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Abstract

This thesis presents a novel magnetic resonance imaging (MRI) technique for spinor
Bose-Einstein condensates (BEC) with the paramagnetic Faraday effect. This quantum-
photon interface couples the spin of the BEC to the polarisation of an off-resonant
laser, which in a magnetic field gradient allows a 1D density profile of the BEC to be
reconstructed.

As opposed to conventional imaging techniques that are destructive or diffraction lim-
ited, this technique is minimally destructive to the BEC and not diffraction limited.
Multishot in situ imaging of a single condensate is therefore possible, paving the way
for time-resolved studies and 2D/3D reconstructions.

A theoretical model for Faraday imaging is developed using the tensor polarisability
formalism for the atom-light interaction, and the signal-to-noise ratio is derived. Res-
olution limits induced by Stern-Gerlach separation are considered, encouraging rapid
measurements with strong magnetic field gradients.

Analysing the trapping potential reveals that the ‘magic-zero’ wavelength 790 nm pro-
duces no dipole force and enables a tightly focused probe laser to be used without
perturbing the trap. Polarisation-maintaining fibers were seen to impart large fluc-
tuations depending on the incident polarisation, which were minimised. The broad
diode laser emission background is seen to reduce the lifetime of the BEC, which was
corrected with an interference filter.

Short-time Fourier transforms are used to process the photodetected signal, show-
ing the evolution of the polarisation rotation frequency and amplitude. Frequency-
modulation is observed at the power line frequency, corresponding to magnetic field
fluctuations induced by nearby equipment. Birefringence of optical elements results in
elliptical polarisation of the probe and an effective magnetic field, which is cancelled
using a quarter-waveplate. The quadratic Zeeman effect causes rapid amplitude mod-
ulation, and is eliminated by applying a microwave dressing field.

Radiative spin echo is achieved in a magnetic field gradient, proving that dephasing
is coherent, and that multishot imaging possible. Magnetic resonance imaging (MRI)
is performed on a partially-evaporated atom cloud, distinguishing the thermal and
condensed fractions. A split dipole trap is used to create two spatially separated BECs,
which are individually resolved during MRI.

The resolution is only limited by the strength of the applied magnetic field gradient,
and is not subject to the diffraction limit. Custom coils will enable MRI of condensates
at the sub-micron scale.
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1
Introduction

In this chapter I introduce Bose-Einstein condensates (BECs) and their applications
in quantum simulation. I consider the problem of imaging features within the BEC,
the most interesting of which are smaller than the optical diffraction limit and require
destructive expansion to be resolved. I introduce the paramagnetic Faraday effect as a
probe for the BEC spin state, and propose an imaging technique that uses a magnetic
field gradient to obtain a profile of the BEC density. This magnetic resonance imaging
(MRI) technique is not subject to the diffraction limit, permitting in situ observation of
the BEC and the finest features within it as they evolve over time.

1.1: Cold atoms beyond the diffraction limit
Bose-Einstein condensates (BECs) are an exquisite tool for understanding fundamen-
tal physics. Formed when a cloud of bosonic atoms is cooled to a fraction of a degree
above absolute zero [1], they constitute the coldest matter in the known Universe [2].
Confined by a trapping potential, at these extremely low temperatures the wave-like
nature of the atoms dominates and they collapse into the quantum mechanical ground
state of the potential. The atoms then behave as if they were a single macroscopic
quantum object with an overall wavefunction that describes their collective behaviour,
and that object is called a ‘condensate’. This phenomenon was predicted by Einstein
in 1925 [3, 4], used to explain superfluidity in 4He by London in 1938 [5], and achieved
experimentally with alkali atoms in 1995 [6, 7].

The condensate brings the normally tiny, delicate world of quantum mechanics into
the regime where the wavefunction can be studied and manipulated directly. This
permits investigation of quantum phenomena such as vortices [8, 9, 10, 11], dark soli-
tons [12, 13, 14], bright solitons [15, 16], and control of the atom-atom interaction
through Feshbach resonances [17, 18, 19, 20].

These extremely cold and fragile condensates are only created under the most tightly
controlled experimental conditions [21]. This level of precise control and sensitivity
to the environment makes BECs perfectly suited to precision measurement through
interferometry [22], including inertial sensing [23], gravity gradiometry [24, 25, 26]
and magnetometry [27, 28].
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Having such precise control over the environment also allows the effective Hamilto-
nian of the system to be manipulated with lasers and microwaves to mimic other sys-
tems. This enables condensates to quantum-mechanically ‘simulate’ other systems [29]
by using lattices and synthetic potentials to shed light on their behaviour, such as in
the study of turbulence [30, 31, 32] and superconductivity [5, 33].

Initial experiments created condensates in a magnetic trap, which is only capable of
trapping weak-field-seeking spin states. This largely eliminates the spin degree of
freedom, and restricts the magnetic properties of the system. However, by transfer-
ring the BEC to an optical dipole trap during preparation, a spinor condensate is formed,
which permits confinement of any of the Zeeman substates [34]. These substates
then behave as multiple interacting condensates occupying the same volume of space,
which experience a spin-dependent contact interaction (collisions). This gives rise to
a wide range of rich dynamics [35, 36, 37], including the spontaneous formation of
spin domains [38], spin mixing [39], and induced ferromagnetic-to-antiferromagnetic
transitions using Feshbach resonances [40, 41].

Persistent features such as spin textures can be created, which are patterns in the local
spin orientation of the cloud [42, 43, 36]. Recently these spin textures have been anal-
ysed as magnetic quasiparticles (‘magnons’) [44, 28] opening up a new field of ultra-
cold ‘magnonics’. Development of a ‘spinful’ imaging technique capable of studying
such spin textures is one of the primary motivations for this project.

In the first instance we consider in situ imaging of small-scale structures in the density
profile. Such features are of interest in both scalar (single-component) and spinor
BECs, and minimally-destructive 3D imaging of their dynamics will be an extremely
valuable experimental technique in its own right. In the future applications of this
work, extensions to enable spin-sensitive imaging will be considered.

The mean-field interaction in a BEC causes density perturbations to be smoothed out
over a characteristic distance called the ‘healing length’ [45],

ξ =
1√

8πn0as
, (1.1)

where n0 is the peak condensate density and as the s-wave scattering length, which
for 87Rb is as = 5.39 nm [46]. For a typical density of n0 ∼ 1014 atoms/cm3, the BEC
healing length is ξ ∼ 270 nm.

Persistent features of interest such as vortices exist on this length scale, and observ-
ing them in situ requires an even finer imaging resolution. Typically BECs are imaged
using (near) resonant light, which for rubidium is λ = 780 nm, with an associated
Abbe diffraction limit [47] of1 λ/2 = 390 nm. Limited optical access around the vac-
uum chamber typically restricts the collection numerical aperture (NA), and further

1 Taking NA = 1 to give a conservative estimate on the smallest achievable resolution.
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increases the diffraction limit. In principle shorter wavelength light could be used
to image the BEC for an improved diffraction limit, but the quantum efficiency of
common photodetectors (such as silicon photodiodes) is typically reduced at short
wavelengths.

Direct in situ imaging of the features within a BEC is therefore a difficult prospect, as
any diffraction-based imaging technique will be incapable of resolving features at the
healing length scale. I will now summarise the existing imaging techniques and their
advantages and disadvantages in attempting to overcome this, before introducing an
imaging technique that is not diffraction-based and therefore not subject to the same
limits.

1.2: Time-of-flight imaging
The reigning technique for collecting information from BECs is an absorption-imaging
method called time-of-flight (TOF) imaging. In TOF imaging, the atom cloud is re-
leased from its trap and allowed to fall under gravity. Without the trapping potential
to confine the atoms, the repulsive mean-field interaction causes rapid free expansion,2

which becomes ballistic as the BEC grows and the density decreases [48, 49, 50]. After
a brief interval of expansion, the features within the cloud become large enough to
resolve using resonant light. The BEC is then exposed to a resonant laser beam, which
is absorbed by the atoms in accordance with the Beer-Lambert law.3 This absorption
leaves a shadow in the probe beam that is recorded on a camera, which can be used to
compute the optical depth of the BEC, and hence its column density.

The remarkable property of ballistic expansion is that it occurs coherently: the struc-
ture of the BEC is preserved. Features such as vortices which were present in the
BEC remain after expansion, but are also magnified. In particular, as the density de-
creases during expansion, the healing length increases, so features at this scale grow in
size [52, 53]. Once they grow beyond the diffraction limit, those features can be clearly
resolved by absorption imaging.

An absorption image is typically produced from a series of three exposures called the
‘flat’, ‘atoms’, and ‘dark’ frames (Figure 1.1). The flat-field frame is an image of the
probe beam without any atoms present, quantifying the intensity profile of the probe.
The atoms frame contains the shadow of the BEC produced by atoms scattering the
probe beam. The dark field is taken without any illumination, and is a measure of the
camera’s pedestal reading and dark noise level. The optical depth (OD) is then

OD = − log

(
Iatoms − Idark

Iflat − Idark

)
. (1.2)

2 An immediate consequence is that in an anisotropic trap the most tightly confined direction ex-
pands most rapidly.

3 Typically a correction factor is required to account for saturation of the atomic transition [51].
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Figure 1.1: Example of a background-subtracted absorption image. Most of the structure
in the absorption image (top) is common to the flat-field image (middle) and is removed
from the computed optical depth (bottom), leaving a well-defined image of the cloud’s
column density with some weak residual fringes.

The coherent probe beam often exhibits fringes from the vacuum system windows and
other optical components, which are susceptible to vibration. It is therefore desirable
to take the flat-field and atoms exposures as close together as possible. One technique
that accomplishes this is the ‘back-to-back’ procedure, whereby the atoms are held
in a dark state (which does not absorb the imaging light) for the flat-field exposure,
then are optically pumped into a state resonant with the imaging light, after which
the atoms frame is captured. Interline charge-coupled device (CCD) cameras using
an ‘overlapped’ readout mode can digitise the frame during the acquisition of the
subsequent exposure, allowing the time between frames to be tens of microseconds.
This limits the motion of the probe beam fringe pattern and improves the quality of
the background cancellation.

There are a number of other constraints and limitations on this imaging process. The
exposure must be brief to prevent blurring from photon recoil, falling under gravity,
and ongoing ballistic expansion. The probe beam must be weak to prevent saturation
of the resonant transition, which competes with the desire to have ‘full wells’ in the
flat-field image and achieve the highest dynamic range in the computed optical depth.
In the extreme case, a weak probe will produce only a few counts per pixel, resulting
in images dominated by dark counts and the readout noise of the camera. Resonant
absorption is therefore rarely used for quantitative measurement in situ as very high
ODs (>100) are routine.
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Furthermore, in order to observe the different spin states of a spinor BEC, it is neces-
sary to physically separate its spin components using Stern-Gerlach separation before
imaging it. This must be done quickly, because the local density changes when the
spin-states separate, which causes the spin-dependent interaction to change.

Clearly, this imaging method is destructive: the cloud is released from the trap, split
into spin components, ballistically expanded, and then imaged with resonant light
that scrambles its state and/or heats it above the critical temperature of condensa-
tion. Performing time-resolved studies typically requires the formation and subse-
quent imaging of many BECs, each with a different evolution time. However, this
requires reliable recreation of the initial state, which may not always be possible – par-
ticularly for turbulent or chaotic systems. Time-resolved studies therefore require the
collection of large amounts of data to gain statistical insight into the processes under
investigation.

1.3: Other common imaging methods
One solution to achieve minimally-destructive imaging is using phase contrast, which
probes the BEC in situ with an off-resonant laser beam. The BEC behaves like a weak
phase object, and instead of reducing the probe intensity through absorption, the con-
densate imparts a phase shift on the probe that is proportional to the column density.
Measuring the spatially varying phase shift of the probe then allows reconstruction of
the cloud profile.

There are a number of techniques to convert the phase shift into an intensity pat-
tern that can be recorded on a CCD camera.4 The earliest method applied to imaging
BECs in situ is ‘dark-ground’ imaging (also known as the ‘schlieren’ technique [55, 56]),
which collects the light diffracted by the BEC and then blocks the unscattered com-
ponent with an opaque mask in the Fourier plane of the imaging system. Only the
scattered light propagates through to the camera, producing an image of the cloud.

This technique has long been applied to obtain multiple sequential images of a single
BEC [57]. However, the image typically suffers from a low signal-to-noise ratio as the
low intensity of light reaching the camera means that the camera registers few counts
per pixel. The image is then dominated by dark noise, which is a problem common
to all ‘dark-field’ imaging techniques. Furthermore the mask that blocks transmission
of the undiffracted beam in the Fourier plane acts as a spatial filter on the image and
introduces distortions at low spatial frequencies. The mask should therefore be as
small as possible, although a lower limit is set by the waist size of the transmitted
beam at the position of the mask, which is increased by lensing induced by refraction
through the BEC.

4 See [54] for an in-depth comparison of techniques and associated signal-to-noise ratios.
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The resolution of the image is also inherently diffraction limited, although ‘super-
resolution’ images of vortex lattices have been obtained experimentally [58]. Despite
the fact that the vortex cores (400 nm diameter) were smaller than the diffraction limit,
distinct intensity minima were observed in the image at positions corresponding to
the vortex centres. This is only possible because the separation between vortices in
the lattice (∼ 9 µm) was much greater than the diffraction limit, and the measured
size of the vortex cores (2.4(5) µm) is six times greater than their predicted size.5 This
technique is effective for a regular structure such as a vortex lattice with well-spaced
vortices, but is not applicable to arbitrary structures (such as turbulent vortex tan-
gles [31]). The authors of Ref. [58] note that the low signal-to-noise ratio necessitated
small detunings (1–5 linewidths), which was highly destructive to the BEC and pre-
vented multiple images being acquired.

Improvements to the signal-to-noise ratio can be obtained by replacing the opaque
mask with a quarter-wave plate [59]. Other techniques such as spatial heterodyne [60],
holography [61] and Zernike phase-contrast [62] have also been applied to image cold
atom clouds. However, the BEC is optically thin to a far off-resonance probe, and
achieving a large numerical aperture at the large working distances necessitated by
the vacuum system is technically challenging.

A completely different approach is partial transfer absorption imaging (PTAI) [63, 64]
which can be used for magnetically trapped BECs, and has been applied to observe
the trajectory of a single vortex in a scalar BEC [63]. The technique works by trans-
ferring a fraction of the BEC population into an untrapped state [65, 66, 67], which
then undergoes time-of-flight expansion and is subsequently absorption imaged. This
retains the benefits of absorption imaging such as the high optical depth for improved
signal-to-noise ratios, as well as magnification as a result of ballistic expansion.

However, in applying this technique to multi-shot imaging, there is a limit to the repe-
tition rate, as the outcoupled cloud must have fallen clear of the BEC before the process
is repeated. It is also unclear how the technique can be applied to a spinor BEC, as in
an optical trap there is no untrapped state that can be transferred to. Potentially Ra-
man coupling to a high-momentum state (see e.g. [68]) could be used to transfer some
of the population into a state with enough momentum to escape the dipole trap, but
this has not yet been demonstrated.

It would be advantageous to have an imaging technique that is capable of minimally
destructive 3D reconstruction of a spinor BEC in situ, whose resolution is not limited
by diffraction. Such a measurement cannot be based on the existing techniques of
absorption or phase-contrast, so a different interaction will now be considered.

5 The measured size is limited by the point-spread function of the imaging system, which is at best
the diffraction limit (estimated to be 1.9 µm for Ref. [58]).

6



1.4: The Faraday effect as a probe

As first described by Faraday in 1845, light propagating through matter subject to
a magnetic field along the direction of propagation experiences polarisation rotation
(Figure 1.2), with the degree of rotation proportional to the magnetic field strength
[69, 70]. Physically, this phenomenon arises from the Zeeman splitting of the energy
levels inside the medium, causing the σ± polarisation components to experience dif-
ferent detunings, and hence different refractive indices – a process known as circular
birefringence. This results in a relative phase lag between the polarisation compo-
nents, which has the effect of rotating the linear polarisation vector [71]. Measuring
the degree of rotation then provides a means of determining properties of the mag-
netic field, the material, or both.

In a quantum mechanical description, the Faraday effect can be described as a direct
coupling of the atom spin in the magnetic material with the spin (polarisation) of
the light passing through [72]. This interaction has been studied in cold atoms for
some time [73] and is of the right form for quantum non-demolition measurement [74,
75, 76] as well as the creation of polarisation- [77] and spin-squeezed states [78, 79].
Notably, this concept has been extended to macroscopic entanglement of atoms in
physically separated vapour cells using the Faraday effect [80].

Applying an orthogonal magnetic field to a spin-polarised medium will cause the
spins to precess about the external magnetic field at the Larmor frequency [81]. When
Faraday probing a precessing spin, the probe beam then encounters a spin projection
along its propagation axis that varies sinusoidally in time, causing the induced Fara-
day rotation to also oscillate at the Larmor frequency [82]. Sometimes referred to as
‘Faraday spectroscopy’, this pushes the Faraday signal measurement frequency well
above baseband where the small induced polarisation rotation is difficult to measure,
allowing shot-noise limited measurements to be made.

Long used in warm atomic magnetometers, off-resonant Faraday spectroscopy was
first performed in a laser-cooled atomic gas by Isayama et al., published in 1999 [83].
Taking advantage of reduced decoherence effects in a cold atom cloud, precise mea-

Figure 1.2: A beam with initially vertical linear polarisation passes through a medium
subject to a magnetic field B as shown. As a result of the Faraday effect, the polarisation
state of the beam is rotated by an amount dθ ∝ |B| at the output.
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surements of the Larmor precession rate were used to determine the external magnetic
field strength to within 18 pT. This formed the basis of later cold atom magnetometry
experiments measuring Larmor precession of cold atoms in optical lattices [84] and
dark optical traps [85].

Developments in spin-squeezing have enabled magnetometry beyond the projection-
noise limit through Faraday measurement in cold rubidium [86], demonstrating the
potential for squeezed vapour magnetometers based on the Faraday effect. Similarly,
performing Faraday spectroscopy using polarisation squeezed light generated from
an optical-parametric oscillator increased the measurement sensitivity by 3.2 dB be-
yond the shot-noise limit [87]. As these two techniques are complementary, Faraday
spectroscopy is a promising contender for high-precision magnetometry [88].

1.5: Existing Faraday imaging techniques
The Faraday effect can be applied to the diffraction-contrast imaging techniques de-
scribed in §1.3 by using linearly polarised light and placing a linear polariser in the
imaging path. Adjusting the relative orientation θ of the polariser with respect to the
polarisation of the incident beam, the recorded intensity pattern [89] is

Is = I0

[
cos2 θ +

√
3

4
φ sin(2θ)− 3

16
φ2 cos(2θ)

]
, (1.3)

where I0 is the incident intensity and φ is the phase shift. Taking θ = 90◦ results
in dark-field Faraday imaging (DFFI) as only the polarisation-rotated component is
detected, and θ = 45◦ gives linear phase-contrast imaging (PCI). Other combinations
are possible, and θ = ±70◦ was found to maximise the signal-to-noise ratio in Ref. [89].

Multi-shot imaging with a high repetition rate has been successfully achieved with
both DFFI and PCI by using CCD cameras in ‘kinetics’ mode, which does not require
complete readout between exposures. PCI was successfully applied to record 40 se-
quential images of a single BEC at a rate of 20 kHz [44], enabling direct observation of
Larmor precession of the spin.6

In particular, coherent winding of the transverse magnetisation across the cloud was
observed over long timescales (∼ 2 ms) in a magnetic field gradient. The spins behave
as if they were ‘frozen in place’ and precessing at the value of the local magnetic field.
This is significant as the cloud exhibits motional dynamics on this timescale, sampling
different magnetic field strengths – yet the magnetisation demonstrates no ‘memory’
of this. Instead, a coherent ‘corkscrew’ winding of the magnetisation is observed over
the duration of the experiment7 (12 complete phase windings).

6 The Larmor frequency in Ref. [44] was 38 kHz, which combined with the 20 kHz acquisition rate
results in an aliased Larmor frequency of 2 kHz.

7 This observation is crucial to developing magnetic resonance imaging in spinor BEC, which relies
on imprinting phase windings that persist over long timescales.
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This technique has also been applied to magnetometry [28], and enabled the obser-
vation of spin textures [43]. The minimally-destructive nature of Faraday measure-
ment has been demonstrated with DFFI, which was used to record 2000 sequential
images of a single spinor BEC with an electron-multiplying CCD [90]. Using a beam-
splitter instead of a polariser enables both polarisation components to be simultane-
ously recorded. This ‘dual-port’ Faraday imaging (DPFI) [91], this allows common-
mode subtraction and correction for distortions such as refraction by the BEC.

While these imaging techniques have been demonstrated to be minimally-destructive
and enable spatially-resolved imaging of the spin distribution, they are inherently
two-dimensional images with diffraction-limited resolution. Imaging of features be-
yond the diffraction limit, or reconstruction of the full three-dimensional profile of the
BEC therefore requires a different technique – one not limited by diffraction.

Magnetic resonance imaging (MRI) is a promising candidate: it is a completely differ-
ent approach to image formation that circumvents the diffraction limit, but has not yet
been applied to imaging BECs.

1.6: NMR and MRI
Medical MRI revolutionised diagnostic imaging by providing a new non-invasive
modality for seeing inside the human body. The operational principle uses nuclear
magnetic resonance (NMR) to probe the chemical composition and local environ-
ment of nuclear spins within the body. Applying a sequence of magnetic field gra-
dients in different directions enables spatial structure to be extracted, and a full three-
dimensional profile of the patient to be reconstructed.

The simplest version of NMR is ‘continuous wave’ (CW) NMR, which places a sam-
ple in a strong bias magnetic field and exposes it to CW rf radiation. If the applied
frequency matches the Zeeman splitting of the nucleons, they can absorb an rf photon
and undergo a spin flip. This removes energy from the rf field and enables resonance
to be observed by sweeping the frequency of the rf or the magnetic field strength.

The resonant frequency is proportional to the product of the gyromagnetic ratio of the
nucleus and the local magnetic field strength. It is therefore sensitive to the compo-
sition of the nucleus,8 as well as the environment of the atom.9 NMR is therefore a
powerful technique to determine not just the elemental composition of a sample but
its chemical structure as well: a discovery for which the 1952 Nobel prize in Physics
was awarded [92].

8 Both the gyromagnetic ratio and nuclear isospin vary between different elements and isotopes,
changing the resonance condition.

9 For example, nuclear shielding by electrons, molecular bonds, and electronegativity all cause per-
turbations to the local magnetic field that result in a measurable change in the resonant frequency known
as the ‘chemical shift’.
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More accurately, the applied rf field drives Rabi flopping of the nucleons between the
aligned and anti-aligned spin states. It is therefore possible to prepare a superposition
of spin-up and spin-down states using an rf π

2 -pulse, resulting in a spin vector that
points perpendicular to the bias field. The spin therefore undergoes Larmor preces-
sion, resulting in weak rf emission at the local Larmor frequency which can be detected
with an induction pick-up coil. This enables NMR to be performed rapidly using
a short, broad-band pulse to tip all the spins in the sample, and taking the Fourier
transform of the measured signal to determine the sample composition.

This technique, called NMR spectroscopy (or FT-NMR), has massively improved sen-
sitivity compared to CW-NMR, revolutionising chemical analysis and earning the 1991
Nobel prize in Chemistry [93, 94]. For example, NMR can discern the difference be-
tween cancerous cells and healthy cells [95, 96]. However, despite providing detailed
information about an entire sample, this kind of NMR analysis contains no spatial
information and cannot be directly used to form an image.

To use NMR for imaging, the necessary spatial information can be introduced by plac-
ing the sample in a linear magnetic field gradient. This alters the resonance condition
at different locations in the sample. In CW-NMR, the frequency of the rf radiation
can be swept, causing resonance at different locations in the sample and enabling a
1D profile to be built up. Tomographic reconstruction techniques can then be used to
build up a two-dimensional image of the object from multiple one-dimensional slices
through the sample. This was first achieved by Lauterbur, who reconstructed a pair of
water-filled capillaries surrounded by heavy water [97] from a series of 1D projections
in a gradient, in a technique he called ‘zeugmatography’.

The critical step that made MRI practical was the development of a rapid imaging
technique by Mansfield [98]. He applied the magnetic field gradient idea to FT-NMR,
where the spread of Larmor frequencies results in gradient-induced dephasing (dis-
cussed in §3.5) that can be reversed with spin echo [99, 100]. By changing the strength
of the gradient between echoes, extra spatial information can be coupled into the sig-
nal that can be reconstructed into a 2D image. This technique, called ‘echo-planar
imaging’, revolutionised MRI not just for its rapid acquisition time (reducing a typical
acquisition from 10–20 min to 20–50 ms [101]), but because it provided a platform for
developing new ‘spin sequences’ with gradients and rf pulses for improved contrast in
different applications. This work led directly to the medical MRI in use today, and the
2003 Nobel prize in Medicine was jointly awarded for these two contributions [102].

The incredible success of MRI in the ‘living state’ begs the question as to whether
the techniques can be adapted to ultracold atoms for rapid, minimally-destructive
acquisition of three-dimensional profiles.

10



1.7: MRI in atomic vapours
In nuclear MRI, the constituent spins of the sample are coherently manipulated with
rf radiation to extract information about its composition and density. The CW-NMR
technique uses the weak absorption of the rf to detect resonance, whereas in FT-NMR
the weak re-emission of radiation following the π

2 -pulse is captured by an rf antenna.
Both of these methods exploit the fact that the ‘living-state’ sample has a large number
of precessing spins (typically 1016–1020 per volume element) contributing to the signal.
Spinor BECs have at most ∼ 106 atoms, making direct detection of rf impossible via
electromagnetic induction of a pick-up coil.

However, the purpose of measuring the re-emitted rf was simply to record the state
of the spins in the system, and this interface is perfectly provided by the Faraday
measurement. Faraday spectroscopy therefore takes the place of FT-NMR in any MRI
sequence, allowing the coherent spin control techniques to be directly adapted. In
the same way as FT-NMR, spatial information can be encoded into a Faraday mea-
surement by placing the BEC in a magnetic field gradient and recording different
Larmor precession at different rates in different locations,10 enabling magnetic res-
onance imaging to be performed.

The first application of MRI to a warm alkali vapour was by Skalla et al. [103], who
obtained a two-dimensional image of the spin distribution. This was used to ob-
serve atomic diffusion by optically pumping the vapour with a spatially varying in-
tensity profile and tracking the resulting spin dynamics with pulsed gradients [104],
and extended to three dimensions by Young et al. [105]. However, the dominance of
diffusion-induced decoherence and lack of persistent spatial features in thermal sys-
tems makes other applications limited.

A proposal to use MRI to determine the internal spin state of a BEC was first published
by Toyoda et al. in 2002 [106]. It was demonstrated theoretically that the diffraction
limit could be overcome by Faraday measurement with realistic experimental param-
eters, implying that sub-wavelength features such as dark solitons could be directly
imaged. In 2008, Liu et al. [107] published Faraday rotation by a BEC in a uniform
magnetic field, demonstrating minimally-destructive measurement of the relative spin
populations and phase in the single-mode approximation.

These results, combined with the coherent spin winding of a spinor BEC in a magnetic
field gradient observed by Higbie et al. [44], demonstrate the versatility of applying
spin-manipulation techniques from nuclear MRI to minimally destructive imaging of
cold quantum gases. In particular, the long coherence times of a BEC will also enable
spin-echo techniques to be repeatedly applied to perform time-reversal of the BEC
spin dynamics [108, 109] and periodically re-phase the spins for an MRI measurement.

10 In MRI nomenclature this is called ‘frequency encoding’.
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This overcomes coherent dephasing of the different Larmor frequencies present in
the MRI signal, and will potentially allow observation of the evolution of internal
condensate dynamics over prolonged time-scales.

1.8: What’s new in this work
This thesis is motivated by the following research question: can magnetic resonance
imaging with the Faraday effect resolve the structure of a spinor condensate in situ?

I answer this question by constructing a Faraday spectrometer at the ‘magic-zero’
wavelength to probe a 87Rb BEC with the Faraday effect for long interrogation times.
I show that the measurement is highly sensitive to the local magnetic field, and cancel
modulation from mains-power noise and the vector light-shift induced by the probe
beam. I apply magnetic field gradients to induce coherent dephasing, which I rephase
with spin echo. I then present one-dimensional magnetic resonance images of a par-
tially evaporated BEC, and of twin BECs in a split optical dipole trap. I show that their
overall spatial structure can be resolved, and discuss potential extensions to achieve
resolution at the healing-length scale.

1.9: Outline of this thesis
In Chapter 2, I introduce the off-resonant dipole interaction, derive the Faraday effect,
and discuss its use as a probe for the BEC. I quantify undesirable effects induced by
the probe beam, such as perturbations to the trapping potential, vector and tensor
light-shifts, and derive conditions under which they vanish.

In Chapter 3, I show how a magnetic field gradient can be used to extract the spatial
profile of a spinor BEC using the Faraday effect, and derive a signal-to-noise ratio for
the reconstruction. I show how techniques from MRI may be adapted to construct 2D
and 3D profiles of the BEC, and discuss limits on the prospective resolution.

In Chapter 4, I discuss our group’s spinor BEC apparatus, which was designed and
constructed over the course of this project. I describe in detail the specific parts of the
system that I developed for reliable and independent operation of the apparatus.

In Chapter 5, I outline practical considerations regarding the Faraday probe beam and
discuss solutions to technical issues such as stability, alignment and imaging. I show
that the diode laser’s amplified spontaneous emission background causes resonant
scattering in the BEC, which is prevented using an interference filter.

In Chapter 6, I describe the differential photodetector built for high precision po-
larimetry of the Faraday rotation and show that it is shot-noise limited. I use Fourier
filtering to process the Faraday signal to eliminate out-of-band noise, and construct
a spectrogram to illustrate the amplitude and frequency modulation present in the
signal.
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In Chapter 7, I characterise the Faraday signal and show that the long interrogation
time permits precise measurement of the Larmor frequency for magnetometry. I mea-
sure magnetic field fluctuations caused by power supplies near the apparatus, which
result in frequency-modulation. I observe how the signal is affected by the vector
light-shifts and the quadratic Zeeman effect, and demonstrate how each can be elimi-
nated.

In Chapter 8, I explain how magnetic field gradients can be produced without spe-
cialised gradient coils, and demonstrate radiative spin echo to reverse coherent de-
phasing of the Faraday signal. I perform the first magnetic resonance imaging of BEC
by reconstructing the 1D profiles of a bimodal partially evaporated BEC and twin
BECs in a split trap.

In Chapter 9, I summarise the work presented, describe the advantages and limitations
of the technique, discuss how the limitations could be improved upon, and speculate
on potential future applications.
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2
The off-resonant dipole interaction

In this chapter I analyse the effective Hamiltonian for the dipole interaction between a
multi-level atom and an off-resonant laser beam using an irreducible spherical decom-
position of the polarisability tensor. Multiple fine-structure transitions are explicitly
considered and the ‘magic-zero’ wavelengths at which the beam produces no trap-
ping force are derived. Terms relevant for the Faraday effect are obtained and used
to quantify the induced polarisation rotation. The vector and tensor light-shifts are
considered, and conditions are found for which they vanish.

2.1: Review of the atomic polarisability expansion
An atom in a laser beam can be modelled as interacting with the electric field using
the dipole potential [110, 111],

Ĥ = −d̂ · Ê, (2.1)

where Ê is the electric field operator and d̂ = −er̂ is the electric dipole moment op-
erator of the atom, which for an alkali atom arises from the position operator r̂ of
the valence electron. For monochromatic light with wavelength λ, angular frequency
ω̄ = 2πc/λ, and polarisation unit vector ε, the time-dependence of the electric field
operator can be separated out, resulting in

Ê = Ê(+)e−iω̄t + Ê(−)e+iω̄t,

with Ê(+) = 1
2εÊ0 and Ê(−) ≡ (Ê(+))† = 1

2ε
∗Ê0,

(2.2)

where Ê0 is the electric field amplitude operator of the specific EM-field mode1 with
polarisation ε.

In a frame co-rotating with the electric field, the dipole operator can be written as
d̂ = d̂(+)e−iω̄t + d̂(−)eiω̄t, so the dipole interaction Hamiltonian becomes

Ĥ = −e−2iω̄td̂(+) · Ê(+) − d̂(−) · Ê(+) − d̂(+) · Ê(−) − e2iω̄td̂(−) · Ê(−).

Assuming that in the Heisenberg picture the dipole operator evolves slowly in this co-
rotating frame, the terms oscillating at 2ω̄ are too rapid to contribute to dynamics. The

1 The generalisation to polychromatic light and multiple polarisation modes is immediate and treated
in standard texts.
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rotating wave approximation can then be made and these terms can be time-averaged to
zero.2 The simplified Hamiltonian is then

Ĥ ≈ −d̂(−) · Ê(+) + h.c. (2.3)

In the case of far-detuned laser light, a negligible fraction of atoms undergo direct
transitions to an excited state. However, Raman transitions between ground states
are still possible via an excited state. The quantum master equation for this system
predicts these off-resonant transitions, and by adiabatically eliminating the excited
state [113] an effective Hamiltonian can be obtained in the off-resonant limit:

Ĥ = Ê(−) ·

∑
|i〉

←→α
~∆i

 · Ê(+), (2.4)

where ←→α ≡ d̂d̂† is termed the polarisability tensor. The sum is over all excited states
|i〉 = |J ′, F ′,m′〉, with each term weighted by the detuning ∆i ≡ ω̄ − ωi of the light
field above the energy of the transition |J, F,m〉 → |J ′, F ′,m′〉. The approximation is
only valid when ∆i � Γi, where Γi is the natural linewidth of the transition.

Since the polarisability tensor←→α is the product of two vectors (a ‘dyadic’ tensor), it can
be decomposed into a sum of irreducible spherical tensor components [114, 115, 116],

←→α = α(0) +α(1) +←→α (2), (2.5)

where α(0) is a scalar, α(1) a vector and←→α (2) a traceless symmetric tensor.

Through the Wigner-Eckart theorem [117, 118] and properties of the Clebsch-Gordan
coefficients, each of the differently ranked irreducible spherical contributions α(i) to
the dyadic tensor←→α can be expressed in terms of the Pauli spin operators F̂x, F̂y, F̂z .
The derivation is a standard but algebraically involved affair [119, 120], therefore only
the primary results will be summarised here.

Each of the contributions α(i) to the irreducible spherical tensor decomposition has a
corresponding Hamiltonian,

Ĥ (i) = Ê(−) ·

(∑
i

α(i)

~∆i

)
· Ê(+), (2.6)

such that Ĥ = Ĥ (0) + Ĥ (1) + Ĥ (2). (2.7)

The dot products in each component Hamiltonian can be evaluated by expressing the
electric field vector in a compatible representation. The relevant quantised form of the
electric field (2.2) is

Ê(+) =
√
~g
(
â−ε− + â+ε+

)
, Ê(−) =

√
~g
(
â†−ε

∗
− + â†+ε

∗
+

)
,

2 Discarding these terms causes a small perturbation known as the Bloch-Siegert shift [112].
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where â± are the annihilation operators for photons with σ±-polarisation, ε± are the
corresponding spherical basis vectors and g = ω̄/2ε0V with V being the quantisation
volume of the mode.

The associated Stokes operators describing the polarisation state are

Ŝ0 = 1
2(â†+â+ + â†−â−), Ŝx = 1

2(â†+â− + â†−â+),

Ŝy = 1
2(â†−â+ − â†+â−), and Ŝz = 1

2(â†+â+ − â†−â−).
(2.8)

They represent the total intensity of the beam (Ŝ0) and the polarisation projections in
the linear x–y basis (Ŝx), in a basis at 45◦ to that (Ŝy), and in the circular σ± basis (Ŝz).

It can be shown [119] that the terms of the effective Hamiltonian couple the Stokes
parameters of the light field to the Pauli spin operators as

Ĥ (0) = g
∑
J ′F ′

α
(0)
J ′F ′

∆J ′F ′

2

3
Ŝ01̂F , (2.9)

Ĥ (1) = g
∑
J ′F ′

α
(1)
J ′F ′

∆J ′F ′
ŜzF̂z, (2.10)

Ĥ (2) = g
∑
J ′F ′

α
(2)
J ′F ′

∆J ′F ′

(
Ŝx(F̂ 2

x − F̂ 2
y ) + Ŝy(F̂xF̂y + F̂yF̂x)

+ Ŝ0[3F̂ 2
z − F (F + 1)1̂F ]/3

)
, (2.11)

where the ∆J ′F ′ is the frequency detuning of the laser from the hyperfine transition
|J, F 〉 → |J ′, F ′〉, and the sums are over all possible excited states |J ′, F ′〉. Note that
the Zeeman splitting of the hyperfine states is taken as negligible compared to the
detunings involved.

The associated coupling strengths are3

α
(0)
J ′F ′ = αJ

′F ′
JF

(
(2F − 1)δF

′
F−1 + (2F + 1)δF

′
F + (2F + 3)δF

′
F+1

)
, (2.12)

α
(1)
J ′F ′ = αJ

′F ′
JF

(
−2F − 1

F
δF
′

F−1 −
2F + 1

F (F + 1)
δF
′

F +
2F + 3

F + 1
δF
′

F+1

)
, (2.13)

α
(2)
J ′F ′ = αJ

′F ′
JF

(
1

F
δF
′

F−1 −
2F + 1

F (F + 1)
δF
′

F +
1

F + 1
δF
′

F+1

)
, (2.14)

αJ
′F ′
JF = α0(2J ′ + 1)

∣∣∣∣∣
{

1 J J ′

Is F ′ F

}∣∣∣∣∣
2

, (2.15)

α0 =
∣∣〈J ||d̂||J ′〉∣∣2 2J + 1

2J ′ + 1
=

3ε0~λ3
J ′ΓJ ′

8π2
(2.16)

3 The convention for the magnitude of the reduced dipole matrix element 〈J ||d̂||J ′〉 in (2.16) follows
Refs. [119] and [121], although alternative conventions exist in the literature. The normalisation conven-
tion can be identified by the relationship between the reduced matrix element and ΓJ′ , and notational
differences should not be relied upon.
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where δF
′

F is the Kronecker delta, Is is the nuclear isospin, λJ ′ is the wavelength of
the fine structure transition |J〉 → |J ′〉, ΓJ ′ is the associated natural linewidth of the
transition. Note that although the definition of α0 appears to depend on J ′, it does not
as λ3

D1ΓD1 = λ3
D2ΓD2 (see §B.2).4

Each of the component Hamiltonians Ĥ (i) involve a different coupling between the
atomic spin state F̂ and the light field Ŝ, and each result in different dynamics. The
dynamics corresponding to each of these contributions are discussed below.

2.2: The far-detuned limit
The Hamiltonians (2.9)–(2.11) contain summations over all possible hyperfine transi-
tions. In the large detuning limit, these expressions can be simplified as the excited
state hyperfine splitting becomes negligible compared to the detuning.

Introducing the detuning from the fine structure line centre ∆J ′ , the summations are

∆J ′F ′ ≈ ∆J ′ ⇒
∑
J ′F ′

α
(i)
J ′F ′

~∆J ′F ′
≈
∑
J ′

1

~∆J ′

∑
F ′

α
(i)
J ′F ′ . (2.17)

These sums over F ′ contain no information about the light field, and can be evaluated
for a given J ′ using the Kronecker deltas in (2.12)–(2.14). The result is a linear combi-
nation of Wigner 6-j symbols depending on the initial ground state through J and F ,
and the excited state through J ′,

∑
F ′

α
(0)
J ′F ′

α0
= (2J ′ + 1)

(
(2F − 1)|WF−1|2 + (2F + 1)|WF |2 + (2F + 3)|WF+1|2

)
,

(2.18)∑
F ′

α
(1)
J ′F ′

α0
= (2J ′ + 1)

(
−2F − 1

F
|WF−1|2 −

2F + 1

F (F + 1)
|WF |2 +

2F + 3

F + 1
|WF+1|2

)
,

(2.19)∑
F ′

α
(2)
J ′F ′

α0
= (2J ′ + 1)

(
1

F
|WF−1|2 −

2F + 1

F (F + 1)
|WF |2 +

1

F + 1
|WF+1|2

)
, (2.20)

where WF ′ =

{
1 J J ′

Is F ′ F

}
. (2.21)

Considering 87Rb in the F = 1 ground state, we have J = 1/2 and I = 3/2. There
are two electric dipole transitions of interest, called the D1 and D2 lines (Table 2.1), for
which the interaction constants can be evaluated (Table 2.2).

4 If transitions other than the D1 and D2 line were being considered, (2.15) could be generalised to
include a Wigner-6j to also factor out L′ dependence in (B.22).
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Line J ′ λJ ′ (nm) ΓJ ′ (MHz) Isat (mW/cm2)

D1 1/2 794.979 2π × 5.75 1.495

D2 3/2 780.241 2π × 6.07 1.669

Table 2.1: Properties of the D1 and D2 transitions in 87Rb, tabulated from Ref. [121].

Line Scalar (i = 0) Vector (i = 1) Tensor (i = 2)∑
F ′

α
(i)
J ′F ′

α0

D1 1 1/3 0

D2 2 −1/3 0

Table 2.2: Normalised polarisability coefficient sums in the far-detuned limit for 87Rb in
the F = 1 ground state, computed using (2.18)–(2.20).

Hence the interaction picture Hamiltonian contributions in the far-detuned limit for
87Rb in F = 1 become

Ĥ (0) =
2g

3~

(
α0

∆D1
+

2α0

∆D2

)
Ŝ01̂0, (2.22)

Ĥ (1) =
g

3~

(
α0

∆D1
− α0

∆D2

)
ŜzF̂z, (2.23)

Ĥ (2) = 0. (2.24)

In this approximation, the role of the nuclear spin is negligible and the hyperfine cou-
pling vanishes. The polarisability of the atom therefore depends only on the spin of
the valence electron, behaving as a spin-1

2 system. The symmetries of such a system
mean the two contributions to the vector interaction have opposite sign, and the ten-
sorial contribution vanishes.

Reintroducing the excited state splitting, the detunings are ∆J ′F ′ = ∆J ′+ δJ ′F ′ , where
δJ ′F ′ is the splitting of |J ′F ′〉 relative to the line centre (Figure 2.1). Following Ref. [120],
a power series expansion of (2.17) in δJ ′F ′/∆J ′ gives

∑
J ′F ′

α
(i)
J ′F ′

~∆J ′F ′
=
∑
J ′

1

~∆J ′

∑
F ′

α
(i)
J ′F ′

1 + δJ ′F ′/∆J ′
=
∑
J ′,F ′

α
(i)
J ′F ′

~∆J ′

∑
k

(
−δJ ′F ′

∆J ′

)k

= α0

∑
J ′

(
1

~∆J ′

∑
F ′

α
(i)
J ′F ′

α0
− ΓJ ′

~∆2
J ′

∑
F ′

δJ ′F ′

ΓJ ′

α
(i)
J ′F ′

α0
+ · · ·

)
. (2.25)

Each sequential term is weighted by δJ ′F ′/∆J ′ � 1, allowing the power series to be
truncated at the second term. The sums over F ′ can then be computed numerically for
the transitions of interest (Table 2.3), allowing the Hamiltonians to be computed in the
far-detuned limit to a higher accuracy. The corrections to the scalar and vector Hamil-
tonians are small compared to the linear contributions, but the nematic interaction
Ĥ (2) is now nonzero and potentially contributes to dynamics.

19



78
0.

24
1 

nm

79
4.

97
9 

nm

Figure 2.1: Hyperfine energy-level scheme for 87Rb, defining symbols used in this thesis.
The detuning of each hyperfine state is ∆J′F ′ ≡ ω̄ − ωJ′F ′ = ∆J′ + δJ′F ′ ≈ ∆J′ where ω̄
is the laser frequency and ωJ′F ′ is the resonant frequency, so ∆D1 > 0 and ∆D2 < 0.

Line Scalar (i = 0) Vector (i = 1) Tensor (i = 2)∑
F ′

δJ ′F ′

ΓJ ′

α
(i)
J ′F ′

α0

D1 29.6 29.6 11.8

D2 −58.2 27.4 −1.81

Table 2.3: Normalised coefficients of the quadratic term in the expansion of the polaris-
ability in the far-detuned limit (2.25) for 87Rb in the F = 1 ground state, computed using
(2.12)–(2.14) and the known hyperfine structure of the excited states.
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2.3: The off-resonant trapping force

The scalar contribution α(0) to the Hamiltonian depends only on the total intensity of
the beam and is unaffected by the spin state of the atoms. This contribution therefore
results in a state-independent energy-level shift that is proportional to the intensity
of the laser beam, termed the dipole potential. Considering a cylindrically symmetric
beam with intensity I(r), the potential is

Vdip(r) = E(−) ·
∑
J ′F ′

α
(0)
J ′F ′

~∆J ′F ′
·E(+) =

2I(r)

ε0c

(∑
J ′F ′

α
(0)
J ′F ′

~∆J ′F ′

)
. (2.26)

Because the laser beam has a spatially varying profile, it imparts a net mechanical
force on the atoms, Fdip = −∇Vdip, that draws them towards the region of highest
intensity for red-detuned (∆ < 0) lasers. This creates an effective harmonic potential
that causes transverse confinement.

The potential is approximated as harmonic about the minimum, with the trap strength
quantified by the radial trapping frequency ωr defined by Vdip(r) = 1

2mω
2
rr

2. Taking
the second derivative of (2.26), the trapping frequency is given by

ω2
r =

1

m

∂2Vdip(r)

∂r2

∣∣∣∣∣
r=0

=
2

mε0c

(∑
J ′F ′

α
(0)
J ′F ′

~∆J ′F ′

)
∂2I(r)

∂r2

∣∣∣∣∣
r=0

. (2.27)

For a Gaussian laser beam with power P0 and 1/e2 beam radius σr, the intensity profile
is

I(r) =
2P0

πσ2
r

exp

(
−2r2

σ2
r

)
, (2.28)

which results in a dipole potential with trapping frequency

ω2
r =

−16P0

mπσ4
rε0c

(∑
J ′F ′

α
(0)
J ′F ′

~∆

)
. (2.29)

Note that for Vdip > 0 this gives ω2
r < 0 and the dipole force is repulsive, resulting in

an anti-trapped state.

2.4: The ‘magic’ wavelength
The dipole potential (2.29) contains contributions that scale as 1/∆. For a given de-
tuning between two resonances, one line will appear to be blue detuned and one will
be red detuned. By the intermediate-value theorem, there is a wavelength between
any two adjacent transitions at which these contributions cancel exactly, resulting in
no net scalar light shift. These are termed ‘magic’ or ‘tune-out’ wavelengths as at that
particular wavelength a probe beam exhibits no trapping force on the atoms [122, 123].
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Figure 2.2: Wavelength dependence of scalar polarisability for 87Rb showing the zeroes
(dashed lines) corresponding to magic-zero wavelengths between accessible hyperfine
excited states on the D2 line (top), and between the D1 and D2 lines (bottom).
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As the BEC will be exposed to the Faraday beam while imaging is occurring, operating
at a magic wavelength will prevent the probe beam from applying an additional trap-
ping force and stops the dipole potential from being perturbed. There are a number
of potential magic wavelengths to choose from (Figure 2.2), corresponding to either
a small detuning between the hyperfine levels, or large detuning between the fine
structure lines.

Illuminating the BEC with the Faraday beam induces scattering, causing atoms to
be lost and destroying the BEC. The scattering rate can be kept constant by trading
off between detuning and laser beam intensity, so the choice of magic wavelengths
reduces to the choice between a weak probe beam (∼100 µW) with small detuning, or
a bright probe beam (∼10 mW) with large detuning.

However, performing a shot-noise limited measurement with a weak probe is a sig-
nificant technical challenge, as the shot-noise level approaches the dark noise level,
where technical electronic noise begins to dominate the measurement. The bright-
beam limit makes the magic wavelength between D1 and D2 fine structure transitions
an excellent candidate for making shot-noise limited measurements.

Since this is far detuned from both resonances, the value of the magic wavelength can
be estimated by finding the zero of (2.22),

∆D2 = −2∆D1 ⇒ λmagic =
3λD1λD2

λD1 + 2λD2
, (2.30)

since ∆D2 = ωD1 + ∆D1 − ωD2.

For 87Rb this gives λmagic = 790.00 nm, compared to the value obtained by numerically
finding the root of (2.9), which is λmagic = 790.01 nm. This shall be taken as the probe
wavelength for the remainder of the present work.5

2.5: The Faraday effect
In the interaction picture polarisability expansion (§2.1) of the atom-light interaction,
the vector term is

Ĥ (1) = g
∑
J ′F ′

α
(1)
J ′F ′

∆J ′F ′
ŜzF̂z, (2.31)

which directly couples the spin of the atoms (F̂z) to the spin of the light passing
through (Ŝz). This coupling is sensitive to the spin projection of the atoms and the
polarisation state of the light. It introduces a state-dependent rotation of the polarisa-
tion vector, as will be shown below.

5 Following the submission of this thesis, a precise measurement of the magic-zero wavelength of
87Rb in F = 2 was reported, finding λmagic = 790.03235(3) nm [124].
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Light transits through the 30 µm cloud in 100 fs, which is a much faster timescale than
the evolution of the atomic spin vector. The state of the atoms will effectively remain
constant during the transit, allowing the quasi-static approximation to be made. The
atomic spin state can therefore be replaced with its expectation value, which for a
spin-polarised media is

F̂z → 〈F̂z〉 = F cos θ, (2.32)

where θ is the angle the spin vector makes with the z-axis.

The spin projection 〈F̂z〉 may be time-dependent, as is the case with Larmor preces-
sion. Provided this time-dependence occurs on a significantly slower timescale than
the transit time of the light across the cloud, the quasi-static regime still applies. For
the Larmor frequencies of interest (ranging from order 100 kHz to a few MHz), this is
a good approximation.

However, if atoms are undergoing Larmor precession in a plane inclined at an angle
φ to the z-axis, the spin projection is reduced (Figure 2.3A). This occurs if the net
magnetic field vector has a component Bz 6= 0 which inclines the precession plane by
φ = sin−1(Bz/|B|). Taking the Larmor frequency as ωL, the expectation value is

〈F̂z〉 = F cos(φ) cos(ωLt). (2.33)

As choice of the magnetic field bias direction is arbitrary, where possible it should be
chosen to be perpendicular to the z-axis (φ = 0). The Faraday effect will be similarly
reduced if the local magnetisation of the BEC is non-zero (Figure 2.3B). This could
occur if Larmor precession is initiated in a polarised BEC by an imperfect π2 -pulse that
does not tip the spin completely into the x–z plane.

(B)(A)

Figure 2.3: Larmor precession of the spin vector F about the magnetic fieldB in the cases
of an off-axis magnetic field (A) and a non-zero magnetisation (B). The spin F traces out
the dark shaded circle at the Larmor frequency, resulting in an oscillating projection 〈F̂z〉.
For φ 6= 0, the amplitude of the projection is reduced in each case, and the associated
Faraday effect is weaker.
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The quasi-static Hamiltonian and corresponding unitary time evolution operator are:

Ĥ (1) =

(
g
∑
J ′F ′

α
(1)
J ′F ′

∆J ′F ′
F cos θ

)
Ŝz ∝ Ŝz, (2.34)

⇒ U(δt) = exp
(
−iĤ (1)δt/~

)
= exp

(
−iϕzŜz

)
, (2.35)

which is the form of the rotation operator for Ŝ about the z-axis by an amount ϕz ,
where δt is the transit time of the light through the cloud.

Hence as light propagates through the sample, it experiences a rotation of its Stokes
vector about the z-direction, by an amount proportional to the atomic density and net
spin projection. This rotation preserves ellipticity, so for a probe beam that is initially
linearly polarised, this is equivalent to a rotation of its polarisation axis. Taking the
beam as being initially polarised along the x axis, its polarisation state before and after
passing through the atom cloud is

〈Sx(0)〉 = 〈S0(0)〉, 〈Sy(0)〉 = 0,

〈Sx(δt)〉 = 〈Sx(0)〉 cosϕz, and 〈Sy(δt)〉 = 〈Sx(0)〉 sinϕz,
(2.36)

Measuring the polarisation projection 〈Sy(δt)〉 of the beam at the output therefore pro-
vides an interface to measure the spin state of the cloud, which forms the basis of the
Faraday imaging concept.

For a uniform density cloud containing Na atoms and having cross-sectional area A,
the interaction volume is V = Ac δt, and the rotation can be written as

ϕz = ϕ0 F cos θ
∑
J ′F ′

α
(1)
J ′F ′

α0∆J ′F ′
, (2.37)

where ϕ0 =
Nag δt

~
α0 =

π

ε0~λ

(
Na

A

)
α0, (2.38)

The interaction strength ϕ0 can then be expressed in terms of the natural linewidth
and on-resonant optical-depth (OD) of the |J〉 → |J ′〉 transition as

ϕ0 =

(
λJ ′

λ

ΓJ ′

4

)
OD where OD =

Na

A
σ0,J ′ and σ0,J ′ =

3λ2
J ′

2π
. (2.39)

It should be noted that since λ3
D1ΓD1 = λ3

D2ΓD2 (see §B.2), ϕ0 is independent of J ′ even
though the resonant cross section σ0,J ′ is not.6 This is a convenient representation as
the optical-depth is directly measured by resonant absorption imaging (§1.2).

This result can be immediately generalised to a cloud with spatially-varying number
density ρ(x, y, z) as

OD = ρ̃ σ0,J ′ (2.40)

6 Typically the result is simplified further by taking λ ≈ λJ′ (e.g. [119]).
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where the column density ρ̃ is

ρ̃(x, y) =

∞∫
−∞

ρ(x, y, z) dz, (2.41)

having units of atoms per unit area.

The Faraday rotation can therefore be written as

ϕz = ξF ρ̃ F cos θ, (2.42)

where the strength of the atom-light Faraday coupling is

ξF =

(
π

ε0~λ

)∑
J ′F ′

α
(1)
J ′F ′

∆J ′F ′
, (2.43)

and is solely determined by the laser detuning and properties of the atomic transition.
In the far-detuned limit (which applies at the magic wavelength) this becomes

ξF ≈
(
πα0

ε0hc

)∑
J ′

ω

∆J ′

∑
F ′

α
(1)
J ′F ′

α0
=

πα0

3ε0hc

(
ω

∆D1
− ω

∆D2

)
. (2.44)

Hence the Faraday effect is strongest near the D1 and D2 line centres (where one of
∆D1 or ∆D2 is small), constructively interferes for detunings between the lines (when
the detunings have opposite sign), and destructively interferes for detunings outside
the two lines (Figure 2.4).

770 780 790 800 810
- 1.0

- 0.5

0.0

0.5

1.0

Wavelength λ (nm)

Fa
ra

da
y

ro
ta

tio
n 

(a
rb

itr
ar

y 
un

its
)

Figure 2.4: Wavelength dependence of the Faraday effect. The dashed line denotes the
magic wavelength.
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In particular, this can be seen by introducing the detuning from the midpoint of the
lines,

∆ ≡ ω̄ − 1
2(ωD1 + ωD2) = ∆D1 − 1

2ωfs = 1
2(∆D1 + ∆D2), (2.45)

the coupling strength is then

ξF ≈
(

4πα0

3ε0~λ

)
ωfsΓ

4∆2 − ω2
fs
∝

ωfsΓ/∆
2 for ∆� ωfs,

1 + (2∆/ωfs)
2 for ∆� ωfs.

(2.46)

For very large detunings, it is therefore not possible to consider only the nearer line,
as the destructive interference of the two lines makes the net Faraday rotation fall
off as ∆−2, which is much faster than the ∆−1 dependence in (2.43). Furthermore,
although the Faraday interaction is weak when ∆ is small, the interaction strength
always remains non-zero due to the constructive interference.

2.6: The vector light-shift and effective magnetic field
An alternate interpretation of the vector interaction Hamiltonian is to consider a single
atom and approximate the polarisation rotation due to that atom as negligible. The
state of the light field can then be approximated as

Ŝz → 〈Ŝz〉 = 1
2

[
〈â†+â+〉 − 〈â†−â−〉

]
, (2.47)

which is a measure of the ellipticity of the probe beam. This leads to the ‘vector light-
shift’ (VLS) Hamiltonian,

Ĥ (1) =

(
g
∑
J ′F ′

α
(1)
J ′F ′

∆J ′F ′
〈Ŝz〉

)
F̂z. (2.48)

This Hamiltonian couples directly to the magnetic quantum number mF through F̂z ,
and looks like the usual linear Zeeman effect Hamiltonian,

Ĥz =
(µBgF

~
Bvls

)
F̂z, (2.49)

corresponding to some artificial magnetic field Bvls along the propagation direction z,
whose strength depends on 〈Ŝz〉.

Therefore the vector component Hamiltonian Ĥ (1) acts like an effective magnetic field
for the atoms. The resulting energy level splitting experienced by the atoms is referred
to as the ‘vector light-shift’ [125, 113].

Provided the incident probe light is perfectly linearly polarised, then 〈Ŝz〉 = 0 and
there is no effective magnetic field. However, for a purely circular polarisation the
effect is maximised, making the evolution of the atomic spin vector sensitive to the
ellipticity of the probe beam.
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This interpretation is dual to the Faraday effect, and occurs simultaneously. In fact,
the form of the operator ŜzF̂z acts to couple the atoms and light together such that
they are no longer separable. However, as the light passes through the atom cloud
quickly relative to the timescale of the evolution of the atomic spin state, the quasi-
static approximation still applies and it is possible to treat them separately.

In the Faraday effect, F̂z causes rotation of the probe beam polarisation 〈Sy〉, whereas
in the vector-light shift case the effective magnetic field induced by Ŝz causes Larmor
precession about the probe beam propagation direction. This result implies that it is
extremely important to have precise control of the probe beam polarisation, as any
ellipticity in the probe will contribute to undesirable non-trivial dynamics in the evo-
lution of the spin state of the cloud being observed.

Moreover, since 〈Sz〉 depends on the local intensity of the laser, the spatially-varying
intensity profile of the probe beam results in an effective magnetic field gradient across
the BEC. This perturbs the condensate in a spin-dependent way, which prevents the
measurement being minimally-destructive.

2.7: The tensor light-shift
The final Hamiltonian component is the nematic interaction (2.11), which contains
a non-linear dependence on the atomic spin operators F̂i. The nematic interaction
causes the atoms to induce a small rotation of the probe’s polarisation state that does
not preserve ellipticity [119]. This rotation vanishes to first-order for large detunings,
and remains weak to second-order for atoms in the F = 1 ground state of interest
(§2.2). The Faraday effect therefore dominates the evolution of the probe beam polar-
isation, allowing the nematic evolution of the probe beam to be neglected.

Considering the effect of light on atoms, a linearly polarised probe beam causes the
vector light-shift to vanish exactly, so the nematic interaction becomes the dominant
term of the interaction Hamiltonian. This interaction results in complicated evolu-
tion of the atomic spin state, resulting in coherent collapse and revival of the Faraday
signal [126].

Taking the magnetic field direction along y, the linear polarisation state of the probe
beam can be expressed as

ε = sin θ ex + cos θ ey, (2.50)

where ex and ey are unit vectors, and θ is the polarisation angle measured clockwise
from the y-axis The resulting dynamics depend on the orientation of the probe beam’s
linear polarisation through expectation values of the Stokes operators,

〈Ŝx〉 = 1
2(cos2 θ − sin2 θ) 〈Ŝ0〉 and 〈Ŝy〉 = − sin θ cos θ 〈Ŝ0〉. (2.51)
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Transforming into a frame that is co-rotating with the Larmor precession, and taking
the bias field as strong (By � ~Γ/gFµB), the rotating wave approximation can be
made by discarding the counter-rotating term. The nematic Hamiltonian (2.11) be-
comes [126]

Ĥ
(2)

RWA ∝
(
−1

2 sin2 θ + cos2 θ
)
F̂ 2
y . (2.52)

Therefore, different dynamics occur whether the polarisation is aligned with (θ = 0) or
orthogonal to (θ = 90◦) the bias magnetic field. Furthermore, polarising the incident
probe at the ‘magic’ angle of θ = arctan(

√
2) = 54.7◦ to the magnetic field cancels out

this non-linear contribution in the rotating wave approximation, eliminating the col-
lapse and revival of the signal, and extending the lifetime of the measurements [126].

In principle, the nematic interaction can therefore also be eliminated by setting the
linear polarisation axis of the probe beam to coincide with the magic angle. This does
not affect the Faraday measurement, as the polarisation remains linear and only the
polarisation rotation is measured. However, in practice this is not necessary as the
interaction vanishes to first-order in the large detuning limit and the second-order
contribution scales as ΓJ ′/∆ ∼ 10−6 at λ = 790 nm.

It should be noted that the observations of nematic dynamics presented in Ref. [126]
studied 133Cs in the F = 4 ground state, which experiences a significantly greater
tensor light-shift. Not only is the strength of the nematic interaction enhanced by a
factor F 2, but the relatively small detuning7 ∆/2π ∼ 50 GHz gives ΓJ ′/∆ ∼ 10−4. The
strength of the nematic interaction for our system is four orders of magnitude weaker
(Table 2.4), so it will be neglected in the remainder of this thesis.

Atom F Detuning F 2
∑ α

(2)
J′F ′

α0

ΓJ′

∆J′F ′

87Rb 1 λ = 790.0 nm −6.6× 10−11

133Cs 4 ∆/2π = 50 GHz −1.6× 10−7

Table 2.4: Comparison of the normalised nematic interaction strength for the 87Rb at the
magic wavelength and the D2 line of 133Cs. Caesium transition data taken from [127].

2.8: Summary
This chapter considered the atom-light interaction for a multi-level atom in an off-
resonant laser beam. The Hamiltonians corresponding to the different ranks of the
irreducible spherical tensor decomposition of the polarisability tensor were studied
and their effect on the probe beam’s polarisation and the atomic spin state considered.

7 The apparatus is described in [84] and uses detunings between 10 GHz and 100 GHz.
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The rank-0 contribution was shown to result in a trapping potential that depends on
the intensity gradient of the probe beam. The trapping potential was seen to vanish
at specific ‘magic’ wavelengths where the contributions from neighbouring transitions
cancel each other. A magic wavelength was predicted at λ = 790 nm, which presents
a promising candidate for performing Faraday measurement, because the large de-
tuning permits bright-beam polarimetry measurements without imparting a dipole
force.

The rank-1 contribution produced the Faraday effect, resulting in density-dependent
polarisation rotation of a linearly polarised probe beam. An elliptically polarised
probe beam was seen to generate a vector light-shift, which acts as a effective magnetic
field for the atoms and causes evolution of the atomic spin vector. This demonstrated
the importance of the purity of the probe’s linear polarisation.

The rank-2 contribution vanished to first-order in the far-detuned limit, comprising a
weak contribution to the dynamics of the system. The evolution of the probe’s polari-
sation is dominated by the Faraday effect, making this nematic contribution negligible
to the probe. Conversely, as a linear polarisation yields no vector light-shift, the ne-
matic interaction becomes the dominant effect in the evolution of the atomic spin state,
resulting in decay and revival of the Faraday signal. The effect is small in the regime of
interest however, and vanishes altogether for the specific polarisation angle of 54.7◦.

This characterisation of the interaction between atomic spin and probe polarisation
forms the basis of the Faraday measurement technique. I have demonstrated how the
different contributions can be controlled, and how the Faraday effect can be used to
interrogate an atomic system without significantly perturbing its spin state. I will now
consider how to apply this minimally destructive technique to obtain an image of a
condensate.
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3
Faraday magnetic resonance imaging

In this chapter I develop the theory of the Faraday effect in a magnetic field gradient
into an imaging method for atomic clouds. I derive an expression for the expected
signal-to-noise ratio, and discuss the role of experimental parameters. I explain coher-
ent dephasing of the signal, and propose methods for rephasing it. I quantify the blur-
ring induced by Stern-Gerlach separation of the spin components of the condensate,
and quantify the relationship between spatial resolution and the applied magnetic
field gradient.

3.1: Measuring Faraday rotation
The Faraday effect provides a coupling between atom cloud density and the strength
of the polarisation rotation experienced by the probe light, which can be measured
with a balanced polarimeter (Figure 3.1). The condensate is taken to be quasi-static
with density ρ(r) that is effectively constant in time, and is measured by an optical
system with transmission efficiency κ, photodiodes with quantum efficiency η, and a
amplifier with transimpedance gain G. An aperture of radius a blocks the light that
did not pass through the cloud, which limits the detected shot-noise to only that of
light contributing to the signal from the cloud.

Let Φ be the total polarisation rotation experienced by the probe beam. A Wollaston
prism is used as a polarising beam-splitter (PBS) to separate the polarisation compo-
nents of the probe. A λ/2 waveplate before the prism is used to balance the light

Figure 3.1: The balanced polarimeter consists of an aperture of radius a to block light not
travelling through the condensate, followed by a λ/2 waveplate and Wollaston prism (W)
to split the beam into its two polarisation components I+ and I−.
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received by each detector when Φ = 0. In this configuration, the two beams after the
prism have intensities

I± = I0 cos2(Φ± π
4 ). (3.1)

Hence, for small rotations, the difference between the two beam intensities is

∆I = I0 cos2(Φ + π
4 )− I0 cos2(Φ− π

4 ) = I0 sin(2Φ) ' 2I0Φ. (3.2)

Assuming that the photodetectors are neither saturated nor overfilled, the measured
power difference is

∆P =

∫∫
∆I dx dy ' 2I0

∫∫
Φ dx dy. (3.3)

The expected degree of Faraday rotation (2.42) is small, with the rotation from an
entire cloud of N = 2× 105 atoms with radius r = 15 µm being

Φ =

∫
ϕzdz =

N

πr2

ξF
4

= 25 µrad. (3.4)

For a 5 mW beam this corresponds to a power difference of ∆P = 250 nW at the
detector.

Although it is possible to measure this power difference directly, it will be highly sus-
ceptible to noise and easily be overwhelmed by polarisation fluctuations in the probe
beam. An oscillating Faraday signal would enable selective filtration and amplifi-
cation, reducing sensitivity to drift. Choosing the oscillation frequency to be signif-
icantly faster than any random fluctuations in the probe beam filters out technical
noise, and reduces the effect of flicker (1/f ) noise.

The Faraday effect can be made time-dependent by applying a bias magnetic field
perpendicular to the direction of propagation of the beam (z). Applying an rf π2 -pulse
then tips the spin of the atoms into the plane perpendicular to the bias field, which
causes the spins to undergo Larmor precession. Applying the linear Zeeman approx-
imation,1 the spin projection (and hence the Faraday rotation) then oscillates at the
Larmor frequency, with

〈Fz〉 = F cos(ωLt) where ωL = γB (3.5)

and γ = 2π × 702 kHz/G is the gyromagnetic ratio.

Hence the frequency can be tuned by adjusting the bias field, which is typically in the
region of B ∼ 1 G to achieve a Larmor frequency of fL = ωL/2π ∼ 700 kHz. This
field is easily produced by our magnetic bias coils, and matches the bandwidth of our
photodetection (§6.2) and digitisation apparatus (§6.6). This is therefore a convenient
magnetic field bias to operate at, with some flexibility on the exact value used.

1 The quadratic Zeeman correction does not affect the Larmor frequency, as discussed in §7.6.
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3.2: Faraday imaging in 1D
Measuring the Faraday rotation produced by the entire cloud provides information
about the atom number and spin state of the whole cloud, but contains no spatial
information about the cloud’s structure. However, spatial information about the cloud
can be recovered by placing the cloud in a magnetic field gradient b, which makes the
Larmor frequency position-dependent (Figure 3.2).

The measured Faraday signal then contains a range of frequency components corre-
sponding to the different Larmor frequencies, linking spatial position to measurement
frequency. The weighting of each frequency component contains the local density and
spin projection of the cloud, so the Fourier power spectrum of the signal provides a
one-dimensional spatial map of the cloud.

I now derive an expression for the spatial profile of the cloud by considering the mea-
sured voltage on the polarimeter for a cloud placed in a linear magnetic field gradient
in the z-direction. The local Larmor frequency can be expressed as

ωL(z) = ωL0 + γbz, (3.6)

where ωL0 = γB0 is the ‘carrier’ Larmor frequency in the centre of the cloud cor-
responding to the bias field B0 (typically of order 1 G), and b is the strength of the
magnetic field gradient (of order 0.1–100 G/cm).

Consider the Faraday rotation due to an infinitesimal slice of thickness dz of the cloud
at position z in the magnetic field. The column density for just this slice is dρ̃ = ρ(z) dz,
so by (2.42), the degree of Faraday rotation is

dϕz(x, y, z) = F ξF cos θ(z, t) ρ(x, y, z) dz. (3.7)

The angle θ(z) between the net spin vector and the propagation direction oscillates
at the local Larmor frequency ωL(z), where ωL(z) is taken to be constant within this
infinitesimal slice.

Figure 3.2: A magnetic field gradient causes Larmor precession at different rates in a BEC,
coupling spatial information into the frequency domain.
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Summing up the infinitesimal contributions to the polarisation rotation as the beam
transits the cloud, the net rotation is

Φ(x, y) =

∞∫
−∞

dϕz(z)

dz
dz = FξF

∞∫
−∞

cos θ(z, t)ρ(x, y, z) dz. (3.8)

Integrating across the spatial profile of the beam, the net power differential measured
by the polarimeter is

∆P ' 2I0

∞∫∫
−∞

Φ(x, y) dx dy

= 2I0

∞∫∫
−∞

1

4
FξF

∞∫
−∞

cos θ(z, t)ρ(x, y, z) dz dx dy

= 2FI0ξF

∞∫∫∫
−∞

cos θ(z, t)ρ(x, y, z) dx dy dz

= 2FI0ξF

∞∫
−∞

cos θ(z, t)ρ(z) dz, (3.9)

where ρ(z) is called the line density, and is given by

ρ(z) ≡
∫∫

ρ(x, y, z) dx dy. (3.10)

The BEC is created in the |mF = −1〉 state (see §4.1), so Larmor precession is initiated
by applying an rf π

2 -pulse. This results in a superposition state with fractional popu-
lations (1

4 ,
1
2 ,

1
4), whose spins are polarised in the x–z plane. As the spins are all tipped

simultaneously they begin Larmor precession in phase, with

θ(z, t) = ωL(z)t,

∴ cos θ(z, t) = cos((ωL0 + γbz)t),

F [cos θ(z, t)] = 1
2

{
δ(ω − (ωL0 + γbz)) + δ(ω + (ωL0 + γbz))

}
=

1

2γ|b|

{
δ

(
z − ω − ωL0

γb

)
+ δ

(
z +

ω + ωL0

γb

)}
, (3.11)

where δ is the Dirac delta distribution. Therefore the Fourier transform of the mea-
sured power differential is

F [∆P ] = 2FI0ξF

∫
F [cos θ(z, t)] ρ(z) dz

= 2FI0ξF
1

2γ|b|

∫ {
δ

(
z − ω − ωL0

γb

)
+ δ

(
z +

ω + ωL0

γb

)}
ρ(z) dz

=
FI0ξF
γ|b|

ρ

(
|ω| − ωL0

γb

)
. (3.12)
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Hence for a given gain G, responsivity R, and optical collection efficiency κ, the volt-
age out of the differential photodetector is

Vout = GRκ∆P ⇒ F [Vout] =
GRκFI0ξF

γ|b|
ρ

(
|ω| − ωL0

γb

)
. (3.13)

Therefore the frequency components of the measured voltage correspond to the in-
tegrated line density at each point along the cloud in the z-direction, and taking the
Fourier transform inverts the signal for the one-dimensional cloud profile ρ(z):

ρ(z) =
γ|b|

GRκFI0ξF
F [Vout]

∣∣∣∣
ω=ωL0+γbz

. (3.14)

The spectrum will be obtained by measuring the voltage for some finite measurement
time τf and computing its Fast Fourier Transform (FFT). The minimum length-scale
∆z of the image is obtained by equating the spacing of samples in this Fourier repre-
sentation ∆f to the corresponding frequency spread induced by the gradient,

∆f =
1

τf
=
γb

2π
∆z ⇒ ∆z =

2π

γbτf
. (3.15)

For a cloud with radius Lz , the number of points (‘bins’) in the profile corresponds to
how many resolution elements are contained in the size of the cloud 2Lz . Hence to
obtain an image with Nb bins, the required resolution is ∆z = 2Lz/Nb and hence the
required magnetic field gradient is

b =
πNb

γLzτf
. (3.16)

3.3: Signal-to-noise ratio
There are a number of trade-offs to be made in obtaining a 1D profile of the cloud by
measuring the Faraday signal and inverting it with the Fourier transform to achieve a
1D image. In this section I consider the signal-to-noise of a reconstruction with a fixed
measurement time and scattering rate.

Consider a measurement where b is chosen such that the Fourier transform of the
signal divides it into Nb Fourier bins (3.16). The average contribution of each bin to the
signal is therefore

Ṽsig =
1

Nb

∫ ωL+γbLz

ωL−γbLz
F [Vout] (ω) dω

=
γ|b|
Nb

∫ Lz

−Lz
F [Vout] (ωL + γbz) dz

=
GRκFI0ξF

Nb

∫ Lz

−Lz
ρ(z) dz

= GRκFI0ξF
Na

Nb
. (3.17)
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The width of each Fourier bin is ∆f = 1/τf , where τf is the measurement time, so the
shot noise associated with each bin is

Ṽshot = G
√
eRκP/τf = G

√
eRκπa2I0/τf . (3.18)

The scattering rate for a given intensity (derived in §B.2) can also be written

γs =
4ωξ2

S

hc2
I0 (3.19)

where ξ2
S =

(
λ3
J ′ΓJ ′

16π2c

)2 ∑
J ′F ′

α
(0)
J ′F ′

α0

(
ω

∆J ′F ′

)2

, (3.20)

which in the far-detuned limit (§2.2) becomes

ξ2
S ≈

(
λ3
J ′ΓJ ′

16π2c

)2(
ω2

∆2
D1

+
2ω2

∆2
D2

)
. (3.21)

Assuming the detector is shot-noise limited (see §6.3), the signal-to-noise ratio (SNR)
of the measurement is therefore

SNR =
Ṽsig

Ṽshot
= F

√
ηκ

√
πa2

Na

Nb

√
I0τF
~ω

ξF = F
√
ηκ

λ

2
√

2πa

Na

Nb

ξF
ξS

√
τf
τs
, (3.22)

where the quantum efficiency of the photodiodes is η = ~ωR/e and the photon-
scattering lifetime is τs ≡ 1/γs.

The form of the signal-to-noise ratio expression is easily interpreted as arising from
several contributions. In particular, there is a linear dependence on the ratio of the
measurement wavelength λ to the aperture size a, the average number of atoms con-
tributing to the signal in each bin Na/Nb, with the structure of the transitions entirely
captured in the scaling factor ξF /ξS .

This dependence on detuning can be seen by expressing

ξF
ξS
≡

∑
α

(1)
J ′F ′/∆J ′F ′√∑
α

(0)
J ′F ′/∆

2
J ′F ′

≈
∆−1

D1 −∆−1
D2√

∆−2
D1 + 2∆−2

D2

=
∆D1 −∆D2√
∆2

D2 + 2∆2
D1

. (3.23)

Considering detuning close to the D2 line only (∆D2 → 0), the ratio is

λ ≈ λD2 ⇒ ξF
ξS
≈ 1√

2
. (3.24)

Hence for a ‘whole cloud’ measurement (Nb = 1) on the D2 line, where the measure-
ment is performed with no magnetic field gradient, the expected SNR is

SNR =
λNa
√
ηκ

4πa

√
τf
τs
, (3.25)

which agrees with the expression presented in Ref. [84].
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3.4: Choice of detuning
The wavelength dependence of the signal-to-noise ratio is captured in the ratio ξF /ξS ,
which includes contributions from all associated fine-structure transitions (Figure 3.3).
In the regime of interest, the D1 and D2 transitions both contribute to the Faraday
effect, but have polarisability coefficients of opposite sign (§2.2). Between the two
resonances, the detunings have opposite sign so the resulting Faraday rotations add
constructively. The signal contributions ξF therefore add coherently by (2.43) but the
noise contributions ξS add in quadrature by (3.20).

As in (2.45), this can be seen by introducing the detuning from the midpoint of the
lines, ∆ = 1

2(∆D1 + ∆D2). The ‘normalised’ SNR is

SNRnorm ≡
ξF
ξS

=
2
√

3 ωfs√
(6∆ + ωfs)2 + 8ω2

fs

. (3.26)

The SNR is therefore maximised at ∆ = −ωfs/6, which is equivalent to ∆D2 = −2∆D1.
This is exactly the magic wavelength, resulting in an SNR that is enhanced by factor√

3/2 ≈ 1.22.

For a fixed cloud size (both in number of atoms Na and cloud size a) the remaining
free parameters in the signal-to-noise ratio estimation are the number of bins in the
measurementNb, the measurement time τf and the scattering lifetime τs. Typically the
measurement time and the number of bins will be set by the phenomena of interest
to be observed, which leaves only the scattering rate as free in (3.22). Therefore the
scattering rate is fixed by the desired signal-to-noise ratio.
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Figure 3.3: Dependence of signal-to-noise ratio (SNR) on wavelength, showing a clear
optimum at the magic wavelength λ = 790 nm (purple), compared to the D1 and D2
transitions (red).
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To gain the highest signal-to-noise ratio, it is preferable for the scattering rate to be
high and the lifetime low, as the scattered photons contribute to the signal at the ex-
pense of ejecting atoms from the condensate. However, for a ‘minimally destructive’
measurement it is undesirable for a significant fraction of the condensate to be de-
stroyed during the measurement, so τs � τf , setting a limit on the maximum achiev-
able SNR.

Finally, as the scattering rate (3.19) is controlled by the detuning from resonance and
the intensity of the beam, there is a choice to be made between using a weak probe
beam detuned close to resonance, or a bright probe beam detuned far from resonance
(Figure 3.4). For a given scattering rate, the total amount of laser power available
introduces a practical limitation on the maximum detuning available.

However, the benefit of using far off-resonant bright light is that it is straightforward
to build shot-noise-limited photodetectors for bright beams. Large area photodiodes
can be made to work at megahertz frequencies [128] with the photon shot noise dom-
inating the electrical noise. The magic wavelength is therefore an optimal wavelength
choice as it is far detuned from both the D1 and D2 transition lines, and the required
beam power to achieve a nominal scattering rate of ∼1 s−1 is ∼1 mW per photodiode,
which provides a generous photocurrent to stay above the electronic noise floor.
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Figure 3.4: Dependence of probe power on wavelength for a fixed scattering rate, taking
the beam radius as 75 µm and scattering lifetime as τs = 1 s. Detuning close to the D1
or D2 lines (red) increases the scattering rate for constant power, so the power has to be
reduced to keep the scattering rate fixed.
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3.5: Coherent Faraday signal dephasing
A magnetic field gradient is applied to couple spatial information into the Faraday
signal by causing the Larmor frequency to become spatially dependent. However,
having different frequency components mean that the spins will Larmor-precess in
the x–z plane at different rates. Spins in a high-field part of the gradient will evolve
rapidly and begin to wind from spins located in low-field parts of the gradient (Fig-
ure 3.5). As the spin vectors fan out in the x–z plane, the length of the net spin vector
vanishes, causing 〈F̂z〉 → 0 and hence the induced Faraday rotation to vanish as well,
Vout → 0. This is known in the MRI community as ‘free induction decay’ (FID) and the
characteristic decay time of the signal is called the ‘T ∗2 time’.2

This can be seen to be a consequence of (3.14), since the measured signal in the time
domain looks like the inverse Fourier transform of the density profile. The density
profile of the cloud therefore describes both the rate of dephasing, and the shape of
the measured signal. Since the measurement is performed in the presence of noise, it
is important to consider what contribution the interesting features of the target atom
cloud make to the signal, and whether or not they can be distinguished above the
noise.

A thermal cloud has a Gaussian profile, and since the Fourier transform of a Gaussian
is also a Gaussian, the measured Faraday signal measured for a thermal cloud is ex-
pected to be contained within a Gaussian envelope. For a spherically symmetric cloud
with 1/e radius σ, the expected signal is

ρ(r, φ, θ) ∝ e−r2/σ2 ⇒ ρ(z) ∝ e−z2/σ2

⇒ V (t) ∝ e−γ2b2σ2t2/4 cos(ωL0t),
(3.27)

which decays with characteristic time constant tc = 2/γbσ. Importantly, the enve-
lope of this measurement monotonically decays towards zero and shows no revivals
(Figure 3.6A).

However, BECs do not have a Gaussian profile; they are more closely modelled as
having a Thomas-Fermi shape. For a cylindrically symmetric condensate with chem-
ical potential µ and radii Lz in the axial and Lr in the radial directions, the density in
cylindrical coordinates is

ρ(r, φ, z) =
µ

g
max

(
1− r2

L2
r

− z2

L2
z

, 0

)
. (3.28)

The corresponding integrated line density for |z| ≤ Lz is

ρ(z) =

∫ Lr
√

1−z2/L2
z

0
2πr ρ(r, φ, z) dr =

µ

g

πL2
r

2

(
1−

(
z

Lz

)2
)2

. (3.29)

2 FID is a combination of coherent (gradient-induced) dephasing, decoherence (spin-spin relaxation),
and remagnetisation (spin-lattice relaxation). However, strong magnetic field gradients are preferable for
MRI (see §3.9) so gradient-induced dephasing dominates.
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Figure 3.5: Schematic of coherent spin dephasing. Initially all spin components are
aligned following the spin tip (A), but as the spin components evolve (B)–(C) they be-
gin to spread out in the x–z plane, causing the net spin vector to decrease in magnitude.
Eventually the spins wrap the plane and the net spin averages to zero (D).

The overall shape of the expected Faraday signal corresponding to the integrated
Thomas-Fermi profile is very similar to the Gaussian profile, but shows several small
revivals after the initial decay (Figure 3.6B). These are a result of the small-scale differ-
ences between the Thomas-Fermi and Gaussian line densities that become evident at
longer evolution times, demonstrating that the method is sensitive to small changes
in the overall profile.

Since spins physically separated by distance δz Larmor-precess at different rates, they
develop a π-phase shift between them in time

tc(δz) =
π

γbδz
. (3.30)

Therefore regardless of the cloud profile, the overall signal is expected to be contained
in an envelope that decays over the characteristic timescale tc(2Lz) = π/2γbLz .
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Figure 3.6: Schematic density profiles ρ(z) and expected signal Vsig(t) for three different
cloud shapes. As the spins dephase, the envelope of the signal (red) decays exponentially
for a Gaussian profile (A), but a Thomas-Fermi profile (B) demonstrates small revivals.
Small structures such as dark-solitons (C) lead to persistence on a longer timescale.

Small features within the cloud change the cloud density at that location, change the
weighting of a small spread of corresponding frequencies in Fourier space. These re-
quire more time to develop a π phase difference across them to destructively interfere,
and therefore persist for longer (Figure 3.6C). The smaller the feature, the longer it
persists but the smaller the amplitude is (Figure 3.7).

For example, for a Lz = 15 µm radius cloud in a 1 G/cm gradient the first null in
the Faraday signal is expected at tc(2Lz) = 0.24 ms, which is the timescale of the
initial FID of the signal. However, if there is a δz = 1 µm feature within the cloud,
the signal is expected to show low-amplitude revivals that persist on the timescale of
tc(δz) = 7.1 ms.
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Figure 3.7: Comparison of the expected signal envelope for Thomas-Fermi profile clouds
with dark features of width 1 µm (red) and 2 µm (blue). The smaller feature has a revival
with smaller signal amplitude than the larger feature, but persists longer.

3.6: Rephasing with spin echo

The dephasing process described in the previous section is entirely coherent, and can
therefore be reversed. Since the dephasing is due to Larmor precession occurring at
different rates, by reversing the sign of the gradient the previously fast components
become slow and vice-versa. The previously slow components then evolve rapidly
and ‘catch up’ to what were previously the fast components, causing the ‘spreading
out’ to be reversed and bringing the spins back into alignment. As the net spin vector
becomes nonzero again, a revival of the Faraday signal is observed. This is an example
of a spin echo technique called ‘gradient recall echo’.

Once the net spin has rephased, the now-fast components will then outrun the slow
components, leading to dephasing in the opposite direction. Reversing the gradient
at a later time reverses the process again, and causes another spin echo when the
spins rephase. In this way, multiple Faraday measurements (‘images’) can be attained
sequentially (Figure 3.8).

However, gradient-induced dephasing is not the only cause for decay of the Faraday
signal, with fundamental effects such as quantum phase diffusion [129] and technical
limitations on the spin echo prevent perfect rephasing of the spin. Decoherence of
the constituent spins will result in gradual decay of the amplitude, quantified by the
‘T2 time’ and is typically much longer than the free-induction decay timescale (‘T ∗2
time’). The T ∗2 time is the timescale of an individual measurement, the T2 time limits
the number of echoes that can be meaningfully extracted.
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Figure 3.8: Schematic of gradient recall echo. After the initial spin tip at t = 0, the spins
dephase and the envelope of the Faraday signal decays. When the magnetic field gradient
b is reversed at t = 1 ms, the spins begin to rephase and an ‘echo’ is produced at t = 2 ms.
Repeating the process generates further echoes, each of which can be individually recon-
structed to form time-resolved profiles of the BEC. This example corresponds to five such
profiles.

In nuclear MRI, the measurement is also limited by the rate at which the component
spins realign with the bias field (the ‘longitudinal relaxation’ or ‘T1’ time). This process
is generally called ‘spin-lattice’ relaxation, as the remagnetisation occurs through spins
interacting with the environment. However, there is no analog to this effect in a BEC
as magnetisation is conserved, so the T1 timescale does not apply.3

The dephasing process can also be reversed with an rf π-pulse (‘radiative spin echo’),
which inverts the spin states. Where the rapidly-evolving phases are phase-advanced
before the pulse, they become phase-retarded after the pulse. However, since they
are still rapidly-evolving, they catch up to the slowly-evolving phases (which became
phase-advanced after the pulse), resulting in a non-zero magnetisation and hence pro-
ducing a spin echo. Rephasing the spins in this way has the added advantage of undo-
ing any phase-evolution from parasitic background gradients, which gradient-recall
cannot reverse.4

3 It should be noted that unlike a condensed matter system, atoms are continually lost from the
trapped BEC (see §5.7) resulting in a total magnetisation that decays over time. The net effect is a reduc-
tion in signal strength with an effective T1 timescale that cannot be reversed.

4 In principle a gradient could be applied to cancel the background gradient, but the background
gradient has components in all directions, all of which contribute to gradient-induced dephasing.
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3.7: Slice selection and higher dimensional images

The imaging technique discussed thus far creates a time-resolved sequence of 1D im-
ages of a BEC along the ‘imaging axis’. While this enables observation of the dynamics
of features in a quasi-1D BEC (e.g. a dark soliton propagating along the imaging axis),
the 1D profile obtained ‘blurs’ out features in a higher-dimensional BEC by averaging
over the transverse axes. This makes it difficult to observe features that do not extend
across the cloud (e.g. vortices in 2D) or have no fixed orientation (e.g. vortex lines in
3D). However, further techniques may be able to be imported from medical MRI to
use sequential magnetic field gradients along multiple axes.5

This is also a problem in absorption imaging, such as the imaging of vortices cores, as
the cores would be blurred unless they perfectly aligned along the imaging axis. The
solution is ‘slice-selection’ [130], which images only a 2D slice of the sample. Typically
this is achieved in a BEC by holding it in a dark state and optically pumping a slice
into another hyperfine state that is resonant with the imaging beam. The principle
was first applied to dark-field imaging [131], and later applied to PTAI, enabling the
motion of vortex cores in a 2D vortex lattice to be tracked [132].

The problem is more significant in Faraday measurement as the blurring occurs across
the two transverse dimensions, instead of only the propagation axis as in absorption
imaging. Any atoms which are not Larmor precessing are ‘dark’ to the measurement,
so slice-selection can be performed in Faraday measurement by applying a spatially
selective π

2 -pulse.6 The pulse is chosen such that it only effectively tips the spins in
a fraction of the sample corresponding to a region of interest. The resulting Faraday
signal only contains contributions from those atoms that were selected, resulting in
slower dephasing than if the spins of the entire cloud were tipped.7 Performing slice-
selection with a magnetic field gradient applied along the imaging axis enables very
strong magnetic field gradients for enhanced resolution in that region. Alternatively,
slice-selecting using a gradient perpendicular to the imaging axis allows a 2D image
to be constructed by imaging a sequence of slices and combining the profiles.

Slice-selection can be performed with a shaped rf pulse such as a sinc or hyperbolic
secant pulse [133, 134]. For a sample in a linear magnetic field gradient, the time-
varying intensity and detuning selectively tip the spins in a tunable region. Choosing
the centre-frequency of the pulse defines the location of the slice to be selected, and the
width of the pulse (the pulse bandwidth) combined with the applied gradient strength

5 Because of the strong bias field, the relevant gradients are directional derivatives of the bias com-
ponent of the net magnetic field (see §8.3), which for a y-bias are ∂By

∂x
, ∂By

∂y
and ∂By

∂z
.

6 The π
2

-pulses are not currently spatially selective as they have a high rf Rabi frequency and have a
short duration, making them spectrally broad compared to the spread of Larmor frequencies in the range
of magnetic field gradient strengths applied.

7 In principle. If the dephasing occurs too rapidly then the signal will be undersampled because of
the finite acquisition rate of the digitisation apparatus, leading to poor reconstruction.
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defines the width of the slice being selected. While standard procedure in MRI, this
technique has only recently been applied to ultracold atom clouds in a process called
magnetic resonance control (MRC) [135, 136].

Typically the T1 time is a measure of how rapidly sequential π2 -pulses can be applied,
as the pulse will not rotate the spin into the transverse plane if there is residual mag-
netisation. As described in §3.6, remagnetisation does not occur in a spinor BEC,
which means that long sequencies of rephasing pulses can be used, but sequential
slice-selection is more difficult. One potential solution would be to apply a −π2 -pulse
at the exact time of a spin echo, which would tip the spin back into alignment with the
external field (‘forced remagnetisation’) effectively ‘deselecting’ the slice. A new slice
could then be selected using a spatially-selective π

2 -pulse for a different plane.

In principle, multiple reconstructed 1D profiles taken through different slices can be
stacked together to form a 2D image. In practice however, a new slice can only be
selected during the π

2 -pulse, and not varied between echos. While multiple echoes
could be performed during this time to obtain multiple shots of a given slice and
increase the signal-to-noise ratio by averaging, it would take a prohibitively long time
to construct an image of the whole cloud in this way.

The primary method of producing higher-dimensional images using MRI is known as
‘phase encoding’ (PE). Unlike a conventional spin echo (CSE) sequence8 (Figure 3.9A),
phase encoding in the simplest configuration is performed by simply applying a per-
pendicular gradient for a fixed duration before the echo (Figure 3.9B). This fixed pe-
riod exposed to the gradient causes dephasing and couples the y-position of the spins
into their phase, encoding spatial information into the free-induction decay of the sub-
sequent echo. Varying the strength of the phase-encoding gradient between echoes
enables this spatial direction to be mapped out and a ‘k-space’ image of the cloud to
be produced by stacking together the echoes (Figure 3.10). A 2D image of the cloud is
then reconstructed by taking the 2D inverse Fourier transform of the k-space image.
The number of pixels in the reconstruction is given by the number of phase-encoding
steps used, with the pixel size given by the strength of the gradient and the phase-
encoding time used.

This method can be immediately extended to perform 3D reconstruction by replacing
slice-selection with phase-encoding along the remaining axis. Stacking the resulting
profiles into a 3D k-space then enables the 3D Fourier transform to be used to recon-
struct the density of the BEC. Slice selection is often more beneficial in medical MRI
because of spin-lattice relaxation, and the chosen slices are relevant in interpretation of
the MRI. However, the phase coherence of a BEC makes phase-encoding better suited
for 3D imaging.

8 Shown using radiative spin echo instead of gradient recall echo for comparison purposes.
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Figure 3.9: Schematic showing the magnetic field gradients required for a conventional
sequence (A) using radiative π-pulses, and an extended sequence (B) including slice-
selection (SS) along the x-axis and phase-encoding (PE) in the y-axis. The frequency-
encoding (FE) gradient produces a 1D profile of the cloud along the z-axis, and the
strength of the PE gradient is varied between echoes so that they can be combined to
create a 2D image. Stacking images obtained in different slices (SS) then enables a full 3D
reconstruction.

Figure 3.10: A ‘k-space’ image of the BEC is constructed in (kx, ky)-space by stacking the
time-domain signal of echoes obtained with different phase-encoding gradients Gy . The
image is reconstructed by taking the 2D inverse Fourier transform to reconstruct the 2D
density profile of BEC as chosen during the slice-selection step.
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Clearly there is a tradeoff between resolution of the reconstructed image and time-
resolution, as echoes can either be used to improve the spatial resolution of an im-
age, or contribute to the next image for improved temporal resolution. For a re-
construction with echo time te, and containing Np phase-encoding steps repeated
for Ns slice-selections, the resulting image comprises (

τf
fs
, Np, Ns) voxels9 and takes

time t = NsNpte to capture. Any dynamics which are to be observed must occur on
a timescale significantly longer than this. In particular, dynamics on the timescale
t = Npte will result in blurring whereas slower dynamics will result in the slices cor-
responding to different times.

The primary limitation on the timing of the echoes is the strength of the applied gradi-
ents, as stronger gradients enable faster encoding. In particular, independent control
of all three gradient components of the bias field (By for a y-bias) is required, includ-
ing the ‘off-diagonal’ components (∂By∂x and ∂By

∂z ) which are difficult to generate (see
§8.3). The gradients must also be switched on and off rapidly to prevent limiting the
duty cycle, and must be ramped symmetrically to prevent unintentional phase accu-
mulation. Furthermore, eddy currents may be induced in the vacuum system and
must also be taken into consideration. These are purely technical considerations how-
ever, and could be overcome with adequate design. For example, it may be possible to
make a strong ‘effective’ magnetic field gradient using the vector light-shift (see §2.6)
and a spatially-varying intensity profile.10

There is a wealth of knowledge behind the design of spin echo sequences, such as op-
timisation to minimise measurement time and compensation for apparatus imperfec-
tions. One example of this is using gradient reversal to prevent phase accumulation
whereby applied gradients (SS and FE) induce unintended phase encoding. This is
achieved during slice-selecting in Figure 3.9B, where the initial π

2 -pulse is followed
by a reversal of the Gx gradient, to ‘unwind’ the phase-encoding it induces along the
x-direction.

Similarly, it is important that the application of Gx before and after the π-pulses must
be symmetric, so that any phase-winding before the π-pulse is undone by phase-
winding after the pulse. Such reversals also reduce the influence of imperfect gra-
dient synthesis (i.e. one set of coils generating a non-zero gradient along another axis)
which would otherwise result in cumulative error. Typically, the frequency-encoding
gradient is also reversed before the echo, which results in a gradient-recall echo that
coincides with the radiative echo.

Many medical MRI techniques focus on generating contrast between regions of similar
composition based on differing characteristic timescales (i.e. spatially varying T1, T2,

9 Where τf is the measurement time and fs is the sample rate of the acquisition system.
10 The analysis is simplified by a linear gradient, but monotonic non-linear gradients are acceptable.
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T ∗2 ), which is a different goal to BEC imaging. However, advances in generating and
switching strong magnetic field gradients, and coherent control of spins are directly
applicable. In general the much smaller physical size of the BEC makes the gradient
generation and switching much less demanding than medical MRI systems, although
it is still demanding by the standards of conventional BEC experiments.

3.8: Stern-Gerlach blurring
A side-effect of using a magnetic field gradient to encode spatial information in the
Faraday measurement is that the gradient imparts a mechanical force on the different
spin components of the cloud, causing them to become spatially separate. This sepa-
ration can be reversed by either inverting the field gradient or applying a π-pulse, but
can only be done following the acquisition of each image to prevent interfering with
the measurement.

However, as separation occurs while a Faraday image is being captured, the atomic
motion during the measurement interval will generate blurring. Provided this blur-
ring is less than the resolution element of the image, it will not significantly affect
the result. For a given gradient strength, this puts an upper limit on the maximum
exposure time τf before blurring becomes significant.

The magnetic dipole potential can be written as

VZ = mF gFµBB = ~γmFB, (3.31)

so the gradient-induced acceleration of themF = ±1 components along the z direction
due to an applied gradient b =

∂By
∂z is

a =
1

mRb

∂VZ
∂z

= ± ~γ
mRb

b. (3.32)

The magnetic field gradient is constant during the measurement, so the distance trav-
eled during the measurement interval τf is

∆zSG =
1

2
|a|τ2

f =
~γb

2mRb
τ2
f , (3.33)

which is the degree of blurring introduced by Stern-Gerlach separation. To prevent
limiting the resolution of the reconstructed image, this must be less than the size of a
resolution element ∆z, which requires that

τf <

√
2mRb

~γ

(
∆z

b

)
. (3.34)

This is an upper limit on the time that the gradient can be applied before reversal
(either gradient inversion or spin echo) is required. However, this is not the only re-
striction on the resolution of the reconstruction, and (3.34) is insufficient to determine
the gradient strength required to achieve a desired resolution.
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3.9: Choice of magnetic field gradient
The density profile of the BEC is reconstructed by taking the Fourier transform of
the time-domain Faraday signal (see §3.2). The resolution of the image is therefore
given by the spacing of points in the discrete Fourier representation of the signal (the
‘Fourier resolution’), which by (3.15) is

∆zF =
2π

γbτf
. (3.35)

Increasing the measurement time τf improves the Fourier resolution at the expense of
allowing more time for Stern-Gerlach separation to occur. These competing objectives
are optimised when the degree of Stern-Gerlach blurring matches the resolution of the
image, which is

∆zSG = ∆zF ⇒ b =

√
4πmRb

~γ2

1

τ3
f

. (3.36)

The field gradient and measurement interval required to achieve the desired resolu-
tion ∆z are therefore

b =
πh

mRbγ∆z3
, τf =

2mRb∆z2

h
. (3.37)

The primary limitation on improving the resolution is the strength of the magnetic
field gradient, which requires specialised coil configurations to extend to gradients
past ∼ 10 G/cm. A given coil configuration will be capable of producing a particular
maximum achievable gradient bmax, for which Stern-Gerlach blurring therefore limits
the resolution to

∆z ≥ 3

√
πh

mRbγbmax
. (3.38)

The magnetic field gradient required to achieve a desired resolution (Figure 3.11)
scales unfavourably as b ∝ 1/∆z3, requiring strong gradients to image below the
diffraction limit without being dominated by Stern-Gerlach blurring (Table 3.1).

It should also be noted that the finite acquisition rate fs of the digitisation apparatus
limits the magnetic field gradient, as increasing the gradient results in faster dephas-
ing, potentially causing the envelope to be undersampled. From the characteristic

Resolution, ∆z (µm) Gradient, b (G/cm) Interval, τf (ms)
10 0.033 43
5 0.26 11
1 33 0.43

0.5 260 0.11
0.1 33,000 0.004

Table 3.1: Magnetic field gradients required to achieve a range of resolutions.
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Figure 3.11: Stern-Gerlach limit on resolution for varying magnetic field gradients.

dephasing timescale (3.30), to oversample the envelope the sample rate must obey

1

fs
<

π

2γbLz
⇒ bmax <

πfs
2γLz

. (3.39)

Note that this condition is equivalent to requiring that the entire spread of Larmor fre-
quencies fall within the Nyquist limit of the digitisation apparatus11 (and also requires
the bias to be set to give fL > fs/4 to avoid aliasing at DC).

Taking fs = 2 MS/s and Lz = 25 µm gives bmax < 290 G/cm, corresponding to a best-
case resolution ∆z = 0.49 µm. This can be improved with a faster digitiser, although
the photodetection bandwidth and the bias field must be increased appropriately.

While these gradients are strong, they are achievable – especially in atom chip traps.
An alternate method of generating strong gradients is using the vector light-shift, as a
spatially-varying intensity can result in an effective magnetic field gradient (see §2.6).
A VLS gradient generated using the Faraday probe beam would vary in strength radi-
ally, which is not useful for imaging. However, a second beam propagating orthogonal
to the imaging axis could be used to produce the required gradient along that axis.

Note that static generation of strong gradients is much less problematic than rapid
switching/inverting of the gradient, which encourages the use of radiative spin echo
instead of gradient recall echo to rephase the spin (discussed further in §8.7).

11 Even super-Nyquist sampling (see §6.6) requires the signal to fall within one Nyquist ‘window’.
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3.10: Summary
In this chapter I showed how Faraday measurement might be used to obtain a mini-
mally destructive image of a condensate by placing it in a magnetic field gradient. The
resulting spatial dependence to the Larmor frequency should enable a 1D profile of the
cloud to be recovered from the net Faraday signal using the Fourier transform. I de-
rived an expression for the signal-to-noise ratio of the resulting profile, and discussed
the influence of the free parameters.

The spread of Larmor frequencies contributing to the Faraday signal is predicted to
result in ‘free induction decay’ as the frequency components dephase over time. Spin
echo was considered as a method of rephasing the Faraday signal to generate multiple
images and enable time-resolved studies to be carried out.

Stern-Gerlach separation was considered as a blurring mechanism, placing an upper
limit on the duration of a single Faraday measurement. The magnetic field gradient
required to obtain a desired imaging resolution ∆z was derived, and shown to scale as
1/∆z3, with ∆z = 1 µm requiring b = 33 G/cm. Despite being somewhat technically
challenging to produce, these gradients are experimentally achievable.

The imaging technique as outlined in this chapter can therefore be applied to a real sys-
tem, albeit with resolution that depends on the strength of the available magnetic field
gradient. I shall therefore describe the experimental apparatus to create and study
spinor BEC in the next chapter.
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4
Spinor BEC apparatus

In this chapter I describe the apparatus used to create and study spinor condensates.
Magneto-optical trapping and evaporation down to BEC is a standard procedure, cov-
ered in detail elsewhere [51, 137]. I therefore present only a brief overview of the ex-
perimental apparatus, followed by details on the unique contributions I have made
to this apparatus. The interested reader is referred to the thesis of A. A. Wood [138]
for further information on the design of the apparatus, choice of components, and the
experiment staging required to produce a BEC.

4.1: The Bose-Einstein condensate factory
The layout of the condensate apparatus (Figure 4.1) follows the general design of Lin
et al. [139], modified to include a large glass cell ‘science chamber’. Atoms are sourced
from a 5 g rubidium-87 ampoule loaded into an oven, which is heated to 80◦C and
monitored by an interlock (see §4.3). This creates an effusive atom beam through a
collimation tube towards a cold-cup [140], which both performs cyro-pumping and
further collimation by capturing any atoms not travelling down the beam axis.1

The atoms then enter a zero-crossing single-layer tapered Zeeman slower [141, 142],
which creates a spatially varying magnetic field that counters the Doppler shift and
enables a counter-propagating laser beam to slow atoms from 380 m/s to 20 m/s [143].
The atoms are then loaded into a six-beam Magneto-Optical Trap (MOT) based on
variable-magnification beam-expanders [144] that create large-diameter MOT beams
and increase the number of atoms caught in the trap. The MOT has a total power of
≈ 50 mW divided across its six beams, each with an approximately top-hat profile with
16 mm diameter. Typically the MOT captures ∼109 atoms in a diameter of ∼10 mm.

Following the MOT formation, the quadrupole field is deactivated and the atoms
are polarisation-gradient cooled during an optical molasses cycle for 8 ms, reducing
the cloud temperature to 31(3) µK. The quadrupole gradient is then ramped up to
40 G/cm in 3 ms to catch the free-falling cloud in a magnetic trap, which is hybrid-
loaded into a crossed-beam optical dipole trap formed by a KEOPSYS 1064 nm 20 W

1 A pneumatic shutter blocks the atom beam unless the MOT is being loaded.
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Gate valve
Cold cup

Figure 4.1: A CAD visualisation of the vacuum system showing the trajectory of the atoms
from the oven (left) into the UHV section containing the science chamber (right). Optics
and MOT assembly not shown.

single-mode, linearly polarised fiber laser. Finally, forced evaporation is carried out in
the crossed-beam dipole trap by lowering the optical trap power to achieve condensa-
tion. This produces a BEC in the |mF = −1〉 state, typically containing∼3×105 atoms
with trapping frequencies of (ωx, ωy, ωz) = 2π × (35, 60, 80) Hz.

Laser cooling and imaging requires beams at several different detunings (Figure 4.2).
The ‘master’ laser is an EAGLEYARD RWE-0810 external-cavity diode laser (ECDL) in
the Littrow configuration [145, 146] that generates seed light on the |F = 2〉 → |F ′ = 3〉
pump transition, which is locked using modulation transfer spectroscopy (MTS) [147,
148] for an extremely robust laser lock. The master laser seeds an M2K UC012 mas-
ter oscillator power amplifier (MOPA) chip to produce ∼ 1 W of 780 nm light [149],
which is divided into several arms containing Acousto-Optic Modulators (AOMs) to
frequency-shift each beam to the required detuning (Figure 4.3). Two repump lasers
locked to the |F = 1〉 → |F ′ = 2〉 transition are used to optically pump atoms out of
the |F = 1〉 dark state. The Zeeman repump is locked using a digital offset-lock (§4.2)
and the MOT repump is locked with saturated absorption spectroscopy [150].

Polarisation-maintaining fibers are used to transfer the light between different sec-
tions of the apparatus. This effectively decouples the different sections of the appara-
tus, preventing perturbations and accidents from misaligning the entire system. The
single-mode fibers also have the addition benefit of cleaning up the poor spatial mode
of the MOPA [151] by transmitting only the TEM00 component at the expense of losing
the power contained in the higher-order spatial mode components.
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Figure 4.2: Laser detunings used to perform cooling and trapping of 87Rb atoms, mea-
sured in hertz. The master laser seeds the laser amplifier (MOPA) from which the imag-
ing, MOT and Zeeman are derived using AOMs. The repump beams are produced by
independent lasers.

Magnetic field control is provided by a set of three orthogonal rectangle-based bias
coil pairs, and a pair of quadrupole coils. The bias coils comprise 16 turns each in
approximately Helmholtz configuration (Figure 4.4) and are operated by an in-house
designed IGBT-based voltage-controlled current source called the ‘Mag-neat-o’. Each
coil can be driven by up to 20 A, and steady-state bias fields of 10 G can be generated
without requiring active cooling.

The quadrupole coils are wound from 42 turns of square-sectioned copper tubes with
side length 4.76 mm and are internally water-cooled by a closed loop chiller.2 Each coil
is multi-layered, with inner/outer diameters of 60/126 mm and are separated by ap-
proximately 90 mm in anti-Helmholtz configuration. The coil pair is capable of gener-
ating up to 300 G/cm, though the MOT is typically formed in a gradient of 14.8 G/cm.

2 A micropump is required to achieve the flow rate through both the quadrupole and Zeeman slower
coils necessary to prevent significant heating; flow-rate sensors ensure the apparatus is not operated
without active cooling.
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Figure 4.3: Scheme to generate the MOT, Zeeman slower and imaging beams using a sin-
gle tapered amplifier. The master laser is locked using digital MTS and fiber-coupled
to the MOPA. The MOPA output is divided into several arms, which use AOMs to
frequency-shift the beams to obtain the required detunings. Adapted with permission
from [138].
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Figure 4.4: Design of the rectangular-base magnetic field bias coils (left), and arrangement
of coils around the science chamber including MOT components (right). Inner coil dimen-
sions are (Lx, Ly, Lz) = (110, 157, 210) mm. See §8.1 for an explanation of the coordinate
system. Reproduced with permission from [138].

Radio frequency pulses are generated by direct digital synthesis (DDS) with either a
RFBLASTER3 or PULSEBLASTER DDS-II-300-AWG, and coupled to the atoms using a
MINICIRCUITS LZY-22 amplifier connected to one of two radio antennae. The work
presented in this thesis uses the ‘side’ antenna, which is a single-layer coil oriented in
the y–z axis, comprised of 20 turns and having diameter 60 mm.

Microwaves are generated by a PHASEMATRIX FSW-0010 DDS, which operates at
up to 10 GHz, and amplified by a MINICIRCUITS ZVE-3W-83X+ +35 dB rf-amplifier.
The microwaves are coupled to the atoms with a custom half-wave dipole antenna
designed for 6.834 GHz, located approximately 50 mm from the centre of the cell. Two
series SKYWORKS SKY13298-360 switches allow the microwaves to be gated by a TTL
trigger to prevent unintentional coupling between the hyperfine levels.

4.2: Beatnote microwave offset lock

Rubidium-87 has two hyperfine ground state energy levels, |F = 1〉 and |F = 2〉, with
an energy level splitting between them of 6.834 GHz (Figure 4.5A). Typically only the
|F = 2〉 state is used for cooling and trapping, but atoms promoted to an excited state
can decay into either of the hyperfine ground states. Over time, atoms pumped by a
cooling laser will randomly decay into the |F = 1〉 state, which is too far detuned to
continue to interact with the pump laser, making it a ‘dark’ state.

A ‘repump’ laser is therefore required to perform the reverse process and optically
pump atoms back into the |F = 2〉 state. However, since hyperfine splitting is large
(6.8 GHz), the repump transition is not easily derived from the MOPA by modulation

3 The RfBlaster is a 2-channel DDS developed in-house, based on dual AD9910S controlled by a
XILINX FPGA running PETALINUX and programmed in PYTHON using a custom compiler.
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Figure 4.5: The ground-state hyperfine splitting of 87Rb (A), and the D2 line of a natural
abundance rubidium (B) showing the saturation absorption profile (blue) and derived
error signal (green). Note the amplitudes of the error signal for the repump transition are
significantly smaller than the pump transition.

techniques. Furthermore, the absorption signal from the repump transition is typi-
cally very weak (Figure 4.5B) so it is difficult to reliably frequency-lock a laser there
using standard techniques like saturated-absorption spectroscopy [150]. Alternate
techniques such as modulation transfer spectroscopy [148] have been demonstrated
to provide a robust method of locking the pump laser [152], but are not as successful
on the repump transition because of the lack of a cycling transition.

An alternate method to locking the pump and repump lasers independently is to lock
the pump to the cooling transition using an atomic reference, and then lock the re-
pump to the pump using a beatnote. The frequency separation between the pump
and repump should match the known hyperfine splitting of the isotope, so a large
single-featured error-signal can be derived by comparing the frequency of the beat-
note to the desired separation [153].

As the beatnote frequency (6.8 GHz) is in the microwave regime, it is necessary to use
a phase-locked loop (PLL) synthesiser to divide the beatnote frequency down to the
rf-domain for signal processing. The divided signal can then be compared against a
stable reference at known frequency (such as GPS clock), producing an error signal for
reliable laser locking (Figure 4.6).

In this scheme, a small fraction of the each of the two lasers is extracted with a PBS
cube, which are then combined on an NPBS to generate a beatnote on a HAMAMATSU

G4176 fast photodetector, which has a 30 ps rise time at 7 V bias [154]. The photodetec-
tor is powered via a MINICIRCUITS ZX85-12G-S+ bias-tee with 9 V DC input, and the
beatnote signal is amplified by five MINICIRCUITS ZX60-8008E-S+ +8 dB amplifiers
to boost the rf power to ∼0 dBm when 4 mW is incident on the photodetector. The re-
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Figure 4.6: Schematic of the digital offset-lock. A fraction of the pump and repump lasers
are separated with polarising beamsplitter (PBS) cubes to form a beatnote on the non-
polarising beamsplitter (NPBS) as detected on the fast photodiode.

sulting beatnote is processed by the PLL and compared to a stable reference frequency
by a phase-frequency detector (PFD), which produces an error signal that quantifies
the difference between the measured (fin) and desired (f0) beatnote frequencies. The
integrated circuit chosen for this task was the ANALOG DEVICES ADF4108 [155],
for its high rf bandwidth (8 GHz) and availability in a premade evaluation-board
(ANALOG EVAL-ADF4108EBZ1) to provide an interface to the chip.

The operational principle of the PLL device is to take the input fin and reference fref

signals and use counters to frequency-divide them by N and R respectively, where N
andR are chosen such that f0 = Nfref/R. The resulting divided signals are compared,
and if the frequencies are different then the PFD output is set to either 0 V or 5 V
depending on which frequency is higher. However, if the divided frequencies are the
same, the PFD outputs a voltage between 0 V and 5 V that is proportional to their
difference in phase. Comparing the divided frequencies in this way is equivalent to
comparing the input signal fin to the target frequency f0 and outputting a voltage
proportional to their frequency difference that rails when the difference is more than
the ‘channel spacing’ fpfd = fref/R.

Because the beatnote frequency is so high, the N counter itself comprises a pre-scaler
P and two programmable counters A and B that have the net effect of dividing the
input by N = BP + A. There is a lot of freedom in selecting the counter values, but
empirically it is best to choose the counters to limit phase noise, which is multiplied
by the PFD at a rate of 20 logN [156]. This implies that the counter values should
be chosen to be as small as possible, subject to the operational requirements of the
ADF4108 [155],

A < 64, 2 < B < 8192, fin/P < 300 MHz and N > P (P − 1).
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A simple algorithm that chooses the smallest values for the counter parameters for a
given desired frequency f0 and reference frequency fref is

P ≥
⌈

f0

300 MHz

⌉
, R =

⌈
fref

f0
P (P − 1)

⌉
, N =

⌊
Rf0

fref

⌋
, B =

⌊
N

P

⌋
, A = N −BP,

where P is the smallest power of 2 that obeys the above inequality, and values are
computed in order from left to right.

The possible values for the desired frequency f0 are discretised into multiples of the
channel spacing fpfd = fref/R. In choosing R to be small to limit noise, the channel
spacing is increased and the possible values of f0 become more coarsely spaced. How-
ever, for the repump transition it is not critical to be exactly on resonance, and being
detuned by a few MHz from the optimal frequency is acceptable. In particular, the
offset lock was applied to the Zeeman repump laser which is off-resonant with the
zero-velocity repump transition of the MOT, instead countering the Doppler shift for
atoms exiting the oven. The beatnote frequency (Table 4.1) was optimised empirically
by observing MOT load rates for a range of possible detunings. It should be noted that
the offset lock has the unique advantage of being able to adjust the counter settings
to arbitrarily set the lock point, and is not subject to the low efficiency and limited
frequency range of modulation techniques (e.g. AOMs), or properties of the atomic
transition (e.g. DAVLL [157]).

Parameter f0 P R A B N fpfd

Value 6305 MHz 32 2 13 39 1261 5 MHz

Table 4.1: Register settings required to lock the Zeeman repump laser using phase-
frequency detection against a stable 10 MHz reference signal.

The PLL-synthesiser is controlled by settings stored in three 24-bit registers, which
define the operation of the internal counters and the functionality of the PFD and are
programmed using a 3-wire serial peripheral interface (SPI) through a DB-9 connector
Although programmable by computer via the parallel port using the manufacturer’s
software, it is beneficial for the lock to operate independently of workstation comput-
ers. For this purpose, the ETHERNUT V2.1B micro-controller was chosen to form a
bridge between the chip and user, constructing the register settings and programming
the chip via a human-friendly interface over the local Ethernet. This required writing a
custom TCP-server in the Ethernut’s NutOS operating system, calculating the required
latch settings and ‘bit-bashing’ output over the board’s general-purpose I/O.

The range of the signal output by the PLL is 0–5 V, which is beyond the input spec-
ifications of the laser controller. To interface the error signal from the PFD with the
laser controller, a signal processing circuit was constructed (Figure 4.7). The 0–5 V
PFD output from the charge-pump (CP) pin is fed through a gain-2 ‘offset’ amplifier
that level-shifts the input to be symmetric about zero. The subsequent variable-gain

60



10
k

A
D

82
9J

+1
2V

-1
2V

15
p

10
0n

10
n

10
0n

S
lo

w
_O

ut
pu

t

A
D

82
9J

1K

1k
1.

8n

D
1N

41
48

1k

10
k

+1
2V

-1
2V

10
k

10
k

1k

D
1N

41
48

1K R
3

50
+5

V

15
p

10
0n

10
n

10
0n

50
p

10
0n

10
n

10
0n

-1
2V

+1
2V

TL
07

2

10
0p

A
D

82
9J

+1
2V

-1
2V

10
0n

C
18

10
0n

_
Fa

st
_O

ut
pu

t

50

53
k

10
k

R
9

36
0

47
p

S
M

A
_I

np
ut

O
�s

et
 a

m
pl

i�
er

Va
ria

bl
e 

am
pl

i�
er

, w
ith

 c
la

m
p

O
ut

pu
t b

u�
er

Ph
as

e 
ad

va
nc

e 
�l

te
r

Va
ria

bl
e 

ga
in

 b
u�

er

Figure 4.7: The signal processing circuit that level-shifts, amplifies and clamps the out-
put from the PFD to produce a ‘slow’ feedback signal for the laser controller and a ‘fast’
feedback signal for direct injection into the laser head.
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amplifier includes a protective clamp in the feedback arm to limit the range of the am-
plified error signal and prevent the laser entering oscillation. Two output signals are
generated, one for feedback directly into the laser controller for PID locking (‘slow’
feedback), and the other for modulation of the laser diode current itself (‘fast’ feed-
back), for reasons which will be discussed presently.

The output of the phase-frequency detector rails when the frequencies being com-
pared are different by more than the ‘channel spacing’ of the divider, typically 5 MHz.
This is a tiny fraction of the beat frequency (6.8 GHz), or the frequency range of a laser
scan (∼500 MHz), so for a scanning laser the output changes rapidly when the laser
passes the lock point, producing a square-wave error signal. Using this error signal
directly therefore produces ‘bang-bang’ oscillations, whereby the extremely high gain
of the error-signal causes the controller to continually overshoot the locking-point.

This is caused by insufficient servo bandwidth in our laser controller, making it nec-
essary to construct a signal-processing board to produce a ‘fast’-feedback signal for
direct injection into the laser headboard to bypass the slow servo loop of the controller
and obtain a lock. To prevent damage to the diode, the control signal was not added
directly to the diode current; rather a FET-modulation technique [153] was used to
drain a small amount of current away from the diode, in proportion to a control volt-
age derived from the PFD (Figure 4.8). As the laser scans, its frequency ramps up and
the beat frequency increases. When the beatnote hits the desired value, the PFD output
jumps, changing the FET base voltage and bleeding current away from the diode and
reducing the laser frequency again. This has the effect of bringing the laser frequency
closer to the desired detuning, linearising the step function across a scan sweep (Fig-
ure 4.9). Hence the overall gain of the frequency comparator is reduced, enabling the
‘slow’ locking servo to converge on the zero point.

Correctly choosing the degree of fast feedback is very important in this circuit; too
much gain produces overshoot and causes the laser frequency to oscillate rapidly, as
can be observed by monitoring the beatnote on an rf spectrum analyser. Optimal
locking (with minimal linewidth) is obtained when the injection gain is maintained
just above the point at which the fast-feedback enables the slow laser controller to
lock (Figure 4.10).

4.3: Industrial reliability with microcontroller interlocks

The design philosophy of the apparatus was that it should be able to operate in the ab-
sence of human intervention for several hours at a time; ideally capable of performing
experiments overnight without supervision. An important part of such independent
operation is a system of interlocks that monitor the state of the apparatus, and auto-
matically take action in the event of a systems failure to render the apparatus safe.
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Figure 4.8: The FET-modulation circuit to enable fast-feedback by using a control voltage
to reduce the laser current, adapted from [153]. Applying a positive voltage to ‘MOD
in’ causes the JFET to bleed a small amount of current away from the diode laser, which
modulates the lasing frequency and closes the offset-lock servo loop. This is termed ‘fast’
feedback as it bypasses the laser controller and has a high modulation bandwidth. Since
the feedback only reduces the current through the diode, there is no danger of accidentally
damaging the laser by overloading it.
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Figure 4.9: The PLL-synthesiser compares the beatnote frequency to a desired value, pro-
ducing a sharp step response as the laser scans past. Engaging the fast-feedback circuit
has the effect of linearising the error signal as the frequency is scanned, reducing the over-
all gain of the feedback loop and producing a slope that the laser controller can lock to. A
saturated absorption spectrum is provided for reference.
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Figure 4.10: Rf beatnote spectrum of laser locked using digital offset-lock at 6.8 GHz.
The width of the central feature is less than 20 kHz, and the ‘servo bump’ indicates a
bandwidth of at least 100 kHz.

Rubidium is a highly reactive alkali metal, and as such the side of the vacuum system
containing the rubidium ampoule is separated from the science chamber by a pneu-
matic gate valve, which can be sealed in an emergency. An independent controller
operating as a watchdog is capable of continuously monitoring various sensors to de-
termine when an emergency occurs and closing the gate valve to seal the source to
protect the rest of the chamber. Careful control of the oven temperature also ensures
that the atom flux remains constant, reducing atom number fluctuations in the BEC.

In particular, failure of either Peltier heat exchanger or the water cooling system would
prevent the cold-cup collecting atoms, and instead cause previously trapped atoms to
be released. Such a failure would prevent heat being removed from the hot side of
the Peltier, leading to runaway heating of the Peltier and hence the cold-cup. This
would generate a rubidium ‘fountain’: polluting the vacuum system, damaging sensi-
tive vacuum equipment (such as the ion pumps) and necessitating an expensive and
time-consuming rebuild of the vacuum system. Of the two other research groups
around the world using this design, both have reported experiencing this problem to
some degree because of a cooling system failure.
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To automate control and monitoring of the oven-system, a custom control system
based on the industrial GALIL RIO-47100 programmable-logic controller (PLC) was
devised. The RIO controller was chosen for its large number of IO-ports, automatic
and independent PID loops, and Ethernet connectivity. A finite state-machine (Fig-
ure 4.11) was written in the custom Galil ‘DMC’ language used by the RIO devices,
to ensure that the oven controller remained in a well-defined state at all times, en-
suring no dangerous actions were unintentionally initiated. The built-in PID loops
were applied to control the oven heaters, enabling fast warm-up cycles and reliable
temperature control to produce a consistent output flux from the oven. Details on the
implementation are presented in Appendix A.

Various failure modes were considered, ranging from minor (e.g. non-critical sensor
disconnection) to extreme (e.g. vacuum failure, coolant failure, runaway PID loops).
Upon detection of an error, the machine enters a ‘fail-safe’ mode, in which all poten-
tially dangerous devices are deactivated by isolating the chamber (sealing the gate-
valve), stopping the oven (heaters and Peltiers) and alerting the user (siren, email and
SMS alerts). Physical user intervention is required to restart the machine after a failure,
ensuring the machine never leaves a safe ‘shutdown’ state on its own without human
intervention to ensure it is safe. Relays on the power supplies to the oven heaters mean
that even in the event of sudden power-failure to the controller, the oven is rendered
safe.

For monitoring purposes, the controller communicates with a logging server that
emits SYSLOG-compatible messages. Log messages are sent whenever the machine
changes state, as well as periodically to provide updates on the temperature of the
oven and a number of attached gauges. These messages can then be processed by a
number of standard SYSLOG tools for remote viewing, monitoring and graphing, as
well as post-hoc diagnosis of emergency events. The latter has been essential for iden-
tifying unforeseen failure modes, which were then accounted for in the state machine.

A number of other interlock devices were also constructed; one to turn off the 120 A
Zeeman slower power supplies in the event of water cooling failure, and another to
prevent damage to the MOPA by being run at too high a current, or running without
a seed beam. Either of these two disaster scenarios would cause significant damage
to the apparatus and is enough to significantly set-back the project; they therefore
warrant their own fail-safe watchdogs.

The interlocks successfully acted in multiple cases of coolant and power failure, ren-
dering the apparatus safe, or alerting personnel that intervention was required. Multi-
ple incidences were a result of malfunctions with the closed-loop water chiller, causing
sharp rises in the temperature of the cold-cup, and hence pressure of the vacuum sys-
tem. Damage was avoided in these cases thanks to the early warning provided by the
interlocks.
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Figure 4.11: The controller state-machine (A) keeps the apparatus in a well-defined state.
A variety of sensors are continually checked (B) to detect an error, entering one of two
fail-safe modes depending on severity. User intervention is explicitly required to resume
operation from a harsh fail, preventing the oven from entering a potentially dangerous
state without diagnosis.

66



4.4: BIAS: A modular image acquisition system

The experimental apparatus is operated by a modular set of control system programs
developed in-house, called the LABSCRIPT SUITE [158]. The labscript language pro-
vides a set of extensions to standard python that enables experiments to be described
in terms of a series of events, abstracting away the low-level implementation details
about how devices are programmed or connected. The script is compiled to hardware
instructions that are stored in an HDF5 file [159] that encapsulates all data relating to
a single realisation of the experiment (a ‘shot’). This hierarchical scientific data format
enables experimental inputs (script, parameters, settings) to be stored with outputs
(acquisitions, images, debug information) for each time the experiment is run, auto-
matically keeping a detailed log of past experimental runs.

The suite is divided into several applications, each performing a different function
(Figure 4.12). This modular design enhances separation of high-level experimental
logic from low-level device implementation details by allowing modules to operate
at different levels of abstraction. The individual components communicate over a
network connection, allowing different applications (and different hardware) to be
run from different computers and improving real-time diagnostic abilities.

Another advantage of the modularity is that it enables ‘secondary’ control programs
to be used to communicate with specific devices when software to do so exists and
has been written and debugged. In particular, this is valuable for software written in
another programming language that would take significant time to rewrite and debug
as part of the core suite. One such module is the program responsible for controlling
camera hardware and providing interactive image capture, the BEC Image Acquisition
System (BIAS).

Shot preparation

START 

Shot creation

Parameters Hardware
instructions

Data

Camera
parameters

Image
data

Device interface Analysis

Image 
acquisitions

Experiment logic

Shot execution Feedback

END

Science!

Hardware 
instructions

Images

runmanager BLACS lyse

Figure 4.12: Interaction between modules of the Labscript suite. An experiment is defined
in labscript logic, which is converted to hardware instructions by runmanager. BLACS
coordinates experiment execution and manages hardware programming, interfacing with
secondary programs like BIAS. Once a shot is complete it is post-processed and analysed
by lyse. Adapted from [158].
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The primary purpose of BIAS is to take hardware-agnostic instructions (such as expo-
sure time, number of frames to capture, regions of interest) and to program attached
cameras in an interchangeable way, translating instructions into commands accepted
by the particular software development kit (SDK) in use. BIAS also performs image
processing tasks such as background subtraction, saturation correction, optical depth
calculation, and simple 2D fitting (Figure 4.13).

As per the rest of the LABSCRIPT SUITE, this is achieved with object orientation [158].
An abstract base class (‘Camera’) defines an interface to a generic device, and child
classes extend this interface with SDK-specific implementation of instructions, and
manufacturer-specific special cases where necessary. The net result is that once imple-
mented, swapping between camera types and toolkits is seamless in the experimental
script.

BIAS was written in LabVIEW to take advantage of the native image processing and dis-
play functionality, and availability of hardware drivers from many different manufac-
turers. Sequences of images can be captured and displayed, regions of interest high-
lighted, and calculations such as optical depth or profile fits performed (Figure 4.14).
Regions of interest can be selected for capture or fitting, to reduce camera readout time
or computation time.

The LABSCRIPT SUITE uses the HDF5 file format to encapsulate all instructions, data
and metadata for a single shot in a single hierarchical file. At the time of writing
the application, there was no native support for HDF5 in LabVIEW, and only a slow
legacy library existed to provide an interface. Having determined that reading and
writing large quantities of data was a bottleneck for operation, I created a fast new
language bindings to the HDF5 file format. Termed h5labview [160], it was released as
an open-source package and has been developed to provide a robust and fast interface

BIAS HDF5 file h5labview pybywire Calculations 

Labscript 

Camera 
class 

Andor2 
iKon, iXon, …  

Andor3 
Neo, Zyla 

IMAQdx 
AVT, …  

Photonfocus 

BLACS 

Compute 
Optical Depth 

Fit 2D 
Gaussian 

Figure 4.13: A simple overview of the components of BIAS and how it integrates with the
rest of the LABSCRIPT SUITE of programs.
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Figure 4.14: Screenshot of BIAS in operation, showing the three spin components of a
BEC Stern-Gerlach separated. Multiple regions of interest have been defined to allow
each component to be subsequently analysed.

to storing large hierarchical datasets in LabVIEW. It has since acquired a broad user
base, and is used for scientific data storage by several groups worldwide.

Performing non-trivial calculations on large datasets (such as 2D curve-fitting) is also
cumbersome in LabVIEW. The rest of the LABSCRIPT SUITE is written in python, which
has a rapidly growing code-base of scientific and numerical code. To leverage this po-
tential and enable code-sharing with the lyse analysis routines, I wrote the pybywire

library [161] to enable the execution of arbitrary python code from LabVIEW. It uses
ZeroMQ [162] for reliable data transfer and MessagePack [163] for serialisation, for
which I also created LabVIEW interfaces [164, 165].

BIAS provides an extensible platform for image capture, display and analysis. Its
object-oriented interface permits camera interoperability, and its data input/output
routines enable it to both integrate with the wider LABSCRIPT SUITE and execute
scripts in other languages.

4.5: Summary
In this chapter I described the apparatus we constructed for the creation and study
of spinor BECs, with the goal of reliable and autonomous execution of experiments.
An overview of the apparatus design was given, with specific details on the aspects
of our implementation most relevant to the proposed experiments provided. Several
components of the wider system were described in depth, comprising the parts of the
system I developed.
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A digital offset-locking technique was developed and implemented to lock the Zee-
man repump laser at an arbitrary detuning using a phase-frequency detector to anal-
yse the beatnote with another laser. The single-featured error signal generated this
way is robust, and by digitally adjusting the counter settings the lock point can be
changed. This enabled the detuning to be optimised to improve the efficiency of the
Zeeman slower.

A fail-safe oven controller was designed and constructed using a programmable logic
controller to operate the oven and continuously monitor its state, automatically taking
action to render the oven safe in the event that a dangerous situation is detected. Water
cooling failures have triggered the fail-safe on multiple occasions, and the controller
has prevented damage to the apparatus by taking immediate action.

A modular imaging application was developed to capture and process data from a
number of different camera types, presenting a unified interface and integrating with
the rest of the LABSCRIPT control suite used to operate our apparatus and execute
experiments. The techniques and interfaces developed to exchange data with HDF5,
ZeroMQ and python were packaged into a number of open-source projects which
have developed a wide user base.

The combination of independent watchdogs and the LABSCIPT SUITE achieved the
goal of automated operation, enabling long parameter-space scans to be conducted.
For example, a sequence of 485 experiments were automatically executed to measure
Rabi-cycling between the Zeeman substates of the BEC using absorption imaging. The
sequence ran uninterrupted for 10 hours, with only 4 of the shots unsuccessful. The
limiting factor on unattended data collection are the quality of the laser locks4 and
attached devices becoming unresponsive.5 Work to address both of these issues is
ongoing.

4 The MOT repump laser is presently locked using saturated absorption spectroscopy and typically
unlocks every few hours. A digital-offset lock (as implemented on the Zeeman repump, see §4.2) would
improve this behaviour.

5 Some devices such as the RfBlasters would enter an undefined state and required power-cycling
to resume operation. This is detected by the hardware interface program BLACS, pausing operation until
normal function can resume.
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5
Faraday probe beam

In this chapter I describe experimental considerations regarding the Faraday probe
beam: how it is generated, how the BEC is absorption imaged in-trap, how alignment
is achieved in the presence of limited optical access, and the effect of the probe laser on
the lifetime of the trapped BEC. The photodetection apparatus and signal processing
methods used to capture and analyse the Faraday signal are discussed in the next
chapter.

5.1: Probe laser and locking scheme
The light used as the Faraday probe beam was generated by a EAGLEYARD EYP-RWE-
0810 laser diode in a Hawthorn external-cavity configuration [166]. The laser was
controlled by a MOGLABS DLC-202 [167] and tuned to lase at 790 nm, generating
110 mW of light (before the optical isolator) with an injection current of 200 mA. The
laser is located on a table separate from the vacuum system for modularity and me-
chanical isolation (Figure 5.1). A pick-off polarising beamsplitter (PBS) cube is used
to sample some beam to measure its wavelength and provide an error signal to be fed
back for locking, with the majority of the power fiber-coupled from the laser table to
the experiment with a single-mode polarisation-maintaining fiber.

To prevent the atom cloud being exposed to the probe beam before the measurement
begins, the beam is shuttered by both an AOM and a mechanical hard-drive shut-
ter [168]. The mechanical shutter prevents the need to turn off the AOM for extended
periods of time, which would cause the AOM to cool down and change diffraction
efficiency over the timescale of the experiment, causing drift in the intensity of the
probe beam.

A second beam containing resonant D2 (780 nm) light is simultaneously coupled into
the orthogonal polarisation mode of the same fiber. This light derived from the MOPA
output enables diagnostic absorption imaging to be carried out on the BEC using the
same optical beam path as the Faraday beam, which aids in alignment (§5.5).

Multi-order 780 nm polarisation optics perform poorly with 790 nm light, so in the
absence of specific 790 nm polarisation optics, zero-order 780 nm waveplates must be
used. In particular, it is not possible to have perfectly linearly polarised light incident
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Figure 5.1: Experimental setup to produce Faraday imaging light, showing typical beam
powers. 790nm light from the Faraday ECDL (orange) is shuttered by a mechanical hard-
drive shutter (S) and acousto-optic modulator (AOM) before being combined on a po-
larising beamsplitter cube (PBS) with similarly shuttered resonant light derived from the
MOPA (red) and fiber coupled (FC) to the vacuum table. The role of the interference filter
(IF) is explained in §5.8.

on the fiber coupler whose polarisation axis aligns with the axis of the fiber, as the λ/2
plate induces some ellipticity to the polarisation. This has consequences for polarisa-
tion stability (§5.3) at the fiber output, resulting in long-term drift in the polarisation
state of the output beam (on the timescale of minutes).

Laser locking techniques typically use an absorption line in a reference vapour cell to
generate an error signal to servo the laser controller and fix the wavelength. Some
techniques such as offset-locking (§4.2) can be used to lock a laser at some detuning
from a reference. However, by choosing to operate at the inter fine-structure magic
wavelength of 790 nm (§2.4), the nearest absorption feature is detuned by several
nanometers and the beatnote frequency would be in the order of terahertz, making
offset-locking impossible.

Instead, a HIGHFINESSE WAVELENGTH METER WSU-10 was used to measure the
wavelength of the Faraday laser, at a repetition rate of a few Hz. The unit has a DAC
output board which performs PID on the measurement and generates an analog error-
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signal output for the laser controller. Although this is a low-bandwidth servo-loop,
the atoms are relatively insensitive to the wavelength of the Faraday laser so it is not
critical to eliminate the residual small fluctuations in laser wavelength.

The WSU-10 DAC control line was connected to the ‘sweep’ input of the MOGLABS

laser controller with DIP13 set to ON, to bypass the PID built in to the laser controller
and allow the wavemeter to directly control the piezo of the ECDL. The ‘Laser Control’
functionality of the HIGHFINESSE control program was configured to a sensitivity of
1 V/100 pm, positive polarity and gain settings of 0.1 proportional, 40 integral. The
signal bounds were configured to output an error signal centred on 0 V, with limits at
±1 V. A stable lock was achieved with an RMS wavelength fluctuation of 1 fm over
10 min, corresponding to a linewidth of 500 kHz. The lock point could be software-
controlled by adjusting the ‘reference’ point by up to 1 pm, with the lock achieving
convergence in< 1 s. Shifting the lock point by more than 1 pm typically caused mode
hops and required adjustments to the laser current, but since the magic wavelength is
known, the frequency does not need to be swept and this is not an issue.

5.2: Pre-cell optics
The Faraday signal is proportional to the total power of the probe beam that passes
through the condensate. Any light not passing through the BEC contributes no sig-
nal to the measurement but adds further shot-noise. Not only does this light fail to
contribute to the measurement, but it reduces the overall signal-to-noise ratio of the
measurement by the inclusion of increased shot-noise. It is therefore important to
focus the probe beam down to form a tight waist around the atom cloud and ‘shrink-
wrap’ it to maximise the amount of light interacting with the atoms. Operating at the
magic-zero wavelength means the highly focused, intense beam will not perturb the
trap via a scalar light shift (§2.4), but the vector light-shift (§2.6) from the focused beam
must be entirely eradicated.

The condensate is small, typically comprising 3×105 atoms in a Thomas-Fermi radius
of 15 µm. The probe laser should have comparable waist to maximise the number of
photons interacting with the atoms and generating the Faraday signal. Optical access
limits how closely a lens can be placed to the science chamber: the closest optical
access for a 2”-diameter focusing lens is 800 mm from the cloud. Based on available
achromatic lenses, a 1000 mm lens was chosen and placed 1000 mm from the cloud
position. To achieve a tight focus from such a long focal length lens, a large diameter
beam must be incident on the lens, so a THORLABS BE10M beam expander was used
to enlarge the probe beam immediately before the lens. This produced a focal spot size
at the position of the BEC of 150×125 µm, as measured using a THORLABS BC106-VIS
beam profiler and a fold mirror. The astigmatism is most likely introduced by entering
the beam expander at a small angle of incidence.
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Figure 5.2: Conditioning optics to generate the probe beam, including typical beam pow-
ers. A Glan-Laser (GL) polariser purifies the polarisation state output by the fiber coupler
(FC), and a polarising beam-splitter (PBS) picks off a small amount for diagnostics. The
beam passes through a ×10 beam expander then a 1000 mm lens to produce a focal spot
inside the science chamber 1000 mm away.

Ideally the Faraday beam should co-propagate with one of the trap lasers to look at
the cloud ‘end on’. This creates the most uniform intensity profile across the cloud and
reduces the total optical power required to maintain a given probe beam intensity. In
practice, the beam propagates at a small angle θF to the trap laser – which is limited
by the optical access for steering mirrors before the cell and the pick-off mirrors after.
The current configuration has θF ≈ 3◦.

The zero-order quarter-wave plate before the beam-expander allows control of the el-
lipticity of the probe beam polarisation. This is important as any circular component
to the polarisation produces a vector-light shift on the atoms (§2.6). The polarising el-
ements before the waveplate produce a linear polarisation state going into the science
chamber, but the thick glass walls of the science cell itself induce significant birefrin-
gence on the beam as it travels through. Adjusting the polarisation with the waveplate
allows the opposite ellipticity to be applied before the cell to produce linear polarisa-
tion at the position of the atoms, as characterised in §7.5.

5.3: Polarisation stability and fiber axis alignment

The Faraday beam is transmitted from the laser table to the vacuum table through a
single-mode polarisation-maintaining (PM) fiber. The fiber has fast and slow linear
polarisation axes, which prevent cross-coupling between polarisation modes as they
travel through the fiber. However, unless the input polarisation is perfectly linear
and polarised along one of the axes of the fiber, the two polarisation components will
propagate at different speeds inside the fiber, resulting in an elliptical polarisation at
the fiber output.
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For a polarisation state that is not aligned with the fiber, the degree of ellipticity is
sensitive to both the temperature of the fiber and any mechanical stress, both of which
may vary during the course of an experiment. A misaligned input polarisation has
been seen to result in a > 50% variation in PBS transmission in synchronisation with
the laboratory air-conditioning cycle [151]. For polarisation-sensitive measurements it
is therefore important to ensure the incident beam is linearly polarised with polarisa-
tion rotated to match one of the fiber axes.

Typically PM fibers are produced with a ‘key’ that defines the orientation of the fiber
axes. However the fiber-couple mount itself is oriented in an arbitrary direction mak-
ing it difficult to relate the polarisation of the incident light to the axes of the fiber.
Furthermore, the width of the keyway reduces insertion repeatability enough to intro-
duce large residual misalignment.

Axis alignment is achieved by using a PBS cube at the fiber input to purify the po-
larisation state, then a zero-order λ

2 -waveplate to rotate the polarisation axis to match
the fiber. A λ

2 -waveplate followed by another PBS at the output then purifies the out-
put state. The input waveplate is incrementally rotated, and at each stage the output
waveplate is rotated to minimise the transmission through the cube. When a global
minimum is found for the transmission through the cube, the ellipticity of the fiber
output has been minimised, so the light is polarised ‘on-axis’ with the fiber. The result
is checked by mechanically stressing the fiber gently and observing that the transmis-
sion does not change appreciably.

A change in transmission through the cube will be observed while pressure is applied,
but should disappear again when the pressure is released. If not, the polarisation is
not aligned with the fiber axis, but the net phase delay accumulated by the two modes
makes the output state linear. However, since this phase is sensitive to pressure and
temperature, it is not a stable solution and is sensitive to drift.

Ideally this alignment procedure is carried out with the input and output stages placed
near each other and the optical fiber loosely coiled between, reducing strain on the
fiber and producing a single intensity minimum that is easily located. However, ap-
plying the technique in situ to a fiber that is stretched across the lab is more difficult, as
it will be under significant strain, causing� 2π phase delay when the polarisation is
misaligned with the axes of the fiber. This results in many ‘false minima’ as the wave-
plates are adjusted, depending on how many windings of the phase are occurring. In
particular, if the output waveplate is adjusted to minimise leakage but the transmis-
sion is observed to jump to & 50% of the beam power when strain is applied, then the
polarisation is in the large delay regime. If possible, the fiber should be removed and
coiled to reduce the accumulated phase, so that the above method can be used.

If alignment must be done in situ, sensitivity to applied pressure can be used as an
alignment metric, since the accumulated phase is greater the further off-axis the input
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polarisation is. The input waveplate should be slowly stepped through its range, the
output waveplate adjusted to minimise transmission, and perturbation applied. When
the jump is . 5% of the total probe power, the alignment can then be optimised by
finding the global minimum in transmission as above.

This enables the alignment of the waveplate to within 1◦, which is approximately the
limit of the precision of a THORLABS CRM1 rotation stage. However, the residual
polarisation fluctuations caused by being off-axis with the fiber by even this amount
are not only significantly greater than the polarisation rotation due to the Faraday
effect, but will cause fluctuations in the vector-light shift experienced by the atoms
(§2.6). It is therefore critical to purify the polarisation state of the probe beam before
the science chamber.

This is achieved using a high extinction-ratio Glan-Laser polarising beamsplitter cube
(THORLABS GL5-CL26) as a ‘clean-up cube’ to project the polarisation onto a known
axis, converting the polarisation fluctuations to intensity fluctuations in the transmit-
ted beam. The polarisation rotation observed by the polarimeter is therefore entirely
due to the Faraday effect, since the intensity fluctuations are common mode to the two
inputs of the differential photodetector.

Ideally the polarisation optics would be located immediately before the science cell, so
that the purity of the polarisation state is not affected by any subsequent optics. How-
ever, optical access restrictions around the cell and the large diameter of the beam after
the beam-expander require that they be placed between the fiber and beam-expander,
potentially introducing small fluctuations in polarisation. Although the polarimeter
is sensitive, the signal being investigated occurs at the Larmor frequency, which is a
significantly faster timescale than any such perturbations.

5.4: Post-cell optics and imaging system
The post-cell optics are designed to collect as many of the photons forward-scattered
by the Faraday interaction as possible, create a magnified image of the BEC in trap,
aperture the image to block light that did not pass through the BEC, then perform
precise polarimetry on the resulting beam (Figure 5.3).

To have finer control over which light reaches the polarimeter, an adjustable iris in-
stead of a pinhole was used to aperture the beam and control how much light reaches
the detector. Shot-to-shot variations in pointing stability (see §5.6) result in perturba-
tions to the centration of the BEC image, requiring the iris to be opened slightly further
to prevent aperturing light that has passed through the BEC. A THORLABS SM1D12D
ring iris was chosen for this task, which has a minimum aperture size of 0.8 mm. A
high-magnification imaging system (∼ 30× net magnification) is therefore required to
enlarge the image of the BEC (Thomas-Fermi radius 15 µm) to fill the aperture.
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Figure 5.3: Experimental schematic for Faraday beam analysis, showing Abbe rays
diffraction by the BEC. The transmitted beam is reflected off a 2” mirror on a ZABER
translation stage (Z) into a pair of relay lenses, producing an image of the BEC (purple
circle) in front of a microscope objective lens. The microscope magnifies the image and
reimages it inside a translatable iris (I), which apertures the beam. The resulting beam
is either reflected towards the camera by a mechanical flipper mirror (F) or analysed by
the balanced polarimeter formed by the Wollaston prism (W) and dual-port differential
photodetector. An independent ‘side’ imaging system captures TOF absorption images.

Ideally, a microscope objective could be placed directly after the cell to achieve high
magnification with a high numerical aperture. Although there are designs for objec-
tives with long enough working distances (> 25 mm) to observe the BEC inside the
science chamber [169], the Faraday beam is approximately co-propagating with the
dipole trap beam, so the objective cannot be closer to the cell than the dichroic mirror
that dumps the dipole beam (200 mm from the BEC). Imaging the BEC is therefore
achieved by using a pair of relay lenses to form an image at a more convenient dis-
tance from the cell, which can then be enlarged by an objective to achieve the required
magnification (Figure 5.4). This lens combination magnifies the 15 µm radius BEC to
a 200 µm radius image at the iris.

Optical access limitations are further complicated by the MOT beam which also co-
propagates with the dipole beam. Placing the relay lenses close to the cell results
in blocking the MOT beam, preventing a cold atom cloud from being formed. The
solution is to either place the relay lenses sufficiently far from the cell so that they
separate enough for the MOT beam to not be blocked, or to dynamically move a mirror
in using a motorised flipper mirror (or translation stage) every shot, ensuring the MOT
beam is only blocked after the MOT has been formed. While dynamically moving the
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Figure 5.4: Beam waist of probe beam showing light scattered from the BEC at z = 0
being imaged by the relay lenses at z = 0.5 m, then reimaged by a microscope objective
downstream at z = 1.26 m.

mirror enables the relay optics to be placed closer to the science cell, it introduces
significant shot-to-shot fluctuations that are magnified by the microscope objective.
This results in significant perturbations to the position of the BEC image at the iris (see
§5.6), resulting in large variations in the amplitude of the measured Faraday signal.

Static collection optics were used to prevent shot-to-shot fluctuations, placed at a dis-
tance from the science cell that produced minimal clipping of the MOT beam. A 2”
mirror was mounted to a ZABER T-LSR300D translation stage to have precise con-
trol of the mirror’s position. An optimal position was located whereby the mirror
mount clipped the MOT beam by a small amount, but no significant reduction in the
MOT load rate (and therefore BEC size) was observed. The translation stage allowed
optimisation of the mirror position, and allowed the mirror to be retracted for other
experiments.

The collection mirror mounted on the ZABER stage is 380 mm from the centre of the
cell, oriented with an angle of incidence of 67.5◦ to redirect the probe light into the
relay lenses. The tilt of the mirror results in different numerical apertures in the x
and y directions, with NA = 0.026, 0.069 respectively. Neglecting any aberrations in
the relay lenses and microscope setup, the numerical aperture limits the resolution
of diagnostic absorption images taken of the cloud. The lower bounds on the size of
features that can be resolved by absorption imaging are given by ∆x = 15 µm and
∆y = 6 µm.

It should be emphasised that the resolution of magnetic resonance images acquired
with Faraday measurement is unaffected by this diffraction limit, as the size of a res-
olution element in the Faraday imaging technique is determined by the applied mag-
netic field gradient (see §3.2). In principle, diffractive blurring of the image of the BEC
at the iris limits how tightly the aperture can be closed, but in practice a tolerance must
be provided for shot-to-shot position fluctuations.
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The relayed image of the BEC is then reimaged by a ZEISS 44-08-44 microscope ob-
jective (effective focal length 8.25 mm) and 150 mm tube lens. This generates a second
image of the BEC within the iris, which is mounted in an XY-translation stage. The iris
is translated to be centred on the image of the BEC (see §5.5), and partially closed so
that only light that passed through the BEC is transmitted.

A mechanical flipper mirror then directs the transmitted light to either be reimaged
onto a camera (AVT MANTA G609B) for absorption imaging, or balanced polarimeter
to measure the Faraday signal for magnetic resonance imaging. Absorption imaging
along the Faraday beam1 is achieved by directing a small amount of resonant light into
the optical fiber2 to image along the same path using the same optics. Note that the
tight focus of the probe beam means that extremely low levels of imaging light (∼ nW)
are used to prevent saturation of the atomic transition used for resonant imaging.3

Because absorption imaging uses such low power, the reimaging lens in front of the
camera is positioned to demagnify the image by a factor of 4. This spreads the image
over fewer pixels, increasing the average count per pixel well above the dark noise
level of the camera and increasing the SNR of the optical depth calculation. Demagni-
fying the image has the added advantage of being able to reduce the capture area, as
the G609B has a 2752 x 2206 px CCD sensor with a full-frame readout time of 112 ms.
This is the minimum interframe time between capturing the absorption and flat-field
images, which should be kept as short as possible to reduce fringe movement. The de-
magnified image is contained within a 270 x 270 px window, which when used as the
capture region reduces the readout time by nearly an order of magnitude to 16.4 ms.

5.5: Striking the BEC bulls-eye
It is a significant technical challenge to align the Faraday beam to hit the BEC (a 30 µm
target) as the probe beam has a small waist and optical access limitations mean the
closest steering mirror is 50 cm away. Since the BEC is so small and its exact position
is unknown, aligning the probe beam to overlap the trapping beams (MOT or dipole)
only provides a course starting point, and the atoms themselves must be used as a fine
alignment guide.

This fine alignment is achieved by coupling resonant light obtained from the MOPA
into the Faraday fiber and exposing it to the atoms. The resonant light ejects atoms
from the trap, reducing the number of atoms remaining after the exposure time. Ini-
tially the beam is poorly centred on the atoms, so the intensity they experience is

1 As distinct from time-of-flight imaging using the ‘side’ camera.
2 Note that the resonant light has orthogonal polarisation to the Faraday beam so it is mostly rejected

by the Glan-Laser polariser at the fiber output. It is therefore necessary to rotate the waveplate after the
fiber to transmit a small fraction. High losses are acceptable as the imaging beam is very weak.

3 The exact amount of imaging light used is not important as it is only used for alignment purposes.
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weak, producing a low loss rate. As the alignment is improved to be centred on the
atom cloud, the intensity increases and the loss rate is enhanced, resulting in more of
the cloud being ‘destroyed’. Observing the number of atoms remaining after a fixed
exposure time therefore provides a metric for alignment.

Rough initial alignment is achieved by targeting the MOT, which is substantially larger
than the probe beam waist, making it easy to ‘hit’. By continuously loading the MOT
from the Zeeman slower, the alignment can be adjusted in real time using fluores-
cence imaging (as observed with a THORLABS UC480 CMOS camera). Because the
MOT is being continuously loaded, a significant amount of resonant light (∼ 1 mW)
is required to cause a noticeable perturbation. Initially the resonant light appears as
a dark band through the atom cloud, but as losses increase closer to the centre of the
cloud, it acts like a sinkhole, reducing the number of trapped atoms and the diameter
of the cloud. When the beam strikes the centre of the cloud, the loss rate can over-
come the load rate (depending on the probe intensity), and the MOT is seen to vanish
altogether.

The magnetic field generated by the second Zeeman slower coil (which loads the
MOT) perturbs the location of the magnetic field zero, and hence the position of the
MOT. Switching off the Zeeman slower translates the MOT horizontally, and stops
reloading it. The resonant beam can then be swept horizontally until it hits the new
position of the MOT, obliterating it. Because the MOT is no longer being reloaded,
the slower must be toggled on and off as the MOT will vanish over time even for a
poorly aligned probe beam. The centre of the MOT can be determined by visually
maximising the loss rate observed with the fluorescence camera.

With the centre of the MOT approximately located, the process is repeated for colder
and smaller atom clouds until alignment on the final BEC is achieved. In our appara-
tus the magnetic field zero is vertically displaced from the centre of the crossed-beam
dipole trap, so the MOT is centred on a different position to the BEC. Since the beam
waist is small, alignment must be repeated for multiple stages of cooling between the
MOT and Bose condensation so that the beam can be walked to follow the centre of the
cloud. Adjustments must be made in a shot-based process (making a tweak then run-
ning a shot to check the result), which is laborious as the duty cycle of the experiment
is ∼ 30 s when evaporation is performed.

For these shot-based adjustments, the number of atoms remaining after the exposure
time is measured using absorption imaging, captured using the ‘side’ imaging sys-
tem.4 This independent imaging system captures background-subtracted absorption
images along the x-axis using a AVT PROSILICA GX1920 with magnification 2.1x,
and permits time-of-flight imaging with drop times of up to 25 ms. For unevaporated

4 See [138] for complete details of the ‘side’ imaging system.
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atom clouds, the image of the atom cloud is larger than the camera’s CCD, so the total
atom number cannot be easily determined. However, in these cases the alignment of
the beam can still be optimised by visual inspection of the optical depth following the
resonant probe exposure with zero drop time.

Colder clouds are more sensitive to being perturbed by resonant light, so as the align-
ment improves, the power in the resonant beam needs to be decreased to prevent
eliminating the cloud entirely.5 It is important to not completely annihilate the cloud,
as the tails of the Gaussian beam profile can cause significant losses if the intensity has
not been reduced far enough, preventing further refinement of the alignment. There-
fore the alignment should be adjusted until the atom number reaches a definite min-
imum, then the experimental sequence should be adjusted to cool the cloud further,
the intensity reduced, and alignment repeated.

The process is carried out for successively colder clouds, from magnetic trap down
to BEC through to rf evaporation of increasing levels of truncation. When observing
(nearly) condensed clouds, the absorption imaging procedure is modified to include
some drop time (typically 23 ms in our apparatus) to permit ballistic expansion of the
cloud and a 2D Gaussian fit of the optical depth to be performed to quantify changes
to atom number.

Although the trapped BEC is smaller than the waist of the probe beam, the annihi-
lation rate is maximised when the peak intensity is centred on the BEC, enabling the
centre to be determined to within the precision of the kinematic mirror mount hold-
ing the steering mirror (THORLABS POLARIS K1). However, this alignment sensitivity
combined with the long propagation distance from the steering mirror to the BEC
means that a small amount of pressure on an Allen key in the kinematic mount is
sufficient to sweep the probe across the BEC, so care must be taken.

The probe beam should be perfectly centred on the BEC so that most of the light in-
teracts with the BEC to give the strongest Faraday signal. However it is not strictly re-
quired when performing Faraday measurement at the magic-zero wavelength, as the
trap perturbation induced by the Faraday beam is negligible (see §2.4). Small drifts in
alignment are acceptable, so the realignment procedure only needs to be repeated if
the position of the BEC is perturbed (for example, if the crossed-beam dipole trap has
been realigned).

The output stage optics can now be aligned, and an absorption image of the cloud
produced using the Faraday beam path. First, the reimaging lens in front of the cam-
era is positioned to produce a demagnified image (see §5.4) of the closed iris. The

5 Alternatively, the exposure time could be reduced, but beam power can be easily adjusted over sev-
eral orders of magnitude by reducing the rf power into the AOM used to derive the resonant light from
the MOPA. Reducing the exposure time substantially also increases the influence of switch-on transients
from the shutter and/or AOM, increasing shot-to-shot fluctuations.
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camera is mounted on a z-translation stage (THORLABS MT1), enabling its position to
be adjusted until a sharp image of the blades of the iris is formed. As this imaging
system is only used for diagnostics, aberrations introduced by using a single lens for
demagnification are not a concern.

There are two sets of telescopes that require alignment: the relay lenses and the micro-
scope. The relay lenses are relatively insensitive to alignment and can be positioned
with a ruler, placing the centre of the science cell at the focus of the first lens. Per-
turbations to the relay telescope simply translate the position of the image, which can
then be compensated for. The position of the microscope objective, however, must be
carefully optimised to produce an image of the BEC at the position of the iris.

The objective, tube lens and iris must be concentric, so are held together in a THOR-
LABS 30 mm cage system. The objective is held in a THORLABS SM1Z z-translation
stage, and the iris in a THORLABS ST1XY-S xy-translation stage. Removing the ob-
jective lens, the probe beam can be aligned to travel down the central axis of the cage
using a THORLABS CPA1 alignment tool, and through the centre of the iris. The objec-
tive is mounted in a cage plate using a C-mount to SM1 adapter, making it front-heavy
and causing it to droop. Despite being on-axis with the cage, the beam therefore en-
ters the objective at an angle, causing the beam path to deviate vertically. This must be
corrected by vertically walking the input steering mirrors. The tight waist and short ef-
fective focal length of the objective prevents the probe from being collimated between
the objective and tube lens, so the correct focusing condition can only be determined
by looking at an image of the BEC using the diagnostic camera.

Since the camera is already independently focused on the iris, it should also produce
an in-focus image of the BEC when the objective has been positioned correctly. When
the BEC is out of focus, the image appears elongated or demonstrates spatial structure.
It should be noted that since the NA is different in the x and y directions (§5.4) the
cloud appears elongated. Once the objective is positioned, the iris is partially closed
and centred to ‘shrink wrap’ the image of the BEC (Figure 5.5).

Now that the output stage optics are centred on the BEC, the input stage optics can
be tweaked to similarly centre the illumination beam on the iris, and hence on the
BEC itself. This final alignment does not require the atom cloud to be present and can
therefore be done with the camera continuously imaging the iris. This instant feedback
greatly facilitates precise adjustments to be made to the sensitive input stage optics, as
opposed to the earlier alignment which had to be done in a shot-based method (∼ 25 s
per iteration).

Since the output stage optics have been aligned to capture the Abbe rays from the
BEC, they are independent of the alignment of the input stage optics. In principle, the
output stage only needs adjustment if the position of the BEC changes; any perturba-
tions to the input stage that misalign the illumination beam only require realigning the
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Figure 5.5: Resonant optical depth image of the BEC captured through the Faraday beam
path using the MANTA 609B camera, showing typical centration of the iris and size of the
aperture around the BEC image.

illumination beam back onto the iris. In practice however, the high magnification of
the microscope objective means that slight drifts in the pointing stability of the input
beam walk the image off the iris. These perturbations are more easily countered by
making minor adjustments to the steering mirrors in front of the objective instead of
the extremely sensitive input stage optics. This is preferable for dealing with small
long-term drifts in position, though periodic realignment using the iris is required if
the BEC is no longer approximately in the centre of the illumination beam.

5.6: Pointing stability of the Faraday beam
The high magnification of the objective (Figure 5.5) means that small displacements of
the Faraday probe beam at the input translate into large displacements at the detector.
Shot-to-shot fluctuations in the pointing stability of the probe beam translate the image
of the BEC across the iris, clipping the image and reducing the signal contributed by
that part of the beam. Although the iris could be opened further to compensate, this
increases the amount of light reaching the detector that didn’t pass through the BEC –
which increases the amount of shot-noise measured by the detector, also reducing the
overall SNR of the measurement.

Given the large magnifications and propagation distances involved, the sensitivity
of the imaging system to perturbations in the probe beam will now be quantified.
The system can be modelled with a linear ray optics matrix transformation formalism
(ABCD matrices) as follows: a ray located a distance x0 from the optic axis propa-
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gating at angle θ0 is represented by the vector (x0 θ0)T . Propagation by a distance d
and passing through a thin lens with focal length f are respectively modelled by the
transfer matrices [170]

P(d) =

(
1 d

0 1

)
and L(f) =

(
1 0

−1/f 1

)
. (5.1)

Consider a mechanical stage located a distance p from the cloud which laterally trans-
lates the beam an amount dx and perturbs its propagation direction by dθ. Provided
that dx and dθ are small enough to preserve the paraxial approximation, the position
and direction of the probe beam at the iris is given by(
x

θ

)
= P(ft) · L(ft) · L(fo) ·P(fo)︸ ︷︷ ︸

objective

·P(f2) · L(f2) · L(f1) ·P(f1︸ ︷︷ ︸
relay

−p) ·

[
P(p) ·

(
0

θ0

)
+

(
dx

dθ

)]
.

The resulting transverse magnification of the image and its location are given by

M ′ ≡ 2θ0

θ(θ0) + θ(−θ0)
=
ft
fo

f2

f1
≡M0 and x = M0(dx− p dθ). (5.2)

Hence the magnification is unaffected but the position of the image is perturbed by
an amount proportional to that magnification. The net magnification of the system is
high (∼ 30x) implying the detection apparatus is quite sensitive to perturbations dx,
dθ. Because the image is being formed on the iris, which tightly crops the BEC image,
small perturbations to the position of the image result in clipping blocking some of
the light that travelled through the BEC, leading to a reduction in the Faraday signal.

An initial design used a flipper mirror in close proximity to the dichroic mirror that
deflects one of the dipole trap beams after the cell. Being close to the cell improved the
numerical aperture of the collection optics but required flipping the fold mirror out of
the way during loading of the MOT to prevent clipping the MOT beam. The flipper
mirror was prone to introducing small perturbations that destabilised the position of
the image at the iris.

For this reason the flipper mirror was exchanged with a mirror mounted on a ZABER

T-LSR300D translation stage, which does not move between shots. This reduced the
shot-to-shot standard deviation of the centroid position from σ = 10.5 px with the
flipper mirror to σ = 2.6 px with the translation stage. However, to prevent blocking
the MOT beam the mirror had to be located significantly further away from the cell,
which increased the distance to the relay lenses. This reduced the overall magnifi-
cation of the system, though led to a slight increase in the numerical aperture of the
system (Table 5.1).
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Flipper mirror Translation stage
Collection mirror diameter 1” 2”
Distance from cell 230 mm 370 mm
First relay lens 300 mm 500 mm
Net magnification 45 27
Numerical aperture (x, y) (0.021, 0.055) (0.026, 0.069)
Diffraction limit (x, y) (19, 7) µm (15, 6) µm
Centroid fluctuations 10.5 px 2.5 px

Table 5.1: Comparison of properties of the collection optics for a flipper mirror and a
translation stage.

5.7: Trapped BEC lifetime
Exposing the BEC to the Faraday probe is expected to cause off-resonant scattering
by (3.19), causing atoms to be ejected from the BEC. In order to quantify the loss rate
due to the Faraday probe, it is necessary to develop a model for how the BEC atom
number changes over time. In this section, I discuss the causes of number loss in the
BEC, and measure the loss rate coefficients.

Collisions in a trapped condensate cause atoms to be ejected from the trap and lost,
therefore reducing the atom number over time. The dominant loss mechanisms in
an F = 1 condensate of 87Rb are ‘one-body’ loss caused by collisions with the back-
ground gas in an imperfect vacuum, and ‘three-body’ collisions between the trapped
atoms (see Appendix B). For a BEC with a Thomas-Fermi profile subject to these loss
processes, the loss rate is given by

1

N

dN

dt
= −cN4/5 − b, (5.3)

where b and c are the one- and three-body loss rates respectively. This differential
equation must be solved numerically to determine the number of atoms remaining as
a function of time, but approximating the exponent leads to an analytic solution that
models the dynamics well for small cloud sizes,

1

N

dN

dt
≈ −aN − b ⇒ N(t) =

be−bt

b+ aN0(1− e−bt)
N0 (b 6= 0). (5.4)

The two models are related by c ≈ a〈N0〉1/5, where 〈N0〉 is the average initial BEC
atom number.

Three-body loss dominates one-body loss for dense clouds, so the two loss mecha-
nisms can be distinguished by observing how the number of atoms in BECs of varying
initial atom number decays over time. Creating BECs from MOTs with different load
times varies the initial atom number N0. Measuring the number of atoms remaining
in the BEC after a range of dipole trap hold times therefore allows for simultaneous
determination of both model parameters, a and b.
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Each different MOT load time results in a different (unknown) value of N0, which
is required to perform least-squares fitting of the model to obtain estimates of the
parameters a and b. Initially N0 can be estimated for each series from the measured
atom number at zero hold time, but the parameter estimates are sensitive to errors in
this value. An iterative algorithm is therefore used to take the estimates of a and b,
then fit each series individually to better estimate N0, which enables a better estimate
of a and b to be then obtained. This algorithm converges rapidly, as determined by the
difference between consecutive estimates of the fit parameters, and results in good fits
for observed decay rates (Figure 5.6).

The resulting values of the parameters are a = 9.5(3) × 10−7 s−1 and b = 2.6(4) ×
10−2 s−1, with the vacuum lifetime given by τ = 1/b = 38(6) s. Fitting with the ana-
lytic model (5.3) yields c = 1.21(4) × 10−5 s−1. Combined with the weighted average
initial atom number 〈N0〉 = 2.27(5) × 105 this yields a = 1.03(3) × 10−6 s−1, which
agrees with the numerical model at the 2σ level. The discrepancy is attributed to the
analytic model’s value of b, whose uncertainties were too large for meaningful com-
parison, indicating the optimisation algorithm had stagnated.

At
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Figure 5.6: Number of atoms remaining in BEC after various hold times, as measured
from 2D Gaussian fits to optical depth images, with each series corresponding to a differ-
ent initial atom number N0. Self-consistent values of a, b and N0 are obtained by itera-
tively fitting (5.4).
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5.8: Anomalous resonant scattering
It was observed that exposing the BEC to the Faraday beam reduced the BEC life-
time by three orders of magnitude: 13 mW of probe light at λ = 790 nm reduced the
lifetime from 38(6) s to 24(10) ms. The theoretical lifetime estimated using (3.19) was
900 ms, implying the presence of an unexpected loss mechanism. A SIRAH MATISSE-
DS Ti:S laser was obtained to test the scattering rate at the same probe wavelength
and intensity, and was found to result in a BEC lifetime that agreed with the theoreti-
cal calculation. The immediate conclusion is that the Faraday ECDL was not spectrally
pure.

Despite lasing at 790 nm, the ECDL producing the Faraday beam has a broad am-
plified spontaneous emission (ASE) background that spans 770–810 nm [171]. This
background emission is weak, but contains a small component which is resonant with
the atomic transitions at 780 nm (D2 line) and 795 nm (D1 line). The BEC is extremely
sensitive to small amounts of resonant light, and these small components are sufficient
to cause significant scattering and substantially reduce the BEC lifetime.

A SEMROCK MAXLINE LL01-808 interference filter (IF) was introduced to the Faraday
beam (§5.1), which reflects everything except a 4 nm band around λ0 = 808 nm [172]
for a normal incidence beam. Tilting the interference filter increases the optical path
length through the filter, causing condition for constructive interference through the
filter to shift to longer wavelength, according to

λ(θ) = λ0

√
1− (sin θ/neff)2, (5.5)

where neff is the effective refractive index of the filter. Tilting the filter to 26.0(5)◦

shifts the transmission window to 790 nm (Figure 5.7), heavily suppressing the ASE
components at 780 nm and 795 nm as seen on an AGILENT 86140B Optical Spectrum
Analyser (Figure 5.8). The observed suppression is> 15 dB, though this measurement
is limited by the dynamic range of the spectrum analyser, which raises the measure-
ment noise floor (−73 dB) above the dark noise level (−85 dB), so the true suppression
is likely to be much higher (manufacturer specification is at least 50 dB [172]).

The lifetime of the condensate was measured with and without the interference filter
(Figure 5.9), showing that introducing the filter improved the lifetime by a factor 40. So
the observed reduction in trap lifetime as a result of exposing the cloud to the Faraday
beam was indeed because the wide ASE component of the diode’s optical spectrum
caused resonant scattering in the condensate.
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Figure 5.7: Expected transmission spectrum of the Semrock LL01-808 interference filter
at different incidence angles, adapted from [172]. The transmission bandwidth is approx-
imately 4 nm, and the window covers 790 nm at 26.0(5)◦ incidence.

Filtered laser
Dark noise floor

Faraday laser

Figure 5.8: Comparison of the optical spectrum of the Faraday ECDL before and after
introducing the filter. Note the strong suppression around the rubidium absorption lines
(780 nm and 795 nm) which was previously reducing the lifetime of the atom cloud. Total
beam power was 1 mW and the OSA measurement linewidth was 5 nm.
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Figure 5.9: Exposing the BEC to the unfiltered Faraday beam (blue) results in a very high
loss rate compared to the vacuum lifetime (green). Applying an interference filter to the
Faraday beam (red) increases the lifetime (fitted decay constant) from 29(6) ms to 1.18(3) s.

5.9: Characterisation of off-resonant scattering
The interference filter prevents scattering from the resonant component of the Faraday
laser light as described in the previous section. However, the Faraday probe laser still
causes off-resonant scattering by (3.19), kicking atoms out of the trap and enhancing
the one-body loss rate. The one-body loss rate b is expected to be linear in probe power
P , so can be written as b = b0 + b1P , where τ0 = 1/b0 is the vacuum lifetime and b1

quantifies scattering from the laser.

Considering a Gaussian beam of 1/e2 radius r = 75 µm, using (3.19) the scattering rate
at the magic wavelength λ = 790 nm corresponding to the peak intensity is

I0 =
2P0

πr2
⇒ b1 =

2ξ2
S

πr2
= 101.5 s−1W−1. (5.6)

As previously, the loss rate was measured by varying the BEC hold time in the Faraday
beam and measuring the remaining atom number (Figure 5.10A). An AOM was used
to control the intensity of the probe beam and vary its power between sequences. The
measured loss rates indeed show linear dependence in probe power (Figure 5.10B),
with the fitted gradient b1 = 85(1) s−1W−1.

The discrepancy between measured loss rate and the theoretical estimate is attributed
to uncertainty in the probe beam intensity at the position of the atoms. The measured
waist r corresponds to the focal waist of the probe beam, which is unlikely to be per-
fectly coincident with the position of the atom cloud.

89



0 5 10 15 20
Hold time (s)

0.1

0.2

0.3

0.4

0.5
0.6

0.8

1.0

2.0

3.0

4.0

5.0

A
to

m
 n

u
m

b
e
r 

(×
10

5
)

0.00 mW
0.25 mW
0.50 mW
0.75 mW
1.00 mW

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Probe power (mW)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
e
ca

y
 c

o
n
st

 (
1
/s

)

Figure 5.10: Number of atoms remaining in the trap after being exposed to different Fara-
day probe beam powers (top) and dependence of the resulting loss rates on beam power
(bottom).
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For example, lateral displacement of 0.3r = 23 µm or longitudinal displacement of
0.45zR = 1 cm from the focus would account for the difference. Although the lateral
position of the focal point can be refined with absorption imaging (see §5.5), the longi-
tudinal position is set by the position of the f = 500 mm focussing lens, which was not
mounted on a translation stage. It is likely that a combination of imperfect alignment
both laterally and horizontally resulted in the discrepancy.

Extrapolating the fitted regression to zero applied beam power then provides a mea-
surement of the background one-body lifetime, τ = 1/b0 = 35.0(7) s, which agrees
with the earlier measurement (§5.7) but has much higher precision.

5.10: Summary
In this chapter I described the experimental considerations relevant to the generation,
alignment and detection of the Faraday probe beam. A fiber-coupled ECDL tuned
to lase at 790 nm was used to produce the probe beam, which was conditioned by
purifying its polarisation and tightly focused at the position of the BEC.

A method to aligning the centre of the probe beam on the BEC in the presence of lim-
ited optical access was described, using resonant light coupled into the same fiber and
aligning the beam to maximise the scattering rate. Absorption imaging was used to fo-
cus the microscope objective on the BEC, enabling the iris to be used to clip light that
did not pass through the BEC from adding shot-noise to the Faraday measurement.
Design considerations related to the collection optics on the other side of the cell were
discussed, particularly the importance of pointing stability of the beam heading into
the microscope objective.

The ECDL used to generate the Faraday beam was observed to display an anoma-
lously high scattering rate, which was seen to be the result of the small resonant com-
ponent of the diode’s ASE background. Introducing an interference filter to transmit
only a small window around the magic wavelength restored scattering to the expected
rate, in excellent agreement with theory.

Our probe laser now generates a bright, tightly focused beam of light at the magic
wavelength, which is centred on the BEC. I verified that we can expose the BEC to the
Faraday beam for extended periods, without resulting in large atom loss. I will next
discuss how polarimetry can be performed on the Faraday beam to measure proper-
ties of the BEC.
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6
Photodetection and signal processing

In this chapter I discuss the photodetection apparatus used for polarimetry, demon-
strate that it is shot-noise limited at operating probe powers, and calibrate it using a
test target of terbium-glass. I undertake Faraday measurement of a BEC in a uniform
applied magnetic field, and perform signal processing to extract the Faraday rotation
signal.

A prototype high-gain balanced differential photodetector was designed to form the
core of the polarimeter. This detector was used in the measurements and the charac-
terisations are presented in this chapter. The design was further refined into a second-
generation photodetector, whose response was characterised in detail elsewhere [173].
This revised detector was used to capture the Faraday measurements presented in the
remainder of this thesis.

6.1: High-precision polarimetry
The Faraday measurement technique described in §3.1 requires continuous measure-
ment of an oscillating polarisation rotation, with microradian amplitude and centre
frequency in the hundreds of kilohertz. Capturing this Faraday signal therefore re-
quires a sensitive, shot-noise limited polarimeter, containing high precision polarising
optics and a photodetector with high bandwidth and transimpedance gain.

W

A

B

Figure 6.1: Polarimeter formed by a Wollaston prism (W) and differential photodetector
(A − B). The λ/2 waveplate is adjusted to give equal power beams in the absence of
Faraday rotation. The lenses focus the beams on the active area of the photodiodes.
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The polarimeter constructed for this purpose was formed by a Wollaston prism and
custom differential photodetector (Figure 6.1). The Wollaston splits the probe beam
into its linear polarisation components with high fidelity (> 105 : 1). The two compo-
nents are focused onto the ports of the photodetector, which outputs a voltage propor-
tional to the difference in power between the two beams.

A half-waveplate before the Wollaston prism rotates the polarisation so that the two
components have equal power in the absence of Faraday rotation. When the polar-
isation rotation θ experienced by the probe beam is small, the voltage output by the
photodetector with the polarimeter ‘balanced’ in this way is (§3.1),

V = 2GRκPθ, (6.1)

where κ is the collection efficiency, G the net transimpedance gain (V/A), R the re-
sponsivity of the photodetector (A/W) and P the total power in the incident probe.

6.2: Photodetector design considerations
The choice of electronic components has important consequences for the performance
of the polarimeter, which shall now be discussed. The primary design considerations
are a high bandwidth to prevent signal attenuation at the Larmor frequency, and high-
gain/low-noise transimpedance amplification to detect small polarisation rotations.

The balanced differential photodetector design (Figure 6.2) is based on [128], and con-
tains two photodiodes that drive a differential photocurrent through a high-gain trans-
impedance amplifier (gain G = 5.1 V/mA). The output voltage result is fed into a line
driver (gain 2×) to isolate the transimpedance amplifier from the capacitance of the
connected output cable. The design choices are selection of the photodiodes, opera-
tional amplifiers (op-amps), the transimpedance gain, plus associated capacitors.

The photodiode chosen should have high responsivity R to ensure efficient detec-
tion, and low terminal capacitance so that the photodiode bandwidth does not limit
the detector response. This encourages the use of small area photodiodes and a high
reverse bias voltage Vb. To prevent damage to the photodiode, the maximum probe
power per photodiode is Popt = Pe,max/(VbR) where Pe,max is the maximum (electrical)
power dissipation of the photodiode. Typically photodiodes with cutoff frequencies
of ≥ 10 MHz are common at 15 V reverse bias, which present no difficulties for the
Larmor frequencies of interest (∼ 700 kHz).

The photodiode initially chosen was the HAMAMATSU S5971 [174], whose small ac-
tive area (1.1 mm2) and low capacitance (3 pF at 15 V reverse bias) results in a high
photodiode bandwidth (100 MHz). However, short focal-length lenses (f = 50 mm)
are required to focus the probe beam down into the active area and prevent overfill-
ing. The high responsivity of the diodes, R = 0.56 A/W, corresponds to a quantum ef-
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Figure 6.2: Circuit diagram for the differential photodetector. Photodiodes A and B gen-
erate a differential photocurrent that is fed through a two-stage amplifier. Bypassing ar-
rangements and power supply connections not shown.

ficiency of η = 88% at the measurement wavelength λ = 790 nm. The damage thresh-
old is 50 mW electrical power dissipation, which at 15 V reverse bias corresponds to
an optical power of 6 mW per photodiode.

A detailed discussion of design considerations regarding transimpedance amplifica-
tion can be found in Chapter 18 of [175], with a brief overview of pertinent details
presented here.

The primary limitation on the photodetector bandwidth is the fixed ‘gain-bandwidth
product’ of the transimpedance op-amp. Choosing an op-amp that has a high gain-
bandwidth product allows the gain to be maximised, while ensuring the bandwidth
remains greater than the Larmor frequency.1 However, the op-amp introduces noise
into the measurement which acts to obscure the Faraday signal, and its output can
become unstable if incorrectly designed.

The voltage noise has contributions from Johnson noise in the feedback resistor (resis-
tance Rf = G), input voltage noise, and input current noise from the op-amp flowing
through the feedback resistor [176]. These respective contributions as voltage-referred
noise levels are (in V/

√
Hz)

V
(rms)

J =
√

4kBTG, V
(rms)

Av = en, V
(rms)

Ai = inG, (6.2)

where en and in are the (manufacturer-specified) input noise voltage and current den-
sities of the op-amp. These contributions should be similar in magnitude, as if one
noise source dominated then a different amplifier could be chosen and the overall
noise reduced. The gain should therefore be chosen to be of order G ∼ en/in.

1 The line driver op-amp can be used as a second-stage amplifier to increase the overall gain without
reducing the bandwidth of the transimpedance amp.
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The optical beam power P used in a Faraday measurement at the magic wavelength
is fixed by the desired scattering rate (see §3.4). The electronic noise floor should be
well below the shot-noise level at this power to ensure the measurement is not limited
by technical noise. For optical power P , the shot-noise level (in V/

√
Hz) is

V
(rms)

shot = G
√

2eRP . (6.3)

The technical amplifier noise is therefore negligible compared to the shot-noise when

(
V

(rms)
shot

)2
>
(
V

(rms)
J

)2
+
(
V

(rms)
Av

)2
+
(
V

(rms)
Ai

)2

⇒ P >
4kBTG+ e2

n + i2nG
2

2eRG2
. (6.4)

The signal-to-noise ratio of the Faraday measurement (§3.3) depends on the scattering
rate (3.19), so for a fixed scattering rate there is a trade-off between the detuning ∆

and beam power P . A Faraday measurement can either be done with a small detuning
and weak probe beam, or large detuning and bright probe. If a weak powers are being
measured, it is important to select an op-amp and transimpedance gain such that the
measurement is not dominated by electronic noise (see also [175, §18.4.3]).

Following [128], the chosen amplifier was the OP470, a low-noise quad op-amp.2 The
gain-bandwidth product of the OP470 is 6 MHz, so the transimpedance gain was cho-
sen as 5.1 V/mA to maximise the gain while ensuring the bandwidth fc remained well
above the anticipated Larmor frequency fc > 1 MHz. The noise spectrum of the OP470
is spectrally flat (white) above 1 kHz, and the datasheet [177] gives en = 3.2 nV/

√
Hz

and in = 0.4 pA/
√

Hz, so taking R = 0.56 A/W and T = 300 K, the minimum mea-
surement power is P > 20 µW. Technical electrical noise in the photodetector therefore
does not make a significant contribution to the measurement at anticipated Faraday
measurement powers (∼mW) and can be safely neglected.

The net transimpedance gain of the photodetector was calibrated by measuring the
output voltage for a range of input beam powers, with one port of the photodetector
blocked (Figure 6.3). The photocurrent was inferred from the known responsivity
and the incident optical power (measured with a THORLABS PM100A power meter).
The measured transimpedance gain is 10.16(3) V/mA, in good agreement with the
theoretical value 10.2(2) V/mA – implying the photodiodes were not overfilled. The
output voltage remains linear in photocurrent up to the power supply rails voltage
of 15 V – implying that the photodiodes were not saturating at even the maximum
available optical power of 2.5 mW per photodiode.

2 The other op-amps in the quad package were used for other purposes in the original design, but
the functionality was later removed to simplify the circuitry.
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Figure 6.3: Calibration of the photodetector gain. The photodetector output is linear in
the photocurrent, demonstrating the photodiodes are not saturated.

6.3: Shot-noise-limited photodetection
The intensity of a real light source, such as a laser, is not perfectly constant over time.
Fluctuations in intensity act to obscure photodetection measurements and limit their
precision, so the intensity noise should be eliminated where possible. Some noise
sources are technical, and can be eliminated through careful selection of components,
and some are fundamental. Contributions to the noise in a balanced photodetection
apparatus will now be considered to quantify the noise level of our detector.

Classical intensity noise typically results from imperfections in the creation, propaga-
tion, or detection of the laser light. Examples of such imperfections are electronic noise
in the laser current supply, mechanical instability of the lasing cavity, feedback from
the frequency-locking servo loop, vibration in the optical components or etaloning
between glass surfaces. A perfectly balanced polarimeter is insensitive to classical
intensity noise, as the beamsplitter divides the beams evenly into two arms, each of
which manifest the same classical fluctuations. These are then measured and sub-
tracted by differential photodetection,3 cancelling out their contributions. Since the
polarisation rotation induced by the Faraday effect is small, the polarimeter remains
closely balanced throughout the measurement and classical noise can be eliminated.

Shot-noise, however, arises from the quantised detection of light as photons. Intensity
measurements therefore follow Poisson statistics, and manifest a fundamental level
of noise4 called the ‘standard quantum limit’ (SQL). Unlike classical noise, which is

3 Provided the arm lengths of the polarimeter are equal so fluctuations are observed simultaneously.
4 Squeezed light can increase sensitivity beyond the shot-noise limit [178], but producing squeezed

light is technically challenging and beyond the scope of this project. Furthermore, the resulting sensitiv-
ity improvement is measured relative to the SQL, so characterisation of the SQL is still useful.
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duplicated at a beamsplitter, the quantum noise on the resulting beams is uncorre-
lated [179, 180] and cannot be cancelled out by differential photodetection.5

The noise level was quantified by observing the power spectrum of the photodetec-
tor output using an HP 4395A vector network analyser (VNA) in spectrum analysis
mode. Measuring the intensity noise with one port of the differential photodetector
blocked shows the classical noise level, which demonstrates spectral structure and is
up to 25 dB above the SQL (Figure 6.4). Unblocking the ports and balancing the po-
larimeter results in subtraction of the classical fluctuations and greatly suppresses the
classical noise.

When the polarimeter is balanced, the classical fluctuations cancel exactly. So the po-
larimeter could be balanced by observing the noise level on the spectrum analyser
and performing minor adjustments of the waveplate until the measured noise is min-
imised. The noise power was recorded as a function of incident beam power and
observed to be linear (Figure 6.5). Since classical fluctuations would result in noise
power that scales quadratically with beam power whereas shot-noise power scales
linearly (6.3), this indicates the measurement was shot-noise limited.

5 In a fuzzy intuitive picture, photons are seen to be randomly deflected into one beam path or the
other at the beamsplitter with fixed probability, so the number of photons in each arm is binomially
distributed with uncorrelated fluctuations.
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Figure 6.4: Comparison of the classical noise spectrum of a single beam (green) to the
differential measurement (blue). Differential detection suppresses the classical noise by
up to 20 dB, agreeing well with the independently measured shot-noise limit (red). Mea-
surement RBW was 300 Hz, reference level was−60 dBm. Note that the SQL has not been
corrected for gain roll-off at high frequencies.
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Figure 6.5: Measured noise power for balanced photodetection is observed to be linear
in incident beam power, showing that the quadratic contribution from classical noise has
been cancelled and the measurement is shot-noise limited as per (6.3).

6.4: Electro-optic BEC calibration
The polarimeter was calibrated with an ‘electro-optic BEC’, a cylinder of terbium-glass
placed inside a solenoid. Terbium glass has a high Verdet constant, estimated to be
V = −72 rad/T·m at λ = 790 nm, enabling it to generate a large Faraday rotation upon
light travelling through it. The polarisation rotation induced by a piece of such glass
length l placed in a magnetic field of strength B is

∆θ = VBl. (6.5)

The terbium-glass cylinder was placed in a solenoid of diameter 6 mm constructed
with N = 140 turns in a length of l = 60 mm. The field well inside the solenoid is then

B =
µ0NI

l
, (6.6)

where I is the driving current. The coil was not impedance-matched to the current
source, so a sense resistor (Rs = 1.7 Ω) was used to measure the current in the coil by
recording the voltage across the resistor.

The Wollaston prism split the beam into polarisation components so that the pho-
todetector measured the polarisation rotation from the terbium-glass (Figure 6.6). The
solenoid was driven with a function generator (TABOR WS8102) creating a sine-wave
with adjustable frequency.6 The photodetector output was measured on an HP 4395A

6 The drive amplitude was kept to 100 mVrms to limit the peak current to 1 mA and prevent Joule
heating from damaging the narrow-gauge coil wire.
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Figure 6.6: Optical schematic for the ‘electro-optic BEC’. A terbium-glass cylinder is
wrapped in a solenoid which is driven by an AC current source, inducing a Faraday
rotation on the transmitted light beam as measured by the differential photodetector. A
VNA records the photodetector output (port A) and normalises to the current in the coil
measure through the sense resistor Rs (port R).

vector network analyser (in spectrum analysis mode), with a clear peak observed at
the drive frequency (Figure 6.7).

The frequency response of the photodetector was calibrated with the VNA (in ‘A/R’
network mode) to sweep the drive frequency while measuring the strength of the
resulting Faraday signal (Figure 6.8). Network analysis simultaneously measures the
response of the detector (A) and the voltage across the sense resistor (R) and takes
the ratio of the two to normalise the measured Faraday rotation to the current flowing
through the coil to correct for the frequency-dependence of the coil impedance.

The detector displays a linear response at low frequencies and rolling-off at higher
frequencies, with a 3 dB point at 600 kHz.7 This reduced gain results in less signal
at higher Larmor frequencies, but for a shot-noise-limited measurement the SNR re-
mains the same as the shot-noise is also subject to reduced gain. However, if the gain
is reduced too far the measurement will be dominated by the electronic noise floor.

To estimate the sensitivity of the polarimeter, we equate (6.1) and (6.3) to find that the
smallest measurable rotation with a measurement bandwidth ∆f is

θmin =

√
e∆f

2RκP
. (6.7)

For P = 5 mW, ∆f = 1 kHz and κ = 0.9 this gives θmin ∼ 10−7 rad, comparing
favourably to the estimated (whole cloud) Faraday rotation θ ∼ 10−5 rad from (3.4).

7 The measured bandwidth is significantly lower than the expected 1.2 MHz bandwidth of the trans-
impedance amplifier (see §6.2). Initial investigations did not resolve the discrepancy and were aban-
doned once construction of the new detector (see §6.5) was complete.
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Figure 6.7: Example of the calibration possible using the electro-optic BEC. Driving the
solenoid with a function generator at 800 kHz generates an oscillating polarisation ro-
tation in the propagating beam which appears as a clear peak in the measured power
spectrum, 20 dB above the noise floor. RBW was 300 Hz, reference level was −60 dBm.
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Figure 6.8: Measurement of photodetector bandwidth by driving the electro-optic BEC
with a VNA, showing the response rolls off with a 3 dB point of 600 kHz (dashed lines).
Driving the coil at different powers varies the magnetic field strength inside the coil,
showing the response is linear across multiple orders of magnitude. RBW was 300 Hz.
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6.5: Revised photodetector design

Prior to the selection of the magic wavelength (790 nm) as the detuning of the Fara-
day probe, the level of trap perturbation induced by the probe beam (see §2.3) was a
primary concern for minimally destructive Faraday measurement. The dipole force in-
duced by the probe would ‘squeeze’ the BEC and result in non-trivial time-evolution,
so the beam power should be as low as possible to minimise the perturbation.8

Similarly, a Faraday beam with wide waist at the BEC reduces the intensity gradient
across the cloud (and hence the dipole force),9 although only a small fraction of the
probe passes through the BEC, wasting most of the beam power. The components of
the initial photodetector constructed for this project were therefore chosen for their
noise properties, to permit Faraday measurements at low probe powers [181].

However, detuning to the magic wavelength removes this restriction, with the only
technical considerations on probe power arising from the photodiode damage thresh-
old and total power available from the Faraday laser.10 This encourages measuring
in the ‘bright beam’ regime using a modified photodetector design with larger-area
photodiodes for increased saturation/damage threshold powers.

Although the larger area photodiodes have higher capacitance, the cutoff frequency
remains well above the Larmor frequency. The limiting factor on the photodetec-
tion bandwidth is bandwidth of the transimpedance amplifier, which is set by the
op-amp used and the chosen feedback resistor. Bright beam measurement enables a
different op-amp to be chosen for transimpedance amplification with increased gain-
bandwidth product, even increasing the photodetection bandwidth beyond that of the
initial design. Furthermore, the second-stage amplifier which was intended as a line-
driver can apply additional gain to match the amplitude of the Faraday signal to the
dynamic range of the digital acquisition system (see §6.6).

A second-generation detector was designed and constructed by P. Pakkiam to achieve
these goals, with the differences summarised in Table 6.1. Full characterisation of the
new detector using the electro-optic BEC including details on design, construction,
noise and common-mode rejection ratio (CMRR) analysis, is presented in the Honours
thesis of P. Pakkiam [173]. The results in subsequent chapters were captured using this
second-generation detector.

8 Not only is shot-noise-limited photodetection technically challenging at low light levels, but the
detuning must also be reduced to maintain the same SNR, provided the far-detuned limit is obeyed for
the polarisability expansion (§2.1) to be valid.

9 Beam-shaping techniques such as spatial-light modulation (SLM) or shaped beam diffusers (like
the THORLABS ED1-C series) could also be used to produce a ‘top-hat’ intensity profile to reduce the
intensity gradient, but these were not available at the time.

10 Note that since detuning is fixed by setting λ = 790 nm, adjusting the beam power is the only way
to directly control the scattering rate and hence the measurement signal to noise (see §3.3). At present the
scattering rate is low (see §5.9) and is limited by the available laser power and transmission efficiency.
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First generation Second generation
Fabrication technique Breadboard PCB
Photodiode Hamamatsu S5971 Hamamatsu S1223-01
Active area 1.1 mm2 13 mm2

Maximum optical power 6 mW 13 mW
Capacitance at -20 V bias 6 pF (300 MHz BW) 20 pF (20 MHz BW)
Transimpedance amplifier OP470 ADA4898
Transimpedance gain 5.11 V/mA 1.0 V/mA
Second stage gain 2× (DC coupled) 100× (AC coupled)
Measured bandwidth 600 kHz 8 MHz
Noise-equivalent power 20 µW 140 µW

Table 6.1: Comparison of the properties of the first- and second-generation differential
photodetectors used for Faraday measurement.

6.6: Data acquisition
The analog signal produced by the photodetector is digitised by an analog-digital con-
verter (ADC) for post-processing. In accordance with the Nyquist theorem, the acqui-
sition rate of the digitiser should be at least twice the Larmor frequency, fS > 2fL, to
avoid aliasing and enable direct observation of the signal. The capabilities of the data
acquisition card therefore limit the maximum strength of the bias magnetic field.

For these experiments a NATIONAL INSTRUMENTS PCIE-6363 DAQ was used, which
has a maximum acquisition rate of fS = 2 MS/s in single-channel mode.11 The Nyquist
frequency is therefore 1 MHz, which is ample for sampling at the desired bias field
strength of 1 G (fL = 700 kHz).

Measurement at stronger bias fields, for which the Larmor frequency is greater than
the Nyquist frequency, is also possible using super-Nyquist sampling [182, 183, 184].
The Faraday signal in this instance will be under-sampled (aliased), producing an
‘image’ signal that appears at the reduced frequency12 fS − fL. Typically the ADC has
a limited bandwidth (or an anti-aliasing filter) to avoid aliasing noise at higher fre-
quencies into the measurement, limiting the maximum Larmor frequency. The small
signal bandwidth of the PCIE-6363 has a −3 dB point of 1.7 MHz [185], permitting
bias fields of up to 2.4 G to be used.

However, the roll-off of the photodetector’s transimpedance gain also produces an
upper limit on the maximum possible bias field. The first-generation detector rolls off
at 600 kHz, which limits the maximum bias field strength more than the ADC sam-

11 In multi-channel mode, the maximum aggregate sample rate across all channels is 1 MHz, which
inhibits the simultaneous capture of diagnostic measurements.

12 For signals in the ‘second Nyquist zone’, 1
2
fS < fL < fS , though similar relations exist for higher

frequencies.
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pling rate, whereas the second-generation detector extends the roll-off to 8 MHz [173].
Making use of the stronger bias fields permitted by this higher detector bandwidth
(up to 11 G) would require a much faster ADC card,13 though the present work does
not consider such high bias values.

It is also important that the signal be amplified to take full advantage of the dynamic
range of the acquisition card, to prevent quantisation noise from affecting the mea-
surement. A STANFORD SR560 variable gain pre-amplifier was used to apply a gain
of 20× to match the signal out of the photodetector with the ±10 V input range14 of
the PCIE-6363 and minimise the effect of quantisation noise.

It should be noted that polarisation drift can cause the input to clip the voltage range
of the acquisition device over the course of the experiment, particularly if the post-
amplification gain is too high. The polarimeter therefore needs to be periodically re-
balanced to eliminate the DC offset of the signal by adjusting the λ

2 -waveplate. Typi-
cally the raw photodetector output can be zeroed to within 20 mV, though the wave-
plate typically needs adjusting every ∼ 15 min to prevent drifting beyond 100 mV.

An autobalancing photodetector [128] is capable of automatically ‘rebalancing’ this
measurement, by generating zero output signal even when the optical power on each
photodiode is not exactly equal. It contains an electronic servo loop that eliminates
slow polarisation drift in the polarimeter and further reduces the influence of com-
mon mode intensity fluctuations. Although such an autobalancing detector was con-
structed, it was not successfully integrated into the apparatus because of difficulty in
reliably locking the servo loop. Manual rebalancing of the polarimeter by adjusting
the λ

2 -waveplate proved successful enough to advance the project, though fixing the
autobalancer is an extension to the present work.

With the required components to perform continuous Faraday measurement assem-
bled, next I will describe the tools to analyse and process the measured signal.

6.7: Structure of the Faraday signal
The high-precision polarimeter is highly sensitive to long-term drifts in the polarisa-
tion of the probe beam, so the raw signal shows fluctuations over timescales on the or-
der of hundreds of milliseconds (Figure 6.9). A Glan-Laser polariser in the probe beam
before the cell purifies the polarisation state leading to the atoms, though small resid-
ual perturbations are detected by the polarimeter. These fluctuations are primarily
due to ambient temperature variations affecting the PM-fiber (see §5.3). Further fluc-

13 An ALAZARTECH ATS9626 250 MS/s 16-bit DAQ was purchased for this purpose, and will be
integrated into the control hardware in the near future.

14 Although the PCIE-6363 supports input voltage ranges down to ±0.1 V, these are not currently
implemented in the current generation of the experiment control system.
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Figure 6.9: A typical polarimeter measurement of the raw Faraday signal, showing slow
(. 10 Hz) drift due to probe beam polarisation fluctuations. The Faraday signal is buried
under the shot-noise.

tuations arise from switching on the bright probe beam, which causes a small amount
of heating in the polarisation optics between the polariser and atoms.

Fortunately, the slow timescale of these perturbations compared to the oscillation
(Larmor) frequency means they are easily removed by filtering out the low-frequency
components of the signal. The Faraday signal itself exists in a narrow frequency band
(∼ 10 kHz wide) around the Larmor frequency (∼ 700 kHz), so a band-pass filter can
be applied to eliminate the low-frequency drift,

VF (t) = F−1 [W (f − fL) ·F [V (t)]]

with W (f) =

H
(

1
2 + f

fR

)
for |f | ≤ fR

2

0 otherwise,

(6.8)

where fL is the Larmor frequency, fR = 10 kHz is the filter bandwidth, and H is the
window function (typically the Hanning window [186]) . This has the added advan-
tage of both eliminating narrow-band noise in other frequency bands (such as power
supply noise), and reducing the contribution from spectrally broad noise sources (such
as shot-noise and Johnson noise). The resulting signal is clearly visible above the noise
floor (Figure 6.10A).

The BEC is exposed to the probe laser at t = −20 ms to ensure any switch-on tran-
sients in the polarimeter and the probe AOM do not affect the measurement. The
polarimeter output shows white noise corresponding to the shot-noise on the beam
for the first 20 ms, giving a measure of the shot-noise level. At t = 20 ms an rf π2 -pulse
is applied and the spin is tipped into the x–z plane, resulting in Larmor precession and
the generation of a Faraday signal at the Larmor frequency. Coherent spin dephasing
then occurs and the signal ‘decays’ over the first 50 ms (Figure 6.10B), after which non-
trivial spin-dynamics dominate and the signal demonstrates multiple collapses and
revivals (discussed later in §7.4 and §7.9).
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Figure 6.10: Fourier-filtered polarimeter measurement, with a band-pass filter of width
10 kHz applied around the Larmor frequency of 695 kHz (top), a close-up of the first
50 ms (middle), and the extracted envelope (bottom), giving a fitted decay constant of
19.4(4) ms. The shot-noise level is characterised by the signal envelope for t < 20 ms.

The Faraday signal oscillates at the Larmor frequency, with an amplitude describing
the total magnetisation of the BEC. A loss of magnetisation can occur due to losing
atoms from the trap, dephasing of the frequency components, spatial separation of the
cloud, or other modulation of the transverse spin length. The envelope of the signal
VE(t) can be extracted by applying the Fourier shifting theorem to the measured signal
to remove the rapid Larmor oscillation,

VE(t) = F−1
[
W (f) ·F

[
e−2πifLtV (t)

]]
. (6.9)

This gives a measure of the amplitude of the Faraday signal over time, which can
be fit (see §3.5) to give the dephasing rate (Figure 6.10C). Significantly, the ampli-
tude remains greater than the shot-noise level for the duration of the measurement,

106



demonstrating Zeeman coherence and continuous spin projection measurement over
the entire interval.

Extraction of the signal envelope also provides a method for averaging multiple shots
together. The phase of the Larmor oscillation is sensitive to small fluctuations in the
magnetic field during the experiment, so even identical experimental sequences will
not give Faraday signals that remain in phase with each other. Combining the raw
measurements will therefore average out to zero. In contrast, averaging the envelopes
allows the signal amplitude to be determined more precisely.

6.8: Short-time Fourier transform analysis
The Faraday signal in a magnetic field gradient contains a range of different Larmor
frequencies that correspond to different positions in the BEC. Each frequency compo-
nent has a time-dependent amplitude that describes the spatial structure of the cloud
and dynamics which are occurring. The filtered time-domain signal describes the
cloud as a whole, but decomposing the Faraday signal into its Fourier components
enables observation of the time-dependence of the spatial distribution.

Short-time Fourier transform (STFT) analysis is a useful way to study how the am-
plitude of the Fourier components of the signal vary over time. The STFT algorithm
divides the raw signal into a number of segments called ‘windows’, and takes the
Fourier transform each window to obtain its frequency spectrum. Stitching the power
spectrum of each window together produces a spectrogram which shows how the
spectral components change over time (Figure 6.11). Applying the STFT algorithm
to the Faraday signal provides information about the time evolution of the Larmor
signal, and separates it from the background noise at other frequencies (Figure 6.12).

The spectrogram enables a clear distinction to be made between noise sources. In
particular, wide-band shot and flicker (1/f ) noise can be separated from noise peaks
due to power-supplies (primarily appearing between 200–400 kHz) which appear as
horizontal lines in the spectrogram. The time-independence of these contributions
delineates them from the signal at 695 kHz, which only appears at t = 20 ms when the
π
2 -pulse occurs, and fades as the Faraday signal dephases.

Zooming in on the spectrogram about the Larmor frequency (Figure 6.13) shows a
rich signal with non-trivial structure. In particular, peak brightness corresponds to the
instantaneous Larmor frequency at a given time, and its amplitude gives the strength
of the Faraday rotation. Immediately it can be seen that the Larmor frequency varies
approximately sinusoidally at the power line frequency (50 Hz). This corresponds to
magnetic field fluctuations at the position of the atoms introduced by power supplies
located near the science chamber. These deviations are small (< 0.1%) but can be
easily measured and corrected to demodulate the signal (discussed in §7.2).
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Figure 6.11: Schematic of the STFT algorithm. The signal is divided into sections of equal
length called ‘windows’ which are individually Fourier-transformed and stacked together
to form a spectrogram.
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Figure 6.12: Spectrogram showing the STFT of a typical measurement. Flicker (1/f ) noise
is evident at low frequencies, with white noise dominating at high frequencies. The hori-
zontal bands correspond to noise pick-up at particular frequencies, but the much brighter
line near 700 kHz is the Faraday signal. Window size 5 ms.
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Figure 6.13: Close-up of the STFT spectrogram of Figure 6.12 about the Larmor frequency,
showing amplitude and frequency modulation of the signal.
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6.9: Overlapping and oversampling

The spectrogram can be made easier to interpret by oversampling it in both the time
and frequency domains, which interpolates the spectrogram and makes its features
clearer. Oversampling in the time domain is achieved by dividing the signal into fur-
ther windows that partially overlap with each other (Figure 6.14). This provides a
finer-grained interpretation of the time-dependence of the associated Fourier spectra,
although the windows are not independent so the resolution has not been increased.

Oversampling can be achieved in the frequency domain by zero-padding each win-
dow. This increases the number of data points in each window, which causes the FFT
to interpolate the resulting spectrum (Figure 6.15). Adding zeros adds no new infor-
mation to the window, so the resolution of the Fourier spectrum is still fundamentally
limited by the window size.

As the fundamental resolution of the spectrogram is changed by neither overlapping
nor zero padding, the resulting interpolated spectrogram will demonstrate blurring.
However, it is still advantageous to interpolate to reduce pixellation of the spectro-
gram and track the signal in both time and frequency space (Figure 6.16).

6.10: Role of window size

In the STFT analysis, each vertical slice of the spectrogram is obtained by taking the
Fast Fourier Transform (FFT) of a subset of the signal. The number of datapoints in
each of these subsets is the ‘window size’ Nw, which is a free parameter. The funda-
mental (uninterpolated) resolution of the spectrogram in the frequency domain is

∆f = Rs/Nw,

where Rs is the sample rate of the original acquisition. Choosing a large window
therefore increases the resolution in the Fourier domain but effectively time-averages
more of the signal together, decreasing the resolution in the time domain. This be-
haviour is known as the Gabor limit [187], which is the signal-processing analog of
the Heisenberg uncertainty relationship, stating that a signal cannot be localised in
both time and frequency to arbitrary precision.

It is therefore important to choose a window size that permits observation of dynam-
ics over the timescale of interest. In the case of frequency-modulated signals, the res-
olution in frequency space must be small enough to resolve the frequency deviation,
while the resolution in the time domain must be small enough to resolve within the
frequency modulation cycle. For the power line modulation observed in the Faraday
signal, a window size of 5 ms balances this tradeoff (Figure 6.17).
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Figure 6.14: Time domain oversampling of the STFT is achieved by dividing the signal
further into windows that overlap, resulting in Fourier transforms at more time points
over the same interval.
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Figure 6.15: Frequency domain oversampling of the STFT is done by zero-padding (black
boxes) each windowed subset of the signal, causing each Fourier transform to contain
more points and resulting in interpolation.

Figure 6.16: Comparison of the first 300 ms of a Faraday signal analysed using a standard
STFT with window size 5 ms and sampled at 5 ms/200 Hz (top), against the same STFT
10x oversampled at 0.5 ms/20 Hz (bottom).
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Figure 6.17: Comparison of spectrograms centred on the Larmor frequency for STFTs
with varying window size (A)–(F). Note that windows that are too short/long lead to
spectrograms that are ‘smeared’ vertically/horizontally. Spectrograms are oversampled
at 1 ms/20 Hz intervals for consistency.
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6.11: Summary
This chapter detailed the high-precision polarimeter used to measure polarisation ro-
tation of the Faraday probe beam. Design considerations of the custom photodetector
used to measure the Faraday signal were discussed, and the sensitivity quantified in
terms of the measured noise floor.

A Faraday signal produced by a BEC in a uniform magnetic applied field was cap-
tured and methods to analyse it were considered. Fourier filtering in the time-domain
provided a way to extract the signal envelope, showing collapse and revival of the
Faraday rotation signal from a BEC. A spectrogram was constructed using short-time
Fourier transforms, which showed the time-dependence of the frequency components
of the signal, indicating the presence of both amplitude and frequency modulation.
The roles of oversampling and window size in the STFT analysis were considered,
and optimised to be representative of the structure observed in the Faraday signal.

The Faraday signal can now be used as a measurement tool to infer properties about
the atoms, magnetic field, and probe beam. I will next characterise and optimise the
signal in preparation for using it to image the BEC.
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7
Signal calibration and optimisation

In this chapter I analyse the Faraday signal obtained from a BEC in further detail and
discuss its features. The signal is then used as a diagnostic to determine a microwave
Rabi frequency, the optimal microwave detuning to eliminate the quadratic Zeeman
effect, and the optimal probe polarisation to eliminate the vector light shift.

7.1: Magnetic field calibration

The magnetic field coils used to generate the bias field for the Faraday measurement
are powered by a multi-channel homemade voltage-controlled current source built
in-house called the ‘Mag-neat-o’. The coils are rectangular-form solenoids in approx-
imately Helmholtz configuration, producing a nearly uniform magnetic field at the
position of the atoms. However, the net magnetic field at the position of the atoms
is the vector sum of the generated field and the ‘ambient’, or ‘background’ magnetic
field, which cannot be precisely determined from ex vacuo measurements.

Using the Faraday measurement to characterise the background and applied fields en-
ables direct observation of their effect on the atoms. This calibration can be performed
by measuring the Larmor frequency of the atoms at a range of control voltages, since
the Larmor frequency depends solely on the net magnetic field at the position of the
atoms.

In the case of a magnetic field bias in the y-direction with the control voltages for the
other components set to null the background field, the net magnetic field strength is

|B| ≡ Bnet =
√
B2
x +B2

y +B2
z ≈ |By|+

B2
⊥y

2By
, (7.1)

whereB2
⊥y = B2

x+B2
z � By is the residual background field perpendicular to the bias

By. Applying a voltage Vy to the transinductance amplifier driving the y-coils results
in a net magnetic field primarily directed along the component By, where

By = αyVy +By0. (7.2)
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Here αy is the calibration of the y-coils1 andBy0 is the y-component of the background
field. Provided the field generated by the coils opposes the background field, the
control voltage required to null this field component is therefore

Vy,null = −By0/αy. (7.3)

In the linear Zeeman approximation, the Larmor frequency can be expressed in terms
of the voltage applied to the bias coils Vy-bias using (3.5) as

ωL ≈ γ|By| = γαy|Vy − Vy,null|. (7.4)

The coil calibration can therefore be obtained by measuring the centre frequency of
the Faraday signal for different field strengths as produced by varying the coil control
voltage.

It should be noted however that varying the bias magnetic field strength in this way
changes the Larmor frequency and causes the rf π

2 -pulse to become off-resonant. As
the magnetic field strength is varied over a large range, the fidelity of the spin tip is
greatly reduced, resulting in a Faraday signal with vanishing amplitude and making
the centre Larmor frequency difficult to determine.

The pulse parameters can be optimised at any given control voltage by setting the
frequency fπ/2 to the estimated/measured Larmor frequency and varying the pulse
duration tπ/2 to achieve the spin tip. A successful π2 -pulse is realised in a y-bias when

〈Fy〉 =
N+1 −N−1

N
= 0, (7.5)

as observed by measuring the Zeeman substate populations in the Stern-Gerlach sepa-
rated absorption image. Typically our rf coil achieves a Rabi frequency2 of Ω = 17.6 kHz
with a π

2 -pulse achieved when tπ/2 = 14.2 µs and fπ/2 = 700 kHz in a y-bias.

Provided there is an approximate existing calibration for the bias coils, the magnetic
field strength can be estimated for any set of control voltages. This allows the fre-
quency of the rf pulse to be estimated for each control voltage with the linear Zeeman
effect (derived in §7.6) via (7.23) as

fπ/2 ≈ (702 kHz/G) ·Best . (7.6)

Because the Larmor frequency is being swept over such a large range (50–700 kHz),
the rf Rabi frequency does not remain constant. However, neither the pulse frequency
nor duration need to be accurate as the centre Larmor frequency can be determined
from the Faraday spectrogram even for an imperfect pulse.3

1 The calibration factor αi (units G/V) for each coil pair is the product of the transconductance gain
of the Mag-neat-o (in A/V) and the magnetostatic factor (units G/A) that depends on the geometry of
the coils.

2 Note that the rf Rabi frequency depends on the coil alignment relative to the magnetic field bias.
3 Recall from §2.5 that the Faraday signal is proportional to the transverse spin length, so an imperfect

π
2

-pulse results in a partially-tipped spin and reduced signal amplitude by (2.33).

114



Setting the x- and z-coils to null their corresponding components of the background
field,4 the measured Larmor frequency as a function of y-coil control voltage shows
a linear dependence (Figure 7.1). The quality of this fit demonstrates that the re-
sponse of the Mag-neat-o and coils is indeed linear at these drive currents. From this
measurement, the calibration of the y-coil was found to be αy = 2.134(6) G/V and
By0 = 352(2) mG.

It is also possible to perform the coil calibration without requiring that the perpen-
dicular magnetic field components be nulled with the other coils. This removes the
requirement to first perform vector magnetometry to determine the background field,
and eliminates cross-coupling between calibrations. This is especially useful when
the background field drifts intermittently (day-to-day), as is common to many ambi-
ent laboratory settings.

By taking the square of the Larmor frequency, the terms corresponding to the compo-
nent of interest can be separated from the other components. For example, the x-coil
can be calibrated by expressing the Larmor frequency as

(ωL/γ)2 = B2
net = B2

x +B2
y +B2

z

= (αxVx +Bx0)2 + (αyVy +By0)2 + (αzVz +Bz0)2

= α2
xV

2
x + 2αxBx0Vx +

[
B2
x0 + (αyVy +By0)2 + (αzVz +Bz0)2

]
= aV 2

x + bVx + c, (7.7)

where a, b and c are constants obtained by fitting B2
net = (ωL/γ)2 as a quadratic in Vx.

4 The background-nulling voltages were originally measured with Ramsey interferometry [188].
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Figure 7.1: Measuring the Larmor frequency of the Faraday signal for different applied
y-bias coil voltages provides a direct calibration of the magnetic field strength produced
by a given coil voltage.
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The calibration constants can then be computed as

αx =
√
a, Bx0 =

b

2
√
a
, Vx,null =

b

2a
, (7.8)

independent of the magnetic field strength in the y- or z-directions.

Performing this analysis on the three bias coil pairs (Figure 7.2) shows strong ad-
herence to the model even when the perpendicular background fields are not nulled
(demonstrated in the x- and z-coil measurements). Furthermore, the nulling voltage
can still be determined even if it is beyond the range of control voltages available (as
in the case of the z-coil). The fitting coefficients are then used to compute the coil
calibration as per (7.8), to obtain the values in Table 7.1.

One primary advantage of this method is that the high quality of the quadratic fit
results in small uncertainties on the fit coefficients, and hence provides precise esti-
mates for the calibration parameters. It also significantly reduces the time taken to
determine the calibrations αi and the background fields Bi0 as compared to the con-
ventional approach of measuring Rabi spectra via Stern-Gerlach absorption imaging,
which typically requires ∼ 15 shots to measure B for one set of control voltages. An-
other benefit is it is calibration free and doesn’t suffer from resonance shifts that may
be present when using rf Rabi spectroscopy to determine ωL and thus B.

7.2: Measuring and correcting power-line modulation
The spectrogram of the Faraday signal (§6.8) shows that the Larmor frequency ap-
pears to oscillate approximately sinusoidally at the power line frequency of 50 Hz.
These small frequency deviations are produced by magnetic field fluctuations at the
position of the atoms causing frequency modulation of the Faraday signal. The fluctu-
ations in the magnetic field originate in electronic components (such as power supply
transformers) that are located near the unshielded science chamber.

The corresponding magnetic field fluctuations are expected to have components at
odd harmonics of the fundamental supply frequency [189] of 50 Hz, making it pos-
sible to fit and remove the variations in post-processing. The modulation is fitted by
extracting the centre Larmor frequency at each time using a simple weighted estimator
of the centroid,

fL(t) =

∑
i fiy

2
i∑

i y
2
i

, (7.9)

where yi = STFT{t, i} is the value of the ith frequency bin of the STFT slice at time t,
and fi is the centre frequency of the ith bin. This extracts the time-dependence of the
Larmor frequency, which can then be fit with a sum of 50 Hz harmonics to model the
frequency modulation. In practice it is sufficient to use only the first two terms in the
harmonic expansion to model the behaviour,

fL(t) = fL0 +A50 sin(2π × 50t− φ50) +A150 sin(2π × 150t− φ150). (7.10)
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Figure 7.2: Calibration of each bias coil pair using the net magnetic field without requir-
ing transverse components of the field to be nulled. The measured field is quadratically
related to the control voltage, in good agreement with (7.7).
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Figure 7.3: Residuals of the quadratic coil fit showing the accuracy of the fit, expressed
in terms of the error in the predicted value ∆Bfit = (B2

fit − B2
net)/2Bnet. The RMS error is

700 µG.

Coil Calibration, αi (G/V) Background field, Bi0 (mG) Nulling voltage Vi,null (mV)

x 2.502(1) 526.3(8) 210.3(4)

y 2.130(2) 351(1) 164.8(7)

z 0.772(5) 683(1) 885(7)

Table 7.1: Bias coil calibration factors as measured using the quadratic fit method.
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Extracting the time dependence of the Larmor frequency in this way yields an accurate
depiction of the frequency modulation, and the resulting model fits the extracted data
well (Figure 7.4).

The magnetic field induced by the power line variations has a different amplitude and
harmonic composition in different directions [190]. From (7.1) the Larmor frequency
can be expressed in terms of the components parallel (‖) and perpendicular (⊥) to the
bias field as

ωL ≈ γB‖ +
γB2
⊥

2B‖
. (7.11)

Since B‖ � B⊥ by choice of the bias field, the second term is heavily suppressed
and the Larmor frequency is only sensitive to the component of the power line noise
parallel to the bias field.

The structure of the frequency modulation is therefore expected to depend on the
direction of the bias field. Indeed distinct differences in the structure of the Larmor
signal are observed with the bias field oriented5 along x′ instead of y (Figure 7.5).
Notably the amplitude of the fluctuations is increased with the bias along x′, and the
contribution of higher harmonics of the line frequency are evident (Table 7.2).

Bias fL (kHz) A50 (Hz) A150 (Hz) φ50 (rad) φ150 (rad) ∆Bac (µG)

y 695.841(3) 131(4) 44(4) −0.23(3) −2.53(9) 235(11)

x′ 603.567(3) 464(4) 169(4) 2.16(1) −1.54(2) 860(11)

Table 7.2: Comparison of fit parameters of (7.10) for Figure 7.4 and Figure 7.5, quantifying
power line modulation in a y-bias and an x′-bias. Note that the long interrogation time
produces a precise estimate for the centre Larmor frequency fL. ∆Bac is the maximum
magnetic field deviation, taking into account the phase of the components.

The fitted Larmor frequency modulation can then be used to demodulate the spec-
trogram and more easily visualise how the signal changes over time. The bins of the
spectrogram can be shifted to line up the instantaneous Larmor frequency with the
centre Larmor frequency. This works well when the frequency slew rate is low (e.g.
Figure 7.4C), but when the frequency modulation is larger, distortions are observed in
the demodulated spectrogram (e.g. Figure 7.5C). In this case, the frequency is chang-
ing so rapidly that it crosses multiple frequency bins of the spectrogram, causing de-
modulation to incorrectly convert frequency modulation to amplitude modulation.

This can be corrected using a Matched Filter analysis [191], since the frequencies are
known but the amplitudes and phases are not. This would even enable demodulation
of the Faraday signal for swept-field measurement (e.g. AC magnetometry). Although
we are currently pursuing this form of analysis, it is outside the scope of the present
work.

5 The axes are defined in §8.1, though power line variation is observed for any bias orientation.
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(A)

(C)

(B)

Figure 7.4: STFT of Faraday signal in a y-bias (A), showing the centre Larmor frequency
changing in time. The extracted peak positions (B) are fit using (7.10) and used to demod-
ulate the signal (C) and obtain a constant Larmor frequency.

(A)

(C)

(B)

Figure 7.5: STFT showing frequency modulation of the Faraday signal in an x′-bias (A).
The structure of the signal is different to a y-bias (Figure 7.4), but the centre Larmor fre-
quency (B) is still accurately modelled by (7.10). The demodulated signal (C) shows resid-
ual ‘glitches’ where the frequency modulation rate of change is greater than the analysis
bin size.

119



Note that the line noise fit is sensitive to the phase of the power line at the start of
the experiment. Despite using a power line synchronisation system to synchronise
the experiment to the power line cycle [138], the fit is sensitive to residual jitter in the
power line harmonic composition and shot-to-shot fluctuations in the fit phase of 0.2
radians were common.

7.3: Blurring from power line modulation
The magnetic field fluctuations induced by the power line causes modulation of the
Larmor frequencies of the BEC. Since frequency is linked to position in the Fourier
imaging analysis (§3.2), this modulation is interpreted as motion of the atoms if unac-
counted for, causing an effective blurring of the image.

Despite containing higher harmonics, the power line modulation can be approxi-
mately modelled as sinusoidal at the line frequency fm = 50 Hz with a total frequency
deviation of f∆. The Larmor frequency fL(t) is then

fL(t) = fL0 + f∆ sin(2πfmt). (7.12)

In the worst-case scenario, the measurement will coincide with a zero-crossing of the
sine term. This is where the gradient is steepest, causing the biggest frequency sweep
across the measurement interval, and hence producing the most pronounced blurring.

For measurement intervals τ much shorter than the power line period (τ � 20 ms) the
frequency deviation ∆fac can be linearly approximated as

∆fac ≤ 2πfmf∆τ. (7.13)

Conversely, if the measurement time is comparable to the period of the power line
cycle or longer (τ & 20 ms), an entire cycle of the modulation is sampled and the
deviation is bounded above by

∆fac ≤ f∆. (7.14)

Using (3.15) to relate frequency to position, an upper bound on the blurring is

∆zac =
2π∆fac

γb
where ∆fac =

2πfmf∆τ for τ � 20 ms

f∆ otherwise.
(7.15)

Note that τ = τf for a Faraday image reconstruction, and τ = twindow for an STFT
analysis so different levels of blurring are expected for different analyses of the same
data.

Based on these results, blurring can be reduced by selecting large gradients and small
measurement times, which is the same conclusion reached in §3.9 to minimise Stern-
Gerlach blurring. However, a specific timescale of τ � 20 ms is imposed here, which
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requires b � 0.1 G/cm by (3.36) to prevent Stern-Gerlach blurring dominating the
resolution of the image. Furthermore, the strength f∆ of the power line noise was
seen to be dependent on the direction of the bias field, and so too is the resulting
degree of blurring (Figure 7.6).

The power line noise therefore introduces a non-negligible degree of blurring to the
Faraday imaging process. For rapid measurements, the blurring can be reduced by
synchronising the experiment to expose the Faraday beam at the extrema of the power
line cycle, where the frequency deviation is large but changes slowly over the dura-
tion of the measurement. Another approach is to use external coils to synthesise an
opposing magnetic field to actively cancel the power line noise [192, 193]. However,
the field induced by the power line has components in all directions which would
require multiple sets of coils to cancel completely.

7.4: Effect of probe polarisation
The Faraday measurement itself is relatively insensitive to the polarisation state of the
probe beam, as any elliptical component in the probe beam polarisation state simply
decreases the contrast observed at the polarimeter. However, this elliptical component
also results in a vector light shift (VLS) that creates an effective magnetic field affect-
ing the evolution of the atomic state being observed (§2.6) and should be minimised
wherever possible.
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Figure 7.6: Worst-case power line blurring (∆fac = f∆) as computed with (7.15) for vary-
ing magnetic field gradient strength in two orthogonal bias directions. Other blurring
factors (Fourier/Stern-Gerlach) not considered.
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Although it is straightforward to create a beam with pure linear polarisation in free-
space using high-extinction polarising optics, the windows of the glass cell science
chamber exhibit birefringence. A linear polarisation before the cell is therefore turned
into an elliptical polarisation at the position of the atoms, resulting in unintended evo-
lution of the condensate spin (see §2.6). It is therefore necessary to apply an opposite
birefringence in advance, to counteract the ellipticity induced by the cell.

Unfortunately, cancelling the birefringence of the cell window is non-trivial as it is not
possible to directly measure the polarisation state inside the vacuum chamber, and
the beam experiences further birefringence as it exits the cell. The only way to reliably
determine the polarisation state of the probe beam inside the chamber is to interrogate
the atoms themselves.

Placing a quarter-waveplate before the cell (§5.2) allows control of the ellipticity of the
beam by adjusting its angle of rotation θ. If the light is linearly polarised within the
cell when the waveplate is rotated to angle θ0, then the ellipticity of the beam can be
expressed through the Stokes parameter Ŝz as

〈Ŝz〉 ∝ sin(2(θ − θ0)), (7.16)

where 〈Ŝz〉 = 0 represents linearly polarised light. The vector light-shift acts as an
effective magnetic field in the direction of propagation of the beam (§2.6), so the net
magnetic field along the propagation direction is

Bz = Bz0 +Bvls sin(2(θ − θ0)), (7.17)

where Bz0 is the background magnetic field in the z-direction, and Bvls is the magni-
tude of the maximum induced light shift (for purely circular polarisation).

Capturing the Faraday signal for various rotation angles (Figure 7.7) demonstrates
how the polarisation state of the probe affects the atoms. Note that the both centre
Larmor frequency and the structure of the signal change with θ.

This is because the VLS not only changes the net magnetic field strength, but the trans-
verse intensity profile of the beam results in an effective magnetic field gradient,

∂Bvls

∂r
∝ ∂I(r)

∂r
sin(2(θ − θ0)) 6= 0. (7.18)

Collapse and revival of the Faraday signal occurs on a timescale set by the net magnetic
field gradient, with contributions from the background field gradient, applied gradi-
ent, and VLS gradient.6 There is potential to generate a strong effective magnetic field
gradient using VLS, which could be useful for improved imaging resolution (§3.9).

6 The Faraday probe beam comes to a focus at the BEC so there is also an effective longitudinal mag-
netic field gradient ∂Bvls

∂z
6= 0 that contributes to dephasing. The strength of this gradient depends on the

Rayleigh range of the probe beam, and is a much smaller contribution than the radial gradient.
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Figure 7.7: Rotating a quarter-waveplate angle (angle θ) before the cell alters the degree of
ellipticity of the probe beam, affecting the structure and longevity of the Faraday signal.
Note that the longest-lived signal does not correspond to minimum VLS but rather where
the VLS partially cancels the background gradient.
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However, the generated gradient contributes to the ∂Bz
∂z which is perpendicular to the

bias field and does not assist Faraday imaging (see §8.2). A separate ‘VLS beam’7

propagating along the bias field axis (y) could be used to produce the ‘off-diagonal’
gradient (∂By∂z ) for imaging along the probe beam (z).

For a circularly polarised probe beam, no Faraday signal is observed at all as the Fara-
day interaction vanishes (§2.5). When the polarisation state is close to circular, the
signal shows rapid decay and revival cycles, corresponding to a large effective field
gradient. When it is closer to linear, longer decay times are observed as the VLS contri-
bution to the net magnetic field gradient is reduced and the resulting spin-dependent
spatial dynamics occur on a slower timescale.

The nematic interaction also causes collapse and revival of the Faraday signal (§2.7),
even when the probe beam has perfectly linear polarisation. The strength of this in-
teraction is dependent on the polarisation angle of the probe beam with respect to the
bias field, and in principle a λ

2 -waveplate could be included before the cell to rotate
the polarisation axis to the ‘magic angle’ and cancel out its contribution. In practice,
however, the probe beam hits the cell at an angle of incidence near 45◦, so the bire-
fringence induced by the cell window also depends on the probe’s polarisation axis.
Rotating the incident beam’s polarisation axis therefore produces an elliptical polari-
sation at the atoms, reintroducing a VLS which dominates the nematic contribution.
As shown in §2.7, the nematic contribution is negligible in F = 1 87Rb atoms, so the
linear polarisation axis will be taken as arbitrary.8

VLS-induced dephasing prevents long interrogation times from being used, and in-
duces complex spatial dynamics in the evolution of the condensate. It should be noted
however that the longest lasting signal does not correspond to perfect linear polarisa-
tion at the atoms, as the VLS can oppose the z-component of the background field
gradient and reduce the net field gradient below its background value. While this ap-
pears to produce an improved measurement, the cancellation is sensitive to the probe
beam power and fluctuations in the background magnetic field, reducing day-to-day
repeatability. The VLS should therefore be nulled completely when using the Faraday
effect to probe a BEC.

7.5: Eliminating the probe vector light-shift
As observed above, the probe VLS affects both the structure and longevity of the Fara-
day signal. Although the effect on the signal is visually pronounced, quantifying the
lifetime of the Faraday signal over long interrogation times is non-trivial and sus-

7 Note that the Faraday probe beam must be linearly polarised to maximise the Faraday effect,
whereas the VLS beam should be circularly polarised to create the largest effective magnetic field (§2.6).

8 Furthermore, uncertainty in determining and physically setting the optimal λ
4

-waveplate angle
likely induces a residual VLS that is greater than the nematic contribution.
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ceptible to shot-to-shot variations. Qualitative optimisation of the waveplate angle
can be achieved in this way, resulting in an polarisation state at the atoms that is ap-
proximately linear. However, eliminating the VLS entirely requires a more precise
approach.

The probe VLS contributes to the net magnetic field at the position of the atoms, so
it can be quantified by measuring the centre frequency of the Faraday signal for a
range of waveplate angles θ. As the polarisation is close to linear at the atoms, the
signal exhibits a long lifetime, allowing the centre Larmor frequency to be precisely
measured.

Taking the bias field to be predominately along the y-direction and using (7.17), the
Larmor frequency of the atoms in the presence of vector light-shift is

ωL = γ|B| = γ
√
B2
x +B2

y +B2
z = γ

√
B2
⊥z + [Bz0 +Bvls sin(2(θ − θ0))]2, (7.19)

where B⊥z =
√
B2
x +B2

y ≈ By is the field perpendicular to the probe’s propagation
direction. Since By dominates the other magnetic field components, the Larmor fre-
quency becomes

ωL ≈ γBy +
γ[Bz0 +Bvls sin(2(θ − θ0))]2

2By
. (7.20)

If the VLS is small, |Bvls| < |Bz0|, the bracketed term above doesn’t change sign as θ
is varied and the Larmor frequency should appear sinusoidal in θ. However, the mea-
sured Larmor frequencies (Figure 7.8) do not vary simply sinusoidally with waveplate
angle, implying that Bvls > Bz0. Hence the VLS dominates the residual z-component
of the field when the probe beam has a (nearly) circular polarisation state at the atoms.

Performing a least-squares fit of (7.20) to the measured Larmor frequencies (Figure 7.8)
results in the parameter estimates given in Table 7.3. Not only does this give an in-
dependent estimate of the bias field strength, the component of the background field
along the propagation direction, and the strength of the VLS; it also determines the
waveplate angle that eliminates the probe beam VLS. The waveplate was set to this
angle for all future measurements to eliminate the contribution of the vector light-shift
to the dynamics of the system.

Parameter Value

B⊥z ≈ By 993.27(2) mG

Bz0 19.6(8) mG

Bvls 43(1) mG

θ0 78.9(4)◦

Table 7.3: Fitted parameter values for the vector light-shift measurement.
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Figure 7.8: The measured Larmor frequency includes a contribution from the probe beam
vector light shift (VLS), which depends on the ellipticity of the probe beam. Adjusting a
λ/4-plate (angle θ) before the science cell allows the VLS to be mapped out, which can be
fitted using (7.20) to determine when the VLS is nulled (dashed lines).

7.6: Quadratic Zeeman effect
Atoms in an external magnetic field are subject to the Zeeman effect, which lifts the
degeneracy between the different |mF 〉 states. Typically the Zeeman effect is taken
as linear, so that the |mF = ±1〉 states are shifted in opposite directions by the same
amount with respect to an unshifted |mF = 0〉 state. However, there are higher-order
contributions that must be taken into account when the field is strong or the measure-
ment occurs over a long interval.

For the ground state hyperfine levels of an alkali atom with nuclear spin I , the energy
levels are described by the Breit-Rabi equation [111, 194],

Em = − ∆Ehfs

2(2I + 1)
+ gIµBmB ±

∆Ehfs

2

√
1 +

4mx

2I + 1
+ x2, (7.21)

where ∆Ehfs is the ground-state hyperfine splitting, m the magnetic quantum number
(m ≈ mF for weak magnetic fields, with mF ∈ [−F, ..., F ] and F = I ± 1

2 ), gI and gJ

are the nuclear and fine structure Landé factors, and the parameter x is given by

x =
(gJ − gI)µBB

∆Ehfs
. (7.22)

For the |F = 1〉 manifold of 87Rb being studied, I = 3
2 and the relevant sign in the

expression for Em in (7.21) is −1.

126



Typically the Breit-Rabi expression is evaluated as a power series expansion in B,
which to first order yields

Ez = −~γmB = −(gJ − 2(I + 1)gI)µB
2I + 1

mB. (7.23)

The next level correction is the quadratic Zeeman shift, which is obtained by taking
the B2 term in the power series expansion of the Breit-Rabi result,

Eqz = −
(gJ − gI)2µ2

B

∆Ehfs

(
1

4
−
(

m

2I + 1

)2
)
B2. (7.24)

Evaluating using known constants [121] gives the following expected quadratic Zee-
man shifts for 87Rb in the |F = 1〉manifold,

Ez = −hmB × 702.369 kHz/G, (7.25)

Eqz = hB2 ×

−287.57 Hz/G2 for |mF = 0〉

−215.68 Hz/G2 for |mF = ±1〉 .
(7.26)

The quadratic Zeeman effect shifts the |mF = ±1〉 levels by the same amount, so it
effectively shifts energy level of the |mF = 0〉 state relative to the |mF = ±1〉 states
(Figure 7.9) by an amount hqz , where

qz =
E+1 + E−1 − 2E0

2h
(7.27)

=
(gJ − gI)2µ2

B

h(2I + 1)2 ∆Ehfs
B2 +O(B3) (7.28)

= B2 × 71.89 Hz/G2, (7.29)

and the higher order terms are taken as negligible.

In the single-mode approximation, each component of the spin-1 BEC order parameter
can be written in terms of a fractional population ρi(t) and phase Θi(t) as

ξ(t) =
(√

ρ−(t)eiΘ−(t),
√
ρ0(t)eiΘ0(t),

√
ρ+(t)eiΘ+(t)

)T
, (7.30)

Figure 7.9: The quadratic Zeeman shift effectively shifts the energy level of the |mF = 0〉
state by qz relative to the |mF = ±1〉 states. The Faraday signal of the resulting system is
interpreted as containing two separate Larmor tones fL± = fL ± qz .
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where the components correspond to the |mF = −1〉, |mF = 0〉 and |mF = +1〉 states
respectively. For a condensate initially prepared in a zero magnetisation state (such
as that produced by an rf π

2 -pulse), and taking the components as initially in phase,
Θi(0) = 0, the order parameter can be simplified to

ξ(t = 0) =
(√

(1− ρ0)/2,
√
ρ0,
√

(1− ρ0)/2
)T

. (7.31)

Temporarily neglecting the spin-dependent interaction, the time-dependent expec-
tation value of the spin projection along the probe axis9 〈Fz〉 can then be evaluated
as [195]

〈Fz〉 = 2
√
ρ0(1− ρ0) cos(2πqzt) cos(2πfLt),

where fL ≡
E+1 − E−1

2h
and qz ≡

E+1 + E−1 − 2E0

2h
,

(7.32)

Hence the induced Faraday signal is expected to contain a single tone in the spectro-
gram at the centre Larmor frequency fL, amplitude-modulated at frequency qz . This
not only provides a physical origin for (7.27), but predicts periodic collapse and revival
of the Faraday signal (Figure 7.10).

Alternatively, this modulation can be written as

cos(2πfLt) cos(2πqzt) = 1
2(cos(2πfL+t) + cos(2πfL−t)), (7.33)

which is interpreted as the Faraday signal containing two frequency components, fL±,
where

fL± = fL ± qz. (7.34)

These two interpretations are reconciled by considering the role of the spectrogram’s
frequency resolution. If the resolution is fine enough to resolve the splitting of the
two tones, it will display two bright lines corresponding to the two sidebands at fL±.
However, typically the spectral resolution of the STFT (∆f = 200 Hz) is greater than
the quadratic splitting at the bias field of interest (7.27). In this case, the two sidebands

9 The notational difference with Ref. [195] arises from the orientation of the bias field, which they
take as along the z-axis but here is taken along the y-axis.

Figure 7.10: Faraday signal showing amplitude modulation arising from the quadratic
Zeeman effect. The period of the nulls is 7.4(1) ms, corresponding to qz = 68(1) Hz at this
bias field (B = 0.992(1) G).
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fall within the same spectrogram ‘frequency bin’ and interfere, resulting in amplitude
modulation (a ‘beatnote’).

However, the spin-dependent interaction also affects the evolution of the condensate
phase. Generalising (7.32) to consider interactions, the expectation value of the spin
projection is [195]

〈Fz〉 = 2
√
ρ0(1− ρ0) cos(Θ/2) cos(2πfLt), (7.35)

where the global condensate phase is Θ = Θ+ + Θ− − 2Θ0. Transforming into a
frame that is co-rotating with Larmor precession, the time-dependence of the system
is governed by [195]

∂ρ0

∂t
=

2c

~
√

(1− ρ0)2 −m2 sin Θ

∂Θ

∂t
= −4πqz +

2c

~
(1− 2ρ0) +

(
2c

~

)
(1− ρ0)(1− 2ρ0)−m2√

(1− ρ0)2 −m2
cos Θ,

(7.36)

where the net magnetisation is m = ρ+− ρ− and c is a measure of the spin-dependent
interaction strength.

Depending on the relative contributions of the quadratic shift q and the spin-dependent
interaction c in (7.36), different modes of evolution can be observed. If the quadratic
shift is strong then ∂Θ

∂t ≈ −4πq, and the phase winds rapidly. The sin Θ term therefore
oscillates quickly, and time-averages to zero, resulting in ∂ρ0

∂t = 0. Spin mixing due to
c is therefore ‘frozen out’. Typically the quadratic shift dominates for B & 500 mG, but
when microwaves are applied to cancel the quadratic shift (see §7.7), spin mixing is
expected to dominate.

Finally, although the quadratic Zeeman effect causes amplitude modulation, it does
not shift the centre Larmor frequency fL since by (7.32),

fL ≡
E+1 − E−1

2h
=
( γ

2π

)
B +O(B3), (7.37)

which to third order is simply the linear Zeeman effect (7.23), as the quadratic terms
(7.24) cancel exactly. Hence the centre Larmor frequency is taken to be directly pro-
portional to the magnetic field strength, simplifying analysis of the Faraday signal.

7.7: Microwave dressing
The quadratic Zeeman shift resulted in an effective level shift of the |mF = 0〉 substate,
resulting in modulation of the Faraday signal. This level shift can be eliminated by
applying a level shift in the opposite direction by dressing the |mF = 0〉 state with mi-
crowave radiation (Figure 7.11). Applying microwaves that couple the Zeeman states
|F = 1,mF = 0〉 and |F = 2,mF = 0〉 results in an AC Stark shift of |F = 1,mF = 0〉
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in the dressed state picture, producing an effective quadratic shift. For microwave de-
tunings ∆mw much larger than the microwave Rabi frequency Ωmw, the microwave-
induced quadratic shift is [196]

qmw = − Ω2
mw

4∆mw
. (7.38)

The quadratic Zeeman shift qz can then be cancelled by setting qmw = −qz to get

∆mw =
Ω2

mw
4qz

. (7.39)

However, the system does not comprise only two levels, and at the bias field strengths
of interest (∼ 1 G), the linear Zeeman splitting (∼ 700 kHz) is larger than the typi-
cal microwave detuning (∼ 300 kHz) although comparable in magnitude. The mi-
crowaves therefore result in some cross-coupling between the different |mF 〉 sub-
states,10 which results in a deviation of the optimal microwave detuning from the
above estimate (7.39).

The clock transition |F = 1,mF = 0〉 → |F = 2,mF = 0〉 experiences its own quadratic
shift, which is given by

E|F=2,mF=0〉 − E|F=1,mF=0〉

h
=

(2I + 1)2

2
qz = 8qz, (7.40)

10 Furthermore, limitations of the microwave antenna and its orientation mean the microwaves are
not perfectly linearly polarised, so it is also possible to drive σ±-transitions and increase cross-coupling.

Figure 7.11: Microwave dressing the |F = 1,mF = 0〉 to |F = 2,mF = 0〉 transition effec-
tively shifts the energy of the |F = 1,mF = 0〉 state by an amount qmw dependent on the
detuning ∆mw, and can be used to counter the quadratic Zeeman shift.
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where the energy levels E|F,mF 〉 are computed with11 (7.24), qz is given by (7.28) and
I = 3

2 for 87Rb. The detuning of the microwaves12 is therefore given by

∆ ≡ fmw − fclock and fclock = fhfs + 8qz (7.41)

where fhfs = 6, 834, 682, 610.904 Hz is the ground-state hyperfine splitting [121].

The microwaves are generated by a PHASEMATRIX FSW-0010 DDS, which features
programmatic control of microwave frequencies of up to 10 GHz with 1 mHz resolu-
tion [197]. The detuning can then be easily scanned by setting

fmw = fhfs + 8qz + ∆mw (7.42)

to observe the effect on the structure of the Faraday signal (Figure 7.12). The optimum
detuning is expected to be at the detuning given by (7.39), though imperfect measure-
ment of the Rabi frequency and deviations from ideal two-level behaviour lead to a
deviation.

Depending on the sign and magnitude of the microwave detuning, the microwave
dressing field can either enhance or counteract the quadratic Zeeman shift. Enhanc-
ing the shift leads to a larger quadratic Zeeman splitting and makes the two tones
resolvable (Figure 7.12B–C). Note that when the two tones are resolved, the ampli-
tude of each tone decays exponentially without the amplitude modulation, implying
it indeed originates from the quadratic Zeeman shift and not another effect. However,
when the frequency resolution of the spectrogram is too low to resolve the tones (Fig-
ure 7.12D–F), the Faraday signal is amplitude-modulated at the rate qnet = qz + qmw.

Cancelling the net quadratic shift qnet by choosing the appropriate microwave detun-
ing ∆mw (Figure 7.12G) produces a single Larmor tone that demonstrates no periodic
amplitude modulation. The exponential decay of the signal is due to coherent dephas-
ing by the background magnetic field gradient (§3.5), which must be independently
cancelled by applying an external magnetic field gradient, or reduced through selec-
tion of the bias field direction (see §8.3), to produce a longer lasting signal.

7.8: Measuring the microwave Rabi frequency
When the microwave detuning ∆mw is reduced, the microwave dressing dominates
the quadratic Zeeman shift (qmw � qz) and the two Larmor sidebands f± are split
sufficiently to be resolved as separate tones in the Faraday spectrum. Because the
signal persists for ∼ 100 ms, the centre Larmor frequencies of the two tones can be

11 The Landé g-factor for the F = 2 manifold has the opposite sign of F = 1 in (7.21), so the two
quadratic shifts do not cancel.

12 The detuning is expressed here in hertz, although rad/s is the more common convention.
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Figure 7.12: Comparison of the Faraday signal without microwaves (A) to microwaves
with Rabi frequency Ωmw = 8.49(2) kHz and varying detuning (B)–(H). Varying the
detuning from the |F = 1,mF = 0〉 → |F = 2,mF = 0〉 clock transition enables the
quadratic shift qnet to be increased to resolve the individual Larmor sidebands (B)–(C),
inverted (D) or suppressed (E)–(H). Cancelling the quadratic Zeeman shift (G) eliminates
the periodic collapse and revival of the signal. Spectrogram window was 5 ms.
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precisely measured in spite of the power line variation. This measurement provides a
sensitive probe for splitting induced by the net quadratic shift,

qnet = qz + qmw, (7.43)

and since the detunings are known, this provides a way to calibrate the microwave
Rabi frequency Ωmw via (7.38).

The Larmor frequencies of the two tones are fL± = fL ± q, so the deviation from the
original Larmor frequency is

∆fmw ≡
∣∣∣∣fL+ − fL−

2

∣∣∣∣ = |qnet| ≡ |qz + qmw| =
∣∣∣∣qz − Ω2

mw
4∆mw

∣∣∣∣ . (7.44)

Changing the detuning ∆mw induces a different microwave shift, so measuring the
splitting for different detunings allows the microwave Rabi frequency to be measured
(Figure 7.13). Note that detuning closer to resonance (∆mw → 0) causes a signifi-
cant transfer of population into the |F = 2〉 manifold, resulting in rapid decay of the
Faraday signal and preventing accurate measurement of the Larmor frequencies. De-
tuning further from resonance reduced the splitting of the two tones such that their
spectrogram patterns overlapped, resulting in amplitude-modulation in the spectro-
gram, preventing their centre frequencies from being distinguished.13

13 The restriction against using large detuning also prevents cross-coupling between the |mF 〉 sub-
states, validating the two-level approximation (7.38) and enabling the Rabi frequency to be inferred.
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Figure 7.13: Separation ∆f of the two Larmor tones caused by the quadratic Zeeman shift
at different microwave detunings. Fitting (7.44) to the data (blue) gives the microwave
Rabi frequency as Ωmw = 8.49(2) kHz. Note that smaller detunings caused significant
outcoupling into the |F = 2〉manifold, and larger detunings did not split the levels suffi-
ciently to distinguish the two tones.
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This measurement of the microwave Rabi frequency was consistency-checked against
observation of Rabi cycling between the |F = 1〉 and |F = 2〉 levels. The BEC is pre-
pared in the |F = 1,mF = −1〉 state then rf π

2 -pulsed into a (1
4 ,

1
2 ,

1
4)-state. Resonant

microwaves were applied for a fixed interval tmw to couple the |F = 1,mF = 0〉 and
|F = 2,mF = 0〉 states, after which the population in the |F = 2〉 state was measured
with absorption imaging. Varying tmw enabled observation of Rabi cycling between
the two states, from which the Rabi frequency can be fitted. The resulting14 Rabi fre-
quency is Ωmw = 8.6(2) kHz, in agreement with the value obtained by measuring the
Larmor shift, Ωmw = 8.49(2) kHz.

7.9: BEC component separation

The Faraday measurement permits long interrogation times, during which the trapped
BEC may exhibit spatial dynamics that are negligible in shorter timescale experiments.
In particular, the magnetic field gradient induces a Stern-Gerlach force that acts to
separate the |mF = ±1〉 components, which causes the magnetisation of the BEC to
become spatially dependent. Since the local magnetisation is given by the spin projec-
tion along the bias field, a nonzero magnetisation means the spin vectors have devi-
ated out of the transverse plane, which reduces the magnitude of the transverse spin
component and hence the amplitude of the Faraday signal (see Figure 2.3B).

However, since the BEC is being held in the dipole trap, the components do not sepa-
rate indefinitely. The Stern-Gerlach force accelerates the |mF = ±1〉 states up opposite
sides of the harmonic trapping potential, which acts to push them back towards the
centre. The resulting motion behaves like a driven harmonic oscillator whereby the
Zeeman substates are separated into ‘lobes’ that oscillate spatially. Figure 7.14A shows
a typical example of this in a y-bias, where the initially symmetric could is seen to de-
form within the first 50 ms of hold time. The local magnetisation becomes positive in
the bottom-left area of the cloud, and negative in the top-right.

The corresponding Faraday signal measurement (Figure 7.15B) shows collapse and re-
vival, where the minima correspond to the greatest separation between the |mF = ±1〉
components, and the maxima to where overlap between the components is observed.
The background gradient drives the |mF = ±1〉 components up the trapping poten-
tial like a driven harmonic oscillator, causing perturbations (‘sloshing’) in the size and
shape of the lobes in Figure 7.14A. Where the overlap is stronger, the local magnetisa-
tion is closer to zero, Larmor precession has a larger amplitude and the Faraday signal
demonstrates revivals.

14 This technique can produce precise estimates of the Rabi frequency [138]. Because it was only used
as a consistency check, few data points were collected which resulted in a large uncertainty of Ωmw.
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(A) (B)

Figure 7.14: Stern-Gerlach-separated absorption images captured by the ‘side’ camera af-
ter various hold-times followed by 23 ms of TOF expansion. In a y-bias (A) the |mF = ±1〉
states spatially separate (white arrows) whereas in an x′-bias (B) the three components
maintain the same shape and demonstrate coherent spin mixing.
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(B)

(D)

(A)

(C)

Figure 7.15: Spectrograms comparing microwave-nulled Faraday measurement with a y-
bias (A) to an x′-bias (C). The demodulated signal shows decay and revival from spatial
dynamics in the BEC in y-bias (B), which are not observed in an x′-bias (D).

By contrast, in an x′-bias (Figure 7.14B) the three components are observed to main-
tain the same overall shape, remaining in the single-mode approximation. Population
transfer due to spin-exchanging collisions is observed, with the population of the ini-
tially higher density |mF = 0〉 decreasing as the |mF = ±1〉 populations increase. The
corresponding Faraday measurement (Figure 7.15D) shows much more gradual de-
cay in amplitude over time corresponding to atom number loss in the BEC. The bias
field in each case was 1 G, and spin mixing was expected to be observed in both cases.
However, in the y-bias case, spatial separation occurred on a faster timescale than the
spin mixing.

At much longer hold times (t ∼ 200 ms), some spatial separation can be observed in
the cloud structure in an x′-bias. The direction of the separation is different to in a
y-bias as the background gradient points in a different direction (see §8.3). The x′-
bias was independently measured to have a significantly smaller background field
gradient than the y-bias [188], so the Stern-Gerlach separation force is significantly
weaker. The degree of separation is therefore much smaller, and occurs on a much
longer timescale.

The Stern-Gerlach effect was previously analysed as a blurring of the Faraday image
(§3.8), which limited the individual Faraday measurements to be short. However,
these results demonstrate that even the background magnetic field gradient is strong
enough to induce spatial separation over the timescales of interest.
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In principle the component-separation can be reversed by inverting the magnetic field
gradient to change the sign of the force, or applying a π-pulse to invert the spin vector
which exchanges the |mF = ±1〉 states. Since the background gradient cannot be re-
versed, either a bias orientation with low background gradient must be used to slow
the separation rate, or rapid π-pulses used to periodically reverse the evolution and
prevent spatial separation of the components.

The distinction should be emphasised between gradient-induced dephasing, which
occurs when the spin vectors spread out in the Larmor plane, and component sepa-
ration, which causes the spin vectors leave the Larmor plane. Both are produced by
magnetic field gradients, and both result in a reduction of the amplitude of the Fara-
day signal. Although component-separation induces periodic sloshing which revives
the signal, the dynamics of component separation cannot be simply cancelled out by
reversing the separation and recombining the cloud, as the spatial variation of the
magnetisation during separation irreversibly affects the spin-dependent interaction.

7.10: Summary
In this chapter I analysed the Faraday signal in more detail, considering the depen-
dence of the Larmor frequency on the applied magnetic field, the structure of the
power line variation, the role of probe polarisation, and the quadratic Zeeman effect.
Measurements of the Larmor frequency were used to calibrate the bias coils, without
requiring that the ‘nulling’ point for each coil be found first.

Magnetic field fluctuations synchronised to the 50 Hz power line cycle were observed,
with the Faraday signal being frequency modulated at odd harmonics of the line fre-
quency. The structure of the line noise was shown to depend on the bias field direc-
tion, and a method to fit the frequency modulation was demonstrated, enabling the
spectrogram to be demodulated.

Birefringence induced by the glass window of the science chamber was seen to result
in an elliptical polarisation at the position of the atoms, resulting in a vector light-shift.
The tight focus of the probe beam caused longitudinal variation of the probe intensity,
resulting in an effective magnetic field gradient, causing periodic collapse and revival
of the Faraday signal. Introducing a λ

4 -waveplate allowed the ellipticity to be adjusted,
and a method was devised that used the Faraday signal to determine when the beam
was linearly polarised and eliminate the vector light-shift.

The quadratic Zeeman shift was found to be non-negligible at the bias fields of interest,
resulting in two Larmor contributions to the Faraday signal, effectively resulting in
rapid amplitude modulation. Microwave dressing was used to radiatively-shift the
|F = 1,mF = 0〉 state to enhance the quadratic shift and visibly split the two tones, or
cancel the quadratic shift to eliminate the modulation and produce a long-lived signal.
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The splitting between the two tones for small microwave detunings was applied to
measure the microwave Rabi frequency in agreement with the value obtained by direct
observation of Rabi oscillations on the clock transition.

Characterisation of the Faraday signal is now complete, and long-timescale Faraday
measurements of the BEC are possible having eliminated the vector light-shift and
the quadratic Zeeman shift. I shall next discuss applying a magnetic field gradient to
achieve magnetic resonance imaging of the condensate.
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8
Magnetic resonance imaging of BEC

In this chapter I discuss how to produce the specific magnetic field gradients required
for MRI, without the need for dedicated gradient coils. I demonstrate using these
applied gradients to cancel the background field gradient, and perform radiative spin
echo to rephase the signal. I apply rf π-pulses to obtain multiple spin echoes, and use
a long pulse sequence in close analogy with NMR to measure the decoherence time.

With control over magnetic field gradients and spin echo obtained, I achieve the first
MRI images of a BEC. I reconstruct images of a partially evaporated BEC, showing
a bimodal profile, and of twin BECs in a split dipole trap, clearly resolving the in-
dividual BECs. I further show that rephasing with spin echo enables time-resolved
multi-shot imaging.

8.1: Coordinate systems
The role of the strength of the magnetic field bias and gradient have been considered,
but not how they relate to the orientation of components in the laboratory reference
frame (Figure 8.1). The following considerations dictate the orientations of the mag-
netic field and its gradient for Faraday MRI:

1. The propagation axis of the Faraday beam is the BEC spin projection component
probed by the Faraday effect (see §2.5). However, it is primarily determined
by optical access, collection numerical aperture and beam pointing stability (see
§5.4 and §5.6).

2. The orientation of the bias field relative to the probe propagation axis determines
the strength of the Faraday interaction, as it defines the plane of Larmor preces-
sion. It should be perpendicular to the probe’s propagation axis where possible.

3. The bias field direction also sets which terms of the background field gradient
tensor contribute to ∇|B| and thus dephasing (discussed in §8.3), sensitivity to
ambient field fluctuations (observed in §7.2), and the Rabi frequency of the mi-
crowave antenna used for cancelling the quadratic Zeeman shift (see §7.7).

4. The direction of the net magnetic field gradient ∇|B| sets the imaging axis, i.e.
the axis of the reconstructed density profile (discussed in §8.2).
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Atoms

Figure 8.1: Schematic of the science chamber showing the apparatus coordinate systems.
Unprimed coordinates correspond to the axes of the vacuum system and magnetic field
bias coils, while primed coordinates correspond to the orientation of the trapping beams
(red). The y and y′ axes are both oriented out of the page, and the Faraday beam (purple)
propagates at θF ≈ 3◦ to the trap beams.

In particular, the type and orientation of available magnetic field coils limits which
magnetic field gradients can be easily generated, and what the strength of the applied
gradient is. The gradient strength limits the imaging resolution by (3.15) and must be
chosen to limit Stern-Gerlach blurring (see §3.8 and Table 3.1). However, the probe
beam does not propagate along the axes of symmetry of the coil pairs (Figure 8.1) so
it is important to clarify the coordinate system.

The discussion presented thus far has considered Faraday measurement in a geom-
etry where the propagation direction of the probe beam is +z, the magnetic field is
oriented along y and the gradient is ∂By

∂z . For consistency with our other publications,
the +z direction is henceforth taken as the primary axis of the atom beam (i.e. the long
axis of the vacuum system in Figure 4.1), and a primed coordinate system is defined
corresponding to the orientation of the trapping beams. The primed axes are at 45◦

to the unprimed axes, though both take gravity to be in the −y-direction. Under this
designation, the Faraday beam propagates at a small angle θF to the +z′-direction.

The distinction is significant, as our apparatus is only capable of generating magnetic
field gradients along the axes of the bias coils, whereas a gradient along the dipole
trap (z′) would be required to image a quasi-1D condensate. Ideally the coils would
be centred around the trapping beams for this reason, but the geometric limitations of
the science cell would require significantly larger coils at a greater distance from the
cell driven by a significantly larger current. It is still possible to generate the required
∂B
∂z′ gradient by generating gradients with both the x- and z-coils, but limitations on
the driving currents (see §8.5) prevent large gradients from being produced.
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8.2: Imaging axis
Faraday MRI uses a magnetic field gradient to induce a spatially varying Larmor fre-
quency along the imaging axis. This encodes spatial information about the atom cloud
in frequency space and allows an image to be reconstructed (see §2.5). However, in
that discussion it was necessary to generate ∂Bx

∂z as the dominant gradient, which is
an off-diagonal gradient that cannot be produced without specialised coil configura-
tions.1 I shall therefore discuss how the image is formed in the magnetic field gradi-
ents that are physically achievable using the existing (near-) Helmholtz coils present
in our apparatus.

Remaining in the linear Zeeman regime but allowing the magnetic field to vary in all
directions, the expression for the local Larmor frequency (3.6) can be linearly approx-
imated2 as

ωL(r) = γ|B(r)| ≈ ωL0 + (∇|B|) · r. (8.1)

The measured Faraday signal (3.9) is therefore

∆P ∝
∞∫∫∫
−∞

cos(ωL(r)t)ρ(r) d3r. (8.2)

Consider a new coordinate system r′′ where z′′ lies in the direction ∇|B|. Then ρ(r)

is the only term in the integral that depends on x′′ and y′′, so the integral over those
directions can be performed and the signal becomes

∆P ∝
∞∫
−∞

cos
(
ωL0 + γbz′′

)
ρ(z′′)dz′′, (8.3)

where b = ∇|B| · r′′ =
∣∣∣∇|B|∣∣∣ =

∂|B|
∂z′′

(8.4)

and ρ(z′′) =

∞∫∫
−∞

ρ(x′′, y′′, z′′) dx′′dy′′. (8.5)

Now the line density ρ corresponds to integrating the density of the cloud over the
axes perpendicular to z′′, with each frequency component of the Faraday signal cor-
responding to a different position along z′′. Hence ∇|B| is the imaging axis for 1D
Faraday imaging.

Since the imaging axis is usually specified with respect to the orientation of the probe
beam (z′), the derivative can be evaluated in that coordinate system such that the
imaging axis is defined by

∇|B| =
(
∂|B|
∂x′

,
∂|B|
∂y

,
∂|B|
∂z′

)
, (8.6)

1 A dedicated set of gradient coils were designed and constructed [173], but are not yet installed.
2 A magnetic field with non-trivial field curvature means the Larmor frequency cannot be easily

inverted for position and is therefore of limited use for imaging.
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where each of the spatial derivatives can be calculated in the primed or unprimed
coordinates as

∂|B|
∂xj

=
B

|B|
· ∂B
∂xj

=
Bx′

|B|
∂Bx′

∂xj
+
By
|B|

∂By
∂xj

+
Bz′

|B|
∂Bz′

∂xj
. (8.7)

Hence it is possible to control both the imaging direction and resolution through the
gradient terms ∂Bi

∂xj
. As discussed in §3.8 and §7.3, the gradient should be as large

as possible to permit rapid measurements and minimise the effect of blurring. How-
ever, only certain gradient terms can be produced by the available coil configurations,
which restricts the imaging process.

8.3: Magnetic field gradient synthesis
In our apparatus the bias field is generated by pairs of coils in a near-Helmholtz con-
figuration (see §4.1). It is possible to create a small magnetic field gradient by driving
unequal current through the coils in a pair, enabling generation of non-zero ∂Bx

∂x , ∂By∂y
or ∂Bz

∂z . To quite a good approximation,3 the BEC is at the magnetic centre of the bias
coils and the off-diagonal gradients generated by the coils vanish [138]. However,
background field gradients exist in all directions so the net gradient terms in (8.7) are

∂|B|
∂xj

≈ Bj
|B|

∂Bcoils,j

∂xj
+
B

|B|
·
∂Bbg

∂xj
, (8.8)

The background gradient of our apparatus has been previously characterised by ten-
sor gradiometry using Ramsey interferometry, and the tensor in unprimed coordinates
is [188] [

∂Bi
∂xj

]
bg

=

−5.71(7) −6.92(4) 14.70(7)

−6.92(4) 15.18(8) 2.66(4)

14.95(3) 2.66(4) −9.47(3)

 mG/cm. (8.9)

These field gradients are primarily due to the unshielded permanent magnets of an
ion pump located near the science chamber.

To prevent the background gradient from dominating the dephasing rate and inter-
fering with image formation, the applied gradients should dominate the background.
This again encourages strong applied gradients and short measurement times when
performing Faraday imaging. The result (8.8) also demonstrates that the choice of bias
field direction is important, since the dominant background gradient varies with the
chosen orientation. In particular, the net magnetic field gradient is weaker with the
bias aligned along x′ than along y.4

3 The BEC is within 1 mm of the magnetic centre, compared to the separations (110, 157, 210) mm
between the coils.

4 The exact orientation of the x′-bias was empirically optimised to minimise the contribution of back-
ground gradients, i.e. to minimise |∇|Bbg||with the background gradient tensor in (8.9).
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First consider a bias field direction perpendicular to the propagation direction, such
as along the y-direction. The resulting imaging axis is well approximated by

∇|B| =
(
∂Bbg,y

∂x′
,
∂Bcoils,y

∂y
+
∂Bbg,y

∂y
,
∂Bbg,y

∂z′

)
, (8.10)

which resolves along the y-axis provided the applied gradient ∂By
∂y is much stronger

than the background gradient.

It is also possible to choose the applied gradient so that it cancels the background gra-
dient term ∂Bbg,y

∂y . This results in prolonging the free-induction decay of the Faraday
signal, allowing for longer interrogation times as limited by the remaining background
terms. However, this orients the imaging axis in the x–z plane in a way that is sen-
sitive to the background gradient. Such a configuration would only be beneficial for
diagnostic purposes as it produces the longest-lived signal, as the net gradient is very
weak and the imaging axis cannot be controlled.

It is also possible to image directly along the x′-direction by applying a bias field in that
direction as this is also perpendicular to the direction of optical propagation. As the
primed coordinates (x′, z′) are oriented at approximately 45◦ to the unprimed (x, z),
the gradient of the magnetic field strength in this scenario is

∇|B| =
(

1√
2

(
∂Bcoils,x

∂x
−
∂Bcoils,z

∂z

)
+
∂Bbg,x′

∂x′
,
∂Bbg,x′

∂y
,
∂Bbg,x′

∂z′

)
, (8.11)

where the relevant diagonal gradient terms ∂Bx
∂x and ∂Bz

∂z can be produced by either x-
or z-coils respectively, or some combination of the two.

To image along the probe propagation direction (z′) without the use of off-diagonal
gradients, the dominant gradient must be

∂|B|
∂z′

� ∂|B|
∂x′

,
∂|B|
∂y

, (8.12)

which implies that Bz′ should be made as large as possible.

However, this tips the Larmor precession axis towards z′, which reduces projection
of the Larmor precessing spins onto the probe propagation axis. This introduces a
gradient at the expense of reducing the amplitude of the Faraday signal (see §3.2).

The bias field should therefore be oriented primarily perpendicular to the propagation
direction, although with some component along z′ to produce a gradient. Taking the
bias to be inclined at an angle φ to the z′-axis which, without loss of generality, can be
taken to be in the y–z′ plane,

Bx′ = 0, By = |B| sinφ, Bz′ = |B| cosφ. (8.13)
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This enables the synthesis of a linear gradient along the z′ direction (Figure 8.2). Note
that without the bias component Bz′ ,

∂Bz′
∂z′ would still contribute to a gradient of |B|

along the z′ direction, but it would be quadratic with position,

|B(z′)| ≈ |B|+ 1

2|B|

(
∂Bz′

∂z′

)2

z′
2
, (8.14)

which is of limited use for imaging applications as it is weak and cannot be uniquely
inverted for position.

The components of this field gradient in the presence of a bias are then

∂|B|
∂x′

≈
(
∂Bx
∂x
− ∂Bz

∂z

)
cosφ√

2
+
∂Bbg,y

∂x′
sinφ+

∂Bbg,z′

∂x′
cosφ

∂|B|
∂y
≈ ∂By

∂y
sinφ+

∂Bbg,y

∂y
sinφ+

∂Bbg,z′

∂y
cosφ

∂|B|
∂z′

≈
(
∂Bx
∂x

+
∂Bz
∂z

)
cosφ√

2
+
∂Bbg,y

∂z′
sinφ+

∂Bbg,z′

∂z′
cosφ. (8.15)

Hence to image along the z′-axis an unequal current is run through both the x- and
z-coil pairs to achieve ∂Bx

∂x = ∂Bz
∂z = b, a bias is applied along the y-axis (By 6= 0) but

without a gradient (∂By∂y = 0). Applying a bias component in the z′ direction (Bz′ 6= 0)
then gives

∇|B| ≈
(

0, 0,
√

2b sinφ
)
. (8.16)

Figure 8.2: Generation of a linear magnetic field gradient along the z-axis. Note that the
bias field component Bz0 weights the contribution from ∂Bz

∂z , so must be nonzero.
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With an applied gradient chosen, and taking the background fields as small, the local
Larmor frequency (8.1) varies spatially in a y-bias as

ωL(r) ≈ ωL0 + γ
∂By
∂y

y, (8.17)

and in a yz′-bias (8.13) as

ωL(r) ≈ ωL0 + γ
sinφ√

2

(
∂Bx
∂x
− ∂Bz

∂z

)
x′ + γ

sinφ√
2

(
∂Bx
∂x

+
∂Bz
∂z

)
z′. (8.18)

Choosing ∂Bx
∂x = ∂Bz

∂z = b to image along the z′-axis, this simplifies to

ωL(r) ≈ ωL0 + (
√

2γb sinφ)z′. (8.19)

Therefore despite lacking special purpose gradient coils,5 our apparatus is capable of
generating magnetic field gradients along different axes.

8.4: Faraday gradiometry
The Faraday measurement allows the centre Larmor frequency to be measured to high
precision using STFT analysis, even when the free-induction decay of the signal in a
gradient is rapid. This enables gradiometry to be performed by translating the cloud
and looking at how the Larmor frequency changes with position. Such translation can
be achieved in the x′- and z′-directions by shifting the rf frequency that drives one of
the AOMs that deflect the trapping beams [138].

Measuring gradients along the z′ direction in this way is most convenient, because the
cloud does not leave the Faraday probe beam, whereas in the x′ and y directions the
cloud can only be translated by∼10 µm before the image of the cloud is clipped by the
iris on the Faraday imaging stage. The iris can be opened further to enable translation
over greater distances, but this admits more shot noise into the measurement, decreas-
ing the signal-to-noise ratio (see §3.3). However, the diameter of the probe beam is an
upper limit on the distance the BEC can be translated and a Faraday signal obtained.

Furthermore, one of the dipole trapping beams can be split by driving the AOM with
a combination of two frequencies, each of which produces a diffracted order. This
results in two proximate crossed-beam dipole traps (Figure 8.3). Forced evaporation
in these split traps results in two BECs,6 separated by 28.3(1) µm/MHz (when split-
ting along the z-axis). The resulting Faraday signal will have contributions from the
Larmor frequencies of each cloud, enabling the magnetic field to be measured at both
points simultaneously for common-mode rejection of changes in the magnetic field
strength.

5 Typically Golay coils, a specific arrangement of saddle coils [198, 199], are used to generate the
strong transverse magnetic field gradients required for medical MRI.

6 The frequency difference must be at least 3 MHz to ensure the traps are completely separated, as
otherwise a single malformed BEC is produced.
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RF0 RF1
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Figure 8.3: The dipole trap beams are generated as the 1st-diffracted order of AOMs, en-
abling them to be laterally translated inside the cell by adjusting the frequency of the driv-
ing rf. Mixing a second frequency (RF1b) into one of the AOMs results in two diffracted
beams, creating a double-well trap in the cell and producing two BECs (black dots).

However, the overall amplitude of the Faraday signal is decreased as each split BEC
typically contains significantly fewer atoms than a single BEC. Improving the atom
number by including a ‘transfer’ stage in the experiment staging during which the
BECs are formed in a small separation split trap, then moved to their final baseline by
slewing the AOM drive frequency, could enable high-precision magnetometry to be
performed [138].

This gradiometry method is applied in §8.6 to calibrate the magnetic field gradient
generated by our quadrupole coils, and the split crossed-beam dipole trap technique
is used in §8.10 to capture magnetic resonance images of twin BECs.

8.5: Bias coil gradients

As discussed in §8.3, the bias coils can be used to produce a small magnetic field
gradient by running a differential current through the coil pairs. The current in each
coil is controlled by an individual control voltage (e.g. the x-coils have separate Vx+

and Vx− lines), which are normally set to be equal to produce a uniform field at the
position of the atoms (at the ‘bias value’, Vx± = Vx). However, a gradient proportional
to the control voltage difference δVx = Vx+ − Vx− can be introduced by setting

Vx± = Vx ±
1

2
δVx. (8.20)
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This acts as a combination of a Helmholtz coil (Vx) that creates a uniform bias field
and an anti-Helmholtz coil (1

2δVx) that produces a gradient. Using the expression for
the field generated by a loop of wire, the magnetic field gradient can be shown to be

∂Bx
∂x

=
3αx
5∆x

δVx, (8.21)

where αx is the calibration factor (§7.1) and ∆x the spacing of the coils.

The coil drivers cannot change the sign of the current, so Vi± ≥ 0. The strongest gradi-
ent that can be produced by this arrangement is therefore δVi = 2Vi. This introduces
significant limitations to the possible gradients that can be produced, as typically only
one component has a large control voltage value, enabling a strong gradient to only
be produced along that axis (Table 8.1). It should be noted that in our apparatus the
strength of the x′- and yz′-bias fields cannot be further increased without inverting
the current in one of the coil pairs, 7,8 which is presently not implemented. However,
the y-bias can be increased by simply increasing the control voltage Vy. The bias coils
are therefore only able of creating large ∂By

∂y gradients in y- and yz′-biases, and ∂Bx
∂x

gradients in an x′-bias.

Bias Vx (V) Vy (V) Vz (V) fL (kHz) |B| (G) tπ/2 (µs)

y 0.1958 0.6283 0.8744 698 0.994 14.2

x′ 0.4210 0.1559 0.0211 597 0.850 16.7

yz′ 0 0.6283 0.2788 843 1.200 19.0

Table 8.1: Typical bias field control voltages, measured Larmor frequencies, and π
2 -pulse

durations for different bias field directions. These settings were used in the data presented
in the remainder of this thesis. The Larmor frequency for a given set of control voltages
was observed to slowly drift by 7 kHz over the course of three months, corresponding to
drift in the background field.

Because of this limitation on the gradient strength, the gradient induced is typically
the same order of magnitude as the background field gradient. Measuring the coher-
ent dephasing rate of the Faraday signal gives a measure of the gradient strength (see
§3.5), and it can be seen that the signal lifetime is maximised for a particular gradient
where the applied gradient cancels the background gradient (Figure 8.4). The reduced
dephasing at this point results in a much longer-lasting signal (Figure 8.5), with the
remaining dephasing due the other (uncancelled) components of the background gra-
dient.

7 Specifically, Vz in an x′-bias and Vx in a yz′-bias cannot be reduced without inverting the current.
8 Note that the coils are wired such that Vi > 0 opposes the background magnetic field. Hence

reducing the coil current for Vi < Vi,null corresponds to increasing the net magnetic field strength (see
§7.1 and Table 7.1). In principle the same magnetic field strength could be obtained with Vi > Vi,null,
but this would require much higher coil currents. The coils are not actively cooled so this would cause
heating and likely affect the coil calibration.
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Figure 8.4: Measured dependence of the Faraday signal dephasing time-constant as a
function of the applied gradient δVz in a y-bias, indicating that the background gradi-
ent is suppressed when δVz = −0.35 V. The dephasing rate contains contributions from
all components of the background gradient, each of which could be independently sup-
pressed for a long-lived Faraday signal.
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Figure 8.5: Measured Faraday signal without an applied gradient (top) and with gradient
cancelling the background (bottom), resulting in reduced dephasing to achieve a long-
lived signal (up to t = 1.5 s). y-bias, δVz = −1.0 V. Note that the VLS (see §7.5) was not
cancelled for this measurement so the applied field cancels both the background field and
VLS contributions.
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8.6: Quadrupole coil gradients
It is also possible to synthesise a magnetic field gradient using the quadrupole coils
that form the basis of our MOT and magnetic traps. This results in diagonal gradient
terms which can be made significantly stronger than those generated by the bias coils.

The field generated by the quadrupole coils is

B =
Bq
2

(−x+ 2y − z), (8.22)

which produces diagonal gradients

[
∂Bi
∂xj

]
quads

=
Bq
2

−1 0 0

0 2 0

0 0 −1

 . (8.23)

The quadrupole coils are driven by a custom IGBT-based voltage-controlled current
supply,9 which takes a control voltage and drives 20 A/V through the coils, producing
a quadrupole gradient of 1.89 G/cm/A.

It should be noted that although the quadrupole driver is capable of generating gra-
dients up to 300 G/cm, applying gradients larger than 5 G/cm to a dipole-trapped
BEC resulted in no atoms remaining at the end of the hold time. This is because the
dipole trap holds the atoms against gravity in the y-direction, and applying strong ∂By

∂y

further lowers the trap depth allowing atoms to fall out.

Unlike the bias coils, since the quadrupole centre is (deliberately) not coincident with
the BEC position, applying a gradient through the quadrupole coils changes the net
magnetic field at the position of the atoms and hence the Larmor frequency (Fig-
ure 8.6). This calibration is necessary to set the frequency of the rf pulses for a given
gradient strength to prevent pulse from going off-resonance, which would signifi-
cantly reduce the efficacy of the rf pulse.

The quadrupole zero is known to be located directly above the BEC, resulting in a
magnetic field gradient that is primarily ∂By

∂y in a y-bias. This enables the distance ∆y

between the quadrupole zero and the BEC to be estimated through ∆ωL = γBq∆y,
resulting in ∆y = 85.3(7) µm.

The quadrupole gradient is observed to enhance the gradient-induced signal dephas-
ing (Figure 8.7), with the free-induction decay rate being linear in the applied gradient
strength as expected (see §3.5). The dephasing time constant was measured by fitting
a half-Gaussian to the averaged envelope of the Fourier-filtered signal (§6.7). This
is necessary because resolving the timescale of the decay in the spectrogram would
require the window size of the STFT to be reduced substantially (see §6.10).

9 The quadrupole driver exhibits a long switch-on transient (∼ 100 ms), so it is important to apply
the gradient and allow it to settle before the initial π

2
-pulse that tips the spins to begin Larmor precession.

The settling time is longer for smaller Bq , becoming prohibitively long for Bq . 0.1 G/cm.
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Figure 8.6: Increasing the quadrupole gradient Bq in a y-bias field changes the net mag-
netic field strength at the position of the BEC, and hence its Larmor frequency. The fit
gives ∂fL

∂Bq
= −5.97(5) kHz/(G/cm).

Figure 8.7: Applying a quadrupole gradient increases the gradient-induced dephasing
rate, resulting in more rapid free-induction decay (FID) of the signal. The decay rate is
linear in Bq when it dominates the background gradient contributions. The decay rate at
higher values of Bq was too rapid to measure.
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The strength of the induced gradient is measured using Faraday gradiometry (§8.4) to
measure the Larmor frequency of the BEC as its location is translated along the z′-axis
using the dipole trapping laser (Figure 8.8).

8.7: Radiative spin echo
Spin echo forms an integral part of the Faraday imaging procedure as it rephases the
Faraday signal and enables multiple sequential images to be taken of the dynamics
occurring within the BEC. Performing a spin echo also provides strong evidence that
the decay of the signal is the result of coherent dephasing, and not the result of another
process interfering with the measurement.10

Because the ‘bias’ coils cannot generate a gradient strong enough to reverse the back-
ground gradient, and our quadrupole coil driver is not capable of inverting the sign
of Bq in (8.22), the gradient cannot be reversed in our apparatus and gradient recall
echo (see §3.6) cannot be performed. However, radiative spin echo should be possible
by applying rf π-pulses to the cloud.

The π-pulse is an rf pulse at the Larmor frequency lasting twice as long as a π
2 -pulse,

which results in inversion of the spin state. Pulse fidelity affects the amplitude of the

10 Examples of other phenomena that result in signal loss are atom loss mechanisms (§5.8), quadratic
Zeeman shift (§7.6) and spatial separation (§7.9).
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Figure 8.8: Gradiometry of the quadrupole coil (yz′-bias) performed by measuring the
change in Larmor frequency with position along the +z′ (red) and −z′ (blue) directions
for Bq = 0.2 G/cm (solid) and Bq = 0.5 G/cm (dashed).
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echo, and can be improved by tuning the pulse duration in a given gradient. How-
ever, spin echo can be achieved using the calibrated magnetic field strength without
further optimisation. Applying a π-pulse at time t0 is seen to reverse the dephasing
and produce a revival of the Faraday signal at time 2t0 (Figure 8.9). The echo is strong
enough to be observed in a single-shot measurement but as the echo is consistent and
repeatable, envelope averaging (§6.7) can be used to clarify the structure.

Further echoes can be produced with subsequent π-pulses. The shape of the signal is
preserved with each echo, albeit with reduced amplitude. In accordance with (3.27),
the decay envelope is modelled as approximately Gaussian, so the expected Faraday
signal for a train containing N π-pulses can be written as

S(t) =
N∑
n=0

An exp

(
(t− nte − t0)2

2t2D

)
, (8.24)

where An is the amplitude of the nth echo, te is the echo time,11 t0 is the time of the ini-
tial π2 -pulse, and tD is the decay constant common to all echoes. This enables the echo
envelope from a train of π-pulses to be fit simultaneously for an accurate estimation
of the decay constant tD (Figure 8.10).

The amplitudeAn of the nth echo decreases with n, corresponding to imperfect rephas-
ing of the spin which results in complicated spin dynamics. Since each echo corre-
sponds to an observation of the cloud, it is natural to ask how many sequential obser-
vations can be made before the signal decays into the noise.

11 The π-pulses are applied at t = (n− 1/2)te with corresponding echoes appearing at t = nte.
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Figure 8.9: Single-shot observation of a spin echo in the filtered Faraday signal at tE =
5.0 ms (dotted line) by applying an rf π-pulse at time t0 = 2.5 ms (dashed line). Fourier-
filtered with a 10 kHz band-pass filter, signal envelope shown in red. Captured in a y-bias
with Bq = 0.2 G/cm.
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Figure 8.10: Observation of multiple spin echoes with echo time te = 3 ms, which can be
simultaneously fit to accurately determine the coherent dephasing time tD = 0.90(3) ms.
Dashed line corresponds to the initial π

2 -pulse. Envelope averaged 10×, captured in a
yz′-bias with Bq = 0.5 G/cm.

Preparing a pulse train of 50 π-pulses (Figure 8.11) demonstrates that echoes can be
resolved above the background noise level for the entire sequence. Fitting the height
of the echoes as previously described allows the decoherence to be quantified (Fig-
ure 8.12), and is observed to decay exponentially. The characteristic timescale of this
decoherence is traditionally referred to as the T2 time, which for the captured pulse
sequence was found to be 33(3) ms.
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Figure 8.11: Applying a train of 50 π-pulses (grey vertical lines) with te = 2 ms results in
echoes that can be clearly resolved for the first ∼ 20 pulses, and distinguished above the
background noise until the end of the train, demonstrating that some coherence has been
retained through multiple rephasings. Envelope averaged 10×, captured in a yz′-bias
with Bq = 0.5 G/cm.
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Figure 8.12: Fitting the amplitudes of the echoes in the 50 π-pulse sequence shows decay
over time, with a characteristic timescale (T2) of 33(3) ms.

The decoherence time T2 with an applied gradient is much shorter than the observed
T ∗2 time of the Faraday signal when the background gradient is cancelled (observed to
be ∼ 1 s in Figure 8.5), supporting the hypothesis that this decoherence is limited by
the fidelity of the π-pulses.12 This train of π-pulses corresponds to a Carr-Purcell (CP)
sequence, in which each pulse is identical and any error induced by the imperfection
of each π-pulse is cumulative. The error can be improved by using a Carr-Purcell-
Meiboom-Gill (CPMG) sequence, where the phase of consecutive π pulses is reversed,
so the error introduced by one pulse can be ‘reversed’ by the subsequent pulse. This
shall be investigated in future work.

The MRI community has developed a wide variety of pulse sequences [200] for coher-
ent spin control, many of which can be immediately adapted to improve the fidelity
of rephrasing pulse trains applied to a BEC. These techniques will be indispensable in
developing Faraday imaging for further time-resolved studies of BEC dynamics.

8.8: Considerations for MRI of BEC
The Faraday measurements presented thus far have considered an approximately
spherical BEC held in a crossed-beam dipole trap. The resulting Faraday measure-
ment is uninteresting, as the signal envelope follows a Gaussian decay at short evolu-
tion times, while the ‘interesting’ structure corresponding to the BEC’s Thomas-Fermi
profile appearing at longer times (§3.5) is potentially being buried in the measurement
noise. The success of spin echo observations (§8.7) provides evidence that the decay
of the Faraday signal is due to the expected gradient-induced coherent dephasing, but

12 Although the rf pulse is unshaped, it is short and therefore spectrally broad. In a weak gradient, the
pulse remains effective for the entire cloud, but shaped pulses (see §3.7) are required in a strong gradient.
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the reconstructed Gaussian profile is inconclusive as other decay mechanisms could
result in the same signal envelope.

Scenarios that present a more interesting profile to image will therefore be considered.
Ideally, a 1D elongated BEC could be produced with a feature such as a dark soliton to
be imaged. However, not only is our trap geometry currently incompatible with the
production of elongated BECs, but the currently achievable magnetic field gradients
mean the resolution of the image produced (see §3.9) by the current generation appa-
ratus is severely limited and cannot presently resolve features at the healing length
scale (see §3.9).

In the following sections I present two configurations that generate more interesting
profiles, with structure that can be resolved through magnetic resonance imaging us-
ing currently achievable gradients. The first is a partially-evaporated BEC, where the
forced rf evaporation procedure is interrupted early, resulting in a cold atom cloud
that contains both significant condensed and thermal fractions. The second is to use a
split dipole trap to produce two spatially-separated BECs. The Faraday beam passes
through both BECs, and a gradient applied along the separation axis enables them to
be resolved.

8.9: MRI of a partially evaporated BEC
Bose-Einstein condensates are produced in our apparatus by performing forced evap-
oration in the crossed-beam dipole trap. This is achieved by ramping down the power
of the dipole trapping laser to selectively outcouple the ‘hot’ atoms from the edge of
the trap, reducing the overall temperature of the cloud at the expense of reducing the
number of trapped atoms (see [138] for details on our implementation).

When the cloud becomes cold enough, part of it condenses in the centre, forming a
cloud that contains both thermal and condensed fractions. The two fractions have
different momentum distributions, so releasing the cloud from the trap results in dif-
ferent expansion rates. Time-of-flight imaging therefore observes a bimodal distri-
bution, corresponding to a tight Thomas-Fermi profile from the condensed fraction
upon a wide Gaussian background from the thermal fraction. This clear distinction
between thermal and condensed fractions has long been considered the experimental
‘hallmark’ of condensation.

The evaporation process can be interrupted by truncating the evaporation ramp to ob-
serve the onset of condensation. The truncation is controlled by a parameter ξ ∈ [0, 1],
where ξ = 0 (full truncation) results in a fully thermal cloud and ξ = 1 (no truncation)
corresponds to complete condensation with no thermal fraction remaining. Varying
the truncation parameter changes the balance of thermal and condensed fractions,
which can then be quantified by capturing an MRI of the partially evaporated cloud.
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This presents an in situ characterisation of the evaporation process, paving the way
towards performing continuous MRI of a cloud as it undergoes evaporation as a min-
imally destructive experimental diagnostic.13

The distinction between condensed and thermal fractions is clear in momentum space,
but Gross-Pitaevskii simulations [202, 203] have shown that the spatial profile of a
partially evaporated cloud is also expected to be bimodal. The distinction between
the two fractions is not as clear as in momentum space, but the thermal fraction is
nevertheless expected to occupy a larger spatial extent than the condensed fraction,
so the Faraday signal from the thermal fraction should dephase more rapidly than the
condensate fraction. The Faraday signal in the time domain is therefore expected to
be the bimodal sum of two Gaussians14 that have different time constants.

Large magnetic field gradients are not required to resolve the overall shape of the
cloud, permitting the weaker bias coils to be used. This results in slow gradient-
induced dephasing, allowing the Faraday signal to be captured over an extended
measurement time with dense sampling of the envelope. This is necessary to correctly
resolve the bimodality of the distribution in the time domain, and permits accurate
fits to be made.

To reduce the influence of noise, envelope averaging (§6.7) was used to combine multi-
ple shots together. In a more refined experiment, a brighter probe beam would reduce
or eliminate the need for averaging. The probe beam brightness could be increased
by up to 30× without significant loss of SNR due to photon scattering, while a 3×
increase in brightness would give the same SNR as 10× averaging.

The captured Faraday signals (Figure 8.13) are well approximated as the bimodal sum
of two Gaussians, except in the case of complete evaporation to BEC (ξ = 1) where
the signal is accurately modelled by a single component. Inverting the time-domain
signal using §3.2 reconstructs the spatial profile of the cloud along the z′-axis. As
the truncation parameter is increased, atoms are lost from the trap resulting in lower
integrated line density ρ(z′), and the overall width of the profile shrinks (Figure 8.14).

Comparing the profiles obtained by reconstructing the fitted time-domain signal demon-
strates how the profile changes as the evaporation advances. This demonstrates that
the MRI technique is indeed capable of distinguishing between the thermal and con-
densed fractions, and could be used to diagnose the evaporative process in real time.

13 The Faraday effect has already been applied as a diagnostic technique to measure how the atom
number changes during evaporation [201]. This enables post-selection of shots based on the number of
atoms at the end of evaporation, reducing the statistical error introduced by BEC atom number fluctua-
tions.

14 The profiles of the individual fractions are only approximately Gaussian, but the corresponding
Faraday signal appears Gaussian but with structure at longer evolution times (see §3.5).
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Figure 8.13: The Faraday signal of a partially evaporated BEC with truncation parameter
ξ is the bimodal sum of two Gaussians (left), corresponding to the thermal and condensed
parts of the cloud. The reconstructed profiles (right) show a decreased spread as the trun-
cation is increased towards total condensation (ξ = 1). The frequency axis of the recon-
struction is related to position by the effective gradient (8.16), which was not calibrated.
Captured in a yz′-bias with δVBz = 0.5 V and averaged ×10.
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Figure 8.14: Comparison of magnetic resonance images reconstructed for partially evap-
orated clouds with different truncation parameters ξ using bimodal fits.

8.10: MRI of twin BECs
As described in §8.4 the dipole trapping beams can be split in two by adding a second
rf source into the corresponding AOM that controls the beam position and amplitude.
This forms two separate traps, enabling the creation of ‘twin BECs’ by transferring
the magnetically trapped cloud directly into the separate dipole traps (provided the
two beams are sufficiently separated). When splitting the beam along the z′-axis, the
profile of the twin BECs along the probe beam is that of two distinct Thomas-Fermi
profiles. This is in direct analogy to the first demonstration of nuclear MRI15 using
two cylinders of distilled water immersed in heavy water by Lauterbur in 1973 [97].

In order to resolve the two BECs individually in the spectrogram,16 the difference
between their centre Larmor frequencies must be much greater than the spectrogram
resolution, requiring that the gradient be

b� 2π∆f

γ∆z′
, (8.25)

where ∆f is the spectrogram resolution (typically 200 Hz) and ∆z′ is the separation
(‘splitting distance’) between the trap centres. The traps are loaded most efficiently for
small splitting distances (see §8.4), with the minimum splitting given by the dipole
trap beam waist (∼70 µm). The magnetic field gradient must therefore be

b� 40 mG/cm. (8.26)

15 Specifically, this was the first image that could distinguish between molecules containing the same
elements but with different isotopic composition (hydrogen and deuterium).

16 As discussed in §7.6, if the Faraday signals from the two clouds fall within the same ‘bin’, they form
a beatnote and the resulting spectrogram appears to be amplitude-modulated.
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This does not appear to be a demanding gradient, but as the clouds are split along the
z′-axis, the imaging axis is also the probe propagation axis. As discussed in §8.2 this
requires a yz′-bias field, which by (8.16) reduces the efficacy of the applied gradient.
Keeping the bias field tip angle (φ in (8.13)) small gives a strong Faraday signal17 but
requires a strong applied gradient to resolve the cloud separation.

The apparatus is also capable of preparing twin BECs separated along the x′-axis,
which removes these requirements on the bias field direction and gradient strength.
However, the tight focal waist of the probe laser means that the twin BECs produced
are no longer contained within the Faraday beam when split along this axis, prevent-
ing reconstruction of an image.

Therefore an MRI was captured using a yz′-bias and the quadrupole coils to generate
the gradient necessary to resolve the BECs (Figure 8.15). In this spectrogram, the π

2 -
pulse occurred at t = 2 ms and the reconstructed profile of the twin BECs can be
seen as a line-out along the frequency axis, with two ‘bumps’ corresponding to the
individual BECs clearly seen. From the known splitting distance ∆z′ = 283(1) µm
and measured centre Larmor frequencies, by (8.16) the effective gradient in this bias
field is

b ≡ ∂|B|
∂z′

= Bq sinφ = 118(5) mG/cm. (8.27)

17 The split trap loads less efficiently than a single crossed-beam trap, so the Faraday signal from each
BEC is already reduced compared to an unsplit trap because it contains fewer atoms in total.

Figure 8.15: Spectrogram of twin BECs in a split dipole trap, clearly resolving the two
BECs in the frequency domain, and successfully rephased by three subsequent echoes in
the time domain. Acquired in a yz′-bias with Bq = 0.2 G/cm and no averaging.
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This is a demonstration of the simultaneous common-mode gradiometry method sug-
gested in §8.4, although the rapid dephasing prevents more accurate determination of
the centre Larmor frequency.

Time-resolved imaging is demonstrated by periodically rephasing the spins with mul-
tiple π-pulses. Magnetic field fluctuations originating from power-line noise can be
seen in the time-evolution of the spectrogram, with the centre Larmor frequency of
each BEC clearly showing frequency modulation (as discussed in §7.2). The impor-
tant observation is that the frequency modulation is common mode, and it could be
eliminated from the measurement with matched filter signal processing.

The analysis presented here is not the conventional inverse Fourier transform analy-
sis of (3.14), but is equivalent as every column of the spectrogram itself is a Fourier
transform. In a conventional analysis the signal would be divided into windows cor-
responding to each echo in the measurement, whereas the overlapped spectrogram
provides a visualisation that shows how these snapshots change over time. In particu-
lar, the frequency modulation from power line fluctuations would produce significant
blurring in a conventional image that can be readily identified in the spectrogram.

However, the present inability to generate strong magnetic field gradients in this bias
configuration severely limits the resolution of the reconstructed image. This proves
that magnetic resonance imaging with the Faraday effect can resolve structure in situ,
and solutions to generating stronger magnetic field gradients are outlined in §9.2.

8.11: Summary
In this chapter I discussed applying magnetic field gradients to the BEC, and presented
the first magnetic resonance images of Bose-Einstein condensates.

I derived the relationship between the applied magnetic gradient and the imaging axis
which the profile is reconstructed over. I outlined the generation of magnetic field
gradients and how imaging along the probe propagation axis can be achieved with-
out specialised coils to create the ‘off-diagonal’ magnetic field gradients. I discussed
the gradients that can be generated with our current coil configurations, and the lim-
itations. I presented coil calibrations and observed how the free-induction decay rate
was affected by the applied gradient – and that cancelling the background gradient
resulted in a significantly reduced dephasing rate.

I applied rf π-pulses to produce radiative spin echoes, proving dephasing is coherent
and allowing precise determination of coherent dephasing time. A train of pulses was
seen to rephase the spin and produce echoes out to a large time, and the decay in the
amplitude of the echoes was used to quantify the decoherence rate (T2 time). This
decoherence was attributed to the imperfect fidelity of the π-pulses, and the CPMG
sequence was proposed as a way to circumvent imperfect pulses.
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I captured magnetic resonance images of a partially evaporated BEC containing a
thermal and condensed fraction for varying truncation parameters to investigate the
change in cloud shape approaching the condensation transition. The time-domain
signal was shown to be bimodal, with the signal corresponding to the condensed frac-
tion persisting to longer times. Reconstructing the cloud profiles showed a reduction
in the spread as the cloud was brought closer to the condensation point. Although
not as clear as time-of-flight absorption images, the thermal and condensed fractions
could be clearly distinguished.

I then captured magnetic resonance images of twin BECs formed in a split dipole
trap. The two BECs could be clearly resolved in the spectrogram, and were success-
fully rephased with multiple spin echo pulses. This demonstrates both the minimally-
destructive nature of the measurement, and the ability to observe time-resolved spatial
dynamics.

At present the resolution of the magnetic resonance images is limited by the magnetic
field gradients that can currently be synthesised. Quadrupole gradients were applied
in a yz′-bias to image along the z′ axis, but dedicated gradient coils could vastly im-
prove the resolution.
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9
Conclusions and outlook

9.1: Conclusions

This thesis has presented a theoretical and experimental study of a novel magnetic
resonance imaging technique for in situ imaging of Bose-Einstein condensates (BECs)
using the Faraday effect. The minimally destructive nature of the measurement en-
abled long interrogation times multi-shot imaging to be performed, paving the way
for time-resolved studies of in situ dynamics.

In the first chapter, I discussed the physics of Bose-Einstein condensates at the healing-
length scale, and the dynamics which cannot be resolved in situ by existing imaging
techniques. The Faraday effect was introduced as a technique to probe the condensate
state in situ using off-resonant light, and I described how a magnetic field gradient
could be used to produce a 1D profile of the BEC. I described how techniques from
magnetic resonance imaging (MRI) using magnetic field gradients along multiple axes
can be applied to build up 2D and even 3D images of the BEC. The resolution of
such an imaging technique would not be subject to the diffraction limit, raising the
prospect of multi-shot imaging of features that cannot otherwise be resolved without
destructively expanding the BEC. This opens up a range of new possibilities in the
use of condensates to simulate complicated systems where the same initial condition
cannot be replicated, such as quantum turbulence.

Building up a 3D image requires many ‘shots’ to be taken in sequence, necessitating
long exposure times. It is therefore desirable for the interaction to be minimally de-
structive and not cause any extra dynamics that perturb the BEC being imaged. In
the second chapter I provided a theoretical analysis of the atom-light interaction in
the far off-resonant limit, where the dynamics are governed by a tensor polarisability
that couples atomic spin to the polarisation of the probe beam. The scalar polarisabil-
ity demonstrated that the trapping potential vanished at specific ‘magic’ wavelengths,
from which λ = 790 nm was chosen as the probe wavelength. The Faraday effect
was shown to arise from the vector polarisability, which also produced an unintended
effective magnetic field if the probe beam had an elliptical polarisation. The tensor
polarisability, which would induce complicated dynamics in the BEC, was shown to
be negligible in the regime of interest.
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Using this characterisation of the Faraday effect, in the third chapter I developed the
Faraday interaction from a simple spin probe to a method for extracting a 1D profile
of the cold atom cloud by using a magnetic field gradient. The signal-to-noise ratio
of this measurement was shown to depend on the ratio of measurement duration to
scattering lifetime. I considered coherent spin dephasing in terms of the time-domain
Faraday signal, and saw that small features generated revivals at longer measurement
times. I quantified the resolution of the reconstructed image in terms of the applied
magnetic field gradient, with large magnetic field gradients and short measurement
times encouraged to prevent Stern-Gerlach blurring. I showed that sub-micron resolu-
tion was shown possible, although the necessary gradients are beyond the capabilities
of our current apparatus.

From this theoretical base, I began to describe the experimental implementation in the
fourth chapter. At the commencement of this project, there were no cold atom experi-
ments at our institution, so our group designed and constructed an apparatus for the
production and study of spinor condensates from the ground up. The design was cen-
tred around a large glass science chamber, with atoms sourced from a Zeeman slower
and condensed in a crossed-beam dipole trap. As this was a collaborative effort span-
ning several projects, my in-depth discussion covers only my primary contributions,
which have not been described elsewhere. This included a digital beatnote lock that
enabled the Zeeman repump laser to be reliably locked to an arbitrary detuning and
maximise the load rate of the magneto-optical trap. A microcontroller-based interlock
was created to control and monitor the oven, ensuring the oven remains in a safe state
at all times. The modular imaging application, BIAS, which was created to interac-
tively control the scientific cameras used for absorption imaging, and its role in the
wider control system was detailed.

With reliable production of spinor BECs with large atom number, in the fifth chapter I
discussed the experimental considerations for generating the Faraday beam to probe
them. The Faraday measurements rely on polarisation stability of the probe beam, and
the polarisation-maintaining fiber was found to induce large polarisation fluctuations
when the polarisation axis did not match the fiber. Methods for aligning the polari-
sation axis, and for centering the small probe waist on the BEC were described. The
lifetime of the BEC in the trap was measured, and the amplified spontaneous emis-
sion of the diode laser generating the Faraday beam was found to contain a compo-
nent resonant with the atoms causing rapid scattering. An interference filter blocked
the resonant components, and the resulting scattering rate agreed with the theoretical
predictions. The tightly focused probe beam therefore does not perturb the trap or
cause resonant scattering, enabling the BEC to be probed for long timescales.

In the sixth chapter I described polarimetry of the probe beam after passing through
the BEC, and constructed a shot-noise-limited photodetector which was calibrated us-
ing an ‘electro-optic BEC’. Faraday measurement of a BEC was performed, and the
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structure of the resulting signal analysed. Short-time Fourier transforms were used to
generate spectrograms to facilitate interpretation of the signal, which was seen to be
both frequency- and amplitude-modulated on the same timescale.

The structure of the Faraday signal was investigated further in the seventh chapter.
The frequency modulation was seen to result from magnetic field fluctuations in-
duced by electrical components near the science cell as the modulation was formed
by harmonics of the power line frequency. The windows of the science cell induced
birefringence on the probe beam, resulting in the atoms experiencing an effective mag-
netic field because of the vector light-shift. This was quantified by precision measure-
ment of the Larmor frequency, and cancelled using a quarter-waveplate before the
cell. Rapid amplitude modulation of the Faraday signal was shown to result from
the quadratic Zeeman effect, which produced two Larmor tones that formed a beat-
note. Microwave dressing was applied to cancel the quadratic shift and eliminate the
amplitude modulation.

Having eliminated the undesirable dynamics induced by the probe beam, in the eighth
chapter I performed Faraday imaging experimentally. Our apparatus is not capable
of producing ‘off-diagonal’ gradients, so imaging with the weak ‘diagonal’ gradients
that can be produced was considered. Faraday measurement of the Larmor frequency
was used to calibrate the gradients, and applying a gradient to cancel the background
gradient was observed to increase the signal lifetime. Radiative π-pulses were then
observed to rephase the Faraday signal and generate a spin. This proves that the
dephasing process is coherent, which is crucial for building up profiles to produce
higher-dimensional images or enable time-resolved studies to be performed.

Magnetic resonance images were then captured of two configurations with non-trivial
structure. A partially evaporated atom cloud was seen to produce a bimodal Faraday
signal with components from both the thermal and condensed fractions, enabling the
two to be distinguished. Varying the truncation parameter showed the thermal frac-
tion disappears, leaving only the condensed component – displaying the potential for
use as an experimental diagnostic during evaporation to BEC. A split dipole trap was
used to produce twin spatially separated BECs, which were clearly resolved by Fara-
day imaging. The twin BECs were rephased by up to four spin echoes, demonstrating
the spatial and temporal resolution of the technique.
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9.2: Outlook
This work demonstrated that magnetic resonance imaging with the Faraday effect can
be used for minimally destructive observation of a spinor BEC in situ. There are sev-
eral immediate extensions that can be applied to the work presented, and multiple di-
rections that could be pursued in the near-future. Some modifications are conceptually
straightforward but technically challenging to implement, such as the introduction of
a cavity in vacuo to suppress spontaneous emission, and some involve the application
of more advanced MRI techniques to BEC.

The resolution of the magnetic resonance images presented in this work was limited
by the strength of the available magnetic field gradients. Without specialised gradient
coils, the existing bias and quadrupole coils were used instead. The bias coils could
only generate a weak gradient, and while the quadrupole coils were capable of gen-
erating a much stronger gradient, this weakened the trap against gravity resulting in
the condensate ‘falling out’ of the trap. Control of the magnetic field gradient direc-
tion and strength is currently the greatest weakness of our apparatus, which we plan
to address in the near future.

Alternatively, changing the trap geometry to be quasi-1D would allow the conden-
sate to expand along the long-axis and relaxing the constraints on the strength of the
applied gradient since the large spatial extent results in a wider spread of Larmor fre-
quencies. In principle this can be achieved by weakening one of the dipole trapping
beams in the crossed-dipole trap, but in practice this results in significant atom num-
ber loss. Creating a dedicated 1D-trap would require reconstruction of the dipole trap
optics, which the group intends to pursue.

Installation of dedicated gradient coils – such as current bars or Golay coils – could
create strong gradients, but installing them around the vacuum system is a technical
challenge. In particular, to image along the z′-axis (which would be the long-axis of
the quasi-1D trap), they would need to be placed above and below the fragile science
cell in the few millimetres of clearance between the cell window and the quadrupole
coils. Geometric constraints introduced by the optics and components around the
cell restrict the size and shape of the coils, and the only truly feasible design is to
align the coils along the z-axis. Although this does not produce the ideal gradient
terms, imaging along the required axis can still be achieved by choice of the bias field
direction.

Coils capable of generating magnetic field gradients that would enable MRI at sub-
micron resolution with experimentally feasible drive currents have been designed and
constructed for our apparatus [173], but are yet to be installed. These coils require a
drive current of > 50 A to achieve the necessary gradient for the desired resolution
(b > 33 G/cm), and will therefore require a pulsed current source to prevent signifi-
cant Joule heating. However, the coils form an inductive load, and pulsing such high
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currents into them requires prohibitively large voltages. An insightful solution was
devised by P. Pakkiam [173] to apply sinusoidal instead of pulsed gradients, and re-
cover the density profile by an integral transform.

It may also be possible to generate a large effective magnetic field gradient using a
circularly-polarised beam propagating along the x′-axis. The intensity profile of the
beam will result in a non-zero gradient term ∂Bx′

∂z′ , which is ideal to image along the z′-
axis if the bias field points along x′. As discussed in §8.3, this is not possible using di-
agonal gradients without tipping the bias field axis and reducing the amplitude of the
Faraday signal, making an effective gradient an attractive alternative. However, this
laser must also be at the magic wavelength to avoid perturbing the trap (§2.4), which
would require a new high-power laser, and the condensate lifetime will be reduced by
induced scattering (§5.9). It should also be noted that the intensity profile along the
y-axis will potentially result in an effective magnetic field gradient that weakens the
trap against gravity, as the quadrupole coils did (see §8.6).

Another limitation is that the intensity profile is Gaussian, soBvls does not vary mono-
tonically across the cloud. This means two points on opposite sides of the cloud have
the same Larmor frequency, so frequency does not uniquely map to position, and the
inversion (3.11) cannot be performed. This could be solved positioning the centre of
the beam to the side of the BEC, so that the condensate is contained in one half of the
beam, ensuring that Bvls does vary monotonically across the cloud. An image can be
reconstructed, but the non-linear profile of the beam means the ‘bin’/‘pixel’ size will
not be uniform, making interpretation difficult.

However, the strength of the magnetic field gradient can not be increased arbitrar-
ily, as it induces Stern-Gerlach separation and separates the spin components of the
cloud. While this evolution can be reversed by inverting the gradient or applying a
radiative π-pulse, the Faraday measurement must be completed before the separation
induces significant blurring of the reconstruction. Technical limitations such as the
experimentally feasible bias field strength, the photodetection bandwidth and acqui-
sition rate were shown to place an upper bound on the potential gradient strength
(see §3.9), limiting the gradient to 290 G/cm in the present apparatus. Furthermore,
while the gradient switching time doesn’t affect the imaging resolution, it must be
fast enough to prevent spatial separation of the BEC (as observed in §7.9) from occur-
ring between measurements. Other more fundamental limitation are likely to arise
from a strongly varying magnetic field across the BEC, such as a spatially-dependent
quadratic Zeeman shift (see §7.6) that cannot simply be cancelled by applying an op-
posite microwave dressing.

The real test of the Faraday imaging technique will require a feature at the healing
length scale to be produced. While it would be possible to stir the condensate to pro-
duce a vortex lattice, in the first instance a quasi-1D feature such as a dark soliton
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could be imaged to enable characterisation of the system before extending to higher
dimensional measurements with spin sequencing. The group has a new theoretical
proposal to generate black solitons using magnetic resonance control (MRC) [135,
136], which presents an attractive target for Faraday imaging as a demonstration of
minimally-destructive time-resolved imaging. However, the operating principle of
the MRC protocol is spatially-selective population transfer, which also requires strong
magnetic field gradients, and has only been studied as a proof-of-principle in a quasi-
1D condensate. The requirement to generate magnetic field gradients outlined above
for imaging therefore need also be addressed for magnetic resonance control.

More techniques can potentially be adapted from medical MRI, such the application
of diffusion-weighted or flow-encoding gradients to directly observe persistent flow
within the condensate, and would be beneficial in applications studying quantum tur-
bulence. The spin sequencing considered in this thesis are only the simplest possible
combinations, and there is a wide range of literature (see, e.g. [200]) on combinations
of gradients and pulse sequences to achieve the highest sensitivity, and compensate
for experimental imperfections. As observed in §8.7, fidelity of the π-pulses was ob-
served to limit the number of spin echoes that could be observed, and techniques such
as CPMG could be implemented to overcome this. Resolving this decoherence is crit-
ical to developing Faraday MRI as a higher-dimensional imaging technique, as many
sequential measurements are required to build up the reconstruction.

Although time-resolved imaging was demonstrated with twin BECs, the decoherence
time observed with the train of π-pulses limits the timescale over which the time-
evolution of the density can be observed. One solution (proposed in §3.6) is to create
a condensate in a single Zeeman substate with an ‘interesting’ density profile, then
tip the spins with a π

2 -pulse, capture a magnetic resonance image, apply a π-pulse
to rephase the spins, then apply another π

2 -pulse coincident with the spin echo that
transfers the population back into the original state. Evolving the system for some
time and repeating the process prevents decoherence and residual dephasing from
degrading the measured Faraday signal over long timescales, which is critical for time-
resolved studies.

Another benefit of Faraday measurement over camera-based imaging techniques is
that there is no readout time. The Faraday signal could potentially be processed elec-
tronically in real-time by a field-programmable gate array (FPGA) implementing a
matched filter. This processing could generate feedback for the control system during
a running experiment, which has great potential for quantum control and wavefunc-
tion engineering. The possibility exists of creating a closed-loop feedback system be-
tween MRC and MRI to enable the engineering of highly complex quantum systems.

However, this kind of magnetic resonance imaging uses the spin degree of freedom
solely as a quantum-photonic interface to infer the density profile of the BEC, which
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ignores the richness of structure presented by the spinor. Spin textures could be stud-
ied directly through observation of the local spin projection, and Faraday imaging has
already been used to observe the formation of spin domains [42]. Probing from multi-
ple directions enables measurement of different projections of the local spin, and has
been shown to produce squeezed states [204, 205].

These applications demonstrate how the fundamentally quantum nature of Faraday
measurement results in a wide range of potential applications in creation and obser-
vation of complex quantum systems. This closes the circle of reciprocity between fun-
damental science and medicine, applying a diagnostic imaging technique borne out
of nuclear physics 40 years ago to cutting-edge atomic physics.
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A
Oven controller implementation

This appendix contains details of the implementation of the oven controller and inter-
lock described in §4.3. The controller processes analog inputs from multiple gauges,
and makes decisions based on its state machine. It produces analog outputs that reg-
ulate the oven temperature, and digital outputs that control the atom beam. Failures
disable the relays and the oven, ensuring the system ‘fails safe’.

The state machine is updated every 150 ms, and the sensors are read every iteration.
An ‘error counter’ is used to debounce error situations, as spurious noise or rf-pickup
can cause sensors to momentarily return an invalid reading. Once the error state
has been entered into, manual intervention is required to return to normal operation,
which can be done using a physical switch on the unit, or remotely using TELNET if
measurement logs indicate the situation is safe.

A.1: Inputs and outputs
The analog inputs/outputs are 0–5 V, with inputs taken as single-ended with common
ground. The digital inputs are optocoupled with HI voltages between 5 and 24V . The
voltage of the digital output lines are externally set to +24V using the OP0A/OP1A pins.

Line Purpose

DO0 Enable Peltiers

DO4 Open gate valve

DO13 Alarm buzzer

DO14 Backlight for ‘start’ button

DO15 Backlight for ‘stop’ button

DI0 ‘Peltiers override’ switch

DI3 Peltiers flow meter

DI4 ‘Start’ button

DI5 ‘Stop’ button

DI6 ‘Manual override’ switch

Line Purpose

AO0 Bellows heater (PID)

AO1 Collimation tube heater (PID)

AI0 Bellows thermistor

AI1 Collimation tube thermistor

AI2 Cold-cup thermistor (in vacuo)

AI3 Water supply thermistor

AI4 UHV pressure (ion gauge)

AI5 LV can pressure (Pirani gauge)

AI6 Peltier thermocouple (in vacuo)
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The oven is heated by two 1m lengths of heater tape (insulated nichrome wire), which
are wrapped around the bellows and collimation tube. They are fed by MANSON

3402 HCS power supplies (max 20 A/30 V) operated in externally controlled constant-
voltage mode (0 − 5 V FSD). Constant-voltage mode had improved dynamic range
over constant-current mode, and the PID control accounts for any change of heater
tape resistance with temperature. Details on the PID loop and the tuning of its gain
constants are presented in [140].

A HTC GVB-SS-CF35-P pneumatic gate valve between the cold-cup and Zeeman
slower isolates the oven from the rest of the vacuum system. It is actively forced
open by compressed-air regulated by a spring-return NUMATICS L01SA459G00040
solenoid, which ensures the gate valve is closed in the event of power loss.

The Peltiers are formed by two MELCOR MS2-11 TECs run at 35 V/6 A to achieve a
steady-state cold-side temperature of −32◦C. The Peltier’s power supply is activated
by a relay switch on its ‘remote control’ port, which is disabled unless permitted by
the PLC. Active water-cooling of the ‘hot’ side is required to prevent runaway heating
of the unit, which is provided by a closed-loop water chiller (JULABO HE).

Flow is measured by the onboard pulse counter using a GEMS SENSORS FT-210 flow
sensor which produces 22,000 pulses/L. Note that the GALIL pulse counter input
is only guaranteed to 300 Hz max (max flow 0.8 L/min), although some units went
higher. A divide-by-4 counter was implemented (using a 74C74) to increase the max
flow rate to 2.4 L/min. Later interlock designs used an RS 257-149 flow sensor (4,600
pulses/L) and an LM2907N-8 to perform frequency-voltage conversion.

The type-E thermocouples were read using OCEAN CONTROLS TCAMPV2 thermo-
couple amplifiers (based on the AD594). An RC-filter (time constant 1 s) was added
to the output to smooth out high-frequency noise on the output voltage (reduced from
20 mVRMS to 2 mVRMS). The Peltiers thermocouple amplifier is configured for negative
polarity to provide a positive voltage for temperatures below 0◦C.

Thermistors are NTC type EC95 (F-material) with nominal resistance 3 kΩ at 25◦C. The
non-linear relationship between resistance and temperature over the operating range
25− 235◦C was phenomenologically modelled as

R(T ) =
1

aT 4 + bT 2 + c
⇒ T (R) =

√√√√−b
2a

+
1

2

√(
b

a

)2

− 4

a

(
c− 1

R

)
= 53.85

√√
29500/R+ 1− 1.376 (calibrated),

for T in ◦C and R in Ohms. The thermistor resistances were measured using voltage
dividers, taking the analog input across a known resistance R0,

R(T ) =

(
V0

V
− 1

)
R0,
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where V0 = 5 V is the reference voltage, and R0 is chosen for each thermistor to match
the thermistor resistance at the expected operating temperature.

The analog outputs of the SRS IGC100 are 0 − 12V , requiring voltage dividers to be
read by the +5Vmax analog inputs. The voltage V is logarithmic in pressure, with

P (Torr) =

10V−12 for an ion gauge

10V−5 for a Pirani gauge.
(A.1)

The GALIL unit has no exponential function, but the following approximation can be
used to compute the pressure in Torr,

10x ≈ tan[((ax+ b)x+ c)x+ d] (A.2)

where a = 11.0, b = −49.7, c = 78.9, d = 44.0, and the argument of tan[x] is specified
in degrees.

The current state of the machine is displayed on a CRYSTALFONTZ CFA634 LCD dis-
play connected to the serial port of the GALIL (handle ‘P1’). The unit maintains a TCP
connection to a logging server (handle ‘EC’), and every 55 s the latest measurements
are sent to it using custom protocol [206]. A message is also sent whenever the state
machine changes state. TCP logging was chosen to ensure the messages are resent
if a collision occurs, and that both the unit and server know when the connection is
severed and intervention is required.

A.2: Code listing

1 REM =====[ GALIL OVEN INTERLOCK/CONTROLLER ]=====
2 #AUTO; ’resume from here on power-cycle
3 ZC1; ’reset state variable
4 IQ65535; ’ensure logic is the correct way around
5 CB13; ’buzzer off
6 CB0; ’peltiers off at start
7 AO0,0; AO1,0; ’heaters off
8 SM255,255,255,128; ’permit only lab subnet
9 JS#RECONN; ’enable logging

10 TMSG=TIME
11
12 MG{P1}{ˆ9},{ˆ6}{N}; ’boot screen
13 WT1000
14 MG{P1}{ˆ4},{ˆ22},{ˆ27}{N}; ’config screen
15
16 DMT[6]; ’allocate temperature array
17
18 REM ******* PID LOOP SETTINGS *******
19 ’ loop A = oven, loop B = collim tube
20 AZ-1,-1; ’ensure disabled
21 CL500; ’set update interval to 500ms
22 AF0,1; ’analog input chans
23 KP350,400; KI 2.0,1.5; KD5,5; ’P,I,D gains
24 DB0,0; ’no control deadband
25 AO0,0; AO1,0; ’zero control signal
26

27 TPTR=-20.0; ’peltier temperature (negative)
28 PTRCONV=0; ’peltiers have converged
29 TOVN1=80; TOVN2=120; ’oven temperatures
30 PS2.25,3.25; ’oven set-point voltages
31 NCONV=10; ’number of loops before convergence
32
33 REM ******* BEGIN CODE *******
34 FAIL=0; ’nothing is wrong yet
35 SHOWTPTR=0; SHOWTOVN=0; ’display settings
36 COOLFAIL=0; ’# loops with coolant failure
37
38 JS#RUNCHK; ’we all good to start?
39
40 REM ******* INITIALISATION STATE *******
41 #WAITING
42 ZC1
43 SHOWTPTR=0; SHOWTOVN=0
44
45 MG"NOTICE,standby"
46 SB14;CB15;’buttons
47
48 MG{P1}{ˆ4},{ˆ12}
49 #WAITLP
50 JS#RUNCHK
51 MG{P1}{ˆ1},"STANDBY"
52 MG{P1}"<start> peltiers"
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53 JP#COOLPTR,NEXT>0
54 WT150
55 JP#WAITLP
56
57
58 REM ******* ACTIVATE PELTIERS *******
59 #COOLPTR; ’COOL PELTIERS
60 CB13;’turn off the siren
61 SB0;’start peltiers
62 SHOWTPTR=1;’now track temperature
63
64 ZC2
65 MG"NOTICE,cool peltiers"
66 CB14;SB15;’buttons
67
68 PTRCONV=0;’no convergence
69 NSET=0
70 #CLPTRLP
71 JS#RUNCHK
72 MG{P1}{ˆ1},"Peltiers cooling"
73 JP#WARMPTR,PREV>0
74 IFT[4]<TPTR
75 NSET=NSET+1
76 ELSE
77 NSET=0
78 ENDIF
79 WT150
80 JP#CLPTRLP,NSET<NCONV
81 PTRCONV=1
82
83 MG"NOTICE,status=cold,",‘
84 "Tptr=",T[4]{F2.3}
85 JP#COLD
86
87 REM ******* PELTIERS COLD *******
88 #COLD
89 SHOWTOVN=0
90 ZC4
91 MG"NOTICE,waiting"
92 SB14;SB15;’buttons
93
94 #COLDLP
95 JS#RUNCHK
96 MG{P1}{ˆ1},"Peltiers cold"
97 MG{P1}"<start> oven"
98 JP#HEATOVN,NEXT>0
99 JP#WARMPTR,PREV>0

100 WT150
101 JP#COLDLP
102
103
104 REM ******* ACTIVATE OVEN *******
105 #HEATOVN
106 AZ0,1;’activate control loop outputs
107 IL0.3,0.1;’set integrator limits
108 SHOWTOVN=1
109
110 ZC5
111 MG"NOTICE,heating"
112 CB14;SB15;’buttons
113
114 IF(TOVN1<0);’make sure it’s positive
115 TOVN1=-TOVN1
116 TOVN2=-TOVN2
117 ENDIF
118 ’wait for convergence
119 NSET=0
120 #HTOVNLP
121 JS#RUNCHK

122 MG{P1}{ˆ1},"Heating oven"
123 JP#COOLOVN,PREV>0
124 IF(@ABS[T[0]-TOVN1]<5)&‘
125 (@ABS[T[1]-TOVN2]<5)
126 NSET=NSET+1
127 ELSE
128 NSET=0
129 ENDIF
130 WT150
131 JP#HTOVNLP,NSET<NCONV
132 TOVN1=-TOVN1; TOVN2=-TOVN2;’convergence=negative
133
134 MG"INFO,status=hot,",‘
135 "Tovn1=",T[0]{F2.3}
136 JP#READY
137
138 REM ******* SYSTEM READY/WAITING *******
139 #READY
140 ZC7
141 MG"NOTICE,ready"
142 SB14;SB15;’buttons
143 #READYLP
144 JS#RUNCHK
145 MG{P1}{ˆ1},"System ready"
146 MG{P1}"<start> open g.v."
147 JP#ACTIVE,NEXT>0
148 JP#COOLOVN,PREV>0
149 WT150
150 JP#READYLP
151
152 REM ******* ACTIVE BEAM *******
153 #ACTIVE;’ANY JUMP AWAY MUST CALL #KILLGV
154 MG"NOTICE,active"
155 ZC8
156 CB14;SB15;’buttons
157
158 JS#RUNCHK;’paranoia
159
160 SB4; ’ *** OPEN GATE VALVE ***
161 MG"NOTICE, gate=open"
162
163 #ACTLP
164 JS#RUNCHK
165 MG{P1}{ˆ1},"ACTIVE BEAM"
166 MG{P1}"<stop> close g.v."
167 IF PREV>0
168 JS#KILLGV
169 JP#READY
170 ENDIF
171 WT150
172 JP#ACTLP
173
174
175 REM ******* DEACTIVATE OVEN *******
176 #COOLOVN
177 AZ-1,-1;’kill PID loops
178 AO0,0;AO1,0;’slam outputs
179 ’reset trackers
180 IF(TOVN1<0)
181 TOVN1=-TOVN1;TOVN2=-TOVN2
182 ENDIF
183
184 JP#WARMPTR,FAIL>0; ’jump on
185
186 ZC6
187 MG"NOTICE,cooling oven"
188 SB14;SB15;’buttons
189
190 NSET=0
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191 #CLOVNLP
192 JS#RUNCHK
193 JP#HEATOVN,NEXT>0
194 JP#COLD,PREV>0
195 MG{P1}{ˆ1},"Cooling oven"
196 IF (T[0]<50)&(T[1]<50)
197 NSET=NSET+1
198 ELSE
199 NSET=0
200 ENDIF
201 JP#COLD,NSET>NCONV
202 WT150
203 JP#CLOVNLP
204
205 REM ******* DEACTIVATE PELTIERS *******
206 #WARMPTR
207 CB0;’disable peltier
208 PTRCONV=0;’not converged
209
210 ZC3
211 MG"NOTICE,stopping peltiers"
212 SB14;SB15;’buttons
213
214 NSET=0
215 #WMOVNLP
216 JS#RUNCHK
217 JP#COOLPTR,NEXT>0
218 JP#WAITING,PREV>0
219 MG{P1}{ˆ1},"Stopping peltiers"
220 IF T[0]<2
221 NSET=NSET+1
222 ELSE
223 NSET=0
224 ENDIF
225 JP#WAITING,NSET>NCONV
226 WT150
227 JP#WMOVNLP
228
229
230 REM ******* COMPUTE MEASUREMENTS *******
231 #COMPUTE
232 ’ check vacuum pressures (measured constants)
233 P1=@AN[4]*2.4481-12; ’log10(P) - ION gauge
234 P2=@AN[5]*2.4423-5; ’log10(P) - PIRANI gauge
235 ’ check water flow
236 PC-1; ’activate pulse counter
237 WT100
238 ’flow rate in L/min (110/3=36.666)
239 FLOW=_PC*6/55.0;
240 PC0; ’deactivate counter
241 ZD 1000*FLOW
242 ’ compute thermistor readings
243 ’ resistances chosen for max sensitivity
244 R=(5.0/(@AN[0]+0.01)-1)*2095.0;’
245 T[0]=53.85*@SQR[@SQR[29500/R+1]-1.376]
246 R=(5.0/(@AN[1]+0.01)-1)*1397.0;’
247 T[1]=53.85*@SQR[@SQR[29500/R+1]-1.376]
248 R=(5.0/(@AN[2]+0.01)-1)*3300000;’
249 T[2]=-13.25*(@AN[2])-24.38
250 R=(5.0/(@AN[3]+0.01)-1)*20100.0;’
251 T[3]=53.85*@SQR[@SQR[29500/R+1]-1.376]
252
253 ’ compute thermocouple readings
254 T[4]=@AN[6]*-124.28+52.545
255 T[5]=@AN[7]*94.6-3.8
256 MG{P1}{ˆ12},{ˆ10}
257 IF(SHOWTOVN)
258 MG{P1}"TOVEN=",T[0]{Z3.1},",",‘
259 T[1]{Z3.1}

260 ELSE
261 MG{P1}{ˆ10}{N}
262 ENDIF
263 IF(SHOWTPTR)
264 MG{P1}"COLD CUP=",T[4]{Z2.1}{N}
265 ENDIF
266
267 ’ external input
268 IF(FAIL=0)
269 IF(@IN[4]=0)|(@IN[5]=0)
270 NEXT=@IN[4]*(2*(NEXT==0)-1);
271 ’>1 on first loop, <=0 after
272 PREV=@IN[5]*(2*(PREV==0)-1);
273 ’>1 on first loop, <=0 after
274 ENDIF
275 ELSE
276 NEXT=0
277 PREV=0
278 ENDIF
279 EN
280
281 REM ******* STATUS UPDATE *******
282 #STATUS
283 JS#COMPUTE; ’compute things
284
285 ’check we’re connected to logger
286 IF(_IHC2=0)&(_XQ1=-1)
287 XQ#RECONN,1
288 ENDIF
289 ’periodically send message
290 IF(TIME>=TMSG)
291 CW2;CFC;’reset output controls to be safe
292 MG"INFO,state=",_ZC{Z2.0},‘
293 ",Tovn1=",T[0]{Z3.1},",Tovn2="{N}
294 MG T[1]{Z3.1},",Tptr=",T[4]{Z3.1},‘
295 ",flow=",FLOW{Z3.1}
296 TMSG=TIME+55000;’slightly less than 60s
297 ENDIF
298
299 EN;’#STATUS
300
301
302 REM ******* FAILSAFE CHECK *******
303 #RUNCHK; ’Run through checks
304 JS#STATUS
305
306 ’are we TRANSITIONING TO manual override?
307 IF(_ZC>-3)&((@IN[0]>0)|(@IN[6]=0))
308 JP#MANUAL
309 ENDIF
310 MG{P1}{ˆ1}
311
312 REM ***** RUN CRITICAL CHECKS FIRST *****
313 ’check thermocouples
314 REM digital check is susceptible to transients,
315 REM -- check analog voltages instead
316 IF(@AN[6]<0.01)|(@AN[7]<0.01)
317 MG{P1}"Thermocouple error"
318 IF(FAIL=0)
319 MG"CRIT,TC=",@AN[6]{Z1.3},‘
320 @AN[7]{Z1.3}
321 JP#FAIL
322 ENDIF
323 EN
324 ENDIF
325 ’ check water flow at least 1.5L/min
326 ’ require failure for 5 loops before failsafe
327 IF(FLOW<1.5)
328 IF(COOLFAIL<5)
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329 COOLFAIL=COOLFAIL+1
330 ENDIF
331 ELSE
332 IF(COOLFAIL>0)
333 COOLFAIL=COOLFAIL-0.5
334 ENDIF
335 ENDIF
336 ’ error: failed to be cool
337 IF(COOLFAIL>=5)
338 MG{P1}"Flow rate error"
339 IF(FAIL=0)
340 MG"CRIT,flow,rate=",FLOW{Z1.2}
341 JP#FAIL
342 ENDIF
343 EN
344 ENDIF
345 ’ check the peltiers
346 IF(T[4]>30)|((PTRCONV>0)&(T[4]>-12))
347 ’ CRITICAL TEMPERATURE ERROR
348 MG{P1}"Critical peltier"
349 IF(FAIL=0)
350 MG"CRIT,peltier,T=",T[4]{F2.3}
351 JP#FAIL
352 ENDIF
353 EN
354 ENDIF
355 IF(PTRCONV>0)&(T[4]>(TPTR+2));
356 ’ peltiers too hot, respond by cooling oven
357 MG{P1}"Peltiers too hot"
358 IF(FAIL=0)
359 MG"WARN,peltier,Tptr=",T[4]{F2.3}
360 JP#SOFTERR
361 ENDIF
362 EN
363 ENDIF
364
365 ’ check the oven
366 IF((TOVN1<0)&((@ABS[T[0]+TOVN1]>10)|‘
367 (@ABS[T[1]+TOVN2]>10)))
368 MG{P1}"Oven control fail"
369 IF(FAIL=0)
370 MG"WARN,",‘
371 "heater,Tovn1=",T[0]{F2.3}{N}
372 MG",Tovn2=",T[1]{F2.3}
373 JP#SOFTERR
374 ENDIF
375 EN
376 ENDIF
377
378 ’check thermistors
379 IF(@AN[0]<0.05)|(@AN[1]<0.05)|‘
380 (@AN[2]<0.02)|(@AN[3]<0.05)
381 MG{P1}"Thermistors discon."
382 IF(FAIL=0)
383 MG"WARN, thermistors"
384 JP#SOFTERR
385 ENDIF
386 EN
387 ENDIF
388
389 ’check vacuum gauges
390 IF(@AN[4]<0.1)|(@AN[4]>11)|‘
391 (@AN[5]<0.1)|(@AN[5]>11)
392 MG{P1}"Vacuum gauge discon."
393 IF(FAIL=0)
394 MG"WARN, vacuum gauge"
395 JP#SOFTERR
396 ENDIF
397 EN

398 ENDIF
399
400 ’ check vacuum pressure
401 IF(P1>-6)|(P2>2)
402 IF(FAIL=0)
403 MG{P1}"Vacuum press. fail"
404 x=@FRAC[P1]
405 x=@TAN[((11*x-50)*x+79)*x+44]
406 MG"WARN, iongauge=",x{F1.2},‘
407 "*10ˆ",@INT[P1]{F2.0}{N}
408 x=@FRAC[P2]
409 x=@TAN[((11*x-50)*x+79)*x+44]
410 MG", pirani=",x{F1.2},"*10ˆ",‘
411 @INT[P2]{F2.0}
412 MG"WARN, vacuum"
413 JP#SOFTERR
414 ENDIF
415 EN
416 ENDIF
417
418 FAIL=0; ’nothing was wrong
419 EN; ’end #RUNCHK
420
421
422 REM ******* FAILSAFE ACTIVATIONS *******
423 #KILLGV
424 IF@OUT[4]
425 MG"NOTICE, gate=shut"
426 CB4; ’slam gate valve
427 ENDIF
428 EN
429
430 #DISABLE
431 JS#KILLGV; ’shut the gate valve
432 IF(FAIL<>2); ’disable peltiers
433 CB0
434 PTRCONV=0
435 ENDIF
436 AZ-1,-1; ’shutdown oven
437 AO0,0; AO1,0
438 IF(TOVN1<0)
439 TOVN1=-TOVN1; TOVN2=-TOVN2
440 ENDIF
441 CB14;CB15; ’no buttons
442 SHOWTPTR=1;SHOWTOVN=1;’debug info
443 NSET=0
444 EN
445
446 REM ******* CRITICAL FAILURE *******
447 #FAIL
448 ZS0;’forget the stack
449 FAIL=1
450 JS#DISABLE
451 SB13; ’make noise
452 ZC-1
453 MG"EMERG,failsafe"
454 #FAILED
455 JS#RUNCHK
456 MG{P1}{ˆ1},"FAILSAFE ACTIVATED"
457 WT250
458 JP#FAILED
459
460 REM ******* RECOVERABLE FAILURE *******
461 #SOFTERR
462 ZS0;’forget the stack
463 FAIL=2
464 JS#DISABLE
465 JS#BUZZ; ’make noise
466 ZC-2
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467 #SOFTLP
468 JS#RUNCHK
469 MG{P1}{ˆ1},"ERROR"
470 WT250
471 JP#SOFTLP,FAIL>0
472 JP#COLD,PTRCONV>0
473 JP#WAITING
474
475 #BUZZ
476 SB13
477 WT150
478 CB13
479 EN
480
481 REM ******* MANUAL OVERRIDE *******
482 #MANUAL
483 ZS0;’forget the stack
484 FAIL=-1
485 ZC-3
486 JS#DISABLE
487 MG"NOTICE, manual"
488 #OVERLP
489 JS#RUNCHK
490 IF @IN[0]>0
491 MG{P1}{ˆ1},"* PELTIER OVERRIDE *"
492 ELSE
493 MG{P1}{ˆ1},"* MANUAL OVERRIDE *"
494 ENDIF
495 OB13,@IN[6]&(@IN[0]>0);’siren
496 WT250
497 JP#OVERLP,(@IN[0]>0)|(@IN[6]=0)
498 CB13;’siren off
499 FAIL=0
500 JP#WAITING

501 EN
502
503 REM ******* ETHERNET RECONNECTION *******
504 #RECONN
505 ’do not call me from the main thread
506 IHC=>-3
507 IHC=130,194,171,188 <519>2; ’syslog server (TCP)
508 WT250
509 JP#RECONN,_IHC2<>-2; ’keep trying
510 CW2;CFC
511 EN
512
513 REM ******* RUN-TIME ERRORS *******
514 #CMDERR
515 CB4;’CLOSE GATE VALVE
516 ZS0;’empty the stack
517 FAIL=1;’required for #DISABLE
518 JS#DISABLE;’system in unknown state- make safe
519 MG{P1}{ˆ12},"CODE ERROR",_TC{Z3.0}
520 MG{P1}"Line",_ED{Z3.0}
521 CFC
522 MG"CRIT,error,line=",‘
523 _ED{Z3.0},",descr="{N}
524 TC1;’outputs to CF
525 SB13;’activate noise maker
526 #ERRLP
527 JS#STATUS;’continue to send status messages
528 WT30000
529 JP#ERRLP
530 EN;’end the program (halt)
531
532 #TCPERR
533 ’_IA4 contains broken handle
534 RE; ’return from error state
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B
Loss mechanisms

Following Refs. [207, 208], we model the density-dependent number loss in a BEC
with spatially-varying number density n(r) as

dn(r)

dt
= −Ln(r)3 −Gn(r)2 − γn(r), (B.1)

where L, G and γ are the three-, two- and one-body loss coefficients respectively.

One-body losses arise from collisions of condensed atoms with the background gas
(caused by an imperfect vacuum), as well as scattering from the off-resonant dipole
trap and Faraday probe beams. The background collision rate is quantified by the
vacuum lifetime τ0, which depends on the quality of the vacuum apparatus, and the
off-resonant scattering rate γs for a particular beam depends on both the power and
detuning (see §B.2). The total one-body scattering rate is then γ = γs + τ−1

0 .

Potential sources of two-body loss are spin-exchange, dipolar relaxation, and photoas-
sociation. However, there is no antitrapped state in an optical dipole trap so spin ex-
change does not result in atom number loss, and the dipole relaxation rate in an F = 1

BEC is very low [207, 209]. Potentially the high intensity of the Faraday probe beam
combined with long interrogation times could induce losses through photoassocia-
tion. However, there are no known photoassociation lines near the probe wavelength
(see §B.3) and the dependence of the atom number decay rate (§5.9) is consistent with
a negligible photoassociation rate.

Finally, three-body losses occur by recombination, when two atoms collide and form
a dimer. The liberated molecular binding energy is carried away as kinetic energy by
a third atom, expelling it from the trap. Typically this is the dominant loss process in
a BEC [207, 208].

The total number of atoms in the BEC and its associated rate of change is therefore

N ≡
∫
n(r) d3r (B.2)

⇒ dN

dt
=

d

dt

∫
n(r) d3r =

∫
dn(r)

dt
d3r

= −L
∫
n(r)3 d3r −G

∫
n(r)2 d3r − γ

∫
n(r) d3r

= −LN〈n(r)2〉 −GN〈n(r)〉 − (γs + τ−1
0 )N, (B.3)
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where the density-weighted average of a function f(r) is defined as

〈f(r)〉 ≡ 1

N

∫
f(r)n(r) d3r. (B.4)

Note that the weighted averages in (B.3) indicate the form of the loss rate equation
depends on the shape of the density profile. For a given profile shape, the integrals
can be evaluated to obtain an expression in terms of the total atom number N , which
affects the form of solutions to the differential equation (B.3). Thermal and condensed
clouds therefore exhibit different loss rate curves for the same total atom number [208].

B.1: Thomas-Fermi profile
The peak density of a harmonically trapped BEC is closely described by the Thomas-
Fermi model, with corrections near the edges arising from the nonzero kinetic energy
of the condensate. The tails of the distribution where the approximation becomes
poorer have low density and therefore do not contribute significantly to (B.4), rein-
forcing the approximation.

A BEC with Thomas-Fermi radii (xTF, yTF, zTF) and chemical potential µ has a spatial
profile given by [10]

n(r) =
µ

g
max

(
1− x2

x2
TF
− y2

y2
TF
− z2

z2
TF
, 0

)
. (B.5)

Rescaling and transforming to spherical coordinates, the number averages become

〈n(r)k〉 =
4π

N

(
2µ

mω̄2

)3/2(µ
g

)k+1
1∫

0

r2(1− r2)k+1dr, (B.6)

where the Thomas-Fermi radii and trapping frequencies are related by µ = 1
2mω

2
xx

2
TF,

and ω̄ = (ωxωyωz)
1/3 is the geometric mean trapping frequency.

Normalising the integral by setting 〈1〉 ≡ 1 for k = 0, the chemical potential follows

µ

g
= c1N

2/5 where c1 =
152/5

8πa3

(a
ā

)12/5
, (B.7)

where a = mg/4π~2 is the interatomic scattering length and ā =
√

~/mω̄ is the char-
acteristic harmonic oscillator length.

Evaluating the averages in (B.3) for the density profile (B.5) gives

〈n(r)〉 =
4

7
c1N

2/5, and 〈n(r)2〉 =
8

21
c2

1N
4/5. (B.8)

Note that 〈n(r)2〉 = 7
6〈n(r)〉2, in agreement with Ref. [207]. Hence the total number of

atoms remaining in a Thomas-Fermi BEC follows the model

1

N

dN

dt
= −8c2

1

21
LN4/5 − 4c1

7
GN2/5 − γs −

1

τ0
. (B.9)

This model is applied in §5.7–5.9 to model the decay in BEC atom number over time.
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B.2: Photon scattering rate
In the far-detuned limit, the probability of direct excitation of an atom into an excited
state through absorption of a photon becomes negligible. However, adiabatic elimina-
tion of the excited state (§2.1) predicts the virtual transitions between ground states.

Even though this interaction is ‘second order’, it still results in scattering of photons
and reduces the lifetime of the BEC.1 The scattering rate can be seen as a result of
the Kramers-Kronig relation, which states that a real polarisability must have an ac-
companying imaginary component to satisfy continuity [111, §1.4.1.3, §14.1.4.2]. The
imaginary component describes absorption, traditionally expressed in terms of a scat-
tering cross-section relation called the Kramers-Heisenberg expression. Equivalently,
Fermi’s (second) golden rule predicts the scattering rate as arising directly from the
interaction Hamiltonian (2.4) [180, §8.7].

The brief discussion here follows Refs. [180, 210, 211], presented in notations and con-
ventions consistent with the rest of this thesis. Consider an atom initially in state |a〉.
Through the process of absorption of a photon (frequency ω and polarisation ε) and
emission of a scattered photon (frequency ωsc and polarisation εsc), the atom ends up
in state |b〉. The scattering rate for emitting the photon into a solid angle element dΩ is
given by the coherent sum of transition amplitudes through any accessible intermedi-
ate state |j〉,2 giving [211]

dγa→b
dΩ

=
I0ω

3
sc

(4πε0)2~3c4

∣∣∣∣∣∣
∑
|j〉

〈b|εsc · d̂|j〉〈j|ε · d̂|a〉
ωja − ω

+
〈b|ε · d̂|j〉〈j|εsc · d̂|a〉

ωja + ωsc

∣∣∣∣∣∣
2

, (B.10)

where ~ωja is the energy difference between |a〉 and |j〉, and I0 is the intensity of the
probe. The first term in the sum corresponds to absorption followed by emission,
whereas the second term is emission followed by absorption. Since we consider a
BEC in the electronic ground state, all intermediate states have ωja > 0 and the second
term can be disregarded.

Following [211], note that the scattered photon polarisation εsc is simply a Cartesian
unit vector and can factored out to give

dγa→b
dΩ

=
I0ω

3
sc

(4πε0)2~3c4

∣∣∣∣∣∣εsc ·
∑
|j〉

〈b|d̂|j〉〈j|ε · d̂|a〉
ωja − ω

∣∣∣∣∣∣
2

≡ I0ω
3
sc

(4πε0)2~3c4
|εsc ·D|2 . (B.11)

whereD represents an ‘effective’ dipole moment induced by the laser.

1 The momentum kick from absorption expels the atom from the BEC, so the photon scattering rate
is equal to the atom loss rate due to scattering.

2 The kets |a〉, |j〉 and |b〉 are shorthand for a full set of quantum numbers describing the state, each
corresponding to some |n,L, J, F,mF 〉. Therefore the sum over |j〉 corresponds to summing over all its
associated quantum numbers.
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The net scattering rate for the |a〉 → |b〉 transition is obtained by integrating (B.11) over
all emission solid angles (dΩ) and summing over the scattered photon polarisations
(denoted εsc,‖ and εsc,⊥),

γa→b =

∫
dγa→b
dΩ

(εsc,‖) +
dγa→b
dΩ

(εsc,⊥) dΩ

=
I0ω

3
sc

(4πε0)2~3c4

∫ ∣∣εsc,‖ ·D
∣∣2 + |εsc,⊥ ·D|2 dΩ. (B.12)

The scattered wave is locally planar in the far field, so only two polarisations need
to be considered. Both polarisations are perpendicular to the propagation vector ksc,
which by definition is normal to the surface element dΩ. The orientation of the two
polarisations is arbitrary (provided εsc,⊥ × εsc,‖ = k̂sc), allowing εsc,⊥ to be chosen
perpendicular toD and eliminating the second term in (B.12).

Evaluating the integral is then a textbook problem [212, §4], yielding

γa→b =
I0ω

3
sc

(4πε0)2~3c4

(
8π

3
|D|2

)
. (B.13)

The square magnitude of the induced dipole is calculated in the spherical-basis,

|D|2 =
∑

q
|Dq|2 where Dq = εq ·D and A ·B =

∑
q
(−1)qAqB−q (B.14)

is the spherical vector dot-product [111, §7.3.3]. Applying conservation of energy re-
quires the frequency of the scattered photon to be ωsc = ω − ωba, giving

γa→b =
I0(ω − ωba)3

6πε20~3c4

∑
q

∣∣∣∣∣∣
∑
|j〉

〈b|d̂q|j〉〈j|ε · d̂|a〉
ωja − ω

∣∣∣∣∣∣
2

, (B.15)

where q now represents the polarisation of the scattered photon.

The final states are distinguishable, so the scattering rates into each possible final state
|b〉 are summed to obtain the total scattering rate for the initial state |a〉,

γa ≡
∑
|b〉

γa→b =
I0

6πε20~3c4

∑
|b〉

(ω − ωba)3
∑
q

∣∣∣∣∣∣
∑
|j〉

〈b|d̂q|j〉〈j|ε · d̂|a〉
ωja − ω

∣∣∣∣∣∣
2

. (B.16)

We are interested in a linearly polarised probe beam, and choose the quantisation axis
along the polarisation axis, giving ε · d̂ = d̂0. The transitions of interest are of the form

|nJ F mF 〉︸ ︷︷ ︸
|a〉

→ |nJ ′ F ′mF ′〉︸ ︷︷ ︸
|j〉

→ |nJ F ′′mF ′′〉︸ ︷︷ ︸
|b〉

,

with the initial state J = 1/2, F = 1.
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Explicitly including the quantum numbers in the sum, and taking the Zeeman split-
ting within each hyperfine level as negligible compared to the detuning, gives3

γF =
I0

6πε20~3c4

∑
F ′′mF ′′q

(ω−ωF ′′F )3

∣∣∣∣∣∣
∑

J ′F ′mF ′

〈JF ′′mF ′′ |d̂q|J ′F ′mF ′〉〈J ′F ′mF ′ |d̂0|JFmF 〉
ωF ′F − ω

∣∣∣∣∣∣
2

.

(B.17)
The dipole matrix elements can be computed using the Wigner-Eckart theorem. As in
§2.1, in the convention of Ref. [121] this gives4

〈JFmF |d̂q|J ′F ′mF ′〉 = (−1)F
′−1+mF

√
2F + 1

(
F ′ 1 F

mF ′ q −mF

)
〈JF ||d̂||J ′F ′〉.

(B.18)
The hyperfine reduced matrix-element is related to the fine-structure reduced matrix
element through the Wigner-6j, including the nuclear isospin Is as

〈JF ||d̂||J ′F ′〉 = (−1)F
′+J+I+1

√
(2F ′ + 1)(2J + 1)

{
J J ′ 1

F ′ F Is

}
〈J ||d̂||J ′〉. (B.19)

This reduced element is itself related to the fine-structure transition linewidth ΓJ ′ as5

ΓJ ′ =
8π2

3ε0~λ3
J ′

2J + 1

2J ′ + 1
|〈J ||d̂||J ′〉|2. (B.20)

Hence using measured values of the linewidth [121], the reduced dipole element can
be computed and the scattering rate obtained for a given detuning.

In comparing different fine structure transitions, it is instructive to further decompose
the reduced dipole element in terms of the orbital angular momentum L using the
Wigner-6j expression (B.19) and Ĵ = L̂+ Ŝ.

〈J ||d̂||J ′〉 = (−1)J
′+L+S+1

√
(2J ′ + 1)(2L+ 1)

{
L L′ 1

J ′ J S

}
〈L||d̂||L′〉. (B.21)

Hence the dependence on J ′ in (B.20) can be written as

λ3
J ′ΓJ ′ =

8π2

3ε0~
2J + 1

2L+ 1

{
L L′ 1

J ′ J S

}2

|〈L||d̂||L′〉|2. (B.22)

The D1 and D2 transitions are both S → P transitions, so both have L = 0 and L′ = 1.
The L-reduced matrix element is therefore the same and evaluating the Wigner-6j
symbols gives

λ3
D1ΓD1 = λ3

D2ΓD2. (B.23)

3 Although the expression involves mF , the net scattering rate is independent of the chosen value.
4 For details on the decomposition, see for example [111, §7.3.4.1, §7.3.7.1], [213, §6.1.2], [211, §B].
5 This expression explicitly refers to spontaneous decay J ′ → J , so ordering of J and J ′ matters.
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It is important to note that the reduced matrix elements are not symmetric, and should
not be thought of as expectation values. The symmetry of the reduced element is
related to the symmetry of Clebsch-Gordan coefficients, giving [111, §7.3.5.1]

〈J ′||d̂||J〉 = (−1)J
′−J
√

2J + 1

2J ′ + 1
〈J ||d̂||J ′〉∗. (B.24)

Using (B.23), this leads to the somewhat counter-intuitive result that

〈J = 1
2 ||d̂||J

′ = 3
2〉

〈J = 1
2 ||d̂||J ′ =

1
2〉

=
√

2 but
〈J ′ = 3

2 ||d̂||J = 1
2〉

〈J ′ = 1
2 ||d̂||J = 1

2〉
= −1. (B.25)

B.2.1 Far-detuned limit

For the large detunings of interest, the hyperfine splitting of both the ground and
excited states can be taken as negligible (see §2.2). Recalling that |J ′F ′〉 is the interme-
diate (excited) state and |JF ′′〉 is the final (ground) state,

ωF ′′F � ω ⇒ (ω − ωF ′′F )3 ≈ ω3, (B.26)

ωF ′F ≈ ωJ ′J ⇒ ωja − ω ≈ ωJ ′J − ω = −∆J ′ , (B.27)

where ∆J ′ is the detuning from the associated line centre. The sum over intermediate
states then separates into fine structure contributions,

γa ≈
I0ω

3

6πε20~3c4

∑
F ′′mF ′′q

∣∣∣∣AD1

∆D1
+
AD2

∆D2

∣∣∣∣2 , (B.28)

with AJ ′ =
∑
F ′mF ′

〈JF ′′mF ′′ |d̂q|J ′F ′mF ′〉〈J ′F ′mF ′ |d̂0|JFmF 〉. (B.29)

The only potentially nonzero terms in the sum have mF ′ = mF and q = mF ′ −mF ′′ ,
so the sums over mF ′ and q vanish.6 There are two kinds of scattering processes,
corresponding to either q = 0 or q = ±1. These describe Rayleigh scattering and
Raman scattering respectively, as q = 0 gives leaves the atomic state unchanged7 and
q 6= 0 corresponds to transitions between different states. Evaluating the coefficients
for the transitions of interest shows [210]

AD2 =

2AD1 for Rayleigh scattering (q = 0)

−AD1 for Raman scattering (q = ±1).
(B.30)

6 Sometimes this is written with the sum over q put inside the inner sum (e.g. [210, 214]). Strictly this
is incorrect as the photon is observable and the scattering rates sum together, not the amplitudes. However,
since mF ′ is summed over in the internal summation, and non-zero terms have mF ′ = mF ′′ + q, these
are equivalent if notationally confusing formulations.

7 While it is obvious that q = 0 requires mF ′′ = mF , the scattering rate γ|a〉→|b〉 = 0 for F ′′ 6= F .
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Hence the contributions AJ ′/∆J ′ to (B.28) can suppress each other in specific regimes.
For detunings far from both lines (resulting in ∆D1 ≈ ∆D2), Raman scattering is sup-
pressed. At the magic wavelength (with ∆D2 = −2∆D1, see §2.4), Rayleigh scattering
vanishes.

This is consistent with the Kramers-Kronig interpretation of the spherical tensor de-
composition of the interaction Hamiltonian (2.7). Rayleigh scattering corresponds to
the scalar term Ĥ (0) whereas Raman scattering arises from the vector term Ĥ (1).
The scattering rates vanish when the Hamiltonian terms become small (see (2.30) and
(2.46) respectively).

Introducing the coupling constant

γ0 =
ω3

72πε20~3c4
|〈J = 1

2 ||d̂||J
′ = 3

2〉|
4 =

ω3

18πε20~3c4
α2

0 =
λ6
J ′Γ

2
J ′

8πhcλ3
, (B.31)

the decay rate corresponding to Rayleigh scattering is8

γ(q=0) = 3I0γ0

(
1

3∆1
+

2

3∆2

)2

=
I0γ0

3

(∑
J ′F ′

α
(0)
J ′F ′

α0∆J ′

)2

, (B.32)

whereas considering Raman scattering instead gives

γ(q=1) + γ(q=−1) = 6I0γ0

(
1

3∆1
− 1

3∆2

)2

= 6I0γ0

(∑
J ′F ′

α
(1)
J ′F ′

α0∆J ′

)2

. (B.33)

The total scattering rate is the sum of the two, which gives rise to a cancellation of
cross-terms between the D1 and D2 amplitudes, leaving only the ‘incoherent’ sum of
fine-structure contributions,

γ = γ(q=−1) + γ(q=0) + γ(q=1)

= I0γ0

(
1

∆2
1

+
2

∆2
2

)
= I0γ0

∑
J ′

(∑
F ′

α
(0)
J ′F ′

α0

)
1

∆2
J ′
. (B.34)

At the magic wavelength, given by (2.30), the far-detuned limit §2.2 applies and the
scattering rate is

γ =
(ΓJ ′λ

3
J ′)

2

128c3π4~
(λD1 + 2λD2)3

(λD1 − λD2)2λD1λD2
I0. (B.35)

It is worth restating that the net scattering rate is independent of mF , and therefore
applies to superpositions of mF states as well, such as the (1

4 ,
1
2 ,

1
4) population distri-

bution studied in this thesis. Also note that this result only holds for linearly polarised
(π) incident light because of the simplification in (B.29) that only one component of the
dipole operator contributes to absorption.

8 The expression of the scattering rate in terms of α(i) is true for this system and is conjectured (but
not proven here) to be true in general.
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B.3: Photoassociation resonances
Photoassociation occurs when a strong optical field induces two atoms to the form a
molecular dimer, with the released binding energy promoting the dimer to an excited
rovibrational state. Spectroscopically, photoassociation appears as a resonance with a
particular lineshape depending on the properties of the inter-atomic potential.

Although photoassociation near the probe wavelength of interest (λ = 790.0 nm) has
not yet been studied, studies have been carried out near the D2 line at 780.241 nm
(Figure B.1). Extrapolating the known resonance line centres enables estimation of
any resonances near the probe wavelength.

Phenomenologically, we model the wavenumber associated with photoassociation
resonance as a quartic in the vibrational quantum number v as

1

λv
= a0 −

4∑
n=2

ann(v − v0)n. (B.36)

This is a generic quartic model with 5 parameters, expressed in a way that reduces
the covariances between the fit parameters and allows more independent estimation
of their values and uncertainties (Table B.1).

The model predicts the closest resonance occurs with a vibrational quantum number
of v = 94 at a detuning of 56 GHz. The line spacing of the nearest resonances was esti-
mated as 134 GHz, indicating it is unlikely that another resonance is nearby. The mea-
sured resonance linewidths were 1.8(4) GHz, which is small compared to the extrap-
olated detuning, even with the expected power-broadening from the intense Faraday
probe beam. Estimating an uncertainty on the detuning is difficult as the resonance is
extrapolated by 1.1 THz and covariance between the fit parameters overestimates the
uncertainties.

Furthermore, as the magic wavelength is detuned between the D1 and D2 lines, it is
possible that a photoassociation resonance arising from the D1 line could result in an-
other loss channel. No data detuned sufficiently far from the D1 line for extrapolation
was available for fitting, preventing an estimation from being made.

Including two-body loss in the model would complicate the fitting procedure and re-
duce the numerical stability (see §5.7), which already required approximation using
(5.4) to achieve reliable convergence. If photoassociation were a prevalent loss mecha-
nism, neglecting it from the model would result in an inferred one-body loss rate that
would be non-linear in probe power. However, the gradient of the loss rate curve (Fig-
ure 5.10) agrees with the scattering rate prediction (3.19), indicating that losses due to
off-resonant scattering dominated any photoassociation processes.
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Figure B.1: Known 1g-photoassociation resonances for 87Rb between 780.5 nm and
787.6 nm (top). The phenomenological model (B.36) fits well, with residuals (bottom)
mostly falling within the measured linewidth (error bars) of each resonance. Extrapolat-
ing the fit to the magic wavelength λmagic = 790.0 nm (green) shows nearby photoassocia-
tion resonances (orange). The v = 94 resonance (solid orange) is estimated to be detuned
by 56 GHz, and the adjacent lines (dashed orange) give the line spacing as 134 GHz. Data
provided by [215].

Parameter v0 a0 a2 a3 a4

Fit value 210(3) 12814.3(4) 0.069(4) 0.0223(9) 0.0279(3)

Table B.1: Fit parameters for the line centres of photoassociation resonances in 87Rb.
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