
An Evaluation of Configuration Management for

High Performance Computing on Clouds

by

Tian Yu Goh, BITS

Thesis

Submitted by Tian Yu Goh

in partial fulfillment of the Requirements for the Degree of

Honours degree of Bachelor of Information Technology and

Systems (3336)

Supervisor: Dr. Jefferson Tan

Caulfield School of Information Technology

Monash University

July, 2013

 Notice 1
Under the Copyright Act 1968, this thesis must be used only under the normal conditions of
scholarly fair dealing. In particular no results or conclusions should be extracted from it, nor
should it be copied or closely paraphrased in whole or in part without the written consent of the
author. Proper written acknowledgement should be made for any assistance obtained from this
thesis.

c© Copyright

by

Tian Yu Goh

2013

To my family, for supporting me through my research endeavours.

iii

Contents

List of Tables . vi

List of Figures . vii

Abstract . ix

Acknowledgments . xi

1 Introduction . 1

1.1 Preamble . 1

1.2 Problem Statement . 2

1.3 Aims and Outcomes . 2

1.4 Benefits and Contributions . 3

1.5 Thesis Outline . 3

2 Literature Review . 5

2.1 High Performance Computing . 5

2.2 Cloud Computing . 6

2.3 Configuration Management . 11

2.4 CM for HPC Applications on the Cloud 13

2.4.1 Vendor provided tools . 16

2.4.2 Third-party tools . 16

2.5 Past Related studies . 17

3 Research Design . 19

3.1 Open-Source CM Tools . 19

3.1.1 Puppetlabs Puppet . 19

3.1.2 Opscode Chef . 20

3.1.3 Analysis Summary . 22

3.2 Identifying Components of CM . 22

3.2.1 Deploying configuration states to specific groups of nodes . . . 22

3.2.2 Specifying default configuration states 22

iv

3.2.3 Monitoring and detecting configuration state changes 22

3.3 Framework Design . 23

3.4 Implementation and Evaluation . 25

4 Research Implementation/ Prototype 27

4.1 Environment . 27

4.1.1 Repository . 27

4.1.2 Master Node . 28

4.1.3 Compute Nodes . 28

4.2 Puppet Enterprise . 29

4.2.1 Roles . 29

4.2.2 Language . 31

4.2.3 Developing Components . 32

4.3 Implementation . 34

4.3.1 Deploying Puppet Enterprise 35

4.3.2 Deploying Nodes and Puppet Agent 36

4.3.3 Configuring Node Groups . 37

4.3.4 Deploying Packages . 37

5 Research Evaluation . 39

5.1 Settings and Scenarios . 39

5.2 Prototype Evaluation Results . 42

5.3 Framework Evaluation Results . 45

6 Conclusion . 47

6.1 Summary . 47

6.2 Achievements and Contributions . 48

6.3 Limitations . 49

6.4 Difficulties and Problems Encountered 49

6.5 Future Works . 50

Appendix A PE Manifest Source Code 51

Appendix B Evaluation Scripted Process Source Code 53

Appendix C Prototype Evaluation Raw Data 55

v

List of Tables

4.1 Master Node Specification . 28

4.2 Compute Node Specification . 29

5.1 Evaluation Criteria . 40

5.2 Evaluation Package Versions . 40

5.3 Prototype Evaluation Schedule . 42

5.4 Prototype Evaluation Results . 43

5.5 Standard Deviation of Efficiency between Evaluation Sequences . . . 45

5.6 Puppet Enterprise and Framework Comparison 46

C.1 Raw data legend for the Scenario Numbers referenced 55

C.3 Raw Result Data - Results for Setting 1 - New Nodes, Scenario 1 -

Manual Configuration . 57

C.4 Raw Result Data - Results for Setting 1 - New Nodes, Scenario 2 -

Scripted Configuration . 60

C.5 Raw Result Data - Results for Setting 1 - New Nodes, Scenario 3 -

Automated Configuration . 62

C.7 Raw Result Data - Results for Setting 2 - New Nodes, Scenario 1 -

Manual Configuration . 65

C.8 Raw Result Data - Results for Setting 2 - New Nodes, Scenario 2 -

Scripted Configuration . 67

C.9 Raw Result Data - Results for Setting 2 - New Nodes, Scenario 3 -

Automated Configuration . 69

C.2 Semi-Raw Result Data - Average Summary Results for Setting 1 -

New Nodes . 70

C.6 Semi-Raw Result Data - Average Summary Results for Setting 2 -

Existing Nodes . 71

C.10 Standard Deviation between Evaluation Sequences - Setting 1 - New

Nodes . 72

C.11 Standard Deviation between Evaluation Sequences - Setting 2 - Ex-

isting Nodes . 73

vi

List of Figures

2.1 (a) SPI service model vs. (b) IBM service model 7

2.2 Cloud Computing Architecture . 8

2.3 Comparison of Multiple IaaS Cloud Frameworks 9

2.4 List of System Configuration Management Software and their sup-

ported platforms . 12

2.5 Amazon EC2 Instance Manual Setup Adapted from Amazon 15

2.6 Dell KACE tool . 15

3.1 The Puppet Model . 20

3.2 The Chef Model . 21

3.3 Proposed Dynamic Configuration Management Framework 23

3.4 Component Interaction Diagram for Proposed Framework 24

4.1 Prototype Deployment Diagram . 30

4.2 PE Compilation State Diagram . 32

4.3 PE Authorise Agent . 36

4.4 PE Configure Node Group . 38

4.5 PE Add Class . 38

5.1 PE Resource Inspection Tool . 40

5.2 Efficiency Result Graph . 43

5.3 Reliability Result Graph . 44

vii

Listings

4.1 ssh config . 31

4.2 openssh-enable . 33

4.3 openssh-disable . 34

4.4 PE Answer file . 35

4.5 PE Installation . 36

4.6 Automated Installation . 37

5.1 Efficiency Evaluation Source Code . 41

A.1 R2 Manifest Source Code . 51

A.2 R3 Manifest Source Code . 51

A.3 sshd-en Manifest Source Code . 52

A.4 sshd-dis Manifest Source Code . 52

A.5 openmpi Manifest Source Code . 52

B.1 New Node (Setting 1) Evaluation Scripted Process Source Code . . . 53

B.2 Existing Node (Setting 2) Evaluation Scripted Process Source Code . 54

viii

An Evaluation of Configuration Management for

High Performance Computing on Clouds

Tian Yu Goh, BITS

Monash University, 2013

Supervisor: Dr. Jefferson Tan

Abstract

This thesis has developed a Dynamic Configuration Management Framework and

implemented a prototype using Puppet Enterprise to support evaluation of the suit-

ability of said framework. The field of research in Configuration Management, specif-

ically in the High Performance Computing Application area for Cloud infrastructures

is still under developed and this research contributes greatly to that field of research,

serving as a stepping stone for future work to be done. The results from the im-

plementation of the prototype demonstrates an overwhelming increase in efficiency

and reliability of Configuration Management of 77% to 81%, and 89% to 100% re-

spectively. This assures the framework of two facts. Firstly, the proof that the use

of the framework proposed and the Configuration Management tool has a positive

effect on efficiency, and secondly, that the reliability of the system Configuration

Management increases when compared to a traditional style of Configuration Man-

agement, that is – the manual or semi-scripted process. This thesis demonstrates

the feasibility on the investment for a Configuration Management tool in use with

distributed infrastructure such as the Cloud. The framework proposed also serves as

a guideline and process chart for Configuration Management of dynamic packages

and High Performance Computing application requirements.

ix

An Evaluation of Configuration Management for

High Performance Computing on Clouds

Declaration

I declare that this thesis is my own work and has not been submitted in any
form for another degree or diploma at any university or other institute of tertiary
education. Information derived from the published and unpublished work of others
has been acknowledged in the text and a list of references is given.

Tian Yu Goh
July 18, 2013

x

Acknowledgments

I would like to extend my thanks to my supervisor, Dr. Jefferson Tan, for the

encouragement, interest and constant guidance he has given me over the course of

this research work. I would also like to thank Professor Frada Burstein and Morgan

Priestnall for providing me with inspiration and insight, and Rick Wu for his help

throughout this research work. Last but not least, I would like to acknowledge my

fellow Honours students, who have helped make the past year fun and enjoyable. It

has been a great journey thus far, and I look forward to where my research will take

me.

Tian Yu Goh

Monash University

July 2013

xi

xii

Chapter 1

Introduction

1.1 Preamble

With the recent advances in computing power in High Performance Computing

(HPC), researchers have been exploring various methods and ‘frameworks’ available

for HPC applications, especially in eResearch and eScience. The need for more

computing power grows daily as an increasing amount of research turn to HPC as

a means to model, or simulate various experiments before carrying the actual ex-

periments out in order to reduce the number of actual samples and experiments

required, which results in time and money saved. In the traditional context, HPC

would have referred to expensive supercomputers, or dedicated clusters of process-

ing power. With the advent of Cloud Computing over half a decade ago, a large

amount of attention has been focused on the Cloud paradigm from researchers and

organisations alike – looking for newer ways to exploit and utilise the features that

the Cloud brings about, which are basically the flexibility or scalability (elasticity)

of on-demand processing power (Fujimoto et al., 2010; Brandt et al., 2009). Cloud

Computing has become a large cost-saving option for organisations with rapidly

growing data and for organisations that perform scientific research which involve

“in silico” experiments (Oliveira et al., 2010, 2009).

In recent years, there has been a multitude of studies conducted, exploring the pos-

sibility of HPC applications on Cloud Computing platforms. The promise of HPC

power available on-demand’, as a cheaper alternative to the traditional concept of

HPC – supercomputers and dedicated clusters, as a much more reliable platform

than grid computing, while combining the scalability of clusters and resource pools

(Ostermann et al., 2010; Jackson et al., 2010). As the amount of computing power

available increases, the general problem with Configuration Management becomes

a greater priority over time – the more computer resources there are, the more

difficult, and time-consuming it is to manage the configuration of such resources.

1

2 CHAPTER 1. INTRODUCTION

The important question remains – How do we manage these resources in an orderly

manner? Although prior research in attempts to compare and illustrate various CM

tools has been carried out (Jahidur, 2012; Önnberg, 2012), research into the suit-

ability of tools, and the process of Configuration Management for High Performance

Computing on the Cloud platform remains mostly unexplored.

1.2 Problem Statement

High Performance Computing is an area of great interest, especially to organisa-

tions that perform large-scale research involving simulations, and is a growing area

of interest for organisations that must process a lot of data every day. Institutions

such as Monash University utilise HPC in e-Research, which is the utilisation of Ad-

vanced Computing and Information Communication Technologies (ICT) to assist

in research projects. Some of these projects require the use of large computational

resources to run simulations in parallel, without which it would take a much longer

time to complete. These simulations are able to assist in and eliminating a degree

of actual experimentation that needs to be done in the process of research. The

general problem with this is that the more computer resources (computing power)

there are, the higher the difficulty in, and the more time-consuming it is to man-

age the configuration of such resources. Within large scale projects, the process of

installing a number of software packages multiple times with specific configurations

for as many computational nodes or instances as there are involved, can easily scale

from one to many dozens of such instances; dramatically increasing the workload in-

volved. In summary, the main question would be to find out how and what processes

and components would be required in order for efficient and reliable Configuration

Management activities for High Performance Computing on the Cloud platform.

1.3 Aims and Outcomes

This thesis aims to design a framework for Configuration Management activities for

High Performance Computing components on the Cloud, and to evaluate the ef-

fect on efficiency and reliability of a Configuration Management tool as a prototype

that fits the framework proposed, in configuring multiple Virtual Machines which

can be extended to Cloud Nodes. This research project will produce a dynamic

Configuration Management framework that is viable, and a working prototype will

be developed and deployed in order to demonstrate the validity of the proposed dy-

namic Configuration Management framework for HPC/HTC applications on Clouds

or other distributed infrastructure. An evaluation will be conducted on the frame-

work and the prototype to determine if it meets the requirements and improves

1.4. BENEFITS AND CONTRIBUTIONS 3

the ease at which Configuration Management will be carried out. The criteria for

evaluation of the Configuration Management tool are as follows:

• Efficiency in Configuration Management

• Reliability with the configuration deployed

1.4 Benefits and Contributions

Some of the expected benefits and contributions are listed as follows:

• Proposal of a framework for dynamic Configuration Management needs

• Evaluation of Puppet Enterprise as a Configuration Management Tool for

Clouds

• Evaluation on how well Puppet Enterprise performs as a Configuration Man-

agement tool when applied to HPC applications.

• Importance of Configuration Management in HPC

1.5 Thesis Outline

This thesis consists of five main chapters as outlined below.

• Chapter 2 reviews the current existing literature, and introduces the key

concepts of High Performance Computing, Cloud Computing, Configuration

Management and addresses the issue of filling the gap identified between tra-

ditional static Configuration Management and Dynamic Configuration Man-

agement, in the perspective for High Performance Computing Applications on

the Cloud platform.

• Chapter 3 introduces the methods and components identified that is of in-

terest to this research, specifically in terms of High Performance Computing

applications on the Cloud, or distributed infrastructure. A framework is pro-

posed and described, and some details on the implementation and evaluation

are outlined.

• Chapter 4 discusses the implementation of the prototype by introducing the

environment, and discussing the Configuration Management tool being de-

ployed, following which a discussion of the implementation process is provided.

4 CHAPTER 1. INTRODUCTION

• Chapter 5 describes the evaluation process of the proposed framework and

the prototype, as well as the results obtained from the evaluation process. The

evaluation process is outlined and a short analysis of the results is carried out.

• Chapter 6 brings the research work into its conclusion, and provides a sum-

mary of this thesis, as well as the achievements and contributions made, the

limitations on the research is acknowledged, and some difficulties and prob-

lems encountered are presented. Finally, some identified directions for future

works are provided.

Chapter 2

Literature Review

2.1 High Performance Computing

HPC is defined by iVEC as the “use of computers for high throughput of computa-

tion, solving large problems, or getting results faster” (iVEC, 2012). One context

that this research will examine is e-Science, defined as the “large scale science that

will increasingly be carried out through distributed global collaborations enabled by

the Internet” (NeSC, 2001), and in a typical scenario or setting, such work requires

access to large data collections, computing resources at scale, and high performance

computer visualisation tools at the individual scientist level.

HPC can be considered an umbrella of a number of different architectures or en-

vironments such as clusters and supercomputers. As described in iVEC’s definition,

HPC is considered the usage of computer resources for high throughput of compu-

tation, etc. It is important to note that when considering HPC, the environment

or architecture to be used greatly depends on the task at hand; for example, is a

large high performance, multiprocessor system such as a supercomputer required,

or would it be more suitable to run the job at hand on a cluster-like system, which

concentrates more on the throughput over a large number of tasks that is spread

over a longer period of time (Strohmaier et al., 2005; Mahmoud et al., 2012).

The Monash e-Science and Grid Engineering Laboratory (MeSsAGE Lab) plays

a role in e-Science in many fields of research, including but not limited to, Chemistry

and Physics, Medical and Life Sciences, Engineering and Design, Mathematics and

Computer Science, Economics and Finance, Environmental Science, Earth Sciences

and Astronomy (MeSsAGELab, 2012). In that context, HPC plays a large role

in e-Research, defined as “a set of activities that harness the power of advanced

information and communication technologies (ICTs) for research” (eResearchSA,

2012), in providing the computational power required to simulate and model a vast

variety of data for e-Research, that without HPC, would have been computationally

5

6 CHAPTER 2. LITERATURE REVIEW

infeasible. An example of research that was carried out using such methods is

Abramson et al. (2006)’s research into Drug Design where some of the processes in

simulating and modelling the effects of a drug were done using HPC.

With the availability of HPC computing power, scientists executing parallel or

distributed simulation and modelling applications are able to try and scale the

amount of simulations / models done in order to achieve a higher rate of accu-

racy or more results. With that scaling, more resources are required to compute the

same simulation or model (Gallard et al., 2012, p. 136). As with before, the limi-

tations on the research conducted would be typically determined by the computing

power that the researchers home institution or national initiatives could provide. In

that sense, resources available were typically clusters that were being managed by

batch queuing applications or something similar. This restriction forced researchers

to either find the capacity for computing power from an external entity, abort or

compromise on the result sample set, or reduce their scope in hope of reducing the

required capacity of computational power (Bethwaite et al., 2010, p.221).

2.2 Cloud Computing

Cloud computing is defined by NIST as “a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction” (Mell

and Grance, 2009), with five essential characteristics which are listed as follows:

• on-demand self-service

• broad network access

• resource pooling

• rapid elasticity

• measured service

Throughout the years, many researchers have attempted to classify the service

models that are covered under the Cloud computing paradigm. For example, Wang

et al. (2008) describes it as being three service models, primarily Hardware as a

Service (HaaS), Software as a Service (SaaS), and Data as a Service (DaaS). This is

contrary to the definition provided by Mell and Grance (2009) as the three service

models of SaaS, Platform as a Service (PaaS), and Infrastructure as a Service (IaaS).

Some other researchers have developed their own classifications that either extend

2.2. CLOUD COMPUTING 7

or provide an alternative view into these service models, which include but are not

limited to: Cluster as a Service (CaaS) (Dodai, 2011; Yokoyama and Yoshioka,

2012; Yokoyama et al., 2012), High Performance Computing as a Service (HPCaaS)

(Jamjoom et al., 2012).

Figure 2.1: (a) SPI service model vs. (b) IBM service model (Hamdaqa and Tahvil-
dari, 2012, p. 50)

The commonly accepted models are the NIST Software Platform Infrastructure

(SPI) model, and the IBM model as shown in a comparison at Figure 2.1. It is seen

that, the two service models are complementary to each other, and not contradic-

tory (Ahson and Ilyas, 2010; Hamdaqa and Tahvildari, 2012). For the purposes of

this research, the NIST SPI model will be adopted for use to comply with widely

accepted standards. A layered model architecture following the NIST SPI model

was introduced by (Zhang et al., 2010) and is shown in Figure 2.2.

As seen in Figure 2.2, there are three types of services on the leftmost column,

and these are as follows:

• IaaS: This layer includes the hardware and infrastructure, and is commonly

provided by data centres and infrastructure providers such as Amazon EC2,

Microsoft Azure, Rackspace, IBM SmartCloud, GoGrid, and FlexiScale. The

provider typically provides and is responsible for the physical resources in

the cloud, as well as the network and cooling equipment that goes with it.

The infrastructure layer is more commonly known as the virtualization layer,

and generally can be referred to as the pool of resources (computing and

storage) that is a key component of Cloud computing, especially since “many

8 CHAPTER 2. LITERATURE REVIEW

Figure 2.2: Cloud Computing Architecture (Zhang et al., 2010, p. 9)

key features, such as dynamic resource assignment, are only made available

through virtualization technologies” (Zhang et al., 2010, p. 9).

• PaaS: The platform layer concerns itself with the operating systems and

frameworks, such as Application Programming Interfaces (API) (Google App

Engine) to provide API support for application implementations.

• SaaS: The application layer contains the cloud applications such as Facebook,

Twitter, YouTube, and Google Apps. The main difference between traditional

applications and cloud applications is that cloud applications are able to scale

automatically on resources in order to achieve higher performance and avail-

ability at lower operating costs (Zhang et al., 2010, p. 9).

Some of the popularly used IaaS frameworks available are:

• Eucalyptus

• Nimbus

• OpenStack

• OpenNebula

In von Laszewski et al. (2012)’s work, a comparison of the IaaS frameworks

was conducted and Figure 2.3 as shown was derived from that data, comparing the

features of the various IaaS frameworks.

The authors also evaluated the popularity of the frameworks and noted that

Nimbus and Eucalyptus were the most popular, but might have been so as they had

2.2. CLOUD COMPUTING 9

Figure 2.3: Comparison of Multiple IaaS Cloud Frameworks (von Laszewski et al.,
2012, p. 738)

strongly advertised and recommended the two systems (von Laszewski et al., 2012,

p. 735).

The NIST definition of Cloud computing also provides for four deployment mod-

els (Mell and Grance, 2009) as follows:

• Private Cloud. Cloud infrastructure used exclusively by a single organi-

sation. For example, a Private Cloud Storage solution provided by Tonido

(2012).

• Community Cloud. Cloud infrastructure used exclusively by a single com-

munity of organisations (consumers) with a single shared concern (e.g. mission,

security requirements, etc.). An example would be a shared Google Document

Folder.

• Public Cloud. Public Cloud is used by the general public, and is hosted by

a cloud provider. An example would be Rackspaces Public Cloud (Rackspace,

2012).

• Hybrid Cloud. A Hybrid Cloud is a “composition of two or more distinct

cloud infrastructures (private, community, or public) that remain unique en-

tities, but are bound together by standardised or proprietary technology that

10 CHAPTER 2. LITERATURE REVIEW

enables data and application portability” (Mell and Grance, 2009). One ex-

ample of this is Intel’s Hybrid Cloud Platform (Intel, 2012).

It is noted that access to cloud environments has been classified into sub-taxonomies

by research. Oliveira et al. (2010, p. 56) stated “API is a fundamental artifact for

access through programming languages such as Java, Python, or C. By using an

API, more complex applications may use cloud infrastructure in a native form”,

and defines access into four types: web browsers, thin clients, mobile clients and

API. A limitation exists on the API in cloud environments. For example, Google

App Engine (Google, 2012) “provide not only a cloud computing infrastructure, but

also a complete software stack with a restricted API so that software developers are

forced to write programs that can run in a shared-nothing environment and thus

facilitate elastic scaling” (Abadi, 2009, pp. 2-3).

Being the emergent trend for delivering Information Technology (IT) services to

end-users and enterprises (Vecchiola et al., 2009, p. 5), Cloud computing has been

gaining a lot of interest, especially from scientists and researchers alike with the

ability to scale computing resources according to the requirements and cost budgets

of the project or the end user (Vecchiola et al., 2009, p. 5). In the field of e-Research,

there have been a large number of studies done, quantifying the performance of such

platforms in its use as HPC for scientific applications, and “in silico” experiments.

There have been studies that investigated specific science (e-Science) applications on

clouds (Evangelinos and Hill, 2008), but it is noted that said studies were sensitive to

network latency – which would be a major negative factor on performance as cloud

resources are not located in a single data centre, and can be distributed around the

world in multiple geographic locations.

As mentioned previously, e-Science and e-Research assist researchers by provid-

ing computing power to simulate and model a vast variety of data for research.

This, in turn reduces the amount of physical real-world experiments required for

most projects, which reduces the cost of the entire research as a whole. Cloud

computing introduces the on-demand, pay-per-use cost structure. The idea of be-

ing able to rent scalable computational power on demand is of interest to scientists

and researchers alike. Being able to perform more experiments on the same budget

will go a long way in helping research objectives. As mentioned in the previous

section, HPC can be broken down into various architectures, such as the cluster or

supercomputer. The Cloud paradigm is better described in those architectures as a

cluster-like environment, with benefits such as the rapid expandability or scalability

to virtually an unlimited amount of processors to better support a massive amount

of jobs that are running simultaneously, an ‘instant cluster’ that can be deployed

on-demand on the cloud, so to say. This type of computational environment is more

2.3. CONFIGURATION MANAGEMENT 11

commonly called the High-Throughput Computing (HTC), or Many Task Comput-

ing (MTC) environment, which was described by Raicu et al. (2008) as the bridge

between the HTC and HPC paradigms.

Some current ongoing issues with Cloud computing as HPC include performance

issues stemming from communications and interference from external traffic over a

network(s). It was observed in some studies that parallel codes executed slower when

compared to execution on dedicated nodes (Fujimoto et al., 2010, p. 3), and a strong

correlation was identified between the percentage of time that a HPC application

spends communicating between computational nodes, and the overall performance

of the application itself, which basically meant that when the HPC application had

more inter-nodal communication, the overall performance of the HPC application

decreases (Jackson et al., 2010, p. 167). Another study states that unlike the

cluster computing architecture, the Cloud computing paradigm attempts to focus

on increasing the overall system performance of the cloud as a whole (Dillon et al.,

2010, p. 30).

It can be said that Cloud computing will work for parallel problems with little

to no inter-job communications. Support for “handling large data sets, the concept

of moving computation to data, and the better quality of services provided such as

fault tolerance and monitoring, simplify the implementation details of such prob-

lems over the traditional systems” (Ekanayake and Fox, 2010, p. 36). As such, the

type of architecture that suits the Cloud paradigm applied to HPC applications, as

mentioned previously, is more of a ‘instant cluster-like’ environment. There exists a

need to research and enhance the cloud to produce better performance, scalability

and stability (Ramakrishnan et al., 2011, p. 57). Considering that HPC environ-

ments such as supercomputers may contain just one shared filesystem for all the

computational cores available, so packages are only installed once, as compared to

a cluster-like environment, where there is a need to deploy the same package to a

large amount of filesystems, with an identical configuration. The question then lies

in the ability to ensure that the installations for the packages required are done in

a fast, efficient and reliable manner.

2.3 Configuration Management

The definition of Software Configuration Management (SCM) by IEEE is widely ac-

cepted (IEEE, 1988, 1990). CM is a relatively large function that covers not only the

management of configurations of hardware and software, but also includes inventory

control and management, configuration of hardware and software, storage, backup,

and comparison, implementation of configuration changes, and detection of changes

to configuration, hardware and software (Cisco, 2007). Configuration Management

12 CHAPTER 2. LITERATURE REVIEW

also allows a default configuration to be specified for specific devices, modify and to

load new configurations on them (Oppenheimer, 2011). Wood and Pereira (2011, p.

19) state “Configuration is the most critical process of any heterogeneous network.

This is because it impacts the network in terms of security, performance, resilience,

predictability. Distributed computing paradigms have changed system configuration

management more than could have been predicted as the dynamism of such systems

requires more complex set up and maintenance”. CM has become a necessity in

order to reduce the error rate and difficulty in which it has become to maintain and

deploy components in large infrastructures. Magherusan-Stanciu et al. (2011, p.

25) has stated that the complexity and the workload of administrative staff increase

with the amount of computational power that is added into the system. This proves

especially true when the amount of administration staff do not increase, but the

ratio of workload to staff members increases with each machine being added to the

pool of resources available.

CM tools that assist in automation with regard to configuration and deployment

of resources are available. Önnberg (2012) illustrates in Figure 2.4, a table of such

Configuration Management tools and their supported platforms.

Figure 2.4: List of System Configuration Management Software and their supported
platforms (Önnberg, 2012, p. 5)

A study conducted by Delaet, Anderson, and Joosen (2008) show that most of

the existing ‘modern’ systems already require sufficiently complex system configu-

rations that are normally beyond the ability of human administrators to configure

manually in a reliable manner, “configuration errors are the biggest contributors to

service failures (between 40% and 51%), and these errors take the longest time to

repair” (Delaet et al., 2008; Oppenheimer, 2003; Patterson, 2002, p. 594). A set

2.4. CM FOR HPC APPLICATIONS ON THE CLOUD 13

of case studies conducted by Oppenheimer (2003) has demonstrated CMs impor-

tance, and the importance of understanding sufficiently, the system configuration in

a distributed system configuration. He states that incorrect or insufficient under-

standing of such distributed system configuration can influence service availability

when either performing some kind of action or when diagnosing a problem with the

service (Oppenheimer, 2003, p. 1). This is especially important when there isnt any

proper CM tool or process in effect that will allow the administrator to understand

the current configuration before proceeding to make changes that will affect the de-

pendencies, both down and upstream.

Historical research in the area has identified the two major streams of Configu-

ration Management, namely the static traditional process, and the dynamic process

(Kramer and Magee, 1985). Dynamic Configuration Management isn’t a new con-

cept, but it has been slowly developing and there is a disturbing lack of research in

the area pertaining to components for High Performance Computing applications

on the Cloud. As mentioned in the previous section, the Cloud paradigm has been

growing and attracting great interest for the benefits of rapid scalability and on-

demand deployment in the High Performance Computing field. It then makes sense

to utilise a framework of dynamic Configuration Management in order to smoothen

and provide a logical order to the complexity of Configuration Management.

2.4 CM for HPC Applications on the Cloud

Oren Michels, CEO of Mashery said that “Although the root cause of this particular

issue was a resource contention issue between instances, things like that are going

to happen. There may now be a fix for this particular edge case, but there are

undoubtedly others that will crop up over time. The real failure here was a failure

of monitoring, and a failure of transparency” (Gillett et al., 2008) in describing the

downtime experienced by Amazons Elastic Compute Cloud (EC2) service, point-

ing out the need for Fault, Configuration, Accounting, Performance and Security

(FCAPS) measurement, management and optimisation (Mikkilineni and Sarathy,

2009, p. 60). CM fits into the second point of the FCAPS framework, which

consists of five points; Fault Management, Configuration Management, Account-

ing Management, Performance Management, and Security Management (Allan and

Nadeau, 2006). In Cloud computing, the need for CM is even more urgent, given

the large amount of computational resources that tend to reside within it.

In order to increase productivity and efficiency of deployments and of the cloud,

it is necessary to reduce the complexity and/or the administrative workload that the

cloud brings about by automating configuration and maintenance, and providing a

14 CHAPTER 2. LITERATURE REVIEW

method to handle CM (Magherusan-Stanciu et al., 2011; Rimal et al., 2010). The

best way to handle such environments, especially in data centres is to utilise CM

tools and frameworks such as Puppet, cfengine, KickStart and Chef. Such tools

assist in configuration management by providing a framework for which to write

program/configuration code by, as compared to writing code by hand (Rimal et al.,

2010, p. 29).

In larger distributed systems, for example on a cloud, it is impossible to com-

pletely shut down the servers for reconfiguration. Hence there is a need to be able

to dynamically reconfigure the servers while they are in operation. Research has

identified that there is “a further need to access and reconfigure resources and ser-

vices controlled by different organisations. These systems are too large and complex

to be managed by a single human manager” (Crane et al., 1995, p. 1). This holds

especially true when we discuss CM on the Cloud. The basic idea of a cloud means

that resources are not always geographically aligned, and can be spread all over the

globe. Hence, as discussed in a previous section, the ability to deploy multiple pack-

ages of identical configurations to a large number of nodes within the distributed

system on demand is critical.

Cloud (IaaS) providers can be typically divided into two types. They will either

provide support for CM via their in-house tools, or allow a user to utilise a third

party tool (typically open source), such as Puppet. In recent research conducted by

Jahidur (2012), he identified some benefits of having proper CM. For example, the

“opportunity of better control over all the nodes through visibility and tracking”,

and “enhanced understanding, supervision and managing of complicated system and

infrastructure” (Jahidur, 2012, p. 8).

An example of the installation process of the overhead on manual setup of in-

stances (nodes) on Amazon EC2 Cloud is shown in Figure 2.5. As shown in Figure

2.5, the boxed area has to be repeated for every instance to be setup (Ostermann

et al., 2010, p. 117). In a benchmarking study by (Ostermann et al., 2010, p. 120),

they have conducted a repetition of 20 times for the five instance types, for a total

of 100 instances (nodes), by hand – which is rather time consuming. One point to

note is that since the image used to instantiate the nodes are, or can be unique

to the software / applications required by the research project, it is required to

re-instantiate all the nodes for each research project (Gallard et al., 2012, p. 138).

This is very time consuming, hence there are CM tools available to assist in this

matter. Some of these tools are shown in the following sections.

2.4. CM FOR HPC APPLICATIONS ON THE CLOUD 15

Figure 2.5: Amazon EC2 Instance Manual Setup adapted from (Amazon, 2012)

Figure 2.6: Dell KACE tool (Dell, 2012)

16 CHAPTER 2. LITERATURE REVIEW

2.4.1 Vendor provided tools

Dell KACE

Dell provides what it calls a multi-role appliance that is primarily divided into two

categories as shown in Figure 2.6. The K2000 focuses on deployment, and the K1000

focuses on management. The KACE tool also only supports certain configurations,

such as Windows, Mac, RedHat Unix, Ubuntu, and SUSE, with the Unix family

only being supported by the K1000. It supports only the VMware ESX and ESXi

Server 3.5 and 4.0, and the Open Virtualization Format (OVF).

IBM Tivoli

IBM provides a software solution it calls Tivoli. Tivoli is capable of providing

support from Assessment, Design, and Deployment to Maintenance (IBM, 2010).

In terms of support, Tivoli seems to support a larger range of platforms, but does

not have a definitive list for all its product offerings (IBM, 2012).

VMware Tools

VMware have their own VMware Tools which supports a multitude of platforms as

well, but work specifically with VMware virtualization appliances (VMware, 2012).

2.4.2 Third-party tools

Puppetlabs Puppet / Puppet Enterprise

Puppetlabs offers two alternatives, an open-source alternative (Puppet) that works

only with Amazon EC2 and offers support for CM in Operating Systems (OS) and

Applications, or Puppet Enterprise which works with VMware as well, and offers

a more complete range of support for CM (PuppetLabs, 2012a). Puppet works by

providing a declarative language to program in; definitions of the required instances

are then created by the user and instantiated by the tool. The tool provides some

degree of automation, and users are able to put together instances from a library

of configuration scripts (definition scripts), which means that users are able to cus-

tomise the entire instance easily and be able to create multiple instances using the

automation provided. Puppet has some limitations, being that it was designed for

Unix OS; however it can run on Windows Server 2003, Server 2008 R2 and Windows

7 as well.

2.5. PAST RELATED STUDIES 17

Ubuntu CloudInit

Ubuntu provides its own tool called CloudInit. It provides CM for the early initial-

isation of instances (Ubuntu, 2012). It is available by default on the Ubuntu Cloud

Image, and on Amazon EC2 Amazon Machine Image (AMI) for Ubuntu.

2.5 Past Related studies

Other methods of CM attempts include image management by Cloud and HPC

vendor hosts. Generally, these hosts do not provide custom image storage for end-

users who may want to swap between various sets of operating environments and

application packages. In this instance, a proper CM tool would allow the user

to dynamically adjust for the applications installed, instead of having to store an

entire set of images of the system, and the packages available. This saves storage

space (which costs the end-user money), and the worry about having to keep all the

packages up to date. An alternative to having a sufficiently dynamic CM tool that

enables such easy swapping and modification of configuration was suggested by Diaz,

von Laszewski, Wang, and Fox (2012). They suggested creating a Universal Image

Registrar for Cloud and HPC Infrastructures and offered the FutureGrid (2012)

Image Management Architecture to instantiate and store new, previously un-created

images to the IaaS Cloud Framework and HPC Cluster (Bare-Metal) Infrastructure.

As mentioned previously, research done by Kramer and Magee (1985) demonstrated

the differences between static and dynamic configuration processes, and discussed

the dynamic configuration process for distributed systems. The importance of CM

on distributed or Cloud infrastructure has also been discussed in studies done (Wood

and Pereira, 2011; Oppenheimer, 2003; Crane et al., 1995).

In the area of e-Science applications and HPC applications on the Cloud, some

research has been done, some of these researchers have discussed their experiences

and results obtained as a process of actually running the applications on the cloud

(Ramakrishnan et al., 2011; Klinginsmith et al., 2011). Other researchers have

benchmarked their studies and described the performance of HPC on the Cloud

(Vöckler et al., 2011; Strijkers et al., 2010; Simmhan et al., 2010; Fujimoto et al.,

2010). Ramakrishnan et al. (2010) described how the existing Cloud environments

can be improved for e-Science usage, and research in analysing and benchmark-

ing the performance of HPC applications on existing Cloud infrastructure (Hill

and Humphrey, 2009). Wang et al. (2009) described how MTC and HTC ser-

vice providers benefitted from the economies of scale in using the Cloud platform,

and in more recent work, a thesis was published investigating the use of CM tools

in large infrastructures (Rahman, 2012).

18 CHAPTER 2. LITERATURE REVIEW

Chapter 3

Research Design

As mentioned previously, this research project aims to design a framework for dy-

namic CM of virtual HPC nodes in the Cloud, as well as to develop a prototype to

demonstrate the fitness of the framework proposed, as well as to demonstrate the

effect of a CM tool on the efficiency and reliability criterions. In order to do so, it

is necessary to first identify what components are critical to CM and of interest to

the main process of dynamic CM for this research.

3.1 Open-Source CM Tools

The analysis of the components required was done by looking at the currently avail-

able commercial and open source CM tools available. There are a number of such

tools on the market currently, and two of the more popular open-source tools, Pup-

pet and Chef, are described below with their core functionalities.

The two tools analysed are Puppet and Chef. The model of operation on both

tools are very similar to each other, and generally follow an agent-server mode of

communication.

3.1.1 Puppetlabs Puppet

Puppet is described as an IT automation tool that provides the capability for system

administrators to conduct CM activities, by establishing a reference configuration

state for which to monitor configuration drift from. It can then accept or reject fur-

ther changes, or automatically force a state of configuration on a group of resources.

(PuppetLabs, 2012b) Puppet utilises a four step process revolving around a declara-

tive model-based approach (PuppetLabs, 2012c) which is shown in Figure 3.1. The

model starts off by defining the desired configuration state, then simulating and

testing the state to ensure correctness and validity, applying the state defined to the

nodes selected and enforcing it, then reporting back about the monitoring status,

19

20 CHAPTER 3. RESEARCH DESIGN

Figure 3.1: The Puppet Model (PuppetLabs, 2012b)

or tracking the ongoing configuration state of the resources to ensure compliance

with the predefined state. In Puppet, an administrator would write a manifest of

configuration states of a specific package, or a group of packages and test compile

it, push it to a repository or sub-versioning server, then pull it into the puppet mas-

ter node before deploying it to specific groups of nodes. Puppet then monitors the

configuration state of the resources on each node using an agent. The Puppet agent

talks to the Puppet master to see if there were any configuration changes available

or any configuration drift, and apply the correct configuration as required.

In summary, Puppet provides the following critical features of interest to this re-

search:

• Deploying configuration states to specific groups of nodes

• Specifying default configuration states

• Monitoring and detecting configuration state changes

3.1.2 Opscode Chef

Similar to Puppet, Chef is an automation tool, or framework for CM, and is billed

as ‘Infrastructure for Code’ (OpsCode, 2013). Chef uses a code-then-deploy model

as shown in Figure 3.2. The administrator would write or ‘code’ the settings and

3.1. OPEN-SOURCE CM TOOLS 21

turn them into collections called cookbooks, then save to a repository and deploy it

to the chef server via a tool called knife. The chef server would then ‘compile’ the

configuration states and deploy them onto the nodes as required. The chef nodes,

or chef-client, pulls the configuration state and applies it to the nodes at a fixed

interval of time. If there were no changes to the current configuration then this

process would do nothing but ensure that the state remains as previously defined,

otherwise the configuration would be re-applied to ensure compliance with the preset

values.

In summary, Chef provides the following critical features of interest to this research:

• Deploying configuration states to specific groups of nodes

• Specifying default configuration states

• Monitoring and re-deploying configuration state at regular intervals

Figure 3.2: The Chef Model (OpsCode, 2013)

22 CHAPTER 3. RESEARCH DESIGN

3.1.3 Analysis Summary

After analysing the two open-source CM tools available, there are three of critical

components of interest that have been identified as follows.

• Deploying configuration states to specific groups of nodes

• Specifying default configuration states

• Monitoring and detecting configuration state changes

3.2 Identifying Components of CM

As discussed in the previous section, the analysis of two open-source CM tools have

resulted in three critical components of interest to this research.

3.2.1 Deploying configuration states to specific groups of

nodes

A configuration state is a set of configuration defined in code that specifies a specific

‘state’ that is desired. The ability to deploy single or multiple configuration states

(providing that they do not conflict with each other), to specific nodes or groups

of nodes as defined is important. For example, a configuration state for the apache

web server, along with a configuration state for the mysql database server can be

deployed to a group of five nodes in a farm of twenty (turning five of twenty nodes

into a web/database server).

3.2.2 Specifying default configuration states

A default configuration state is the overall configuration state that is to be applied

by default to a new node that is being added into the pool of resources available or to

be managed. For example, when commissioning a new rack of 30 servers and adding

them into the pool of resources available to be managed, a default configuration

state can be pre-set to be applied to these servers upon being added. This would

result in the servers having an identical ‘default’ configuration state upon being

added, without further administrator interaction.

3.2.3 Monitoring and detecting configuration state changes

Configuration state change is defined as when the configuration state on a node

has drifted from the defined configuration state last deployed on said node. There

should be some monitoring process that will enable detection of such configuration

3.3. FRAMEWORK DESIGN 23

drifts, and be able to automatically re-apply the last defined configuration state to

maintain the compliance of that node to the predefined state.

3.3 Framework Design

Dynamic Configuration Management is not a new field of research, as evidenced in

studies done by Kramer and Magee (1985). In their work, they illustrated the differ-

ence between a static and dynamic configuration process; which basically resolved

itself in differences with iterating through configuration specification versions. After

considering the three identified components of CM in the previous section, a pro-

posed framework was designed around a generic model for distributed, cluster-like,

dynamic configuration computational environments, where the need to be able to

make multiple installations, or deployments of various packages to a large number

of computational nodes in an efficient, reliable way is critical. The framework is

shown in Figure 3.3 as a process flow chart, and is accompanied by the component

interaction diagram in Figure 3.4.

Figure 3.3: Proposed Dynamic Configuration Management Framework

24 CHAPTER 3. RESEARCH DESIGN

Figure 3.4: Component Interaction Diagram for Proposed Framework

The component diagram shown in Figure 3.4 consists of five main entities, the

Server Administrator (SA), the Configuration State (α) scripts, the Repository (R),

the Master node, and the numbered (n) Nodes (N). In a standard flow of events, the

SA would create or edit Configuration State scripts which can be grouped logically

into larger scripts, as indicated by the box on the diagram. The scripts are then

pushed or pulled to/from R. The master node would communicate with R to pull

the required state for deployment and deploy that state to a preset group of nodes

(Nn).

Figure 3.3 shows the proposed framework for dynamic Configuration Management.

It’s important to note that one of the main differences between static and dynamic

Configuration Management as highlighted by Kramer and Magee (1985) is that the

fact that the configuration specification, or configuration state iterates and must

support incremental changes. It is also important to validate the changes, or test

the changes and configuration state before deploying it to the nodes in question.

The proposed framework is divided into four logical processes, Definition, Testing,

Deployment and Monitoring, and are illustrated as swim-lanes on the model. The

series of processes start by checking if the required state, α is defined. If it is, then

it would be retrieved from the repository, R. If not, the SA is required to define α,

usually in some form of high level code or language, and then α would have to be

tested on a single ‘test’ node to ensure that no conflicts are present before pushing it

to R, and deploying it to the nodes required, Nn. Following which, the process must

monitor the configuration states on the nodes Nn, and if the deployed configuration

state αD changes, i.e. αn != αD, then the process has to redeploy αD to the node

3.4. IMPLEMENTATION AND EVALUATION 25

Nn with the configuration drift to ensure compliance with the deployed state αD.

The monitoring process is illustrated as a module as it has to run independently of

the initial definition process to the deployment process.

For the purposes of this research project, a CM tool mentioned in the previous sec-

tion, Puppet, will be adopted for the prototype implementation. Puppet is produced

by Puppetlabs, and has two versions, an open-source licensed version (Puppet) and

a commercially licensed version (Puppet Enterprise).

3.4 Implementation and Evaluation

When considering the CM tool for the prototype implementation, there were two

candidates as described in the analysis section previously, which were Chef and Pup-

pet Enterprise. Puppet Enterprise was chosen primarily as it supported up to ten

nodes on its free-tier, whereas Chef only provided five nodes on its free-tier license.

The open-source version of Puppet was not considered as the commercially licensed

version, Puppet Enterprise seemed to provide a larger feature set and support, which

is important in an enterprise environment. In the next few sections, the implemen-

tation of the prototype using Puppet Enterprise(PE) will be discussed. PE provides

a high level descriptive programming language for use in defining customisable con-

figuration ‘profiles’. The next chapter will deal heavily in specifics to PE CM with

regard to the research implementation for the prototype.

26 CHAPTER 3. RESEARCH DESIGN

Chapter 4

Research Implementation/

Prototype

A proposed framework was presented in the previous chapter. The framework was

designed to be generic enough to be applied to other dynamic distributed environ-

ments utilising various other CM tools. This research project will focus on utilising

PE as a prototype of the proposed framework. This chapter describes the imple-

mentation environment of the prototype using PE, and details the core features of

PE being used, followed by a description of the implementation process.

4.1 Environment

This research project utilised the NecTAR Research Cloud located at Monash Uni-

versity, and a server racked at Monash University as the environment. The NecTAR

Research Cloud is a national research cloud, consisting of a partnership of various

research universities in Australia to develop and operate cloud infrastructure and

services running OpenStack and KVM cloud middleware. It consists of seven in-

stitutions forming up node ‘farms’; University of Melbourne, Australian National

University, Monash University, Queensland Cyber Infrastructure, University of Tas-

mania, iVEC and eResearch South Australia.

4.1.1 Repository

The Repository is deployed on the master node using the standard unix svn (sub-

version) package. To reduce latency and increase transfer speeds, especially with

larger files, it is of benefit to locate the Repository on the same master node so that

read/write will be local to the master node. As shown in Figure 3.3, the Server

Administrator (SA) creates configuration scripts (α) locally or remotely on a work-

station, then tests and pushes it to the Repository. When the SA wants to deploy α

27

28 CHAPTER 4. RESEARCH IMPLEMENTATION/ PROTOTYPE

to the nodes via the master node, he or she would need to pull it to the master node,

and in order to speed up this process and to reduce as much transfer time overhead

as possible, it is of benefit for the Repository to be either on the local network to the

master node, or on the same server. In the case of this prototype, I have elected to

locate it on the same server due to resource and budget constraints. As mentioned

previously, the Repository in this prototype is a standard svn package that allows

version control. The package tracks changes across files and folders, providing an

easy way to roll-back changes and to manage multiple versions and copies of the

same folder or file set. In the case of configuration scripts in the context of dynamic

Configuration Management, it is important to be able to support multiple versions

of the same script as software packages may contain different configuration states

depending on the nature of the job to be run on the computational nodes.

4.1.2 Master Node

The Master Node is the main node that controls and provides the monitoring and

management of the distributed compute nodes. It should be able to deploy config-

uration state scripts to a preset group of compute nodes, and be able to monitor

them for changes. In a nutshell, it is the core of the system. Since it is the core of

the system, there should exist some redundancy in order to ensure optimal uptime.

The master node should also be a powerful server that is capable of fast complex

database operations with a good network connection to improve transfer throughput

to the compute nodes. The specifications of the master node is listed in Table 4.1.

In the following section, the possibility of redundant master nodes will be discussed

in the context of Puppet Enterprise.

Type Description
CPU Dual Intel Xeon E5506 2.13GHz Quad-Core Processor
RAM 12GB
OS CentOS 6.4 (Red Hat Enterprise Linux) Kernel 2.6.32

HDD 500GB
Network 1000baseT

Table 4.1: Master Node Specification

4.1.3 Compute Nodes

The Compute Nodes are the nodes that are used for computation. In the case of

this research project, I am utilising nodes provisioned from the NecTAR Research

Cloud for testing purposes. Due to budget and allocation restrictions, I could only

4.2. PUPPET ENTERPRISE 29

provision nine m1.small configured nodes. The specifications of the compute nodes

provisioned are listed in Table 4.2.

Type Description
CPU AMD Opteron 6234 2.4GHz Single-Core Processor
RAM 4GB
OS CentOS 6.4 (Red Hat Enterprise Linux) Kernel 2.6.32

HDD 40GB
Network 100baseT

Table 4.2: Compute Node Specification

4.2 Puppet Enterprise

Puppet Enterprise (PE) is the commercial version of the free-license open-source

Puppet provided by Puppetlabs. It provides more functionality as compared to

the open-source Puppet version, targeted at enterprise environments. These addi-

tional functionality include task automation, simplified upgrading and maintenance,

a graphical user interface, role-based access control, and greater provisioning sup-

port as well as configuration management discovery tools (PuppetLabs, 2012a). A

deployment diagram of the various roles as installed in the prototype is shown in

Figure 4.1.

4.2.1 Roles

PE consists of four roles; Puppet Master, Console, Cloud Provisioner and Puppet

Agent.

Puppet Master

The Puppet Master is installed on the master node, and provides the compilation

and distribution of configuration states, or catalogs to the puppet agents installed

on all the nodes being managed. The configuration catalogs describe the state of

resources that have been configured explicitly to exist or not exist on the nodes and

consist of manifests defined by the administrator that are identified as classes. Each

class corresponds to a manifest, and each manifest can consist of multiple classes.

Each class can define a specific set or group of resources, or packages to be installed

with specific configuration files. As mentioned in the previous section, PE supports

puppet master redundancy by allowing multiple redundant Puppet Masters in the

deployment, however this requires further configuration and will not be explored

30 CHAPTER 4. RESEARCH IMPLEMENTATION/ PROTOTYPE

Figure 4.1: Prototype Deployment Diagram

in this prototype. Similarly, there exists the capability to tweak the security be-

ing used in the panel login to the Puppet Master / PE Dashboard on the master

node, although PE supports other types of security such as LDAP and Kerberos, for

the purposes of this prototype, I am using the default HTTPS/SSL configuration.

The communication between the Puppet Master and the associated Puppet Agents

utilises HTTPS with certificates over a host-verified SSL channel in a Represen-

tational State Transfer-like manner (REST). Again, due to scope restrictions, this

area of the prototype will not be explored in this research.

Console

The Console is to be installed on a single secure node, and can be installed on

the master node. It provides the web console interface that allows resource editing

on the nodes, advanced tasks such as triggering Puppet Agent runs, grouping and

assigning classes to nodes and viewing reports, charts and inventory changes. It also

4.2. PUPPET ENTERPRISE 31

provides for approval and rejecting of audited changes. The console collects reports

and serves node information to the Puppet Master. In this prototype, the Console

will be installed on the master node.

Cloud Provisioner

The Cloud Provisioner is an optional role that can be installed if VMware or Amazon

EC2 cloud instances are being used. It can be used to provision new instances and

install PE on them, as well as adding the nodes to a group on the console. It has

to be installed on a single secure node as it contains confidential information about

the accounts. This prototype does not include the use of the Cloud Provisioner role.

Puppet Agent

The Puppet Agent is installed on every single node in the deployment environment.

It runs a daemon that pulls and applies configurations provided by the Puppet Mas-

ter and reports on changes to configurations and resources. It communicates with

the Puppet Master via HTTPS using certificates over a host-verified SSL channel.

4.2.2 Language

PE provides its own high level descriptive language to create manifests and classes.

A manifest consists of a class definition which contains one or more resource dec-

larations. A resource declaration is shown in Listing 4.1, and contains a resource

type file, the name of the file ssh config, a path /etc/ssh/ssh config, and the source

or template for which to copy the file from.

f i l e { ’ s shd con f i g ’ :

path => ’/ e t c / ssh / s shd con f i g ’ ,

ensure => f i l e ,

mode => 600 ,

owner => root ,

source => ’ puppet :/// modules/ sshd/ s shd con f i g ’ ,

}

Listing 4.1: ssh config

Classes also support usage of regular expressions, conditional statements such as

if statements, case statements, and programming methods such as overriding and

defaults.

Each manifest has a fixed file structure to use, and each manifest has a folder

named after the manifest class name. Within that folder, would have at least one

main folder, the manifest folder. In most cases, there can be a files folder as well. The

manifest folder would contain at minimum the init.pp manifest file and the latter

32 CHAPTER 4. RESEARCH IMPLEMENTATION/ PROTOTYPE

files folder serves as the root file storage for each manifest. To utilise the files con-

tained within, the path puppet:///modules/ is appended to the folder path from the

manifest root folder, for example puppet:///modules/sshd/sshd config would refer to

the file sshd config in the files folder. An example of a manifest for openssh-server

is shown in Listing 4.2.

PE compiles the various manifests defined for a node group, into a catalog and

applies it to the nodes in a node group to form a defined system configuration state,

as shown in Figure 4.2.

Figure 4.2: PE Compilation State Diagram

4.2.3 Developing Components

Application packages used in HPC applications can be divided into two main types;

the monolithic and the modular type. In this research project, we have identified

two major packages that are in use for HPC applications across eResearch, one of

each type of package. To briefly describe an example of the two types of packages,

the first type of package, the monolithic type which usually consists of a fixed set of

4.2. PUPPET ENTERPRISE 33

components, can be represented by OpenMPI. The second type, the modular type

are packages that contain varying components and is represented by R. Both are

packages commonly used in HPC applications, and further elaboration of the two is

provided in the following subsections. Traditional Configuration Management covers

static configuration states, where packages generally have a single base configuration

state per version. The main striking difference with modular packages when com-

pared to monolithic, is that modular have varying configuration states that change

depending on the required components of the package to be installed in question.

c l a s s openssh−enable {
package { ’ openssh−s e rver ’ :

ensure => present ,

b e f o r e => [F i l e [’ / e t c / ssh / s shd con f i g ’] , F i l e [’ / home/ec2−user / .
ssh / author i zed keys ’]] ,

}
f i l e { ’/ e t c / ssh / s shd con f i g ’ :

ensure => f i l e ,

mode => 600 ,

source => ’ puppet :/// modules/ sshd/ s shd con f i g ’ ,

}
f i l e { ’/home/ec2−user / . ssh / author i zed keys ’ :

ensure => f i l e ,

owner => ec2−user ,

group => ec2−user ,

mode => 600 ,

source => ’ puppet :/// modules/ sshd/ author i zed keys ’ ,

}
s e r v i c e { ’ sshd ’ :

ensure => running ,

enable => true ,

h a s r e s t a r t => true ,

ha s s ta tus => true ,

s ub s c r i b e => F i l e [’ / e t c / ssh / s shd con f i g ’] ,

}
}

Listing 4.2: openssh-enable

c l a s s openssh−d i s ab l e {
package { ’ openssh−s e rver ’ :

ensure => absent ,

}
}

Listing 4.3: openssh-disable

34 CHAPTER 4. RESEARCH IMPLEMENTATION/ PROTOTYPE

In PE, to address the issue of multiple preconfigured configuration states, it

is possible to create a manifest or group of manifests with classes specifying each

component within the main package. Since in PE the naming of the manifests is

not fixed, meaning you can create varying sets of manifests with version names in

the manifest class name. For example, Listing 4.2 and Listing 4.3 shows two short

manifests with varying configurations for the same package, openssh-server. Listing

4.2 shows a standard openssh-server manifest with a predefined authorized keys and

sshd config configuration file. Listing 4.3 shows a openssh-server manifest to ensure

that it isn’t installed.

OpenMPI

OpenMPI is an open source Message Passing Interface Library commonly used in

High Performance Computing applications. It is available to most platforms, and is

most commonly used on the Unix platform. It is monolithic in nature and is also

available on most general release Unix public repositories. Being monolithic, there

generally is one singular configuration state for each release version, which simplifies

the management of the OpenMPI package.

R

R is an open-source environment for statistical computing and graphics, and is

available on multiple platforms, including Unix, Windows and Mac OS. It is a

popular package that is considered an alternative for MATLAB, a commercially

licensed environment. It is relatively modular in nature, and can be installed in

multiple configurations with varying options and components enabled or disabled.

R allows for a large variety of statistical and graphical techniques and is highly

extendable. R consists of eight basic packages supplied with the basic distribution

and there are many more available via CRAN sites. As mentioned previously, since

modular packages can contain varying configured components and not all would

be common to every job run on a HPC environment, there exists a need to have

multiple preconfigured configuration states, and the ability to manage and maintain

said states, as described in the Dynamic Configuration Management model in the

previous chapter.

4.3 Implementation

Finally, to briefly describe the implementation process, the following four sections

will outline the processes taken while installing and preparing the prototype for

evaluation.

4.3. IMPLEMENTATION 35

4.3.1 Deploying Puppet Enterprise

q i n s t a l l=y

q pupp e t c l o ud i n s t a l l=n

q puppet ente rp r i s e conso l e auth database name=conso l e auth

q puppe t en t e rp r i s e conso l e au th databas e pa s sword=tdZcugNSEg8CRkHrqBnJ

q puppe t en t e rp r i s e c on s o l e au th da t aba s e u s e r=conso l e auth

q puppe t en t e rp r i s e conso l e au th pas sword=’CDOmnde3342kjnsdf9 ’

q puppe t en t e r p r i s e c on s o l e au th u s e r ema i l=t

q pupp e t e n t e r p r i s e c o n s o l e d a t a b a s e i n s t a l l=n

q puppet ente rp r i s e conso l e database name=conso l e

q puppe t en t e rp r i s e con so l e da taba s e pa s sword=AahdSDVasaa5ZR9rQiRepQjV

q puppe t en t e rp r i s e con so l e da taba s e r emote=n

q puppe t en t e rp r i s e con so l e da taba s e r oo t pa s sword=’dkjdgaisd8ga9dsfW&3

sd ’

q puppe t en t e rp r i s e c on s o l e da t aba s e u s e r=conso l e

q puppe t en t e rp r i s e c on s o l e h t tpd po r t=443

q pupp e t e n t e r p r i s e c o n s o l e i n s t a l l=y

q puppe t en t e rp r i s e con so l e i nven to ry ho s tname=s−j e f f −h627 . i n f o t e ch .

monash . edu . au

q puppe t en t e r p r i s e c on s o l e i n v en t o r y po r t =8140

q puppet ente rpr i s e conso l e mas te r hos tname=s−j e f f −h627 . i n f o t e ch . monash .

edu . au

q puppe t en t e rp r i s e c on s o l e s e tup db=y

q puppe t en t e rp r i s e con so l e smtp ho s t=smtp . gmail . com

q puppet ente rpr i s e conso l e smtp pas sword=

q puppe t en t e rp r i s e c on so l e smtp po r t=25

q puppe t e n t e r p r i s e c on s o l e smtp u s e t l s=n

q puppe t en t e rp r i s e con so l e smtp us e r au th=n

q puppet ente rpr i s e conso l e smtp use rname=

q puppe t s ym l i n k s i n s t a l l=y

q puppetagent certname=s−j e f f −h627 . i n f o t e ch . monash . edu . au

q puppe t a g en t i n s t a l l=y

q puppetagent se rve r=s−j e f f −h627 . i n f o t e ch . monash . edu . au

q pupp e t c a i n s t a l l=y

q puppetmaster certname=s−j e f f −h627 . i n f o t e ch . monash . edu . au

q puppetmaster dnsaltnames=s−j e f f −h627 . i n f o t e ch . monash . edu . au

, 1 3 0 . 1 9 4 . 7 0 . 5 9

q puppetmaste r ente rpr i s e conso l e hos tname=l o c a l h o s t

q puppe tmas t e r en t e rp r i s e c on so l e po r t=443

q puppe tmas t e r i n s t a l l=y

q v endo r pa ckag e s i n s t a l l=y

q ve r i f y pa ckag e s=y

Listing 4.4: PE Answer file

Puppet Enterprise (PE) is provided as a compressed tar folder by Puppetlabs,

and its installation process can be automated by supplying an answer file as shown

36 CHAPTER 4. RESEARCH IMPLEMENTATION/ PROTOTYPE

in Listing 4.4, and calling the installation program with parameters, as seen in List-

ing 4.5. The answer file is shown in Listing 4.4 installs the Puppet Master, Puppet

Agent, Puppet Console roles onto the master node.

The installation of PE was straightforward, with strict forward and reverse DNS

lookup requirements on all the nodes. PE requires both apache web server and the

mysql database server to be preinstalled and configured.

/ root /puppet−en t e rp r i s e −2.8.1− e l−6−x86 64 /puppet−en t e rp r i s e− i n s t a l l e r −
a agent . answer

Listing 4.5: PE Installation

4.3.2 Deploying Nodes and Puppet Agent

The nodes were deployed using the NecTAR Research Cloud’s Amazon EC2 API,

and a post installation script shown in Listing 4.6 was utilised to automate the in-

stallation of the packages required. As the nodes were deployed with a base image

of CentOS 6.4 with no additional group packages configured, it was necessary to

install a few package groups to ensure that there were no missing required com-

ponents. The script also created the answer file for PE and called the installation

automatically. Once the script had finished execution, the administrator is required

to login to the PE dashboard to authorise the certificate for the newly generated

agent, as seen in Figure 4.3.

Figure 4.3: PE Authorise Agent

4.3. IMPLEMENTATION 37

#!/ bin / bash

cd / root

wget https : // s3 . amazonaws . com/pe−bu i l d s / r e l e a s e d /2 . 8 . 1 / puppet−
en t e rp r i s e −2.8.1− e l−6−x86 64 . ta r . gz

ta r −zx f puppet−en t e rp r i s e −2.8.1− e l−6−x86 64 . ta r . gz

yum update −y
yum g r oup i n s t a l l ”Development Tools ” −y
yum g r oup i n s t a l l ”Networking Tools ” −y
yum g r oup i n s t a l l ” Server Platform” −y
yum i n s t a l l bind−u t i l s −y
ip=‘ i f c o n f i g eth0 | grep ” i n e t addr” | cut −d\ t −f 2 | cut −d” ” −f 2 |

sed s /addr : / / ‘

host=‘nslookup $ip | grep ”name =” | cut −f 2 | cut −d” ” −f 3 | sed s

/ . $// ‘

hostname $host

node=node6

touch agent . answer

echo q f a i l o n un su c c e s s f u l ma s t e r l o o kup=y >> agent . answer

echo q i n s t a l l=y >> agent . answer

echo q pupp e t c l o ud i n s t a l l=n >> agent . answer

echo q pupp e t e n t e r p r i s e c o n s o l e i n s t a l l=n >> agent . answer

echo q puppe t s ym l i n k s i n s t a l l=y >> agent . answer

echo q puppetagent certname=$ (echo $node) >> agent . answer

echo q puppe t a g en t i n s t a l l=y >> agent . answer

echo q puppetagent se rve r=s−j e f f −h627 . i n f o t e ch . monash . edu . au >> agent .

answer

echo q pupp e t c a i n s t a l l=n >> agent . answer

echo q puppe tmas t e r i n s t a l l=n >> agent . answer

echo q v endo r pa ckag e s i n s t a l l=y >> agent . answer

echo q ve r i f y pa ckag e s=y >> agent . answer

/ root /puppet−en t e rp r i s e −2.8.1− e l−6−x86 64 /puppet−en t e rp r i s e− i n s t a l l e r −
a agent . answer

/opt/puppet/bin /puppet agent −−test

Listing 4.6: Automated Installation

4.3.3 Configuring Node Groups

Groups of nodes can be configured on the PE dashboard by adding a group, and

adding nodes to them, as seen in Figure 4.4.

4.3.4 Deploying Packages

Packages to be deployed would have to conform to the folder structure and be located

in /etc/puppetlabs/puppet/modules/. Once it is defined, the class, or manifest then

can be added to PE via the dashboard as seen in Figure 4.5. After which the class

38 CHAPTER 4. RESEARCH IMPLEMENTATION/ PROTOTYPE

Figure 4.4: PE Configure Node Group

can be added to node groups, which basically tells PE to use the manifest when

compiling the configuration state for the nodes in the node group, which is shown

in Figure 4.4. The node group can be considered a configuration state that contains

specific sets of manifests or classes, and in either case it is straightforward to add

and remove both classes and nodes from the node groups.

Figure 4.5: PE Add Class

Chapter 5

Research Evaluation

This chapter will discuss the evaluation of the framework and prototype, along

with its associated achievements, limitations and difficulties encountered during the

research prototyping.

This research has produced a framework for dynamic configuration management,

and the prototype built was used to validate that the framework was correct. At

the same time, the prototype using the Puppet Enterprise CM Tool is also evaluated

to demonstrate the improvement in the criterions of Efficiency and Reliability. In

order to evaluate the prototype, it is required to first specify the setting and scenarios

to be run for the prototype evaluation experiments, which will be addressed in the

following section.

5.1 Settings and Scenarios

In evaluating the prototype, three scenarios across two main deployment settings

have been drawn up for use. The two deployment settings are as follows:

• Configuration of newly deployed nodes (New Nodes)

• Re-configuration of existing nodes (Existing Nodes)

These two settings are two of the most common settings that would happen

within a deployment environment. And similarly, the three scenarios are as follows:

• Manual Configuration by administrator (Manual Configuration)

• Semi-automated Configuration by administrator using scripts (Scripted Con-

figuration)

• Automated Configuration using the prototype (Automated Configuration)

39

40 CHAPTER 5. RESEARCH EVALUATION

The three scenarios listed above are the three probable scenarios to happen in

a deployment environment. To determine the two criterions, it is first needed to

define the exact measure for how they would be weighed, and this is shown in Table

5.1.

Criteria Measure
Efficiency Time Taken in seconds
Reliability Percentage similarity of nodes determined by PE’s resource inspec-

tion tool

Table 5.1: Evaluation Criteria

The reliability criteria is determined by PE’s resource inspection tool, which

determines the similarity of nodes inspected on a whole, and for specific packages.

The graphical interface of the resource inspection tool, and the results from the

evaluation of the reliability criteria are dependant of the package resource value,

which is third on the summary list as shown in Figure 5.1.

Figure 5.1: PE Resource Inspection Tool

Deployment Setting Package Name Version Source

New Node OpenMPI 1.5.4-1 CentOS Repository
New Node R 3.0.1-2 EPEL Repository

Existing Node OpenMPI 1.5.4-1 CentOS Repository
Existing Node R 2.13.0-2 RepoForge Repository

Table 5.2: Evaluation Package Versions

5.1. SETTINGS AND SCENARIOS 41

The evaluation process basically entails installing the openmpi and R packages

from the official repositories, and in the case of the existing nodes, the un-installation

of the previously installed versions would be conducted before the re-installation pro-

cess. The software versions to be installed are listed in Table 5.2.

The efficiency criteria evaluation will be determined by time using the unix times-

tamp in seconds and nanoseconds, and the difference subtracted to determine the

time taken, calculated using the code as shown in Listing 5.1. The accuracy of the

timestamp will be to two nanoseconds.

The Scripted Configuration process scripts are available in Appendix B as Listings

B.1 and B.2. The Manual Configuration process follows the scripts, with the excep-

tion that it is manually entered. The timings will be then collected in a predefined

file on each of the nodes, and then compiled.

#!/ bin / bash

E f f i c i e n c y Eva luat ion code

Note : time captured i s in format o f seconds and nanoseconds as a

s i n g l e s t r i n g and i s processed in t o a 12 d i g i t timestamp in unix

time with an accuracy o f two nanoseconds

capture s t a r t time in to v a r i a b l e s t a r t

s t a r t =‘date +%s%N | cut −b1−12‘
capture end time in to v a r i a b l e end

end=‘date +%s%N | cut −b1−12‘
ca l c u l a t e time taken by deduc t ing end time from s t a r t time

t imetaken=‘expr $end − $s ta r t ‘

record the c a l c u l a t e d time taken to f i l e

echo $timetaken > /tmp/ tdata

Listing 5.1: Efficiency Evaluation Source Code

In order to achieve a good statistical sample size, and to reduce the bias of speed

of the network on the evaluation process, the evaluation tests were run a total of

ten times for each scenario and setting, resulting in a sample size of ten sets of two

settings for three scenarios, which is a sample of 80 for each row of finalised results.

As mentioned previously, the Cloud computing paradigm is geographically diverse

and as such, the Cloud nodes are not located on the same server and could be located

at different data centres. Over the space of a regular day, the speed of the network

relies on the a few criteria, which are basically the original intended throughput, as

well as the current traffic utilisation. To reduce the bias of the network speed, the

evaluation process is run at intervals of 4.8 hours across 48 hours, or two days, on

Sunday and Monday, as shown in Table 5.3. The two days were specifically chosen to

determine if there were differences across a normal work-day and a weekend, or rest-

day. Finally, due to resource limitations, and to restrict the scope of configuration

42 CHAPTER 5. RESEARCH EVALUATION

and the complexity of the task, the evaluation is limited to eight nodes and the two

packages as described in a previous chapter, OpenMPI and R.

Day Time Evaluation Sequence No

Sunday 00:00 Midnight 01
Sunday 04:48 Morning 02
Sunday 09:36 Morning 03
Sunday 14:24 Afternoon 04
Sunday 19:12 Evening 05
Monday 00:00 Midnight 06
Monday 04:48 Morning 07
Monday 09:36 Morning 08
Monday 14:24 Afternoon 09
Monday 19:12 Evening 10

Table 5.3: Prototype Evaluation Schedule

5.2 Prototype Evaluation Results

This section will briefly describe the data obtained after the evaluation of the pro-

totype according to the three scenarios and two settings, for a total of two main

sets of data. The results discussion will be broken into two sections, the prototype

evaluation, followed by a short discussion of accuracy of the framework against the

Puppet Enterprise model used in the prototype.

The evaluation of the prototype has produced the results as shown in Table 5.4. The

data collected was collated into a spreadsheet in the Microsoft Excel program. The

results analysis was then done in the Apple iWork Numbers program to generate

the data graphs shown in Figure 5.2 and Figure 5.3. The finalised efficiency results

were calculated by first averaging the each set of sequence run for the eight nodes

for each of the ten sequence runs, then averaging the calculated result of the ten

sequence runs, for each scenario and setting (a total of six). Similarly, the finalised

reliability result was calculated by averaging the set of ten sequence run reliability

raw data for each scenario and setting to obtain the finalised reliability average. The

raw data as seen in Appendix C as Tables C.3, C.4, C.5, C.7, C.8 and C.9 are the

data collected from the evaluation process. Each data row of the Tables C.2 and

C.6 represent the averaged results from one evaluation test iteration for a specific

scenario and setting. A summary table was then generated, as seen in Table 5.4,

which describes the averaged result for the six scenario and setting combinations.

Observing the results in Table 5.4, it is interesting to note that in terms of re-

liability, as seen in Figure 5.3, the similarity of the nodes configured manually on

5.2. PROTOTYPE EVALUATION RESULTS 43

Setting Scenario Efficiency (Avg) Reliability (Avg)
New Nodes Manual Configuration 942.18s 92%
New Nodes Scripted Configuration 801.57s 97%
New Nodes Automated Configuration 186.28s 100%

Existing Nodes Manual Configuration 1055.73s 89%
Existing Nodes Scripted Configuration 872.15s 98%
Existing Nodes Automated Configuration 192.31s 100%

Table 5.4: Prototype Evaluation Results

Figure 5.2: Efficiency Result Graph

existing nodes, when compared to the new nodes actually decreased from 92% to

89%. After investigation, I discovered that this was due to a two part reason: firstly,

as the nodes are in the cloud, the repositories that the system was retrieving pack-

ages from had different minor versions, which lead to the difference in configuration,

and secondly, when re-configuring the existing nodes and removing packages, it was

easy to miss removing some files as the process was done manually multiple times.

It is noted that when the process was repeated with scripting, the reliability in-

creased in comparison to the manual process, which can be attributed to running

the same script across all the nodes; hence reducing the chance of mistakes or errors

since the script would have been tested before deployment. The reliability results

also demonstrate the difference with using Clouds and other fixed infrastructure in

the sense that the Cloud paradigm revolves around geographically diverse computa-

tional nodes and instances. The instances are not always located in the same data

center, or even in the same country, as with the repositories which usually consist

of geolocated servers, meaning that depending on your geographical location, you

might be using a different repository. The differences will at best contain minor ver-

sion differences, and in the case where the user requires custom configuration files,

44 CHAPTER 5. RESEARCH EVALUATION

Figure 5.3: Reliability Result Graph

PE has the ability to deploy the same configuration file(s) that the user has created,

hence ensuring that the nodes deployed contain the same configuration. Finally,

when looking at the final automated process for the new and existing nodes, the

similarity result returned 100% on both cases, proving that the CM Tool does the

best job of ensuring compliance and similarity across multiple nodes.

The efficiency measure also solidly demonstrates the time savings that using a CM

Tool such as PE provides. When comparing the results for manual and scripted

configuration versus automated configuration process, there is a huge increase of

77% and 81% in efficiency for all the cases when using an automated process. This

is also attributed to the difference in runtime, that is to say that in the scripted

process, the nodes were configured in serial and consecutively instead of in parallel

which is what the automated process did. This resulted in a large time saving or

increase in efficiency.

Finally, as discussed briefly in the previous section, the evaluation process was run

ten times, partially to reduce the possible bias that the current usage and load of

the network would have on the evaluation results. Based on the raw data processed

for standard deviation figures in Appendix C over Tables C.10 and C.11, the sample

sets shown in Table 5.5 demonstrate a standard deviation of between 0.002 and 0.691

for the new nodes, and 0.013 and 0.309 for the existing nodes using the manual con-

figuration process. Similarly, the automated configuration process for the new and

existing nodes resulted in a standard deviation between 0.084 and 0.524, and 0.013

and 0.309 respectively. The values for the automated configuration process clock in

at between 0.009 and 0.386 for the new nodes, and 0.002 and 0.068 for the existing

nodes. While the results demonstrate that there is a lesser region of deviation using

the automated process, it can be seen that the network performance, or current load

and speed actually affects the configuration and package deployment process to a

5.3. FRAMEWORK EVALUATION RESULTS 45

small extent. With the first two types, the manual and scripted configuration pro-

cesses, part of the deviation values can be explained by the fact that the tests were

conducted manually to some extent, whereas the automated configuration was done

solely by machine. It can be then concluded that the evaluation for efficiency did,

to a small extent be affected by the network load or speed at the point of execution.

Setting Scenario Min Efficiency
Std. Dev.

Max Efficiency
Std. Dev.

New Node Manual Configuration 0.002 0.691
New Node Scripted Configuration 0.084 0.524
New Node Automated Configuration 0.009 0.386

Existing Node Manual Configuration 0.013 0.309
Existing Node Scripted Configuration 0.006 0.118
Existing Node Automated Configuration 0.002 0.068

Table 5.5: Standard Deviation of Efficiency between Evaluation Sequences

5.3 Framework Evaluation Results

Based on the prototype, the activities carried out using PE against the framework

components is provided in Table 5.6. The framework describes a list of activities

that should be carried out in as part of a logical process slow, as seen previously

in Figure 3.3. Hence, in evaluating the framework, the seven main activities being

carried out as part of the four processes identified in the framework are listed, and

compared against the activities that can be carried out in the prototype deployed.

The evaluation results in Table 5.6 demonstrate that the prototype using PE fits

the framework very well. PE allows naming of manifests and classes in a version-

like manner, which includes examples such as openssh-server 1.2.1-enable, openssh-

server 1.2.1-disable and openssh-server 1.5.0-enable. In this way, the sub-versioning

server can tie in with the manifests as it allows users to fork a current configuration

to a new folder and name it differently, which also would also be reflected in the

manifests directory. Furthermore, with PE there are two ways to deploy the configu-

ration state to nodes, which are namely by command line and by using the graphical

interface provided. The availability to deploy the configuration states by command

line allow the development of complementary tools that would further automate the

process of preparing the computational environment for a queued job. That being

said, it depends on the job queue management software, and the process that the

entire environment revolves around. The environment could be set up dynamically

by some queue management software, or could be configured by an administrator

46 CHAPTER 5. RESEARCH EVALUATION

prior to the deployment of nodes for a new job. In either case, the benefit of having

a predefined process flow for dynamic configuration management is present.

Process Framework Activity PE Activity Fit
(Yes/No)

Definition is α defined? check if α is defined in R Yes
Definition if α defined, retrieve from R found α in R, pull α from R Yes
Definition if α not defined, define α SA defines α Yes
Testing test of α successful? SA tests α using test run of

puppet agent
Yes

Testing push α to R SA commits new version in
svn

Yes

Deployment deploy αT to N1..n SA deploy αT to node group Yes
Monitoring monitor αD on N1..n PE monitors node group

for configuration drift and
reapplies αD as required

Yes

Overall Fit Yes

Legend α = configuration state
R = Repository
N = Node

1..n = for 1 to n

T = Tested

D = Deployed

Table 5.6: Puppet Enterprise and Framework Comparison

Chapter 6

Conclusion

This chapter summarises the research work carried out and its corresponding signif-

icance. The achievements and contributions, along with the limitations, difficulties

and problems encountered are discussed, following which some directions for future

works are listed.

6.1 Summary

This thesis has identified a gap in current research literature with regard to Con-

figuration Management for High Performance Computing on the Cloud platform.

Furthermore, there has been little to no research actively being done within the

last decade on the issue of Dynamic Configuration Management for the current

distributed Cloud platforms. Based on that, this thesis has contributed a short

analysis of two existing Configuration Management tools in identifying three com-

ponents of Configuration Management of interest to this field, which are in effect,

the deployment, specification, monitoring of configuration states to specific groups

of computational nodes, and detecting changes or configuration drift on these con-

figuration states. A framework was designed, building on past research (Kramer

and Magee, 1985) and the three components identified, as a Dynamic Configuration

Management Framework. Following which, the framework was evaluated using a

prototype built using Puppet Enterprise, and deployed using a server at Monash

University, and the NecTAR Research Cloud.

In evaluating of the prototype in terms of the efficiency and reliability criterions, a

set of three scenarios across two identified deployment settings was used during the

evaluation process that spanned two days and run at intervals of 4.8 hours for a total

of ten sequence runs, and the results demonstrate the dramatic increase in efficiency

of 77% and 81% as compared to manual and scripted configuration processes. The

network latency during evaluation was determined to have a small impact on the

evaluation process. Furthermore, the results show that the reliability of the entire

47

48 CHAPTER 6. CONCLUSION

deployment environment in terms of compliance to the configuration state has in-

creased from 89% and 92% for manual configuration processes to 100% when using

an automated configuration process on the prototype. A short breakdown of the

activity processes of the prototype was matched against the proposed framework,

and found to be a direct fit.

In conclusion, the results of the evaluations conducted validate the framework pro-

posed, and have demonstrated a direct improvement when compared to traditional

Configuration Management processes. The prototype was evaluated as being suc-

cessful, although further work grounding the framework and data by deploying other

Configuration Management tools would be beneficial, as in demonstrating the scal-

ability of the prototype by increasing the amount of computational nodes managed.

6.2 Achievements and Contributions

In completion of this research work, some contributions and achievements were

attained, and are as follows:

• A framework of Dynamic Configuration Management was proposed, and eval-

uated using a prototype

• A prototype using Puppet Enterprise was created and deployed to demon-

strate the improvement in efficiency and reliability in using such tools for

Configuration Management

• An efficiency increase of 77% to 81% was achieved when using an automated

Configuration Management process.

• A reliability increase to 100% compliance / similarity was achieved when using

an automated Configuration Management process.

• Similarly, as this thesis is applied research, it will assist decision makers in the

taking up and deployment of similar Configuration Management tools, as the

results from the evaluation of the prototype is conclusive.

• Finally, as a relatively novel work in this specific field of Configuration Manage-

ment for High Performance Computing on Clouds, this thesis has contributed

towards future research in the field, and should be used as a basis and improve-

ment of previous attempts to describe Dynamic Configuration Management.

6.3. LIMITATIONS 49

6.3 Limitations

There have been some challenges that were out of scope and could not be addressed

in this thesis. Similarly, there were some constraints placed on the research work in

order to limit the scope of the project. These limitations are listed as follows:

• In evaluating the framework, a decision was made to only concentrate on de-

ploying Puppet Enterprise as a prototype as it would double the time required

if a dual deployment was made using both Puppet Enterprise and Chef.

• Chef was not used in this research evaluation due to the lower amount of node

restrictions as compared to Puppet Enterprise, which was a free-tier level of

five nodes versus ten nodes.

• Due to budget constraints and allocation constraints, the project was allowed

access to seven NecTAR node instances and a server at Monash University. An

exploratory attempt was made to utilise Amazon Web Services for an increased

node count but the decision was made to not increase the difficulty, which laid

in the installation and use of the un-evaluated Puppet Enterprise component,

the Cloud Provisioner.

6.4 Difficulties and Problems Encountered

During the course of this research work, some setbacks and difficulties were encoun-

tered that prevented work from being done, some of which required a workaround,

the others meant a limitation on scope which have been mentioned in the previous

section. These difficulties and problems encountered are briefly described as follows:

• When the research was in the literature review phase, it was discovered that

little to no research was done in the area of Configuration Management for

High Performance Computing on Clouds. There were benchmarking research

attempts and suitability research done, but not specific to the area that this

research was looking at, which increased the difficulty in trying something

novel, so to say.

• During the selection of a CM Tool, due to a non-existent budget, and while

trying to maintain the largest set of features and capabilities available at no

cost, I decided to select Puppet Enterprise with ten nodes at the free-tier, as

compared to Chef with only five nodes. Further to that, Puppet Enterprise

was chosen over the open-source Puppet version as it provided a larger feature

set and greater support.

50 CHAPTER 6. CONCLUSION

• On building the prototype, some difficulties were encountered regarding the

server in use at Monash University. There were networking restrictions on the

network port, along with the un-availability of additional network switch ports

that prevented the initial plan of utilising the server as a virtual machine host

for the prototype as there had to be correct DNS configurations with inter-

faces exposed to the Internet. The deployment architecture was changed at

this point in time to reflect that so as to be able to use external nodes at the

NecTAR Research Cloud for computational nodes, with the server mentioned

previously as the master node, which delayed the entire evaluation and pro-

totyping phase for a month while discussion was going on with eSolutions in

attempts to resolve the issues.

• Some other issues such as power outages in the server room environment,

along with data corruption issues were at hand, but quickly dealt with and in

some cases the evaluation data that was corrupted had to be deleted and the

evaluation rerun.

• Finally, it is also acknowledged that the learning process duration for Puppet

Enterprise took longer then originally intended due to unforeseen difficulties,

which delayed the evaluation phase by two weeks.

6.5 Future Works

The conclusion of this research work has identified some areas for future research,

which are as follows:

• Extension of this thesis work by grounding the framework further in evaluating

other CM Tools, such as Chef, or other commercial tools available.

• The area of research in Configuration Management within the High Perfor-

mance Computing over Cloud platforms is lacking research and should be

looked at in an attempt to properly classify the differences between Dynamic

and Static Configuration Management, of which some attempts have been

made in the past.

• In an extension of the prototype, a deployment environment could be made

using the newer version of Puppet Enterprise which is 3.0, and is supposed to

achieve efficiency and performance increases of 200%.

• As mentioned previously, a test of scalability could be done using an increased

set of computational nodes, for example in the ranges of 500 to 10000.

Appendix A

PE Manifest Source Code

Appendix A contains the manifest code that was developed for the prototype eval-

uation. The configuration files referenced in the source code in Listing A.3 is not

included for security reasons.

c l a s s r2 {
package { ’R ’ :

ensure => present ,

v e r s i on => ’ 2 .13 .0 −2 ’ ,

}
}

Listing A.1: R2 Manifest Source Code

c l a s s r3 {
package { ’R ’ :

ensure => present ,

v e r s i on => ’ 3 .0 .1 −2 ’ ,

}
}

Listing A.2: R3 Manifest Source Code

51

52 APPENDIX A. PE MANIFEST SOURCE CODE

c l a s s sshd−en {
package { ’ openssh−s e rver ’ :

ensure => present ,

b e f o r e => [F i l e [’ / e t c / ssh / s shd con f i g ’] , F i l e [’ / home/ec2−user / .
ssh / author i zed keys ’]] ,

}
f i l e { ’/ e t c / ssh / s shd con f i g ’ :

ensure => f i l e ,

mode => 600 ,

source => ’ puppet :/// modules/ sshd/ s shd con f i g ’ ,

}
f i l e { ’/home/ec2−user / . ssh / author i zed keys ’ :

ensure => f i l e ,

owner => ec2−user ,

group => ec2−user ,

mode => 600 ,

source => ’ puppet :/// modules/ sshd/ author i zed keys ’ ,

}
s e r v i c e { ’ sshd ’ :

ensure => running ,

enable => true ,

h a s r e s t a r t => true ,

ha s s ta tus => true ,

s ub s c r i b e => F i l e [’ / e t c / ssh / s shd con f i g ’] ,

}
}

Listing A.3: sshd-en Manifest Source Code

c l a s s sshd−d i s {
package { ’ openssh−s e rver ’ :

ensure => absent ,

}
}

Listing A.4: sshd-dis Manifest Source Code

c l a s s openmpi {
package { ’ openmpi ’ :

ensure => present ,

v e r s i on => ’ l a t e s t ’ ,

}
}

Listing A.5: openmpi Manifest Source Code

Appendix B

Evaluation Scripted Process

Source Code

Appendix B lists the two bash scripts used in evaluating the prototype in the

Scripted Configuration scenario discussed previously. Listing B.1 shows the script

used in the first setting using new nodes, and Listing B.2 shows the script used in

the second setting using existing nodes.

#!/ bin / bash

Scr i p t ed con f i g u ra t i on e va l

i n s t a l l s openmpi−1.5.4−1 and R−3.0.1−2
c a l c u l a t e s the time taken

time i s in seconds wi th two d i g i t s o f nanoseconds

s t a r t =‘date +%s%N | cut −b1−12‘
yum −y i n s t a l l R openmpi

end=‘date +%s%N | cut −b1−12‘
t imetaken=‘expr $end − $s ta r t ‘

echo $timetaken > /tmp/ tdata

Listing B.1: New Node (Setting 1) Evaluation Scripted Process Source Code

53

54 APPENDIX B. EVALUATION SCRIPTED PROCESS SOURCE CODE

#!/ bin / bash

Scr i p t ed con f i g u ra t i on e va l 2

i n s t a l l s openmpi−1.5.4−1 and R−2.13.0−2
c a l c u l a t e s the time taken

time i s in seconds wi th two d i g i t s o f nanoseconds

s t a r t =‘date +%s%N | cut −b1−12‘
yum −y remove R openmpi

wget http :// pkgs . r epo f o rg e . org /R/R−2.13.0−2. e l 6 . r f . x86 64 . rpm .

rpm −ivh R−2.13.0−2. e l 6 . r f . x86 64 . rpm

wget http :// mirror . centos . org / centos /6/ os / x86 64 /Packages/openmpi

−1.5.4−1. e l 6 . x86 64 . rpm .

rpm −ivh openmpi−1.5.4−1. e l 6 . x86 64 . rpm

end=‘date +%s%N | cut −b1−12‘
t imetaken=‘expr $end − $s ta r t ‘

echo $timetaken > /tmp/ tdata2

Listing B.2: Existing Node (Setting 2) Evaluation Scripted Process Source Code

Appendix C

Prototype Evaluation Raw Data

Appendix C contains the evaluation raw data for the prototype. Table C.1 provides

the legend for the scenario numbers used in the raw data, Table C.2 and Table C.6

contains the semi-processed data obtained, and Tables C.3, C.4, C.5, C.7, C.8, C.9

contain the raw data collected as a result of the evaluation process.

ScenarioNo Description Tool/s
1 Manual Configuration Manual/ By Hand
2 Scripted Configuration Bash Scripting
3 Automated Configuration Puppet Enterprise

Table C.1: Raw data legend for the Scenario Numbers referenced

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

1 1 Node1 94613 946.13 92.00% 943.02

1 1 Node2 94525 945.25

1 1 Node3 94115 941.15

1 1 Node4 94359 943.59

1 1 Node5 94173 941.73

1 1 Node6 94109 941.09

1 1 Node7 94120 941.20

1 1 Node8 94398 943.98

2 1 Node1 94256 942.56 93.00% 942.15

2 1 Node2 94231 942.31

2 1 Node3 94342 943.42

2 1 Node4 94148 941.48

2 1 Node5 94235 942.35

Continued. . .

55

56 APPENDIX C. PROTOTYPE EVALUATION RAW DATA

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

2 1 Node6 94187 941.87

2 1 Node7 94105 941.05

2 1 Node8 94218 942.18

3 1 Node1 94196 941.96 92.50% 942.53

3 1 Node2 94267 942.67

3 1 Node3 94169 941.69

3 1 Node4 94490 944.90

3 1 Node5 94260 942.60

3 1 Node6 94327 943.27

3 1 Node7 94245 942.45

3 1 Node8 94067 940.67

4 1 Node1 94070 940.70 91.00% 942.31

4 1 Node2 94079 940.79

4 1 Node3 94009 940.09

4 1 Node4 94179 941.79

4 1 Node5 94409 944.09

4 1 Node6 94337 943.37

4 1 Node7 94276 942.76

4 1 Node8 94487 944.87

5 1 Node1 94239 942.39 93.00% 941.91

5 1 Node2 94377 943.77

5 1 Node3 94013 940.13

5 1 Node4 94168 941.68

5 1 Node5 94004 940.04

5 1 Node6 94364 943.64

5 1 Node7 94265 942.65

5 1 Node8 94097 940.97

6 1 Node1 94317 943.17 92.00% 942.95

6 1 Node2 94377 943.77

6 1 Node3 94437 944.37

6 1 Node4 94293 942.93

6 1 Node5 94195 941.95

6 1 Node6 94045 940.45

6 1 Node7 94481 944.81

6 1 Node8 94214 942.14

7 1 Node1 94212 942.12 90.00% 940.77

Continued. . .

57

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

7 1 Node2 93861 938.61

7 1 Node3 93807 938.07

7 1 Node4 94246 942.46

7 1 Node5 94117 941.17

7 1 Node6 94231 942.31

7 1 Node7 94261 942.61

7 1 Node8 93878 938.78

8 1 Node1 94132 941.32 92.00% 941.81

8 1 Node2 94046 940.46

8 1 Node3 94340 943.40

8 1 Node4 94257 942.57

8 1 Node5 94361 943.61

8 1 Node6 93983 939.83

8 1 Node7 94166 941.66

8 1 Node8 94160 941.60

9 1 Node1 94031 940.31 93.00% 941.82

9 1 Node2 94208 942.08

9 1 Node3 94317 943.17

9 1 Node4 94205 942.05

9 1 Node5 94233 942.33

9 1 Node6 94274 942.74

9 1 Node7 93877 938.77

9 1 Node8 94307 943.07

10 1 Node1 93872 938.72 91.00% 942.24

10 1 Node2 94461 944.61

10 1 Node3 94213 942.13

10 1 Node4 94127 941.27

10 1 Node5 93958 939.58

10 1 Node6 94524 945.24

10 1 Node7 94211 942.11

10 1 Node8 94426 944.26

Table C.3: Raw Result Data - Results for Setting 1 - New Nodes, Scenario 1 -
Manual Configuration

58 APPENDIX C. PROTOTYPE EVALUATION RAW DATA

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

1 2 Node1 79994 799.94 97.00% 801.73

1 2 Node2 80101 801.01

1 2 Node3 80303 803.03

1 2 Node4 80077 800.77

1 2 Node5 80423 804.23

1 2 Node6 80171 801.71

1 2 Node7 80024 800.24

1 2 Node8 80293 802.93

2 2 Node1 80090 800.90 97.00% 801.83

2 2 Node2 80232 802.32

2 2 Node3 80361 803.61

2 2 Node4 80199 801.99

2 2 Node5 80211 802.11

2 2 Node6 80192 801.92

2 2 Node7 80223 802.23

2 2 Node8 79957 799.57

3 2 Node1 80300 803.00 97.00% 800.81

3 2 Node2 80101 801.01

3 2 Node3 80302 803.02

3 2 Node4 80325 803.25

3 2 Node5 79986 799.86

3 2 Node6 79841 798.41

3 2 Node7 79885 798.85

3 2 Node8 79909 799.09

4 2 Node1 80212 802.12 96.00% 801.88

4 2 Node2 80133 801.33

4 2 Node3 80394 803.94

4 2 Node4 80108 801.08

4 2 Node5 79973 799.73

4 2 Node6 80019 800.19

4 2 Node7 80271 802.71

4 2 Node8 80396 803.96

5 2 Node1 80136 801.36 97.00% 802.00

5 2 Node2 80071 800.71

5 2 Node3 80143 801.43

5 2 Node4 80304 803.04

Continued. . .

59

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

5 2 Node5 80234 802.34

5 2 Node6 80356 803.56

5 2 Node7 80049 800.49

5 2 Node8 80303 803.03

6 2 Node1 80102 801.02 97.00% 802.61

6 2 Node2 80063 800.63

6 2 Node3 80219 802.19

6 2 Node4 80344 803.44

6 2 Node5 80412 804.12

6 2 Node6 80187 801.87

6 2 Node7 80342 803.42

6 2 Node8 80422 804.22

7 2 Node1 80091 800.91 97.00% 801.86

7 2 Node2 80164 801.64

7 2 Node3 80388 803.88

7 2 Node4 80079 800.79

7 2 Node5 80238 802.38

7 2 Node6 80115 801.15

7 2 Node7 80031 800.31

7 2 Node8 80384 803.84

8 2 Node1 80011 800.11 98.00% 800.91

8 2 Node2 80088 800.88

8 2 Node3 80226 802.26

8 2 Node4 80193 801.93

8 2 Node5 80158 801.58

8 2 Node6 79965 799.65

8 2 Node7 79989 799.89

8 2 Node8 80095 800.95

9 2 Node1 79965 799.65 97.00% 801.38

9 2 Node2 80094 800.94

9 2 Node3 79999 799.99

9 2 Node4 80234 802.34

9 2 Node5 80049 800.49

9 2 Node6 80429 804.29

9 2 Node7 80034 800.34

9 2 Node8 80302 803.02

Continued. . .

60 APPENDIX C. PROTOTYPE EVALUATION RAW DATA

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

10 2 Node1 79985 799.85 97.00% 800.63

10 2 Node2 80115 801.15

10 2 Node3 80061 800.61

10 2 Node4 80043 800.43

10 2 Node5 80104 801.04

10 2 Node6 80122 801.22

10 2 Node7 79950 799.50

10 2 Node8 80126 801.26

Table C.4: Raw Result Data - Results for Setting 1 - New Nodes, Scenario 2 -
Scripted Configuration

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

1 3 Node1 18505 185.05 100.00% 185.51

1 3 Node2 18688 186.88

1 3 Node3 18435 184.35

1 3 Node4 18631 186.31

1 3 Node5 18502 185.02

1 3 Node6 18594 185.94

1 3 Node7 18610 186.10

1 3 Node8 18442 184.42

2 3 Node1 18511 185.11 100.00% 186.35

2 3 Node2 18587 185.87

2 3 Node3 18543 185.43

2 3 Node4 18587 185.87

2 3 Node5 18678 186.78

2 3 Node6 18734 187.34

2 3 Node7 18678 186.78

2 3 Node8 18759 187.59

3 3 Node1 18715 187.15 100.00% 186.73

3 3 Node2 18691 186.91

3 3 Node3 18719 187.19

3 3 Node4 18660 186.60

3 3 Node5 18687 186.87

Continued. . .

61

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

3 3 Node6 18579 185.79

3 3 Node7 18655 186.55

3 3 Node8 18677 186.77

4 3 Node1 18672 186.72 100.00% 186.06

4 3 Node2 18605 186.05

4 3 Node3 18471 184.71

4 3 Node4 18748 187.48

4 3 Node5 18653 186.53

4 3 Node6 18741 187.41

4 3 Node7 18513 185.13

4 3 Node8 18446 184.46

5 3 Node1 18609 186.09 100.00% 186.56

5 3 Node2 18561 185.61

5 3 Node3 18752 187.52

5 3 Node4 18522 185.22

5 3 Node5 18794 187.94

5 3 Node6 18623 186.23

5 3 Node7 18752 187.52

5 3 Node8 18631 186.31

6 3 Node1 18614 186.14 100.00% 186.12

6 3 Node2 18662 186.62

6 3 Node3 18693 186.93

6 3 Node4 18585 185.85

6 3 Node5 18616 186.16

6 3 Node6 18532 185.32

6 3 Node7 18624 186.24

6 3 Node8 18570 185.70

7 3 Node1 18733 187.33 100.00% 186.30

7 3 Node2 18610 186.10

7 3 Node3 18476 184.76

7 3 Node4 18653 186.53

7 3 Node5 18701 187.01

7 3 Node6 18620 186.20

7 3 Node7 18692 186.92

7 3 Node8 18554 185.54

8 3 Node1 18624 186.24 100.00% 186.43

Continued. . .

62 APPENDIX C. PROTOTYPE EVALUATION RAW DATA

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

8 3 Node2 18729 187.29

8 3 Node3 18571 185.71

8 3 Node4 18545 185.45

8 3 Node5 18713 187.13

8 3 Node6 18610 186.10

8 3 Node7 18615 186.15

8 3 Node8 18739 187.39

9 3 Node1 18664 186.64 100.00% 186.61

9 3 Node2 18696 186.96

9 3 Node3 18728 187.28

9 3 Node4 18625 186.25

9 3 Node5 18624 186.24

9 3 Node6 18611 186.11

9 3 Node7 18712 187.12

9 3 Node8 18627 186.27

10 3 Node1 18573 185.73 100.00% 186.16

10 3 Node2 18490 184.90

10 3 Node3 18699 186.99

10 3 Node4 18613 186.13

10 3 Node5 18647 186.47

10 3 Node6 18611 186.11

10 3 Node7 18632 186.32

10 3 Node8 18660 186.60

Table C.5: Raw Result Data - Results for Setting 1 - New Nodes, Scenario 3 -
Automated Configuration

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

1 1 Node1 105605 1056.05 90.00% 1055.61

1 1 Node2 105544 1055.44

1 1 Node3 105646 1056.46

1 1 Node4 105665 1056.65

1 1 Node5 105268 1052.68

Continued. . .

63

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

1 1 Node6 105628 1056.28

1 1 Node7 105577 1055.77

1 1 Node8 105556 1055.56

2 1 Node1 105331 1053.31 88.00% 1055.38

2 1 Node2 105696 1056.96

2 1 Node3 105494 1054.94

2 1 Node4 105478 1054.78

2 1 Node5 105674 1056.74

2 1 Node6 105531 1055.31

2 1 Node7 105599 1055.99

2 1 Node8 105497 1054.97

3 1 Node1 105549 1055.49 88.00% 1055.52

3 1 Node2 105501 1055.01

3 1 Node3 105592 1055.92

3 1 Node4 105690 1056.90

3 1 Node5 105568 1055.68

3 1 Node6 105541 1055.41

3 1 Node7 105426 1054.26

3 1 Node8 105545 1055.45

4 1 Node1 105548 1055.48 90.00% 1055.93

4 1 Node2 105719 1057.19

4 1 Node3 105575 1055.75

4 1 Node4 105718 1057.18

4 1 Node5 105498 1054.98

4 1 Node6 105555 1055.55

4 1 Node7 105519 1055.19

4 1 Node8 105614 1056.14

5 1 Node1 105583 1055.83 88.50% 1056.35

5 1 Node2 105752 1057.52

5 1 Node3 105532 1055.32

5 1 Node4 105716 1057.16

5 1 Node5 105613 1056.13

5 1 Node6 105541 1055.41

5 1 Node7 105752 1057.52

5 1 Node8 105587 1055.87

6 1 Node1 105719 1057.19 90.00% 1056.29

Continued. . .

64 APPENDIX C. PROTOTYPE EVALUATION RAW DATA

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

6 1 Node2 105573 1055.73

6 1 Node3 105621 1056.21

6 1 Node4 105597 1055.97

6 1 Node5 105666 1056.66

6 1 Node6 105586 1055.86

6 1 Node7 105673 1056.73

6 1 Node8 105595 1055.95

7 1 Node1 105465 1054.65 89.00% 1055.75

7 1 Node2 105576 1055.76

7 1 Node3 105575 1055.75

7 1 Node4 105666 1056.66

7 1 Node5 105549 1055.49

7 1 Node6 105591 1055.91

7 1 Node7 105553 1055.53

7 1 Node8 105627 1056.27

8 1 Node1 105573 1055.73 88.00% 1055.27

8 1 Node2 105500 1055.00

8 1 Node3 105532 1055.32

8 1 Node4 105631 1056.31

8 1 Node5 105515 1055.15

8 1 Node6 105489 1054.89

8 1 Node7 105536 1055.36

8 1 Node8 105436 1054.36

9 1 Node1 105461 1054.61 87.00% 1055.21

9 1 Node2 105435 1054.35

9 1 Node3 105475 1054.75

9 1 Node4 105449 1054.49

9 1 Node5 105639 1056.39

9 1 Node6 105622 1056.22

9 1 Node7 105491 1054.91

9 1 Node8 105594 1055.94

10 1 Node1 105678 1056.78 91.00% 1055.97

10 1 Node2 105593 1055.93

10 1 Node3 105675 1056.75

10 1 Node4 105411 1054.11

10 1 Node5 105612 1056.12

Continued. . .

65

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

10 1 Node6 105837 1058.37

10 1 Node7 105508 1055.08

10 1 Node8 105464 1054.64

Table C.7: Raw Result Data - Results for Setting 2 - New Nodes, Scenario 1 -
Manual Configuration

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

1 2 Node1 87182 871.82 98.00% 871.94

1 2 Node2 87182 871.82

1 2 Node3 87173 871.73

1 2 Node4 87221 872.21

1 2 Node5 87207 872.07

1 2 Node6 87172 871.72

1 2 Node7 87212 872.12

1 2 Node8 87200 872.00

2 2 Node1 87207 872.07 98.00% 872.08

2 2 Node2 87260 872.60

2 2 Node3 87117 871.17

2 2 Node4 87174 871.74

2 2 Node5 87274 872.74

2 2 Node6 87252 872.52

2 2 Node7 87172 871.72

2 2 Node8 87204 872.04

3 2 Node1 87135 871.35 98.00% 872.13

3 2 Node2 87193 871.93

3 2 Node3 87249 872.49

3 2 Node4 87260 872.60

3 2 Node5 87208 872.08

3 2 Node6 87247 872.47

3 2 Node7 87181 871.81

3 2 Node8 87232 872.32

4 2 Node1 87210 872.10 98.00% 872.27

4 2 Node2 87208 872.08

Continued. . .

66 APPENDIX C. PROTOTYPE EVALUATION RAW DATA

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

4 2 Node3 87232 872.32

4 2 Node4 87275 872.75

4 2 Node5 87203 872.03

4 2 Node6 87206 872.06

4 2 Node7 87228 872.28

4 2 Node8 87257 872.57

5 2 Node1 87186 871.86 98.00% 872.17

5 2 Node2 87272 872.72

5 2 Node3 87245 872.45

5 2 Node4 87268 872.68

5 2 Node5 87219 872.19

5 2 Node6 87155 871.55

5 2 Node7 87174 871.74

5 2 Node8 87213 872.13

6 2 Node1 87162 871.62 99.00% 871.92

6 2 Node2 87186 871.86

6 2 Node3 87195 871.95

6 2 Node4 87208 872.08

6 2 Node5 87197 871.97

6 2 Node6 87180 871.80

6 2 Node7 87195 871.95

6 2 Node8 87210 872.10

7 2 Node1 87228 872.28 98.00% 872.27

7 2 Node2 87229 872.29

7 2 Node3 87243 872.43

7 2 Node4 87210 872.10

7 2 Node5 87218 872.18

7 2 Node6 87252 872.52

7 2 Node7 87244 872.44

7 2 Node8 87194 871.94

8 2 Node1 87230 872.30 97.00% 872.28

8 2 Node2 87249 872.49

8 2 Node3 87254 872.54

8 2 Node4 87206 872.06

8 2 Node5 87222 872.22

8 2 Node6 87209 872.09

Continued. . .

67

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

8 2 Node7 87260 872.60

8 2 Node8 87197 871.97

9 2 Node1 87229 872.29 98.00% 872.22

9 2 Node2 87186 871.86

9 2 Node3 87225 872.25

9 2 Node4 87184 871.84

9 2 Node5 87215 872.15

9 2 Node6 87267 872.67

9 2 Node7 87245 872.45

9 2 Node8 87222 872.22

10 2 Node1 87207 872.07 98.00% 872.25

10 2 Node2 87209 872.09

10 2 Node3 87206 872.06

10 2 Node4 87221 872.21

10 2 Node5 87275 872.75

10 2 Node6 87202 872.02

10 2 Node7 87224 872.24

10 2 Node8 87259 872.59

Table C.8: Raw Result Data - Results for Setting 2 - New Nodes, Scenario 2 -
Scripted Configuration

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

1 3 Node1 19241 192.41 100.00% 192.41

1 3 Node2 19221 192.21

1 3 Node3 19218 192.18

1 3 Node4 19221 192.21

1 3 Node5 19221 192.21

1 3 Node6 19250 192.50

1 3 Node7 19258 192.58

1 3 Node8 19297 192.97

2 3 Node1 19227 192.27 100.00% 192.44

2 3 Node2 19259 192.59

2 3 Node3 19224 192.24

Continued. . .

68 APPENDIX C. PROTOTYPE EVALUATION RAW DATA

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

2 3 Node4 19192 191.92

2 3 Node5 19223 192.23

2 3 Node6 19380 193.80

2 3 Node7 19234 192.34

2 3 Node8 19214 192.14

3 3 Node1 19213 192.13 100.00% 192.25

3 3 Node2 19225 192.25

3 3 Node3 19211 192.11

3 3 Node4 19229 192.29

3 3 Node5 19247 192.47

3 3 Node6 19207 192.07

3 3 Node7 19182 191.82

3 3 Node8 19285 192.85

4 3 Node1 19263 192.63 100.00% 192.43

4 3 Node2 19275 192.75

4 3 Node3 19207 192.07

4 3 Node4 19167 191.67

4 3 Node5 19205 192.05

4 3 Node6 19338 193.38

4 3 Node7 19221 192.21

4 3 Node8 19266 192.66

5 3 Node1 19234 192.34 100.00% 192.30

5 3 Node2 19219 192.19

5 3 Node3 19203 192.03

5 3 Node4 19220 192.20

5 3 Node5 19266 192.66

5 3 Node6 19248 192.48

5 3 Node7 19214 192.14

5 3 Node8 19238 192.38

6 3 Node1 19266 192.66 100.00% 192.28

6 3 Node2 19202 192.02

6 3 Node3 19233 192.33

6 3 Node4 19212 192.12

6 3 Node5 19231 192.31

6 3 Node6 19221 192.21

6 3 Node7 19221 192.21

Continued. . .

69

SeqNo Scenario Source Time Processed

Time(s)

Reliability

Raw

Efficiency

Avg

6 3 Node8 19239 192.39

7 3 Node1 19252 192.52 100.00% 192.23

7 3 Node2 19219 192.19

7 3 Node3 19215 192.15

7 3 Node4 19222 192.22

7 3 Node5 19219 192.19

7 3 Node6 19200 192.00

7 3 Node7 19218 192.18

7 3 Node8 19237 192.37

8 3 Node1 19245 192.45 100.00% 192.29

8 3 Node2 19226 192.26

8 3 Node3 19293 192.93

8 3 Node4 19228 192.28

8 3 Node5 19162 191.62

8 3 Node6 19213 192.13

8 3 Node7 19242 192.42

8 3 Node8 19225 192.25

9 3 Node1 19244 192.44 100.00% 192.21

9 3 Node2 19246 192.46

9 3 Node3 19212 192.12

9 3 Node4 19260 192.60

9 3 Node5 19221 192.21

9 3 Node6 19227 192.27

9 3 Node7 19164 191.64

9 3 Node8 19195 191.95

10 3 Node1 19206 192.06 100.00% 192.22

10 3 Node2 19266 192.66

10 3 Node3 19228 192.28

10 3 Node4 19294 192.94

10 3 Node5 19212 192.12

10 3 Node6 19193 191.93

10 3 Node7 19208 192.08

10 3 Node8 19167 191.67

Table C.9: Raw Result Data - Results for Setting 2 - New Nodes, Scenario 3 -
Automated Configuration

70 APPENDIX C. PROTOTYPE EVALUATION RAW DATA

Setting No: 1 New Nodes

SequenceNo Scenario Time ProcessedTime(s) ReliabilityAverage
1 1 94302 943.02 92.0%
2 1 94215 942.15
3 1 94253 942.53
4 1 94231 942.31
5 1 94191 941.91
6 1 94295 942.95
7 1 94077 940.77
8 1 94181 941.81
9 1 94182 941.82
10 1 94224 942.24
1 2 80173 801.73 97.0%
2 2 80183 801.83
3 2 80081 800.81
4 2 80188 801.88
5 2 80200 802.00
6 2 80261 802.61
7 2 80186 801.86
8 2 80091 800.91
9 2 80138 801.38
10 2 80063 800.63
1 3 18551 185.51 100.0%
2 3 18635 186.35
3 3 18673 186.73
4 3 18606 186.06
5 3 18656 186.56
6 3 18612 186.12
7 3 18630 186.30
8 3 18643 186.43
9 3 18661 186.61
10 3 18616 186.16

Table C.2: Semi-Raw Result Data - Average Summary Results for Setting 1 - New
Nodes

71

Setting No: 2 Existing Nodes

SequenceNo Scenario Time ProcessedTime(s) ReliabilityAvg
1 1 105561 1055.61 89.0%
2 1 105538 1055.38
3 1 105552 1055.52
4 1 105593 1055.93
5 1 105635 1056.35
6 1 105629 1056.29
7 1 105575 1055.75
8 1 105527 1055.27
9 1 105521 1055.21
10 1 105597 1055.97
1 2 87194 871.94 98.0%
2 2 87208 872.08
3 2 87213 872.13
4 2 87227 872.27
5 2 87217 872.17
6 2 87192 871.92
7 2 87227 872.27
8 2 87228 872.28
9 2 87222 872.22
10 2 87225 872.25
1 3 19241 192.41 100.0%
2 3 19244 192.44
3 3 19225 192.25
4 3 19243 192.43
5 3 19230 192.30
6 3 19228 192.28
7 3 19223 192.23
8 3 19229 192.29
9 3 19221 192.21
10 3 19222 192.22

Table C.6: Semi-Raw Result Data - Average Summary Results for Setting 2 - Ex-
isting Nodes

72 APPENDIX C. PROTOTYPE EVALUATION RAW DATA

SequenceNo Scenario Processed Time(s) Standard Deviation Efficiency Avg

1 1 943.02 0.433 942.15
2 1 942.15 0.002
3 1 942.53 0.189
4 1 942.31 0.079
5 1 941.91 0.120
6 1 942.95 0.400
7 1 940.77 0.691
8 1 941.81 0.171
9 1 941.82 0.167
10 1 942.24 0.046
1 2 801.73 0.084 801.57
2 2 801.83 0.133
3 2 800.81 0.377
4 2 801.88 0.159
5 2 802.00 0.215
6 2 802.61 0.524
7 2 801.86 0.149
8 2 800.91 0.329
9 2 801.38 0.091
10 2 800.63 0.466
1 3 185.51 0.386 186.28
2 3 186.35 0.032
3 3 186.73 0.224
4 3 186.06 0.110
5 3 186.56 0.137
6 3 186.12 0.081
7 3 186.30 0.009
8 3 186.43 0.075
9 3 186.61 0.164
10 3 186.16 0.063

Table C.10: Standard Deviation between Evaluation Sequences - Setting 1 - New
Nodes

73

SequenceNo Scenario Processed Time(s) Standard Deviation Efficiency Avg

1 1 1055.61 0.058 1055.73
2 1 1055.38 0.176
3 1 1055.52 0.106
4 1 1055.93 0.103
5 1 1056.35 0.309
6 1 1056.29 0.281
7 1 1055.75 0.013
8 1 1055.27 0.231
9 1 1055.21 0.259
10 1 1055.97 0.123
1 2 871.94 0.108 872.15
2 2 872.08 0.039
3 2 872.13 0.011
4 2 872.27 0.061
5 2 872.17 0.006
6 2 871.92 0.118
7 2 872.27 0.060
8 2 872.28 0.066
9 2 872.22 0.032
10 2 872.25 0.051
1 3 192.41 0.051 192.31
2 3 192.44 0.068
3 3 192.25 0.029
4 3 192.43 0.061
5 3 192.30 0.002
6 3 192.28 0.012
7 3 192.23 0.039
8 3 192.29 0.007
9 3 192.21 0.047
10 3 192.22 0.044

Table C.11: Standard Deviation between Evaluation Sequences - Setting 2 - Existing
Nodes

74 APPENDIX C. PROTOTYPE EVALUATION RAW DATA

References

Abramson, D., Amoreira, C., Baldridge, K., Berstis, L., Kondrick, C., and Peachey,

T. (2006). A flexible grid framework for automatic protein-ligand docking. In

e-Science and Grid Computing, 2006. e-Science’06. Second IEEE International

Conference on, pages 47–47. IEEE.

Ahson, S. A. and Ilyas, M. (2010). Cloud Computing and Software Services: Theory

and Techniques. CRC Press, Inc.

Allan, D. and Nadeau, T. (2006). A framework for multi-protocol label switching

(mpls) operations and management (oam).

Amazon (2012). Getting started with amazon ec2 linux instances - amazon elastic

compute cloud.

Bethwaite, B., Abramson, D., Bohnert, F., Garic, S., Enticott, C., and Peachey, T.

(2010). Mixing grids and clouds: High-throughput science using the nimrod tool

family. Cloud Computing, pages 219–237.

Brandt, J., Gentile, A., Mayo, J., Pebay, P., Roe, D., Thompson, D., and Wong,

M. (2009). Resource monitoring and management with ovis to enable hpc in

cloud computing environments. In Parallel & Distributed Processing, 2009. IPDPS

2009. IEEE International Symposium on, pages 1–8. IEEE.

Cisco (2007). Network configuration management.

Crane, S., Dulay, N., Foss̊a, H., Kramer, J., Magee, J., Sloman, M., and Twidle, K.

(1995). Configuration management for distributed software services. Integrated

Network Management IV, 4.

Delaet, T., Anderson, P., and Joosen, W. (2008). Managing real-world system config-

urations with constraints. In Networking, 2008. ICN 2008. Seventh International

Conference on, pages 594–601. IEEE.

Dell (2012). Dell kace appliances and dell configuration services.

75

76 REFERENCES

Diaz, J., von Laszewski, G., Wang, F., and Fox, G. (2012). Abstract image man-

agement and universal image registration for cloud and hpc infrastructures. In

Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on, pages

463–470. IEEE.

Dillon, T., Wu, C., and Chang, E. (2010). Cloud computing: Issues and challenges.

In Advanced Information Networking and Applications (AINA), 2010 24th IEEE

International Conference on, pages 27–33. IEEE.

Dodai, P. (2011). Project dodai.

Ekanayake, J. and Fox, G. (2010). High performance parallel computing with clouds

and cloud technologies. Cloud Computing, pages 20–38.

eResearchSA (2012). What is eresearch?

Evangelinos, C. and Hill, C. (2008). Cloud computing for parallel scientific hpc

applications: Feasibility of running coupled atmosphere-ocean climate models on

amazon’s ec2. ratio, 2(2.40):2.34.

Fujimoto, R., Malik, A., and Park, A. (2010). Parallel and distributed simulation

in the cloud. SCS M&S Magazine, 3:1–10.

FutureGrid (2012). Futuregrid.

Gallard, J., Lèbre, A., Morin, C., Naughton, T., Scott, S., and Vallée, G. (2012).

Architecture for the next generation system management tools. Future Generation

Computer Systems, 28(1):136–146.

Gillett, F., Brown, E., Staten, J., and Lee, C. (2008). Future view: the new tech

ecosystems of cloud, cloud services, and cloud computing. Forrester Research

Paper.

Hamdaqa, M. and Tahvildari, L. (2012). Cloud computing uncovered: A research

landscape. Advances in Computers, page 41.

Hill, Z. and Humphrey, M. (2009). A quantitative analysis of high performance

computing with amazon’s ec2 infrastructure: The death of the local cluster? In

Grid Computing, 2009 10th IEEE/ACM International Conference on, pages 26–

33. IEEE.

IBM (2010). Ibm maximo technology for business and it agility. IBM white paper,

page 12.

IBM (2012). Ibm tivoli software.

REFERENCES 77

IEEE (1988). Ieee guide to software configuration management. ANSI/IEEE Std

1042-1987, page 1.

IEEE (1990). Ieee standard for software configuration management plans. IEEE

Std 828-1990, page 1.

Intel (2012). Intel hybrid cloud program.

iVEC (2012). Glossary.

Jackson, K., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J., Wasser-

man, H., and Wright, N. (2010). Performance analysis of high performance com-

puting applications on the amazon web services cloud. In Cloud Computing Tech-

nology and Science (CloudCom), 2010 IEEE Second International Conference on,

pages 159–168. IEEE.

Jahidur, R. (2012). Investigating configuration management tools usage in large

infrastructure.

Jamjoom, H. T., E., P. M., Huiming, Q., Yaoping, R., R., S. D., Zon-yin, S., and

Anshul, S. (2012). High performance computing as a service.

Klinginsmith, J., Mahoui, M., and Wu, Y. M. (2011). Towards reproducible escience

in the cloud. In Cloud Computing Technology and Science (CloudCom), 2011

IEEE Third International Conference on, pages 582–586. IEEE.

Kramer, J. and Magee, J. (1985). Dynamic configuration for distributed sys-

tems. Software Engineering, IEEE Transactions on Software Engineering, SE-

11(4):424–436.

Magherusan-Stanciu, C., Sebestyen-Pal, A., Cebuc, E., Sebestyen-Pal, G., and

Dadarlat, V. (2011). Grid system installation, management and monitoring appli-

cation. In Parallel and Distributed Computing (ISPDC), 2011 10th International

Symposium on, pages 25–32. IEEE.

Mahmoud, M., Majid, S., Jefferson, T., and Fateme, K. (2012). Scaling up tran-

sit priority modelling using high-throughput computing. In Tenth Australasian

Symposium on Parallel and Distributed Computing (AusPDC 2012), volume 127,

pages 53–62. Australian Computer Society (ACS).

Mell, P. and Grance, T. (2009). The nist definition of cloud computing. National

Institute of Standards and Technology, 53(6):50.

MeSsAGELab (2012). escience applications.

78 REFERENCES

Mikkilineni, R. and Sarathy, V. (2009). Cloud computing and the lessons from

the past. In Enabling Technologies: Infrastructures for Collaborative Enterprises,

2009. WETICE’09. 18th IEEE International Workshops on, pages 57–62. IEEE.

NeSC (2001). What is e-science?

Oliveira, D., Baião, F., and Mattoso, M. (2010). Towards a taxonomy for cloud

computing from an e-science perspective. Cloud Computing, pages 47–62.

Oliveira, D., Cunha, L., Tomaz, L., Pereira, V., and Mattoso, M. (2009). Using

ontologies to support deep water oil exploration scientific workflows. In Services-

I, 2009 World Conference on, pages 364–367. IEEE.

Önnberg, F. (2012). Software Configuration Management: A comparison of Chef,

CFEngine and Puppet. PhD thesis, University of Skövde.

Oppenheimer, D. (2003). The importance of understanding distributed system con-

figuration. In Proceedings of the 2003 Conference on Human Factors in Computer

Systems workshop.

Oppenheimer, P. (2011). Developing Network Management Strategies, volume 1,

chapter 9, page 226. Cisco Press, Indianapolis, IN 46240, USA, 3 edition.

OpsCode (2013). Opscode learn chef.

Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., and Epema,

D. (2010). A performance analysis of ec2 cloud computing services for scientific

computing. Cloud Computing, pages 115–131.

Patterson, D. (2002). A simple way to estimate the cost of downtime. In Proc. 16th

Systems Administration Conf.— LISA, pages 185–8.

PuppetLabs (2012a). Compare puppet & puppet enterprise.

PuppetLabs (2012b). Puppet open source.

PuppetLabs (2012c). What is puppet?

Rackspace (2012). Public cloud.

Rahman, J. (2012). Investigating configuration management tools usage in large

infrastructure. Master’s thesis, Department of Informatics, University of Oslo.

Raicu, I., Foster, I. T., and Zhao, Y. (2008). Many-task computing for grids and

supercomputers. In Many-Task Computing on Grids and Supercomputers, 2008.

MTAGS 2008. Workshop on, pages 1–11. IEEE.

REFERENCES 79

Ramakrishnan, L., Jackson, K., Canon, S., Cholia, S., and Shalf, J. (2010). Defining

future platform requirements for e-science clouds. In Proceedings of the 1st ACM

symposium on Cloud computing, pages 101–106. ACM.

Ramakrishnan, L., Zbiegel, P., Campbell, S., Bradshaw, R., Canon, R., Coghlan,

S., Sakrejda, I., Desai, N., Declerck, T., and Liu, A. (2011). Magellan: experi-

ences from a science cloud. In Proceedings of the 2nd international workshop on

Scientific cloud computing, pages 49–58. ACM.

Rimal, B., Choi, E., and Lumb, I. (2010). A taxonomy, survey, and issues of cloud

computing ecosystems. Cloud Computing, pages 21–46.

Simmhan, Y., van Ingen, C., Subramanian, G., and Li, J. (2010). Bridging the gap

between desktop and the cloud for escience applications. In Cloud Computing

(CLOUD), 2010 IEEE 3rd International Conference on, pages 474–481. IEEE.

Strijkers, R., Toorop, W., van Hoof, A., Grosso, P., Belloum, A., Vasuining, D.,

de Laat, C., and Meijer, R. (2010). Amos: Using the cloud for on-demand

execution of e-science applications. In e-Science (e-Science), 2010 IEEE Sixth

International Conference on, pages 331–338. IEEE.

Strohmaier, E., Dongarra, J. J., Meuer, H. W., and Simon, H. D. (2005). Recent

trends in the marketplace of high performance computing. Parallel Computing,

31(3-4):261–273.

Tonido (2012). Tonido launches private cloud storage alternative to google drive for

enterprises.

Ubuntu (2012). Cloudinit.

Vecchiola, C., Pandey, S., and Buyya, R. (2009). High-performance cloud com-

puting: A view of scientific applications. In Pervasive Systems, Algorithms, and

Networks (ISPAN), 2009 10th International Symposium on, pages 4–16. IEEE.

VMware (2012). Overview of vmware tools.

Vöckler, J., Juve, G., Deelman, E., Rynge, M., and Berriman, B. (2011). Experiences

using cloud computing for a scientific workflow application. In Proceedings of the

2nd international workshop on Scientific cloud computing, pages 15–24. ACM.

von Laszewski, G., Diaz, J., Wang, F., and Fox, G. (2012). Comparison of multiple

cloud frameworks. In Cloud Computing (CLOUD), 2012 IEEE 5th International

Conference on, pages 734–741. IEEE, IEEE.

80 REFERENCES

Wang, L., Tao, J., Kunze, M., Castellanos, A., Kramer, D., and Karl, W. (2008).

Scientific cloud computing: Early definition and experience. In High Performance

Computing and Communications, 2008. HPCC’08. 10th IEEE International Con-

ference on, pages 825–830. Ieee.

Wang, L., Zhan, J., Shi, W., Liang, Y., and Yuan, L. (2009). In cloud, do mtc or

htc service providers benefit from the economies of scale? In Proceedings of the

2nd Workshop on Many-Task Computing on Grids and Supercomputers, page 7.

ACM.

Wood, K. and Pereira, E. (2011). Impact of misconfiguration in cloud–investigation

into security challenges.

Yokoyama, S. and Yoshioka, N. (2012). Cluster as a service for self-deployable

cloud applications. In Cluster, Cloud and Grid Computing (CCGrid), 2012 12th

IEEE/ACM International Symposium on, pages 703–704. IEEE.

Yokoyama, S., Yoshioka, N., and Shida, T. (2012). Cloud in a cloud for cloud

education. In Principles of Engineering Service Oriented Systems (PESOS), 2012

ICSE Workshop on, pages 63–64. IEEE.

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud computing: state-of-the-art

and research challenges. Journal of Internet Services and Applications, 1(1):7–18.

