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Abstract

The current thesis describes image processing techniques, developed for analysis of

visual scenes encountered during robotic navigation on water. The research was char-

acterized by a lack of relevant literature which could provide an initiating platform for

approaching vision guided navigation in water. It was an interesting challenge to decide the

best discipline for conducting the research in, as the problem (of water robot navigation)

could be approached from marine engineering, robotics, oceanography, mathematics, pat-

tern recognition and image processing prospectives. Consequently the literature reviewed

in this thesis, extends to eclectic but related (in application) scientific disciplines. A vari-

ety of these scientific techniques were researched, refined, attempted and abandoned with

varying degree of success. The thesis, documents some of these techniques (successful or

otherwise) along with theory and analysis. The parlance of the thesis attempts to adhere

to robotics and vision terminology and conventions.

For a robotic watercraft to navigate successfully using computer vision, it should be

able to integrate two major components viz. vision and navigation. Computer vision

can be viewed as means to achieve the objective (end) of navigation. The uniqueness

of the operating environment simultaneously challenges and assists both the components

differently. Generally, absence of pathways makes water based navigation easier than

its land based counterpart. The scene analysis for the purpose of vision guided water

navigation is characterized by following contrasting features:
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1. Unreliable Photometry: The dynamics of water and (consequently) the camera

makes it difficult to prepare a valid mathematical model or extract relevant fea-

tures to describe water.

2. Reliable and Sparse Scene Composition: Unlike land scenes, water scenes are less

cluttered and are mainly comprised of water, sky, clouds and occasional foreground

object.

Figure 1: Placement of the research components in the context of application.

Flow chart depicts sequential analysis of various components of a water scene,
with a view to locate obstacles during navigation by a water robot. The asso-
ciated research is highlighted in gray boxes. Abbreviations (PDF: Probability
Density Function, CDF: Cumulative Distribution Function and OT: Otsu’s
Threshold (Otsu; 1979))

Navigation on water can be achieved by obstacle detection and avoidance. Conse-

quently the phrase Scene-analysis, has an objective interpretation of obstacle detection,

which is one of the key areas of research in this thesis. Scene analysis described herein

is predominantly a sequential attrition of scene components (clouds, sky and water) in a

water scene, with a view to detect and locate a foreground object in water. E.g. clouds

are not identified as a separate component, but are eliminated in the scene by the use of

a mathematical technique which makes clouds transparent in the gray scale-images. The

x



sequential steps (along with associated problems and solutions) in locating the obstacles

in a water-scene are (Figure 1):

1. Generating homogeneous Sky: It eliminates false positive identification of clouds as

obstacles. Gray scale Pseudo Spectra Images (PSI) were generated from the tri-color

images at a fixed wavelengths. It was experimentally established that PSI results in

similar response for sky and clouds, thereby preventing the clouds from appearing

in gray scale images. In addition, PSIs increase the contrast between sky and water,

enabling easy detection of the horizon. The main contribution of the research into

PSI, is in developing a mathematical basis for generating images at various discrete

wavelengths. The PSIs are envisaged to have applications beyond cloud elimination.

2. Identifying horizon: This is done with an objective to define spatial spread of water

in the image. Enclosing ellipses are used to identify the horizon from the other edges.

The method is better suited on water being:

(a) Faster: As compared to conventional Hough Transform.

(b) Robust: Able to detect both straight and curved horizons.

(c) Simple: Maximizes a mathematical criterion derived from the skew and the

zeroth moment of ellipses.

3. Identifying Foreground (Obstacles): The literature review and pilot studies reveal

that images or videos captured by cameras are subjected to excessive variability

to develop any reliable obstacle recognition algorithm. To achieve robust obstacle

detection, the obstacle was identified by it’s boundary with the water. It was found

that the obstacle boundary (with water) edge in a gray scale image has following

invariable characteristics:

(a) Spatial Scarcity: The number of edges in a gray scale image that are created

due to boundary of foreground (obstacle) with the background (water) edge is

very small as compared to the total edges number of edges in the image.

(b) High Derivative Magnitude: The magnitude of the derivative of image intensity

of the obstacle-boundary edge is higher than that of edges not due to boundary.

By using these invariable characteristics of the boundary of foreground with the

background, a theoretical framework of image statistics in Scale-Space is prepared.
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This framework can identify the presence or absence of the obstacle boundary /

discontinuity, and locate the boundary of the obstacle if it is present. Specifically, the

magnitude of the Sobel derivative of a gray scale image is subjected to Scale-Space

i.e. convolved with a gaussian kernel of increasing standard deviation. At each scale,

the statistical parameter Otsu’s Threshold (OT)(Otsu; 1979) is calculated. The plot

of Otsu’s Threshold against increasing scale enables identification and location of the

foreground boundary. Mathematical proofs are provided, that the OT has differing

plots in the presence and absence of foreground-boundary (and therefore obstacle).

Theoretical research (enumerated in Figure 1) has yielded following results proved

via theorems and experimentation:

(a) Expression for PDF and CDF of the derivative of discontinuity in Scale-Space.

(b) Bimodality of the PDF.

(c) Unbalance of the PDF.

(d) Scale-Life: The duration of scales for which the discontinuity can be statisti-

cally identified as a separate mode in the PDF. Scale-Life is a function of the

magnitude of the discontinuity and the upper bound of error.

(e) Analytical expression of the OT for the derivative of a discontinuity in Scale-

Space.

(f) Different plots of OT in the presence and absence of a discontinuity.

(g) Algorithm for simultaneous detection of discontinuity, threshold and scale ap-

propriate to discontinuity.

(h) Validation of algorithm on synthetic and natural images.

The results of research into discontinuity can be generalized to a variety of scientific

and engineering problems which involve detecting and locating discontinuities.
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Chapter 1

Introduction

The Oxford Dictionary defines a robot as an ”apparently human automaton, intelligent

and obedient but impersonal machine”. However advancements in robotics have rendered

this definition obsolete by contradicting some of the adjectives therein. Intuitively, a robot

is a machine designed to do human jobs that are tedious, slow, unpleasant or hazardous.

Various application areas include but are not limited to Industry (Manufacturing, assem-

bly, welding, painting, machining etc), Remote operations (Undersea, nuclear environment,

bomb disposal, outer space, surveillance etc), Service (Hospital helpmates, handicapped

assistance, retail, household servants, lawnmowers etc).

Ceaseless advancements in computing technologies and processing speeds have em-

powered robots with artificial intelligence. This is facilitating a transition to autonomy

earmarked by robot’s capability of understanding the environment and reacting to it.

Intelligent robots are increasingly operating with varying degrees of independence from

human intervention to complete tasks with the support of sensory intelligence, planning

and mechanism control strategies. Autonomous navigation is a cardinal milestone of arti-

ficial intelligence and liberating the robot from human intervention.

The mobility of the robots is affected by a host of factors like the medium of transport

(air, water, land, underwater, human fluids, pipes, space etc), terrain (outdoor and in-

door), type of locomotion (propellers, legs, wheels, fins, wings, screws etc), shape (anthro-

poid, insect, boat, animal, snake, vehicle, tool etc), level of autonomy etc. The navigation

realized by a robot is an outcome of these interdependent factors. Given these robot char-

acteristics, the foundation blocks of mobile robot navigation are environmental modeling,

localization, obstacle-free path planning/following, motion control and communications.

1



CHAPTER 1. INTRODUCTION 2

A truly autonomous robot should be able to execute a premeditated task in a hitherto

unknown environments, by execution of key components in robotic navigation.

Water based robots usually fall into 2 categories, sub-surface and surface. This thesis

focuses on surface robotics. For the realization of autonomous navigation by water based

robotic platforms the research reported in this dissertation, uses a visual camera to assist a

water robot to understand its environment with an objective of safe navigation. Intuitive

perception for a robot’s conception is application specific minimization of human interven-

tion. This expectation is more pronounced and justified with the increasing intelligence

on a robot. For a water based robot to qualify as an intelligent robot there are three basic

pre-requisites:

1. Recognition of water in the scene.

2. Recognition of objects in water.

3. Navigation to or around the object of interest.

Apparently simple, these fundamental necessities in water, translate into complex and

widely researched areas of obstacle detection and navigation. The obstacle detection and

navigation on water differs from that on land. These differences are analyzed in more

depth to enable a holistic grasp of the research and its key areas.

1.1 Navigation comparison : Land versus Water Robots

Water robotics is not a well published research area and comparing it with land robotics

would highlight the key areas of research and the accompanying reasons for it. Primary

differences in land and water robotics from a navigational perspective arise from:

1. Constraining Forces: Whilst land based robots are predominantly working against

forces of gravity and friction, these are marginalized for water robots. Operation in a

hydrodynamic realm exposes the water entity to forces of buoyancy, surface tension,

viscosity, water state (degree of turbulence), strength of water currents, loading of

the water-entity, underwater profile etc.

2. Operational arena: The land based robots usually need to operate in locomotion-

conducive environments or paths as compared to their aqueous counterparts which
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can potentially operate anywhere given adequate buoyancy and depth. Broadly this

implies simpler navigation.

These macro differences obviate a variety of pre-requisites from land based navigation

and simultaneously introduce changes in terms of sensors, propulsion modes, steerage,

controls etc. This translates into different systems at all levels from conception, to design,

operation and maintenance. Under this amended topography, key components for robotic

navigation are analyzed in the succeeding subsections.

1.1.1 Environmental Modeling and Localization

Robot navigation, unlike human navigation, relies on its ability to accurately define its

position and pose in relation to the environment. This task carried out with seemingly little

deliberate effort by humans needs to be executed recursively and deliberately by robots.

Environmental modeling is a precursor to the actual process of localization unless special

landmarks at known locations have been installed in the environment. The environmental

modeling or map building (Thrun et al.; 1998) determines the location of entities of interest

(such as: natural landmarks, obstacles) in a global frame of reference (such as a Cartesian

coordinate frame). To build an environmental map, a robot must simultaneously know

where it is (localization). Methods for information assimilation are broadly classified

(Krse; 2000) into two classes:

1. Model matching methods: Herein the localization is done with an optimal fit between

the sensor measurements and the global model. This method requires extensive prior

environment information before a practical model can be constructed.

2. Appearance based methods: Which do not build a geometric model of the environ-

ment but rely on the model of sensor values (appearances) as a function of the robot

position. However such a method requires an extensive data set of the sensor val-

ues and the relative robot position. Using these methods various kinds of models

(probabilistic, neural networks, radial basis functions, or look up tables) are then

constructed.

As discussed earlier watercrafts operate in a different (uncluttered and spatially vast)

arena and under different constraining forces. This results in attrition of mapping and

localization requirements and usually an elaborate map is not required. Sensor-value
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models are adequate to localize the robot. Reduced localization and mapping requirements

could be attributed to:

1. Scarcity of absolute landmarks for localization: Whenever present the interest in

these landmarks is limited to that of an obstacle or rarer still, the target.

2. Adequacy of geographical / topological maps in tandem with sensors (RADAR /

SONAR / GPS) to define the position of robot.

3. Simple navigational requirements: Owing to operational arena, water navigation

usually does not require complicated maneuvers like turning 90 or reversing.

4. Sufficiency of global mapping: Global mapping is adequate for navigational require-

ment, eliminating the need for local mapping. E.g. for a land-robot to navigate

corridors for surveillance, an absolute position in reference to a detailed floor plan is

required, but a water-robot can easily patrol coast lines based on geographical maps

and a GPS.

5. Reliability / accuracy and tolerances of sensors: Since the scales of distance involved

are fairly high in water navigation, the accuracy expected from sensors proportion-

ately reduces (higher tolerances). E.g. for navigation in a room , a laser or ultra

sound is required with accuracies in terms of centimeters, but a water robot can func-

tion in a fairly reliable manner even with inaccuracy of a few meters. Additionally

the outdoor and exposed (to satellites) arena increases the reliability of Global Posi-

tioning System (GPS) readings which can be used in isolation without corroboration

from other sensors (like odometer).

1.1.2 Path planning

Path planning in mobile robots is in response to the following objectives (Alonzo; 1996):

1. Obstacle avoidance: It can take the forms of stopping or steerage as implemented in

the guiding strategy of the robot’s path planning.

2. Trajectory planning: Ability to plan a trajectory to goal.

3. Route planning: Ability to plan a sequence of trajectories to goal.

4. Re-plan in the face of new information.
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5. Replenish consumables.

Land based path planning literature exists in abundance (Khatib; 1986),(Zhiye et al.;

2004), (Setalaphruk et al.; 2003) ,(Vasudevan and Ganesan; 1994) and (Chang et al.; 2005);

however not all are relevant for water. Detailed discussion for contextually relevant (water

navigation) is presented in a subsequent section. The transition of some of land based path

planning strategies to water is subject to fundamental differences (Constraining forces and

operational arena) as discussed above. Exclusivity of some water based strategies is due

to the following cardinal differences between land and water based path planning:

1. Vehicle Dynamics: The navigational-dynamics of water-robots are subject to less

friction and negligible (in comparison to buoyancy) gravity; hence navigation to

accuracy levels comparable to land robots is neither possible nor required. E.g.

turning circles are wider and stopping may require reversing the propellers and the

associated time delays are acceptable.

2. Flexible Navigation: Usually the water surface is less cluttered than land, there

are no predetermined routes (e.g. roads or corridors), and traveling distances are

larger. This allows for flexible path plans. The obstacles are less frequent and not

as chaotic as on land, allowing ample time to arrive at an optimum plan and also to

dynamically update the path. Classification and motion estimates of obstacles can

be done fairly quickly and robustly by a variety of sensors (Chang et al.; 2005).

3. Simpler and more effective localization and mapping: Discussed in previous subsec-

tion.

4. Universal set of navigational rules: Although not proven to be technically optimal or

otherwise, these provide a ready made legal and operational framework supporting

navigation all over the world for centuries. Given the uniqueness of navigational

arena these can be adapted for path planning.

1.1.3 Motion control

Robot mobility is computer controlled and on land it is subject to gravitation, inertial,

centrifugal and frictional forces. These forces are sensed or estimated by the computer to

generate appropriate signals for the motion. Motion control is inherently dependent on
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kinematics and dynamics. There are a host of mathematical models (Kalman Filters, Par-

ticle Filters, Bayesian networks, Markov Random Fields etc) for controlling the robot mo-

tion. The motion control has also been attempted using fuzzy logic (Zhou and Raju; 1993)

and (Mohan and Deb; 2002), hybrids of fuzzy logic (Da Silva et al.; 1998) and Neural net-

works (Krishnaswamy et al.; 1991). Seemingly endless, these combinatorial possibilities of

achieving motion control have to consider kinematic forces, environmental model, physical

characteristics of the robot and application. The transition to water based robotics alters

all of these factors and most of them have been discussed with respect to environmental

modeling and localization and path planning. The properties of water robots (surface

robots and not for sub-surface robots) affecting the motion control not discussed so far

are summarized below:

1. Control Forces: Control forces on a water-robot can include effects of rudders,

propulsion units, thrusters, and pods, roll stabilizing fins, T-foils, interceptors and

so on. In addition, internal design factors such as meta-centric height, roll damping

tanks, buoyancy tanks, free surface effects are important forces which affects the

motion control of the water-robots.

2. Robot Parameters: These refer to the operational parameters that the robot is en-

dowed with like speed (propeller response), turning ability (rudder response), stabi-

lizing ability, list, underwater hydrodynamic profile, exposed area.

3. Environmental parameters: These are design parameters for control system as well

as the parameters encountered for the operational arena. A water based motion

control system is required to factor in more environmental parameters as compared

to its land-based counterpart. The parametric range is also greater in water than

that encountered for land motion.

1.2 Vision comparison: Land versus Water Robots

The fundamental differences between land and water vision systems for object recognition

arise from the fluid nature of water and uncertainty in terms of occurrence and description

of foreground objects. Hence the interaction of scene and camera is subject to:
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1. Dynamic background: Background dynamism is an outcome of a plethora of under-

lying natural and man-made phenomenon like gravity (earth and moon), surface vis-

cosity, surface tension, density, atmospheric temperature and pressure, water depth,

wind speed, geophysical occurrences (earthquakes, tectonic plate shifts, underwa-

ter volcanoes), presence of other water vehicles etc. In addition, variant natural

illumination (sunrise, sunset, reflection, angle of observation, shadows, range etc)

compounds the inaccuracy of the visual readings. Hence the visual images of water

obtained in a natural environment are expected to be stochastic at best and chaotic

at worst. This makes it hard to establish a mathematical, probabilistic or statistical

model describing the temporal evolution of water. A more comprehensive treatment

is given in next chapter.

2. Dynamic foreground: The objects in water will demonstrate unique dynamism de-

pending on their physical and dynamic features and their interaction with the water.

E.g. different visual dynamisms will be observed from a drowning man, a surfer, a

fish, a speed boat, floating debris etc.

3. Dynamic frame of reference: Unlike its land based counterpart a water robot exhibits

dynamics not only due to its own motion but due to that of the underlying fluid in

which it is floating. Hence the videos inadvertently capture roll, pitch and yaw of

the platform which is not the case for land robots. Since the visual sensor’s platform

is subjected to non-deterministic dynamics, any useful model created must allow for

or compensate for this anomaly in the resulting video to obtain a reliable estimate

of scene components. This estimation is itself hard owing to the factors given in

point (1) and consequently model construction is also not easy. The movement of

the sensor can in fact be amplified in comparison to the platform e.g. if camera is

mounted on a mast the video frames will show much more variation than if it were

mounted closer to the water surface.

4. Limited foreground modeling: Owing to physical dimensions and simplicity of the

environment the model for water is not an elaborate 3 or 2 dimensional model but

a sensor model. This implies that prior information about the object is also limited.

E.g. a small surveillance robot in water will encounter floating debris, vegetation,

garbage, marine life, coastal landmarks and so on. However a land based counterpart
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in a corridor would be equipped with parametric details (dimensions / symmetry /

edges / geometry of objects etc) about obstacles expected to be encountered.

5. Scarce object population: Objects encountered in the contextual environment are

far and few. Hence the problem of object recognition withers down to background

modeling and subtraction. Unlike land based vision guided systems, water based

recognition of an object as a target or obstacle is usually adequate. E.g. it is

adequate to recognize a floating object as a human form without any need to classify

higher features like gait, facial expressions, face recognition etc. Exceptions to the

scarce object population do exist e.g. boat markets or crowded marinas and are

excluded from the subject matter of this thesis. Hence object recognition in water

as compared to land can :

(a) Operate effectively at a comparatively lower level of classification and with low

level features.

(b) Deploy different choice of sensors. E.g. classification relaxation can be ex-

ploited by the choice of visual sensor. Instead of using visual images a Thermal

Imaging Camera (TIC) would prove to be more reliable in water as the thermal

signatures between classes of objects varies and can be expressed as absolute

(or a unique distribution) parameters.

1.3 Applications

Unlike land based robots the applications for water robots are not that apparent. These

plausible applications can be:

1. Life saving by human form by distress gesture identification.

2. Coastal surveillance and mapping.

3. Oil spills / industrial chemical plume detection and mapping.

4. Autonomous patrolling / surveillance for defense purposes.

5. Autonomous navigation for fish protection from predatory birds.

6. Swimming pool /water bodies / sewerage hygiene monitoring and maintenance.
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7. Mine sweeping and degaussing.

8. Internal inspection of large tanks (chemical, ballast, oil etc) for both state of tank

and the process if it exists.

9. Mobile platforms for underwater inspection and repairs of ships (keel deflection,

marine growth) and other underwater structures like oil rigs.

This chapter has highlighted cardinal differences in environmental modeling, localiza-

tion, path planning and motion control with respect to land robots and water entities.

These differences allow water based navigation to have a greater error tolerance. Unclut-

tered environment allows for inherently optimized paths (straight line) and path planning

is more of an obstacle avoidance exercise. However obstacle recognition in water assumes

more significance as compared to land given the operational arena, its associated character-

istics. The lack of information on foreground object’s visual characteristics as well its rare

and erratic occurrences transfers the onus of segmentation to background model. Modeling

background of water becomes a hard but unavoidable problem given the almost unpre-

dictable visual image that water presents and the unpredictability of its interface with the

unstable frame of reference of the sensor. A detailed literature review is conducted in next

two chapters to expose the inadequacies of existing image processing research for obstacle

avoidance in water robotics. The literature review has been extended over two chapters

to analyze water images from the perspectives of

1. Causal phenomenon: These provide water with its unique visual properties like

color, intensity, texture and dynamics, which in turn effect both the process of

image capture and the content of the image..

2. Image processing.



Chapter 2

Literature Review: Water Surface

The literature reviewed in this chapter belongs predominantly to domains other than image

processing. The text presented herein, can be considered ancillary to the main research

reported in the thesis, but has been included, as it enhances a holistic understanding

of the visual representation of water. This literature review provides an insight into

the underlying causal phenomenons viz. chemical, spectral, geological, geographical and

atmospheric factors which influence the water as viewed by vision and cameras. The other

reasons for inclusion of this literature are:

1. Pragmatic and historic considerations: The study (Blair; 1965) of oceans, seas and

other water bodies far precedes, the advent of computers and therefore image pro-

cessing. Therefore, it is necessary to investigate the existence of techniques, models

and representations in domains other than image processing, which might assist or

make redundant the current research. This factor assumed significance because of the

failure of an image processing technique applied earlier in the course of research by

the author. The waves appeared fairly regular, and therefore an attempt was made

to characterize video of water in the frequency domain using Fast Fourier Trans-

forms. No dominant frequency was observed. The reason for absence of a dominant

frequency, was provided by a well known (to oceanographers) causal phenomenon

discussed in (Blair; 1965) wherein the wavelength and frequency of the water waves

are intrinsically(mathematically) linked to the depth of the floor of water body and

consequently the frequency will change with depth. It became imperative to under-

stand the causal phenomenons underlying the visual representation of water to avoid

further setback in the research.

10
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2. Basis of research The literature review of causal phenomenon, provides a scientific

basis for accommodating rather obvious variability of water in research. The vari-

ability of water makes any model of water difficult to prepare, unreliable and limited

in spatial scope.

Water images are a photo-optical representation in the visible spectrum, of water’s com-

position and natural forces that impact it. These causal phenomenon effect the optical

properties of water. From an image processing perspective, back scattering is the optical

property that is predominantly captured by the camera and will be studied in some detail

here. These factors can exist in infinite configurations which may or may not have inter-

dependencies. An enriching body of literature related to the causal phenomenon, exists in

the domain of (still actively researched) oceanography. In the last few decades, satellite

imaging has also contributed to the field of hydrologic optics. It is neither feasible nor

intended to delve into detailed discussions regrading the causal phenomenon, but the re-

view presented herein highlights the salient features relevant to the current research into

visual representation of water.

2.1 Photonics

A camera captures photons within the visible range. These photons originate from so-

lar radiation, travel through the atmosphere and impinge on the water surface where

they are either absorbed, scattered, reflected or transmitted. Figure 2.1 adapted from

(Robinson and Mitchelson; 1983) illustrates many of these possible paths. From the var-

ious paths taken by the photons, it is evident that the water (color and intensity) as

captured by the camera comprises primarily of photons radiated by the water surface.

Only a small percentage of the light that enters the water (the downwelling irradiance)

is redirected back toward the surface (the upwelling radiance). The upwelling radiance

that actually leaves the water surface is termed the water-leaving radiance. The water-

leaving radiance is what the cameras acquire as an image. The downwelling irradiance is

subjected to selective (wavelength) absorption by the water molecules and dissolved im-

purities. Therefore the water-leaving radiance is a function of the spectral absorption by

water and its constituents particularly chlorophyll present in phytoplankton cells. Even

without a detailed quantitative analysis, it is obvious that the image captured by camera
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Figure 2.1: Photon Paths prior to Capture by Camera

(a) Water-leaving radiance, (b) Attenuation of the water-leaving radiance,
(c) Scattering of the water-leaving radiance out of the sensor’s Field of View
(FOV), (d) Sun glint (reflection from the water surface), (e) Sky glint (scat-
tered light reflecting from the surface, (f) Scattering of reflected light out
of the sensor’s FOV, (g) Reflected light is also attenuated towards the sen-
sor, (h) Scattered light from the sun which is directed toward the sensor,
(i) Light which has already been scattered by the atmosphere which is then
scattered toward the sensor, (j) Water-leaving radiance originating out of the
sensor FOV, but scattered toward the sensor, (k) Surface reflection out of
the sensor FOV which is then scattered toward the sensor, (Lw) Total water-
leaving radiance, (Lr) Radiance above the sea surface due to all surface re-
flection effects within the IFOV, (Lp) Atmospheric path radiance. This figure
is available at(Aeronautics and Adminstration.; 2010) and has been adapted
from (Robinson and Mitchelson; 1983)

will vary with the composition and temperature of water, time of day, location of camera

with respect to sun, clarity of skies and particulate absorption characteristics and density.

2.2 Water Color

Adverse to conventional belief, water is not color-less but has an intrinsic blue color.

Water’s color is due to selective absorption in the red spectrum from the white light. The
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chemical composition of water endows it with a high concentration of OH bonds. These

OH bonds are very strong and hydrogen atoms are very light. Consequently the molecular

stretching vibrations of water are aharmonic and occur at very high energy as compared

to molecules without OH bond (Braun and Smirnov; 1993). When these water molecules

with their unique vibrations are exposed to photons in the visible spectrum, they absorb

light at the red wavelengths to transit to a higher vibration harmonic. To illustrate that the

color is due to nuclear composition (Braun and Smirnov; 1993) demonstrated (Figure 2.2)

that the color absorption by the isotope of water (Deuterium Oxide) is similar but shifted

to higher spectral wavelengths (beyond visible range) making heavy water appear color-

less. Since the only difference in water and heavy water is the number of neutrons, it

was concluded that the color of water is due to the nuclear forces within the molecule.

Water is unique in the sense that it is the only known compound that owes it’s color to

molecular vibrations. In addition to the OH bonds, water molecules also have a weaker

Figure 2.2: Photon Absorption by water and heavy water at different wavelengths.

hydrogen bond. The strength of this bond varies with the temperature of water and

consequently the absorption of red wavelength also changes with the temperature. If

pure water were available under uniform illumination, it would be possible to construct

mathematical models based on photon absorption illustrated in (Figure 2.2). In fact

algorithms exist in satellite imaging wherein sophisticated sensors measure the radiance

at different frequencies and the ratios of these radiances at different wavelengths provide

the concentration of certain phytoplankton or algae in water. However these algorithms

are geographically confined and base their premise on a dominant water contaminant.

Given the variety of chemical, microbiological, and particulate contamination that the
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water can potentially contain, the absorption profile of (Figure 2.2) cannot be relied on

for most of the water images. The second problem that arises is that the cameras do

not provide wavelength segregated intensities or radiance levels, but rather integrated (or

cumulative for discrete cases) intensities with a view to achieve a tri-stimulus response

similar to those of human retinal neurons. In the absence of frequency specific data

from the camera, algorithms based on radiance at different frequencies are impossible to

conceive and construct.

2.3 Hydrologic Optics

Figure 2.3: Water constituents effecting back scatter ((Stramski et al.; 2004)).

Water is an optical medium whose color and intensity is determined by the ambient

light incident on the water surface and two mutually exclusive optical properties viz. in-

herent and apparent. The inherent optical properties (IOPs) are those properties that

depend only on the medium and are independent of the light field within the optical

medium. Examples of IOPs are absorption coefficient, the volume scattering function, the

index of refraction, the beam attenuation coefficient and the single-scattering albedo. In

contrast the apparent optical properties (AOPs) of the water depend on both the IOPs and

the geometric (directional) structure of the ambient light field, and that display enough

regular features and stability to be useful descriptors of the water body. Commonly used



CHAPTER 2. LITERATURE REVIEW: WATER SURFACE 15

AOP’s are the irradiance reflectance, the average cosines, and the various diffuse attenua-

tion coefficients. By using the IOPs and AOPs, the backward scattering can be established

(Stramski et al.; 2004) and (Mobley; 1994). The backward scattering determines the

color of water that is measured by optical devices (camera in current research). The

back scattering in turn depends on the types and concentrations of various constituents

present in the water. The role of sea water constituents has been extensively (more than

180 references) reviewed from contemporary research in (Stramski et al.; 2004). The var-

ious water constituents effecting the light back scatter are identified in Figure 2.3 taken

from (Stramski et al.; 2004). The observations from the review (Stramski et al.; 2004) in

respect of backscattering of light, that are relevant from the perspective of this thesis are:

1. Theoretical modeling: of backscattering due to marine constituents is impossible

because complete knowledge of the distributions of particle size, shape, and refractive

index (including internal inhomogeneities) is never available.

2. Simplifying assumptions: are often contradicted.

3. Direct measurements: of back scattering over an entire optical spectral range have

not been achieved till today. Insufficient data which does exist, is fragmented because

it is limited to a specific wavelength or confined to a geographical location, which in

turn restricts generalization of the experimental observations.

4. Geographical variability: There is consensus amongst researchers on the variability

of light backscattering due to geographical locations.

5. Optical instruments: for measuring the back scattering have stringent design and cal-

ibration requirements and in-situ measurements often show variability, which must

be factored in and corrected for during experiments. Some of the issues in accurate

measurements identified by (Stramski et al.; 2004) are radiometric calibration, angle

and scattering volume calibrations, sensor-response function and optical geometry

(involving the scattering volume, illumination beam, detection of scattered light,

and path length in the water), proper angular resolution, temperature and pressure

effects, as well as optical and mechanical imperfections of the instrument.

6. Salinity: Sea water and pure water have different back scattering coefficients at the

same temperature and pressure.
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7. Water molecules: The back scattering due to water molecules expressed as a per-

centage of total back scattering can vary from (< 1%) to (> 80%) in the blue

spectrums.

8. Bubbles: can constitute up to 10% of back scatter and the presence of bubbles in

a water patch can make it appear greener or yellower as compared to water patch

without the bubbles.

9. Organic and Inorganic particles: Organic particles include two major categories of

particulate matter: living plankton microorganisms (viruses, bacteria, and various

phytoplankton and zooplankton species) and non-living organic detritus (breakdown

products of microorganisms). Inorganic particles include the various mineral species

(clay minerals, quartz, feldspars, calcite and many others). Tens of thousands of

species of marine plankton and a few thousand mineral species are known, which

include a few dozen of the minerals that are essential constituents of rocks. Many

marine particles would probably be best described as a mixture of organic and in-

organic types. Conflicting researches have been reported on the effect of organic

particles on backscattering due to different species of organic organism constitut-

ing the bulk of marine particles. Similarly scattering due to non-organic minerals

depends on the concentration and the type of mineral present.

10. Colloids: Colloids lie at the boundary between truly soluble chemical species and

sinking particles, and are generally defined as tiny particles, macromolecules, and

molecular assemblies in the size range between about 1 nm and 1 µm. These occur in

high density in water and are responsible for a significant amount of back scattering

owing to their shape. Colloids tend to absorb strongly in the blue and ultra-violet

portion of the spectrum, giving the water a greenish or yellowish color.

2.4 Water Dynamics

Water images are subjected not only to the composition and consequent hydrologic op-

tics, but also to the dynamics exhibited by water. Blair provides a good introduction

to the waves in (Blair; 1965). Based on (Blair; 1965), Figure 2.4 has been prepared to

summarize some of the natural phenomenon acting on water. These phenomena are active
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Figure 2.4: Visual Realization: Water surface

research topics in oceanography, however they also influence the water images. From the

perspective of image acquisition and analysis, there are following areas of interest:

1. Various natural phenomenon contribute to the form of water surface as perceived by

humans or camera.

2. Mathematical formulations are possible to associate individual causes with individual

effect in oceanography. However the image captured by cameras rarely reflect these

individual associations. Images are the visual realization of multile factors shown in

Figure 2.4. For example, by measuring wind speeds it is possible to reliably predict

the type of wave that will be formed, its approximate height, duration of existence,

distance traveled and mode of dissipation. However these predictions may not be

realized due to the bathymetry, tidal, surface tension and interference considerations.
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3. The dynamics of water are transferred to the camera as it is mounted on the water-

craft. The unpredictable movement of the camera does not allow reliable modeling

of the water surface.

2.5 Inferences

The literature review in this chapter has been from diverse and still active research studies.

The main inferences that can be drawn from the literature review that are relevant for

this thesis are:

1. Variability: Composition of water is variable that effects its optical properties and

consequently the images. It is impossible to determine the exact composition and

consequently the effects that composites will have on the images.

2. Instrumental inadequacy: Instrumental inadequacies flow from the previous point.

Even assuming that composition of water was an insignificant issue, the sophisticated

engineering and elaborate calibration make it very difficult to record the in-situ

optical properties of water. Researchers often make informed decisions on choice of

the wavelengths and the optical properties fine tuned to the specific purpose like

measuring density of phytoplankton or sedimentation. Camera operating in visible

spectrum is a rather blunt instrument to deploy in water description. The handicap

of the camera arises from its inability to

(a) Measure beyond the visible spectrum.

(b) Segregate visible spectrum to desired wavelengths.

(c) Measure any optical property other than cumulative intensity of Red, Green

and Blue channels.

(d) Measure any parameter below the surface of water to obtain differential read-

ings.

(e) Measure any oceanographic parameter like wind speed, current, wave height,

white caps etc.

3. Modeling Inadequacy: A model can be based on a theoretical mathematical expres-

sions or be data driven. Both these modes of modeling are inadequate to form a
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universal model for representing water. Since the constitution and environmental

factors of water are variable, optical properties and their characteristic curves are

also variable. Thus models can be prepared only on the basis of assumptions and

for a specific purpose. For example (Stramski et al.; 2004) back scattering differs

by 67 orders of magnitude at visible wavelengths depending on the size of organic

particles and in the absence of prior knowledge on the size of organic particles any

model based on back scattering values will be inaccurate. The modeling inadequacy

spills over to the realm of oceanography as well, where the variation, unpredictabil-

ity and interdependence of causative phenomenon constitute a prohibitive barrier to

formation of a reliable model.

This chapter has highlighted that it is virtually impossible to model water because of

the natural dynamism and variability that it possesses. The problem is compounded

by the limitations of the primary sensor (camera). In addition to the design limitations,

camera is mounted on the watercraft which has its own hydrodynamic profile, which makes

observation of any temporal characteristics of water subjective to camera movement. This

adds another layer of complexity to the problem because camera movements have to be

modeled separately and compensated for in the water model.



Chapter 3

Literature Review: Image

Processing

Previous chapter shows that modeling water on the basis of hydrologic optics or oceanogra-

phy is extremely difficult. In this chapter the relevant literature from the image segmenting

domain will be reviewed with an objective of establishing the state of art for recognizing

objects in water. Water images can be analyzed using a plethora of diverse image/video

processing techniques.

3.1 Background Segmentation

Identifying objects in water can be perceived as, subtracting the background (water) from

the image. Hence background definition or model assumes significance for any effective

object recognition. The water robot’s environment is not easy to model as it exhibits

seemingly inconsistent spatial variations over time. Before delving into detailed tech-

nical literature it is imperative to mention that a comprehensive literature addressing

background segmentation from water based navigational standpoint does not exist. The

required segmentation can be attempted in spatial, temporal or spatio-temporal dimen-

sions. The temporal dimension will be analyzed first with the motivation of being able to

extract some high level features like foreground object’s visual dynamics for the purposes

of object’s classification after segmentation

20



CHAPTER 3. LITERATURE REVIEW: IMAGE PROCESSING 21

3.1.1 Temporal Segmentation

The following analysis draws from the approaches suggested in surveillance systems, image

synthesis, animation, oceanography and dynamic textures. Dynamic textures (Doretto et al.;

2003) have been defined as a sequence of images of moving scenes that exhibit certain

stationary properties in time. More concisely (Yuan and yeung Shum; 2004) defines the

dynamic texture as temporally continuous and infinitely varying stream of images that

exhibit certain temporal statistics.

Dynamic texture synthesis studies can be broadly classified as parametric or non-

parametric. Non-parametric techniques include generating dynamic textures by sam-

pling pixels (Wei and Levoy; 2000), frames [23], and wavelet-structures (Bar-Joseph et al.;

2001). These techniques focus on ensuring continuity of the video sequence while simul-

taneously trying to emulate the original video. Whilst efficient for synthesis of dynamic

textures, the non parametric approaches do not provide a model generalization. The ab-

sence of parameters inhibits a machine based analysis for the purposes of segregation into

foreground and / or background. Dynamic textures have been modeled using various para-

metric approaches. Spatio-Temporal Autoregressive model (STAR) has been proposed to

model dynamic systems (Szummer and Picard; 1996). It is a 3 dimensional extension of an

autoregressive model which expresses each pixel as a linear combination of the surrounding

pixels lagged both in time and space. A sketch model is proposed (Wang and Zhu; 2003)

by replacing the dictionary of Gabor and Fourier bases with sketches (symbolic tokens),

thus changing the photometric model to a sketch model. However such a model is limited

in applicability to synthesis, and does not lend itself to segmentation as the parameters

are descriptive and not mathematical.

A parametric model has been proposed by Doretto (Doretto et al.; 2003) which is

a noise driven Linear Dynamic System (LDS) representation. This is the most widely

acceptable work and subsequent variations have emerged. Doretto et al postulate that

Euclidean reconstruction of images is not possible in any machine system without prior

knowledge owing to the ill posed problem of fixing either the photometry or the geometry

and assuming the other. This model is designed for maximum-likelihood or minimum

error variance. Doretto et al define the dynamic texture as a realization of the output of

a dynamical system driven by an independent and identically distributed (IID) process.

Mathematically, the linear dynamic texture is associated with an Auto-regressive moving
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average process (ARMA) with an unknown input distribution. This mathematical defini-

tion allows for a choice of filters which can be Principal components, a wavelet filter bank,

Fourier descriptors etc. This provides an inherent flexibility to the model.

A variant of Doretto (Doretto et al.; 2003) postulates a Markov assumption for state

representation (Zhong and Sclaroff; 2003). This state inference is then converted to stan-

dard Kalman filter solution by assuming a Gaussian distribution of the observation density

and state transition density. Although this method manages to exploit the inter-pixel rela-

tion it is limited in temporal representation owing to Markov assumption. Also modeling

each pixel by a kalman filter has computational overheads and the computational com-

plexity of the algorithm is O (m2n + n3) where m is the dimension of the observation

vector (image size) and n is the dimension of the ARMA model parameters. Another

variant of model from Doretto et al analyses the model from a control-theory viewpoint

(Yuan and yeung Shum; 2004) and argue that the noise driven LDS model is essentially

an open loop control system that is contaminated by noise. The stability of the open

loop LDS and the problems of pole placement and model fitting error prevent the model

(Doretto et al.; 2003) from generating satisfactory dynamic textures. A feedback con-

troller is proposed and the model is amended to a closed loop LDS which has reduced

model fitting error.

Another application of model by Doretto has proved the concept of finite -horizon

model reduction for a class of neutrally stable discrete systems (Sznaier et al.; 2004). The

algorithm by Mario Sznaier et al (Sznaier et al.; 2004) used a deterministic model to treat

the problem of static texture synthesis as that of identifying a state space realization

from the impulse response data under the assumption that the image dynamics (in spatial

domain) are neutrally stable. Thus they were able to extract textons (texture descriptors)

for the synthesis of static textures. The same approach (Sznaier et al.; 2004) was modified

by Abraham et al (Abraham et al.; 2005) to synthesize the dynamic textures. However

the Fourier descriptors were used to describe the evolution of curves as applied to the

ARMA model (Doretto et al.; 2003). The contribution of this study was a migration to

extract and utilize n-most significant Fourier frequencies using model reduction techniques

(Sznaier et al.; 2004) instead of n-first frequencies. ARMA model proposed by Doretto

(Doretto et al.; 2003) has been validated by subsequent studies (Yuan and yeung Shum;

2004), (Zhong and Sclaroff; 2003), (Sznaier et al.; 2004) and (Abraham et al.; 2005) in
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that it provides a general model flexible enough to accommodate system specific variations.

Assessment from the current perspective highlights handicaps due to :

1. Theoretical assumptions of an IID process having an ARMA realization. The as-

sumption of stationarity is violated due to the non rigid motion of the camera in

trying to capture a non rigid texture; hence the appearance model is no longer time

invariant (Vidal and Ravichandran; 2005).

2. Practical limitations due to lack of any study using the ARMA model which involves

three dimensional dynamics as required in the current research. In all the works

discussed the camera was mounted on fixed platform.

A sub optimal solution has been proposed by Vidal (Vidal and Ravichandran; 2005)

in which the moving dynamic texture has been modeled using a time varying LDS model

with a 2-D translational model to allow for rigid camera motion. The sub optimality

arises from their (Vidal and Ravichandran; 2005) assumption of a constant parameter

matrix when observed for a predefined time window, however for the current research

the time window is difficult to define. Also the camera motion is represented as a rigid

2- dimensional translational motion whereas for the contextual application the camera

motion is non-rigid and 3-Dimensional. Further the dynamic texture which validated the

study comprised of moving flowers for which the optical flow had to be computed. The

flowers texture comprises of well defined features in the form of consistent edges which

do not exist in the case of water. Hence both the application as well as the parameter

(optical flow) to be extracted also excludes the approach (Vidal and Ravichandran; 2005)

as a plausible candidate.

Frequency domain based work emanates from (Spencer and Shah; 2004) wherein water

has been studied separately and not under the unifying umbrella of dynamic textures.

Low level features of the video such as spatial and temporal frequency spectra are used in

conjunction with the physical properties of water like wavelength and amplitude to develop

a higher model of environment. This has applications like estimating the wave height or

even the object size in water from the pixel scales observed in videos. This approach

appeared promising and the feasibility study was conducted to investigate the possibility

of modeling water in frequency domain. The approach’s candidature was rejected due to

following inadequacies:
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1. The highest frequencies are due to capillary forces and do not represent the gravity

waves and the model must eliminate them.

2. Forecasting is based on the assumption of stationary ergodic process which is violated

by the fluid camera motion.

3. The Discrete Fourier Transform is limited in capturing the wavelengths less than the

image size or greater than 2 pixels only.

4. Geographical scope is limited to that of deep water (depth¿wavelength/2); as in

shallow water (depth¡wavelength/20) and in transition depths the speed of the waves

is a function of the depth. Hence the wavelengths estimated are inherently suspect

in the absence of depth and wavelength information.

Takahashi et al (Takahashi et al.; 2005) provide a basic framework for segmenting objects

in water. The application is similar to the current research being undertaken in that it

attempts to offer a more pragmatic solution rather than mathematical treatment with

simplifying assumptions. (Takahashi et al.; 2005) lists the problems associated with false

positives in intrusion detection in a bay as repetitive waves, water splashes, light reflection,

surf formation, and image reflection in water. The study seeks a set of complimentary

solutions to these problems wherein the problem of reflected image is solved by hardware

(polarizing filter); repetitive waves are modeled by a quasi spatio-temporal model which

utilizes the scatter diagram of image blocks to create a reference image (Flapping Refer-

ence). This reference image is updated for each frame and the deviation from this reference

image is used to detect intrusion. Since this approach invariably misses slower intruders,

temporal averaging is used for detection wherein a differential operator is applied to the

averaged image which cancels the waves and only the intruder edges are left. A third

approach comprising of standard deviation calculation of spatial windows along with the

presence of low brightness to classify the scene as that of being a back-light. Then the

areas with higher darkness and movement in temporal domain are thresholded out as in-

truders. This (Takahashi et al.; 2005) approach is different from the current problem due

to following considerations by

1. Unlike the current research (Takahashi et al.; 2005) have cameras mounted on a rigid

platform
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2. The range of the scene is much higher than would be expected on a robotic platform.

This implies that the texture coarseness expected in the current research is expected

to be much higher than in (Takahashi et al.; 2005).

3. Supervised scene classification system with elaborate feedback mechanism is required

by (Takahashi et al.; 2005) before segmentation can be attempted. This is not a

viable option for current research

Nevertheless one feature of the research by Takahashi et al (Takahashi et al.; 2005) which

was found useful was the application of a polarizer filter. This filter helped in eliminating

some glare from the water surface. The polarizer filter did not completely eliminate glare

because of the variation in reflection angles due to spatial spread of the water surface and

the uneven surface of water.

Given the current arena of operation, the models operating in the temporal domain

clearly do not accommodate visual dynamism exhibited by non rigid frame of reference

for the camera. A practical difficulty of estimating the motion of the camera renders void

any subsequent creation of a compensation mechanism. This difficulty eliminates most of

the temporal methodologies considered.

3.1.2 Spatial Segmentation

Analogous to temporal domain, spatial domain also does not offer a literary body like fin-

gerprint analysis, face recognition or bio-medical imagery, dedicated exclusively to water.

Hence no concrete information exists to describe water in terms of color, spatial frequen-

cies, statistics, orientation, physical characteristics, texture, shape or geometry. Intuitive

perception about water exists temporally and these have been sidelined to allow for cam-

era motion. In light of this void, the literature survey will borrow on relevant researches

emanating from general texture and color based image segmentation (Mojsilovic et al.;

2000),(Haralick; 1979),(Aksoy and Haralick; 1998) and (Ojala et al.; 2002), oceanography,

and satellite imagery. For want of a better descriptor, water will be treated as a color

texture in spatial domain and studies attempting to segment textures will be surveyed.

The problem is hard as there is no universally acceptable definition of texture, rather only

an essential property: texture is translation invariant and leaves the same impression on

the visual system whichever part of the texture is observed.
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Unification of previous work has been attempted by Harlick (Haralick; 1979). Har-

lick’s (Haralick; 1979) summary includes statistical approaches, optical transforms, tex-

tural edges, structural elements, gray tone cooccurence, run lengths and autoregressive

models. Discussing all would be beyond the current scope; however the most relevant

contribution appears to be the co-occurrence matrix. In the cooccurence matrix the re-

lationship between the various gray levels is expressed in polar coordinates i.e. relative

frequencies are calculated for transition from gray level G(a) to G(b) in direction X calcu-

late over a distance d. Having obtained these frequencies higher level texture descriptors

are obtained like homogeneity, contrast, entropy, correlation, complexity, run length and

nature of gray level transitions. These perceptual parameters can potentially be used in the

segmentation of water. The volume of the difference space equals (2G-1)d, where d=2,4,8,

corresponds to the distance and G is the gray levels. A straightforward description of the

difference space with a d dimensional histogram, would generate, very large histograms

that are computationally expensive and suspect to statistical unreliability (Ojala et al.;

2002). Contextual experiments need to be conducted to identify the optimum parameter

/ parameter vector for segmenting the image although the computational memory also

remains a concern.

The cooccurence matrices have been successfully demonstrated (Aksoy and Haralick;

1998) and (Celebi and Alpkocak; 2000) for content based image retrieval and automated

inspection (Kyllönen and Pietikäinen; 2000) of wood. However cooccurence matrices lead

to exponential increase in the number of matrices. Ojala et al (Ojala et al.; 2002) intro-

duced Local Binary Patterns (LBP) wherein the texture is defined in the local circular

neighborhood by the difference of the centre pixel with the neighboring pixels. The texture

is then assumed independent of the center pixel value and the sign of difference is used

to describe the texture giving a 2p LBP number where p is the number of neighborhood.

LBP is by definition, invariant to monotonic transformation of the gray scale and rotation

invariance is achieved by the use of minimization function applied to LBP operator. This

ensures that LBP will always have the minimum value irrespective of the order in which

the neighbors are accessed. Using this LBP as primitive a histogram is formulated from

the accumulations of the labels over a texture sample. Variance (VAR) is introduced as

a measure of contrast where required. LBP (Ojala et al.; 2002) were tested on a set of

strong man-made patterns like canvas and carpet which had strong underlying texture
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pattern, whereas the water texture does not exhibit equally consistent patterns. The def-

inition and derivation of the LBP do not accommodate pattern’s temporal evolution, as

the underlying LBP would change. To conclude the method works well for illumination

and rotational invariance however it is too rigid to classify an evolving texture owing to

inherent definitions and lack of relevant training samples.

Ojala et al (Ojala et al.; 2002) combine the LBP and Harlick’s cooccurence matrix

(Haralick; 1979) to generate signed gray level differences instead of absolute difference in

calculation of the cooccurence. The new textural description is more compact and efficient,

impervious to luminance change and provides more information then the original cooc-

curence calculations. The k-dimensional (corresponding to k gray levels) difference space

is reduced by partitioning the k-dimensional difference space using vector quantization.

A code book is generated using LVQ algorithm by using training samples. In the current

context elaborate training algorithms are undesirable owing to the need to process video

frames. Also the water texture is evolving hence continual training and consequential

computational overheads are expected in addition to the actual segmentation itself.

Although (Kyllönen and Pietikäinen; 2000) uses color along with texture, this appli-

cation is similar to the research being undertaken. This methodology utilizes signed gray

level differences (Ojala et al.; 2002) to compare the segmentation with the original cooc-

curence approach and the results indicated that the incumbent intensity loss from the gray

level differences does not augur well for the segmentation. However visual inspection is

undertaken in optimum illumination, which is not so in natural scenes and usually will

add to chromatic inconsistency in natural scenes. Hence the approach cannot be directly

adapted to water based segmentation.

Devaux et al (Devaux et al.; 2001) present an interesting approach to segmenting color

aerial images by utilization of Karhunen-Loeve transform (KLT) applied to region based

segmentation. The work is appealing in terms of representation of the image color space by

its Eigen vectors. Application of KLT results in transformation of the energy to its Eigen

values with the property that the greatest possible differences in variances are distributed

along these Eigen values or axis. Deavaux (Devaux et al.; 2001) also go on to prove that

that energy along the first 2 axis is greater than 98.5 % hence a 2-dimensional KLT

space is adequate for representing the 3 dimensional color space. The image is segmented

separately along these axis and results merged. However this produces over segmentation,



CHAPTER 3. LITERATURE REVIEW: IMAGE PROCESSING 28

which is a concern because the aerial images have far more color consistency then the

water owing to smoothing effect resulting from the large distance between the camera and

the scene. Hence the employment of KLT for removal of water background must dedicate

preprocessing for color smoothing to avoid over segmenting.

3.1.3 Conclusion

This section has given a relevant glimpse and a quick summary should reveal that vari-

ous methodologies in the temporal domain are constrained to model non linear and non

rigid camera motion thereby corrupting any subsequent model to capture water’s dynamic

texture. In the spatial domain various studies exist but do not give a convincing and uni-

versally acceptable definition to texture in general and water in particular. Structural,

statistical and transformation descriptions discussed above are successful but limited to

the application domain for which conceived. The invariant parameter/water-descriptor

sought is difficult to find given the variable physical, chemical, environmental and optical

construct of water. The implications of individual variability (of camera, obstacle and

the water) are compounded in images because all the components involved in the image

capture have individual dynamics.

3.2 Water-Based Navigation

Sea navigation has been in existence for many millenia. Given the generations that it

has spanned, navigation and its in-attendance tools have evolved unceasingly and in-

terdependently. Chronological evolution can be categorized as coastal navigation which

was guided by coastlines; chart based navigation with the advent of navigational charts;

astro-navigation which is guided by celestial bodies; compass navigation which is guided

by magnetic compass, to modern navigation which is assisted by sophisticated localizing,

charting, stabilizing and navigational tools. Although the tools have evolved considerably

in the last century the rules for navigation have changed little. Even today the point

to point navigation practiced for centuries is still the optimum path. The succeeding

paragraphs will explore some of the navigation methods for water based platforms.

There is a plethora of navigation methods for robot navigation on land and some of the

algorithms deployed for water robots are extensions. A few path planning approaches for
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Autonomous Underwater Vehicles (AUV) are summarized in (Vasudevan and Ganesan;

1994). These include APF (Warren; 1990) , the path planner developed by Caroll et

al (Carroll et al.; 1992) that employs information regarding bathymetry, exclusion zones,

obstacles, and ocean current stored in separate databases. A quadtree organization is used

to represent depth and obstacle information. The inputs are start task point, a goal task

point, a set of constraints such as minimum and maximum depth, different desired speeds,

and fuel resources. The planner attempts to generate a minimum cost collision free path

using A* search algorithm.

Case based reasoning CBR had been used by (Vasudevan and Ganesan; 1994) wherein

a hierarchical database was maintained. The data base consisted of routes and situations

stored and assessed by indices. These indices are derived based on several considerations

such as the salient features of the case, the type of problem solving, the utility and unique-

ness of the case, failures encountered, and other context-specific information. When a new

problem is given, relevant indices are extracted from its features by applying a set of index-

ing rules. The approach adapts to synthesize new routes when historic equivalents are not

located. However such an approach does not give a unified solution rather relies on past

plans. It has other constraints in terms of memory requirement, feature definitions, path

retrieval, fuzzification of indices, and new path synthesis (depends on old path segments).

Jarvis (Jarvis; 1984) has advocated the use Distance Transforms (DT) for path plan-

ning and navigation. It is a simple algorithm which generates the path based on the cost

involved. This cost can be varied depending on the requirement of the navigational goal.

E.g. increasing the cost of navigating close to the obstacle will result is a path through

the close to center of two obstacles. It is a fast algorithm which propagates in a raster

scan and can be easily extended to multiple dimensions (not necessarily Euclidean). The

speed advantage is built into the construction of the DT itself as the weights or costs

can be included at the time of computing the DT. Although a general approach has been

presented (Jarvis; 1984), prima facie DT appears suitable for application in marine en-

vironment due to its ability to include angular data from a line of sight perspective for

dynamic acquisition of target / obstacle position. Since marine environment is a fairly

simple environment and exact localization information (of starting point and obstacle)

is available, the DT could in principle exploit this minimal but adequate information to

chalk out the optimal path for dynamic obstacle avoidance.
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3.3 Impact of literature review on research pathway

The literature review in this and previous chapter, emphasizes the following push factors

for directing the course of research:

1. Inadequacy of related disciplines to model water: Studies of hydrologic optics and

oceanography are inadequate to provide a suitable model, parameter or property for

detection of objects in water by camera.

2. Difficulty in modeling Background: The inherent variability of water also inhibits

various algorithms in computer vision to reliably detect obstacles in water.

3. Futility in modeling Foreground: Sparse presence of different foreground objects,

makes it futile to model foreground for the purposes of recognizing foreground ob-

jects.

4. Inadequacy of Camera: Camera has inherent design and operational limitations that

are amplified owing to non-stationary platform.

Due to the above mentioned push-factors, it was decided to use the interface of foreground

and background as the feature for locating an obstacle in water. Usage of the interface

boundary as the feature avoids all the problems related with modeling either a foreground

or background. It was decided to utilize the edges which represent the boundary of water

as the feature that would demarcate the water in an image from other artifacts. To

illustrate the ideology behind this approach, the mechanism of image capture illustrated

in Figure 2.1 is used. An image is the result of the real world (3-dimensional) projected

onto a 2-dimensional plane of the image. Consequent to this projection, spatial edges

exist in 2-dimensional images, which pertain to perceived spatial-boundaries of the real

world. The word ’perceived’ is important, because while some edges (in an image) are

due to physical contact between two real world entities (e.g. plate on table), other edges

may be created due to factors like projection of 3D geometry (e.g. horizon), illumination

(e.g. shadows), surface of entity (e.g. texture or patterns) etc. In the context of obstacle

recognition in water, the entities expected in water images are obstacle(s), sky and water.

The desolate and consequently uncluttered water scape has limited types of edges in

images. The different kinds of edges as they relate to real world entities can be due to:

1. Textured water surface.
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2. Sky-Water boundary edge (horizon) due to 3 dimensional projection on 2D image

plane

3. Artifacts in the sky (clouds).

4. Water-Obstacle boundary edge.

5. Water-Shadows (of obstacles) boundary edge.

A research to segregate the above edges from water scenes, should hypothetically achieve

obstacle detection. For the purpose of obstacle detection in water robot navigation, water-

shadow edges can be considered a subset of water-obstacle boundary edges as:

• Shadows will not exist without the obstacle in the water.

• Spatial projection of shadow will be in physical vicinity of obstacle, and avoiding

obstacle shadows would at best cause navigation to err on the side of caution.



Chapter 4

Sky and water: Pseudo Spectra

Images

Based on the limited classes of entities and consequently edges present in the water images,

it is possible to subdivide the obstacle recognition into Water-sky segregation and obstacle-

water segregation. The former will be solved in this chapter as a more general problem

of horizon detection and the latter in the next chapter. This thesis makes following three

contributions to horizon detection which have also been reported in a conference paper

(Walia and Jarvis; 2010):

1. A theoretical framework for generating pseudo spectra images (PSI), from spectrum

analysis of XYZ color-space is presented.

2. Wavelengths in the visible spectrum are identified, at which the PSI has similar in-

tensities for sky and clouds. Generating PSI at these wavelengths minimizes artifacts

due to clouds in the sky, resulting in well defined horizon.

3. Fitting ellipses are presented as an alternate to Hough Transform for horizon detec-

tion. Ellipses have lower computational complexity than Hough Transform and can

accommodate curved edges as candidates for horizon.

4.1 Background

Conventional research (Zafarifar et al.; 2008; Zafarifar and Peter; 2006; Cornall and Egan;

2004) in horizon detection comprises of heuristic and/or probabilistic assumptions about

32
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horizon and the sky. Work by Zafarifar et al (Zafarifar et al.; 2008) and (Zafarifar and Peter;

2006) assumes that:

1. Luminance increases and chrominance decreases from zenith to horizon.

2. Rate of change of chrominance and luminance is low.

3. Sky is earmarked by lack of texture.

It is easy to show Figure 4.1 that the presence of clouds in sky can contradict all the above

assumptions, making detection of horizon difficult and thereby warranting an explicit

mechanism for compensating the presence of clouds.

Figure 4.1: Inadequacies of horizon assumptions in (YCrCb) color space

Clockwise from Top Left: Horizon with clouds, Luminance, Chrominance 1 and
Chrominance 2. Images highlight the absence of luminance and chrominance
vertical trends i.e. from zenith to horizon, abrupt luminance and chrominance
changes and strongly textured areas.

Other approaches (Thakoor et al.; 2002), (Chahl et al.; 2003) inspired from physiology

of dragon fly’s Ocelli (small eyes on the forward and lateral region on the head) deploy

opponent color processing in Ultra Violet (UV) and green spectra to remove artifacts in

sky. UV and green channels have similar response to artifacts in the sky part of the

images; therefore integrating the output from these two channels with suitable weights

removes variations in the sky due to clouds and sun. However processing beyond the
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visible spectrum (UV) requires expensive and dedicated hardware. Method proposed by

Cornall and Egan (Cornall and Egan; 2004) occasionally and unintentionally alleviates the

presence of clouds by calculating the intensity image exclusively from the blue component

of the RGB image 4.2, but does not locate the horizon accurately (Zafarifar and Peter;

2006).

Figure 4.2: Comparison of horizon detection.

Left: Intensity image from Cornall and Egan (Cornall and Egan; 2004). Right:
Pseudo Spectra Image (PSI) at 415 nm.

In the next section, a method (inspired from image rendering) to address the presence

of clouds in images will be presented. Glassner’s method (Glassner; 1989) for image

rendering, which derives the intensities at different wavelengths of the spectrum from the

Red Green Blue (RGB) triplet, is modified to derive and define Pseudo Spectra Images

(PSI) in the visible spectrum and identify the wavelength at which the response of sky

and clouds is similar. PSI at this wavelength reduces the artifacts in the sky and therefore

assists in horizon detection.

Horizon is usually identified by the Hough Transform as the most prominent So-

bel/Canny straight edge (Zafarifar et al.; 2008),(Zafarifar and Peter; 2006)and (Mcgee et al.;

2005). Hough Transform projects points from the image to Hough space which has a high

computational complexity. Additionally Hough Transform can identify either straight or

curved edges depending on the mapping to Hough space. However the horizon can be

curved (Figures 4.5, 4.6 and 4.7) due to the curvature of the earth, therefore a more ro-

bust algorithm is required which allows for both straight and curved edge representation of

horizon. In the subsequent sections, the methods for extraction of PSI from RGB images

and utilizing fitting ellipses for segregating horizon from multiple edges will be derived.

Results from section 2 and 3 will be combined to form an algorithm for horizon detection

in section 4.
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4.2 Generating Pseudo Spectra Images from RGB

The motivation of this section is to generate a set of images at multiple wavelengths in

the visible spectrum. Color is usually represented as a set of three intensities (Red, Green

and Blue) obtained from the color filter arrays (CFAs) of the cameras/sensor. The camera

capture is a many to one process, wherein the CFAs sample the reflectance from the scene

at different wavelengths in the visible spectrum to give cumulative RGB values. The

process of rendering is the opposite of camera capture, wherein the RGB (or equivalent

3D) value of pixel is given and the motivation is to have a color display on the hardware

(monitor/printer) which produces a tri-stimulus response in the human visual system as

close as possible to the actual scene. Glassner (Glassner; 1989) proposes a method to

re-fabricate the reflectance from original scene, by transferring the RGB triplets to CIE

XYZ color space, and then uses Color Matching Functions (CMFs) (Wyszecki and Stiles;

2000) to regenerate the discrete wavelength spectra.

If R and X represent the row vectors [r, g, b] and [x, y, z] respectively and M the

transformation matrix which maps R to X then:

X = RM (4.1)

Spectrum A(λ) conversion to a point in XYZ space X [x, y, z] involves integrating A(λ)

over the visible spectrum with the CIE color matching functions (CMFs) [x(λ), y(λ), z(λ)]:

x =

∫ 780

380
A(λ)x(λ)dλ; y =

∫ 780

380
A(λ)y(λ)dλ; z =

∫ 780

380
A(λ)z(λ)dλ (4.2)

Defining monochromatic wavelengths as:

(λu, λv, λw) ∈ [380, 780] ∀u 6= v 6= w (4.3)

Based on 3 monochromatic wavelengths, a point S = [S(λu), S(λv), S(λw] in 3D space

of monochromatic wavelengths in visible spectrum can be defined. S provides an orthonor-

mal basis for spectrum generation.
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Define C as a 3X3 subset of discrete CMFs (Wyszecki and Stiles; 2000), with am-

plitudes x(λ), y(λ), z(λ) with λ ∈ (λu, λv, λw). Amplitudes of CMFs from CIE XYZ 64

(Wyszecki and Stiles; 2000) are plotted in Figure 4.3.

C =













x(λu) y(λu) z(λu)

x(λv) y(λv) z(λv)

x(λw) y(λw) z(λw)













(4.4)

Figure 4.3: Plot of x,y,z weights at different wavelengths [9].

X can be calculated from S using C

X = SC (4.5)

Equation (4.5) is a discrete version of (4.2) at 3 discrete orthonormal wavelengths. Using

(4.5) and (4.1):

S = XC−1 = RMC−1 (4.6)

CMFs C are discrete representations of the tri-stimulus response of three cones of

human eye to wavelengths in visible spectrum (Wyszecki and Stiles; 2000). Tristimulus

response is continuous in the visible spectrum; therefore CMFs (C) can assume infinite

discrete values. Consequently S computed from C (4.5) and (4.6) can have infinite so-

lutions (metamers). Equation (4.6) designed for rendering, can be adapted for analysis

of images by ascertaining M and C. C requires a mechanism for selecting orthonormal

wavelengths [λu, λv, λw]. Subsequent sub sections will define PSI, C, select [λu, λv, λw]

and present an algorithm for sampling the visible spectrum.
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4.2.1 Definition and Derivation: PSI

A pseudo spectra image (PSI) is a monochromatic, gray-scale image, generated at a dis-

crete wavelength. S (4.6) is a 3D vector with the intensities [S(λu), S(λv), S(λw] corre-

sponding to wavelengths [λu, λv, λw]. All the 3 dimensions (intensities) of S are mathemat-

ically equivalent and can individually generate monochromatic images. The consideration

in sampling the spectrum range is not the choice of dimension of S, but consistency in the

choice of dimension. In this thesis S(λv) has been used to generate gray scale PSIs. For-

mally PSI is defined as a gray scale image P (x, y) generated from the color image R(x, y)

corresponding to wavelength S(λv) and given by:

P (x, y) = S(λv;x, y) where

S(λv;x, y) : Intensity of S(x, y) at

λv :Wavelength, (x, y) : Spatial coordinates

(4.7)

From (4.6) and (4.7):

S(x, y) = R(x, y)MC−1 (4.8)

P(x,y) is the 2nd dimension of the vector S(x, y), therefore P (x, y) can be computed

from (4.7) and (4.8) as:

S(x, y) = R(x, y)T where

T: Column matrix from second column MC−1
(4.9)

Writing T from the second column of MC−1:

T =













m11c12 +m12c22 +m13c32

m21c12 +m22c22 +m23c32

m31c12 +m32c22 +m33c32













where

mij : Value of i row and j column in M

cij : Value of i row and j column in C

(4.10)

PSI computation (4.9) is reduced to the multiplication of the RGB values of pixels with

the weights of the column matrix T. The use of three dimensions in T can be questioned,
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because only one dimension is used in (4.10). Three dimensions are due to matrix inversion

of C (4.6) which requires a square matrix.

4.2.2 Mapping (M) from RGB to XYZ

In the original work (Glassner; 1989)M is fixed and computed from the chromatic response

of the monitor. In the current application a fixed mapping M for R to X is used. Image

processing library openCV (Bradski; 2000) defines R to X mapping as:


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




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


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(4.11)

Taking the transpose of (4.11), M and (4.1) can be obtained :

[X] = [R][M] where

M =













0.412453 0.212671 0.019334

0.357580 0.715160 0.119193

0.180423 0.072169 0.950227













(4.12)

4.2.3 Orthogonal Wavelength Basis

There are no rules for choosing the basis wavelengths (other than considerations for nu-

merical stability) as infinite spectra A(λ) (metamers) can give the same values of X and R.

The choice of basis wavelengths is application specific. For example Glassner (Glassner;

1989) chooses [λu, λv, λw] as the wavelengths at which the sampled CMFs [x(λ), y(λ), z(λ)]

attain their maxima. However for the current research the orthonormal wavelengths are

defined as follows: Let the wavelength range of the spectrum being sampled be defined by

λrange:

λrange = λmax − λmin where

λmax : The maximum wavelength in the spectrum

λmin : The minimum wavelength in the spectrum

(4.13)
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The set of orthogonal wavelengths [λu, λv, λw] ∈ (λmin, λmax) are constrained to the de-

fined spectrum range by:

if λn > λmax then λn = λmin + (λn − λmax)

if λn < λmin then λn = λmax − (λmin − λn)

where n ∈ (u, v, w)

(4.14)

Since an unbiased (towards any wavelength) set of images is being generated; therefore an

orthonormal wavelength basis is defined as a set of 3-wavelengths which are confined to

the spectrum range (4.14) and equidistant from each other (4.15):

For a given λv ∈ λrange

λu =







λv − λrange

3 if λv ≥ λrange

3 + λmin

λv − 2λrange

3 if λv <
λrange

3 + λmin







λw =







λv +
λrange

3 if λv ≤ λmax − λrange

3

λv − 2λrange

3 if λv > λmax − λrange

3







(4.15)

Thus one value λv of the orthogonal wavelength set can discretely sample the visible

spectrum. The other two values (λu, λw) of the orthogonal wavelength set can be generated

from (4.14) and (4.15). Hence an orthogonal basis can be computed at each wavelength

wherein the wavelengths are confined to the visible spectrum and equidistant from each

other.

4.2.4 Algorithm: Sampling Spectrum for Generating PSI

Sampling the spectrum at discrete wavelengths involves two concerns.

• Determining the spectrum range: From CMFs (Wyszecki and Stiles; 2000) and Fig-

ure 4.3, it follows that the weights are approximately zero (x ≈ 0, y ≈ 0, z ≈ 0) for

wavelengths (700 ≤ λ ≤ 400). Therefore the spectrum range from 400 to 700 nm

is sampled in wavelength increments of 5nm. Increment of 5nm is inherent in CMF

(Wyszecki and Stiles; 2000) therefore it was chosen as the sampling interval.

• Orthonormality of the basis wavelengths (λu, λv, λw): Sampling in λrange is being

done at an interval of 5nm, i.e. 60 wavelengths are sampled. The orthonormality
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((4.15)) is maintained by keeping the basis wavelengths 100 nm apart. Algorithm

1 generates PSIs after orthogonal wavelengths’ sampling and selection subject to

((4.14)) and ((4.15)) and CMF (Wyszecki and Stiles; 2000):

Algorithm 1: Steps to generate PSI in the visible spectrum
for i: 0 to 59

1. λv = 400 + i× 5

2. (If i ≥ 20), λu = 400 + (i− 20)× 5 else λu = 400 + (40 + i)× 5

3. (If i ≤ 40), λw = 400 + (i+ 20)× 5 else λw = 400 + (i− 40)× 5

4. Populate C from (4.4) and (λu, λv, λw)

5. Compute Transformation matrix MC−1 from (4.6)

6. Compute Column matrix T from (4.10)

7. Compute PSI by applying (4.9) to all pixels.

Algorithm 1 generates a set of 60 PSIs corresponding to wavelengths 400 to 700nm in

increments of 5nm. These 60 PSIs are metamers as they have been generated from the

same set of R, albeit at different wavelengths. These metamers are plausible spectra of the

actual scene reflectance. The PSI(S) is a pseudo wavelength image; because it is created

from mathematical considerations [(4.4) to (4.15)] of image capture/representation (R,X)

and mapping (M) at a particular wavelength λv with the view to mimic the human visual

system (C). The ability of the PSI (S) to replicate reflectance of original scene at λv is

not mandatory and should not be expected. It should be re-emphasized that PSI is not

a unique solution of (4.6). It is well known (Wyszecki and Stiles; 2000), (Glassner; 1989)

that (4.6) is an under-constrained and therefore ill-posed problem as infinite solutions of

(4.6) exist. The reason for designing PSI is its ability to elicit similar intensity response

for different colors at particular wavelengths.

4.2.5 Application of PSI: Sky Detection

Multiple PSIs generated using Algorithm 1 revealed that the sky and clouds had similar

intensity at wavelengths from 405 to 425nm with the optimum being 415 nm. Some of

the PSIs (with cloudy sky) from Berkley Database (Martin et al.; 2001) processed at an

orthogonal wavelength basis centered at 415nm are shown in Figure 4.4. PSIs in Figure 4.4

highlight the similar intensity of the sky and its common artifacts at 415 nm.
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Figure 4.4: Pseudo Spectra Images.

Sky portion of PSI usually has high intensity, with occasional loss of detail in images

having chromatic similarity with the sky. This problem assumes significance when locating

the horizon on water bodies with bright sky (Figure 4.5 Top Left). The characteristic high
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luminance near the horizon arising out of distance to horizon is compounded by reflectance

from water (Figure 4.5 Top Right). This problem can be resolved by generating PSI at

an orthogonal wavelength basis centered at 475 nm. At this wavelength (475 nm) the

similarity of intensity of the sky and clouds is reduced as compared to 415 nm (Figure 4.5

Bottom Left). For some applications PSI at 475 nm subtracted from PSI at 415 nm might

offer more details in the image below horizon (Figure 4.5 Bottom Right).

Figure 4.5: PSI: Intensity variation at different wavelengths

Top Left: Bright sky with clouds. Top Right: PSI(415 nm ) with high sat-
uration near horizon. Bottom Left: PSI(475 nm ) without artifacts and low
saturation near horizon. Bottom Right: PSI (475 nm) subtracted from PSI(415
nm) showing more detail below horizon.

4.2.6 PSI: Characteristics and Discussion

The PSI induces disparate (or similar) response to different chromatic stimuli, which when

suitably integrated can augment the scene understanding/classification by chromatic de-

noising. Figures 4.4 and 4.5 illustrate two methods of exploiting PSI:

• Similar Response: In Figure 4.4 varying (inter and intra images) chromaticity of sky

and clouds have resulted in similar intensities of the sky portion of the PSI which

illustrates the ability of PSI to smoothen chromatic variations using one wavelength.
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• Similar/Dissimilar Response: In Figure 4.5 different responses of two components

in an image at different wavelengths are illustrated. Sky and cloud have similar

intensities at two different wavelengths (415 and 475), but sea has differing inten-

sities at these wavelengths. Subtracting PSI at different wavelengths, segments the

image (Figure 4.5. Bottom Right). The usage of the similar/dissimilar response

at different wavelengths, to remove artifacts in sky is comparable to the biologi-

cally inspired research (Thakoor et al.; 2002) and (Chahl et al.; 2003). However the

method presented herein uses mathematical techniques in visible spectrum, unlike

(Thakoor et al.; 2002) and (Chahl et al.; 2003) which uses UV and dedicated hard-

ware.

Numerical stability is a concern in generating PSIs, as highlighted in (Glassner; 1989)

and experienced by the author. Matrix inversion (4.6) results in negative values and the

overflow of intensity, which must be handled explicitly. E.g. 8 bit image representation in

current work was exceeded, with calculations resulting in values more than 255 and less

than zero. Owing to variability in image acquisition, storage, representation and processing

some experimentation is recommended to obtain the optimum wavelength before utilizing

the results presented in this section. Sky detection using PSI, removes artifacts in the sky

without any segmentation or heuristics.

4.3 Horizon Detection by Fitting Ellipses

This section derives an expression for horizon detection from the parameters of a fit-

ting ellipse. Edges are treated as eight-connected components and their fitting ellipse is

obtained from the method by Chaudhari and Samanta (Chaudhuri and Samanta; 1991)

which equates the zeroth order moment of the ellipse to that of the connected component.

For a digital edge binary image P (x, y) with connected components the (p + q)th order

moment of the kth connected component is defined as:

momk(p, q) =
∑

xpyq where

P (x, y) = (0 or 1) and ∈ k

(4.16)
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The coordinates of Centroid (xck, yck) of the k
th connected component are:

xck =
momk(1, 0)

momk(0, 0)
, yck =

momk(0, 1)

momk(0, 0)
(4.17)

The alignment (θk) of the longer axis of the fitting-ellipse for the k
th connected component

with the X-axis is given by:

θk = 0.5tan−1

[

2δk(xy)

δk(xx) − δk(yy)

]

where

δk(xx) = momk(2, 0)−
[momk(1, 0)]

2

momk(0, 0)

δk(xy) = momk(1, 1)−
momk(1, 0)×momk(0, 1)

momk(0, 0)

δk(yx) = momk(0, 2)−
[momk(1, 1)]

2

momk(0, 0)

(4.18)

The major (2ak) and minor (2bk) axis of the kth fitting ellipse 1 can be calculated from

the moment of inertia Ik(xck, yck, θk) by:

Ik(xck, yck, θk) = δk(xx) cos
2(θk) + δk(yy) sin

2(θk)− 2δk(xy) cos(θk) sin(θk) (4.19)

bk = 2

√

Ik(xck, yck, θk)

momk(0, 0)
; ak =

momk(0, 0)

πbk
(4.20)

Since the horizon is the largest edge (either straight or with slight curvature) therefore

the following parameters of the fitting ellipse of the horizon should be largest for all the

edges present in image:

• The skew: bk
ak

• The zeroth moment (area):momk(0, 0)

Using the product of the zeroth moment and the skew of the fitting ellipse a new parameter

termed as Horizon Measure (HM), can be defines a for edges:

HMk =
bk
ak
momk(0, 0) = π(bk)

2 (4.21)

1The major and minor axis referred in this text are those computed from moments. It should be
pointed out that an ellipse also has its own Geometric axes which are opposite to that of Moment axes.
E.g. major (2ak) (moment) axis of the fitting ellipses is the minor geometric axis and vice versa. The
reader is cautioned against confusing the two.
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The edge which maximizes the minor axis of the fitting ellipse (bk) is the horizon (Figure 4.6

Top Right).

Figure 4.6: PSI: Intensity variation at different wavelengths

Top Left: Image. Top Right: Horizon Measure-(Skew X Area) of ellipse. Bot-
tom Left: Horizon Measure-(Skew). Bottom Right: Horizon Measure-(Area).
In Gray scale images: The fitted ellipse and enclosed edge which maximize the
horizon measure are shown in white and gray respectively.

The problems, in using the skew and the zeroth moment, in isolation are eliminated

by taking their product (Figure 4.6 Top Right). By taking the product of the skew

and the zeroth moment as a HM, individual false positive probabilities (of skew and

zeroth moment) are multiplied, resulting in reduced total probability of a false positive.

Qualitatively it can be stated that it is more difficult to find an edge in water that is as

straight (skew) and long (zeroth moment) as the horizon, than finding edges that are as

straight or as long as the horizon.

Hough transform is a popular choice for detecting the horizon, but requires projection

of pixels to Hough space which usually has a complexity of O(Nπ
ρ
) where N is the number

of pixels evaluated and ρ is the angular bin size. The ellipse is calculated from the first

two moments of connected components (Chaudhuri and Samanta; 1991), hence the total

complexity in horizon detection from image edge map is O(3N); N for calculation of

connected components (Chang et al.; 2004) and 2N for the first two moments of connected
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components. Therefore ellipses are faster than Hough transform and can identify straight

or curved edges.

4.4 Algorithm: Water Horizon from Derivative of PSI

Previous sections have presented two theoretical aspects of horizon detection. These are

combined to generate an algorithm (2) for horizon detection..

Algorithm 2: Steps for horizon detection

1. Identify the appropriate wavelength and the transformation matrix at which the
intensity of the sky and clouds is similar.

2. Generate the PSI of the image/video using (4.9).

3. Convolve the PSI with a 2-D gaussian of standard deviation 1.

4. Compute the Sobel edges of the smoothed PSI

5. Threshold the Sobel edge from PSI using the Otsu’s Threshold (Otsu; 1979).

6. Perform the 8-connectivity (Chaudhuri and Samanta; 1991) on the thresholded
image and calculate the parameters of enclosing ellipses.

7. Calculate the HM (4.21) of the 10 largest connected components to identify the
horizon.

Step 3 of Algorithm 2 reduces noise and produces a continuous edge from a fractured

horizon. Figure 4.8 illustrates horizon candidates with and without a gaussian operator.

Step 5 reduces the search space by removing edges with lower intensity values. The horizon

edge is computed from heterogeneous backgrounds (sky and water), unlike other edges in

the image which are generated from the homogeneous backgrounds; therefore the intensity

of the horizon edge is usually greater than the other edges (Walia and Jarvis; 2009). The

higher intensity of the horizon edge enables the horizon to belong to the set of edges left

remaining after thresholding by Otsu’s Threshold (Otsu; 1979),(Walia and Jarvis; 2009).

Step 6 computes the connected components and the minor axes of the enclosing ellipses.

Step 7 maximizes the HM of the edges, thereby identifying the horizon.
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Figure 4.7: Steps of Algorithm 2

a: Image. b: PSI (Step 2). c: Smoothed PSI (Step 3) d: Sobel of Smoothed
PSI (Step 4). e: Sobel edges of Smoothed PSI thresholded at Otsu’s Threshold
(Step 5). f: 10 largest edges with enclosing ellipses (Step 6). g: Horizon (red
fitting ellipse) identified by maximizing HM (Step 7)
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(a) Sobel edges without gaussian smoothing (b) Sobel edges with gaussian smoothing.

Figure 4.8: A continuous horizon from a fractured horizon

4.5 Conclusion

In this chapter, theoretical framework for generating and analyzing PSI has been pre-

sented. The simplicity of PSI generation and uniqueness of results should allow its adap-

tation for other vision based applications. The theoretical framework was augmented with

application viz. horizon detection. Edge classification in horizon detection has also been

discussed and fitting ellipses have been presented as a faster alternate to Hough transform.

The ellipses can replace Hough Transforms for autonomous navigation in water and air

crafts i.e. where occlusion of horizon is not a frequent occurrence. It is envisaged that,

PSI can be used as a pre-processing step for eliminating chromatic aberrations in natural

textures like grass, water, skin, fruit/vegetable etc, with a strong predisposition to certain

colors. Specific applications of PSI for sky detection can be in horizon detection, video

processing (Zafarifar and Peter; 2006), scene labeling and robotics i.e. in autonomous

watercrafts/aircrafts (Cornall and Egan; 2004), (Chahl et al.; 2003) and (Thakoor et al.;

2002). Sophisticated patterns based on intensities of PSIs at multiple wavelengths can

potentially be described to identify specific entities in images. From the perspective of

obstacle avoidance in water, this chapter achieves the segregation of water from sky. The

contrast between the water and sky is enhanced using PSI and the interface between water

and sky viz horizon is used to demarcate the two regions. By utilizing the interface edge

rather than water, the problems associated with variability are avoided. In the succeeding

chapters the obstacle will be detected from edge it creates with the water.



Chapter 5

Locating Objects in Water:

Theory

As previously stated, this chapter discusses obstacle detection. While engineering and sci-

ence is challenged to detect obstacles in water, the apparent ease with which human visual

system is able to detect the obstacles in water is remarkable. This ability of biological

vision, is not restricted to humans, but most of the animals are also inherently capable

of recognizing obstacles in the environment that they inhabit. The front end of human

vision system could therefore provide a solution to obstacle detection. Human vision sys-

tem utilizes edges and neurons have been reported (Young; 1987) to have response similar

to gaussian derivatives (up to fourth order). The human vision formed the ’pull factor’

in deciding the methodology of research. Scale-Space was chosen as the framework for

detecting obstacles owing to documented similarity to human vision (Hubel and Wiesel;

1987; Young; 1987; Koenderink and van Doorn; 1987; Koenderink and Doorn; 1992).

To compensate for variability in water, the edge(s) that water makes with the obstacle

is used as the obstacle’s identifying feature. In the physical 3 dimensional world, the edge

due to the interface of water and obstacle is characterized by a physical discontinuity

between the surface of water and the surface of the obstacle. This physical discontinuity

manifests as an image edge when the 3 dimensional world is projected onto the image

plane (Figure 2.1). In the analysis presented in the remaining chapter, the interface edge

is modeled as a theoretical discontinuity in functions.

The qualitative ideology underlying this chapter is that the interface edges will not exist

unless there is an obstacle in water. In the absence of an obstacle, the water is a continuous

49
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surface that can be represented mathematically as a continuous function. Therefore if a

discontinuity were detected in the images, it can be justifiably and heuristically attributed

to the presence of an obstacle. In addition the location of the discontinuity demarcates

the physical boundary of the obstacle. Therefore, in this chapter, the problem of obstacle

detection is mathematically analyzed as that of discontinuity detection. Specifically a

statistical solution to detect discontinuity is provided by analyzing the statistical properties

of a discontinuity in its Scale-Space representation. The research reported here resulted in

a conference publication (Walia and Jarvis; 2009) and a book chapter (Walia et al.; 2012).

5.1 Introduction

Discontinuity detection is studied across disciplines of thermodynamics, chemistry, ge-

ology, manufacturing, equipment maintenance, signal processing, computer architecture

(bit recognition), finance (jump processes to model markets) and image processing. In

image processing an edge is often modeled as a discontinuity (Lindeberg; 1998). Hence

discontinuity detection, can provide edge information for image analysis with applications

in robotic vision, medical imaging, tomography and surveillance etc. Scale-Space the-

ory (Lindeberg; 1994; Witkin; 1983; Koenderink; 1984), is a framework for multi-scale

analysis of function/image. While there are non-Gaussian Scale-Space representations

(Duits et al.; 2003), this chapter is confined to widely accepted Gaussian Scale-Space

(Lindeberg; 1994; Babaud et al.; 1986). Existing Scale-Space literature is focused mainly

on developing Scale-Space theory with a view to:

1. Study impact on underlying signals/images (Witkin; 1983; Koenderink; 1984; Romeny;

1994; Babaud et al.; 1986; Lindeberg; 1998)

2. Determine appropriate scale(s) relevant to the image/signal(Lindeberg; 1994).

3. Extract information, knowledge and develop applications like feature detection, fea-

ture classification, image segmentation, image matching, motion estimation, shape

computation and object recognition etc.

4. Correlate the Scale-Space framework with biological vision (Hubel and Wiesel; 1987;

Young; 1987; Koenderink and van Doorn; 1987; Koenderink and Doorn; 1992).
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Current Scale-Space literature, does not adequately explore the statistical compo-

nent of Scale-Space. There are contextual applications of various statistical parameters

(Zagal et al.; 2000; Rodriguez; 2006; Sakai and Imiya; 2009), in contemporary Scale-Space

research, but they are limited in scope to specific applications or/and statistics of image

features like blob volume, clusters, thresholds etc. Researchers would be well-assisted

if some theoretical basis were available for statistical assumptions in Scale-Space. In

this chapter, theoretical foundation for some statistical assumptions with regard to the

derivative of a discontinuity in Scale Space are presented. A discontinuity has an infinites-

imal existence in Scale-Space, which leads to the assumption of continuity of underlying

image/function in any conventional Scale-Space analysis (Lindeberg; 1994; Koenderink;

1984). This chapter reveals that even though Scale-Space eliminates discontinuity at an

infinitesimal scale, the Probability Density Function (PDF) of the derivative of a discon-

tinuity retains its unbalanced bimodality in Scale-Space. This chapter makes following

theoretical contributions:

1. Derivation of Probability Density Function (PDF) and Cumulative Distribution

Function (CDF) for the derivative of a discontinuity in Scale-Space (Theorem 2).

2. Proof of bimodality (Theorem 3) and unbalance (Theorem 4) of the PDF of the

derivative of a discontinuity in Scale-Space.

3. Proof that the Otsu’s Threshold (OT) (Otsu; 1979) owing to its sensitivity to unbal-

anced and bimodal PDFs has different patterns in Scale-Space based on the presence

/ absence of a discontinuity:

(a) Transient Increase: Discontinuity present.

(b) Monotone Decrease: Discontinuity absent.

The above mentioned theoretical results, are then applied for a simultaneous solution of

following problems in image processing (Figure 5.1):

1. Scale appropriate to the discontinuity.

2. Threshold appropriate to the discontinuity.

3. Boundaries of entities in images.



CHAPTER 5. LOCATING OBJECTS IN WATER: THEORY 52

(a) (b) (c) (d) (e)

Figure 5.1: OT Characteristics: Absence and Presence of a foreground.

(a) “Banana”: Foreground and Background Image. (b) Segmentation at lower
point of inflection. (c) Segmentation at Upper point of inflection. (d) “Grass”:
Background Only. (e) OT Plots against Scale for “Grass” and “Banana”. �

and © : Upper and Lower points of inflection.

5.2 Statistical Distributions of a Gaussian Function

The term Gradient Magnitude in Scale-Space (GMSS) will be used hereon to represent

1. In 1-D Non-Discrete Functions: The derivative of the Scale-Space representation of

the functions.

2. In 2-D Discrete Images: The magnitude of the gradient (computed by Sobel opera-

tor) of Scale-Space representation of the images.

In this section, the statistical distributions of the GMSS of a discontinuity will be derived.

The reason for doing so is to show that the PDF of the GMSS of a discontinuity is bimodal

and unbalanced i.e. the probability of one mode far exceeds the probability of the other

mode. A discontinuity is mathematically represented as a step function. Consequently

the derivative of the discontinuity is a Dirac’s Delta (Khuri; 2004) as shown in Figure 5.2.

Convolution of the Dirac delta (δ)1 with a Gaussian function will result in GMSS of a

discontinuity.

Figure 5.2: Left to Right: Unit step function, Dirac Delta and PDF of Dirac Delta

1Since a Dirac’s Delta is zero everywhere except at one point, therefore its PDF will be of the type
shown in Figure 5.2. The PDF of a Dirac’s Delta exists only at two points i.e. at (x = 0 and x = ∞) and
is bimodal and unbalanced.
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Theorem 1. The GMSS L′(x; t) of a Step function is given by a Gaussian Kernel G(x;t):

L′(x; t) = G(x; t) where

G(x; t) =
e−

x2

2t

√
2πt

: Gaussian Kernel at Scale (t)

(−N < x < N : N → ∞) : Domain of the Function

(5.1)

Proof. For a Step function H(x), the Scale-Space (SS) representation L(x; t) is given by

H(x) =











1 if N > x > 0

0 if −N < x < 0











(5.2)

L(x; t) = H(x)⊗G(x; t) (5.3)

Convolution commutates with differentiation and the derivative of a Step function is a

Dirac Delta (δ̂(x)) (Khuri; 2004) (Figure 5.2). Consequently:

L′(x; t) = d
dx
[H(x)⊗G(x; t)]

= d
dx
[H(x)]⊗G(x; t)

= δ̂(x)⊗G(x; t)

= G(x; 0)⊗G(x; t)

where δ̂(x) = H ′(x) =











∞ if x = 0

0 if x 6= 0











(5.4)

A Gaussian Kernel reduces to Dirac Delta at zero Scale i.e (δ̂(x) = G(x; 0)), therefore (5.4)

is equivalent to the convolution of two Gaussian Functions with scales (t1 = 0, t2 = t).

Since [G(x; t1 + t2) = G(x; t1)⊗G(x; t2)] (Lindeberg; 1994), therefore (5.4) simplifies to:

L′(x; t) = G(x; t) where x ∈ 2N

Theorem 1 simplifies the GMSS of a discontinuity to a Gaussian Function, which in

turn allows formulation of the statistical characteristics of the GMSS of a discontinuity.
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5.2.1 PDF of a Gaussian Function

Theorem 2. A continuous random variable g which takes the values g ∈ ( 1√
2πt
, 1√

2πt
e

−N2

2t :

N → ∞), given by a Gaussian function G(x; t) has following statistical distributions:

PDF : fg(g) =
t

Ng
√

−tloge(2πtg2)
(5.5)

CDF : Fg(g) =

√

−tloge(2πtg2)
N

(5.6)

Proof. Gaussian function (G(x; t)) is symmetric and provides a one to one, monotonic

and inverse mapping between x and g, in each half of the Cartesian plane. Therefore a

uniformly distributed random variable (X) which takes the values x ∈ (0, N : N → ∞) in

the positive spatial domain of the Gaussian function can derive the PDF and CDF for g.

The uniformly distributed PDF of (X) is given by:

fx(x) =
1

N
where x ∈ {0, N : N → ∞} (5.7)

The equivalent PDF and the domain for the gaussian variable (g) is given by:

fg(g) where g ∈
{

1√
2πt

,
1√
2πt

e
−N2

2t : N → ∞
}

(5.8)

The probabilities for both the random variables are equal in the mapped ranges :

∫ g

1√
2πt

fg(g)dg =

∫ x

0
fx(x)dx where

x = G−1(g; t) =
√

−t loge(2πtg2)
(5.9)

Introducing a change of variable from x to g in the right hand side of (5.9) and solving:

∫ g

1√
2πt

fg(g)dg =

∫ g

1√
2πt

fx(x)

∥

∥

∥

∥

d[G−1(g; t)]

dg

∥

∥

∥

∥

dg (5.10)

fg(g) =
t

Ng
√

−tloge(2πtg2)
(5.11)
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The CDF 2 can be computed by integrating the PDF (5.11):

P [g ≤ g ≤
√
2πt] = Fg(g) =

√

−tloge(2πtg2)
N

Alternate proof of PDF(Fg(g)), can be provided by replacing the value of (x) from (5.9)

in the CDF (Fx(x) = x/N) of uniformly distributed variable X and then differentiating it

w.r.t (g), which would provide expression (5.11).

(a) PDF (b) CDF (c) Derivatives of the PDF

Figure 5.3: PDF, CDF and derivatives (w.r.t. g) of the PDF of a Gaussian Function.

5.2.2 Bimodality of the PDF of a Gaussian Function

Theorem 3. The PDF fg(g) of a Gaussian function is bimodal.

Proof. The bimodality of the PDF can be proved by the existence of exactly one minima

in the PDF ((Eisenberger; 1964; Kemperman; 1991; Schilling et al.; 2002)). For a point

(g0) belonging to the domain of the PDF to be a minima, it’s first derivative should be

zero (f
′

g(g0) = 0) and it’s second derivative should be positive (f
′′

g (g0) > 0). The first and

the second derivatives (with respect to g) of the PDF are given by:

f
′

g(g) =
t2

Ng2(G−1(g; t))3
− t

Ng2G−1(g; t)
(5.12)

f
′′

g (g) =
3t3

Ng3(G−1(g; t))5
− 3t2

Ng3(G−1(g; t))3
+

2t

Ng3(G−1(g; t))
(5.13)

2The correctness of the expression can easily be verified by replacing the term (
√

−tloge(2πtg2)) in
CDF with x from (5.9). This gives (P [0 ≥ X ≥ x] = Fx(x) = x/N) which is the expression of a CDF of a
uniformly distributed variable (X)
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The minima g0 in the PDF can be located from the root(s) of (5.12)

t2

g20(G
−1(g0; t))

3 =
t

g20G
−1(g0; t)

⇒ g0 =
1√
2eπt

∀ t > 0

(5.14)

Existence of only one root for the first derivative of the PDF, implies that only one extrema

exists in the PDF. Substituting the value of g0 from (5.14) into (5.13) and solving

f
′′

g (g0) = 4
√
2t2(eπ)

3

2 > 0 (5.15)

From (5.14) and (5.15), g0 is the (only) minima in the PDF, therefore it establishes the

bimodality of the PDF (Figure 5.3).

5.2.3 Unbalance in modes of the PDF of a Gaussian Function

Theorem 4. The bimodal PDF fg(g) of the GMSS of a Step Discontinuity is unbalanced,

i.e the probability of one mode is much greater than the other.

Fg(g0) << 1− Fg(g0) (5.16)

Proof. The probabilities of the two modes separated at g0 can be computed from CDF

(5.6)

P (g ≥ g0) = Fg(g0)

=
g0
N

√

−t loge (2πtg20) = (N
√
2eπ)

−1
(5.17)

P (g < g0) = 1− Fg(g0) (5.18)

Dividing (5.17) by (5.18) gives the ratio of the probabilities of the two modes:

Fg(g0)

1− Fg(g0)
=

Limit

N → ∞
1

N
√
2eπ − 1

<< 1 (5.19)
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5.2.4 Scale Life of the GMSS of a Discontinuity

Theorem 5. The Scale-Life (SL) of a discontinuity (with a magnitude A), i.e the interval

of scales (t ∈ (0, SL)) within which the discontinuity can be statistically identified by the

unbalanced bimodality of the PDF of the GMSS of a discontinuity is given by:

SL =
A2

2πǫ2
where ǫ = Upper Bound of error3 (5.20)

Proof. From Theorem 1 for a discontinuity with a magnitude A, the GMSS will be given

by:

L′(x; t) =
Ae−

x2

2t

√
2πt

(5.21)

In a manner similar to proof of Theorem 2, it can be shown that the PDF (fg(g)) of

the GMSS (5.21), will be defined in the interval g ∈ (0, A/
√
2πt) with the second mode

existing at (A/
√
2πt). For this mode to be identifiable as a separate mode it should be

greater than or equal to (ǫ) i.e.

A√
2πt

≥ ǫ⇒ t ≤ A2

2πǫ2
(5.22)

The concept of an infinitesimal existence of a discontinuity in Scale-Space/Heat Equa-

tion is acknowledged by research community (Lindeberg; 1994; Gonzalez-Velasco; 1995;

Widder; 1975), but seldom defined. Theorem 5 provides one (amongst plausibly many)

rigorous definition of the life of a discontinuity, derived from (and therefore limited to)

the statistics of the GMSS of a discontinuity.

Implication of (ǫ): Any discrete application of the theoretical results would invoke

the upper bound of error(ǫ), and therefore needs to be understood in the context of

discretization in general, and selection of histogram bin size in specific (in images/signals).

The selection of bin size inadvertently defines (ǫ) and is dependent on:

1. Physical limitations of the sensor/hardware: As an example, a camera might be able

to distinguish 8, 64 or 256 intensity levels depending on 3,6 or 8 bit representation.

The upper bound of error (as measured with respect to absolute ambient intensity)

for a 8 bit representation will be much lower than that of 3 bit representation.

3Formal definition is provided in Section 5.4
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2. Accuracy desired by the user: Even though the sensor is capable of higher precision

(or lower error), an algorithm/user might require a lower precision, wherein the

upper bound of error is artificially set at a higher value.

Hence the ability of algorithms to capture the unbalance and bimodality of the PDF within

the Scale-Life will depend on the precision of the hardware as well as the bin size of the

histogram.

5.2.5 Comments

The theoretical results of this section can be perceived to be at slight variance with the

assumptions and models of a discontinuity in conventional scale-space, and the reasons for

this variance will be discussed in this subsection. The widely accepted norm of ignoring

a discontinuity in Scale-Space and analyzing the underlying signal/image as if it were

continuous, can be attributed to the following factors:

1. Requirement of Scale-Space framework, to comply with the principles of homogeneity

and isotropy, necessitates the framework to remain uncommitted to a gaussian scale.

Consequently modeling a discontinuity as done in heat equation, would result in

violation of the fundamental requirements of Scale-Space.

2. Inadequate Information: Most of the problems of Computer Vision, are related to

identifying the presence/absence of a discontinuity followed by a contextual analysis

of the discontinuity. In the absence of this basic information about the presence

of a discontinuity, much less its properties like the magnitude and location of the

discontinuity, it is difficult to model the transient presence of a discontinuity in

Scale-Space.

3. Absence of appropriate model: Even if the location and magnitude of the disconti-

nuity were available, a model to represent the discontinuity is difficult to prepare,

because it leads to a lot of unanswered questions like how long does the discontinu-

ity last? and, how to model the transfer from a discontinuous state to a continuous

state?

4. Mathematical simplification: Theoretically a discontinuity disappears at an infinites-

imal scale, therefore by ignoring this infinitesimal scale, a continuous model of a

discontinuity can be mathematically justified.
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The text (Theorems 1, 2 and 5) so far, is not meant to contradict or discredit existing

conventions of Scale-Space , but to present a mathematically valid alternate representation

of the Scale-Space. As an illustration of alternate (to Scale-Space) representations of a

discontinuity, consider the heat equation (Gonzalez-Velasco; 1995; Widder; 1975). In heat

equation a discontinuity may be explicitly modeled in following conventions:

1. As a Neumann Boundary Condition which specifies the rate of temperature (equiv-

alent to intensity) change at the boundary.

2. As a heat source in space delimited by boundaries.

These alternate models adopted by a broader theoretical framework of heat equations,

illustrate the need to represent a discontinuity in forms other than the one adopted in

conventional Scale-Space theory. The PDF of the GMSS of a discontinuity (Theorems 1, 2

and 5)is an alternate representation of a discontinuity, which is unaltered in the Scale-Life

(Theorem 5) including the zeroth scale. The unbalanced bimodality of the PDF can be

applied homogeneously across the scales for the Scale-Life of a discontinuity, without the

ambiguity of modeling or ignoring a transition from a discontinuous state to a continuous

state.

This section provides a mathematical expression for the the PDF of a Gaussian Func-

tion, with a universal applicability for disciplines employing Gaussian Functions e.g. in-

verse problems of heat equation, chemical diffusion and Scale-Space Theory. The unbal-

anced bimodality of the PDF of a Gaussian Function facilitates interpretation of the second

mode of the PDF as a statistical outlier. Consequently any problem of a discontinuity

detection can be reformulated as a statistical problem of outlier detection. The sections

hereon can be viewed as one application of the general results of this section, wherein a

statistical parameter (OT) sensitive to outlier data, is used to detect a discontinuity in

images.

5.3 OT: Unbalanced Histograms

In this section a general review of OT will be presented and an expression of OT for

unbalanced bimodal PDF will be developed for 1-Dimensional function, with a view to

accommodate the GMSS of a discontinuity. OT is statistically generated from a normalized

histogram with M bins corresponding to M gray levels in an image (Figure 5.4). Each bin



CHAPTER 5. LOCATING OBJECTS IN WATER: THEORY 60

Figure 5.4: Schema: Otsu’s Threshold in a histogram.

represents the percentage of the pixels in the image with corresponding gray level. This

normalized histogram is bifurcated into two classes C0 and C1 at a hypothetical threshold

(k). The hypothetical threshold (k), Means (µ0, µ1) and Standard Deviations (σ0, σ1)

of two classes are shown in Fig 5.4. The maximum of Between Class Variance (BCV)

determines the appropriate threshold (OT). BCV νB is defined by 5.23:

νB = ω0(µ0 − µT )
2 + ω1(µ1 − µT )

2

where

(5.23)

ω0 =
k

∑

i=0

pi, ω1 =
M
∑

i=k+1

pi

0thorder Cumulative Moment for C0 and C1

(5.24)

µT =
M
∑

i=0

ipi, γk =
k

∑

i=0

ipi

1st order Cumulative Moment up to M and k

(5.25)

µ0 =
γk
µT

, µ1 =
µT − γk
µT

Mean Gray Levels for C0 and C1 respectively

(5.26)

pi =
ni
NT

: Normalized probability at gray level i

ni, NT : No of pixels at gray level i, Total pixels

(5.27)

Theorem 6. OT (which maximizes BCV) is obtained at gray level (k*) defined by:

k∗ =
µ0 + µ1

2
(5.28)
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Proof. Differentiate νB (5.23) with respect to gray levels (k) and equate to zero. For

details see (Lin; 2003).

The proof (Lin; 2003) is for histograms, but the results can easily be generalized to

continuous PDFs. One solution of Theorem 6 is when the OT exists at the function/image

mean.

Corollary 1. The maximum of BCV is obtained at the image mean ( µT ) if and only if

the probabilities of the two classes are equal:

k∗ = µT ⇐⇒ ω0 = ω1 = 0.5 (5.29)

Proof (If). Substituting ω0 = ω1 = 0.5 in µT (5.25):

µT = µ0ω0 + µ1ω1

µT = 0.5µ0 + 0.5µ1

µT = k∗ from (5.28)

Proof (Only if). Equating µT (5.25) to k∗ (5.28).

µ0 + µ1
2

= µ0ω0 + µ1ω1

substituting ω0 = 1− ω1 from (5.24)

ω0 = ω1 = 0.5

Corollary 1 allows analysis of the OT in terms of the function/image mean, without

constructing a PDF/histogram. Some of the plausible distributions mentioned by (Lin;

2003) where Corollary 1 is applicable are unimodal, perfectly balanced bimodal and unbal-

anced bimodal. Corollary 1 can be tailored to a PDF containing two linearly separable

classes with unbalanced probabilities (Figure 5.5). This is done with a view to develop an

expression for OT, applicable to the PDF of a Gaussian function.

Let a random variable Q = {q ∈ (0, qend)} with PDF fq(q) be composed of two

populations (NC, IC) which are linearly separable at (q = ψ) having distributions fnc(q)
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Figure 5.5: OT Schema: Symmetric Unimodal and Unbalanced Bimodal PDFs

(Left) Symmetric PDF and (Right) Unbalanced dual-class PDF (larger class
is Symmetric about its mean)

and fic(q) respectively, such that

fq(q) =











mncfnc(q) if q < ψ

micfic(q) else











where

a.
ψ ∈ (0, qend)

Point of linear separation of two classes

b.
mic =

qend − ψ

qend
,mnc =

ψ

qend

Probabilities of the two classes

c.
µic, µnc

Averages of the two classes

d.
mic << mnc

PDF is Unbalanced

e.
µicmic + µncmnc = µT

Average value of the PDF

f.
µic > µnc

Order of classes

g.

fnc(µnc − q) = fnc(µnc + q)

∀(q < µnc) : fnc(q) 6= 0

fnc(q) is symmetric about µnc

(5.30)

Equation (5.30) presents a PDF which is a super-set of the PDF of a Gaussian function

with following salient features:

1. It is unbalanced.
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2. It is not strictly Bimodal, but accommodates bimodal PDFs.

3. Has an additional requirement of symmetry of the first mode about its mean, which

is satisfied by a Gaussian function’s PDF under limiting conditions (proof follows in

Corollary 2).

Theorem 7. For a PDF of the kind (5.30), the OT is given by:

k∗ = µnc +mic(µic − µnc)

Proof. First consider that the PDF consists of only NC, i.e:

(fq(q) = fnc) ⇐⇒ (ψ = qend, µT = µnc and mic = 0)

The probability of two halves of the PDF separated at a mean value (k∗ = µT ) is

(ω0 = ω1 = 0.5) (Figure 5.5 Left). Therefore from Corollary 1:

k∗ = µnc = µT (5.31)

If class (ic) with a very small probability (mic << mnc) is added to this distribution

(Figure 5.5 Right), then the OT and the PDF mean (µT ) will change slightly, because for

a very small change in µT , applicability of Corollary 1 will persist (Lin; 2003):

k∗ = µT = mncµnc +micµic

= µnc +mic(µic − µnc)

(5.32)

Figure 5.6: Schema: Classes (C0 and C1) and (NC, IC) in an unbalanced PDF.
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Schematic illustration of two sets of classes as discussed so far: (C0 and C1) and (NC,

IC) in an unbalanced PDF is shown in Fig 5.6. The First set (IC and NC), appears as

two separate distributions in the PDF. The second set of classes (C0 and C1) exists due

to the hypothetical bifurcation of the PDF at OT. Equation (5.30) imposes less rigorous

conditions for application of Theorem 7 for unbalanced PDFs as compared to (Lin; 2003).

The PDF need not be strictly bimodal as long as it is unbalanced and the larger class (NC)

is symmetric about its mean. In the next section, Theorem 7, will be adapted specifically

for the PDF of a Gaussian function. The unique inverse J Shape 5.3 of the PDF of the

Gaussian function implies that the PDF is concentrated around a value of zero. Thus by

providing a rigorous definition of zero ǫ and its associated spatial domain (δ(t)), following

simplifications of Theorem 7 can be achieved:

1. Definition of point ψ in (5.30) and consequently linear separation of the PDF of the

Gaussian Function into IC and NC.

2. Expressions for average values and the probabilities of the two classes IC and NC.

3. Proof of PDF’s i.e. unbalance mic << mnc.

4. Elimination of need to prove symmetry of bigger class (NC). Proof is provided in

the next section.

5.4 OT for a Gaussian Function

Formal definition of zero (ǫ) and the corresponding spatial domain δ(t), is obtained from

Cauchy’s Epsilon-Delta (ǫ, δ(t)) definition (Felscher; 2000) as applied to limit of G(x; t)

when x→ ∞.

Theorem 8. If (ǫ, δ(t) ∈ ℜ+) represent the real and positive upper bounds of error, for

the Gaussian function (G(x; t)) and the associated spatial variable (x) respectively, where

ǫ can be made infinitesimally small and δ(t) depends continuously on ǫ and scale (t), then

the limit of the Gaussian function when x→ ∞ is given by:

Lt

x→ ∞
G(x; t) = 0 (5.33)
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Alternatively for a given ǫ and a scale (t) there exists a δ(t), such that for all x belonging

to the interval (‖δ(t)‖ , ‖∞‖], the Gaussian function takes a value less than ǫ:

∃δ(t) : ∀x ∈ (‖∞‖ > ‖x‖ > ‖δ(t)‖) ⇒ ‖G(x; t)‖ < ǫ (5.34)

Proof. It is trivial to show from the definition of G(x;t) (5.1), that for a given ǫ following

value of δ(t) provides the interval (‖δ(t)‖ , ‖∞‖] for which (G(x; t) < ǫ):

δ(t) =
√

−t loge (2πtǫ2) (5.35)

Magnitude (A) instead of unity, will change (5.35) to:

δ(t) =

√

−t loge(
2πtǫ2

A2
) (5.36)

Graph of δ(t) from (5.36) at various ratios of (ǫ/A) for a Step Discontinuity is shown in

Figure 5.7: Graph of δ(t) for various ratios of (ǫ/A) for the GMSS of a Discontinuity.

Figure 5.7. The graphs show that a maximum exists in each plot. At this point IC and

NC can be defined in the context of the Gaussian Function with the help of ǫ.

5.4.1 Definition and statistics: IC and NC

Definition 1. Interface Class (IC) at scale (t) is defined as the spatial domain of the

Gaussian Function where the value of the Gaussian Function is greater than the upper

bound of error (ǫ).

IC(t) = {x ∈ N : G(x; t) > ǫ} ⇒

IC(t) = {x ∈ N : x < δ(t)}
(5.37)

Definition 2. Non-interface Class (NC) at scale (t) is defined as the spatial domain of

the Gaussian Function where the value of the Gaussian Function is lesser than or equal to
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Figure 5.8: Schema: Statistical parameters of IC and NC in a Gaussian Function.

the upper bound of error (ǫ).

NC(t) = {x ∈ N : G(x; t) ≤ ǫ} ⇒

NC(t) = {x ∈ N : x ≥ δ(t)}
(5.38)

Figure 5.8 depicts the two classes IC and NC in the context of a Gaussian Function.

Based on the above definitions the statistics of IC and NC can be determined.

Class Statistic

NC Mean: µnc(t) = 0

Probability: mnc(t) =
N − δ(t)

N

IC Mean: µic(t) =
1

δ(t)

∫ δ(t)

0
G(x; t)dx

Probability: mic(t) =
δ(t)

N

(5.39)

5.4.2 Applicability of Theorem 7

Corollary 2. Bifurcating the Gaussian function (G(x; t)) or it’s PDF (fg(g)) at (ψ = ǫ),

results in two classes IC and NC such that:

1. Two classes have an unbalanced probability.

P [g < ǫ] >> P [g ≥ ǫ] (5.40)

2. The larger class NC can be assumed to be symmetric about its mean µnc

Proof (Unbalance). Since G(x; t) provides a one to one, monotone mapping from x to g

and x is uniformly distributed over the interval (0, N : N → ∞), therefore the ratio of
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probability of NC to IC is given by:

P [g < ǫ]

P [g ≥ ǫ]
=
P [x > δ(t)]

P [x ≤ δ(t)]
=

Lt

N → ∞
N − δ(t)

δ(t)
>> 1 (5.41)

Proof (Assumption of Symmetry of bigger class). The domain g < ǫ of the NC in the

PDF is infinitesimally small, lesser than the upper bound of error and consequently im-

measurable. The PDF of (NC) can be computed by applying the limits (g → 0+) to

(5.5).

Lim

(g → 0+)
fg(g) =

Lim

(g → 0+)

t

Ng
√

−t loge (2πtg2)
=

√
t

N

Lim

(g → 0+)

1/g
√

loge (2πtg
2)−1

(5.42)

Equation (5.42) is of the form (∞∞), therefore a simplification of (5.42) is possible

by the application of L’Hopital’s Rule, i.e. differentiating both the numerator and the

denominator w.r.t (g).

√
t

N

Lim

(g → 0+)

d
dg (

1
g
)

d
dg (

√

loge (2πtg
2)−1)

=

√
t

N

Lim

(g → 0+)

√

loge (2πtg
2)−1

g
= ∞ (5.43)

Since the PDF (fg(g)) has a value of infinity in an infinitesimal interval (g < ǫ),

therefore the PDF in the interval (g < ǫ) can be approximated by a Dirac Delta. The

Dirac Delta is the limiting case of the Symmetric Gaussian Function (with zero standard

deviation), therefore assumption of symmetry of the PDF of the NC is justified.

Corollary 2 implies that Theorem 7 is applicable for a Gaussian function where the IC

and NC are separated at a Gaussian value (G(x; t) = ǫ) or at equivalent space coordinate

(x = δ(t)).

Theorem 9. The OT, for the GMSS of a step function is given by:

k∗(t) =
1

N
Erf [δ(t)] where Erf [δ(t)] =

1√
π

∫ δ(t)

0
e−p2dp (5.44)

Proof. Replacing (µnc(t) = 0) from (5.39) in Theorem 7:

k∗(t) = mic(t)µic(t) (5.45)
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Substituting µic(t) and (mic(t)) from (5.39) and (G(x; t)) from (5.1) into (5.45) and solving:

k∗(t) =
δ(t)

Nδ(t)

∫ δ(t)

o

e−
x2

2t

√
2πt

dx =
1

N
Erf [δ(t)]

Plots of OT and δ(t) from Theorem 9 at various ratios of (ǫ/A) are shown in Figure 5.9.

Both the plots (k∗(t), δ(t)) contain a maximum, which can also be verified by differentiating

(5.44) and (5.36) w.r.t scale (t).

Figure 5.9: Graphs of OT [k ∗ (t)] and [δ(t)] against Scale at various ratios of ǫ/A.
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5.5 OT for continuous functions

Theorem 10. The OT for the GMSS of a continuous signal is monotonically decreasing

i.e.

k∗(t) > k∗(t+∆t) ∀ ∆t > 0 (5.46)

Proof. Due to the Central Limit Theorem, the PDF of the GMSS of a continuous function

can be approximated by a normal (and consequently symmetric) distribution. Therefore

from Corollary 1:

k∗(t) = µT (t) and k∗(t+∆t) = µT (t+∆t) (5.47)

For continuous functions, the Maximum Principle is valid (Gonzalez-Velasco; 1995; Widder;

1975; Lindeberg; 1994). Due to the Maximum principle the GMSS of the continuous func-

tion (and its mean) will be monotonically decreasing with increase of scale ((Babaud et al.;

1986; Lindeberg; 1994, 1998)), i.e. :

µT (t) > µT (t+∆t) ∀ ∆t > 0 (5.48)

Combining (5.47) and (5.48)

k∗(t) > k∗(t+∆t) ∀ ∆t > 0

Comparison of Theorem 9 with Theorem 10 reveals the contrasting patterns for OT

when traced against scale:

1. Transient Increase: When a discontinuity exists.

2. Monotone Decrease: When a function is continuous.

5.6 Conclusion

This chapter shows that the PDF of the derivative of a discontinuity is unbalanced and

bimodal in Scale-Space. By taking the derivative of functions, the discontinuities can

be formulated as outliers with higher average value and low probability. Since OT is a

statistical parameter sensitive to the outliers (smaller mode in bimodal distribution) in a
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given data set, therefore it can detect and locate discontinuities. It is likely that many

statistical parameters sensitive to outliers would exhibit similar response to discontinuities

in scale-space. The research reported in this thesis is considered adequate for the purpose

of current application. This chapter has been restricted to theory. The applications of

these theorems will be evolved in the next chapter. Heuristics and algorithm will be

presented to detect foreground in general and obstacle in water navigation in particular.



Chapter 6

Locating Objects in Water:

Application

In this chapter, the theoretical results from non-discrete and 1-Dimensional functions of

the previous chapter will be applied to the analysis of discrete 2-Dimensional images.

Specifically the interface between the entities will be detected. The ideology underpinning

this section is that the edges in images can be broadly classified as:

1. Boundary-Edges: These edges correspond to interface between two entities of a

3D physical world, when projected onto the 2D image surface as a consequence of

the process of image capture (e.g. an edge located at the interface of foreground-

background). Since Boundary-Edges exist at the interface of heterogeneous sur-

faces or/and processes, the discrete gradient (Sobel) of Boundary-Edges is computed

from dissimilar neighborhoods leading to a high intensity gradient and also spatial

Scarcity, rendering Boundary-Edges similar to IC of the 1D functions.

2. Non-Boundary-Edges: In contrast, the Non-Boundary-Edges owe their discrete gra-

dient computation to homogeneous neighborhood, resulting in low gradient and high

spatial probability which is similar to NC of the 1D functions.

This apparent similarity, has empirical support from contemporary literature (Rosin;

2001; Bhanu and Faugeras; 1982; Lin; 2003; Medina Carnicer and Madrid Cuevas; 2008)

wherein existence of unbalanced histograms for the derivative of images have been re-

ported. The similarity of the histograms and the associated statistics (probability and

mean) of IC and NC with Boundary-Edges and Non-Boundary edges respectively, allows

71
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for the development of a heuristic to extrapolate Theorem 9 and Theorem 10 for detection

of Boundary-Edges. The problem of Boundary-Edges identification can be subdivided

into:

1. Finding the optimum Scale

2. Finding the optimum Threshold at the Scale

3. Locating the interface, as the discontinuity travels in scale-space (Lindeberg; 1994).

To locate the Boundary-Edges, the following heuristic has been evolved which identifies

both the scale and threshold appropriate to the interface using OT.

6.1 Heuristic

In the presence of an inflection in the plot of OT (calculated for the GMSS of an image)

against incremental scale, it can be assumed that a discontinuity due to a foreground back

ground interface exists in the image. This discontinuity can be identified by thresholding

the GMSS of the image at the scale and OT corresponding to the upper point of inflection

in the trace of OT.

Justification: There are three aspects of the Heuristic i.e. presence of discontinuity,

appropriate scale and appropriate threshold, which need to be justified individually:

1. Presence of a discontinuity: The presence of an inflection only in the presence of

discontinuity has been shown via Theorem 9 and Theorem 10 for functions with and

without a discontinuity respectively.

2. Scale at upper point of inflection: There is no universally agreed definition of ap-

propriate scale; hence the justification of appropriate scale is qualitative rather than

mathematical. The upper point of inflection is the scale appropriate for the discon-

tinuity owing to following reasons:

(a) Lower point of inflection wrongly classifies the pixels as belonging to IC (Fig-

ure 6.1). Hence for all scales lower than the lower point of inflection, false

classification as IC is a strong possibility.

(b) Experimentally and theoretically (most of the graphs of Figure 5.9), it has been

observed that often from the lower to the upper point of inflection there is only
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small difference of scales. Hence attempting to locate the scale between the

upper and lower points of inflection is mostly futile.

(c) Scales greater than the scale at the upper point of inflection can give compa-

rable results for the discontinuity identification as the scale at upper point of

inflection, but at some scale greater than the upper point of inflection the IC

will cease to exist. In the absence of a priori information of this scale where IC

ceases to exist, using a scale greater than the one identified by the upper point

of inflection, runs the risk of attempting to locate IC at a scale at which the IC

does not exist. Therefore the upper point of inflection is the best scale for IC

detection.

3. OT at upper point of inflection as the threshold:

(a) OT at the upper point of inflection has been chosen as the threshold as it

corresponds to the scale appropriate to the discontinuity.

(b) Minimum False positives: The upper point of inflection represents the highest

threshold intensity (utilizing OT in Scale-Space). Since the average value of the

IC is greater than the rest of the image, therefore the highest threshold results

in lowest false classification of the pixels as IC.

The application of the heuristics is demonstrated in Figure 6.1, wherein the Boundary-

Edges have been located by thresholding at scale and OT corresponding to upper point

of inflection1. Figure 6.11d depicts a synthetic image comprising of background only. A

foreground is added to the texture of Figure 6.11d as shown in Figure 6.1c resulting in

Figure 6.1b. OT plotted against incremental scale for the GMSS of Figures 6.11d and

6.1b results in OT graphs shown in Figure 6.1d, wherein the plot corresponding to the

background only image has a monotonic decay in contrast to the image with a foreground

which shows an inflection. Thresholding the image with the foreground (Figure 6.1b)

at scale and OT corresponding to the upper point of inflection identifies the foreground-

background interface.

1 The detection of the appropriate scale is not for a general discontinuity but conditional to the presence
of a specific discontinuity. The discontinuity should be due to interface and therefore have an unbalanced
histogram similar to the PDF in(5.30). The scale cannot be identified using the method presented here
for discontinuities which are not due to interfaces.
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(a) Syn 1: Background Only (b) Syn 2: Foreground present (c) Close Up of Syn 2

(d) Plots of OT for (a) and (b) (e) Segmentation: Lower
point of inflection

(f) Segmentation: Upper
point of inflection

Figure 6.1: Illustration of Heuristic presented on Synthetic Images.

(d) OT plots indicate a monotonic decay and an inflection in the absence and
presence of a foreground (and consequent Boundary-Edge) respectively. (f)
Upper point of inflection detects Boundary-Edges.

6.2 Algorithm

Based on the Heuristic of the OT for discontinuity detection, a simple algorithm comprising

of following steps can locate Boundary-Edges in images (Walia and Jarvis; 2009):

Algorithm 3: Simultaneous detection of scale, discontinuity and threshold in images
Compute the Sobel derivative of the input image;

while Not end of Scale Range do

Convolve the Sobel derivative of the image, with a Gaussian Kernel of current

scale;

Compute histogram;

Compute and record OT at current scale;

if Increment of OT in plot against scale exists then

Identify the (scale, OT) pair at which the OT attains a maximum;

Convolve the Sobel derivative of the input image with the scale identified;

Threshold at the OT identified ;

else

Output: No Discontinuity;
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6.3 Algorithm Scope

In this section, the applicability of the algorithm will be demonstrated on a variety of

synthetic images generated to test the scope of the algorithm. Various parameters of the

background and foreground will be varied and OT calculated for the GMSS of the synthetic

images. The OT will then be plotted against scale to locate the inflection points. The

results indicate algorithm’s suitability for a wide range of image processing problems.

6.3.1 Background Intensity variation

(a) a to f: Syn1 to Syn6

(b) Threshold Graphs

Image Syn1 Syn2 Syn3 Syn4 Syn5 Syn6

Foreground Intensity 0 0 0 255 255 255

Background Intensity 85 170 255 170 85 0

Figure 6.2: Algorithm Scope : Background Intensity variation.

Tiles in Figure 6.2a are from images (Syn1 to Syn6) of dimensions 640X480 with

the intensities as listed in the table in Figure 6.2. The gradient magnitude between

foreground and background of three sets of complimentary images [(Syn1, Syn4);(Syn2,

Syn5);(Syn3, Syn6)] is identical although the gradient direction of FG and BG is reverse.

The plots of OT for the GMSS of the complimentary sets of synthetic images are shown in

Figure 6.2b. Each complimentary pair has identical graph of OT which leads to following

two deductions:
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1. OT decay is exponential and proportional to the magnitude of gradient.

2. Decay is independent of gradient direction.

6.3.2 Background Frequency variation

Tiles and TG from synthetic images Syn10, Syn11, and Syn12 are shown in Figure 6.3.

In each image pattern the intensity is same but the frequency of background is varied.

Threshold graphs show that the OT decays with minor variations in decay rate due to

background frequency.

(a) Left to Right: Tiles of Synthetic Images Syn10,
Syn11 and Syn12

(b) Threshold Graphs

Figure 6.3: Algorithm Scope: Background Frequency variation.

6.3.3 Foreground Frequency variation

In synthetic Images Syn13, Syn14, Syn15 the background pattern comprises of square

clusters of intensity 170 against a backdrop of intensity 85. The foreground comprises

of cluster of four squares of intensity 255 and a size of 4 pixels each. These foreground

clusters are separated by distance of 8, 16 and 24 for Syn13, Syn14 and Syn15 respectively

as illustrated by tiles in first column of 6.4a. The graphs of OT are shown in Figure 6.4b.

The results of thresholding the image with the Otsu’s threshold at the lower and upper

points of inflection are shown in second and third column of Figure 6.4. It is observed that

a scale appropriate to the discontinuity due to the interface of background-foreground in
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(a) Top, Middle and Bottom Row: Images Syn 13, Syn
14 and Syn 15. First, Second and Third Column: Tiles
of Synthetic Image, Thresholded Images at Lower In-
flection point and Upper Inflection point.

(b) Threshold Graphs

Figure 6.4: Algorithm Scope: Foreground Frequency variation.

an image is given by the upper point of inflection. Column 3 of Figure 6.4 shows that the

images thresholded at upper points of inflection, identify give the important structure in

the image with respect to the background. A slight shift in the local maxima is observed

with the decrease of the foreground frequency, which can be attributed to attrition in

the percentage of pixels due to the background-foreground interface. Nevertheless the

ability of the graphs of Otsu’s Threshold to adapt to the internal structure of the image

background is illustrated.

6.3.4 Foreground Intensity variation

Images Syn16, Syn17 and Syn18 shown in Figure 6.5 have the same pattern as the image

Syn13, however the foreground intensity is set to 255, 0 and 127 respectively. Since the

background intensity varies between 85 and 170, three scenarios are:
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1. Syn16: Foreground intensity > Background range.

2. Syn17: Foreground intensity < Background range.

3. Syn18: Foreground intensity is within the Background range.

(a) Left to Right: Tiles of Synthetic Images Syn16,
Syn17 and Syn18

(b) Threshold Graphs

Figure 6.5: Algorithm Scope: Foreground Intensity variation.

The Otsu’s Threshold Graphs are depicted in Figure 6.5b. Where the foreground

intensity is beyond the background intensity range, inflection exists in the graph. However

when the foreground intensity range is confined to the range exhibited by the background

(Syn18), the inflection does not occur; hence the foreground-background discontinuities

are not detected. Absence of inflection can be attributed to similar magnitude of the

interface derivatives as the non-interface derivatives. It is a unique case and does not occur

frequently, especially in natural textures e.g. detecting a grass hopper in grass. Natural

textures like pebbles, sand, water, hay, grass, vegetation, wood, and even man made

textures like rugs, carpets usually have background chromaticity which when projected

onto gray scale has a narrow range. Consequently the foreground object’s intensity exists

outside the background image intensity range.

6.3.5 Foreground Size variation

Three sets of synthetic images and the plots of OT are shown in Figure 6.6. Set 1 corre-

sponds to Figure 6.6a, (Syn19 to Syn27) and Figure 6.6d; Set 2 corresponds to Figure 6.6b

(Syn28 to Syn36) and Figure 6.6e; Set 3 corresponds to Figure 6.6c, (Syn37 to Syn45) and
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(a) Top:Syn19 to Syn27. Bottom: Results. Bottom Row 1st Column: Background Pattern for Top Row

(b) Top: Syn28 to Syn36. Bottom: Results. Bottom Row 1st Column: Background Pattern for Top Row

(c) Top: Syn37 to Syn45. Bottom: Results. Bottom Row 1st Column: Background Pattern for Top Row

(d) OT plots: Syn19 to Syn27 (e) OT plots: Syn28 to Syn36 (f) OT plots: Syn37 to Syn45

Figure 6.6: Algorithm Scope: Background Frequency and foreground size variation.

Figure 6.6f. Each set of Synthetic images contains a rectangular foreground of varying

sizes having area 0.01, 0.04, 0.09, 0.16, 0.25, 0.36, 0.49, 0.64 times that of the synthetic

image. Reduced images are shown to optimize space usage; however the background pat-

terns are shown in the first column of second rows in (Figures 6.6a, 6.6b, 6.6c) for sets 1,

2 and 3 respectively. The thresholded GMSS at the points of inflection of OT for all the

3 sets are shown in column 2 of (Figures 6.6a, 6.6b, 6.6c) respectively. An inspection of

the OT graphs for for the sets under consideration leads to the following observations:

1. In 3 cases of background only i.e. Syn19, Syn28 and Syn37 represented by black

lines in (Figures 6.6d,6.6e,6.6f) there is only decay of the OT without any inflection.

Remaining OT plots of synthetic images however undergo an inflection, even on

introduction of foreground of an area which is 1 percent of total image area.
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2. Intra set points of inflection for all 3 sets reveal a decreasing trend (dotted ellipses)

with increase of foreground area.

3. Inter set points of inflection exhibit an increasing range of inflection values with

respect to scale as shown by the dotted ellipses in (Figures 6.6d,6.6e,6.6f), high-

lighting increased sensitivity to the foreground object size. However the foreground

object’s size increment and intensity is identical across the three sets, hence the in-

crease range can be attributed to the decrease in density (frequency) of background

pattern.

6.3.6 Foreground against Background of water

(a) Row 1: Water1, Water2 and Water3. Row 2:
Thresholded Images (at upper point of inflection).

(b) Threshold Graphs

Figure 6.7: Algorithm Scope: Water Scene Analysis.

Water scenes comprise of a host of image signal distortion factors which have already

been discussed in previous chapters. In spite of inherent variability in water scenes, inflec-

tion of OT is fairly robust in detecting background-foreground interface. Figure 6.7 shows

the results of applying OT to scenes with a water background 2. Some noise persists in

thresholded images. Noise in results can be eliminated by one or combination of following:

2Figure 6.11 (Calm Conditions), figure 6.12 (Moderate Conditions) and figure 6.13 (Rough Conditions)
illustrate the scope of algorithm in different water conditions. Images have been obtained from various
sources (including shore) and replicate scenarios expected to be encountered by a water robot.
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1. Utilizing a scale higher than that of the inflection, as the important edges will per-

severe across scales.

2. Hystersis thresholding across scales.

3. Sequentially thresholding the interface edges identified by Otsu’s threshold.

6.4 Algorithm Performance

It is difficult to provide a comprehensive comparison between the Algorithm 3 and other

contemporary research because usage of statistics of Scale-Space representation of deriva-

tive of image/functions to identify discontinuity is a novel proposition. OT is a well known

method for segmenting images and therefore provides a good benchmark to compare the

performance of the algorithm presented here. A comparison of the segmentations based

on Algorithm 3 with OT is shown in Figure 6.10. Algorithm 3 had scale increments of 0.1,

and histograms comprised of 255 bins. Figure 6.10 shows images having well defined IC.

When OT is applied at zeroth scale, the probability mic(0) of IC is very small, therefore

the OT instead of segmenting IC from NC, segments the NC at approximately the mean

of NC (µnc(0)). In comparison tracing the OT in the GMSS of the images, results in

identifying both the scale and threshold appropriate for identifying IC.

The images set used in Figure 6.10 originate from eclectic sources, without a ground

truth so a simple measure was chosen to compare Algorithm 3 with Otsu’s Algorithm

(Otsu; 1979). The thresholded results of the two algorithms were stored as binary images

(Figure 6.8b and Figure 6.8c). The difference in the number of positives (Figure 6.8c)

between the Otsu’s algorithm and Algorithm 3 expressed as a percentage of the total pixels

in the image determined the improvement in the boundary classification. The average

improvement in classification was computed for the dataset of images shown in Figure 6.10.

Algorithm 3 had on an average 31.3% better classification of the foreground-background

boundary owing to a reduction in false positives as compared to Otsu’s Algorithm.

6.5 Scale Detection

Before discussing scale detection, it is important to highlight that scale detection is in-

cidental to the main research. Lindeberg (Lindeberg; 1994) describes the problem of
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(a) Input (b) Otsu’s Algorithm (c) Algorithm 1 (d) Eliminated False
positives

Figure 6.8: Illustration : Algorithm comparison.

Number of eliminated false positives (d=b-c) expressed as a percentage of the
total pixels provides the improvement in boundary/discontinuity detection.

establishing an appropriate scale in the absence of prior information as intractable. Al-

though models emulating mammalian vision take cognizance of the need to establish an

appropriate scale they do not exclusively address this need, but rather avoid the issue

by using large scales (Malik and Perorna; 1990) or contextual scales (Ren et al.; 2006).

Lindeberg (Lindeberg; 1994, 1998) addresses scale identification in two different ways:

1. A 4-Dimensional structure composed of a scale-space-blob is generated from images.

This structure is tracked over multi scales with the hypothesis that prominent struc-

tures persist across scales. Blobs are derived at different scales using monotonic

gradients from local extrema and are then analyzed for their effective scale range us-

ing blob-descriptors like volume, contrast and area, and blob-events like annihilation,

creation, merging and splitting.

2. The principle of non enhancement of extrema as applicable to Gaussian differential

operators is applied. A normalized (with scale and consequently scale invariant)

Gaussian derivative operator is applied to signals/images and then maximized over

scales. The scale corresponding to the maxima is heuristically hypothesized to coin-

cide with the characteristic length of corresponding structure in image data. For a

rigorous mathematical treatment, chapter 13 of (Lindeberg; 1994) refers.

These approaches proposed by Lindeberg have three drawbacks:

1. Usage of local properties in the initial identification of entity which, in the case of

blobs, is seeding originating from a blob event and, in the case of Gaussian deriva-

tive operator, is the edge maxima. Both these entities are dependent on local spatial

properties like the intensity and nearness to another entity which often give rise to
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spurious structures. In the case of the Gaussian derivative operator, all the edges (in-

cluding noise) are guaranteed a maximum (Lindeberg; 1994) over some scale; hence

the problem of appropriate scale identification still persists. To address this prob-

lem a ranking mechanism grades the entities based on the properties of entities like

contrast, life, spatial spread, volume etc across the scales. The ranking mechanism

is unreliable as the local properties like the geometry of entity will influence both

the Scale-Space evolution as well as the properties over scale. For example response

to a Gaussian derivative of a curved edge will vary from that of a straight edge and,

without apriori information on the kind of edge being detected, the response will be

unreliable and in fact can often lead to a choice of improper derivative function.

2. Restricted spatial scope of local extrema. Figure 6.9 Top shows a 1 dimensional signal

(termed original) comprising of local maxima in the vicinity of global minima of the

signal. The original signal is convolved with 3 Gaussian kernels as shown in Figure 6.9

Bottom. The standard deviations of the 3 kernels coincide with the spatial spread

of local extrema (Gauss 1), neighborhood of local extrema (Gauss 2) and the global

neighborhood of local extrema (Gauss 3). The results of convolving with Gauss 1,

Gauss 2 and Gauss 3 are also shown in Figure 6.9 Top by Result 1, Result 2 and

Result 3, respectively. The evolution of local maxima is shown inside the dotted

rectangle of Figure 6.9. This evolution is consistent with the proof of violation of

non-enhancement of extrema in the presence of a discontinuity (Gonzalez-Velasco;

1995) and shows that:

(a) Local extrema violates the principle of non-enhancement of extrema, as the

intensity of local extrema is first reduced and then increased with increasing

scale. This violation is not due to scale increment but due to consideration of

local extrema in isolation from global neighborhood.

(b) Evolution of local maxima can have valid but conflicting classification depend-

ing on the scale. E.g. based on Result 1 the local extrema can be hypothesized

as local maxima and based on Result 2 as global minima.

3. Minimal representation of image can lead to a plausibly flawed hypothesis. The

methods (Lindberg, 1994) to identify appropriate scale omit the evolution of non-

extrema neighborhood with scale. This neighborhood is quantitatively significant
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Figure 6.9: Experiment: Violation of maximum principle.

(Top) 1D signal and its Scale-Space representation at various scales. Signal has a
local maxima in the vicinity of global minima. (Bottom) Scale of Gaussian ker-
nels corresponds to spatial spreads of local extrema (orange), local neighborhood
(blue) and global neighborhood (green) respectively.

as locating even the first cut (zeroth scale) extrema involves discarding 8 neigh-

boring pixels. Increasing the scale also increases the discarded neighborhood, due

to non-enhancement property. Hence the important features are generated from a

hypothesis based on a minimal representation of the image.

The scale detection method proposed herein, disassociates itself from the above mentioned

drawbacks of Lindeberg’s techniques because of :

1. Global Statistics: Algorithm 3 utilizes image histogram, and is therefore immune to

problems arising out of local properties, minimal representation and limited spatial

scope.

2. Non-assumption of continuity: Algorithm 3, does not assume continuity of the un-

derlying function/image. On the contrary GMSS of a discontinuity is utilized as a

feature whose statistics determine the scale.

Owing to theoretical differences, the current and Lindeberg’s methods have contextual

applications and any one is not necessarily superior than the other.

6.6 Conclusion

In this chapter, theoretical framework of previous chapter has been adapted, to solve

following problems of image processing viz:
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1. Detecting the presence/absence of a discontinuity due to interface of foreground/background.

2. Identifying a scale and threshold appropriate to the discontinuity. The scale and

threshold relevant to the discontinuity are a function of both:

(a) The magnitude of the discontinuity.

(b) The upper bound of error.

The heuristic has been extensively tested on synthetic images to demonstrate the

broad range of foreground and background variations that can be accommodated by the

heuristic/algorithm. The application under consideration is that of obstacle/foreground

detection against a background of water, and is therefore adequately addressed by the

algorithm presented in the chapter.
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Figure 6.10: Segmentation comparison.

Column 1 and 4: Images with obvious boundaries.(some from Berkeley Dataset
(Martin et al.; 2001)). Column 2 and 5:Thresholded by OT. Column 3 and 6:
Thresholded at Scale and OT corresponding to inflection of OT.
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(a) Image (b) Sobel Edges (c) Otsu’s Method (d) Proposed Algorithm

Figure 6.11: Algorithm in calm water-conditions.
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(a) Image (b) Sobel Edges (c) Otsu’s Method (d) Proposed Algorithm

Figure 6.12: Algorithm in moderate water-conditions.
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(a) Image (b) Sobel Edges (c) Otsu’s Method (d) Proposed Algorithm

Figure 6.13: Algorithm in rough water-conditions.

Images sourced and used under permission from (www.inmagine.com; 2012)



Chapter 7

Conclusion and Future Research

7.1 Conclusion

This thesis has been written with a view to understand water scenes from the perspective

of water robotics. The differences in navigation (objectives and environment) of a water

robot as compared to land robot have been discussed (Chapter 1). These differences along

with the visual representation of water surface (Chapter 2) have lead to the identification of

major components in a water scene, which are necessary (either by presence or absence)

for water-robot navigation. The inadequacy or irrelevance of existing image processing

literature has been discussed (Chapter 3) to establish the need for current research. The

major components analyzed are sky (with clouds), horizon (Chapter 4) and obstacles

(Chapters 5 and 6) in water. The contribution of this thesis extends beyond the scope of

application for which it was conceived.

In pursuit of scene analysis, new theories as shown in abstract (Figure 1) with math-

ematical proofs and experimentation have been presented with regard to:

• Pseudo Spectra Images: Theory developed herein is rather unique because it:

– Reverses the photometric process. The process of photometric capture inte-

grates the visible spectrum, whereas PSIs differentiates an integrated RGB

triad into individual frequencies.

– Applies a new philosophy to aberration (clouds in this thesis) removal in images.

By identifying a frequency, for which the gray scale intensity response of the

90
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dominant feature (sky) is similar to that of aberration (clouds) in the feature,

a homogeneous gray scale image can be generated from color images.

• Horizon detection: Enclosed ellipses are presented as a more robust, faster and

simpler alternative to Hough Transforms.

• Discontinuity detection: Statistical properties of the Scale-Space representation of

the derivative of a discontinuity have been evolved and utilized for detection.

7.2 Future Research

The most obvious application of the research would be the integration of the three com-

ponents for deployment on a water robot. Some applications of water robot have already

been discussed in the First chapter. The analysis of three components of water scene, pro-

vides opportunities for, further research in both application as well as theory as discussed

below:

7.2.1 Discontinuity Detection

Discontinuity detection is the most promising candidate for extending research in both

theory and application, because discontinuity is studied and applied across disciplines as

discussed below:

Theory

• Scale-Space analysis of statistical parameters which:

– Are sensitive to outlier data.

– Can be expressed as a function of the first two moments of the PDF.

• 3-Dimensional analysis of the PDF (Theorem 2) in Scale-Space, especially with re-

gard to:

– Linear and non linear sampling of scales.

– Normalized (with respect to scale) representation of PDF (Theorem 2).

• Generalization of the Step-discontinuity, to any discontinuity using Fourier trans-

forms.
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• Imposition of the CDF (Theorem 2) on histograms of images with known unbalanced

histograms with a view to threshold images. The proposed process is expected to

reverse the well known image processing technique of histogram equalization.

Applications

The algorithm and the underlying theory of discontinuity detection would be under appre-

ciated without a reference to the following plausible applications in different disciplines:

1. Thermodynamics: Inverse problems of Heat Equation.

2. Chemistry: Inverse problems of Diffusion Equation.

3. Finance: Jump Events in markets.

4. Geology: Analyzing discontinuities in data.

5. Manufacturing: Locating thermal cracks.

6. Equipment maintenance: Tomography in aircrafts, ships, vehicles, pressure vessels,

railway tracks, power lines, locating welds etc

7. Signal processing: Smart Card readers, passive sensors, radio trans-receivers.

8. Computer Architecture : Bit recognition

9. Marine Surveillance: Cameras, SONARS, RADARS, echo sounders etc.

10. Medical Images

11. Optical instruments automation (self-focus): Camera, Microscope, Bionic eye and

Telescope

12. Pattern recognition.

13. Image Processing

(a) Pre and post processing.

(b) Detecting discontinuity in time (videos).

(c) Correlating dynamism of textures in space and time.
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(d) Parameter comparison. E.g. in image segmentation Hue, saturation and Value

can be utilized. Comparative utility can be evaluated by tracing OT in Scale-

Space for all three parameters.

7.2.2 Pseudo Spectra Images

The scope of Pseudo Spectra Images (PSI) is not as extensive as that of discontinuity

detection, because the theory developed is limited the by tri-stimulus response of three

cones of human eye to wavelengths in visible spectrum (Wyszecki and Stiles; 2000). Con-

sequently applications and theory will also be limited to wavelengths in the visible (to

human) spectrum. The research perspectives of PSIs originate from the novelty of the

theory and has potential in image processing as discussed below:

Theory

• Automating appropriate frequency determination. The automating process would

involve defining, testing and validating mathematical criteria for locating the appro-

priate frequency.

• Evolving multi frequency descriptors / patterns for application specific features. E.g.

Predominantly chromatic features like water, grass, gravel, vegetation, roads, skin,

fruits etc can be described by a set of say 8 frequencies generated from PSI. The

descriptors can be binary and similar to (Ojala et al.; 2002), but the binary pattern

would comprise of spectral frequencies instead of neighboring pixel intensities.

• Extrapolating intensity response beyond the frequency range of the visible spectrum,

by mathematical manipulation of intensities generated by PSIs within the visible

spectrum.

Applications

• PSI: Image pre-processing for eliminating chromatic aberrations in natural textures

like grass, water, skin, fruit/vegetable etc, with a strong predisposition to certain

colors.
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• Sky Detection: Horizon detection, video processing (Zafarifar and Peter; 2006), scene

labeling, image retrieval, land surveying, and robotics i.e. in autonomous water-

crafts/aircrafts (Cornall and Egan; 2004), (Chahl et al.; 2003) and (Thakoor et al.;

2002).

7.2.3 Horizon Detection

Horizon detection as presented in this dissertation, is a contextual application of an avail-

able mathematical technique (enclosed ellipses). Consequently further research options

are not as numerous as those of the previous two components of the scene. Limited future

research can be undertaken in :

• Replacing Hough transform with enclosed ellipses, where edges are expected to have

slight distortion.

• Extending the scope of enclosed ellipses to occluded horizons.

• Estimating the tilt/roll of ships/aircrafts from the angle of minor axis of the enclosed

ellipse of the horizon. This can potentially feed into a control system for stabilizing

the (air/water) craft.



Appendix A

Watercraft Design

This appendix has been included to record the change in the PhD topic and deliverables.

The research was initiated as a vision guided water robotics project, but had to be altered

to water scene analysis owing to following reasons (Figure A.1):

• Occupational Health and Safety considerations: Monash university does not have

a risk assessment strategy for experiments conducted on water. Consequently the

author was advised to find alternate methodology for completing the research.

• Lack of resources: Monash University was unable/unwilling to allocate adequate

equipment, manpower, time and finances required for the project.

As a consequence of the institutional inadequacies and prohibitions, experiments involv-

ing deployment of watercraft in water had to be abandoned. Regardless of outcome, a

substantial amount of time, effort and research was expended on the design and construc-

tion of watercraft with no academic publication. This appendix documents the research

and work involved in the watercraft construction. The watercraft design was subjected to

following factors:

1. Marine Environment: The components were either marine grade or protected against

marine environment by aluminum, plastic and rubber encasing.

2. Transport and Assembly: The watercraft had to be dismantled for transportation

which required design to allow for ease of assembly/disassembly. This lead to prob-

lems of alignment, interfaces (mechanical, electrical and electro-mechanical) and

power distribution, and the design had to be inherently flexible to enable on-site

assembly and alignment.
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Figure A.1: Remarks of the Head of Department

3. Launch and Retrieval: The launch and retrieval mechanisms had to be designed to

accommodate the heavy loads (of batteries and motors) concentrated in the aft sec-

tion of the watercraft. This required augmenting the (rubber) base of the watercraft

with a much harder and stiffer marine ply and usage of inverted skateboards for

bearing the loads and reducing the friction.

4. Remote and Autonomous Operations: The watercraft was designed for both au-

tonomous and remote operations. This was achieved by the use of an umbilical cord

comprising of

• Rope: To tether the watercraft.

• Power Cable: To remotely operate the emergency cut-off switch which con-

trolled the power to the propellers.

• LAN Cable: To connect the on-board laptop, with the remote laptop. The

remote control was achieved via Virtual Network Connection (VNC), running

on both the laptops which replicated the display and functions (of mouse and

keyboard) of on-board laptop on the remote laptop.

As a consequence of the constraints of the watercraft design factors, the following systems

were installed on-board with varying degrees of fabrication:
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1. Propulsion and Steering.

2. Controls.

3. Power distribution.

4. Vision Guidance: For Obstacle detection.

5. Navigation: Compass and Camera integration.

Of the above mentioned systems, vision guidance has already been discussed in various

chapters. A brief overview of propulsion, steering, controls and power distribution for

sensors would be provided in subsequent subsections.

A.1 Propulsion and Steering

Figure A.2: Steering Comparison (Left) Conventional. (Right) Differential.

The watercraft used was an inflatable boat about 2.5 meters in length with buoyancy

of 150 Kgs. It was propelled by two FWT30 (model No) Snake (Manufacturer) propellers

with a maximum thrust of approx 14 Kgs. Each propeller is powered by two 12V DC

motors. Each propeller is controlled by a rotary switch which can be engaged in 5 forward

and 2 astern speeds. Since a wide range of speeds was available it was decided to steer the

watercraft by differential thrust from the two propellers. The remainder of the appendix

covers design aspects of various systems of the watercraft.
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(a) Close up of propeller and its protective casing

(b) Propellers mounted on the transom.

Figure A.3: Propulsion and Steering Components

Conventionally, the propellers (Figure A.2) are designed to be used in isolation and

provide dual usages of propulsion and steerage. The propellers are designed to provide

steerage by their usage as manual tillers. The propeller is mounted in the center of the

transom of the boat and is free to rotate about their longitudinal axis (Propeller shaft

-Figure A.2). The operator can rotate the propeller to steer the boat in the requisite di-

rection. To generate a differential thrust on the watercraft, the two propellers were rigidly

mounted on the transom. Rigid mounting (against free to rotate) of the propellers enabled

generation of controlled differential thrust to steer the watercraft. A schematic illustration

of the conventional vs modified steerage mechanism is shown in Figure A.2. The speed of

both the propellers was individually controlled to enable a differential steering.
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The lake chosen for experiments was shallow, therefore to avoid damage to the pro-

pellers a protective casing was mounted around the propellers. The casing was made out

of two PVC pipes and mounted on the propeller motor. To avoid slipping or turning the

casing was securely bolted to the tiller and the motor portion of the propeller as shown in

Figure A.3a The control system to achieve individual control of propellers is discussed in

next section.

A.2 Controls

Figure A.4: Control System: Schematic illustration.

The watercraft needs to be controlled by computer to integrate results obtained from

the vision component of research. A schematic illustration of the control system is depicted

in Figures A.4 and A.5. To enable computer based controls two RS-232 controlled stepper

motors were used. These stepper motors were mechanically coupled to the rotary switch

(speed control) of the propellers. Photograph (A.6) illustrates the mechanical coupling.

The control motors are 4 coil stepper motors. The motors have the capability of

positioning the shaft with a precision ranging from 1/200 to 1/4000 of 3600 while drawing

current from 1 Ampere to 5.5 Amperes. To optimize the battery life and still retain
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(a) Photograph: Drivers. (b) Photograph: Controller.

Figure A.5: Control system : photographs

adequate turning torque a current of 2.2 Ampere was selected after experimenting with

the propeller coupled with the motors. It was also experimentally found that the precision

of 1/400 of 3600 of stepper motor was adequate for positioning the rotary switch of the

propellers to all the positions. By controlling the shaft rotation of the stepper motor, the

propellers could be engaged in any desired mode.

The control of rotary switch of the propeller by the stepper motor presented a problem.

The rotary switch has certain characteristics:

• Rotary switch is spring loaded.

• Engages in forward and astern modes only for certain angular range of the switch.

• This angular range is different for both the propellers.

• This angular range varies in clockwise and anticlockwise direction.

Variations exist in the angular range of rotary switch for which propeller engages.

These variations are due to manufacturing, assembly and mounting (on boat). The spring

loaded mechanism compensates for these variations, when operated manually, as the spring

brings the rotary switch to the point of engagement. The problem arises in using stepper

motor, as the holding torque of the motor is greater than the spring tension, which renders

the spring mechanism ineffective. The problem was solved by locating the midpoints of

spring engagement range for the rotary switches. There are angular locations between

two switch positions for which the switch is disengaged. The range of engagement of the

switch is not same for clockwise and anticlockwise movement of the switch. To compen-

sate for this mismatch, the port and starboard propellers were not used interchangeably
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(a)

(b)

Figure A.6: Coupling

to retain consistency between control-motor and propeller. In addition the overlap (be-

tween clockwise and anticlockwise) range of rotary switch’s engagement for each position

was established. A schematic diagram for one position of rotary switch is illustrated in

Figure A.7. The midpoint of this overlap range was calculated which provided the angular

location of rotary switch’s engagement in both the directions.

The angular positioning of the stepper motor shaft is controlled by SSM- which is a

driver manufactured by a local supplier M/S Ocean controls. The driver operates on a

20-50V DC supply and provides requisite electrical impulses for the shaft to turn to the

angular position required. The driver in turn is controlled by a controller which provides

actuation signals to the driver. The actuation signals between the controller and the driver

consists of 5V Step and Direction Signals. The Controller was controlled by a series of
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Figure A.7: Locating midpoint of overlap range of rotary switch positions.

predefined text commands which rotated the motor shaft to appropriate angular position

so as to engage the propeller speed switch in required speed and mode (astern/ahead).

The communication between the laptop and controller was achieved through serial com-

munication via USB port (Figure A.8 and A.9).

Figure A.8: Graphic User Interface (GUI) for the software to control the boat.

Figure A.8 also provides flavors of

1. Relative localization of the obstacle with respect to the camera by using 3 dimen-

sional projective trigonometry of image capture.

2. Current heading of the boat as acquired from the fluxgate compass.

A.3 Power Generation and distribution

Power generation was by means of 12 Volt car batteries, 4 on-board and 1 ashore. Pro-

peller, camera, compass required 12V, whereas the control motors, and their controllers

and drivers required a 24V power source. This was achieved by arranging 2 batteries in

series and another two in parallel (Figure A.10). Two circuits one of 12V and one of 24V
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Figure A.9: Screen Capture of code for serial communication with coontrol motors.

were thus formulated which supplied power to all the on-board equipment. Remote safety

cut off was achieved by positioning a 12V relay, in both the circuits, which was controlled

by a battery located on shore.

A.4 Conclusion

This appendix has briefly covered various design aspects and related issues involved in

construction of watercraft and subsequent amendments to the PhD goals. The text pre-

sented herein has an additional objective of documenting a methodology of designing a

remotely-controlled/autonomous watercraft from Commercial Off the shelf (COTS) equip-

ment.
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Figure A.10: Schematic Illustration: Power Distribution.
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Kyllönen, J. and Pietikäinen, M. (2000). Visual inspection of parquet slabs by combining

color and texture., Proc. IAPR Workshop on Machine Vision Applications (MVA’00),

November 28-30, Tokyo, Japan., pp. 187–192.

Lin, K. C. (2003). Fast image thresholding by finding the zero(s) of the first derivative of

between-class variance, Mach. Vision Appl. 13(5-6): 254–262.

Lindeberg, T. (1994). Scale Space Theory in Computer Vision., The Kluwer International

Series in Engineering and Computer Science., Kluwer Academic Publishers, Nether-

lands.

Lindeberg, T. (1998). Feature detection with automatic scale selection, International

Journal of Computer Vision 30: 79–116. 10.1023/A:1008045108935.

Malik, J. and Perorna, P. (1990). Preattentive texture discrimination with early vision

mechanisms., J. Opt Soc Am A. 7(5): 923–32.

Martin, D., Fowlkes, C., Tal, D. and Malik, J. (2001). A database of human segmented

natural images and its application to evaluating segmentation algorithms and measuring

ecological statistics, Proc. 8th Int’l Conf. Computer Vision, Vol. 2, pp. 416–423.

Mcgee, T. G., Sengupta, R. and Hedrick, K. (2005). Obstacle detection for small au-

tonomous aircraft using sky segmentation, Proceedings of the 2005 IEEE International

Conference on Robotics and Automation. ICRA 2005., pp. 4679–4684.

URL: http://ieeexplore.ieee.org/xpls/absall.jsp?arnumber = 1570842



REFERENCES 110

Medina Carnicer, R. and Madrid Cuevas, F. (2008). Unimodal thresholding for edge

detection, PR 41(7): 2337–2346.

Mobley, C. D. (1994). Light and water. Radiative transfer in natural waters., San Diego:

Academic Press.

Mohan, A. and Deb, K. (2002). Genetic-fuzzy approach in robot motion planning revisited:

Rigorous testing and towards an implementation, Proceedings of AFSS International

Conference on Fuzzy Systems, Vol. 4.

Mojsilovic, A., Mojsilovic, R., Kovacevic, J., Hu, J., Safranek, R. J., Member, S., Member,

S. and Ganapathy, S. K. (2000). Matching and retrieval based on the vocabulary and

grammar of color patterns, IEEE Trans. Image Processing 9: 38–54.

Ojala, T., Pietikinen, M. and Menp, T. (2002). Multiresolution gray-scale and rotation in-

variant texture classification with local binary patterns, IEEE Transactions On Pattern

Analysis and Machine Intelligence 24(7): 971–987.

Otsu, N. (1979). A threshold selection method from grey-level histograms, SMC 9(1): 62–

66.

Ren, X., Fowlkes, C. C. and Malik, J. (2006). Figure/ground assignment in natural images,

IN ECCV, Springer, pp. 614–627.

Robinson, I. S. and Mitchelson, E. G. (1983). Satellite observations of ocean colour [and

discussion], Philosophical Transactions of the Royal Society of London. Series A, Math-

ematical and Physical Sciences 309(1508): 415–432.

URL: http://rsta.royalsocietypublishing.org/content/309/1508/415.abstract

Rodriguez, R. (2006). A strategy for blood vessels segmentation based on the threshold

which combines statistical and scale space filter: Application to the study of angiogen-

esis, Computer Methods and Programs in Biomedicine 82(1): 1–9.

Romeny, B. M. H. (1994). Geometry-Driven Diffusion in Computer Vision., Kluwer Aca-

demic Publishers., Kluwer Academic Publishers, Netherlands.

Rosin, P. L. (2001). Unimodal thresholding, Pattern Recognition pp. 2083–2096.



REFERENCES 111

Sakai, T. and Imiya, A. (2009). Unsupervised cluster discovery using statistics in scale

space, Engineering Applications of Artificial Intelligence 22(1): 92 – 100.

Schilling, M. F., Watkins, A. E. and Watkins, W. (2002). Is human height bimodal?, The

American Statistician 56(3): 223–229.

Setalaphruk, V., Ueno, A., Kume, I., Kono, Y. and Kidode, M. (2003). Robot navigation

in corridor environments using a sketch floor map, Proceedings of the 2003 IEEE Sym-

posium on Computational Intelligence in Robotics and Automation, Vol. 2, pp. 552–557.

Spencer, L. and Shah, M. (2004). Water video analysis, ICIP, pp. 2705–2708.

Stramski, D., Boss, E., Bogucki, D. and Voss, K. J. (2004). The role of seawater con-

stituents in light backscattering in the ocean, Progress in Oceanography 61: 27–56.

Sznaier, M., Camps, O. and Mazzaro, C. (2004). Finite horizon model reduction of a

class of neutrally stable systems with applications to texture synthesis and recognition,

Proceedings of the 43rd IEEE Conference On Decision and Control., pp. 3068–3073.

Szummer, M. and Picard, R. W. (1996). Temporal texture modeling, IEEE International

Conference on Image Processing, pp. 823–826.

Takahashi, K., Kobayashi, Y., Fujii, M., Shimbo, N., Ueda, H. and Tsutsui, K. (2005).

Combined detection method in a sea surveillance system, IEICE - Trans. Inf. Syst.

E88-D(2): 230–238.

Thakoor, S., Chahl, J., Srinivasan, M. V., Young, L., Werblin, F., Hine, B. and Zornetzer,

S. (2002). Bioinspired engineering of exploration systems for nasa and dod, Artificial

Life 8(4): 357–369.

URL: http://www.mitpressjournals.org/doi/abs/10.1162/106454602321202426

Thrun, S., Fox, D. and Burgard, W. (1998). Probabilistic mapping of an environment

by a mobile robot, Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA).

Vasudevan, C. and Ganesan, K. (1994). Case-based path planning for autonomous under-

water vehicles, Proceedings of the 1994 IEEE International Symposium on Intelligent

Control, pp. 160–165.



REFERENCES 112

Vidal, R. and Ravichandran, A. (2005). Optical flow estimation and segmentation of

multiple moving dynamic textures, CVPR ’05: Proceedings of the 2005 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’05) - Volume

2, IEEE Computer Society, Washington, DC, USA, pp. 516–521.

Walia, R. and Jarvis, R. (2009). Structure, scale-space and decay of otsu’s threshold in

images for foreground/background discrimination, VISSAPP (2), pp. 120–128.

Walia, R. and Jarvis, R. (2010). Horizon detection from pseudo spectra images of water

scenes, Cybernetics and Intelligent Systems (CIS), 2010 IEEE Conference on, pp. 138

–144.

Walia, R., Suter, D. and Jarvis, R. (2012). Discontinuity detection from inflection of otsus

threshold in the derivative of scale-space, in F. Solari, M. Chessa and S. Sabatini (eds),

Machine Vision, INTECH, chapter 10, pp. 205 –226.

Wang, Y. and Zhu, S.-C. (2003). Modeling textured motion: Particle, wave and sketch,

ICCV ’03: Proceedings of the Ninth IEEE International Conference on Computer Vi-

sion, IEEE Computer Society, Washington, DC, USA, p. 213.

Warren, C. (1990). Multiple path coordination using artificial potential fields, Proc. of

IEEE Conf. on Robotics and Automation, pp. 500–505.

Wei, L.-Y. and Levoy, M. (2000). Fast texture synthesis using tree-structured vector

quantization, SIGGRAPH ’00: Proceedings of the 27th annual conference on Computer

graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New

York, NY, USA, pp. 479–488.

Widder, D. (1975). The Heat Equation., Academic Press inc.

Witkin, A. P. (1983). Scale-space filtering, IJCAI’83: Proceedings of the Eighth interna-

tional joint conference on Artificial intelligence, Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, pp. 1019–1022.

www.inmagine.com (2012). (last accessed May 31, 2012).

URL: http://www.inmagine.com

Wyszecki, G. and Stiles, W. S. (2000). Color Science: Concepts and Methods, Quan-

titative Data and Formulae (Wiley Series in Pure and Applied Optics), 2 edn,



REFERENCES 113

Wiley-Interscience.

URL: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-

20&path=ASIN/0471399183

Young, R. A. (1987). The gaussian derivative model for spatial vision: I. retinal mecha-

nisms., Spatial vision 2(4): 273–293.

Yuan, L. and yeung Shum, H. (2004). Synthesizing dynamic texture with closed-loop

linear dynamic system, In Proc. European Conference on Computer Vision, Springer,

pp. 603–616.

Zafarifar, B. and Peter, H. N. (2006). Adaptive modeling of sky for video processing and

coding applications, 27th Symposium on Information Theory in the Benelux, pp. 31–38.

Zafarifar, B., Weda, H. and de With, P. H. N. (2008). Horizon detection based on sky-color

and edge features, Vol. 6822, SPIE, p. 682220.

URL: http://link.aip.org/link/?PSI/6822/682220/1

Zagal, J. C., Bjrkman, E., Lindeberg, T. and Roland, P. E. (2000). Significance determi-

nation for the scale-space primal sketch by comparison of statistics of scale-space blob

volumes computed from pet signals vs. residual noise, NeuroImage 11(5, Supplement

1): S493.

Zhiye, K. L., Dongyue, L. and Chen., C. X. (2004). Improved artificial potential field for

unknown narrow environments, Proceedings of the 2004 IEEE International Conference

on Robotics and Biometrics).

Zhong, J. and Sclaroff, S. (2003). Segmenting foreground objects from a dynamic textured

background via a robust kalman filter, ICCV ’03: Proceedings of the Ninth IEEE Inter-

national Conference on Computer Vision, IEEE Computer Society, Washington, DC,

USA, p. 44.

Zhou, J. and Raju, G. (1993). Fuzzy rule-based approach for robot motion control in

the presence of obstacles, Proceedings of the 1993 IEEE International Conference on

Systems, Man and Cybernetics, Vol. 4, pp. 662–667.


	List of Figures
	Abstract
	Introduction
	Navigation comparison : Land versus Water Robots
	Environmental Modeling and Localization
	Path planning
	Motion control

	Vision comparison: Land versus Water Robots
	Applications

	Literature Review: Water Surface
	Photonics
	Water Color
	Hydrologic Optics
	Water Dynamics
	Inferences

	Literature Review: Image Processing
	Background Segmentation
	Temporal Segmentation
	Spatial Segmentation
	Conclusion

	Water-Based Navigation
	Impact of literature review on research pathway

	 Sky and water: Pseudo Spectra Images
	Background
	Generating Pseudo Spectra Images from RGB
	Definition and Derivation: PSI 
	Mapping (M) from RGB to XYZ
	Orthogonal Wavelength Basis
	Algorithm: Sampling Spectrum for Generating PSI
	Application of PSI: Sky Detection
	PSI: Characteristics and Discussion

	Horizon Detection by Fitting Ellipses
	Algorithm: Water Horizon from Derivative of PSI
	Conclusion

	Locating Objects in Water: Theory
	Introduction
	Statistical Distributions of a Gaussian Function
	PDF of a Gaussian Function
	Bimodality of the PDF of a Gaussian Function
	Unbalance in modes of the PDF of a Gaussian Function
	Scale Life of the GMSS of a Discontinuity
	Comments

	OT: Unbalanced Histograms
	OT for a Gaussian Function
	Definition and statistics: IC and NC
	Applicability of Theorem 7

	OT for continuous functions
	Conclusion

	Locating Objects in Water: Application
	Heuristic
	Algorithm
	Algorithm Scope 
	Background Intensity variation
	Background Frequency variation
	Foreground Frequency variation
	Foreground Intensity variation
	Foreground Size variation
	Foreground against Background of water

	Algorithm Performance
	Scale Detection
	Conclusion

	Conclusion and Future Research
	Conclusion
	Future Research
	Discontinuity Detection
	Pseudo Spectra Images
	Horizon Detection


	Appendix A Watercraft Design
	Propulsion and Steering
	Controls
	Power Generation and distribution
	Conclusion

	Vita



