maximum to choose the

actions. That makes actor-critic approach a good candidate to be generalized for continuous

action spaces. Here are some examples of how it can be done.

In the work [HW07] author suggested to work with any kind of parametrized function

approximators to generalize to continuous state space. Consider that the state value function

is generalized by the function approximator, that is parametrized by the vector Θ
V
. In that

case an update can be expressed by following formula (expression (8)).

Θ
V

t+1(i) = Θ
V

 t+1(i) + α * δ(t) * d(Vt(st))/ d(Θ
V

 t(i)) (8)

In formula (8) the term i stands for the number of component. So the value function is

adjusted along the gradient proportionally to the error.

The work [HW07] provides some overview of policy update techniques. For example, in

CACLA (Continuous Actor-Critic Learning Automation) algorithm updates the policy in a

following manner. Consider that the actions are chosen according to the function Ac(s), and

that function was approximated by the function approximator, which in turn was

parametrized by the vector Θ
AC

. It can be formalized in expression (9).

If δ(t)>0: Θ
Ac

t+1(i) = Θ
Ac

 t+1(i) +

α * (at – Act(st)) * d(Act(st))/ d(Θ
Ac

 t(i)) (9)

So, update depend only on the sign of δ(t), not on the value itself. Probability is updated

only if the chosen action lead to the improvement of value function (better expected

reward). The probabilities of choosing other actions in that state scaled down accordingly.

According to [HW07], positive updates will make the approximator move towards better

action, negative updates will result in moving away from worse actions, and the

consequences of such drift are unknown. That’s why negative updates are not used and just

ignored.

Chapter X - Extending Context Spaces Theory by Proactive Adaptation

249

Some further enhancements of those approaches include using the variance to see

whether the action was exceptionally good or exceptionally bad and adjust accordingly.

To summarize, for actor-critic approach some improvements were developed, that allow

it to be used in pervasive computing area.

8 Conclusion and Future Work

In this work we addressed the task of proactive adaptation to predicted context and

proposed reinforcement learning based architecture, which will allow pervasive computing

systems to address more complicated use cases.

The features of proactive adaptation task in pervasive computing systems were

identified. The architecture of proactive adaptation solution – CALCHAS system – was

developed to address them.

Context spaces theory was used as particular example of integration between context

awareness system and proactive adaptation solution. The reinforcement learning algorithms

capable of being applied to pervasive computing area were addressed.

Our future plans are to implement the entire middleware with a comprehensive library of

available reinforcement learning approaches. Also the plan is to extend reinforcement

learning solutions methods to suit the core challenges pervasive computing area.

Chapter XI

Conclusion

Chapter XI - Conclusion

252

Chapter XI - Conclusion

253

Conclusion

1 Thesis Summary and Discussion

This thesis proposes multiple contributions to the area of context awareness and situation

awareness. Section 1 summarizes and discusses in details the contribution of the thesis.

This summarizes the research questions and the answers, proposed and evaluated in the

thesis.

The research questions, which became the main focus of this thesis, can be answered as

follows.

Question 1: How to derive a mapping between context information and ongoing

situations?

In general, the mappings between context and situations can be derived in three ways: it

can be defined by expert, learned from labeled data or learned from unlabeled data. Chapter

I proposes a suitable classification of mapping techniques and provides the necessary

background information. Different ways of deriving the mapping have their distinct

challenges, and the thesis proposes multiple ways to solve those challenges. The thesis

proposes solutions to those challenges in chapters III-V. Chapter III addresses the

challenges of applying expert knowledge to derive the mapping between context and

situations. Chapter IV and V address relatively unexplored area of deriving the mapping

from unlabeled data.

The major challenges of defining the situations manually are:

- Clarity. Human expert should be able to define the mapping between situation and

context information.

- Flexibility. Modeling technique should be able to represent a wide range of real-life

situations.

- Reasoning complexity. Pervasive system should be able to detect those sitautions in

real time.

Chapter III [BZ11b] proposes and evaluates orthotope-based situation spaces - a set of

clear and flexible situation models, which can be defined by human expert and later

automatically tested. This thesis proposes orthotope-based situation representations,

analyzes their flexibility aspects and evaluates reasoning complexity.

The main challenge of learning the situations from unlabeled data is detecting a situation

– pervasive system should understand that some situation of interest occurs. Another major

challenge is labeling a situation – pervasive system needs to give meaningful name to

newly detected situation in order to present it to the user or to any program that uses

situation awareness results.

Chapters IV [BZ12b] and V [KB12] address challenges of learning the situations from

unlabeled data. Chapter IV uses a location awareness scenario as an example of the

approach. The chapter proposes and justifies density-based clustering to infer locations of

Chapter XI - Conclusion

254

interest out of fused location information. Also chapter IV proposes a mechanism to label

the newly acquired situation in a meaningful manner. The proposed labeling technique is

based on analysis of locations (retrieving nearby places of interest from Google Places API

[GP12]) and analysis of time that the user spends at the place.

Chapter V [KB12] aims to learn locations and activities out of unlabeled data. Chapter

IV and chapter V both use density-based clustering to infer the locations of interest.

However, the other aspects of the approach are not similar. Activities in the article [KB12]

are inferred by analyzing consecutive time spent at a place. In contrast with chapter IV,

chapter V allows manual labeling of the learned situations. Sometimes manual labeling

breaks non-obtrusiveness principle of pervasive computing, but in the lifelogging scenarios

like the one addressed in chapter V manual labeling is a viable solution. Among other

challenges, chapter V addresses the challenge of describing newly acquired situation to the

user. In order to manually label the newly learned situation, user needs to understand

precisely what situation was learned. Chapter V solves this problem by meaningfully

specifying a location and by using the pictures of an activity.

The proposed situation awareness solutions are implemented as part of ECSTRA

(Enhanced Context Spaces Theory-based Reasoning Architecture). ECSTRA is a general

purpose context awareness and situation awareness framework, which was developed as

part of PhD project. The architecture and basic functionality of ECSTRA framework is

described in details in chapter II.

Once the mapping between context and situations is defined, the subsequent challenge is

to prove that the derived mapping is correct. If any error is introduced into situation

definition at the design time, it can lead to inadequate situation awareness at the runtime

and, as a result, to improper adaptation actions. The challenge of ensuring correctness

constitutes the research question 2.

Question 2: How to prove, that the derived mapping between context features and

situation is correct?

The thesis answers this research question by proposing, proving and evaluating novel

technique of detecting modeling errors – verification of situation models. Verification of

situations was inspired by the verification of protocols [CG99], and like verification of

protocols it is based on formally specifying expected property and either rigorously proving

that definitions comply with the property, or algorithmically generating counterexamples –

particular features of context that will lead to situation awareness inconsistency.

The detailed answer to the research question 2 is provided in chapters VI and VII.

Chapter VI proposed the principle of verification, introduced basic concepts and proposed,

implemented and evaluated verification algorithm for the context spaces approach

[PL08a][PL08b]. Also chapter VI provides the background for chapter VII. Chapter VII

[BZ12c] proposes, proves and evaluates a novel verification techinue for fuzzy situation

models. Chapter VI and chapter VII propose similar first step of solving the problem –

represent the property under verification as an emptiness check of situation algebra

expression. However, the mentioned emptiness check requires different algorithms for the

situation spaces of context spaces approach and for fuzzy situations. Practically, algorithms

proposed in chapter VI and chapter VII serve somewhat similar purpose, but have nothing

in common due to the differences in the task definition.

Verification of situation models is implemented as part of ECSTRA framework.

ECSTRA-based implementation was used for practical evaluation of the proposed solution.

After the situation models are defined and verified, the subsequent question is how to

predict future sitautions and how to properly act according to prediction results. This

challenge constitutes the research question 3.

Chapter XI - Conclusion

255

Question 3: How to predict future situation and how to act according to prediction

results?

This thesis applies and implements a number of machine learning based solutions to

situation prediction problem. Chapter IX [BZ09] proposes a number of methods to combine

spatial representation of context (and related situation awareness techniques) with situation

prediction methods. Situation prediction techniques are applied in combination with

situation awareness using context spaces approach, which became a framework for

answering the research questions 1 and 2.

Additionally this thesis identifies and addresses a challenge of properly acting according

to predicted results. The algorithms for predicting the situations and for choosing the

actions according to prediction results are usually applied sequentially, which is not

applicable if adaptation actions influence prediction results. In chapter X and XI this thesis

proposes general solution to the problem – combining context prediction and proactive

adaptation into a single reinforcement learning task. Also this thesis introduces a set of

possible reinforcement learning techniques that can be applied. In addition this thesis

proposes CALCHAS (Context Aware Long-term aCt aHead Adaptation System) context

prediction and proactive adaptation framework. CALCHAS is now integrated as an

extension over ECSTRA.

To summarize, this thesis has three major contributions:

● This thesis proposes, proves and evaluates methods for modeling situations,

unsupervised learning of situations and auto-labeling the learned situations.

● This thesis proposes, proves and evaluates methods for situation verification – a novel

approach to ensure correctness of situation models.

● This thesis proposes and evaluates novel techniques for situation prediction and

proactive adaptation. The issue of properly acting according to predicted context is

investigated.

Next sections discuss research progress between the licentiate thesis and this

dissertation, and suggest plausible directions for future research.

2 Research Progress

Significant research work was performed between the completion of licentiate thesis and

the completion of PhD thesis. Chapter II, chapter VIII, chapter IX and chapter X did

participate in licentiate thesis, and the modification between licentiate and PhD thesis was

minor. Licentiate thesis did contain the parts corresponding to chapter III and chapter VI of

this thesis, but the contents underwent major revision when transitioning from licentiate to

PhD thesis. Chapter I, chapter IV, chapter V and chapter VII do not have any analogues in

licentiate thesis. As a result of additional research efforts and publications, the size of PhD

thesis is almost double the size of licentiate thesis.

Licentiate thesis was focused on the problems of context prediction and proactive

adaptation in pervasive computing. Situation awareness enhancements were viewed as tools

to enhance context prediction capabilities. However, as the research progressed and

evolved, it became clear that context prediction needs a very solid backbone of proper

context awareness and situation awareness methods. Situation awareness turned out to be of

particular importance for many practical applications, and, moreover, many context

prediction systems considered viewed context prediction as situation prediction task. As a

Chapter XI - Conclusion

256

result, situation awareness became new main focus of the research, and main contributions

of the thesis are in the area of situation awareness.

The licentiate thesis [Bo11] proposed the following future work directions, which

became the basis of this thesis.

- Enhanced situation models. This direction future work was addressed in chapters IV

and V of the thesis. Moreover, that direction was addressed by major improvenents in

chapter III.

- Automated situation specification. Chapter IV and chapter V of the thesis propose

novel techniques for automated specification of situation, thus addressing that aspect of

previously proposed future work.

- Improvement of context prediction and proactive adaptation techniques. Although not

mentioned directly, this aspect was improved by improving situation awareness

capabilities. Situation awareness is a backbone for situation prediction, and comparing to

licentiate thesis [Bo11] situation awareness was improved in many aspects. Those include

situation modelling, situation inference and situation verification.

- Quality of context evaluation. This challenge remains a possible direction for future

research.

In addition to following the future work directions proposed in [Bo11], this thesis

contains the following achievements:

- Situation verification technique was developed further. Novel verification techniques

were introduced for fuzzy situation models.

- ECSTRA framework was under constant development and improvement throughout

the whole course of PhD studies. As one of the results, ECSTRA was integrated into smart

home solutions developed by INRIA [DP11]. In particular, ECSTRA was appreciated for

ease of use, the support of distributed and heterogeneous architectures and for flexible

situation awareness mechanisms. Appendix contains a statement of accomplishment and

appreciation from INRIA.

This section concludes the discussion and summary of thesis results. Next section

proposes plausible future work directions for subsequent research.

3 Possible Future Work Directions
14

Possible directions of the future work are proposed throughout the thesis. Most important

ones are summarized in this section. Future work can include the following directions of

research.

Quality of context evaluation. Inconsistent context information can mislead situation

awareness, context prediction and proactive adaptation. Testing and formal verification of

context model at the design time should be complemented with the context quality

evaluation at the runtime.

Automated situation specification. This challenge is partially addressed in the thesis,

but there are multiple directions for further improvement. Automated situation specification

problem encompasses two separate problems: automated situation specification at the

design time, using the available sources of knowledge, and automated specification at the

run-time by detection and automated labeling possible situations of interest. Automated

14

 This section is partially based on the licentiate thesis [Bo11].

Chapter XI - Conclusion

257

specification methods can improve the reliability and dependability of situation awareness

mechanisms.

Improvement of situation prediction and proactive adaptation methods. In this

thesis much work has been done in the area of situation prediction and proactive adaptation.

However, still there is a room for improvement regarding, for example, introduction of new

context prediction and proactive adaptation algorithms or addressing distributed and

resource-constrained nature of pervasive conputing systems.

Introduction of new verification methods. This thesis introduces the area of formal

verification of situation models, defines ground principles and proposes the algorithms for

multiple kinds of situations. However, as follows from chapters VI and VII, sometimes

verification algroithms significantly depend on the chosen situation modeling method.

Reducing the dependency can be a direction of further research. In particular, future work

might include introduction of model-independent verification approaches, as well as

developing verification approaches for particular classes of situation models.

The research directions discussed above can constitute a core of new subsequent

research projects.

258

Acronyms

259

Acronyms

ACAI – Agent Context-Aware Infrastructure [KK05]

ACES – Ambient Computing and Embedded Systems project

ACHE – Adaptive Control for Home Environment [MD95]

BN – Bayesian Network

CALCHAS – Context Awareness Long-term aCt aHead Adaptation System (see chapter

X)

CDMS – Context Data Management System [XP08]

ContReMAR – Context Reasoning for Mobile Activity Recognition (see chapter IV)

CSIRO – Commonwealth Scientific and Industrial Research Organization

CST – Context Spaces Theory

DBN – Dynamic Bayesian Network

DBSCAN – Density-Based Spatial Clustering of Applications with Noise [EK96].

ECORA – Extensible Context Oriented Reasoning Architecture (see [Pa06][PL08b])

ECSTRA –Enahnced Context Spaces Theory Based Reasoning Architecture

FSI – Fuzzy Situation Inference

GLPK – GNU Linear Programming Toolkit (see [Ma12]).

GPS – Global Positioning System

GSM – Global System for Mobile communications

HMM – Hidden Markov Model

INRIA – Institut National de Recherche en Informatique et en Automatique (National

Institute for Research in Computer Science and Control)

JADE – Java Agent Development framework (see [BC11])

LAN – Local Area Network

LTU – Luleå Tekniska Universitet (Luleå University of Technology)

MADIP – Mobile multi-Agent based Distributed Information Platform (see [SW11])

MDC – Mobile Data Challenge

MDP – Markov Decision Process.

OPTICS – Ordering Points To Identify the Clustering Structure (see [AB99])

PARC – Xerox Palo Alto Research Center

Acronyms

260

PDA – Personal Digital Assistant

POMDP – see Partially Observable Markov Decision Process.

SOUPA – Standard Ontology for Ubiquitous and Pervasive Applications (see [CH05]).

SVM – Support Vector Machines

WLAN – Wireless LAN

XML – eXtended Markup Language

Glossary

261

Glossary

Activity recognition –recognizing common human activities in real life settings[KH10b].

Application Space – multidimensional space, where context attributes act as dimensions.

See [Pa06], [PL08] and chapters I and VI for more details.

Context – “any information that can be used to characterize situation of an entity”[DA00]

Context Attribute – context feature that can be characterized by numeric or non-numeric

value. For example, in smart home environment information like air temperature, energy

consumption and light level can be taken as context attributes.

Context Awareness – ability “to provide relevant information and/or services to the user,

where relevancy depends on the user’s task.”[DA00]

Context Data – used interchangeably with the term “context” in this thesis.

Context Information –used interchangeably with the term “context” in this thesis.

Context Prediction – forecasting future context features.

Context Space – see Application Space.

Context Spaces Approach – see Context Spaces Theory.

Context Spaces Theory – a context awareness approach, which is based on representing

context as multidimensional space and utilizing spatial metaphors. See [Pa06], [PL08] and

chapters I and VI for more details.

Context state – a cotext spaces theory term, which means the set of all relevant context

attributes at a certain time. A context state can be viewed as a point in an application space.

See chapter IV for more details.

ContReMAR – Context Reasoning for Mobile Activity Recognition, ECSTRA-based

location awareness and situation awareness solution. contReMAR applcaition learns the

situations out of unlabeled data. See chapter IV for more details.

Dense Orthotope-based Situation Space – a modification of orthotope-based situation

space. See chapter III for more details.

ECORA – Extensible Context Oriented Reasoning Architecture. Context awareness

framework, based on context spaces approach. Although both ECSTRA and ECORA are

based on context spaces approach, there are no reuses between those two context awareness

frameworks. See [PL08][PL04a][PL04b][Pa06] for more details

ECSTRA – Enhanced Context Spaces Theory Based Reasoning Architecture. ECSTRA is

a general purpose context awareness and situation awareness engine, developed as part of

this doctoral research. See chapter II for more details.

Glossary

262

Fuzzy situation –

1) In a narrow sense, FSI-based situation model.

2) In a broader sesnse, any situation model, which is based on fuzzy logic.

Lifelogging – digitally recording aspects and personal experiences of someone’s life

[BL07].

Mixed context attribute – context attribute, which can take both numeric and non-numeric

values.

Orthotope-based Situation Space – an extension of situation space concept, proposed in

this thesis. See chapters III and VI for more details. Orthotope-based situation spaces allow

representing broader class of real life situations and play an important role in verification of

situation models.

Proactive adaptation – adaptation actions in response to predicted context (as opposed to

reacting on current context only).

Situation – “external semantic interpretation of sensor data” [YD12], where the

interpretation means “situation assigns meaning to sensor data” [YD12] and external

means “from the perspective of applications, rather than from sensors”[YD12]. The concept

of a situation generalizes the context data and elicits the most important information from

it. Properly designed situation awareness extracts the most relevant information from the

context data and provides it in a clear manner. Multiple aspects of situation awareness are

the focus of this thesis.

Situation Awareness – the process of inferring situations out of context data.

Situation Space – formal model of a situation, which is used in context sapces theory.

Sparse Orthotope-based Situation Space – a modification of orthotope-based situation

space. See chapter III for more details.

References

263

References

[AN04] Abbeel, P. and Ng, A.Y. Apprenticeship learning via inverse reinforcement

learning. in 21st International Conference on Machine Learning, 2004, pp 1-8.

[AG10] Acampora, G., Gaeta, M., Loia, V. and Vasilakos, A. V. Interoperable and adaptive

fuzzy services for ambient intelligence applications. ACM Trans. Auton. Adapt. Syst.,

vol. 5, no. 2, pp. 8:1–8:26, May 2010.

[AS94] Agrawal, R. and Srikant, R. Fast algorithms for mining association rules. in 20th

Int. Conf. Very Large Data Bases, VLDB, 1994, p. 487-499.

[AD04] Al-Bin-Ali, F. and Davies, N. Applying Logistic Regression for Activity

Recognition. in UbiComp: 6th International Conference on Ubiquitous Computing,

Poster session, 2004.

[AM06] Al-Masri, E. and Mahmoud. Q.H. A context-aware mobile service discovery and

selection mechanism using artificial neural networks. in 8th international conference

on electronic commerce: The new e-commerce: innovations for conquering current

barriers, obstacles and limitations to conducting successful business on the internet,

2006, p. 594-598.

[AZ98] Albrecht, D.W., Zukerman, I. and Nicholson, A.E. Bayesian models for keyhole

plan recognition in an adventure game. User modeling and user-adapted interaction,

Vol. 8, 1998, pp. 5–47.

[AZ99] Albrecht, D.W., Zukerman, I. and Nicholson, A.E. Pre-sending documents on the

WWW: A comparative study. in IJCAI99 – Proceedings of the Sixteenth

International Joint Conference on Artificial Intelligence, 1999.

[AB07] Alvares, L. O., Bogorny, V., Kuijpers, B., de Macedo, J. A. F., Moelans, B. and

Vaisman, A. A model for enriching trajectories with semantic geographical

information. in GIS’07: P eedi gs f the 15th A ual ACM I te ati al

Symposium on Advances in Geographic Information Systems, New York, NY, USA,

2007. ACM Press.

[AM05] Anagnostopoulos, C., Mpougiouris, P. and Hadjiefthymiades, S. Prediction

intelligence in context-aware applications. in MDM ’05: P eedi gs f the 6th

international conference on mobile data management. New York, NY, USA: ACM

Press, 2005, pp 137–141.

[AN06] Anagnostopoulos, C., Ntarladimas, Y. and Hadjiefthymiades, S. Situational

computing: an innovative architecture with imprecise reasoning, Journal of System

and Software 80 (12) (1993–2014).

[AA11] Andrienko, G., Andrienko, N., Hurter, C., Rinzivillo, S. and Wrobel, S. From

Movement Tracks through Events to Places: Extracting and Characterizing Significant

References

264

Places from Mobility Data. in IEEE Visual Analytics Science and Technology (VAST

2011) Proceedings, IEEE Computer Society Press, pp.161-170.

[AB99] Ankerst, M., Breunig, M. M., Kriegel, H.-P. and Sander, J. OPTICS: ordering

points to identify the clustering structure. in Proceedings of the 1999 ACM SIGMOD

international conference on Management of data (SIGMOD '99). ACM, New York,

NY, USA, 49-60.

[AC09] Arapinis, M., Calder, M., Dennis, L., Fisher, M., Gray, P., Konur, S., Miller, A.,

Ritter, E., Ryan, M., Schewe, S., Unsworth, C. and Yasmin, R.. Towards the

Verification of Pervasive Systems. Electronic Communication of the European

Association of Software Science and Technology 22, 2009.

[AS02] Ashbrook, D. and Starner, S. Learning Significant Locations and Predicting User

Movement with GPS. in Proceedings of the 6th IEEE International Symposium on

Wearable Computers, 2002, p.101.

[AL08] Augusto, J.C., Liu, J., McCullagh, P., Wang, H. and Yang, J.-B. Management of

uncertainty and spatio-temporal aspects for monitoring and diagnosis in a smart home.

International Journal of Computational Intelligence Systems 1 (4) ,2008, pp 361–378.

[BC93] Baird, L. C. and Klopf, A. H. Reinforcement learning with high-dimensional,

continuous actions. Wright-Patterson Air Force Base Ohio: Wright Laboratory, Tech.

Rep. WL-TR-93-1147, 1993. URL= http://www.leemon.com/papers/1993bk3.pdf

[BI04] Bao, L. and Intille, S.S. Activity recognition from user-annotated acceleration data.

in: Pe vasive’04: P eedi gs f the Se d I ternational Conference on Pervasive

Computing, Vienna, Austria, April 2004, pp. 1–17.

[BP66] Baum, L.E. and T. Petrie. Statistical inference for probabilistic functions of finite

state Markov chains. The Annals of Mathematical Statistics, 1966, pp. 1554–1563.

[BC11] Bellifemine, F., Caire, G., Trucco, T. and Rimassa, G. JADE Programmer’s Guide,

URL=http://jade.tilab.com/doc/programmersguide.pdf, last accessed October, 30,

2012.

[Be96] Bestavros, A. Speculative data dissemination and service to reduce server load,

network traffic and service time in distributed information systems. in Proceedings of

the 1996 International Conference on Data Engineering, 1996.

[BB10] Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan,

A. and Riboni, D. A survey of context modelling and reasoning techniques, Pervasive

and Mobile Computing 6 (2), 2010, pp 161–180.

[BD99] Bhattacharya, A. and Das, S.K. Lezi update: An information-theoretic approach to

track mobile users in PCS networks. Mobile Computing and Networking, 1999, pp 1–

12.

[BV04] Boyd, S. P. and Vandenberghe, L. Convex Optimization. Cambridge University

Press, 2004.

[Bo10] Boytsov, A. Proactive Adaptation in Pervasive Computing Systems, in ICPS '10:

Proceedings of the 7th international conference on Pervasive services, Berlin,

Germany: ACM, 2010.

References

265

[Bo11] Boytsov, A. Context Reasoning, Context Prediction and Proactive Adaptation in

Pervasive Computing Systems. Licentiate thesis. Department of Computer Science,

Electrical and Space Engineering, Luleå University of Technology, 2011.

URL=http://pure.ltu.se/portal/files/32946690/Andrey_Boytsov.Komplett.pdf, last

accessed October, 30, 2012.

[BZ09] Boytsov, A., Zaslavsky, A. and Synnes, K. Extending Context Spaces Theory by

Predicting Run-Time Context, in Proceedings of the 9th International Conference on

Smart Spaces and Next Generation Wired/Wireless Networking and Second

Conference on Smart Spaces. St. Petersburg, Russia: Springer-Verlag, 2009, pp. 8-21.

[BZ10a] Boytsov, A. and Zaslavsky, A. Context prediction in pervasive computing

systems: achievements and challenges. in Burstein, F., Brézillon, P. and Zaslavsky, A.

eds. Supporting real time decision-making: the role of context in decision support on

the move. Springer p. 35-64. 30 p. (Annals of Information Systems; 13), 2010.

[BZ10b] Boytsov, A. and Zaslavsky, A. Extending Context Spaces Theory by Proactive

Adaptation. in Balandin, S., Dunaytsev, R. and Koucheryavy, Y. eds. Proceedings of

the 10th international conference and 3rd international conference on Smart spaces

and next generation wired/wireless networking (NEW2AN'10/ruSMART'10), Springer

Berlin / Heidelberg, 2010, pp. 1-12.

[BZ11a] Boytsov, A. and Zaslavsky, A. ECSTRA: distributed context reasoning framework

for pervasive computing systems. in Balandin, S., Koucheryavy, Y. and Hu H. eds.

Proceedings of the 11th international conference and 4th international con ference on

Smart spaces and next generation wired/wireless networking

(NEW2AN'11/ruSMART'11), Springer-Verlag, Berlin, Heidelberg, 1-13.

[BZ11b] Boytsov, A. and Zaslavsky, A. From Sensory Data to Situation Awareness:

Enhanced Context Spaces Theory Approach, in Proceedings of IEEE Ninth

International Conference on Dependable, Autonomic and Secure Computing (DASC),

2011 , pp.207-214, 12-14 Dec. 2011. doi: 10.1109/DASC.2011.55.

[BZ11c] Boytsov, A. and Zaslavsky, A. Formal Verification of the Context Model -

Enhanced Context Spaces Theory Approach. Scientific report, 2011, 41 p.

URL=http://pure.ltu.se/portal/files/32810947/BoytsovZaslavsky_Verification_TechReport.pdf,

last accessed October, 30, 2012.

[BZ12a] Boytsov, A., Zaslavsky, A. and Abdallah, Z. Where Have You Been? Using

Location Clustering and Context Awareness to Understand Places of Interest. in

Andreev, S., Balandin, S. and Koucheryavy, Y. eds. Internet of Things, Smart Spaces,

and Next Generation Networking, vol. 7469, Springer Berlin / Heidelberg, 2012, pp.

51–62.

[BZ12b] Boytsov, A. and Zaslavsky, A. Formal verification of context and situation

models in pervasive computing. Pervasive and Mobile Computing, Volume 9, Issue 1,

February 2013, Pages 98-117, ISSN 1574-1192, 10.1016/j.pmcj.2012.03.001.

URL=http://www.sciencedirect.com/science/article/pii/S1574119212000417, last

accessed May, 08, 2013.

References

266

[BZ12c] Boytsov, A. and Zaslavsky, A. Correctness Analysis and Verification of Fuzzy

Situations in Situation Aware Pervasive Computing Systems. Scientific report, 2013.

URL=http://pure.ltu.se/portal/files/42973133/BoytsovZaslavsky_FuzzyVerifReport.pdf, last

accessed May, 08, 2013.

[BU98] Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition.

Data Mining and Knowledge Discovery, v.2 n.2, p.121-167, June 1998. DOI =

10.1023/A:1009715923555

[BD08] Byrne, D., Doherty, A.R., Snoek C.G.M., Jones, G. J. F., and Smeaton, A.F.

Validating the Detection of Everyday Concepts in Visual Lifelogs. SAMT 2008 – 3rd

International Conference on Semantic and Digital Media Technologies, Koblenz,

Germany, 3-5 D, 2008.

[BL07] Byrne, D., Lavelle, B., Doherty, A. R. Jones, G. J. F. and Smeaton, A. F. Using

Bluetooth & GPS Metadata to Measure Event Similarity in SenseCam Images. Centre

for Digital Video Processing (CDVP) & Adaptive Information Cluster (AIC), Dublin

City University, Dublin 9, Ireland, 2007.

[CG09] Calder, M. Gray, P. and Unsworth, C. Tightly coupled verification of pervasive

systems, in Proceedings of the Third International Workshop on Formal Methods for

Interactive Systems (FMIS 2009), 2009.

[CX05] Cao, J., Xing, N., Chan, A., Feng, Y. and Jin, B. Service Adaptation Using Fuzzy

Theory in Context-aware Mobile Computing Middleware. in Proceedings of the 11th

IEEE Conference on Embedded and Real-time Computing Systems and Applications

(RTCSA 2005), 2005.

[CM05] Cappeґ, O., Moulines, E. and Rydeґn, T. Inference in Hidden Markov Models,

Springer, 2005.

[CG00] Cardelli, L. and Gordon, A.D. Mobile ambients. Theoretical Computer Science,

vol. 240, Jun. 2000, pp. 177-213.

[Ch97] Chalfen R. Family photography: One album is worth a 1000 lies. in Neuwman, D.

M. ed. Sociology: Exploring the architecture of everyday life, CA.: Pine Forge Press,

1997, pp. 269-278.

[CF05] Chen, H., Finin, T. and Joshi, A. The SOUPA Ontology for Pervasive Computing.

in Tamma, V., Cranefield, S. and Finin, T. eds. Ontologies for Agents: Theory and

Experiences, Springer, 2005.

[CG99] Clarke, E. M., Grumberg, Orna and Peled, D. A. Model checking. Cambridge,

Mass., London : MIT, 1999.

[CD05] Cook, D.J. and Das, S.K. Smart environments: technologies, protocols, and

applications, Wiley-Interscience, 2005.

[CD07] Cook, D.J. and Das, S.K. How smart are our environments? An updated look at the

state of the art. in Pervasive and Mobile Computing, vol. 3, 2007, pp. 53-73.

[CA09] Cook, D.J., Augusto, J.C. and Jakkula, V.R. Ambient intelligence: Technologies,

applications, and opportunities. in Pervasive and Mobile Computing, vol. 5, Aug.

2009, pp. 277-298.

References

267

[CL09] Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. Introduction to

Algorithms (3rd ed.). MIT Press, 2009. ISBN 0-262-03384-4.

[CP10] Coronato, A. and Pietro, G.D. Formal specification of wireless and pervasive

healthcare applications. ACM Transactions on Embedded Computing Systems (TECS),

vol. 10, Aug. 2010, pp. 12:1–12:18.

[CP11] Coronato, A. and Pietro, G.D. Formal Specification and Verification of Ubiquitous

and Pervasive Systems. ACM Transactions on Autonomous and Adaptive Systems

(TAAS), vol. 6, Feb. 2011, pp. 9:1–9:6.

[Co73] Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, 1973.

[DC02] Das, S.K., Cook, D.J., Bhattacharya, A., Heierman, E.O. and Lin, T.Y. The role of

prediction algorithms in the MavHome smart home architecture. IEEE Wireless

Communications, Vol. 9, 2002, pp. 77–84.

[DH97] Davison, B. D. and Hirsh, H. Toward an adaptive command line interface. in

Proceedings of the Seventh International Conference on Human-Computer

Interaction, San Francisco, CA: Elsevier Science Publishers, 1997.

[DH98] Davison, B.D. and Hirsh, H. Probabilistic online action prediction. in Proceedings

of the AAAI Spring Symposium on Intelligent Environments, 1998, pp. 148–154.

[DZ08] Delir Haghighi, P., Zaslavsky, A., Krishnaswamy, S., and Gaber, M.M. Reasoning

About Context in Uncertain Pervasive Computing Environments. in Proceedings of

the European Conference on Context and Sensing (EuroCSS08), Switzerland,

October, Springer Verlag, 2008.

[DL77] Dempster, A. P., Laird, N. M. and Rubin, D. B. Maximum Likelihood from

Incomplete Data via the EM algorithm. Journal of the Royal Statistical Society, vol.

39, no. 1, 1977, pp. 1–38.

[DA00] Dey, A.K. and Abowd, G.D. Towards a better understanding of context and

context-awareness. in CHI 2000 workshop on the what, who, where, when, and how of

context-awareness, 2000, pp. 304–307.

[DS07] Dimakis, N., Soldatos, J. and Polymenakos, L. Ontology-based Management of

Pervasive Systems. in Proceeding of the 2007 conference on Emerging Artificial

Intelligence Applications in Computer Engineering: Real Word AI Systems with

Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies, IOS

Press, 2007, pp. 106-113.

[DP07] Dimitrov, T., Pauli, J. and Naroska, E. A probabilistic reasoning framework for

smart homes. in Proceedings of the 5th international workshop on Middleware for

pervasive and ad-hoc computing: held at the ACM/IFIP/USENIX 8th International

Middleware Conference, New York, NY, USA, 2007, pp. 1–6.

[Do09] Doherty, A. R. Providing effective memory retrieval cues through automatic

structuring and augmentation of a lifelog of images. PhD thesis, Dublin City

University, 2009.

[DC08] Doherty, A.R, Ó Conaire, C., Blighe, M., Smeaton, A.F. and O’Connor, N.

Combining Image Descriptors to Effectively Retrieve Events from Visual Lifelogs. In

References

268

MIR 2008 – ACM International Conference on Multimedia Information Retrieval,

Vancouver, Canada, 2008, pp30-31.

[DP11] Dominici, M., Pietropaoli, B. and Weis. F. Towards a feasibility-driven

uncertainty-aware layered architecture for recognizing complex domestic activity. In

Proceedings of the 2011 international workshop on Situation activity & goal

awareness(SAGAware '11). ACM, New York, NY, USA, pp 89-94, 2011.

DOI=10.1145/2030045.2030064,

URL=http://doi.acm.org/10.1145/2030045.2030064, last accessed October, 30, 2012.

[Do07] Dougherty, C. Introduction to Econometrics. Third edition, Oxford University

Press, 2007.

[Ea11] Eaton, J. W. GNU Octave Manual, Network Theory Ltd., 2002.

[ES07] Ejigu, D., Scuturici, M. and Brunie, L. An Ontology-Based Approach to Context

Modeling and Reasoning in Pervasive Computing. in Proceedings of the Fifth IEEE

International Conference on Pervasive Computing and Communications Workshops,

IEEE Computer Society, 2007, pp. 14-19.

[En01] H. B. Enderton. A Mathematical Introduction to Logic. Elsevier Science, 2001.

[EK96] Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. A density-based algorithm for

discovering clusters in large spatial databases with noise. in Proc KDD. AAAI Press,

Volume: 96, 1996, Pages: 226-231. ISBN: 1577350049.

[FT07] Favela, J., Tentori, M., Castro, L. A., Gonzalez, V. M., Moran, E. B. and Martínez-

García, A. I. Activity recognition for context-aware hospital applications: issues and

opportunities for the deployment of pervasive networks. Mob. Netw. Appl., vol. 12,

no. 2–3, Mar. 2007, pp. 155–171.

[FM92] Feder, M., Merhav, N. and Gutman, M. Universal prediction of individual

sequences. IEEE Transactions on Information Theory, Vol. 38, 1992, pp. 1258–1270.

[FL07] Feki, M., Lee, S., Bien, Z. and Mokhtari, M. Context Aware Life Pattern Prediction

Using Fuzzy-State Q-Learning. in Pervasive Computing for Quality of Life

Enhancement, pp. 188-195, 2007.

[FK02] Frohlich, D., Kuchinsky, A., Pering, C., Don, A. and Ariss, S.. Requirements for

photoware. In Proc. of CSCW'02, ACM Press, New Orleans, Louisiana, USA, 2002.

[Fr95] Fritzke, B. A growing neural gas network learns topologies. Advances in Neural

Information Processing Systems 7, 1995, pp. 625-632.

[GP09] Gammage, B., Plummer, D. C., Thompson, E., Fiering, L., LeHong, H.,

Karamouzis, F., Da Rold, C., Collins, K., Clark, W., Jones, N., Smulders, C.,

Escherich, M., Reynolds, M. and Basso, M. Gartner's Top Predictions for IT

Organizations and Users, 2010 and Beyond: A New Balance, 2009. URL =

http://www.businessanalisten.nl/RT/0Portal/Event/doc/Gar_Top_pred_2010.pdf, last accessed

October, 30, 2012.

[GW99] Gaskett, C., Wettergreen, D., Zelinsky, A. and Zelinsky, E. Q-Learning in

Continuous State and Action Spaces. in Proceedings of the 12
th
 Australian Joint

Conference on Artificial Intelligence, 1999, pp. 417-428.

References

269

[GV06] Gellert, A. and Vintan, L. Person Movement Prediction Using Hidden Markov

Models. Studies in Informatics and Control, Vol. 15, 2006, p. 17.

[GW04] Gemmell, J., Williams, L., Wood, K., Bell, G. and Lueder, R. Passive Capture and

Ensuing Issues for a Personal Lifetime Store. in Proceedings of The First ACM

Workshop on Continuous Archival and Retrieval of Personal Experiences (CARPE

'04), New York, NY, USA, 2004, pp. 48-55.

[GR04] Giarratano, J.C. and Riley, G. Expert systems: principles and programming,

Course Technology, USA, 2004.

[GC03] Gopalratnam, K. and Cook, D.J. Active LeZi: An incremental parsing algorithm for

sequential prediction. in Proceedings of the Florida Artificial Intelligence Research

Symposium, 2003, pp. 38–42.

[GH12] Gordon, D., Hanne, J.-H., Berchtold, M., Miyaki, T. and Beigl, M. Recognizing

Group Activities Using Wearable Sensors. in Puiatti, A. and Gu, T. eds. Mobile and

Ubiquitous Systems: Computing, Networking, and Services, vol. 104, Berlin,

Heidelberg: Springer Berlin Heidelberg, 2012, pp. 350–361.

[GG06] Gottfried, B., Guesgen, H.W., Hübner, S. Spatiotemporal reasoning for smart

homes. Designing Smart Homes 4008, 2006, pp 16–34.

[Gr93] Gruber, T. R. A translation approach to portable ontology specifications. Knowledge

Acquisition, vol. 5, no. 2, Jun. 1993, pp. 199–220.

[HD99] Hagan, M.T. and Demuth, H.B. Neural networks for control. in Proceedings of the

1999 American Control Conference, San Diego, CA, 1999, pp. 1642–1656.

[HF09] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I. H.

The WEKA data mining software: an update, SIGKDD Explor. Newsl., vol. 11, no. 1,

pp. 10–18, Nov. 2009.

[HM06] Hamid, R., Maddi, S., Bobick, A. and Essa, I. Unsupervised analysis of activity

sequences using event-motifs, in VSSN’06: P eedi gs f the 4th ACM I te ati al

Workshop on Video Surveillance and Sensor Networks, ACM, New York, NY, USA,

2006, pp. 71–78.

[Ha01] Hamker, F. H. Life-long learning cell structures—continuously learning without

catastrophic interference. Neural Networks 14, no. 4–5, 2001, pp 551–573.

[HL08] Han, J., Lee, J.-G., Gonzalez, H. and Li, X. Mining Massive RFID, Trajectory, and

Traffic Data Sets (Tutorial). in KDD, 2008.

[HM93] Harris, C. J., Moore, C. G. and Brown, M. Intelligent control: aspects of fuzzy

logic and neural nets, vol. 6. World Scientific Pub Co Inc, 1993.

[HW07] Hasselt, H. van and Wiering, M. Reinforcement Learning in Continuous Action

Spaces. in Proceedings of IEEE International Symposium on Approximate Dynamic

Programming and Reinforcement Learning (ADPRL07), Honolulu, HI, USA, 2007,

pp. 272-279.

[Ha99] Haykin, S. Neural Networks: A Comprehensive Foundation, 2
nd

 ed., Prentice Hall,

1999.

References

270

[Ha09] Haykin, S. Neural Networks and Learning Machines. 3rd edition, Pearson

Education, NJ, 2009.

[Ho62] Hoare, C. A. R. Quicksort. The Computer Journal, vol. 5, no. 1, 1962, pp. 10–16.

[HW06] Hodges, S., Williams, L., Berry, E., Izadi, S., Srinivasan, J., Butler, A., Smyth, G.,

Kapur, N. and Wood, K. SenseCam: A retrospective memory aid. in UbiComp: 8th

International Conference on Ubiquitous Computing, volume 4602 of LNCS.

[HB07] Hoey, J., Bertoldi, A. von, Poupart, P. and Mihailidis, A. Assisting persons with

dementia during handwashing using a partially observable Markov decision process.

in Proceedings of the Int. Conf. on Vision Systems, 2007, p. 66.

[Ho97] Holzmann, G. J. The model checker SPIN. IEEE Transactions on Software

Engineering, vol. 23, no. 5, May 1997, pp. 279 –295.

[HN09] Hong, X., Nugent, C., Liu, W., Ma, J., McClean, S., Scotney, B. and Mulvenna, M.

Uncertain information management for ADL monitoring in smart homes. Intelligent

Patient Management, 189/2009, pp 315–332, 2009.

[HS09] Hong, J., Suh, E.H., Kim, J. and Kim, S.Y. Context-aware system for proactive

personalized service based on context history. Expert Systems with Applications, vol.

36, 2009, pp. 7448–7457.

[HB98] Horvitz, E., Breese, J., Heckerman, D., Hovel, D. and Rommelse, K. The Lumiere

project: Bayesian user modeling for inferring the goals and needs of software users. in

Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence,

1998, pp. 256–265.

[HL00] Hosmer, D.W. and Lemeshow, S. Applied Logistic Regression. John Wiley & Sons,

2000.

[IN09] Inomata, T., Naya, F., Kuwahara, N., Hattori, F. and Kogure, K. Activity

recognition from interactions with objects using dynamic Bayesian network. in

Proceedings of the 3rd ACM International Workshop on Context-Awareness for Self-

Managing Systems, New York, NY, USA, 2009, pp. 39–42.

[IS09] Ishikawa, F., Suleiman, B., Yamamoto, K. and Honiden, S. Physical interaction in

pervasive computing: formal modeling, analysis and verification. in Proceedings of

the 2009 International Conference on Pervasive Services, New York, NY, USA:

ACM, 2009, pp. 133–140.

[JY08] Jeung, H., Yiu, M. L., Zhou, X., Jensen, C. S. and Shen, H. T. Discovery of

Convoys in Trajectory Databases. VLDB, pages 1068–1080, 2008.

[KL96] Kaelbling, L.P., Littman, M.L. and Moore, A.W. Reinforcement learning: A

survey. Journal of Artificial Intelligence Research, vol. 4, 1996, pp. 237–285.

[KS10] Kalnikaite, V., Sellen, A., Whittaker, S. and Kirk, D. Now Let Me See Where I

Was: Understanding How Lifelogs Mediate Memory. CHI 2010, ACM Press, Atlanta,

GA, USA.

[KG08] Kanda, T., Glas, D.F., Shiomi, M., Ishiguro, H. and Hagita, N. Who will be the

customer?: a social robot that anticipates people’s behavior from their trajectories. in

References

271

UbiC mp’08: P eedi gs f the 10th I te ati al C fe e e Ubiquit us

Computing, ACM, Seoul, Korea, 2008, pp. 380–389.

[KL02] Kaowthumrong, K., Lebsack, J. and Han, R. Automated selection of the active

device in interactive multi-device smart spaces. in UbiC mp’02: Supp ti g

Spontaneous Interaction in Ubiquitous Computing Settings, 2002.

[KB03] Karbassi, A. and Barth, M. Vehicle Route Prediction and Time of Arrival

Estimation Techniques for Improved Transportation System Management. in

Intelligent Vehicles Symposium, 2003. p. 511-516.

[K84] Karmarkar, N. A new polynomial-time algorithm for linear programming. in

Proceedings of the sixteenth annual ACM symposium on Theory of computing, 1984,

pp. 302–311.

[KA08] Kasteren, T. van, Athanasios, N., Englebienne, G. and Kröse, B. J. A. Accurate

activity recognition in a home setting. in UbiComp '08: Proceedings of the 10th

international conference on Ubiquitous computing, New York, NY, USA, 2008, pp

1-9.

[KK07] Kasteren, T. van and Kröse, B. J. A. Bayesian activity recognition in residence for

elders. in IE’07: P eedi gs f the thi d IET I te ati al C fe e e I telligent

Environments, September 2007, pp. 209–212.

[KE11] Kasteren, T. L. M., Englebienne, G. and Kröse, B. J. A. Hierarchical Activity

Recognition Using Automatically Clustered Actions. Keyson, D. V., Maher, M. L.,

Streitz, N., Cheok, A., Augusto, J. C., Wichert, R., Englebienne, G., Aghajan, H. and

Kröse, B. J. A. eds. Ambient Intelligence, vol. 7040, Berlin, Heidelberg: Springer

Berlin Heidelberg, 2011, pp. 82–91.

[KK05] Khedr, M. and Karmouch, A. ACAI: agent-based context-aware infrastructure for

spontaneous applications. Journal of Network and Computer Applications, vol. 28,

Jan. 2005, pp. 19-44.

[KB10] Kikhia, B., Bengtsson, J. E.. Synnes, K.. ul Hussain Sani, Z. and Hallberg, J.

Creating Digital Life Stories through Activity Recognition with Image Filtering. in

Proceeding of the 8th International Conference on Smart Homes and Health

Telematics (ICOST), Seoul, South Korea, 2010, pp 203–210.

[KB12] Kikhia, B., Boytsov, A., Hallberg, J., ul Hussain Sani, Z., Jonsson, H. and Synnes,

K. Structuring and Presenting Lifelogs based on Location Data. Technical report.

2012. 19p.

URL=http://pure.ltu.se/portal/files/40259696/KB12_StructuringPresentingLifelogs_TR.pdf,

last accessed October, 30, 2012.

[KH10a] Kikhia, B., Hallberg, J., Bengtsson, J.E., Sävenstedt, S. and Synnes, K.. Building

digital life stories for memory support. Int. J. Computers in Healthcare, Vol. 1, No. 2,

2010, pp.161–176.

[KH10b] Kim, E., Helal, S. and Cook, D. Human activity recognition and pattern

discovery. Pervasive Computing, IEEE, vol. 9, no. 1, 2010, pp. 48–53.

References

272

[KK08] Kröse, B., van Kasteren, T., Gibson, C. and van den Dool, T. Care: Context

awareness in residences for elderly. in Proceedings of ISG, 2008, pp. 101–105.

[Kl02] Kleene, Stephen Cole. Mathematical logic. Dover Publications, 2002.

[Kr07] Krumm, J. A Markov model for driver route prediction. in Society of Automative

Engineers (SAE) World Congress, 2007.

[KW10] Kwapisz, J. R., Weiss, G. M. and Moore, S. A. Activity recognition using cell

phone accelerometers. SIGKDD Explor. Newsl., vol. 12, no. 2, Mar. 2011, pp. 74–82.

[LO11] Laguna, J. O., Olaya, A. G. and Borrajo, D. A dynamic sliding window approach

for activity recognition. in Proceedings of the 19th international conference on User

modeling, adaption, and personalization, Berlin, Heidelberg, 2011, pp. 219–230.

[LG12] Laurila, J. K., Gatica-Perez, D., Aad, I., Blom, J., Bornet, O., Do, T.-M.-T.,

Dousse, O., Eberle, J. and Miettinen, M. The Mobile Data Challenge: Big Data for

Mobile Computing Research. in Proc. Mobile Data Challenge by Nokia Workshop, in

conjunction with Int. Conf. on Pervasive Computing, Newcastle, June 2012.

[LL12] Lee, S., Lin, G., Jih, W., Huang, C.-C. and Hsu, J. Y. Energy-Aware agents for

detecting nonessential appliances. in Proceedings of the 13th international conference

on Principles and Practice of Multi-Agent Systems, Berlin, Heidelberg, 2012, pp.

475–486.

[LJ10] Li, Z., Ji, M., Lee, J.-G., Tang, L.-A., Yu, Y., Han, J. and Kays, R. MoveMine:

Mining Moving Object Databases. SIGMOD, 2010, pp 1203–1206.

[LW08] Lin, T., Wang, C. and Lin, P.C. A neural-network-based context-aware handoff

algorithm for multimedia computing. ACM Transactions on Multimedia Computing,

Communications, and Applications (TOMCCAP), vol. 4, 2008, pp. 1–23.

[Lo04a] Loke, S.W. Facing Uncertainty and Consequence in Context-Aware Systems:

Towards an Argumentation Approach. in Proceedings of the Workshop on Advanced

Context Modelling, Reasoning and, Management @ Ubicomp 2004, 2004.

[Lo04b] Loke, S. W. Logic Programming for Context-Aware Pervasive Computing:

Language Support, Characterizing Situations, and Integration with the Web. in

Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence, 2004.

WI 2004, 2004, pp. 44 – 50.

[Ma12] Makhorin, A.. GLPK (GNU Linear Programming Kit).

URL=http://www.gnu.org/software/glpk/, last accessed October, 30, 2012.

[MS02] Mäntyjärvi, J. and Seppänen, T. Adapting Applications in Mobile Terminals Using

Fuzzy Context Information. in Paternò, F. ed. Human Computer Interaction with

Mobile Devices, vol. 2411, Springer Berlin / Heidelberg, 2002, pp. 383–404.

[Ma04a] Mayrhofer, R. An Architecture for Context Prediction. PhD thesis, Johannes

Kepler University of Linz, Austria, October 2004.URL=

http://www.mayrhofer.eu.org/downloads/publications/PhD-ContextPrediction-2004.pdf,

last accessed October, 30, 2012.

References

273

[Ma04b] Mayrhofer, R. An Architecture for Context Prediction. in Advances in Pervasive

Computing, Austrian Computer Society (OCG), 2004, pp. 72, 65.

[MR04] Mayrhofer, R., Radi, H. and Ferscha, A. Recognizing and predicting context by

learning from user behavior. Radiomatics: Journal of Communication Engineering,

special issue on Advances in Mobile Multimedia, 1(1), May 2004.

[MY10] McKeever, S., Ye, J., Coyle, L., Bleakley, C. and Dobson, S. Activity recognition

using temporal evidence theory. Journal of Ambient Intelligence and Smart

Environments, vol 2, issue 3, August 2010.

[Me92] Mehrotra, S. On the implementation of a primal-dual interior point method. SIAM

Journal on optimization, vol. 2, no. 4, 1992, pp. 575–601.

[Mo98] Mozer, M.C. The neural network house: An environment that adapts to its

inhabitants. in Proceedings of the American Association for Artificial Intelligence

Spring Symposium on Intelligent Environments, 1998, pp. 110–114.

[Mo04] Mozer, M.C. Lessons from an adaptive home. in Smart environments:

technologies, protocols, and applications, pp. 273–294. Wiley (2004)

[MD95] Mozer, M. C., Dodier, R. H., Anderson, M., Vidmar, L., Iii, R. F. C. and Miller, D.

The Neural Network House: An Overview. in Niklasson, L., Boden, M. eds. Current

trends in connectionism, Hillsdale, NJ: Erlbaum, 1995, pp. 371-380.

[MB04] Mühlenbrock, M., Brdiczka, O., Snowdon, D. and Meunier, J.-L. Learning to

detect user activity and availability from a variety of sensor data. in PERCOM’04:

Proceedings of the Second IEEE International Conference on Pervasive Computing

and Communications, IEEE Computer Society, Orlando, Florida, March 2004, pp.

13–22.

[NM05] Nurmi, P., Martin, M. and Flanagan, J. A. Enabling proactiviness through Context

Prediction. in Proceedings of the Workshop on Context Awareness for Proactive

Systems (CAPS, Helsinki, Finland, June, 2005), Helsinki University Press, 2005, pp

159-168.

[PL04] Padovitz, A., Loke, S. W. and Zaslavsky, A.. Towards a theory of context spaces. in

Pervasive Computing and Communications Workshops, 2004. Proceedings of the

Second IEEE Annual Conference on, 2004, pp 38–42.

[Pa06] Padovitz, A. Context Management and Reasoning about Situations in Pervasive

Computing. PhD Theses, Caulfield School of Information Technology, Monash

University, Australia, 2006.

[PZ06] Padovitz, A., Zaslavsky, A. and Loke, S. W. A Unifying Model for Representing

and Reasoning About Context under Uncertainty. in 11th International Conference on

Information Processing and Management of Uncertainty in Knowledge-Based

Systems (IPMU), July 2006, Paris, France.

[PL07] Padovitz, A., Loke, S.W., Zaslavsky, A. and Burg, B. Verification of Uncertain

Context Based on a Theory of Context Spaces. International Journal of Pervasive

Computing and Communications, vol. 3, issue 1, 2007, pp 30 – 56

References

274

[PL08a] Padovitz, A., Loke, S. W. and Zaslavsky, A. Multiple-agent perspectives in

reasoning about situations for context-aware pervasive computing systems. IEEE

Transactions on Systems, Man and Cybernetics - Part A: Systems and Humans, 38(4),

2008, pp 729-742.

[PL08b] Padovitz, A., Loke, S. W. and Zaslavsky, A. The ECORA framework: A hybrid

architecture for context-oriented pervasive computing. Pervasive and Mobile

Computing, Elsevier, 4, 2008, pp 182–215.

[PR07] Patel, S. N., Robertson, T., Kientz, J. A., Reynolds, M. S. and Abowd, G. D. At the

flick of a switch: detecting and classifying unique electrical events on the residential

power line. in Proceedings of the 9th international conference on Ubiquitous

computing, Berlin, Heidelberg, 2007, pp. 271–288.

[PB08] Palma, A. T, Bogorny, V., Kuijpers, B. and Alvares, L.O. A Clustering-based

Approach for Discovering Interesting Places in Trajectories. in: 23rd Annual

Symposium on Applied Computing, (ACM-SAC'08), Fortaleza, Ceara, Brazil, 16-20

March 2008, pp. 863-868.

[PB03] Petzold, J., Bagci, F., Trumler, W. and Ungerer, T. Context Prediction Based on

Branch Prediction Methods. Technical report, 2003.

URL=http://www.informatik.uni-

augsburg.de/lehrstuehle/sik/publikationen/reports/2003_14_pet/2003_14_pet_pdf.pdf,

last accessed October, 30, 2012.

[PP05] Petzold, J., Pietzowski, A., Bagci, F., Trumler, W. and Ungerer, T. Prediction of

indoor movements using bayesian networks. in Location-and Context-Awareness

(LoCA 2005), Oberpfaffenhofen, Germany, 2005, pp. 211-222.

[PB04] Pichler, M., Bodenhofer, U., Schwinger, W. Context-Awareness and Artificial

Intelligence. Österreichische Gesellschaft für Artificial Intelligence (ÖGAI), 23/1,

ISSN 0254-4326, April 2004.

[Pi01] Piegat, A. Fuzzy Modeling and Control, 1st ed. Physica, 2001.

[Po09] Poslad, S. Ubiquitous Computing: Smart Devices, Environment and Interactions.

John Wiley & Sons Ltd., 2009.

[Qu93] Quinlan, R. J. C4.5: Programs for Machine Learning. Morgan Kaufmann Series in

Machine Learning, Morgan Kaufmann, January 1993.

[Ra90] Rabiner, L.R. A tutorial on hidden Markov models and selected applications in

speech recognition. Readings in Speech Recognition, vol. 53, 1990, pp. 267–296.

[Ra07] Rakowsky, U. Fundamentals of Dempster-Shafer theory and its applications to

system safety and reliability modeling. RTA, no. 3-4, 2007.

[RA04] Ranganathan, A., Al-Muhtadi, J. and Campbell, R. Reasoning about uncertain

contexts in pervasive computing environments. Pervasive Computing, IEEE, vol. 3,

2004, pp. 62-70.

[RB03] Roy, A., Bhaumik, S.K., Bhattacharya, A., Basu, K., Cook, D.J. and Das, S.K.

Location aware resource management in smart homes. in Proceedings of the First

References

275

IEEE International Conference on Pervasive Computing and Communications, 2003,

pp. 481–488.

[RD03] Roy, A., Das, S.K., Bhattacharya, A., Basu, K., Cook, D. J. and Das, S. K..

Location aware resource management in smart homes. in Proceedings of the First

IEEE International Conference on Pervasive Computing and Communications, 2003.

(PerCom 2003), 2003, pp 481–488.

[RN06] Russell, S. J. and Norvig, P. Artificial Intelligence. A Modern Approach, 2nd

edition. Upper Saddle River, New Jersey, USA: Prentice Hall, 2006.

[RN09] Russell, S. J. and Norvig, P. Artificial Intelligence: A Modern Approach, 3rd

edition. Prentice Hall, 2010.

[RA09] Ryoo, M. S. and Aggarwal, J. K. Semantic Representation and Recognition of

Continued and Recursive Human Activities. Int. J. Comput. Vision, vol. 82, no. 1,

April 2009, pp. 1–24.

[SS98] Santamaria, J.C., Sutton, R.S. and Ram, A. Experiments with Reinforcement

Learning in Problems with Continuous State and Action Spaces. Adaptive Behavior,

vol. 6, issue 2, 1998, pp. 163-217.

[Sh76] Shafer, G., A Mathematical Theory of Evidence, Princeton University Press,

Princeton, N.J., 1976.

[SH06] Sigg, S., Haseloff, S. and David, K. A Novel Approach to Context Prediction in

UBICOMP Environments. in Proceedings of the 2006 IEEE 17th International

Symposium on Personal, Indoor and Mobile Radio Communications, 2006, pp. 1-5.

[SH07] Sigg, S., Haseloff, S. and David, K. Minimising the Context Prediction Error. in

Proceedings of IEEE 65th Vehicular Technology Conference VTC2007-Spring,

Dublin, Ireland, 2007, pp. 272-276.

[SL09] Siirtola, P., Laurinen, P., Haapalainen, E., Roning, J. and Kinnunen, H. Clustering-

based activity classification with a wrist-worn accelerometer using basic features. in

IEEE Symp sium C mputati al I tellige e a d Data Mi i g, 2009. CIDM ’09,

2009, pp. 95 –100.

[SB06] Simmons, R., Browning, B., Zhang, Y. and Sadekar, V. Learning to predict driver

route and destination intent. in IEEE Intelligent Transportation Systems Conference –

ITSC'06, 2006, pp. 127–132.

[Sm02] Smith, A.J. Applications of the self-organising map to reinforcement learning.

Neural Networks, vol. 15, 2002. pp. 1107-1124.

[SP08] Spaccapietra, S., Parent, C., Damiani, M. L., de Macedo, J. A., Porto, F. and

Vangenot, C.. A Conceptual View on Trajectories. Data and Knowledge Engineering,

vol 65, issue 1, 2008, pp 126–146.

[SA96] Srikant, R. and Agrawal, R. Mining sequential patterns: Generalizations and

performance improvements. Advances in Database Technology – EDBT'96, 1996, pp.

1–17.

[St09] Staab, S. Handbook on Ontologies. Springer-Verlag, 2009.

References

276

[SW11] Su, C. and Wu, C. JADE implemented mobile multi-agent based, distributed

information platform for pervasive health care monitoring. Applied Soft Computing,

vol 11, Jan. 2011, pp. 315-325.

[SB98] Sutton, R. S. and Barto, A. G. Reinforcement Learning: An Introduction. The MIT

press, Cambridge MA, A Bradford Book, 1998.

[TI04] Tapia, E.M., Intille, S.S. and Larson, K. Activity recognition in the home using

simple and ubiquitous sensors. in: Pe vasive’04: P eedi gs f the i te ati al

conference on Pervasive Computing, 2004, pp. 158–175.

[To97] Touzet, C. Neural reinforcement learning for behaviour synthesis. Robotics and

Autonomous Systems, vol. 22, 1997, pp. 251-281.

[TL03] Toyama, K., Logan, R., Roseway, A. and Anandan, P. Geographic Location Tags

on Digital Images. in Proceedings of the eleventh ACM international conference on

Multimedia, Berkeley, California, November 2003, 1-58113-722-2.

[TW08] Tsungnan, L., Wang, C., Lin, P.-C. A neural-network-based context-aware handoff

algorithm for multimedia computing. ACM Transactions on Multimedia Computing,

Communications, and Applications (TOMCCAP) archive, vol 4, issue 3, 2008, pp

1-23.

[Va08] Vainio, A.-M. Proactive Fuzzy Control and Adaptation Methods for Smart Homes.

IEEE Intelligent Systems, March 2008, pp. 42-49.

[VP06] Vasilakos, A. and Pedrycz, W. Ambient Intelligence, Wireless Networking, and

Ubiquitous Computing. Artech House Publishers, 2006.

[VS12] Venables, W.N., Smith, D.M. and the R Development Core Team. An Introduction

to R, URL=http://cran.r-project.org/doc/manuals/R-intro.pdf, last accessed October,

30, 2012.

[VG04] Vintan, L., Gellert, A., Petzold, J. and Ungerer, T. Person Movement Prediction

Using Neural Networks. in First Workshop on Modeling and Retrieval of Context,

Ulm, Germany, September 2004.

[WZ04] Wang, X.H., Zhanupon, D.Q., Gu, T. and Pung, H.K. Ontology Based Context

Modeling and Reasoning using OWL. in Proceedings of the Second IEEE Annual

Conference on Pervasive Computing and Communications Workshops, IEEE

Computer Society, 2004, p. 18.

[We91] Weiser, M. The Computer for the 21stCentury. Scientific American, vol 265, no. 3,

September 1991, pp 94–104.

[WG99] Weiser, M., Gold, R. and Brown, J.S. The origins of ubiquitous computing

research at PARC in the late 1980s. IBM Systems Journal, vol. 38, Dec. 1999, pp.

693–696.

[WH07] Wilkin, G. A., Huang, X. K-Means Clustering Algorithms: Implementation and

Comparison. in Second International Multi-Symposiums on Computer and

Computational Sciences (imsccs), pp.133-136, 2007.

References

277

[WM08] Williams, C.A., Mohammadian, A., Nelson, P.C. and Doherty, S.T. Mining

sequential association rules for traveler context prediction. in Proceedings of the 5th

Annual International Conference on Mobile and Ubiquitous Systems: Computing,

Networking, and Services, Dublin, Ireland: ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering), 2008, pp. 1-6.

[WG01] Wolf, J., Guensler, R. and Bachman, W. Elimination of the travel diary: An

experiment to derive trip purpose from GPS travel data. in: Notes from Transportation

Research Board, 80th annual meeting, Washington, D.C., 2001.

[WJ08] Wolfe, B., James, M.R. and Singh, S. Approximate predictive state representations.

in Proceedings of the 7th international joint conference on Autonomous agents and

multiagent systems, Estoril, Portugal: International Foundation for Autonomous

Agents and Multiagent Systems , vol. 1, 2008, pp. 363-370.

[Wr97] Wright, S. J. Primal-Dual Interior-Point Methods. SIAM, 1997.

[XP08] Xue, W., Pung, H., Ng, W. and Gu, T. Data Management for Context-Aware

Computing. in IEEE/IFIP International Conference on Embedded and Ubiquitous

Computing 2008 EUC '08., 2008, pp. 492-498.

[YL08] Yager, R. R. and Liu, L. Classic Works of the Dempster-Shafer Theory of Belief

Functions. Springer, 2008.

[YC11] Yan, Z., Chakraborty, D., Parent, C., Spaccapietra, S., and Aberer, K. SeMiTri: A

Framework for Semantic Annotation of Heterogeneous Trajectories. in 14th

I te ati al C fe e e Exte di g Database Te h l gy (EDBT ’11), 2011, pp

259-270

[YW08] Yang, J.-Y., Wang, J.-S. and Chen, Y.-P. Using acceleration measurements for

activity recognition: an effective learning algorithm for constructing neural classifiers.

Pattern Recognition Letter, vol 29, issue 16, 2008, pp 2213–2220.

[YC07a] Ye, J., Coyle, L., Dobson, S. and Nixon, P. Using Situation Lattices to Model and

Reason about Context. in Proceedings of the Fourth International Workshop

Modeling and Reasoning in Context (MRC 2007). Roskilde, Denmark, 2007.

[YC07b] Ye, J., Coyle, L., Dobson, S. and Nixon, P. Ontology-based models in pervasive

computing systems. Knowl. Eng. Rev., vol. 22, no. 4, Dec. 2007, pp. 315–347.

[YD12] Ye, J., Dobson, S. and McKeever. S. Situation identification techniques in

pervasive computing: A review. Pervasive Mob. Comput. vol 8, issue 1, February

2012, pp 36-66.

DOI=10.1016/j.pmcj.2011.01.004

URL=http://dx.doi.org/10.1016/j.pmcj.2011.01.004, last accessed October, 30, 2012.

[YP92] Yeh, T.-Y. and Patt, Y.N. Alternative Implementations of Two-Level Adaptive

Branch Prediction. in Proceedings of the 19th International Symposium on Computer

Architecture, 1992, pp. 124-134.

[Za65] Zadeh, L.A. Fuzzy sets. Information and control, vol. 8, 1965, pp. 338–353.

[ZG10] Zhang, D., Guo, M., Zhou, J., Kang, D. and Cao, J. Context reasoning using

extended evidence theory in pervasive computing environments. Future Gener.

References

278

Comput. Syst., vol 26, issue 2, 2010, pp 207–216.

[ZS11] Zhang, M. and Sawchuk, A. A. Context-aware fall detection using a Bayesian

network. in Proceedings of the 5th ACM International Workshop on Context-

Awareness for Self-Managing Systems, New York, NY, USA, 2011, pp 10–16.

[ZF04] Zhou, C., Frankowski, D., Ludford, P., Shekhar, S. and Terveen, L. Discovering

personal gazetteers: An interactive clustering approach. in Proc. ACMGIS, 2004, pp

266–273.

[ZM08] Ziebart, B.D., Maas, A.L., Dey, A.K. and Bagnell, J.A. Navigate like a cabbie:

Probabilistic reasoning from observed context-aware behavior. in Proceedings of the

10th international conference on Ubiquitous computing, 2008, pp 322–331.

[ZL78] Ziv, J. and Lempel, A. Compression of individual sequences via variable-rate

coding. IEEE Transactions on Information Theory, vol 24, issue 5, 1978, pp.

530–536.

[ZA99] Zukerman, I, Albrecht, D.W. and Nicholson, A.E. Predicting users' requests on the

WWW. Courses and Lectures-International Centre for Mechanical Sciences, 1999,

pp. 275–284.

[Av11] Avis Event Router Documentation,

URL=http://avis.sourceforge.net/documentation.html, last accessed October, 30, 2012.

[An12] How to Build a Combined Agent Based / System Dynamics Model Logic in

AnyLogic, 2008. URL=http://www.xjtek.com/file/161, last accessed October, 30,

2012.

[El11] Elvin Protocol Specifications,

URL=http://www.elvin.org/specs/index.html, last accessed October, 30, 2012.

[GP12] Google Places API documentation.

URL=https://developers.google.com/maps/documentation/places/, accessed on

October, 30, 2012.

[IS99] IST Advisory Group. Information Society Technologies Advisory Group:

Orientations for Workprogramme 2000 and Beyond, pp. 3-4 (17. September 1999).

Appendix – Statement of Accomplishment from INRIA

279

