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ABSTRACT 

The Southern Ocean has a critical influence on the global climate, and any long-term 

variability in the Southern Ocean can have both regional and global impacts 

significantly. However, sparse observations limit the study of the long-term variation. 

To test the quality of models simulating the natural sea surface temperature (SST) 

variability, the SST variability in the global oceans is evaluated in simulations of the 

Climate Model Intercomparison Project Phase 3 (CMIP3) and CMIP5 models. The 

result shows that some models demonstrate good skill in simulating the observed 

spatial structure of the SST variability in the tropical domains and less so in the extra-

tropical domains. The CMIP5 ensemble exhibits some improvement over the CMIP3 

ensemble, mostly in the tropical domains on SST variability simulation. Further, the 

spatial structure of the SST modes of the CMIP3 and CMIP5 super ensemble is more 

realistic than any single model, which is mostly used for the following study.  

Several SST leading modes in the Southern Ocean are discussed on decadal and even 

larger time scales using CMIP5 data set based on EOF analysis. We compare the 

modes against several simple null hypotheses, such as isotropic diffusion (red noise) 

and a Slab Ocean model, to investigate the sources of decadal variability and the 

factors affecting the propagation and decay of long-term anomalies. The result reveals 

that the annular mode with largest amplitudes in the Pacific, the basin-wide monopole 

mode and South Pacific dipole are the principle patterns with low-frequency 

variability, which contain the dual effects of internal intrinsic processes as well as 

external forcing and teleconnections. The annular mode is mostly affected by El Niño 

Southern Oscillation (ENSO) via teleconnection especially in the South Pacific 

domain and by local Southern Annular Mode (SAM) over the whole Southern Ocean. 
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The monopole mode and South Pacific dipole mode, while they both demonstrate 

pronounced multi-decadal and longer time scales variability, are firstly inducted by 

the Wave-3 patterns in the atmosphere and further developed via ocean dynamics.  

The causes and characteristics of interannual-decadal SST variability in the Southern 

Ocean are further investigated with an ocean general circulation model and a 

simplified band ocean model. Possible factors are examined affecting the generation, 

propagation and decay of long-term anomalies with a series of sensitivity 

experiments. We found that the atmospheric forcing not only affects the SST modes 

on shorter time-scales directly, but also shows its influence on longer time scales via 

air-sea interaction, amplification and oceanic feedback. The deep mixed layer in the 

Southern Ocean is an essential element to maintain the long-term SST variability. The 

ocean dynamics connect the entire ocean and create the homogeneous-like spatial 

patterns. The ocean advection is the key factor to create SST spectral structure, which 

concentrates the spectrum on interannnual scale synchronizing with the transport of 

Antarctic Circumpolar Current (ACC). 
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In recent decades, there has been growing interests in decadal and longer time scale 

climate modes of variability, which is motived by a desire to better understand the 

climate system especially the recent observed variations and warming trends. 

However, neither the decadal and longer modes of variability nor the processes that 

cause this low-frequency variability are well understood due to the lack of qualified 

observation data, especially in the Southern Hemisphere (SH).  

The analysis of long climate simulations provides a promising alternative for study of 

decadal variability. This thesis examines the long-term atmospheric-ocean coupled 

modes of variability in the Southern Hemisphere based on the combination of 

observed data and model output, with a focus on the low-frequency variability of sea 

surface temperature (SST) in the Southern Ocean (SO) and its mechanisms.  

In this chapter, we briefly introduce the background of the study including the 

definition of climate modes, the climate variability in the Southern Ocean, and 

development of CMIP models, followed by the goals and structures of the thesis.    

1.1 Background 

1.1.1 Climate Modes 

Climate variability refers to variations in the mean state and other statistics of the 

climate on all temporal and spatial scales beyond that of individual weather events 

(IPCC, 2001). An important process in understanding the climate variability is to 

simplify the complex climate system to a minimum number of climate modes that can 

explain a maximal part of the variation (Dima and Lohmann, 2004). Thus, climate 

variability tends to take place mainly with a series of spatial modes fluctuating about 

a mean climate state, and the combination of several leading modes can simply 
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represent most variation of the high-dimensional climate system. In climatology, 

“mode” is usually used to describe a spatial structure with at least two strongly 

coupled centres of action (Wang and Schimel, 2003). Most dynamical modes are 

represented from the variability of the primary climate variability like temperature, 

pressure and precipitation.  

There are two types of methods to measure the climate modes. The simpler definition 

is to get the mode time evolution first, and then obtain the associated spatial structure 

by regressing the temporal series on to the spatial field. An example is the Southern 

Oscillation Index (SOI, e.g. Chen, 1982), which is used to represent the strength of El 

Niño-Southern Oscillation (ENSO). Warm ENSO events lead to warm sea surface 

anomalies in east-central equatorial Pacific, and verse visa. The SOI is defined as the 

sea surface pressure gradient between Tahiti and Darwin that essentially infers the 

zonal wind variability over tropical west Pacific. The correlation between SOI and the 

sea surface temperature field demonstrates the spatial features of ENSO. During 

warm ENSO events (El Niño), the pressure decreases to below average in Tahiti and 

becomes above average in Darwin, then the SOI is negative. For cold ENSO events 

(La Niña), the SOI tends to be positive as the pressures behave oppositely (Fig. 1.1).  

Fig. 1.1 Monthly standardized Southern Oscillation Index (SOI) from 1951 to 2014. (Data source: 

http://www.cpc.ncep.noaa.gov/data/indices/soi) 
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Another more complicated method is empirical orthogonal function (EOF) analysis. 

This analysis is used to decompose a climate dataset into pairs of eigenvectors (EOFs, 

namely the spatial patterns) and corresponding principal components (PCs, namely 

the functions of time, time series or time indices).  As a result, it can find the time 

series and spatial patterns at the same time. The EOFs describe the spatial structures 

of the modes and associated time indices present the temporal variation of specific 

modes. However, as EOF is a purely statistical technique, further analysis is required 

to guarantee the EOF pattern (mode) have physical meaning beyond noise.  

For instance, the Pacific Decadal Oscillation (PDO) is described as the leading EOF 

mode of the SST anomaly in the North Pacific on decadal time scale (north of 20°N, 

Fig. 1.2a, e.g. Mantua et al, 1997). The PDO index, therefore, is the standardized PC 

time series, which illustrates a decadal to multi-decadal variation (Fig. 1.2b). When 

the index is positive, the PDO is in a warm phase, the northwest Pacific surface 

becomes cooler and the eastern coastal part becomes warmer, and vice versa.  

(a)                                                            (b) 

 

Fig. 1.2 (a): Leading EOF pattern of detrended monthly SST anomaly in the North Pacific for HadISST 

(Hadley Centre Sea Ice and Sea Surface Temperature data set, see Rayner et al., 2002); (b): Time series 

of the EOF pattern in (a).  

 

The combination of several leading modes can simply represent most variation of the 
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North Atlantic Oscillation (Walker and Bliss, 1932; Wallace and Gutzler, 1981; 

Hurrell, 1995), the Arctic Oscillation and its SH counterpart, the Antarctic Oscillation 

(also known as the northern and southern annular modes, respectively) (Limpasuvan 

and Hartmann, 1999; Thompson and Wallace, 1998, 2001;), ENSO (Walker and Bliss, 

1932; Wallace and Gutzler, 1981; Philander 1985), and the PDO (Mantua et al, 1997).  

While climate modes in the Northern Hemisphere (NH) oceans on decadal to multi-

decadal scales has been the subject of numerous studies (Deser and Blackmon, 1993; 

Graham, 1994; Kushnir, 1994; Trenberth and Hurrell, 1994; Latif and Barnett, 1996 

and references therein), far less work has been done on the similar low frequency 

variability in the SH oceans regions since the oceans in SH especially the Southern 

Ocean represent perhaps the largest spatial data voids on the globe.  

 

1.1.2 Southern Ocean 

The Southern Ocean (south of 30°S) plays an important role in the global climate 

system for its significant heat and carbon capacity as it absorbs about 40% of the total 

global ocean uptake of anthropogenic CO2 (e.g. Patra et al., 2005; Gruber et al., 2009). 

It has the largest current in the world ocean, the Antarctic Circumpolar Current (ACC, 

Fig. 1.3), which flows eastward driven by the strong westerly wind above, connects 

Pacific, Atlantic and Indian Ocean and has a profound influence on the global ocean 

circulation and climate (Bindoff et al., 2007).  
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Fig. 1.3 The diagram of Southern Ocean surface circulation. C = Current (e.g. ACC = Antarctic 

Circumpolar Current); F = Front; G = Gyre. (Rintoul et al., 2001) 

The Southern Ocean also is the essential part of the overturning circulation and 

responsible for the deep and bottom water masses generation and transportation 

(Marsh et al., 2000). In addition, the active air-sea interaction transports the heat and 

moisture and further determines the regional climate. Given the importance of the 

Southern Ocean in the global climate system, it is pertinent to understand the 

variability in this region.  

However, the research of Southern Ocean is mostly restricted by the lack of data. In-

situ observations were rare in the Southern Ocean before the 1950s (Gordon and 

Molinelli, 1982). After the 1960s, the increased instrumental observations were 

mostly focused on specific regions like the Drake Passage. From the 1980s, vast 
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amount of satellite data has been acquired and applied into oceanography study, 

which has significantly increased the spatial coverage of observation. However, for 

the long-term variability research, only 30 years of satellite observation is still not 

long enough.  

Another difficulty for Southern Ocean study is mainly caused by the dynamical 

complexity of the Southern Ocean. As Southern Ocean is one of the extremely 

energetic regions, eddies play an important role in the dynamics (e.g. Johnson and 

Bryden, 1989; Sallée and Rintoul, 2011; Hogg et al., 2015). According to the Rossby 

deformation radius, eddies occur on the order of 10~30 km in the Southern Ocean 

(Chelton et al., 1998). This fact makes it difficult for Southern Ocean modelling. Thus, 

models must have eddy-resolving (0.1°) horizontal resolution, otherwise models are 

largely depends on eddy parameterizations.  

However, the computational cost is too high for long-term eddy-resolving model 

simulations. For coupled climate experiments, simulations with eddy-resolving 

resolution have only been attempted recently with short integrations (McClean et al., 

2011; Kirtman et al., 2012; Bryan et al., 2014), which is still not enough for low-

frequency analysis. Thus, some climate centres take the compromise that they use 

eddy-permitting resolution (0.25°~0.5°) combined with eddy parameterizations and 

make long integrations of the climate model simulation (e.g. Menemenlis et al., 2008; 

Mazloff et al., 2010).   

1.1.3. Long-term Variability in the Southern Ocean 

In the recent decades, the Southern Ocean demonstrates an unusual negative trend of 

the surface temperature under the global warming background (e.g. SST trend in Fig. 
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1.4). Similarly, opposite to the Arctic, the Antarctica has also cooled and even 

increased its ice extent since 1980s (e.g., Cavalieri and Parkinson 2008; Comiso and 

Nishio 2008) These imply that there might be internal variability existing within the 

Southern Ocean, which shows a negative phase currently and offsets the climate 

change effect.   

(Kelvin/decade) 

Fig. 1.3 Satellite observed SST Trend in 1982-2010 for OISST (Optimum Interpolation Sea Surface 

Temperature, Reynolds et al., 2002) 

 

Other evidences are from the proxy data. Take the tree ring for example; Fig. 1.5 

shows the time series of tree-ring reconstructed surface temperature of several 

locations within Southern Hemisphere (Jansen et al, 2007). Clearly all these paleo 

records demonstrate strong low-frequency variation. In particular, the reconstructed 

temperature in Tasmania and New Zealand both illustrate decadal to multi-decadal 

oscillations among last 1000 years, which further supports the existence of the long-

term variability in the Southern Ocean.  
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Fig. 1.5 Temperature reconstructions for regions in the SH: two annual temperature series from South 

American tree ring data (Villalba et al., 2003); annual temperature estimates from borehole inversions 

for southern Africa and Australia (Huang et al, 2000); summer temperature series from Tasmania and 

New Zealand tree ring data (Cook et al., 2000, 2002). The black curves show summer or annual 

instrumental temperatures for each region. All tree ring and instrumental series were smoothed with a 

25-year filter and represent anomalies (°C) from the 1961 to 1990 mean (indicated by the horizontal 

lines). (Jason et al., 2007) 

Most research focuses on the long-term variation caused by ENSO and the Southern 

Annular Mode (SAM). ENSO is the most prominent coupled ocean-atmosphere 

phenomenon that causes global climate variability on interannual time scale. It is an 

oscillation of the surface temperature in the tropical Pacific. Warm events of ENSO 

(El Niño) accompany SST warming in the tropical eastern Pacific and weakening of 

the trade winds and Walker Circulation, and enhance the convection in central 

tropical Pacific (McPhaden et al., 2006). The convection creates anomalous potential 

vorticity and poleward advection in the atmosphere, and further excites Rossby wave 

teleconnection patterns in the Southern Hemisphere, known as the Pacific South 

America (PSA) patterns (Fig. 1.6, Hoskins and Karoly, 1981; Mo and Higgins 1998). 
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The PSA transports the ENSO anomalous signals to high southern latitudes (e.g. Mo 

and Higgins, 1998; Renwick, 2002; Turner, 2004), and has a significant influence on 

the atmospheric circulation in the South Pacific and the surface air variability in the 

Antarctic Peninsula (Kwok and Comiso, 2002). In addition, ENSO also demonstrates 

its impact on SST and sea ice variability in the Southern Ocean via its related 

anomalous sensible and latent heat flux exchange (Garreaud and Battisi, 1999; 

Lefebvre et al., 2004; Yuan and Martinson, 2000; Yeo and Kim, 2015).  

 

Fig. 1.6 Regression of 700mb atmospheric geopotential height anomalies onto the SOI on monthly 

time scale (1979-2014, unit: metre). The geopotential height data is from NCEP-DOE Reanalysis 2 

(Kanamitsu et al., 2002). The regression demonstrates the PSA pattern in extra-tropical Southern 

Hemisphere.  

Another important factor is Southern Annular Mode, also named Antarctic 

Oscillation. SAM is the dominant mode of Southern Hemisphere climate variability 

from intraseasonal to interannual time scale, which is defined as the leading EOF 

pattern of sea level pressure (SLP) to the south of 20°S and is approximately zonally 

symmetric (Fig. 1.7, Thompson and Wallace 2000, Jones et al. 2009). It is 
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characterized by pressure anomalies of different signs over the mid-latitudes and 

high-latitudes. Positive SAM is associated with a positive pressure anomaly in the 

mid-latitudes and a negative anomaly in the high-latitudes, and vice versa. The 

variation of the pressure gradient drives the meridional shift of the westerly winds 

over the Southern Ocean (e.g. Hartmann and Lo, 1998). Thus, SAM can affect the 

westerly circumpolar flow, then further influence the circulation, mixed layer depth 

and heat capacity in the ocean substantially (e.g. Boer et al. 2001; Cai and Watterson, 

2002; Fyfe, 2003).  

 

Fig. 1.7 Leading EOF pattern (25%) of monthly sea level pressure anomaly in extra-tropical Southern 

Hemisphere for NCEP-DOE Reanalysis 2 in 1979-2014.  

Further, a number of coupled modes in the atmosphere-ocean system have been 

identified in the Southern Hemisphere, such as the Trans-Polar Index (TPI, Jones et 

al, 1999), Antarctic Circumpolar Wave (ACW, e.g. White and Peterson, 1996) and 

South Pacific subtropical Dipole (Morioka et al., 2013). They might also exhibit 
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decadal variations. The length of observation records and limitations of models 

restrict our understanding of the long-term variability in the Southern Ocean.  

1.1.4 CMIP Models 

Since the begin of the 21st century, coupled climate models have been well developed 

and further applied to the climate study especially for the long-term variation 

research. Long-term coupled climate simulation provides another beneficial resource 

for low-frequency climate study in addition to the observations. Therefore, the 

statistical analysis in combination with coupled model simulations can build a very 

good tool to study the decadal climate modes.  

The Coupled Model Intercomparison Project (CMIP) presents a highly valued 

resource to the climate science research for the understanding of natural variability 

and future climate change (Meehl et al., 2007; Taylor et al., 2012). Now the CMIP 

datasets mainly include the Phase 3  (CMIP3) and Phase 5 (CMIP5), both of which 

contains the output from a great number of models with long-term simulation to 

advance our study of climate processes and their effects.  

CMIP3 was released in 2010 for the Intergovernmental Panel on Climate Change 

(IPCC) Fourth Assessment Report (AR4). It has 25 coupled models and includes 

scenarios for past and present climate forcing. On the basis of CMIP3, CMIP5 was 

released in 2013 for IPCC AR5. It contains 56 models with higher spatial resolution 

(e.g. 0.2~2.0° for ocean components compared to 0.2~5.0° in CMIP3), more complete 

representation of the climate system (e.g. coupled biogeochemical components, 

aerosol and dynamical vegetation) and improved parameterizations compared to 

CMIP3.   
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However, given the complexity of the global climate system especially in the 

Southern Ocean, it is important to know whether the CMIP models are capable of 

simulating the long-term variability and related modes, which requires proper model 

evaluation prior.  

1.2 Aims 

The motivation of this thesis is to better understand of the leading modes in the 

Southern Ocean on long time scales. Sea surface temperature is taken as the primary 

research variable as it represents the interaction between the atmosphere and the 

ocean. We will analyse the long-term modes of SST variability in the Southern Ocean 

based on CMIP simulation output and limited observations.  

There are two aims in this project: 

1. To find out the leading coupled modes and their basic characteristics.  

2. To examine the possible factors and mechanisms affecting the generation, 

propagation and decay of long-term anomalies.  

The first aim is achieved by the analyses based on model output and observations. 

The second aim is mainly realized by null hypotheses comparison and sensitivity 

numerical experiments.  

Throughout the thesis, we will attempt to address four questions below: 

1. How good are CMIP models at simulating the coupled modes in the global 

ocean especially in the Southern Ocean? 

2. What are the basic modes with in the Southern Ocean around the decadal 

scale? 
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3. What are the elements affecting the strength, propagation and spatial structure 

of the modes? 

4. What are the key factors affecting the long-term variability and its specific 

spectral structure in the Southern Ocean? 

These questions and related answers will consist of the main body of the thesis and 

lead us to the following chapters.  

1.3 Outline of Thesis 

First of all we will start from the model evaluation. Chapter 2 will show the details of 

the evaluation of the CMIP3 and CMIP5 simulations in their skill of simulating the 

spatial structure of SST variability. We will examine the models on different time 

scales on the basis of their EOF-modes, and compare the models and observations 

against simple null hypotheses to illustrate the models skill in simulating realistic 

patterns of variability and get the suitable models for following study.  

In chapter 3, we will use the CMIP5 dataset and discuss the leading SST modes and 

their basic features. We will also compare modes against several simple null 

hypotheses to investigate the sources of mode generation and development.  

Based on the results of chapter 3, we will address the spatial mechanism of the 

Southern Ocean variability in chapter 4. We will design a series of different 

sensitivity experiments with an ocean general circulation model and test the roles of 

different possible factors influences the modes, such as atmospheric forcing, ocean 

dynamics and sea ice. This part constructs the basic idea that how the complex 

climate system affects the long-term modes generally. 
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Chapter 5 focuses on the temporal structure of the Southern Ocean SST variability. It 

will answer the question why the Southern Ocean maintains the long-term variability 

and why the SST spectrum concentrates over some certain frequency and decreases 

over other period bands using simplified model experiments.  

Finally, we will summarise the conclusions of each chapter in Chapter 6 and briefly 

discuss the possible prospect of future work. 
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The CMIP models provide an unprecedented collection of data output for climate 

study. However, given that the CMIP models are from different institutions with 

different model components and parameterizations, they demonstrate significant 

disagreements with each other and even with the observation. Thus, before we use the 

CMIP output for long-term climate study, it is important to understand how capable 

are these CMIP models of simulating the coupled variability, and it must begin with 

understanding the simulated SST variability in other ocean basins before we compare 

the SST simulation in the sparsely observed Southern Ocean.  

In this chapter, the natural sea surface temperature (SST) variability in the global 

oceans is evaluated in simulations of the Climate Model Intercomparison Project 

Phase 3 (CMIP3) and CMIP5 models. In this evaluation, we examine how well the 

spatial structure of the SST variability matches between the observations and 

simulations on the basis of their Empirical Orthogonal Functions (EOF)-modes. We 

will compare the models and observations against simple null hypotheses, such as 

isotropic diffusion (red noise) or a Slab Ocean model, to illustrate the models skill in 

simulating realistic patterns of variability. The results will guide us what models 

should be taken for the further long-term climate variation analysis in the following 

chapters.  

2.1. Introduction  

The Coupled Model Intercomparison Project (CMIP) presents a highly valued 

resource to the climate science research for the understanding of natural variability 

and future climate change (Meehl et al., 2007; Taylor et al., 2012).  However, the 

models of CMIP are different in their structures and physical parameterizations and 

have shown significant disagreement and uncertainties on their performance (e.g. 
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Gleckler et al., 2008, Jamison and Kravtsov, 2010). The aim of the chapter presented 

here is to evaluate the CMIP models skill in simulating the natural internal spatial 

structure of SST variability in all major ocean basins (tropical Indo-Pacific, North 

Pacific, tropical and North Atlantic and the Southern Ocean, see Fig. 2.1 for domain 

boundaries). This should guide the climate community in the understanding of natural 

modes of SST variability and support the development of seasonal to decadal 

forecasting systems.  

Fig. 2.1 Illustration of the domain boundaries for the EOF-analyses. 

Previous model evaluations focused on the mean state climate (Taylor, 2001, Boer 

and Lambert 2001, Murphy et al. 2004, Gleckler et al., 2008), the general strength of 

climate variability (Boer and Lambert 2001, Gleckler et al., 2008) or on some 

regional aspects of climate variability (Guilyardi, 2006, Zhou et al. 2009, Jamison and 

Kravtsov, 2010, Xavier et al., 2010). Missing is a model evaluation of the SST 

variability on the global scale.  
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In the study presented here we will base our model evaluation on the comparison of 

the empirical orthogonal function (EOF) modes of SST variability for the different 

major ocean basins in the model simulations and observations. We will consider the 

EOF modes of shorter time scales of monthly mean high-pass filtered variability and 

on longer time scales of 5yrs low-pass filtered SST to get some understanding of how 

the evaluation may change with different time scales. The method of comparing EOF-

modes is based on the studies of Dommenget (2007) and Bayr and Dommenget 

(2014). Similar methods are also discussed in Jolliffe (2002, chapter 13.5) and 

Krzanowski (1979). This method allows quantifying the agreement in the spatial 

structure of SST variability in a systematic and objective way. An important aspect in 

such an evaluation is to put the results of this relatively abstract and complicated 

analysis into the perspective of some simple null hypotheses, which should help to 

guide the researchers in evaluating the significance of the results. The simple null 

hypotheses used in this study describe the spatial structure of SST variability, as they 

would result from simplified physical processes such as isotropic diffusion (red noise) 

or atmospheric forcings only (Slab Ocean). 

The chapter is organized as follows: firstly, section 2 presents the data and 

methodology used.  Section 3 introduces the null hypotheses chosen for the evaluation 

and section 4 shows results of the EOF-mode comparison, which are the main results 

of this study. Finally a summary and discussion are provided in section 5. 

2.2. Data and Method 

2.2.1 Data 
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The observed global monthly mean SSTs are taken from the Hadley Centre Sea Ice 

and SST data set (HadISST, referred as “observations” below; Rayner et al., 2003) 

from 1900 to 1999, and the NOAA Extended Reconstructed sea surface temperature 

data set (ERSST, Smith et al., 2008) was chosen as an auxiliary.  

Model simulations are taken from all CMIP3 and CMIP5 databases available (Meehl 

et al., 2007; Taylor et al., 2012). Our analysis focuses on the 20th century SST 

simulations corresponding to the scenarios of “20c3m” in CMIP3 and “historical run” 

in CMIP5, respectively. Table 2.1 and 2.2 list all available simulations for this study. 

Table. 2.1 List of CMIP3 models 

Number Originating Group(s) Country Model 
1 Bjerknes Centre for Climate Research Norway BCCR-BCM2.0 
2 Canadian Centre for Climate Modelling & Analysis Canada CGCM3.1 (T47) 
3 Canadian Centre for Climate Modelling & Analysis Canada CGCM3.1 (T63) 
4 Météo-France / Centre National de Recherches 

Météorologiques 
France CNRM-CM3 

5 CSIRO Atmospheric Research Australia CSIRO-Mk3.0 
6 CSIRO Atmospheric Research Australia CSIRO-Mk3.5 
7 US Dept. of Commerce / NOAA / Geophysical Fluid 

Dynamics Laboratory 
USA GFDL-CM2.0 

8 US Dept. of Commerce / NOAA / Geophysical Fluid 
Dynamics Laboratory 

USA GFDL-CM2.1 

9 NASA / Goddard Institute for Space Studies USA GISS-AOM 
10 NASA / Goddard Institute for Space Studies USA GISS-EH 
11 NASA / Goddard Institute for Space Studies USA GISS-ER 
12 LASG / Institute of Atmospheric Physics China FGOALS-g1.0 
13 Instituto Nazionale di Geofisica e Vulcanologia Italy INGV-SXG 
14 Institute for Numerical Mathematics Russia INM-CM3.0 
15 Institut Pierre Simon Laplace France IPSL-CM4 
16 Center for Climate System Research (The University of 

Tokyo), National Institute for Environmental Studies, 
and Frontier Research Center for Global Change 
(JAMSTEC) 

Japan MIROC3.2 (hires) 

17 Center for Climate System Research (The University of 
Tokyo), National Institute for Environmental Studies, 
and Frontier Research Center for Global Change 
(JAMSTEC) 

Japan MIROC3.2 (medres) 

18 Max Planck Institute for Meteorology Germany ECHAM5/MPI-OM 
19 Meteorological Research Institute Japan MRI-CGCM2.3.2 
20 National Center for Atmospheric Research USA CCSM3 
21 National Center for Atmospheric Research USA PCM 
22 Hadley Centre for Climate Prediction and Research / 

Met Office 
UK UKMO-HadCM3 

23 Hadley Centre for Climate Prediction and Research / 
Met Office 

UK UKMO-HadGEM1 
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Table. 2.2 List of CMIP5 models 

Number Originating Group(s) Country Model 
1 CSIRO and BOM Australia ACCESS1.0  
2 Beijing Climate Center, China Meteorological 

Administration 
China BCC-CSM1.1  

3 National Center for Atmospheric Research USA CCSM4 
4 Météo-France / Centre National de Recherches 

Météorologiques 
France CNRM-CM5 

5 Canadian Centre for Climate Modelling and Analysis Canada CanESM2 
6 Geophysical Fluid Dynamics Laboratory USA GFDL-CM3  
7 Geophysical Fluid Dynamics Laboratory USA GFDL-ESM2G 
8 Geophysical Fluid Dynamics Laboratory USA GFDL-ESM2M 
9 NASA / Goddard Institute for Space Studies USA GISS-E2-H 
10 NASA / Goddard Institute for Space Studies USA GISS-E2-R 
11 Hadley Centre for Climate Prediction and Research / 

Met Office 
UK HadCM3 

12 Hadley Centre for Climate Prediction and Research / 
Met Office 

UK HadGEM2-CC 

13 Hadley Centre for Climate Prediction and Research / 
Met Office 

UK HadGEM2-ES 

14 Institute for Numerical Mathematics Russia INM-CM4 
15 Institut Pierre Simon Laplace France IPSL-CM5A-LR 
16 Institut Pierre Simon Laplace France IPSL-CM5A-MR 
17 Institut Pierre Simon Laplace France IPSL-CM5B-LR 
18 Atmosphere and Ocean Research Institute (The 

University of Tokyo), National Institute for 
Environmental Studies, and Japan Agency for Marine-
Earth Science and Technology 

Japan MIROC5 

19 Max Planck Institute for Meteorology Germany MPI-ESM-LR 
20 Max Planck Institute for Meteorology Germany MPI-ESM-P 
21 Meteorological Research Institute Japan MRI-CGCM3 
22 Norwegian Climate Centre Norway NorESM1-M 
23 Norwegian Climate Centre Norway NorESM1-ME 
 

An output of a simple Slab Ocean coupled experiment is also used to compare versus 

the CMIP models in this study. The atmospheric component of the model is based on 

the UK Meteorological Office Unified Model general circulation model with 

HadGEM2 atmospheric physics (Davies et al., 2005; Martin et al., 2010; Martin et al., 

2011). For our study the atmospheric resolution is reduced to N48 (3.75° × 2.5°). For 

regions with all-year open ocean conditions the model is coupled to a simple Slab 

Ocean model with constant 50m depth (e.g. Washington and Meehl, 1984; 

Dommenget and Latif, 2002; Murphy et al., 2004; Dommenget, 2010) and otherwise 



! 26!

a SST and sea ice monthly climatology of 1950-2010 based on the HadISST data set 

is prescribed.  

The slab ocean cannot reproduce realistic mean SST without calibration, as it does not 

include ocean circulation to maintain the observed surface energy balance. Therefore, 

a flux correction scheme is used to force the model SST to closely follow the Hadley 

Centre Sea Ice and SST data set (HadISST) SST climatology (for more details see 

Wang et al., 2015). The flux corrections are a function of location and calendar 

month, but are identical in every year and are thus not state dependent. They are 

constant fluxes that lead to the correct seasonal mean SST, but do not directly force 

any SST anomalies. The application of a flux correction to the ocean surface energy 

balance is an alternative way of introducing a parameterization of the ocean 

circulation, however, the circulation in the slab ocean model is effectively fixed and 

does not change in response to atmospheric forcings. We take 500 years output from 

this simulation and divide the data into five 100-year chunks for the analysis. Unless 

otherwise noted we show the mean result of the 5 subsamples for the Slab Ocean data 

analysis.  

All data sets (models and observations) were analysed for the period 1900 to 1999, 

interpolated to a common 2.5° latitude × longitude grid and linearly detrended to 

remove the global warming signal prior to the analysis. We used a high-pass filter (cut 

off at 5 yr) to obtain the high frequency monthly mean SST anomalies (SSTA) for 

each model and the observations individually, referred as high pass below. A 5yr-

running mean was also used to get the low frequency annual mean SSTA on decadal 

or longer time scales, referred as low pass below.  
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In addition to analysing the models individually we also combined all the CMIP3 and 

CMIP5 ensembles to super model data sets to provide a synthesis. The CMIP3 SST 

anomalies (computed for each model individually) were concatenated to generate a 

CMIP3 super model with 2300 years of data. Similarly, a CMIP5 super model with 

2300 years of data and a CMIP3+5 with 4600 years of data were also constructed. It 

has to be noted here that combining the anomalies of simulations, which have 

different modes of variability, will lead to some changes in the characteristics in the 

EOF-modes. We will point out some of these limitations through out the analysis part. 

2.2.2 Comparison of EOF modes 

We base our comparison of the spatial structure of SST variability in different data 

sets on the comparison of the EOF-modes, assuming that the leading EOF-modes give 

a good representation of the large-scale SST variability. This is done by defining the 

EOF-modes of one data set as the reference modes and projecting the EOF-modes of 

the other data set onto these modes to estimate the amount of variance that the 

reference EOF-modes explain in this projected data set. This concept is based on 

Dommenget (2007) and Bayr and Dommenget (2014) and briefly summarized here: 

An EOF eigenvector (mode) of the reference data set A, !!! and its corresponding 

eigenvalue (EV) !!!!are compared with the eigenvector !!!  and eigenvalue !!!  of 

another data set B by projecting the eigenvectors !!! onto the !!!, 

!!" =
!!!!!!

!!! !!!
                                                                                                              (2.1) 

where !!!  is the uncentered pattern correlation coefficient describing the spatial 

similarity between the two EOF-patterns. The projected explained variance (PEV) of 
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mode !!! in data set B, !!!!→! , is estimated by the accumulation of all eigenvalues of 

B (Dommenget, 2007): 

!!!!→! = !!"! !!!!
!!!                                                                                                  (2.2) 

The value !!!!→! represents the total variance of data set B that is explained by the 

reference mode !!!, with N the number of EOF-modes considered. In this paper N is 

set to be 60, which is sufficient to give us stable results. Increasing N does not change 

the outcomes in any of the domains. The !!!!→!  values do not need to be 

monotonically decreasing, as the !!!!do, since an EOF-mode of A may explain more 

variance in the data set B than it does in A and vice versa. 

We illustrate this method in a simple example of comparing two data sets: In Fig. 

2.2a-f we show the leading EOF modes of the North Pacific for the observations and 

the GFDL-cm2.1 model simulation. We note here that the two data sets have slightly 

different leading modes of variability and that the explained variances of each of these 

modes are also slightly different. To compare the overall spatial structure of 

variability in the two data sets we choose the observed EOF-modes as the reference 

modes (!!!) and project the EOF-modes of the GFDL-cm2.1 model simulation (!!!) 

onto these modes. Fig. 2.3a shows the eigenvalues of the observed EOF-modes (!!!) 

against the projected explained variance from the GFDL-cm2.1 model simulation 

(!!!!→!). The leading observed mode (EOF-1 in Fig. 2.2a), for instance, explains only 

half as much variance in the GFDL-cm2.1 model simulation (red line in Fig. 2.3a) 

than it does in the observations (black line in Fig. 2.3a). In turn, the observed EOF-10, 

for instance, mode has more relative explained variance in the GFDL-cm2.1 

simulation. Therefore, comparing the overall spatial structure of variability essentially 
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means to estimate how much variance each of the reference modes explains in both 

data sets, and essentially quantify the discrepancy based on the mismatch of the 

variances explained. 
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Fig. 2.2 First three leading EOF patterns of detrended monthly SSTA in the North Pacific after 5-year 

high-pass filter for (a-c): observations (HadISST); (d-f): GFDL-cm2.1; (g-i): slab ocean experiment; (j-

l): fitted isotropic diffusion process with inhomogeneous standard deviation forcing; (m-o): as in (j-l): 

but with homogeneous forcing. The values in the headings of each panel are the explained variances of 

each EOF-mode.  

 

 120 oE 

 150 oE 
 180oW  150o W 

 120
o W 

  20 oN 
  30 oN 

  40 oN 
  50 oN 

  60 oN 

 

 
(a) 19.8%

 120 oE 

 150 oE 
 180oW  150o W 

 120
o W 

  20 oN 
  30 oN 

  40 oN 
  50 oN 

  60 oN 

(b) 11.9%

 120 oE 

 150 oE 
 180oW  150o W 

 120
o W 

  20 oN 
  30 oN 

  40 oN 
  50 oN 

  60 oN 

(c) 10.5%

 120 oE 

 150 oE 
 180oW  150o W 

 120
o W 

  20 oN 
  30 oN 

  40 oN 
  50 oN 

  60 oN 

(d) 17%

 120 oE 

 150 oE 
 180oW  150o W 

 120
o W 

  20 oN 
  30 oN 

  40 oN 
  50 oN 

  60 oN 
(e) 10.8%

 120 oE 

 150 oE 
 180oW  150o W 

 120
o W 

  20 oN 
  30 oN 

  40 oN 
  50 oN 

  60 oN 

(f) 8.4%

 120 oE 

 150 oE 
 180oW  150o W 

 120
o W 

  20 oN 
  30 oN 

  40 oN 
  50 oN 

  60 oN 

(g) 20.8%

 120 oE 

 150 oE 
 180oW  150o W 

 120
o W 

  20 oN 
  30 oN 

  40 oN 
  50 oN 

  60 oN 

(h) 14.2%

 120 oE 

 150 oE 
 180oW  150o W 

 120
o W 

  20 oN 
  30 oN 

  40 oN 
  50 oN 

  60 oN 

(i) 10.9%

 120 oE 

 150 oE 
 180oW  150o W 

 120
o W 

  20 oN 
  30 oN 

  40 oN 
  50 oN 

  60 oN 

(j) 22.6%

 120 oE 

 150 oE 
 180oW  150o W 

 120
o W 

  20 oN 
  30 oN 

  40 oN 
  50 oN 

  60 oN 

(k) 13%

 120 oE 

 150 oE 
 180oW  150o W 

 120
o W 

  20 oN 
  30 oN 

  40 oN 
  50 oN 

  60 oN 

(l) 7.8%

 120 oE 

 150 oE 
 180oW  150o W 

 120
o W 

  20 oN 
  30 oN 

  40 oN 
  50 oN 

  60 oN 

(m) 22.6%

 120 oE 

 150 oE 
 180oW  150o W 

 120
o W 

  20 oN 
  30 oN 

  40 oN 
  50 oN 

  60 oN 

(n) 12.2%

 120 oE 

 150 oE 
 180oW  150o W 

 120
o W 

  20 oN 
  30 oN 

  40 oN 
  50 oN 

  60 oN 

(o) 7.2%

 120 oE 

 150 oE 
 180oW  150o W 

 120
o W 

  20 oN 
  30 oN 

  40 oN 
  50 oN 

  60 oN 

 

 

−1 −0.5 0 0.5 1



! 30!

 

Fig. 2.3 (a) Eigenvalue spectrum of the observed leading EOF-modes in the North Pacific and the PEV 

values of the GFDL-CM2.1. The bars mark the sampling uncertainty interval of the eigenvalues after 

North et al. (1982) (b): as (a) but for the leading EOF-modes of the CMIP3+5 super model in the North 

Pacific. Here the bars mark the sampling uncertainty interval of the eigenvalues after North et al. (1982) 

based on length of the time series in the GFDL-CM2.1 simulation. 

We further see in this comparison that the explained variances of the observed leading 

modes are significantly less in the GFDL-cm2.1 model simulation. This overall 

mismatch (grey band in Fig. 2.3a) in the explained variances is quantified by a 

normalized root-mean-square error (RMSEEOF) between the !!! and!!!!!→! values:  

!"#$!"#(!,!) =
!!!!→!!!!!

!!!
!!!

(!!!)!
!!
!!!

                                                                        (2.3) 

The normalization allows a better comparison of the RMSEEOF values among 

different domains with different sampling uncertainties. Here !! corresponds to the 

number of EOF modes considered.  In our analysis we choose !!  equal to the 

effective number degrees of freedom, Nspatial, also known as the number of 

independent modes after Bretherton et al. (1999): 

!!"#$%#& = !
!(!!!)!

                                                                          (2.4)  
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The sum RMSEEOF (A, B) is dominated by the mismatches in the leading modes 

between !! and!!"!→!, as they have larger uncertainties. Uncertainties in the higher 

order modes are less important in this estimate. Fig. 2.3 shows the RMSEEOF values 

for two examples. A RMSEEOF value of 100% corresponds to errors that are as big as 

the eigenvalues. Thus, the RMSEEOF value (32%, see Fig. 2.3a) of the GFDL-cm2.1 

model relative to the observations reflects an uncertainty of the leading EOF-modes 

of about 32% of the eigenvalues, which is a substantial uncertainty. Similarly, the 

relative smaller RMSEEOF value (17%) in Fig. 2.3b, which represents an uncertainty 

of about 17% within the leading modes, suggests less fluctuation and better matches 

between the PEV of GFDL-cm2.1 and the eigenvalues of the CMIP3+5 super model.  

2.3 Formulation of null hypotheses 

The comparison of the spatial patterns of SST variability in different data sets in this 

study is based on projecting EOF-modes and estimating the RMSEEOF values. These 

RMSEEOF values are quite abstract and it is important to put these values into 

perspective with some simple null hypotheses to understand the significance of these 

values. We therefore formulate a number of theoretical reference null hypotheses: 

first we estimate the RMSEEOF for sampling uncertainties after North et al. (1982). 

We then formulate three simple physical models for the spatial patterns of SST 

variability: the first is the Slab Ocean models modes of variability. The second and 

third physical models are based on the assumption that the spatial patterns of SST 

variability are just a reflection of isotropic diffusion with two different assumptions 

for the spatial distribution of variances. 
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2.3.1 Sampling Uncertainties of Eigenvalues  

North et al. (1982) give the statistical uncertainties of the eigenvalues !!  due to 

sampling errors:  

!"! = !!(2/!!"#$%&)!/!                                                                                             (2.5) 

where Nsample is the number of independent samples. In this study Nspatial is estimated 

as Nlen/td ,while Nlen is the length of the time series and td is the average e-folding 

decorrelation time based on the first five leading Principal Components (PCs). To 

maintain consistency�we estimate  Nlen  from the shorter time series of the CMIP 

models rather than the much longer references.  The RMSEEOF for sampling 

uncertainties is then   

!"#$!"#(!"!!) =
(!"!!)!

!!
!!!
!!

/ (!!!)!
!!
!!!
!!

= !
!!"#$%&
!                  (2.6) 

Thus, the !"#$!"#(!"!) could be deemed as the confidence level of a data set.  If 

two data sets are just different stochastic realizations of the same process (have the 

same spatial patterns of SST variability), we expect the RMSEEOF to be in average 

!"#$!"#(!"!). 

Fig. 2.4 illustrates an example based on subsampling the CMIP5 super model. Here 

we computed the EOF-modes for the North Pacific for high-pass (5 yrs) and low-pass 

(5yrs) SST. For subsampling the CMIP5 super ensemble we split the data from each 

model into average chunks with 5yrs/60mon data and concatenated the chunks into 

the CMIP5 super subsamples. Here, the total number of samples !!"# is set to be 1380 

(60*23) for the high pass and 115 (5*23) for the low pass. For high-pass data analysis 
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the average decorrelation time of the leading five principal components !! = 8.8. 

Therefore, we get Nsample = 1380/8.8 = 156.8. Similarly Nsample = 115/5.8 = 19.8 for the 

low-pass analysis. 

 

Fig. 2.4 Eigenvalue spectrum of CMIP5 super model and the PEV of its subsamples in the North 

Pacific. The shaded area marks the uncertainty interval of the eigenvalues after North et al. (1982)  (a): 

high-pass result; (b): low-pass result; (c): RMSEEOF values of the subsamples in (a) on the x-axis and (b) 

on the y-axis.  

We note from Fig. 2.4a-b that the subsamples !!!!→! !values fluctuate around the !!! 

values of the CMIP5 super model, caused here by sampling uncertainties and not by 

differences in the physical system. Subsequently, the RMSEEOF values of the 

subsamples fluctuate around the !"#$!"#(!"!)(see Fig. 2.4c). For the 5yrs-running 

mean SST it seems that the subsamples fluctuate less than expected by the 

!"#$!"#(!"!), which could indicate that our subsampling of the models is not quite 

representative of the sampling uncertainties in the CMIP5 super model as they are 
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from the same data sets.   

2.3.2 Slab Ocean Model 

The spatial structure of the SST variability is a result of the coupled dynamics 

between atmosphere and oceans. A Slab Ocean model coupled to an AGCM (see data 

section for model details) estimates the spatial structure of the SST variability that is 

caused by the atmosphere only. Compared to a fully CGCM, the slab ocean model 

only introduces the error of atmospheric simulation without significant error addition 

or amplification by the coupling process or ocean dynamics. It is therefore a good null 

hypothesis to evaluate the models: if the spatial structure of the SST variability agrees 

better with the slab ocean model (smaller RMSEEOF) than with a CGCM, this is 

indicating that the coupling procedures and ocean dynamics are causing unrealistic 

SST patterns.  

Fig. 2.2 shows the observed EOF-modes of the high-pass monthly mean SST 

variability in the North Pacific in comparison with the EOF-modes of the slab ocean 

simulation, for an example. The EOF-modes of the slab simulation are already quite 

realistic, suggesting that much of the large-scale structure of the SST variability is to 

first order simulated in the slab simulation, which is consistent with what has been 

found in other studies as well (e.g. Pierce et. al, 2001).  

2.3.3 Isotropic diffusion 

Cahalan et al. (1996) and Dommenget (2007) used the null hypothesis of isotropic 

diffusion to explain the leading EOF-modes of climate variability. The isotropic 

diffusion process leads to EOF-modes that are a hierarchy of multi-poles, starting 

with a monopole (largest scale), followed by a dipole, and followed by multi-poles 
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with increasing complexity (smaller scales). It essentially represents a spatial red 

noise process (Dommenget 2007). Fig. 2.2m-o illustrates the EOF-modes of isotropic 

diffusion for the North Pacific domain. The EOF-modes are pure geometric 

deconstructions of the domain not considering any structure in the SST standard 

deviation (STDV, Fig. 2.5), but assuming the same Nspatial as observed. Thus, the 

spectrum of the explained variance of the eigenvalues has a structure similar to what 

is observed.  We refer to this null hypothesis as H0uniform. 

This null hypothesis is further extended by also using the observed inhomogeneous 

SST STDV field (see Fig. 2.5a and b) and therefore focusing the leading EOF-modes 

onto regions where the observed SST STDV is large (see Dommenget 2007 for 

details). This concept has also been applied to study the structure of the Indian Ocean 

SST variability, for instance, by Dommenget (2011).  

Much of the spatial structure in SST variability is already highlighted by the spatial 

structure in the SST STDV field (see Fig. 2.5a and b). The regions with large SST 

STDV will be the regions where most of the leading EOF-modes have large variance. 

Here we can already see that the SST STDV deviation is different on different time 

scales, which will be reflected in slightly or significantly different SST modes.  The 

CMIP3 and CMIP5 ensembles capture most of the main observed structures and even 

the Slab Ocean simulation captures some of it (see Fig. 2.5c-h). 

Fig. 2.2j-l illustrates the EOF-modes of isotropic diffusion with observed SST STDV 

for the North Pacific domain. The EOF-modes are still a hierarchy of multi-poles, but 

now the modes are centred on regions of large SST STDV (for comparison with 

STDV of observations see Fig. 2.5a). These EOF-modes now have some more 

realistic features. We refer to this null hypothesis as H0STDV. 
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 Fig. 2.5 Standard deviation fields of SSTA for (a-b): HadISST; (c-d): CMIP3 ensemble mean; (e-f): 

CMIP5 ensemble mean; (g-h): slab ocean experiment result. (a,c,e,g): after high-pass filter; (b,d,f,h): 

after low-pass filter. 

2.4. Comparison of the Eigenvalue (EV)-spectrum 

In this section we present the main results of this analysis, which is based on the 

comparison of the !!!!→! values (referred as EV-spectrum below) of the SST 
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variability in different ocean basins. We will define SST variability on two different 

time scales to highlight potential differences in the variability modes. 
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Fig. 2.6 First three leading EOF patterns of observed SSTA in the North Atlantic for (a-c): after high-

pass filter; (d-f) after low-pass filter.  

First we like to illustrate that the EOF-modes in the high-pass and the low-pass SST 

variability are indeed different. Fig. 2.6 shows the different EOF-modes structures on 

high-pass and low-pass scale in the North Atlantic. The following is noted here: 

• The spatial patterns are quite different between the two time scales. The high-

pass, for instance, reveals three tri-pole modes from EOF-1 to EOF-3. 

However, none of them is strongly related to the leading EOF-modes of the 

low-pass modes.  

• The eigenvalues of the low-pass modes are much larger than their counterpart 

of high-pass ones. Subsequently Nspatial is much larger for the high-pass SST 

(Nspatial = 10) than for the low-pass SST (Nspatial = 3). Thus the high-pass SST 

has more complex variability modes than the low-pass SST. 

  80 oW 
  60oW   40oW   20oW 

   0
o   

  20 oN 

  30 oN 

  40 oN 

  50 oN 

  60 oN 
(a) 21.9%

  80 oW 
  60oW   40oW   20oW 

   0
o   

  20 oN 

  30 oN 

  40 oN 

  50 oN 

  60 oN 
(b) 14.6%

  80 oW 
  60oW   40oW   20oW 

   0
o   

  20 oN 

  30 oN 

  40 oN 

  50 oN 

  60 oN 
(c) 9.8%

  80 oW 
  60oW   40oW   20oW 

   0
o   

  20 oN 

  30 oN 

  40 oN 

  50 oN 

  60 oN 
(d) 49.2%

  80 oW 
  60oW   40oW   20oW 

   0
o   

  20 oN 

  30 oN 

  40 oN 

  50 oN 

  60 oN 
(e) 13.7%

  80 oW 
  60oW   40oW   20oW 

   0
o   

  20 oN 

  30 oN 

  40 oN 

  50 oN 

  60 oN 
(f) 12%



! 38!

Similar findings can be made for all domains, but the EOF-modes of the different 

time scales may be more similar in the other domains than they are in the North 

Atlantic. 

We start the main analysis with a more comprehensive discussion of the North Pacific 

to illustrate the method. We then compare all model simulations with the observed 

EOF-modes for all ocean basins. The analysis is then repeated by pairwise 

comparisons of the CMIP model simulations to evaluate the uncertainties within the 

model ensemble members.  

2.4.1 North Pacific 

 

Fig. 2.7 Eigenvalue spectrum of the observed leading EOF-modes in the North Pacific as in Fig. 3a, 

but compared with the PEV values for all CMIP models, the Slab Ocean simulations and the null 

hypotheses. The shaded area marks the uncertainty interval of the eigenvalues after North et al. (1982). 
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Fig. 2.7 shows the EV-spectrum of the observed high-pass SSTA in the North Pacific 

region together with the projected !!!!→!values for all CMIP models and the four 

different null hypotheses references. A few points should be noted here: 

• ERSST is close to the observations (HadISST) as they are basically the same 

observed data. The differences are mostly within the sampling uncertainties. 

However, there is some indication that the two data sets are not totally in 

agreement.  

• All the models and null hypotheses underestimate the first PC of observations, 

namely the Pacific Decadal Oscillation (PDO) pattern (e.g. Mantua et al., 1997) 

and most of the other leading modes. 

• The deviations of the individual models from the observed EV-spectrum are 

much larger than expected by the sampling uncertainties !"!. The slab ocean 

simulation is closer to the observations than most models.  

• The deviations of H0STDV are about as strong as of most of the CMIP model 

simulations. However, the deviations of H0uniform appear to be larger than 

those of most CMIP models. The H0 curves both have a peak at the EOF-5. 

This is due to the similarity of the observed EOF-5 with a basin wide 

monopole (not shown), which is the leading mode in isotropic diffusion (both 

H0STDV  and H0uniform).  

The results of the EV-spectrum are quantified by the RMSEEOF values for the high-

pass monthly mean SST as shown in Fig. 2.8a on the x-axis and for the low-pass SST 

on the y-axis. In addition to what we have already concluded above for the high-pass 

SST modes we should note the following points: 
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Fig. 2.8 RMSEEOF values relative to the observations for high-pass and low-pass EOF-analysis of  (a): 

North Pacific; (b): Tropical Indian Ocean and Pacific; (c): North Atlantic; (d): Tropical Atlantic; (e): 

Southern Ocean; (f): Global summary. Blue numbers are CMIP3 models and red numbers are CMIP5. 

Diamonds represents the average position of the CMIP models. Blue and red stars are the results of the 

CMIP3 and CMIP5 super models, respectively. The green star is the result of the CMIP3+5 super 

model scaled with observed eigenvalues. The letter “r” shows the correlation coefficient of the 

RMSEEOF values between two time scales based on models only.  
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• The ERSST is close to expected sampling uncertainties for both time scales. 

Although, this indicates that the two observational data sets have good 

agreements in this domain, it has to be noted here that the two data sets 

contain the same samples (same observations). Thus, an even better agreement 

should have been possible. 

• The model errors relative to the observations are in the range of 30% to 80% 

of the eigenvalues. These errors are substantial. 

• The RMSEEOF values for the different time scales in Fig. 2.8a have a mostly 

linear relationship with a correlation coefficient 0.6 indicating that in this 

region the models show similar performance for high-frequency and low-

frequency variability. However, there are also significant deviations from the 

linear relationship, which indicates that some models are performing good on 

one time scale but not as good on the other time scale. 

• Most models seem better than the H0uniform; however, half of the models are 

not as good as the H0STDV hypothesis.   

• The slab ocean simulation is closer to the observations than most models in 

the high-pass variability, but is about average for the low-pass variability. 

• The mean position of the CMIP3 models is close to that of the CMIP5 models, 

implying similar skill in this region, but most of the outliers with very large 

deviations are in the CMIP3 ensemble. 

We pick out a few models to illustrate how the modes of variability in some models 

deviate from those observed. In Fig. 2.9 we show the leading modes of the two 

models that deviate the most (HadCM3 and BCM2.0), the two models closest to the 

observations (MRI-CGCM2.3.2 and CCSM4) and the CMIP3 and CMIP5 super 

models in the North Pacific modes comparison. The following is noted here: 
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Fig. 2.9 Leading EOF-modes as in Fig. 2.2, but for a selection of model simulations. 

• The two models that deviate the most both show leading EOF-modes that are 

somewhat different in structure from the observed. For instance, they tend to 

have the negative anomaly centres for the PDO-like mode (EOF-1) more to 

the west and more focused on a small region than in the observed PDO (EOF-

1). Further, the eigenvalues of EOF-1 are much smaller than observed. 

• The two models closest to the observations show leading EOF-modes that are 

similar in structure to the observed and that have similar amount of explained 

variance. 
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• The modes of the super models are very similar to the observed and have very 

smooth structures with no strong localized features. They tend to explain less 

variance than observed. The reduced variance of the leading modes relative to 

the observed, and to what individual models show, reflects the fact that the 

super models are based on ensembles of individual models that have different 

localized structures (modes), which leads to less explained variance of the 

leading modes. 

2.4.2 Uncertainties in the SST modes in the global oceans 

The analyses are now extended to all other ocean domains. To summarize, we also 

average the results and get the global summary of the RMSEEOF diagram in Fig. 2.8f. 

The results show a number of interesting aspects. We start the discussion with a focus 

on the individual domains, starting with the tropical Indo-Pacific domain (Fig. 2.8b): 

• On the high-pass time scales the spread in the quality of the models is very 

large. Some models are close to the observed modes, but most models are 

quite different from the observed modes. On the low-pass time scale the skills 

of models are more similar and many models are as close to the observed 

modes as expected from sampling uncertainties. 

• The slab model is quite different from the observed modes on the high-pass 

time scale and the longer time scale. The El Nino dynamics dominate the 

modes of the Indo-Pacific domain and these dynamics are not simulated in the 

slab model, which may explain why the slab model is quite different from the 

observed modes. 
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• The simple Null hypothesis H0STDV performs better than most models, but the 

H0uniform hypothesis clearly deviates more than most models and is very 

different from the observed structure. 

• The CMIP3 ensemble has much more outliers, in particular on the shorter time 

scale, than the CMIP5 ensemble. 
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Fig. 2.10 First three leading EOF patterns, as in Fig. 2.9, but of high-pass SSTA in the Tropical Indian 

Ocean and Pacific for a selection of model simulations and observations. In addition to the 

observations, the CMIP3 and CMIP5 super models, the models with the largest (GISS-AOM) and 

smallest (ECHAM5/MPI-OM) RMSEEOF value are shown. 

Similar to the North Pacific domain, we picked out a few models to demonstrate the 

differences of the modes (Fig. 2.10). The model GISS-AOM that deviates the most 

shows no El Nino pattern. The model ECHAM5-MPI-OM, which is closest to the 

observed, as well as CMIP super models all display ENSO pattern and Central-Pacific 
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El Niño pattern (Kao and Yu, 2009) on the leading two modes, close to the 

observation.  

In the North Atlantic the picture is quite different (Fig. 2.8c): 

• The most remarkable feature is that both simple null hypotheses are closer to 

the observed modes than most of the CGCM simulations especially on long-

term scale. First of all this is due to the fact that the observed modes in the 

North Atlantic are indeed more similar to the simple null hypotheses than they 

are in the Indo-Pacific domain. But still it indicates that the CGCM 

simulations have substantial problems in simulating these simple modes of 

variability. This conclusion appears to be quite different to what Jamison and 

Kravtsov (2010) conclude from their analysis of the leading modes in the 

North Atlantic. However, when we evaluate their Fig. 10-12 we would assume 

that the quantitative and objective error values RMSEEOF based on their 

analysis results should be similar to ours. 

• The agreement with the observed modes is better on the shorter time scale 

than on the longer low-pass time scale. This is the opposite of what we see in 

the Indo-Pacific domain. 

• The slab model performs better than any of the CGCM simulations on the 

high-pass time scale and still better than many models on the longer time scale. 

There is no substantial difference in the performance of the CMIP3 and CMIP5 

ensembles. Fig. 2.11 again shows several models for comparison in the North 

Atlantic.  

 

 



! 46!

 EOF1 EOF2 EOF3 

 

Obs. 

   
 

CSIRO-

Mk3.0 
   

 

CGCM3.1 

(T47) 
   

 

CMIP3 

   
 

CMIP5 

   
 

 
Fig. 2.11 First three leading EOF patterns, as in Fig. 2.9, but of high-pass SSTA in the North Atlantic 

for a selection of model simulations and observations. In addition to the observations, the CMIP3 and 

CMIP5 super models, the models with the largest (CSIRO-Mk3.0) and smallest (CGCM3.1 (T47)) 

RMSEEOF value are shown.!

The tropical Atlantic has again some interesting features (Fig. 2.8d). Fig. 2.12 shows 

the modes of some models in this domain. 

• Notable is that the CGCM simulations are on average closer to the observed 

modes on the longer and also on the shorter time scales than in any other 

domain. On the longer time scale this domain actually seems to be the only 

domain where the CGCM simulations are mostly in agreement with the 

observed modes. 
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Fig. 2.12 First three leading EOF patterns, as in Fig. 2.9, but of high-pass SSTA in the Tropical 

Atlantic for a selection of model simulations and observations. In addition to the observations, the 

CMIP3 and CMIP5 super models, the models with the largest (INMCM4) and smallest (CCSM4) 

RMSEEOF value are shown. 
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• The CMIP5 simulations show a clear improvement over the CMIP3 

simulations for the longer time scale, which is more than in any other domain. 

This is even more remarkable considering the already good fit to the 

observations in the CMIP3 simulations and also considering the much better 

performance than in any of the other domains.  

• The slab model is closer to the observations than most CGCM simulations on 

the high-pass (5 yrs) time scale, but deviates more than all models on the 

longer time scale.! 

• Both the H0STDV and the H0uniform hypotheses are very close to the 

observations on both time scales and closer than most of the CGCM 

simulations. This indicates that knowing the SST STDV field and assuming a 

multi-pole deconstruction, as it follows from an isotropic diffusion process, 

would already explain most of the SST variability in this domain.   

Finally, the Southern Ocean (Fig. 2.8e): 

• This domain shows the overall largest deviations from the observed modes, 

with all models disagreeing with the observations substantially. 

• There appears to be no substantial difference between the CMIP3, CMIP5 and 

the slab simulations. 

• Similar to the North Pacific both null hypotheses are substantially different 

from the observed modes on both time scales. However, the H0STDV 

hypothesis is closer to the observed modes than any CGCM simulation on the 

longer time scale and closer than most on the shorter time scale. 
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Fig. 2.13 First three leading EOF patterns, as in Fig. 2.9, but of high-pass SSTA in the Southern Ocean 

for a selection of model simulations and observations. In addition to the observations, the CMIP3 and 

CMIP5 super models, the models with the largest (INMCM4) and smallest (CCSM4) RMSEEOF value 

are shown. 

The Southern Ocean is a special domain for its sparse in-situ observation, which 

introduces non-negligible uncertainties of observed reference. The modes comparison 

(see Fig. 2.13) is essentially different to other domains, as we can’t find too much 
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Fig. 2.13 First three leading EOF patterns, as in Fig. 2.9, but of high-pass SSTA in the Southern Ocean 

for a selection of model simulations and observations. In addition to the observations, the CMIP3 and 

CMIP5 super models, the models with the largest (INMCM4) and smallest (CCSM4) RMSEEOF value 

are shown. 
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similarity here between the leading modes of observed and the CMIP super models 

especially on EOF1. The Southern Ocean is also one of the largest domains; it 

involves the more complex extra-tropical dynamics (larger Nspatial; see Fig. 2.14) and 

interactions with sea ice, which may explain the large disagreement to some part.  

 

Fig. 2.14 Nspatial values for high-pass and low-pass EOF-analysis of SSTA in (a): Global summary; (b): 

North Pacific; (c): Tropical Indian Ocean and Pacific; (d): North Atlantic; (e): Tropical Atlantic; (f): 

Southern Ocean.   
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(b) Nspatial North Pacific
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(c) Nspatial Tropical Indian Ocean and Pacific
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(d) Nspatial North Atlantic
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(e) Nspatial Tropical Atlantic

0 10 20 30 40 50 60
0

5

10

15

20

25

1
2 34

5

6

7

8

9
10

11

12

13
14

15

16

17

18

19
20

21
2223

1

23
45

6

7

8

9

10
11

12
13 14

15

16
17

18

19

20
21

22

23

High Pass (5yrs)

Lo
w 

Pa
ss

 (5
yr

s)

(f) Nspatial Southern Ocean



! 51!

The summary of all individual domains (Fig. 2.8f) shows the average skill of the 

models: 

• First of all we note that the models skills on the short and longer time scales 

are roughly linearly related with a correlation of 0.6. Models that are close to 

the observed modes on the shorter time scale tend to be close to the observed 

modes on the longer time scale as well. 

• Basically all models show significant deviations in the spatial structure from 

the observed modes. These deviations are in the order of 50% of the 

eigenvalues on the leading modes. This means they in average under-/over-

estimate some of the leading modes by a factor of 1.5/0.5, which is a 

substantial error. 

• In the global average some models are clearly much closer to the observed 

modes (e.g. the CCSM4 model is closest) than others and some models 

substantially deviate from the observed modes (e.g. all the CMIP3 GISS 

models). However, the spread in the global average is not as big as in the 

individual domains, indicating that models that have big RMSEEOF in some 

domains often have smaller RMSEEOF in other domains. 

• The CMIP5 ensemble appears to be slightly closer to the observed modes than 

the CMIP3 ensemble on both time scales. However, the super model modes 

are very similar in their structure and skill relative to the observed modes. 

• The slab simulation is of similar skill on the shorter time scale, but has less 

skill than most models on the longer time scale. Nevertheless, on both time 

scales the slab simulation is not consistent with observations (RMSEEOF is 

larger than expected by sampling uncertainties). 
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• The simple H0STDV hypothesis is in average closer to the observed modes than 

any CGCM simulation on the longer time scale and closer than most 

simulations on the shorter time scale. Even the H0uniform hypothesis is better 

than many models. This suggests that knowing the Nspatial, the domain 

geometry, the SST STDV field (most importantly) and assuming a modal 

structure resulting from isotropic diffusion could already describe the 

observed spatial structure of SST variability better than most of the CGCM 

simulations. 

The above analysis has shown that the CMIP model simulations have substantial 

errors in simulating the observed spatial structure of SST variability. A closer look at 

the leading EOF-modes of the model simulations (not all shown, but some are shown 

in Fig. 2.9~2.13) reveals why the models differ from the observations: 

• First, we see that Nspatial is larger than observed in most CMIP models and for 

all domains and on both time scales, (see Fig. 2.10). It is also larger than in the 

slab simulation. This suggests that the simulated leading modes of variability 

explain in average less variance than observed and are on smaller spatial 

scales (the patterns are more localized) than observed. This is also seen by 

visual inspection of the leading modes of all the model simulations (not 

shown). 

• Further, we note that the patterns of the leading modes in the model 

simulations are often different from those observed. They are often quite 

localized patterns of scales much smaller than the domain size. The 

observations also do have such localized modes, but these are often at 

different locations than in the models and are of different structure and smaller 
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amplitude. Thus, the models produce a double error: They simulate significant 

localized structures at the wrong locations and with the wrong structure and 

subsequently miss the observed localized structures at the right locations and 

with the right structure. The simple null hypotheses and the slab simulation do 

not have these localized structures and therefore do not have these double 

errors. 

Additionally, it is noticeable that the super model ensembles do not perform 

significantly better than most of the models. This is quite different from many other 

inter-model comparisons (e.g. seasonal forecasting skills or mean state errors), where 

the ensemble mean outperforms the individual models (e.g. Tebaldi and Knutti 2007, 

Reifen and Toumi 2009, Santer et al. 2009; Knutti et al., 2010). The modes of 

variability or the spatial structure of internal SST variability does not average out to 

be more realistic in an ensemble super model. If models have different modes of 

variability, then the super model will have all of these modes, but each with a smaller 

eigenvalue, which increases Nspatial of the ensemble super model (see Fig. 2.14).   

However, we can illustrate that the ensemble super model is indeed improving 

compared to most individual models if we replace the eigenvalues in eq. (2) against 

observed eigenvalues. These scaled values are shown in Fig. 2.8. They are much 

closer to the observed spatial structure than most models. Even if we replace the 

eigenvalues of all models against observed eigenvalues, which clearly decreases the 

RMSEEOF values of most models, the ensemble super models still demonstrate 

smaller RMSEEOF values than the majority of the individual models, while the CMIP5 

super model is a bit closer to the observations than its counterpart of CMIP3 (not 

shown). It illustrates that the leading patterns in the ensemble super model are indeed 
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realistic, but the relative explained variance of each mode is underestimated by the 

ensemble super model due to the artificial diversity in the individual models.  

Finally, we also discuss the similarity in the two different observations: 

• For most domains there is a relative good agreement between the ERSST and 

the HadISST data sets on both time scales. This indicates that we have some 

relative good confidence in the spatial structure of SST variability in these 

domains. 

• The best agreement is in the North Atlantic, which seems to be consistent with 

the larger database existing in this relatively well-observed domain. 

• Strong disagreement exists in the Southern Oceans. Here, the spatial structure 

of the observed SST variability is very uncertain. On the longer time scale the 

uncertainties in the leading modes are in the order of 40-60% of the 

eigenvalues, which is a substantial uncertainty. Again, this seems to be 

consistent with the lack of sufficient observations in this domain. 

2.4.3 Comparison between models 

In the above section we evaluated the models against the observations, which revealed 

some substantial differences of the model’s spatial structures in SST variability 

relative to the observed. We also noticed that the leading modes of the CMIP3+5 

super model have much smaller explained variance as the observed modes, 

illustrating a larger diversity of modes in the model ensembles relative to the 

observed. This indicates that the models have strong differences in the spatial 

structures in SST variability between each other. These model-to-model differences 

are quantified by repeating the above analysis by pairwise comparison of the EOF-
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modes in the CMIP3 and 5 ensembles. 

 

 

 

Fig. 2.15 Mean RMSEEOF values of pairwise model comparisons for high-pass and low-pass EOF-

analysis in (a): Global summary; (b): North Pacific; (c): Tropical Indian Ocean and Pacific; (d): North 

Atlantic; (e): Tropical Atlantic; (f): Southern Ocean.  

Fig. 2.15 shows the RMSEEOF values as in Fig. 2.8, but for the average of all pairwise 
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comparisons between all CMIP3 and 5 models. Thus, the reference modes in these 

comparisons are the EOF-modes from each of the CMIP3 and 5 models. Here small 

RMSEEOF values suggest small differences in the spatial structures in SST variability 

of the model relative to the spatial structures in SST variability of all the other models 

and vice versa for large RMSEEOF values. The following features are noted in this 

comparison: 

• All models show RMSEEOF values larger than expected from sampling 

uncertainties (!"#$!"#(!"!)). Thus, the models substantially disagree with 

each other in terms of the spatial structures in SST variability. The errors are 

in the order of 40-60% of the eigenvalues. 

• The largest model internal spread is in the North Atlantic and the Southern 

Ocean. This is similar to what we found in the comparison with the 

observations. 

• In global average the model-to-model spread is similar in all models, 

indicating that there is no model that is closest to all the other models. 

• The CMIP5 models tend to be slightly closer to all the other models than the 

CMIP3 models on both time scales and for all domains. 

• In the tropical Indo-Pacific domain several CMIP3 models have substantially 

larger RMSEEOF values than most of the other models. This suggests that these 

models poorly represent the ENSO pattern and are indeed quite different from 

the overall model ensemble on the monthly mean scale.   

2.5. Summary and Discussion 

In the study presented here we evaluated the skill of the CMIP3 and CMIP5 models in 
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simulating the observed spatial structure of SST variability on interannual and decadal 

time scales. This comparison was based on a quantitative and objective comparison of 

the leading EOF-modes in the five major ocean basins (tropical Indo-Pacific, North 

Pacific, tropical and North Atlantic and the Southern Ocean) with the observed EOF-

modes and those of simplified null hypotheses. The study illustrated a number of 

interesting aspects in the skill of the model simulations, but also about the observed 

spatial structure of SST variability. For the observed spatial structure of SST 

variability we list the following main findings: 

• By comparing the observed modes with those of the simple isotropic diffusion 

null hypothesis we can note that for most domains and both time scales the 

observed spatial structure of SST variability is significantly different from 

isotropic diffusion. Thus, the observed modes of variability have non-trivial 

structure in particular on the monthly mean time scale in the tropical Indo-

Pacific and Atlantic and on both time scales in the North Pacific and Southern 

Ocean. The longer time scale of the tropical and North Atlantic are, however, 

remarkably similar to the simple large-scale multi-pole modes of the isotropic 

diffusion process. 

• The effective numbers of spatial degrees of freedom (Nspatial) are between 5-10 

for most domains on the monthly mean time scale and smaller (<5) on the 

longer 5yrs time scale. The Indo-Pacific, which is the largest domain, has the 

smallest Nspatial, whereas the Southern ocean, which is similar in size to the 

tropical Indo-Pacific domain, has the largest Nspatial on both time scales, 

marking the most complex spatial structure in SST variability. 

• The comparison of the two observational datasets suggests that the modes of 

SST variability are relatively well known for most domains, but not for the 
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Southern Ocean. Here the uncertainty in the SST modes is quite substantial, 

even in two datasets that contain the same observations. 

We start the summary and discussion of the model results with some positive 

findings: 

• Some models have a quite realistic spatial structure of the SST variability in 

some domains at some time scales. In particular this is the case on the monthly 

mean time scale in the tropical Pacific and also (for some models) in the North 

Pacific. On the longer 5yrs time scale most models simulate the tropical 

Atlantic and Indo-Pacific SST variability with quite realistic spatial structure. 

The good performance of these models in these domains is in particular 

notable, as these models also outperform the simple null hypotheses, 

suggesting they indeed simulate non-trivial spatial structure of SST variability.   

• The CMIP5 ensemble does show some improvement over the CMIP3 

ensemble. The most significant improvements are seen in the two tropical 

domains. In the tropical Atlantic the CMIP5 ensemble as a whole is shifted 

towards more realistic variability on the longer time scale and in the tropical 

Indo-Pacific the CMIP5 ensemble has improved on both time scales, but 

mostly by a lag of very ‘bad’ models from CMIP3 and not by an improvement 

of the ‘best’ models from CMIP5. 

• The modes of the CMIP3+5 super ensemble scaled by the observed 

eigenvalues are quite close to the observed modes and overall are closer to the 

observed spatial structure than any individual model. Thus the super ensemble 

of all the models gives the representation that is closest to the spatial structure 

of the observed SST variability.  
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• The global summary of the RMSEEOF for all domains in Fig. 8f can be 

considered the synthesis of the models skills in simulating natural SST 

variability. In this synthesis the CCSM4 turns out to be the best performing 

model. The CCSM4 model is performing relatively well in each individual 

domain. 

The most important findings of this study are, however, the substantial limitations that 

the CMIP3 and CMIP5 model ensembles have in simulating the spatial structure of 

SST variability: 

• Most CMIP models in most domains on both the monthly mean and the 5yr 

running mean time scales have less skill in simulating the spatial structure of 

SST variability than the simple isotropic diffusion (red noise) null hypothesis 

H0STDV. And in many cases they have less skill than the Slab Ocean 

simulation. The tropical Atlantic region is the only region in which the CMIP 

ensembles perform as well as the H0STDV null hypothesis on the longer time 

scale. 

• The models largely overestimate the effective number of spatial degrees of 

freedom (Nspatial) in all domains and in particular on the shorter time scale. 

Thus, the models produce more complex spatial structures in the SST 

variability, with more localized smaller scale patterns. 

• The models do not only disagree largely with the observations, but also with 

each other. The mismatch between the models is as big as the mismatch with 

the observations. The largest uncertainties are in the North Atlantic and in the 

Southern Ocean on the longer time scale. Here, the mismatch between models 

is larger than relative to the simple H0STDV null hypothesis. 
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• Much of the disagreement between the models and the observations comes 

from smaller scale patterns. Often these have different locations, structures 

and amplitudes in the models relative to the observations or other models.  

Several aspects of this analysis indicate that the models limited skill is caused by 

ocean dynamics, coupling processes and possible error amplification: The first piece 

of evidence comes from the relative good performance of the Slab Ocean simulation, 

which does not simulate any ocean dynamics, but performs more realistic in the 

simulation of the shorter time scale in the extra tropical domains than most CGCM 

simulations. The most remarkable difference to the CGCM simulations here is the 

much more realistic low Nspatial values in all extra-tropical domains. This may indicate 

that the ocean and air-sea interaction simulations of extra-tropical dynamics cause 

significant problems. In particular, they seem to generate much more complex small-

scale SST variability that is inconsistent with observations. This is also related to the 

second piece of evidence pointing towards problems in the simulations: The models 

produce too many small, localized modes of variability that are at the wrong positions 

with the wrong structures. Such modes do neither exist in the Slab Ocean simulation 

nor in the simple null hypotheses.  

These localized modes, or “climate drift” can be easily found in fully coupled GCMs 

as the atmospheric, oceanic and coupling processes could all introduce errors and 

even amplify the errors from each other. Further, this result seems to be consistent 

with what we know from the dynamics of the atmosphere and oceans: Atmospheric 

meso-scale internal variability is on a much larger scale than that of the oceans. 

Indeed, current state-of-the-art CGCMs do not resolve oceanic meso-scale dynamics. 

The coarse resolution of the ocean models may potentially be one of the main 
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problems in the CGCMs. However, it also needs to be noted that the CGCMs need to 

simulate a correct mean SST climatology in order to simulate the correct spatial 

structure of the SST variability. In particular in the extra-tropical domains SST 

variability is often a reflection of variability relative to fronts in either the ocean (e.g. 

between different gyres) or the atmosphere (e.g. jet stream). The variability in the 

position or the strength of the fronts is a significant part of the extra-tropical SST 

variability. CGCMs that simulate the positions of these fronts incorrectly will not be 

able to simulate the spatial structure of SST variability correctly. Here, the Slab 

Ocean simulation has a significant advantage, as is has the right mean SST 

climatology by construction due to the use of flux correction terms. Thus is seems 

reasonable to assume that the CGCM simulations will improve in the simulation of 

the spatial structure of SST variability if they would operate at a more realistic mean 

ocean state.  This would in particular benefit seasonal to decadal prediction schemes 

in which the assimilation of observed ocean states is an important aspect of the 

overall skill of the predictions. 
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In this chapter, the leading modes of Sea Surface Temperature (SST) variability in the 

Southern Ocean on decadal and even larger time scales are analysed using Coupled 

Model Intercomparison Project 5 (CMIP5) model simulations and observations. The 

analysis is based on Empirical Orthogonal Function (EOF) modes of the CMIP5 

model super ensemble. We compare the modes from the CMIP5 super ensemble 

against several simple null hypotheses, such as isotropic diffusion (red noise) and a 

Slab Ocean model, to investigate the sources of decadal variability and the physical 

processes affecting the characteristics of the modes.  

3.1. Introduction 

The Southern Ocean (SO), for its large heat and carbon capacity, plays a critical role 

in the Earth climate system (e.g. Sabine et al. 2004; Séférian et al., 2012). There are 

evidences that decadal and even longer variability exists in the SO, such as tree rings 

in Tasmania (Villalba et al, 1997, Cook et al. 2000) and increase of the Antarctic sea 

ice extent  (e.g., Cavalieri and Parkinson 2008; Comiso and Nishio 2008).  

However, due mainly to sparse observations, the long-term climate variability of the 

SO has not been studied extensively especially on the larger scale as its Northern 

Hemisphere counterpart. For the Sea Surface Temperature (SST) variability, most 

research focus on the remote response to the El Nino/Southern Oscillation (ENSO) 

(e.g. Karoly 1989; Kidson and Renwick, 2002; Mantua and Hare, 2002). The Rossby 

wave teleconnection patterns in the Southern Hemisphere atmosphere, known as the 

Pacific South America (PSA) patterns, transport the ENSO climate anomalous signals 

from the tropics to high southern latitudes (e.g. Mo and Higgins, 1998; Renwick, 

2002; Turner, 2004). Another important factor in the SO is the Southern Annular 

Mode (SAM), which could be defined as the leading EOF pattern of sea level pressure 
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(SLP) at 20~70°S and is approximately zonally symmetric, but out of phase between 

middle and high latitudes (Kidson, 1988; Karoly, 1990; Thompson and Wallace 2000; 

Simmonds and King, 2004; Jones et al. 2009). The SAM affects the westerly 

circumpolar flow, then further influences the circulation, temperature distribution, 

mixed layer depth and heat capacity in the ocean via the Ekman pumping effect (e.g. 

Boer et al. 2001; Cai and Watterson, 2002; Fyfe, 2003). Recent studies suggest that a 

quasi-decadal variability exists in the SAM (Yuan and Li, 2008; Yuan and Yonekura, 

2011).  

Within the deeper subsurface SO, the intrinsic variability is closely related to the 

Antarctic Circumpolar Current (ACC). The baroclinic instability originates within the 

thermocline of the ACC (O’Kane et al., 2013; Monselesan et al., 2015), and further 

results in positive feedbacks between meso-scale eddies and the ACC mean flow 

(Hogg and Blundell, 2006). On even longer-term variability the Southern Ocean 

centennial variability is possibly caused by deep ocean overturning circulation 

changes, as discussed in model based studies (e.g. Latif et.al, 2013). 

Further, a number of modes in the atmosphere-ocean system have been identified in 

the Southern Hemisphere, such as the Trans-Polar Index (TPI, Jones et al, 1999), 

Antarctic Circumpolar Wave (ACW, e.g. White and Peterson, 1996; White et al., 

2004; White and Simmonds, 2006) and South Pacific subtropical Dipole (Morioka et 

al., 2013). They might also exhibit decadal variations, which are still unclear (e.g., 

Simmonds, 2003; Yuan and Yonekura, 2011).   

The length of observational records and limitations of models restrict our 

understanding of the long-term variability in the Southern Ocean. Besides, most 

previous studies focus on the modes from the atmosphere rather than from the ocean, 
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mainly because of the relative abundance of the atmospheric data. However, as the 

significant heat content of the SO, the ocean itself should have more influence on the 

decadal and even longer variations. In this study presented here we will base our SST 

variability analyses within SO on the empirical orthogonal function (EOF) modes in 

the model simulations and observations, and get the basic SST modes in SO on the 

low frequency as well as their features and influencing factors. We will also compare 

the leading modes of variability against simple null hypotheses such as isotropic 

diffusion (red noise) and atmospheric forcings only (Slab Ocean simulation), to test 

the factors that influence the generation and proposition of the modes (see 

Dommenget, 2007 and Wang et al. 2015; also see Chapter 2).  

The chapter is organized as follows: firstly, section 3.2 presents the data used. Section 

3.3 evaluates the consistency of CMIP5 simulations in the Southern Ocean. The main 

results of this study are shown in Section 3.4. Here the leading modes in the Southern 

Ocean and their features are presented and analysis of the sources of the modes and 

the factors affecting their main characteristics are presented. Finally a summary and 

discussion are provided in section 3.5.  

3.2. Data, model simulations and methods 

The observed global monthly mean SSTs are taken from the NOAA Optimum 

Interpolation Sea Surface Temperature (OISST) V2 from 1982 to 2004, which are 

based on in-situ and satellite observations (referred as “observations” below, 

Reynolds et al., 2002). Hadley Centre Sea Ice and SST data set (HadISST, Rayner et 

al., 2003) was chosen as an auxiliary.  
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Our analysis focuses on the long-term internal natural variability, therefore the 

scenario of CMIP5 “pre-industrial control” (PiControl) is used for the following study 

for its relatively long output without anthropogenic forcing influence. 10 CMIP5 

models (Table. 3.1) are selected from the CMIP5 datasets (Taylor et al., 2012), as 

they represent all the models having at least 500 years continuous simulation and all 

the variable outputs needed for the analysis in this paper. We take 500 years from 

each model and concatenate the SST anomalies (computed for each model 

individually) to generate a CMIP5 super model with 5000 years of data to provide a 

synthesis. This kind of super model has been shown to be more similar to the 

observed modes than individual models (Bayr and Dommenget, 2014; Wang et al., 

2015; also see Chapter 2). We will further verify the super model performance in 

section 3.3.   

Table 3.1 List of CMIP5 models 
Number Originating Group(s) Country Model 
1 CSIRO and BOM Australia ACCESS1.0  
2 CSIRO and BOM Australia ACCESS1.3  

3 National Center for Atmospheric Research USA CCSM4 
4 Canadian Centre for Climate Modelling and Analysis Canada CanESM2 
5 Geophysical Fluid Dynamics Laboratory USA GFDL-CM3  
6 Geophysical Fluid Dynamics Laboratory USA GFDL-ESM2G 
7 Hadley Centre for Climate Prediction and Research / Met 

Office 
UK HadGEM2-ES 

8 Institut Pierre Simon Laplace France IPSL-CM5A-LR 
9 Meteorological Research Institute Japan MRI-CGCM3 
10 Beijing Climate Center China bcc-csm1-1 

We also use a 500 years long simulation of an atmospheric GCM coupled to a simple 

Slab Ocean to compare against the CMIP5 models. This model is comprised of the 

UK Meteorological Office Unified Model general circulation model with HadGEM2 

atmospheric physics, a Slab Ocean model with a 50m-layer thickness and prescribed 

sea ice climatology. A flux correction scheme is used to force the model SST to 

closely follow the Hadley Centre Sea Ice and SST data set (HadISST) SST 

climatology (for more details see Chapter 2).  
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All data sets (models and observations) were interpolated to a common 2.5° latitude × 

longitude grid and linearly detrended to remove the global warming signal and/or 

climate drift prior to the analysis.  

The concept of the data set SST mode comparison is based on Dommenget (2007) 

and Bayr and Dommenget (2014), and has been applied in a similar way to the SO 

SST modes in Chapter 2.  

Apart from the EOF projection method above, we also use the distinct EOFs (DEOFs) 

to estimate the patterns that describe the largest differences in explained variance 

between two data sets A and B (Dommenget, 2007), which are found by pairwise 

rotation of the EOF-modes to maximize the leading !!! values relative to the!!!!!→! 

iteratively (Dommenget, 2007, Bayr and Dommenget, 2014). Each DEOF mode has 

two explained variance values. One is the explained variance in dataset A, 

!"#!!→!(!), and the other the explained variance in B, !"#!!→!(!). The DEOFs 

patterns are ordered by the difference between !"#!!→!(!)  and !"#!!→!(!) . 

Therefore, the first DEOF mode, !"#$!!→!, would represent the pattern that explains 

more variance in A than in B, and this difference should be the largest among all 

DEOF patterns. Thus, DEOFs is a simple way to illustrate the largest differences 

between two datasets demonstrating significant differences in terms of spatial patterns, 

however, they may have some limitations in the interpretation similar to those of EOF 

patterns (for more details see Dommenget, 2007). 

3.3. Model Evaluation 

Chapter 2 showed, in an evaluation of the SST modes for CMIP5 historical runs in the 

Southern Ocean, that all models differ significantly with the HadISST modes with the 
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uncertainties in the order of 40-60% of the eigenvalues. The study also illustrated 

larger inconsistency of the model with each other via pairwise model comparison.  

However, the super model ensemble showed better agreement with the observation, 

suggesting that it has spatial modes similar to the observed and should be more 

suitable for further data analysis. To verify the reliability of the models in the study 

here, especially the super ensemble, we will do a similar evaluation, but for the 

CMIP5 PiControl simulations against the OISST data.  

Fig. 3.1 shows the leading modes of Southern Ocean monthly mean SST anomalies 

(south of 30°S) to get a first impression of how similar model simulations and 

observations are. Each EOF pattern is multiplied by the root of its own eigenvalue for 

consistency so that the amplitude of all patterns is in the unit of Kelvin. There are 

clear similarities between the observed and the CMIP5 super ensemble. They both 

have the annular mode as the EOF-1, with the similar structure: maximum anomaly 

amplitude in the South Pacific and the out-of-phase zonal anomalies around 30-45°S 

(Fig. 3.1a and d). The CMIP5 super ensemble also has a similar wave train like EOF-

3 as observed (Fig. 3.1c and f). However, the EOF-2 in CMIP5 is more like a wave-3 

pattern along 60°S with two weak troughs (Fig. 3.1e) while differently the observed 

EOF-2 composes of 4 waves (Fig. 3.1b).  

The Slab Ocean results (Fig. 3.1g-i) illustrate more differences with much larger 

eigenvalues compared to observations and CMIP5 data. Its EOF-1 (Fig. 3.1g) shows 

similar wave-3 structure as CMIP5 EOF-2, but the two weak troughs get much 

stronger in the Slab Ocean simulation south to Africa/Australia. Another wave-3 

pattern also exists within the Slab Ocean EOF-2 (Fig. 3.1h) and its anomaly centres in 

the Pacific are in the same location as the annular mode (EOF-1) in CMIP5 and the 
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observed. Last but not least, Slab Ocean has a similar wave-like EOF-3 as its 

counterparts but with lower latitude centres.  

 EOF1 
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Observed 

(a) 11.6% (b) 7.2% (c) 7.0% 
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Fig. 3.1 First three leading EOF patterns of detrended monthly SSTA in the Southern Ocean for (a-c): 

Observation (OISST); (d-f): CMIP5 super model; (g-i): slab ocean experiment. The values in the 

headings of each panel are the explained variances of each EOF-mode. 

To quantify the differences among data sets, Fig. 3.2 presents the RMSEEOF with 

OISST as reference on the x-axis and all models as references on the y-axis.  The 

 150 oW 

 120 oW
 

  9
0o W

 
  6

0
o W

 

  30
o W 

   0o  
  30 oE 

  60 oE 
  90 oE 

 1
20

o E 

 150
o E 

 180oW 

  75oS 

  60oS 

  45oS 
 150 oW 

 120 oW
 

  9
0o W

 
  6

0
o W

 

  30
o W 

   0o  
  30 oE 

  60 oE 
  90 oE 

 1
20

o E 

 150
o E 

 180oW 

  75oS 

  60oS 

  45oS 

 150 oW 

 120 oW
 

  9
0o W

 
  6

0
o W

 

  30
o W 

   0o  
  30 oE 

  60 oE 
  90 oE 

 1
20

o E 

 150
o E 

 180oW 

  75oS 

  60oS 

  45oS 

 150 oW 

 120 oW
 

  9
0o W

 
  6

0
o W

 

  30
o W 

   0o  
  30 oE 

  60 oE 
  90 oE 

 1
20

o E 

 150
o E 

 180oW 

  75oS 

  60oS 

  45oS 
 150 oW 

 120 oW
 

  9
0o W

 
  6

0
o W

 

  30
o W 

   0o  
  30 oE 

  60 oE 
  90 oE 

 1
20

o E 

 150
o E 

 180oW 

  75oS 

  60oS 

  45oS 

 150 oW 

 120 oW
 

  9
0o W

 
  6

0
o W

 

  30
o W 

   0o  
  30 oE 

  60 oE 
  90 oE 

 1
20

o E 

 150
o E 

 180oW 

  75oS 

  60oS 

  45oS 

 150 oW 

 120 oW
 

  9
0o W

 
  6

0
o W

 

  30
o W 

   0o  
  30 oE 

  60 oE 
  90 oE 

 1
20

o E 

 150
o E 

 180oW 

  75oS 

  60oS 

  45oS 
 150 oW 

 120 oW
 

  9
0o W

 
  6

0
o W

 

  30
o W 

   0o  
  30 oE 

  60 oE 
  90 oE 

 1
20

o E 

 150
o E 

 180oW 

  75oS 

  60oS 

  45oS 

 150 oW 

 120 oW
 

  9
0o W

 
  6

0
o W

 

  30
o W 

   0o  
  30 oE 

  60 oE 
  90 oE 

 1
20

o E 

 150
o E 

 180oW 

  75oS 

  60oS 

  45oS 



! 74!

values on the y-axis are the mean RMSEEOF of all pairwise comparison with all 

individual models as references.  

 
Fig. 3.2 RMSEEOF values distribution relative to the observations (x axis) and mean RMSEEOF values 

of pairwise comparisons to all CMIP5 model simulations (y axis) for monthly SSTA EOF-analysis in 

the Southern Ocean. The sampling uncertainty is based on North et al. (1982) and Wang et al (2015).  

OISST and HadISST for the same period (1982-2014) agree well with each other, 

since the two observational data sets contain the same observations. However, the 

HadISST data for the much longer period (1901-2014) disagrees with the OISST data 

substantially. This is most likely due to the sparse observations prior to the 1980s. 

The relative errors of most models are ranging from 20% to 45% of the eigenvalues, 

which are substantial and similar as the difference between Slab Ocean and the 

observed (29%). The CMIP5 super model performs better (28%) than most models 

and has by construction much longer statistics than any individual model, which 

suggests that the super model is the best data set for the following analysis.  

For the model pairwise comparison, most models are in the range of 20% to 50%, 

while the observed has larger bias of 50%~65%. This indicates that models have 

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

1

2

3

4

5

6

7

8

910

RMSEEOF% (OISST as Reference)

R
M

SE
EO

F%
 (M

od
el

s 
as

 R
ef

er
en

ce
)

 

 

sampling uncertainty
OISST
HadISST (1901−2014)
HadISST (1982−2004)
Slab Ocean
CMIP5 super model
H0−STDV
H0−uniform



! 75!

strong differences and disagreements in the spatial structures between each other. 

Again the super model is better than most individual models with an error of 26%, 

implying the model ensemble should be a good substitution of an individual model.   

The slab ocean shows substantial difference relative to the fully-coupled models (60% 

error), which suggest that the dynamics of the CMIP5 models are significantly 

different than in the slab ocean model. Additionally, we introduce two categories of 

isotropic diffusions representing homogeneous spatial red noise processes (refer as 

H0uniform) and spatial red noise with known standard spatial deviation pattern (refer as 

H0STDV) (see Dommenget 2007 and Wang et al. 2015 for details). Both these simple 

stochastic models are farther away from the observations than any individual model, 

suggesting that the SST modes in the Southern Ocean are indeed related to more 

complex dynamics than assumed in the simple null hypotheses.   

3.4. Leading Modes in the Southern Ocean 

In this section we present the main results of this analysis, the leading modes in the 

Southern Ocean and possible factors for their generation and propagation. As a start 

Fig. 3.3 firstly depicts the standard deviation (STDV) of annual mean SST anomalies 

from OISST, CMIP5 ensemble mean and Slab Ocean simulation. The OISST has 

maximum variation south to Africa, around New Zealand and in the middle of South 

Pacific. The CMIP5 runs simulate most of the observed structures of the STDV 

distribution successfully, but underestimate the variability for the most active areas 

and tend to have stronger fluctuation within the sea ice region around Antarctic. The 

spatial structure of the STDV in the slab ocean simulation is too smooth, but with 

similar overall amplitudes. The regions around the sea ice border have by construction 

no SST variability, as the model has prescribed sea ice climatologies.  
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(a) OISST                       (b) CMIP5                     (c) Slab Ocean 

 
 

(Kelvin) 
 
Fig. 3.3 Standard deviation fields of annual mean SSTA for (a): OISST; (b): CMIP5 super model; (c): 

Slab Ocean experiment result. 

Fig. 3.4 shows the fraction that the long-term SST variability (>10 years) contributes 

to the total annual mean variation based on the CMIP5 super model ensemble. Note 

that most of the high latitude oceans are dominated (>60%) by low-frequency 

variations, while in the tropics it contributes less than 30%. In the Southern Ocean, 

the long-term signal is stronger in the higher latitudes and in the Indian Ocean it 

appears to reach from the south-west to north-east, while one branch reach the south 

of Australia and the Tasman Sea. 

 

(%) 
 
Fig. 3.4 The relative contribution of Long-term  (> 10 years) variability to the total of annual mean 

variations based on the CMIP5 super model. 
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 The leading modes of SST variability in the CMIP5 super model on different time 

scales including monthly mean, annual mean and 5 years running mean are shown in 

Fig. 3.5 based on EOF-analysis. A few characteristics can be noted here: 

 EOF1 
 

EOF2 EOF3 

 
 
 
 
Monthly 
Mean  

(a) 13.5% (b) 6.8% (c) 5.8% 

 
 

  

 
 
 
 
Annual 
Mean 

(d) 15.5% (e) 10.8% (f) 5.9% 

 
 

  

    

 
 
 
5yrs 
Running 
Mean 

(g) 21.0% (h) 12.3% (i) 8.2% 

   

 
Fig. 3.5 First three leading EOF patterns of CMIP super model SSTA in the Southern Ocean for (a-c): 

monthly mean; (d-f): annual mean; (g-i): 5 years running mean. The values in the headings of each 

panel are the explained variances of each EOF-mode. 
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• The three leading modes on the monthly mean time scale all together explain 

only about 26%, which indicates a fairly large number of spatial degrees of 

freedom (Nspatial = 27, see Bretherton et al., 1999 for the definition). This 

Nspatial here is larger than in most other ocean basins (Wang et al. 2015) and 

thus indicates the complexity of the SO SST variability. On the longer time 

scales the relative importance of the leading modes increases, with more than 

40% explained by the three leading modes. This indicates that on the longer 

time scales the leading modes of SST variability become larger in spatial scale 

and the SST variability overall becomes less complex (Nspatial = 13 for 5yrs 

running mean). 

• The monthly mean EOF-1 corresponds to EOF-1 on annual mean and EOF-2 

on 5 years running mean. All three of them illustrate the annular structure with 

the maximum anomalies in the Pacific, corresponding to the region with large 

SST STDV in Fig. 3.3b. The relative importance (eigenvalue) of this pattern 

appears to be strongest in the annual mean SST variability. It becomes less 

important on the longer than 5yrs time scales. 

• The EOF-2 of monthly mean, as described above (Fig. 3.1), is a wave-train 

like pattern with three clear crests, which is much more pronounced in the slab 

ocean simulation (Fig. 3.1g). When it comes to annual mean time scales 

(EOF-2 in Fig. 3.5e), the troughs become much less conspicuous and the crest 

in the Southern Atlantic intensified while the other two crests get much 

weaker. The corresponding pattern on the even longer time scale (EOF-1 in 

Fig. 3.5g) has the no more signature of the three-wave structure and it leaves a 

monopole pattern. Thus it appears that the atmospheric three wave pattern 

forcing is very clear in the slab ocean simulation and then transforms into a 
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basin wide monopole pattern in the dynamical ocean simulations of the 

CMIP5 super model ensemble on longer decadal time scales. The eigenvalue 

of this mode is increasing as the time scale gets longer from 7% to 21% and it 

becomes the leading pattern on the 5yrs running mean analysis, implying that 

this pattern is more dominant on decadal scale.  

• The EOF-3 pattern does not seem to change much over the varying time scales. 

The time series of EOF-3 has strong correlation with its counterpart on the 

different time scales (r > 0.7), implying all the EOF-3s belong to basically the 

same mode and its temporal variation is well kept, however, its spatial pattern 

gradually transform from wave-train pattern to a dipole structure in the Pacific 

on the annual mean scale with anomalies moved to the higher latitudes. The 

dipole pattern further fades as the pole in the west Pacific weakens on the 

longer time scale.  

In the following analysis we will focus on the annual mean modes, as we are mostly 

interested in long time SST variability. The power spectra of the leading annual mean 

EOF-modes are illustrated in Fig. 3.6. For comparison with the slab ocean simulation 

we project the CMIP5 annual mean EOF-modes onto the slab ocean data to estimate 

the time series that these patterns would have in the slab ocean simulation. The power 

spectra of these time series are shown in for Fig. 3.6 comparison. Thus we here 

consider the slab ocean as being a simple red noise test as discussed in the stochastic 

climate model by Hasselmann (1976). The theoretical red noise power spectrum is 

fitted to the slab ocean power spectrum in Fig. 3.6. A number of interesting 

characteristics can be noted in these power spectra: 
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   (a) EOF-1                              (b) EOF-2                               (c) EOF-3 

 
 
Fig. 3.6 Spectrum of the time series of the three leading EOF-modes of the CMIP super model annual 

mean SSTA (as in Fig. 3.5d-f). The power spectrum of the time series resulting from the projection of 

these patterns onto the slab ocean simulation SST variability are shown for comparison. The black line 

is a red noise fit to the slab ocean time series and the red lines mark the 95% confidence interval 

relative to the red noise fit of the slab ocean simulation. 

• All three CMIP5 super ensemble modes have more variability on the longer 

time scales than the slab ocean simulations. Thus it indicates that in all three 

modes ocean dynamics may be key in producing the long time SST variability. 

• The EOF-1 mode has a very similar shape of the power spectrum in both the 

CMIP5 super model and the slab ocean, but the CMIP5 super model power 

spectrum shifts higher up, indicating it has more variance on all time scales. 

• The EOF-2 mode has a very interesting time scale behaviour that deviates 

from a red noise power spectrum quite substantially. It appears to be similar in 

amplitude and time scale behaviour to the slab ocean for interannual until 

about decadal time scales. But on multi-decadal time scales the CMIP5 super 

model SST variability starts to increase again by about an order of magnitude 

for the centennial time scales. Thus the EOF-2 mode has a two-step power 

spectrum, with an interannual to decadal level of variance and a second higher 

up level of variance on the multi-decadal to centennial time scales. 

• The EOF-3 mode has a similar indication of increased variance on the longer 

time scales compared to the slab ocean, but it is not as strong and it seems to 

have a more pronounced time scale (peak) at around 50yrs periods. 
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Fig. 3.7 First three leading EOF patterns of detrended annual mean SSTA in the Southern Ocean for (a-

c): Slab Ocean; (d-f): H0-STDV null hypothesis. The values in the headings of each panel are the 

explained variances of each EOF-mode. 

To further explore the origin of the spatial structures of the leading modes we take a 

closer look at the leading modes in the Slab Ocean simulation and in the simple 

spatial red noise patterns H0-STDV (see Fig. 3.7). The leading modes of the slab 

ocean simulation are dominated be the wave number three shapes that are forced by 

the atmospheric wave trains. The patterns also show no substantial changes from 

monthly mean (Fig. 3.1g-i) to annual mean time scales, suggesting that the pattern are 

present on all time scales. The simple spatial red noise H0-STDV EOF-modes are a 

hierarchy of multi-poles (Fig. 3.7d-f), starting with a monopole (largest scale), 

followed by dipoles with increasing complexity (see Dommenget 2007 for a more 
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detailed discussion). These multi-pole modes are centered on the regions of large SST 

STDV (see Fig. 3.3b).  

The modes of the Slab Ocean simulation and H0-STDV stochastic null hypothesis are 

clearly different to CMIP5 super model ones. The DEOF modes shown in Fig. 3.8 

further quantify these differences. The DEOF modes represent the modes that in the 

comparison between the CMIP5 super model and the Slab Ocean simulation or H0-

STDV stochastic null hypothesis are most dominant in the CMIP5 super model (see 

methods section for details on the DEOF-modes). 

 DEOF1 
 

DEOF2 DEOF3 

 
 
 
 
CMIP5 ! 
Slab 
Ocean 

(a) 14.2%  2.8% (b) 9.3%  3.9% (c) 4.3%  1.5% 

   
 
 
 
 
 
CMIP5 ! 
H0-STDV 

 
(d) 13.8%  3.0% 

 
(e) 7.2%  2.8% 

 
(f) 5.0%  2.2% 

   

 

Fig. 3.8 (a-c): Leading DEOF patterns of annual mean SSTA CMIP5 projection to Slab Ocean; (d-f): 

Leading DEOF patterns of annual mean SSTA CMIP5 projection to H0-STDV. The headings show the 

explained variances of the DEOF-modes in the CMIP5 super model (first value) and the slab ocean 

simulation or H0-stdv null hypothesis (second value), respectively. 
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Most of the leading DEOF modes duplicate the leading CMIP5 modes in Fig. 3.5d-f, 

suggesting that the Slab Ocean and red noise H0-STDV process do not produce these 

leading modes with enough variance. This is also consistent with the comparison of 

the power spectra in Fig. 3.6, where we found that the slab ocean power spectrum of 

EOF-1 was much weaker than in the CMIP5 super model. One exception is the 

DEOF-3 for the Slab Ocean (Fig. 3.8c). This DEOF mode is not similar to the CMIP5 

EOF-3 and is more concentrated around Antarctica.  

In summary of this first part of this analysis we can say that we have three leading 

modes of SST variability on the interannual and long time scales, which all three are 

fairly different in either their patterns or in their amount of variance from a simple red 

noise integration of atmospheric forcings. Thus all three modes are likely to involve 

ocean dynamics to create the pattern or at least the amount of variance. In the 

following we want to discuss the characteristics of these modes a bit more in detail. 

However, it will be beyond the scope of this work to fully explain the physical 

mechanisms of all three leading modes. 

3.4.1 Mode 1: The Annular Mode 

The first annual mean mode is descripted as the annular mode, which is also the 

leading mode within monthly mean analysis and has a similar structure as the SAM. 

Besides, the strong anomalies of the mode in the Pacific suggest it is related to ENSO 

as well. The SAM index (difference in the normalized monthly zonal-mean sea level 

pressure between 40°S and 65°S, Gong and Wang, 1999) leads the time evolution of 

this mode by about one month and the Niño 3.4 SST index (average SST anomaly in 

the region of 5°N to 5°S, 170°W to 120°W) leads by several months (Fig. 3.9). Thus 

we have two important atmospheric teleconnections that drive this mode. The global 



! 84!

monthly mean SSTA correlation with Niño 3.4 and SAM indices are also shown in 

Fig. 3.10. Both the correlation distributions in the Southern Ocean show similar 

spatial structure as this annular mode itself. However, obviously the correlation 

focuses within the South Pacific domain in the Southern Ocean when correlated with 

ENSO, while the SAM correlation is extended to the entire ocean.  

 
 
Fig. 3.9 Lead-lag correlation between Niño3.4/SAM and monthly mean PC-1 time series of CMIP 

super ensemble. Note that the correlation with Niño3.4 is multiplied by minus one to be positive.    

 

 
 (a) Niño 3.4 Correlation                        (b) SAM Correlation 

 

 
 

Fig. 3.10 (a): Monthly SSTA correlation with Niño 3.4 in CMIP5 super model; (b): same as (a) but for 

the correlation between SSTA and SAM index.   
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 (a) 22.8%                                                   (b) 12.2%  

 

 
Fig. 3.11 (a): CMIP5 super model EOF-1 of annual mean SST in South Pacific; (b): EOF-2 of annual 

mean SST in South Atlantic and Indian Ocean. The values in the headings of each panel are the 

explained variances of each EOF-mode. 
 

To further discuss these two effects separately, we divide the Southern Ocean into 

two regions, namely the Pacific part (150°E to 60°W) and the Atlantic-Indian part 

(rest of the SO), and compute the respective EOF modes for the CMIP5 super model  

(see Fig. 3.11). The corresponding spatial patterns (EOF-1 for the South Pacific sector 

and EOF-2 for the Indian-Atlantic domain) are almost identical to the Southern Ocean 

pattern (EOF-1 in Fig. 3.5d). The correlation between the time series of Southern 

Ocean pattern and Pacific one (pattern in Fig. 3.11a) is 0.9, and it is 0.7 between 

entire ocean time series and Atlantic-Indian Ocean counterpart (pattern in Fig. 3.11b); 

but it is only 0.5 for the two separated region comparison.  

We construct a simple linear model for the variability of these EOF time series based 

on ENSO and SAM influences: 

 Hn = αHn-1 + βNino34n + γSAMn + f                                                                         (3.1) 
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,where Hn is the value of the time series in the nth year in the CMIP5 models, α is the 

memory of the ocean, β and γ are the linear forcing coefficients for normalized 

Niño3.4 and SAM indices, respectively. f is the residual. Thus, larger absolute value 

of β (γ) represents stronger impact from ENSO (SAM) on the temporal variability. 

The results of a least squared fit to the CMIP5 super model data are listed in Table. 

3.2. As expected, ENSO shows strong influence in the Pacific and limited impact for 

the rest of the domain. SAM has almost the same influence on both individual regions. 

For the entire basin, the impacts of these two phenomena are comparable to each 

other and also to the ocean memory. The reconstructed time series Hn has strong 

correlation (r = 0.8) with the Southern Ocean EOF-1 time series and it basically 

reproduces the spatial structure of EOF-1 (see Fig. 3.12). Similar results are also 

found within the observation (β = - 0.54 , γ =0.31 for OISST annual mean EOF-1 in 

the SO). Thus, this annular mode is driven by ENSO and SAM. 

Table 3.2 Parameters of linear regression model for annual mean EOF-1 time series discussed in the 

text.  

 α (Ocean Memory) β (Niño 3.4) γ (SAM) 
Pacific EOF-1 0.42 -0.69 0.19 

Southern Ocean EOF-1 0.38 -0.37 0.25 
Atlantic-Indian Ocean EOF-2 0.30 -0.06 0.25 

 
 

In this context it is interesting to note that the slab ocean simulation has much less 

variance in this mode (see Figs. 3.6a and 3.8a), although it is forced by the SAM. 

ENSO is not simulated in the slab ocean simulation, but it is unlikely that this is the 

main reason why the mode is much weaker in the slab ocean simulation. Both SAM 

and ENSO mostly affect the Southern Ocean via the variation of zonal winds and thus 

by wind induced mixing (e.g. Sallée et al., 2010; Screen et al., 2010). But wind 

mixing does not exist in the slab ocean simulation. The relation to wind forcing is also 
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highlighted by the fact that the main node of EOF-1 is around the 60°S to 40°S 

latitudes band, which is also where the SAM pattern has its maximum sea level 

pressure gradients and thus the strongest wind stress forcings.      

 
 

Fig. 3.12 Correlation between a reconstructed SSTA PC-1 time series and SSTA of the CMIP5 super 

model on annual time scale. See text for details on the reconstruction model.   

3.4.2 Mode 2: Basin wide monopole mode 

We name the annual mean EOF-2 the basin wide monopole mode as its anomalies 

expand with the same sign over the entire SO domain on longer scales. This kind of 

spatial structure is more apparent on even longer time scale (10 years running mean to 

50 years running mean) as shown in Fig. 3.13. The eigenvalues are increasing with 

longer time scales indicating the increasing importance of this mode for longer time 

scales. Thus, this pattern, as the leading pattern on interannual scale already, becomes 

more dominant on decadal and multi-decadal scales, which is consistent with the 

internal centennial variability (Martin et al., 2013; Latif et al., 2013).  
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(a) EOF-1 10yrs  26.6%            (b) EOF-1 20yrs  31.6%           (c) EOF-1 50yrs  37.0% 

 

 
-0.25                                  0                                   0.25 

Fig. 3.13 EOF-1 of SSTA in Southern Ocean of the CMIP5 super ensemble for (a): 10 years running 

mean; (b) 20 years running mean; (c) 50 years running mean. The values in the headings of each panel 

are the explained variances of each EOF-mode. 

 

This pattern, as mentioned in the previous sections, originates from a wave number 

three wave-train prototype pattern in the slab ocean EOF-1 without ocean dynamics. 

Thus it is forced from the atmospheric heat flux forcing at least partially. Fig. 3.14 

shows the correlation of the time series of EOF-2 with the geopotential height at 

500hPa. The three wave crests can be recognized in the atmosphere and the nodes are 

well collocated with the nodes of the SST pattern (Fig. 3.5b).  

 
 

Fig. 3.14 Correlation between SSTA PC-2 time series and 500hPa geopotential height anomaly of the 

CMIP5 super model on monthly time scale. 
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To further analyse the relation of the SST to the atmosphere and the subsurface ocean 

we create an SST index based on the three crests boxes (0-30°W, 40°S-60°S for Box-

1; 60°-90°E, 40°S-60°S for Box-2 and 160°E-170°W, 40°S-60°S for Box-3) and make 

the boxed averaged value as a SST proxy index for this mode. The SST index has a 

correlation of 0.9 with the annual mean EOF-2 and thus illustrates that the EOF-2 

mode is indeed mostly the variability in these three regions combined. The 500hPa 

geopotential height index of the same boxes leads the SSTA index by about one 

month (see Fig. 3.15a). Thus, the atmospheric internal wave-3 structure is a forcing of 

this SST pattern.  

In the CMIP5 super model it appears that the pattern transforms from the wave-3 

structure on the shorter monthly mean time scales to the basin wide monopole mode 

pattern on the decadal and longer time scales. In the Slab Ocean simulation this 

development does not happen and the SST variability keeps the wave-train structure 

on the longer time scales (Fig. 3.1g and Fig. 3.7a). This is also reflected in weaker 

power spectrum for this mode in the slab ocean simulation (Fig. 3.6b). This suggests 

that the ocean dynamics may be the essential factor responsible for the mode 

transformation and power spectrum increase on multi-decadal and longer time scales.  

The vertical structure of this mode in the upper ocean may give some indication of its 

nature. For this we take a look at the lag-lead correlation between the SST mode 

index and the ocean temperature at different depths, and we look at the pattern of the 

in phase (zero lag) correlation between the SST mode index and the ocean 

temperature at different depths (see Fig. 3.15).  

The SST evolution appears to lead the subsurface temperature evolution on all layers 

and signal generally gets weaker the deeper we go (Fig. 3.15a-b). However, it is 
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interesting to note that the correlation in 500m depths is larger than in the upper ocean 

layers when the SST is leading by more than two years. It is also interesting to note 

that the patterns transforms slightly from a monopole at the surface to an annular 

dipole structure at 500m depth (Fig. 3.15c). 

(a)                                                                            (b) 

 
 

(c) 
50m                              100m                              200m                              500m 

 

 
 

Fig. 3.15 Lead-lag correlation for box-averaged indices for the monopole mode between SSTA and 

500hPa geopotential height/subsurface ocean temperature anomalies. (a): Lead-lag correlation on 

monthly time scale; (b): same as (a) but for annual time scale; (c): Correlation between SSTA PC-2 

time series and subsurface ocean temperature of the CMIP5 super model on annual time scale. 

3.4.3 Mode 3: Dipole Mode in the South Pacific 

The EOF-3 is a dipole in the South Pacific on annual mean scale (shown in Fig. 3.5f). 

It also starts from a zonal wave pattern shown in Fig. 3.5c on shorter time scale, but 

the wave pattern is out of phase with that of EOF-2. The anomalies in the Atlantic and 
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Indian Ocean get weaker on longer time scales, while the pattern gets transformed 

gradually and more focuses within the Pacific on annual mean time scale. The 

western pole in the South Pacific also loses its strength on longer time scales, making 

this pattern concentrate around Antarctica (Fig. 3.5i). To illustrate that this pattern is 

indeed mostly in the Pacific sector of the SO we again look at the EOF-modes of the 

Pacific region (EOF-2 as shown in Fig. 3.16). This EOF-2 mode of the South Pacific 

has a correlation of 0.95 with the annual mean time series of Southern Ocean EOF-3.  

11.3% 

 

 
Fig. 3.16 EOF-2 of CMIP5 super model SST in the South Pacific for annual mean analysis. The value 

in the heading is the explained variance of this EOF-mode. 

For the further analysis we simplify the SST mode by a dipole index (hereafter as 
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45°S-60°S, 180°-140°W). This index matches the EOF-3 time series fairly well 

(correlation = 0.89 for annual mean analysis). Fig. 3.17 depicts the correlation 
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restricted within the South Pacific. The crests are around New Zealand, south to South 

America and South to Africa, and the troughs are mostly in the middle of the oceans.   

 
 
Fig. 3.17 Correlation between Box [A-B] time series and 500hPa geopotential height anomaly of the 

CMIP5 super model on monthly time scale.  

 (a)                                                                          (b) 
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Fig. 3.18 Lead-lag correlation for IndicesA-B between SSTA and 500hPa geopotential height/subsurface 

ocean temperature anomalies. (a): Lead-lag correlation on monthly time scale; (b): same as (a) but for 

annual time scale; (c): Correlation between SSTA PC-2 time series and subsurface ocean temperature 

of the CMIP5 super model on annual time scale. 
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As for Mode-2 we again look at the lag-lead correlation between the SST IndexA-B 

and the ocean temperature at different depths and we look at the pattern of the in 

phase (zero lag) correlation between the SST IndexA-B and the ocean temperature at 

different depths (see Fig. 3.18). As expected the geopotential height variation leads 

the SST variability for one month, demonstrating that the atmosphere also drives this 

dipole mode. The SST also leads the deeper water temperature anomalies as well, but 

the influence decreases more rapidly with lead/lag time (Fig. 3.18b), which is 

consistent with the power spectrum having less multi-decadal variance than the 

Mode-2. However, the lag-lead relationship to the 500m depths temperature appears 

to be somewhat different than in Mode-2. Here the 500m depths temperature has 

strong correlation with the SST IndexA-B when the 500m depths temperature is 

leading, which may suggest a subsurface ocean influence on the SST IndexA-B on the 

longer time scales. The SST pattern also has some minor changes with depth (Fig. 

3.18c). The western pole in the Pacific gets weaker, which might explain why the 

western pole also becomes unclear on the longer scale on the surface. 

3.5. Summary and Discussion 

In the study presented here we discussed the leading modes of SST variability in the 

Southern Ocean on long, decadal time scales in CMIP5 preindustrial scenario 

simulations. We compared the CMIP5 simulations with observations, simple 

stochastic null hypothesis for the spatial structure of SST variability and against a 

simulation with a slab ocean that does not simulate any ocean dynamics. This study 

illustrated a number of interesting modes dominating the Southern Ocean. We list the 

main findings below: 
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• First it is important to note that current state of the art CMIP5 simulations 

have large inconsistencies against the observation and with each other. Our 

understanding of the leading modes of SST variability is therefore still limited 

and is likely to have substantial biases. However, using the CMIP5 super 

model ensemble of all available models does have some advantage in 

smoothing out model biases and is therefore a good basis for the analysis of 

the SO SST modes.  

• The SST modes of the SO are the most complex of all ocean basins (Wang et 

al. 2015). They have the largest effective spatial degrees of freedom of all 

ocean basins and the leading three EOFs only contribute 26% (monthly scale) 

to 42% (5 years running mean) of the total variance. It implies that higher 

order modes contribute to the SST variability significantly and are potentially 

also relevant for understanding the leading modes.    

• All three leading modes found in the CMIP5 super model have distinct 

patterns and time scale behaviour that can not be explained by simple 

stochastic null hypothesis, like spatial red noise (isotropic diffusion), nor by a 

slab ocean dynamics. Thus all three leading modes are ocean-atmospheric 

coupled modes and are likely to be substantially influenced or driven by ocean 

dynamical processes. 

• The first leading mode is described as an annular mode. It is forced by two 

main drivers: ENSO and SAM. ENSO mainly influences the Pacific part of 

the mode while SAM impacts the entire basin of the Southern Ocean. The 

impact of these drivers is much stronger in the CMIP5 simulations than in the 

slab ocean simulation, suggesting that it is mostly the wind stress forcing that 

drives the SST variability of this mode. This is also consistent with the 
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position of the main amplitudes of this mode being at the same locations as the 

maximum wind variability being associated with the SAM index.  

•  The second most dominant mode is a basin wide monopole pattern. It 

transforms for the atmospherically forced three-wave pattern on shorter time 

scales to an all basin wide mode on multi-decadal time scales. Such a 

transformation is not observed in the slab ocean simulation suggesting it 

involves ocean dynamics. A potential candidate for such a transformation 

could be lateral advection by ocean transport and stochastic resonance with 

atmospheric forcing. However, it was beyond the scope of this study to 

understand the details of these processes. This mode further has a very distinct 

time scale behaviour with a significant increase of variance from the decadal 

time scales to even longer centennial time scales that is very clearly distinct 

from the behaviour of the slab ocean simulation. Thus this mode has a lot of 

power on very long time scales that are strongly related to ocean dynamical 

processes. 

• The third leading mode is a dipole structure in the South Pacific. It also 

originates from the atmospheric forcing of three-wave pattern, but unlike the 

monopole pattern its variance is not increasing as much on multi-decadal and 

longer time scales. However, this pattern appears to have a peak in the power 

spectrum, suggesting a preferred time scale of oscillation. This mode also has 

some weak indications of the subsurface ocean temperature leading the 

evolution of the SST variability on the longer (~10yrs) time scales. This 

indicates that this mode may be influenced by deeper ocean variability on the 

longer time scales. There are a few studies about dipole structures in the South 

Pacific, e.g. Huang and Shukla (2006), Morioka et al. (2013) and Guan et al. 
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(2014). However, their results actually are parts of the annular mode in north-

south direction or monopole mode in the Pacific, which is not the same as this 

pattern.  

• Another question is the possible interactions among these modes. As discussed 

above, the Annular Mode is partly driven by SAM. On the other hand, the 

strengthened westerlies caused by positive SAM above the Southern Ocean 

may alter the ocean circulation pattern and introduce more mixing locally (e.g. 

Meredith and Hogg, 2006; Boning et al, 2008). These changes might lead to 

the evolution of the monopole mode and dipole mode in the South Pacific, 

though the correlation between SAM and these two modes within CMIP5 

super ensemble is unclear.  Besides, the monopole mode and dipole mode, as 

they have similar mechanisms and wave train prototypes, might have the out-

of-phase relationship. However, the lead-lag correlations are obscure in 

CMIP5 dataset and the interactions require further studies.  

As monopole mode and dipole mode in South Pacific are mainly influenced by ocean 

dynamics, it is essential to understand the different effects within the ocean. The 

related phenomenon includes but are not limited to a different zonal wave-3 pattern 

(van Loon and Jenne, 1972; Raphael, 2004), the ACC advection, ocean diffusion 

mixing and deep ocean circulation. These factors above have close relationship with 

each other but are also relatively independent with their own specific period. The 

interactions between them should be the critical step for a deeper understanding of the 

modes.   

Another important factor is sea ice, which also influences atmospheric circulations 

substantially and is capable of introducing long-term variability. The ice-sea 
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interaction affects the SST variability and further influences the spatial structure and 

temporal variation. As our slab ocean model does not create sea ice variability, the 

role of sea ice is not fully discussed above. Besides, it is worth reminding that though 

CMIP5 multi-model ensemble mean gives good climatology and seasonality of sea 

ice simulation, most CMIP5 historical runs presents negative trends of sea ice extent 

against observed sea ice increase in last three decade (Shu et al., 2015; Simmonds, 

2015; Turner et al., 2015;). Model errors on sea ice trend can be related to model 

common biases of recent warming hiatus simulation and strong negative cycle of 

intrinsic variability on multi-decadal and even longer scales (Latif et al., 2013; Martin 

et al., 2013; Zunz et al., 2013). However, it is beyond the scope of this study to 

understand the details of these processes, as most of this work is to investigate 

decadal internal variability based on pre-industrial simulation and linearly detrended 

observed result without considering linear trend or global warming impact. The sea 

ice impact requires more detailed numerical model experiments.  
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As suggested in Chapter 3, there are three main decadal SST modes in the Southern 

Ocean from CMIP5 output analyses: the annular mode, the basin wide monopole 

pattern, and the dipole pattern in the southern Pacific. It is also found that these modes 

are affected by several of factors such as atmosphere forcing, ocean dynamics and 

possibly sea ice variation. This chapter will go through these elements and check their 

influences on the spatial features of the coupled variability in detail via sensitivity 

experiments based on a General Ocean Circulation Model.  The results will help us 

better understand the features and the development of the long-term modes in the 

Southern Ocean.  

4.1 Introduction 

The long-term SST variability in the Southern Ocean involves air-sea-ice interactions 

and all these three media are likely important. In this study, we focus on these three 

factors in the Southern Ocean climate system and analyse their influences on decadal 

modes of variability. 

Atmospheric forcing is the direct driver of the ocean. Generally, the ocean passively 

responds to dominant modes of atmospheric variability on shorter time scales 

(Hasselmann, 1976). For instance, in the Southern Ocean the annular mode is 

associated with ENSO and SAM, while the basin-wide monopole mode and the 

southern Pacific dipole pattern are both induced by atmospheric wave-3 patterns. On 

the other hand, due to its huge heat capacity, the ocean varies on interannual and 

longer time scales. The low-frequency variability in the ocean is then imprinted onto 

the atmosphere (Farneti and Vallis, 2009); thus, the atmosphere also keeps some long-

term variation signals from oceanic feedback, which may influence the ocean again. 

These two mechanisms together consist of the large-scale air-sea interaction. We 
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would like to investigate the contributions of these two mechanisms by looking at the 

responses of the ocean to alterative atmospheric forcings.  

Another important factor is ocean dynamics, which is responsible for the mode 

transformation and power spectrum increase on longer time scales. We have shown 

the contrast between the CMIP5 modes and the Slab Ocean modes in Chapter 3. 

Without ocean dynamics, though Slab Ocean is able to produce similar wave-train 

modes on the shorter scale, no homogenous-like modes with low-frequency 

oscillation, e.g. the monopole, could be generated. Thus, ocean dynamics transport the 

anomalies and transform the modes. In the Southern Ocean, SST anomalies are shown 

to propagate eastward in the observation, and propagation speed is similar to the zonal 

velocity of the ACC, suggesting that the ACC carries the SST anomalies (White and 

Peterson, 1996; Maze et al., 2006; Verdy et al, 2006). The transport of the anomalous 

signals along with ocean advection may lead to the basin-wide structures of long-term 

modes in the Southern Ocean.  

The last element is sea ice, a fundamental factor in the Southern Hemisphere. The sea 

ice cover has a high albedo (60%) compared to the low albedo ocean (near 10% for 

high latitudes), which alters the heat exchanges between atmosphere and ocean (e.g. 

Hartmann, 1994; Curry et al., 1995). The existence of sea ice insulates the ocean from 

the cold atmosphere, and sea ice also redistributes the salinity field within the ocean 

through ice growth and melting (Fletcher, 1969; Walsh, 1983; Rind et al., 1995). Sea 

ice in Antarctic demonstrates a strong seasonal cycle. It can extend to approximately 

50°S in austral winter, but roughly retreats to the Antarctic coastlines in summer. On 

the interannual time scale, the Antarctic sea ice edge anomaly illustrates similar 

variability to the SST and is strongly affected by ENSO and SAM (e.g. Carleton 
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1989; White and Peterson, 1996; Ledley and Huang 1997; Yuan and Martinson, 2000; 

Lefebvre et al., 2004; Cavalieri and Parkinson, 2008). On the other hand, sea ice 

growth and melting lead to the dense water mass formation and further drive deep 

ocean circulation (Jacobs et al., 1970; Orsi et al., 1999; Gordon et al., 2004), which 

may influence SST variability on decadal and the centennial scale (e.g. Latif et.al, 

2013). Given the importance of the sea ice, more research is needed into the role of it 

on SST modes of variability.  

In this chapter presented here we will base our SST variability analyses within the 

Southern Ocean on sensitivity experiments. The experiments will isolate some 

essential influences of each element in the Southern Ocean climate system and test 

roles of them on SST decadal modes of variability by looking at the oceanic responses.  

This chapter is organized as follows: Section 4.2 introduces the ocean model we use. 

Section 4.3~4.5 discuss the influences of atmosphere forcing, ocean dynamics and sea 

ice in turn based on ocean model experiments. Finally a summary and discussion are 

provided in section 4.6.  

4.2 The HYCOM Ocean Model  

HYCOM (HYbrid Coordinate Ocean Model, Bleck, 2002) is a development on the 

basis of the Miami Isopycnal Coordinate Ocean Model (MICOM). HYCOM uses 

isopycnal vertical coordinate in the open ocean, reverts to a terrain-following 

coordinate (sigma coordinate) in the shallow coastal area, and to z-level coordinates 

in the near-surface mixed layer and unstratified seas for finer vertical resolution 

(Bleck, 2002; Metzger et al., 2014). The HYCOM model is selected here for Southern 
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Ocean study, as the hybrid coordinate is suitable to simulate the complex ocean 

vertical structures in this domain.  

An thermodynamic sea ice model is imbedded with the ocean model, where ice grows 

and melts as a function of heat flux and sea surface temperature without rheology. 

The basic equation is 

∆!! = !!!!!
(!!!)                                                                                                                 (4.1) 

∆!! = − !!
!!!

∙ ∆!                                                                                                         (4.2) 

!! =
!!

!!"#,
, !"!!! ≤ ℎ!"#

1, !"!!! > ℎ!"#
 ,                                                                                        (4.3) 

, where t represents time,  !! is the ice temperature, !! is the atmospheric net heat flux, 

!! = ! !! − !!  is the heat flux through the ice which is proportional to the gradient 

between ice temperature and sea water temperature !!. a and b are proportionality 

factors represent the derivatives of air and ice flux, respectively. a can be obtained 

from the conventional heat flux bulk formula and b usually is chosen to be the ratio of 

ice thermal conductivity to average ice thickness !!. !! is the density of sea ice and L 

is the specific latent heat of the fusion. The ice coverage !! is simplified as the ratio of 

average ice thickness !! !to the minimum ice thickness ℎ!"# prescribed in the model.  

In the thermodynamic sea ice model, the sea ice temperature must not exceed the 

freezing point until the ice has melted completely (Bleck and Halliwell, 2001). No ice 

advection or dynamics exists within the sea ice model. As a result, sea ice can only 

grow or melt locally without moving. This simplification improves the integration 
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speed of the ocean model, however, the missing ice dynamics may introduce some 

errors to the model simulation.  

The HYCOM experiments have a near-global domain with the latitude limit of 

80°S~80°N and closed north/south boundaries, covering most of the global ocean 

except part of the Arctic. The bottom topography is from the ETOPO5 data. The 

horizontal resolution is 2.5° and hybrid coordinates are applied vertically with 22 

vertical layers. We use non-local K-profile parameterization (KPP) as the boundary 

layer mixing scheme.  

Atmospheric forcing is needed to drive the HYCOM model. Unfortunately, the 

atmospheric observations can hardly satisfy the requirement as they span only a few 

decades, not enough for the study on decadal scale. Therefore, we take a long 

atmospheric output record from a model simulation to force the ocean model. Since 

our mode results are primarily based on CMIP simulations in Chapter 3, we use long-

time integrated CMIP atmospheric output to drive the HYCOM model as well. Here 

we pick the GFDL-CM3 model, because it is one of the few models that has a long 

piControl run with the output of all atmospheric variables we need. Besides, GFDL-

CM3 is also one of the best models based on model evaluation results in Chapter 2 

both in global summary and in the Southern Ocean only (see Fig. 2.8 and Fig. 2.15), 

and it demonstrates similar modes of SST variability as the CMIP super models (see 

Fig. 4.2).  

We take the 500 years continuous monthly mean output from the GFDL-CM3 

piControl scenario and get the atmospheric data including surface wind velocity, near 

surface air temperature, specific humidity, precipitation and surface heat fluxes. The 

forcing data are interpolated into the HYCOM model grids and are also used to 
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calculate the sensible/latent heat flux and wind stress via non-constant bulk 

parameterization scheme during the model integration.  

The model starts from a static initial condition with Levitus climatology temperature 

and salinity fields (Monterey and Levitus, 1997). Firstly the model is forced 

climatologically for 30 years to reach the equilibrium in the ocean surface. From the 

31st year, the real-time GFDL-CM3 atmospheric data starts to drive the model for 

500 years as the control run (hereinafter CONTROL. See table 4.1 for abbreviations 

of all experiments).  

Table 4.1 List of all HYCOM experiments  

Experiment Abbreviation Description 

CONTROL Control run with GFDL-CM3 atmospheric forcing 

ATMOS-HIGH-PASS 5yr high-pass filter applied to the atmospheric forcing 

ATMOS-NOISE Stochastic atmospheric forcing 

OCEAN-PACIFIC Pacific sector forced by GFDL-CM3 atmospheric forcing, the other 

sector driven by monthly climatology forcing  

OCEAN-ATLIND Atlantic-Indian Ocean sector forced by GFDL-CM3 atmospheric 

forcing, the other sector driven by monthly climatology forcing 

ICE-BLOCKED Region south to 65°S are replaced with land 

ICE-CLIM open boundary at 60°S with climatology relaxation in the ocean 

Here we compare the CONTROL SST simulation to the GFDL-CM3 output in 

CMIP5 dataset to evaluate the HYCOM model result. Fig. 4.1a-b shows the global 

annual mean SST distributions. Both the CONTROL and GFDL-CM3 clearly 

illustrate the correct meridonal and zonal SST gradients, and the SST patterns are 

similar to each other except the CONTROL slightly overestimates the SST especially 

in the higher latitudes. Similarly the SST annual mean standard deviations (STDV) 

are shown in Fig. 4.1c-d. Here the HYCOM model simulates similar variance 

distribution as GFDL-CM3, but still some bias exists especially in the Southern 
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Ocean. The CONTROL SST has stronger variation in the southeastern part of Pacific, 

in the southern Indian Ocean and in the middle latitudes of South Atlantic.  

                  (a) GFDL-CM3 Mean SST                            (b) HYCOM CONTROL Mean SST 

 
 

                       (c) GFDL-CM3 SST STDV                             (d) HYCOM CONTROL SST STDV 

 

 
 

                  (e) SSTA Correlation high-pass (5yrs)                  (f) SSTA Correlation low-pass (5yrs) 

 

Fig. 4.1 (a) Mean field of SST for GFDL-CM3; (b) same as (a) but for HYCOM CONTROL; (c) 

Standard deviation field of annual mean SSTA for GFDL-CM3; (d) same as (c) but for HYCOM 

CONTROL; (e) SSTA Correlation between GFDL-CM3 and HYCOM CONTROL after 5yr-high-pass 

filter; (f) same as (e) but after 5yr-low-pass filter. 

The correlations of SST anomalies are illustrated in Fig. 4.1e (for 5yr high pass filter 

SST) and Fig. 4.1f (for 5yr low pass filter SST). If CONTROL perfectly simulates the 

SST variability in GFDL-CM3, the correlations are supposed to be close to one 
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everywhere. For the high pass comparison, the correlation field is mostly covered by 

the values larger than 0.7, suggesting that the high-frequency SST variability is well 

reproduced in the HYCOM model. However, for the low pass comparison, similar to 

the STDV bias distribution, the correlation is not significant in some regions of the 

Southern Ocean. It is notable that these areas with larger differences are located in the 

path of the ACC and has strong seasonal variability of the mixed layer depth (e.g. 

Sallée et al., 2013). As long-term SST variability is strongly affected by the ocean 

internal variation and ocean dynamics, it is likely that the errors come from the bias of 

ACC and mixed layer depth simulations. We have also forced the HYCOM model 

with other CMIP5 model atmospheric outputs and got similar error in the Southern 

Ocean. Therefore, the errors are mostly caused by the HYCOM model itself.  

Comparison of the leading EOF modes is shown in Fig. 4.2 between CONTROL and 

the GFDL-CM3 based on annual mean analysis. Apparently CONTROL has 

successfully reproduced most of the leading modes with similar spatial structures as 

the GFDL-CM3 ones. EOF-1s are the both annular modes but more focus on the high 

latitudes. Both EOF-2s shows maximum anomalies in the high latitudes Atlantic and 

Indian Ocean, similar as the prototype of the monopole pattern in CMIP5 super model. 

However, the distribution of CONTROL EOF-2 is more chaotic. It demonstrates too 

large amplitudes in the Southern Indian Ocean and South Pacific, associated with the 

SST variability simulated errors. The EOF-3s are also similar to each other, both 

having positive anomalies along the middle latitudes and negative anomalies in the 

middle of South Pacific, though again the CONTROL one tends to have stronger 

variability along the ACC in South Atlantic and Indian Ocean.  
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 EOF1 EOF2 EOF3 
 
 
 
 
 
 
 

GFDL-CM3 

 
(a) 26.6%

 

 
(b) 11.3%

 

 
(c) 8.5%

 
 
 
 
 
 
 
 

HYCOM 
CONTROL 

 
(d) 19.8%

 

 
(e) 11.6%

 

 
(f) 8.5%

 
 

 

Fig. 4.2 First three leading EOF patterns of annual mean SSTA for (a-c): GFDL-CM3; (d-f):  HYCOM 

CONTROL. The values in the headings of each panel are the explained variances of each EOF-mode. 

The corresponding pairs of PC time series are also compared. The correlation between 

the PC-1s is larger than 0.9, while the PC-2s and PC-3s also highly correlated with 

correlations over 0.7 (statistically significant with 99% confidence). Thus, in spite of 

the mean-state SST errors, SST modes of variability are successfully reproduced in 

CONTROL from the GFDL-CM3. We will take CONTROL as a reference and 

compare it with sensitivity experiment results in the following sections. 

4.3 Atmospheric forcing 

In this section we test the influence of atmospheric forcing on SST modes of 

variability.  In Chapter 3 we have discussed some impacts of the atmospheric forcing. 

ENSO affects the Southern Ocean especially in the South Pacific via teleconnection 
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and mainly exerts its impact on the annular mode. Similar effect of SAM but it 

influences the entire Southern Ocean domain. The wave train patterns also drive the 

basin-wide monopole mode and the dipole pattern in South Pacific. It is interesting to 

see whether the ocean can still produce similar long-term SST modes of variability 

with weaker or disturbed atmospheric forcing patterns. Here two experiments are 

applied to test the role of the atmospheric forcing.  

Firstly we take the 500 years (6000 months) GFDL-CM3 output data and make the 

5yr high-pass filter for each atmospheric variable. Thus, only high-frequency signals 

with timescales shorter than 5 years will be taken from the forcing data to drive the 

ocean model. This experiment is referred to as ATMOS-HIGH-PASS. After filtering, 

the monthly STDV of the forcing data reduced by 3%. This experiment aims to test 

the impact of high-frequency forcing part of the atmosphere.  

Another experiment is based on random forcing (hereafter as ATMOS-NOISE). We 

shuffled 6000-month anomalies randomly from GFDL-CM3 and generate a stochastic 

forcing data set. In this manner, the new forcing data set consists of the shuffled 

monthly anomaly plus the monthly climatology. The spatial patterns of the 

atmospheric forcing are maintained but without temporal evolutions. This run is to 

check the influence of developments of forcing patterns in the atmosphere.  

Fig. 4.3 illustrates the standard deviations of annual mean SST for ATMOS-HIGH-

PASS and ATMOS-NOISE. Though the STDV spatial structures are well kept, 

clearly both experiments dramatically reduce the SST fluctuation globally compared 

to CONTROL (Fig. 4.3c-d). One interesting feature is that in the ATMOS-HIGH-

PASS, the strong SST variability in the equatorial Pacific reduces significantly, 

implying ENSO gets much weaker in this experiment. In the Southern Ocean, the 
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STDV dropped by more than 20%, while the Atlantic sector becomes the most 

affected region and loses about 50% of the STDV. Thus, a substantial fraction of the 

SST variation cannot be generated in absence of the atmospheric pattern evolution or 

low-frequency forcing part.  

(a) SST STDV ATMOS-HIGH-PASS                                         (b) SST STDV ATMOS-NOISE 

 
                   (c) SST STDV ATMOS-HIGH-PASS/CONTROL                    (d) SST STDV ATMOS-NOISE/CONTROL 

 

 
Fig. 4.3  (a): Standard deviation field of annual mean SSTA for ATMOS-HIGH-PASS; (b): same as (a) 

but for ATMOS-NOISE; (c): the ratio of ATMOS-HIGH-PASS to CONTROL for annual mean SSTA 

standard deviation; (d) same as (c) but for ATMOS-NOISE to CONTROL. 

We also take a closer look at the leading EOF modes for ATMOS runs in Fig. 4.4. 

Generally, the ATMOS modes are weaker and more chaotic than CONTROL. Their 

connections to the CONTROL modes are not quite clear as the spatial structures in 

ATMOS modes can hardly be recognized. The ATMOS EOF-1 and EOF-2 also 

demonstrates large oscillation amplitudes in high-latitude Pacific and middle-latitude 

Indian Ocean as the CONTROL modes, however, the differences are still obvious due 

to the lack of basin-wide structure of the ATMOS modes. ATMOS-NOISE EOF-3 

becomes a complete random wave pattern. Its counterpart in ATMOS-HIGH-PASS 
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illustrates similar two-band structure in South Pacific as the CONTROL EOF-3, but 

again its mid-latitude band does not extend to the entire basin.  

 EOF1 EOF2 EOF3 
 
 
 
 

 
 

ATMOS-
HIGH-
PASS 

 
(a) 17.2%

 

 
(b) 11.8%

 

 
(c) 6.1%

 
 
 
 
 
 
 

ATMOS-
NOISE 

 
(d) 21.4% 

 

 
(e) 15.1% 

 

 
(f) 7.5% 

 
 

 

Fig. 4.4 First three leading EOF patterns of annual mean SSTA for (a-c): ATMOS-HIGH-PASS; (d-f):  

ATMOS-NOISE. The values in the headings of each panel are the explained variances of each EOF-

mode.  

The DEOF patterns are shown in Fig. 4.5 to further quantify these differences. Clearly 

most of the leading DEOFs duplicate the leading CONTROL modes in Fig. 4.2d-f. 

This suggests that the ATMOS experiments cannot reproduce the leading modes with 

enough variance. The exceptions are both DEOF-2. DEOF-2 for ATMOS-HIGH-

PASS mostly focuses in the South Atlantic, consistent with the SST STDV reduction 

compared to CONTROL. ATMOS-NOISE DEOF-2 is mostly like a dipole pattern 

around the Antarctic, which does not appear in the leading CONTROL modes but is 

consistent with the further evolution of the dipole pattern in south Pacific (see Fig. 

3.5i).  
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NOISE 

 
(d) 17.2%  3.0%

 
 

 
(e) 6.0%  2.2%

 

 
(f) 6.2%   3.4%

 

 

Fig. 4.5 (a-c): Leading DEOF patterns of annual mean SSTA CONTROL projection to ATMOS-

HIGH-PASS; (d-f) Leading DEOF patterns of annual mean SSTA CONTROL projection to ATMOS-

NOISE. The headings show the explained variances of the DEOF-modes in the CONTROL (first value) 

and the ATMOS-HIGH-PASS or ATMOS-NOISE (second value), respectively.  

Overall, these two ATMOS experiments do not reproduce the leading modes in 

CONTROL. On one hand they underestimate the SST variance in the entire basin; on 

the other hand they cannot produce similar homogeneous-like modes. Thus, if we 

remove long-term variability in the atmosphere or totally disturb the atmospheric 

forcing signals, real coupled variability patterns will get greatly weakened or 

disappear.  

The mechanisms are easy to understand. In the ocean model, SST is directly 

modulated by the surface heat flux. The adjusted latent and sensible heat flux lead 

SST close to the near-surface air temperature. In both ATMOS experiments, SST 

anomalies are damped by more turbulent surface heat flux and reduce their oscillation 
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amplitudes. In ATMOS-HIGH-PASS, the strong damping even significantly weakens 

the variability in the equatorial regions. The forcing in ATMOS-NOISE becomes 

stochastic and limits the development of long-term SST modes. 

On the other hand, these two experiments both weaken the long-term signals in the 

atmospheric forcing. The low-frequency variability in the atmosphere mainly comes 

from oceanic feedback, which is the fundamental result of air-sea interaction. The 

ocean maintains the long-term variation and imprints the signals into the atmosphere, 

while these variations kept in atmosphere further affects the ocean again (Hasselmann, 

1976). In the ocean model, these influences of the interactions are mostly prescribed 

in the surface heat flux input data. If these interactive signals are removed like in the 

ATMOS experiments, then the SST modes of variability will change dramatically. 

Thus, the air-sea interaction and two-way feedbacks are essential to create the modes 

and amplify their intensity. 

4.4 Ocean Dynamics 

This chapter will test the role of ocean horizontal advection, as it is likely responsible 

for the anomaly transport and mode transformation. The global ocean is divided into 

two parts: the Pacific part (120°E-60°W) and the Atlantic-Indian Ocean part (60°W-

120°E). Then two parts of the ocean are driven by different atmospheric forcing 

schemes. One experiment (OCEAN-PACIFIC) is to drive the Pacific part with 

original atmospheric forcing as the CONTROL, and forces the rest of the ocean using 

the climatological monthly forcing data. Another experiment (OCEAN-ATLIND) is 

precisely the opposite of OCEAN-PACIFIC as varying forcing applies to the Atlantic-

Indian Ocean part in O2. Climatology atmospheric forcing cannot introduce any long-

term variability to the ocean directly; therefore, if any low-frequency anomalies exist 
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in the climatology-forced region, it must be transported from the varying forced 

region via ocean dynamical effects.   

                              (a) SST STDV OCEAN-PACIFIC                                                (b) SST STDV OCEAN-ATLIND                                    

 
                         (c) SST STDV OCEAN-PACIFIC/CONTROL                      (d) SST STDV OCEAN-ATLIND/CONTROL 

 
Fig. 4.6 (a): Standard deviation field of annual mean SSTA for OCEAN-PACIFIC; (b): same as (a) but 

for OCEAN-ATLIND; (c): the ratio of OCEAN-PACIFIC to CONTROL for annual mean SSTA 

standard deviation; (d) same as (c) but for OCEAN-ATLIND to CONTROL. 

Again we firstly look at the annual mean STDV for these two experiments shown in 

Fig. 4.6. Clearly the STDV fields lose their structure in the tropics and Northern 

Hemisphere within the climatology-forced sectors, where STDV significantly reduces 

by around 90%. However, it is totally different within the Southern Ocean. The hot 

spot areas with large STDV still exist, e.g. South Pacific and South Atlantic, and most 

of the Southern Ocean is only weakened by 10% within the climatology-forced region. 

Thus, the ocean dynamics indeed strongly contribute as the variability transportation 

media in the Southern Ocean. 

We further check the SST correlation with CONTROL (Fig. 4.7). To focus on the 

decadal variation, 5yr-low-pass filter is applied for the SST prior to the correlation. 
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Theoretically without external impact, the correlation in the climatology-forced 

region should be 0, and varying-forced sector should be 1. As might be expected, the 

correlation is either 0 or 1 in most regions in the tropics and Northern Hemisphere. 

Some exceptions exist where strong ocean currents flow through the interface, like the 

Kuroshio Extension area, Gulf Steam region and Indonesia Throughflow related 

region.  

(a) SST CORR CONTROL vs. OCEAN-PACIFIC               (b) SST CORR CONTROL vs. OCEAN-ATLIND 

! !

!
Fig. 4.7 Annual mean SST correlation after 5yr-low pass filter between CONTROL and (a): OCEAN-

PACIFIC; (b): OCEAN-ATLIND.  

 
(a) SST CORR CONTROL vs. OCEAN-PACIFIC               (b) SST CORR CONTROL vs. OCEAN-ATLIND 

 
Fig. 4.8 Same as Fig. 4.7 but for extratropical Southern Hemisphere only with climatological annual 

mean surface current field in CONTROL run.   

In the Southern Ocean we can also see the traces of the ACC clearly where it 

increases/decreases the correlation in the non-varying/varying-forced domain (see Fig. 
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4.8). Therefore, the horizontal advection acts as the main element transporting the 

long-term variability. The anomaly transport within the ocean connects each grid of 

the ocean and facilitates their coherent changes. The similar temporal variability 

within adjacent grids ultimately creates the homogenous-like basin-wide coupled 

modes. 

4.5 Sea Ice 

Two experiments are designed in this section to investigate the influence of sea ice on 

SST variability. The first one (ICE-BLOCKED) is a simulation without most sea ice 

domain. We replace the sub-polar ocean (South to 65°S) with solid boundary. As a 

result, no flux exchanges along the 65°S section interface, and most of the sea ice 

regions get blocked within the Southern Ocean. This experiment is to reveal how SST 

variability responses to the existence of sea ice.  

The second experiment (ICE-CLIM) is improved on the basis of ICE-BLOCKED, as 

ICE-BLOCKED may significantly change the circulation pattern. The solid boundary 

is replaced by an open boundary at 60°S with climatology relaxation, where the 

temperature and salinity in the ocean is restored to the monthly climatology south to 

60°S. As a result, only the seasonality is kept within the sea ice and it cannot actively 

produce any fluctuation longer than annual scale. This experiment can help us 

understand to what extent the sea ice variability influences SST variability.  

Fig. 4.9 depicts the STDV in ICE-BLOCKED and ICE-CLIM, and the comparisons 

against CONTROL. Within ICE-BLOCKED, the impact from the missing domain 

spreads most of Southern Ocean with 5%~10% STDV reduction, and even to 30% in 

the South Pacific, but have no influence for the rest of global ocean north to 30°S.  
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(a) SST STDV ICE-BLOCKED                                                   (b) SST STDV ICE-CLIM 

 
                        (c) SST STDV ICE-BLOCKED/CONTROL                              (d) SST STDV ICE-CLIM/CONTROL 

 
Fig. 4.9 (a): Standard deviation field of annual mean SSTA for ICE-BLOCKED; (b): same as (a) but 

for ICE-CLIM; (c): the ratio of ICE-BLOCKED to CONTROL for annual mean SSTA standard 

deviation; (d) same as (c) but for ICE-CLIM to CONTROL. 

Similar is the ICE-CLIM result. It also shows the attenuation of SST fluctuation in the 

middle latitudes. However, the Southeast Atlantic sector has the enhanced oscillation 

by 10~40% within 30°S-60°S. Surprisingly corresponding STDV increase is also 

found in the Northwest Atlantic. The mean SST field in Southeast Atlantic is higher 

than CONTROL (see Fig. 4.10), suggesting less sea ice in this region leading to 

stronger SST fluctuation. Likely the cut off the Weddell Sea ice variability changes 

the ice coverage in the South Atlantic, which alters the generation of deep denser 

water masses, and further influences the water mass transport with Atlantic 

meridional overturning circulation and the sea temperature in the Northern 

Hemisphere.  
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Fig. 4.10 Mean SST difference between ICE-CLIM and CONTROL. 
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(d) 16.8% 

 

 
(e) 14.1% 

 

 
(f) 10.7% 

 

 

Fig. 4.11 First three leading EOF patterns of annual mean SSTA for (a-c): ICE-BLOCKED; (d-f):  

ICE-CLIM. The values in the headings of each panel are the explained variances of each EOF-mode.  

The leading EOFs for ICE experiments are shown in Fig. 4.11. Both experiments 

demonstrate similar patterns as CONTROL ones and their spatial structures seem 
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more smoothly distributed.  Both EOF-1s illustrate the annular pattern. The chaotic 

wave-like structure in CONTROL EOF-2 does not exist in the ICE modes, as the 

EOF-2s here connect the positive anomalous centres together in South Atlantic and 

Indian Ocean and only show a simple negative anomalous centre in the high-latitude 

Pacific. EOF-3s of ICE experiments are similar to the CONTROL one except ICE-

CLIM one demonstrates large variation amplitude in the Atlantic, which corresponds 

to the ice coverage changes within that region.  

 DEOF1 DEOF2 DEOF3 
 
 
 
 

CONTROL 
! 

ICE-
BLOCKED 

 
(a) 14.7%  3.0%

 

 
(b) 9.1%  1.5%

 

 
 (c) 5.6%   1.6%

 
 
 
 
 
 
 

CONTROL 
! 

ICE-CLIM 

 
(d) 14.7%  3.0% 

 

 
(e) 11.6%  2.8%

 

 
(f) 6.1%   2.5%

 

 

Fig. 4.12 (a-c): Leading DEOF patterns of annual mean SSTA CONTROL projection to ICE-

BLOCKED; (d-f) Leading DEOF patterns of annual mean SSTA CONTROL projection to ICE-CLIM. 

The headings show the explained variances of the DEOF-modes in the CONTROL (first value) and the 

ICE-BLOCKED or ICE-CLIM (second value), respectively. 

Again the DEOFs are shown in Fig. 4.12. Clearly all the DEOF patterns are much 

weaker compared to the amplitudes of the EOFs, implying there are no substantial 
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differences between ICE modes and CONTROL modes. The DEOFs mostly focus 

within the high-latitude Pacific, namely the wave structure in CONTROL EOF-2, 

where the SST variability is prescribed in the ICE runs. Other biases are mainly 

located within the Indian Ocean, which is likely affected by the changes of ice 

coverage and SST mean status there. Thus, the ICE experiments do not dramatically 

alter spatial structures of the SST modes. 

Overall, our experiments suggest sea ice has limited influences on SST modes of 

variability. Therefore, though the sea ice coverage and sea ice variability are able to 

influence the standard deviation distribution of the SSTA, they does not substantially 

change the spatial features of the coupled modes of variability.  

4.6  Summary and Discussion 

In this chapter we discussed the influences of the climate system factors on Southern 

Ocean coupled variability based on sensitivity experiments. These sensitivity 

experiments are built on some hypotheses of weakening or separating the impacts of 

individual elements in the Southern Ocean climate system. We compared the SST 

variability and spatial structures of leading SST modes within different experiments, 

and tested the roles of atmospheric forcing, ocean dynamics and sea ice variability in 

the Southern Ocean. We list the main findings below. 

• The HYCOM model is capable of simulating leading SST modes in the 

Southern Ocean. The CONTROL run successfully captures most features of 

the SST variability as the GFDL-CM3.  

• The atmospheric forcing is essential for mode generation. Without low-

frequency forcing or pattern evolution in the atmosphere, most SST modes 
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demonstrate chaotic wave-like structures and no realistic SST modes of 

variability can be generated. Atmospheric forcing not only induces the sea 

surface fluctuation directly but also intensifies the SST variability on longer 

time scales via air-sea interaction.  

• Ocean dynamics is the main factor for mode transformation. The ocean 

horizontal advection transports the SST anomalies signals eastwardly along 

the ACC and creates the homogeneous-like spatial patterns.  

• Sea ice variability does not essentially influence the mode generation or 

development. Without sea ice variability or sea ice region, the SST modes 

hardly change their spatial structures. However, the interaction between sea 

ice and ocean is able to affect the strength of the long-term SST fluctuation. 

Without sea ice variation the SST fluctuation amplitude gets smaller in most 

regions of Southern Ocean.  

As a result, the coupled modes in the Southern Ocean are primarily influenced by 

atmosphere and ocean. The atmosphere acts as the direct driver and the ocean itself 

modulates the long-term variability, while their interactions further intensify the 

modes of variability. Given the complexity of the ocean dynamical processes, we only 

designed simple experiments like OCEAN-PACIFIC and OCEAN-ATLIND to verify 

the impact of ocean advection. However, the ocean dynamics in the Southern Ocean 

cannot be only created by ACC, while other factors may also contribute such as ocean 

eddies and ocean diffusion. It is difficult to separate the SST anomalous transport 

with ocean circulation and with other momentums.  
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(a) BOX-1                                                         (b) BOX-2 

 
(c) BOX-3                                                         (d) BOX-4 

 

 

Fig. 4.13 Lead-lag correlation on annual mean sale between meridionally averaged SSTA within 40°-

60°S and box averaged SSTA for (a): Box-1, 0-30°W, 40°S-60°S; (b): Box-2, 60°-90°E, 40°S-60°S; (c): 

Box-3, 160°E-170°W, 40°S-60°S; (d): Box-4: 150°W-90°W, 40°S-60°S. The black lines shows the 

boundaries of each box.  

To further test the prorogation speed of the SSTA, four boxes are chosen which 

correspond with the maximum anomalous centres in annual mean EOF-2 of CMIP5 

super model. Fig 4.13 demonstrates the lead-lag correlation between box averaged 

SSTA and meridionally averaged SSTA within 40°-60°S.  Clearly the box-averaged 

SST anomalies travel the globe eastward in about 4~5 years, synchronous with the 

ACC, suggesting most advection is dominated by the ACC.  

Longitude

Bo
x 

la
gg

in
g 

   
   

   
   

  B
ox

 L
ea

di
ng

 (Y
ea

r)

 

 

0 60E 120E 180 120W 60W

−10

−5

0

5

10

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Longitude

Bo
x 

la
gg

in
g 

   
   

   
   

  B
ox

 L
ea

di
ng

 (Y
ea

r)

 

 

0 60E 120E 180 120W 60W

−10

−5

0

5

10

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Longitude

Bo
x 

la
gg

in
g 

   
   

   
   

  B
ox

 L
ea

di
ng

 (Y
ea

r)

 

 

0 60E 120E 180 120W 60W

−10

−5

0

5

10

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Longitude

Bo
x 

la
gg

in
g 

   
   

   
   

  B
ox

 L
ea

di
ng

 (Y
ea

r)

 

 

0 60E 120E 180 120W 60W

−10

−5

0

5

10

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1



! 124!

Another problem is the HYCOM model errors. It is worth noting that the ocean model 

can only passively receive the forcing from the air. As a result, in the ocean model 

simulation, no direct air-sea interaction is included. The input atmospheric errors can 

be accumulated all the time, which introduces biases of the simulation. Another error 

source, as we have discussed, is sea ice. The imbedded Sea ice model lacks ice 

dynamics and cannot produce sea ice rheology. Though the temperature/salinity flux 

can be exchanged between water and ice, it is still not enough to explain all of the 

near-polar SST/salinity variation or water mass formation. The drawback of the sea 

ice model also decreases the accuracy of the comparisons between CONTROL and 

ICE runs. Thus, more complex numerical models are required for the more accurate 

quantitative study. 
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Chapter 5 

Mechanism of Long-term 

Variability in the Southern Ocean
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We have discussed some of the temporal variability of the coupled modes in the 

Chapter 3. The evolutions of these modes actually demonstrate similar spectral 

features. The diagram in Fig. 5.1 illustrates the spectrum of annual mean monopole 

mode.  The features can be summarized as two aspects: (1). Generally the spectrum 

keeps increasing as the frequency decreases, thus the low-frequency section surpasses 

the high-frequency variance significantly. (2) The spectrum does not exactly follow 

the red noise process. It increases to the interannual scale first and keeps flat on 

decadal scale.  Then it rises up again on muti-decadal scale until it gets stable again.  

 

 

 

 

 

 

 

Fig. 5.1 Spectrum of normalized time series of EOF-2 of CMIP5 super model annual mean SSTA (as 

in Fig. 3.5d-f). The green curve is smoothed result for the blue curve after 5-point moving average. The 

black line is the red noise fit to the time series and the red lines mark the 95% confidence interval 

relative to the red noise.  

These two features, for their relative low-frequency oscillating properties, are likely 

related to the ocean rather than atmosphere. In the internal ocean, the large heat 

capacity is likely leading to the strong long-term temperature variation. On the other 

hand, the ocean dynamics, as suggested in Chapter 4, transport the anomalous signals 

and possibly cause the modulation of the power spectral structure of SST variability.  
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In this chapter, we will focus on these two features and try to find out the their 

mechanisms. Section 1 analyses the impact of mixed layer heat capacity on the power 

spectral distribution and explain why the long-term variation is dominant in the 

Southern Ocean. Idealized HYCOM experiments are applied in section 2 to test the 

role of ocean advection on SST spectral structures. Section 3 builds a simple 1-

dimensional ocean model to further verify the results in section 2. At last the section 4 

provide a summary and discussion. 

5.1 Mixed Layer Depth 

The ocean mixed layer plays a critical role in long-term climate variability as it 

mediates the exchange of mass, momentum and heat between the air and sea (Mellor 

and Durbin, 1975). Because of the high heat capacity of water, it is a heat reservoir 

and acts like a flywheel, which makes the ocean gain or lose heat slowly. The deeper 

the mixed layer, the more heat capacity.  

 
Fig. 5.2 Climatological annual mean mixed layer depth based on IFREMER/LOS Gridded Data. 

Fig. 5.2 depicts the global distribution of climatological mean mixed layer depth 

(MLD) from Ifremer data set (de Boyer Montégut et al, 2004). Most of the deep 

mixed layer regions are accompanied with strong ocean currents and caused by strong 

Ekman pumping and mixing. In the Southern Ocean, due to the strong westerly wind 
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stress shear, the MLD ranges from 100m to 300m and is much deeper than the rest of 

the global ocean (Sallée et al., 2008; Sallée et al., 2013). The deep mixed layer may 

be the key element to maintain the internal long-term variability within the Southern 

Ocean.  

To test this hypothesis, the slab ocean model experiments here are utilized to test the 

thermodynamical influence of mixed layer depth on SST long-term variation. We 

designed three experiments with different MLDs.  SLAB-50 is the experiment we 

have shown in Chapter 2&3 with constant MLD of 50m. In experiment SLAB-200 

the depth is increased to 200m everywhere in the ocean, which is around averaged 

value in the Southern Ocean but much larger in other regions. Experiment SLAB-

CLIM has the same MLD distrubution as the Ifremer climatology. Except for MLD, 

all experiments have same configurations and are integrated for 200 years. 

                                      (a) Observation                                                        (b) SLAB-50 

 
                                    (c) SLAB-200                                                         (d) SLAB-CLIM 

 

(K) 

Fig. 5.3 Standard deviation field of annual mean SSTA for (a): HadISST (1901-2014); (b): SLAB-50; 

(c): SLAB-200; (d): SLAB-CLIM. 

Firstly the annual mean SST STDV fields are shown in Fig. 5.3 for each experiment 

and the observation (derived from HadISST). The SLAB-50 overestimates the STDV 
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in most regions with the shallower mixed layer than the climatology. Especially in the 

Southern Ocean where the real mixed layer is deep, the amplitude of STDV in SLAB-

50 is almost twice larger than the observed. SLAB-200 shows similar STDV values to 

the observed in the Southern Ocean but gets smaller STDV elsewhere, which is 

exactly opposite of SLAB-50. With the correct MLD structure, SST STDV 

distribution of SLAB-CLIM seems to be the closet to the observation though it 

overestimates the STDV along the equatorial cold tongue region probably due to the 

bias on ENSO variability. Thus, shallower mixed layer is associated with stronger 

SST STDV and vice versa, which well matches the heat capacity of ocean mixed 

layer. Deeper mixed layer has larger heat capacity and the well-mixed temperature 

within it is less likely to change.  

                                      (a) CMIP5                                                              (b) SLAB-50 

 
                                    (c) SLAB-200                                                         (d) SLAB-CLIM 

 

(%) 

Fig. 5.4 The relative contribution of long-term (> 10 years) variability to the total of annual mean 

variations based on (a): CMIP5 super model (same as Fig. 3.4); (b): SLAB-50; (c): SLAB-200; (d): 

SLAB-CLIM 

Fig. 5.4 shows the fraction that long-term variability (period longer than 10 years) 

contributes to the total annual mean variations based on slab ocean experiments and 
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CMIP5 super model ensemble. Clearly with shallower mixed layer (50m) in SLAB-

50, most areas are dominated by high-frequency fluctuation as only 10%~30% 

variance could be attributed to long-term variation. Again SLAB-200 is just the 

opposite that long-term variability almost spreads everywhere and the low-frequency 

variation ratio is much larger than CMIP5. SLAB-CLIM demonstrates similar 

gradient structure as the CMIP5 super model as the low-frequency fluctuations 

strongly affect middle and high latitudes. Thus, deeper mixed layer can increase the 

ratio of low-frequency SST variability to the high-frequency part. Again this 

conclusion is well corresponding with the heat capacity of mixed layer.     

 EOF1 EOF2 EOF3 
 

 
 
 
 

(a) 16.5%  (b) 11.8%  (c) 9.9% 

   

 
Fig. 5.5 First three leading EOF patterns of detrended annual mean SSTA in the Southern Ocean for 

SLAB-CLIM. The values in the headings of each panel are the explained variances of each EOF-mode. 

To sum up, the near-realistic mixed layer spatial distribution is required for the 

correct SST variation simulation. The deep mixed layer within Southern Ocean 

maintains the long-term variability and enhances the low-frequency section of the 

SST spectrum. However, even with the real MLD in SLAB-CLIM, the slab ocean still 

cannot reproduce the basin-wide SST patterns. Its EOF modes still keep the wave-like 

structures and do not get closer to the CMIP5 ones (see Fig. 5.5). Still the ocean 

dynamics is needed for the formation of homogenous-like modes.  
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5.2 Advection Mode HYCOM Experiment 

As suggested in Chapter 4, in the Southern Ocean the SST anomalies travel the globe 

with the ACC in 4~5 years. Similarly, the SST spectrum in Fig. 5.1 also concentrates 

around the period of 4~5 years. Likely SST horizontal transport maintains the power 

spectral structure within this time scale. In this chapter, we will test this possible 

causality using ocean model experiments by comparing the spectral structures with 

and without strong horizontal advection.  

HYCOM model is utilized here for simplified experiments. The ocean domain is an 

idealized band-like circle limited within 55°S-45°S, like a simple representation of the 

Southern Ocean. The horizontal resolution is 2.5° and there are 144×5 grids in total 

(Fig. 5.6). Land-sea distribution is removed and ocean depth is set as constant 200m 

everywhere with 20 vertical layers. North and south boundaries are closed with slip 

boundary condition ensuring the zonal velocity will not decrease near the lateral 

boundaries. Experiments start with static initial condition with constant temperature 

of 16°C!and salinity of 35 PSU (Practical Salinity Unit) everywhere.  

!
 

Fig. 5.6 Distribution of horizontal grids for simplified HYCOM experiments. Blue dots represent the 

centres of model grids.  

 

 150 oW 

 120 oW
 

  9
0o W

 
  6

0
o W

 

  30o W 
   0o  

  30 oE 

  60 oE 
  90 oE 

 12
0

o E 

 150o E 

 180oW 

  75oS 

  60oS 

  45oS 



! 133!

The model is forced with simplified wind and surface net flux based on GFDL-CM3 

simulation result. The control run (hereafter as H-WIND) is driven by zonally 

averaged climatological wind data extracted from GFDL-CM3 output. Thus, wind 

forcing is constant along each zonal band but has spatial variation meridionally (Fig. 

5.7a). The wind forcing is removed in the corresponding sensitivity experiment 

(hereafter as H-NO-WIND). Therefore, no wind-driven current exists within H-NO-

WIND. The same stochastic net flux forcing is applied to the two experiments. The 

STDV of the monthly mean net flux is 16.7 W m-2, which is derived from GFDL-

CM3 surface net flux anomaly at 50°S. Each experiment is integrated for 600 years 

and we take the last 500 years outputs for further analysis.  

The main difference between H-WIND and H-NO-WIND is the existence of 

horizontal advection. Fig. 5.7b depicts the zonal mean sea surface velocity for two 

experiments.  Clearly with wind forcing in H-WIND, idealized circumpolar current is 

simulated with averaged zonal velocity of 0.12 m s-1, close to the averaged ACC 

speed (White and Peterson, 1996). It travels the globe in 6~7 years, longer than the 

period of real ACC mainly because the ACC can spread to higher latitudes. The 

current also demonstrates a northward component possibly due to the Coriolis effect. 

Without wind forcing, the surface velocity decreases to around zero in H-NO-WIND.  

                                   (a) Wind Input                                                                     (b) Surface velocity Output

 
Fig. 5.7 (a) Surface wind input into H-WIND; (b): climatological zonal mean sea surface velocity for 
H-WIND and H-NO-WIND. 
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Fig. 5.8 (a): Climatological domain averaged sea temperature against depth for H-WIND and H-NO-

WIND; (b): averaged standard deviation of monthly mean sea temperature against depth.   

The vertical profiles of domain-averaged temperature are depicted in Fig. 5.8 for the 

comparison between H-WIND and H-NO-WIND. Within H-WIND, on account of the 

strong wind stress, the sea temperature is well mixed vertically (Fig. 5.8a), and 

temperature STDV tends to be uniform at every vertical level (Fig. 5.8b). Without 

wind forcing, H-NO-WIND demonstrates strong decreases of both temperature and 

temperature variability from the surface to deeper layers. At the surface, its 

temperature fluctuation is much larger than H-WIND due to its shallow MLD.  

(a) H-WIND                                                                          (b) H-NO-WIND 

 

Fig. 5.9 Spectrum of monthly mean SSTA in (a): H-WIND; (b): H-NO-WIND. Red Curve is the 

spectrum for domain-averaged SSTA; blue curves are the SSTA spectrum for individual model grids. 

Green Curve is the average of all blue curves. The black line is a red noise fit to the green curves.  

As expected, the spectrums of SST demonstrate different structures for these two 

experiments (see Fig. 5.9 and Fig. 5.10).  Overall the H-NO-WIND shows much 
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larger spectral amplitude than H-WIND. This is because without wind-driven Ekman 

effect, the temperature variability of H-NO-WIND is trapped within a shallower 

mixed layer depth compared to the intensive vertical mixing in H-WIND. The average 

spectrum of all grids (green curve in Fig. 5.9b and red curve in Fig. 5.10) grows 

steadily and fits the red noise, implying without advection the SST variability is 

directly influenced by the stochastic flux and follows a simple autoregressive order 

one process.  

 

Fig. 5.10 Comparison of the averaged spectrum of all grid points SSTA in H-WIND and H-NO-WIND. 

With wind forcing, the averaged spectrum increases from monthly scale to 

interannual scale and concentrates as a peak around 6~7 years, which well matches 

the propagation period of simulated circumpolar current. Then the spectrum keeps flat 

on the band of 10~50 years and grows again on centennial scale. This power spectral 

structure is similar to the CMIP5 one in Fig. 5.1, though the spectral peak in H-WIND 

is more obvious since the current speed and circulation period is more stable in 

simplified experiment. The similarity of the spectrums suggests ocean advection is the 

key to adjust the variability on different time scales and maintain the spectral structure 

of basin-wide modes.  
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 (a) 29.6% (b) 11.8% (c) 11.4% 
 
 
 
 

H-WIND 

   
 (d) 6.4% (e) 5.8% (f) 5.2% 
 
 
 

H-NO-
WIND 

   
 

Fig. 5.11 First three leading EOF patterns of monthly mean SSTA for (a-c): H-WIND; (d-f): H-NO-

WIND. The values in the headings of each panel are the explained variances of each EOF-mode. 

Further the leading EOFs of monthly mean SSTA are examined in Fig. 5.11. With 

ocean advection, the patterns are relatively simple in H-WIND. The leading EOF 

pattern is a homogenous mode, which also well corresponds with the basin-wide 

monopole mode in CMIP5 super model. The power spectrum of its PC time series 

also matches the spectral structure of CMIP5 monopole mode, which concentrates on 

interannual scale and increases again on muti-decadal and longer time scales (see Fig. 

5.12a). Both EOF-2 and EOF-3 are dipole modes and illustrates strong spectral peaks 

around the dominant period of the advection (Fig. 12b-c). The out-of-phase 

correlation (r = 0.8) of their PC time series also confirms these two modes are both 

representing SST anomaly propagation.  

Without advection, the EOF patterns become more chaotic in H-NO-WIND. All three 

leading modes own unsmooth wave-train like structures and their PC time series 

mostly follows the AR-1 processes (Fig. 5.12d-f). This result proves that ocean 

horizontal advection creates homogenous-like basin-wide SST patterns and also 

modulates its spectrum.  
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(a) H-WIND EOF-1 (b) H-WIND EOF-2 (c) H-WIND EOF-3 

   
(d) H-NO-WIND EOF-1 (e) H-NO-WIND EOF-2 (f) H-NO-WIND EOF-3 

   
 

Fig. 5.12 Spectrum of normalized time series of the three leading EOF-modes of the monthly mean 

SSTA for H-WIND and H-NO-WIND (as in Fig. 5.11 a-f). The black line is a red noise fit to the time 

series and the red lines mark the 95% confidence interval relative to the red noise. 

To conclude, the impact of advection is essential for SST spectral structure in the 

Southern Ocean. The advection along with strong eastward ACC, not only influences 

the generation of basin-wide modes, but also redistributes the SST variation on 

different time scales.  In other words, the unique circumpolar current strongly affects 

specific SST modes of variability in the Southern Ocean both temporally and spatially. 

5.3 Simple Band Model Experiment 

The HYCOM experiments suggest the ACC caused horizontal advection is the key 

factor for the specific SST spectral structure. In this section, a simple one-dimensional 

model is constructed to further prove this conclusion as well as identify the influences 

of other factors that may affect the SST spectrum.  

Following Frankignoul (1985), the SST tendency equation, derived by integrating the 

heat budget over the mixed layer, can be written as 
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!!!
!" =

!!"#
!!!!!

+ !!!!
! !! − !! − ! ∙ ∇!! − !!"!

!!!!!
+ !∇!!!                             (5.1) 

where !! is the mixed layer temperature, which is equivalent to the SST for well-

mixed surface layer; t is time; !!"# is the net surface heat flux; h is mixed layer depth; 

!!!and!!! are density and specific heat of the sea water, respectively. Together the 

first term on right hand side represents the effect of surface heating/cooling. ! is 

mean vertical velocity and !!  is entrainment velocity; !!  is the temperature just 

beneath the mixed layer. ! is the velocity in mixed layer depth, thus third term on 

right hand side means ocean advection. !!"! is penetrating shortwave radiation and 

fourth term represents sunlight exiting the base of mixed layer. Last term on right 

hand side donates ocean diffusion on account of eddies while ! is the eddy diffusion 

coefficient.  

Here we simplify the equation to one dimension zonally. Therefore, the vertical terms 

(second and fourth terms on right hand side) can be eliminated, as only one vertical 

well-mixed level exists after simplification. 

 Besides, the surface flux effect is decomposed to two terms as  

!!"# = !!"#$%&' + !!"#$%&'                                                                                  (5.2) 

where !!"#$%&'  is direct heat forcing including surface shortwave and longwave 

radiation. !!"#$%&' is the atmospheric damping term in the combination of surface 

latent heat flux and sensible heat flux. We neglect latent heat flux here in order to 

avoid introducing new humidity variables, and making sensible heat flux only to 

represent the damping effect.  
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!!"#$%&' = !!"# = !!"#!!!!!(!! − !!")                                                            (5.3) 

, where !!"# is air density, !! is the specific heat of surface air at constant pressure (= 

1004 J K-1 kg-1); U is the surface wind speed, !! is the heat bulk transfer coefficient 

(=0.0012 under constant bulk parameterization). (Park et al., 2005) 

Therefore, the new equation could be written as 

!!!
!" =

!!"#$%&'
!!!!!

− !!"#!!!!!(!!!!!)
!!!!!

− ! ∙ ∇!! + !∇!!!                                            (5.4) 

, where the SST/mixed layer temperature is only affected by direct flux forcing, 

atmospheric damping, horizontal advection and diffusive process. Based on equation 

(5.4), a simple 1-D band model is designed which only has the x-axis along zonal 

direction at 50°S with a 2.5° resolution (144 grids) and applied to test the role of each 

term in the new equation. Given that the diffusion in the Southern Ocean are mainly 

caused by mesoscale eddies, ! is set to geostrophic eddy diffusivity (Holloway, 1986; 

Ledwell et al., 1998). v here is a constant value of 0.2 m s-1 guaranteeing it takes 4 

years to finish a circle travelling. See Table 5.1 for model configuration.  

Table. 5.1 1-D band model configuration   
 
 

Variable Description Value 
!!"#$%&' Direct flux into the ocean (W m-2) Random 

!! Sea water density (kg m-3) 1000 
!! Sea water specific heat (J K-1 kg-1) 4000 
ℎ Mixed layer depth (m) 200 

!!"# Air density (kg m-3) 1.2 
!! Specific heat of surface air at constant pressure (J K-1 kg-1) 1004 
!! Heat bulk transfer coefficient 0.0012 
! Wind speed (m s-1) 5 
!! Air temperature (K) 273.15 

v Zonal velocity in the ocean (m s-1) 0.2 
! Horizontal diffusion coefficient (m2 s-1) 500 
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The model runs with the daily random !!"#$%&'!for each grid box. Similar as the net 

flux in HYCOM simplified experiments, !!"#$%&' here also fluctuates with a STDV of 

16.7 W m-2. The model starts with !! of 15°C and while !!!is a constant of 15°C. The 

simple model is integrated for 1000 years and the control run is referred as B-ALL.  

In order to identify the influences of specific elements, four sensitivity experiments 

are conducted with one term missing in the equation. That is, experiment B-NO-

DAMP is without atmospheric damping effect, B-NO-AD removes horizontal 

advection and B-NO-DIFF has no eddy diffusion. We also run each experiment for 

1000 years. 

                                             (a) B-ALL                                                                            (b) B-NO-DAMP 

 
 

                                          (c) B-NO-AD                                                                             (d) B-NO-DIFF 

 
 

Fig. 5.13 Spectrum of monthly mean SSTA in (a): B-ALL; (b): B-NO-DAMP; (c) B-NO-AD; (d): B-

NO-DIFF. Red Curve is the spectrum for domain-averaged SSTA; blue curves are the SSTA spectrum 

for individual model grids. Green Curve is the average of all blue curves. The black line is a red noise 

fit to the green curves. 
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Fig. 5.13 shows SST power spectrums of the four experiments. In B-ALL the 

averaged spectrum (green curve in Fig. 5.13a) also concentrates within the scale of 

4~6 years, same as the advection propagation period, and then it keeps steady on 

decadal scale. This distribution is similar to H-WIND, providing that the model is 

capable of capturing most features of SST temporal variability. Individual grids also 

demonstrate similar variability on longer time scales (blue curves in Fig. 5.13a), 

implying the consistency of low-frequency fluctuation in the whole domain.  

In the experiment without atmospheric damping, significant increase of SST variation 

is found in B-NO-DAMP both for individual grids and the domain average, especially 

on longer time scales (Fig. 5.13b). That is, without temperature relaxation, the 

amplitude of SST fluctuation gets much larger than the control run. For the grid-

averaged spectrum (green curve), the peak becomes prominent around period of 

circumpolar circulation. This feature is similar as H-WIND, as H-WIND does not 

include damping effect, either. These changes of spectral distribution indicates the 

importance of atmospheric damping effect, which restores the SST to the balanced 

status, reduces the overall SST variability and smooths the power spectrum. 

Not unexpectedly, without horizontal advection B-NO-AD shows similar spectral 

structure as H-NO-WIND, which confirms the influence of advection on spectrum 

redistribution. The spectrums keep growing smoothly without any pause or peaks. 

The grid-averaged spectrum follows the red noise and the individual points present 

different variations on all time scales (Fig. 5.13c). Hence, without the strong mixing 

caused by advection, the homogenous variability disappears on long-term time scales.  

It is difficult to present the accurate impact of diffusion in the Southern Ocean for its 

small temporal and spatial scales (Sallée et al., 2008). In the idealized experiment B-
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NO-DIFF, its does not show essential differences to the control run B-ALL for their 

spectrums are almost identical (Fig. 5.13d and Fig. 5.14). The monthly mean SST 

STDV is 0.126 for B-ALL, compared to 0.127 in B-NO-DIFF, indicating the 

existence of diffusion slightly mixes the domain and reduces the fluctuation for 

individual grids. However, the band model is highly simplified without complex 

horizontal structure or ocean eddies, and cannot include all diffusive effects in the real 

Southern Ocean. The role of diffusion might require further discussion. 

 

Fig. 5.14 Comparison of the averaged spectrum of all grid points SSTA in B-family experiments. 

The comparison of grid-averaged spectrum further presents the differences with and 

without ocean advection (see Fig. 5.14). Compared to other three experiments, B-NO-

AD clearly presents weaker variability on interannual scales but stronger fluctuation 

on decadal to muti-decadal scales. Hence, in the real world, as the horizontal 

advection is mostly within interannual cycle, it creates corresponding spectral growth 

on this frequency band and the variability concentrates around its instinct period. The 

aggregation of the variation also causes spectrum stops growing on decadal scale. On 

the even longer scale, the impact of advection gets weaker and the spectrum starts to 

increase again mostly due to the instability of stochastic forcing (e.g. Alexander and 

Penland, 1996).  
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To sum up, without any external forcing pattern, SST spectral structure in the SO can 

be simulated using 1-D idealized mixed layer model. These band ocean experiments 

suggest that the ocean advection is the main factor creating the spectral distribution 

due to its concentrating effect around the circumpolar circulation period.  

5.4 Summary and Discussion 

In this chapter we qualitatively discussed the causes of power spectral distribution of 

the SST modes in the Southern Ocean. Based on several simplified numerical 

experiments, several factors are tested to identify their influences on SST spectral 

structure. We list the main findings below. 

• The deep mixed layer, for its large heat capacity, mediates the air-sea 

interactions and is responsible for the maintenance of the long-term variability 

in the Southern Ocean. The mixed layer must be deep enough to keep the 

proportion of low-frequency anomalies within total variations.  

• The ocean dynamics especially the ocean advection, on the other hand, further 

adjusts the variation distribution among different time scales. Throughout the 

horizontal transport, the anomalous signals get well distributed and spread. On 

the same time, the SST variability gets aggregated around the circumpolar 

circulation period. This variation concentration also raises the increase of the 

SST spectrum on interannual variability and relative stagnation of the 

spectrum on longer time scale. Thus, the ocean advection is not only to create 

homogenous-like modes, but also affects the spectral distribution.  

• Atmospheric damping is able to reduce the SST variability caused by 

stochastic heat flux forcing and smooth the SST spectrum. Similarly, ocean 
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diffusion mixes the temperature and also weakens the sea temperature 

fluctuation, though the impact is not apparent in the simplified experiments.  

Therefore, most of the long-term variability is reserved within the ocean itself. The 

specific features of the Southern Ocean, such as deep mixed layer depth, circumpolar 

current system and strong air-sea interaction, generates the temporal variation of the 

SST modes together. A homogenous basin-wide monopole pattern could be generated 

with stochastic atmospheric forcing and ocean advection; as a result it is essentially an 

ocean-only mode of variability. However, as we discussed in Chapter 3, the 

atmospheric wave-train forcing leads to the uneven distribution of the variation for 

the real monopole mode in CMIP5 simulations.   

More detailed quantitative study is still desirable for the temporal SST variation. In 

addition, some missing factors within the simplified models merit attention as well. 

One notable element is the variability of the MLD. In our experiments, we focus on 

the thermodynamical property of the mixed layer as MLD is mostly fixed to a 

constant depth. However, in the real Southern Ocean, MLD demonstrates intense 

seasonality and even longer scale variation related with SAM and ENSO, which 

further alters the surface heat balance and affects SST variability (e.g. Dong et al., 

2008; Morioka et al., 2013).  The dynamical feature of the MLD requires more 

detailed study. Another factor is the deep ocean circulation. For its long time-scale 

feature, the overturning circulation has been suggested to modulate the SST on 

centennial scale and possibly affect the spectrum structure on corresponding frequency 

band (e.g. Latif et al., 2013).    

The instability of the advection is another remarkable feature in the Southern Ocean. 

The ACC demonstrates large uncertainties and variability on its structure, path and 
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transport on interannual time scale (Fu and Chelton, 1985; Rintoul and Sokolov, 2001; 

Zlotnicki et al., 2007; Sallée et al., 2008b), and have presented significant responds to 

recent climate change as well (e.g. Böning et al., 2008). The varying ACC might 

cause the redistribution of the SST power spectrum at different time scales. A simple 

experiment (B-VARYING-U) is done here on the basis of B-ALL but with non-

constant ACC zonal velocity. The ACC horizontal speed follows a uniform 

distribution of [0.1 0.25] m s-1. Thus the propagation period of ACC ranges from 3 to 

8 years. Clearly the new experiment illustrates larger variability within low-frequency 

band compared to the B-ALL, which is more obvious on interannual and centennial 

scale (see Fig. 5.15). The instability of the ACC, therefore, may lead to more 

fluctuation of the SST variation, which requires more detailed discussions.   

                     (a) B-VARYING-U                                                                   (b) B-VARYING-U vs. B-ALL 

 

Fig. 5.15 (a). Spectrum of monthly mean SSTA in B-VARYING-U. Red Curve is the spectrum for 

domain-averaged SSTA; blue curves are the SSTA spectrum for individual model grids. Green Curve 

is the average of all blue curves. The black line is a red noise fit to the green curves. (b): Comparison 

of the averaged spectrum of all grid points SSTA between B-VARYING-U and B-ALL. 

Besides, eddies and jets along the ACC cannot neglected. The eddies, originating 

from the baroclinic instability in the Southern Ocean, play an important role in water 

mixing and subduction. On the other hand, the ACC consists of multiple jets while the 

paths and strengths of these jets are mostly affected by topography and eddy-mean 

flow interaction (e.g. Hughes and Ash, 2001, Williams et al. 2007). Both eddies and 
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jets can deeply influence the diffusion and advection in the Southern Ocean. Their 

impacts cannot be totally represented by a simple mean flow plus diffusion 

parameterization scheme in the simplified experiments, and require a better 

understanding with more complicated analyses.  



! 147!

 

 

 

 

Chapter 6 

Conclusions
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6.1 Summary of Findings  

Long-term variability exists in the Southern Ocean and it can be represented as the 

atmosphere-ocean coupled modes. Given the important role of the Southern Ocean on 

the global climate system, a detailed understanding of these coupled modes is 

paramount to our knowledge and better predictions on global climate variability and 

climate change.  

In Chapter 2, we introduced the evaluation of the CMIP models in their skill of 

simulating the spatial structure of SST variability. We found that some models show 

good skill in simulating the observed spatial structure of the SST variability in the 

tropical domains and less so in the extra-tropical domains. However, most models 

show substantial deviations from the observations and from each other in most 

domains and particularly in the North Atlantic and Southern Ocean on the longer time 

scale. The CMIP5 ensemble shows some improvement over the CMIP3 ensemble, 

mostly in the tropical domains. Further, the spatial structure of the SST modes of the 

CMIP3 and CMIP5 super ensemble is more realistic than any single model, if the 

relative explained variances of these modes are scaled by the observed eigenvalues. 

In Chapter 3, we analysed the leading SST modes in the Southern Ocean based on 

CMIP5 super ensemble and observations. Though individual models show large 

deviation in the spatial structure from each other, the model super ensemble 

demonstrates similar modes to the limited satellite observations. We found that the 

annular mode, monopole mode and South Pacific dipole are the principle patterns 

with statistically significant low-frequency variability in the Southern Ocean. ENSO 

and SAM dominate the annular mode together, while the impact of ENSO is mostly 

restricted within the South Pacific. The monopole mode and South Pacific dipole 
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mode, which both demonstrates strong decadal variability, are firstly inducted by 

atmospheric wave patterns and further developed via ocean dynamics.  

In Chapter 4, we further investigated the factors affecting the spatial features of SST 

variability with the HYCOM ocean model experiments. The results suggest that the 

atmospheric forcing is the triggering mechanism of the coupled modes, while the air-

sea interaction and amplification have a strong impact on the intensity of the modes. 

The ocean dynamics, especially the ocean horizontal advection is responsible for the 

transformation of the modes from atmospheric wave trains to homogeneous-like 

structures. The sea ice variability, though it can change the strength of SST variation, 

does not really affect the spatial shapes of the coupled decadal modes in the Southern 

Ocean. 

Chapter 5 discussed the causes of the temporal variability in the Southern Ocean 

based on simplified numerical experiments. The deep mixed layer depth, due to its 

large heat capacity, modulates the air-sea interaction and makes the long-term 

variability predominant in the Southern Ocean. On the other hand, the ocean 

advection redistributes the spectrum of the SST variability in the Southern Ocean and 

gathers the variation along the circulation frequency band. Together they maintain the 

specific power spectral distribution of SST modes. 

6.2 Synthesis of Results 

Here we simply synthesise the results presented in the preceding chapters as: each 

mode has its coupling characteristics. The ocean and atmosphere are both necessary 

and crucial for the mode generation, propagation and development.  
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The annular mode is the direct result of two coupled modes, namely ENSO and SAM. 

Thus, as the passive response of other modes, it does not show strong decadal 

variability. The monopole mode and South Pacific dipole are firstly the duplications 

of the wave trains in the atmosphere, and then slowly get transformed via ocean 

dynamics. With the development of the spatial structures, their temporal variability 

gets further adjustment within the deep mixed layer and by strong zonal advection.  

Specifically, the Southern Ocean low-frequency modes could be likened to a classical 

music concert. The seawater can be compared to the musical instruments, as both of 

them are the objectives to produce the variability. The atmosphere plays a role as the 

music scores, which give the direct instructions (e.g. ENSO, SAM and wave trains) to 

the variation. The deep mixed layer within the Southern Ocean has the similarity as 

the musicians for their common matureness. The musicians must be well trained 

while the mixed layer must be deep enough to maintain the long-term variability. 

Ocean dynamics is similar to the conductor for it connects the entire ocean, modulates 

the temporal distribution of the variability, and creates the homogeneous-like modes. 

Last but not least, the sea ice is like the audience. Though it cannot significantly 

change the spatial structure of the modes, it could affect the variation strength on 

longer scales. Every element is indispensible and they form the long-term modes 

together in the Southern Ocean.  

6.3 Future Work 

In this thesis, we discussed the long-term coupled modes and their mechanisms in the 

Southern Ocean. In this section, we present some questions encountered but left 

unsolved or unexplored.  
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The first one is more complex phenomenon in the Southern Ocean and their influence 

on the coupled modes.  Due to the limitation of the data and approaches, we did not 

finish the analyses on Southern Ocean topography effect, eddies, jets, deep circulation, 

water masses evolution, planetary waves propagation and sea ice dynamical 

interaction, while all of these factors may affect the long-term variability in the 

Southern Ocean. Further research is needed with more sophisticated experiments.  

Another worthwhile application is the mode evolution in the future. Some relevant 

external modes have been suggested to change their frequency and spatial features 

under climate change. For example, ENSO events possibly will increase with 

especially for the central Pacific El$Niño (e.g. Yeh et al., 2009, Lee and McPhaden, 

2010) and more extreme ENSO events might occur more frequently (Cai et al., 2014; 

Cai et al., 2015). Quite likely the annular mode in the Southern Ocean will 

demonstrate similar change with ENSO and SAM. On the other hand, the 

strengthened westerlies above the Southern Ocean in the future projection may alter 

local ocean circulation pattern. Though it is still controversial whether the ACC 

transport will increase in response of the westerlies (e.g. Bi et al., 2002; Fyfe and 

Saenko, 2006), the increased wind possibly intensifies the eddy and jet field and 

introduces more mixing within sea surface (e.g. Meredith and Hogg, 2006; Boning et 

al, 2008).  The changes of the ocean dynamics may lead to the modulation of the 

spectrum and transformation of the spatial modes.  

Lastly, it is still unclear how these Southern Ocean modes influence the climate 

system. The teleconnections from the topics promote the Southern Ocean patterns via 

atmospheric circulation. But further research is needed to identify how the tropics 

responses to the Southern Ocean modes and whether the northern hemisphere modes 
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have corresponding analogues and interactions. As the ACC transportation 

redistributes the seawater temperature and salinity, regional climate patterns may also 

change adjacent to the Southern Ocean. The impact of the modes on thermohaline 

circulation and global hyper modes also requires further study as well.   
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Abbreviations 

ACC Antarctic Circumpolar Current 

ACW Antarctic Circumpolar Wave 

CMIP Coupled Model Intercomparison Project 

CMIP3 Coupled Model Intercomparison Project Phase 3 

CMIP5 Coupled Model Intercomparison Project Phase 5 

DEOFs distinct EOFs 

ENSO El Niño-Southern Oscillation 

EOF empirical orthogonal function 

ERSST NOAA Extended Reconstructed sea surface temperature data set 

EV eigenvalue 

HadISST Hadley Centre Sea Ice and SST data set 

HYCOM HYbrid Coordinate Ocean Model 

IPCC Intergovernmental Panel on Climate Change 

MLD mixed layer depth 

NH Northern Hemisphere 

OISST NOAA Optimum Interpolation Sea Surface Temperature 

PC principal component 

PDO Pacific Decadal Oscillation 

PEV projected explained variance 
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PSA Pattern Pacific South America pattern 

PSU Practical Salinity Unit 

RMSE normalized root-mean-square error 

SAM Southern Annular Mode 

SH Southern Hemisphere 

SLP sea level pressure 

SO Southern Ocean 

SOI Southern Oscillation Index 

SST sea surface temperature 

SSTA sea surface temperature anomaly 

STDV standard deviation 

TPI Trans-Polar Index 

 




