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Abstract

Mathematical modelling opens the door to a rich pathway to study the dynamic

properties of biological systems. Among the many biological systems that would

benefit from mathematical modelling, improving our understanding of gene reg-

ulatory networks has received much attention from the fields of computational

biology and bioinformatics. To understand system dynamics of biological net-

works, mathematical models need to be constructed and studied. In spite of the

efforts that have been given to explore regulatory mechanisms among gene net-

works, accurate description of chemical events with multi-step chemical reactions

still remains a challenge in biochemistry and biophysics. This dissertation is

aimed at developing several novel methods for describing dynamics of multi-step

chemical reaction systems. The main idea is introduced by a new concept for the

location of molecules in the multi-step reactions, which is used as an additional

indicator of system dynamics. Additionally, novel idea in the stochastic simulation

algorithm is used to calculate time delay exactly, which shows that the value of

time delay depends on the system states. All of these innovations alter the focus

of originally complex multi-step structures towards defining novel simplified

structures, which simplifies the modelling process significantly. Research results

yield substantially more accurate results than published methods.

Apart from the well-established knowledge for modelling techniques, there are

still significant challenges in understanding the dynamics of systems biology. One
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of the major challenges in systems biology is how to infer unknown parameters in

mathematical models based on experimental datasets, in particular, when data are

sparse and networks are stochastic. To tackle this challenge, parameters estimation

techniques using Approximate Bayesian Computation (ABC) for chemical reac-

tion system and inference method for dynamic network have been investigated.

This dissertation discusses developed ABC methods that have been tested on two

stochastic systems. Results on artificial data show certain promising approxima-

tions for the unknown parameters in the systems. While unknown parameters are

difficult and sometimes even impossible to measure with biological experiments,

instead we can study the influence of parameter variation on system properties.

Robustness and sensitivity are two major measurements to describe the dynamic

properties of a system against the variation of model parameters. For stochastic

models of discrete chemical reaction systems, although these two properties have

been studied separately, no work has been done so far to investigate these two

properties together. In this dissertation, An integrated framework has been pro-

posed to study these two properties for the Nanog gene network simultaneously.

It successfully identifies key coefficients that have more impacts on the network

dynamics than the others.

The proposed inference method to infer dynamic protein-gene interactions is ap-

plied to a case study of the human P53 protein, which is a well-known biological

network for cancer study. Investigating the dynamics for such regulatory networks

through high throughput experimental data has become more popular. To tackle

the hindrances with large number of unknown parameters when building detailed

mathematical models, a new integrated method is proposed by combining a top-

down approach using probability graphical models and a bottom-up approach

using differential equation models. Model simulation error, Akaike’s information

criterion, parameter identifiability and robustness properties are used as criteria

to select the optimal network. Results based on random permutations of input

xii



gene network structures provide accurate prediction and robustness property. In

addition, a comparison study suggests that the proposed approach has better sim-

ulation accuracy and robustness property than the earlier one. In particular, the

computational cost is significantly reduced. Overall, the new integrated method

is a promising approach for investigating the dynamics of genetic regulations.
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Chapter 1

Introduction

1.1 Background

Biological systems change over time. The concept of this change includes both

as the system oscillates or otherwise moves in some consistent behaviour, which

may also change from one time instant to another (Small, 2012). As biological

system exhibit rich dynamic behaviour over a large range of time and space scales,

the study for such complex systems in a unified framework has been recognized

recently as a new scientific discipline. To study the complex systems with ex-

ponentially growth of biological data, universal simplifications are particularly

important and as well as to integrate and organize the data into coherent descrip-

tive models (Bar-Yam, 1997; Peleg et al., 2005).

Once I have read through the famous parable of six blind men inspecting an

elephant in the book (Haefner, 2005), which tells as follows:

“They are asked to identify the object before them which they cannot see. One man, feeling

the elephant’s leg, thinks he is touching a tree trunk. Another, grasping the elephant’s

trunk, thinks he is holding a snake. A third, standing near the moving ear, thinks it is a
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large, feathered fan. And so it goes for the other men touching the tusk, the side, and the

tail of the elephant. Each man gave a different description of the same object, but none

was correct.”

From this story, we can see how each man are creating a model of the system they

are observing while non of them are fully correct but provide an approximation.

In the words of George Box: “ All models are wrong, some models are useful.”.

A good model should be simple enough to be useful, but not so simple that it

no longer reflects useful information of reality (Small, 2012). In system biology,

such a good model can shed insight into complex biological processes and suggest

new directions for research. The ability to predict system dynamical behaviour

with a model helps evaluate model completeness as well as developing our under-

standing of the mechanisms of biological processes. One of the major challenges

currently facing modern biology is to build a systematic understanding of biologi-

cal networks based on the established foundation of molecular characterization

of cell components. Mathematical models and computer simulations, which are

powerful and predictive tools, offer insight into the dynamics of temporal and

spatial biological systems such as genetic regulatory networks, cell signalling

pathways and metabolic pathways.

Building models from data in this study is considered to be a two-part problem,

namely constructing the model structure and inference of parameters inside

the model. The following sections will review through an extensive tour of

one of the most important biological systems - “genetic regulatory networks”,

and introduce mathematical methods for simulating such networks as well as

parameter estimation methods.
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1.2 Genetic Regulatory Networks

With only few exceptions, all cells in an organism share the same genetic material.

Genome has been regarded as a dominant position to control cellular processes

such as cell divisions and replications. Understanding how genes are expressed

and regulated in such processes has been of high interest for the last decades,

therefore, we need to study deeply from sequences of nucleotides coding for pro-

teins to regulatory systems that determines the gene expressions (De Jong, 2002).

The expression of a gene are activated and inactivated by random association and

dissociation events (Paulsson, 2005; Lockhart and Winzeler, 2000). These stochas-

tic fluctuations in gene expression lead to considerable differences in the level

of expression between genetically identical cells (Kaern et al., 2005), which play

crucial roles in biological processes (Heitzler and Simpson, 1991). Several studies

have measured variability in protein and messenger RNA levels, and discovered

strong connections between noise and gene regulation mechanisms. Due to the

vast range of gene activities, gene regulation is of high complexity. Transcription

is universally the first step toward expressing a gene, which is a highly regulated

process and understanding this transcription regulation is of fundamental impor-

tance. For protein-coding genes, post-transcriptional steps, including pre-mRNA

processing, mRNA transportation and translation, also play significant roles in

regulating gene expression (Ma, 2010). It’s been clearly stated that the regulation

of gene expression is achieved through genetic regulatory networks (GRNs) of

interactions between DNA, RNA, proteins and small molecules, which leads to

great attention for GRN over the last few years (Iba and Mimura, 2002). Due to

the study of Human Genome project, genetic information has become increas-

ingly available, which makes studying biological system from genetic aspects

achievable.
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Figure 1.1: Example of a genetic regulatory system, consisting of a network of three
genes a, b, and c, repressor proteins A, B, C, and D, and their mutual
interactions.

Gene regulatory networks (GRNs) explain the interconnections between genomic

entities that govern the regulation of gene expression. An simple example for a

regulatory network, involving three genes that code for proteins inhibiting the

expression of other genes, is shown in Fig. 1.1 (De Jong, 2002). We can find that

proteins B and C independently repress gene a while proteins A and D interact to

form a substance that binds to a regulatory site of gene b. This figure proposes a

basic form for a GRN. More complex graphical conventions to represent cellular

networks can be found in Kohn (1999, 2001). Since biological regulatory networks

are extremely detailed with numerous interactions, a single mathematical model

to represent the whole biological regulatory system is generally not feasible. The

focus of the modelling can be capturing interactions between RNA expressions,

protein-protein interactions, or interactions between metabolites. Usually, only

parts of the regulome (genes, proteins, and metabolites involved in gene regula-

tion) such as transcription factors, enhancers, and microRNA are made explicit in

a mathematical model of a GRN (Pal et al., 2012). The modelling can be determin-

istic capturing the average behaviour of a colony of cells or stochastic capturing

the inherent noise in biological systems. Furthermore, the models can be fine scale
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or coarse-scale (Karlebach and Shamir, 2008). Next section presents a brief review

of various techniques for modelling GRNs.

1.3 Mathematical Modelling

“All models are wrong, but some are useful”. - George E. P. Box

A large number of approaches have been proposed to model the behaviour of

GRNs (De Jong, 2002; Szallasi et al., 2006; Cai and Wang, 2007). All modelling

methodologies have strengths and weaknesses regarding their ease and fidelity

of capturing biological system dynamics. Typically, these techniques can be

broadly classified into continuous and discrete modelling strategies based on how

the solution space is acquired. Additional classification into deterministic and

stochastic models is an alternative method that divides systems based on whether

they contain a degree of “randomness” that allows for multiple solutions to the

same initial conditions (Walpole et al., 2013). Various computational models have

been developed for regulatory network analysis and the most commonly used

models are reviewed as follows.

1.3.1 Boolean networks

The most basic and simplest discrete modelling methodology was introduced by

Kauffman and Thomas in 1973 (Glass and Kauffman, 1973; Thomas, 1973) . It

allows to rely on purely qualitative data and can be analysed using a broad range of

well-established mathematical methods. In such a discrete Boolean network, each

node xi can attain two alternative states: on (1) or off (0), which forms as 0-1 vectors

describing the system’s state/global state. For example, a gene can be described

as expressed or not expressed at any time, then a node is updated depending

on the current states of all nodes in the network: xi ← f (x1, . . . ,xN ). Modelling
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regulatory networks using Boolean network has become popular and successful

to describe yeast cell-cycle etc. (Wittmann et al., 2009; Davidich and Bornholdt,

2008). However, it’s unable to count for continuous changes of concentrations

or the exact timing of regulatory events (Karlebach and Shamir, 2008). It uses

discretised data, which to some extent subjects the formalism to information loss

from the data discretization.

1.3.2 Bayesian/ Graphical networks

Probabilistic reasoning based on incomplete prior biological knowledge and cur-

rent observations has been applied to build models of GRNs, which is commonly

known as Bayesian networks or graphical models (Jordan, 1998). This technique

was first introduced by Kauffman (Kauffman, 1969) that is based on conditional

dependencies between sets of variables (De Jong, 2002). They are defined by a

family of conditional distributions and a set of corresponding parameters (Omony,

2014). Dynamic Bayesian network (DBN) as an extension of the Bayesian network

incorporates time dynamics into the GRN and allows feedback relations among

genes to be modeled (Murphy et al., 1999; Friedman et al., 2000). Applications for

such networks can be found extensively in the work of (Kim et al., 2003) and (Zou

and Conzen, 2005). However, this approach involves using numerous assumptions

and some of which are neither robust nor adequate (Spirtes et al., 2000).

1.3.3 Deterministic models

Rather than discrete-measured experimental data, biological experiments usu-

ally produce real and continuous measurements; therefore using real-valued

parameters over a continuous timescale is essential while modeling. Nonlinear

ordinary differential equations and piecewise linear differential equations have
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been proposed as continuous fine-scale deterministic models for GRNs. Differen-

tial equation (DE) models assume that species concentration vary continuously

and deterministically (Pal et al., 2012). Continuous modelling strategies include

using systems of ordinary differential equations (ODEs) and partial differential

equations (PDEs) to solve for steady state solutions (Fallahi-Sichani et al., 2012b;

Scheff et al., 2011; Adra et al., 2010; Greenstein and Winslow, 2011; Fallahi-Sichani

et al., 2012a; Quo et al., 2011; Laise et al., 2011). One type of continuous model,

namely continuous linear model, is defined as each regulator contributes to the

input of the regulation function independently of the other regulators, which do

not require extensive knowledge about regulatory mechanisms. There are some

other networks where the regulators are transcription factors and the levels of

genes are determined by real-valued, non-linear regulation functions that take the

Michaelis-Menten form (Klipp et al., 2008). In this case, non-linear models arise.

1.3.4 Stochastic models

Stochastic modelling and simulation of biological processes are problems of high

interest today, which is our main focus as well. In real world systems, despite

deterministic networks, where the state of the system is determined by the current

state and external inputs, stochastic effects play an important role. For example,

in yeast, the number of mRNA molecules is close to one copy per cell for some

genes (Holstege et al., 1998). This indicates that it’s likely that there is a consider-

able intrinsic noise element present, that is to say some cells have more mRNA

molecules of the given species present than others. Therefore, modelling a cell

by using continuous concentrations should be modelling an ensemble of cells

by the average values of stochastic variables. It has been demonstrated that the

stochastic effects are important for the phage λ switch decision between lysis and

lysogeny (McAdams and Arkin, 1997). And more experimental studies present the

measurements for the level of intrinsic noise in eukaryotic cells (Paulsson, 2004;
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Raser and O’Shea, 2004). Simulating a stochastic model is computationally more

expensive as the simulations have to run several times to provide good results

of the system behaviour. However, stochastic models are the best choices for

the systems in which small number of molecules and some random effects are

involved (Schlitt and Brazma, 2007).

Stochastic and discrete fine-scale models are commonly known as stochastic

master equation (SME) models. To explain an SME model, consider a system with

N molecular species {S1, · · · ,SN } and M different reaction channels {R1, · · · ,RM},

where the state of the system is defined by {X(t) = X1(t), · · · ,XN (t)}, where Xi(t)

is the number of molecules of species Si in the system at time t. Each reaction

channel Rj can be characterized by a propensity function aj and a state change

vector vi = (v1i , · · · ,vNi), where aj(x)dt is the probability for one Rj reaction to

occur in the next infinitesimal time interval [t; t + dt) given X(t) = x, vij is the

change in the molecular population Si induced by one reaction Rj [A rigorous

derivation of the chemical master equation]. The value of propensity function

depends on the populations of the reactant populations and a reaction probability

rate constant cj , where cjdt is the probability that a randomly chosen pairs of Rj

reactant molecules will react in the next infinitesimal time dt and aj is the product

of cj and the number of all possible combinations of Rj reactant molecules. For

example: For

S1
c1−−→ S2

we have aj(x) = c1x1, and vj = (−1,1,0, · · · ,0). The chemical master equation (CME)

is obtained once the propensity functions is determined as follows:

∂P (x, t|x0, t0)
∂t

=
M∑
j=1

[aj(x− v)P (x− vj , t|x0, t0)− aj(x)P ((x, t|x0, t0)]

where v is known as the stoichiometric matrix, P (x, t|x0, t0) denotes the probability

for X(t) to be x given that X(t0) = x0. We note that CME is essentially an ODE
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whose dimension is given by the number of all possible combinations of states of

x (Cao and Samuels, 2009).

An important question in stochastic modelling is how to develop stochastic models

by introducing stochastic processes into deterministic models for the external

and/or internal noise. Numerical methods for simulating chemical reaction sys-

tems is discussed next. These methods are the theoretical basis for designing

stochastic models. The Stochastic Simulation Algorithm (SSA) represents a dis-

crete modelling approach and an essentially exact procedure for numerically

simulating the time evolution of a well-stirred reaction system (Gillespie, 1977).

The advances in stochastic modelling of genetic regulatory networks and cell

signalling transduction pathways have stimulated growing research interests in

the development of effective methods for simulating chemical reaction systems.

These effective simulation methods in return provide innovative methodologies

for designing stochastic models of biological systems.

Stochastic simulation algorithm

The stochastic simulation algorithm (SSA) is a statistically exact procedure for

generating the time and index of the next occurring reaction in accordance with

the current values of the propensity functions. In each step, two random numbers

are generated to determine the time interval and the index of the next reaction.

There are several forms of this algorithm. The widely used direct method works

in the following manner.

Method 1: the direct method (Gillespie, 1977).

Step 1: Calculate the values of propensity functions aj(x) based on the system

state x at time t and a0(x) =
∑M
j=1 aj(x).
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Step 2: Generate a sample r1 of the uniformly distributed random variable U(0,1),

and determine the time of the next reaction

µ =
1

a0(x)
ln

(
1
r1

)
.

Step 3: Generate an independent sample r2 of U(0,1) to determine the index k of

the next reaction occurring in [t, t +µ),

k−1∑
j=1

aj(x) < r2a0(x) ≤
k∑
j=1

aj(x).

Step 4: Update the state of the system by

x(t +µ) = x(t) + νk . (1.3.1)

Step 5: Go to Step 1 if t + µ ≤ T , where T is the end time point. Otherwise, the

system state x(T ) = x(t).

Another exact method is the first reaction method which uses M random numbers

at each step to determine the possible reaction time of each reaction channel

(Gillespie, 1976). The reaction firing in the next step is that needing the smallest

reaction time. Comparing to the direct method, the first reaction method is not

efficient since it discards M − 1 random numbers at each step. To improve the

efficiency of the first reaction method, Gibson and Bruck (2000) proposed the next

reaction method by recycling the generated random numbers. The putative step

size of a reaction channel is updated based on the step size of this channel at the

previous step and values of the propensity function at these two steps. In addition,

a so-called dependency graph was designed to reduce the computing time of
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propensity functions. Numerical results indicated that the next reaction method

is effective for simulating systems with many species and reaction channels.

Stochastic simulation algorithm assumes that the next reaction will fire in the next

reaction time interval [t, t +µ) with small values of µ. For systems including both

fast and slow reactions, however, this assumption may not be valid if the slow

reactions take a much longer time than the fast reactions. The large reaction time

of slow reactions should be realized by time delay τ if we hope to put both fast and

slow reactions in a system consistently and to study the impact of slow reactions

on the system dynamics (Monk, 2003). Recently, the delay stochastic simulation

algorithm (DSSA) was designed to simulate chemical reaction systems with time

delays (Barrio et al., 2006; Bratsun et al., 2005; Cai, 2007). These methods have

been used to validate stochastic models for biological systems with slow reactions

(Roussel and Zhu, 2006; Schlicht and Winkler, 2008). However, compared with

the significant progress in designing simulation methods for biological systems

without time delay (Gillespie, 2007; Pahle, 2009), only a few simulation methods

have been designed to improve the efficiency of the DSSA (Leier et al., 2008; Bayati

et al., 2009). Similar to the effective methods for simulating biological systems

without time delay, it is expected the progress in designing effective methods for

simulating systems with time delay will also provide methodologies for modelling

biological systems with time delay. DSSA works in the following manner.

Method 2: the delay method (Barrio et al., 2006).

Step 1: Calculate the values of propensity functions aj(x) based on the system

state x at time t and a0(x) =
∑M
j=1 aj(x).
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Step 2: Generate a sample r1 of the uniformly distributed random variable U(0,1),

and determine the time of the next reaction

µ =
1

a0(x)
ln

(
1
r1

)
.

Step 3: Generate an independent sample r2 of U(0,1) to determine the index k of

the next reaction occurring in [t, t +µ),

k−1∑
j=1

aj(x) < r2a0(x) ≤
k∑
j=1

aj(x).

Step 4: If delayed reactions are scheduled within [t, t +µ), then let j be the delayed

reaction scheduled next at time t + τ . Update the state of the system by

x(t + τ) = x(t) + νj , (1.3.2)

and

t = t + τ. (1.3.3)

Else if k is not a delayed reaction then update the state of the system by

x(t +µ) = x(t) + νk . (1.3.4)

Else record time, t +µ+ τ , for delayed reaction k and

t = t +µ. (1.3.5)

Step 5: Go to Step 1 if t + µ ≤ T , where T is the end time point. Otherwise, the

system state x(T ) = x(t).
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1.4 Parameter Inference

The topic of parameter estimation in dynamical systems, which is a wide area

involving many different aspects of statistics as well as numerical analysis, at the

same time being closely linked to mathematical model building and experimental

design. Using ordinary differential equations (ODEs) that describe the evolution

over time of certain quantities of interest is quite a popular approach once the

pathway structure is given, the corresponding equations are relatively easy to

write down using widely accepted kinetic laws, such as the law of mass action

or the Michaelis-Menten law (Lillacci and Khammash, 2010). In general the

equations depend on several parameters, some of which are reaction rates, and

production and decay coefficients with physical meanings, which are seldom

known. It is a challenging problem to infer such ODE parameters from gene

expression data since the ODEs do not have analytic solutions and the time-course

gene expression data are usually sparse and associated with large noise. A better

knowledge of kinetic rate constants in the modelling of chemical reactions can

help in choosing operating conditions that favour the desired products. Estimating

parameters in systems modelled by ODEs is both computationally intensive as

well as numerically challenging due to a variety of undesirable characteristics.

This is not only the case for modeling with ODEs, often the models contain a

number of parameters that cannot be measured directly or calculated by applying

established laws of nature, and therefore must be estimated from experimental

data.

In the last fifteen years, parameter inference problem has become significantly

important in the systems biology community (Lillacci and Khammash, 2010).

Inference methods including optimization methods and Bayesian inferences have

been approached for estimating unknown parameters. Several optimization tech-

niques, such as linear and nonlinear least-squares fitting (Mendes and Kell, 1998),
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simulated annealing (Brooks and Morgan, 1995), genetic algorithms (Srinivas and

Patnaik, 1994), and evolutionary computation (Ashyraliyev et al., 2008) are exten-

sively utilized to identify unknown parameters of systems biology models. Global

optimization (GO) methods can be roughly classified as deterministic (Horst and

Tuy, 1996; Grossmann, 1996; Esposito and Floudas, 2000) and stochastic strategies

(Ali et al., 1997; Törn et al., 1999). Stochastic methods for global optimization ulti-

mately rely on probabilistic approaches, which have weak theoretical guarantees

of convergence to the global solution. Deterministic methods are those that can

provide a level of assurance that the global optimum will be located, and several

important advances in the GO of certain types of nonlinear dynamic systems have

been made recently (Esposito and Floudas, 2000; Singer et al., 2001; Papamichail

and Adjiman, 2002). However, it should be noted that, although deterministic

methods can guarantee global optimality for certain GO problems, no algorithm

can solve general GO problems with certainty in finite time (Boender and Romeijn,

1995). One of the main problems associated with optimization methods is that

they tend to be computationally expensive and may not perform well if the noise

in the measurements is significant. Estimation techniques like linear iterative

models, stochastic optimization methods and constrained linear and nonlinear

regression models are often used in GRN (Dimitrova et al., 2011; Steggles et al.,

2007; Almeida and Voit, 2003; Zhan and Yeung, 2011; Singhania et al., 2011;

Rodriguez-Fernandez et al., 2006; Chou and Voit, 2009). Each approach has its

own strengths and weaknesses many of which are strongly linked to the data

quality and modelling approach. Genomic, proteomic and other -omic data types

are prone to noise and/or have missing data (Omony, 2014). Most methods focus

on small-sized networks because of the computational challenges associated with

larger networks. However, the need to accurately describe molecular mechanisms

in biochemical systems cannot be understated. To achieve such high performance

descriptions, parameters have to be accurately and precisely identified.
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1.4.1 Bayesian inference method

Bayesian inference methods have more power to solve problems when modelling

biological systems where molecular species are present in low copy numbers and

noise exists (Raj and van Oudenaarden, 2008; Wilkinson, 2007). The parameter

estimation for stochastic models has been extensively explored in financial mathe-

matics (Johannes and Polson, 2003) and has been applied to biological systems in

a frequentist maximum likelihood (Reinker et al., 2006) and Bayesian framework

(Golightly and Wilkinson, 2005, 2006; Wilkinson, 2011). Bayesian methods can

extract information from noisy or uncertain data, which includes both measure-

ment noise and intrinsic noise (McAdams and Arkin, 1999). In Bayesian statistical

inference, a prior probability distribution that benefits from previous knowledge,

is the probability distribution that expresses one’s uncertainty quantity. The

main advantage is its ability to infer the whole probability distributions of the

parameters, rather than just a point estimate. Also, they can handle estimation of

stochastic systems with no substantial modification to the algorithms (Toni et al.,

2009). The main obstacle to their application is computational, since analytical

approaches are not feasible for non-trivial problems and numerical solutions are

also challenging due to the need to solve high-dimensional integration problems.

Nonetheless, the most recent advancements in Bayesian computation, such as

Markov chain Monte Carlo techniques (Brooks, 1998), ensemble methods (Brown

and Sethna, 2003; Battogtokh et al., 2002), and sequential Monte Carlo methods

that do not require likelihoods (Toni et al., 2009; Sisson et al., 2007) have been suc-

cessfully applied to biological systems. Maximum-likelihood estimation (Müller

et al., 2004; Bortz and Nelson, 2006)has also been extensively applied. Many of

these methods are, however, limited by the difficulty of computing the likelihood

function, thus restricting their use to simple evolutionary scenarios and molecular
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models. Additionally, even with ever-increasing computational power, these tech-

niques cannot keep up with the demands of the large amounts of data generated

by recently developed, high-throughput DNA sequencing technologies. Both of

these factors have stimulated the development of new methods that approximate

the likelihood (Csilléry et al., 2010; Marjoram and Tavaré, 2006).

For these reasons, the parameter estimation problem is still a bottleneck and a

challenging task of computational analysis of systems biology (Sisson et al., 2007).

Until now, none of the parameter estimation methods is effective in all cases

and can overwhelm all the other methods. Instead, various methods have their

advantages and disadvantages. Consequently, it is worthy to develop acceptably

“good enough” methods within a given tolerance and time frame. In our work we

consider one of the most recently developed technique - “Approximate Bayesian

computation (ABC)” to calibrate parameters, which will be reviewed as follows.

1.4.2 Approximate Bayesian methods

For the case of parameter estimation when likelihoods are analytically or compu-

tationally intractable, approximate Bayesian computation (ABC) methods have

been applied successfully (Beaumont et al., 2002; Marjoram et al., 2003) to bypass

exact likelihood calculations by using summary statistics and simulations. ABC

algorithms provide stable parameter estimates and are also relatively computa-

tionally efficient, therefore, they have been treated as substantial techniques for

solving inference problems of various types of models that were intractable only a

few years ago (Sisson et al., 2007).

Generally, ABC algorithms can be classified into three broad categories. The first

class relies on the basic rejection algorithm (Tavaré et al., 1997; Pritchard et al.,

1999). Technical improvements of this basic scheme correct for the discrepancy
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between the simulated and the observed statistics by using local linear or non-

linear regression techniques (Beaumont et al., 2002; Blum and François, 2010;

Leuenberger and Wegmann, 2010). A second class, ABC-Markov chain Monte

Carlo (MCMC) algorithms, explore the parameter space iteratively using the

distance between the simulated and the observed summary statistics to update

the current parameter values (Marjoram et al., 2003; Wegmann et al., 2009). The

last one is inspired by Sequential Monte Carlo methods (SMC) (Liu, 2008), which

approximates the posterior distribution using a large set of randomly chosen

parameter values called “particles”. These particles are propagated over time

by simple sampling mechanisms or rejected if they generate data that match the

observation poorly. Ongoing work is seeking to improve the parameter space

exploration and develop efficient sampling strategies that drive particles toward

regions of high posterior probability mass (Sisson et al., 2007; Toni et al., 2009;

Beaumont et al., 2009).

For each of the above method, we start with a set of experimental data x and let

θ be the parameter vector to be estimated. Assuming with a initial guess called

prior distribution π(θ) and we want to approximate the posterior distribution

π(θ|x). Details for algorithms are described as follows.

Generic form of ABC

All ABC algorithms obey the following major steps (Pritchard et al., 1999).

1. Sampling step: sample a candidate parameter θ∗ from the proposed prior

distribution π(θ).

2. Simulation step: simulate the results x∗ with the proposed model based on a

conditional probability distribution f (x|θ∗).
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3. Comparison step: compare the simulated data set x∗ with the experimental

data set x0 and find the distance d(x0,x
∗) between the two data sets in

different ways.

4. Decision making step: choose a suitable tolerance or threshold value ε, then

accept the sampled parameter θ∗ if d(x0,x
∗) ≤ ε, otherwise, reject it and

return to the first sampling step.

With sufficient amount of iterations for the above algorithm, we can obtain a set

of estimated parameters from distribution π(θ|d(x0,x
∗) ≤ ε), which is an approxi-

mation for the posterior distribution π(θ|x0). The difficulties here are to define a

suitable distance function for calculating the difference and to choose an optimal

tolerance value. If tolerance ε is sufficiently small, our obtained distribution

will be a good approximation. However, it takes a long time to achieve a good

approximation since it requires many samples before there are sufficient accepted

samples to calculate the approximation. If tolerance is too large, we will obtain a

distribution that maybe not satisfying for approximation.

ABCMonte-Carlo Markov Chain algorithm

Based on the generic form of ABC algorithm, many methods have been developed

including ABC rejection sampler, which is a similar derivation as the above algo-

rithm and ABC Monte-Carlo Markov Chain (ABC MCMC) (Marjoram et al., 2003),

which provides the following full steps.

1. Initialize θi , i = 0

2. Sampling step: sample a candidate parameter θ∗ from the proposed distri-

bution q(θ|θi).

3. Simulation step: simulate the results x∗ with the proposed model based on a

conditional probability distribution f (x|θ∗).
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4. Comparison step: compare the simulated data set x∗ with the experimental

data set x0 and find the distance d(x0,x
∗) between the two data sets in

different ways.

5. Decision making step: choose a suitable tolerance or threshold value ε, then

if d(x0,x
∗) ≤ ε, set θi+1 = θ∗ with probability

α =min[1,
π(θ∗)q(θi |θ∗)
π(θi)q(θ∗|θi)

]

and θi+1 = θi with probability 1−α, otherwise, set θi+1 = θi and return to

the first sampling step.

ABC MCMC algorithm solves the problem of long computing time with a badly

chosen prior distribution that is far away from posterior distribution using ABC

rejection sampler algorithm. However, as ABC MCMC introduced a concept of

acceptance probability during the decision making step, then candidate parame-

ters must meet two criteria. This may result in getting stuck in the regions of low

probability for the chain and we may never be able to get a good approximation.

ABC Sequential Monte-Carlo algorithm

Instead of having one parameter vector at a time, we sample from a pool simulta-

neously treating each parameter vector as a particle. The algorithm starts with

sampling a pool of N particles for parameter vector θ through prior distribution

π(θ). The sampled particle candidates θ∗1, · · · ,θ
∗
N will be chosen randomly from

the pool and we will assign each particle a corresponding weight w to be con-

sidered as the sampling probability. For the first iteration, we assume for each

sampled particle, it has a equally weight of 1
N . A perturbation and filtering process

following through a transition kernel K(·|θ∗) finds the particles θ∗∗. Similarly with

θ∗∗, data x∗ can be simulated and compared with experimental data x.
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Many algorithms have been developed using the particle filtering, such as partial

rejection control, population Monte-Carlo and sequential Monte-Carlo (SMC)

(Del Moral et al., 2006; Sisson et al., 2007). Each of them differs in how the

formation weight w that are assigned and the transition kernels K(·|θ∗) they

choose. We will only present the basic ABC SMC algorithm (Toni et al., 2009),

which is a special case of sequential importance sampling (SIS) algorithm here

(Del Moral et al., 2006).

1. Initialize ε1, · · · ,εT , start with iteration t = 1 as well as the particle indicator

i = 1.

2. Sampling step: If t = 1, sample θ∗∗ from the a proposed prior distribution

π(θ). Else, sample from the previous population θ(i)
t−1 with weight wt−1 and

perturb the particle to obtain θ∗∗ ∼ Kt(θ|θ∗).

3. Simulation step: simulate the results x∗ with the proposed model based on a

conditional probability distribution f (x|θ∗∗).

4. Comparison step: compare the simulated data set x∗ with the experimental

data set x0 and find the distance d(x0,x
∗).

5. Decision making step: if d(x0,x
∗) ≤ ε, set θ(i)

t = θ∗∗, find the weight for

particle θ(i)
t ,

w
(i)
t =


1 if t = 1,

π(θit )∑N
j=1w

(j)
t−1Kt(θ

(j)
t−1,θ

(i)
t )

if t > 1;

set i = i + 1 and return to the first sampling step.

ABC SMC is a promising tool for reliable parameter inference and model selection

for models of dynamical systems that can be efficiently simulated. Owing to its
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simplicity and generality, ABC SMC, unlike most other approaches, can be ap-

plied without any change in both deterministic and stochastic contexts (including

models with time delay) (Toni et al., 2009). Moreover, in the context of hypothesis

testing, the Bayesian perspective (Cox and Hinkley, 1979; Robert and Casella,

2013) has a more intuitive meaning than the corresponding frequentist point of

view.

1.4.3 Parameter identification

Parameter identification is an important part of network inference and the predic-

tion of network behaviour in time (Omony, 2014). While parameter estimation is

not feasible, we can still study the system by assessing which parameters signif-

icantly affect the outputs or measured variables of interest following a network

perturbation with some stimuli (Liang et al., 1998). Conventionally parameter

sensitivity analysis is used as a tool for analysis and design in engineering systems

theory. Although it has mostly been applied extensively in physical systems rather

than biological systems, its use in the latter has increased recently, especially in

the study of complex networks. By using parameter sensitivity analysis, once the

most influential parameters are identified, the correlation matrix between the

parameters is then investigated. Thereafter, the least sensitive parameters can

be left out of a model thereby reducing the model complexity but still retaining

its explanatory power (Erban et al., 2006). This technique is especially essential

for large networks with thousands of genes, the number of differential equations

required to describe a particular system becomes huge (Bornholdt, 2005), which

implies an increased number of kinetic parameters, e.g. mRNA production and

decay rates and Hill constants. In principle, using parameter sensitivity analysis,

some of these parameters can be coalesced or dropped from the model, leaving a

simpler yet still powerful model to describe the network dynamics.

23



Chapter 1 – Introduction

1.5 Objectives

Building a systematic understanding of biological networks currently has become

one of the hot topics for both biologist and mathematicians facing modern biology.

An increasing number of researches in recent years showed that computational

modelling has provided deep understanding as well as experimentally testable

predictions regarding cellular dynamics at a system level. However, experimental

discoveries regarding the discrete processes inside the cell have increasingly

posed great challenges to mathematical modelling and computer simulations.

In order to understand the functioning of organisms on the molecular level,

we need to understand how the genes express themselves, when and in which

organisms. The regulation of gene expression is achieved through networks of

interactions between DNA, RNA, proteins and small molecules. In this thesis, I

am focused on mathematical modelling for particular biological systems including

construction of structures and parameter estimations during modelling process.

The following paragraphs will describe how we came to these two points from our

initial objectives, the corresponding methods that have been developed and how

the objectives are achieved step by step.

While modelling various complex biological systems, the development of simple

mathematical models for representing complicated real-life chemical reaction

systems has been a fundamental issue in computational biology and bioinformatics.

In particular, the accurate description of chemical events of multi-step chemical

reactions has been regarded as an essential problem in chemistry and biophysics.

In recent years, a number of modelling approaches have been attempted to use

simplified models to describe multi-step chemical reactions accurately. However,

more sophisticated modelling methods are strongly required in order to provide

more accurate description of complex biochemical systems in an efficient way.

In addition to building mathematical models for such biological systems, one of
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the major challenges in systems biology is how to infer unknown parameters in

mathematical models based on the experimental data sets, in particular, when the

data are sparse and the regulatory network is stochastic. Several inference methods

including optimization methods and Bayesian inferences have been approached

for estimating unknown parameters during the last decade. Among the vast

range of inference techniques, Bayesian inference methods have more power to

solve problems when modelling biological systems where molecular species are

present in low copy numbers and noise exists (Raj and van Oudenaarden, 2008;

Wilkinson, 2007). Another challenging issue in mathematical modelling is to

study the influence of parameter variations on the system property. Robustness

and sensitivity properties are two major measurements to describe the dynamic

property of the system against the variation of model parameters. For stochastic

models of discrete chemical reaction systems, although these two properties have

been studied extensively, no work has been done so far to investigate these two

properties together.

In detail, our objectives are listed as follows.

1. Development of novel mathematical models for multi-step chemical reaction

systems, which includes

• Study of dynamics for one of the most typical multi-step chemical

reaction systems - “mRNA degradation process”;

• Development of two-variable mathematical model which simplifies the

traditional fully described ordinary differential equation model;

• Development of a simplified mathematical model with state-dependent

time delay.

2. Application and development of approximate Bayesian computation (ABC):
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• Apply general ABC methods to estimate parameters for stochastic bio-

logical systems;

• Develop a novel algorithm using simulated likelihood density in the

framework of approximate Bayesian computation for parameter esti-

mations.

3. Application and development for parameter identification methods:

• Develop a new framework for the method to analysis sensitivity;

• Combine sensitivity analysis with study of robustness property for a bio-

logical system to understand the influence of system input -“parameter

variance”.

4. Network inference for a P53 gene network:

• Propose an ntegrated method that combines a top-down approach and a

bottom-up approach to investigate the dynamics of regulatory networks

through high throughput experimental data, such as microarray gene

expression profiles;

• Apply model simulation error, Akaike’s information criterion, param-

eter identifiability and robustness property as criteria to select the

optimal network.

1.6 Thesis Outline

This thesis addresses the above four objectives outlined above in four individual

publications and three other unpublished papers, which are included between the

thesis introduction and conclusion chapters. The contents in each chapter and

their connections are described as below.
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Chapter 1 of the thesis is an introductory chapter highlighting the motivations, dif-

ficulties of mathematical modelling and parameter inference methods, discussion

of literature and the objectives, which are briefly introduced above.

Chapters 2 and 3 of the thesis were our first trial to tackle first part of objective 1.

To describe stochastic process in regulatory networks, the stochastic simulation

algorithm (SSA) has been widely used to simulate chemical reaction systems.

This method represents an essentially exact procedure for modelling reaction

systems in which the molecular population of some critical reactants is relatively

small. This modelling framework is based on the assumption that all biochemical

reactions are instantaneous events. However, biological systems are complex; thus

this assumption is not adequate for describing the complex dynamics by using the

simplified mathematical models. Multi-step chemical reactions were traditionally

simplified into a one-step reaction and this usually cannot provide concrete

description of the dynamics of multi- step reactions. In Chapter 2 (Wu et al.,

2012) and Chapter 3 (Wu et al., 2013b), we successfully built a two-variable model,

which introduces a new concept regarding the location of molecules in the multi-

step reactions in order to simplify chemical events of multi-step reaction. The

efficiency of the proposed two-variable model is demonstrated by the realization

of mRNA degradation process based on the experimentally measured data, which

is shown in these two chapters.

Chapter 4 (Wu and Tian, 2015) continues addressing the first objective. In the

current modelling approaches with time delays, it is widely assumed that time

delay is either a constant or a random variable that follows a given distribution.

To model chemical reaction systems in a manageable way to further fulfil our

objective 1, we consider that time delay is dependent on the system state, rather

than to be a constant. This consideration is reasonable because the waiting times

of all chemical reactions are system state dependent. In fact, the state-dependent
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time delay has been studied in a number of research areas such as optimal control,

which is discussed in Chapter 4.

Approximate Bayesian computation (ABC) algorithms provide stable parameter

estimates and are also relatively computationally efficient, therefore, they have

been treated as substantial techniques for solving inference problems of various

types of models that were intractable only a few years ago (Sisson et al., 2007). We

extended our research based on the generic form of ABC algorithms, studying

several valid ABC techniques such as ABC Markov chain Monte Carlo (MCMC) etc.

(Golightly and Wilkinson, 2011) and proposing our own ABC algorithms using

simulated transitional density function as the objective function and different

strategies for defining errors. Detailed description of the proposed algorithms can

be found in the Chapter 5 and 6, which address our objective 2.

The third objective is presented with Chapter 7 (Wu et al., 2015) , which focused

on a proposed new framework to study the sensitivity and robustness properties

for a biological system simultaneously. Using stochastic model as the test system,

we aim at identifying key coefficients that have the most influence on the dynamics

of the network. Numerical results suggest that the proposed framework is an

efficient approach to study the sensitivity and robustness properties of biological

network models.

Chapter 8 (Wang et al., 2015) is to address our final objective, which extends to

network inference for the dynamics of protein-gene interactions with human gene

P53 case. Along with the parameter inference problems, a new integrated method

is proposed by combining a top-down approach using probability graphic models

and a bottom-up approach using differential equation models are used to predict

the network structure of DNA repair pathway that is regulated by the p53 protein

and study the detailed genetic regulations. Overall, the new integrated method is
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a promising approach for investigating the dynamics of genetic regulation as well

as for parameter estimation.

Chapter 9 presents some concluding remarks with an overview of the results, the

contributions of the thesis and directions for future work.

Since this is a “Thesis by Publication" which consists of a new introduction and

conclusion with published papers in between, unfortunately, it has inevitably

created some amount of repetition among chapters, especially chapters (2,3)

and (5,6) that are pairs of conference proceeding papers and journal papers.

For the sake of thesis unity, all the references of publications are located in a

single Bibliography after chapter 9 and acknowledgements in the publications are

covered by the thesis Acknowledgement.

29





PART B: Suggested Declaration for Thesis Chapter

Monash University

Declaration for Thesis Chapter 2

Declaration by candidate

In the case of Chapter 2, the nature and extent of my contribution to the work was the following:

Nature of
contribution

Extent of
contribution (%)

Developed, established and verified the method
Wrote programming codes and the article          90%

The following co-authors contributed to the work. If co-authors are students at Monash University, the extent 
of their contribution in percentage terms must be stated:

Name Nature of contribution Extent of contribution (%) 
for student co-authors 
only

Kate Smith-Miles Provided helpful guidance and proofreading

Tianhai Tian Provided helpful guidance and editorial work

The undersigned hereby certify that the above declaration correctly reflects the nature and extent of the 
candidate’s and co-authors’ contributions to this work*. 

Candidate’s
Signature Date  29/04/15

Main 
Supervisor’s
Signature

Date  29/04/15

*Note:  Where the responsible author is not the candidate’s main supervisor, the main supervisor should 
consult with the responsible author to agree on the respective contributions of the authors.





Chapter 2
A Two-variable Model for Stochastic
Modelling of Chemical Events with

Multi-step Reactions



Chapter 2 is based on the article Wu Q, Smith-Miles K, Tian T. 2012. A two-

variable model for stochastic modelling of chemical events with multi-step re-

actions. In: Bioinformatics and Biomedicine (BIBM), 2012 IEEE International

Conference on. pp. 1–6, doi: 10.1109/BIBM.2012.6392681.

Abstract. The development of simple mathematical model for representing complicated

real-life chemical reaction systems has been a fundamental issue in computational biol-

ogy and bioinformatics. In particular, the accurate description of chemical events with

multi-step chemical reactions has been regarded as an essential problem in chemistry

and biophysics. To model chemical reaction systems in a manageable way, multi-step

chemical reactions were normally simplified into a one-step reaction. In recent years, a

number of modelling approaches have been attempted to use simplified model to describe

multi-step chemical reactions accurately. In this work, we proposed a two-variable

model to describe chemical events with multi-step chemical reactions. We introduced a

new concept to represent the location of molecules in the multi-step reactions, and use

it as the second indicator of the system dynamics. The accuracy of the proposed new

model was evaluated via using a deterministic model. The proposed model has been

applied to study the mRNA degradation process. Numerical simulations of the designed

simplified models matched the simulations of multi-step chemical reactions very well.

Keywords. Stochastic modelling, multi-step reactions, mRNA degradation.

References are considered at the end of the thesis.



Chapter 2

A Two-variable Model for Stochastic

Modelling of Chemical Events with

Multi-step Reactions

2.1 Introduction

Recent advances in computational biology and bioinformatics have provided a

variety of mathematical models to describe complex chemical reaction systems

inside the cell. There has been amount of evidence showing that mathematical

modelling is a powerful and predictive tool for exploring the dynamic properties of

genetic regulatory networks, cell signalling transduction pathways and metabolic

pathways (Lewis, 2008; Tomlin and Axelrod, 2007). In spite of the substantial

progress, there are still a number of fundamental issues that need to be addressed

imperatively. Among them, the accurate description of chemical events with

multi-step chemical reactions has been regarded as a central problem in chemistry

and biophysics (Zhou and Zhuang, 2007). There are many biochemical events

involving multi-step chemical reactions. One of the most well-known example
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is gene expression which usually involves a large number of steps including

transcription, RNA processing, DNA translation and messenger RNA (mRNA)

degradation, which can all be considered as multi-step reaction systems. In

particular, transcription is a multi-step process consisting of initiation, elongation

and termination phases; and elongation is a sequence of reactions that occur at

each elongation step for RNA polymerase passing through the DNA. The multi-

step reaction processes also exist in other areas such as organic chemistry and

biophysical chemistry (Branz, 1996). For example, an ion channel may change

its conformation through multi-step allosteric transitions (Qin and Li, 2004).

Therefore to accurately describe chemical events with multi-step reactions is

a critical step in the development of mathematical models for characterizing

complex biological systems.

To model chemical reaction systems in a manageable way, multi-step chemical

reactions were traditionally simplified into a one-step reaction. For example, it

was a widely used approach to use first order reactions to describe the degradation

process of mRNA or protein. Since the simplified one-step reaction cannot provide

concrete description of the dynamics of multi-step reactions, recently chemical

reactions with time delay have been used to describe the multi-step chemical

events or slow reactions more accurately (Monk, 2003). To address the coupling

of intrinsic noise in biochemical reactions with delays, a new methods called

Delay Stochastic Simulation Algorithm (DSSA) was proposed by introducing time

delay into the Stochastic Simulation Algorithm (SSA) (Barrio et al., 2006). Unlike

the classic SSA, which assumes instantaneously biochemical reaction systems in

the model, the DSSA was designed to characterize chemical systems with both

fast and slow reactions. In fact the so-called slow reaction in most cases is a

simplified version of the multi-step reactions. This delayed method has been

applied for many physical and biological systems. For example, Barrio et al. (2006)

applied the DSSA to mimick delays associated with transcription and translation
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and successfully explained the process for the regulation of Hes1 gene. These

simulation methods have also been used to successfully validate stochastic models

of biological systems with slow reactions. Recently the work done by Mier-y

Terán-Romero et al. (2010) opened some new aspects for application of time

delays in biological systems. They presented the developed time delay models

for protein translation based on the partial differential equation (PDE) models

and obtained a good agreement between the time delay model and mechanistic

models, which allows us for further study of formulation of time delay models of

coupled template polymerization process in modelling of genetic networks (Mier-y

Terán-Romero et al., 2010). Other modelling techniques proposed recently include

the slow-scale linear noise approximation and the stochastic quasi-steady-state

assumption (Thomas et al., 2012; Srivastava et al., 2011).

The degradation process of mRNA illustrates a typical system with multi-step

reactions and is also an important step in the regulation of gene expression

(Mitchell and Tollervey, 2001). Over the past decade, mRNA degradation has been

studied deeply, but there still exist problems unsolved with respect to the enzymes,

pathways and regulation of mRNA degradation including the role of P-bodies etc.

(Garneau et al., 2007; Shyu et al., 2008; van Hoof and Parker, 2002). Based on

the detailed process including ploy(A) tail shortening, decapping and digestion,

mathematical models have been designed for understanding the dynamics of

mRNA degradation, including a linear multi-component model that was designed

to investigate the mRNA degradation problem as well as the nonsense-mediated

decay of mRNA molecules in yeast (Cao and Parker, 2001, 2003). This model

includes 23 first-order reactions that describes transcription, decapping, ploy(A)

shortening, translocation and as well as digestion process. lt is the first detailed

deterministic model that studies mRNA degradation. Simulation results suggested

that the widely used mRNA half-life, obtained by using the first order reaction,

underestimated the averaged life-span of mRNA molecules and also half-life
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is an important factor for determining the different steps in the degradation

pathway. With robustness analysis, it showed that the change of deadenylation

rate might lead to great variations in mRNA copy numbers. To interpret the

complex reactions in this detailed mathematical model, a multi-step reaction

model was proposed recently by using a chain of 11 chemical reactions (Tian,

2014). Numerical simulations suggested that this simplified model gave a very

good approximation to the original detailed model with 23 chemical reactions.

To further simplify the degradation process of mRNA, another approach used

time delay to represent the total time required in the multi-step reactions (Tian,

2014). The simplified stochastic model with time delay was also adopted for

studying the degradation process of mRNA molecules. Numerical results showed

that the simple first-order reaction models could not approximate the detailed

degradation process precisely (Tian, 2014). And even with delay introduced, it

still remains a challenge to represent the chemical events with multiple small

step reactions accurately. Therefore, instead of using time delay to represent the

missing intermediate reactions in the one-step reaction, we here introduce another

modelling method by introducing a new concept, which is termed as the length of

a molecule to represent the location of that molecule in the multi-step reactions,

and use it as the second indicator of the system dynamics. The following sections

are organized as follows. Section 2.2 will introduce the new modelling approach

with two variables for describing chemical events with multi-step reactions. The

accuracy of the proposed new model is evaluated with a deterministic model in

section 2.3. Section 2.4 of this paper studies the mRNA degradation process using

our new modelling approach.
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2.2 New Modelling Method for Multi-step Reaction

System

Let us consider the following chemical events with multi-step chemical reactions,

which is adapted from the theoretical model studied by Zhou and Zhuang (2007):

B1
k1−−→ B2

k2−−→ B3
k3−−→ ·· ·

kn−−→ Bn
kn−−→ P . (2.2.1)

In this system, any molecule that starts from the “B1” state has to experience (n−1)

intermediate states B2, · · · ,Bn before it is turned to a “P ” state. The molecule P may

be the product of this multi-step process. It may also represent the degradation

process when P = ( ).

We denote X as the total copy number of molecules Bi

X =
n∑
i=1

[Bi].

In addition, according to the distance to the final product, for each Bi molecule,

we define a corresponding length of n − i + 1, therefore the total length of all

molecules is given by

L =
n∑
i=1

(n− i + 1)[Bi].

The proposed new model was considered in the following way. When a reaction

occurs, the total length will decrease by one while the total copy number of

molecules may remain the same if the reaction is one of the first (n− 1) steps or

decrease by one if the reaction is the last step. Therefore, the two-variable reaction

model can be structured via two types of reactions:

(X,L)→ (X,L− 1) (2.2.2)
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representing reactions for Bi
ki−→ Bi+1, and

(X,L)→ (X − 1,L− 1) (2.2.3)

representing the reaction for Bn
kn−−→ P .

After suggesting two-variable reaction model, the SSA method that is the basic

approach for various forms of modelling chemical systems will be applied to

simulate the new model. It is described by the following algorithm.

Algorithm I

1. Based on the total molecule number X and total length L, we can calculate

the propensity function

a0 = kX,

where k is the harmonic mean of the rate constants

k =
n

1
k1

+ · · ·+ 1
kn

. (2.2.4)

2. Determine the step size for the next reaction

τ =
1
a0
ln

1
r1
,

where r1 ∼U (0,1).

3. Generate a sample r2 ∼U (0,1) to determine which reaction from reactions

(2.2.2) and (2.2.3) will occur,

(X,L) =

 (X,L− 1) if r2 > f ,

(X − 1,L− 1) if r2 < f ,
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where f is the probability of the firing of the last reaction and then the

system is updated.

4. Go back to step 1.

The key question remaining in the proposed model is to define a proper probability

function f to describe the firing of the last reaction. It is clear that this probability

should depend on the values of total molecule number X, total length L and the

number of reactions n. Our initial attempt suggested that it could be difficult to

find an analytical expression of the probability function f (X,L,n).

In this work, we proposed to use the following expression, given by

Type I: f (X,L,n,q) = 1− (
L−X
X(n− 1)

)
q

, (2.2.5)

and an alternative expression is

Type II: f (X,L,n,q) = (1− L−X
X(n− 1)

)
q

. (2.2.6)

The aim for this work is to test the feasibility of the two proposed functions f ,

find for the optimal q value under various simulation methods and apply the new

modelling method to biological systems such as the process of mRNA degradation,

which will be introduced in the following sections 2.3 and 2.4.

2.3 Ordinary Differential Equation Model

After we find the linear relation between the optimal value of q and the number

of reactions n through the probability simulations, we next studied the corre-

sponding ordinary differential equation (ODE) model to test the feasibility of the

approximation probability function. Solving a set of ODEs numerically is another
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common way for describing the system with a set of chemical reactions. From

multi-step chemical reaction system (2.2.1), the ODE model is formed as follows:

dB1

dt
= −k1B1,

dB2

dt
= k1B1 − k2B2,

...

dBn
dt

= kn−1Bn−1 − knBn,

dP
dt

= knBn. (2.3.1)

We can calculate the total molecule number X as

X = B1 + · · ·+Bn,

and the total length of the molecules L is

L = Bn + 2Bn−1 + · · ·+nB1.

By adding up all the ODEs, then we have a new set of ODEs for the total molecule

number X and total length L , given by

dX
dt

= −kBn,

dL
dt

= −kX, (2.3.2)

where k is the harmonic mean of the rate constants (2.2.4). Note that in the

(2.3.2), kBn can be approximated with the probability function f as they all act

as the probability for the occurrence of last step reaction. Thus in this work

we proposed the following ODE model to represent the chemical events with
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multi-step chemical reactions

dL
dt

= −kX,

dX
dt

= −kX(1− L−X
X(n− 1)

)q. (2.3.3)

From the original ODEs (2.3.1), we can find the exact solutions for Bi with the

given initial conditions Bi(0) and rate constants ki under a certain long enough

time frame. The approximated ODEs (2.3.3) will be solved numerically for various

q values under the same conditions.

Simulations were operated with conditions of n = [5 10 15] and X = [5 10 50 100

200 500] respectively, i.e. for each n value we use the function ode23s in MATLAB

to solve the system (2.3.3) for different cases with various initial X values. With

the simulation results, Fig. 2.1 (A) was plotted, which show some patterns such

that optimal q increases when number of chemical reactions n increases and it

does not fluctuate significantly with various initial X values.

A linear regression for the averaged optimal q versus n can be revealed from

Fig.2.1 (B), the equation is described in the following form

q̄ = 0.4570n+ 0.8567. (2.3.4)

One of the important findings is that the value of q is dependent on the number

of reactions n, but independent on the total copy number X. In addition, when

q is close to the optimal q value, the difference between the error of optimal

approximation and that using q is quite small. As a general rule, the value of q

can be approximated with n/2.
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Figure 2.1: Simulation results from the ODE model: (A) for the optimal q value against
different X, (B) averaged optimal values for q against n.
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With these findings of linear relationship between q and n, we can rewrite the

probability function f in terms of L, X, and n such as

f (L,X,n) = (1− L−X
X(n− 1)

)0.4570n+0.8567. (2.3.5)

2.4 Application to mRNA Degradation

Based on the linear multi-component model studied by Cao and Parker (2001),

a simplified mathematical model to represent the mRNA decay was proposed,

which is presented by the following Table 2.1 (Tian, 2014). It is assumed that the

gene transcription is a zeroth-order process, which is given by reaction S1 under a

rate constant of 1. And then the mRNA molecules species A in the nucleus will

translocate into the cytosol as species B via reaction S2 under a rate constant of 0.2.

Different from the original model, it was suggested that species B would start the

poly(A) shortening process through reactions S3, · · · ,S9 with various rates instead

of undergoing decapping reaction, 5′-to-3′ / 3′-to-5′ exonucleolytic degradation

or digestion processes. Reaction S10 is a further exonucleolytic degradation to

trim the mRNA with a poly(A) tail length of zero to produce species FG, which

will be degraded in the end by reaction S11. Since the fragment product (FG) is

not a functional mRNA, we excluded reaction S11 for our consideration.

To apply our proposed two-variable model to this mRNA degradation pro-

cess, the following reaction model is built by constructing realization of X =

(A,B,BC1, · · · ,BC7). Each reaction has its corresponding propensity function
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Table 2.1: Reactions and kinetic rates of the simplified stochastic model. The rate
constants si are in the unit of 1/sec.

Rate

Reaction constant si Comment

S1 DNA→ A 1 transcription

S2 A→ B 0.2 transport

S3 B→ BC1 0.011 full-length 70A-60A

S4 BC1→ BC2 0.022 full-length 60A-50A

S5 BC2→ BC3 0.022 full-length 50A-40A

S6 BC3→ BC4 0.022 full-length 40A-30A

S7 BC4→ BC5 0.022 full-length 30A-20A

S8 BC5→ BC6 0.023 full-length 20A-10A

S9 BC6→ BC7 0.0099 full-length 10A-0A

S10 BC7→ FG 0.5006 fragment production

S11 FG→ () 0.00066 fragment degradation

shown as below:

Reaction Propensity function

DNA
s1−→ A a1 = 1,

A
s2−→ B a2 = 0.2 ·A,

B
s3−→ BC1 a3 = 0.011 ·B,

BC1
s4−→ BC2 a4 = 0.022 ·BC1,

...
...

BC7
s10−−→ FG a10 = 0.5006 ·BC7.

(2.4.1)

The total mRNA molecule number X and total length L can be calculated as

X = A+B+BC1 + · · ·+BC7,

L = 9A+ 8B+ 7BC1 + · · ·+BC7.
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The SSA that generates a trajectory of the system step by step instead of following

the time evolution of the probabilities is used here for the simulation. In each

step, the SSA starts from its current system state x(t) = x and examine itself

two questions: When will the next reaction occur and which reaction will it be?

Gillespie derived the formula for answering these two questions by studying

the joint probability density function p(τ, j |x; t), where τ is the time interval for

next reaction to occur. And for each reaction Rj , the propensity function aj(x)

is defined by a given state x(t) = x and the value of aj(x)dt that represents the

probability of one reaction will occur somewhere during the infinitesimal time

interval [t, t + dt) (Gillespie, 1977). The SSA is an exact procedure for generating

the time and index of the next occurring reaction according its current state and

the propensity functions, which are defined as

a0(x) =
M∑
j=1

aj(x).

Also the time interval τ can be obtained with

τ =
1

a0(x)
ln

1
r1
,

where r1 ∼U (0,1).

With the SSA simulations for above model (2.4.1), we will have the exact solutions

for this mRNA degradation problem. On the other hand, using the proposed

two variable chemical reaction systems and the approximated function (2.3.5) we

finalized, we can set up a simpler model for the same mRNA degradation problem

through constructing realization X = (L,X). With n = 9, each chemical reactions
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with its corresponding propensity function are described as

Reaction Propensity function

DNA
k1−−→ (9L,X) a1 = k1,

(X,L)
k−→ (X,L− 1) a2 = k ·X · (1− f (L,X,9)),

(X,L)
k−→ (X − 1,L− 1) a3 = k ·X · f (L,X,9).

Note that here k1 = s1 = 1 as it’s the rate for producing mRNA species. The rate

constant k can be calculated from (2.2.4) with (S2, · · · ,S10), given as

k =
9∑10
i=2

1
si

= 0.0212 (2.4.2)

Initial conditions we took here are X = [10 0 0 0 0 0 0 0 0] for the exact SSA and

X = [90 10] for the approximated SSA. We carried out two numerical tests.

When s1 = k1 = 1, we notice that the rate of last-step degradation is s10 = 0.5006

and the synthesis rate for mRNA species A is s1 = k1 = 1, which is greater than

s10. Fig. 2.2 shows that both X and L will become steady in the long run as

the equilibrium achieves. Fig. 2.2 (A) and (C) represent an example of three

simulations of X and L over a time period of 1,300 seconds from the exact results

derived from the detailed multi-step reaction model, while Fig. 2.2 (B) and (D)

show the three approximated simulation results for X and L over the same amount

of time. By taking the average over the 10,000 simulations, the averaged values

for X and L can be compared for both models shown by Fig. 2.2 (E) and (F)

respectively. They reveal that the approximated solutions approach the exact

simulations very well.

Instead of having non-zero rate of reaction S1, we also simulated the two models

with the zero rate of mRNA synthesis, which means that there will be having
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Figure 2.2: The SSA simulation results with s1 = k1 = 1: (A,C) three simulations of
X and L values over t for the detailed multi-step reaction model, (B,D)
three simulations of X and L values over t for approximated model with
two variables, (E) the mean value of X with 10,000 simulations for both
models, (F) the mean value of L with 10,000 simulations for both models.
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no more further production of new mRNA species A molecules adding into the

reaction system. Therefore, unlike the previous case, L and X will both decrease

and tend to 0 eventually, which can be revealed from Fig. 2.3. And with this

numerical test, it also shows that the approximated solutions are close to the

exact results. Hence with this application, we found that the approximated SSA

using the proposed two-variable model indeed creates a good approximation

for the exact model. It further confirms that the form of q achieved before is a

good approximation. In addition, we found that the computing time taken for

generating simulation results using approximated two-variable model is much

shorter than the ones using the detailed multi-step reaction method.
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Figure 2.3: The SSA simulation results with s1 = k1 = 0: (A,C) three simulations of
X and L values over t for the detailed multi-step reaction model, (B,D)
three simulations of X and L values over t for approximated model with
two variables, (E) the mean value of X with 10,000 simulations for both
models, (F) the mean value of L with 10,000 simulations for both models.
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2.5 Conclusion

In this work, we have proposed a new model to describe chemical events with

multi-step chemical reactions. This represents a major step in designing simplified

mathematical model to represent complex chemical reactions systems, which is a

fundamental issue in computational biology and bioinformatics. In addition to the

total molecule number, we proposed to use the length of a molecule to represent

its location in the multi-step chemical reactions. We used the ODE model to find

the optimal value in the non-linear function via comparison of the simulations

derived from detailed multi-step chemical reaction model and our proposed

two-variable model. Our designed model has been successfully applied for the

stochastic simulations of the mRNA degradation process. Numerical simulations

of the designed simplified models match the simulations of the stochastic model

with multi-step chemical reactions very well.

However, there are still a number of challenging issues that require further re-

search to address. The core of the proposed new model is a non-linear function

that is designed to approximate the probability of the firing of the last chemical

reaction. On top of that, more accurate information regarding the probability

will clearly lead to more sophisticated stochastic models to describe chemical

events with multi-step reactions. In addition, the derived relationship between the

optimal value in the non-linear function and the key parameters of the multi-step

reactions should be further validated by stochastic simulations that is a more

appropriate approach to describe biological systems with small copy numbers

of molecules. Finally we discussed the mRNA degradation process in this work

by adding the synthesis of mRNA molecules into the multi-step reaction system.

It is expected that the proposed two-variable model will be incorporated into

more complex biological systems including genetic regulatory networks, telomere

length regulation as well as cell differentiation and death.
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Chapter 3
Stochastic Modelling of Biochemical

Systems of Multi-step Reactions using
a Simplified Two-Variable Model



Chapter 3 is based on the article Wu Q, Smith-Miles K, Zhou T, Tian

T. 2013b. Stochastic modelling of biochemical systems of multi-step re-

actions using a simplified two-variable model. BMC Systems Biology

7(4): S14, doi: 10.1186/1752-0509-7-S4-S14, URL http://dx.doi.org/10.1186/

1752-0509-7-S4-S14. Abstract.

Background: A fundamental issue in systems biology is how to design simplified

mathematical models for describing the dynamics of complex biochemical reactions

systems. Among them, a key question is how to use simplified reactions to describe

the chemical events of multi-step reactions that are ubiquitous in biochemistry and

biophysics. To address this issue, a widely used approach in literature is to use one-step

reaction to represent the multi-step chemical events. In recent years, a number of

modelling methods have been designed to improve the accuracy of the one-step reaction,

including reactions with time delay. However, our recent research results suggested

that there are still deviations between the dynamics of delayed reactions and that of the

multi-step reactions. Therefore, more sophisticated modelling methods are needed to

accurately describe the complex biological systems in an efficient way.

Results: This work designs a two-variable model to simplify chemical events of multi-

step reactions. In addition to the total molecule number of a species, we first introduce

a new concept regarding the location of molecules in the multi-step reactions, which is

the second variable to represent the system dynamics. Then we propose a simulation

algorithm to compute the probability for the firing of the last step reaction in the

multi-step events. This probability function is evaluated using a deterministic model of

ordinary differential equations and a stochastic model in the framework of the stochastic

simulation algorithm. The efficiency of the proposed two-variable model is demonstrated

by the realization of mRNA degradation process based on the experimentally measured

data.

http://dx.doi.org/10.1186/1752-0509-7-S4-S14
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Conclusions: Numerical results suggest that the proposed new two-variable model

produces predictions that match the multi-step chemical reactions very well. The

successful realization of the mRNA degradation dynamics indicates that the proposed

method is a promising approach to reduce the complexity of biological systems.

References are considered at the end of the thesis.
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Stochastic Modelling of Biochemical

Systems of Multi-step Reactions us-

ing a Simplified Two-Variable Model

3.1 Introduction

The advances in systems biology have raised the importance of quantitative meth-

ods for studying various systems in molecular biology. In recent years, various

research methods, including mathematical modelling, statistical analysis, com-

puter simulation and visualization, have been employed to investigate the dynamic

or statistical properties of regulatory networks. In particular, mathematical mod-

els have been widely used to describe the dynamics of complex systems inside the

cell, including genetic regulatory networks, cell signalling transduction pathways

and metabolic pathways (Lewis, 2008; Tomlin and Axelrod, 2007). However,

these substantial progresses have further raised a number of fundamental and

challenging issues that require to be addressed imperatively.
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One of the major challenges in systems biology is how to use simple mathematical

models to describe complex biological systems. To address this issue, a number of

modelling techniques have been designed. Among them, a widely used approach

is to use one-step reaction to represent multi-step reactions, which is also called

slow reaction. This technique is very important because recent theoretical and

experimental studies have shown that a wide variety of biochemical events involve

multi-step reactions (Zhou and Zhuang, 2007). Perhaps the most important

example of multi-step reactions is transcriptional and translational processes that

produce mRNA transcripts and proteins, respectively. Other examples include

molecules (e.g. mRNA and protein) degradation and telomere length shortening

processes. In fact, the process of multi-step reactions also exists in other areas such

as organic chemistry and biophysical chemistry (Branz, 1996; Qin and Li, 2004).

Therefore the major aim of this research work is to design simplified models to

accurately characterize biological systems with multi-step reactions.

A widely used approach to simplify multi-step chemical reactions in the literature

is to use one-step reaction. For example, the degradation process of mRNA or

protein has been modelled by a first order reaction. However, since the one-

step reaction cannot provide consistent description of the multi-step reactions,

chemical reactions with time delay have been designed recently to model the

multi-step chemical events or slow reactions more accurately (Monk, 2003; Zhu

et al., 2007; Ma et al., 2005; Burrage et al., 2007). Another important factor is

noise in biological networks that may influence the system dynamics substantially.

The deterministic modelling methods, which approximate molecular numbers

using continuous concentrations (Kaern et al., 2005; Wilkinson, 2009), may not

be appropriate to describe systems that contain species with small population

numbers. To model stochastic systems more accurately, there are a few other ways.

For example, we can use discrete Markov processes where the density of states of

a well-stirred chemical reaction system at each time point can be represented by
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the chemical master equation (CME) (McQuarrie, 1967; Gillespie, 1992). One of

the most well-known methods is called Stochastic Simulation Algorithm (SSA),

which is a statistically exact method for simulating trajectories of the CME as the

system evolves in time (Gillespie, 1977).

Furthermore, to deal with the intrinsic noise in reactions with time delay, the

delay stochastic simulation algorithm (DSSA) was designed by introducing time

delay into the SSA (Bratsun et al., 2005; Barrio et al., 2006). Unlike the SSA, which

assumes that biochemical reactions are instantaneous and independent, the DSSA

characterizes chemical systems that contain both fast and slow reactions. This

delayed modelling approach has been applied to many physical and biological sys-

tems (Barrio et al., 2006). The DSSA was also extended to describe chemical events

that have multiple delays or stochastic delay that follows a given probabilistic dis-

tribution (Roussel and Zhu, 2006; Tian et al., 2007a). In recent years, the DSSA has

been widely used to simulate the dynamics of genetic regulatory networks and cell

signalling pathways (Zhu et al., 2007; Schlicht and Winkler, 2008; Agrawal et al.,

2009; Marquez-Lago et al., 2010; Marquez-Lago and Stelling, 2010). In addition, a

number of effective simulation methods have been proposed to reduce the huge

computing load of the DSSA (Leier et al., 2008; Pahle, 2009; Bayati et al., 2009;

Gillespie, 2007). Recently the work done by Mier-y Terán-Romero et al. (2010)

opened some new aspects for the application of time delays in biological systems.

Time delay may not be a constant that was assumed before. Other modelling

techniques proposed recently include the slow-scale linear noise approximation

and stochastic quasi-steady-state assumption (Thomas et al., 2012; Srivastava et al.,

2011). Most recently a new modelling approach has been proposed to simulate

chemical reaction systems with memory reactions (Tian, 2013).

The degradation process of mRNA molecules is an important step in the regula-

tion of gene expression, which also represents a typical system with multi-step

reactions (Mitchell and Tollervey, 2001). Although the mechanisms of mRNA
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degradation have been studied extensively during the last ten years, there are still

a number of open problems with respect to the function of enzymes, structure

of pathways and role of P-bodies, etc. in the regulation of mRNA degradation

(Garneau et al., 2007; Shyu et al., 2008; van Hoof and Parker, 2002). A major

step in the quantitative study of mRNA degradation was the development of

mathematical models based on the detailed chemical processes. A linear multi-

component model was designed to investigate the nonsense-mediated decay of

mRNA molecules in yeast (Cao and Parker, 2001, 2003). This deterministic model

for mRNA degradation process consists of 23 first-order reactions that describe

transcription, translocation, ploy(A) shortening, decapping and digestion pro-

cess. Computer simulations suggested that the widely used concept of half-life

underestimated the averaged life-span of mRNA molecules; however, it is still a

major factor that determines the life-span of different steps in the degradation

pathway. In addition, robustness analysis showed that the change of degradation

rate constant led to large variations of mRNA copy numbers. To interpret the

complexity of mRNA degradation in a simpler manner, we proposed a multi-step

reaction model using a chain of 11 chemical reactions, which gave very good

approximation to the detailed one (Tian, 2014).

Chemical reactions with time delay has been used to further simplify mathemati-

cal models of mRNA degradation. Here time delay represents the time required

in the multi-step reactions except the first reaction (Tian, 2014). This simplified

model was also extended to using stochastic time delay. However, numerical

results showed that these first-order reaction models with delay did not give good

approximation to the detailed degradation process (Tian, 2014). Instead of using

time delay to represent the missing intermediate reactions in the multi-step re-

action, we recently proposed a new modelling approach by introducing a novel

concept, namely the length of a molecule indicating its location in the multi-step

reactions. Deterministic models using ordinary differential equations have been
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used to find the optimal value in a non-linear probability function (Wu et al.,

2012). However, it is still a challenge to apply this concept to stochastic models

that are much more important than deterministic models for chemical reaction

systems. Thus this work further validates the proposed model using stochastic

simulations. We first introduce a new stochastic modelling method with two vari-

ables for describing chemical events with multi-step reactions, and then propose

a stochastic simulation algorithm to numerically calculate the probability of the

firing of the last reaction in the multi-step events. The efficiency and accuracy of

the proposed method are examined by studying the mRNA degradation process

of gene PRL30 based on experimental data.

3.2 Results and Discussion

3.2.1 A new two-variable model

The starting-point of this research work is the chemical events with multi-step

reactions. Using the notation proposed in Zhou and Zhuang (2007), we consider

the following chemical reactions

B1
k1−−→ B2

k2−−→ B3
k3−−→ ·· ·

kn−−→ Bn
kn−−→ P , (3.2.1)

where Bi are molecular species and ki are rate constants. It is assumed that

each molecule in the system will eventually turn to the product P or degrade if

P =( ). During this process, each molecule will pass through a number of states

B1,B2, · · · ,Bn via the multi-step reactions.

When the number of reaction step n is large, we need to design a smaller scale

model to simplify the multi-step reactions. We first consider the total number of
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molecules in the system, defined by

X =
n∑
i=1

[Bi]. (3.2.2)

Here we introduce a new concept to describe the system state. The number of

reactions for a molecule to reach the product P is termed as the length of that

molecule. Thus the length of molecule Bi is (n− i + 1) and the total length of the

molecules in the system is

L =
n∑
i=1

(n− i + 1)[Bi]. (3.2.3)

According to the total molecule number, chemical reactions in the system can be

classified into two groups. If one of the first (n− 1) step reactions occurs, namely

Bi
ki−→ Bi+1 , the total number of molecules X is unchanged but the total length L is

decreased by one,

(X,L)→ (X,L− 1). (3.2.4)

However, if the last reaction Bn
kn−−→ P fires, both the total number and total length

will decrease by one,

(X,L)→ (X − 1,L− 1). (3.2.5)

In this work we use reactions (3.2.4) and (3.2.5) to design the two-variable reaction

model.

The key question now is how to determine whether reaction (3.2.4) or (3.2.5) will

fire if one of the reactions in the multi-step process (3.2.1) happens. We denote

the probability for the degradation of one molecule, namely the firing of reaction

(3.2.5), as f (X,L,n), and then the corresponding probability for reaction (3.2.4)
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as 1 − f (X,L,n). It is clear that, when all molecules are of full length (X = nL),

the probability of f is zero; while when X = L, the probability is one. For the

molecules with other lengths, we developed an algorithm, namely Algorithm I in

the Method section, to calculate the probability of molecule degradation. With the

help of this algorithm, we numerically calculated the exact probability f (X,L,n)

using n = 8 and X = 15 as an example. The probability is represented in Fig. 3.1

as the solid line.

Next we find an appropriate probability function to approximate the calculated

curve in Fig. 3.1. Note that the total length L of X molecules satisfies X ≤ L ≤ nX.

When L = X, all molecules have length 1, the probability of firing of the last step

reaction is 1, i.e. f (X,L,n) = 1; when L = nX, all molecules have length n, there

is no chance for the final reaction to occur in the next step, i.e. f (X,L,n) = 0.

Therefore we suggested a probability function to approximate the curve in Fig.

3.1 in the following format:

f (L,X,n) = 1− L−X
X(n− 1)

. (3.2.6)
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Figure 3.1: The probability for the firing of the last reaction (Bn
kn−−→ P ).

The approximated probability through the proposed function (3.2.6) is plotted

as the straight dashed line in Fig. 3.1. It shows that the approximated values are

not close to the exact probability values, and the exact probability curve is in a

quadratic-like form. Hence, instead of using a linear probability f in terms of X,

L and n (3.2.6), we introduced another parameter q into this approximation, and

proposed the following two expressions for the probability function f in terms of

L,X,n, and q. One candidate is

Type I: f (X,L,n,q) = 1−
(
L−X
X(n− 1)

)q
, (3.2.7)

and the alternative expression is

Type II: f (X,L,n,q) =
(
1− L−X

X(n− 1)

)q
. (3.2.8)
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3.2.2 Determination of probability function

The major work of this research is to select a probability function from (3.2.7) and

(3.2.8) and also search the optimal value of parameter q in the probability func-

tion. Using Algorithm I in the Method section, we first calculated the probability

f (X,L,n,q) with different values of the total molecule number X (X = 3 ∼ 20),

different numbers of reaction step n (n = 3 ∼ 20) and various values of the total

length L (L = X ∼ nX). The calculated probability was used as the exact value

to search the optimal q in the proposed probability functions. To select a bet-

ter probability function, we used both type I and II functions to calculate the

probability f (X,L,n,q) using the same initial condition (n = 8 and X = 15) but

different values of q (q = 0.01 ∼ 15) in a step size of 0.01. By searching for a

small difference between the exact probability values and those obtained from

approximated functions with different q and considering absolute errors only, the

optimal values of q for two approximations were achieved, which are 0.27 and

3.91 respectively in this particular case. The exact and approximated probability

values are shown in Fig. 3.2. We found that the type II approximation is closer

to the exact probabilities than the type I approximation. Then we only used the

probability function (3.2.8) for the following studies.

To establish a more general formula for defining q under different conditions of X,

L, n, we extended the simulations to various initial conditions of n,X both varying

from 3 to 20 together with different values of q. The optimal q values acquired

under these conditions are illustrated by Fig. 3.3 (A) and (B). Fig. 3.3 (A) shows

that when n increases, the optimal value of q increases for a fixed X value; while

Fig. 3.3 (B) indicates that there is no significant variation for the optimal q when

X increases for a fixed n value. Therefore, we calculated the averaged optimal q

values under various value of n for each given X. A plot of this averaged optimal

q̄ against n is shown in Fig. 3.3 (C). We suggested a linear relationship between n
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Figure 3.2: Simulated exact probabilities and two approximated probabilities for the
firing of the last reaction.

and q. A linear regression analysis suggested that this relationship is

q̄ = 0.3146n+ 1.3615. (3.2.9)

We have developed deterministic models of ordinary differential equations (ODEs)

based on the multi-step reactions (3.2.1) and the two-variable model (3.2.4, 3.2.5)

(Wu et al., 2012). Simulation results of the deterministic models gave some similar

patterns such that the optimal value of q increases when the number of chemical

reactions n increases. The established relationship between the optimal value of q
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Figure 3.3: Simulation results from probability approach: (A) the optimal values of
q with different n; (B) the optimal values of q with different X; (C) the
averaged optimal values of q against n.
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and related model parameters, which is also shown in Fig. 3.4, is given by

q̄ = 0.4570n+ 0.8567. (3.2.10)

The above equation is slightly different from expression (3.2.9). For example, when

n = 5, the averaged value of optimal q is found to be 2.8494 using probability

simulation while it is 3.06 from the ODE simulation. The possible reason of the

difference is that the ODE model is not the best approach for describing chemical

reaction systems with molecules of small copy numbers and some model errors

may arise from the ODE simulations. A combination of regression analyses is

shown in Fig. 3.4.

Even with the different formulations for the optimal q values, we still find the

ODE method confirms the conclusion derived from stochastic simulations. Based

on both stochastic and deterministic simulations, we found that the value of

q is associated with the number of reaction step n, but not connected to the

total molecule number X. Our results also suggested that, when the value of q

approaches the optimal one, simulation error of the two-variable model using q

is very close to that using the optimal q value. Using the function derived from

stochastic simulations, the probability function of molecule degradation is given

by

f (L,X,n) =
(
1− L−X

X(n− 1)

)0.3146n+1.3615

. (3.2.11)

Using this probability function, we designed an algorithm, namely Algorithm II in

the Method section, to simulate the two-variable reaction model based on the SSA.
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Figure 3.4: Relationship between n and q: Dashed-line: estimated relationship from
stochastic simulations; dash-dot-line: relationship derived from the ODE
model; Solid-line: q = 0.5n.

3.2.3 mRNA decay dynamics: a case study for gene RPL30

In this section, we apply the established theory in the previous section to study

the dynamics of mRNA degradation. Here we use gene ribosomal protein L30

(RPL30 ) as the test system with a dataset generated from experiments. In these

experiments, two constructs of RPL30 were used to demonstrate the decay kinetics

of the mRNA transcripts (Bregman et al., 2011). The first construct (“construct A”)

contains the ACT1 UAS (upstream activating sequence), and the other (“construct

B”) contains the RPL30 UAS. The mRNA molecule decay dynamics was monitored

after blocking transcription by using drug 1,10-phenanthroline (Bregman et al.,
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2011). Thus we assumed that there was no further transcription during the

monitoring process. The decay dynamics was normalized by the RPL30 transcript

level at time zero (namely before adding the drug), which was set to 100%. Using

the endogenous RPL30 mRNA levels obtained from the two constructs (Bregman

et al., 2011), we first used the one-step differential equation model

dX
dt

= −kX (3.2.12)

to simulate the decay dynamics (Trcek et al., 2011).

Fig. 3.5 (A) and (B) show that the one-step model failed to describe the dynamics

of the first 25 minutes accurately. The simulated mRNA levels are always smaller

than the experimental observations.

To model mRNA degradation, Cao and Parker (2001) proposed a multi-component

model that includes mRNA transcript synthesis, mRNA translocation, poly(A)-

shortening process, and terminal deadenylation. We have proposed a simplified

model by putting a number of terminal deadenylation reactions into a single one

(Tian, 2014). This simple model is a typical multi-step reaction process. In this

model, mRNA transcript is synthesized by a zero-order reaction S1, then mRNA

molecules translocate from the nucleus to cytosol via reaction S2. The mRNA

molecules in the cytosol produce proteins by the translational process, and in

the meantime, the length of mRNA begins to decrease via a number of poly(A)-

shortening reactions S3, · · · ,S9. The final reaction in this process is the further

exonucleolytic degradation S10, which is regarded as the degradation reaction in

this work, since the fragment product (FG) has no function to produce protein

molecules.

Based on the reactions listed in Table 3.1 and rate constants, the propensity

functions of these reactions are listed below.

72



Chapter 3 – Wu et al. (2013b)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Time t(min)

T
o
ta

l M
o
le

cu
le

 N
u
m

b
e
r 

X
 (

%
)

(A)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Time t (min)

T
o
ta

l M
o
le

cu
le

 N
u
m

b
e
r 

X
 (

%
)

(B)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Time t (min)

T
o
ta

l M
o
le

cu
le

 N
u
m

b
e
r 

X
 (

%
)

(C)(C)(C)(C)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Time t (min)

T
o
ta

l M
o
le

cu
le

 N
u
m

b
e
r 

X
 (

%
)

(D)(D)(D)(D)

Figure 3.5: Simulated mRNA degradation dynamics using the estimated model param-
eters: (A) Deterministic simulations for mRNA numbers from the ACT1
construct (green dash-line: the one-step model (k = 0.0276), red solid-
line: the two-variable model with the optimal initial length (k = 0.112,
L = 371), black dot-line: the two-variable model with the averaged initial
length L = nX

2 , blue dots: experimental data); (B) Deterministic simula-
tions for mRNA numbers from the RPL30 construct (green dash-line: the
one-step model (k = 0.0343), red solid-line: the two-variable model with
the optimal initial length (k = 0.167, L = 473), black dot-line: the two-
variable model with the averaged initial length L = nX

2 (k = 0.161), blue
dots: experimental data); (C) Stochastic simulations of the two-variable
model for the ACT1 construct (red dot-line: initial X0 = 5, k = 0.115,
L = 19, black dash-dot-line: initial X0 = 10, k = 0.111, L = 37, blue
dots: experimental data); (D) Stochastic simulations of the two-variable
model for the RPL30 construct (red dot-line: initial X0 = 5, k = 0.171,
L = 24, black dash-dot-line: initial X0 = 10, k = 0.166, L = 47, blue dots:
experimental data).
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Table 3.1: Reactions, kinetic rates and propensity functions of the simplified stochastic
model. The rate constants si are in the unit of 1/sec.

Reaction Rate constant si Propensity function

S1 DNA→ A s1 a1 = s1

S2 A→ B s2 a2 = s2 · [A]

S3 B→ BC1 s3 a3 = s3 · [B]

S4 BC1→ BC2 s4 a4 = s4 · [BC1]

S5 BC2→ BC3 s5 a5 = s5 · [BC2]

S6 BC3→ BC4 s6 a6 = s6 · [BC3]

S7 BC4→ BC5 s7 a7 = s7 · [BC4]

S8 BC5→ BC6 s8 a8 = s8 · [BC5]

S9 BC6→ BC7 s9 a9 = s9 · [BC6]

S10 BC7→ FG s10 a10 = s10 · [BC7]

Following the experimental conditions, it is assumed that s1 = 0. For simplicity,

it is assumed that s2 = · · · = s10. When using the two-variable model to study the

mRNA degradation process, we write the total copy number X and total length of

mRNA molecules L as

X = [A] + [B] + [BC1] + · · ·+ [BC7],

L = 9[A] + 8[B] + 7B[C1] + · · ·+ [BC7].

Here we put the mRNA synthesis as a separate reaction. Then the remaining nine

reactions (n = 9) form a chemical event of multi-step reactions. The dynamics
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of variables X = (L,X) is described by the following reactions together with the

corresponding propensity functions

Reaction Propensity function

(DNA,X,L)
k1−−→ (DNA,X + 1,L+n) a1 = k1,

(X,L)
k−→ (X,L− 1) a2 = k ·X · (1− f (L,X,n)),

(X,L)
k−→ (X − 1,L− 1) a3 = k ·X · f (L,X,n).

(3.2.13)

Using the assumption (s2 = · · · = s10), the rate constant k (3.2.13) is the harmonic

mean of rate constants (s2, · · · , s10), given by

k =
n∑10
i=2

1
si

= si . (3.2.14)

Next we used the proposed two-variable model to give more accurate simulations.

We first estimated the degradation rate constant k and optimal initial total length

of transcripts. We have also estimated the degradation rate constant k by assuming

that the total initial length is a half of the maximal total length (L = nX/2), which

is termed as the averaged total length. To reduce the computing time, we first

estimated parameters in the ODE model (3.2.12) using different initial transcript

numbers (X0 = 5,10,20, · · · ,100). Table 3.2 suggests that the variation between

the estimate rate constant k was very small for different initial mRNA numbers.

Similar observation is applied to the ratio of the optimal initial total length to the

maximal total initial length, namely L0/(nX), for the tests with different initial

mRNA numbers. Thus our results suggested that the estimated model parameters

are independent to the initial mRNA copy numbers.
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Table 3.2: Estimated parameters for the stochastic model of RPL30 and ACT1 mRNA
degradations (Ratio= L0/nX).

ACT1 construct RPL30 construct

X0 Rate k L0 Ratio Rate k L0 Ratio

m = 5 0.1150 19 0.4222 0.1710 24 0.5333

m = 10 0.1110 37 0.4111 0.1660 47 0.5222

m = 20 0.1130 75 0.4167 0.1680 95 0.5278

m = 30 0.1130 112 0.4148 0.1670 142 0.5259

m = 40 0.1120 149 0.4139 0.1680 190 0.5278

m = 50 0.1120 186 0.4133 0.1670 237 0.5267

Using the estimated model parameters of the case X0 = 100, simulation results

for the two constructs in Fig. 3.5 (A) and (B) show that the two-variable model

provides more accurate description of the mRNA degradation dynamics than the

one-step model, in particularly for that in the first 25 minutes. For the ACT1

construct in Fig. 3.5 (A), the optimal length number with ratio 0.412 gave more

accurate simulation than the averaged length number. However, in Fig. 5 (B) for

the RPL30 transcript, the difference between the simulations using two different

length numbers is small. In this case, the optimal ratio is 0.525, which is very

close to 0.5.

To further examine the accuracy of the two-variable model, we used the stochastic

model to simulate the mRNA dynamics using different initial transcript num-

bers. For each initial mRNA number, we generated 10,000 simulations and then

calculated the averaged mRNA numbers of all stochastic simulations. For both

constructs in Fig. 3.5 (C) and (D), our results show that there is small difference
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between the simulations using X0 = 5 and X0 = 10. However, there is not any

significant difference between simulations when the initial mRNA number is

larger than 10.

Finally we provided a few stochastic simulations for mRNA degradation dynamics

for the construct ACT 1 in single cells. The rate constants of the detailed model

were derived from the two-variable model using the relationship (3.2.14); and

the initial molecular numbers were randomly selected while the length of the

initial molecules matches the length in the two-variable model. When the mRNA

synthesis rate is s1 = 0, Fig. 3.6 shows that the molecular numbers and lengths

approach to zero at the time point around 100. In addition, compared with the

simulations of the detailed model in Fig. 3.6 (A) and (C), the two-variable model

generates simulations with more fluctuations in Fig. 3.6 (B) and (D). After the

time point 100, more simulations of the two-variable model still have non-zero

molecular numbers.

3.3 Conclusion

This work represents an attempt to use simplified mathematical models to describe

complex biological systems. Concentrating on the chemical events of multi-step

reactions, we proposed a new concept (e.g. the length of a molecule) as an

additional measure to characterize system dynamics. The length of a molecule is

defined as the location of a molecule in the multi-step reactions. Using the total

molecule number and total length of molecules, we proposed a two-variable model

to reduce the complexity of the multi-step reactions. The major contribution of

this work is to design a non-linear function that represents the probability of the

firing of the last reaction in the multi-step reactions. To calibrate this probability

function, we proposed a stochastic simulation method to calculate the probabilities

of various system states. Numerical results suggested that this
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Figure 3.6: mRNA degradation dynamics of gene RP L30 construct ACT 1 in single
cells: (A,C) three simulations of X and L values over t for the detailed
multi-step reaction model. (B,D) three simulations of X and L values
over t for the two-variable model. For the detailed multi-step model,
rate constants are s1 = 0, s2 = · · · = s10 = 0.112, and initial molecular
numbers are ([A], [B], [BC1], · · · , [BC7]) = [4,3,3,5,15,20,20,15,15]. For
the two-variable model, rate constant is k = 0.112, initial conditions
(X0,L0) = (100,371).
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probability is dependent on the number of reaction steps but independent of the

total molecule number, which suggested that we were able to design a simplified

model based on the network structure. Then our proposed two-variable model

was applied to simulate the dynamics of mRNA degradation using experimentally

observed data. Numerical results suggested that the length of molecules, which is

approximately a half of the maximal length initially, played an important role in

realizing experimental data. The potential future work includes the application

of the two-variable model to other multi-step reaction systems such as gene

expression and telomere length regulation. In addition, the refinement of the

two-variable model, such as the accuracy of the probability function, would also

be very interesting.

3.4 Methods

3.4.1 Simulation algorithm for the probability function

To find the probability for the firing of the last reaction in the multi-step reactions

(3.2.1), we first designed a Monte-Carlo method to numerically calculate the

probability function f (X,L,n) based on the given X and n. By the law of total

probability, the formation of probability that the final reaction occurs given by

any L and X is defined as following:

f (X,L,n) =
X∑
j=0

P (Rn|Bn = j) · P (Bn = j | L,X),

where Rn represents the occurrence of last reaction Bn
kn−−→ P . Based on the total

molecule number X, we calculate the probability

P (Rn|Bn = j) =
j

X
.
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The major part of this algorithm is to find frequency of the event Bn = j based

on the given length L and total molecule number X, which is explained as the

following algorithm I.

Algorithm I

1. Set the total number of molecule X, number of reactions n, and initial full

length L0 = nX.

2. Based on the following 10,000 Monte-Carlo simulations, calculate the fre-

quency f req(Bn = j |L,X) for X molecules with total length L having j

molecules, where j = 0,1, · · · ,X and each of the molecule with length 1:

(a) Consider X molecules with full length. Denote the length of the i-th

molecule as li with i = 0,1, · · · ,X.

(b) Use a random number r ∼ U (0,1) to select one molecule, with index

j. If the length of that molecule lj > 1, reduce its length by 1, namely

lj = lj − 1; if lj = 1, then repeat this step until finding a molecule with

length greater than 1.

(c) Repeat step (b) for (L0 − L) times to get a set of molecules with total

length L.

(d) Count the number of molecules in this set with length 1, denote as i,

then update

f req(Bn = i|L,X) = f req(Bn = i|L,X) + 1.

(e) Repeat steps (a) ∼ (d) for 10,000 times.

3. The probability for the last reaction firing is obtained by

f (X,L,n) =
X∑
j=1

f req(Bn = j |L,X)
10000

×
j

X
.
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3.4.2 Ordinary differential equation model

The most widely used approach to study chemical reaction systems is determinis-

tic model using ordinary differential equations. The approach is valid if the copy

numbers of chemical species in the system are large. To confirm the probability

function f (X,L,n) derived from stochastic simulations, we designed a determin-

istic model of ODEs for the multi-step chemical reaction system (3.2.1), given

by

dB1

dt
= −k1B1,

dB2

dt
= k1B1 − k2B2,

...

dBn
dt

= kn−1Bn−1 − knBn,

dP
dt

= knBn. (3.4.1)

Using the total molecule number X(= B1 + · · · + Bn) and the total length of the

molecules L(= Bn+2Bn−1 + · · ·+nB1), we have a simplified model of the above ODE

system

dX
dt

= −kBn,

dL
dt

= −kX, (3.4.2)

where k is the harmonic mean of the rate constants k1, · · · , kn (3.4.4), and kBn

represent the probability of molecule degradation, which is represented by the

probability function f (X,L,n). Using the notations of stochastic simulation, the
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ODE model with the length of molecules is given by

dX
dt

= −kX
(
1− L−X

X(n− 1)

)q
,

dL
dt

= −kX. (3.4.3)

For a given initial condition Bi(0), we obtained the analytical solution of the

detailed system (3.4.1) and then solved the two-variable model (3.4.3) numerically

using a stiff ODE solver ode23s in MATLAB. We tested the solution of the two-

variable model with different values of q based on different system conditions

ranging from n = [5 10 15] as well as X = [5 10 50 100 200 500]. For each

system condition, we selected the optimal value of q with which the two-variable

model (3.4.3) generates simulation that is very close to that of the detailed ODE

model (3.4.1). Finally we find the relationship between the value of q and system

condition (X,L,n) by using a regression method (Wu et al., 2012).

3.4.3 An algorithm for simulating systems including two-

variable model

The SSA is a general framework for simulating biochemical reaction systems. Now

we propose an algorithm to incorporate the two-variable model into the SSA. It

is assumed that a chemical reaction system is a well-stirred mixture at constant

temperature in a fixed volume Ω. This mixture consists of N molecular species

{S1, · · · ,SN } that chemically interact through M reaction channels {R1, · · · ,RM}.

The dynamic state of this system is denoted as x(t) ≡ (x1(t), · · · ,xN (t))T , where

xi(t) is the molecular number of species Si at time t. For each reaction channel

Rj(j = 1, · · · ,M), a propensity function aj(x) is defined by a given state x(t) = x

and the value of aj(x)dt represents the probability that one reaction will occur

somewhere during the infinitesimal time interval [t, t + dt) (Gillespie, 1977, 2001,
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2007). In addition, a state change vector vj is defined to characterise the change of

molecular numbers due to the reaction Rj . The element vij of vj represents the

change of the copy number of species Si . The algorithm for simulating chemical

reaction systems with two-variable model is given below.

Algorithm II

1. Calculate the values of propensity function aj(x) based on the system state x

at time t. In particular, for the two-variable reaction with the total molecule

number X (3.2.2) and total length L (3.2.3), the propensity function is aj =

kX, where k is the harmonic mean of the rate constants (3.2.1), given by

k =
n

1
k1

+ · · ·+ 1
kn

. (3.4.4)

Then the sum of propensity function values is

a0(x) =
M∑
j=1

aj(x).

2. Generate a sample r1 of the uniformly distributed random variable U (0,1),

namely r1 ∼U (0,1), and determine the time of next reaction

µ =
1
a0

(x)ln
1
r1
.

3. Generate another sample r2 of U (0,1) to determine the index k of the next

reaction occurring in [t, t +µ]

k−1∑
j=1

aj(x) < r2a0(x) ≤
k∑
j=1

aj(x).
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4. If the k-th reaction is not a two-variable model, update the state of the system

by

x(t +µ) = x(t) + vk .

Otherwise generate a sample r3 ∼U (0,1) to determine which reaction of the

followings will occur,

(X,L) =

 (X,L− 1) if r3 > f (X,L,n),

(X − 1,L− 1) if r3 < f (X,L,n),

where f (X,L,n) is the probability of the firing of the last reaction. Then the

system is updated.

5. Go back to step 1 if t +µ ≤ T , where T is the end time point. Otherwise, the

system state at T is x(T ) = x(t).
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Chapter 4 is based on the article Wu Q, Tian T. 2015. Stochastic modelling of

regulatory networks using state-dependent time delay (to be submitted) .

Abstract. The advances of systems biology have raised a large number of mathematical

models for describing the dynamics of molecular regulatory networks. To deal with the

growing scale of molecular systems, sophisticated modelling techniques have been de-

signed in recent years to reduce the complexity of mathematical models. Among them, a

widely used approach is to use a one-step “slow” reaction or delayed reaction to simplify

multi-step reactions. However, recent research results suggest that a delayed reaction

with constant time delay is still unable to describe multi-step reactions accurately. To

address this challenge, this work proposes a novel approach using state-dependent time

delay. We first use the stochastic simulation algorithm to calculate time delay for multi-

step reactions exactly, which clearly shows that the value of time delay depends on the

dynamics of system states. Then we design an algorithm to calculate the value of time

delay precisely. To demonstrate the power of the proposed method, we use two processes

of mRNA degradation to investigate the function of time-delay in determining the

system dynamics. Simulation results of the first model show that molecules in different

stages of degradation all are important to calculate the half-life of mRNA molecules.

The second model provides further evidences for the importance of state-dependent

time delay in gene expression and mRNA degradation. These results suggest that we

may need to reconsider the concept of half-life for measuring the degradation process of

molecules.

Keywords. Genetic regulation; stochastic modelling; time delay; mRNA degradation.

References are considered at the end of the thesis.



Chapter 4

Stochastic Modelling of Regulatory

Networks using State-dependent

Time Delay

4.1 Introduction

This process of gene expression is complex and includes a number of key steps,

such as transcription initiation, RNA polymerase elongation, mRNA translocation,

and translation. Each step may include a series of detailed chemical reactions.

Due to the low copy number of molecules in this process, a gene is activated and

inactivated by random association and dissociation transcriptional factors (TFs)

and other events. Recent advances in experimental technology have provided the

ability to measure and interpret cellular heterogeneity in single cells (Raj and

van Oudenaarden, 2009; Spiller et al., 2010; Srivastava et al., 2011). Following

the observation of translational bursts (Cai et al., 2006; Ozbudak et al., 2002),

single cell studies demonstrate that gene transcription also occur in bursts of mul-

tiple transcripts separated by relatively long periods of transcriptional inactivity
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(Chubb and Liverpool, 2010). Experimental studies in recent years have shown

that gene expression is subject to stochastic fluctuations that lead to considerable

differences in the level of expression between genetically identical cells (Kaern

et al., 2005). In addition, experimental data suggest that variation in protein levels

arises from fluctuations in mRNA levels due to random production and decay of

mRNAs or random activation and inactivation of the gene promoter (Kaufmann

and van Oudenaarden, 2007).

Stimulated by the pioneer work of stochastic modelling and experimental advances

in single cell studies (Arkin et al., 1998), the last ten years have seen an explosion

in stochastic modelling of these processes to predict protein fluctuations in terms

of the frequencies of probabilistic event (Burgess, 2014; Padovan-Merhar and Raj,

2013). Although the complex biological processes can be modelled by a series of

detailed chemical events such as the processes in gene expression, the structure

of the model may be too complex to get any insights mathematically. To address

this issue, a number of modelling techniques have been proposed to simplify the

complexity of mathematical model (Burrage et al., 2004; Bokes et al., 2012). Among

them, differential equation with time delay has been used to simplify processes

of multi-step reactions (Monk, 2003). To explore the combined effects of time

delay and intrinsic noise on gene regulation, delay stochastic simulation algorithm

(delay-SSA) (Barrio et al., 2006; Bratsun et al., 2005) has been proposed to simulate

discrete chemical kinetic systems. The advances in delayed modelling approaches

include mathematical model for the translational process to include spatial effects

in gene expression (Marquez-Lago et al., 2010), and the linear-noise approximation

for stochastic reaction systems with distributed delays (Brett and Galla, 2013).

Other modelling techniques proposed recently include the slow-scale linear noise

approximation and stochastic quasi-steady-state assumption (Srivastava et al.,
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2011; Thomas et al., 2012; Ribeiro, 2010). Recently, we have proposed a two-

variable model that with concept of length and stochastic simulation algorithm

for memory reactions (Wu et al., 2013b; Tian, 2013).

Currently it is widely assumed that time delay is either a constant or distributed

delay with constant mean. For example, a one-step reaction model with constant,

exponentially distributed or Erlang distributed delays has been used to realize the

mRNA turnover dynamics (Tian, 2014). Our simulation results suggested that time

delay may depend on the system state, rather than be a constant value. In fact, the

state-dependent time delay has already been used in various research areas such

as optimal control and population dynamics (Asher and Sebesta, 1971; Cao et al.,

1992). Although these ideas were proposed about 40 years ago, the relationship

between the time delay and system state remains uncertain for discrete chemical

reaction settings. Recently, a delay model with non-constant time delay has been

derived using an analytical method to simplify the translational process of multi-

step reactions (Mier-y Terán-Romero et al., 2010). However, more work is needed

to address this issue for the widely used multi-step reactions.

The motivation of this work is to develop a new method using chemical reaction

with state-dependent time delay to simplify multi-step reactions accurately. The

proposed method will be validated by the degradation process of mRNA molecules,

which is a typical multi-step chemical reactions system. This degradation process

has drawn much attention from researchers during the last ten years. In traditional

experimental studies, a large sample of cells are genetically modified or treated

with inhibitors to stop transcription and thus kinetic information of a decaying

mRNA species can be obtained (Passos and Parker, 2008). Recently single-cell and

single-molecule techniques have advanced our understanding of mRNA turnover.

The kinetic behaviour of individual RNA polymerase II (RNAPII) transcribing a

gene provides a precise quantification of the contribution of mRNA synthesis to

the cellular pool of transcripts (Ardehali and Lis, 2009). The accuracy of decay
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measurement varies with the technique used. For example, in budding yeast,

half-lives of an individual mRNA species quantified by different approaches may

differ by more than 50% (Grigull et al., 2004; Holstege et al., 1998; Wang et al.,

2002). Although, a detailed mechanistic model has been designed to describe

the degradation process exactly (Cao and Parker, 2001, 2003), it is difficult to

derive accurate information of half-life from detailed mechanistic models. Thus

precise analysis of decay kinetics is strongly needed to provide more information

regarding the half-life of mRNA molecules.

4.2 Methods

4.2.1 Multi-step chemical reaction system

This study considers the following system with a series of chemical reactions:

X1
k1−−→ X2

k2−−→ ·· ·
kn−1−−−→ Xn

kn−−→ P , (4.2.1)

where Xi represents the i-th state of a molecule and ki is rate constant. Here “P ” is

the product, which may also be “( )” if it is a degradation process. Denote s as the

total copy number of molecules in all states, namely s =
∑n
i=1xi , where xi is the

copy number of state Xi . The dynamics of system (4.2.1) can be described by an

ordinary differential equation (ODE) model, which is given in the Supplementary

Information. For simplicity, it is assumed that k1 = k2 = · · ·kn = k. Then the

exact solution of this ODE model is derived in Supplementary Information. In

particular, the exact solution of the total molecule number is given by

s = s0e
−kt + (s0 − xn0)kte−kt + (s0 − x(n−1)0 − xn0)

(kt)2

2!
e−kt + · · ·+ x10

(n− 1)!
(kt)n−1e−kt.

(4.2.2)

where xi0 is the initial copy number of Xi and s0 = (x10 + · · ·+ xn0).
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4.2.2 State-dependent time delay

We use a reaction with time delay to simplify system (4.2.1), which is described as

follows:

X1
k−→ G, (4.2.3)

G
k−→ P . (4.2.4)

Here reaction (4.2.3) is the first reaction of system (4.2.1), while delayed reaction

(4.2.4) is a simplification of the process from state X2 to product P . The time

delay in reaction (4.2.4) is the sum of waiting time experiencing n− 1 consecutive

reactions from state X2 to product P . Thus the imaginary state G represents

any one of the intermediate states X2, · · · ,Xn and thus its molecular number is

y =
∑n
i=2xi .

The question we are interested now is, for any given system state with copy number

[x1, y], how to exactly calculate time delay for the next molecule of X1 turning to

product P . It is assumed that the newly created imaginary molecule forming from

a deduction of X1 (namely, copy number from x1 to x1 − 1) will be manifested to

product after the current y imaginary molecules turn to product. Denote τ1 as the

time point when copy number of X1 decreases from x1 tox1 − 1; and τ2 the time

point when the total copy number s decreases from x1 + y to x1 − 1. Then the time

delay is

τ = τ2 − τ1 (4.2.5)

Here the value of τ1 is the waiting time of the first reaction in (4.2.1), which is

determined by the stochastic simulation algorithm. In Supplementary information,
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we derive that the value of τ2 as

τ2 =


1+x1n−x1

kx1
if C1 = 0

−2n
k W (− 1

2nC
1
n ) if C1 , 0

, (4.2.6)

where W (x) is the Lambert W function, and

C =
(1 +C2y)n!

C1
, (4.2.7)

C1 = x1 + y −
ny

n− 1
. (4.2.8)

However, the value of C2 is dependent on the values of x1 and y, which will be

determined in Section (4.3) by numerical simulations.

4.2.3 SSA with state-dependent time delay

This work proposes the following modelling framework with time delay. We need

to simulate a well-stirred mixture of N (≥ 1) molecular species {X1, · · ·XN } that

chemically interact inside some fixed volume Ω at a constant temperature and

through M reaction channels {R1, · · ·RM}, which includes M1 elementary reactions

and M2 delayed reactions (M = M1 +M2). Here a delayed reaction may be a

reaction with constant time delay, distributed delay that follows a distribution, or

state-dependent time delay that is simplified from the lumped multi-step chemical

reactions (4.2.1). The system state is denoted as X(t) ≡ {x1(t), · · · ,xN (t)}T , where

xi(t) is the copy number of species Xi . For each delayed reaction, we define an

imaginary species Gi to represent the intermediate species of that delayed reaction.

We also define a stoichiometric vector vj for non-delayed reactions, as well as

consuming and manifesting stoichiometric vectors vj and uj for delayed reactions,

respectively. For each reaction channel, a propensity function aj(X) is defined and
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aj(X)dt represents the probability of this reaction will fire inside Ω in the next

infinitesimal time interval [t, t + dt]. Detailed algorithm is given below.

Algorithm: State-dependent Delay SSA(SD-SSA)

Set initial molecular numbers at t = 0, and an empty queue structure L for storing

the information of delayed reactions.

• Step 1: Calculate propensity functions aj(X), j = 1, · · · ,M and a0(x) =∑M
j=1 aj(X).

• Step 2: Generate a uniform random number r1 ∈U (0,1) and determine the

waiting time of the next reaction

τ1 = −ln r1
a0
.

• Step 3: Compare δ with the least time δmin in the queue structure L to check

whether there is any delayed reactions that are scheduled to finish within

[t, t + τ1).

• Step 4: IF δmin < τ1 (Update the delayed reaction at δmin)

X(t + δmin) = X(t) +uj .

ELSE: Determine the index j of next reaction by a uniform random number

r2 ∈U (0,1)
j−1∑
k=1

ak(X) < r2a0(X) ≤
j∑
k=1

ak(X)

and update the system state by

X(t + τ1) = X(t) + vj .
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Then determine time delay for the possible delayed reaction. Use the con-

stant delay for the normal delayed reaction; generate a sample for the dis-

tributed delay reaction; and use (4.2.5,4.2.6) to calculate the delay value tau

if Rj is a reaction with state-dependent time delay. Then add index j and

update time t + τ1 + τ to the queue structure L.

• Step 5: Go to Step 2.

Note that this delayed simulation algorithm is based on the so-called rejection

method delay-SSA (Barrio et al., 2006). A more precise algorithm can be considered

if we consider the change of propensity functions due to the update of a delay

reaction in step 2.

4.3 Results

4.3.1 State-dependent time delay

To demonstrate the dependence of time-delay on system state, we first apply SSA

to numerically calculate the value of delay under various initial conditions, which

is given in Supplementary Information as Algorithm 1. We first test the case with

different values of x10 but fix y0(= 0). Total molecular number will decrease from

s0 − i + 1 to s0 − i when the i-th delay reaction occurs. Similar to the notations

in (4.2.5), we denote τ1i as the point when x1 decreases from x10 − i + 1 to x10 − i

while τ2i as the time when s decreases from s0 − i + 1 to s0 − i. Then the delay

time for the i-th molecule is τi = τ2i − τ1i . Fig. 4.1 (A) gives calculated values of

time delay based on different initial conditions (namely x10 = 5,10,20,40). For

each initial condition, the value of time delay increases when the total molecular

number decreases, which is due to the small value of propensity functions that

leads to large waiting time for chemical reactions. For example, when the initial
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molecular number is x10 = 40, the time delay for the decay of the first molecule

is t = 38.2, while that for the last molecule is t = 125.3. Similarly, if the initial

molecular number x10 is larger, the delay time for the molecule of the same order

is smaller. These results clearly suggest that the value of time delay depends on

the value of propensity functions that are determined by the system state.

To further demonstrate the dependence of time delay on imaginary molecules, we

also calculated time delay for the decay of the first molecule based on different

initial molecule number x10 and imaginary molecule number y0(> 0). In SSA

the value y0 is transferred to the initial molecule numbers (x20,x30, · · · ,xn0). It is

assumed that the initial values of xi0 satisfy x20 ≥ x30 ≥ · · ·xn0 and the difference

between these numbers is at most 1. For example, if n = 5 and y0 = 6, the initial

system state follows as (x10,x20, · · · ,xn0) = (x10,2,2,1,1) for a given initial molecule

number x10. Fig. 4.1 (B) suggests that the calculated time delay also depends

on the number of imaginary species in the system. In addition, Fig. 4.1 (B)

suggests that the change of value y0 has different impact on the value of time

delay. For example, when n = 5, the increment of y0 from 7 to 8 does not lead

to much change of time delay. In this case, the variation of initial condition is

from (x10, · · · ,x50) = (x10,2,2,2,1) to (x10,2,2,2,2). However, when the value of y0

is increased from 8 to 9, the change of time delay is large because the initial state

is now (x10,3,2,2,2).

4.3.2 Formula for calculating time delay

We have derived an expression for calculating time delay based on a given system

state. However, an unsolved question is the value of C2 in (4.2.6) that explicitly

includes time t (see Supplementary Information). Here we find an approximation

of C2 through numerical computations. We first calculate the optimal value of C2

for different values of x10 and y0 using the derived expressions (4.2.5, 4.2.6) to
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Figure 4.1: Calculated time delay using stochastic simulations of the multi-step reac-
tions process (4.2.1): (A) Time delay for the decay of each molecule based
on different initial number x10 but null initial imaginary species y0. Index
i means the delay of the i-th molecule. (B) Time delay for the decay of the
first molecule based on different values of x10 and y0. (Solid-line: x10 = 5,
dash-line: x10 = 10, dash-dot-line: x10 = 20, dot-line: x10 = 40).
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match calculated time delays in Fig. 4.1 (B) . The optimal values of C2 in Fig. 4.6

(A) suggest that it is a monotonically decreasing function of y0. In addition, the

value of C2 is −1/y when y0 = x1(n− 1). Thus we assume that

C2 =
α(x1(n− 1)− y)

β + y
− 1
y

(4.3.1)

To determine the values of α and β in (4.3.1), we further estimate these values by

matching the determined time delay using expression (4.2.5 ∼ 4.3.1) with those

shown in Fig. 4.1 (B). The estimated values in Figures 4.6 (B) and (C) suggest

that the values of α and β may also be functions of x1. Based on the values in

Figures 4.6 (B) and (C), we use the following two functions to approximate α and

β, namely α = 3.25 + 7.5/x1 and β = 11.8 + 8.2x1. Thus the final expression of the

approximated C2 is

C2 =
(3.25 + 7.5/x1)(x1(n− 1)− y)

11.8 + 8.2x1 + y
− 1
y
. (4.3.2)

To validate the proposed approach (4.3.2), we compare the optimal value of C2

in Fig. 4.6 (A) with that determined by (4.3.2). Fig. 4.6 (D) shows the difference

between these two values under different values of x1 and y, which suggests that

approach (4.3.2) provides accurate approximation to the optimal value of C2. In

summary, the time delay for producing a product P via the process of multi-step

reactions (4.2.1) is determined by (4.2.5, 4.2.6,4.3.2).

4.3.3 Time delay of mRNA degradation

Next we apply our established state-dependent delay model to study the mRNA

degradation process of gene ribosomal protein L30 (RP L30). Experimental studies

have demonstrated the transcript decay dynamics of two constructs for this gene,
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namely construct A-ACT1 UAS (upstream activating sequence) and construct B-

RPL30 UAS (Bregman et al., 2011). In experiments, mRNA molecule decay dynam-

ics was monitored after blocking transcription by using drug 1,10−phenanthroline

(Bregman et al., 2011). Therefore, it is assumed that no further transcription oc-

curs after drug application. Since there is no explicit information regarding the

mRNA copy number in experiments, we tested the case with initial total mRNA

number s0(= 100).

mRNA degradation has been modelled as a multi-component model that contains

mRNA transcript synthesis, mRNA translocation, poly (A)-shortening process, and

terminal deadenylation (Cao and Parker, 2003). A simplified model of multi-step

reactions was proposed to put a number of terminal deadenylation reactions into

a single reaction (Tian, 2014). Here we use the delayed reactions (4.2.3,4.2.4) to

represent the degradation dynamics, where X1 is mRNA molecule with full length

of poly(A)-tail and imaginary species G represents any one of the transcripts in

the poly(A)-shortening process. The initial number of imaginary species y0 and

degradation rate k are unknown parameters that need to be estimated to match

experimental data. In addition, the manifesting time of these imaginary species

are uniformly distributed in time interval [0,MT ] and

MT = delay(x10, y0, k,n)/D, (4.3.3)

where delay(x10, y0, k,n) is the time delay determined by the initial system state

(x10, y0), degradation rate k, and number of steps n using the proposed method

(4.2.5 ∼ 4.3.2). We use the rejection method to search for the optimal parameters

of y0, k and D. Using an Approximate Bayesian Computation (ABC) rejection

sampling algorithm (Turner and Zandt, 2012), we select 150 sets of model pa-

rameters and use the set with minimal error as our final estimation. Based on

1000 simulations, Fig. 4.2 shows that the state-dependent delay model is able
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to provide accurate description of mRNA degradation dynamics for the two con-

structs of gene RP L30. Distributions of inferred parameters in Fig. 4.3 (A) and

(D) suggest that ∼ 25% of initial mRNA molecules are imaginary species, namely

the transcripts in the poly(A)-shortening process. In addition, distributions of

value D in Fig. 4.3 (B) and (F) suggest that the degradation time points of these

shortened transcripts are distributed in an interval that is only 40 ∼ 50% of the

normal time delay interval. Thus these imaginary species may already exist in the

middle of the shortening process.

Simulation results in Fig. 4.2 are based on the assumption that s0 = 100. The next

question is whether the assumed initial total mRNA number influences estimated

model parameters. To answer this question, we simulated the delay model using

the same parameter (k,D) but rescaled y0 and experimental data based on initial

total mRNA s0[= 10,50,150,200]. Simulation results in Fig. 4.7 show that our

estimated parameters can also derive accurate simulations for various initial

mRNA numbers.

4.3.4 Time delay in gene expression

We have successfully used our proposed method to simplify a multi-step reac-

tion system. The next question is whether our method can be applied to more

complex systems. To answer this question, we now study the dynamics of a cell

cycle-regulated gene (e.g. SWI5) based on the measured changes in their mRNA

turnover during the cell cycle (Trcek et al., 2011). SWI5p is a transcription regula-

tor of late mitosis genes and it was measured to degrade with a single half-life of 8

min (Wang et al., 2002). In addition, NDD1 (Nuclear Division Defective) is an es-

sential gene for the expression of SWI5. It has been shown that over expression of

NDD1 enhances the expression of SWI5 (Loy et al., 1999). Its expression is tightly

regulated during the cell cycle. The expression of gene NDD1 peaks during the
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Figure 4.2: Simulation of mRNA degradation for gene RPL30 using the state-
dependent delay model: (A) Construct ACT1 using estimated parameters
k = 0.1260, y0 = 23,D = 1.7184. (B) Construct RPL30 using estimated
parameters k = 0.1260, y0 = 17,D = 1.7525. (Solid line: averaged mRNA
numbers based on 1000 simulations; dash-dot line: experimental data
assuming s0 = 100).
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Figure 4.3: Distributions of estimated model parameters for gene RPL30 degradation:
(A, B, C) Construct ACT1. (D, E, F) Construct RPL30.
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S phase and is essential for expression of its target gene SWI5 during the G2/M

phase (Loy et al., 1999; Veis et al., 2007).

A simple math model has been proposed to describe the expression of gene

SWI5 based on experimental data measured in single cells. The degradation of

mRNA molecules was described by a one-step reaction and simulation was used

to measure the half-life of mRNA molecules (Trcek et al., 2011). To accurately

measure the half-life of mRNA transcripts, we propose a delayed model to describe

the expression of genes SWI5. It is assumed that the transcription of this gene is

activated by TF NDD1, which is realized by the rate of transcription

k1 =
a ∗ [NDD1]
b+ [NDD1]

, (4.3.4)

where a and b are parameters for genetic regulation. In addition, the elongation

process needs time for RNAP II polymerase when travelling long the template

DNA. Since not discussing the transcription process in details, we use a delay

reaction with constant time delay for the synthesis of mRNA transcripts. Then

mRNA transcripts translocate from nucleus to cytosol, and this process is also

modelled by a delay reaction with constant time delay for simplicity. Finally

mRNA molecules decay in cytosol via a multi-step process that is simplified as

a state-dependent delay reaction, which is modelled using the proposed model

(4.2.3,4.2.4). Thus the proposed model for the expression of gene SWI5 is given

below

DNA
k1−−→DNA+ I1,

I1
m−→ RNA(N ),

mRNA(N )
k2−−→ I2,

I2
m−→ RNA(C),

mRNA(C)
k3−−→ I3,

I3→ ( ),

(4.3.5)
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where mRNA(N ),mRNA(C) are mRNA molecules in nucleus and cytosol; I1, I2, I3

are imaginary species for mRNA(N ),mRNA(C) and shortening mRNA, respectively.

We use the inferred concentration of [NDD1] in (Chen et al., 2009), which is

consistent with the drafted TF activity in (Trcek et al., 2011), as the activity of this

TF. In addition, experimental studies show that gene expression is regulated by

mechanisms of cell cycle. In yeast, the mitosis process at ∼ 49 min of each cell

cycle will terminate the process of transcription. This regulatory mechanism was

realized by the assumption that the activity of [NDD1] is zero after 49 min of

each cell cycle (Gandhi et al., 2011).

The measured mRNA copy numbers in single cells are used to infer regulation

parameters a,b, rate constant k3, and transcription and translocation delays. We

use the ABC rejection sampling algorithm to search for optimal model parameters.

Using simulation error to both cytosol and nucleus data as the criterion, we select

100 set of model parameters with small simulation error. The parameter set with

the minimal error is the final inference result. Fig. 4.4 show that numerical

simulations can match experimental data very well. In addition, the distribution

of transcriptional time delay in Fig. 4.5 (A) are consistent with the experimental

estimations showing that the time delay in transcription is ∼ 35 min. An interest-

ing observation is the degradation rate of mRNA is ∼ 0.1/min, which suggests that

the half-life of mRNA molecules is about 6.93 min.
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Figure 4.4: Simulation of gene transcription for gene SWI5 using the state-dependent
delay model: (A) mRNA copy number in nucleus. (B) mRNA copy num-
ber in cytosol. (dot: experimental data; circle: simulations). Estimated
parameters are a = 3.9137,b = 8.2969, τ1 = 36.9431, τ2 = 2.0682, k2 =
2247.9, k3 = 1.0926.
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Figure 4.5: Distributions of estimated model parameters for gene SWI5 transcription:
(A) Transcription delay. (B) Degradation rate constant k3.
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4.4 Discussion and Conclusion

In this work, we propose a new algorithm to determine time delay in chemical

reaction systems according to the system state. Using the process of multi-step

reactions as the test problem, we utilize both the analytical solution of ODE model

and stochastic simulation to determine the relationship between the system state

and value of time delay. The proposed method is applied to model the degradation

process of mRNA molecules based on experimental data measured in single cells.

For the first test system of mRNA degradation, our model gives simulations with

better accuracy comparing with existing modelling methods. For the second test

system of gene expression, our model provides simulated dynamics with very good

accuracy for both synthesis and degradation of mRNA transcripts. Simulation

results in this work suggest that the proposed method is an effective approach to

approximate multi-step reactions system more accurately.

Half-life is an important concept to measure the degradation process in biological

studies. It is the amount of time required for a species from full amount to a

half of the full amount as measured at the beginning of time period, based on

the assumption that the quantity follows an exponential decay. However, for

many biological molecules, the decay process may not be exponential; rather it

follows multi-step reactions. Thus, molecules at the intermediate states are also

important for determining the value of half-life. That may be the reason to explain

the difference between the determined half-time under different experimental

conditions. Using the inferred degradation rate in the state-dependent delay

model, our results suggest that our calculated half-time of mRNA molecules are

between the determined values in the published papers.

The advances in systems biology have raised more challenges for modeling large-

scale molecular regulatory networks. Although a trend of mathematical modeling
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is to construct more and more mechanistically detailed models, the complexity

of biological networks, lack of experimental data and requirement of computing

power have put a limitation on the complexity of mathematical models. Recently

various methods have been developed to reduce model complexity (Rao et al.,

2014; Mackey et al., 2014). Simultaneously research works have been conducted

to explore the conditions and assumptions of these simplified models in order

to obtain accurate simulations (Thomas et al., 2012; Schnell, 2014). This work

represents a step in developing accurate delayed models for chemical reaction

systems. More research work is strongly needed to study other types of multi-step

reactions systems as well as the complex systems that include multi-step reactions

processes as subsystems. These interesting problems will be potential topics of

future research.

4.5 Supplementary Information

This supplementary information first gives a description of the exact solution of

the multi-step chemical reactions in part (4.5.1). Then part (4.5.2) provides two

algorithms to calculate the value of time delay using the stochastic simulation

algorithm. Part (4.5.3) derives the formula to calculate time delay based on the

analytical solution of the ordinary differential equation (ODE) model for the multi-

step reaction system. Finally we give two supplementary figures for simulation

results.

4.5.1 Multi-step chemical reaction system

The starting point of this study is the following system with a series of chemical

reactions:

X1
k1−−→ X2

k2−−→ ·· ·
kn−1−−−→ Xn

kn−−→ P , (4.5.1)
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where Xi represents the i-th state of a molecule and ki is the i-th reaction rate

constant. Here âPâ is the product, which may also be “( )” if it is a degradation

process. Denote s as the total copy number of molecules in all states, given by

s =
n∑
i=1

xi , (4.5.2)

where xi is the copy number of Xi state, and y as the sum of molecule numbers

except x1, namely y =
∑n
i=2xi .

The dynamics of system (4.2.1) can be described using an ODE model as follows:

dx1

dt
= −k1x1,

dx2

dt
= k1x1 − k2x2,

...

dxn
dt

= kn−1xn−1 − knxn. (4.5.3)

For simplicity, it is assumed that k1 = k2 = · · ·kn = k. The exact solutions of system

(7.3.1) can be derived as

x1 = x10e
−kt

x2 = x10kte
−kt + x20e

−kt

x3 =
x10

2
k2t2e−kt + x20kte

−kt + x30e
−kt

...

xn = [
x10

(n− 1)!
(kt)n−1 +

x20

(n− 2)!
(kt)n−2 + · · ·+ xn0]e−kt, (4.5.4)

where xi0 represents the initial copy number of Xi molecule at t = 0. Therefore,

the total molecule number is represented by
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s = s0e
−kt + (s0 − xn0)kte−kt + (s0 − x(n−1)0 − xn0)

(kt)2

2!
e−kt + · · ·+ x10

(n− 1)!
(kt)n−1e−kt,

(4.5.5)

where s0 = (x10 + · · · + xn0). We assume that the initial conditions are x10 and

x20 = x30 = · · · = xn0 = y0
n−1 . Then the total molecule number is represented by

s = e−kt{(x10 + y0)[1 + kt + · · ·+ (kt)n−1

(n− 1)!
]−

y0kt

n− 1
[1 + kt + · · ·+ (kt)n−2

(n− 2)!
]}, (4.5.6)

which can be approximated by

s = e−kt{(x10 + y0)[ekt − (kt)n

n!
ekξ1]−

y0kt

n− 1
[ekt − (kt)n−1

(n− 1)!
ekξ2]}, (4.5.7)

When the number of reaction n is not small, such as the model of mRNA degrada-

tion with n = 9 (Wu et al., 2013b), we cab further assume that ξ1 = ξ2 = ξ.

4.5.2 Algorithm for calculating time delay

Stochastic simulation algorithm (SSA) is used to determine time delay based on

various system conditions. Algorithm 1 is used to determine the time delay shown

in Figure 4.1 (A). It calculates two waiting times and then the delay for each

molecule.

Algorithm 1

• 1) The initial condition is x10 > 0 and xi0 = 0 for i > 1 at t = 0. The total

initial total copy number is s0 = x10.

• 2) Calculate the value of propensity function ai = kixi and a0 =
∑n
i=1 ai .
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• 3) The waiting time of the next reaction is determined by

µ =
1
a0
ln

1
r1
, (4.5.8)

where r1 ∼U (0,1).

• 4) Generate a sample r2 ∼U (0,1) to determine which reaction with index j

from those multi-step reactions will occur.

• 5) Update the system by the determined reaction index j in step 4)

X(t +µ) = X(t) + vj , (4.5.9)

if the reaction is the i-th first reaction X1 → X2, then τ1i = t + µ. If the

reaction is the i-th last reaction Xn→ P , then τ2i = t +µ.

• 6) Go to step 2.

• 7) Calculate time delay of the i-th molecules as τi = τ2i − τ1i .

The following Algorithm 2 is used to calculate the delay of the first delay reaction

based on different system states in Figure 4.1 (B).

Algorithm 2

• 1) The initial condition is x10 > 0 and y0 > 0. First determine the values of

(x20, · · · ,xn0) based on the value of y0.

• 2) Calculate values of propensity function ai = kixi and a0 =
∑n
i=1 ai .

• 3) The waiting time of the next reaction is determined by

µ =
1
a0
ln

1
r1
, (4.5.10)
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where r1 ∼U (0,1).

• 4) Generate a sample r2 ∼U (0,1) to determine which reaction with index j

from those multi-step reactions will occur.

• 5) Update the system by determined reaction in step 4)

X(t +µ) = X(t) + vj , (4.5.11)

if the reaction is the first of first reaction X1 → X2, then τ1 = t + µ. If the

reaction is the first of last reaction Xn→ P , then τ2 = t +µ.

• 6) Stop the algorithm after the first of the last reaction, and calculate the

time delay τ = τ2 − τ1.

4.5.3 Formulation of time delay

We use a reaction with time delay to simplify system (4.2.1), which is described as

follows:

X1
k−→ G, (4.5.12)

G
P−→ . (4.5.13)

Here reaction (4.5.12) is the first reaction of system (4.2.1), while delayed reaction

(4.5.13) is a simplification of the process from state X2 to product P . The time

delay in reaction (4.5.13) is the sum of waiting time experiencing n−1 consecutive

reactions from state X2 to product P . Thus the imaginary state G represents any

one of the intermediate states X2, · · · ,Xn and its molecular number is y =
∑n
i=2xi .

We need to determine the time delay based on current system state (X1,G), When

the first reaction fires, a molecule from X1 moves into the queue structure of time

delay L in which there are already y imaginary molecules. When the newly added
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molecule turns to product P , it is assumed that all y molecules queued before the

newly added molecule already turn into the product. Considering the time for

the first molecule from X1-state molecules to turn to product, the total molecule

number should be reduced from x1 + y to x1 − 1. The time delay is defined as

τ = τ2 − τ1, (4.5.14)

where τ1 is the firing time of the first reaction X1→ X2, and τ2 is the firing time

of the last reaction Xn→ P and the system state after update is s = x1 − 1.

We use computational simulations to determine the value of time delay. The value

τ1 is determined by stochastic simulation algorithm. The key issue is to determine

the value of τ2. Given the system state as (x1, y) at time t, the time t for the first

X1 molecule turns into product P is

x1 − 1 = (x1 + y)−
ykt

n− 1
+
y(kt)n

n!
ek(ξ−t)[

ny

n− 1
− (x1 + y)], (4.5.15)

which can be simplified as

ek(ξ−t)(kt)n(x1 + y −
ny

n− 1
) = [1 + y(1− kt

n− 1
)]n!. (4.5.16)

Denote

C1 = x1 + y −
ny

n− 1
,C2 = 1− kt

n− 1

C =
1 +C2y

C1
n!. (4.5.17)

Equation (4.5.16) is simplified as

ek(ξ−t)(kt)n = C. (4.5.18)
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There are a number of undetermined coefficients in (4.5.18). Thus, we first use a

special case to determine the value of ξ by letting y = 0. Thus the coefficients in

the exact solution are x1 and x2 = · · · = xn = 0, and the total molecule number is

s = x1e
−kt[1 + kt + · · ·+ (kt)n−1

(n− 1)!
], (4.5.19)

which can be approximated by (0 < ξ < t)

s = x1e
−kt[1− ek(ξ−t) (kt)n

n!
]. (4.5.20)

To find the time τ2 taken for the total copy number s to change from x1 to x1 − 1,

we rewrite the equation (4.5.16) as

ek(ξ−t)tn =
n!
x1kn

. (4.5.21)

The solution of the time τ2 in the above equation can be represented by

τ2 = −n
k
W [−1

n
(
e−kξn!
x1

)
1
n ], (4.5.22)

whereW (x) is the LambertW function. To determine an optimal value of ξ(∈ (0, t)),

we compared the time delays τ2 − τ1 obtained using (4.5.7) with three values

(ξ = (0,0.5,1)t) with those obtained from stochastic simulations using SSA. We

found that, when ξ = t
2 , the formula (4.5.22) provides more accurate estimate for

time delay. Thus we use the following formula, given by

τ2 = −2n
k
W [− 1

2n
(
n!
x1

)
1
n ]. (4.5.23)
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Now we return to the general case when y > 0. First we consider a particular case

with C1 = 0. Then the left hand side of equation (4.5.16) is zero. Then we have

τ2 = −1 + x1n− x1

kx1
. (4.5.24)

Otherwise, the right-hand side of equation (4.5.18) is always positive. The solution

of equation (4.5.18) in terms of t is represented by a Lambert W function. Using

the optimal value ξ = t
2 , the time to reach the system state with x1 −1 molecules is

τ2 = −2n
k
W [− 1

2n
C

1
n ]. (4.5.25)

In summary, we have an expression for the time delay

τ = τ2 − τ1, (4.5.26)

where the value τ1 is determined by stochastic simulation algorithm, and

τ2 =


1+x1n−x1

kx1
if C1 = 0

−2n
k W (− 1

2nC
1
n ) if C1 , 0,

(4.5.27)

Note that the value of C in solution (4.5.27) actually depends on future time

point t, which is unknown. A formula is needed to approximate the value of C by

numerical simulation, which will be studied in the paper.
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Figure 4.6: A new algorithm for calculating time delay that is dependent on system
state: (A) Estimated optimal values of C2 based on different system states
(x10, y0) that match time delay showing in Figure 4.1 (B). Each line repre-
sents the optimal value of C2 for a particular value of x10. For a fixed value
of y0, the smaller the value of x10 is, the smaller the value of C2 becomes.
(Solid-line: x10 = 5, dash-line: x10 = 10, dash-dot line: x10 = 20, dot-line:
x10 = 50). (B) Values of α. (blue-solid line: estimated values based on
simulated time delay in Figure 4.1 (B); red-dash line: prediction from
α = 3.25 + 7.5/x1). (C) value of β. (blue-solid line: estimated values based
on simulated time delay in Figure 4.1 (B); red-dash line: prediction from
β = 11.8 + 8.2x1). (D) The difference between the predicted values of C2
and optimal values of C2 in Figure 4.6 (A). (Solid-line: x10 = 5, dash-line:
x10 = 10, dash-dot line: x10 = 20, dot-line: x10 = 50).
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Figure 4.7: Simulation of mRNA degradation for gene RPL30 using different initial
mRNA number s0. For each construct, parameters k and D are the same as
those in Figure 4.2. The value of y0 is proportional to the value of s0: (A,
B, C, D) Construct ACT1. (E, F, G, H) Construct RPL30. (A, E) s0 = 20.
(B, F) s0 = 50. (C, G) s0 = 150. (D, H) s0 = 200. (Solid-line: simulation.
Dash-dot line: experimental data).
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Chapter 5 is based on the article Wu Q, Smith-Miles K, Tian T. 2013a. Approxi-

mate bayesian computation for estimating rate constants in biochemical reac-

tion systems. In: Bioinformatics and Biomedicine (BIBM), 2013 IEEE Interna-

tional Conference on. pp. 416–421, doi: 10.1109/BIBM.2013.6732528.

Abstract. To study the dynamic properties of complex biological systems, mathematical

modelling has been used widely in systems biology. Apart from the well-established

knowledge for modelling techniques, there are still some difficulties while understanding

the dynamics in system biology. One of the major challenges is how to infer unknown

parameters in mathematical models based on the experimentally observed data sets. This

is extremely difficult when the experimental data are sparse and the biological systems

are stochastic. To tackle this problem, in this work we revised one computation method

for inference called approximate Bayesian computation (ABC) and conducted extensive

computing tests to examine the influence of a number of factors on the performance of

ABC. Based on simulation results, we found that the number of stochastic simulations

and step size of the observation data have substantial influence on the estimation

accuracy. We applied the ABC method to two stochastic systems to test the efficiency

and effectiveness of the ABC and obtained promising approximation for the unknown

parameters in the systems. This work raised a number of important issues for designing

effective inference methods for estimating rate constants in biochemical reaction systems.

References are considered at the end of the thesis.



Chapter 5

Approximate Bayesian Computation

for Estimating Rate Constants in Bio-

chemical Reaction Systems

5.1 Introduction

Studying complex biological systems with quantitative methods has drawn more

and more attentions in systems biology in recent years. Building mathematical

models is one of the most widely used methods to investigate the dynamic prop-

erties of biological systems among various research approaches. In particular, it

requires more knowledge and condensation of assumptions to construct mathe-

matical models for complex biological systems for genetic regulatory networks

and cell signalling pathways into simple coherent frameworks. Simple mathemat-

ical models can be applied to make testable predictions, which can be used for

biologists to confirm the predictions and design new experiments. With the new

data obtained from newly designed experiments, it can be further used to improve

the established mathematical models (Ashyraliyev et al., 2009).
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While establishing the models, there are two major steps: one is to determine the

basic structure that describes the system and the other is to estimate the unknown

parameters in the model (Zhan and Yeung, 2011). Generally, we do not have

adequate information to measure the unknown parameters for the vast majority

of systems and especially for biological systems. Moreover, the given information

especially from biological experimental data is often scarce and incomplete, and

the likelihood surfaces of large models are complex. It has been treated as one of

the key questions in systems biology to solve for the unknown parameters within

any model structure and it is often referred to as a reverse engineering problem

(Kikuchi et al., 2003; Tsai and Wang, 2005). Therefore, to help analyze those

biological dynamical systems, new and effective inference methods are required.

Among extensive research that has been conducted for the development of infer-

ence methods during the last decade, one of the major approaches is Bayesian

inference methods. Bayesian inference is the method where the Baye’s rule is ap-

plied to update a probability estimate. The main advantage of Bayesian inference

is the ability for inferring the whole probability distributions of the parameters,

rather than just a point estimate. It is able to extract useful information from noisy

or uncertain data (Wilkinson, 2007), where this includes both measurement noise

and intrinsic noise that is critical in biological systems with species of low copy

numbers (McAdams and Arkin, 1999). Also, handling estimations for stochastic

systems using Bayesian inference methods is more robust as for deterministic

systems (Toni et al., 2009). However, there still exist some disadvantages of this

approach such as the computational time, while using analytical approaches are

not feasible for non-trivial problems. Nonetheless, developments for overcoming

various difficulties have taken place during the last twenty years and the tech-

niques that have been established most recently in Bayesian inference methods

include the Markov chain Monte Carlo (MCMC) techniques, ensemble methods,

and sequential Monte Carlo (SMC) methods that do not require likelihoods. All
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these techniques have been successfully applied to biological systems, but usually

for the systems that involve lower-dimensional problems or with a relatively large

number of experimental data (Battogtokh et al., 2002; Sisson et al., 2007).

When the likelihoods for parameter estimations are computationally intractable,

besides the above Bayesian techniques, we can apply the recently developed algo-

rithm called approximate Bayesian computation (ABC) frameworks (Beaumont

et al., 2002; Marjoram et al., 2003). The ABC methods admit realistic inference on

problems that were intractable only a few years ago. Extensive studies that lead to

a substantial methodological advance suggested that the ABC methods yield reli-

able parameter estimates with credible intervals and is relatively computationally

efficient. This method can be applied to various models, allows for discrimination

among sets of candidate models in a formal Bayesian model selection sense, and

gives us an assessment of parameter sensitivity. Unlike the usual Bayesian meth-

ods, the ABC methods evaluate the likelihood based on simulations through the

comparison between the observed data and simulated data (Pritchard et al., 1999).

The rapidly increasing application of the ABC methods has been seen in a diverse

range of fields, including molecular genetics, ecology, epidemiology, evolutionary

biology, and extreme value theory (Marjoram and Tavaré, 2006; Butler et al., 2006;

Tanaka et al., 2006; Thornton and Andolfatto, 2006).

Even though a large number of studies have been done to apply the ABC method

to deterministic models, limited research work has been carried out so far for

the inference of stochastic models. Different from deterministic models, there

are many open problems in the inference of stochastic models, such as selection

of objective function, influence of particle size and simulation number, choice

of threshold values, etc.. Thus in this work, we undertook extensive computing

experiments to examine the influence of a number of factors on the performance of

the ABC methods. The remaining part of this paper is organized as follows. Section

5.2 describes the basic algorithm in detail as well as the ABC SMC algorithm.
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Section 5.3 part 5.3.1 uses a simple chemical system to examine the influence of

a number of factors on the performance of the ABC SMC algorithm. Section 5.3

part 5.3.2 uses an auto-regulatory gene network system to show the ability of the

ABC methods to infer parameters in a larger system.

5.2 Method

The ABC method, which is a computational simulation technique, aims at inferring

posterior distributions where likelihood functions are not easy to compute. Its

high efficiency is a result of replacing the calculation of the likelihood function by

a comparison between the observed and simulated data. For inference problems,

we usually start with a set of experimental data X and let θ be the parameter

vector to be estimated. An initial guess called prior distribution π(θ) for θ is

assumed and we want to approximate the posterior distribution π(θ|X) given the

data X.

Based on previous research (Toni et al., 2009), all ABC algorithms have the follow-

ing major steps.

• Sampling: sample a candidate parameter θ∗ from the proposed prior distri-

bution π(θ).

• Simulation: simulate the results Y of the proposed model with parameter θ∗.

• Comparison: compare the simulated data Y with the observed data X and

find the distance d(X,Y) between them.

• Decision making (Selection): for a given tolerance or threshold value ε,

accept the sampled parameter θ∗ if d(X,Y) ≤ ε, otherwise, reject it and

return to the first step of sampling.
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With sufficient number of iterations for the above algorithm, we are able to obtain a

set of estimated parameters within satisfaction and then the posterior distribution

can be estimated with the distribution π(θ|d(X,Y) ≤ ε). However, the difficulties

are how to define a suitable distance function for calculating the difference and

to choose an optimal tolerance value. If the tolerance ε is sufficiently small, our

obtained distribution will be a good approximation, which may be too costly to

evaluate. If ε is large, we would obtain a distribution which may be useless for

approximation.

Based on the generic form of the ABC algorithm, many methods have been de-

veloped including the ABC rejection sampler, which is a similar derivation as

the above algorithm, and the ABC MCMC. The ABC MCMC algorithm solves the

problem for long computing time due to a badly chosen prior distribution that is

far away from posterior distribution. However, as the ABC MCMC introduces a

concept of acceptance probability during the decision making step, then candidate

parameters must meet two criteria at the same time. This will result in getting

stuck in the regions of low probability and we may never be able to get a good

approximation.

To avoid the problem raised using the ABC MCMC algorithm, the idea of particle

filtering has been introduced. Instead of having one parameter vector at a time,

we sample from a pool of parameter sets simultaneously and treat each parameter

vector as a particle. The algorithm starts from sampling a pool of N particles for

parameter vector θ through prior distribution π(θ). The sampled particle candi-

dates (θ∗1, · · · ,θ
∗
N ) will be chosen randomly from the pool and we will assign each

particle a corresponding weight w to be considered as the sampling probability.

For the first iteration, we assume that it has a equal weight of 1
N for each sampled

particle. A perturbation and filtering process will be followed through a transition

kernel q(·|θ∗) to form a new set of particles θ∗∗. Similarly, using θ∗∗, data Y can
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be simulated and compared with experimental data X. Then we adapt the same

concept as the decision making step to choose the ideal estimated parameters.

A number of algorithms have been developed using the particle filtering technique,

such as the partial rejection control, population Monte-Carlo and SMC. Each of

them differs in the formation of weight w and the transition kernels q(·|θ∗) they

choose. We will only present here the SMC sampling method in detail which can

be applied for stochastic biological systems.

The ABC SMC algorithm is a special case of sequential importance sampling (SIS)

algorithm (Toni et al., 2009). The algorithm is described in detail as follows.

Algorithm

1. Given data X = {X0,X1, · · · ,Xn} at time points t = [t0, t1, · · · , tn] and any as-

sumed prior distribution π(θ), define a set of threshold values ε1, · · · ,εK .

2. For iteration k = 1,

(a) Set the particle indicator i = 1, sample θ∗ ∼ π(θ).

(b) Generate data Y Bk times using θ∗.

(c) For m = 1, · · · ,Bk, calculate the value of discrepancy d(X,Ym) and test

for

|X−Ym| ≤ αX,

where α is usually a constant value of 0.05.

If it is true, let bm(θ∗) = 0, otherwise it is one.

(d) Calculate

ε =
Bk∑
m=1

bm(θ∗).

If ε < εk, update θki = θ∗ and move to the next particle i = i + 1.
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(e) Assign weight wki = 1
N for each particle.

3. Determine the variance for the particles in the first iteration

σ1 =
√
var(θ1

{1:N })

4. For iteration k = 2, · · · ,K

(a) Start with i = 1, Sample θ∗ ∼ θk−1
i:N using the calculated weights wk−1

i:N .

(b) Perturb θ∗ through sampling θ∗∗ ∼ N (θ∗,σ2
k−1) or θ∗∗ ∼ U (a,b), where

value of a,b depends on θ∗ and σ2
k−1.

(c) Generate simulations and calculate the error ε using the same steps as

in 2(b) ∼ (d).

(d) Assign weights

wki =
π(θki )bk(θ

i
k)∑N

j=1w
k−1
j q(θk−1

j |θ
k
j ,σk−1)

for each particle.

(e) If i =N , determine the variance for the particles in the first iteration

σk =
√
var(θk{1:N })

and update k = k + 1.

5.3 Results

5.3.1 Decay-dimerization model

The first system we tested is the model of reaction system that involves species

decay and dimerization. This model begins with the first three reactions
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(6.2.1,6.2.1,6.2.1), in which the dimerization step (6.2.1,6.2.1) is reversible (Daigle

et al., 2012). By adding a conversion reaction (6.2.1) to the reversible model, we

have the system described as follows:

S1
c1−−→ ( ), (5.3.1)

S1 + S1
c2−−→ S2, (5.3.2)

S2
c3−−→ S1 + S1, (5.3.3)

S2
c4−−→ S3. (5.3.4)

We start with an initial condition with S = (10000,0,0) and rate constants of

c = (0.1,0.002,0.5,0.04), which is termed as the exact rate constants in this test.

The stochastic simulation algorithm (SSA) was used to simulate the stochastic

system (Gillespie, 1977). A single trajectory data for this model during a period

of T = 30 in a step size of ∆t = 1 is presented in Fig. 5.1. This figure shows the

dynamics of the system in which S1 decreases sharply while S2 increases in the

beginning, starts to decrease steadily and S3 increases gradually.

When applying the Algorithm described in previous section to estimate model

parameters, we assumed the prior distribution for each estimated parameter

follows a uniform distribution π(θ) ∼ U (0,A) and for rate constants c1 ∼ c4, the

values of A are (0.5,0.005,1,0.1) (Tian et al., 2007b).

Fig. 5.2 gives probability distributions of the estimated rate constant of c4 over

iterations (2 ∼ 5). We choose a fixed value of 100 for particle number for all tests.

In this test, the step size of the data is ∆t = 3 and simulation number is Bk = 100.

From this figure, it can be found that the probability distribution for c4 starts from

nearly a uniform distribution in the second iteration (Fig. 5.2A) and gradually

converges to a normal distribution with a mean value that is close to the exact rate

constant.
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Figure 5.1: Simulated experimental data for system dynamics in a time length of 30
with step size ∆t of 1 (Blue star for S1, green circle for S2, and red cross for
S3).

To examine the factor that reveals the convergence rate of particles over iterations,

we define and calculate the mean count number for each iteration, which is the

averaged count number of selections before accepting all one-hundred estimated

parameter sets. We also define the averaged error by the sum of relative errors

of each rate constant for each iteration. Fig.5.3 shows some examples for the

values of mean count number and averaged error with a simulation number of 100

and step size of 3 and 5, respectively. We have also explored the averaged error
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Figure 5.2: Probability distributions of estimated rate constant of c4 over four iterations
((A): Iteration 2; (B): 3; (C): 4; (D): 5).

and mean count number under other test conditions with different simulation

numbers and step sizes. Numerical results are consistent with those shown in Fig.

5.3, which suggests that mostly the averaged error decreases when the mean count

number increases over five iterations.

Table 5.1 provides the averaged error of estimates that were obtained using dif-

ferent simulation numbers and step sizes. These numerical results indicate that

when the simulation number is larger, we can obtain more stable estimates whose
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Figure 5.3: The averaged error of estimated parameters and mean count number of
iterations with step size ∆t of 3 ((A), (B)) and 5 ((C), (D)).

averaged errors have less fluctuations over iterations, which is consistent with

the observations in (Tian et al., 2007b). Certainly the cost of this stability is the

large computing time required for stochastic simulation. An initial observation

from Table 5.1 is that step size ∆t has not much influence on the averaged error.

However, after looking at the mean count number in Table 5.2, the estimates using

larger step size were obtained at the cost of a much larger mean count number.

Combining the observations in Fig. 5.3, we conclude that, if we use the same
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computing time, the ABC algorithm will infer parameters with better accuracy

when the step size is smaller, which is also consistent with the observations in

(Tian et al., 2007b).

Table 5.1: Comparison of averaged error for estimated rate constants over five iterations
with different simulation numbers and step sizes

Simulation Data Iteration number

number step size 1 2 3 4 5

100 1 1.050 0.995 1.177 0.663 0.610

2 1.008 1.090 0.838 0.758 0.712

3 1.102 1.127 0.818 0.665 0.605

5 1.086 1.125 0.588 0.657 0.651

1000 1 1.019 0.925 1.007 0.864 0.745

2 0.937 1.157 0.968 0.624 0.704

3 1.012 1.132 0.851 0.678 0.741

5 0.948 1.109 0.708 0.641 0.724

2000 1 1.167 0.990 1.093 0.752 0.680

2 1.175 1.062 0.907 0.674 0.651

3 1.118 1.224 0.900 0.661 0.672

5 0.873 0.999 0.628 0.596 0.627

5.3.2 Prokaryotic auto-regulatory gene network

After successfully estimating the parameters in the system of four reactions, we

continue the inference study for a more complex model. The second system we

tested is a prokaryotic auto-regulatory gene network. In this reaction system, it

involves both transcription and translation. In addition, dimers of the protein

suppress its own gene transcription by binding to a regulatory region upstream of
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Table 5.2: Comparison of mean count number for estimated rate constants over five
iterations with different simulation numbers and step sizes

Simulation Data Iteration number

number step size 1 2 3 4 5

100 1 1.03 1.04 1.73 7.8 20.39

2 1.04 1.02 3.98 14.83 30.61

3 1.05 1.25 5.39 16.32 32.31

5 1.08 2.03 10.77 18.82 31.46

1000 1 1.01 1.02 1.54 8.03 18.78

2 1.01 1.04 3.5 13.84 21.77

3 1.01 1.26 6.25 16.12 27.57

5 1.06 2.27 8.27 16.65 35.29

2000 1 1.02 1.02 1.83 8.08 18.33

2 1.04 1.05 3.53 13.31 25.38

3 1.01 1.38 6.98 14.39 36.48

5 1.02 2.29 10.91 22.16 49.89

the gene (Wang et al., 2010; Golightly and Wilkinson, 2005; Reinker et al., 2006).

This gene regulatory network consists of eight chemical reactions which are given

below:

R1 : DNA+ P2
c1−−→DNA · P2,

R2 : DNA · P2
c2−−→DNA+ P2,

R3 : DNA
c3−−→DNA+mRNA,

R4 : mRNA
c4−−→ ∅,

R5 : 2P
c5−−→ P2,

R6 : P2
c6−−→ 2P ,
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R7 : mRNA
c7−−→mRNA+ P ,

R8 : P
c8−−→ ∅.

Here DNA, P , P2 and mRNA represent promoter sequences, proteins, protein

dimers and messenger RNA respectively. In this network, reactions R3 and R7

represent transcription and translation processes in which mRNAs and proteins

are synthesized, and then it follows by reactions R4 and R8 which are degradation

processes. The proteins P and a protein dimer P2 can be interchanged through

reactions R5 and R6 under different rate constants. P2 can be furthermore bound or

unbound to DNA through reactions R1 and R2. When a protein dimer binds to the

promoter, it represses mRNA production. Overall, the network implements a self-

regulatory mechanism to control the synthesis of the protein product, suppressing

the transcription when the protein product is abundant (Wang et al., 2010).

We applied the ABC algorithm with initial condition of copy numbers DNA = 10,

mRNA = 100, P2 = 800, P = 100, DNA · P2 = 100 and the reaction rate constants of

c = (0.1,0.7,0.35,0.3,0.1,0.9,0.2,0.1). Similarly, we simulate experimental data for

each molecule during a period of T = 50 in a step size of ∆t = 1 and results are

presented by Fig. 5.4.

The prior distribution we assumed for each estimated parameter follows a uniform

distribution π(θ) ∼ U (0,B), i.e. for rate constants c1 ∼ c8, the values of B are

(0.5,2,1,0.1,0.5,5,1,0.1). The system is then simulated over five iterations using

various step sizes (∆t = 1,2,5,10) and simulation numbers (100,1000,2000).

One example for the simulation results of those eight estimated parameters is

presented by Fig. 5.5, which takes a simulation number of 100 and step size of 5.

The probability distribution of the estimated rate constant c7 over iterations (2 ∼ 5)

is shown in Fig. 5.5. Although most of the results for the estimated parameters

do not approach the exact rate constant, we still find similar patterns as the
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Figure 5.4: Simulated experimental data for system dynamics in a time length of 50
with step size ∆t of 1 (Blue star for DNA; green circle for DNA.P2 and
red cross for mRNA black; cyan square for P ; black x-mark for P2).

distribution tends to the centre at the exact rate constants with a normally-like

distribution.

For this system, we obtained the mean count as well as the averaged error for

each iteration. Fig. 5.6 illustrates an example for the value of mean count number

and averaged error with a simulation number of 100 and step size of 1 and 5,

respectively. This figure shows a trend that cases with larger step size take more
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Figure 5.5: Probability distribution of estimated rate constant of c7 over four iterations
((A):Iteration 2; (B): 3; (C):4; (D):5).

counts to achieve same accuracy with a smaller step size. Comparing with the first

system we tested, this system has twice the number of unknown parameters, and

the maximum value of mean count for the second system is much larger than that

of the first system. In addition, since the molecular numbers in the second system

are quite small, the fluctuations in the copy numbers have much influence on the

accuracy of the estimated parameters. Fig. 5.6 also suggests that, when the count
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number increases over the iterations, the averaged errors of the estimates become

smaller, which is consistent with the results in Fig. 5.3.
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Figure 5.6: The averaged error of estimated parameters and mean count number of
iterations with step size ∆t of 1 ((A), (B)) and 5 ((C), (D)).

5.4 Conclusion

In this work we conducted extensive computational tests to examine the influence

of a number of factors on the estimation error of the ABC algorithm. The ABC
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algorithm is an effective inference method that is capable of dealing with inference

problems whose likelihood functions are hard to compute. Using two chemical

reaction systems as the test problem, we obtained results of the system of four

chemical reactions based on the ABC algorithm with various simulation numbers

and different step sizes under proper threshold values. From that, we noticed

that taking different step sizes would not lead to distinct results. In addition, we

examined the influence of a number factors on the performance and accuracy of

the ABC algorithm. Our results suggested that the ABC algorithm is a promising

method that can be used to infer parameters in high-dimensional and complex

biological system models.

Numerical results suggest that a larger count number leads to estimates with

better accuracy, and the threshold value determines the count number. Similar to

the inference problem for deterministic models, the selection of proper threshold

values is a key challenge in the inference for stochastic models. A relatively

larger threshold value may generate estimates whose iteration count numbers are

always one while a relatively smaller threshold value may lead to estimates with

very large count numbers. In addition, a smaller threshold value cannot ensure

estimates with better accuracy. Thus more sophisticated techniques, such as the

adaptive selection methods, are needed to select the threshold values in the ABC

algorithms.
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Abstract.

Background: Mathematical modelling is an important tool in systems biology to

study the dynamic property of complex biological systems. However, one of the major

challenges in systems biology is how to infer unknown parameters in mathematical

models based on the experimental data sets, in particular, when the data are sparse and

the regulatory network is stochastic.

Results: To address this issue, this work proposed a new algorithm to estimate pa-

rameters in stochastic models using simulated likelihood density in the framework of

approximate Bayesian computation. Two stochastic models were used to demonstrate

the efficiency and effectiveness of the proposed method. In addition, we designed another

algorithm based on a novel objective function to measure the accuracy of stochastic

simulations.

Conclusions: Simulation results suggest that the usage of simulated likelihood den-

sity improves the accuracy of estimates substantially. When the error is measured at

each observation time point individually, the estimated parameters have better accu-

racy than those obtained by a published method in which the error is measured using

simulations over the entire observation time period.
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Chapter 6

Approximate Bayesian Computation

Schemes for Parameter Inference

of Discrete Stochastic Models using

Simulated Likelihood Density

6.1 Introduction

In recent years, quantitative methods have become increasingly important for

studying complex biological systems. To build a mathematical model of a com-

plex system, two main procedures are commonly conducted (Zhan and Yeung,

2011). The first step is to determine the elements of the network and regulatory

relationships between the elements. In the second step, we need to infer the

model parameters according to experimental data. Since biological experiments

are time-consuming and expensive, normally experimental data are often scarce

and incomplete compared with the number of unknown model parameters. In

addition, the likelihood surfaces of large models are complex. The calibration of
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these unknown parameters within a model structure is one of the key issues in

systems biology (Kikuchi et al., 2003). The analysis of such dynamical systems

therefore requires new, effective and sophisticated inference methods.

During the last decade, several approaches have been developed for estimating

unknown parameters: namely, optimization methods and Bayesian inference

methods. Aiming at minimizing an objective function, optimization methods start

with an initial guess, and then search in a directed manner within the parameter

space (Gadkar et al., 2005; Gonzalez et al., 2007). The objective function is usually

defined by the discrepancy between the simulated outputs of the model and

sets of experimental data. Recently, the objective function has been extended

to a continuous approach by considering simulation over the whole time period

(Deng and Tian, 2014) and a multi-scale approach by including multiple types

of experimental information (Tian and Smith-Miles, 2014). Several types of

optimization methods can be found in the literature, among which two major

types are called gradient-based optimization methods and evolutionary-based

optimization methods. Based on these two basic approaches, various techniques

such as simulated annealing (Kirkpatrick et al., 1983), linear and non-linear least-

squares fitting (Mendes and Kell, 1998), genetic algorithms (Srinivas and Patnaik,

1994) and evolutionary computation (Ashyraliyev et al., 2008; Moles et al., 2003)

have been attempted to build computational biology models. Using optimization

methods, the inferred set of parameters produces the best fit between simulations

and experimental data (Lall and Voit, 2005; Lillacci and Khammash, 2010), which

have been successfully applied for biological systems, however, there are still some

limitations with these methods such as the problem of high computational cost

when significant noise exists in the system. To address these issues, deterministic

and stochastic global optimization methods have been explored (Goel et al., 2008).

When modelling biological systems where molecular species are present in low

copy numbers, measurement noise and intrinsic noise play a substantial role (Raj
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and van Oudenaarden, 2008), which is a major obstacle for modelling. Bayesian

inference methods have been used to tackle such difficulties by extracting useful

information from noise data (Wilkinson, 2007). The main advantage of Bayesian

inference is that it is able to infer the whole probability distributions of parameters

by updating probability estimates using Bayes’ Rule, rather than just a point

estimate from optimization methods. Also, Bayesian methods are more robust

than using other methods when they are applied to estimate stochastic systems,

which is not that obvious for modelling of deterministic systems (Toni et al., 2009).

Developments have taken place during the last 20 years and recent advances in

Bayesian computation including Markov chain Monte Carlo (MCMC) techniques

and sequential Monte Carlo (SMC) methods have been successfully applied to

biological systems (Battogtokh et al., 2002; Sisson et al., 2007).

For the case of parameter estimation when likelihoods are analytically or compu-

tationally intractable, approximate Bayesian computation (ABC) methods have

been applied successfully (Beaumont et al., 2002; Marjoram et al., 2003). ABC algo-

rithms provide stable parameter estimates and are also relatively computationally

efficient, therefore, they have been treated as substantial techniques for solving

inference problems of various types of models that were intractable only a few

years ago (Sisson et al., 2007). In ABC, the evaluation of the likelihood is replaced

by a simulation-based procedure using the comparison between the observed data

and simulated data (Pritchard et al., 1999). Recently, a semi-automatic method

has been proposed to construct the summary statistics for ABC (Fearnhead and

Prangle, 2012). These methods have been applied in a diverse range of fields such

as molecular genetics, epidemiology and evolutionary biology etc. (Marjoram and

Tavaré, 2006; Tanaka et al., 2006; Thornton and Andolfatto, 2006).

Despite substantial progress in the application of ABC to deterministic models, the

development of inference methods for stochastic models is still at the very early

stage. Compared with deterministic models, there are a number of open problems
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in the inference of stochastic models. For example, recent work proposed ABC

to infer unknown parameters in stochastic differential equation models (Picchini,

2014). Our recent computational tests (Wu et al., 2013a) showed the advantages

and disadvantages of a published ABC algorithm for stochastic chemical reaction

systems in (Toni et al., 2009). In this work, we propose two novel algorithms

to improve the performance of ABC algorithms using the simulated likelihood

density.

6.2 Results and discussion

6.2.1 The first test system with four reactions

We first examine the accuracy of our proposed methods using a simple model

of four chemical reactions (Daigle et al., 2012). The first reaction is the decay of

molecule S1. Then two molecules S1 form a dimer S2 in the second reaction; and

this dimerization process is reversible, which is represented by the third reaction.

The last reaction in the system is a conversion reaction from molecule S2 to its

product S3. All these four reactions are given by

S1
c1−−→ ( ),

S1 + S1
c2−−→ S2,

S2
c3−−→ S1 + S1,

S2
c4−−→ S3.

We start with an initial condition with S = (10000,0,0) and rate constants of

c = (0.1,0.002,0.5,0.04), which is termed as the exact rate constants in this test.

The stochastic simulation algorithm (SSA) was used to simulate the stochastic
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Figure 6.1: Simulated experimental data for system dynamics in a time length of 30
with step size ∆t of 3: Blue star for S1, green circle for S2, and red cross for
S3.

system (Gillespie, 1977). A single trajectory for this model during a period of

T = 30 in a step size of ∆t = 3 is presented in Fig. 6.1.

When applying the algorithms in the Method section to estimate model parame-

ters, we assumed the prior distribution for each estimated parameter follows a

uniform distribution π(θ) ∼U (0,A). For rate constants c1 ∼ c4, the values of A are

(0.5,0.005,1,0.1). Fig. 6.2 shows probabilistic distributions of the estimated rate

constant of c1 over iterations (2 ∼ 5). In this test, we have the step size ∆t = 3 and
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Figure 6.2: Probabilistic distributions of estimated rate constant of c1 over four itera-
tions using algorithm 1. (A): Iteration 2; (B): 3; (C): 4; (D): 5.

simulation number Bk = 10. Figure 6.2 suggests that the probabilistic distribution

starts from nearly a uniform distribution in the second iteration (Fig. 6.2(A)) and

gradually converges to a normalized-like distribution with a mean value that is

close to the exact rate constant.

There are two tolerance values in the proposed algorithms, namely α for the

discrepancy in step 2.c and εk for the fitness error in step 2.d. In the following

tests, we considered two strategies: the value of α is a constant (Tian et al., 2007b)

or its value varies over iterations. To examine the factors that influence the
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convergence rate of particles over iterations, we calculated the mean count number

for each iteration, which is the averaged number of counts for accepting all

simulated estimation of parameter sets. The averaged error is defined by the

sum of relative errors of each rate constant for each iteration. Table 6.1 displays

the performances of the tests under three schemes which used fixed discrepancy

tolerance α = 0.1,0.05 or varying values of α. In each case, we used the same

values of εk for the fitness tolerance. The value of α in the varying α strategy

equals the value of εk, namely αk = εk.

In these performances, we used εk=(0.07, 0.06, 0.055, 0.05, 0.045) and (0.05, 0.045,

0.04, 0.035, 0.03) for algorithm 1 with step sizes ∆t = 3 and 5, respectively. For

algorithm 2, these values are εk=(0.095, 0.08, 0.065, 0.05, 0.04) and (0.059, 0.055,

0.05, 0.045, 0.04). An interesting observation is that the values of mean count

number are very large in the first iteration, then decrease sharply and stay within

a value stably. We have a detailed test of using different values of the fitness

tolerance εk and found that when using step size of ∆t = 3, mean count number

stays at one if εk ≥ 0.1; but it starts to increase sharply to a large number if εk < 0.1.

The observation numbers using a step size of ∆t = 3 is 10 and the maximum

error that can incur calculated from step 2.d) is 0.1 with one hundred particles.

Similarly, this critical εk value is 0.06 for a step size of ∆t = 5.

Meanwhile all averaged errors have a decreasing trend over iterations. Looking at

different cases with various values of discrepancy tolerance α , it is also observed

that using α = 0.1 results in more discrepancies of the estimated parameters on

average than the other two cases, in particular, than the case α = 0.05. Thus in

our following tests, we just concentrate on the cases of α = 0.05 and varying α. In

addition, we observe that by taking α = 0.05 for the case with step size of ∆t = 3,

it leads to more accurate approximation since α = 0.05 is less than most values

of α in the case of varying values of α. It is consistent with the cases of a step

size of ∆t = 5 in which little differences can be found comparing strategies using
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α = 0.05 and α = εk since the values of εk are quite close to 0.05. In the case of

varying values of α, a small value of ε5 leads to a small value of α5, which results

in a substantial increase in mean count number. However, this large mean count

number does not necessary bring more accurate estimated parameters. With these

findings, we simulated results using α = 0.05 and α = ε only for algorithm 2.

Consistent results are obtained using algorithm 2. Moreover, results obtained

using algorithm 2 is more accurate than those from algorithm 1.

6.2.2 The second test system with eight reactions

Although numerical results of the first test system are promising regarding the ac-

curacy, that system has only four reactions. Thus the second test system, namely a

prokaryotic auto-regulatory gene network, includes more reactions. This network

involves both transcriptional and translational processes of a particular gene. In

addition, dimers of the protein suppress its own gene transcription by binding

to a regulatory region upstream of the gene (Wang et al., 2010; Golightly and

Wilkinson, 2005; Reinker et al., 2006). This gene regulatory network consists of

eight chemical reactions which are given below:

R1 : DNA+ P2
c1−−→DNA · P2,

R2 : DNA · P2
c2−−→DNA+ P2,

R3 : DNA
c3−−→DNA+mRNA,

R4 : mRNA
c4−−→ ∅,

R5 : 2P
c5−−→ P2,

R6 : P2
c6−−→ 2P ,

R7 : mRNA
c7−−→mRNA+ P ,

R8 : P
c8−−→ ∅.
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Table 6.1: Comparison of averaged error and mean count number for estimated rate
constants over five iterations using algorithms 1 and 2 with simulation
number of 10 for system 1. Tests are experimented under different strategies
of discrepancy tolerance such as α = 0.1,0.05 or varies over iterations
(AE:Averaged Error; MN: Mean count Number).

∆t α\k 1 2 3 4 5

Algorithm 1

3 0.1 MN 15.41 7.21 7.36 8.21 10.05

AE 0.7668 0.7294 0.7073 0.7832 0.6173

0.05 MN 175.72 30.66 24.47 28.22 26.5

AE 0.6120 0.5036 0.5521 0.7175 0.6132

vary MN 46.46 25.07 22.76 30.09 88.56

AE 0.7669 0.5306 0.6780 0.5858 0.5945

5 0.1 MN 26.96 10.47 9.07 11.18 13.19

AE 0.7107 0.5607 0.5366 0.4693 0.4853

0.05 MN 130.64 27.38 25.42 35.36 35.79

AE 0.5826 0.6495 0.4260 0.7548 0.4139

vary MN 141.97 30.28 53.47 127.16 2911.58

AE 0.5587 0.4793 0.5416 0.5960 0.5375

Algorithm 2

3 0.05 MN 467.61 52.34 41.08 69.17 195.69

AE 0.5834 0.6091 0.4867 0.4995 0.4402

vary MN 100.26 32.04 24.78 80.15 1793.64

AE 0.7132 0.6657 0.6305 0.6705 0.4833

5 0.05 MN 333.17 24.26 32.85 21.11 21.84

AE 0.5962 0.5340 0.5761 0.4983 0.5518

vary MN 243.78 22.6 31.29 34.6 70.25

AE 0.6565 0.6035 0.5759 0.5488 0.4263
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This gene network includes five species, namely DNA, message RNA, protein

product, dimeric protein, and the compound formed by dimeric protein binding

to the DNA promoter site, which are denoted by DNA, mRNA, P, P2 and DNA

·P 2, respectively. In this network, the first two reactions R1 and R2 are reversible

reactions for dimeric protein binding to the DNA promoter site. Reactions R3 and

R7 are transcriptional and translation processes for producing mRNA and protein,

respectively. Reactions R5 and R6 represent the interchange between protein P

and dimeric protein P2. The system ends up with a degradation process of protein

P (Wang et al., 2010).

To apply our algorithms, we start up with an initial condition of molecular copy

number

(DNA, mRNA, P, P2, DNA-P2) = (10,100,100,800,100).

In addition, the following reaction rate constants

(c1, . . . , c8) = (0.1,0.7,0.35,0.01,0.1,0.9,0.2,0.01).

are used as the exact rate constants to generate a simulation for each molecular

species during a period of T = 50 in a step size of ∆t = 1 and results are presented

by Fig. 6.3. This simulated dataset is used as observation data for inferring the

rate constants.

The prior distribution of each parameter follows a uniform distribution π(θ) ∼

U (0,B). For rate constants c1 ∼ c8, the values of B are (0.5,2,1,0.1,0.5,5,1,0.1).

The proposed two algorithms were implemented over five iterations and each

iteration contains 100 particles. We choose step sizes ∆t = 2 or 5 and the number

of stochastic simulation Bk = 10.
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Figure 6.3: Simulated molecular numbers for system 2 in a time length of 50 with step
size ∆t of 1: (A): DNA numbers; (B): numbers of DNA·P2; (C): Red line
for the numbers of mRNA black and cyan dash-dotted line for the numbers
of P; (D): numbers of P2.
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Fig. 6.4 gives the probabilistic distribution of the estimated rate constant c7 over

2nd ∼ 5th iterations. The distribution of the first iteration is close to the uniform

distribution, and this is not presented. Since the second iteration, the estimated

rate constant begins to accumulate around the exact value c7 = 0.2. At the last

iteration, the probability in Fig. 6.4 (D) shows a normalized-like distribution.

Compared with the results of system 1 in Figure 6.2, the convergence rate of the

parameter distribution of system 2 is slower. Our numerical results suggested that

this convergence rate depends on the strategy of choosing the values of discrepancy

tolerance α.

To analyze the factors that influence the convergence property of estimates, the

mean count number as well as the averaged error for each iteration k are obtained.

Results are presented in Table 6.2. Using algorithm 1 and 2, we tested for step

sizes of ∆t = 2 and ∆t = 5. Since the errors of estimates obtained using a fixed

value of α = 0.1 are always larger than those obtained by α = 0.05, we only tested

with the cases of a fixed value α=0.05 and varying values of α. For algorithm 1,

we tested two cases for the varying values of discrepancy tolerance α. In the first

test, the values are εk=(0.21,0.2,0.19,0.18,0.175) and α = εk for varying values of

α, which is the case “Same εk” in Table 6.2. The values of εk are also applied to the

case of a fixed value α = 0.05. In this case, the averaged count number of varying

α is much smaller than that of a fixed value of α. Thus we further decreased the

value of α to (0.15,0.125,0.1,0.075,0.07), which is the case “Diff. εk” in Table

6.2. In this case, the mean count numbers are similar to those using a fixed α.

Numerical results suggested that the strategy of using a fixed value of α generates

estimates with better accuracy than the strategies of using varying α values, even

when the computing time of the varying α strategy is larger than that of the fixed

α strategy.

For algorithm 2, we carried out similar tests. In the first case, we set

εk=(0.24,0.23,0.22,0.21,0.2), which is applied to the strategy of fixing α = 0.05
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Table 6.2: Comparison of averaged error and mean count number for estimated rate
constants of system 2 using algorithms 1 and 2. Three strategies are used
to choose the discrepancy tolerance α: a fixed value of α = 0.05; varying
α values; and α = εk (denoted as same εk); varying α values that are
smaller than εk (denoted as diff. εk).(AE:Averaged Error; MN: Mean count
Number).

∆t α\k 1 2 3 4 5

Algorithm 1

2 0.05 MN 18.29 7.53 9.8 12.7 14.23

AE 4.6211 4.4179 4.7138 4.2188 3.8119

Same εk MN 2.69 2.07 2.16 1.93 1.93

AE 4.7006 4.9603 4.8841 4.6833 4.7298

Diff. εk MN 15.26 7.85 8.78 13.06 12.28

AE 4.8295 4.5322 5.0418 4.7346 4.6069

5 0.05 MN 9.69 3.48 3.12 58.2 74.07

AE 4.1076 4.3243 4.1868 3.5311 3.5194

Same εk MN 2.34 2.31 2.42 16.9 11.38

AE 4.9862 4.7669 4.6716 3.8873 4.0017

Diff. εk MN 25.72 8.14 10.45 25.8 174.88

AE 4.0461 3.9583 3.7474 3.5655 3.6951

Algorithm 2

2 0.05 MN 89.7 19.75 17.8 40.42 69.52

AE 4.0540 4.1339 4.1376 3.9696 3.9009

Same εk MN 2.52 3.85 3.55 3.82 3.84

AE 5.0456 4.6069 4.3666 4.5876 3.8958

Diff. εk MN 197.49 15.05 22.09 36.85 94.24

AE 3.8712 3.7934 4.3158 3.6485 3.5989

5 0.05 MN 138.14 30.52 46.66 98.87 377.66

AE 4.0258 3.7218 3.8258 3.8445 3.9205

Same εk MN 21.67 11.34 11.17 26.65 59.64

AE 4.0545 3.5715 4.1910 3.7252 3.8667

Diff. εk MN 185.54 28.39 33.81 89.81 846.61

AE 3.7810 3.6694 3.6939 3.9806 3.8515
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Figure 6.4: Probabilistic distributions of the estimated rate constant c7 over four itera-
tions using algorithm 1. (A):Iteration 2; (B): 3; (C):4; (D):5.

and varying α with α = εk that is the case “Same εk” in Table 6.2. Again, the

averaged count numbers of varying α strategy are much smaller than those using

a fixed α. Thus we decreased the value to (0.095,0.09,0.085,0.08, 0.075), which

is the case “Diff. εk” in Table 6.2; However, the averaged count numbers in the

“Diff. εk” case are similar to those of the previous two strategies, namely a fixed

α and “Same εk”. For algorithm 2, Table 6.2 suggests that the varying α strategy

generates estimates that are more accurate than those obtained from the fixed α
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strategy. However, the best estimates in Table 6.2 are obtained using algorithm 1

and fixed α strategy.

6.3 Conclusion

To uncover the information of biological systems, we proposed two algorithms

for the inference of unknown parameters in complex stochastic models for chem-

ical reaction systems. Algorithm 1 is in the framework of ABC SMC and uses

transitional density based on the simulations over two consecutive observation

time points. Algorithm 2 generates simulations of the whole time interval but

differs from the published method in the error finding steps by comparing errors

of simulated data to experimental data at each time point. The proposed new

algorithms impose stricter criteria to measure the simulation error. Using two

chemical reaction systems as the test problems, we examined the accuracy and

efficiency of proposed new algorithms. Based on the results of two algorithms

for system 1, we discovered that taking smaller values of discrepancy tolerance α

will result in more accurate estimates of unknown model parameters. This conclu-

sion is confirmed by the second system that we tested under different conditions.

Numerical results suggested that the proposed new algorithms are promising

methods to infer parameters in high-dimensional and complex biological system

models and have better accuracy compared with the results of the published

method (Wu et al., 2013a). The encouraging result is that new algorithms do not

need more computing time to achieve such accuracy. Our computational tests

showed that the selection for the value of fitness tolerance is a key step in the suc-

cess of ABC algorithms. The advantage of the population Monte-Carlo methods is

the ability to reduce the fitness tolerance gradually over populations. Generally, a

smaller value of fitness tolerance will lead to a larger number of iteration count

and consequently larger computing time. For deterministic inference problems,
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a smaller value of fitness tolerance normally will generate estimates with better

accuracy. However, for stochastic models, this conclusion is not always true. In

addition to the fitness tolerance, our numerical results suggested that other factors,

such as the simulation algorithm for chemical reaction systems and the strategy

of discrepancy tolerance, also have influences on the accuracy of estimates. Thus

more skilled approaches, such as the adaptive selection process for the fitness

tolerance, should be considered to improve the performance of ABC algorithms.

In this work, we used the SSA to simulate chemical reaction systems (Gillespie,

1977). This approach may be appropriate when the biological system is not large.

In fact, for the two biological systems discussed in this work, the computing time of

inference is still very large. To reduce the computing time, more effective methods

should be used to simulate the biological systems, such as the τ-leap methods (Tian

and Burrage, 2004) and multi-scale simulation methods (Pahle, 2009; Burrage

et al., 2004). Another alternative approach is to use parallel computing to reduce

the heavy computing loads. All these issues are potential topics for future research

work.

6.4 Methods

6.4.1 ABC SMC algorithm

ABC algorithms bypass the requirement for evaluating likelihood functions di-

rectly in order to obtain the posterior distributions of unknown parameters. In-

stead, ABC methods simulate the model with given parameters, compare the

observed and simulated data, and then accept or reject the particular parameters

based on the error of simulation data. Thus there are three key steps in the im-

plementations of ABC algorithms. The first step is the generation of a sample of
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parameters θ∗ from the prior distribution of parameters or from other distribu-

tions that are determined in ABC algorithms. The second step is to define distance

function d(X,Y) between the simulated data X and experimental observation data

Y. Finally, a tolerance value is needed as a selection criterion to accept or reject

the sampled parameter θ∗. Based on the generic form of ABC algorithm (Toni

et al., 2009), a number of methods have been developed including ABC rejection

sampler and ABC MCMC (Boys et al., 2008; Golightly and Wilkinson, 2011). The

ABC rejection algorithm is one of the basic ABC algorithm that may result in long

computing time when a badly prior distribution that is far away from posterior

distribution is chosen. ABC MCMC introduces a concept of acceptance probability

during the decision making step which saves computing time. However, this may

result in getting stuck in the regions of low probability for the chain and we may

never be able to get a good approximation. To tackle these challenges, the idea of

particle filtering has been introduced. Instead of having one parameter vector at

a time, we sample from a pool of parameter sets simultaneously and treat each

parameter vector as a particle. The algorithm starts from sampling a pool of N

particles for parameter vector θ through prior distribution π(θ). The sampled

particle candidates (θ∗1, · · · ,θ
∗
N ) will be chosen randomly from the pool and we will

assign each particle a corresponding weight w to be considered as the sampling

probability. A perturbation and filtering process following through a transition

kernel q(·|θ∗) finds the particles θ∗∗. Similarly with θ∗∗, data Y can be simulated

and compared with experimental data X to further fulfil the requirements for

estimating posterior distribution.

The basic form of algorithm described above is as follows (Sisson et al., 2007):

Algorithm: ABC SMC

1. Define the threshold values ε1, · · · ,εK , start with iteration k = 1.
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2. Set the particle indicator i = 1.

3. If k = 1, sample θ∗ from the proposed prior distribution π(θ). Generate a

candidate data set D(b)(θ∗) Bk times and calculate the value of bk(θ∗), where

D(b) ∼ p(D |θ) for any fixed parameter θ,

bk(θ
∗) =

Bk∑
b=1

1(d(D0,D(b)(θ
∗)) ≤ εk) (6.4.1)

and D0 is the experimental data set.

If k > 1, sample θ from the previous population {θik−1} with weights wk−1

and perturb the particle to obtain θ∗ using a kernel function Kk.

If π(θ∗) = 0 or bk(θ∗) = 0, return to the beginning of step 3.

4. Set θik = θ∗ and determine the weight for each estimated particles θik,

w
(i)
k =


bk(θ

i
k) if k = 1;

π(θik)bk(θik)∑N
j=1Kk(θjk−1,θ

i
k)

if k > 1.

If i < N , update i = i + 1 and return to step 3.

5. Normalize the weights w(i)
k . If k < K , update k = k + 1 and go back to step 2.

A number of algorithms have been developed using the particle filtering technique,

such as the partial rejection control, population Monte-Carlo and SMC. Each of

them differs in the formation of weight w and the transition kernels.

6.4.2 ABC using simulated likelihood density

ABC SMC method uses the simulation over the entire time period to measure

the fitness to experimental data, which is consistent to the approaches used

for deterministic models (Toni et al., 2009). For stochastic models, the widely
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used approach is treating transitional density as the likelihood function (Hurn

et al., 2007; Hurn and Lindsay, 1999). Based on a sequence of n+ 1 observations

X = [X0,X1, · · · ,Xn] at time points [t0, t1, · · · , tn], for a given parameter set θ, the

joint transitional density is defined as

f0[(t0,X0)|θ]
n∏
i=1

f [(ti ,Xi)|(ti−1,Xi−1), · · · , (t0,X0);θ], (6.4.2)

where f0[·] is the density of initial state, and

f [(ti ,Xi)|(ti−1,Xi−1), · · · , (t0,X0);θ] (6.4.3)

is the transitional density starting from (ti−1,Xi−1) and evolving to (ti ,Xi). When

the process X is Markov, the density (6.4.3) is simplified as

f [(ti ,Xi)|(ti−1,Xi−1);θ]. (6.4.4)

In the simulated likelihood density (SLD) methods, this transitional density is

approximated by that obtained from a large number of simulations.

Based on the discrete nature of biochemical reactions with low molecular numbers,

it was proposed to use the frequency distribution of simulated molecular numbers

to calculate the transitional density (Tian et al., 2007b). The frequency distribution

is evaluated by

F[X = Xl] =
1
Bk

Bk∑
m=1

[1− δ(Xl ,Xml)]

using Bk simulations with the simulated state Xml . Here the function δ(x) is

defined by

δ(Xl ,Xml) =

 0 if d(Xl ,Xml) < αXl ;

1 else,

where d(x,y) is a distance measure between x and y.
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Here we propose a new algorithm that uses the simulated transitional density

function as the objective function. Unlike ABC SMC algorithm (Toni et al., 2009),

the new method considers the transitional density function from ti−1 to ti only

at each step. Based on the framework of ABC SMC, the new algorithm using

transitional density is proposed as follows.

ABC SLD algorithm 1

1. Given data X and any assumed prior distribution π(θ), define a set of thresh-

old values ε1, · · · ,εK .

2. For iteration k = 1,

(a) Set the particle indicator i = 1, sample θ∗ ∼ π(θ).

(b) For time step l = 1,2, · · · ,n, use initial condition Xl−1 and parameter θ∗

to generate data Y at tl for Bk times.

(c) For m = 1, · · · ,Bk, calculate the value of discrepancy and test for

d(Xl ,Yml) ≤ αXl , (6.4.5)

where α is a defined constant.

If it is true, let βml(θ∗) = 0, otherwise it is one. Then determine

bl(θ
∗) =

Bk∑
m=1

βml(θ
∗). (6.4.6)

(d) Calculate

ε =
m∑
l=1

1
Bk

(Bk − bl(θ∗)). (6.4.7)

If ε < εk, update θki = θ∗ and move to the next particle i = i + 1.

(e) Assign weight wki = 1
N for each particle.

164



Chapter 6 – Wu et al. (2014)

3. Determine the variance for the particles in the first iteration

σ1 =
√
var(θ1

{1:N })

4. For iteration k = 2, · · · ,K

(a) Start with i = 1, Sample θ∗∼ θk−1
i:N using the calculated weights wk−1

i:N .

(b) Perturb θ∗ through sampling θ∗∗∼ q(θ|θ∗), where q = N (θ∗,σ2
k−1) or

q =U (a,b). Here values of a,b depend on θ∗ and σ2
k−1.

(c) Generate simulations and calculate the error ε using the same steps as

in 2(b)∼(d).

(d) For each particle, assign weights

wki =
π(θki )bk(θ

i
k)∑N

j=1w
k−1
j q(θk−1

j |θ
k
j ,σk−1)

.

(e) Determine the variance for the particles in the k-th iteration

σk =
√
var(θk{1:N }).

An alternative approach is to generate simulations over the observation time

period but compare the error to experimental data at each time point. The

approach locates somewhere between ABC SMC algorithm (Toni et al., 2009)

and the proposed Algorithm 1, which is presented below. For simplicity we do

not give a detailed algorithm, but just provide the key steps 2.b) ∼ 2.d) that are

different from those in Algorithm 1.

ABC SLD algorithm 2

2.b) Generate data Y Bk times using θ∗.

165



Chapter 6 – Wu et al. (2014)

2.c) Form = 1, · · · ,Bk and l = 1,2, · · · ,n, calculate the value of discrepancy d(Xl ,Yml)

and test for

|Xl −Yml | ≤ αXl .

If it is true, let bml(θ∗) = 0, otherwise it is one.

2.d) Calculate

ε =
n∑
l=1

1
Bk

Bk∑
m=1

bml(θ
∗).
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extrinsic noise only. For the stochastic model of Nanog gene network, we identify key

coefficients that have more impacts on the network dynamics than the others through
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Chapter 7

Sensitivity and Robustness Analysis

for Stochastic Model of Nanog Gene

Regulatory Network

7.1 Introduction

Recent advances in systems biology have demonstrated that mathematical mod-

elling is a very important role to study the dynamic property of biological networks

at system level. A key step in model development is to determine the values of un-

known model parameters. Since unknown parameters are difficult and sometimes

even impossible to measure with biological experiments, a number of numerical

methods have been developed recently. These numerical methods can mainly

classified as optimization approaches or Bayesian approaches methods (Wu et al.,

2014; Hartig et al., 2011; Tian et al., 2007b). Despite these progresses, the inference

of model parameters still remains as a challenging issue in system biology. For

example, some estimated parameters may have values with large variations in

different numerical tests, and these sets of parameters all can faithfully realize
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experimentally observed data. Thus, our confidence on the model predictions may

be limited due to the uncertainties of model parameters.

To address these challenges, sensitivity analysis is a major technique to determine

how fluctuations in the output of mathematical models can be influenced by

the changes in the model inputs(Gunawan et al., 2005). For example, the most

sensitive model parameters and their corresponding biological processes may

be the potential targets for further experimental analysis for drug designs. In

recent years, sensitivity analysis has become an increasingly important step in

mathematical modelling (Marino et al., 2008). It may also provide important

measures to the model parameters in the parameter inference step of model

development (Kiparissides et al., 2009). In general, methods for sensitivity analysis

can be classified into two major approaches: local and global methods. Local

methods study the influence of a single parameter in isolation and the other

parameters are kept constant at their nominal values. On the other hand, global

methods study the influence of a parameter by varying it in a defined direction

and also simultaneously varying the other parameters in a random fashion in the

entire parameter space (Saltelli et al., 2008). For example, the method of derivative

based global sensitivity measures (DGSM) has recently become popular among

practitioners (Kucherenko and Iooss, 2014). However, the main drawback of the

global methods is their extensive computational costs for large models.

Chemical reaction model has been regarded as a popular approach in the last ten

years to investigate both intrinsic noise and extrinsic noise in biological networks.

These models typically depend on a set of kinetic parameters whose values are

often unknown or fluctuate due to an uncertain environment (extrinsic noise). For

gene regulatory network models, small changes to the parameters may signifi-

cantly alter the system output, and thus it is critical to characterize such effects.

Although parametric sensitivity analysis is an indispensable analysis technique in

the study of kinetic models, classical sensitivity analysis does not directly apply
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to discrete stochastic dynamical systems, which has recently gained popularity

because of its relevance in the simulation of biological processes. In the stochas-

tic setting, the simplest and most common method for finite perturbations is to

compute a finite difference via Monte Carlo simulations (Gunawan et al., 2005;

Rathinam et al., 2010). Sensitivity analysis for discrete stochastic processes has

been developed based on density function (distribution) sensitivity using an ana-

log of the classical sensitivity and the Fisher Information Matrix (Gunawan et al.,

2005). Recently this algorithm has been formulated in (Damiani et al., 2013) and

applied to study the sensitivity property of catalytic reaction networks.

Robustness, in both biological and engineering systems, can be defined as the

ability of a system to function correctly in the presence of both internal and

external uncertainties (Bates and Cosentino, 2011). It was firstly introduced by

Csete and Doyle (2002), which then has been extensively studied by Kitano and

co-workers (Kitano, 2004, 2007). Since robustness is an ubiquitously observed

property of biological systems (Kitano, 2004; Tian et al., 2011), this property has

been widely used recently as an important measure to select the optimal network

structure or model rate constants from estimated candidates (Citri and Yarden,

2006; Apri et al., 2010; Masel and Siegal, 2009). A formal and abstract definition of

the robustness property, given by Kitano (2007), has been widely used in analyzing

robustness properties of biological systems (Tian and Song, 2012).

Sensitivity property and robustness represent two different aspects of dynamic

properties of biological network models, namely the variation of output and main-

tenance of system property, respectively. This work will use a gene network as

the test system to investigate these two property simultaneously. Embryonic stem

cells (ESC) have the ability to self-renew and remain pluripotent, while continu-

ously providing a source of variety for differentiated cell types. Understanding

the regulatory mechanisms for controlling these properties at molecular level is

very important for stem cell biology and its application to regenerative medicine.
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Studying the dynamic property at a system level is crucial for elucidating those

molecular interactions, which regulate the reprogramming of somatic cells into

ESC (Chickarmane et al., 2012). The maintenance of the pluripotent state of ESC

over a number of self-renewing divisions is associated with a characteristic expres-

sion pattern of a number of particular genes. Extensive experimental studies have

demonstrated that the transcription factors (TF) Oct4, Sox2 and Nanog play an

important role in this regulatory process by directing the gene expression in ESC

through a cooperative interaction (Rodda et al., 2005). Biological experiments in

recent years also suggest that ESC populations are heterogeneous with respect to

the expression levels of Nanog and that individual ESCs reversibly change their

Nanog expression levels (Glauche et al., 2010; Navarro et al., 2012). In addition,

similar expression patterns have been found for TF Rex1, which is a reliable

marker for undifferentiated ESC and described as a downstream target of TFs

Nanog, Oct4 and Sox2 (Toyooka et al., 2008). Furthermore, Autocrine FGF4/Erk

signalling has been identified as a major stimulus for fate decisions and lineage

commitment in ESC (Kunath et al., 2007). Taken together, these genes and external

stimulus are the critical determinants for the degree of ESC heterogeneity and

differentiation.

Mathematical modelling have been designed as a powerful tool to explore the func-

tion of regulatory mechanisms in the Nanog gene network. The first mathematical

model of the Oct4-Sox2-NANOG network motif was developed for studying the

bistable switching due to several positive feedback loops and environmental sig-

nals (Chickarmane et al., 2006). A subsequent stochastic model was designed to

explore mechanisms and feedback regulations and describe the observed variation

of the Nanog levels in mouse ESC (Glauche et al., 2010). In addition, a more

detailed computational model has been proposed; and stochastic simulations

suggest that NANOG heterogeneity is the deciding factor for the stem cell fate
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(Chickarmane et al., 2012). Recently, a new mathematical model has been pro-

posed to explicitly integrate FGF4/Erk signalling into an interaction network of

key pluripotency factors, namely Oct4, Sox2, Nanog and Rex1. Simulation results

suggest that interactions between FGF4/Erk signalling and Nanog expression

qualify as the major mechanism to manipulate mouse ESC pluripotency (Herberg

et al., 2014).

Although the function of extrinsic noise has been studied, there has not been

any work so far to explore the influence of intrinsic noise on the dynamics of

Nanog gene network. In this work, we first propose a general framework to

study sensitivity and robustness properties simultaneously based on stochastic

simulations. A stochastic model of the Nanog gene network is developed in order

to explore the function of internal noise in the system state. Using our proposed

framework, we study the sensitivity and robustness properties of this stochastic

model regarding the variation of each parameter. The remaining part of this paper

is organized as follows. Section 7.2 proposes the computational framework and

develops the stochastic model of the Nanog gene network. Section 7.3 presents

simulation results of the stochastic model, and as well as the sensitivity and

robustness properties of the model. Discussion of the connection and difference

between sensitivity and robustness is presented in Section 7.4.

7.2 Method

In this section we first derive the stochastic model using chemical equations based

on the developed stochastic differential equation model (Herberg et al., 2014).

Then we propose a general framework to calculate the sensitivity coefficient and

robustness property of discrete models for this chemical reaction system.
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Rex1	
   Oct4-­‐Sox2	
   Nanog	
  

FGF4/ERK	
  

Figure 7.1: Network diagram for the Nanog gene regulatory network

7.2.1 Mathematical model

A mathematical model has been developed recently to study the function of

external noise in the genetic regulation of the Nanog network (Herberg et al., 2014).

This network considers the TFs Oct4, Sox2, Nanog and Rex1 as central elements

of a self-regulating intracellular network structure. It is assumed that Oct4 and

Sox2 proteins form heterodimers to positively regulate their own expressions and

to activate the transcription of Nanog and Rex1 to a basal level (Shi et al., 2006).

A Hill-coefficient n = 2 is selected in the mathematical formulation according to

the finding that Nanog proteins form homodimers (Wang et al., 2008). In addition

to the basal activation of Rex1 through Oct4 and Sox2, Nanog is considered to

be an activator for the transcription of the pluripotency marker Rex1 (Shi et al.,

2006). Moreover, there are experimental evidences showing that Oct4 and Sox2

induce Erk activity through the activation of FGF4 and that Erk signalling acts

as a potential Nanog repressor (Silva et al., 2009). Hence, a negative FGF4/Erk-

mediated feedback loop is included in this stochastic network model (see Fig

7.1).
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For the quantitative assessment of the model structure, a mathematical description

has been derived for the interactions between the TFs Oct4, Sox2, Nanog, Rex1,

and the signalling pathways FGF4/Erk (Herberg et al., 2014). Based on this model,

we derive a stochastic model using chemical reactions. Here [OS], [N], [R] and

[E] are denoted as the protein copy numbers of Oct4-Sox2, Nanog, Rex1 and

FGF4/Erk, respectively. The temporal changes of the protein concentrations [OS],

[N], [R] and [E] are represented by the following set of discrete chemical reactions:

()
k1−→ [OS] k1 =

s1,2[OS]2

(1/k + [OS])2do,s

[OS]
d1−→ () d1 = dos(1 + iosYin)

()
k2−→ [N] k2 =

s3[OS]
1/k + [OS]

+
s4[N]2

1/k + [N]2 + p[E]

[N]
d2−→ () d2 = dN (1 + iNYin)

()
k3−→ [R] k3 =

s5[OS]
1/k + [OS]

+
s6[N]2

1/k + [N]2 (7.2.1)

[R]
d3−→ () d3 = dR(1 + iRYin)

()
k4−→ [E] k4 =

s7[OS]
1/k + [OS]

[E]
d4−→ () d4 = dE

where p is the repression rate to the expression of gene Nanog, which is regulated

by the FGF4/Erk pathway. All proteins and protein complexes are degraded by

first-order kinetics with protein specific degradation rates dj (with j ∈(OS, N, R,

E)). The degradation rate are enhanced by inhibition factors ij depending on the

intracellular activity of a differentiation signal Y , denoted by Yin. However, Yin is

not considered in this work. Thus we assume Yin = 0. There are two sets of rate

constants for the above model (Herberg et al., 2014). Here we apply the first set

that has the following values: s1,2 = 75, s3 = 0.1, s4 = 40, s5 = 15, s6 = 140, s7 = 2,

k = 0.1, kγ = 4, iOS = 0, iN = 0, iR = 0, dO,S = 0.01, dOS = 1, dN = 1, dR = 1, dS = 1.
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7.2.2 Framework for sensitivity and robustness analysis

Gunawan et al. (2005) proposed the first numerical method to calculate the sensi-

tivity property of a discrete stochastic model of chemical reaction systems. This

method aims at calculating the sensitivity measure, given by

SX,θ(t) = E
[∣∣∣∣∣∂f (X,θ, t)

∂θ

∣∣∣∣∣] =
∫
Ωθ

∫
ΩX

∣∣∣∣∣∂f (X,θ, t)
∂θ

∣∣∣∣∣f (X,θ, t)dθdX (7.2.2)

where Ωθ and ΩX are the domains of integration of the parameter θ and variable

X, respectively. Here function f (X,θ, t) is the density function of variable X with

parameter θ at time point t. Thus in order to calculate this sensitivity measure,

we not only need to estimate the density function based on stochastic simulations

but also determine the partial derivative of the density function.

Regarding robustness analysis, a formal and abstract definition (Kitano, 2007) is

used in this work to measure the robustness property of the proposed model. The

robustness property of a mathematical model with respect to a set of perturbations

P is defined as the average of an evaluation function Dsa,P of the system over all

perturbations p ∈ P , which is weighted by the perturbation probabilities prob(p) ,

given by

Rsa,P =
∫
p∈P

prob(p)Dsa,P dp. (7.2.3)

Here we propose to use the following measure to evaluate the average behavior

RMa,P =
∑
i,j

[
∫
p∈P

prob(p)xij(p)dp], (7.2.4)

which is the mean xij(p) of gene expression levels over all perturbed model param-

eters. This means that it should be close to the simulated gene expression levels

xij obtained from the unperturbed rate constants.
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Depending on the evaluation function Dsa,P , we can consider different measures

to evaluate the robustness property. For example, if we consider the difference

between the perturbed and unperturbed simulations, the impact of perturbations

on dynamic behaviour can be defined by

RMa,P =
∑
i,j

[
∫
p∈P

prob(p)(xij − xij(p))2dp], (7.2.5)

where xij(p) and xij are the simulated gene expression levels at time point tj with

perturbed and unperturbed rate constants, respectively. For each set of model

parameters, we generate M perturbed simulations and measure the difference

between the perturbed and unperturbed simulations by

Ek =

√√√√
1
NM

N∑
i=1

M∑
j=1

(x(k)
ij (p)− x(k)

ij )2 (7.2.6)

where x(k)
ij (p) and x(k)

ij are perturbed and unperturbed k-th simulation of gene i at

time point tj , respectively.

In this work we are interested in the bistability property of the Nanog expression

levels. The expression level may be in a low or high expression state. We need to

consider the percentages of the system state staying in the low expression level,

namely

P (θ) =
∫
t∈Ωt

1(|X(θ)−XL| ≤ ε)dt (7.2.7)

where X(θ) is the system state obtained using parameter θ and XL is the low

expression level of the system. For the different values of P (θ) based on given

θ, we can use the mean and variance of these values to represent the robustness

property of the system model.

RM = Eθ[P (θ)], RV = V arθ[P (θ)] (7.2.8)
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Here we formulate the following algorithm to calculate the sensitivity and robust-

ness measure.

Algorithm for sensitivity and robustness analysis

Input: a stochastic model of chemical reactions with given parameters. Here

calculate sensitivity measure (7.2.2) and robustness (7.2.7) related to parameter θ.

Step 1. Vary parameter θ to get a series of values (θ1, . . . ,θn)

Step 2. Use parameter θi to get M simulations of the stochastic model at time

points T1, . . . ,TK .

Step 3. Use these M simulation values to get a density function f (xk ,θi ,Tj) at each

time step Tj for each variable xk.

Step 4. Apply the density function values f (xk ,θi ,Tj) (i = 1, . . . ,n) and a polynomial

interpolation to calculate the derivatives of the density function
∂f (xk ,θi ,Tj )

∂θi
.

Step 5. Obtain
n∑
i=1

K∑
k=1

∣∣∣∣∣∣∂f (xk ,θi ,Tj)

∂θi

∣∣∣∣∣∣f (xk ,θi ,Tj)

to get the sensitivity measure of the model against parameter θi .

Step 6. Repeat steps 1∼5 to get the sensitivity measures for all parameters we are

interested and then compare the influence of each parameter on the dynamics of

the stochastic model.

Step 7. For robustness property, we use the generated M simulations in Step 2 to

calculate either the difference between the perturbed and unperturbed simulations

(7.2.6) or the percentages of the system state at a particular system state (7.2.7) as

well as their mean and variance (7.2.8).

180



Chapter 7 – (Wu et al., 2015)

7.3 Results

7.3.1 Deterministic behaviour

In this work we first determined the dynamic behaviour of the deterministic

model. Thus we derive the ordinary differential equation model based on the

chemical reaction system (7.2.1), given by

d[OS]
dt

=
s1,2[OS]2

(1/k + [OS])2do,s
− dos[OS]

d[N]
dt

=
s3[OS]

1/k + [OS]
+

s4[N]2

1/k + [N]2 + p[E]
− dN [N]

d[R]
dt

=
s5[OS]

1/k + [OS]
+

s6[N]2

1/k + [N]2 − dR[R] (7.3.1)

d[E]
dt

=
s7[OS]

1/k + [OS]
− dE[E]

Similar to the stochastic model (7.2.1), variables in this deterministic model are

molecule copy numbers. The rate constants are the same as those in Section 7.2.1

except parameters s4 and p. As discussed in the next section, the values of these

parameters are s4 = 150 and p = 250. Note that model (7.3.1) is a special case of

the model in (Herberg et al., 2014) but it has two different parameter values.

For determining the function of intrinsic noise on the expression of gene Nanog,

we investigate the existence of bistability regarding variations of parameters

s3, s4, dN and p. Since the enhanced degradation from Nanog is zero (namely

iOS = iN = iR = 0), the activity of Oct4-Sox2 is auto-regulated, and its steady state

satisfies
s1,2[OS]2

(1/k + [OS])2do,s
= d1[OS]
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which gives [OS] = 7500. Based on this steady state value, the steady state of

FGF4/Erk complex is

[E] =
1
dE

s7[OS]
1/k + [OS]

= 1.9973.

Thus, the steady states of Nanog gene will satisfy the following equation

7500s3
1/k + 7500

+
s4[N]2

1/k + [N]2 + 1.9973p
= dN [N ] (7.3.2)

Fig. 7.2 gives the bifurcation diagrams of the deterministic model (7.3.1). For all

these four parameters, Nanog expression levels have two stable steady states and

one unstable steady state over a range of parameter values. For parameters s3 and

p, the expression values at the steady states are relatively constant. The changes of

these two parameters have not much influence on the expression level of Nanog

gene unless p is very large. However, the synthesis rate s4 and degradation rate dN

can change the steady states substantially. An interesting observation is that the

unstable steady state is quite close to the steady state with low expression level.

Thus, it is relatively easier for the system to switch from a low Nanog level to high

Nanog expression level.

7.3.2 Stochastic behaviour

We use the proposed stochastic model to get simulations of Nanog gene network;

and assume that the regulation strength p from PGF4/ERK complex is stochastic.

Since the variables in (Herberg et al., 2014) are molecular concentrations, we need

to change some parameters to realize the variables in the model as molecular

copy numbers in order to realize genetic switching for the expression level of

gene Nanog. If we directly use parameters in Section 7.2.1, intrinsic noise in the

stochastic model (7.2.1) is not large enough to induce Nanog to reach the other

steady state. Thus we made some changes to some parameters, namely s4 = 150
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Figure 7.2: Bifurcation diagram of the deterministic model (7.3.1) for four parameters.
Solid and dash-dot lines are two stable steady states but dash line in the
middle is the unstable steady state. (A) parameter s3. (B) s4. (C) dN . (D)
p.

and

p = p0 ·U (0,1) (7.3.3)

where p0 = 500 and U (0,1) is a sample of the uniformly distributed random

variable in [0,1]. Then we can realize genetic switching for the expression levels

of Nanog and Rex1. Figure 7.3 gives one simulation of the system model. Fig.

7.3(A) presents the level of Oct4-Sox2 complex that always stay in a very high

level. The Nanog expression level in Fig. 7.3(B) shows two steady states and

noise can induce the system from one steady state to the other. Since gene Rex1

is regulated by Nanog, the expression levels of Nanog and Rex1 are at high or
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low levels simultaneously, therefore expression level of Rex1 in Fig. 7.3(C) is

consistent with that of Nanog in Fig. 7.3(B). However, the expression level of

Rex1 is much less fluctuated than that of Nanog in Fig. 7.3(B). Finally the copy

number of PGF4/ERK complex in Fig. 7.3(D) is quite low. The large variation

in this complex number together with the fluctuations in the p value (7.3.3) can

realize genetic switching.

Since parameter p is a random coefficient, the proposed model (7.2.1) is not purely

based on intrinsic noise only. In fact, it is also influenced by external noise. We

have also simulated the stochastic model using a fixed value of p, for example

p = p0/2 (results not shown). From Figure 7.3(D), we can see it is not easy to

realize genetic switching using such constant value of parameter p, which is also

suggested by the bifurcation diagram in Fig. 7.2(D).

7.3.3 Sensitivity analysis

In this section, we first calculate the density function of stochastic simulations

obtained by different parameter values and then the corresponding derivatives of

density functions. For each parameter in the model, we choose 11 different values

of that parameter using

θi = θ0 ∗ (0.7 + i ∗ 0.05), i = 1, . . . ,11.

where θ0 is the parameter value in Section 7.2.1. For each set of parameters, we

obtain 1000 simulations and use the simulated expression levels at time point t to

get the density distribution function.

Fig. 7.4 shows an example for the simulated density distributions of the four

variables with different values of parameter dE . Bell shapes of the density function

are revealed for all the four species from this plot. Meanwhile the bell shaped
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Figure 7.3: A stochastic simulation of the proposed stochastic model (7.2.1) using
the first set of parameters together with s4 = 150 and random variable p
defined by (7.3.3).

density function can also be observed for other parameters (results not shown). In

the simulated density functions in Fig. 7.4, the peak value of density function for

different parameter values θi may be different, such as the E density function in

Fig. 7.4 for the PGF4/ERK complex.

According to these density functions, the derivatives of each density function at

different time points are also obtained. Since the partial derivative is defined for

the parameter θi , we use a polynomial interpolation to approximate the density

function in terms of the parameter and use the density function value at θi−1, θi
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Figure 7.4: Density functions for variables [Oct4-Sox2, Nanog, Rex1, FGF4/Erk] with
variations in parameter dE

and θi+1 to calculate the derivative of the density function at θi . Fig. 7.5 gives the

derivative values of the density functions for parameter dE .

Using the density function values in Fig. 7.4 and derivatives in Fig. 7.5, we then

determine the sensitivity measure of four variables for different parameters at

different time points. Fig. 7.6 shows that, for all the four variables, the variations

of parameter s3 has much larger influence on the system dynamics than all other

parameters. However, the difference between the sensitivity measures of other

parameters is small. This observation may be due to the large value of s3 and large

expression levels of Oct4-Sox2 complex.

To give a further indication of the sensitivity property, we first calculate the

averaged values of the sensitivity measure over all the time points for each variable

and each parameter. Then we sum up the averaged sensitivity values of the four

186



Chapter 7 – (Wu et al., 2015)

1.5

parameter value

1

0.56000
6200

6400

OS molecule value

6600

0.04

0.02

0

-0.02

-0.04
6800

O
S

 d
e
r
iv

a
te

 v
a

lu
e

1.5

parameter value

1

0.50

20

Nanog molecule value

40

0.4

0.2

0

-0.2

-0.4
60

N
a

n
o

g
 d

e
r
iv

a
te

 v
a
lu

e

1.5

parameter value

1

0.5100Rex molecule value

150

0.1

0.05

0

-0.05

-0.1
200

R
e

x
 d

e
r
iv

a
te

 v
a
lu

e

1.5

parameter value

1

0.50
10

20

E molecule value

30

1

0.5

0

-0.5

-1
40

E
 d

e
r
iv

a
te

 v
a
lu

e

Figure 7.5: Derivatives of density functions for variables [Oct4-Sox2, Nanog, Rex1,
FGF4/Erk] with parameter dE

variables for each parameter. Figure 7.7 clearly shows that the variation of s3

has much larger impact on the sensitivity property of the system than other

parameters. In addition, the variation on any one of the four degradation rates

has larger influence on the sensitivity property than the synthesis rate except s3.

Surprisingly, the change of p0 has slight influence on the sensitivity property.

7.3.4 Robustness analysis

After the assessment of sensitivity property of the stochastic model, we next

investigate the effect of parameter changes on the system dynamics. In the Nanog

gene network, we are interested in the bistability property of the Nanog expression

level. Thus, we quantitatively measure the possibility for the Nanog gene to stay

in a low expression level over a simulation. Compared with the expression levels

of gene Nanog, the expression level of the marker gene Rex1 is consistent with the
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Figure 7.6: Sensitivity values for variables [Oct4-Sox2, Nanog, Rex1, FGF4/Erk] with
all parameters

activity of Nanog but has less fluctuations. Thus we use the following formula to

determine whether the expression level of Rex1 is in the low state at a given time

point t.

[Rex1](t) <min(Rex1) +
1
3

(max(Rex1)−min(Rex1)). (7.3.4)

where min(Rex1) and max(Rex1) are minimal and maximal expression levels of

Rex1 over a simulation.

For each set of model parameters, we obtained 1000 simulations and then calcu-

lated the percentages of gene Rex1 staying in the low expression levels at time

point t = 50. Fig. 7.8 shows four types of changes for the influence of parameter

variations on bistability properties. The first type of parameters, including s12,
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Figure 7.7: Sensitivity values of the stochastic model with all parameters. The indexes
(1 ∼ 11) are for (1: s12, 2: s3, 3: s4, 4: s5, 5: s6, 6: s7, 7: dOS , 8: dN , 9: dR,
10: dE and 11: p0)

s5, s6, dOS , and dR, does not have much influence on the bistability property of

gene network. The percentages of Rex1 at low level always fluctuates around

a particular value. However, an increasing of parameters dN , p0 and s7, which

belongs to the second type, leads to more simulations whose expression levels

of Rex1 stay at the low level at t = 50. On the contrary, increasing parameter

value s4 and dE in the third type will promote the expression levels of Rex1, and

more simulations in this case will maintain at the high expression level at t = 50.

One special case can be noticed for parameter s3, i.e. instead of revealing a linear

decreasing relationship, it presents some special patterns for the robustness of

the system. In this case, which is the fourth type, the robustness property keeps

unchanged in a small range of parameter variations. However, if the change

of parameter value is large, the percentages of Rex1 staying at low level is also

changed, though the variation of percentages is not high.
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Figure 7.8: Robustness analysis showing the percentages of time points when the
network maintains a low expression level of gene Rex1 using different
values of a particular parameter. (A) Parameters dOS and s5. (B) DNN ,
p00 and s7. (C) dEE and s4. (D) s3

To further compare the sensitivity and robustness property, we give four simula-

tions of Nanog with different values of s3 or s4. Sensitivity analysis shows that

the variation of parameter s3 has a large impact on the system dynamics; while

the influence of the changes in s4 is small. Numerical simulations in Fig. 7.9

confirm this sensitivity analysis result. Fig. 7.9(A) and 7.9(B) give simulations

when s3 is 0.075 and 0.125, respectively. There are large variations in the Nanog

number, though the percentage of Nanog in low expression level is relatively

fixed according to the criterion (7.3.4). In fact it may be difficult to claim that the

Nanog activity is in a low state since the time periods to maintain the high/low

expression level are short. In addition, Fig. 7.9(C) and 7.9(D) give simulations

when s4 is 30 and 50, respectively. In this case, the Nanog copy number maintains

in a high or low level for a relatively long time period. In addition, when the
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Figure 7.9: Simulations of Nanog number using different model parameters. (A)
s3 = 0.075. (B) s3 = 0.125. (C) s4 = 30. (D) s4 = 50.

Nanog copy number stays in the high level, the variations of Nanog number are

relatively smaller than those in Fig. 7.9(A) and 7.9(B). Thus both sensitivity and

robustness property can provide a thorough understanding for the influence of

model parameter variations on system dynamics.

7.4 Discussion and Conclusion

In this work, we proposed a framework to discuss the sensitivity and robustness

property of biological systems simultaneously. In this framework sensitivity anal-

ysis uses the difference method to calculate the derivatives of the probability

density function; and robustness analysis is based on the general definition pro-

posed by Kitano (2007). Meanwhile a stochastic model of Nanog gene network

with intrinsic noise based on a published model that discussed extrinsic noise only
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was proposed. Numerical results of the Nanog gene network model suggest that

the system dynamics are sensitive to variations of parameter s3 that is related to

the positive regulation from the Oct4-Sox2 complex. However, the system model

is robust to the variation of this parameter. In addition, the change of a number

of other parameters will vary the bistability property of the Nanog gene network

model. Numerical simulations also indicated that the proposed framework is an

efficient approach to assess the robustness and sensitivity properties of biological

network models.

Sensitivity and robustness are two major concepts to measure the variation of

system dynamics caused by parameter perturbations. Sensitivity measures quanti-

tative changes of the variable values in the model; while robustness is the property

of a system to maintain certain key properties, such as the bistability or oscillation.

In the latter case, the quantitative variation of system output is not an important

issue. Both are important to a biological system model under different experi-

mental conditions. For the Nanog network model, our results raise a number of

interesting questions regarding the sensitivity and robustness analysis, such as the

quantitative definitions of these two properties and relationship between them.

These issues will be the topics of potential future research.
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Chapter 8
An Integrated Approach to Infer

Dynamic Protein-gene Interactions: A
Case Study of the Human P53 Protein



Chapter 8 is based on the article Wang J, Wu Q, Tian T. 2015. An integrated

approach to infer dynamic protein-gene interactions: a case study of the human

p53 protein (submitted for publication) .

Abstract. Investigating the dynamics of regulatory networks through high throughput

experimental data, such as microarray gene expression profiles, is a very important

but challenging task. One of the major hindrances in building detailed mathematical

models for genetic regulation is the large number of unknown model parameters. To

tackle this challenge, a new integrated method is proposed by combining a top-down

approach and a bottom-up approach. First, the top-down approach using probability

graphical models is used to predict the network structure of DNA repair pathway that

is regulated by the p53 protein. Two networks are predicted, namely a network of eight

genes with eight inferred interactions and that of 21 genes with 17 interactions. Then,

the bottom-up approach using differential equation models are developed to study the

detailed genetic regulations based on either a fully connected regulatory network or a

gene network obtained by the top-down approach. Model simulation error, Akaike’s

information criterion, parameter identifiability and robustness property are used as

criteria to select the optimal network. Results based on random permutation of input

gene network structures indicate that the prediction accuracy and robustness property of

the two inferred networks are much better than that of the corresponding fully connected

networks. In addition, a comparison study suggests that the proposed approach has

better simulation accuracy and robustness property than the earlier one. In particular,

the computational cost is significantly reduced. Overall, the new integrated method is a

promising approach for investigating the dynamics of genetic regulation.

Keywords. P53; gene regulatory network.

References are considered at the end of the thesis.
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An Integrated Approach to Infer Dy-

namic Protein-gene Interactions: A

Case Study of the Human P53 Pro-

tein

8.1 Introduction

With the rapid advancement of high-throughout technologies such as microarray

and mass spectrometry (MS)-based proteomics, it has become possible to measure

gene expression levels and kinase activities in the genome-wide scale simultane-

ously (Wang, 2008; Cox and Mann, 2011; Simon, 2008). Although the datasets

contain enormous amounts information of biological systems, it is still a challenge

to develop effective methods to extract useful knowledge from the observations

(Rung and Brazma, 2013). In particular, inference of genetic regulatory networks

is considered as an important task for extracting hidden information from observa-

tions such as microarray gene expression datasets. The development of inference
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methodologies and their application to genetic networks have attracted substantial

interests from researchers in a wide range of research fields and become one of

the important topics in bioinformatics (Bar-Joseph et al., 2012; Penfold and Wild,

2011; Zhang et al., 2013; Wang et al., 2011).

Mathematical modelling and statistical analysis have contributed substantially to

the basic understanding of biological processes. Inference methods, which identify

molecular interaction networks from ‘omics’ datasets, are termed as top-down

approaches in systems biology (Bruggeman and Westerhoff, 2007). Data mining

and machine learning techniques have been used to infer interactions or correla-

tions among various variables. Inference methods for gene regulatory networks

based on time-course gene expression profiles include Pearson correlation (Nayak

et al., 2009), the Boolean networks (Hickman and Hodgman, 2009), Gaussian

graphical models (Wang et al., 2005; Ma et al., 2007), Bayesian networks (Wang

and Li, 2012; Friedman et al., 2000), Bayesian correlated clustering (Kirk et al.,

2012), models based on support vector machines (Zhu et al., 2009), and singular

value decomposition (Yeung et al., 2002). Usually, probabilistic graphical model

(i.e. Gaussian graphical models or Bayesian networks) is the first choice because

of its simplicity and efficiency (Maetschke et al., 2013).

Another major type of methods for inferring gene networks is the bottom-up

approach that examines the mechanisms through functional properties of the

interactions between network components (Bruggeman and Westerhoff, 2007).

Among the bottom-up approaches, differential equation model that is based on

the available information of variables (i.e. TF) is particularly important. This

approach not only captures the dynamic behavior of gene expression but also

provides more detailed regulatory information than the top-down approaches

(Gardner et al., 2003). Since the bottom-up method has many unknown parameters

that need to be estimated using experimental data, it only suites for small-scale

networks. Generally, a linear model is the first choice to infer a large gene network
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because of the simplicity and computing efficiency (De Jong, 2002). However, the

linear model is not appropriate for studying systems with non-linear properties

(Tegner et al., 2003). Although an S-system can be used to realize non-linear

properties of genetic regulations (Savageau, 1969; Thomas et al., 2007), it has a

large number of unknown model parameters. More recently, stochastic differential

equations have been used to describe the function of noise in microarray gene

expression data (Tian, 2010; Wang and Tian, 2010), and new algorithms have been

developed to infer the network structure and parameters of mathematical models

for the bottom-up approaches (Liu and Wang, 2008; Vilela et al., 2008; Cao and

Zhao, 2008; Akutsu et al., 2000; Kimura et al., 2005; De Smet and Marchal, 2010).

For bottom-up approaches such as differential equations models, inference is

generally defined as a problem of estimating model parameters that produce small

simulations errors against experimental data. Nevertheless, a real hindrance of

genetic network inference is that the number of unknown model parameters is

much larger than that of observation time points using gene expression profiles.

For example, in the linear model for a network of N genes, N (N + 1) unknown pa-

rameters have to be estimated based on observations within at most 50 time points.

In an S-system model, the number of unknown parameters is 2N (N + 1); and the

neural network model holds N (N +3) unknown parameters. Therefore, a key chal-

lenge for the bottom-up approaches is to reduce the number of unknown model

parameters from the level of N 2 to the level of N . So far, several approaches have

been proposed to address this issue, including the usage of network properties (i.e.

network structural sparseness, network scale-freeness, as well as network motif

and modularity) (Hecker et al., 2009), but the results were still not satisfactory.

Although either top-down or bottom-up approaches have been used separately

to infer gene regulatory networks in various system scales, there has been lit-

tle integrative research so far to combine both methods together. In fact, the

inferred gene-gene interactions (either positive or negative) through top-down
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approaches may assist the fine tuning of unknown parameters in a bottom-up

method. Thus, we propose a new method by combining both top-down and

bottom-up approaches together to infer genetic regulatory networks. The new

method may not only reduce the dimension of parameter space but also save

computational time.

8.2 Materials and Methods

8.2.1 Experimental dataset

This research is based on a published microarray dataset that was generated from

the Human All Origin MOLT4 cells carrying wild-type p53. Cell were irradiated

and harvested every 2 hours over a 12-hours period (Barenco et al., 2006). We

obtained the ionizing radiation Affymetrix dataset from ArrayExpress (E-MEXP-

549). Pre-processing of microarray datasets were based on a previous publication

(Wang and Tian, 2010) such as probes with bad signal quality and less variation

across all the time points were removed. A pair-wise Fisher’s linear discriminant

method (Wang et al., 2003a) was used to screen probes with the most relevant

response to ionizing radiation. Based on a previous developed modelling method,

a total of 317 putative target genes of the p53 proteins was predicted (Wang and

Tian, 2010). From the predicted target genes, genes related to the DNA repair

system were selected for this research. Among them, eight most relevant response

genes were selected from the top 100 putative target genes in (Wang and Tian,

2010) to form a small-scale gene network; and 21 most relevant response genes

from the top 317 potential target genes were selected to form a medium-scale

gene network. More information of these putative target genes can be found in

the Supplementary Information in (Wang and Tian, 2010).
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The dataset provides microarray gene expression profiles at seven time points. To

test the model quality as well as to ensure for reliable inference results, we use a

spline function to approximate gene expression levels at every other time points. A

similar approach has been used to generate more time point measurements based

on the raw microarray expression dataset (Bar-Joseph et al., 2003). In every two

hours time interval, we add three time points with equal distance that resulted in

25 time points with time-step-size 0.5. Visualization of gene networks is realized

by Cytospace software.

8.2.2 Top-down approach

Probabilistic graphical model

The probabilistic graphical model is a probability model for multivariate random

observations whose independence structure is characterized by an independence

graph (Wang et al., 2003b). For example, a graph G is a mathematical object that

consists of two sets, a set of vertices K, and a set of edges E that consists of pairs of

elements taken from K. If all edges are undirected then the graph is undirected.

The undirected independence graph gives a picture of the pattern of dependence

or association between the variables.

Gaussian graphical model with a forward search algorithm (GGF)

Given an independence graph G and a k-dimensional continuous random vector X

with a multivariate normal distribution, a covariance selection model (Wang et al.,

2005) was used to search for the best independence graph. In the GGF algorithm,

the conditional independence constraints are equivalent to specifying zeros in the

parameters in the inverse of the covariance matrix corresponding to the absence of

an edge in G. In other words, two variables are independent given the remaining

variables if and only if the corresponding element of the inverse of the covariance
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matrix is zero. A more detailed description of the computing process for the GGF

algorithm is presented in Figure 8.5. Here we give a brief description of the GGF

that is used in the current work as follows:

• 1. Let X = (X1,X2, · · · ,Xk) be a k-dimensional vector, k be the number of

genes. An initial empty graph G is built where k vertices correspond to k

genes.

• 2. An iterative maximum likelihood estimates algorithm (Dempster et al.,

1977) is used to compute the covariance matrix, Cov(G), of the initial graph

G.

• 3. An edge Ei is added into the initial graph and then a new covariance

matrix, denoted as Cov(Ei), is estimated by the iterative maximum likelihood

estimates. The significance of the added edge is tested by the deviance

difference, which has an asymptotic Chi-square distribution with one degree

of freedom. A P -value of the Chi-square test is used as the model selection

criteria.

• 4. If the P -value of an added edge Ei is smaller than a predefined cut-off

P -value (e.g. significance level P < 0.05), the edge is added to the initial

graph G, and then go back to step 2. It is reiterated between step 2 and step

4 until the P -value of added edge is larger than a threshold value.

• 5. Based on the inferred undirected graph from step 4, graph orientation

rules are applied to transform it into a directed acyclic graph (DAG).

• 6. In the final DAG, vertices represent genes; edges depict the association

between a pair of genes; arrows explain possible causes and effects between

a pair of genes; and the correlation coefficient between a pair of vertices tells

positive or negative association between two genes.
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The GGF can be used to predict gene-gene interactions when the number of time

points is much less than the number of genes.

8.2.3 Bottom-up approach

Mathematical model

We have proposed a general framework to describe the dynamics of gene expres-

sion (Wang and Tian, 2010). For a network with N genes and M transcriptional

factors (TFs), we denote the expression levels of i-th gene as xi(t) . The dynamics

of gene expression is represented by the following differential equations, given by

dxi
dt

= ci + kifi(x1(t − τi1), · · · ,xN (t − τiN ), P1(t − τi(N+1)), · · · , PM(t − τi(N+M)))− dixi ,

(8.2.1)

for i = 1, · · · ,N , where ci and ki are the basal transcriptional rate and maximal

expression rate of gene i, respectively, di is transcript degradation rate of gene i,

[P ]j is the activity of the j-th TF, and τij is regulatory delay of gene j related to the

expression of gene i. The regulatory function fi(xi , · · · ,xN , P1, · · · , PM) includes both

positive and negative regulations. In this work we propose to use the following

function

fi =

∑N
j=1 aijx

nij
j (t − τij) +

∑M
j=1 ai(N+j)[P ]

ni(N+j)

j (t − τi(N+j))

1 +
∑N
j=1 bijx

nij
j (t − τij) +

∑M
j=1 bi(N+j)[P ]

ni(N+j)

j (t − τi(N+j))
(8.2.2)

Coefficients aij(j = 1, · · · ,N +M) represent regulations from gene j(1 ≤ j ≤N ) or

TF j(N +1 ≤ j ≤N +M) to the expression of gene i. This regulation may be positive

(aij > 0) or negative (aij = 0) if the corresponding coefficient (bij > 0). There will be

no regulatory relationship from gene j to gene i if (aij = bij = 0). Note that these

assumptions imply that (aij , 0) only when (bij > 0). When (aij > 0), it is assumed

that gene i can autoregulate the expression of itself.
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In the network studied in this work, it contains N genes and only one TF(M = 1),

namely the p53 proteins that regulate all these genes either positively or negatively.

It has been established that the p53 proteins form tetramers as TFs. Thus the

exponent 4 in (8.2.3) represents the tetramer structure of p53 as TFs, namely

ni(N+1) = 4. When (ai(N+1) > 0), p53 regulates the expression of gene i positively.

However, if (ai(N+1) = 0), the expression of gene i is inhibited by p53.

In addition, for simplicity we do not consider time delay in the expression levels of

genes (i.e. τij = 0, i, j = 1, · · · ,N ) and cooperative binding (i.e. nij = 1, i, j = 1, · · · ,N ).

Thus the synthetic function used in this paper is

fi =
ai1x1 + · · ·+ aiNxN + ai(n+1)[P (t − τi)]4

1 + bi1x1 + · · ·+ biNxN + bi(n+1)[P (t − τi)]4 (8.2.3)

and ki = 1. Here [P ] is the activity of TF p53 whose detailed dynamics are

presented in Fig. 8.1 in (Wang and Tian, 2010), and τi is the regulatory delay of

TF p53 related to the expression of gene i. The time delay is estimated by our

proposed algorithm and its value is available in the Supplementary Information

(Wang and Tian, 2010).

Inference methods

All model parameters are estimated using the genetic algorithm, which is an

effective searching method for finding the unknown kinetic rates when the search

space is associated with a complex error landscape. We used a MATLAB tool-

box (Chipperfield et al., 1994) to infer the unknown model parameters. This

toolbox used MATLAB functions to build a set of versatile routines for imple-

menting a wide range of genetic algorithms. The major procedures using genetic

algorithm toolbox include population representation and initiation, fitness assign-

ment, selection functions, crossover operators, mutation operators and multiple

sub-population support. In this work we used the function crtbp to create the
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Figure 8.1: Simulations of the gene network of eight genes: RAD21,pcnA, RAD23B,
DDB2 (dash-star: microarray data; solid-line: simulation of the fully connected
model; dash-line: simulation of the core network predicted by the GGF).
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binary initial population, the linear-ranking and non-linear-ranking algorithms

to transform the raw objective function values into non-negative figures of merit

for each individual, a selection function reins to effect fitness-based reinsertion

when the entire population is not reproduced in each generation, a high-level

entry function select to provide a convenient interface to the selection routines,

a high-level entry function recombine to provide all the crossover operators, and

the routine mut to perform binary and integer mutations.

The genetic algorithm is ran over 500 or 1000 generations for each estimate of

model parameters, and we use a population of 100 individuals in each generation.

The values of rate constants are taken initially from the uniform distribution in

the range of [0,Wmax], and the value of Wmax for parameters (aij ,bij , ci , ki ,di) are

(20,20,20,20,1), respectively. Here the value of Wmax is determined by numerical

tests. For each parameter, we first select an initial value of Wmax to infer model

parameters. If certain estimates are very close to Wmax, the value of Wmax is

increased; however, the value of Wmax is decreased if the estimated values are

substantially smaller than Wmax. The initial estimate of rate constants can be

changed using different random seeds in MATLAB, leading to different final

estimates of rate constants. For each mathematical model, we infer 20 sets of

model parameters and select the top five sets with minimal errors for further

analysis.

Model measurement criteria

The error of an inferred set of model parameters is measured by the residual sum

of squares between the simulated expression levels and experimental data, defined

by

E =
N∑
i=1

M∑
j=1

(xi(tj)− xij)2, (8.2.4)
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where xij and xi(tj) are the simulated and experimental expression levels of gene

i(i = 1, · · · ,N ) at time point tj(j = 1, · · · ,M), respectively.

This work considers a number of mathematical models with different regulatory

mechanisms that are realized by different model coefficients in model (8.2.1). As

the model complexity or the number of model parameters increases, the model

becomes more capable of adapting to the characteristics of expression data. To

address the issue of over-fitting, we use Akaike’s Information Criterion (AIC) to

measure the quality of mathematical model. AIC is the first model selection crite-

rion, which was designed to extend the maximum likelihood principle (Akaike,

1974). The traditional maximum likelihood paradigm provides an approach for

estimating unknown parameters of a model having a specific dimension and

structure. AIC extends this paradigm by considering a framework in which the

model dimension is also unknown. For small sample size, namely when L/d < 40,

AIC is defined by the following equation (Symonds and Moussalli, 2011)

AIC = Llog(V ) + 2d +
2d(d + 1)
L− d − 1

, (8.2.5)

where d is the number of estimated parameters, L the number of values in esti-

mation dataset, and V the loss function that is defined by the residual sum of

squares

V =
1
L

N∑
i=1

M∑
j=1

(xi(tj)− xij)2, (8.2.6)

where xij and xi(tj) are simulated and experimental measured data of gene i at

time point tj , respectively.

In addition, we examine parameter identifiability of the model based on the

inferred model parameters. Parameter identifiability is a property of a model

structure that ensures that parameters can be uniquely (globally or locally) de-

termined from knowledge of the input-output behaviour of the system. Here a
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model is not identifiable if different sets of parameter values result in the same

model. More specifically, let M(θ) be the function that defines a model, which has

unknown parameters θ, and then a model is globally identifiable if

M(θ1) =M(θ2) (8.2.7)

implies that θ1 = θ2. In addition, a model is locally identifiable if there exists an

open neighbourhood of any θ such that the identifiability (8.2.7) is true. Otherwise

a model is non-identifiable (Cole et al., 2010). In recent years, a number of

approaches have been proposed to analyse parameter identifiability of biological

system models (Raue et al., 2014; Hines et al., 2014).

For an inferred model parameter set θ0 , we consider the local identifiability of

the model in the neighbourhood of parameter set θ0. Let h(x|θ) be the model

prediction that ensures that the residual sum of square

S =
n∑
l=1

[yl − h(xl |θ)]2 (8.2.8)

has a unique minimum. Here {(xi , yi)}ni=1 are specified dataset at n points and θ is

a parameter vector with dimension p. We consider a matrix H whose element is

defined by

Hij =
∂h(xi |θ)
∂θj

(8.2.9)

i = 1, · · · ,n, j = 1, · · · ,p.

Then the model is local identifiable in the neighbourhood of parameter set θ0

when the matrix HTH has full rank (= p) (Little et al., 2010). Since there is no

overlap between parameters in different equations in model (8.2.1), we examine

the identifiability property for each equation separately. We further assume that

the prediction h(x|θ) is made using the implicit Euler method for solving model
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(8.2.1). Thus the element Hij is the partial derivative of the right-hand side of the

i-th differential equation in model (8.2.1) with respect to each parameter θj .

Robustness analysis

Robustness, in both biological and engineering systems, is defined as the ability

of a system to function correctly in the presence of both internal and external

uncertainty (Csete and Doyle, 2002). Since robustness is a ubiquitously observed

property of biological systems (Kitano, 2004; Tian and Song, 2012), this property

has been widely used recently as an important measure to select the optimal

network structure or model rate constants from estimated candidates (Citri and

Yarden, 2006; Apri et al., 2010; Masel and Siegal, 2009). A formal and abstract

definition of the robustness property (Kitano, 2007) is used in this work to measure

the robustness property of the proposed model. The robustness property of a

mathematical model with respect to a set of perturbations P is defined as the

average of an evaluation function Dsa,P of the system over all perturbations p ∈ P ,

which is weighted by the perturbation probabilities prob(p) , given by

Rsa,P =
∫
p∈P

prob(p)Dsa,P dp. (8.2.10)

Here we propose to use the following measure to evaluate the average behavior

RMa,P =
∑
i,j

[
∫
p∈P

prob(p)xij(p)dp], (8.2.11)

which is the mean xij(p) of gene expression levels over all the perturbed model

parameters. This means that it should be close to the simulated gene expression

levels xij obtained from the unperturbed rate constants. In addition, the impact
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of perturbations on dynamic behaviour is defined by

RMa,P =
∑
i,j

[
∫
p∈P

prob(p)(xij − xij(p))2dp], (8.2.12)

where xij(p) and xij are the simulated gene expression levels at time point tj with

perturbed and unperturbed rate constants, respectively.

For each rate constant ki , the perturbation is set to

ki =max{ki(1 +µN ),0} (8.2.13)

with the standard Gaussian random variable N (0,1). Here µ represents the pertur-

bation strength and we have tested various values of µ. Numerical results suggest

that if the value is small, noise does not have much impact on the system dynamics

and the drift of simulations is small for all models. So in this work we use µ = 0.2

in the robustness analysis.

For each module of gene regulation, we use the genetic algorithm to generate 20

sets of model parameters, and then select the top 5 sets that have the minimal

estimation error for robustness analysis. In this way, we are able to exclude the

influence of simulation error on the robustness property of the model. For each

set of model parameters, we generate 1000 perturbed simulations and measure

the difference between the perturbed and unperturbed simulations by

Ek =

√√√√
1
NM

N∑
i=1

M∑
j=1

(x(k)
ij (p)− x(k)

ij )2 (8.2.14)

where x(k)
ij (p) and x(k)

ij are perturbed and unperturbed k-th simulation of gene i at

time point tj , respectively. Robustness and STD in Tables 8.1 ∼ 8.5 are the mean

and standard deviation of Ek for each network model.
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8.3 Results

8.3.1 Inference of a network of eight genes with full connec-

tions

To demonstrate the importance of top-down approach in the inference of genetic

regulation, we first examine a common approach by assuming each genes in the

network may regulate the expression of all other genes. In this fully connected reg-

ulatory network, matrices A = [aij]N×N and B = [bij]N×N in model (8.2.3) are full

matrices; and the number of unknown model parameters in the network model

of N genes is 2N 2 + 5N . This approach has been applied to infer small-scale or

medium-scale gene networks (De Smet and Marchal, 2010). To form a small-scale

gene network, we first select eight genes from the top 100 predicted putative p53

targeted genes, namely RAD21,pcnA,RAD23B,DDB2, P T TG1,XP C,RAD51C,

and Rps27L that are all related to the DNA repair pathway. Genetic algorithm

was used to search for optimal model parameters that minimize simulation errors

to microarray gene expression data. For this network, the number of unknown

model parameters is 168. The ratio of aij /bij determines the relative influence of

the activity of gene j on the expression of gene i. We also assume that the value of

aij is zero if this ratio is below a threshold value, and in this case gene j negatively

regulates the expression of gene i. If the values of both aij and bij are under a

threshold, then gene j has no influence on the expression of gene i.The inferred

model parameters are listed in the Supplementary Information Table (8.6).

Figure (8.1) shows the simulated expression profiles of four genes in the network,

and the remaining four genes are given in the Supplementary Information Fig.

(8.6). Here, the simulated expression levels match the experimental data very

well. The ratio of aij /bij is below the assumed threshold value for only a few
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regulations, which suggests that the majority of predicted regulations are positive.

However, from the gene expression profiles, the regulations between some pairs

of genes may be negative. In addition, simulation results show that both aij and

bij are below the threshold value only in limited cases. Table (8.1) shows that for

this fully connected network, all robust measurements (i.e. AIC and robustness

property) are larger than those of networks with less model parameters in the

following sections.

8.3.2 Inference of the network of eight genes using predicted

network structure from top-down approach

To improve the robustness property of gene network and reduce the computational

time, GGF is used to predict network structure of gene-gene interactions. Since

the predicted network structure depends on the significant level of GGF, the

algorithm is applied multiple times on the same eight genes with different p-

values. For example, from p-value 0.009 to p-value 0.05, the inferred network

structure remains the same, which is also true when the p-value is increased from

0.09 to 0.2. Thus, two predicted gene networks by GGF are finally chosen for

subsequent analysis using bottom-up approaches, one with p < 0.05 (Fig. (8.2A)

with 8 mutual regulations) and the other with p < 0.09 (Fig. (8.2B) with 17 mutual

regulations).

Based on the predicted network structure in Fig. (8.2A) with 8 mutual regulations,

genetic algorithm is used to search for optimal model parameters. The model

has only ∼ 72 unknown parameters, which is much less than that of the fully

interacted network model. However, the predicted model still has adequate

flexibility to realize the experimental data (i.e. 56 and 200 measurements in the

raw and extended data, respectively). The value of aij(i, j = 1, · · · ,N ) is determined

by the graphic model, namely its value is either positive or zero if the regulation is
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positive or negative. The inferred model parameters are given in Supplementary

Information Table (8.7). Although the graphic model has much less potential

regulations and consequently less unknown model parameters, simulations in

Fig. (8.1) and Fig. (8.5) in Supplementary Information suggest that the error of

the graphic model is slightly smaller than that of the fully connected network.

This result indicates that the addition of more model parameters does not reduce

the estimation errors. It is worth to note that less accuracy of the fully connected

model does not mean this model has less capacity to match the characteristics of

expression data. In fact, as the searching space is more complicated when more

model parameters are added, it may be more difficult to search for optimal model

parameters.

The AIC and robustness property of the graphic model are also tested. Table

(8.1) shows that the graphic model has much better property of AIC than the

fully connected network model. However, the fully connected model has slightly

better robustness property than the graphic model. In addition, our results

suggest that for the inferred model parameter sets, the network model with 8

mutual regulations is parameter identifiable when the extended dataset with 25

measurement time points are used. However, it is not parameter identifiable when

the raw microarray dataset with 7 measurement time points are used.

8.3.3 Inference of the network of eight interactions with ex-

tended regulations

We have successfully used the graphic model with only eight mutual interactions

(P < 0.05) to realize the experimental data with good accuracy and system property.

The next question is whether the network of eight genes in Fig. (8.2A) is the

core network. To answer this question, we examine the possibility of adding

mutual regulations derived from an extended network (P < 0.09) in Fig. (8.2B)
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Figure 8.2: The graphic models of eight genes using different significant levels:
Gene-gene interaction networks are predicted by applying GGF on 8 genes that
are related to DNA repair pathway: (A) there are 8 regulations among 8 genes,
significance level p < 0.05; (B) there are 17 regulations among 8 genes, significance
level p < 0.09, in which includes 8 regulations from the (A). Number on each edge
is partial correlation coefficient between the two genes. The network is visualized
by Cytoscape software.
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Table 8.1: AIC and robustness property of mathematical model of eight genes: Numeri-
cal results are presented as the AIC to experimental data, average behaviour
of robustness property and standard deviation (STD) of robustness property,
which are based on the average of five sets of estimated parameters.(Gi ,Gj)
means the network by adding the mutual regulation of gene i and gene j to
the core network (p < 0.05).”Plus 5 regulations” is the network by adding
5 edges, namely (G4, G5), (G1, G4), (G3, G7), (G5, G7), (G1, G2). (G1:
RAD21, G2: pcnA, G3: RAD23B, G4: DDB2, G5: PTTG1, G6: XPC, G7:
RAD51C, G8: Rps271

Network AIC Robustness STD

Fully connected network -61.69 2.723 1.162

Core network of 8 genes (p < 0.5) -112.65 3.110 1.234

(G1, G8) -180.08 3.138 1.721

(G4, G5) -110.24 3.137 1.234

(G1, G4) -111.30 3.092 1.307

(G3, G7) -109.46 3.053 1.259

(G4, G7) -107.02 3.139 1.464

(G1, G7) -108.53 3.181 1.730

(G3, G8) -109.89 3.099 1.277

(G5, G7) -113.10 3.161 1.283

(G1, G2) -108.28 3.113 1.370

plus 5 regulations -99.16 3.029 1.085

Extended model (p < 0.09) -96.96 2.984 1.205
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to the network (P < 0.05) in Fig. (8.2A). Since there are nine additional mutual

regulations in the network with (P < 0.09), nine extended models are considered

by adding one mutual regulation in each test. Genetic algorithm is used to infer

model parameters in the extended models in order to realize experimental data.

For each extended model, the top 5 sets with smaller simulation errors of all 50

estimates are selected for robustness analysis. AIC values and robustness analysis

results are shown in Table (8.1), which suggest that the AIC values of the extended

models are close to that of the core model in Fig. (8.2A). In addition, more

model parameters in the extended models contribute to larger AIC values. The

parameter identifiability analysis suggests that each extended model is parameter

identifiable when the extended dataset with 25 measurement points are used.

However, these extended models are not parameter identifiable when the raw

microarray dataset with 7 measurement points are used, which is the same as

the core model. Regarding the robustness property, Table (8.1) suggests that, if

one edge is added, only three extended models have better robustness property

than the core model while the standard deviation of robustness property for all

extended models are not as good as the core model; however, the extended two

models with more edges are better than the core model in terms of robustness

property.

Next, we select five mutual regulations that have either smaller simulation errors

(even though the AIC value of the model with extended regulation is larger than

the core model) or better robustness property. We then test the effect of adding all

these five regulations into the core network. Results in Table (8.1) suggest that the

network with five added regulations has better robustness property than the core

network, though the AIC value of this extended network is larger than that of the

core model. We also test the extended network (P<0.09) in Fig. (8.2B) with 17

regulations. Table (8.1) suggests the network in Fig. (8.2B) has larger AIC value

but slightly better robustness property than the core model.
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8.3.4 Inference of the network of eight regulations with auto-

regulation

In both undirected and directed graphic model, the auto-regulation, namely

the positive or negative regulation of a gene to the expression of itself, is not

considered. To find the potential auto-regulation, we test the network by adding

either positive or negative auto-regulation to each gene. For each gene i, we

set bii > 0; and the value of aii is aii > 0 and aii = 0 for positive and negative

auto-regulation, respectively. Similarly, we obtain 50 sets of estimated model

parameters for each network with only one auto-regulation. The addition of one

auto-regulation does not change the identifiability of the model, namely each

extended model is parameter identifiable when the generated dataset with 25

measurement points are used; while they are not parameter identifiable when the

raw microarray dataset with 7 measurement points are used. Table (8.2) suggests

that the addition of four negative auto-regulations does decrease AIC values.

However, among these four auto negative regulations, robustness analysis results

show that only one negative auto-regulation, namely G7(-) in Table (8.2), increases

the robustness property of the network. In addition, the addition of positive

auto-regulation increases AIC values but decreases robustness property of the

core model. Thus, numerical results suggest that a few negative auto-regulations

may be added to the core network model. Nevertheless, the conclusion is derived

from a special network in which TF p53 protein regulates the expression of all

genes in the network. A different conclusion may be derived when a different

network model is considered.

217



Chapter 8 – Wang et al. (2015)

Table 8.2: AIC and robustness property of the network (p < 0.05) by adding an auto-
positive/negative regulation to the core network: Gi (+): add auto-positive
regulation of gene i to the core network; (-): add auto-negative regulation.
RBN: robustness.

AIC RBN STD AIC RBN STD

G1 (+) -109.12 3.105 1.805 G1 (-) -111.62 3.048 1.270

G2 (+) -110.97 408.00 1.27E4 G2 (-) -113.19 3.179 1.687

G3 (+) -112.72 3.042 1.261 G3 (-) -110.28 3.119 2.002

G4 (+) -111.16 3.035 1.156 G4 (-) -113.48 3.108 1.553

G5 (+) -107.18 3.248 1.835 G5 (-) -111.91 3.142 1.943

G6 (+) -110.72 3.279 1.941 G6 (-) -114.29 3.209 1.395

G7 (+) -110.45 3.114 1.253 G7 (-) -113.18 3.031 1.100

G8 (+) -108.56 3.167 1.749 G8 (-) -109.71 3.462 7.997

8.3.5 Network structure perturbation - edge deletion

After testing the addition of potential regulations to the core network (P < 0.05),

the possibility of removing certain interactions from the network in Fig. (8.2A) is

also examined. In the core network with eight genes and only 8 regulations, on

average each gene has only two connections to the other genes. Particularly, some

genes such as gene RAD51C have only one connection. Thus, only two types of

regulation deletion are tested. First, we consider eight networks where one of the

mutual regulations is removed from the core network. Using a similar method for

parameter inference and robustness analysis, Table (8.3) suggests that removal

of any mutual regulations can neither improve simulation accuracy nor decrease

AIC values. Although edge (PTTG1, Rps27I) may be removed from the network

due to decreased AIC value, robustness property of the reduced network is not as
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good as the core network. Thus, no edge deletion is recommended because there

is no convincing reason to remove any edge from the core regulatory network.

In the proposed model, if there is a potential regulation between gene i and gene

j, it is assumed that both aij(bij) and aji(bji) are positive. This assumption is valid

if the relationship between gene i and j are connective. However, the regulation

between the two genes may be one-way regulation if it is transcription regulation.

In the second test of regulation deletion, we test 16 cases of reduced model based

on the core network with 8 regulations to test for potential one-way regulation.

In each reduced model, we remove one of the one-way regulations of a mutual

regulation. Table (8.4) shows that the AIC values of the reduced models are

smaller than that of the core network model due to a smaller number of model

parameters and smaller simulation errors of some reduced models. However, the

removal of one one-way regulation also reduces the robustness property of the

network model. There is no reduced model whose robustness properties are better

than that of the core network model. These results suggest that there is a strong

possibility for the one-way regulation only between certain pairs of genes in the

network.

A widely used approach in network inference is to remove a potential regulation

by checking the value of corresponding coefficient in the network model. Another

important question remains now is whether the removed regulations identified by

our studies can be selected by the inferred fully connected network model with

small model parameters, namely aij and bij . To answer the question, we check

the potential reduced models identified in Tables (8.3 and 8.4). Results show that

there is not any consistence between the inferred removable regulation in these

tables and small values of coefficient aij and bij in the inferred fully connected

network model. However, we should mention that the methods for regulation

deletion and those for model inference are quite different.
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Table 8.3: AIC and robustness property of the reduced network with 8 genes by re-
moving one mutual regulation from the core model in Fig. (8.2A): (Gi,Gj)
means the network by removing mutual regulation between gene i and gene
j from the core network.

AIC Robustness STD

(G1, G3) -116.11 3.151 1.601

(G1, G5) -117.95 3.124 2.359

(G2, G5) -115.30 3.135 1.464

(G2, G6) -120.23 3.142 1.566

(G4, G6) -119.81 3.200 2.054

(G4, G8) -116.27 3.050 1.608

(G5, G8) -116.26 3.102 1.251

(G7, G8) -117.69 3.047 1.666

8.3.6 A Comparison study to an earlier inference method

To demonstrate the effectiveness of our proposed method, we conduct a compari-

son study using an ODE-based approach for inferring genetic regulatory networks

from time-series and/or steady-state measurements (Äijö and Lähdesmäki, 2009).

This approach is based on the use of Bayesian analysis with ODEs and non-

parametric Gaussian process modelling for the transcriptional-level regulation.

We input the expression data of the eight genes into the software in (Äijö and

Lähdesmäki, 2009). The output is an 8× 8 matrix whose diagonal elements are

zeros. The (i, j) element represents the posterior probability of which gene j is

regulated by gene i. All the derived elements are positive, thus it is assumed that

all regulatory relationships between these genes are positive. To compare with the

network in Fig. (8.2A) with 8 mutual regulations, we select top 16 elements that
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Table 8.4: AIC and robustness property of the reduced network with 8 genes by remov-
ing one one-way regulation from the core model in Fig. (8.1A): (Gi← Gj)
represent the removing of the regulation from gene j to gene i, namely by
letting aij = bij = 0 . RBN: robustness.

AIC RBN STD AIC RBN STD

G1← G3 -118.30 3.319 3.416 G1→ G3 -113.74 3.159 2.132

G1← G5 -112.91 3.264 1.986 G1→ G5 -115.60 3.331 4.559

G2← G5 -117.51 3.125 1.488 G2→ G5 -113.13 3.312 2.514

G2← G6 -116.73 3.300 4.085 G2→ G6 -116.33 3.107 1.515

G4← G6 -116.54 3.614 9.424 G4→ G6 -116.70 3.176 1.602

G4← G8 -116.32 3.150 1.636 G4→ G8 -116.88 3.301 1.835

G5← G8 -117.06 3.202 1.819 G5→ G8 -115.85 3.199 1.566

G7← G8 -116.93 3.134 1.131 G7→ G8 -117.06 3.202 2.483

have the largest values of posterior probabilities in the matrix since the inferred

network is directional. These 16 elements represent 3 mutual regulations and

10 one-way regulations, and the connection network is plotted in Fig. (8.8). The

network in Fig. (8.8) shares two mutual regulations and three one-way regulations

with that in Fig. (8.2A). Then we use the proposed model (8.2.1) and (8.2.3) to

infer rate constants for the network in Fig. (8.8) and calculate AIC values. Table

(8.5) shows that the inferred network model from Fig. (8.8) generate simulations

that have larger AIC value than the core model in Fig. (8.2A). We also carry out

robustness analysis for this network model. Table (8.5) suggests that our network

model in Fig. (8.2A) is more stable that that in Fig. (8.8).

The eight genes considered in this work can be classified as two groups according

to their expression patterns. The first group contains genes RAD21,RAD23B and

P T TG1, which are negatively regulated by p53; while the remaining five genes are

positively regulated by p53. In Fig. (8.2A), there are two regulatory relationships
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Table 8.5: Simulation error and robustness property of mathematical models of eight
genes: (Network 1: the gene network inferred from the network structure
in Fig. (8.2A). Network 2: the gene network inferred from the network
structure in Fig. (8.7); Network 3: the gene network inferred from the
network structure that is merged from the networks in Fig. (8.2A) and Fig.
(8.7)).

Network AIC Robustness STD

Network 1 -112.65 3.176 1.668

Network 2 -102.60 3.384 1.218

Network 3 -86.32 3.375 1.180

between these two groups, namely (pcnA,P T TG1) and (P T TG1,Rps27L). The

relationship between pcnA and P T TG1 has been identified as a negative regula-

tion using GGF algorithm, though the regulation between P T TG1 and Rps27L is

positive. In the network in Fig. (8.8), there are also other four one-way relation-

ships between these two gene groups. However, all these four relationships are

identified as positive regulations by a published method (Äijö and Lähdesmäki,

2009). Fig. (8.9) suggests that this network is not capable to produce simulations

that are close to the expression levels of genes that are negatively regulated by

p53.

To examine potential redundancy of regulation relationship between the two

inferred networks, we merge these two networks together to form a network with

nine mutual regulations and eight one-way regulations. Then we infer a network

model for the emerged network. Simulations in Fig. (8.10) suggest that this

network model does not realize expression levels of genes RAD21 and RAD23B

accurately. In addition, Table (8.5) suggests that the accuracy and robustness

property of this merged network model are not as good as those of the network

model in Fig. (8.8).
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8.3.7 Inference of a medium network of 21 genes

With the success of a small network of eight genes, we further conduct an inference

work for a network with 21 genes. In addition to the 8 genes in the previous

network, the remaining 13 genes are TOP 2A, tp53, CIB1, papd7, GADD45A,

FANCA, RBM14, H2af x, lig3, Mutyh, REV 3L, Recql4, and IGHMBP 2. All the

selected genes are related to DNA repair pathway and have strong response to

ionizing radiation, though some of them may not have the same predicted quality

as the eight genes (Wang and Tian, 2010). GGF algorithm is applied several times

on the 21 genes using different significant p-values. Generally, there is a small

variation of predicted gene network structure when p < 0.009. Note that gene

tp53 is not connected to the inferred network when p < 0.009. However, when

p > 0.009, gene tp53 is linked to all the rest genes and a fully connected network

is obtained. This result indicates the importance of gene tp53 in DNA repair

pathway. Nevertheless, for simplicity, we select the network in Fig. (8.3) with

p < 0.009 in the subsequent analysis.

Two potential networks have been studied for the network of 21 genes. The first

one is the fully connected regulatory network. The number of unknown model

parameters is 2N 2 + 5N = 987, but the available data have only 147 and 525 mea-

surements based on the raw microarray data and extended dataset, respectively.

We obtain 50 sets of estimated model parameters and find that some model param-

eters have a wide range of estimated values. After examining the values of aij and

bij as well as the ratio aij /bij , we find it is difficult to remove any regulation from

the system since some parameters may have small values in one set of estimate

but large values in another.

The second network in Fig. (8.3) is predicted by the GGF. It has only 26 pairs

of regulations and 188 unknown model parameters. Genetic algorithm is used
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to infer the optimal model parameters. Fig. (8.4) presents simulations for the

expression levels of four genes; and Fig. (8.7) also gives simulations for the

other four genes. It shows that the simulation of the GGF predicted network

has provided more accurate simulations than the fully connected network. The

robustness analysis of these two network models suggests that the GGF predicted

model with less regulations and less model parameters shows better robustness

property than that of the fully connected model.

8.4 Discussions

In this work we proposed a novel approach for inferring genetic regulatory net-

work by combining both top-down and bottom-up approaches. To address issues

regarding multiple regulations and sparseness of network topology, we first used

the probabilistic graphic models to infer network structure. By choosing various

significant levels of the graphic models, we derived a core network (p < 0.05) and

an extended network (p < 0.09). The latter is a possible expansion of the core

network. To validate the predicted graphic models and also to investigate detailed

dynamic regulations, we designed a new mathematical model to represent com-

plex regulation with both positive and negative regulations, regulations of TFs,

protein cooperative binding, and time delay. Using our designed mathematical

model, we first tested a fully connected regulatory network. Compared with the

fully connected network, our predicted core network has smaller AIC values,

parameter identifiability property and better robustness property. Subsequently,

we tested the possibility of adding regulations to or removing regulations from the

core network model, and used AIC values and robustness property as key criteria

to validate the predicted models. We also conducted a comparison study using

a published inference method. Numerical results suggested that our proposed
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Figure 8.3: A gene-gene interaction network was predicted by applying GGF on
21 genes that related to DNA repair pathway: There are 26 regulations among
the genes, significance level p < 0.009. Number on each edge is partial correla-
tion coefficient between the two genes. The network is visualized by Cytoscape
software.

method could predict network models that have better simulation accuracy and

robustness property.

The underlying methods behind top-down and bottom-up approaches are dif-

ferent. For example, the GGF algorithm, which is a top-down approach, uses

the correlation analysis method to find the regulatory relationship between pairs

of genes; while the ODE-model (bottom-up approach) considers the expression

of a gene that is regulated by a number of other genes. Thus inferred networks

from these two types of methods are different. Currently, bottom-up approaches

ignore the network structure derived from the top-down approaches. Instead
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Figure 8.4: Simulations of the gene network with 21 genes (dash-star: microarray
data; solid-line: simulation of the fully connected model; dash- line: simulation of
the core network predicted by the GGF).
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researchers infer gene networks from scratch using unsupervised, supervised or

semi-supervised inference methods based on experimentally established networks.

Thus an important question is to explore the consistency between the networks

derived from the two types of inference methods. To address this issue, we devel-

oped a novel framework to infer regulatory networks using both types of inference

methods. Our research results suggest that top-down approaches can provide

initial simplified network structure, and more importantly, improve the accuracy

and efficiency of the bottom-up approaches.

This research work raised a number of major issues regarding the implementation

of these methods. One issue is that a fully connected regulatory network actually

leads to simulations with larger errors compared with models with less unknown

model parameters. Theoretically a model with more unknown parameters should

provide more flexibility to fit observation data than a model with less unknown

parameter. However, this does not mean a model is better if it has more unknown

parameters. In fact, due to the limited amount of experimental data, a mathemat-

ical model with an adequate number of parameters may be already capable to

realize experimental data with good accuracy. The addition of more parameters

will not increase model flexibility much but will increase model complexity. For

example, when using an optimization method to infer unknown parameters, more

model parameters will increase the difficulty to search the optimal parameters

because of the issue of local maximum of the optimization methods. In addition,

when we say a model with more unknown parameters may be more flexible to fit

experimental data, this statement is based on the assumption that the inference

method can find parameters with zero value. However, the majority of current

approaches fail to infer parameters with zero value. The estimated unknown

parameters normally are non-zero. Thus a model with more unknown parameters

may not be able to produce more accurate simulation than that with less model

parameters, and it may be difficult to compare a model with more parameters with
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that having less model parameters directly. Furthermore, because of the complex

searching space of model parameters and noise in experimental data, it may be

difficult to judge which model is better if the difference between their simulation

errors is small. For example, simulation errors of various models for the network

of eight genes are quite close to each other. Therefore, in addition to using simu-

lation error as the unique criterion to select a model, other measurements, such

as ACI value, parameter identifiability and robustness property of a network, are

also needed as important criteria.

Due to issue of local maximum in optimization methods, we may obtain a number

of estimates with varying parameter values. All these estimates can faithfully

realize experimental data (Tian et al., 2007b). An alternative approach is the

Bayesian inference method that does not only estimate confidence intervals, but

also provide even more information by estimating the whole posterior parameter

distribution. However, one obstacle with the standard Bayesian approaches is the

difficulty of exploring the huge discrete state space with a complicated likelihood

structure that makes conditional simulation difficult. Recently, interest has been

increasingly turned to methods that avoid some of the problem complexity by

using forward-simulation methods such as likelihood-free Markov chain Monte-

Carlo and approximate Bayesian computation (ABC). A potential next step is to

develop effective Bayesian algorithms for inferring regulatory networks using

large-scale omics datasets.

8.5 Supplementary Information

This following section includes Figure (8.5) for a work flow chart of Gaussian

Graphical Model with Forward search algorithm (GGF). Figure (8.6) gives simula-

tions of the remaining 4 genes in the core network model of eight genes (p < 0.05).

Figure (8.7) presents the simulation of the nine genes in the network of 21 genes.
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Figure 8.5: A workflow chart of Gaussian Graphical Model with Forward search
algorithm (GGF).

Figure (8.8) is for the inferred network using a published method. Figure (8.9)

shows the simulation of the network model in Figure (8.7). Finally Figure (8.10)

provides the simulation of the merged network.
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Figure 8.6: Simulations of the gene network model of eight genes: The dynamics
of four genes were presented in the paper. Here are the remaining four genes:
PTTG1, XPC, RAD51C, RPS27L (dash-star: microarray data; solid-line: simulation
of the fully connected model; dash-line: simulation of the core network predicted
by the GGF with eight mutual regulations).
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Figure 8.7: Simulations of the gene network of 21 genes: The dynamics of four
genes of this network was presented in the paper in Figure (8.4). Here are the other
9 genes. (dash-star: microarray data; solid-line: simulation of the fully connected
model; dash-line: simulation of the core network predicted by the GGF).
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Figure 8.8: The graphic model of eight genes using a published inference method:
Gene-gene interaction network was predicted by using the inference method in
(Äijö and Lähdesmäki, 2009). The inferred network is a full matrix whose diagonal
elements are zero. To match the inferred network in Fig. (8.2A), we selected the
top 16 edges that have the largest values of the posterior probabilities.
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Figure 8.9: Simulation of the gene network model in Fig. (8.7): (Dash-star:
microarray data; red-dash-line: simulation of the network model).
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Figure 8.10: Simulation of the gene network of eight genes by merging the two
networks in Fig. (8.2A) and Fig. (8.8) together: This merged network has 11
edges. (dash-star: microarray data; red-dash-line: simulation of the merged gene
network).
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Table 8.6: Model parameters of the fully connected network with 8 genes: Coefficient
aij ,bij and time delay τi in (8.2.3); Degradation rate di ; Basal transcription
rate ci ; Initial condition xi(0).

A

16.3922 15.2941 9.2549 19.0588 12.5490 17.0196 19.5294 18.5882 0

8.5490 5.4118 9.5686 16.0000 8.7843 11.5294 18.9020 2.6667 17.8039

19.8431 19.2157 13.9608 6.7451 18.4314 13.9608 14.4314 19.2941 0

17.7255 19.5294 18.8235 19.8431 13.2549 17.1765 18.9804 19.9216 19.9216

0.7059 0.9686 0.6275 0.4549 0.3020 0.4627 0.8863 0.8627 0

16.3137 2.4314 17.8824 16.9412 9.1765 19.2941 18.3529 14.9804 18.5098

15.6078 18.1176 12.0784 0.6275 10.6667 8.3137 5.8039 17.9608 19.2941

2.2745 13.4902 13.9608 12.6275 3.5686 8.7059 16.3137 3.2941 17.3333

B

5.0980 2.1176 2.7451 5.3333 9.6471 0.2353 0.7843 0.0784 19.8431

1.4118 12.1569 18.0392 6.8235 4.9412 13.3333 0.6275 12.0000 1.1765

3.4510 7.8431 13.0980 10.7451 5.8824 4.9412 6.1961 6.1176 18.7451

0.1569 0.6275 6.5098 0.1569 1.2549 0 0.0784 4.3922 0

1.2549 10.5098 1.4902 0.0784 1.4118 0.1569 3.2157 0.6275 19.5294

10.5098 16.0000 5.0196 14.1176 2.1176 8.7843 4.0000 17.0196 0.0784

16.3922 12.1569 14.0392 2.9804 7.4510 6.3529 5.4902 6.5882 6.1961

14.9804 8.6275 17.0196 8.9804 17.1765 7.5294 18.5098 12.6275 0.3137

τi

0 1.0700 1.3300 0 0 0 0 0

di

2.5098 1.1765 2.4314 2.5882 1.8039 0.8627 2.3529 1.4118

ci

9.1373 12.9412 18.3529 14.4314 18.2745 6.0392 19.6863 14.9020

xi(0)

10.0448 11.5111 9.1283 7.8532 10.8128 7.0051 8.6273 9.5000
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Table 8.7: Model parameters of the core network with 8 genes in Fig. (8.1A): Coefficient
aij ,bij and time delay τi in (8.2.3); Degradation rate di ; Basal transcription
rate ci ; Initial condition xi(0).

A

0 0 10.667 0 18.67 0 0 0 0

0 0 0 0 0 19.529 0 0 19.764

10.117 0 0 0 0 0 0 0 0

0 0 0 0 0 7.529 0 5.098 20.000

12.392 0 0 0 0 0 0 7.608 0

0 11.607 0 18.902 0 0 0 0 19.372

0 0 0 0 0 0 0 6.039 20.000

0 0 0 7.294 6.667 0 1.882 0 20.000

B

0 0 12.392 0 1.176 0 0 0 20.000

0 0 0 0 0.862 7.843 0 0 10.352

4.078 0 0 0 0 0 0 0 10.117

0 0 0 0 0 9.803 0 7.764 0

3.686 0.235 0 0 0 0 0 1.882 10.509

0 10.039 0 12.235 0 0 0 0 0

0 0 0 0 0 0 0 10.274 0

0 0 0 6.902 16.3922 0 13.019 0 0.078

τi

0 1.0700 1.3300 0 0 0 0 0

di

0.6627 0.5059 0.5765 0.8157 0.3137 0.5647 0.9059 0.4627

ci

4.0000 3.9216 2.5882 7.4510 0 3.5294 7.4510 4.7843

xi(0)

10.0448 11.5111 9.1283 7.8532 10.8128 7.0051 8.6273 9.5000
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8.6 Conclusion

In summary, this work proposed a new integrated approach that first uses a top-

down method to infer the network structure, and then use a bottom-up approach

to conduct detailed studies of gene regulatory networks. In silico experiments

show that in addition to simulation error of dynamic model, AIC value, parameter

identifiability and robustness property of regulatory networks are important

criteria to select the optimal network from a variety of candidates. It is expected

that our proposed new method will be used to design detailed mathematical

models for investigating the dynamics of genetic regulation.
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9.1 Contributions of the Thesis

In this thesis, the aim is to develop new methods for modelling and inference of

biological systems such as gene regulatory networks. In the literature, researchers

usually apply stochastic or deterministic methods to build the network structure

and use Bayesian approach to estimate the unknown parameters. However, these

approaches may not fully explain system dynamics efficiently. This thesis makes

substantial contributions to computational biology by proposing new method-

ologies that can efficiently explain the system dynamics for particular biological

systems. Through the application of these new methods, it is empirically shown

that the new methods can yield realistic results and they appear to be able to

provide insights into the understanding of biological networks .

In Chapter 2 and Chapter 3, a new model is proposed by which we can visualize

multi-step chemical reactions system that is a fundamental issue in computational

biology and bioinformatics. In order to simplify the system, a new concept

(e.g. the length of a molecule) as an additional information is considered to
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characterize system dynamics, which is defined as the location of a molecule in

the multi-step reactions. An ODE model is used to find the optimal value in the

non-linear function that represents the probability of the firing of last reaction

in the system. To calibrate this probability function, a stochastic simulation

method is proposed to calculate the probabilities under various system states.

Numerical results suggest that this probability is dependent on the number of

reaction steps but independent of the total molecule number, which leads to

further development of a simplified model based on the network structure. Then

our proposed two-variable model is applied to simulate the dynamics of mRNA

degradation using experimentally observed data. Numerical results suggest that

the length of molecules, which is approximately a half of the maximal length

initially, played an important role in realizing experimental data.

In Chapter 4, the main contribution is to model multi-step chemical reaction

events with time delays. Using both the analytical solution and stochastic sim-

ulation of the multi-step chemical reactions to obtain the relationship between

the system state and value of time delay, a delay stochastic simulation algorithm

is established. The proposed model is applied to model the degradation process

of mRNA molecules based on experimental data in single cells for two separate

systems. Our model both provides good accuracy for mRNA degradation as well

as gene expression, which indicates that the proposed method is an effective ap-

proach to approximate multi-step reaction system more accurately. Half-life is

an important concept to measure the degradation of species in biology. How-

ever, for many of the biological molecules, the decay process follows multi-step

reactions rather than one-step reactions. Thus, the molecules at the intermediate

states are also important for determining the value of species half-life. That may

be the reason to explain the difference between the determined half-time under

different experimental conditions. Using the inferred degradation rate in the
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state-dependent delay model, our results suggest that our calculated half-time of

mRNA molecules are between the determined values in the published papers.

In Chapter 5 and Chapter 6, we first study the ABC algorithm extensively tested

on two chemical reaction systems. It’s found that the ABC algorithm is an effec-

tive inference method that is capable of dealing with inference problems whose

likelihood functions are hard to compute. Computational tests are conducted

to examine the influence of a number of factors on the estimation error of the

ABC algorithm. From that, it’s noticed that taking different step sizes would not

lead to distinct results. In addition, based on the framework of ABC SMC, two

novel algorithms for the inference of unknown parameters in complex stochastic

models for chemical reaction systems are proposed. These new algorithms impose

stricter criteria to measure the simulation error, and the accuracy and efficiency

are examined on two test problems. It is discovered that taking smaller values of

discrepancy tolerance will result in more accurate estimates of unknown model

parameters. This conclusion is confirmed by the second system that has been

tested under different conditions. Numerical results suggest that the proposed

new algorithms are promising methods to infer parameters in high-dimensional

and complex biological system models and have better accuracy compared with

the results of the published method. The encouraging result is that new algorithms

do not need more computing time to achieve such accuracy.

In Chapter 7, we analyse sensitivity and robustness properties of biological sys-

tems simultaneously. In this framework, sensitivity analysis uses the difference

method to calculate the derivatives of the probability density function; and ro-

bustness analysis is based on a general definition. Meanwhile a stochastic model

of Nanog gene network with intrinsic noise based on a published model that

discussed extrinsic noise only is proposed. Numerical results suggest that the

system dynamics is sensitive to variations of one parameter that is related to the

positive regulation from one complex. In addition, the change of a number of
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other parameters will vary the bistability property of the Nanog gene network

model. Numerical simulations also indicate that the proposed framework is an

efficient approach to assess the robustness and sensitivity properties of biological

network models.

In Chapter 8, the main contribution is the built of a novel approach for inferring

genetic regulatory network combining both top-down and bottom-up approaches.

To address issues regarding multiple regulations and sparseness of network topol-

ogy, the probabilistic graphic models is used to infer network structure. By

choosing various significant levels of the graphic models, a core network and an

extended network are derived. Then a new mathematical model to represent com-

plex regulation relationships is designed to validate the predicted graphic models

and also to investigate detailed dynamic regulations. Computational results show

that our predicted core network has smaller AIC values, parameter identifiability

property and better robustness property. Subsequently, possibility of adding regu-

lations to or removing regulations from the core network model are also tested,

and AIC values and robustness property are selected as key criteria to validate

the predicted models. Comparing with a published inference method, numerical

results suggest that the proposed method could predict network models that have

better simulation accuracy and robustness property. This study indicates that

top-down approaches can provide initial simplified network structure, and more

importantly, improve the accuracy and efficiency of the bottom-up approaches.

9.2 Future Directions

These results clearly demonstrate that the merits of which can outperform other

investigated modelling and inference methods in the literature. However, the

results also raise a number of questions which deserve further research.
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1. Mathematical modelling method.

Regarding the two-variable modelling method, in order to make the method

more convenient to use for studying other biological systems such as telom-

ere length regulation, further research may involve the refinement of the

probability function to increase the accuracy. On top of that, the current fo-

cus is limited to multi-step chemical reaction systems. Further work should

investigate whether this two-variable modelling method is still valid for

more complex systems.

Regarding the inference of genetic regulatory networks, in addition to using

simulation error as the key criterion to select the optimal model, other

measurements, such as AIC value, parameter identifiability and robustness

property of a network, are also needed as important criteria. Meanwhile, a

potential next step is to develop effective Bayesian algorithms for inferring

regulatory networks using large-scale -omics datasets.

2. Parameter inference method.

Dealing with inference problems, a subjective choice of proper fitness toler-

ance values when performing the Bayesian inference makes the proposed

method flexible, which can be chosen according to the accuracy we are

interested in. Thus more sophisticated techniques, such as the adaptive

selection methods, are needed to select the threshold values in the Approxi-

mate Bayesian Computation (ABC) algorithms. In addition, to reduce the

computing time, more effective methods should be used to simulate the

biological systems, such as the τ-leap methods and multi-scale simulation

methods. Another alternative approach is to use parallel computing to re-

duce the heavy computing loads. All these issues are potential topics for

future research work for parameter inference method.

245



Chapter 9 – Conclusion

In other aspects of inference method, sensitivity and robustness properties

can be used to measure the variation of system dynamics caused by param-

eter perturbations. Sensitivity measures quantitative changes of variable

values in the model; while robustness is the property of a system to maintain

certain key properties, such as the bistability or oscillation. For the Nanog

network model, results in this thesis raise a number of interesting questions

regarding the sensitivity and robustness analysis, such as the quantitative

definitions of these two properties and relationship between them. This

deserves attention in the future.
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