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Abstract

With the boom of spatial databases, more and more spatial queries, which play a

significant role in many academic and industrial areas, are proposed and studied ex-

tensively in last decade. One of the most fundamental queries among these is range

search which returns all objects of interest within the pre-defined area. Because of

the importance of the spatial queries, a mass of researches concentrated on process-

ing various queries in spatial databases, especially, for k nearest neighbors (kNN)

queries and its variations. However, as the fundamental query in spatial databases,

range search queries have received far less attention. The existing works cannot

process range queries efficiently, especially, in non-Euclidean space or on moving

objects. Furthermore, the existing works for spatial queries retrieve point object

only, none of them can find non-point objects, due to the difficulties of representing

and indexing such objects in spatial databases. Motivated by above outstanding

problems, we discuss several novel range and region queries and provide efficient

solutions in spatial databases in this thesis. The following paragraphs describe our

contribution.

In the first part, we present several algorithms to process point-expected range

queries that retrieve spatial objects within a specific distance from a query point.

We are the first to investigate range queries under many different practical con-

straints. We conduct theoretical analysis to show the precise and effectiveness of
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our algorithms. The extensive experimental results provide the practical evidence

for our theoretical analysis. Then we discuss point-expected range queries in a

dynamic circumstance, where the query or the objects of interest are moving contin-

uously. Our experiment results demonstrate that our approach outperforms the ex-

isting techniques in most instances.. Thereinto, our algorithms of constrained range

queries are base-on Voronoi expansion rather than incremental expansion methods,

thus the response time and I/O access of range query is much faster than using ex-

iting works. Meanwhile they queries diversify the range queries in spatial databases

and solved many novel queries in spatial databases. Our algorithms designed for

monitoring range queries involving any moving objects reduce the computation and

communication cost significantly comparing with others.

In the second part, we propose a new class of range queries, named, region-

expected range queries, which find an (some) area(s) according to the location

of the given set of objects. Because with the extremely progress of geographic

information system, the typical queries in spatial databases cannot fulfill the users’

requirements. In this part, we focus on two queries in this class, namely, kNN

region queries and optimum region queries. We are the first to study this sort of

range queries in spatial databases. We provide two algorithms for each query, and

analyze their performances based on abundant theoretical illation and extensive

experiment results. We are the first to investigate retrieving non-point objects in

spatial databases. This sorts of spatial queries provide rich functionality in industrial

and commercial areas, including, geographic information systems, decision support

systems and so forth.
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Chapter 1

Introduction

1.1 Overview

Along with the rapid development of mobile devices and the blossom of Location

Based Services (LBS) , it has the pressing need for modeling, storing and querying

spatial data. Therefore most of the commercial database software service providers,

such as, Oracle, PostGIS, IBM DB2, start a new round of competition on spatial

database. In general, a spatial database system is a database that offers spatial data

types in its data model and query language, and also provides spatial indexing and

efficient algorithms for spatial query processing [Gut94]. In various fields, there is

a need for spatial data, such as, Computer Aided Design (CAD), Very-Large-Scale

Integration (VLSI), satellite image system, spatial measurement, and multimedia

system.

The objects in a spatial database are representations of real-world entities with

associated spatial attributes and they are structured by one or more basic spatial

data types, including, point data, line data, and polygon data. Fig. 1.1 displays

a spatial query that it is finding petrol stations near Monash University Clayton

Campus, which utilizes these three data types in Google Maps, where all the petrol

stations, A∼E are abstracted as point objects, which is the simplest type of spatial

object. A point object is used to represent the real-world entity whose location is

the only important spatial attributes. Normally, the location of a point object is a

1
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Figure 1.1: Spatial objects in Google Maps

pair of coordinates and each pair is stored as one row alone or with some extended

non-spatial information. Therefore each point object is independent of every other

point object, represented as a separate row in the database model. In Fig. 1.1,

the road networks are represented as line data type. Similarly, a line data can also

represent other infrastructure and nature networks, e.g., railways, river channels

and airline routes. A line object is composed of two point objects, two ends of

this line and a metrical attribute for its length. The last data type, polygon data,

represents an entity for which its extent is also very important. As shown in Fig.

1.1, Monash University Clayton Campus is represented by a polygon. There are

many other entities can be represented by one or more joint or disjoint polygons,

such as, natural resource zones, socio-economic zones and land records. It needs to

be clarified that a entity can be represented as a point or a polygon depends on the

scale of the map.

In order to manipulate, retrieve and query the spatial data, special indexes and

query processing algorithms need to be designed. In Section 1.2, we clarity the

objectives and motivation of this thesis. In Section 1.3, we explain why traditional

indexes cannot be used for spatial data and list the outstanding problems of the spa-

tial indexes and existing approaches. In Section 1.4, we summarize the contributions
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of this thesis towards spatial databases. In Section 1.5, we present the organization

of this thesis.

1.2 Objectives and Motivations

Range queries can be beneficial in the context of location based services , spatial

data mining and decision support system, by finding objects of interest within a

specific distance or discovering areas having particular spatial features in a metric

space. Because of its importance, it has been studied in many different spaces for

various of objects. Before we start to discuss the objective of this thesis. The scopes

of this thesis need to be clarified.

The two most common used spaces in real applications are, Euclidean space, such

as, in the air and network spaces, including road networks, waterway and so forth.

In Euclidean space, such as, the distance between any two points is measured by

the length of their straight connection; While the distances in a network space are

calculated by the shortest connections through the underlying networks. The status

of spatial objects is also various, they can be classified as static or moving in term

of state of motion, or classified into points, lines or polygons] in term of shape. This

thesis covers processing both static and moving objects or query, retrieving point

polygon objects in either Euclidean or network spaces.

The main objective of this research is to investigate how to reduce the computa-

tion cost on the database server and the communication cost between spatial objects

and the server. Moreover, this research will also investigate the representation of

the spatial objects to handle complex range queries.

This research is mainly motivated by the following two facts. The first fact is that

the state-of-arts of range query processing cannot process efficiently in two circum-

stances, namely, processing range queries in a non-Euclidean space and processing

range queries on moving queries or objects. In the first circumstance, the existing

works require very high computation time to expand the underlying networks in-

crementally; In the other circumstance, the traditional query processing algorithms



4 CHAPTER 1. INTRODUCTION

will cause frequent communication in order to ensure the consistency of the spatial

data and the precise of the query result. Meanwhile, the prompt development of

mobile devices also demands that the spatial database can handle moving queries

and objects efficiently.

The second fact is the deficient of the spatial queries and algorithms. Although

spatial queries has been studied extensively in last two decades, most works mainly

deal with a few types of traditional queries, such as kNN, range, closest pairs and

skylines. Thus it is not difficult to picture that the existing works cannot fulfill

the requirements, due to the increasing popularity of the spatial data, especially, in

online maps, (including, Google Maps, Bing Maps and Apple Maps) and location-

based services (e.g., GPS). Moreover, spatial queries are still restricted to retrieve

point objects. Far less attention has been given to other spatial objects in the

existing works, due to the difficulty of the representation of non-point objects.

1.3 Major Problems

1.3.1 Limitations of Traditional Database Indexes

A traditional database index, which can be created using one or more columns

of a database table, is a data structure that improves the efficiency of retrieving

data. But a main problem is that either one column or multiple column indexes

cannot answer spatial queries efficiently. Using the following range search query

as an example, we explain this main problem. A user wants to find all the petrol

stations within 10km from the current location. A straightforward method is to

calculate the distances of all the petrol stations to the current location of the user

and report those petrol stations whose distance is smaller than 10km. But this non-

index method needs to access all the objects (petrol stations) stored in the spatial

database. Alternatively, we can create a one-column index or a two-columns index

on petrol station table, for example, construct an index on x and y coordinates of

all the petrol stations, and then the objects having x≤10km or y≤10km need to be
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accessed. However, this method can be very inefficient when a petrol station that is

closest to the user in x-dimension, may be the farthest one in y-dimension.

Another solution of this query is to create an index on the distances of all the

petrol stations to the current location of the user. The distances are calculated

by using their x, y coordinates. Then we can simply return all the petrol stains

whose distance is less than 10km by using the sorted index. Whereas, when the

user changed its location or some other users issue queries in different places, this

index has to be reconstructed to answer them, which means all the distances have

to be recalculated. The difficulty lies in the fact that there is no mapping from

multidimensional space into one-dimensional space so that the objects that are close

in multidimensional space are also close in the one-dimensional sorted index [GG98].

In the light of of above reasons, traditional indexes, e.g., the family of binary tree,

B-Tree [BM72], B+-Tree, B∗-Tree [Com79] are not appropriate for spatial queries.

Consequently, many novel indexes have been proposed in the last two decades,

including, QuadTree [FB74], R-Tree [Gut84], KD-Tree [BER85], UB-Tree [Bay97],

Antipol-Tree [CFP+05], and so forth. To efficiently answer the spatial queries, most

of the existing techniques need to identify interesting problem specific properties and

to effectively traverse the existing spatial indexes by exploiting these properties.

1.3.2 Outstanding Problems of Spatial Indexes to Process

Range Query

Meanwhile, abundant spatial queries are proposed. Some of them can be efficiently

processed by spatial indexes solely; While the others require assistances of designed

underlying algorithms. Considering the above range search query as an example, if

the user does not consider the restriction of the moving path; in other words, the

distances from the user to all the petrol stations are measured by the length of their

straight connections. Then it can be processed by any spatial index, as the distances

can be calculated straight forward. But if all the objects (user and petrol stations)

are restricted by the pattern of the road networks, the result retrieved by spatial
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index is mostly wrong. Because the length of the tortuous road path connecting user

and a petrol station can be very different with the straight line, and the distances

cannot be calculated straightforward. In general, the first outstanding problem of

spatial indexes is their incapability in non-Euclidean spaces. Thus the auxiliary

algorithms need to be designed to calculate these distances.

The spatial index is constructed bottom-up on point objects by grouping a bunch

of objects into some nodes iteratively according to their spatial features. But There

is not a spatial index designed for non-point objects. Even though some of indexes

use minimum bounding rectangle (MBR) as nodes in their tree-structure, the rep-

resentation of MBR for non-point objects is very inaccurate. Consequently, spatial

indexes are not able to process spatial queries involving non-point objects.

1.3.3 Flaws of Existing Spatial Algorithms of Range Query

To solve the outstanding problems of spatial indexes, many researches are conducted

on designing algorithms of range queries in spatial databases. Such algorithms are

feasible to process spatial queries in many non-Euclidean space, such as road net-

works, obstructed spaces or land surfaces, etc. However, there are many perfor-

mance issues if the algorithm is implemented in non-Euclidean space, due to the

high computation cost of the distances among spatial objects. The state-of-arts are

using incremental expansion methods to calculate the distances in the underlying

framework, which is inefficient in complex frameworks. Moreover, if the query point

or objects of interest are moving they need to report their new locations to the

server, and the server need to update the corresponding information to ensure the

consistency of the data and the preciseness of the query result. Consequently, the

computation and communication cost will increased significantly.

Although, spatial queries has been studied extensively in the last decades, most

of the traditional spatial queries only focus on finding point objects. The results

of such queries retrieve a set of discrete points stored in the database. Whereas

due to the blossom of LBS, spatial database users may require spatial queries to



1.4. CONTRIBUTIONS 7

retrieve some regions or areas (polygon objects) rather than point objects, due to

the feasibility and the privacy issues. For example, to find crime hot-regions, wild

fire areas, the regions where hot water meets cold water, the polluted hydrologic

system, etc. Unfortunately, neither spatial indexes and existing spatial algorithms

are able to process those spatial queries expecting regions.

Meanwhile, processing spatial queries which inquire regions is a real pressing and

challenging problem because of two main reasons. The first one is that sometimes

the expected region is not stored in the database, as the region could be an area

with some spatial or not-spatial features rather than a real-entity. For example, to

identify crime hot-regions. Such problems cannot be answered by spatial indexes

and existing algorithms, because of the massive computation. The second difficulty

is the representation of a polygon. The shape of a spatial range is diverse, which

leads to describing a polygon object correctly and precisely to be tough. Normally

a polygon object is composed by a set of points and lines, organizing an ordered set

makes the search result much more feasible and implementable. The outstanding

problems and contributions of this thesis are illustrated in Fig. 1.2

1.4 Contributions

In this section, we summarize the contributions of this thesis. We proposed several

novel region-related queries, especially region-expected queries to enrich the diversity

of spatial queries. Moreover, we proposed some corresponding efficient techniques

for each queries. The contributions are briefly described as follow:

1.4.1 Point-Expected Range Query Processing

• Processing range queries in constrained circumstances : The tradi-

tional range search processing in spatial databases is performed by measuring

the length of the distances that present the relative position of objects in the
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Figure 1.2: Major problems and contributions

Cartesian space or road networks. But, in reality, the expected result is nor-

mally constrained by other factors, such as, the traveling time, the number

of objects, pre-defined areas, and so forth, rather than the distances alone.

Therefore range search should be comprehensively discussed in different cir-

cumstances. In this thesis, we propose three novel constrained range search

queries and an approach for each query based on network Voronoi diagram,

which makes the range search query processing more flexible to satisfy various

requirements in different circumstances. The performances of these these al-

gorithms are analyzed theoretically and evaluated experimentally. The results

show that our approaches can process constrained range search queries very

efficiently.

• Processing continuous range queries : We study the problem of contin-

uously monitoring moving range queries on a set of data objects that do not

change their locations. Consider the example of a person driving a car who

is interested in petrol stations within 10km. In this example, the query is
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continuously moving whereas the objects are static. We present techniques to

answer the continuous range queries in spatial networks. Our proposed tech-

nique is based on network Voronoi diagram, which is a spatial decomposition

of a metric space. Our algorithm reduces the computation and communication

cost because it does not require to recompute the results as long as the query

does not move out from a Voronoi cell. We conduct extensive experimental

analysis to study the effectiveness of our network Voronoi based approach.

Moreover, the experimental results demonstrate that the proposed approach

outperforms its competitors.

• Processing range queries on moving objects :On the other hand, the

spatial queries of moving objects monitoring is also restricted by frequent

updates, as a result, processing spatial queries over moving objects becomes

a tough job, especially in road networks. For example, a police wants to

monitoring cars traveling through a specific area or within a certain distance

to the current location. In this example, the query is static, while the objects

of interest (cars) are moving. We store the motion of the moving objects as

a function of time instead of its position to achieve equilibrium between the

updating and communication cost, and the accuracy of the location of moving

objects. By experimental studies, we show that our proposed range monitoring

algorithm can process moving objects monitoring range queries efficiently.

1.4.2 Region-Expected Query Processing

• kNN Region Query Processing : None of existing spatial queries can find

or retrieve regions closer to a set of specific objects than to any other objects,

even though this is an important problem in spatial databases and practical

applications. In this thesis, we propose a novel query, k Nearest Neighbor re-

gion searching, which retrieves a region where every point considers specified

k objects as the k nearest neighbors. In addition, we propose two algorithms,

VDk-kR and DT -kR based on high-order (kth-order) Voronoi diagram and
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Delaunay triangulation respectively for it. We discuss the kNN region search-

ing in a 2D Cartesian space, but it can extend to a higher dimensional space.

An extensive theoretical and empirical study was conducted to compare and

evaluate the performance of these two algorithms. The study showed that

VDk-kR and DT -kR outperforms the other ones in different scenarios with

respect to k, the number of objects in the entire set U , and the number of

queries to be processed.

• Optimum Region Query Processing : Another region-expected problem

is that database users might be interested in find a region that can cover a

maximum number of objects among a set of objects with a specific radius

r. To our knowledge, no existing work addresses this sort of quires. So we

propose such a query in this thesis, named optimum region. In addition, we

developed an algorithm, Circle Partition and Arcs Superposition (CPAS ), to

solve this problem. An extensive empirical study was conducted to evaluate

the performance of CPAS. The results showed that CPAS can process the

optimum region queries efficiently in most of the circumstances.

1.5 Thesis Organization

This thesis is organized as follows (Refer to Fig. 1.3).

• Chapter 2 provides a survey of the related works.

• Chapters 3 and 4 investigate traditional range queries focusing on retrieving

point objects. More specific descriptions are:

– Chapter 3 proposes three range search queries in road networks with

various restrictions as well as corresponding approaches based on the

variations of the network Voronoi diagram.

– Chapter 4 explain range search queries for moving objects (either moving

queries or moving objects of interest). The proposed algorithms predict

the results at the beginning or reduce the communication costs.
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Figure 1.3: Thesis structure

• Chapters 5 and 6 propose a original sort of region-expected queries which

concentrate on finding or defining a particular region with specific spatial

features. Below is the details:

– Chapter 5 presents a region-expected queries, which finds an area for k

specified objects in Cartesian space.

– Chapter 6 presents a region-expected queries that finds an area to cover

maximum number of objects of interest in a finite objects set.

• Chapter 7 concludes our research, describes some of the open problems and

provides several possible directions for future work.
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Chapter 2

Related Work

2.1 Overview

In this chapter, we provide a brief overview of the related work for spatial indexes,

spatial algorithms, especially on two sorts of spatial queries, range and k nearest

neighbors (kNN), and a relevant problem which has been studied in computational

geometric. We provide the related work on spatial indexes, introduce the two most

popular indexes, R-Tree and Quad-Tree in detail in Section 2.2. And then we have

an overview of the related techniques for range queries, and explain two algorithms

designed for rang query in road networks in Section 2.3. In Section 2.4, we briefly

describe the existing algorithms for kNN queries and classify its variations. Finally,

we present the smallest circle problem being studied in computational geometric

area in Section 2.5, and at the end of each section, we summarize their limitations

and disadvantages .

2.2 Spatial Indexes

A typical spatial index is a data structure created on a table in spatial databases

to optimize the processing of spatial queries. Many conventional index types do

not efficiently query the data with spatial features, such as finding the closest pairs

among a set of points, or whether points fall within a spatial area of interest; While

13
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spatial indexes are constructed based on the spatial features of a set of spatial

objects, by grouping them into the nodes. Common spatial index structures include:

QuadTree [FB74], R-Tree [Gut84], KD-Tree [BER85], UB-Tree [Bay97], Antipol-

Tree [CFP+05], and so forth. However, spatial indexes can process range query only

in Euclidean space in common.

To clarify the procedure of spatial indexes for range queries, we introduce two

most popular methods, QuadTree and R-Tree as examples.

2.2.1 QuadTree

A QuadTree is a spatial partitioning strategy used to make queries on relationships

between 2D spatial data such as coordinates in spatial databases, or the location of

objects in a video game. For instance, to know all of the objects within a region on

a map, or detect whether objects are visible by a camera.

The general strategy of the QuadTree is to construct a tree structure that par-

titions a region recursively into four parts, or Quads which may be squares or rect-

angles. Each Quad can do the further partition as necessary. A pre-requisite is that

the bounds of the area has to be defined; the basic algorithm does not lend itself to

the addition or removal of areas under consideration without rebuilding the index.

Fig. 2.1 shows an example of a QuadTree constructed on objects 1 to 17. When a

user issue a range query, e.g., find all the ATMs within 1km, the searching starts

from the root node and checks whether the searching area, which can be a circle or

a rectangle depends on the query intersect with the children node, until reach to the

leaf nodes. As Fig. 2.1 illustrates, the shaded area are the nodes including retrieved

objects and the bold lines indicates the searching path in the QuadTree.

Because of the QuadTree subdivides Euclidean spaces into at least four equal

child nodes, if the distribution of the objects of interest is asymmetrical, the structure

of the QuadTree will be very unbalanced and it might contain many nodes that do

not contain any objects, as shown in Fig. 2.1. Additionally, QuadTree is unable to

constructed on non-point objects, if so, one objects will appear in more than one
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Figure 2.1: QuadTree index on a set of point objects

nodes and also requires massive I/O access to retrieve the data. Thus, a sort of

spatial indexes based on minimum boundary rectangles (MBR) are proposed, such

as R-Tree.

2.2.2 R-Tree

A R-tree is a tree data structure used to efficiently access the spatial data, i.e., for

indexing multi-dimensional information such as geographical coordinates, rectangles

or polygons. The R-tree was proposed by Guttman in 1984 [Gut84] and has be ex-

tensively used in many research and practical applications, including storing spatial

objects such as locations of all the primary schools, or the segment or polygon ob-

jects that typical maps are made of: streets, buildings, etc. and then find answers

quickly to queries such as ”Find all ATMs within 1km of user’s current location” or

”retrieve all road segments within 10km of a traffic office”

The main strategy of R-Tree is to group nearby objects and represent them with

a minimum bounding rectangle (MBR) in the next higher level of the tree. Since

all objects lie within a set of bounding rectangles, a query that does not intersect

the higher level rectangle also cannot intersect any of the objects contained by this

rectangle. At the leaf level, each rectangle describes a single object.
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Figure 2.2: R-Tree index on the same point objects in Fig. 2.1

Fig. 2.2 illustrates an example of R-Tree indexing for a range search query.

The searching derives at the root, runs through each minimum bounding rectangle

intersects with the query circle until reaches the leaf nodes, whereby, this query

retrieves objects 1 to 6. Fig. 2.2 also shows the visited nodes in the R-Tree.

Although MBR can represent a non-point object approximately, which may cause

the retrieval of incorrect result. See Fig. 2.3 as an example, a leaf node is the min-

imum boundary rectangle which contains a non-point objects oi. A range query is

represented by a shaded circle intersecting with the MBR. Obviously, the object oi

does not intersect with searching range; while by using R-Tree, oi will be retrieved.

R-Tree also retrieves false result in many non-Euclidean space, such as road net-

works. As Fig. 2.4 illustrates, object 6 is within the searching area in Euclidean

space, but the factual travel distance is out of this restriction.

Abundant of spatial indexes are proposed to optimize the performance, including,

R+-Tree [SRF87], R*-Tree [BKSS90], etc., but none of them are able to process

spatial queries in non-Euclidean spaces, such as range, kNN queries. Moreover,

because of the difficulty of representing non-point objects in spatial indexes, all the

spatial indexes are unable to retrieve non-point objects.
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Figure 2.3: An incorrect non-point object retrieved by R-Tree in Euclidean space

2.3 Range Queries

A traditional range search query retrieves all objects of interest within a certain

distance from the current location of the query point in Euclidean space. The tradi-

tional range queries have been studied extensively and it can be answered by using

spatial indexes discussed above. These spatial index methods can address range

search query only in Euclidean space, while many applications use different met-

rics, such as road network distance in a traffic control system. Therefore, many

works investigate range search problems in various spaces. Thereinto, two novel ap-

proaches, named Range Euclidean Restriction (RER) and Range Network Expansion

(RNE) [PZMT03] study range search query processing in road networks. These two

algorithms calculate the network distances by expanding the road networks incre-

mentally. Afterward, a Voronoi-based range search approach VRS [XZT+11a] is

proposed in 2011. Some other works [CHC04a, XZT+11a] discuss the range search

for a moving query, and [XZT+11b] proposed some constrained range queries as

well as the corresponding solutions. The range search query is also discussed for

uncertain data [TXC07] and in peer-to-peer systems [LCLC09].

The problems of above algorithms have three facts. The first fact is that the

range queries are processed according to only the distance metrics. In fact, the
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range queries may also be restricted by other spatial or non-spatial features, e.g., the

number of retrieved objects, specific regions. The second fact is their inefficiency,

especially, in complex spaces or the query involving one or more moving objects.

The last fact is that they are spatial index-based. Consequently, they concentrate

on retrieving point objects only.

To explain this, we introduce two popular range search algorithms in road net-

works in the following two sections.

2.3.1 Range Euclidean Restriction (RER)

RER applies a range search on Euclidean distance e from query point q to retrieve

all possible candidates, as the Euclidean distance can be seen as the lower boundary

for network distances de(q, p) 6 dnet(q, p), which insures that all objects of interest

within the searching range will not be missed. But a large number of false hits, which

have de(q, p) < e, and dnet(q, p) > e, are involved in this procedure, these false hits

have to be filtered from the candidates list by performing network expansion in the

next step until all the candidates are tested or all the segments in the range are

exhausted.

Fig. 2.4 demonstrates an example, a user wants to find all bus stops with in 1km

around Clayton Campus of Monash University. By the Euclidean searching (e.g.,

R-Tree index), objects 1 to 6 are retrieved as candidates; While after verifying these

objects, object 6 is deleted, as its network distance exceed the searching range.

According to the algorithm of RER, if only few objects locate in complex net-

works, the processing time will increase significantly, because most of the operation

will be wasted on the network expansion. In another scenario that the network

distances is quite different with corresponding Euclidean distance, the candidates

sets will include massive false hits which still need to be verified to be deleted in

the filter step. Consequently, [PZMT03] proposes an alternative solution, Range

Network Expansion (RNE).
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Figure 2.4: Range Euclidean Restriction (RER)

2.3.2 Range Network Expansion (RNE)

RNE outperforms RER by using an expansion method which qualities a set of

segments within the network range e to filter the false hits first, and then using

R-tree to find the objects of interest falling on the valid segments, which intersect

with minimum boundary rectangles (MBRs) [Gut84]. Finally, when R-tree indexing

is finished, the results are sorted to remove the duplicates.

Fig. 2.5 illustrates the same example. We can see that since RNE first performs

road network expension, which guarantee each segment is within the searching range.

Hence, no false hit will be retrieved by using R-Tree index the the next step.

However, RNE still cannot solve the problem of performing some unnecessary

expansions. If the range area is enormous, RNE will need to check every segment

incrementally, even there are only few objects locating in the searching range.

Intuitively, the performances of RER and RNE will decrease significantly in a

complex networks or on the dense objects. As explained above, both RER and

RNE invoke R-Tree as a sub-function. Thus, they cannot process range queries

involving non-point objects. In the light of these reasons, it is very pressing to design
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Figure 2.5: Range Network Expansion (RNE)

approaches which can get rid of or reduce the number of false hits, optimizing the

performance and flexible enough in different scenarios .

2.4 k Nearest Neighbor Queries

In this section, we browse through k nearest neighbor (kNN) queries and its vari-

ations in spatial databases. The the last decades, kNN queries were paid more

attention. It focuses on the ranking of a set of discrete points in term of the dis-

tances to the query point differing with range queries, but for the query processing,

they have many methodologies in common.

2.4.1 Typical kNN Queries

kNN queries have received more attention over the past two decades. The kNN

queries were first introduced in [RKV95] in Euclidean space. Thereafter, kNN

queries were studied in many other metric spaces, such as in road networks [PZMT03],

[KS04], [CC,DKS], land surfaces [DZS+06], [STX08], [XSP09], arbitrary dimension-

ality [TPL04,TYSK09], the presence of obstructed space [NTZ10], [GZ09], [GZC+09b]

and weighted regions [LGYL11]. All of these kNN queries assess the relative po-

sition of two points in metrics other than Euclidean distance. kNN queries were

also discussed for moving queries [TPS02], [MYPM06], [KS05], [ZXR+08], [CSZY],
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[NZTK08], [HXL05], [HCLZ09], [DKS09] and moving objects [TP03,LZZ06,ZJDR10],

which maintain the kNN result in a dynamic circumstance.

Thereinto, Voronoi-based kNN approaches are the most efficient. Voronoi dia-

gram is first adopted in kNN by Kolahdouzan and Shahabi [KS04] in which the

performance results show their approach VN3 outperforms its main competitor

INE [PZMT03] by up to one order of magnitude. One year later they proposed

some new approaches for CkNN query, named IE and UBA [KS05]. They use these

approaches to find the different variation trends of the network distance to the query

point between adjacent objects in the candidates set when the query point is moving.

The only difference between IE and UBA is that the former compares kNN results

of the two ends of the road segment, while UBA just extends the kNN results at

one end to enhance the execution performance.

2.4.2 Variations of kNN queries

Meanwhile, abundant variations of kNN queries were proposed, including: aggre-

gate kNN (also known as group kNN) [PSTM04, YMP05, PTMH05], reverse kNN

[TPL04,TST+11,CLZ+09], range kNN [HL06,CMNN09], constrained kNN [FSAA]

and reverse furthest neighbor query [YLK09]. All of these kNN queries change the

threshold to meet diverse demands. Descriptions of the above variations are listed

in detail:

• Aggregate kNN/Group kNN: a novel form of kNN query. The output

contains the k point(s) with the minimum sum of distances to the query point.

• Reverse kNN: Given a query point, a reverse k nearest neighbor (RkNN)

query retrieves all the objects of interest that consider the query point as one

of their k nearest neighbors

• Range kNN: Given a region as the query, a range nearest-neighbor query

retrieves the nearest neighbors for every point in a query region.
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• Constrained kNN: nearest neighbor queries are constrained to a specified

region. It retrieves k nearest neighbors in a bounded region rather than in the

entire space.

• Reverse furthest neighbor: Specifying a query point in a set of objects of

interest, the reverse furthest neighbor (RFN) query fetches the objects consid-

ering the query point as their furthest neighbor among all objects of interest.

As the essential objectives of kNN queries and range queries are different, all

the algorithms designed for kNN queries cannot be implemented for range queries

straightforward, even they have some similar fundamentals sometime. Moreover,

kNN queries also retrieve point objects rather than non-point objects.

Based on our explanation above, neither range search queries nor k nearest neigh-

bors queries, which are basic spatial queries, cannot retrieve or identify a region,

which is our main motivation to conduct the researches presented in the second part

of this thesis.

2.5 Smallest Circle Problem

The smallest enclosing circle problem, also known as minimum covering circle prob-

lem is a historical mathematical problem of computing a smallest circle covering

all the given points. Given a set of points, U={o1, o2, ..., on} ∈ R2, the smallest

circle is one and only one �⊃U with radius r, and @�′⊃U with r′<r. It has been

extensively used in planning the location of a shared facility that minimizes the

farthest distance from a point to the facility. Such as, locate a post office which

minimizes the farthest distance of all the residents. Fig. 2.6 shows the comparison

of the smallest circle with a too big circle and a too small circle. The circle C1 is too

big because we can find a circle covering all the black points with a smaller radius;

While circle C2 is too small as it cannot cover all the black points.
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Figure 2.6: An example of the smallest circle comparing with big and small circles
on a set of points.

The smallest enclosing circle problem was first proposed by Sylvester in 1857

[Syl75], where the author suggested a naive solution that has a O(n4) time complex-

ity, where n is the cardinality of the set U . This algorithm is based on the fact that

the smallest enclosing circle of the given set U is determined by either a pair or a

triplet of points in U . Bass and Schubert proposed an improved algorithm [BS67]

relying on the convex hull constructed on the given set, whereby the time complexity

is reduced to O(h4+nlogn), in which h is the vertices of the convex hull of U . In

1972, Elzinga and Hearn [EH72] proposed a quadratic algorithm that runs in O(n2).

Shamos [Sha75], Shamos and Hoey [SH75] were the first to improve the computation

of the smallest enclosing circle considerably to an approximate linear time complex-

ity, O(nlogn). Shamos and Hoey’s algorithm is based on constructing a furthest

Voronoi diagram that is a significant structure in geometric computation and its

requires O(nlogn) to construct. This leads the computation of smallest enclosing

circle to have a lower bound of O(nlogn). Finally, in 1983 Nimrod Megiddo [Meg83]

showed that the minimal enclosing circle problem can be solve in O(n) time using

the prune-and-search techniques for linear programming, which is the most effi-

ciency algorithm to our knowledge. Afterwards, Martin Dyer [Dye86] and Nimrod

Megiddo [Meg84] extended this linear solution in any fix high-dimension.
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However, there are two main disadvantages of the smallest enclosing circle during

the implementation in many real applications. One is that the smallest enclosing

circle does not take the coverage capacity of the shared facility into its account, which

results in incapable coverage of all given points sometime. But many facilities have

the limited coverage capacity, such as, wireless base station, explosion range of a

bomb. The other is that finding the smallest enclosing circle is a 1-center problem in

R2, in other words, the location of the facility found by the smallest enclosing circle

is a unique point that is the center of the smallest circle. But in many circumstances,

especially, on dense objects the found location, the centre of the smallest circle, to

construct the shared facility is mostly unavailable, e.g. being occupied by other

objects or blocked, which leads finding the smallest enclosing circle useless.

In our proposed optimum region, we can find the best location to cover most

given point according to the coverage capacity of the facility. Moreover, the optimum

region is very flexible in locating a facility because the result includes infinite points.

2.6 Summary

In this section, we briefly introduce many spatial indexes, range queries, kNN queries

and smallest circle problem with explaining two representative existing works for

each. We found that none of the existing works are adequate and suitable to solve

the problems described in Chapter 1. Their limitations and disadvantages are sum-

marized as follow.

• Spatial Indexes: none of spatial indexes are able to process spatial queries

in non-Euclidean spaces. Furthermore, because of the difficulty of represent-

ing non-point objects in spatial indexes, all the spatial indexes are unable to

retrieve non-point objects.

• Algorithms for Range Queries: the first limitation is that the range queries

are processed according to only the distance metrics. In fact, the range queries
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may also be restricted by other spatial or non-spatial features. The second lim-

itation is their inefficiency, especially, in complex spaces or the query involving

one or more moving objects, as they require an incremental expansion method

to calculate distances among spatial objects. The last one is that they are

spatial index-based, thus they cannot retrieve non-point objects, but point

objects only.

• Algorithms for Range kNN: the essential objectives of kNN queries is

different with range queries. Consequently, the algorithms designed for kNN

queries cannot be implemented for range queries straightforward. Moreover,

kNN queries also retrieve point objects rather than non-point objects.

• Smallest Circle: it assumes that the shared facility having infinite coverage

capacity, does not consider the limitation of coverage capacity of the shared

facility in fact. The location of the expected facility is unique. But in many

cases, it availability of this location is not guaranteed, because of the occupa-

tion or the blockage of other objects.
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Processing Point-Expected Range

Queries
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Chapter 3

Constrained Range Search Query

Processing

In this chapter, we present our techniques to process range search queries under some

restrictions in road networks. We propose three novel constrained range queries,

namely, Time constrained Range, Region Constrained Range and k Nearest Neigh-

bors Constrained Range. Our algorithms called TCR, RCR and kCR for these three

queries are based on network Voronoi diagrams and all of them can process corre-

sponding queries efficiently. The research presented in this chapter was published

in [XZT+11b] and [XTSS10]

3.1 Overview

Range search is one of the most common and fundamental queries in spatial and

mobile databases [WST03, WST04]. It has been also extensively studied in many

other areas, including data structures, information retrieval, computational geome-

try, wireless communication [Muh09] and so forth in the past decades. The research

results are implemented in many practical applications, such as search engine, ge-

ographic information system (GIS), global positioning system (GPS) and digital

map. A qualified application (Web applications: Google Maps, Bing Maps and

29
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Figure 3.1: An example of range search

Mobile devices: PDAs, cellular phones, car navigation systems) for range search-

ing must be competent for a variety of queries in any complex environment and

can respond queries accurately and efficiently. Fig.3.1 illustrates an example of

range search in a digital map. The user (query point q) wants to get all petrol

stations within 3km from current location. In Fig.3.1, the object of interest (petrol

station) is represented by a sequence of numbers. The distance from query point

to each object is the shortest road network connection rather than the straight

line. Then the objects within 3km to query point are highlighted with red while

the green objects indicate the petrol stations are out of 3km to the query point.

This simple question has been answered by many existing work, by using spatial

indexing [Gut84, BER85, Bay97, CFP+05, TR02, TR04] and various spatial query

algorithms [PZMT03,XZT+09b].

A typical range search on road networks is defined as: Given a set of discrete

objects of interest (OOIs) on road networks, a query location, and a network distance

e indicating the searching range, find all objects of interest within range e from the

query point.

However in many applications, the objects of interest may be constrained by

many other factors or spatial objects, such as, other metrics (e.g. traveling time),

a polygon spatial object and the required number of objects. For example, a user
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Figure 3.2: An example of region constrained range search

may want to find all the petrol stations within 5km, which also need to be reached

in 10min. It is very common that a object is closer to the current location but takes

longer time to reach, due to the traffic jam, road works or topographic conditions.

We also need to have the distance restriction because of the capacity of the objects,

such as, the remaining petrol can only travel 20km. Therefore, we have to use several

metrics to answer a query.

Consider another instance, a user may want to find car parks in a university

campus within 1.5km. See Fig.3.2, the car parks from query point within 1.5km are

o1, o2, o3, o4, o5, but only o1, o2, o3 are located in the pre-defined region (university

campus). So object o4 and o5 have to be removed from the result list. In such a

range search query, car parks which might be closer to the query point but are not

in a specific region, such as, a polygon object, will not be of interest to the user.

Hence, the requested object of interest have to be in a specified region. The ordinary

range search approaches are not concerned about objects of interest in a large region,

and obviously, these approaches can not directly answer region constrained range

queries.

Another problem whereby the existing spatial range search algorithms will not

work is where the user who invokes the query, apart from having a certain radius

of the range search, also specifies a limit to the number of objects retrieved. This
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is different from the traditional kNN queries – retrieve k nearest objects of interest,

regardless their distance limit. It is also different from the basic range search,

because in the basic range search, the number of objects retrieved is of no concern,

as long as all of them are within the specified radius. An example of k constrained

range search is to retrieve a maximum of 10 car parks within 5 km. If the number

of car parks within a radius of 5 km is less than 10, then a decision has to be made

whether it is feasible to extend the radius search in order to cover more objects.

The existing range and kNN search algorithms do not deal with this type of range

search.

This chapter concentrates on processing constraint range search queries, espe-

cially when the range search has (i) time constraint, like in the first example above,

(ii) region constraint, like in the second example above, or (iii) k number of objects

constraint, like in the last example above. We next summarize our contributions.

• TimeConstrainedRange (TCR): It is a network range search approach to

process the range queries, which looks for all objects of interest within the

range are also reachable in a specified time quantum. We construct a dou-

ble weighted (time metric and space metric) road networks that appends the

traveling time as the other weight for each segment in the road networks to

reflect the time events, and then propose the approach (TCR) based on it. As

a result, the range search queries relevant with the traveling time which could

not be served by the traditional range search approaches are solved by TCR

properly.

• RegionConstrainedRange (RCR): It satisfies the users who want to get all

objects of interest being located in some particular regions within the range

in the road networks. We broaden the concept of the objects from a point

object to a weighted region (polygon object), which can involve some objects

of interest inside. We found a novel weighted network Voronoi diagram to

present the road networks including some weighted objects. Then the proposed
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RCR can handle the range search queries that demands the objects of interest

within some particular regions.

• kNNConstrainedRange (kCR): It is an approach process a kind of range

search queries that try to find k nearest neighbors of the query point within

the range in the road networks. Since the number of the objects of interest

within the range could less than required k, which means not enough objects

in the searching range, kCR also need to estimate the cost and to determine

expanding the searching range or decreasing of number k according to the

deviation ratio of e and k (defined in section 3.5), whereby we can make a

equilibrium between the searching range and the quantity of retrieved objects

The remainder of this chapter is structured as follow. The underlying frameworks

and the basis method for our approaches are introduced in section 3.2. In the next

three sections 3.3, 3.4 and 3.5, we describe our proposed solutions for three different

types of constrained range search queries respectively. Performance evaluation is

explained in section 3.6. Finally, section 3.7 summaries this chapter.

3.2 Preliminary

3.2.1 Voronoi Diagram

Voronoi Diagram partition the Euclidean plane into a set of convex polygons, named

Voronoi polygon or Voronoi region. Each Voronoi polygon involves a generator

(point) to which the Euclidean distance de from any point in its polygon is smaller

than to any other generator. Voronoi polygon is composed by several Voronoi edges,

also called borders, which is always shared by a pair of adjacent polygons. Any point

on the Voronoi edge has the same distance to the pair of generators that associate

with this edge. The formal definition of Voronoi Diagram is given as follow:

Definition 3.2.1. Given a set of discrete objects ℘ = (o1, o2,..., on), n ∈ Integer

In, in Cartesian space, the Voronoi polygon of oi, V P (oi), is a universal of points
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that satisfy:

{∀p|de(p, oi) ≤ de(p, oj)}, (i, j ∈ In, i 6= j, oi, oj ∈ ℘)

The Voronoi diagram for ℘ is:

V D(℘) =
n⋃
i=1

V P (oi)

The function used to calculate the distance from point p to oi, DISTANCE (p,

oi) is Euclidean distance:

DISTANCE(p, oi) = de(p, oi) =
√

(x2p − x2oi) + (y2p − y2oi)

x, y are the aces in a coordinate system. In term of the definition of V P , for any

point p inside V P (oi), the distance from it to oi must be the minimum one comparing

to the distances to other objects. The equality in the definition of Voronoi polygon

holds for the points on the borders of V Poi and V Poj

Fig.5.4 shows an example of VD, in which, any point p in V Po2 , whose distance

to generators o1, o2 are de(p, o1) and de(p, o2) satisfying de(p, o1) < de(p, o2). Since

point b is on the shared edge E of V Po1 and V Po2 , then de(b, o1) = de(b, o2).

3.2.2 Network Voronoi Diagram

Network Voronoi Diagram (NVD) is a special Voronoi diagram constructed on road

networks involving a set of nodes and links rather than Euclidean plane. In NVD,

the partitions are a set of road segments termed network Voronoi polygon (NVP)

instead of Voronoi polygon. For each NVP, there is only one generator. Any point

p in NV P (oi) also satisfies:

{∀p|dnet(p, oi) ≤ dnet(p, oj)}, (i, j ∈ In, i 6= j, oi, oj ∈ ℘)
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Figure 3.3: Voronoi Diagram (VD) Figure 3.4: Network Voronoi Diagram
(NVD)

The network distance is calculated by Dijkstra’s algorithm [Dij59], which find

the shortest path between two points in the road networks.

DISTANCE(p, oi) = dnet(p, oi) =
∑

f(p, n), n is a road node

The edges of Voronoi polygons shrink to the midpoints of the connection through

road networks between two objects. Beside the object of interest, the intersections

(white point) of the networks are also presented in the NVD. Referring to Fig.

3.4, the objects of interest (dark points) act as the generators of NVPs that are

distinguished by different line styles.

With NVD, a spatial network can be modeled as a weighted graph. All road

network intersections and objects can be represented as nodes in the weighted graph.

The link connecting these nodes represents road networks while the distances are

the weight for these links. NVD stores the relative position of the objects in the road

networks, therefore NVD-based approaches can load more information from spatial

database if required, which improves the performance of spatial queries processing.

3.2.3 Weighted Voronoi Diagram

In ordinary Voronoi diagrams all generators are identical points and do not have any

extent, the Voronoi edges are straight lines and the Voronoi polygons are contiguous.

The weighted Voronoi diagram (multiplicatively, additively, compound) differs from
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ordinary Voronoi diagram in that the generators have different weight which denotes

as ω [OBSC00a]. In this section, we introduce additively weighted (AW) Voronoi

diagram. The definition of AW Voronoi diagram is as follow:

Definition 3.2.2. Given a set of discrete objects ℘ = (o1, o2,..., on), n ∈ Integer

In, in Cartesian space. Each point o is assigned a weight ωo. the weighted Voronoi

polygon of oi ∈ ℘ , V P (oi), includes all points that satisfy:

{∀p|de(p, oi)− ωoi ≤ de(p, oj)− ωoj}, (i, j ∈ In, i 6= j, oi, oj ∈ ℘)

The additively weighted Voronoi diagram for ℘ is:

WVD(℘) =
n⋃
i=1

WV P (oi)

In a 2D space, AW-Voronoi diagram can be seen as a standard Voronoi diagram

of a set of rotundities each centered at a point o with ωo as a radius. According

to the definition of weighted Voronoi diagram, each weighted Voronoi polygon is

assigned to a unique rotundity which is the closest area of all points inside that

polygon. A point b on the edge of weighted Voronoi polygons oi and oj satisfies:

de(b, oi)− ωoi = de(p, oj)− ωoj

Fig.3.5 illustrates an example of AW-Voronoi diagram of five weighted objects

(R) centered at Voronoi generators (o) with different weights (ωo). It is obvious that

for any point p in weighted Voronoi polygon of R1 has: de(p,R1) ≤ de(p,R2) and

for any point b on the border of R1 and R2 has: de(b, R1) = de(b, R2)

3.2.4 Voronoi Range Search: our previous work

Voronoi Range Search, V RS, is a Voronoi-based range search approach [XZT+09b]

to retrieve all objects of interest within the expected searching range in road net-

works. VRS involves contain(q) to retrieve the NVP containing the query point first
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Figure 3.5: Additively weighted Voronoi diagram

and check whether its generator is in the range e or not. If it is in the range, then

we bulk load a set of adjacent NVPs into Qpre() and compare the network distance

from furthest generator o to query point with e. If dis(o, q) < e, then we repeat

expansion by loading the next round of NVPs. Otherwise we discard o and select

the next furthest object in Qpre.

Because typical range search approaches are based on network expansion method,

it can only retrieve a small number of road segments from the database at each step.

While VRS utilizes the properties of NVD and changes the expansion method from

road segments expansion to NVPs expansion, which improves the processing time

greatly. It outperforms all other existing range search approaches. Even though VRS

requires some pre-computed values (e.g. border to border, generator to border) to

be retrieved from the database, VRS can retrieve the required value only once to

improve the processing time.

Since our proposed method in this chapter is based on NVD and deal with range

search queries in road networks, an NVD-based range search method is preferred as
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our foundation. V RS is the only NVD-based range search method that provides a

better solution than other network range search methods by reducing the expansion

area and declining the rate of false hits based on NVD, so V RS is utilized as the

foundation for all our two proposed methods.

Algorithm 1: VRS(q, e)

Input: query point:q, searching range:e
Output: Qpre()

1 Contain(q) finds the generator oq;
2 Qpre() ← Qpre() ∪ oq;
3 if e < disnet(q, oq) then
4 return o with true property in Qpre();
5 else
6 NVD Expansion();
7 end
8 return o with true property in Qpre();

The general process of the V RS can be summarized into three steps:

• Step 1: Locating the Query Point (LQP): first involves contain(q) function,

a common spatial index structure to find the NVP(q) containing the query

point q, and put its generator oq into Qpre() that is a sorted candidates queue

used to store the object of interests whose validity has been checked. Qpre()

does not only involve the valid objects which in the expected searching range,

but also a few of false hits just out of the searching range. Then a network

expansion method will be applied in the NVP(q) to get the dis(q, oq) and

dis(q, Borders).

• Step 2: Current Searching Range Expansion (CSRE): is a NVP expansion

method that adds all neighbors of objects which are in Qpre() in the range,

which can expedite the searching range expansion, until the size of current

searching range is comparable with the expected searching range and simulta-

neously, all met objects will be inserted into Qpre().

• Step 3: Validating Objects (VO) and Gradually Shrinking (GS): compares the

searching range e and dismax in Qpre() (VO), if e < dismax, set the value of
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inside/outside property of omax to false and set dismax to the next largest value

in Qpre()(GS); if e > dismax, do step 2 until e < dismax

When the algorithm of VRS terminates, the structure of Qpre() must be as follow:

Qpre() = (. . . , (ox, . . . , False), (oy, . . . , T rue), . . .)

The object with false value indicates the object out of the range (e.g. oout), while

the one with true value is the expected object in the range(e.g. oy). The algorithm

of V RS is shown below:

The NVD Expansion() function includes step 2 and step 3, to get all objects of

interest in the searching range e.

3.3 Time Constrained Range

In this section, we present Time Constrained Range (TCR) to process range search

query in road networks based on a double-weighted network diagram. TCR retrieves

the objects of interest relying on the parameters of the searching range e and the

traveling time t.

Example 3.3.1. A businessman wants to find a bank branch within 10km and 20min

traveling time due to his busy schedule.

3.3.1 Motivation

Despite network distance is widely used to represent the shortest links between two

points (road nodes or objects) and to describe the pattern of the road networks, it

still has lots of limitation and flaws. It is well-known that traffic congestion have

to be changed in different period of time, but due to the immutability of network

distance, it cannot reflect the changes of the traffic condition, which requires a new

variable to detect the changes in the road networks. Further more, because of variety

of the traveling methods, sometimes the users may require a best solution from
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Figure 3.6: The variety of traveling methods

these traveling methods. Since network distance cannot distinct these methods, the

comparison of different traveling methods becomes an impossible task. In Fig. 3.6,

the driving traveling time is longer than the walking time from o1 to o2. When the

user wants to get a path which costs the shortest time from o1 to o2, the conventional

approaches can only give a result for only one particular traveling method, which

may be the unexpected result. Consequently a new metric which can compare the

efficiency of different traveling methods is demanded urgently.

Traveling time provides a nice solution to monitor the real-time events and the

changes of the traffic congestion in the road networks, and it can integrate the differ-

ent traveling paths in the travel time networks and evaluate them in one dimension.

On the other hand, users may also want to get objects of interest restricted by both

distance and traveling time.

3.3.2 Double Weighted Networks

Since traveling time is tightly associated with the moving speed of objects and and

the traffic congestion, frequently updating and keeping tracking the traveling time

will depress the efficiency of query processing seriously (the updating strategy of

the moving objects will be illustrated in the chapter 4). So here, we assume the
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Table 3.1: Time profile

Congestion extra time (et) Time Period

Heavy 2 min/km 7:00-9:00 and 16:00-19:00
Medium 1 min/km 9:00-16:00 and 19:00-22:00
Light 0.5 min/km 22:00-7:00

traveling time of each segment from one end to the other has been calculated off-

line as another weight of road networks. The weight of traveling network diagram

can be generated from the distance network diagram directly if all traffic events are

ignored. Assume network distance (space weight sw) for segment n1n2 is dis(n1, n2)

and the speed limitation of n1n2 is sl, then the traveling time tt for n1n2 can be

calculated by equation (3.1).

tt =
dis(n1, n2)

sl
(3.1)

tt =
dis(n1, n2)

sl
+ dis(n1, n2) ∗ et (3.2)

But since the perfect state is rare during traveling, the time profile should be at-

tached if the user expects accurate results considering traffic congestion. Table 1 is

one instance of time profile, which records the extra cost of the traveling time et

that can be set using statistical data according to traffic condition and time periods.

In this case, tt for n1n2 should be extended after calculating by equation (3.2).

tt is set as an additional weight (time weight tw) for each segments in the road

networks, and then the double weighted networks can be drawn from space weight

and time weight, thereby we can generate NVDs based on both weights. Fig. 3.7

demonstrates how the double weighted networks (refer to Fig. 3.7(a)) can be used

to generate these two NVDs with et in a medium congestion road networks. After

observation, though road network and objects are the same, the NVDs constructed

on space weight and time weight are slightly different. In other words, we can only

store one set of objects and road segments to get more than one NVDs according to

different weights, which saves storage space dramatically. To explain our approach
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more clearly, we denote the space weighted NVD as NVDs (refer to Fig. 3.7(b))and

the time weighted NVD as NVDt (refer to Fig. 3.7(c)).

3.3.3 Algorithm of TCR

Time Constrained Range (TCR) approach adopts the double weighted NVD as its

underlying framework and implements a Voronoi-based Range Search method (e.g.

V RS) on both time-NVD and space-NVD. Since the searching on both dimensions

does not effect each other until finalizing the result, the V RS method can be carried

out synchronously on each dimension. After retrieving the data sets of these two

dimensions, the final result can be obtained from their intersection. The algorithm

for TCR is shown in Algorithm 2.

Algorithm 2: TCR(q, e, t)

Input: query point:q, searching range:e, traveling time:t
Output: Qe∩t()

1 oq e ← Containe(q); /* find NV Ps(oq e) including q in NVDs */

2 oq t ← Containt(q); /* find NV Pt(oq t) including q in NVDt */

3 dis(q, oq e) ← Dijkstra’s algorithm(NV Ps(oq e));
4 tt(q, oq t) ← Dijkstra’s algorithm(NV Pt(oq t));
5 if e < disnet(q, oq e) or t < tt(q, oq t) then
6 Return Qe∩t() ← ∅
7 else
8 Insert oq e into Qe();
9 Insert oq t into Qt();

10 Qe() ← (Qe() ∪NVD Expansion(NVDs));
11 Qt() ← (Qt() ∪NVD Expansion(NVDt));

12 end
13 return Qe∩t() ← (Qe() ∪ Qt());

TCR first invokes function contain(q) to get the position of the query point on

NVDs and NVDt, and then implements Dijkstra’s algorithm within NV Ps(oq e),

NV Pt(oq t) to get the values of network distance disnet(q, oq e) and traveling time

tt(q, oq t) respectively. If the nearest neighbor oq e is within range e and the traveling

time of the fastest reachable object oq t is less than t, we do the NVD expansion

on both NVDs and NVDt to get the interim result Qe(), Qt() respectively, whose
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(a) Road networks

(b) S-NVDs

(c) T-NVDt

Figure 3.7: Generating of space-NVD and time-NVD
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intersection will be the final result. Otherwise, we return a empty set, which means

that no qualified objects of interest satisfy the input query.

3.4 Region Constrained Range

n this section, we propose Region Constrained Range (RCR) constructed on Weighted

Network Voronoi Diagram (WHNVD) to deal with the range search queries that ask

for the objects of interest locating in some pre-defined region that can be seen as

a weighted object, such as, shopping center, national park and so on. See Exam-

ple 3.4.1, which is a typical region constrained range search query. The expected

searching range e is 500km and the objects of interest (small water areas) are con-

strained within some pre-defined region < (national park) strictly. Apparently, the

traditional range search approaches cannot give the proper result for this query.

Example 3.4.1. A biologist wants to do a survey for of small water areas in the

national park within 500km to find out the influences of water pollution to the wild

animals.

3.4.1 Motivation

When users intend to find the objects of interest within a searching range, sometimes

they expect these objects belong to some region, such as, the university campus, the

suburb in a city, the shopping center and so on. Fig.3.8 shows all parking lots

(stars) in a university campus. The traditional range search methods only focus on

the objects of interest needed to be found, hence they cannot recognize whether the

objects of interest belong to the expected region or not. That is the main motivation

for proposing a new approach, RCR, dealing with these type of range search queries.

3.4.2 Weighted Network Voronoi Diagram

We designed a novel Voronoi diagram, named weighted network Voronoi diagram

(WNVD), as the underlying framework for our proposed range search algorithm.
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Figure 3.8: Objects of interest within a weighted object

Before that, we first introduce what is a weighted object and illustrate the distance

calculation between a polygon object and a point in road networks.

A weighted objects is abstracted as a polygon rather than a point when gener-

ating network Voronoi diagrams, as their extents should not be ignored. Normally,

weighted objects are the real entities occupied a large area, such as, national parks,

shopping centers and school campuses.

There are two important distances from a polygon object to a point in Cartesian

space, namely, the minimum distance mindise and the maximum distance maxdise,

indicating the shortest and longest distance among the distances from this point

to the vertices and to the edges. As Fig. 3.9(a) shows, mindise and maxdise can

be from a vertex of a polygon (e.g., mindise(R1, p) and maxdise(R3, p)) or the

intersection of a perpendicular (e.g., mindise(R3, p)).

Unlike Euclidean space, in the road networks, all the objects are restricted by

road pathes. Therefore a polygon object has to intersect with the road networks,

which means that a path from any point in road networks to a polygon object have

to pass through one of the entries or exits of this polygon object. We define the

entries and the exits of weighted objects as access points and denote as ap (Refer to

Fig. 3.9(b)).
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(a) maxdise(R, p) and mindise(R, p) (b) maxdisnet(R2, p) and mindisnet(R2, p)

Figure 3.9: Distance calculation from polygons to a point in Cartesian space and
road networks

Definition 3.4.1. Access points APk are the set of intersections between edges Ed

of weighted object Rk and road networks RN .

APk =
n⋃

m=1

apk m = Ed(Rk) ∩RN

According to the definition of access point, a weighted object can have multiple

access point ap, and an ap can only belong to a particular weighted object. The two

subscript k, m of ap indicate which weighted object it belongs to and the indexing

number of this access point respectively.

As a weighted object can have more than one access point, the distance from

a random point p to the weighted object can have multiple values, then distances

between a polygon object and a point can be expressed as disnet(p,AP ), where AP

= (ap1, ap2, ..., apn). See Fig. 3.9(b) as an example. The mindisnet and maxdinnet

can be expressed as:

mindisnet(p,Rk) = min(disnet(p,APk))

maxdisnet(p,Rk) = max(disnet(p,APk))

Now, we introduce weighted network Voronoi diagram, which differs from weighted
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Figure 3.10: Weighted Network Voronoi Diagram (WNVD)

Figure 3.11: Distance calculation in road networks

Voronoi diagram and ordinary network Voronoi diagram (see Fig. 3.10). It can be

defined as:

Definition 3.4.2. Given a set of weighted objects < = {R1, R2,..., Rn} and road

networks RN . The NVP(Rk) is a set of segments L in the road networks, L ∈ RN .

Then ∀p ∈ L, have mindisnet(p, Rk)≤ mindisnet(p, Rl), k,l ∈ ℵ, k 6=l.

WNVD =
n⋃
k=1

NV P (Rk)

In term of definition of WNVD, all details inside of weighted objects are ignored

during the construction of a WNVD. But when we calculate the distance disnet(p, ap)
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Table 3.2: Distances from p to weighted objects
To R1 through ap11 :
dnet(p, ap11) = pn4 + n4n6(n4n3) + n6n2(n3n2) + n2ap11 = 10
To R2 through ap21 , ap22 :
dnet(p, ap21) = pn4 + n4n6 + n6n8 + n8ap21 = 9
dnet(p, ap22) = pn7 + n4ap22 = 6
To R3 through ap31 , ap32 :
dnet(p, ap32) = pn4 + n4n3 + n3ap31 = 6
dnet(p, ap31) = pn4 + n4n5 + n4ap32 = 6

by Dijkstra’s algorithm, we have to consider the pathes in WNVD, as the shortest

path from p to an ap may go through the path inside.

The mindisnet(p, R) is the lower boundary and we used it to estimate whether

the weighted object is intersect with the searching range.; While the maxdisnet(p,

R) is the upper boundary, if maxdisnet(p, R) < e, then R is fully contained by the

range.

For example, there are three weighted objects, namely, R1, R2 and R3 each

including several access points in Fig.3.11. After performing Dijkstra’s algorithm,

the distances from point p to these weighted objects are in Table 3.2. If the searching

range is 6kms, for R1 the mindisnet(p, R1)=10>6, then we can say R1 is out of range;

for R2, the mindisnet(p, R1)=6 and maxdisnet(p, R1)=9>6, then R2 intersects with

the searching range; for R3 maxdisnet(p, R1) = 6, then we say R3 is fully contained

by the searching range.

3.4.3 Algorithm for RCR

We proposed a two-level NVDs structure, the first level NVD is weighted network

Voronoi diagram constructed by weighted objects containing a set of point objects,

while the second level NVD is built inside each weighted objects. Fig.3.12 shows an

example of this two-level NVD structure. Fig.3.12(a) is a WNVD and it includes

three weighted objects R1, R2, R3, some road nodes involving the intersections and

starting/ending points (white points) and a set of access points (AP , gray points).
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(a) First level NVD, WNVD (b) Second level NVD

Figure 3.12: Two-level network Voronoi diagram structure

Fig. 3.12(b) is a NVD constructed on R2. Beside the access points, ap2 2, ap2 3,

ap2 4 ∈ AP2, inheriting from the first level NVD, it also involves the road nodes

(white points) and some objects of interest, o2 1∼o2 5 (black points). If an access

point within Rk falls into NV P (ok n), then this access point is denoted as apk n.

The construction of the second level NVDs are constructed inside of weighted objects

(e.g., NVD on R2) as a normal NVD.

The searching of RCR includes two levels, we apply V RS on the first level

of NVD to get all valid regions that include the objects of interest, referring to

Algorithm 3. The relative position of the searching range and the weighted objects

can be categorized into three conditions:

• (i) If mindisnet(q, Rk) > e, the Rk is out of searching range.

• (ii) If maxdisnet(q, Rk) < e, the Rk is fully or partially contained by searching

range.

• (iii) If mindisnet(q, Rk)<e<maxdisnet(q, Rk), then Rk intersects with search-

ing range

If the query point q is contained by a weighted object Rk, then the mindisnet(q,

Rk)= mindisnet(q, Rk)=0. For the first condition, we can simply discard all objects

of interest in the weighted objects. Only the weighted objects intersecting with the

searching range need to do the second level search, referring to Algorithm 4 Since
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the shortest distance from a query point q to an point object ok inside a weighted

region Rk has to be through one of the access points, apk, then disnet(q, ok) can be

calculated by:

disnet(q, ok) = disnet(q, apk) + disnet(apk, ok)

We need to clarify that we cannot use mindisnet(q, Rk) to calculate disnet(q,

ok). Since the point object in a weighted region may closer to other access point.

Assuming that:

mindisnet(q, Rk) = disnet(q, apkn) < disnet(q, apkm)

But if

disnet(apkn , ok) > disnet(apkm , ok)

and

disnet(apkn , ok)− disnet(apkm , ok) < disnet(apkm , ok)− disnet(apkn , ok)

then

mindisnet(q, Rk) + disnet(q, apkn) > disnet(q, ok)

Algorithm 3: RCR-1(q, e, <)–First Level Search

Input: query point:q, searching range:e, Pre-defined Region:<
Output: RQ()

1 Rq ← Contain(q) on WNVD(<); /* Rq ∈ < */

2 Dijkstra algorithm to get maxdisnet(Rq, q) and mindisnet(Rq, q);
3 if e ≤ mindisnet(Rq, q) then
4 Return PQ() ← ∅
5 else
6 if mindisnet(Rq, q)<e< maxdisnet(Rq, q) then
7 Insert Rq into RQ();
8 NVD Expansion(WNVD) /* retrieve all weighted objects R

may intersect with searching area */

9 ;

10 end

11 end
12 return RQ();
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Algorithm 4: RCR-2(RQ(), RQ
′
())–Second Level Search

Input: RQ()
Output: OQ()

1 for R∈RQ() do
2 for o∈R do
3 if disnet(q, o)<e then
4 Insert o into OQ
5 end
6 ;

7 end

8 end
9 return OQ();

3.5 kNN Constrained Range

We design a new method, called kNN Constrained Range (kCR) to balance the

efficiency of searching range e and the number of objects of interest k given by the

user. Referring to Example 3.5.1, the users may not only expect the objects in the

searching range, but also require a certain number of objects of interest.

Example 3.5.1. A marketing manager would like to do an investigation on the

marketing status of their products at all supermarkets within 50 km, and the target

should involve 10 supermarkets.

In this case, the object of interest is supermarket, within range e = 50 km, and

the target number of objects k = 10 (supermarkets)

3.5.1 Motivation

Range search and kNN are the two most popular queries in spatial databases. The

former confines all objects of interest on a certain range e, whereas the latter need

to retrieve k nearest objects of interest. Obviously, sometimes these two queries can

cooperate to retrieve objects of interest satisfying both requirements. We named

this kind of queries as, kNN constrained range search. To make this query more
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applicable, we allow e to make an adjustment to k, the strategies of which are

discussed in the next section.

3.5.2 e vs. k

The traditional range search approach (e.g, RNE, VRS) retrieves all objects of

interest whose network distance to the query point is smaller than the search range e

and puts them into a queue Q(). To answer the kNN constrained range search query,

we can retrieve the k nearest objects of the query point from Q(), if the number

of objects in Q() is larger than k. But supposing the number of objects in Q() is

smaller than the required k, which means kth object does not exist in the current

searching range, then we may need to expand the range e to get more objects to

meet the required k if the cost is acceptable, instead of simply returning an empty

set to the user. The above statements can be summarized as follows:

• If Count(Q()) > k, apply a kNN approach to Q()

• If Count(Q()) = k, return Q() to the user

• If Count(Q()) < k, expand the range e if the cost is acceptable

Here, we define a deviation ratio dr for both e and k to estimate the cost when the

searching range needs to be expanded.

Definition 3.5.1. Given a set of objects of interest o in the road networks, a query

point q, a searching range e and a natural number k. Assuming the range search

result for e is Q(), Count(Q()) < k and e is expanded to the lth nearest object ol of

q, ol /∈ Q(), Count(Q()) < l ≤ k, the deviation ratio of e and k, drel, drkl, for object

l are:

drel =
dis(q, ol)− dismax(q,Q())

e

drkl =
l − Count(Q())

k

If and only if drel ≤ drkl, which means small expansion of range e can get a large

set of objects belonging to k, the cost is deemed to be acceptable. We should clarify
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Figure 3.13: Explanation of deviation ratio

that drel ≤ drkl ; drem ≤ drkm, Count(Q())<m<l<k, for the distribution of the

objects of interest is random. See Fig. 3.13, e=10, k=10, Q = (o1, o2, o3), for o10

that is the 9th nearest neighbor of q (shaded triangle), we have:

dre9 = 14−10
10

= 4
10

drk9 = 9−3
10

= 6
10

dre9 < drk9

whereas for o9, the 4th NN of q:

dre4 = 12−10
10

= 2
10

drk4 = 4−3
10

= 1
10

dre4 > drk4

So when expanding the searching range, we reach to the kth NN out of the range

directly, if drek ≤ drkk, then we consider the cost of this expansion is acceptable,

otherwise, we reduce k by 1 repetitively, until drel ≤ drkl, Count(Q()) < l < k.

3.5.3 Algorithm for kCR

In the algorithm for kCR, as the NVD is also used as the underling framework,

any NVD-based approach for range/kNN is feasible for kCR. We adopt V RS as
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Algorithm 5: kCR(q, e, k)

Input: query point:q, searching range:e, Quantity of objects user expected:k
Output: Qek(), fe

1 Qpre() ← VRS(q, e);
2 if Count(Qpre() > k then
3 Qek() ← get kth object from Qpre();
4 fe ← e;

5 else
6 Qk() ← kNN(q, k) approach;
7 fe ← dis(q, ok);
8 l ← k;
9 Calculate drel;

10 Calculate drkl;
11 while (drel > drkl) AND (Q()) < l 6 k) do
12 Qk() ← Qk() - ol();
13 l ← l-1;
14 Calculate drel;
15 Calculate drkl;
16 fe ← dis(q, ol);

17 end
18 Qek() ← Qk();

19 end
20 return Qek() and fe

the sub-function of kCR to retrieve objects of interest within in the searching range

and store them in Qpre(). Because Qpre() is a sorted queue, if Count(Qpre()) ≥ k,

then the k nearest objects within e can be obtained easily; if Count(Qpre()) < k,

then kCR involves an NVD-based kNN approach to get dis(q, ok), if drek > drkk, we

reduce k, until drel ≤ drkl, Count(Q()) < l < k. The algorithm for kCR is shown

in Algorithm 5.

Besides k constrained range search result Qek(), kCR also returns the factual

searching range fe to indicate the original searching range e is already changed if

the number of objects of interest is less than k. The objects in Qek() can still be

smaller than k, if the cost to get the kth object is higher than the expected benefit

to get more objects.
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3.6 Performance Evaluation

n this section, we evaluate our three proposed algorithms by using low density and

high density synthetic data sets with thousands of objects in road networks.

All experiments were programmed in Java and conducted on a IBM Thinkpad

T43 laptop running MS Windows XP professional service pack 2, with an Intel

Pentium Mobile CPU of 1.86GHz, one gigabyte of RAM and 40GB disk storage.

For each algorithm, we generated random road network segments with a set of

objects to evaluate its performance in terms of the CPU time and other important

factors. The data of all the experiments shown below are collected by averaging the

results for 1000 random query points on each experiment to reduce the inaccuracy.

3.6.1 Experimental Results of TCR

First we estimate the performance of our TCR by comparing its CPU time and

memory size in the low density and high density environments for both perfect state

(no traffic congestion considered) and medium congestion road networks. Because

all distance and traveling time between any two objects are pre-calculated, the main

factor effecting the CPU time (refer to Fig.3.14) and the memory size of our TCR

(refer to Fig.3.15) is the density of objects of interest when searching range e and t

are increasing. The relationships of e and CPU time and memory size of TCR are

approximate to the linear functions whose slope for high density objects are sharper

than the low density objects. Since the time profile is invoked in traveling time

networks, the CPU time and memory size of the medium congestion networks are

slightly larger than them in the perfect state in both low density and high density

environments.

3.6.2 Experimental Results of RCR

This set of experiments evaluate the performance of RCR in term of CPU time,

memory size and number of weighted objects which are within (R) and partially
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(a) CPU time t=0.1h (b) CPU time t=0.5h

(c) CPU time t=1h

Figure 3.14: CPU time of TCR

(a) Memory size t=0.1h

(b) Memory size t=0.5h (c) Memory size t=1h

Figure 3.15: Memory size of TCR
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(a) Density of WO (b) Density of OI

Figure 3.16: CPU time of RCR

within (R
′
) the searching range, respectively. Fig.3.16 shows the processing time of

our RCR in different environments on the density of weighted objects (region R)

and objects of interest (o) within the region. Since the essence of RCR is applying

V RS on level-1 and level-2 NVD sequentially, the CPU time increases linearly on

both NVDs. The increasing density of the corresponding objects also affects the

performance of RCR negatively.

Fig.3.17 shows the processing memory size of our RCR in different density en-

vironments of weighted objects (region) and objects of interest within the region.

Observing from Fig.3.17, the searching range expansion will not affect memory size

dramatically, except the objects evolved in the searching range increases extremely,

whereas the increasing of objects density becomes the main factor that enlarges the

memory size of RCR.

Fig.3.18 displays the number of objects within/partially within the range. As

most of processing time of RCR is spent on the weighted objects (R
′
)partially within

the range, its percentage should be kept in an extremely low level to guarantee good

performance. From Fig.3.18, we can see that the increase of R
′

is slower than the

increase of the objects (R), which means that only few weighted objects needs to be

checked when the searching range is large.
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(a) Density of WO (b) Density of OI

Figure 3.17: Memory size of RCR

Figure 3.18: No. of R/R′ for RCR

3.6.3 Experimental Results of kCR

Finally, we tested the CPU time of kCR in different scenarios and compared the

size of the factual range fe with e. As we explained in section 5, if the number

of objects within the searching range is larger or equal to k, the final result can be

obtained simply by returning the corresponding objects in Qpre. Otherwise, we need

to expand the current searching range e. This is the reason why the processing time

of kCR is in direct proportion to the number of nearest neighbors k in Fig.3.20.

Observing from Fig.3.19, the searching range e is the lower boundary of fe when

the number of objects of interest within e is less than k and the fluctuation of fe

deviates from e slightly. We can also see that the smaller k is, the earlier fe reaches

to e, for which the increasing of e will retrieve more objects.
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(a) k=5 (b) k=10

Figure 3.19: fe vs. e of kCR

(a) t=0.1h (b) t=0.5h

(c) t=1h

Figure 3.20: CPU time of kCR
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3.7 Summary

In this chapter, we proposes three NVD-based range search approaches to process

the range search queries with several additional parameters (traveling time t, pre-

defined region < and the quantity of objects k) in the road networks.

The first approach, TimeConstrainedRange (TCR), solves the problems that

require the objects of interest within both network distance and traveling time range

by utilizing the double weighted networks.

The second approach, Region Constrained Ranges (RCR), retrieves the objects

of interest not only within the searching range, but also locating in some pre-defined

region. For this purpose, we construct a Weighted-Hierarchical NVD that deals with

the region involving the objects of interest as an big object in the first level NVD,

while the objects of interest within these big object forms the second level NVD.

The last approach, kNNConstrainedRange (kCR), discusses a kind of queries

expecting to find k objects within the searching range. Then we study how to

make a balance between searching range e and k to get the optimized result. These

approaches can also combined to solve the extremely complex range search queries.

Our experiments show that all proposed approaches can process the corresponding

queries efficiently.



Chapter 4

Range Query Processing on

Moving Objects

In this chapter, we present algorithms to monitor moving range queries and moving

objects of interest in spatial networks. Our research reported in this chapter also

appeared in [XZT+11a] and [XTSS10].

4.1 Overview

Mobile databases have benefited through the rapid advancement of global posi-

tioning systems (GPS) and geographic information system (GIS). One of the most

common queries in mobile, as well as in spatial, databases is range search that finds

all objects of interest within the given region or radius. It can be defined formally

as: given a query point q, a user specified range e and a set of objects of interest ℘,

find all objects of interest from ℘ within range e from q.

Range search queries in road networks have been extensively discussed in the

last decade. The most two well-known methods in this area are Range Euclidean

Restriction (RER) and Range Network Expansion (RNE) [PZMT03], which cal-

culate the shortest network connection between two objects locating in the road

networks, called network distance, by implementing Dijkstra’s algorithm [Dij59] or

other distance retrieving approach [SS09a]. All objects of interest returned to users

61
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are judged according to their network distances to the query point. The value of

network distance does not only concern with the relative position of objects, but also

with the pattern of the road networks. Therefore RER and RNE [PZMT03] pro-

vide more accurate results than Euclidean range search approaches [Gut84,BER85].

Whereas the disadvantages of these approaches [PZMT03, SSA08] are also obvi-

ous, since RER and RNE are based on expansion methods, lots of false hits are

retrieved during the expansion, which makes them become time-consuming meth-

ods. Moreover if the density of the discrete objects is very low, the performance of

expansion-based approaches will be decreased dramatically.

On the other hand, continuous range search is received significant research atten-

tion in the past few years [CHC04b], In our previous work, we proposed an approach

named Continuous Range Search (CRS) [XZTS08] to address this kind of queries

on both Euclidean distance and network distance. But CRS needs to divide the

traveling path into some sub-segments according to the intersections of the road

networks like most existing continuous methods [TPS02, KS05, SE06] that are not

suitable for the complex networks, which is normal in reality, the performance of

CRS will decrease dramatically.

The performance of monitoring moving objects for range search queries is another

tough problem in spatial databases, especially, in road networks. As Monitoring

moving objects should achieve equilibrium be- tween the frequency of updating and

the accuracy of position of moving objects. If updates are very often, which has

high cost, the error in location of the moving objects is kept very small. On the

contrary, if we want to minimize the updating cost, then the error becomes larger.

In this chapter, we propose two approaches to monitoring and predicting the

result of range queries in road networks.

One is called Voronoi Continuous Range (VCR) which are based on some natu-

ral properties of Network Voronoi Diagram (NVD) [OBSC00a], dedicated to range

search query processing for both static and moving queries. VCR does not need
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to divide the moving path into some segments any more. Consequently the per-

formance and the applicability of the continuous range search have been improved

considerably. Since the details of connections in networks can be ignored during

the moving of the query point, VCR can solve the undefined-trajectory continuous

query properly as well.

The other is called RangeMonitoring , which discusses how the updating cost of

the moving objects can be minimized during the range query processing.

The remainder of this chapter is structured as follows: the preliminary of our

approaches, NVD and Voronoi-based range search are introduced in Section 4.2.

Section 4.3 and Section 4.4 illustrate our proposed VCR and RangeMonitoring re-

spectively. Section 4.5 evaluates our proposed techniques by showing the experi-

mental and comparison results with some existing works. Section 4.6 summarizes

this chapter.

4.2 Preliminary

4.2.1 Network Voronoi Diagram

Our proposed algorithms, VCR use Voronoi diagram as their underlying framework.

Voronoi diagram has lots of geometry properties that can make immense improve-

ment in the performance of range search queries processing. A Voronoi diagram is a

decomposition of a plane space according to the position of a set of discrete points

(site). Each site generates a Voronoi Polygon (VP), which involves all points closer

to its site than to any other. A VP is formed by a set of Voronoi edges that are

some subset of locus of points equidistant from two adjacent sites. The intersections

of these edges for a site is called Voronoi vertex. The definition of Voronoi diagram

is:

Definition 4.2.1. Given a set of discrete objects ℘ = (o1, ..., on) (n > 1) in road

networks, V P (oi) = {∀o | dn(p, oi) ≤ dn(p, oj)} (i, j ∈ In and i 6= j). The Voronoi
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Figure 4.1: Network Voronoi Diagram

Diagram for ℘ is:

V D(℘) =
n⋃
i=1

V P (oi)

This definition indicates that for any point inside the V P (oi), its distance to oi

must be smaller than to others generators, then V P (oi) is called Voronoi polygon

associated with oi.

An NVD is a special kind of Voronoi diagram constructed on spatial networks

[OBSC00a]. The decomposition is based on the connection of the discrete objects

rather than Euclidean distance. In the NVD, the Voronoi polygon changes to a

set of road segments termed Network Voronoi polygon (NVP) and the edges of the

polygons also shrink to some midpoints, termed border points, of the road network

connection between two objects of interest.

Fig.4.1 shows an example of NVD. Besides the objects of interest (o), an NVD

also includes some road network intersections (n) and border points (b). According

to the properties of Voronoi diagram, from border points to a pair of adjacent objects

is equidistant (e.g. dis(b7, o1) = dis(b7, o3)), then we just need to use Dijkstra’s

algorithm within one Voronoi polygon to get the distance from a generator to its

borders. The distance between objects can be calculated by selecting the minimum
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distance to their shared borders and doubling this value (e.g. MIN(dis(o3, o1)) =

2 ∗ dis(b7, o3) = 2 ∗ dis(b7, o1)).

As all distances from border points to generators/other border points can be

precalculated using Dijkstra’s algorithm and stored in databases, then when a range

query is issued, all needed distances can be retrieved from databases rather than

calculated them online.

4.2.2 A Sub-function—V RS

Voronoi Range Search, V RS, is a Voronoi-based range search approach [XZT+09b]

for static range queries on static point objects in road networks. VRS involves

contain(q) to retrieve the NVP containing the query point first and check whether

its generator is in the range e or not. If it is in the range, then we bulk load a

set of adjacent NVPs into Qpre() and compare the network distance from furthest

generator o to query point with e. If dis(o, q) < e, then we repeat expansion by

loading the next round of NVPs. Otherwise we discard o and select the next furthest

object in Qpre.

Because typical range search approaches are based on network expansion method,

it can only retrieve a small number of road segments from the database at each step.

While VRS utilizes the properties of NVD and changes the expansion method from

road segments expansion to NVPs expansion, which improves the processing time

greatly. It outperforms all other existing range search approaches. Even though VRS

requires some pre-computed values (e.g. border to border, generator to border) to

be retrieved from the database, VRS can retrieve the required value only once to

improve the processing time.

Since all of our proposed methods in this paper are based on NVD and deal

with range search queries in road networks, an NVD-based range search method is

preferred as our foundation. V RS is the only NVD-based range search method that

provides a better solution than other network range search methods by reducing the
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expansion area and declining the rate of false hits based on NVD, so V RS is utilized

as the foundation for all our two proposed methods.

Algorithm 6: VRS(q, e)

Input: query point:q, searching range:e
Output: Qpre()

1 Contain(q) finds the generator oq;
2 Qpre() ← Qpre() ∪ oq;
3 if e < disnet(q, oq) then
4 return o with true property in Qpre();
5 else
6 NVD Expansion();
7 end
8 return o with true property in Qpre();

When the algorithm of VRS terminates, the structure of Qpre() must be as follow:

Qpre() = (. . . , (oout, . . . , False), (oin, . . . , T rue), . . .)

The object with false value indicates the object out of the range (e.g. oout), while

the one with true value is the expected object in the range(e.g. oin). The algorithm

of V RS is shown below:

The NVD Expansion() function includes step 2 and step 3, to get all objects of

interest in the searching range e.

4.3 Moving Range Queries

Range query should not be confined to static range search, but also need to be

feasible for continuous range queries. Our previous work, Continuous Range Search

(CRS) as the only existed algorithm cannot avoid employing network segment di-

vision used by most continuous k nearest neighbors query processing methods (e.g.

IE, UBA and eDAR), which performance depends on the number of intersections in

the networks. Since the actual pattern of the road networks is normally extremely

complex (numerous intersections), road segmentation creates a big problem in per-

formance.
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In this section, we propose a novel approach, Voronoi Continuous Range (VCR),

a search method based on VRS, which does not require road segmentation.

4.3.1 Problem Definition

Firstly, we need to define continuous range search query.

Predefined trajectory continuous range search query is defined as retrieving all

objects of interest on any point of a given trajectory in the networks. It is similar

with continuous kNN query. The predefined path is a necessary element for this

kind of query. Our previous work illustrates how CRS can solve the traditional

continuous range search query properly.

S-D continuous range search query is defined as retrieving all objects of interest

on any point during the moving of the query point from the start point (S) to the

destination (D) in the networks. In this case, the moving trajectory of the query

point is not predefined, which requires the method to have a better flexibility in the

road network environment.

VCR is designed for both of the aforementioned queries.

4.3.2 Operational Principle of VCR

For Qpre generated in VRS does not only involve the valid objects in the expected

searching range, but also includes a few outside objects close to the searching range,

the domain of the expected searching range can be located by oout, oin. oout is the

nearest object to the query point outside of the searching range, while oin is the

furthest one to the query point in the expected searching range.

Property 4.3.1. Given the Qpre return by VRS, then o of min(|e − disnet(oout,

q)|, |e − disnet(oin,q)|) is the priority whose inside/outside property can be changed,

when the query point is moving.

In the continuous environment, when the query point is moving, it will cause

a series of variations on the pattern of expected searching range respected to the
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moving distance of the query point during the movement of the query point. Some

objects might move out, others could move in. To drop down the frequency of

updating, we need to know where the result can be changed and that is the position

the detection should be executed. According to Property 4.3.1, if the inside/outside

property of oout/oin is unchanged, no object of interest could move in/out of the

expected searching range, which provides us a method to monitor the changes during

the movement of the query point.

Definition 4.3.1. Detection point (dp) is a point used to predict the position

where the range search result need to be updated on the trajectory of the moving query

in the networks. It can be expressed by a network distance to the current position of

query point, min(|e− disnet(oout, q)|, |e− disnet(oin, q)|), oout has minimum disnet to

q with false value, oin has maximum disnet to q with true value.

At every dp, VRS will be called to detect whether there is an object of interest

that can be added/removed from Qpre.

Because the velocity, the moving direction of the query point and the pattern

of the road networks are ignored, the changes at the detection point cannot be

guaranteed, and the number of dp may be slightly larger than split point used by

other continuous approaches. But VCR focus on the moving distance of the query

point that can be calculated and monitored easily, meaning that the continuous

query processing is put in a more simple environment by removing most of the

influencing factors, which provides VCR the capability to process both predefined

trajectory and S-D continuous range search queries.

Definition 4.3.2. A Critical point (cp) is the object of interest, which satisfies

disnet(q, o) = e, o ∈ ℘.

Fig.4.2 shows that o1 and o2 are critical points. If there is a critical point in the

Qpre, then min(|e−disnet(oout, q)|, |e−disnet(oin, q)|) = 0. So detection point cannot

be found at this moment. To solve this problem, a new variable, Precision Factor

(pf) need to be defined.
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Figure 4.2: Critical points

Definition 4.3.3. Precision factor (pf) is a minimum metric unit, which is de-

termined by the precision of the network distance stored in the database.

For example, if the network distance stored in database is 12.47km, then the pf

= 0.01km. If ∃cp ∈ Qpre, then dp is not calculated by min(|e − disnet(oout, q)|, |e −

disnet(oin, q)|) any more. In this case, dp = pf , after updating Qpre at the dp, cp

will be cleared. To summarize, pf is used to detect the moving trend of a cp.

Using pf seems like a time consuming method, but actually, when we work over

the processing which involve pf , we find its performance quite acceptable. Assuming

min(|e − disnet(oout, q)|, |e − disnet(oin, q)|) = a and max(|e − disnet(oout, q)|, |e −

disnet(oin, q)|) = A. In the worst case, the times of calculation to find the next

object is n = 1 + log2(A − a)/2pf , and during these processing, the only data can

be slightly changed is the network distance and the inside/outside property of the

critical point. In other words, there is no other object of interest will move in/out

to the range, except this critical point. Moreover, the critical point is rare in the

real cases.

4.3.3 VCR Algorithm

The pseudo code of VCR is shown below and the main step of our proposed Voronoi-

based continuous range will be illustrated as follow (see Algorithm 7):
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Algorithm 7: VCR(S, D, e)

Input: start point:S, destination point:D, (pre-defined path:SD), searching
range:e

Output: a set of Qpre

1 VRS(S, e);
2 Totaldis ← disnet(S,D);
3 repeat
4 Find oout and oin from Qpre;

/* oout is the nearest object to q out e; oin is the furthest

object to q in e */

5 dp← min(|e− disnet(oout, q)|, |e− disnet(oin, q)|);
6 if dp 6= 0 /*no object is a critical point*/ then
7 VRS (dp, e);
8 Update Totaldis ← disnet(dp,D);

9 else
10 dp = dp+ pf ;
11 Update the information of critical point at dp;
12 Update Totaldis ← disnet(dp,D);

13 end

14 until Totaldis = 0;

Step 1 For a given start point S and end point D or a path SD, we define the

value of Totaldis = disnet(S,D), which will be used to evaluate the position

of query point to the destination.

Step 2 Find an object of interest, oout, with the maximum network distance in the

range, while find one, oin, with the minimum network distance out of the

range from Qpre will be used to calculate the detection point where the

result of the range search can be changed. If there is no O in the range

or out of the range, then the corresponding network distance recorded as

disnet = 0.

Step 3 Find a detection point using dp = min(|e - disnet(oout, q)|, |e - disnet(oin,q)|).

Step 4 At the detection point, test any object of interest is a critical point to

determine whether to employ pf for the next detection point or not. Update

the corresponding information at the detection point.
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Table 4.1: Qpre at start point

False objects in Qpre True objects in Qpre

oout Properties oin Properties

o11 (15.23, False) o12 (11.64, True)
o9 (14.54, False) o5 (9.63, True)
o6 (14.20, False) o2 (8.37, True)
o14 (13.83, False) o8 (8.19, True)
o13 (13.53, False) o7 (7.85, True)
o15 (13.20, False) o1 (5.06, True)
o4 (12.94, False)
o3 (12.82, False)

Step 5 Repeat steps 3 and 4 until the query point reach to the end point, Totaldis =

0.

Example 4.3.1. The initial search range is 12km and Totaldis = disnet(S,D) =

18.8, then at point S, the data in the Qpre() is shown in Table 2. Learning through ob-

servation and comparison, we get the first detection point dp1 = min(|12−11.64|, |12−

12.82|) = min(0.36, 0.82) = 0.36. It means when the query point q moving 360

meters from the start point, we will do a range search using VRS to update the

information of Qpre.

At the detection point dp1, the disnet() of o12 and Totaldis will be updated, if o12 is

a critical point, disnet(o12, q) = e = 12km and Totaldis 6= 0 (not arrive at destination

point), then pf which equals to 0.01 will intervene to test o12 will move into the

range deeply or move out from the expected searching range in the next moment.

So dp2 = pf = 0.01, where the network distance and inside/outside property of o12

will be updated. On the other hand, if the disnet(o12, q) 6= e at dp1, then we will

go through Qpre to find the next detection point by estimating the new value of

min(|e− disnet(oout, q)|, |e− disnet(oin, q)|).

If all information in Qpre has been updated, we repeat the above procedure, until

the query reaches the destination, Totaldis = 0 when the VCR will terminate.

Comparing to processing the pre-defined path which is just in a single NVP,

processing the path through multiple NVPs will rise a massive updating. So if the
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pre-defined path is within a NVP, then the performance of VCR will be improved

remarkably.

4.4 Range Query on Moving Objects

In this section we proposed a technology for static range search queries over moving

objects in road networks.

Monitoring moving objects should achieve equilibrium between the frequency of

updating and the accuracy of position of moving objects. If updates are very often,

which has high cost, the error in location of the moving objects is kept very small.

On the contrary, if we want to minimize the updating cost, then the error becomes

larger.

To optimize the information loading, the road networks and the moving objects

should be stored in two different layers. The static layer used to store the information

of the road networks, including ID, end points and the length for each segment. Since

the information of this layer is very rarely changed. While the variable layer stores

the information for all moving objects, as their position, the moving speed and the

moving direction change frequently in most cases. Then we discuss how the updating

cost of the moving objects can be minimized.

On the other hand, to insure the correctness and the continuity of the range

search result, we also illustrate how the updating cost of the range search result can

be optimized. These two problems are discussed respectively in the remain of this

section.

4.4.1 Moving Object Update

It is difficult to use V CR proposed in section 4.3, as unlike the query point, the

movement of objects of interest is unpredictable. Therefore, we need to design a

new technology to monitor the movement of these spatial objects.
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Table 4.2: Data structure of a moving object

Column name Example Comment

ID m1 the ID of a moving object

MOTION dfuture−m1

the distance of a moving object to its position at ts
between time interval tste, dfuture−m1=sm1(t− ts)

SPEED sm1
the moving speed of a moving object

DIRECTION n1n2
the segment which the object moves on, n1n2 in-
dicate that the object moves from n1 to n2

START TIME ts time interval
END TIME te

To minimize the updating cost, we store the motion as a function of time for

each moving object instead of its position. Since the updating frequency of the

motion is much lower than the position. Table 4.2 shows the detail of a moving

object stored in database. In each time interval, the motion, the moving speed

and the moving direction are invariable. In another word, when any change occur

among the motion, the moving speed and the moving direction, this time interval

is terminated and start a new one. With motion of the moving object, the future

position dfuture−m1 after ts can be calculated as:

dfuture−m = sm(t− ts)

where t is the time to check the position of the moving object m. In Fig. 4.3, the

segment n1n2 can be represented as a linear function:

y = ax+ b, x ∈ (xn1 , xn2)
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Figure 4.3: The future position of moving object m calculation

Since the road network is static and the positions of road network intersections

n1, n2 are known. Then we have

yn1 = a ∗ xn1 + b

yn2 = a ∗ xn2 + b

⇒
 a =

yn1 − yn2

xn1 − xn2

b =
xn1yn2 − xn2yn1

xn1 − xn2

The future position of object m can also be represented according to Euclidean

distance as:

dfuture−m =
√

(x− xn1)
2 + (y − yn1)

2

Then we have:

√
(x− xn1)

2 + (y − yn1)
2 = sm(t− ts)

y =
yn1 − yn2

xn1 − xn2

∗ x+
xn1yn2 − xn2yn1

xn1 − xn2

x ∈ (xn1 , xn2)

⇒
 x = ...

y = ...

Then at any moment t within time interval tste, the position of the moving

object m can be predicted using its motion function instead of keep updating its

position, by which, the updating cost improved dramatically (assuming the segments

are straight lines). The motion function only need to be updated when a new time

interval initialized, which is much less frequently than updating the position.
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Figure 4.4: Updating the moving direction of m

Table 4.3: Updating the moving direction of m

ID MOTION SPEED DIRECTION ST ET

m dfuture−m sm n1n2 ts te

m dfuture−m sm n2n3 t′s t′e

We use the segment which the object moves on to represent the moving direction

of this moving object. So n1n2 indicate that the object moves from n1 to n2 and

n1n2 6=n2n1. Table 4.3 shows the moving direction update of object m in Fig. 4.4

4.4.2 Range Search Query Update

In this section, we introduce the update of range search queries in road networks.

Grant Priority: Processing range search queries over moving objects should

concern with the moving speed as well as the relative position with the searching

range. Intuitively, high speed moving objects need to be processed earlier than low

speed moving objects, but we also need to concern with the relative position with

the searching range. So we define tm as:

tm =
|(dis(m, q)− e)|

sm
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Figure 4.5: t0 and tm

Where dis(m, q), which can be calculated easily by Dijkstra’s algorithm or Voronoi

diagram, is the network distance from moving object m to q at t0 (traveling time

is similar). Then the moving object m with min(tm) need to be granted higher

priority, since its possibility of effecting the searching result is the highest. See Fig.

4.5 as an example. Assuming the information of all moving objects are collected at

t0 and t0min(tm) is the only time interval between t0 and min(tm) for all moving

objects, otherwise t0 will be replaced by the last start time. Whereby we can predict

the position of all moving objects according to their motion functions. As Fig. 4.5

illustrates, the positions of both m1 and m2 are predictable between t0 and min(tm).

To simplify, we assume the moving speed of any moving object is invariable for each

segment. Either m1 or m2 changing its motion in between t0min(tm) will issue a

new start time ts, then ts will become the new min(tm), whereby the motions of all

objects are stable in the time interval t0min(tm).

Position Detection: For m with min(tm), we detect its relative position with

searching range according to dis(m, q) - e.

If dis(m, q)− e < 0⇒ m ∈ e at t0

If dis(m, q)− e > 0⇒ m /∈ e at t0
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This status will cooperate with moving trend detection to check whether we need

to update range search result at min(tm).

Moving Trend Detection: When a moving object is traveling on a segment,

it moves either away from q (denote as ↑q)or towards q (denote as ↓q). When the

relative position of m with range is retrieved at t0, if the moving trend of m can be

detected within t0min(tm), then we can predict whether the movement of object m

will effect the range search result or not at min(tm).

The moving trend for a moving object can be detected by estimating the distance

from the two ends of the segment the object moving on to the query point. Assuming

the moving direction of m is n1n2 (no intersection on n1n2), the shortest distances

dis(n1, q) and dis(n2, q) can be calculated easily. Then we estimate the moving

trend of m as:

(dis(n1, q) > dis(n2, q)) ∩

 (|dis(n1, q)− dis(n2, q)| = dis(n1, n2))⇒ m ↓ q 1©

(|dis(n1, q)− dis(n2, q)| 6= dis(n1, n2))⇒ m ↑↓ q 2©

(dis(n1, q) < dis(n2, q)) ∩

 (|dis(n1, q)− dis(n2, q)| = dis(n1, n2))⇒ m ↑ q 3©

(|dis(n1, q)− dis(n2, q)| 6= dis(n1, n2))⇒ m ↑↓ q 4©

In condition 1© and 3©, the moving trends are unidirectional, while the moving

trends in 2© and 4© are bidirectional. So we also want to know the transition point

on the segment n1n2 for condition 2© and 4©. We denote such a border point as bp

that satisfies:

dis(n1, q) + dis(n1, bp) = dis(n2, q) + dis(n2, bp)

Suppose dis(n1, bp)=z, dis(n2, bp)=z
′, refers to Fig. 4.6 then we have:

z + z′ = dis(n1, n2)

dis(n1, q) + z = dis(n2, q) + z′

⇒
 z =

dis(n1, n2) + dis(n2, q)− dis(n1, q)
2

z′ =
dis(n1, n2)− dis(n2, q) + dis(n1, q)

2
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Figure 4.6: Moving trend detection of m

So if tbp does not follow in between time interval t0min(tm), the moving trends of

m are unidirectional for all 1© 2© 3© 4©. Otherwise the moving trend will be divided

into two sections in condition 2© 4© at tbp, where need to update min(tm) to tbp and

compare dis(bp, q) with e to estimate whether we need to update the range search

result.

By position and moving trend detection, we can decide whether the range search

result need to be updated at min(tm). After get the moving object m with minimum

tm at t0, we estimate the relative position of m with searching range and detect the

moving trend for m, which can be concluded as:

(m /∈ e) ∩ (m ↓ q)

(m ∈ e) ∩ (m ↑ q)

⇒ m can effect the result

(m /∈ e) ∩ (m ↑ q)

(m ∈ e) ∩ (m ↓ q)

⇒ m cannot effect the result

Algorithm 8 shows the pseudo code of range search over moving object.
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Algorithm 8: RangeMonitoring(q, e)

Input: query point:q, searching range:e
Output: Qe

1 V RS(q, e) at t0 ;
2 for moving objects m(s) do

3 tm=
|(dis(m, q)− e)|

sm ;

4 end
5 Get min(tm);
6 Find the minimum time interval t0min(tm);
/* t0min(tm is the only interval in between */

7 Detect the relative position of m with e;
8 Detect the moving trend of m;
9 while m with min(tm) does not effect the range searching result do

10 Move to next m′tmin
;

11 end
12 V RS(q, e) at tmin

4.5 Performance Evaluation

We carried out several experiments to evaluate the performance of VCR. The data

sets provided by WhereisR© (http://www.whereis.com.au) [WHE], represents net-

works of thousands of links and nodes of the road system in Melbourne, Australia.

We compare our proposed VCR with the previous work CRS. We performed 20 sets

of tests for each experiment to calculated the tested data on average, and the range

size was varied from 1km to 100km. All evaluated parameters are explained in Table

4.5.1.

We generated random road network segments with a set of objects to evaluate

performance of RangeMonitoring in terms of the CPU time and the memory size.

The data of all the experiments shown below are collected by averaging the results

for 1000 random queries on each experiment to reduce the inaccuracy.

4.5.1 Experimental Result of VCR

The most frequency concept in VCR is dp that tries to detect the changes during

the movement of query point. But sometimes the changes do not happen at dp, so

the accuracy of dp is an important parameter to estimate the performance of VCR.
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Table 4.4: Performance evaluation parameters

Parameter Description

Segments A subdivision of predefined path

sp
A split point in CRS, the result has to be changed
at split point

dp
A detection point invoking VRS in VCR, the result
can be changed at detection point

Figure 4.7: Accuracy of dp

Fig.4.7 shows the rate of the accuracy of dp in both high-density and low-density

environments. Intuitively, rate of the accuracy of dp always remains at a good level

when the searching range e increases. And the high-density objects will have a lower

percentage than the low-density objects. So the density is the main factor that will

affect the accuracy of dp.

Because of a very limited existing work in continuous range using NVD, we only

compare VCR and CRS, by giving some experiment results in different scenarios,

including, change the density of the object and alter the searching range to different

location and resize it. These experiments focus on: number of comparison of disnet

with e, number of false hits and the proportion of the expansion area.

Table 4.5.1 shows the comparison results between VCR and CRS. It is obvious

that VCR does not divide the path into segments while CRS has to implement

the path segmentation to avoid changes when moving on the segment. If there is

an intersection in the middle of the segment, we cannot guarantee the changes of



4.5. PERFORMANCE EVALUATION 81

disnet are unidirectional. No segmentation gives VCR a better performance and

applicability.

On the other hand, the number of dp in VCR is larger than the split node in

CRS most of the time. Unlike the split node, detection points do not ensure that

there would be a change in that point. If the accuracy of split node is 100%, then

dp keeps the accuracy in a lower level. But the number of dp is very similar with

the corresponding value of split node, for VCR does not focus on the details of the

network.

According to the result in Table 4.5.1, VCR is not suitable for a wide range and

high density environment and when the value of range e approximate to the path

length, CRS has a strong competitiveness.

Table 4.5: VCR vs. CRS
VCR vs. CRS

Low Density environment 10 objects/10sq.km

e = 1km e = 10km e = 100km

VCR CRS VCR CRS VCR CRS VCR CRS VCR CRS VCR CRS

Segments 1 532 1 4028 1 532 1 4028 1 532 1 4028

sp(CRS) – 33 – 390 – 465 – 4379 – 4308 – 38745

dp(VCR) 67 – 382 – 826 – 3659 – 7948 – 78976 –

High Density environment 100 objects/10sq.km

e = 1km e = 10km e = 100km

VCR CRS VCR CRS VCR CRS VCR CRS VCR CRS VCR CRS

Segments 1 532 1 4028 1 532 1 4028 1 532 1 4028

sp(CRS) – 325 – 3885 – 4530 – 448764 – 46971 – 400653

dp(VCR) 638 – 4007 – 8487 – 3779 – 78754 – 764399 –

4.5.2 Experimental Result of RangeMonitoring

Since Range Monitoring manages the moving objects based on theirs priority to

effect the range search result and only check the relative position and moving trend

for the moving objects with highest priority, whereby it outperforms most existing

range search queries approaches over moving objects. Both CPU time and memory

size of Range Monitoring have direct proportion with the density of moving objects

in road networks (refer to Fig. 4.8 and Fig. 4.9).
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Figure 4.8: CPU time of range
monitoring

Figure 4.9: Memory size of range
monitoring

4.6 Summary

In order to offer a better solution, we use Network Voronoi Diagram as the basis for

our method, Voronoi Continuous Range (VCR), to process moving range queries.

We utilize some new properties of NVD to get a result set Qpre which as the pre-

liminary data result for VCR. Differing from other continuous algorithm, VCR only

focuses on the moving distance of the query point instead of the details of networks.

When the result of Qpre could be changed, we will implement range search at detec-

tion point to update the results. Our experiments show that VCR outperforms its

competitors in most scenarios.

Moreover, we also proposed a technology to monitoring moving objects in road

networks for range search queries, called Range Monitoring. Its manages the moving

objects based on their priority to effect the range search result and only check the

relative position and moving trend for the moving objects with highest priority,

whereby it outperforms most existing range search queries approaches over moving

objects.
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Chapter 5

On Finding k Nearest

Neighbor-Regions

In this chapter, we propose a region-expected query to find a nearest region for

a small cluster of objects in Cartesian space, and present two algorithms it. Our

algorithms based on different geometric theories. We study their advantages and

disadvantages according to the rigorous theoretical analysis and extensively experi-

ments.

5.1 Overview

As described in Chapter 2, either a traditional range query or a kNN query can

retrieve a set of point objects, also known as objects of interest (OOI), within a

specific distance from the query point (Euclidean or network) or find several OOIs

closer to the query point than any other OOIs. Many works consider range search

and kNN queries in the context of some dynamic circumstances, such as continuous

queries [TPS02, XZT+11a] and moving OOIs [TP03]; or they change the threshold

and add some constraints, such as reverse kNN [TPL04], aggregate kNN [PSTM04],

range kNN [HL06], constrained kNN [FSAA] and constrained range [XZT+11b];

or they solve similar problems in a different space, such as indoor space [YS10],

road networks [PZMT03], weighted region [LGYL11] and land surface [DZS+06].

85
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Figure 5.1: An example of kNN region query

However, they are still limited to retrieving point-objects, and the input is an inde-

pendent object (a query point or a range centered at the query point).

In this chapter, we propose a novel spatial query, named k nearest neighbor

(kNN) region, to retrieve a region including all points that consider the specific

k objects in the entire set as the k nearest neighbors. The kNN region is very

important in many practical applications:

To specify k branches of a company, we can obtain an area dominated by these

k branches rather than the competitors. So it means the company is likely to

retain the customers in this area.

A group wants to find an area closer to all the group members than their

competitors.

One side wants to find an area to build a military base (a refuge) considering

all friendly armies as nearest neighbors in the battle field, without exposing

the exact location.

Fig. 5.1 illustrates the last case above as an example of kNN region query, where

the shadowed area is the 4NN region of a, b, c, d. We can see that if the military

base or a refuge was built in this 4NN region, it can give best support for objects
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a∼d meanwhile it is far away from objects 1∼5, therefor it can be protected most

sufficiently by a d. Moreover, the exact location of the military base or a refuge is

not exposed, thus avoiding enemy’s long range strike.

kNN range is a very challenging problem because of two main issues. One is that

the information of the kNN region is not pre-stored in the spatial database, unlike

point objects, which means the region cannot be retrieved from the database directly,

but is identified according to the location and the distribution of the known objects.

All the existing works and indexing approaches to spatial queries are incapable of

processing kNN range queries. The other issue concerns the storage of the query

result. The form of a kNN range is a convex polygon. So it is important to ensure

the correctness and consistency of the vertices of the polygon in order. Intuitively, if

the order of the vertices of a polygon is incorrect, then the formed polygon returned

to the user is also incorrect.

This chapter concentrates on kNN region query processing for static objects in

Cartesian space, and illustrates two algorithms, kth-order Voronoi diagram based

algorithm, VDk-kR and Delaunay triangulation based algorithm, DT -kR. VDk-kR

which is designed to retrieve all the existing candidates for kNN regions of any k

objects in the entire set, and then identify the kNN region of the specific k objects.

VDk-kR performs well when the server processing a bunch of kNN region queries on

the same data sets with specific k. DT -kR first checks the relative position of the

specific k objects in the entire set, which can greatly improve the performance of

processing kNN region queries in most of the instances where the kNN region does

not exist. When a number of objects in the entire set is massive, DT -kR requires

smaller storage and I/O access than VDk-kR to identify the kNN region by using

several geometric properties of the Delaunay triangulation and convex hull.

The remainder of this chapter is organized as follows: Section 5.2 illustrates

several geometric concepts used in our proposed algorithms. Section 5.3 illustrates

several geometric concepts used in our proposed algorithms. Sections 5.4 and 5.5
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Figure 5.2: An example of Delaunay triangulation in R2

describe the details of VDk-kR and DT -kR respectively. Section 5.6 evaluates the

performance of VDk-kR and DT -kR. Section 5.7 summarizes this chapter.

5.2 Preliminary

Our proposed algorithms are based on the important properties of a series of relative

computational geometry concepts, namely, Delaunay Triangulation, Convex Hull,

Voronoi Diagram and High-Order Voronoi Diagram. So in this section, we present

the definitions and properties of these concepts.

5.2.1 Delaunay Triangulation and Convex Hull

In two-dimensional space R2, Delaunay Triangulation DT is a set of shortest con-

nections named Delaunay edges on a set of discrete point objects U={o1, o2,..., on−1,

on}, which satisfies for each edge, oioj, we can find a circle containing the two ends of

this edge oi and oj on its boundary, but not containing any other object of U . This

is also called the empty circle1 property of Delaunay triangulation. The Delaunay

triangulation of a set U is unique.

1The empty circle is not unique
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Definition 5.2.1. Given a finite set of point objects U={o1, o2,..., on−1, on} in R2,

the Delaunay Triangulation of U is a triangualtion DT (U) such that for each edge

oioj, {∃ cij|oi,oj ∈ cij}, and (∀om|om /∈ cij, om∈U and m6=i6=j}).

Fig.5.2 shows an example of DT in a two-dimensional space with an invalid edge.

Since the empty circle for edge o1o13 does not exist, o1o13 cannot be a Delaunay edge.

The empty circle can easily be found for any Delaunay edge, such as c4,6 for o4o6.

If two objects are the two ends of a Delaunay edge, these two objects are called

neighbor objects of each other.

Another important property of Delaunay triangulation is the empty circumcircle

property1 whereby for any triangle in DT (U), its circumcircle does not contain any

other object of U , such as circ1,4,6 in Fig.5.2. The empty circumcircle is also called

Delaunay circle.

Property 5.2.1. Given a set of point objects U={o1, o2,..., on−1, on} in R2, a

triangulation T (U) is a DT (U) iff the circumcircle of any triangle of T (U) does

not contain a object of U in its interior.

Convex hull, also called convex envelope is another important concept in com-

putational geometry. It finds the smallest polygon containing the given set of point

objects, U , by connecting some objects in U . The convex hull also has the smallest

area and perimeter of all polygons containing the set U .

Definition 5.2.2. Given a finite set of point objects U={o1, o2,..., on−1, on} in

R2, the convex hull is the smallest Polygon Conv(U), the vertices V T of which has,

V T⊆U , containing U .

One of the important properties of convex hull is that, for any point p in a two-

dimensional space, we can always find a vertex in V T (U) which is further from p

than are any other points in U .

Property 5.2.2. Given a set of objects U , then ∀p∈R2, {∃oi|d(oi, p)>d(oj, p)}

where oi∈V T (U), oj∈U-V T (U)
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Figure 5.3: The comparison of the convex hull and the non-convex of Delaunay
triangulation in Fig.5.2

Fig. 5.3 compares the convex hull with a non-convex generated by points in Fig.

5.2 and it shows another important property of a convex hull: if a polygon is a convex

hull, then for any two points in this polygon, their connection is also contained by this

polygon. In other words, all of the triangles of DT (U) are dominated by Conv(U).

Property 5.2.3. If a polygon P is a convex hull, then for any two points, ∀n, ∀m

∈ P, the whole line segment also has nm ∈ P.

5.2.2 Voronoi Diagram and High-Order Voronoi Diagram

Voronoi Diagram is a special decomposition of a metric space according to the

relative distance of a given set U of points [OBSC00b]. It is constructed by a set of

Voronoi polygons where each polygon is associated with a given object oi, denoted

as V(oi). Each edge of a Voronoi polygon is a segment of a perpendicular bisector

of a pair of objects (oi, oj) and the half space including all points closer to oi than

oj is denoted as h(oi, oj). So V(oi) can also be seen as the intersection of all of the

half spaces closer to oi than to any other object.

V(oi) =
⋂
i 6=j

h(oi, oj), (oi, oj ∈ U)

1The empty circumcircle is unique
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Figure 5.4: The comparison of Voronoi diagram and Delaunay triangulation in
Fig.5.2

The definition of a Voronoi diagram can be stated as:

Definition 5.2.3. Given a set of discrete objects U = (o1, o2,..., on−1, on) in a

two-dimensional Cartesian space, R2, the Voronoi Diagram of U is:

VD(U) =
n⋃
i=1

V(oi), (oi ∈ U)

The Voronoi diagram of U , VD(U) is the dual structure of DT (U). Fig. 5.4

illustrates the relationship between the Voronoi diagram and the Delaunay Trian-

gulation of all the objects shown in Fig. 5.2. Vertices of the Voronoi diagram are

called Voronoi points and the edges are called Voronoi edges. An object, o, is called

a Voronoi site or Delaunay vertex. If two objects have a shared edge, then these two

objects are called neighbor objects of each other. Here is an important property of

neighbor objects.

Property 5.2.4. The nearest object of oi has to be among its neighbor objects.

A High-Order Voronoi Diagram is a variation of the ordinary Voronoi diagram.

It also subdivides the metric space into several polygons. But the polygons of the

high-order Voronoi diagram associate with a set of objects S⊆U rather than a single



92 CHAPTER 5. ON FINDING K NEAREST NEIGHBOR-REGIONS

Figure 5.5: The comparison between the 2-order VD and the Voronoi diagram dis-
played in Fig.5.4

object in the ordinary Voronoi diagram, denoted as V(S). The “order” means the

cardinality of S, denoted as |S|. If |S|=k, then this high-order Voronoi diagram is

also called kth-order Voronoi diagram. When k=1, the kth-order Voronoi diagram

degenerates into an ordinary Voronoi diagram. Since the points in V(S) are closer

to all the objects in S than to any object in U - S, then the polygon of a high-order

Voronoi diagram can be represented as:

V(S) =
⋂

oi∈S,oj∈U−S

h(oi, oj), (S ⊆ U)

where U is the entire set of objects. Hence a high-order Voronoi diagram can be

defined as:

Definition 5.2.4. Given a set of discrete objects U = (o1, o2,..., on−1, on) in a two-

dimensional Cartesian space, R2, P(U) is the power set including all the subsets of

U , Pk(U) ⊂ P(U) and Pk(U) contains all the subsets whose cardinality equals k,

Pk(U)=(S1, S2, ..., Sckn), where |Si|=k and |Pk(U)|= Ck
n, the kth-Order Voronoi

Diagram of U is:

VDk(U) =

ckn⋃
i=1

V(Si)
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In this definition, we can see that the number of the subsets, each of which

includes k objects, is Ck
n for a set U having n objects. The kth-order Voronoi

diagram is a union set of all the Voronoi polygons of these subsets, Si.

Property 5.2.5. Any two adjacent Voronoi polygons V(Si) and V(Sj), have the

same k-1 NN.

The details and the proof of this property are discussed in [Lee82]. The property

means that if one goes from a Voronoi polygon to any adjacent polygon, only the

kth nearest neighbor is changed.

Fig. 5.5 compares the VD of o1 to o15 with their VD2. In VD2, each Voronoi

polygon is dominated by two objects, and it is constructed by a set of perpendicular

bisectors associated with these two objects. e.g. V(1, 7)1, in which all points are

closer to o1 and o7 than to any other object.

5.3 Problem and Query Definition

For simplicity, in this chapter, we discuss only the kNN region query in a two-

dimensional Cartesian space, R2, and use Euclidean distance as the metric. For

any two points p and q, their Euclidean distance can be expressed as: d(p,q)=√
(px − qx)2 + (py − qy)2, where (px, py), (qx, qy) are Cartesian coordinates of p and

q. But our proposed algorithms are not limited to this two-dimensional space; they

can be simply modified to suit any higher metric space.

In R2, a kNN region of a set of objects of interest (OOIs), S and |S|=k, is

the largest area containing all points considering the objects in S as its k nearest

neighbors. The kNN region can be also seen as a Voronoi polygon V(S) in a VDk.

So a kNN region query can be defined as:

Definition 5.3.1. Given a set of OOIs, U = (o1, o2,..., on−1, on) in R2, and specify

a subset S⊆U , |S|=k, a kNN region query of S is to find the largest area which

1The Voronoi polygon should be denoted as V({o1, o7}), but for simplicity, we omit symbol {}
and represent the objects by using their indices.
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Figure 5.6: An example of some 2-NN regions

contains all points closer to OOIs in S than to any other OOI in U-S.

V(S) = {∀p|d(p, oi) < d(p, oj)}, (oi ∈ S, oj ∈ U − S)

According to this definition, to find the kNN region, V(S), we need to find the

closer space for each object in S, and then the intersection of these spaces is the

kNN region of S. Fig. 5.6 shows some 2-NN regions and demonstrates how V(1, 7)

is constructed. We can see that each edge of V(1, 7) is associated with a pair of

indices (i,j), which means that the edge is a portion of the perpendicular bisectors

of oi and oj, and all the edges of V(1, 7) are associated with o1 or o7. Each vertex is

an intersection point of three edges ij, il and jl, and can be denoted by (i,j,l), such

as (2,3,7).

Obviously, sometimes the kNN region of S, V(S), may not exist. In other words,

there is no such a point that considers the OOIs in S as its nearest neighbors, such

as, S={o1, o9}. If V(S) exists, then it is unique. So the answer to the kNN region

query is unique or null depending on the distribution of OOIs of S in U .

1Includes all of the neighbors of OOIs in S, but excludes all the objects in S
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(a) A kNN region for three nonadjacent OOIs, o1, o2, o3

(b) 4 adjacent OOIs, o1, o2, o3 o4, do not have a kNN region

(c) A 3NN region for o1, o2, o3, where o1, o3 does not have
2NN region

Figure 5.7: The counter-examples for the misunderstanding of kNN region
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Table 5.1: Frequently Used Symbols

Notation Description

oi An object of interest in R2

U The entire set of OOIs

S A specified subset of U

|S| The cardinality of S

Pk(oi) A polygon whose edges associated with oi

NB(S) The neighbor set of S 1

V(oi) The Voronoi polygon of object oi

V(S) The kNN region of S

VD(U) The Voronoi diagram of U

VDk(U) The kth-order Voronoi diagram of U

(i, j) The Voronoi edge associated with oi and oj

DT (U) The Delaunay Triangulation of U

Conv(S) The convex hull of S

V T (S) The vertices of the convex hull of S

d(oi, oj) The Euclidean distance between oi and oj

According to this definition, we can see that kNN region query focuses on pro-

cessing a small cluster of OOIs locally, normally these OOIs adjacent to each other,

but not necessarily. Several misunderstandings need to be clarified here, referring

to Fig. 5.7

If a set of OOIs has a kNN region, all the OOIs in this set have to be adjacent

to each other. Fig. 5.7(a) shows a counter-example

If all the OOIs in a set adjacent to each other, then the kNN region exist for

sure. Fig. 5.7(b) shows a counter-example

If two OOIs does not have a 2NN region, then any set including these two

OOIs does not have the kNN region. Fig. 5.7(c) shows a counter-example

We will discus these in the following sections. Table 5.1 lists the high frequency

notations used in this chapter.
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5.4 VDk-based kNN Region: VDk-kR

n this section, we propose an algorithm for kNN region queries based on kth-Order

Voronoi diagram, and analyze its advantages and disadvantages.

Since the kNN region of S can be seen as the V(S) in a VDk, the kNN queries

can be solved by using the kth-Order Voronoi diagram of the given set U . But,

unlike the regular Voronoi diagram (k=1) where each polygon contains an objects,

in a kth-order Voronoi diagram (k>1), the polygons may not contain these objects.

For example, V(1, 7) does not contain o1 and o7 in Fig. 5.6. Although all the kNN

regions of U are included in VDk(U), we cannot identify the kNN region for a specific

subset by using traditional indexing methods, such as R-Tree. In our VDk-kR, we

propose two methods to identify the kNN region of S by using the generated VDk.

In the first method, for each of the points, oi in S, we will identify all the Voronoi

polygons considering oi as one of its kNN by using the kth-order Voronoi diagram.

According to Property 5.2.5, all the Voronoi polygons considering oi as one of the

kNN will be adjacent to each other. These polygons will be bounded by all the

Voronoi edges associated with oi. The polygon formed by these edges is signed as

Pk(oi), where all the points consider oi as one of the kNN. As Fig. 5.8 illustrates,

P2(o1) includes six Voronoi polygons that consider o1 as one of the 2NN. The blue

lines are the boundary of P2(o1). We need to note that there can be more than one

edge associated with a pair of objects, such as (1, 13) and (1, 11).

Then, the overlap of all such polygons Pk of S is the kNN region. Fig. 5.9 shows

the 4NN region of o1, o2, o3, o11, which is found by using VDk and Pk(oi) where

k=4. For the given set of OOIs U={o1, o2, ..., o15}, generate a VD4(U). Then for

the specified 4 OOIs, namely, o1, o2, o3, o11, find P4(o1), P4(o2), P4(o3) and P4(o11),

and the overlap is the 4NN region of o1, o2, o3, o11, which is represented by the

shaded polygon in Fig. 5.9. If any pair of Pks does not have an overlap, then the

null value can be returned immediately, which is an important property of the kNN

region.
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Figure 5.8: An example of Pk: P2(o1) in VD2

Property 5.4.1. Given a set of OOIs, U = (o1, o2,..., on−1, on), and specify a

subset S⊆U , |S|=k, for any pair of objects oi and oj ∈S, if Pk(oi)∩Pk(oj)=∅, then

the kNN region of S does not exist.

The main disadvantage of this polygon intersection method is the extremely

high computation cost, which is caused by sorting the vertices of the non-convex

polygon, Pk(oi), in a proper order [MK89]. Because if the order of vertices of Pk(oi)

is incorrect, we may obtain a wrong result from the overlaps.

Hence, our second method estimates all the vertices of each Pk(oi) for all the

objects in S. Since VDk(U) includes all existing kNN regions of any k OOIs in U ,

so if the kNN region for a given set, S, exists, then V(S)⊂ VDk(U). In other words,

all the vertices of kNN region of S exist in the vertices of VDk(U). According to

the definition of the kth-order Voronoi diagram, if a point p considers the k OOIs

of S as its kNN, then p∈V(S). Then we have the following lemma:

Lemma 5.4.1. Given a set of objects U={o1, o2, ..., on}, and a subset S⊆U , |S|=k,

if a vertex v of Pk(S)s considers the k objects of S as kNN, then v is a vertex of the

kNN region of S, V(S).
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Figure 5.9: A 4NN region found by overlap of Pk(S)s

Proof. ∵ v of Pk(S)s is a vertex of VDk(U), according to the definition of high-order

Voronoi diagram. ∴ v is a vertex of a kNN region and consider k objects of U as

its kNN and ∵ v considers the k objects of S as kNN ∴ v is the vertex of the kNN

region of S.

Algorithm 9: VDk-kR(U , S)

Input: U , S={o1, o2, ..., ok} ⊆ U
Output: kNN Region

1 Generate a VDk(U);
2 Find all the vertices V s, associated with Pk(S) in VDk(U);
3 for (i=1; i≤V s.size; i++) do
4 if S is not the kNN of vi then
5 delete vi from V s
6 end

7 end
8 kR ⇐ V s ;
9 return kNN Region;

On the grounds of the above lemma, we keep all the vertices of Pk(S)s in a list

and check whether there is an unspecified object closer than the furthest specific

objects for each vertex, which means the specified k OOIs are not the kNN for this
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Figure 5.10: A 4NN region found by checking the vertices of Pk(S)s

vertex. In such a case, we delete this vertex from the list. After estimating all the

vertices of Pk(S)s, the remaining vertices in the list will be all the vertices of the

kNN region of S. Fig. 5.10 shows an example of finding a 4NN region by using our

second method. In Fig. 5.10, the centers of all the circles are the vertices of V(S)

and each circle contains o1, o2, o3, o11 and does not include any other objects closer

than these four objects to the center, which means these vertices considering o1, o2,

o3, o11 as their 4NN. So the polygon formed by these vertices is the 4NN region of

objects o1, o2, o3, o11.

The VDk-kR is a pellucid algorithm to process kNN region queries; it can rapidly

process a series of kNN queries with the same k on the same set U . But its disad-

vantages are also obvious. First, it takes very long computational time and requires

very large storage spaces to generate VDk(U)1 that not only depends on |S|, but

also associates with |U | which is usually extremely large. Second one VDk-kR can

only process the kNN region for a particular U and |S|, which means if either the

1The time complexity and storage of generating VDk(U) are O(k2n log n) and O(k2(n-k)),
|U |=n
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given set, U or the number of nearest neighbors, k is changed, the VDk has to be

reconstructed. So we propose a novel algorithm DT -kR to improve the performance.

5.5 DT -based kNN Region: DT -kR

DT -kR processes the kNN region query based on a Delaunay triangulation and

the convex hull generated on the specified k objects. It can return the null value

immediately if the kNN region does not exist in most instances and optimize the

computational time of finding the kNN region, and it can process any kNN region

query even if U or k change.

5.5.1 Screening

Since the kNN region for the given set U may not exist, one of the most impor-

tant improvements of DT -kR compared to VDk-kR is the much faster reporting of

ineligible cases. The screening step of DT -kR can recognize most of the ineligible

specified set S. We define two significant concepts, cluster and independent object

used in this step of DT -kR algorithm. Fig. 5.11 shows a cluster S’={o1, o2, o3, o11,

o13} and an independent object o9 in the set S={o1, o2, o3, o9, o11, o13}. The set S

is not a cluster, as o9 cannot connect other objects in S only through the objects in

S, such as, the connection of o9 and o1 is via o7 /∈ S.

Definition 5.5.1. Given a set of objects U={o1, o2, ..., on}, a subset S⊆U , and

the DT (U), if ∀oi, oj∈S are connected to each other by edges of DT (U), but do not

pass any object not in S, (i6=j), then the subset S is called a cluster in U , denoted

by CL.

Definition 5.5.2. Given a set of objects U={o1, o2, ..., on}, a subset S⊆U , and

the DT (U), if ∃oi∈S does not link with ∀oj∈S in DT (U), (i 6=j), then the object oi

is called an independent object in S, denoted by σ.

Obviously, an independent object is a special cluster whose cardinality |CL|=1.
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Figure 5.11: An example of a cluster and an independent object

Lemma 5.5.1. Given a set of object U={o1, o2, ..., on}, and a subset S⊆U , |S|=k,

if the number of CL > 1 in S, then the kNN region of S does not exist.

Proof. Given a subset S={o1, o2, ..., ok}⊆U , and a set of clusters CL in S, CL1∈CL

is the largest cluster, and |CL1|=k’<k, then we have:

{∀oi|oi ∈ S − CL1, oi /∈ NB(CL1)}

Assuming that a k’NN region exists V(CL1), so according to the property of the

Voronoi diagram, the (k’+1)NN of any point in V(CL1) has to be in NB(CL1).

But {∀ oi|oi∈ S-CL1, oi /∈NB(CL1)}, then the (k′+1)NN region for any subset of

S does not exist. According to Definition 5.3.1 , then the kNN region of S does not

exist.

Corollary 5.5.1. Given a set of objects U={o1, o2, ..., on}, and a subset S⊆U , if

there exists an independent object, σ∈S, then the kNN region of S does not exist.

Proof. The proof is similar to that of the above lemma, so it is omitted here.



5.5. DT -BASED KNN REGION: DT -KR 103

(a) Cluster of {o2, o3, o4, o11} in DT (b) P4(o4) and P4(o11)

Figure 5.12: An example of a false case

Lemma 5.5.1 and corollary 5.5.1 can recognize most of the ineligible cases, but

there are still some that can by-pass these two screens, such as the example given

in Fig.5.12. Even though the objects o2, o3, o4, o11 form a cluster, their 4NN region

does not exist. So lemma 5.5.1 and corollary 5.5.1 are necessary conditions for the

existence of the kNN region, but are not sufficient conditions. Then the passed false

cases will be found in the next step.

5.5.2 Optimizing

Unlike the VDk-kR algorithm which needs to generate a k-order Voronoi diagram

for the entire set, DT -kR finds only a few perpendicular bisectors to identify the

kNN region in the optimizing step by using the following two lemmas:

Lemma 5.5.2. Given a set of objects U={o1, o2, ..., on}, and a subset S⊆U , then

V(S)= V(V T (S)), where V(S) ⊆ VD(U) and V(V T (S)) ⊆ VD(U-S+V T (S))

Proof. ∀p∈V(S) have d(p, oi)<d(p, oj), oi∈S, oj∈U -S. ∵ V T (S)⊆S ∴ ∀ p ∈ V(S)

also have d(p, ovt)<d(p, oj), ovt∈V T (S), oj∈U -S, which means p∈V(V T (S)). So we

get:

V(S) ⊆ V(V T (S)) (5.1)
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∀p∈V(V T (S)) have d(p, ovt)<d(p, oj), ovt∈V T (S), oj∈U -S. ∵ the property of

convex hull, ∀p∈R2, {∃ovt|d(p,oi)< d(p,ovt)}, where oi∈S-V T (S) and ovt∈V T (S). ∴

∀ p ∈ V(V T (S)) also have d(p, oi)<d(p, ovt)<d(p, oj), oi∈(S-V T (S))⊆S, oj∈U -S,

which means p∈V(S). So we get:

V(V T (S)) ⊆ V(S) (5.2)

According to equations 5.1 and 5.2, V(S)= V(V T (S)).

Lemma 5.5.2 indicates that the construction of the kNN region of a set S is

associates only with the vertices of the convex hull of S, V T (S). As shown in Fig.

5.13, objects o1, o2, o3 form a convex hull in Fig. 5.13(a), in which the bold polygon

is the 3NN region of o1, o2, o3, if we add k’ objects to this convex hull, then the

(k+k’)NN region will not change, such as Fig. 5.13(b) (k’=1), Fig. 5.13(c) (k’=5)

and Fig. 5.13(d) (k’=k-3). So V(1,2,3)= V(1,2,3,7)=V(1,2,3,7,...,11). With this

optimizing method, since the cardinality of specified set S is very large (k is large),

only the objects on the vertex of the convex hull will be used to generate the kNN

region, which saves a lot of computation time and storage space.

Lemma 5.5.3. Given a set of objects U={o1, o2, ..., on}, and a subset S⊆U ,

then any edge of V(S) has to be a portion of ⊥(ovt, onb(vt)), where ovt∈V T (S) and

onb(vt)∈NB(V T (S)).

Proof. Assuming an edge of V(S) is not associated with onb(vt), and according to

lemma 5.5.2, it has to be associated with ovt, then this edge can be represented by

(oi, ovt), in which a oi /∈NB(V T (S)).

In respect to the property of the high-order Voronoi diagram, when moving out

from V(S) through edge (oi, ovt), the kth NN changes to oi, and according to the

property of Voronoi diagram, the kth NN can change only to one of the neighbor

objects of S, so we can get oi∈NB(V T (S)) which conflicts with oi /∈NB(V T (S)).

Lemma 5.5.3 indicates that we need to find only the perpendicular bisector of

the objects on the vertex of convex hull and their neighbors not in the given set.
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(a) 3NN region of {o1, o2, o3} (b) 4NN region of {o1, o2, o3, o7}

(c) 8NN region of {o1, o2, o3, o7, ..., o11} (d) kNN region of {o1, o2, o3, o7, ..., ok}

Figure 5.13: The vertices of a convex hull dominate the kNN region

The sizes of V T (S) and NB(V T (S)) are very small no matter how large the given

set is.
The algorithm of DT -kR is illustrated in Algorithm 10. At the beginning, a

Delaunay triangulation is generated for the entire set, U and if the specified k

objects in S form more than one cluster or have an independent object, then DT -

kR terminates and returns a null value, which means the kNN region of S does not

exist.

If S can pass the screening step, then generate the convex hull of S and find

all the neighbor objects of the vertices of this convex hull, get two sets V T (S)

and NB(V T (S)). For all the objects in V T (S) and in NB(V T (S))-S, find the

perpendicular bisector for each pair, then the overlap of these areas will be the kNN

region of S. If there is a pair of areas not having any overlap, then the kNN region

of S does not exist.
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5.5.3 Algorithm

Algorithm 10: DT -kR(U , S)

Input: U , S={o1, o2, ..., ok} ⊆ U
Output: kNN Region

1 Generate a DT (U);
2 if ((the cluster of S>1 ) or (∃σ∈S)) then
3 return kR=∅
4 else
5 Generate a Conv(S);
6 Find the NB(V T (S)) in DT (U);
7 kR=h(ox, oy);

/* ox∈Conv(S), oy∈NB(Conv(S)), initialize kR */

8 for (i=1; i≤|V T (S)|; i++) do
9 for (j=1; j≤|NB(V T (S))|; j++) do

10 if (oj∈NB(V T (S))) and (oj /∈S) then
11 if (h(oi, oj) ∩ kR 6= ∅) then
12 kR=h(oi, oj) ∩ kR;
13 else
14 return ∅
15 end

16 end

17 end

18 end

19 end
20 return kNN Region;

5.6 Performance Evaluation

In this section, we evaluate the performance of VDk-kR and DT -kR. We first esti-

mate their performance theoretically and analyze the cost of each step of these two

algorithms. Then we evaluate the performance of VDk-kR and DT -kR based on the

extensive simulation results for 60 different data sets. Table 5.2 illustrates all the

variables appearing in the performance evaluation.

5.6.1 Theoretical Analysis

In this section, we analyze the performance of VDk-kR and DT -kR to process single

kNN region query and multiple kNN region queries theoretically, where for multiple
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Table 5.2: Performance evaluation parameters

Notation Description

n Number of OOIs in U(the value of the cardinality of U)

k Number of OOIs in S(the value of the cardinality of S)

q Number of queries

e Number of edges

v Number of vertices

vs Number of vertices of high order Voronoi diagram associate with S

vc
Number of vertices of the convex hull(the value of the cardinality
of V T (S))

vp Number of vertices of generated polygon

m
Number of neighbor objects of the vertices of convex hull (the car-
dinality of NB(V T (S)))

Table 5.3: Single query time complexity comparison between VDk-kR and DT -kR
based on big O

Time complexity

n=100 n=500 n=1000 n=5000

k VDk DT VDk DT VDk DT VDk DT

5 27080 495 147137 1788 290800 3429 1541371 18924

10 98020 699 603748 2024 1272400 4174 6711485 19669

15 207160 1235 1376930 2930 2899400 4321 15283341 19816

20 351040 1446 2404390 2996 5072200 4606 26758940 20101

queries, we evaluate the performance of VDk-kR and DT -kR to process a q kNN

region queries for the same set of U and a specific k in total. The results show that

if the number of kNN range queries is not extremely large, DT -kR outperforms

VDk-kR in all instances.

Single query processing: VDk-kR: VDk-kR algorithm includes two main

steps, namely, construction of kth-order Voronoi diagram and identifying kNN re-

gion. In the first step, a kth-order Voronoi diagram for the set U needs to be

constructed. The best well-known algorithm for constructing a kth-order Voronoi

diagram is proposed in [Lee82], whose time complexity and storage are O(k2n log n)
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and O(k2(n-k)) respectively, which are the lower boundary of the first step. The

second step is to identify a kNN region for the specified k objects in S. In our

proposed VDk-kR, we need to find all the vertices generated by the objects in S and

estimate whether S includes all the kNN for each of vertices. So the cost of this

step depends on the efficiency of kNN algorithm and the cardinality of the entire set

U . Here, we use the distance of the furthest objects in S to the estimated vertex as

the threshold. If any other object in U -S has a smaller distance, then we dispose of

this vertex. The time complexity and storage of the the second step are O(vsn) and

O(vs+n). The performance of second step can be improved slightly if you adopt a

better kNN algorithm, but since the main cost of VDk-kR is in the first step, it will

not improve the overall performance significantly. The total time complexity and

storage of VDk-kR are: O((k2 log n+vs)n) and O(k2(n-k)+vs).

DT -kR: DT -kR algorithm also has two steps, screening and optimizing. In

the screening step, a Delaunay triangulation needs to be implemented on the given

set U whereby the connectivity of the specified k objects of S can be checked.

Compared with the construction of DT (U), the cost of checking connectivity can be

ignored. So the main cost of the screening step depends on the cost of constructing a

Delaunay triangulation for the entire set. The most efficient algorithm is the sweep

line algorithm, also known as Fortune’s algorithm [For87], the time complexity and

the storage of which are O(nlog n) and O(n). In the optimizing step, all the vertices

of the convex hull for the specified k objects need to be found as well as their

neighbors to identify the kNN region of S. The minimum cost of generating the

convex hull is O(k log k) [Gra72]. The time and space cost of identifying the kNN

region are O(mvcvplog vp) and O(m+vc+vp), because the number of perpendicular

bisectors depends on m and vc, the cost of vplog vp guarantees the vertices of the

overlap of two half space are in a proper order (clockwise or anticlockwise). The

total time complexity and storage of DT -kR are: DT -kR(U , S): O(nlogn + klogk

+ mvcvplogvp) and DT -kR(U , S): O(n+k+m+vc+vp).
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Table 5.4: Single query storage cost comparison between VDk-kR and DT -kR based
on O

Storage

n=100 n=500 n=1000 n=5000

k VDk DT VDk DT VDk DT VDk DT

5 2695.8 127.2 13101.8 530 26090.8 1029 130091 5029

10 3255.2 130.4 13812.6 532.2 26847.4 1037 130847 5037

15 4096.6 136.6 15021.6 540.6 28099.4 1039 132099 5039

20 5185.4 138.2 16604.2 541.6 29747.2 1041 133747 5041

Table 5.3 and 5.4 compare the time complexity and storage of VDk-kR and DT -

kR on several data sets with different density. Since m, vc, vp are always small,

the performance of DT -kR outperforms VDk-kR greatly in terms of cost for both

time and space cost, and DT -kR is very stable in any circumstance, even if n and k

increase significantly. In contrast, the performance of VDk-kR declines dramatically

when neither n nor k increases, because of the cost of constructing the kth-order

Voronoi diagram.

Multiple queries processing: VDk-kR: Because the main cost of VDk-kR is

the construction of kth-order Voronoi diagram for the entire set U and the cardinality

of S, k, so it can process multiple queries for the same U and k more efficiently.

Assuming there are q kNN region queries that need to be processed on the given U ,

then only one kth-order Voronoi diagram needs to be constructed for the given set

in a specified order, then we just need to estimate only the kNN of the associate

Voronoi vertices for each query. The total time complexity and storage of VDk-kR

to process q kNN region queries are O((k2 log n+vsq)n) and O(k2(n-k)+min(vsq,

vV Dk
))

DT -kR: DT -kR also need to generate only one Delaunay triangulation for the

entire set U , but still need to check the connectivity, generate convex hull and

identify the kNN region for each query, so the performance of DT -kR will not

improve significantly compared with processing some single queries on different data

sets. But because only a few objects in U are used in the DT -kR algorithm, the

time complexity is still much faster than VDk-kR. On the other hand, if the number
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(a) VDk-kR (b) DT -kR

Figure 5.14: Storage comparison of VDk-kR and DT -kR for multiple queries

of queries is extremely large, then the generated convex hull and identified kNN

regions will require a huge amount of storage, while VDk-kR can store only all the

vertices of VDk(U), which can be considerably smaller than vsq.

Fig. 5.15 and Fig. 5.14 show the effect of q and k on the performance of VDk-kR

and DT -kR. The time complexity of both algorithms are proportional to q and k

on the same U . When the q increases, DT -kR always requires more storage space,

while VDk(U) requires only vV Dk
, if vV Dk

< vsq.

The optimization of VDk-kR In the light of above theoretical analysis, the

inefficiency of VDk-kR algorithm is due to the high cost of generating the kth-order

Voronoi diagram on the entire set. The optimization of VDk-kR is reducing the size

of OOIs to generate the kth-order Voronoi diagram locally.

First of all we need to generate DT (U) as the underlying framework. For a

specific subset S of U , we can find all the neighbors of S based on the generated

DT (U). Then the construction of the kth-order Voronoi diagram is implemented

on S∪NB(S), VDk(S∪NB(S)). The remaining steps will be the same with the

regular VDk-kR algorithm, which is checking the all the vertices associated with

Pk(S) in VDk(S∪NB(S)). Since it is a simple optimization of VDk-kR, we omit the

algorithm and its empirical evaluation here.



5.6. PERFORMANCE EVALUATION 111

(a) VDk-kR (b) DT -kR

Figure 5.15: Time complexity comparison of VDk-kR and DT -kR for multiple
queries

The time complexity of generatingDT (U) as the underlying framework isO(n log n)

which outperforms O(k2n log n) of VDk(U) remarkably. But we still need to con-

struct a VDk locally, the time complexity of this construction isO(k2(k+m)log(k+m))

relying on the number of k and |NB(S)|, where m=k+|NB(S)|. Consequently, the

time complexity of optimized VDk-kR is:

O(n log n+ k2(k +m) log(k +m)) + vs(k +m))

Comparing with the time complexity of the regular VDk-kR algorithm, we can

see that the performance of the VDk-kR can be improved significantly if and only

if k+m�n, otherwise the performance will be similar or even worse. Similarly, the

storage cost will decreased seriously due to the same reason, so we do not discuss it

here redundantly.

5.6.2 Empirical Results

We implemented our proposed VDk-kR and DT -kR algorithms using Java in mul-

tiple platforms, including Win32, Win64 and Linux. The experimental results were

collected under the Win32 platform with Intel(R) Core2 Duo T9600 2.8GHz CPU

and 2GB Memory. We use two sorts of data sets, random data and clustered data.

Fig.5.16 shows the patter of the 5000 OOIs distributing randomly and clustered.
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Table 5.5: CPU time and I/O access comparison between VDk-kR and DT -kR in
term of k/n

k
n CPU Time (ms) I/O Access (MB)

10% 20.83 0.852 6.99 0.174

30% 67.22 0.864 22.21 0.153

50% 193.54 1.319 60 0.233

70% 102.57 1.921 34.06 0.419

90% 17.9 0.687 5.72 0.133

(a) 5000 Objects of Interest on the Random
Pattern

(b) 5000 Objects of Interest on the Clustered
Pattern

Figure 5.16: The patter of random and clustered data with 5000 objects

The random data patter, such as Fig.5.16(a), is used to estimate the performance

of our proposed algorithms on uniform distributed data while clustered pattern,

such as Fig. 5.16(b), is more representative. We use low (100), medium (500), high

(1000) and extremely high (5000) density data for both random patter and clustered

pattern.

Query Processing Time: In this section, we measure the CPU time for VDk-

kR and DT -kR algorithms.

We first evaluate both algorithms in several low density circumstances (100 ob-

jects in a unit space). Table 5.6 and Table 5.7 show the trend of the CPU time

with respect to k for random and clustered patterns respectively: the CPU times of

both VDk-kR and DT -kR algorithms are proportional to the number of k (k/n ≤

50%). The processing time of DT -kR are influenced much less than VDk-kR by k

because vc and vp will not change significantly when k is increasing. DT -kR greatly
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Table 5.6: CPU time comparison between VDk-kR and DT -kR in term of k on
random pattern

CPU Time (ms)

n=100 n=500 n=1000 n=5000

k VDk DT VDk DT VDk DT VDk DT

5 81.031 0.829 1424.54 1.641 6440.79 3.423 N/A 17

10 251.032 1.11 3747.8 1.89 13725.01 3.639 N/A 15

15 654.375 1.296 6548.75 2 25175.31 3.297 N/A 18

20 977.328 1.329 11094.69 2.64 35945.78 4 N/A 16

outperforms VDk-kR. Even when k=20, the CPU time of DT -kR is about 1.4ms

while VDk-kR is about 700ms. As Table 5.6 and Table 5.7 show, the CPU time

of DT -kR is 500 times faster than VDk-kR. This result validates our theoretical

analysis of the time complexity of both algorithms.

We also conducted similar experiments in some medium, high and extremely

density circumstances, refer to Table 5.6 and Table 5.7. When k=20 the CPU times

of DT -kR are about 2.7ms, 4.0ms and 15ms, 27ms respectively while these results

are about 11100ms, 36000ms and 10000ms, 95009ms for VDk-kR. When the entire

set is too large,VDk-kR does not work due to the high computational cost of VDk(U),

in that case we can use the optimized VDk-kR. The increasing of k and density of

OOIs has fewer effects on DT -kR than VDk-kR. Because the main cost of VDk-kR

is the construction of the kth-order Voronoi diagram which is mainly affected by

the cardinality of S (k), in contrast, the main cost of DT -kR, the optimizing step,

will not be affected significantly when the cardinality of S (k) is increasing. We

also found that both algorithms performer worse on clustered data, if there is a

high-dense cluster.

Next, we fix the cardinality of U and evaluate the performance of VDk-kR and

DT -kR on different k/n from 10% to 90%. As Table 5.5 shows, the peak value of

VDk-kR appears when k/n=50%, then its CPU time is inversely proportional to

k/n. That is because when k/n≥50%, the number of edges and vertices of the kth-

order Voronoi diagram is inversely proportional to k/n for a specific n (The number
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Table 5.7: CPU time comparison between VDk-kR and DT -kR in term of k on
clustered pattern

CPU Time (ms)

n=100 n=500 n=1000 n=5000

k VDk DT VDk DT VDk DT VDk DT

5 110 0.58 1448 2.39 19878 15 N/A 47

10 235 13 3248 3.21 14399 19 N/A 18

15 497 16 5742 32 27427 22 N/A 31

20 901 18 9059 15 95009 27 N/A 32

Table 5.8: I/O access comparison between VDk-kR and DT -kR in term of k on
random pattern

I/O Access (MB)

n=100 n=500 n=1000 n=5000

k VDk DT VDk DT VDk DT VDk DT

5 107.47404 0.405 2191.62 9.96 8512.82 20.13 N/A 387.84

10 347.716 0.697 4889.44 12.25 18351.36 22.57 N/A 482.01

15 886.189 0.871 8340.58 12.8 29232.83 19.13 N/A 628.65

20 1856.584 0.678 13135.88 17.37 41958.53 24.76 N/A 743.51

of Voronoi polygons which is equal Ck
n will decrease when k increases and greater

than n/2). The maximum value of DT -kR appears when k/n is about 70% since vc

and vp are largest at this point.

I/O:

In this section, we evaluate the performance for VDk-kR and DT -kR algorithms

with respect to the I/O cost.

We also evaluate the I/O cost of VDk-kR and DT -kR on low, medium, high and

extremely high density circumstances. Table 5.8 and Table 5.9 show the results of

such four cases. As Table 5.8 and Table 5.9 show, the I/O cost of VDk-kR is much

higher than DT -kR, since the number vs is very large in most of the instances and

for each vertex, we need to check its kNN and compare it with S. The increasing of k

and density of OOIs has less effect on the I/O cost of DT -kR, since the construction

cost of Delaunay triangulation is much less than the construction of the high-order
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Table 5.9: I/O access comparison between VDk-kR and DT -kR in term of k on
clustered pattern

I/O Access (MB)

n=100 n=500 n=1000 n=5000

k VDk DT VDk DT VDk DT VDk DT

5 120.89 35.3 2272.19 111.82 8588.45 358.85 N/A 338.14

10 363.31 101.89 4961.83 243.62 18951.3 492.89 N/A 823.04

15 871.39 282.5 8708.25 324.12 29596.7 817.38 N/A 1088.14

20 1568.3 1065.09 14157.19 410.96 43164.82 1008.66 N/A 900.55

Voronoi diagram. Because vc and vp remain stable in any density circumstance, the

variation of the I/O of DT -kR is primarily due to the construction of Delaunay

triangulation on more OOIs, which is still better than VDk-kR.

Then we fix the cardinality of U and evaluate the I/O cost of VDk-kR and DT -

kR on different k/n from 10% to 90%. As Table 5.5 shows, the changes of I/O is

very similar to the CPU with respect to k/n. DT -kR also outperforms VDk-kR

remarkably. The reason is also similar, so we omit the repeated explanation here.

5.7 Summary

In this chaper, we propose a novel spatial query, named, kNN region query, which is

very important for theoretical studies and practical applications. We also illustrate

two algorithms, VDk-kR and DT -kR to process kNN region queries. VDk-kR is

a high-order Voronoi diagram based approach, which is efficient to process a pile

of kNN region queries on the same data set U with same order k. In such cases,

only one kth-order Voronoi diagram needs to be generated and then it can process

any kNN region query with the same order. But the processing time of VDk-kR

is not efficient enough due to the cost of generating of the kth-order Voronoi dia-

gram. To process a query with different k or on another data set, the kth-order

Voronoi diagram has to be regenerated, which reduces the applicability of VDk-kR.
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Then we proposed another algorithm, DT -kR based on several computational geo-

metric concepts, whereby the kNN region queries can be processed very fast in any

circumstances.



Chapter 6

Locating an Optimum Region on

Finite Point Objects

In this chapter, we study another region-expected query problem in Euclidean space

called, optimum region. We propose a novel algorithms which indicating the relative

position of objects of interest by utilizing polar coordinate system to answer this

type of query.

6.1 Overview

Range search is a historic and significant queries not only in spatial databases,

but also in many other applications, such as, computational geometry, geographical

information systems (GIS), and computer-aided design (CAD). In chapter 5, we

discuses finding a region for small set of objects (k); While sometimes the region

might be expected on the entire set globally. Optimum region queries is such a type.

Given a finite set of point objects and a positive value r (e.g, a distance), optimum

region includes all the points which can covering the maximum number of objects

in the finite set as the center of a circle with radius r.

All the existing spatial queries solve local spatial problem only, such as, range

search, k nearest neighbors (kNN) and closest pairs, and these queries can only re-

trieve point objects. There is no technology for polygon objects indexing in spatial

117



118CHAPTER 6. LOCATING ANOPTIMUMREGIONON FINITE POINT OBJECTS

databases. Another interesting problem of optimum region is to find a region ac-

cording to the distribution os a set of objects. Such queries have not been studied

in spatial databases so far. Whereas the optimum region query is very useful and

significant in many applications. Some examples are listed as follow:

Build a hospital in a community and let most resident reach to the hospital

within 20 mins or 15km.

A company plans to establish a new Wi-Fi base station, the coverage range of

which is 20 meters, to cover most Wi-Fi devices in the company.

A bombardment aircraft looks for a best area to drop a bomb for maximum

destruction.

We give the formal definition of the optimum region in section 6.3

Unlike the typical range search query or other spatial queries, optimum region

needs to construct a (set of) region(s) not stored in the database rather than re-

trieving point objects, the locations of which are stored as a pair of coordinates in

the databases. Therefore all the existing works and indexing approaches on spatial

queries are incapable of processing optimum region queries. The representation of

the structure of the optimum region is also tough, as the boundary of the optimum

region is not a (set of) simple polygon(s) but a (set of) polygon(s) with circular

edges. Those two issues make the optimum region query to a challenging problem.

We concentrates on the optimum region query processing on a finite set of point-

objects 2D Cartesian space, and proposed a novel algorithm, Circle Partition and

Arcs Superposition (CPAS ) based upon the polar coordinates system. CPAS first

plots a circle with a specific radius centered at each object in the given set, and then

divides each circle into a set of arcs which covered by other circles. For each circle

we find an (a set of) overlap(s) of most arcs on this circle. Finally, the arcs covered

by most circles form the boundary of the optimum region including all the points,

any of which can be a center of a circle to cover maximum number of objects in the

given object set.
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The remainder of this chapter is organized as follows: Section 6.2 illustrates

several geometric concepts used in our CPAS algorithms. Section 6.3 defines the

problem formally. Section 6.4 illustrates the algorithm of CPAS in detail. Section

6.5 evaluates the performance by using both synthetic and real data. Section 6.6

summarizes this chapter.

6.2 Preliminary

In our algorithm, we use the polar coordinates to represent the relative position of a

point on a circle with the center in a plane. In this section, we introduce the polar

coordinates system briefly.

The polar coordinate system is a two-dimensional coordinate system where the

position or the coordinates of a point is determined by a distance from a fixed point

at the center of the coordinate space and an angle from a fixed direction. The fixed

point (similar with the origin in a Cartesian coordinate system) is called the pole,

and the reference axis, ray emanating from the pole in the fixed direction is the

polar axis. In a common polar coordinate system, the polar axis points off toward

the right (corresponding to the x-axis in Cartesian coordinates).

The polar coordinates of a point p are denoted as p(r, θ), where r, called radial

coordinate or radius, is the distance of the point from the pole; θ, named as angular

coordinate or polar angle, is the angle measured counterclockwise from the polar

axis to a ray from the pole through p. Fig. 6.1 illustrates a polar coordinate system

with the polar coordinates of a point p(r, θ). As shown in Fig. 6.1, an angular

coordinate is normally expressed in either degree or radians.

The polar coordinate system is extremely useful when the relative position of any

two points in a 2D space can be expressed by the distance and the angle. For many

curves, the polar equations are the simplest way to describe themselves, whereas

their Cartesian expressions are much more intricate; for some of them, such as,

rhodonea curve, the polar equation is the only expression.
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Figure 6.1: A polar coordinate system, an example of polar coordinates of p and the
converting between its Cartesian coordinates and polar coordinates.

6.2.1 Multiple Representation and Uniqueness of Polar Co-

ordinates

Because of the circular nature of the polar coordinate system, each point does not

have a unique polar representation. Adding any number (either positive or negative)

of a round, 360◦ or 2π, to the angular coordinates of a point does not change the

corresponding position. In addition, because the radial coordinate r is a directed

distance, r can be expressed by a negative number, which indicates the opposite

direction to the positive radius. In general, a point p(r, θ) can be represented as an

infinite number of polar coordinates:

(r, θ) = (r, θ ± 2nπ)

or

(r, θ) = (−r, θ ± (2n+ 1)π)
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where n is an integer. While for a particular pair of polar coordinates, there is one

and only one point corresponding to this coordinates in a polar coordinate system.

To make the polar coordinates consistent and uniqueness, we limit r to non-

negative numbers (r ≥ 0) and θ to the interval [0, 360) in this chapter.

6.2.2 Converting between Cartesian and Polar Coordinates

Cartesian coordinates have a aptitude to describe the position of a point in the

entire space. The Cartesian coordinates is also one of the most extensively used

coordinates in spatial database; While polar coordinates focus on describing the

relative position of a point to the pole precisely. So sometimes these two coordinate

systems need to be converted. Fig. 6.1 illustrates the conversion of the coordinates

of p between these two systems.

Cartesian coordinates to polar coordinates: For a given point p(x, y) in a

Cartesian coordinates system, the corresponding polar coordinates r and θ are:

r =
√
x2 + y2

θ = arctan(
y

x
)

Polar coordinates to Cartesian coordinates: For a given point p(r, θ) in a

polar coordinates system, the corresponding cartesian coordinates x and y are:

x = r · cos θ

y = r · sin θ

Due to the simplicity and the circular geometric property of the polar coordinate

system, it is widely employed in mathematics, physics, engineering, navigation,

robotics, and other sciences. In this chapter, we also use polar coordinates of a

point to represent the position of intersections on a circle.
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6.3 Problem and Query Definition

The objective of optimum region search is to find the region where the center of a

circle with a fixed radius can be located to cover most objects of interest (OOIs) in

the given set. The set contained by such circles is called covered set.

Definition 6.3.1. Given a finite set of OOIs, U={o1, o2,..., on−1, on} in R2, and

a specific radius r, then ∀pi ∈ R2, ∃!�(pi, r). If �(pi, r) can cover a subset of U , Oi

then this set is called the covered set of pi, denoted as: Oi={o|d(o, pi) ≤ r}⊆U .

According to this definition, for two different points pi 6=pj, they may have the

same covered set Oi=Oj

In this chapter, we discuss the optimum range query only in a two-dimension

Euclidean space, where the metric is called Euclidean distance. For any two points,

o and p, their Euclidean distance is calculated as:

d(o, p) =
√

(ox − px)2, (oy − py)2

where the subscripts x, y represent the Cartesian coordinates of an object. The

formal description of the optimum region query is as following:

Definition 6.3.2. Given a finite set of OOIs, U={o1, o2,..., on−1, on} in R2, and

a specific radius r, an optimum range query is to find the area(s) including all the

centers of circles with radius r that can cover the maximum number of OOIs in U ,

denote as: RU={pi|d(o, pi) ≤ r}, where o∈Oi⊆U and |Oi|>∀|Oj|, if pj /∈RU .

We need to clarify that for a specific set, U , there exists exactly one result of

the the optimum range query, which may contain several disjoint regions. Table 6.1

illustrates all the notations used in this chapter.
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Table 6.1: Frequently used symbols

Notation Description

R A region in a Cartesian space, R2

oi An object of interest in R2

U The entire set of OOIs

(x, y) The Cartesian coordinates of a point

(r, θ) The polar coordinates of a point

�(p, r) A circle centered at p with r as radius

Ci An infinite set including all the centers of circles covering oi

Oi A set of OOIs covered by �(pi, r)

ρ̂ρ′=[θ, θ′]
An arc from point ρ to ρ′ in a counterclockwise with interval [θ, θ′],
where θ and θ′ represent their angular coordinates

d(o, p) The Euclidean distance between any two points

6.4 Optimum Range Query Processing

In this section, we propose an algorithm, named Circle Partition and Arcs Super-

position (CPAS ) to process the optimum range queries on a set of OOIs in a 2-D

Cartesian space.

Theorem 6.4.1. Given any two points, o, p ∈ R and a specific value of r, if p∈�(o,

r), then o∈�(p, r)

Proof. p∈�(o, r) ⇒ d(o, p)≤r ⇒ o∈�(p, r)

Corollary 6.4.1. Given a set of points, U={o1, o2, ..., on}∈R, an independent

point p and a fix value of r, then O={oi|p∈�(oi, r)}⊆U ⇔ O⊂�(p, r)

Proof. O={oi|p∈�(oi, r)} ⇔ ∀oi∈O have d(oi, p)≤r ⇔
⋃n
i=1oi⊂�(p, r)⇔ O⊂�(p,

r)

In general, to find the center of a circle with a specific radius to cover the max-

imum number of objects in U is that, first, for each object, oi, the location of the

centers, Ci, of all the circles which can cover oi need to be identified. According to

Theorem 6.4.1, the location of these centers are also covered by �(oi, r), then we
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Figure 6.2: The location of all the centers can cover oi, Ci = �(oi, r)

have Ci = �(oi, r) referring to Fig. 6.2. Based on the corollary to Theorem 6.4.1,

as shown in Fig. 6.3(a) and Fig. 6.3(b) if a circle, �(p, r), can cover a set of objects

O={o1, o2, ..., on}, then p ∈
⋂n
i=1Ci. So we summarize that the area intersected by

most Ci is the optimum region, which is bounded by a set of arcs of Ci.

Identifying the optimum region on a finite set includes two main operations,

namely, circle partition and arcs superposition. For each circle generated by an

object, we need to divide it into a set of arcs, one of which is covered by the circle of

another object. All the arcs on a circle may overlap with each another. So for each

circle, we want to find the arc(s) contained by the maximum number of arcs on a

circle and store it (them) as a (set of) new arc(s). We also count the number of the

coverage. Then each circle will keep a (set of) new arc(s) intersected by the arcs

covered by other circles. Finally, all the arcs own the maximum counted number

form the boundary of the optimum region.

6.4.1 Circle Partition

In this step, for each circle, �(oi, r) of an object oi∈ U , a set of arcs covered by

other objects need to be identified.

If any pair of circles, �(oi, r), �(oj, r) intersect, d(oi, oj)<2r, oi(xi, yi), oj(xj,

yj)∈ U , where (x, y) are the coordinates of an object, then �(oi, r), �(oj, r) will
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(a) {p|p∈C1∩C2} (b) {p|p∈C1∩C2∩C3}

Figure 6.3: The area includes all the centers of circles covering a set of O, where
|O|∈{2, 3}

have two intersections (excluding that these two circles are tangent, and oi 6=oj, where

there is one and only one intersection that is the middle point of line oi and oj. We

ignore this case, science it will not generate any optimum region.), denoted as: ρ(xρ,

yρ) and ρ′(xρ′ , yρ′), which can be calculated according the known coordinates of oi,

oj and the specific r.

Lemma 6.4.1. Given any two objects oi(xi, yi), oj(xj, yj) and a specific radius

r, then the coordinates of the intersections, ρ and ρ′, of �(oi, r), �(oj, r) can be

expressed as:

xρ =
xi + xj

2
±

(yi − yj)
√
r2 − (xj−xi)2+(yj−yi)2

4√
((xj − xi)2 + (yj − yi)2

yρ =
yi + yj

2
±

(xj − xi)
√
r2 − (xj−xi)2+(yj−yi)2

4√
((xj − xi)2 + (yj − yi)2

Proof. The proof is based on mathematical and geometrical calculation,the details

refer to 6.4. We omit it here.

If the Cartesian coordinates, ρ(xρ, yρ) of an intersection on �(oi, r) is calculated,

then it needs to be converted to the polar coordinates considering objects oi(xi, yi)
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Figure 6.4: The coordinates calculation of ρ and ρ′

as the pole, in order to record the relative position of the arc on its circle. In other

words, the two intersections and the relevant object represent one and only one

unique arc on the circle centered at this object. As explained in section 3.2, then

the angular coordinate of ρ are:

θ = arctan(
yρ − yi
xρ − xi

)

Since the radial coordinate is given as r in an optimum range query, then the polar

coordinates of ρ is denote as: (r, θ). Assuming the polar coordinates of two inter-

sections between �(oi, r) and �(oj, r) are ρj(r, θ) and ρ′j(r, θ
′) considering oi as the

pole, then the arc on �(oi, r) covered by �(oj, r) can be expressed as an interval

[θ, θ′] or [θ′, θ], which depends on the value of θ and θ′. We can see that the polar

coordinates of the intersections are different on two circles, as illustrated in Fig. 6.5.

The arc of o1 covered by o2 is [15.9◦, 88.5◦], while the corresponding arc on o2 is

[196.2◦, 268.8◦], since the intersections consider different objects, o1 and o2 as the

poles. Moreover, we have the following theorem.
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Figure 6.5: The polar coordinates of ρ and ρ′ on �(o1, r) and �(o2, r)

Theorem 6.4.2. Given any two points oi, oj and specific radius r, �(oi, r) and

�(oj, r) have two intersection points ρ and ρ′, then the central angle ∠ρoiρ′=∠ρojρ′

Proof. It based on trigonometric function, we omit the proof here.

Corollary 6.4.2. Given any two points oi, oj and specific radius r, �(oi, r) and

�(oj, r) intersect at points ρ and ρ′, then the central angle ∠ρoiρ′ = ∠ρojρ′ < 180◦

Proof. Based on the sum of the inter angle of a quadrilateral equals 360◦ and The-

orem 6.4.2, we have:

∠ρoiρ′ + ∠ρojρ′ + ∠oiρ′oj + ∠oiρoj = 360◦

∠ρoiρ′ = ∠ρojρ′

⇒
2∠ρoiρ′ = 2∠ρojρ′ = 360◦ − (∠oiρ′oj + ∠oiρoj)⇒

∠ρoiρ′ = ∠ρojρ′ = 180◦ − 1
2
(∠oiρ′oj + ∠oiρoj) < 180◦

In our algorithm, the angular range of a circle is represented as [0◦, 360◦), if an

angular coordinate of the intersection point is not in [0◦, 360◦), we need to adjust

it by adding 360◦.
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Figure 6.6: The interval crosses over 0◦

However, the arc crosses over 0◦ will arise a problem. See Fig. 6.6 as an example,

the angular coordinates of ρ2 and ρ′2 are 350.1◦ and 81.9◦ on �(o1, r), based upon

the common definition of an interval, the range is [81.9◦, 350.1◦] which is not the

factual result according to Fig. 6.6; While if we use [350.1◦, 81.9◦], it is inconsistent

with the mathematic definition of an interval, as start point is greater than the end

point. To solve this problem, we define this kind of arcs as a cross-over arc.

Definition 6.4.1. Given any two points oi, oj and specific radius r, �(oi, r) and

�(oj, r) intersect at points ρ(r, θ) and ρ′(r, θ′), a cross-over arc is the arc having

|θ-θ′| > 180◦, whose interval called cross-over interval can be expressed as:

[0◦,min(θ, θ′)] ∩ [max(θ, θ′), 360◦)

Although we need to check all the pairs of the objects in U , most of the pairs

will be pruned if the d(oi, oj)≥2r. With all the theories illustrated in this step, each

circle centered at an object of interest will be participated into a set of arcs, the

interval of which is represented in a uniform format, [θ, θ′] where θ>θ′, from θ>
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to θ′ in the counterclockwise. All the arcs on a circle might have some overlapped

intervals with each other, which produce an (a set of) interval(s) covered by most

arcs on a circle. In the next phase, we will extract this sort of intervals on each

circle.

Algorithm 11: Circle Partition. CP(U , r)

Input: U={o1, o2, ..., on} and r
Output: The set of arc sets A={A1, A2, ..., Ai}

1 for (i=0; i≤|U |; i++) do
2 for (j=0; j≤|U |; j++) do
3 if (i 6= j) and dis(oi, oj)<2r then
4 ρ(x, y) ← �(oi, r)∩�(oj, r);
5 ρ′(x′, y′) ← �(oi, r)∩�(oj, r);
6 ρ(r, θ) ← ρ(x, y);
7 ρ′(r, θ′) ← ρ′(x′, y′);
8 if |θ-θ′| > 180◦ then
9 Add [0◦, min(θ, θ′)] into Ai;

10 Add [max(θ, θ′), 360◦) into Ai;

11 else
12 Add [min(θ, θ′), max(θ, θ′)] into Ai;
13 end

14 else
15 Continue;
16 end
17 return Ai;

18 end

19 end

6.4.2 Arcs Superposition

In this step, for each circle, the intervals covered by most other circles need to be

identified according to the overlaps of the arcs generated in the previous step. We

start the discussion from any two arcs, and then we expand it to multiple arcs.

Assuming ρ̂iρ′i and ρ̂jρ′j are two arcs covered by �(oi, r) and �(oj, r) on a circle,

then the arc covered by both circles is contained by both ρ̂iρ′i and ρ̂jρ′j. See Fig.

6.7 as an example. We suppose that [θi, θ
′
i] and [θj, θ

′
j] are the intervals of ρ̂iρ′i and

ρ̂jρ′j (the number of intervals could be more, if either ρ̂iρ′i or ρ̂jρ′j is a cross-over

arc), then the interval of the arc covered by both circles is [θi, θ
′
i] ∩ [θj, θ

′
j]. Fig. 6.8
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Figure 6.7: The superposition of two arcs

shows all the possible results of the superposition of any two arcs, in which the arcs

are abstracted as straight lines. The new interval will be recorded according to the

values of θi, θ
′
i, θj and θ′j, excluding case 4 and 6 in Fig. 6.8. For case 4 and 6, we

will keep arcs ρ̂iρ′i and ρ̂jρ′j as the arcs covered by most circles, since they covered by

the same number of circles, and no other arc is covered by more circles than them.

Now we explain the arcs superposition in a more universal scenario. For each

circle �(oi, r), A is the set including all the arcs generated by �(oi, r) with others

Figure 6.8: All the cases of two arcs superposition
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circles, A={ρ̂1ρ′1, ρ̂2ρ′2, ..., ρ̂nρ′n}. Then we want to find the arc which is covered by

the maximum circles intersecting with �(oi, r) and we define this arc as:

Definition 6.4.2. S is a subset of A, S⊆A, |S|=m and ∀ρ̂lρ′l∈S satisfy
⋂l=1
m ρ̂lρ′l 6=∅,

and @S ′⊂A, has |S ′|=k > m and ∀ρ̂lρ′l∈S ′ satisfying
⋂l=1
k ρ̂lρ′l 6=∅, then the arc

m̂ax=
⋂l=1
m ρ̂lρ′l is called the maximum arc, the interval of is called maximum

interval

Intuitively, the maximum arc is included by most arcs on a circle. To find the

interval of m̂ax, we propose an algorithm named arcs superposition, AS (). First of

all, a set of intervals in A, is accepted from the previous step. All the arcs in A are

assigned a counter indicating that how many times it is covered. The initiate value

is 1, since each arc is covered by the circle containing itself. Then A is traversed to

calculate all the intervals generated by each pair of arcs, and store them into a new

list Inew. AS() is invoked recursively on the new list until any two arcs do not have

a superposition, The counter increases by 1 in each recursion. Fig. 6.9 illustrates

an example of multiple arcs superposition for ρ̂1ρ′1, in reality, we also need to check

ρ̂2ρ′2 ρ̂5ρ
′
5 similarly. The pseudo code of Arc Superposition algorithm is shown in

Algorithm 12.

6.4.3 Optimum Range Identification

Based on the algorithms introduced above, identifying the boundary of the optimum

range is quite straightforward. After the step of circle partition, each circle relevant

with an object of interest has a set of arcs, whereby an (a set of) arc(s) covered by

most other circles, maximum arc(s), on each circle can be found in the step of arcs

superposition. So finally, we only need to retrieve all the maximum arcs having the

greatest count number.

Lemma 6.4.2. The boundary of the optimum region is a (set of) closed polygon(s)

with circular edges. Only all the maximum arcs having the largest count number

form the boundary.
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Figure 6.9: Multiple arcs superposition for ρ̂1ρ′1

Algorithm 12: Arcs Superposition, AS(A)

Input: A
Output: m̂axA

1 List<Arc> Inew = new LinkedList<Arc>();
2 for (i=0; i≤|A|; i++) do
3 for (j=i+1; j≤|A|; j++) do

4 if (superposition(ρ̂iρ′i, ρ̂jρ
′
j)) then

5 Add superposition(ρ̂iρ′i, ρ̂jρ
′
j) into Inew;

6 else
7 Continue;
8 end

9 end

10 end
11 if Inew 6=∅ then
12 A=Inew;
13 A.counter+=1;
14 AS(A);

15 else
16 return m̂axA=A;
17 end
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Proof. If an arc ρ̂jρ′j on �(oi, r) is covered by �(oj, r), then there has to be an

arc ρ̂iρ′i on �(oj, r) covered by �(oi, r) because of the mutual coverage property

of circles. These two arcs form a closed polygon since they share the same two

intersections. Similarly, if an arc ρ̂Oρ′O on �(oi, r) is covered by a set of circles

associate with O={o1, o2, ..., on} and oi∈O, then there must exist at least one oj∈O

that has an arc ρ̂Oρ′O also covered by the circles generated by O, and these two arcs

formed a closed polygon.

Fig. 6.10 shows a result of optimum region which includes two areas bounded

by the thick lines. A circle centered in these two areas with r as radius can cover o1,

o2, o3, o5 or o2, o3, o4, o5. We can see that even �(o3, r) covers both area, but the

count number of its max arcs is less than the greatest count number, so any arcs of

�(o3, r) will not be involved in forming the boundary. Which means that not all

of the objects can be covered by the optimum region are involved in forming the

optimum region.

The optimum region is not the simple overlap of all the circles, which may be

an empty set normally; While the optimum region is always existing by chosen the

best location among a set of objects. As shown in Fig. 6.10, although o1 to o5 do

not have any shared area, the optimum region still can be found.

Algorithm 13: CPAS(U , r)

Input: U and r
Output: Optimum region

1 List<Arc[ ] > A = new LinkedList<Arc[ ] >();
2 A = CP(U , r);
3 for (oi:U) do
4 m̂axA[i]=AS(A[i]);
5 end
6 return optimum region ← m̂axA[i] has max( m̂axA[i].counter);
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Figure 6.10: An example of optimum region including two areas

6.5 Performance Evaluation

In this section, we evaluate the performance of the two main steps, circle partition

and arcs superposition, of CPAS in term of CPU time, I/O access and number of

objects covered by the optimum region. First we describe the parameters of the

experiments, followed by the results and the discussion.

6.5.1 Experiment Setup and Datasets

All the experiments were conducted on Intel(R) Core(TM)2 Duo CPU T9600@2.8GHz

with 4 GBytes memories. All the algorithms were implemented in Java and executed

on Windows 7 64-bits. We use two sorts of data sets, random data and clustered

data. Table 6.2 shows the parameters in our experiments. Fig.6.11 shows the patter

of the 5000 OOIs distributing randomly and clustered. The random data patter,

such as Fig.6.11(a), is used to estimate the performance of CPAS on uniform dis-

tributed data while clustered pattern, such as Fig. 6.11(b), is more representative.
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(a) 5000 Objects of Interest on the Random
Pattern

(b) 5000 Objects of Interest on the Clustered
Pattern

Figure 6.11: The patter of random and clustered data with 5000 objects

Table 6.2: System parameters for experiments

Parameter Range

Number of objects of interest (× 100) 1, 5, 10, 20, 50
The coverage capacity of the query 5, 10, 15, 20
The threshold distance (Clustered data) 30
The map size 1280 × 760

6.5.2 Experimental Results

For each experiment, the performance is conducted on three metrics, namely, CPU

time, I/O access and the cardinality of the OOI set which can be covered by the

query with the specific radius. We also estimate the proportion of the two steps,

circle partition and arcs superposition, of our algorithm on these three metiers and

we can observe that they are effected by different factors. We perform our algorithm

100 times on each data set and take the average as the result.

CPU Time:

Table 6.3 and Table 6.4 compare the response time of processing an optimum

region query on uniformed and clustered data sets. By observing the CPU time

of circle partition (CP) and arcs superposition (AS), the variation of the radius r

does not effect the response time of CP seriously, as the extension of r may only

involve a few more OOIs to partite the circle generated by an OOI and due to the
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Table 6.3: CPU Time comparison of CPAS on random data

] 5000 2000 1000 500 100

r CP AS CP AS CP AS CP AS CP AS

5 34.904 0.776 5.426 0.273 0.133 1.266 0.311 0.037 0.0133 0.00057

10 37.072 0.658 5.674 0.077 1.399 0.051 0.33 0.018 0.0135 0.00041

15 33.945 17.388 5.579 0.374 1.34 0.153 0.331 0.022 0.01356 0.00044

20 34.508 247.27 5.58 1.313 1.351 0.053 0.334 0.024 0.0136 0.00035

Table 6.4: CPU Time comparison of CPAS on clustered data

] 5000 2000 1000 500 100

r CP AS CP AS CP AS CP AS CP AS

5 32.35 5.432 6 0.026 1.31 0.158 0.355 0.089 0.01389 0.00011

10 36.55 49.811 6.58 0.284 1.34 0.389 0.34 0.478 0.01396 0.00604

15 35.2 1553.156 5.36 24.07 1.4 3.335 0.33 17.376 0.01429 0.06071

20 33.2 23161.048 5.58 227.502 1.41 30.467 0.34 194.829 0.01906 0.23394

low computation cost of CP, the sightly increasing involving OOIs will not effect

the performance of CP significantly. Intuitively, the clustered patter should have

lower response time than random patter. Whereas, based on the experiment result,

the effecting is very limited, due to the high performance of CP. So the response

time of CP mainly relies on cardinality of the entire set of OOIs. While the CPU

time of arcs superposition (AS) is proportional to the specified radius, cardinality of

set U and the distribution of OOIs. The variation of any of these three parameters

will effect the performance of AS considerably, and AS performs much better on the

uniformed data than the clustered data.

I/O Access

Table 6.5 and Table 6.6 show the I/O access comparison of CPAS on random

and clustered data for a set of optimum region queries. These results on CP and

AS are very similar with the CPU time discussed above. AS is the main cost of

CPAS algorithm on I/O access as well and it works better on the uniformed data

than clustered data.
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Table 6.5: I/O Access comparison of CPAS on random data

] 5000 2000 1000 500 100

r CP AS CP AS CP AS CP AS CP AS

5 805.16 2.65 128.49 0.18 32.57 0.02 12.031 0.003 0.492 0.002

10 807.52 157.27 128.76 3.19 33.11 0.22 8.43 0.03 0.492 0.001

15 809.7 5526.21 130.04 41.83 32.43 1.79 8.33 0.11 0.342 0.003

20 815.1 127928.37 130.39 461.95 32.78 10.75 8.28 0.47 0.335 0.01

Table 6.6: I/O Access comparison of CPAS on clustered data

] 5000 2000 1000 500 100

r CP AS CP AS CP AS CP AS CP AS

5 802.81 175.13 130.5 3.71 32.48 0.84 8.29 0.97 0.35 0.08

10 807.82 27344.91 129.66 375.88 32.8 81.74 8.38 218.22 0.39 1.51

15 813.4 835375.88 131.33 13981.48 33.21 1842.01 8.75 9478.03 0.42 36.25

20 819.12 10250399.25 131.89 130305.1 33.56 17230.54 9.03 104160.4 0.43 126.61

Cardinality of the Result Set

Fig. 6.12(a)- Fig. 6.12(e) show how many OOIs in the entire set U can be covered

by the query point with the specified radius. Obliviously, clustered data will have

a large result set than the uniformed data. For the uniformed data, the cardinality

of the result set is totally relies on |U |, and it is in proportion to |U |; While for

the clustered data, the cardinality of the result set is not only depends on |U |, but

also relevant with the distribution of OOIs in U . In other words, it depends on the

densest cluster.

6.6 Summary

In this chapter, we propose a novel spatial query, named, optimum region query that

locate an (a set of) area(s) containing all the centers of circles with a specific radius

covering most objects in the given set. We propose an algorithm, Circle Partition

and Arcs Superposition (CPAS ) to process optimum region queries, whereby the

optimum region queries can be processed efficiently in the most circumstances.
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(a) |U | =100 (b) |U | =500

(c) |U | =1000 (d) |U | =2000

(e) |U | =5000

Figure 6.12: Cardinality of OOIs set covered by the query point



Chapter 7

Final Remarks

7.1 Contributions

In this section, we emphasize the contributions of this thesis again. In the first part,

we studied several novel point-expected range queries extensively to improve the

computation cost and reduce the communication cost. In the second part, we are

the first to propose region-expected queries as well as discuss the techniques for such

sort of range queries in spatial databases to enrich the diversity of spatial queries.

The contributions are briefly described as follow.

7.1.1 Point-Expected Range Queries

Processing range queries in constrained circumstances: in this the-

sis, we propose three novel constrained range search queries and an approach

for each query based on network Voronoi diagram, which makes the range

search query processing more flexible to satisfy various requirements in differ-

ent circumstances. The performances of these these algorithms are analyzed

theoretically and evaluated experimentally. The results show that our ap-

proaches can process constrained range search queries very efficiently.

Processing continuous range queries: we study the problem of contin-

uously monitoring moving range queries on a set of data objects that do not

139
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change their locations. Our proposed technique is based on network Voronoi

diagram, which is a spatial decomposition of a metric space. Our algorithm re-

duces the computation and communication cost because it does not require to

recompute the results as long as the query does not move out from a Voronoi

cell. We conduct extensive experimental analysis to study the effectiveness

of our network Voronoi based approach. Moreover, the experimental results

demonstrate that the proposed approach outperforms its competitors.

Processing range queries on moving objects : the spatial queries of mov-

ing objects monitoring is restricted by frequent updates, as a result, processing

spatial queries over moving objects becomes a tough task, especially in road

networks. Our technique stores the motion of the moving objects as a function

of time instead of its position to achieve equilibrium between the updating and

communication cost, and the accuracy of the location of moving objects. By

experimental studies, we show that our proposed range monitoring algorithm

can process moving objects monitoring range queries efficiently.

7.1.2 Region-Expected Queries

kNN Region Query Processing : none of existing spatial queries can find

or retrieve regions closer to a set of specific objects than to any other objects,

even though this is an important problem in spatial databases and practical

applications. In this thesis, we propose a novel query, k Nearest Neighbor re-

gion searching, which retrieves a region where every point considers specified

k objects as the k nearest neighbors. In addition, we propose two algorithms,

VDk-kR and DT -kR based on high-order (kth-order) Voronoi diagram and

Delaunay triangulation respectively for it. We discuss the kNN region search-

ing in a 2D Cartesian space, but it can extend to a higher dimensional space.

An extensive theoretical and empirical study was conducted to compare and

evaluate the performance of these two algorithms. The study showed that

VDk-kR and DT -kR outperforms the other ones in different scenarios with
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respect to k, the number of objects in the entire set U , and the number of

queries to be processed.

Optimum Region Query Processing : another region-expected problem

is that database users might be interested in find a region that can cover max-

imum objects among a set of objects with a specific radius r. We propose

such a query in this thesis, named optimum region. In addition, we developed

an algorithm, Circle Partition and Arcs Superposition (CPAS ), to solve this

problem. An extensive empirical study was conducted to evaluate the per-

formance of CPAS. The results showed that CPAS can process the optimum

region queries efficiently in most of the circumstances.

7.2 Conclusions

In this thesis, we present efficient techniques to answer various range/region-related

spatial queries under different circumstances. Chapter 3 and 4 present our research

on finding point objects within a specific region in constrained or dynamic cir-

cumstances. In Chapter 5 and Chapter 6, we illustrate our approaches to answer

region-expected queries, including, kNN region queries and optimum region queries.

Below are the details.

In chapter 3, we study the problems of constrained range searching in spatial net-

works. We design some variations of Voronoi diagram as the underlying frameworks

of our proposed approaches, which reduce the computation cost remarkably. We pro-

pose three approaches, TCR, RCR, kCR to process these constrained queries. We

conduct a set of experiments extensively on each approach and the results demon-

strate that they can process the corresponding range queries efficiently.

In chapter 4, we introduce two technologies to efficiently process distance based

moving range queries, and monitor moving objects in spatial networks respectively.

Our proposed approach does not only significantly improve the computation time

but also reduces the communication cost for client-server architectures, as we only

update the data if the range search result might be effected by the moving objects
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or the query point itself. Moreover, we design a structure to store the movement

of spatial objects as a function, which reduce the storage and communication cost

significantly.

In chapter 5, we propose a region-expected query for a small set of specific objects

among the entire set, named k nearest neighbors region. We illustrate two algorithms

based on kth-order Voronoi diagram and Delaunay triangulation for this sort of

queries. We conduct a rigorous theoretical analysis to study the preciseness and

effectiveness of our algorithms. The theoretical results are verified by an extensive

experimental study. The experiment results also demonstrate that the proposed

approaches for Euclidean distance based kNN region queries performs well. We

also show that the kth-order Voronoi diagram based algorithm and the Delaunay

triangulation based algorithm have advantages in different circumstances.

In chapter 6, we introduce another region-expected query, optimum region query,

which finds the area including all the centers of such circles that can covering max-

imum number of objects in the entire set. We present a novel algorithm based on

polar coordinates of each point. We are also first to study the performance of opti-

mum region query. The expected performance of the proposed algorithm is optimal

when the entire set is a not large. Extensive experiments illustrate the efficiency of

our proposed algorithm.

7.3 Open Problems

In chapter 3, we propose three constrained region queries and corresponding ap-

proaches. While for different constrained queries, we have to use the corresponding

algorithm to process them. Ideally, a system should automatically determine which

algorithm need to be retrieved, but with the swift blossom of LBS and spatial

database, there has to be more and more new queries demanded by the clients and

users. As of a result, the underlying application will be more and more complex

and difficult to be developed and maintained. Therefore, a unified algorithm for
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constrained range queries is required, which has to be flexible to handle various of

range queries in spatial databases.

In chapter 4, we design two algorithms for moving range query and moving

objects. But our algorithm only works when either query or objects of interest

are static. The moving range query on moving objects of interest is still an open

problem.

We analyze the performance of V Dk-kR in chapter 5, and we claim that the

generation of the underlying structure, kth-order VD is expensive. Thus, we opti-

mize the naive V Dk-kR by constructing kth-order VD locally. But intuitively, the

domain of local kth-order VD is not optimal, which is another open problem.

In chapter 5, we present an algorithm for optimum region queries. We analyze

the performance of steps, circle partition and arcs superposition. We find that most

of the computation cost is on arcs superposition. We feel that identify the arcs

covered by maximum number of other circles can be optimized.

7.4 Future Work

In this section, we propose several possible directions for future work.

Query processing in P2P and Ad-hoc networks: In this thesis, all al-

gorithms and queries are based for client-server architectures. Whereas, it

is interesting to adjust our proposed algorithms for P2P based networks or

Ad-hoc networks [Muh09]. As our algorithms outperform existing works in

most of the circumstances, we conjecture that Voronoi based algorithms in

P2P or Ad-hoc networks will outperform the existing techniques as well. We

also would like to investigate whether it is possible to let each peer handle

a portion of Voronoi diagrams, which may reduce the load and computation

cost of the server seriously. Another potential problem is how to let moving

objects or queries cooperate to manage the relative positions in the P2P or

Ad-hoc networks.
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Spatial indexes for non-point objects: All the existing spatial indexes are

constructed for point object in Euclidean distance, where the point objects are

the abstraction of real-entities the extent of which can be ignored; While for

non-point spatial objects, such as, a river, or an area with a specific vegetation,

no existing algorithm can create a spatial index on them. A naive solution

is that simulate any polygon as a rectangle and then constructed a R-Tree

[Gut84] index on it. But this approach may extend the boundary of non-point

object greatly, such as a river will be simulated as a rectangle, which causes

the search result very inaccurate. Although we proposed many algorithms for

polygon objects, but they are still lack of support on the bottom level.

Spatial queries in a high dimensional space: Most of the existing works

of spatial query concentrate on the processing in a 2D space. The spatial

query processing in a high dimensional space, e.g., 3D space, land surface,

inside space of a building, has only become a hit ever since the past few

year [STX08,XSP09]. It is a interesting problem to investigate how the higher

dimensional Voronoi diagram or other geometric theories would help to im-

prove the performance of the spatial query processing.



Appendix A

Fundamental Spatial Operations

In this appendix, we introduce the fundamental spatial operations. Let o1 and o2

be two spatial data objects (points, lines or regions), then we have the following

operations where the topological relationship operations are illustrated in Fig. A.1

CONTAINS(o1, o2): Checks if o1 have the CONTAINS topological relation-

ship with o2, if yes return true.

COVERS (o1, o2): Checks if o1 have the COVERS topological relationship

with o2, if yes return true.

INTERSECTS (o1, o2):Checks if o1 have the INTERSECTS topological

relationship with o2, if yes return true.

TOUCH (o1, o2): Checks if o1 have the TOUCH topological relationship

with o2, if yes return true.

EQUAL (o1, o2): Checks if o1 have the EQUAL topological relationship with

o2, if yes return true.

DISJOINT (o1, o2): Checks if o1 have the DISJOINT topological relation-

ship with o2, if yes return true.

LENGTH (o1): Return the length of a spatial object o1 (only for line object).

AREA(o1): Return the area of a spatial object o1 (only for polygon object).

DISTANCE(o1, o2): Return the distance between two spatial objects o1, o2.

If o1 and/or o2 are not points then the distance function relies on the definition
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Figure A.1: Fundamental topological spatial relationship

of such distance. For example, a possible definition of the distance between

two polygon objects is the minimum distance between them.

WITHIN-DISTANCE(o1, o2, dis): Checks if o1 and o2 are within a specific

distance dis, if yes return true.
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Simulation Source Codes

B.1 Simulation of Point-Expected Queries

Point.Java

1 package classes;

2 import java.util.ArrayList;

3 public class Point {

4 boolean iostatus=true;

5 ArrayList<Integer> adjacents=new ArrayList<Integer>();

6 ArrayList<ArrayList> others=new ArrayList<ArrayList>();

7 int id=0;

8 double distToQ=0;

9 boolean added=false;

10 public Point(){}

11 public Point

12 (int id , ArrayList<Integer> adjacents, ArrayList<ArrayList>others){

13 this. id=id;

14 this.adjacents=adjacents;

15 this.others=others;

16 }

17 public void setIOStatus(boolean iostatus){this.iostatus=iostatus;}

18 public void setDistToQ(double distToQ){this.distToQ=distToQ;}

19 public ArrayList<Integer> getAdjacents(){return adjacents;}

20 public ArrayList<ArrayList> getOthers() {return others;}
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21 public boolean getIOStatus(){return iostatus;}

22 public int getID(){return id;}

23 public double getDistToQ(){return distToQ;}

24 public void setAdded(boolean added){this.added=added;}

25 public boolean getAdded(){return added;}

26 public void printPoint(){

27 System.out.println("ID: "+id);

28 System.out.println("Adjacents: "+adjacents);

29 System.out.println("Others: "+others);

30 System.out.println("IOStatus: "+iostatus);

31 System.out.println("Distance To Q: "+distToQ);

32 }

33 }

NVD. java

1 package classes;

2 import java.io.BufferedReader;

3 import java.io.FileReader;

4 import java.io.IOException;

5 import java.util.ArrayList;

6 public class NVD {

7 ArrayList<Point> generator=new ArrayList<Point>();

8 ArrayList<ArrayList> ga=new ArrayList<ArrayList>();

9 ArrayList<ArrayList> go=new ArrayList<ArrayList>();

10 public NVD(int noGens, FileReader fr1, FileReader fr2)

11 throws IOException{

12 readAdjacents(fr1);

13 readOthers(fr2);

14 for(int i=0; i<noGens; i++){

15 int id=i+1;

16 generator.add(new Point(id,findAdjacents(id), findOthers(id)));

17 }

18 }

19 public void readAdjacents(FileReader fr1) throws IOException{

20 BufferedReader br=new BufferedReader(fr1);
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21 String s ;

22 while ((s=br.readLine())!=null){

23 String f [] = s. split ("\t");

24 ArrayList<Integer> record=new ArrayList<Integer>();

25 record.add(Integer.parseInt(f [0]) ) ;

26 record.add(Integer.parseInt(f [1]) ) ;

27 ga.add(record);

28 }

29 br. close () ;

30 }

31 public ArrayList<Integer> findAdjacents(int id){

32 ArrayList<Integer> adjacents=new ArrayList<Integer>();

33 for (int i=0 ; i<ga.size() ; i++){

34 int a=(Integer)ga.get(i ) .get(0) ;

35 if (a==id) adjacents.add((Integer)ga.get(i) .get(1)) ;

36 }

37 return adjacents;

38 }

39 public void readOthers(FileReader fr2) throws IOException{

40 BufferedReader br=new BufferedReader(fr2);

41 String s ;

42 while ((s=br.readLine())!=null){

43 String f [] = s. split ("\t");

44 ArrayList record=new ArrayList();

45 record.add(Integer.parseInt(f [0]) ) ;

46 record.add(Integer.parseInt(f [1]) ) ;

47 record.add(Double.parseDouble(f[2]));

48 go.add(record);

49 }

50 br. close () ;

51 }

52 public ArrayList<ArrayList> findOthers(int id){

53 ArrayList<ArrayList> others=new ArrayList<ArrayList>();

54 for (int i=0 ; i<go.size() ; i++){

55 int a=(Integer)go.get(i ) .get(0) ;
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56 if (a==id) {

57 ArrayList record=new ArrayList();

58 record.add((Integer)go.get( i ) .get(1)) ;

59 record.add((Double)go.get(i).get(2)) ;

60 others.add(record);

61 }

62 }

63 return others;

64 }

65 public void printGens(){

66 for (int i=0; i<generator.size() ; i++){

67 System.out.println("PID "+generator.get(i).getID());

68 System.out.println("PID "+generator.get(i).getAdjacents());

69 System.out.println("PID "+generator.get(i).getOthers());

70 }

71 }

72 public ArrayList<Point> getGens(){

73 return generator;

74 }

75 }

TCR

1 package vrs;

2 import classes.NVD;

3 import classes.Point;

4 import java.io.FileNotFoundException;

5 import java.io.FileReader;

6 import java.io.IOException;

7 import java.util.ArrayList;

8 import java.util.LinkedHashMap;

9 import java.util.List ;

10 import java.util.Map;

11 import java.util.Random;

12 import java.util.TreeSet;

13 public class Main {
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14 static NVD aNVD=null;

15 public static void main(String[] args) throws FileNotFoundException, IOException {

16 for(int looptimes=0; looptimes<=100; looptimes++)

17 {

18 FileReader fr1=new FileReader("D:/GIS Performance/TCR/data/20_Adjacent.

txt");

19 FileReader fr2=new FileReader("D:/GIS Performance/TCR/data/20

_Distance_Time_M_Cogestion.txt");

20 int noGens=20;

21 aNVD=new NVD(noGens,fr1,fr2);

22 Point q=generateQueryPoint(noGens);

23 double e=20;

24 double t=0.5;

25 ArrayList<Point> distanceQpre=VRSDistance(q, e);

26 ArrayList<Point> timeQpre=VRSTime(q, t);

27 System.out.println(distanceQpre.size()) ;

28 System.out.println(timeQpre.size()) ;

29 ArrayList<Point> result=getIntersection(distanceQpre, timeQpre);

30 System.out.println("**** FINAL RESULT ****");

31 for(int i=0; i<result. size () ; i++){

32 result .get( i ) .printPoint() ;

33 }

34 }

35 }

36 public static ArrayList<Point> getIntersection(ArrayList<Point> a, ArrayList<Point> b)

{

37 ArrayList<Point> result=new ArrayList<Point>();

38 for(int i=0; i<a.size() ; i++){

39 if (b.contains(a.get( i ))) result .add(a.get(i )) ;

40 }

41 return result;

42 }

43 public static ArrayList<Point> VRSDistance(Point q, double e){

44 q.printPoint() ;

45 System.out.println("***********");
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46 ArrayList<Point> Qpre= new ArrayList<Point>();

47 Qpre.add(q);

48 addToQpre(q, Qpre);

49 sortQpre(q, Qpre, true);

50 for (int i=0; i<Qpre.size(); i++){

51 if (Qpre.get(i) .getDistToQ()>e){Qpre.get(i).setIOStatus(false);}

52 }

53 Point inPoint=new Point();

54 for (int i=0; i<Qpre.size(); i++){

55 if (Qpre.get(i) .getIOStatus()==true){

56 inPoint=Qpre.get(i);

57 break;

58 }

59 }

60 int size=0;

61 do{

62 size=Qpre.size();

63 for (int i=0; i<Qpre.size(); i++){

64 if (Qpre.get(i) .getIOStatus()==true && Qpre.get(i).getAdded()==false){

65 addToQpre(Qpre.get(i), Qpre);

66 Qpre.get(i) .setAdded(true);

67 }

68 }

69 sortQpre(q, Qpre, true);

70 int inIndex=Qpre.indexOf(inPoint);

71 for(int i=inIndex−1; i>−1; i−−) {

72 if (Qpre.get(i) .getDistToQ()>e){

73 inPoint=Qpre.get(i+1);

74 break;

75 }

76 }

77 inIndex=Qpre.indexOf(inPoint);

78 for (int i=0; i<inIndex; i++){

79 Qpre.get(i) .setIOStatus(false);

80 }
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81 }while(Qpre.size()!=size);

82 ArrayList<Point>result=new ArrayList<Point>();

83 for(int i=0; i<Qpre.size(); i++)

84 if (Qpre.get(i) .getIOStatus()==true){

85 Qpre.get(i) .printPoint() ;

86 result .add(Qpre.get(i));

87 }

88 return result;

89 }

90 public static ArrayList<Point> VRSTime(Point q, double t){

91 System.out.println("***********");

92 ArrayList<Point> Qpre= new ArrayList<Point>();

93 Qpre.add(q);

94 addToQpre(q, Qpre);

95 sortQpre(q, Qpre, false);

96 for (int i=0; i<Qpre.size(); i++){

97 if (Qpre.get(i) .getTimeToQ()>t){Qpre.get(i).setIOStatus(false);}

98 }

99 Point inPoint=new Point();

100 for (int i=0; i<Qpre.size(); i++){

101 if (Qpre.get(i) .getIOStatus()==true){

102 inPoint=Qpre.get(i);

103 break;

104 }

105 }

106 int size=0;

107 do{

108 size=Qpre.size();

109 for (int i=0; i<Qpre.size(); i++){

110 if (Qpre.get(i) .getIOStatus()==true && Qpre.get(i).getAdded()==false){

111 addToQpre(Qpre.get(i), Qpre);

112 Qpre.get(i) .setAdded(true);

113 }

114 }

115 sortQpre(q, Qpre, false);
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116 int inIndex=Qpre.indexOf(inPoint);

117 for(int i=inIndex−1; i>−1; i−−) {

118 if (Qpre.get(i) .getTimeToQ()>t){

119 inPoint=Qpre.get(i+1);

120 break;

121 }

122 }

123 inIndex=Qpre.indexOf(inPoint);

124 for (int i=0; i<inIndex; i++){

125 Qpre.get(i) .setIOStatus(false);

126 }

127 }while(Qpre.size()!=size);

128 ArrayList<Point>result=new ArrayList<Point>();

129 for(int i=0; i<Qpre.size(); i++)

130 if (Qpre.get(i) .getIOStatus()==true){

131 Qpre.get(i) .printPoint() ;

132 result .add(Qpre.get(i));

133 }

134 return result;

135 }

136 public static void addToQpre(Point q, ArrayList<Point> Qpre){

137 for(int i=0; i<q.getAdjacents().size() ; i++) {

138 int id1=q.getAdjacents().get(i) ;

139 for(int j=0; j<aNVD.getGens().size(); j++){

140 int id2=aNVD.getGens().get(j).getID();

141 if (id1==id2)Qpre.add(aNVD.getGens().get(j));

142 }

143 }

144 }

145 public static Point generateQueryPoint(int noGens){

146 Random r=new Random();

147 int id=r.nextInt(noGens);

148 return aNVD.getGens().get(id);

149 }

150 public static void sortQpre(Point q, ArrayList<Point> Qpre, boolean distance){
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151 Map aMap=new LinkedHashMap();

152 for(int i=0; i<Qpre.size(); i++){

153 aMap.put(Qpre.get(i),getDist(q,Qpre.get(i), distance)) ;

154 }

155 List mapKeys = new ArrayList(aMap.keySet());

156 List mapValues = new ArrayList(aMap.values());

157 TreeSet sortedSet = new TreeSet(mapValues);

158 Object[] sortedArray = sortedSet.toArray();

159 Qpre.clear() ;

160

161 for(int i=sortedArray.length; i>0;){

162 double d=(Double)sortedArray[−−i];

163 Point a=(Point)mapKeys.get(mapValues.indexOf(d));

164 if (distance)a.setDistToQ(d);

165 else a.setTimeToQ(d);

166 Qpre.add(a);

167 }

168 }

169 public static double getDist(Point a, Point b, boolean distance){

170

171 for(int i=0; i<aNVD.getGens().size(); i++){

172 int id1=aNVD.getGens().get(i).getID();

173 if (id1==a.getID()){

174 for(int j=0; j<aNVD.getGens().get(i).getOthers().size(); j++)

175 {

176 int id2=(Integer)aNVD.getGens().get(i).getOthers().get(j).get(0) ;

177 if (id2==b.getID()&&distance) return (Double)aNVD.getGens().get(i).

getOthers().get(j).get(1);

178 if (id2==b.getID()&&!distance) return (Double)aNVD.getGens().get(i).

getOthers().get(j).get(2);

179 }

180 }

181 }

182 return 0;

183 }
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184 }

RCR

1 package vrs;

2 import classes.NVD;

3 import classes.Point;

4 import java.io.FileNotFoundException;

5 import java.io.FileReader;

6 import java.io.IOException;

7 import java.util.ArrayList;

8 import java.util.Collections ;

9 import java.util.LinkedHashMap;

10 import java.util.List ;

11 import java.util.Map;

12 import java.util.Random;

13 import java.util.TreeSet;

14 public class Main {

15 static NVD aNVD=null;

16 public static void main(String[] args) throws FileNotFoundException, IOException {

17 for(int looptime=0; looptime<1000; looptime++){

18 FileReader fr1=new FileReader("D:/GIS Performance/RCR/data/20-RCR_Adjacent.

txt");

19 FileReader fr2=new FileReader("D:/GIS Performance/RCR/data/20-RCR_4_Inside.

txt");

20 FileReader fr3=new FileReader("D:/GIS Performance/RCR/data/20-RCR_Distance.

txt");

21 int noGens=5;

22 aNVD=new NVD(noGens,fr1,fr2,fr3);

23 Point q=generateQueryPoint(noGens);

24 double e=1;

25 System.out.println("***** QUERY *****");

26 q.printPoint() ;

27 ArrayList<Integer> result=RCR(q, e);

28 System.out.println("***** RESULT *****");

29 Collections . sort( result ) ;
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30 System.out.println( result ) ;

31 }

32 }

33 public static ArrayList<Integer> RCR(Point q, double e){

34 ArrayList<Integer> PQ=new ArrayList<Integer>();

35 ArrayList<Point> RQ=new ArrayList<Point>();

36 ArrayList<Point> pRQ=new ArrayList<Point>();

37 ArrayList<Point> Qpre=VRS(q, e);

38 setDmax(Qpre, q);

39 for(int i=0; i<Qpre.size(); i++){

40 double dmax=Qpre.get(i).getDistToQmax();

41 double dmin=Qpre.get(i).getDistToQ();

42 if (dmax<e){

43 if (testAP(dmax,dmin, e,Qpre.get(i)))

44 RQ.add(Qpre.get(i));

45 }

46 else pRQ.add(Qpre.get(i));

47 }

48 for(int i=0; i<RQ.size(); i++){

49 for(int j=0; j<RQ.get(i).getInners(). size () ; j++){

50 if (!PQ.contains((Integer)RQ.get(i).getInners() .get(j) .get(1)))

51 PQ.add((Integer)RQ.get(i).getInners().get(j) .get(1)) ;

52 }

53 }

54 for(int i=0; i<pRQ.size(); i++){

55 double newE=e−pRQ.get(i).getDistToQ();

56 for(int j=0; j<pRQ.get(i).getInners().size () ; j++){

57 double d=(Double)pRQ.get(i).getInners().get(j).get(2);

58 if (d<=newE&&!PQ.contains((Integer)pRQ.get(i).getInners().get(j).get(1)))PQ.

add((Integer)pRQ.get(i).getInners().get(j).get(1));

59 }

60 }

61 return PQ;

62 }

63 public static boolean testAP(double dmax, double dmin, double e, Point p){
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64 ArrayList<Integer> apList=new ArrayList<Integer>();

65 for(int i=0; i<p.getInners(). size () ; i++)

66 {

67 if (!apList.contains((Integer)p.getInners() .get( i ) .get(0)))

68 apList.add((Integer)p.getInners() .get( i ) .get(0)) ;

69 }

70 ArrayList<Double> a=new ArrayList<Double>();

71 ArrayList<Double> b=new ArrayList<Double>();

72 for(int j=0; j<p.getInners(). size () ; j++){

73 int x=(Integer)p.getInners().get(j) .get(0) ;

74 if (apList.get(0)==x) a.add((Double)p.getInners().get(j).get(2)) ;

75 if (apList.get(1)==x) b.add((Double)p.getInners().get(j).get(2));

76 }

77 Collections . sort(a);

78 Collections . sort(b);

79 if (dmin+a.get(a.size()−1)>e) return false;

80 if (dmax+b.get(b.size()−1)>e) return false;

81 return true;

82 }

83 public static void setDmax(ArrayList<Point> Qpre, Point q){

84 for(int i=0; i<Qpre.size(); i++){

85 double dmax=getDmax(Qpre.get(i), q);

86 Qpre.get(i) .setDistToQmax(dmax);

87 }

88 }

89 public static double getDmax(Point a, Point b){

90 for(int i=0; i<aNVD.getGens().size(); i++){

91 int id1=aNVD.getGens().get(i).getID();

92 if (id1==a.getID()){

93 for(int j=0; j<aNVD.getGens().get(i).getOthers().size(); j++)

94 {

95 int id2=(Integer)aNVD.getGens().get(i).getOthers().get(j).get(0) ;

96 if (id2==b.getID()) return (Double)aNVD.getGens().get(i).getOthers().get

(j).get(2);

97 }



B.1. SIMULATION OF POINT-EXPECTED QUERIES 159

98 }

99 }

100 return 0;

101 }

102 public static ArrayList<Point> VRS(Point q, double e){

103 ArrayList<Point> Qpre= new ArrayList<Point>();

104 Qpre.add(q);

105 addToQpre(q, Qpre);

106 q.setAdded(true);

107 sortQpre(q, Qpre);

108 for (int i=0; i<Qpre.size(); i++){

109 if (Qpre.get(i) .getDistToQ()>e){Qpre.get(i).setIOStatus(false);}

110 }

111 Point inPoint=new Point();

112 for (int i=0; i<Qpre.size(); i++){

113 if (Qpre.get(i) .getIOStatus()==true){

114 inPoint=Qpre.get(i);

115 break;

116 }

117 }

118 int size=0;

119 do{

120 size=Qpre.size();

121 for (int i=0; i<Qpre.size(); i++){

122 if (Qpre.get(i) .getIOStatus()==true && Qpre.get(i).getAdded()==false){

123 Qpre.get(i) .setAdded(true);

124 addToQpre(Qpre.get(i), Qpre);

125 }

126 }

127 sortQpre(q, Qpre);

128 int inIndex=Qpre.indexOf(inPoint);

129 for(int i=inIndex−1; i>−1; i−−) {

130 if (Qpre.get(i) .getDistToQ()>e){

131 inPoint=Qpre.get(i+1);

132 break;
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133 }

134 else

135 {

136 inPoint=Qpre.get(i);

137 }

138 }

139 inIndex=Qpre.indexOf(inPoint);

140 for (int i=0; i<inIndex; i++){

141 Qpre.get(i) .setIOStatus(false);

142 }

143 }while(Qpre.size()!=size);

144 ArrayList<Point> result=new ArrayList<Point>();

145 for(int i=0; i<Qpre.size(); i++)

146 if (Qpre.get(i) .getIOStatus()==true)

147 result .add(Qpre.get(i));

148 return result;

149 }

150 public static void addToQpre(Point q, ArrayList<Point> Qpre){

151 for(int i=0; i<q.getAdjacents().size() ; i++) {

152 int id1=q.getAdjacents().get(i) ;

153 for(int j=0; j<aNVD.getGens().size(); j++){

154 int id2=aNVD.getGens().get(j).getID();

155 if (id1==id2&&!Qpre.contains(aNVD.getGens().get(j)))Qpre.add(aNVD.

getGens().get(j));

156 }

157 }

158 }

159 public static Point generateQueryPoint(int noGens){

160 Random r=new Random();

161 int id=r.nextInt(noGens);

162 //int id=1;

163 return aNVD.getGens().get(id);

164 }

165 public static void sortQpre(Point q, ArrayList<Point> Qpre){

166 Map aMap=new LinkedHashMap();
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167 for(int i=0; i<Qpre.size(); i++){

168 aMap.put(Qpre.get(i),getDist(q,Qpre.get(i))) ;

169 }

170 List mapKeys = new ArrayList(aMap.keySet());

171 List mapValues = new ArrayList(aMap.values());

172 TreeSet sortedSet = new TreeSet(mapValues);

173 Object[] sortedArray = sortedSet.toArray();

174 Qpre.clear() ;

175 for(int i=sortedArray.length; i>0;){

176 double d=(Double)sortedArray[−−i];

177 Point a=(Point)mapKeys.get(mapValues.indexOf(d));

178 a.setDistToQ(d);

179 Qpre.add(a);

180 }

181 }

182 public static double getDist(Point a, Point b){

183 for(int i=0; i<aNVD.getGens().size(); i++){

184 int id1=aNVD.getGens().get(i).getID();

185 if (id1==a.getID()){

186 for(int j=0; j<aNVD.getGens().get(i).getOthers().size(); j++)

187 {

188 int id2=(Integer)aNVD.getGens().get(i).getOthers().get(j).get(0) ;

189 if (id2==b.getID()) return (Double)aNVD.getGens().get(i).getOthers().get

(j).get(1);

190 }

191 }

192 }

193 return 0;

194 }

195 }

kCR

1 package vrs;

2 import classes.NVD;

3 import classes.Point;



162 APPENDIX B. SIMULATION SOURCE CODES

4 import java.io.FileNotFoundException;

5 import java.io.FileReader;

6 import java.io.IOException;

7 import java.util.ArrayList;

8 import java.util.LinkedHashMap;

9 import java.util.List ;

10 import java.util.Map;

11 import java.util.Random;

12 import java.util.TreeSet;

13 public class Main {

14 static NVD aNVD=null;

15 public static void main(String[] args) throws FileNotFoundException, IOException {

16 double sumfe = 0;

17 for(int looptimes=0; looptimes<1000; looptimes++)

18 {

19 FileReader fr1=new FileReader("D:/GIS Performance/kCR/data/20_Adjacent.txt");

20 FileReader fr2=new FileReader("D:/GIS Performance/kCR/data/20_Distance.txt");

21 int noGens=20;

22 aNVD=new NVD(noGens,fr1,fr2);

23 Point q=generateQueryPoint(noGens);

24 System.out.println("***** QUERY POINT *****");

25 q.printPoint() ;

26 double e=5;

27 int k=5;

28 ArrayList<Point> Qpre=VRS(q, e);

29 ArrayList<Point> Qek=new ArrayList<Point>();

30 double fe=0.0;

31 double dismax=Qpre.get(0).getDistToQ();

32 int countQ=Qpre.size();

33 if (k<=Qpre.size()){

34 Qek=findKNN(Qpre, k);

35 fe=e;

36 System.out.println("***** IN RANGE *****");

37 for (int i=0; i<Qek.size(); i++) Qek.get(i).printPoint(); }

38 else{



B.1. SIMULATION OF POINT-EXPECTED QUERIES 163

39 −−k;

40 ArrayList<Point> Qk=findKNN(q.getOthers(), k, q);

41 fe=Qk.get(Qk.size()−1).getDistToQ();

42 int l= k;

43 boolean accepted=isAcceptable(Qk.get(l−1).getDistToQ(),

44 dismax, e, l , k, countQ);

45 while(!accepted && l>countQ){

46 Qk=subtractPoint(Qk, Qk.get(l−1));

47 l−−;

48 accepted=isAcceptable(Qk.get(l−1).getDistToQ(), dismax, e, l, k, countQ);

49 fe=Qk.get(l−1).getDistToQ();

50 }

51 Qek=Qk;

52 System.out.println("***** IN RANGE *****");

53 for (int i=0; i<Qpre.size(); i++) Qpre.get(i).printPoint();

54 System.out.println("***** OUT RANGE *****");

55 for (int i=0; i<Qek.size(); i++) {

56 if (Qek.get(i) .getIOStatus()==false) Qek.get(i).printPoint();

57 }

58 sumfe = sumfe+fe;

59 //System.out.println(”fe : ”+fe);

60 //System.out.println(”sumfe: ”+sumfe);

61 }

62 }

63 double avefe = sumfe/1000;

64 System.out.println("***** Factual Range *****");

65 System.out.println("avefe: "+avefe);

66 }

67 public static ArrayList<Point> subtractPoint(ArrayList<Point> Qk, Point p){

68 Qk.remove(Qk.indexOf(p));

69 return Qk;

70 }

71 public static boolean isAcceptable(double dPl, double dismax, double e, int l, int k,

int countQ){

72 double drel=(dPl−dismax)/e;
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73 double l1 = Double.parseDouble(Integer.toString(l));

74 double k1 = Double.parseDouble(Integer.toString(k));

75 double countQ1 = Double.parseDouble(Integer.toString(countQ));

76 double drkl=(l1−countQ1+1)/k1;

77 if (drel<=drkl) return true;

78 return false;

79 }

80 public static ArrayList<Point> VRS(Point q, double e){

81 System.out.println("***** VRS *****");

82 ArrayList<Point> Qpre= new ArrayList<Point>();

83 Qpre.add(q);

84

85 addToQpre(q, Qpre);

86 sortQpre(q, Qpre);

87

88 for (int i=0; i<Qpre.size(); i++){

89 if (Qpre.get(i) .getDistToQ()>e){Qpre.get(i).setIOStatus(false);}

90 }

91 Point inPoint=new Point();

92 for (int i=0; i<Qpre.size(); i++){

93 if (Qpre.get(i) .getIOStatus()==true){

94 inPoint=Qpre.get(i);

95 break;

96 }

97 }

98 int size=0;

99 do{

100 size=Qpre.size();

101 for (int i=0; i<Qpre.size(); i++){

102 if (Qpre.get(i) .getIOStatus()==true && Qpre.get(i).getAdded()==false){

103 addToQpre(Qpre.get(i), Qpre);

104 Qpre.get(i) .setAdded(true);

105 }

106 }

107 sortQpre(q, Qpre);
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108 int inIndex=Qpre.indexOf(inPoint);

109 for(int i=inIndex−1; i>−1; i−−) {

110 if (Qpre.get(i) .getDistToQ()>e){

111 inPoint=Qpre.get(i+1);

112 break;

113 }

114 else inPoint=Qpre.get(i);

115 }

116 inIndex=Qpre.indexOf(inPoint);

117 for (int i=0; i<inIndex; i++){

118 Qpre.get(i) .setIOStatus(false);

119 }

120 }while(Qpre.size()!=size);

121 ArrayList<Point> result=new ArrayList<Point>();

122 for(int i=0; i<Qpre.size(); i++)

123 if (Qpre.get(i) .getIOStatus()==true){

124 Qpre.get(i) .printPoint() ;

125 result .add(Qpre.get(i));

126 }

127 return result;

128 }

129 public static void addToQpre(Point q, ArrayList<Point> Qpre){

130 for(int i=0; i<q.getAdjacents().size() ; i++) {

131 int id1=q.getAdjacents().get(i) ;

132 for(int j=0; j<aNVD.getGens().size(); j++){

133 int id2=aNVD.getGens().get(j).getID();

134 if (id1==id2)Qpre.add(aNVD.getGens().get(j));

135 }

136 }

137 }

138 public static Point generateQueryPoint(int noGens){

139 Random r=new Random();

140 int id=r.nextInt(noGens);

141 return aNVD.getGens().get(id);

142 }
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143 public static void sortQpre(Point q, ArrayList<Point> Qpre){

144 Map aMap=new LinkedHashMap();

145 for(int i=0; i<Qpre.size(); i++){

146 aMap.put(Qpre.get(i),getDist(q,Qpre.get(i))) ;

147 }

148 List mapKeys = new ArrayList(aMap.keySet());

149 List mapValues = new ArrayList(aMap.values());

150 TreeSet sortedSet = new TreeSet(mapValues);

151 Object[] sortedArray = sortedSet.toArray();

152 Qpre.clear() ;

153 for(int i=sortedArray.length; i>0;){

154 double d=(Double)sortedArray[−−i];

155 Point a=(Point)mapKeys.get(mapValues.indexOf(d));

156 a.setDistToQ(d);

157 Qpre.add(a);

158 }

159 }

160 public static double getDist(Point a, Point b){

161 for(int i=0; i<aNVD.getGens().size(); i++){

162 int id1=aNVD.getGens().get(i).getID();

163 if (id1==a.getID()){

164 for(int j=0; j<aNVD.getGens().get(i).getOthers().size(); j++)

165 {

166 int id2=(Integer)aNVD.getGens().get(i).getOthers().get(j).get(0) ;

167 if (id2==b.getID()) return (Double)aNVD.getGens().get(i).getOthers().get

(j).get(1);

168 }

169 }

170 }

171 return 0;

172 }

173 public static ArrayList<Point> findKNN(ArrayList<Point> VRSResult, int k ){

174 if (k==VRSResult.size())return VRSResult;

175 ArrayList<Point> result = new ArrayList<Point>();

176 int lastIndex=VRSResult.size();
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177 for(int i=0; i<k; i++){

178 result .add(VRSResult.get(−−lastIndex));

179 }

180 return result;

181 }

182 public static ArrayList<Point> findKNN(ArrayList<ArrayList> others, int k, Point q){

183 ArrayList<Point> result=new ArrayList<Point>();

184 ArrayList<Integer> kID=new ArrayList<Integer>();

185 Map aMap=new LinkedHashMap();

186 for(int i=0; i<others.size() ; i++){

187 aMap.put((Integer)others.get(i) .get(0) ,(Double)others.get(i) .get(1)) ;

188 }

189 List mapKeys = new ArrayList(aMap.keySet());

190 List mapValues = new ArrayList(aMap.values());

191 TreeSet sortedSet = new TreeSet(mapValues);

192 Object[] sortedArray = sortedSet.toArray();

193 for(int i=0; i<sortedArray.length; i++){

194 kID.add((Integer)mapKeys.get(mapValues.indexOf(sortedArray[i])));

195 }

196 for(int i=0; i<k; i++){

197 for(int j=0; j<aNVD.getGens().size(); j++){

198 int id=(Integer)aNVD.getGens().get(j).getID();

199 if (id==kID.get(i)){

200 aNVD.getGens().get(j).setDistToQ(getDist(aNVD.getGens().get(j),q));

201 result .add(aNVD.getGens().get(j));

202 }

203 }

204 }

205 return result;

206 }

207 }

VCR and Monitoring

1 package vrs;

2 import classes.NVD;



168 APPENDIX B. SIMULATION SOURCE CODES

3 import classes.Point;

4 import java.io.FileNotFoundException;

5 import java.io.FileReader;

6 import java.io.IOException;

7 import java.util.ArrayList;

8 import java.util.LinkedHashMap;

9 import java.util.List ;

10 import java.util.Map;

11 import java.util.Random;

12 import java.util.TreeSet;

13 public class Main {

14 static NVD aNVD=null;

15 public static void main(String[] args) throws FileNotFoundException, IOException {

16 FileReader fr1=new FileReader("D:/GIS Performance/VRS/data/5_Adjacent.txt");

//TO BE CHANGED

17 FileReader fr2=new FileReader("D:/GIS Performance/VRS/data/5_Distance.txt");

//TO BE CHANGED

18 int noGens=5; // TO BE CHANGED

19 aNVD=new NVD(noGens,fr1,fr2);

20 Point q=generateQueryPoint(noGens);

21 double e=15; //TO BE CHANGED

22 VRS(q, e);

23 }

24 public static void VRS(Point q, double e){

25 q.printPoint() ;

26 System.out.println("***********");

27 ArrayList<Point> Qpre= new ArrayList<Point>();

28 Qpre.add(q);

29 addToQpre(q, Qpre);

30 sortQpre(q, Qpre);

31 for (int i=0; i<Qpre.size(); i++){

32 if (Qpre.get(i) .getDistToQ()>e){Qpre.get(i).setIOStatus(false);}

33 }

34 Point inPoint=new Point();

35 for (int i=0; i<Qpre.size(); i++){
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36 if (Qpre.get(i) .getIOStatus()==true){

37 inPoint=Qpre.get(i);

38 break;

39 }

40 }

41 int size=0;

42 do{

43 size=Qpre.size();

44 for (int i=0; i<Qpre.size(); i++){

45 if (Qpre.get(i) .getIOStatus()==true && Qpre.get(i).getAdded()==false){

46 addToQpre(Qpre.get(i), Qpre);

47 Qpre.get(i) .setAdded(true);

48 }

49 }

50 sortQpre(q, Qpre);

51 int inIndex=Qpre.indexOf(inPoint);

52 for(int i=inIndex−1; i>−1; i−−) {

53 if (Qpre.get(i) .getDistToQ()>e){

54 inPoint=Qpre.get(i+1);

55 break;

56 }

57 else inPoint=Qpre.get(i);

58 }

59 inIndex=Qpre.indexOf(inPoint);

60 for (int i=0; i<inIndex; i++){

61 Qpre.get(i) .setIOStatus(false);

62 }

63 }while(Qpre.size()!=size);

64 for(int i=0; i<Qpre.size(); i++)

65 if (Qpre.get(i) .getIOStatus()==true)

66 Qpre.get(i) .printPoint() ;

67 }

68 public static void addToQpre(Point q, ArrayList<Point> Qpre){

69 for(int i=0; i<q.getAdjacents().size() ; i++) {

70 int id1=q.getAdjacents().get(i) ;
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71 for(int j=0; j<aNVD.getGens().size(); j++){

72 int id2=aNVD.getGens().get(j).getID();

73 if (id1==id2&&!Qpre.contains(aNVD.getGens().get(j)))Qpre.add(aNVD.

getGens().get(j));

74 }

75 }

76 }

77 public static Point generateQueryPoint(int noGens){

78 Random r=new Random();

79 int id=r.nextInt(noGens);

80 return aNVD.getGens().get(id);

81 }

82 public static void sortQpre(Point q, ArrayList<Point> Qpre){

83 Map aMap=new LinkedHashMap();

84 for(int i=0; i<Qpre.size(); i++){

85 aMap.put(Qpre.get(i),getDist(q,Qpre.get(i))) ;

86 }

87 List mapKeys = new ArrayList(aMap.keySet());

88 List mapValues = new ArrayList(aMap.values());

89 TreeSet sortedSet = new TreeSet(mapValues);

90 Object[] sortedArray = sortedSet.toArray();

91 Qpre.clear() ;

92 for(int i=sortedArray.length; i>0;){

93 double d=(Double)sortedArray[−−i];

94 Point a=(Point)mapKeys.get(mapValues.indexOf(d));

95 a.setDistToQ(d);

96 Qpre.add(a);

97 }

98 }

99 public static double getDist(Point a, Point b){

100 for(int i=0; i<aNVD.getGens().size(); i++){

101 int id1=aNVD.getGens().get(i).getID();

102 if (id1==a.getID()){

103 for(int j=0; j<aNVD.getGens().get(i).getOthers().size(); j++)

104 {
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105 int id2=(Integer)aNVD.getGens().get(i).getOthers().get(j).get(0) ;

106 if (id2==b.getID()) return (Double)aNVD.getGens().get(i).getOthers().get

(j).get(1);

107 }

108 }

109 }

110 return 0;

111 }

112 }

B.2 Simulation of Region-Expected Queries

VDk-kR

1 public double distance(Point2D site1, Point2D site2) {

2 return Math.sqrt((Math.abs(site1.getX() − site2.getX()) ∗ Math

3 .abs(site1 .getX() − site2.getX()))

4 + (Math.abs(site1.getY() − site2.getY()) ∗ Math.abs(site1

5 .getY() − site2.getY())));

6 }

7 public List<VEdge> myEdges;

8 public List<Point2D> myVertices;

9 public List<VEdge> jasonResult = new LinkedList<VEdge>();

10 public int numberOfKeptVertices = 0;

11 public void JasonsAlgorithm(List<Point2D> selectedSites) {

12 Set<VEdge> allEdges = this.edges;

13 System.out.println("All edges: " + allEdges);

14 PointSet allSites = this. sites ;

15 List<VEdge> myEdges = new LinkedList<VEdge>();

16 List<Point2D> myVertices = new LinkedList<Point2D>();

17 for (Point2D site : selectedSites )

18 for (VEdge edge : allEdges)

19 if (edge. critical1 == site | edge. critical2 == site)

20 myEdges.add(edge);

21 this.myEdges = myEdges;
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22 System.out.println("Found edges: " + myEdges);

23 for (VEdge edge : myEdges) {

24 VVertex[] edgeVertices = { edge.v1, edge.v2 };

25 for (VVertex vertex : edgeVertices) {

26 if (!myVertices.contains(vertex)) {

27 myVertices.add(vertex);

28 double maxDistance = 0;

29 for (Point2D site : selectedSites ) {

30 double theDistance = this.distance(vertex, site) ;

31 if (theDistance > maxDistance)

32 maxDistance = theDistance;

33 }

34 for (Point2D site : allSites )

35 if (distance( site , vertex) < maxDistance − 0.00001

36 & ! selectedSites .contains( site ))

37 myVertices.remove(vertex);

38 }

39 }

40 }

41 this.myVertices = myVertices;

42 System.out.println("My vertices: " + myVertices);

43 this.numberOfKeptVertices = myVertices.size();

44 if (this.numberOfKeptVertices != 0) {

45 List<VEdge> edgesKept = new ArrayList<VEdge>();

46 for (Point2D vertex : myVertices)

47 for (VEdge edge : allEdges) {

48 ArrayList<VVertex> edgeVertices = new ArrayList<VVertex>();

49 edgeVertices.add(edge.v1);

50 edgeVertices.add(edge.v2);

51 if (edgeVertices.contains(vertex)) {

52 edgesKept.add(edge);

53 edgeVertices.remove(vertex);

54 VVertex theVertex = edgeVertices.get(0);

55 if (theVertex. isAtInfinity ()) {

56 double infinitX, infinitY ;
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57 infinitX = vertex.getX() + theVertex.getX() ∗ 5000;

58 infinitY = vertex.getY() + theVertex.getY() ∗ 5000;

59 Point2D theInfinityPoint = new Point2D(infinitX,

60 infinitY ) ;

61 double maxDistance = 0;

62 for (Point2D site : selectedSites ) {

63 double theDistance = this.distance(

64 theInfinityPoint , site ) ;

65 if (theDistance > maxDistance)

66 maxDistance = theDistance;

67 }

68 System.out

69 . println("Max distance is:" + maxDistance);

70 for (Point2D site : allSites ) {

71 System.out.println("Distance from "

72 + theInfinityPoint + " to site " + site

73 + " is : "

74 + distance(site , theInfinityPoint )) ;

75 if (distance( site , theInfinityPoint ) < maxDistance − 0.00001

76 & ! selectedSites .contains( site )) {

77 edgesKept.remove(edge);

78 break;

79 }

80 }

81 } else if (!myVertices.contains(theVertex))

82 edgesKept.remove(edge);

83 }

84 }

85 this.jasonResult = edgesKept;

86 } else {

87 System.out.println("Area does not exist.");

88 }

89 }

90 }
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DT -kR

1 package knnregion;

2 import intersect2Dalgorithm.Intersect2DAlgorithm;

3 import intersect2Dalgorithm.Segment;

4 import java.util.LinkedList;

5 import java.util.List ;

6 import java.util.Map;

7 import convexhullalgorithm.ConvexHull;

8 import data.Point;

9 import data.Site;

10 import delaunayalgorithm.Voronoi;

11 public final class Algorithm {

12 public Algorithm(double canvasWidth, double canvasHeight, List<Site> sites,

13 List<Site> selectedSites) {

14 this.canvasHeight = canvasHeight;

15 this.canvasWidth = canvasWidth;

16 this. sites = sites ;

17 this. selectedSites = selectedSites ;

18 }

19 /∗∗

20 ∗ Step 1: Generate DT for the sites.

21 ∗/

22 public void step1() {

23 Voronoi v = new Voronoi();

24 v.generateVoronoi(this. sites ) ;

25 this.connections = v.connections;

26 this.numberOfEdges = v.numberOfEdges;

27 // System.out.println(”Step 1 result : ” + this.connections);

28 System.out.println("Step 1 done!");

29 }

30 /∗∗

31 ∗ For step 2.

32 ∗/

33 private void traverse(Site selected ) {

34 for (Site connected : this.connections.get( selected ))
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35 if (! connected.visited & this. selectedSites .contains(connected)) {

36 connected.visited = true;

37 traverse(connected);

38 }

39 }

40 /∗∗

41 ∗ Step 2: Test whether selected sites are interconnected .

42 ∗/

43 public boolean step2() {

44 this. traverse(this. selectedSites .get(0)) ;

45 this.interconnected = true;

46 for (Site s : this. selectedSites )

47 if (! s . visited ) {

48 this.interconnected = false;

49 break;

50 }

51 // System.out.println(”Step 2 result : ” + this. interconnected

52 // + this. selectedSites );

53 return this.interconnected;

54 }

55 /∗∗

56 ∗ Step 3: Generate convex hull of selected sites .

57 ∗/

58 public void step3() {

59 ConvexHull convexHull = new ConvexHull(selectedSites);

60 this.convexHull = convexHull.chainHull();

61 System.out.println("Step 3 result: " + this.convexHull);

62 }

63 /∗∗

64 ∗ Step 4: Find neighbors of the convex hull vertices .

65 ∗/

66 public List<Site> step4() {

67 this.neighbours = new LinkedList<Site>();

68 for (Site s : convexHull)

69 for (Site connected : this.connections.get(s))
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70 if (!this. selectedSites .contains(connected)

71 & !this.neighbours.contains(connected))

72 this.neighbours.add(connected);

73 // System.out.println(”Step 4 result : ” + this.neighbours);

74 return this.neighbours;

75 }

76 /∗∗

77 ∗ Determines the location of a point in relative to a line segment. Returns

78 ∗ > 0 if point is on left , returns < 0 if point is on right , return = 0 if

79 ∗ point is on the segment.

80 ∗/

81 private double p2s(Segment theSegment, Point point) {

82 return (theSegment.P1.x − theSegment.P0.x)

83 ∗ (point.y − theSegment.P0.y) − (point.x − theSegment.P0.x)

84 ∗ (theSegment.P1.y − theSegment.P0.y);

85 }

86 /∗∗

87 ∗ Step 5: .........

88 ∗/

89 public List<Point> step5() throws Exception {

90 this.polygon = new LinkedList<Point>();

91 this. bisectors = new LinkedList<Point>();

92 // Initially , the polygon is a rectangle of drawable area.

93 this.polygon.add(new Point(this.canvasWidth, 0));

94 this.polygon.add(new Point(0, 0));

95 this.polygon.add(new Point(0, this.canvasHeight));

96 this.polygon.add(new Point(this.canvasWidth, this.canvasHeight));

97 LinkedList<Point> toBeRemoved = new LinkedList<Point>();

98 Segment toIntersect = new Segment(new Point(0, 0), new Point(0, 0));

99 Segment theIntersection = new Segment(new Point(0, 0), new Point(0, 0));

100 Point middle;

101 double yIntersection, xIntersection , yMax, k, intersectionP2S, polygonP2S, convexP2S;

102 boolean canIntersect;

103 for (Site onHull : this.convexHull)

104 for (Site neighbour : this.neighbours) {
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105 // Make a bisector line

106 k = −1

107 / ((onHull.location .y − neighbour.location.y) / (onHull.location .x − neighbour.

location.x));

108 middle = new Point(

109 (onHull.location .x + neighbour.location.x) / 2,

110 (onHull.location .y + neighbour.location.y) / 2);

111 System.out.println("Between: " + onHull + " and " + neighbour);

112 // Intersect the polygon with the line

113 if (k < 0) {

114 yIntersection = −k ∗ middle.x + middle.y;

115 xIntersection = −middle.y / k + middle.x;

116 toIntersect .P0 = new Point(xIntersection, 0);

117 toIntersect .P1 = new Point(0, yIntersection);

118 } else if (k >= 0) {

119 yIntersection = −k ∗ middle.x + middle.y;

120 yMax = k ∗ (this.canvasWidth − middle.x) + middle.y;

121 toIntersect .P0 = new Point(this.canvasWidth, yMax);

122 toIntersect .P1 = new Point(0, yIntersection);

123 }

124 canIntersect = new Intersect2DAlgorithm().intersect(

125 toIntersect , this.polygon, theIntersection ) ;

126 System.out.println("To Intersect: " + toIntersect);

127 if (canIntersect

128 && !(theIntersection.P0.x == Double.NaN

129 | theIntersection .P1.x == Double.NaN

130 | theIntersection .P0.y == Double.NaN | theIntersection.P1.y == Double.NaN)

) {

131 toBeRemoved.clear();

132 System.out.println("The intersection: " + theIntersection);

133 // Which side of polygon points shall remain?

134 intersectionP2S = this

135 .p2s(theIntersection , onHull.location) ;

136 for (Point p : this.polygon) {

137 polygonP2S = this.p2s(theIntersection, p);
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138 // Those points which are not on same side of the convex

139 // hull are to be removed

140 if (Math.abs(polygonP2S − intersectionP2S) > Math

141 .abs(polygonP2S + intersectionP2S))

142 toBeRemoved.add(p);

143 }

144 for (Point p : toBeRemoved)

145 this.polygon.remove(p);

146 // Store new intersections of the line and the polygon

147 this.polygon.add(theIntersection.P0);

148 this.polygon.add(theIntersection.P1);

149 this. bisectors .add(theIntersection.P0);

150 this. bisectors .add(theIntersection.P1);

151 System.out.println("POLYGON: " + this.polygon);

152 // For informative purpose, collect some statistics data

153 ++this.numberOfIntersects;

154 if (this.polygon.size() > this.maxPolygonVerticesNumber)

155 this.maxPolygonVerticesNumber = this.polygon.size();

156 } else {

157 // If the intersection (or toIntersect , they’re on same

158 // line) is on opposite side of the convex hull , terminate

159 // the algorithm, KNN region does not exist in such case

160 polygonP2S = this.p2s(toIntersect, this.polygon.get(0));

161 convexP2S = this.p2s(toIntersect, onHull.location) ;

162 if (Math.abs(polygonP2S − convexP2S) > Math.abs(polygonP2S

163 + convexP2S)) {

164 throw new Exception();

165 }

166 }

167 }

168 System.out.println("Step 5 result: " + this.polygon);

169 return this.polygon;

170 }

171 private double canvasWidth, canvasHeight;

172 public List<Site> sites, selectedSites ; // KNN algorithm input
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173 public Map<Site, List<Site>> connections; // Step 1 output

174 public boolean interconnected; // Step 2 output

175 public List<Site> convexHull; // Step 3 output

176 public List<Site> neighbours; // Step 4 output

177 public List<Point> bisectors; // Step 5 output

178 public List<Point> polygon; // Step 5 output

179 // For informative purpose

180 public int numberOfIntersects = 0, maxPolygonVerticesNumber = 0,

181 numberOfEdges = 0;

182 public static void main(String args[]) {

183 System.out.println(4 / 2);

184 }

185 }

Point.java

1 package algorithm;

2 public final class Point {

3 public Point(final double x, final double y) {

4 this.x = x;

5 this.y = y;

6 }

7 public double distanceTo(final Point other) {

8 return Math.hypot(this.getX() − other.getX(), this.getY() − other.getY());

9 }

10 @Override

11 public boolean equals(final Object other) {

12 final Point p = (Point) other;

13 return this.getX() == p.getX() && this.getY() == p.getY();

14 }

15 public double getX() {

16 synchronized (this) {

17 ++Point.accessCounter;

18 }

19 return this.x;

20 }
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21 public double getY() {

22 synchronized (this) {

23 ++Point.accessCounter;

24 }

25 return this.y;

26 }

27 @Override

28 public int hashCode() {

29 return super.hashCode();

30 }

31 public void setX(final double x) {

32 this.x = x;

33 }

34 public void setY(final double y) {

35 this.y = y;

36 }

37 @Override

38 public String toString() {

39 return "(" + (int) this.getX() + ", " + (int) this.getY() + ")";

40 }

41 private double x, y;

42 public static int accessCounter = 0;

43 }

Segment.java

1 package algorithm;

2 import java.util.ArrayList;

3 import java.util.List ;

4 public final class Segment {

5 public Segment(final double begin, final double end) {

6 this.begin = begin;

7 this.end = end;

8 }

9 @Override

10 public boolean equals(final Object other) {
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11 final Segment s = (Segment) other;

12 return this.getBegin() == s.getBegin() && this.getEnd() == s.getEnd();

13 }

14 public double getBegin() {

15 return this.begin;

16 }

17 public double getEnd() {

18 return this.end;

19 }

20 @Override

21 public int hashCode() {

22 return super.hashCode();

23 }

24 public Segment intersect(final Segment another) {

25 if (this.getBegin() < another.getBegin()) {

26 if (this.getEnd() <= another.getEnd()

27 & this.getEnd() >= another.getBegin()) {

28 return new Segment(another.getBegin(), this.getEnd());

29 } else if (this.getEnd() > another.getEnd()) {

30 return new Segment(another.getBegin(), another.getEnd());

31 } else {

32 return null;

33 }

34 } else if (this.getBegin() <= another.getEnd()

35 & this.getBegin() >= another.getBegin()) {

36 if (this.getEnd() <= another.getEnd()

37 & this.getEnd() >= another.getBegin()) {

38 return new Segment(this.getBegin(), this.getEnd());

39 } else if (this.getEnd() > another.getEnd()) {

40 return new Segment(this.getBegin(), another.getEnd());

41 } else {

42 return null;

43 }

44 } else {

45 return null;
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46 }

47 }

48 public void setBegin(final double begin) {

49 this.begin = begin;

50 }

51 public void setEnd(final double end) {

52 this.end = end;

53 }

54 @Override

55 public String toString() {

56 return "(" + (int) this.getBegin() + " to " + (int) this.getEnd() + ")";

57 }

58 private double begin, end;

59 static class MostIntersected {

60 public MostIntersected(final int count, final List<Segment> segments) {

61 this.count = count;

62 this.segments = segments;

63 }

64 @Override

65 public String toString() {

66 return "Intersected " + this.count + " times: " + this.segments;

67 }

68 int count;

69 final List<Segment> segments;

70 }

71 public static MostIntersected mostIntersected(final List<Segment> segments,

72 final int count) {

73 final List<Segment> next = new ArrayList<Segment>();

74 boolean intersected = false;

75 for (final Segment s1 : segments) {

76 for (final Segment s2 : segments) {

77 if (s1 == s2) {

78 continue;

79 }

80 final Segment intersection = s1. intersect (s2) ;
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81 if ( intersection != null & !next.contains( intersection )) {

82 intersected = true;

83 next.add(intersection) ;

84 }

85 }

86 }

87 if ( intersected ) {

88 return Segment.mostIntersected(next, count + 1);

89 }

90 return new MostIntersected(count, segments);

91 }

92 public static int accessCounter = 0;

93 }

Circle.java

1 package algorithm;

2 import algorithm.Segment.MostIntersected;

3 public final class Circle {

4 public Circle(final Point centre) {

5 this.centre = centre;

6 }

7 public double distanceTo(final Circle other) {

8 return this.centre.distanceTo(other.getCentre());

9 }

10 @Override

11 public boolean equals(final Object other) {

12 final Circle c = (Circle) other;

13 return this.centre.equals(c.centre) ;

14 }

15 public Point getCentre() {

16 return this.centre;

17 }

18 public MostIntersected getMi() {

19 return this.mi;

20 }



184 APPENDIX B. SIMULATION SOURCE CODES

21 @Override

22 public int hashCode() {

23 return super.hashCode();

24 }

25 public Point[] intersect (final Circle other) {

26 final double dx = other.centre.getX() − this.centre.getX();

27 final double dy = other.centre.getY() − this.centre.getY();

28 final double d = Math.hypot(dx, dy);

29 if (d > Circle.radius ∗ 2 || d < 0.00000001) {

30 return null;

31 }

32 final double a = d / 2;

33 final double x2 = this.centre.getX() + dx ∗ a / d;

34 final double y2 = this.centre.getY() + dy ∗ a / d;

35 final double h = Math.sqrt(Circle.radius ∗ Circle.radius − a ∗ a);

36 final double rx = −dy ∗ (h / d);

37 final double ry = dx ∗ (h / d);

38 return new Point[] { new Point(x2 + rx, y2 + ry),

39 new Point(x2 − rx, y2 − ry) };

40 }

41 public Segment[] intersection(final Circle other) {

42 final Point [] intersections = other. intersect (this);

43 if ( intersections != null) {

44 final Point i1 = intersections [0], i2 = intersections [1];

45 double arcBegin = Math.toDegrees(Math.atan2(i1.getY()

46 − this.getCentre().getY(), i1 .getX() − this.getCentre().getX()));

47 double arcEnd = Math.toDegrees(Math.atan2(i2.getY()

48 − this.getCentre().getY(), i2 .getX() − this.getCentre().getX()));

49 if (arcBegin < 0) {

50 arcBegin += 360;

51 }

52 if (arcEnd < 0) {

53 arcEnd += 360;

54 }

55 double lesser, greater ;
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56 if (arcBegin < arcEnd) {

57 lesser = arcBegin;

58 greater = arcEnd;

59 } else {

60 greater = arcBegin;

61 lesser = arcEnd;

62 }

63 if (greater − lesser > 180) {

64 return new Segment[] { new Segment(0, lesser),

65 new Segment(greater, 360) };

66 }

67 return new Segment[] { new Segment(lesser, greater) };

68 }

69 return null;

70 }

71 public void setMi(final MostIntersected mi) {

72 this.mi = mi;

73 }

74 @Override

75 public String toString() {

76 return this.centre.toString() ;

77 }

78 private final Point centre ;

79 private MostIntersected mi;

80 public static double radius = 0.0;

81 }

Optimum Region

1 package algorithm;

2 import java.util.ArrayList;

3 import java.util.Collections ;

4 import java.util.HashMap;

5 import java.util.List ;

6 import java.util.Map;

7 import algorithm.Segment.MostIntersected;



186 APPENDIX B. SIMULATION SOURCE CODES

8 public final class Algorithm {

9 static class Result {

10 public Result(final Map<Circle, List<Segment>> all,

11 final Map<Circle, List<Segment>> result, final int max) {

12 this. all = all ;

13 this. result = result ;

14 this.max = max;

15 }

16 public final Map<Circle, List<Segment>> all, result;

17 public final int max;

18 }

19 @SuppressWarnings("boxing")

20 public static Result solve(final List<Circle> circles) {

21 final Map<Circle, List<Segment>> all = new HashMap<Circle, List<Segment>>();

22 final Map<Integer, List<Circle>> numberSegmentsCircle = new HashMap<Integer,

List<Circle>>();

23 for (final Circle c1 : circles ) {

24 final List<Segment> segments = new ArrayList<Segment>(20);

25 for (final Circle c2 : circles ) {

26 if (c2 == c1 || c2.distanceTo(c1) > Circle.radius ∗ 2) {

27 continue;

28 }

29 for (final Segment s : c1. intersection (c2)) {

30 segments.add(s);

31 }

32 }

33 final MostIntersected mi = Segment.mostIntersected(segments, 0);

34 all .put(c1, mi.segments);

35 if (!numberSegmentsCircle.containsKey(mi.count)) {

36 numberSegmentsCircle.put(mi.count, new ArrayList<Circle>(20));

37 }

38 numberSegmentsCircle.get(mi.count).add(c1);

39 }

40 final Integer max = Collections.max(numberSegmentsCircle.keySet());
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41 final Map<Circle, List<Segment>> result = new HashMap<Circle, List<Segment

>>();

42 for (final Circle c : numberSegmentsCircle.get(max)) {

43 result .put(c, all .get(c)) ;

44 }

45 return new Result(all, result, max);

46 }

47 public static Result solve2(final List<Circle> circles ,

48 final List<Circle> specified) {

49 // −−−−−−−−−−−−−−−−− Step 1 −−−−−−−−−−−−−−−−−−−−−

50 final Map<Circle, List<Segment>> all = new HashMap<Circle, List<Segment>>();

51 final Map<Circle, List<Segment>> result = new HashMap<Circle, List<Segment

>>();

52 for (final Circle c : circles ) {

53 final List<Segment> cSegments = new ArrayList<Segment>();

54 if ( specified .contains(c)) {

55 cSegments.add(new Segment(0, 360));

56 }

57 for (final Circle s : specified ) {

58 final Segment[] segments = c.intersection(s) ;

59 if (segments == null) {

60 continue;

61 }

62 for (final Segment segment : segments) {

63 cSegments.add(segment);

64 }

65 }

66 c.setMi(Segment.mostIntersected(cSegments, 1));

67 all .put(c, new ArrayList<Segment>());

68 result .put(c, c.getMi().segments);

69 }

70 final Map<Circle, List<Segment>> step2 = new HashMap<Circle, List<Segment

>>();

71 int maxCounter = 0;

72 for (final Circle r : result .keySet()) {
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73 if (r .getMi().count != specified . size ()) {

74 continue;

75 }

76 final List<Segment> tmp = new ArrayList<Segment>();

77 for (final Circle c : circles ) {

78 if (r == c) {

79 continue;

80 }

81 if (! specified .contains(c)) {

82 final Segment[] segments = r.intersection(c) ;

83 if (segments != null) {

84 for (final Segment s : segments) {

85 for (final Segment sOnR : r.getMi().segments) {

86 final Segment sIntersection = s. intersect (sOnR);

87 if ( sIntersection != null) {

88 tmp.add(sIntersection);

89 }

90 }

91 }

92 }

93 }

94 }

95 if (tmp.size() == 0) {

96 tmp.addAll(r.getMi().segments);

97 } else if (! specified .contains(r)) {

98 tmp.add(new Segment(0, 360));

99 }

100 final MostIntersected rMi = Segment.mostIntersected(tmp,

101 r .getMi().count + 1);

102 r .setMi(rMi);

103 if (r .getMi().count > maxCounter) {

104 maxCounter = r.getMi().count;

105 }

106 }

107 for (final Circle r : result .keySet()) {
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108 if (r .getMi().count == maxCounter) {

109 step2.put(r, r .getMi().segments);

110 }

111 }

112 return new Result(all, step2, maxCounter);

113 }

114 }
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Appendix C

Visualization of Expected Regions

In this Appendix, the visualizations of the region-region expected algorithms are

illustrated. Fig. C.1 to Fig. C.4 show the procedure of Delaunay triangulation

based algorithm to identify the kNN region step by step.

Fig. C.5 demonstrates a kNN region retrieved by kth-order Voronoi diagram

based algorithm which based on the algorithm of kth-order Voronoi diagram pro-

posed by Prof. Andreas Pollak.

Fig. C.6 shows the visualization of optimum region finding by our proposed

algorithm.

191



192 APPENDIX C. VISUALIZATION OF EXPECTED REGIONS

Figure C.1: The visualization of Delaunay triangulation

Figure C.2: The visualization of the convex hull of specific points
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Figure C.3: The visualization of neighbors of specific points

Figure C.4: The visualization of kNN region finding by DT -kR
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Figure C.5: The visualization of kNN region finding by VDk-kR

Figure C.6: The visualization of an optimum region
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