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Errata and Addendum 
	
  
Page 6, line 14: delete “a Taylor series expansion of the Fock operator truncated the 
second order” and replace with “a perturbative approach involving a second-order 
Taylor series expansion of the eigenfunctons and eigenvalues of the exact 
wavefunction, where the zeroth order perturbation is represented by the HF 
Hamiltonian” 
  
Page 6, line 19: delete “which are at the pinnacle of accuracy” 
 
Page 6, para 2: Comment: Coupled cluster approaches are always superior to the CI 
equivalent in cases where the CI expansion is truncated (i.e. all but Full CI). 
  
Page 6, line 34: delete “assume that electrons are non-interacting” and replace with 
“include terms that are exact for non-interacting electrons” 
  
Page 78, lines 1-4: Comment: While Becke was the first one to highlight the concept 
of a “density functional approximation” (DFA) in literature, this was done in response 
to a longstanding argument by Levy that such a distinction should be made. The term 
DFA cannot be solely attributed to Becke, and is rather the product of a longstanding 
dialogue between scholars in the field of Density Functional Theory. 
See reference 8 of chapter 5: Axel D. Becke. Perspective: Fifty years of density-
functional theory in chemical physics. The Journal of Chemical Physics, 140(18), 
2014. 
  
Page 80, para 2: delete “Nedler” and replace with “Nelder” 
  
Page 105, line 6: insert “DFT-D3” between “utilising” and “type” such that it reads 
“…by utilising DFT-D3 type empirical dispersion corrections.” 
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of scholarly fair dealing. In particular no results or conclusions should be extracted 
from it, nor should it be copied or closely paraphrased in whole or in part without the 
written consent of the author. Proper written acknowledgement should be made for any 
assistance obtained from this thesis. 

 
I certify that I have made all reasonable efforts to secure copyright permissions for third- 
party content included in this thesis and have not knowingly added copyright content 
to my work without the owner’s permission. 

 

 



3 

General declaration 
 
 
 

In accordance with Monash University Doctorate Regulation 17.2 Doctor of Philosophy 
and Research Master’s regulations the following declarations are made: 

 
I hereby declare that this thesis contains no material which has been accepted for the 
award of any other degree or diploma at any university or equivalent institution and 
that, to the best of my knowledge and belief, this thesis contains no material previously 
published or written by another person, except where due reference is made in the text 
of the thesis. 

 
This thesis includes three original papers published in peer reviewed journals and one 
unpublished publication. The core theme of the thesis is developing methodology to 
perform ab initio quantum chemical calculations on a large scale for ionic liquids. The 
ideas, development and writing up of all the papers in the thesis were the principal 
responsibility of myself, the candidate, working within the School of Chemistry under 
the supervision of Dr.  Ekaterina I. Izgorodina and Dr.  Santiago Barrera Acevedo. 

 
The inclusion of co-authors reflects the fact that the work came from active collaboration 
between researchers and acknowledges input into team-based research. 

 
In the case of Chapters 2, 3 and 4 my contribution to the work involved the following: 

 
Thesis 

chapter Publication  title 

 
Publication 
status 

 
Nature  and  extent  of 
candidate’s contribu- 

  tion   
Assessment of atomic partial charge 

2 schemes for polarisation and charge 
transfer in ionic liquids 

Published 90% 

 

Large-scale ab initio calculations of 
archetypical ionic liquids Published 80% 

 

New  SCS-  and  SOS-MP2  coeffi- 
4 cients fitted to semi-Coulombic sys- 

tems 
 

SCS-IL-MP2 produces accurate in- 
4 teraction energies for ionic liquid 

 

 
Published 90% 

 

 
 
 

Submitted 90% 
  clusters   

 

I have not renumbered sections of submitted or published papers in order to generate a 
consistent presentation within the thesis. 

 

 
 
 
 
 

iii 



MONASH UNIVERSITY 
 
 

Abstract 
 

Faculty of Science 
School of Chemistry 

 
Doctor of Philosophy 

 
 

Large-scale calculations of Ionic Liquids 
 

by Jason Rigby 
 
 
 
Ionic liquids (ILs) hold great promise in many fields including energy storage and gener- 
ation, mechanical, pharmaceutical, synthetic and separation applications to name just 
a few. For any given application, the desired physical properties of the ideal IL may 
differ substantially from others and no widely applicable patterns or trends to facilitate 
intuitive design. The origins of physical properties lie in the characteristics of the in- 
termolecular energetics, which consist of a complex interplay between electrostatic and 
dispersion forces. This thesis investigates and develops computational methodologies for 
calculating a reliable description of the intermolecular interactions for this challenging 
class of solvents and electrolytes of the future. 

 
The electrostatic approximation used in classical molecular dynamics (MD) where atomic 
partial charges are assigned was investigated in terms of methods based on density ma- 
trix partitioning, and the restrained electrostatic potentials (RESP) approaches. It was 
found that the “geodesic” atomic partial charge scheme, part of the RESP family, pro- 
duced the most accurate charges. This was measured in terms of (a) charge convergence 
with increasing basis set size; (b) charge invariance with changes to the coordinate sys- 
tem; (c) insensitivity to minor structural changes on the resulting charges; (d) adequate 
capture of charge transfer effects; and (e) the preservation of symmetric of charges in 
symmetric molecules. Although charges can vary dramatically depending on the scheme 
used, the careful use of atomic partial charge schemes may still produce reliable force- 
fields, or at least serve as a rapid diagnostic tool to quantify electrostatic interactions 
and charge transfer. 

 
In moving towards unbiased a priori descriptions of IL intermolecular interactions, 
second-order Møller Plesset perturbation theory (MP2) was used with the linear-scaling 
fragment molecular orbital (FMO) framework to assess the extent to which dispersion 
forces play a role in the intermolecular energetics. ILs of increasing size were examined 
such that the many-body effects may be captured. The dispersion energy contribution 



v 
 
 

formed up to 20% of the total interaction energy. Furthermore, the interaction energy 
as produced by FMO was within 1 kJ mol−1  of the full-wavefunction MP2 interaction 

 

energy when three-body effects were included. As the dispersion interaction is purely 
a quantum mechanical phenomenon, correlated quantum mechanical methods, such as 
MP2 or coupled-cluster approaches, are required to provide an unbiased account of these 
effects. 

 

Ab initio methods such as MP2 and CCSD(T) scale formally as N 5 an N 7, respectively, 
with chemical system size. While the FMO approach provides a marked improvement in 
efficiency, the counterpoise (CP) approach to correcting the basis set superposition error 
(BSSE) is not amenable to fragmented approaches and requires each ion in the cluster 
to be calculated in the basis set of the entire system. In order to remove this bottleneck, 
the spin-component scaled second-order Møller Plesset perturbation theory (SCS-MP2) 
methodology was refined by fitting 174 non-CP corrected interaction energies at the 
MP2/cc-pVTZ level of theory to CP corrected CCSD(T)/CBS benchmark energies. This 
has resulted in an implicit BSSE correction that may be used within the highly efficient 
FMO framework, and is shown to yield results on par with or exceeding the accuracy of 
MP2/cc-pVQZ for clusters of two and four ion pairs (IPs). This new approach as been 
termed  SCS-IL-MP2. 

 

An alternative dispersion corrected density functional theory (DFT) approach, DFT- 
D3, was assessed and refined in view of producing accurate interaction energies at the 
same CCSD(T)/CBS quality. The same test set of 174 ILs was used to fit the SCS- 
IL-MP2 approach was used to refit the DFT-D3 approach for both the Hartree-Fock 
(HF) wavefunction and the PBE and BLYP density functionals (DFs). In most cases, 
the selection of the DF and associated DFT-D version 3 (DFT-D3) parameters differed 
negligibly with all reaching within 1 to 2 kJ mol−1 per IP. HF-D3 parameters, on the 
other hand, showed a substantial improvement, particularly when used with the Becke- 
Johnson (BJ) damping function. Refitted HF-D3 and the BJ damping function was able 
to consistently provide interaction energy errors below 5 kJ mol−1 per IP. It would be 
worthwhile further investigating the application of the refined HF-D3 in its ability to 
produce reliable energies and geometries over a more diverse set of ILs. 

 
Both the SCS-IL-MP2 and new DFT-D3 approaches may be applied to the highly scal- 
able FMO framework. These form the core elements of the quantum chemistry toolbox 
for the study and understanding of the physicochemical properties of ILs that have so far 
been only superficially characterised by electronic structure theory. From this starting 
point, a rigorous and unbiased a priori understanding of the intermolecular interactions 
and resulting physicochemical properties may be predicted by means of efficient ab initio 
molecular dynamics (AIMD) techniques. 



Acknowledgements 
 
 
I would like to sincerely thank my main supervisor, Dr. Ekaterina Izgorodina, for her 
support, encouragement and unfaltering optimism during the development of this thesis. 
Her unparalleled insight, integrity and systematic approach represents the very best in 
scientific practise. I would also like to thank my associate supervisor, Dr. Santiago 
Barrera Acevedo, for his ongoing support and mathematical expertise that has proven 
invaluable in the completion of this work. I have been privileged for the support and 
friendship of these two exemplary scholars. 

 
This work has been supported by a number of computational facilities. I am indebted to 
the National Computational Infrastructure (NCI) for generous allocations of computer 
time and support. In particular, the assistance provided Dr. Rika Kobayashi cannot be 
overstated; her in depth knowledge of the plethora of available computational chemistry 
software packages and quantum theory is both staggering and admirable. I acknowledge 
the technical expertise and support provided by Philip Chan of the Monash Campus 
Cluster who has been fantastic in facilitating a number of particularly demanding cal- 
culations and has always been available at short notice. Additional computer time has 
been provided by the Multi-modal Australian Sciences Imaging and Visualisation Envi- 
ronment (MASSIVE) high performance computing facility, and the National eResearch 
Collaboration Tools and Resources (NeCTAR) project research cloud, for which I am 
sincerely grateful. 

 
I am thankful for the financial support provided by the Faculty of Science Dean’s Post- 
graduate Scholarship, and the Australian Postgraduate Award. I have had the privilege 
of spending approximately three months at Iowa State University, Ames, as well as pre- 
senting at a number of national and international conferences, funded by the Australian 
Research Council’s Discovery Project grant awarded to Dr. Izgorodina. My thanks again 
to Dr. Izgorodina and the Australian Research Council. 

 
I am grateful for the support of my friends and family who have helped me either 
emotionally, socially, academically or a combination thereof. I would like to particularly 
thank Donna Whelan and David Scarborough, whose friendship and company I value 
greatly. Further thanks go to my officemates: Su Chen, Samuel Tan, Scott Young; and 
my housemates: Whitney Monaghan, Isaac Shannos and Patrick Daly. 

 
 
 
 
 
 
 
 
 

vi 



 
 
 
 
 
 
 

Contents 

General declaration  iii 

Abstract  iv 

Acknowledgements  vi 

Contents  vii 

List of Figures  xi 

List of Tables  xiii 

List of Abbreviations  xv 

Interactive features  xix 

1 Introduction  1 
1.1 What are ionic liquids? . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.2 Current methods of modelling . . . . . . . . . . . . . . . . . . . . . . . . 3 

1.2.1 Classical molecular dynamics  . . . . . . . . . . . . . . . . . . . . 3 
1.2.1.1 Theoretical overview . . . . . . . . . . . . . . . . . . . . 3 
1.2.1.2 Implications and criticisms  . . . . . . . . . . . . . . . . 4 

1.2.2 Small-scale ab initio calaculations . . . . . . . . . . . . . . . . . 5 
1.2.2.1 Theoretical overview . . . . . . . . . . . . . . . . . . . . 5 
1.2.2.2 Implications and criticisms  . . . . . . . . . . . . . . . . 7 

1.2.3 Ab initio molecular dynamics  . . . . . . . . . . . . . . . . . . . . 8 
1.2.3.1 Theoretical overview . . . . . . . . . . . . . . . . . . . . 8 
1.2.3.2 Implications and criticisms  . . . . . . . . . . . . . . . . 9 

1.3 Aims and overview  ..................................................................................... 10 

2 The trouble with classical mechanics: 
Partial charge schemes, polarisability and charge transfer  19 
2.1 Declaration for thesis Chapter 2  .................................................................. 20 
2.2 Overview  .................................................................................................... 21 

vii 



2.3 Assessment of atomic partial charge schemes for polarisation and charge 
transfer in ionic liquids ................................................................................ 22 

3 More than just an ion pair: 
The need for large-scale calculations  39 
3.1 Declaration for thesis Chapter 3  .................................................................40 
3.2 Overview  ....................................................................................................41 
3.3 Large-scale ab initio calculations of archetypical ionic liquids  .....................41 
3.4 Supporting information: Large-scale ab initio calculations of archetypical 

ionic liquids (abridged)  ............................................................................. 45 

4 Overcoming bottlenecks: 
Implicit BSSE correction with a modified SCS-MP2 approach  51 
4.1 Declaration for thesis Chapter 4 ......................................................................... 52 
4.2 Overview .............................................................................................................. 53 
4.3 New SCS- and SOS-MP2 coefficients fitted to semi-Coulombic systems . 53 
4.4 SCS-IL-MP2 produces accurate interaction energies for ionic liquid clusters 66 
4.5 Supporting information: SCS-IL-MP2 produces accurate interaction en- 

ergies for ionic liquid clusters (abridged) .................................................... 71 

5 Revisiting density functional theory: 
The improvement and application of empirical dispersion corrections 77 
5.1 Introduction  .............................................................................................. 77 
5.2 Theoretical procedures  ...............................................................................80 

5.2.1 Fitting  data  ................................................................................... 80 
5.2.2 Potential energy surfaces  .................................................................82 
5.2.3 Ionic liquid clusters  ........................................................................ 83 

5.3 Results and discussion  ................................................................................ 84 
5.3.1 Fitting set  ...................................................................................... 84 

5.3.1.1 Choice of functional and damping function  ...................... 84 
5.3.1.2 Predictors of error  ............................................................87 

5.3.2 Potential energy surfaces  .................................................................90 
5.3.3 Application to clusters  ................................................................... 92 

5.3.3.1 Performance of the zero damping function  ........................92 
5.3.3.2 Performance of the Becke-Johnson damping function . . 93 

5.4 Conclusions   
 96 
5.5 Acknowledgements  ....................................................................................... 97 

6 Conclusions and future work  103 
6.1 Conclusions  ............................................................................................... 103 
6.2 Future work  ............................................................................................ 105 

A Chemistry in the cloud  107 
A.1 Background  .............................................................................................. 107 
A.2 The NeCTAR research cloud  .................................................................... 107 
A.3 A cloud-friendly queueing system  ............................................................. 108 



 

 

Contents          ix 
 
 
B DFT-D3 error histograms 

          
 
111 

B.1   Fitting set histograms   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 
B.1.1 Zero damping function . . . . . . . . . . . . . . . . . . . . . . . . 111 
B.1.2 Becke-Johnson damping function  . . . . . . . . . . . . . . . . . . 113 

B.2   Potential energy surface histograms . . . . . . . . . . . . . . . . . . . . . 114 
B.2.1 MP2 approaches  . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 
B.2.2 Uncorrected DFT functionals  . . . . . . . . . . . . . . . . . . . . 115 
B.2.3 Corrected DFT functionals and HF wavefunction . . . . . . . . . 116 

B.2.3.1 Zero damping function . . . . . . . . . . . . . . . . . . 116 
B.2.3.2 Becke-Johnson damping function . . . . . . . . . . . . . 118 

 

C  DFT-D3 code patch for new coefficients           

121 



 

 



 

 
 
 
 
 
 
 

List of Figures 
 
 
 
 

1.1 Ionic liquids (e.g. 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl- 
3-methylimidazolium tetrafluoroborate ([C4mim][BF4])) compared with 
molecular organic solvents (e.g. benzene) and crystalline salts (e.g. sodium 
chloride) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.2 Comparison of potential energy surface scans between 1-propyl-3-methylimidazolium 
iodide ([C3mim]I) and 1-propyl-2,3-dimethylimidazolium iodide ([C3m2im]I). 
Reprinted with permission from Izgorodina et al.[24] Copyright 2011 Amer- 
ican Chemical Society.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

5.1 Examples of IL IP conformations for Br− and Cl− anions. Reprinted with 
permission from Rigby et al.[25] Copyright 2014 American Chemical Society. 
80 

5.2 Examples of IL IP conformations for the bis(trifluoromethylsulfonyl)amide 
([NTf2]−) anion. Reprinted with permission from Rigby et al.[25] Copy- 
right 2014 American Chemical Society .............................................................. 81 

5.3 DFT-D3 fitting errors ................................................................................... 86 
5.4 BLYP-D3 (A) BJ damping function potential energy surface error histogram  90 
5.5 BLYP-D3 (B) BJ damping function potential energy surface error histogram  90 
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Chapter 1 
 
 
 
 

Introduction 
 
 
 
 
 

1.1 What are ionic liquids? 
 
 

Ionic liquids (ILs) are a highly customisable and versatile class of organic compound 
composed entirely of ions.   ILs are loosely defined as having a melting point of less 
than 100◦C, but may be more specifically categorised as room-temperature ionic liquids 
(RTILs).[1] As illustrated by Figure 1.1,[QR1] ILs are uniquely positioned with, at a first 
approximation, significant contributions from both dispersion and electrostatic forces to 
the overall interaction energy.[2–4] Additionally, ILs tend to be bulky and asymmetric, 
which impedes packing ability and consequently their ability to crystallise.[5, 6] 

 
Benzene [C4mim][BF4] NaCl 

 
 
 
 
 
 
 
 
 
 

dispersion forces electrostatic forces 
 

Figure  1.1:   Ionic  liquids  (e.g.   1-butyl-3-methylimidazolium  tetrafluoroborate,  1- 
butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4])) compared with molec- 

ular organic solvents (e.g. benzene) and crystalline salts (e.g. sodium chloride) 
 
 
 

A unique array of properties arise from the combination of non-negligible dispersion 
and electrostatic properties, and poor crystal packing. In general, ILs are electrically 
conductive,[7, 8] have low vapour pressure[9] and high thermal stability.[10] For these 
reasons, ILs are particularly well-suited to electrochemical applications including en- 
ergy storage and solar cells,[11] and for use in place of petroleum-based mechanical 
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lubricants.[12, 13] Often referred to as “green solvents,”[14] ILs are typically of low 
toxicity,[15, 16] and may be used to catalyse a large number of reactions[17] with 
the possibility of being recycled[18–20] Further to this, ILs may be used in molecu- 
lar separations,[21] sample storage and preservation,[22] or even as an alternative form 
for active pharmaceutical ingredients.[23] This is far from an exhaustive list, however it 
can be seen that ILs are applicable to a wide range of niche applications. 

 

 
 

(a) 1-propyl-3-methylimidazolium      iodide(b)   1-propyl-2,3-dimethylimidazolium   iodide 
([C3mim]I) potential energy surface ([C3m2im]I) potential energy surface 

 

Figure 1.2:  Comparison of potential energy surface scans between [C3mim]I and 
[C3m2im]I. Reprinted with permission from Izgorodina et al.[24] Copyright 2011 Amer- 

ican Chemical Society. 
 

While the partial list of applications given above is remarkably diverse, the number of 
ILs that possess the ideal set of properties of each is not unlike finding a needle in a 
haystack. ILs are said to number in excess of 1018 when considering binary and ternary 
ion combinations,[14] where it is reasonable to assume that only a small proportion of 
these will satisfy the requirements for any particular application. Consequently, the 
need for the development of an accurate framework with which one may rationally 
design task-specific ILs is of paramount importance. It is not yet precisely known how 
the interactions between the constituent ions correlate with the physical properties for a 
given application, which is likely the result of a fine interplay between the fundamental 
intermolecular forces. An example to illustrate this is the increase in viscosity observed 
in ILs upon methylation of the 1-propyl-3-methylimidazolium ([C3mim]+) cation at 
the C2 position to form 1-propyl-2,3-dimethylimidazolium ([C3m2im]+) cation.[QR2]   It 

QR2 would seem logical to see the opposite trend;  the ability for the acidic C2 proton to 
form hydrogen bonds is eliminated, thus interaction between ions would decrease and 
so too the viscosity. In this case, rather counter-intuitively, there is a marked difference 
in viscosity with only a subtle change in structure; measured at 85◦C, an almost six- 
fold increase in viscosity of 35 to 195 cP is observed.[24] This introduction does not 
intend to give a thorough account of the origins of this specific observation, although it 
is important to note that the explanation remains unclear. There have been a number 
of propositions given to rationalise this observation,[25–28] however debate appears to 

http://interactive-thesis.appspot.com/?mol=intro-2.mol
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focus on whether the lack of hydrogen bonding causes a loss of entropy due to a reduced 
conformational space[25] or whether ion mobility is reduced[24] given that the respective 
potential energy surface minima differing negligibly (see Figure 1.2). 

 
Viscosity notwithstanding, melting points in general are notoriously difficult to predict. 
ILs tend to show only local trends that are either non-transferable to other systems or do 
not extrapolate generally. For example, for 1-alkyl-3-methylimidazolium tetrafluorob- 
orate ([Cnmim][BF4]) ILs, melting points generally decrease as the length of the alkyl 
chain increases due to increasing disorder and disrupted crystal packing.[29] However, as 
the alkyl chain length extends beyond 10 carbon atoms, the melting point quite abruptly 
increases as attractive van der Waals forces become more significant.[30] Contributions 
from the anion further complicate matters; N -alkyl-3-methylpyridinium ([Cnmpyr]+) 
cations, for example, similarly show a general decrease in melting point with increasing 
chain length with the tosylate anion giving quite low melting points that steadily de- 
crease to a cation alkyl chain length of at least four carbon atoms. Conversely, when the 
mesylate and tetrafluoroborate anions are present, an increase in melting point is ob- 
served at an alkyl chain length of as little as two and three carbon atoms, respectively.[3] 

 
In cases such as these, the only tools available that can resolve the intermolecular be- 
haviour at the atomic level are computational in nature, although the validity of the 
computational methods available vary substantially. In the following section, key meth- 
ods of computational analysis will be discussed with specific reference to the strengths, 
weaknesses and applications to ILs. 

 
 
 

1.2 Current methods of modelling 
 
 

1.2.1 Classical molecular dynamics 
 
 

1.2.1.1 Theoretical overview 
 
 

Classical molecular dynamics (MD) is a time-resolved chemical simulation technique 
where the intramolecular potential is typically parameterised in terms of bond stretching, 
angle bending and torsional components, and the intermolecular interaction is governed 
by the 12-6 Lennard-Jones potential and Coulomb force, shown in Equation 1.1.[31] 
Collectively, these parameterisations are known as a forcefield. The classical Newto- 
nian equations of motion are integrated using this potential to generate the simulation 
trajectory. 
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It can be seen that the non-covalent interaction potential is a function of monomer pairs 
(α and β) with dispersion being represented as a 12-6 Lennard-Jones potential, and 
electrostatics as the Coulombic interaction between non-bonding sites (i and j) of each 
monomer of the pair. The total non-bonded energy is simply a sum of all pair-wise 
interactions. 

 
 
1.2.1.2 Implications and criticisms 

 
 
Classical force-field calculations are an attractive choice simply since they generally 

have a computational complexity of O(N 2) which can be reduced to O(N log N ) [32] 
as opposed to a quantum chemical method such as second-order Møller Plesset pertur- 

bation theory (MP2) calculations which have a complexity of O(N 5).[33] Both small- 
scale ab initio calculations and classical forcefield based methods have major draw- 
backs: the former, while capturing effects related to electron correlation, neglects sig- 
nificant contributions from longer-ranged electrostatic interactions as well as more local 
anion-anion/cation-cation dispersive interactions since the molecules that make up this 
interaction are simply not considered. The latter includes crude approximations for cor- 
relative effects that are either based on empirical data from spectroscopic measurements 
of model compounds (for example, the CHARMM forcefield optimised for DNA [34]), or 
parameterised based on system-specific small-scale ab initio calculations (for example, 
the COMPASS forcefield optimised for common organic molecules [35]) and operate on 
a purely pair-wise basis thereby neglecting many-body effects. That is, the total energy 
of the entire system is not equal to the sum of each interacting pair’s energy. Many- 
body effects are investigated in detail in Chapter 2, where it is shown that many-body 
effects form a substantial part of the interactions found in IL. Consequently, this two- 
body approximation has severe deficiencies regardless of from where parameters were 
sourced. 

 
Classical forcefields are generally fitted to reproduce some macroscopic property – typi- 
cally density – and may not be easily transferred to new systems; the forcefield may need 
to be reparameterised for previously unaccounted for interactions and/or the nature of 
the atom-atom interactions may change as the simulation progresses.[36] Moreover, these 
forcefields do not allow for bond breakage or formation, and consequently are completely 
inappropriate for protic ionic liquids with labile protons. These complexities limit the 
use of classical dynamics to a more retrospective approach; they are a step forward in 
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explaining existing experimental observations, but are insufficient for exploring new and 
poorly understood systems and have questionable predictive power. The complex in- 
terplay between anion-anion, cation-cation and cation-anion interactive forces and their 
constituent components (such as dispersive, inductive and electrostatic forces) responsi- 
ble for the unique physicochemical properties found in ionic liquids quickly put property 
prediction beyond the realm of classical physics. 

 
 

1.2.2 Small-scale ab initio calaculations 
 
 

1.2.2.1 Theoretical overview 
 
 

The following is a brief overview of ab initio and density functional theory. For readers 
interested in the finer details, introductory textbooks such as Computational Chemistry 
by Jensen[37] or Molecular Electronic Structure Theory by Helgaker et al.[38] are highly 
recommended. 

 
Ab initio calculations, small-scale or otherwise, all attempt to solve a form of the 
Schrödinger equation, a partial differential equation that describes the quantum state of 
a set of a physical system. Usually this is the time-independent Schrödinger equation, 
shown in Equation 1.2. 

 
 

EΨ = Ĥ Ψ (1.2) 
 
 

The time-independent Schrödinger equation is an eigenvalue problem where the Hamil- 

tonian operator, Ĥ , operates on the wavefunction, Ψ, to produce the identical wave- 
function scaled by the eigenvalue, E, which is the energy of the system. 

 
For the vast majority of ab initio computational chemistry applications, the Schrödinger 
equation is restricted to only the electronic wavefunction with the nuclei treated as fixed 
point charges in order to reduce computational complexity. This is possible due to the 
Born-Oppenheimer approximation, which asserts that the mass of the nuclei is high 
enough that the Heisenberg uncertainty principle may be ignored; i.e. their wave-like 
nature is negligible.  This allows the Hamiltonian to take the following form: 

 
 

Ĥelec = T̂e + V̂en + V̂ee + V̂nn (1.3) 
 
 

with T̂e  representing the kinetic energy of the electrons, V̂en  the electron-nucleus attrac- 
tion, V̂ee  the electron-electron repulsion, and V̂nn  the nucleus-nucleus repulsion.   The 
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electron-electron repulsion term is the most challenging to calculate as the repulsion ex- 
perienced by any given electron is affected by all other electrons – a term that becomes 
intractable as the number of electrons increases. This is known as “electron correlation.” 

 
As a first approximation to solving the electronic Schrödinger equation, the Hartree- 
Fock (HF) method considers the electron-electron repulsion term for each electron acting 
only in the average field of all other electrons. An “exchange” term is also included to 
account for the interaction between electrons of the same spin, which is in addition to 
the Coulombic force. Although the exchange energy is a form of electron correlation, the 
HF method is typically considered an uncorrelated method. Thus, correlation energy 
is defined as the difference between the HF energy and any method accounting for 
Coulombic  correlation. 

 
The HF method is the foundation of many ab initio methods, all of which are categorised 
(rather unimaginatively) as “post-Hartree-Fock” methods. These include: MP2,[39] 
which is a Taylor series expansion of the Fock operator truncated the second order; 
coupled-cluster methods, which use the HF wavefunction as a reference to which excita- 
tion operators are applied up to an arbitrary order, accounting for all possible excitations 
to the given limit (e.g. coupled-cluster with single, double and perturbative triple excita- 
tions (CCSD(T)), truncated at triple-excitations);[40, 41] and Configuration Interaction 
(CI) methods,[42] which are at the pinnacle of accuracy where the assumption that the 
wavefunction is a single Slater determinant is disregarded in favour of multiple weighted 
Slater determinants. CI methods can be extended to include all possible electron ex- 
citations yielding the true solution to the Schrödinger equation; this is known as Full 
CI. There are many more ab initio methods than listed above, however apart from Full 
CI, these are arguably the most common in contemporary usage.  Ab initio methods 
beyond CCSD(T) are seldom used owing to their computational complexity and limited 
computable chemical systems. However, the important point to note about ab initio 
methods is that they are systematically improvable to approach the true solution to 
whichever level of accuracy the computational power of the day provides. 

 
Another approach to calculating electronic structure are the density functional theory 
(DFT) methods, which attempt to circumvent the electron correlation problem by as- 
serting that there is a direct,  albeit  unknown,  relationship  between  electron  density 
and energy.[43] In Kohn-Sham DFT, approximate kinetic energy and electron correla- 
tion terms may be determined, however these approximations inadequately describe the 
electronic structure as they assume that electrons are non-interacting. Therefore, correc- 
tions need to be added in order to account for wavefunction antisymmetry, i.e. electron 
exchange energy, and additional electron-electron correlation beyond the average field 
as in HF theory – the exchange-correlaton energy.  These corrections are themselves 
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unknown, however attempts to formulate such corrections are known as “density func- 
tionals” or “exchange-correlation functionals.” In the GAUSSIAN 09 software package, 
there are over 200 density functionals available.[44] 

 
In expressing the energy of a system in terms of electron density over three-dimensional 
space instead of the wavefunction, the dimensionality is substantially reduced. Whereas 
the wavefunction has dimensionality of 4N , including the three-dimensional spatial and 
spin coordinates for each electron, electron density is expressed only in three spatial di- 
mensions. This makes DFT an inexpensive alternative to wavefunction-based methods. 
However in contrast to wavefunction-based methods, a major criticism of DFT methods 
is that they are not systematically improvable. While for canonical implementations 
of wavefunction-based methods it can be said in general that with increased accuracy 
comes increased cost, the same cannot be said for DFT; there is no consistent hierarchy 
of DFT density functionals, although a notional “Jacob’s ladder” description has been 
proposed.[45] 

 
DFT is not completely without its merits, however; it is widely used to produce mini- 
mum energy structures. Energetics, on the other hand, can vary substantially.[46, 47] 
The origins of this poor behaviour stem from the assumptions made by the respective 
DFT functional which cannot be guaranteed to extend to all systems. Those for which 
the functional was designed generally perform exceptionally well, however as more novel 
chemicals are explored, the validity of the functional is not known. As a consequence, 
the best energetics are obtained from the wavefunction methods, which make only sys- 
tematically improvable approximations. 

 
 

1.2.2.2 Implications and criticisms 
 
 

The majority of ab initio calculations of ionic liquids has been limited to ion pairs 
(IPs)[3, 48, 49] or small ion clusters.[50, 51] This is necessitated by most conventional 
wavefunction or DFT methods, which scale poorly with system size. The value of IP 
calculations is limited as it is far removed from the physical reality; ions are not in a gas 
phase environment, but rather surrounded by other ions of like or opposite charge and 
in constant motion. Supposing that ionic liquids did not have a significant contribution 
from many-body effects, this would be largely unproblematic, however a number of 
properties are affected by this. 

 
In Chapter 3, it is shown that many-body effects are considerable in terms of the over- 
all interaction energy, including in electron correlation effects. On a per IP basis, the 
interaction energy increases substantially from a single IP to clusters consisting of eight 
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IPs.[2] This is in part due to the polarisability of  ionic  liquids  which  allow  for  rein- 
forced dipole moments and thus an increase in the induction contribution of the overall 
interaction,[52–54] much like the dipole moments in gas phase water compared to the 
liquid phase. 

 
The behaviour of IL in the bulk compared with isolated ion pars or small clusters has 
significant implications on the classical approach detailed in Section 1.2.1. One of the 
key components of the classical intermolecular interaction forces are the electrostatic 
interactions between ions. Due to the many-body effects, this is a not a linearly additive 
quantity; that is, the charges of the ions change with the system size. In classical 
MD, this is represented by “charge transfer,” or a reduction of the net charge on the 
constituent ions; instead of unity charges, which result in artificially slower dynamics, net 
charges of 0.8e and −0.8e may be used.[55] In classical MD, polarisation is achieved using 
atomic partial charges, but this is fundamentally flawed in non-polarisable forcefields as 
these charges cannot change during the simulation and thus the true polarisability of 
the ions is not properly reflected. It should also be noted that the use of atomic partial 
charges in classical MD is simply a tool to model electrostatic interactions, but atomic 
partial charges themselves are artificial and without concrete definition. 

 
Small-scale ab initio calculations have demonstrated by means of IPs and small clusters 
that many-body effects are important, but still do not truly reflect the environment as in 
experiment. Despite this deficiency, they have shown that classical approaches are inap- 
propriate due to the polarisability of the ions and resulting induction forces and therefore 
indicate that best efforts should be placed on overcoming the scalability problems pre- 
venting the application of ab initio techniques on large systems. As ionic liquids are 
poorly characterised and often lack an intuitive structure-property relationship, models 
that assume such a relationship are likely to fail. Thus, wavefunction based methods 
are presently the most reliable way forward for accurate a priori  characterisation. 

 
 
1.2.3 Ab initio molecular dynamics 

 
 
1.2.3.1 Theoretical overview 

 
 
Ab initio molecular dynamics (AIMD) recognises the shortcomings of the classical ap- 
proach and uses electronic structure methods to determine atomic forces that would 
otherwise be determined using ball-and-spring potentials, and two-body intermolecular 
potentials as in Section 1.2.1. AIMD is typically performed in one of two ways; the 
Carr-Parrinello method[56] or the Born-Oppenheimer method. 
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In Born-Oppenheimer AIMD (BO-AIMD), the forces are obtained by a standard DFT 
or wavefunction based method as the negative gradient on each nuclei. The standard 
Newtonian equations of motion are integrated using an algorithm such as Velocity Verlet 
or Leapfrog in a manner identical to the classical case. This is the most simple approach 
to AIMD, however as at each timestep a full wavefunction optimisation is required, it 
has not been widely adopted, with Car-Parrinello AIMD (CP-AIMD) gaining popularity 
as a more efficient method. 

 
CP-AIMD involves only  a  single  electronic  structure  optimisation  as  an  initial  step, 
as opposed to BO-AIMD, which requires optimisation at each step. This is typically 
done using a DFT approach. By introducing the electrons as an additional degree of 
freedom, both the orbitals and the nuclei are evolved as the simulation progresses. The 
consequence of this, however, is that in order to prevent the electrons from leaving the 
ground state, the electrons must be given an artificially increased mass, known as the 
“fictitious mass,” which is set to a default of 200 a.u. in the CP-AIMD program.[57] 
Selection is critical to keep the electrons following the Born-Oppenheimer ground state 
surface, however a fictitious mass too large may lead to unconverged electronic properties 
and inaccurate dynamics.[58, 59] 

 
 

1.2.3.2 Implications and criticisms 
 
 

AIMD is currently at the forefront of IL simulation; it the least biased approach that 
requires no fitting to experimental data. It is intrinsically capable of accounting for 
charge transfer, induction and polarisation, and bond breakage and formation. Recent 
studies of ILs utilising AIMD include gas solubility studies[60–62] and analysis of IL 
mixtures,[63–65] to name just two areas of active research. 

 
The overwhelming majority of AIMD simulations are calculated over a DFT potential 
energy surface, and thus contemporary AIMD may be argued somewhat of a misnomer; 
the DFT functional itself may be parameterised empirically and therefore is strictly 
speaking not a first-principles approach. With this in mind, while the current state 
of AIMD is a notable improvement over the classical approach, it still suffers from an 
unpredictable treatment of exchange and correlation energies. 

 
With MD already sensitive to parameters such as the time step and simulation length, 
CP-AIMD further complicates the situation by introducing an artificial electronic mass, 
the selection of which is critical to physically realistic dynamics. Consequently the 
preferred AIMD technique is BO-AIMD, which does not have this parameter, however 
this is largely out of the realm of that which is considered computationally feasible. A 
central theme to this thesis involves overcoming computational bottlenecks involved in 
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ab initio electronic structure theory, and as such is it envisaged that BO-AIMD will 
increase in relevance in the near future. 

 
 
 
1.3 Aims and overview 

 
 
This thesis focuses on the computational bottlenecks that restrict the application of 
unbiased ab initio methods to large systems of ILs. It is structured in the following 
way: 

 
Chapter 2 focuses on the calculation of atomic partial charges that are routinely used in 
classical forcefields. ILs are used as the subject of this study as they have been shown to 
be highly polarisable and subject to charge transfer. A variety of partial charge schemes 
are assessed to (a) highlight the variety of non-unique solutions to finding atomic partial 
charges, and (b) to use atomic partial charge schemes as a diagnostic tool for evaluating 
polarisability and charge transfer in large ionic clusters. 

 
Chapter 3 introduces the fragment molecular orbital (FMO) approach[66] as applied to 
IL clusters. An evaluation of the error of FMO with respect to the MP2 level of theory 
is provided, which paves the way for widespread adoption of this large-scale technique 
for the calculation of accurate energetics reflecting the bulk properties of ILs. 

 
Chapter 4 examines spin-component scaled second-order Møller Plesset perturbation 
theory (SCS-MP2) approaches, culminating in revised SCS-MP2 scaling coefficients that 
form the basis for the new ionic liquid specific SCS-MP2 (SCS-IL-MP2) approach pro- 
posed in this thesis. The SCS-IL-MP2 approach is then applied to larger clusters with 
remarkable improvements in energy calculations. 

 
Chapter 5 considers non-equilibrium geometries and compares benchmark CCSD(T)/CBS 
correlation energies with MP2, SCS-MP2, SCS-IL-MP2 and DFT-D-type empirical dis- 
persion corrections.[67, 68] The  approach is then refined, with new empirical dispersion 
coefficients derived to reflect the dispersion energy of ionic liquid clusters resulting in a 
protocol for achieving high accuracy. 

 
A core feature of this work is a focus on rigorous, systematic analysis. As such, the thesis 
structure outline above is designed to form the foundation of an electronic structure 
framework with which one may reliably form hypotheses based on theory with a well- 
founded understanding of the advantages and limitations. 
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Filipe. On the critical temperature, normal boiling point, and vapor pressure of 
ionic liquids. The Journal of Physical Chemistry B, 109(13):6040–6043, 2005. 

 
[10] Helen L Ngo, Karen LeCompte, Liesl Hargens, and Alan B McEwen. Thermal 

properties of imidazolium ionic liquids. Thermochimica Acta, 357–358:97 – 102, 
2000. 



Chapter 1. Introduction 12  
 

 
[11] Douglas R. MacFarlane, Naoki Tachikawa, Maria Forsyth, Jennifer M. Pringle, 

Patrick C. Howlett, Gloria D. Elliott, James H. Davis, Masayoshi Watanabe, Patrice 
Simon, and C. Austen Angell. Energy applications of ionic liquids. Energy & 
Environmental Science, 7:232–250, 2014. 

 
[12] Zhuo Zeng, Benjamin S. Phillips, Ji-Chang Xiao, and Jean’ne M. Shreeve. Polyfluo- 

roalkyl, polyethylene glycol, 1,4-bismethylenebenzene, or 1,4-bismethylene-2,3,5,6- 
tetrafluorobenzene bridged functionalized dicationic ionic liquids: Synthesis and 
properties as high  temperature  lubricants. Chemistry of Materials, 20(8):2719– 
2726, 2008. 

 
[13] Chengfeng Ye, Weimin Liu, Yunxia Chen, and Laigui Yu. Room-temperature ionic 

liquids: a novel versatile lubricant. Chemical Communications, pages 2244–2245, 
2001. 

 
[14]  Robin D. Rogers and Kenneth R. Seddon.   Ionic liquids–solvents of the future? 

Science, 302(5646):792–793, 2003. 
 
[15] Kathryn M. Docherty and Charles F. Kulpa, Jr. Toxicity and antimicrobial activity 

of imidazolium and pyridinium ionic liquids. Green Chemistry, 7:185–189, 2005. 
 
[16] David J. Couling, Randall J. Bernot, Kathryn M. Docherty, JaNeille K. Dixon, 

and Edward J. Maginn. Assessing the factors responsible for ionic liquid toxicity to 
aquatic organisms via quantitative structure-property relationship modeling. Green 
Chemistry, 8:82–90, 2006. 

 
[17] Thomas Welton. Room-temperature ionic liquids. solvents for synthesis and catal- 

ysis. Chemical Reviews, 99(8):2071–2084, 1999. 
 
[18] Martyn J. Earle, Paul B. McCormac, and Kenneth R. Seddon. Diels-Alder reactions 

in ionic liquids . a safe recyclable alternative to lithium perchlorate-diethyl ether 
mixtures. Green Chemistry, 1:23–25, 1999. 

 
[19] Hua-Ping Zhu, Fan Yang, Jie Tang, and Ming-Yuan He. Bronsted acidic ionic liquid 

1-methylimidazolium tetrafluoroborate: a green catalyst and recyclable medium for 
esterification. Green Chemistry, 5:38–39, 2003. 
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2.2 Overview 
 
 

A core feature of the description of intermolecular forces in any classical molecular 
dynamics simulation are atomic partial charges, which are used to characterise the elec- 
trostatic component of the non-covalent interaction (see Equation 1.1). Atomic partial 
charges are problematic, however, as they do not correspond to any quantum mechani- 
cal operator; there is no charge operator in quantum mechanics.∗ This means that any 
number of charges may be assigned to each atom that, when summed, reflect the overall 
charge of the molecule but to not accurately reflect the charge distribution. 

 
The question is, what properties must an atomic partial charge distribution have to be 
considered accurate? This is not a straightforward question to answer simply because 
there is no definitive definition of an atom in a molecule;[2] at its essence, a molecule 
is a collection of positively charged nuclei supported by negatively charged electrons – 
there is no discrete atomic unit. For this study, atomic partial charges are considered 
accurate if they satisfy the following criteria: 

 
 

• Convergence with increasing basis set size 
 

• Invariant with respect to coordinate system 
 

• No major fluctuations with minor structural changes 
 

• Ability to capture charge transfer effects 
 

• Accurate treatment of symmetric molecules 
 
 

In terms of the above, it was concluded that charges derived from the restrained electro- 
static potentials (RESP) with geodesic point selection[3] were generally best suited to 
this. Conversely, schemes based on the wavefunction derived density matrix performed 
poorly. Mulliken[4] and Löwdin[5] charges suffered from severe basis set dependence, 
and all fluctuated drastically compared to the RESP schemes and showed low levels 
of charge transfer. Natural population analysis[6, 7] was relatively stable with basis 
set, however could not capture charge transfer. The only outstanding property of the 
density matrix-based methods was the treatment of charge symmetry, which was per- 
fectly symmetrical about the mirror plane bisecting 1,3-dimethylimidazolium chloride 
([C1mim]Cl). Further to this, the dipole moment distribution was determined for each 

∗The atoms-in-molecules (AIM) approach does define an atom electron population operator; the 
“number operator.”[1] While this operator has a unique solution, this does not mean that the atomic 
charges have a unique solution. Charges determined via the number operator are only valid within the 
AIM formalism, which does not reflect on its suitability in describing electrostatic interactions. 
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partial charge scheme in a series of ionic liquid clusters. Broad distributions were found 
that supported previous findings in this area.[8, 9] 

 
This study highlights the importance of good partial charge selection to achieve the max- 
imum possible accuracy in an classical molecular dynamics (MD) simulation. However, 
the broad dipole moment distribution found in ionic liquid (IL) clusters indicates that 
non-polarisable forcefields are fundamentally limited, whereas polarisable forcefields are 
time-consuming to fit and not easily transferred to structurally distinct systems. Thus, 
this paper is positioned to emphasise the need for ab initio approaches, which require 
no such approximation. Partial charge schemes may be useful as a diagnostic tool, but 
special care must be taken where their usage is fundamental to the simulation. 

 
 
 
 
 

QR1 

 
 

QR2 

 
 

QR3 

3D structures of IL clusters shown in Figures 9 (a), (b) and (c) in the paper that follows 
may be viewed by scanning [QR1], [QR2] and [QR3], respectively. 

http://interactive-thesis.appspot.com/?mol=partial-charge-a.mol
http://interactive-thesis.appspot.com/?mol=partial-charge-b.mol
http://interactive-thesis.appspot.com/?mol=partial-charge-c.mol
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Assessment of atomic partial charge schemes for 
polarisation and charge transfer effects in ionic 
liquids† 

 
Jason Rigby and Ekaterina I. Izgorodina* 

 
In this work, we assess several popular atomic partial charge schemes with the view of accurately 
quantifying charge distribution, dipole moments and charge transfer in routinely used ionic liquids (ILs). 
We investigated a series of ion pairs of imidazolium-based ILs such as [C(1-4)mim]X (where X = Cl, BF4 

and NTf2) and ionic clusters of [NMe4][BF4], [C1mim][BF4] and [C1mim]Cl that were composed of two, 
four and eight ion pairs. Assessed partial charge schemes include  restrained  electrostatic potentials 
(RESP) employing ChelpG, Connolly and Geodesic point selection algorithms, as well as density matrix 
partitioning schemes including Mulliken, Löwdin and Natural Population Analysis (NPA). The quality of 
charge distribution was analysed using the following criteria: (1) treatment  of  symmetry  identical 
atoms, (2) invariance of charge in the imidazolium ring with increasing alkyl chain and (3) recalculation 
to dipole moments as a measure of electronic polarisation. The RESP schemes such as Connolly and 
Geodesic clearly outperform the ChelpG scheme as well as the density matrix-based schemes for these 
three criteria. Calculated partial charges reveal that dipole moments were best represented by the RESP 
schemes and confirmed the presence of charge transfer in ILs to a various degree. The degree of charge 
transfer was dependent on anions as well as cluster size. In the ion pairs, the chloride anion showed 
the largest charge transfer, followed by the NTf2 and BF4 anions. In ionic clusters the charge transfer 
was shown to gradually converge from two to eight ion pairs in the case of the [NMe4][BF4] and 
[C1mim][BF4] ILs to a value, close to that for corresponding ion pairs. In contrast, charge transfer in the 
[C1mim]Cl clusters converges to a lower value, showing an unusually strong inter-ionic bond with the 
chloride anion. NPA charges were found to perform poorly, with near-unity charges being retained on 
the anions and cations in ion pairs and ionic clusters. Mulliken and Löwdin charges were shown to be 
highly basis set dependent and unpredictable with marked fluctuations in partial charges and therefore 
their use for ILs is particularly discouraged. Ability of the partial charge schemes to capture fluctuations 
in the dipole moment within the ionic clusters was also examined. The Connolly and Geodesic RESP 
schemes were found to slightly outperform ChelpG. Evidence to suggest that chloride-based ILs might 
be poor model systems for ILs is also presented. 

 
 
 
 
1 Introduction 

 
Quantum chemical methods have become powerful tools for 
predicating a number of molecular properties including dipole 
moments and electronic polarisability. The reason behind this 
success is the availability of the well-defined operators that are 

used to calculate quantum chemical averages of physical quan- 
tities such as electronic energy and dipole moment. One of the 
most challenging concepts in quantum chemistry is that of 
atomic charge within a molecule. Firstly, the charge operator 
does not exist in quantum mechanics and secondly, since all 
the electrons within the molecule are treated as indistinguish- 
able  the  definition  of  the  individual  atom  in  the  molecule 

      becomes rather subjective. 
School of Chemistry, Monash University, Wellington Road, Clayton VIC 3800, 
Australia.  E-mail:   
† Electronic supplementary information (ESI) available: Atomic coordinates of all 
structures analysed and detailed data relating  to  dipole  moment  distributions. 
See DOI: 10.1039/c2cp42934a 

Ionic liquids (ILs) consisting entirely of ions represent an 
additional challenge for quantum chemistry, as the prediction 
of atomic charges for charged species adds  to  the  ambiguity 
due to an arbitrary choice for the centre of the overall charge. 
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Classical molecular dynamics (MD) simulations of ILs strongly 
rely on the accuracy of atomic charges due to the importance of 
electrostatic interactions between ions. These electrostatic 
interactions are treated according to Coulomb’s law and the 
charge distribution for each ion is used to determine the overall 
contribution from electrostatics. Although organic-type ions 
constituting ILs reside at distances >3 Å, the orbital overlap is 
still possible to some extent,1,2 thus resulting in a non- 
negligible charge transfer from the anion to the cation and 
hence reducing the overall charge below unity on each ion.3 It 
was shown by a few research groups that downscaling of the 
unity charge on ions was essential for the reliable prediction of 
dynamic properties of ILs such as self-diffusion coefficients and 
viscosity, as the reduction in electrostatic interactions allowed 
for faster ion dynamics and better agreement with experimental 
data.4–6 Further, a number of experimental studies carried out 
on imidazolium- and pyrrolidinium-based ionic liquids using X-
ray photoelectron spectroscopy showed a shift in binding 
energies of electrons within the cation as a funciton of anions. 
The observed trends were interpreted as charge-transfer 
between the cation and the anion.7,8 The situation becomes 
more complicated as polarisation of IL ions  arising  from 
induced dipole moments was shown to also play an important 
role in the prediction of bulk properties.9 Borodin and Smith4 

identified that for classical MD simulations to be reliable, 
many-body polarisable force fields needed to allow for the 
charge fluctuation in ions  during a simulation.  The downside 
of these simulations is their cost and the need to develop new 
polarisable force fields for structurally different IL ions to the 
ones studied before.10,11 Ab initio (DFT) MD (AIMD) simulations 
are paving the way towards un-biased bulk simulations of ILs as 
the fluctuation in charge distribution is accounted auto- 
matically by performing an electronic structure calculation 
on-the-fly for each ionic arrangement. Ab initio (DFT) MD 
(AIMD) simulations of small- to medium-sized clusters from 8 
ion pairs to 30, 48 and 64 ion pairs of imidazolium-based ILs12–14 

coupled with the chloride, SCN and dicyanamide anions showed 

a broad dipole moment distribution for both cations and anions. 
The charges on cations significantly deviated from the unity 
charge and fell in the range of 0.55 to 0.7 e. Interestingly, the 
results from clusters containing 8 and over 30 ion pairs appeared 
to be rather similar, suggesting localisation of the charge 
fluctuation to neighbouring ions that are in the direct contact 
with the reference ion.12,13 Fluctuations of the partial atomic 
charges in the AIMD simulations on 30 ion pairs  of  the 
[C1mim]Cl IL highlighted the importance of electronic polarisa- 
tion,14  which classical MD simulations with the fixed charges 
cannot capture. The dipole moments calculated from the corres- 
ponding atomic charges showed similar distributions for the 
C1mim and C2mim cations in the [C1mim]Cl and [C2mim]Cl ILs, 
respectively, with the dipole moment distribution of the anion 
being almost identical regardless of the alkyl chain length on the 
cation.12 The tremendous expense of AIMD simulations inhibits 
their progress for the prediction of bulk properties of condensed 
systems such as ILs, as MD runs on the ns scale are not 
computationally feasible yet. Therefore, the accurate description 
of the charge distribution in ions  is  needed to further under- 
stand the implications of polarisation on properties of ILs. 

The practicality of the atomic charge prediction relies on two 
major approaches:15 (1) separation of the one particle density 
matrix and (2) separation of the one-particle electron density 
(see Fig. 1). 

The one-particle density matrix approach pioneered in 
quantum mechanics after the development of the Hartree–Fock 
theory. Mulliken population analysis was the first scheme for 
predicting individual atomic charges and became very popular 
due to its simplicity.16,17 Within the scheme atomic charge is 
defined as the difference between the total number of electrons 
in the ground state of the free neutral atom and the gross 
atomic population on the atom within a molecule. The latter 
depends on the equally shared overlap population with the 
adjacent atoms, that is best described as when the boundary 
between atoms is placed in the middle of the bond. The scheme 
cannot   be   considered   qualitative   as   Mulliken   himself 

 
 

 
Fig. 1 Overview of common partial charge schemes. 
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highlighted the fact that ‘‘fundamentally there is no such thing as 
an atom in a molecule except in an approximate sense’’.16 The 
Löwdin population analysis (LPA) scheme is fundamentally 
identical to that of Mulliken’s with the only difference arising 
from the use of an orthogonalised basis set.18 This requirement 
makes the LPA charges more sensible with respect to the 
number of electrons in each atomic orbital, whereas MPA can 
produce gross orbital populations that  are either negative  or 
more than two. It is well accepted  that  both  population 
schemes can result in unreasonable atomic charges due to 
incompleteness of atom-centred basis sets and the presence of 
diffuse functions that do not resemble atomic orbitals.19 

Fundamentally, both MPA and LPA (except for special cases19) 
schemes are invariant to a general orbital transformation, 
making atomic charges independent of the coordinate system. 
As a consequence, atomic charges of the symmetry equivalent 
atoms in a molecule are identical. Natural Population Analysis 
(NPA) proposed by Weinhold and Reed20,21 was designed to fix 
the problems existing in the Mulliken scheme by constructing a 
set of natural atomic orbitals (NAOs) in an arbitrary atomic 
basis set. The construction of these natural orbitals begins with 
occupancy-weighted symmetric orthogonalisation of atom- 
centred basis functions that are separated into a highly occupied 
natural minimal basis and a largely unoccupied natural Rydberg 
basis.22 This procedure produces an  orthonomal set of  atomic 
orbitals that retain a great degree of their atom-centred features, 
thus ensuring that the shape of the strongly occupied orbitals is 
preserved better than that of the weakly occupied ones (referred 
to as Rydberg orbitals) that consist of many diffuse orbitals from 
using extended basis sets. The diagonal elements of the density 
matrix made from the NAOs represent the electron occupancies 
of each NAO summing exactly to the total number of electrons. 
The natural orbitals are known to be inherent to the wavefunc- 
tion, rather  the quality of the basis set. The NPA scheme has 
been recognized as a reliable tool for calculating atomic charges 
and has been widely used for studying a number of chemical 
systems, including neutral and ionic complexes of the donor– 
acceptor type.21 For more information, see a number of useful 
publications comparing the performance of these density matrix 
schemes to study atomic charges  in various  classes of neutral 
molecules.23–25 

The one-particle electron density approach is based on 
fitting atomic point charges to reproduce the electrostatic 
potential (ESP) of a molecule. The electrostatic potential is 
defined via the density matrix and, therefore, is directly 
accessible from HF calculations. Both ab initio26 and semi- 
empirical27,28 methods have been used to generate the 
potentials. It has to be noted  that  semi-empirical  methods 
are used less frequently due to increased computer power 
allowing for first principle HF calculations. When the ESP 
methods were first introduced, it was  obvious  that  some  of 
the fitted charges were poorly reproduced, strongly depending 
on the molecular orientation and conformation and having 
poor transferability between common groups of homologous 
molecules.29–31 The main reason behind these  observations 
lied in the statistical nature of the fitting process resulting in 

an insufficient number of points on the ESP surface to treat 
atoms ‘‘buried’’ in the molecular structure, e.g. carbon atoms in 
an alkyl chain.32,33 Although various solutions were introduced 
to address these issues,26,29 the most robust technique 
consisted of constraining the fitting procedure to reproduce a 
target charge on non-hydrogen atoms.32,33 The proposed 
restraints improve the quality of fitted atomic charges, 
especially those that are least well determined by the electro- 
static potential such as in non-polar functional groups.33  The 
restrained ESP (RESP) methods can also be made to reproduce 
other molecular  properties such as  dipole  and  quadrupole 
moments.29,32 There are three major algorithms used for calculating 
RESP atomic charges: ChelpG,34,35 Connolly27–30,33,36 and 
Geodesic.37 The main difference stems from the way these 
algorithms select the points on the ESP surface for the fitting 
procedure. The ChelpG algorithm is grid-based and selects regularly 
spaced points by defining a cube of points around the molecule 
spaced 0.3 to 0.8 Å apart at the distance of 2.8 Å away from the 
nuclei. The points that fall inside the molecular van der Waals 
radius are excluded from the fitting procedure to avoid large 
distortions due to the proximity to the nuclei. In the Connolly 
algorithm a spherical surface of points is computed around each 
atom at a probe radius that is chosen as a multiple of the van der 
Waals radius of the atom.27 The molecular surface is constructed by 
combining the individual atomic surfaces and discarding the points 
within the chosen multiple of the van der Waals radius of any of the 
atoms.27 This algorithm generates the surface that does not change 
smoothly with increasing probe radius, displaying rather sharp 
peaks and hence, anisotropies.37 It has to be noted that in the 
GAUSSIAN software the Connolly algorithm is known as the MK 
scheme.38 Both ChelpG and Connolly schemes demonstrate a fair 
degree of dependence on molecular orientation.37,39 The Geodesic 
scheme was designed to eliminate this problem by smoothing out 
the position of the Connolly points (for more details about the 
Geodesic algorithm see ref. 37). This strategy was shown to reduce 
the dependence of the derived atomic charges on molecular 
orientation.37 A promising new family of charge schemes known 
as the electrostatically embedded many-body method40 and the 
ESP-based screened charge model41 have been introduced by the 
Truhlar group as an improvement to traditional RESP schemes, 
however owing to their recent development, these methods are not 
yet implemented in popular computational chemistry software 
packages and hence have been excluded from this study. Reliability 
of these novel methods for predicting charges in ionic liquid ions 
certainly needs to be performed in the future. 

A relatively recent approach that borders two major 
approaches for calculations  of  charge  distribution  as  shown 
in Fig. 1 is that of Richard Bader’s, referred to as Atoms-in- 
Molecules (AIM) theory. Bader proposed to partition the 
electronic charge density distribution of a molecule, an experi- 
mentally measurable quantity, into atomic volumes whose 
surfaces had a zero flux of the  charge  density  gradient.42  It 
was shown that within these volumes the quantum (atomic) 
sub-systems obeyed a local virial relation and therefore, 
quantities such as atomic charges, atomic  dipole  moments 
etc.   were   well   defined   within   the   quantum   mechanical 
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formulation.43 For example, integration over each atomic 
volume generates atomic population that can be recalculated 
to atomic charge. For each atomic sub-system the maximum of 
the charge density occurs around the nucleus, decaying quite 
rapidly in any direction away from the centre of the nucleus. 
The cornerstone of the AIM theory lies in the accurate identi- 
fication of critical points on the charge density surface with a 
zero flux gradient, which becomes a very complex procedure for 
condensed phases consisting  of a  number of  molecular 
species.44 It has to be noted that for ILs the organic nature of 
individual ions represents an additional challenge due to subtle 
charge transfer effects between ions. Although a significant 
improvement of the Bader charge density analysis has recently 

 

in conductivity and a rapid increase in viscosity were observed in 
MD simulations.59 Due to the lack of systematic studies on the 
performance of various charge-fitting schemes for  ILs  with 
respect to the level of theory and dependence on the molecular 
orientation, the question as to which scheme is most reliable still 
remains widely open.60 

In this work we performed a systematic study to compare the 
performance and reliability of partial charges in ionic  liquid 
ions calculated using (a) schemes based on the density matrix 
approach such as MPA, LPA and NPA and (b) schemes based on 
the RESP approach such as ChelpG, Connolly and Geodesic. In 
the case of RESP schemes fitting to atomic charges as well as 
dipole  and  quadrupole  moments  was  explored.  A  number  of 

been proposed by Henkelman et al.43,45 charge transfer effects ion pairs were included consisting of the C(1- 4) mim cations 
have only been found in ionic systems with atom-centred 
anions such as chloride-based ILs12 or NaCl.45 For  more 
complex ILs such as [C4mim][BF4] no charge transfer was 
present  in  the  Bader  analysis,46   which  is  quite  unusual  as  it 
was observed in RESP  schemes  for  imidazolium-based 
ILs.3,47,48 For these reasons the AIM theory was not considered 
in this study. 

Among the widely used schemes for fitting atomic charges 
for ILs are ChelpG,47–50 Connolly (usually erroneously referred 
to simply as RESP),13,48,51–53 the Blöchl analysis,12,13 Mulliken 
analysis,54 Natural Population Analysis48,55 and less used 
ones.5,56 One of the major concerns arising from these studies 
is unsystematic reproducibility of atomic charges for the same 
cations and anions, clearly indicating strong dependence of 
charges on the scheme chosen as well as molecular orientation. 
There are only a handful of studies that compare ESP derived 
atomic charges using various schemes. For example, the 1-
butyl-imidazolium cation atomic charges from a number of 
publications show similar trends but the actual charge magni- 
tudes display a great variation.47,50,53,56,57 An analogous situa- 
tion was observed in the C1mim cation of the [C1mim]Cl ion 
pair, for which large fluctuations of the charges in the imida- 
zolium ring were reported using a number of charge fitting 
schemes.14 In the calculations of individual ion pairs of 
[C1mim]Cl the charge on the chloride anion showed less 
fluctuation depending on the level of theory (such as MP2 
and the PBE functional) as well as the scheme used for 
calculations of charges (such as Connolly, Bader and Blöchl).58 

Significant fluctuations of the Mulliken-derived atomic charges 
in the imidazolium ring was found when the alkyl chain 
increased from ethyl to octyl, further highlighting the mole- 
cular orientation dependence.54 The NPA charges were found to 
be more pronounced (either more positively charged or more 
negatively charged) than those of the Connolly algorithm in the 
case of [C4mim]Br.48 One of the implications of this unsystematic 
behaviour of various charge schemes lies in the fact that the 
charge distribution could drastically affect transport properties. 
For example, Kohagen et al. indicated that the actual charges had 
a strong effect on the structural arrangement of ILs, potentially 
influencing the dynamics of ions in the liquid state.48 When the 
position of the charge was intentionally moved off centre in 
model ILs consisting of univalent spherical ions, a sharp decrease 

coupled with the routinely used anions such as Cl,  BF4  and 
NTf2. Influence of the level of theory (uncorrelated HF wave- 
funciton vs. correlated MP2 wavefunction) and basis sets (cc-
pVDZ, aug-cc-pVDZ and aug-cc-pVTZ) on charge distribution 
was considered. The quality of charge distribution was analysed 
based on three criteria: (1) treatment of symmetry identical 
atoms, (2) invariance of partial charges in the imidazolium ring 
with increasing alkyl chain and (3) dipole moments calculated 
from the predicted charge distribution as a measure of electronic 
polarisation. Dipole moment distribution and charge transfer 
effects were also analysed for larger ionic clusters of the 
[NMe4][BF4], [C1mim][BF4] and [C1mim]Cl ionic liquids consisting 
of 2, 4 and 8 ion pairs. 

It should be noted that while this study focuses specifically 
on assessing the quality of widely used charge schemes on 
charge distribution in ionic liquid ions, these schemes have 
been applied to a much wider range of molecular systems 
incorporating ionic interactions. In particular, the vast majority 
of dynamic simulations of charged DNA- and protein-like 
systems include counter-ions to ensure energetic stabilisation 
of the resulting structures.61–63 Thus, the outcomes of this work 
represent implications not only on a fast growing ionic liquid 
electrolyte community but also on a broader simulation com- 
munity as well as experimental scientists who rely on the 
results of the simulations to guide their experimental work. 

 
2 Theoretical procedures 

 
Ion pairs of [C(1-4)mim]X and [NMe4]X, where X = Cl-, [BF4]- 

and [NTf2]-, were fully screened for the lowest energy confor- 
mation by exploring all possible alkyl chain torsions and anion 
positions around the ring. The lowest energy configuration was 
located for all anions, in which they interact from above the 
imidazolium ring. For [C1mim]Cl another energetically stable 
configuration, in which the chloride interacts with the C2–H 
bond in the plane of the imidazolium ring, was located. This 
configuration was not considered in the study due to lower 
binding energy. Clusters of [NMe4][BF4], [C1mim][BF4] and 
[C1mim]Cl were constructed in a way identical to those used 
by Izgorodina et al.64 where in the case of the imidazolium ILs 
ion pairs were systematically added in order to form 3D 
structures incorporating instances where the anion is both in 
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the plane of the imidazolium ring, and either above or below 
the ring, and alkyl chains were allowed to interact. The 
[NMe4][BF4] clusters were formed in a rectangular prism such 
that all interionic interactions are maximised. All geometry 
optimisations were performed using the M06-2X DFT func- 
tional65 and the 6-31 + G(d) basis set for all ion pairs and 
clusters except the eight ion pair cluster of [C1mim][BF4] and 
the [C1mim]Cl clusters, for which Dunning’s cc-pVDZ basis set 
was used to avoid orbital linear dependence issues. Atomic 
coordinates of all structures are available in the ESI.† Single- 
point calculations for the RESP, Mulliken and Löwdin charges 
were performed using the GAMESS-US software package,66 

whereas NPA20 charge calculations were performed using the 
GAUSSIAN 09 suite of programs.38 RESP charges were calcu- 
lated using ChelpG,34 Connolly30 and Geodesic37  point  selec- 
tion algorithms; in the case of ion pairs, dipole and quadrupole 
moment fitting was explored in addition to the standard charge 
fitting schemes. All single-point charge calculations were per- 
formed using an Ahlrichs-type triple-z doubly polarised basis 
set, TZVPP,67 except for analysis of basis set dependence, for 
which Dunning’s cc-pVDZ, aug-cc-pVDZ and aug-cc-pVTZ basis 
sets were used. Both correlated MP2 and uncorrelated HF 
wavefunctions were used for ion pair calculations, while HF 
wavefunctions were used exclusively for cluster calculations. 
Unless otherwise specified, charges and derived properties use 
the Hartree–Fock wavefunction with RESP charges restrained to 
reproducing the overall charge of the  chemical  system.  With 
the exception of results shown in Section 3.4, RESP charge 
fitting point density parameters were selected as follows: 0.3 Å 
for the ChelpG grid spacing, 1 point per Å for the Connolly 
surface point density, and a {3,5+}3,0  template for the Geodesic 

scheme. Standard numbering is used throughout this paper 
with respect to atoms in the imidazolium cation as detailed in 
Fig. 2. 

 
3 Results and discussion 
3.1 Basis set dependence 

 

Basis set sensitivity was evaluated using the systematically 
augmented Dunning basis sets; namely, cc-pVDZ (CCD), aug- cc-
pVDZ (ACCD) and aug-cc-pVTZ (ACCT). Table 1 shows charges 
calculated using the density matrix-based and the RESP-based 
Geodesic charge scheme for the lowest energy configuration of 
[C1mim][BF4]. ChelpG and Connolly RESP schemes behave 
similarly to Geodesic and are shown in the ESI.† Mulliken and 
Löwdin charge schemes, which are already known for being 
heavily basis-set dependent, show such beha- viour as 
expected. For example, in the case of Mulliken charges the 
methyl carbons vary from +0.84 e to -0.99 e from ACCD to 
ACCT. This range of charge is concerning not only for the sheer 
magnitude, but also for the inversion of sign, which would 
impact severely on any specific intermolecular interactions 
derived. Considering the temptation to base conclusions on 
Mulliken charges, ubiquitously printed in all computational 
chemistry packages, these results alone highlight the risk in 
doing so. Large fluctuations are also observed for Löwdin 
charges, although over a smaller range compared to Mulliken. 
For example, the largest variation is observed for the boron 
atom, with the charge decreasing from -0.14 e to -0.98 e. 
Interestingly, the Löwdin charge scheme assigns positive 
charges to the fluorine atoms for the aug-cc-pVTZ basis set, 
which also occurs for the TZVPP basis set used for the remain- 

      der of the calculations performed in this study. Lastly, the NPA 
charges, specifically designed to minimise basis set depen- 
dence, do indeed show minimal basis set effects within the 
density matrix-based schemes. The largest variation of 0.23 e 
again occurs for the boron atom. 

All  RESP  schemes  show  notably  less  basis  set  dependence 
when compared to the density matrix-based schemes. The max- 

Fig. 2 Imidazolium numbering scheme. imum  variation  in  all  cases  belongs  to  the  boron  atom,  with 
 
 

Table 1 Mulliken, Löwdin, NPA density matrix-based charges as well as the RESP Geodesic charges calculated with Dunning’s cc-pVDZ (CCD), aug-cc-pVDZ (ACCD) and 
aug-cc-pVTZ (ACCT) basis sets for the lowest energy configuration of [C1mim][BF4]. All but the C2-H hydrogen atoms not shown 

 

 Mulliken    Löwdin    NPA    Geodesic  
Atom (description) CCD ACCD ACCT  CCD ACCD ACCT  CCD ACCD ACCT  CCD ACCD ACCT 

C (C4/5) 0.11 0.63 -0.50  -0.08 0.03 0.07  0.01 0.01 -0.01  -0.23 -0.25 -0.24 
N (N1/3) -0.39 -0.45 0.24  0.17 -0.13 0.12  -0.48 -0.48 -0.37  0.23 0.28 0.28 
C (C2) 0.43 0.73 -0.45  0.06 0.12 0.08  0.48 0.46 0.42  -0.22 -0.27 -0.26 
N (N1/3) -0.39 -0.49 0.20  0.17 -0.12 0.12  -0.48 -0.48 -0.37  0.26 0.31 0.31 
C (C4/5) 0.11 0.64 -0.52  -0.08 0.05 0.07  0.01 0.01 -0.01  -0.27 -0.30 -0.30 
C (methyl) 0.13 0.85 -0.99  -0.11 0.12 0.23  -0.31 -0.31 -0.27  -0.32 -0.36 -0.36 
C (methyl) 0.13 0.85 -0.99  -0.11 0.11 0.25  -0.31 -0.31 -0.27  -0.34 -0.39 -0.39 
H (C2) 0.14 -0.32 0.80  0.13 0.11 -0.02  0.27 0.27 0.26  0.31 0.31 0.31 
F -0.41 -0.87 -0.76  -0.12 -0.18 0.05  -0.65 -0.66 -0.61  -0.40 -0.37 -0.40 
B 0.66 2.31 1.88  -0.49 -0.14 -0.98  1.62 1.65 1.42  0.80 0.74 0.85 
F -0.42 -0.85 -0.77  -0.12 -0.17 0.10  -0.66 -0.67 -0.61  -0.44 -0.42 -0.44 
F -0.32 -0.74 -0.71  -0.05 -0.16 0.06  -0.62 -0.63 -0.57  -0.40 -0.39 -0.42 
F -0.42 -0.85 -0.77  -0.12 -0.18 0.07  -0.66 -0.67 -0.61  -0.44 -0.42 -0.44 
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charges differing by o0.10 e. This is a significant improvement 
upon all density matrix-based schemes; the electrostatic potential 
varies insignificantly between these basis sets, thus allowing for a 
less costly calculation. As the electrostatic potential converges 
with increasing basis set, charges consistently ‘‘improve’’ (within 
the definition of the RESP charge scheme), showing convergence 
to some value. This cannot be guaranteed in the case of the 
density matrix-based schemes, particularly where extensive basis 
sets such as aug-cc-pVTZ are used. 

 
3.2 Treatment of symmetry 

 

The reliability of the charge schemes can be measured in terms of 
equal treatment of symmetric atoms and can be used as a measure 
of error. This aspect was investigated using the [C1mim]Cl ion pair, 
which possesses Cs symmetry with a mirror plane intersecting the 
chloride and C2–H bond. Therefore, an ideal scheme would yield 
identical charges for atoms either side of this plane and conse- 
quently their difference should be zero. Fig. 3 shows the difference 
between the methyl carbon atoms (C6 and C7), the nitrogen atoms, 
N1 and N3, and the carbon backbone atoms, C4 and C5, as the 
absolute difference between the two charges. In all instances the 
charge difference does not exceed 0.07 e, showing only marginal 
differences between charge schemes. The ChelpG scheme consis- 
tently shows the worst treatment of the C4 and C5 atoms, 
improving only at quadrupole fitting. The Connolly scheme shows 
a slight variation in symmetric charges when restrained to charge 
or dipole moment. Connolly charges fitted to the quadrupole 
moment show the largest deviation of all schemes assessed, which 
is likely to be the result of anisotropies in the Connolly point 
selection algorithm. The Geodesic scheme that is known for its 
highly isotropic surface37 shows only a minor increase in charge 
deviation when fitted to the quadrupole moment. Out of the RESP 
schemes, Geodesic point selection is the most systematic at 
describing symmetric charges. As expected, the density matrix-based 
schemes, Mulliken, Löwdin and NPA, show essentially no asymme- 
try in predicted charges as this is an inherited property of the 
diagonalised    density    matrix,    thus    further    reinforcing    their 

independence of molecular orientation. It has to be noted  that 
using the MP2 correlated wavefunction for calculating  partial 
charges does not introduce any appreciable changes to the trends 
discussed  here. 

 
3.3 Invariance with alkyl chain length 

 

Ideally, given the peripheral nature of the alkyl chain, changes 
in length should impact minimally on spatially distinct regions 
of the molecule in question. In testing structural invariance, 
the charge scheme behaviour on selected atoms in the 1-alkyl- 
3-imidazolium cation upon modification of the alkyl chain was 
investigated. An ideal scheme would show negligible changes 
in charges for the C6, N1, C2 and N3 atoms (see inset structure 
in Fig. 4) as these atoms are expected  to experience little 
influence from substituent groups beyond ethyl. 

Fig. 4 shows the variation in charge with increasing alkyl 
chain in [Cnmim]BF4 ion pairs for both  density  matrix-based 
and RESP schemes. The charges of hydrogen atoms were added 
to those of the bonded carbon atoms, analogous to the ‘‘united 
atom’’ approach. The Connolly and Geodesic schemes show 
negligible changes in charge as the alkyl chain is increased, and 
follow each other closely for the same cation. The grid-based 
ChelpG scheme shows notably different trends to those of the 
Connolly and Geodesic schemes, producing opposite trends for 
atoms within the ring (C6–N1–C2–N3–C7) and shows close 
agreement only in atoms that are part of the alkyl chain. Similar 
trends were observed for the [Cnmim]Cl and [Cnmim][NTf2] ILs. 

Density matrix-based schemes appear insensitive to the alkyl 
chain in their charge assignments; variation in charge with 
structural modification is insignificant, with the charge of the 
terminal methyl group on the alkyl chain converging perfectly 
to neutral in all cases. More importantly, the changes between 
the partial charges of the cations in ion pairs are insignificant 
compared to those in the isolated cations. While the alkyl chain 
is treated consistently, the respective schemes differ from one 
another for charges within the imidazolium ring. The Löwdin 
scheme  is  substantially  different  from  the  other  two  giving 

 
 

 
Fig. 3 Absolute difference in charges assigned to symmetrically equivalent methyl carbon atoms and imidazolium nitrogen and carbon atoms in the [C1mim]Cl ion pair. 
Charge fitting scheme abbreviations as follows: CG = ChelpG, CN = Connolly, GD = Geodesic, L = Löwdin, M = Mulliken and N = Natural Population Analysis; C = Charge 
fitting, D = Dipole fitting and Q = Quadrupole fitting. 
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Fig. 4 Variation in charge with increasing alkyl chain for the [Cnmim][BF4] ion pair using density matrix-based schemes (top) and RESP schemes (bottom). Charges 
assigned to carbon atoms at positions 6, 2, and 7–10 include charges on any bonded hydrogen atoms. 

 
charges entirely in the positive-to-neutral regime, whereas the 
Mulliken  and  NPA  schemes  give  negative   charges   for   the 
N1 and N3 atoms, which is the opposite to the trends observed 
for the RESP schemes. While C2 is positive for all density 
matrix-based and RESP schemes, Mulliken and NPA give the 
largest positive values. Interestingly, the Löwdin charges mirror 
those of the Connolly and Geodesic RESP schemes more closely 
than the Mulliken and NPA schemes. The NTf2- and chloride- 
based ion pair series show trends that are almost identical to 
those of the BF4  series and are shown in the ESI.† It should be 
noted, however, that the results for Mulliken and Löwdin are 
specific to the TZVPP basis set and may give strikingly different 
trends with other basis sets, as was shown in Section 3.1. 

To summarise, out of the schemes studied, the RESP Connolly 
and Geodesic schemes appear to perform more consistently for the 
imidazolium cation with increasing alkyl chain. Density matrix- 
based schemes do not show variation in charges compared to 
isolated cations. Although Mulliken and NPA show almost no 
variation in partial charge on the ring, the nitrogen atoms are found 
to be negatively charged compared to the opposite trend for the 
RESP fitting schemes. Therefore, Mulliken and NPA are not recom- 
mended for the prediction of partial charges for IL ions. 

 
3.4 RESP dependence on point density 

 

Each of the three RESP schemes have been tested to explore the 
impact   of   point   density   on   the   resulting   charges   using   a 

density; for the Geodesic scheme, the geometric  template.  In 
this section, both the charge symmetry and distribution effects 
are explored. 

In considering the impact on charge symmetry, the same 
[C1mim]Cl system used in Section 3.2 was tested by varying one 
of the aforementioned parameters depending on  the  scheme. 
Fig. 5 shows the differences between symmetry equivalent 
charges as a function of the number of fitting points  for  all 
three RESP schemes. From this it can be seen that the Geodesic 
scheme yields the highest accuracy charges with the fewest 
fitting points with considerably more stability than the 
Connolly scheme as fitting points are increased. Even with as 
few as 189 fitting points ({3,5+}1,0 template‡), charges are still 
markedly more accurate than the ChelpG scheme with 374 
fitting points (1.0 Å  grid spacing). Similarly,  the Connolly 
scheme, although slightly more erratic when  compared  with 
the Geodesic scheme, reaches appreciable accuracy after as few 
as 774 fitting points (0.9 points per Å2). It was also noted that 
across all schemes and all point densities, charge transfer 
remained  essentially  constant  with  a  standard  deviation  of 
0.01 e. These results clearly highlight the superiority of 
surface-based methods over grid-based with the latter requiring 
at least an order of magnitude more fitting points to achieve 
comparable levels of accuracy. 

Additionally, the impact of ChelpG grid spacing on the 
charge    distribution    of    the    cation    in    the    widely    used 

number of scheme-specific parameters. In the case of ChelpG,    
this is the grid spacing; for the Connolly scheme, surface point ‡  Geodesic template notation follows conventions described by Coxeter.68 
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Fig. 5 Dependence of charge accuracy on the number of fitting points for 
[C1mim]Cl shown as the difference between symmetry equivalent charges. 
Dashed lines indicate the settings used in this study. 

 
[C2mim][BF4] IL previously analysed in Section 3.3 was investi- 
gated. Data shown in Fig. 6 show how the charges of symmetry 
equivalent atoms change as the grid spacing is reduced (fitting 
points increased). The grid spacing range shown includes the 
0.8  Å–0.3  Å  range  recommended  by  Breneman  et  al.34   and 
highlights the importance of selecting the optimum spacing 
for this scheme given that the default may vary between 
software implementations. In the most extreme case, the grid 
of 0.8 points per Å2  gives charges of opposite sign on the N3 
nitrogen, and the C2 carbon shows an unusually large positive 

 

 
Fig. 6 ChelpG charges as a function of grid spacing (all bonded hydrogen charges 
included) for [C2mim][BF4]. 

 
 

charge. From these data it is apparent that charges begin to 
converge only after 0.4 Å, indicating that this should be the 
optimal number for point density to produce statistically well-
fitted charges. 

In  summary,  it  has  been  demonstrated  that  the  surface- 
based schemes provide appreciable accuracy with significantly 
fewer fitting points than the grid-based ChelpG  scheme. 
ChelpG has been  shown  to  give  dramatically  varying  charges 
if sparse grids are used, including charges with opposite signs 
which may bring into question the validity of dynamic 
properties. 

 
 

3.5 Charge transfer 
 

Charge transfer is associated with orbital overlap such that the 
HOMO electrons of one interacting molecule can partly populate 
the LUMO of the other,69 thus allowing a fraction of charge to be 
transferred resulting in energetic stabilisation, similar to that for 
hydrogen bonding.2 The ability of electrons to be partially 
transferred from one molecule  to another implies a combined 
energetic and orbital symmetry criterion to permit the transfer. 
The amount of energy associated with the charge transfer is 
difficult to quantify, especially between charged species for 
fundamental reasons as discussed by Gordon et al.70 However, 
in adhering to a point-charge model, the magnitude of the 
transferred charge may itself be quantified, albeit within the 
definition of the charge scheme. In practical terms, this means 
being able to reproduce as best as possible the true quantum 
mechanical electrostatic potential using atomic charges. The 
important distinction needs to be made between charge transfer 
and polarisation or induction effects, as the latter refer to 
changes in the overall charge distribution due to the dipole 
moment induced by  surrounding  polar  or  charged  species.9 

It has to be noted that polarisation is a broader concept, 
incorporating charge transfer as a component, therefore polar- 
isation effects in ion pairs and ionic clusters are discussed 
separately in Section 3.6. 

 

 
 

This journal is c  the Owner Societies 2013 Phys. Chem. Chem. Phys., 2013, 15, 1632--1646 1639 



Section 2.3. Assessment of atomic partial charge schemes for polarisation and chargeView Article Online 

transfer in ionic liquids 31 PCCP Paper 
 

cation ð1Þ 

Pu
bl

ish
ed

 o
n 

23
 N

ov
em

be
r 2

01
2.

 D
ow

nl
oa

de
d 

by
 M

on
as

h 
U

ni
ve

rs
ity

 o
n 

29
/0

1/
20

14
 0

4:
55

:4
2.

 

 

The ability of charge schemes to account for and estimate 
charge transfer has  been  examined in  individual ion  pairs as 
well as ionic clusters. The importance of correlated wavefunc- 
tions, such as Møller Plesset perturbation theory (MP2), for 
charge transfer has also been investigated. Charge transfer was 
calculated as the difference between the unity charge of the 
isolated ion and the calculated charge of the same ion in the 
ion pair or the cluster (shown in eqn (1)). 

CT ¼ N - 
X 

qcluster 

 
where N is the number of ion pairs in the cluster. As shown in 
Fig. 7, the RESP schemes are largely indistinguishable from one 
another. The charge tansfer values fall in the range between 0.2 
and 0.3 e for the NTf2 and Cl ion pairs, whereas BF4 displays 
smaller charge transfer values of o0.2 e. The RESP predicted 
charge transfers reflect the scaling factors of 0.6 to 0.7 that were 
shown to improve the prediction of transport properties in 
classic MD simulations.5,6 Given that charge scaling improves 
the speed of ion dynamics, the RESP schemes suggest that 
the reason why a greater agreement with experiment is 
achieved is indeed the product of a more realistic description 
of charge transfer. In general for RESP schemes, charge transfer 
observed in the case of the chloride anion is comparable to that 
of the NTf2 anion and considerably higher than that of the BF4 

anion. The magnitude of these charge transfer values is 
expected to be high for NTf2, as it is a particularly bulky anion 
and therefore, easily polarisable,71  but is somewhat surprising 
for the chloride anion, which is a much smaller and hence, 
‘‘harder’’ anion. 

By  contrast,  owing  to  their  tendency  to  localise  strongly 
occupied orbitals, the Mulliken and NPA schemes typically 
underestimate charge transfer and this is observed especially 
in the case of the NPA scheme that does not predict charge 
transfer for both NTf2 and BF4 ion pairs. It is only in the case of 

the chloride that the NPA scheme shows a non-negligible 
charge transfer of 0.09 e for the Hartree–Fock wavefunction 
and 0.13 e for the MP2 one. This is indicative of a comparatively 
high degree of covalency between the anion and the cation,72,73 

reflected in several ab initio calculations.2,74,75 

The impact of electron correlation is generally minimal, 
however slightly more so in the density matrix schemes. MP2 
yielded an increase in charge transfer by less than 0.04 e for the 
RESP schemes, and by less than 0.06 e for the density matrix 
schemes. With changes in charge of this magnitude, it is 
difficult to justify the added computational expense required 
for the MP2 calculation. 

In considering charge transfer in IL clusters, data for three 
ILs – [NMe4][BF4], [C1mim][BF4] and [C1mim]Cl – composed of 
one, two, four and eight ion pairs are presented in Fig. 8. 
Amongst the RESP schemes, it remains difficult to identify any 
one particular point selection algorithm that produces the most 
realistic results. In the case of [C1mim][BF4], ChelpG shows a 
sharp drop in charge transfer after four ion pairs, whereas the 
other schemes show a modest increase from one to two ion 
pairs, and then a slight decrease with charge transfer for eight 
ion pairs, converging close to the value of the ion pair. For the 
[NMe4][BF4] clusters charge transfer increases rapidly  within 
the ChelpG scheme, whereas Geodesic shows a gradual 
increase from one to eight ion pairs.  For  both  [C1mim][BF4] 
and [NMe4][BF4] charge transfer in the 8-ion pair clusters 
converges to that of the individual ion pairs when using the 
Connolly  scheme. 

Two counteracting effects play a role in charge transfer 
trends with increasing cluster size. On one hand, an increasing 
number of interacting ions should further increase charge 
transfer due  to  increased orbital overlap. On the other hand, 
the distance between ions becomes longer with increasing 
cluster size, thus reducing degree of orbital overlap and hence, 
charge transfer. Therefore, it is expected that charge transfer 

      should converge to a number with increasing cluster size and is 
dependent on the nature and structural arrangement  of  ILs. 
The observed trends for the Connolly and Geodesic schemes in 
Fig. 8 are the manifestation of these two opposite effects, 
suggesting that clusters of four ion pairs for [NMe4][BF4] and 
[C1mim][BF4] are already good models for estimating the extent 
of charge transfer. 

In contrast to the general trends observed for the BF4 ILs, 
the chloride system presents an unusual case as it shows the 
opposite trend found in [C1mim][BF4] and  [NMe4][BF4].  With 
the exception of the Löwdin charges, there is a net decrease in 
charge transfer as the cluster size is increased. Since [Cnmim]Cl 
ILs are known to exhibit unusually strong inter-ionic bonds 
between the imidazolium ring and the chloride anion as shown 
by quantum chemical calculations2 and X-ray crystal structures 
of chloride-based salts,73 the reduction in charge transfer 
actually indicates a reduction in strength of these interactions. 
The fact that the NPA charges consistently show non-negligible 
charge transfer, otherwise not seen for the BF4-based clusters, 

Fig. 7 Ion pair charge transfer based on both HF and MP2 wavefunctions for 
[C(1-4)mim]X, where X = [NTf2]-, [BF4]-  and Cl-. 

further supports this conclusion. As is the case with the ion 
pairs, the chloride cluster of eight ion pairs still displays charge 
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poorly fitted charges. One should keep in mind that regardless 
of the point selection algorithm the uncertainty in fitted partial 
charges of atoms ‘‘buried’’ inside the cluster is expected to 
increase with increasing cluster size, thus producing ambiguous 
estimates of charge transfer. Therefore, the quality of the various 
RESP schemes cannot always be guaranteed and this issue is 
discussed  in  more  detail  in  Section  3.6.   It   is   suggested 
that charges calculated using ChelpG should generally be 
avoided in preference to the more recent Connolly and Geodesic 
schemes. 

 
3.6 Dipole moment fluctuations 

Prado et al.9 and more recently Wendler et al.13 have shown that 
dipole moments within ILs are not homogeneous. These ab 
initio MD simulations suggest that rather than having a fixed 
dipole moment, fluctuations occur giving rise to broad 
distributions of dipole moments of ions due to electronic 
polarisation. The ability of the charge schemes to reproduce 
these findings was tested using atomic charges with the magnitude 
of the dipole moment on any ion, m, given by eqn (2): 

m ¼ 
X 

qi      j~ri - ~r0j ð2Þ 
i 

 
where  qi   and 

 
ri   are  the  charge  and  the  position  of  atom  i, 
- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Charge  transfer  with  increasing  cluster  size  for  (a)  [NMe4][BF4], 
(b) [C1mim][BF4] and (c) [C1mim]Cl. 

respectively,  and  r0   is  some  point  of  reference.  Since  the  dipole 
moment requires a point of reference, typically the centre of mass, it 
is difficult to make comparisons between molecular systems. To 
remedy this, we chose to use the centre of the imidazolium ring for 
[Cnmim]+, shown as the red markers in Fig. 9, and the geometric 
centre of [BF4]-. The definition adopted for the dipole moment 
requires that the molecular charge be distributed over atom-centred 
monopoles,  therefore  the   chloride   anion   is   undefined   and 
not  included  in  this  study.  These   ‘‘pseudo’’   dipole   moments 
give a measure of polarisation that can be compared between IL 
systems. 

Approximate symmetry observed after optimisation in  the 
clusters allows for a thorough analysis of the dipole moment 
distribution in a way similar to data presented in Section 3.2, 
whereby the absolute difference between symmetry equivalent 
ions is used as a measure of scheme quality. Clusters of 
[C1mim]Cl and [C1mim][BF4] possess approximate Ci symmetry 
with an inversion point at the centre of the cluster; cations 
numbered 1, 2, 3 and 4 have symmetry equivalent counterparts 
numbered 8, 7, 6 and 5, respectively. Similarly, [NMe4][BF4] 
approximates D2  symmetry, for which cations numbered 2, 3, 5 

      and 8 are equivalent to each other, and cations 1, 4, 6 and 7 are 
equivalent  to   each  other.   While  strictly  speaking   the   ions 

transfer of about 0.1 e higher than that of the BF4 cluster. It is 
also important to note that all RESP schemes are in close 
agreement with one another, which is not observed for the 
other two ILs. This is likely the result of the very simple 
structure of the anion – a single atom – which  is unlikely to 
suffer biased point sampling to any great extent. 

To this end, it is recommended that cluster charge transfer 
calculated using any RESP scheme must be interpreted with 
caution as it is not always possible to detect results that include 

identified are  not perfectly  equivalent –  small  changes in 
geometry such as rotations of the anion or methyl groups break 
symmetry – these should not affect the dipole moment to any 
great extent. 

Fig. 10 shows the absolute difference between the dipole 
moments of equivalent cations. In the cases  of  [C1mim][BF4] 
and [C1mim]Cl, this is simply the difference between equivalent 
pairs, whereas in the [NMe4][BF4] cluster the maximum difference 
among the four equivalent individual pairs is considered (for more 
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Fig. 9 Eight  ion  pair  structures  of  (a)  [NMe4][BF4],  (b)  [C1mim][BF4]  and 

(c) [C1mim]Cl. Red markers indicate centre points of imidazolium rings. 
 

 
 

details see Fig. 9). The density matrix-based schemes show the 
smallest deviation from zero for the  same reasons discussed in 
Section 3.2, whereas the RESP schemes  show  larger  deviations. 
The largest deviations of 2.81 D and 3.28 D are observed between 
cation pairs 4 & 5 in [C1mim][BF4] (Geodesic scheme) and between 
cation pairs 4 & 7 in [NMe4][BF4] (Connolly scheme), respectively. 
The [C1mim]Cl system also shows relatively poorly fitted values, 
although this only results in a maximum deviation observed for 
the Connolly scheme of 0.09 D, which is rather negligible. The 
reason for this substantially reduced errors for [C1mim]Cl 
compared to [C1mim][BF4] might possibly be the result of a 
simplified inter-ionic interaction between the cation and a mono- 
atomic anion as opposed to the bulkier BF4 anion. Observed errors 
are also similarly reflected in the dipole moment distributions and 
are detailed below. 

Fig. 11 shows the dipole distributions in clusters of eight ion 
pairs of [NMe4][BF4], [C1mim][BF4] and [C1mim]Cl (structures 
shown in  Fig. 9). The  distributions were generated by fitting 
dipole moments to a Gaussian curve using the mean and 
standard deviation (for more details see Table S1 in the ESI†). 

 

 
Fig. 10 Differences between dipole moments of symmetry equivalent cations in 

(a) [NMe4][BF4], (b) [C1mim][BF4] and (c) [C1mim]Cl. 
 

The vertical lines on the graphs show the dipole moments of 
isolated ions. Poorly fitted charges manifest themselves in 
overly broad distributions, including Connolly charges for 
[NMe4][BF4] and both ChelpG and Geodesic for [C1mim][BF4]. 
These  instances  of  poor  fitting  are  similarly   reflected   in 
Fig. 10. 

Analysis of Fig. 11 reveals that all schemes apart from 
Löwdin produce rather broad distributions of dipole moments. 
Noticeably, in the [NMe4][BF4] cluster the distribution extends 
up to 2.0 D, especially considering that the isolated ions have 
zero dipole moments. Compared to the density-based schemes, 
the RESP schemes tend to yield broader distributions, which in 
some cases could be an artefact of increased uncertainty in 
fitting partial charges for atoms ‘‘embedded’’ or ‘‘buried’’ 
inside the cluster. In  the  vast  majority  of  cases,  the  ions 
in the cluster exhibit a greater degree of polarisation compared 
to the isolated forms, with the degree of polarisation depending 
on the IL. For example, the C1mim cation appears to be slightly 
more polarised in the BF4-based IL than in the chloride IL. 
The RESP schemes produce almost identical dipole moment 
distributions for the [C1mim]Cl cluster, again emphasising a 
special case of strong inter-ionic interactions between ions in 
Cl-based ILs. Wendler et al.13 observed similar distributions for 
the [C1mim]Cl cluster consisting of 30 ion pairs. In their case 
the dipole moment fell in the range between 0.0 and 5.0 D, 
with the maximum being around 3.0 D, which is in a good 
agreement with our results from the Connolly and Geodesic 
schemes for the eight ion pair cluster of [C1mim]Cl. 

Surprisingly,   except   for   [C1mim]Cl   density   matrix-based 
schemes yield similar trends to the RESP schemes, although 
being insensitive to charge transfer effects. The Löwdin scheme 
produces  by  far  the  narrowest  distribution,  and,  with  the 
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Fig. 11 Dipole moment distributions in eight ion pair clusters of (a) [NMe4][BF4], (b) [C1mim][BF4] and (c) [C1mim]Cl. Vertical lines for [C1mim]+ indicate the dipole 
moment for the isolated cation while all other isolated ions possess a zero dipole moment. 

 
 
 

exception of [C1mim]Cl, shows the least polarisation of all 
schemes. The Löwdin analysis was also the only density matrix 
scheme showing some charge transfer in ion pairs of the 
[Cnmim][BF4] series. Conversely, while the NPA scheme almost 
entirely neglects charge transfer, it remains sensitive to polar- 
isation effects and tends to show distributions in closer agree- 
ment to the RESP schemes. The only exception is the chloride 
cluster, for which both the Löwdin scheme and in particular the 
NPA scheme show a decrease in polarisation. This is likely due 
to the sensitivity of the NPA scheme towards decreased covalency 
between the imidazolium cation and the chloride anion. 

To summarise, all the schemes, be it density matrix-based or 
RESP, show some degree  of  cationic and  anionic  polarisation 
for the BF4-based ILs, with Löwdin giving the narrowest dipole 
moment  distribution.  Out  of  the  RESP  schemes  it  is  hard  to 

pick and choose which scheme produces best results, with all 
three inevitably displaying poorly fitted charges in some cases. 
According to the presented data ChelpG tends to produce 
slightly larger errors in the ‘‘pseudo’’ dipole moments and 
therefore, the Connolly and Geodesic schemes are recom- 
mended for estimating partial charges in IL ions. Surprisingly, 
NPA shows an appreciable degree of polarisation of ions in the 
BF4-based clusters similar to that of Connolly and Geodesic, 
although no charge transfer was observed between ions. The 
chloride clusters represent an exceptional case, with NPA and 
Löwdin slightly depolarising the cation with respect to the 
isolated form. This finding emphasises that polarisation effects 
reflect the changes in charge distribution and do not necessarily 
follow the trends  in  the charge  transfer process that requires 
orbital overlap. 
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4 Comments on the quality of charge fitting 
and chloride-based ionic liquids 
4.1 Charge fitting 

 

In discussing cluster charge transfer and polarisation, it has 
become obvious that no one particular RESP scheme provides 
perfect results; there is always at least one outlying value that, 
while not being particularly obvious, alters the trends resulting 
in unphysical results. This appears to be a consequence of the 
close proximity in which the ions sit with one another, causing 
the exclusion of fitting points around parts of the molecules 
embedded inside the cluster. The ‘‘buried atom’’ problem is a 
well-known deficiency of RESP schemes in general, but typically 
referred to only in an intramolecular sense. 

GAMESS-US, in its RESP routines, provides a fitting diag- 
nostic based on a w2 distribution termed the ‘‘Estimated 
Standard Deviation’’ (ESD) to evaluate the quality of the 
assigned charges. As is expected, in all cases these values 
become large in instances where an atom is considered 
embedded; these are typically atoms such as methyl carbon 
atoms, the central nitrogen in NMe4 or the central boron atom 
in BF4. With simple molecules, this does not pose a significant 
problem as these numbers remain quite small, however in 
clusters these embedded regions extend beyond  atoms  that 
are embedded in an intramolecular sense to those that become 
embedded through intermolecular  crowding.  In  these 
instances the ESD numbers can become staggeringly large 
indicating a severe deficiency in fitting points. 

 
 

4.2 Chloride-based ionic liquids 
 

The chloride ILs have presented an unusual case in terms of 
both their unique inter-ionic interactions as well as their 
performance with respect to the charge schemes analysed in 
this study. In terms of the former, in contrast with the BF4 and 
NTf2 ILs, the chloride series exhibited behaviour characteristic 
of an increased covalency between ions, which is in agreement 
with observations by Wang et al.,72 Kirchner et al.48 and our 
group2 that showed a relatively high degree of orbital overlap. 
This type of interaction elicits a most notable response from 
the NPA charge scheme in the form of non-negligible charge 
transfer around 0.1 e, which otherwise gave almost no 
charge transfer for all other ILs. RESP schemes were essentially 
all equally as good at fitting the charge, whereas the other 
ILs studied each suffered poorly fitted values  for  at  least 
one scheme, which  in  itself  was  unsystematic,  i.e.  no 
RESP charge scheme consistently performed well. This is 
attributed to the monoatomic nature of the anion which 
simplifies fitting procedures by limiting excluded fitting points 
and eliminating any ‘‘buried’’ atoms. While fortunate for the 
chloride ILs, the charge fitting quality remains problematic, as 
ILs typically consist of  bulky anions and cations, of  which 
chloride is far from. Thus,  the  chloride  ILs  are  con- 
sidered atypical and hence, poor model systems for testing 
the quality of quantum chemical methods and charge fitting 
schemes. 

 

5 Conclusions 
 

In this paper it has been shown that the RESP schemes are 
preferred when producing atomic partial charges as they can 
effectively capture electronic polarisation effects and show an 
appreciable degree of charge transfer. Among the RESP 
schemes, it appears that ChelpG is  the  least  systematic  for 
ion pairs of ionic liquids and should be used with a grid 
spacing of at least 0.4 Å, although instances for larger ionic 
clusters, for which Connolly and Geodesic schemes fail,  are 
also present. Thus, RESP  warrants a degree of caution, parti- 
cularly in ionic clusters of a few ion pairs, as the charge fitting 
procedure may produce erroneous charges owing to insufficient 
fitting points for ‘‘buried’’ atoms or those embedded in a tightly 
bound cluster. Density matrix-based methods such as the 
Mulliken and Löwdin population analyses have shown unac- 
ceptable basis set dependence and should be  disregarded 
despite their prevalence in most quantum chemistry packages. 
In particular, the Löwdin scheme was generally insensitive to 
polarisation effects, which are expected to dominate in the 
liquid state of ILs. In contrast to this, the NPA scheme was 
surprisingly responsive to polarisation and was largely basis set 
independent. However, the scheme almost entirely neglected 
charge transfer in ion pairs and ionic clusters, apart from the 
chloride-based ones. Therefore, density matrix-based schemes 
inadequately represent the electrostatic interactions in ILs. The 
presented results also show that chloride-based ILs should not 
be considered as model systems to test the quality and relia- 
bility of quantum chemical methods as well as describe general 
trends in thermodynamic and transport properties for a wider 
population of ILs due to exceptional inter-ionic  interactions 
and statistically well-fitted charges for all RESP schemes stu- 
died here for mono-atomic anions such as chloride. 
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3.2 Overview 
 
 

Accurate energetics are critical in fully understanding thermodynamic and transport 
properties of ionic liquids (ILs).[1] In order to move away from classical methods, which 
generally account for only two-body interactions, and density functional theory (DFT) 
methods that are unpredictable in their ability capture electron correlation and exchange 
effects,[2] this paper assesses the fragment molecular orbital (FMO) approach[3] as a way 
forward for large-scale ab initio calculations of ILs. 

 
The FMO approach is a many-body approach to calculate the electronic structure of 
large chemical systems most commonly using the second-order Møller Plesset perturba- 
tion theory (MP2) wavefunction.[4] The FMO many-body expansion is usually truncated 
at the two- (FMO2) or three-body (FMO3) term,[5] although four-body calculations 
have been reported.[6, 7] In this study, the MP2 level of theory was examined, as it 
represents the least expensive correlated level of theory and is in routine use for IL 
energetics.[2, 8, 9] Through this work, two important features of the energetics of ILs 
are shown. First, the interaction energy of the ionic liquid clusters on a per ion pair 
(IP) basis remains unconverged even at a size of eight IPs, particularly for the dispersion 
component. Second, the Hartree-Fock (HF) energy (approximated as the electrostatic 
energy) requires at least a three-body expansion whereas the dispersion energy can be 
accounted for as only a two-body term. 

 

This paper is significant as it is the first assessment of a large-scale fully ab initio method 
for ILs in terms of both cluster size and accuracy with respect to a conventional cor- 
related wavefunction-based method. By better understanding the many-body effects of 
ILs, appropriately sized clusters can be constructed that may be useful in analysing more 
realistic interactions, particularly in ab initio molecular dynamics simulations. Addi- 
tionally, the rate of convergence of the HF and correlation energies suggests that FMO3 
may be used for the HF component, while only using FMO2 for the correlated part, 
thus further accelerating the calculation. It is worth mentioning that the effects of basis 
set superposition error are still significant; Table S3 in the supplementary information 
given in Section 3.4 shows errors approaching 200 kJ mol−1  for the eight IP clusters. 

 
3D structures of IL clusters shown in Figure 1 (a) and (b) in the paper that follows may 
be viewed by scanning [QR1], [QR2], respectively. 

 
 
 
 

QR1 

 
 

QR2 

http://interactive-thesis.appspot.com/?mol=fmo-cluster-a.mol
http://interactive-thesis.appspot.com/?mol=fmo-cluster-b.mol
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Fully ab initio large-scale  calculations of archetypical ionic 
liquids consisting of up to eight ion pairs are presented for the 
first time. These are used to validate the computationally 
efficient Fragment Molecular Orbital approach applied to these 
semi-Coulombic systems, paving the way towards accurate 
prediction of their transport properties. 

 
Ionic liquids (ILs) represent a fascinating class of organic salts 
that due to their unique physical properties in some cases such 
as low flammability, low vapour pressure and low melting 
point, have attracted significant attention in a broad range of 
applications. For example, they offer a unique set of properties 
as liquid electrolytes for alternative energy devices such as 
metal–ion batteries,1 thermo-cells,2 fuel cells3 and solar cells.4 

For enhanced performance of these electrochemical devices 
the electrolyte must exhibit additional desirable transport 
properties such as high conductivity and low viscosity and 
there has been an intense search for ILs that exhibit these 
critical properties. Computer-aided design of ionic liquids with 
tuned  thermodynamic   and  transport   properties   has  the 
potential to make a significant contribution to this search, 
however these materials represent a significant  challenge 
for the current theoretical approaches.5 Classic molecular 
dynamics (MD) simulations are limited due to their simplified 
description of intermolecular interactions.6 Current force 
fields for ionic liquids are based on two-body interacting 
potentials for non-covalently bonded interactions such as 
Coulomb (electrostatics) and dispersion,7 disregarding other 
corrections for many-body effects. Although long-range Coulomb 
interactions are undoubtedly the strongest interactions amongst 
the forces between ions in the compounds,8 the importance of 
short-range dispersion interactions has recently become clear.9 

Therefore, for MD simulations to be reliable and robust a 
wavefunction-based ab initio (AI) method accounting for 
electron correlation needs to be used. Simulations  based  on 
DFT functionals are becoming more popular10 due to robustness 
of the non-biased description of fundamental forces; however, a 
universal  DFT  functional  performing  reliably  for  all  types  of 

 
 
 

ionic liquids is yet to be found.11 On the other hand, while 
wavefunction-based AI methods are very accurate, their successful 
application in MD simulations of ILs is hindered because  of 
poor scalability with molecular size, making the calculation 
task  rapidly  unwieldy. 

The fragment molecular orbital (FMO) approach offers an 
exciting solution to  this  problem, by  making any AI-based 
calculation scale linearly with molecular size.12 The idea 
behind the approach lies in dividing a large molecular system 
into smaller fragments, which can be treated individually at a 
high level of AI theory. For ionic liquids the FMO approach is 
particularly attractive as each ion can already be treated as an 
individual fragment. The split of a large-sized ionic cluster into 
individually treated ions makes the AI calculation hugely 
parallelisable (one ion per CPU) and results in significantly 
improved computational time without any sacrifice in accuracy,13 

thus paving the way towards fully AI MD simulations of ILs. 
Here we present FMO-based calculations of IL clusters 

using the wavefunction-based MP2 method for each ion and 
compare the result with large-scale MP2 calculations of the 
whole cluster. A triple-x doubly polarised Ahlrichs type basis set, 
TZVPP, was used for both calculations. This first systematic 
study focuses on analysing the role of many-body effects and 
dispersion interactions with increasing number of ion pairs in 
the ionic cluster. We show that the FMO approach in combination 
with the MP2 method provides a reliable and accurate description 
of the interaction energies of ionic clusters, as long as three-body 
corrections are included. 

The ionic liquids chosen are [NMe4][BF4], where Me stand 
for the methyl group, and a series of imidazolium-based ILs 
with increasing alkyl chain length on the cation: [C1mim][BF4], 
[C3mim][BF4] and [C4mim][BF4]. The ionic clusters studied 
consisted of 1, 2, 4 and 8 ion pairs. Single ion pair optimisations 
of the imidazolium-based series were fully screened for the 
lowest energy conformations, in which the BF4 anion interacted 
either with the C2–H bond of the imidazolium-ring or above/ 
below the imidazolium ring. The resulting conformations were 
used to build the subsequent clusters, followed by geometry 
optimisations.  In  all  cases,  the  alkyl  chains  of  the  cation 

   extended uniformly on the same side, allowing for van der 
 

School of Chemistry, Monash University, Wellington Rd, Clayton, 
VIC 3800, Australia. E-mail:  

 
w This article is part of the ChemComm ‘Emerging Investigators 2012’ 
themed issue. 
z Electronic  supplementary  information  (ESI)  available.  See  DOI: 
10.1039/c1cc15056a 

Waals interactions between chains. The clusters constructed in 
this manner were ensured to converge to conformations that 
are close to the global minima. Examples of optimised ionic 
clusters consisting of 8 ion pairs are shown in Fig. 1. All 
calculations were performed using GAMESS-US.14 (For more 
detail see ESI.z) 
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Fig. 1    Optimised  structures  of  ionic  clusters  with  8  ion  pairs  of 
[NMe4][BF4] (a) and [C4mim][BF4] (b). 

In  the  FMO  approach  the  total  electronic  energy  of  the 
system can be then expressed as follows: 

 
 

 
 

Fig. 2   Interaction energies (EINT, kJ mol-1) per ion pair. 
 

clusters in Table 1. It becomes obvious that for the majority of 
the ionic clusters the two-body correction reproduces the MP2 
interaction energy within 1 to 2 kJ mol-1. However, the 
FMO2-MP2 errors seem to be rather unsystematic and 
increase slightly with increasing cluster size. Closer inspection 
of the FMO2 and FMO3 energies reveals that the errors arise 
mainly from the HF component of the interaction energy 
consisting  of  Coulomb,  exchange-repulsion  and  induction 
terms (see ESI Table S2z), with the dispersion component being 

N N 
E ¼ 

X 
EI þ 

X 
ðEIJ - EI - EJÞ already treated accurately within the two-body approach. In our 

I I4J 

N 
" 
ðE 

 
 - E - E 

 
 - E Þ - ðE 

 
- E - E Þ 

#
 

previous work we showed that although long-range electrostatic 
forces  converged  in  ionic  liquids,16    the  convergence  range 
extended  over  a  few  Angstroms  from  the  reference  ion  to 

X IJK I J K 
þ 

IJ I J achieve the accuracy of 1 kJ mol-1 for the electrostatic lattice 

I4J4K -ðEJK - EJ - EKÞ - ðEIK - EK - EI Þ 
ð1Þ 

energy.16   The  current  FMO  results  highlight  the  fact  that  the 
two-body  potential  for  Coulomb  interactions  might  not  be 

Where I, J and K represent different ions. The second sum 
represents a correction for the two-body inter-fragment inter- 
actions (abbreviated  as  FMO2),  whereas  the  third  sum  is 
a correction for the three-body inter-fragment interactions 
(abbreviated as FMO3). If used together with the MP2 level 
of theory, the method becomes FMO2-MP2 and FMO3-MP2, 
respectively. The rest of the system is treated as a ‘‘Coulomb 
bath’’, in which intermolecular interactions beyond the cut-off 
point are treated as purely electrostatic. 

Interaction energies of the IL clusters were calculated based 
on the geometries of ions in the cluster using the counterpoise 
approach by  Boys and  Bernardi15 to account for the  basis 
set superposition error. The energies increase linearly with 
increasing number of ion pairs (see ESI Fig. S2z). When the 
interaction energy is normalised by the number of ion pairs in 
the cluster (Fig. 2), a steep behaviour is observed initially, 
from 1 to 2 ion pairs up to 60 kJ mol-1; the trend begins to 
level out for larger clusters, with the energy per ion pair 
increasing only slightly from 4 to 8 ion pairs. The observed 
trends are a manifestation of the many-body effects that are 
important in any system consisting of a number of interacting 
non-covalently bonded species, especially charged ones. 

One of the main questions here is how far reaching are these 
many-body effects? Are the two-body pair-wise interactions 
already sufficient for accurate description of the ionic cluster 
energy? In order to answer this question, the FMO calculations 
were performed using the two-body and three-body corrections. 

enough for ILs, requiring at least a three-body treatment for 
higher accuracy. On the other hand, FMO3-MP2 produces 
results within 0.2 kJ mol-1, which is better than spectroscopic 
accuracy of 1 kJ mol-1. More importantly, the errors seem to 
be independent of the cluster size, as well as the ion size. This 
level of accuracy is extremely desirable for accurate MD 
simulations of transport properties such as conductivity and 
viscosity of any semi-Coulombic system. 

Highly accurate FMO3-MP2 calculations come with another 
advantage of significantly reduced computational cost. For 
example, a single-point FMO3-MP2 calculation of the 
[C3mim][BF4] cluster containing 8 ion pairs took 78 h to complete 
on 32 cores and  required as little as 2 GB of  RAM  per  core. 
The same cluster calculated at the full MP2 level needed 221 h 
(B9 days) on 16 cores and used 29 GB of  RAM  per  core.  In 
this case, the job could only be completed on a 1 TB RAM 
machine. Memory consumption alone puts the full MP2 beyond 
the reach of most hardware presently used in typical High 
Performance Computing (HPC) environments. Combined with 
fast-interconnect nodes the FMO3-MP2 method can be easily 
performed  on  HPC  clusters. 

 
 

Table 1 Deviations (in kJ mol-1) of the FMO2-MP2 and FMO3-MP2 
interactions energies per ion pair from the MP2 results 

 
[NMe4] [C1mim] [C3mim] [C4mim] 

 

N  FMO2  FMO3  FMO2  FMO3  FMO2  FMO3  FMO2  FMO3 

In  the  FMO  calculations  the  ion  clusters  were  fragmented 2 -1.6 0.1 -0.8 -0.2 -1.3 0.0 -1.1 -0.1 
into  constituent  cations  and  anions.  The  FMO2  and  FMO3 4 -1.4 0.1 -1.0 0.1 -1.6 -0.3 -1.2 0.1 
results are compared with the MP2 calculations of the whole 8 -1.9 0.2 -1.0 0.0 -0.5 -0.1 — — 

1494 Chem. Commun., 2012, 48, 1493–1495 This journal is  c   The Royal Society of Chemistry 2012 
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Fig. 3    (a)   Total   electrostatic   (EES)   and   (b)   Dispersion   (EDISP) 
components of interaction energies per ion pair. 

 

 
The trend in the interaction energies in Fig. 2 hides a subtle 

interplay between the two main fundamental forces in ionic 
liquids: electrostatic and dispersion. In the first approximation 
the dispersion interactions were estimated as the difference between 
MP2 and HF interaction energies, whereas HF interaction 
energies were considered as total electrostatic energies. Fig. 3 
shows the electrostatic and dispersion components of the 
interaction energy per ion pair. The dispersion component 
(Fig. 3-b) increases rapidly with increasing cluster size from 
about 30 kJ mol-1 for a single ion pair to 61 kJ mol-1 for 
[NMe4][BF4] and about 87 kJ mol-1 for [C3mim][BF4] and 
[C4mim][BF4] for the largest cluster size. The dispersion 
component begins to contribute from as little as 8% for single 
ion pairs up to 20% of the overall energy in the large clusters 
emphasising the importance of electron correlation effects as 
cluster size increases. This, in part, reflects the presence in the 
larger cluster of all of the possible inter-ion interactions, 
including like-ion dispersion interactions such as inter-alkyl 
chains, some of which may be missing in the smaller cluster. 
The total electrostatic component appears to slightly decrease 
with the cluster size in the case of the imidazolium-based ILs 
(Fig. 3-a). Although unusual at first glance, the trend is a result 
of a complex interplay between the charge transfer due to 
orbital overlap between ions and polarisation effects due to 
induced dipole moments. The latter are subject to electron 
correlation and are likely to be already included in the 
calculated dispersion component. To quantitatively evaluate 

 
 

the   fundamental   components   of   the   interaction   energy, 
accurate energy decomposition schemes are required. 

In summary, fully AI large-scale calculations of archetypical 
ILs showed that many-body effects beyond two-body inter- 
actions were particularly important for Coulomb forces if 
accuracy below 1 kJ mol-1 is needed. Dispersion interactions 
increase rapidly with increasing cluster size,  highlighting 
the need for accurate description of electron correlation in 
order to predict physical properties of ionic liquids. The FMO 
approach shows significant potential for studying these 
semi-Coulombic systems. In  combination with  the  MP2 level 
of theory, FMO3-MP2 (incorporating the three-body correction) 
gives excellent accuracy of 0.2 kJ mol-1 at a significantly reduced 
computational cost compared to the MP2 method, thus paving 
the way towards fully AI MD simulations of ionic liquids and 
hence, accurate prediction of their transport properties. 

This work is supported by the Australian Research Council 
through a Discovery grant and Fellowships for EII and DRM. 
The authors thank the Monash e-Research centre and the 
National Computational Infrastructure in Canberra, Australia 
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Details of quantum chemical calculations 
 

Clusters of ILs consisting of 1, 2, 4 and 8 ion-pairs were optimised using a meta-GGA 

hybrid M06-2X functional1 with the 6-31+G(d) basis set for 1, 2 and 4 ion pairs, and 
6-31G(d) for 8 ion pairs. Improved electronic energies were calculated at the MP2, 
FMO2-MP2 and FMO3-MP2 level of theory using the TZVPP basis set and the 

Resolution-of-Identity approaximation.2 All interaction energies were counterpoised 

corrected using the Boys and Bernardi approach.3 
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Figure S1. Optimised geometries of the ionic clusters studied. 
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Figure S2. Total interaction energies (in kJ mol-1) of ionic clusters 
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 FMO2 FMO3 FMO2 FMO3 FMO2 FMO3 FMO2 FMO3 
2 -0.7 0.1 -0.8 0.0 -0.9 0.1 -1.0 0.1 
4 -1.0 0.1 -1.4 0.2 -1.6 0.0 -1.5 0.3 

 

 N Total BSSE Total BSSE Total BSSE Total BSSE 
 BSSE per IP BSSE per IP BSSE per IP BSSE per IP 

1  -9.6 -9.6 -11.0 -11.0 -11.8 -11.8 -12.6 -12.6 
2  -26.6 -13.3 -32.1 -16.1 -33.5 -16.7 -37.5 -18.7 
4  -66.1 -16.5 -74.4 -18.6 -80.5 -20.1 -84.3 -21.1 

 

 

Table S2. Errors for the FMO2-RHF and FMO3-RHF interactions energies (in kJ mol-1) per ion pair with respect 
to full RHF. 

 
  [NMe4][BF4] [C1mim][BF4] [C3mim][BF4] [C4mim][BF4]   

 
 
 

   8 -1.5 0.2 -1.4 0.2 -1.0 0.3 - -   
 
 
 
 

Table S3. RI-MP2 Basis set superposition errors, total and per ion pair (IP) in the interaction energies of the ionic 
clusters studied. N is the number of ion pairs in the cluster. 

 
  [NMe4][BF4] [C1mim][BF4] [C3mim][BF4] [C4mim][BF4]   

 
 
 
 
 

   8 -143.8 -18.0 -174.0 -21.7 -193.0 -24.1 - -   
 

The Counterpoise method by  Boys and Bernadi  was used to account for the basis  set superposition error. 
Interaction energies were calculated as follows: 

ΔEINT  = Ecluster  − ∑ E ion 

where the energies of the constituting ions were calculated within the basis set of the entire cluster. 
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4.2 Overview 
 
 

Spin-component scaled second-order Møller Plesset perturbation theory (SCS-MP2)[1] 
has become a widely used computational technique owing to its ability to approach the 
accuracy of higher levels of theory at no increased computational expense. It has been 
noted previously that in addition to providing improved energies, a unique combination 
of SCS-MP2 and a triple-ζ basis set could yield high-quality energies without any coun- 
terpoise correction;[2] a technique that is used to remove basis set superposition error 
(BSSE).[3, 4] 

 

The publication that follows extends on the SCS-MP2 approach, where the same- and 
opposite-spin components of the second-order Møller Plesset perturbation theory (MP2) 
correlation energy are fitted to CCSD(T)/CBS benchmark energies of ionic liquid (IL) 
ion pairs (IPs), to propose a new set of coefficients targeted to . The new method, 
known as ionic liquid specific SCS-MP2 (SCS-IL-MP2), is founded on a rigorous statis- 
tical analysis and is the first to unequivocally prescribe both scaling factors and basis 
set. Furthermore, this work is explicitly geared towards circumventing the need for 
counterpoise correction, and to this end errors of less than 1 kJ mol−1 with respect to 
CCSD(T)/CBS have been obtained. 

 
In Section 4.4, the SCS-IL-MP2 method is applied to IL clusters to show its broader 
application beyond the IP. Its performance is attributed to the accurate treatment of 
correlation energy as a two-body term[5] and BSSE being only a short-ranged source of 
error. Section 4.4 is presented as a submitted manuscript. 

 

This work removes the long-standing bottleneck of large-scale ab initio calculations of 
counterpoise correction, which requires all monomers of the IL cluster to be calculated in 
the basis set of the entire cluster. This represents a substantial computational expense 
as such a calculation cannot be performed using the fragment molecular orbital (FMO) 
theory since no further fragmentation can be achieved. By implicitly accounting for 
BSSE, the efficiency of highly parallel methods such as the FMO approach may be fully 
exploited. 

 
3D structures of IL clusters shown in Figures 2 (a), (b) and (c) in the paper presented 
in Section 4.4 may be viewed by scanning [QR1], [QR2] and [QR3], respectively. 

 
 
 
 
 

 
 

QR1 

 
 

QR2 

 
 

QR3 

http://interactive-thesis.appspot.com/?mol=scs-mp2-cluster-a.mol
http://interactive-thesis.appspot.com/?mol=scs-mp2-cluster-b.mol
http://interactive-thesis.appspot.com/?mol=scs-mp2-cluster-c.mol
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ABSTRACT: Spin-component scaled second-order Møller− 
Plesset perturbation theory (SCS-MP2) energy  calculations, 
which independently scale the opposite- and same-spin 
components of the MP2 correlation energy, are known to 
consistently provide improved interaction energies in comparison 
to conventional MP2. This has led to the development of a 
number of SCS-MP2 derivatives that target particular classes of 
molecules,  interactions  or  properties.  In  this  study,  SCS-MP2 
scaling coefficients targeted to interaction energies of single ion 
pair semi-Coulombic ionic liquid (IL) systems are presented in 
view  of  circumventing  the  need  for  counterpoise  correction  to 
eliminate basis set superposition error (BSSE). A set of 174 IL ion 
pairs consisting of imidazolium ([C(1−4)mim]+) and pyrrolidinium ([C(1−4)mpyr]+) cations and routinely used anions such as 
Br−,   Cl−,   [BF4]−,   [PF6]−,   [DCA]−    (dicyanamide),   [tos]−    (tosylate),   [mes]−    (mesylate),   and   [NTf2]−    (bis- 
(trifluoromethylsulfonyl)amide),  each  of  which  were  arranged  in  multiple  favorable  conformations,  were  calculated  at  the 
MP2 level of theory with 17 popular basis sets ranging from double- to quadruple-ζ quality and at the CCSD(T)/CBS limit. For 
each  basis  set,  the  spin  components  of the  IL  set  were  scaled  via least-squares  multiple  linear  regression  with  respect  to 
CCSD(T)/CBS benchmark interaction energies that were corrected for BSSE using the Boys and Bernardi approach. SCS-MP2 
spin component coefficients of 1.05 and 0.68 are recommended for the opposite- and same-spin components, respectively, in 
conjunction with Dunning’s cc-pVTZ basis set, which resulted in the most statistically reliable regression. Alternatively, a scaled 
opposite-spin MP2 (SOS-MP2) scaling factors of 1.64 is recommended for the opposite-spin component and should be used 
where the omission of the same-spin component results in a calculation speed-up. These two scaling schemes are termed SCS-IL- 
MP2 and SOS-IL-MP2, respectively. The SCS-IL-MP2 and SOS-IL-MP2 approaches show interaction energy errors on average 
less than 1.0 kJ mol−1  with respect to CCSD(T)/CBS benchmark results and highlights the important consideration of basis set 
dependence when selecting spin-component coefficients. By calculating multiple conformations for each ion pair and scaling to 
reproduce BSSE corrected benchmark energies, it is suggested that improved energies may be obtained for larger IL clusters 
beyond ion pairs without performing costly counterpoise corrections. 

 
 
1. INTRODUCTION 
Ionic liquids (ILs) have found themselves suited to a 
surprisingly large array of applications owing to their unique 
physical properties.1  These arise from the staggering variety of 
anion/cation combinationsspeculated to be in excess of 1018, 
considering  binary  and  ternary  ILs2and  the  unique 
combination of intermolecular  interactions thereof. Conse- 
quently, ILs  are an exceptionally challenging class of 
compounds to model computationally; while driven primarily 
by electrostatic and induction interactions, charge transfer and 
dispersion forces (e.g., π−π stacking, alkyl chain interactions) 
are non-negligible and have a strong influence on their physical 
properties.3 In particular, dispersion interactions are notori- 
ously difficult to treat with appreciable accuracy despite the 
ongoing   development   of   cost-effective   methods,   such   as 

systems used during their development; as more novel and 
unique systems are explored, the reliability of these methods is 
questionable. For example, DFT has been shown to generally 
overestimate  charge  transfer  interactions,6   which  are  partic- 
ularly important for ILs in molecular dynamics simulation.7 

Similarly,  the  reliability  of  empirical  dispersion  coefficients 
comes into question as, for ionic liquids, error cancellation 
between   the   anion   and   cation   is   said   to   explain   the 
“unexpectedly  well”  performing  DFT-D3  dispersion  coeffi- 
cients.8 This implies that error cancellation may not hold for all 
ion pair combinations or clusters of multiple ion pairs. Thus, 
the only truly unbiased methods remain in the  realm  of  ab 
initio quantum mechanics by virtue of their systematic 
convergence to the exact solution of the Schrödinger equation. 

Density Functional Theory (DFT),4  and attempts to derive    
empirical  London  dispersion  coefficients.5   These  approaches 
rely on assumptions that are unavoidably linked to the chemical 
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E = αE + βE 

 
The second-order Møller−Plesset perturbation theory 

(MP2) is the lowest level ab initio method incorporating 
electron correlation and is therefore an inexpensive,  yet 
unbiased account of dispersion interactions. Its computational 
cost, formally O(N5) where N is the number of basis functions, 
has been the focus of significant optimization. Some notable 
examples include the now standard Resolution-of-Identity (RI) 
approximation, local MP2 (LMP2)9 methods that boast linear 
scalability, and attempts to leverage GPU technology.10 More 
broadly, the Fragment Molecular Orbital (FMO) approach11 is 
routinely used by our group to explore large systems12 and may, 
in theory, be combined with any of the aforementioned MP2 
incarnations. 

In order to improve MP2 energies, a novel approach known 
as “spin-component scaled MP2” (SCS-MP2) was proposed by 
Grimme, whereby the spin components of the MP2 correlation 
energy are scaled such that the energetic properties better 
reproduce those of higher levels of theory.13 The originally 
proposed MP2 scaling factors are shown in eq 1 as α and β for 
the opposite-spin and same-spin, respectively. 

 
corr 
MP2 OS SS (1) 

In Grimme’s scheme, the coefficients were determined under 
the assumption that the MP2 correlation energy is systemati- 
cally underestimated at approximately 80%; thus, the opposite- 
spin component (numerically, the largest) should be scaled up 
by  an  additional  20%,  hence  α  =  6/5.  The  same-spin 

 
an “S2 perturbation theory,” which is an extension of Møller− 
Plesset perturbation theory addressing a criticism of SCS-MP2 
that it is no longer systematically improvable nor a truly ab 
initio  method,  as  noted  by Grimme  himself.13  Fink’s  scaling 
factors may be found either by Feenberg scaling or by fitting to 
the  full  configuration  interaction  (FCI)  wave  function.  It  is 
important to note that scaling factors derived entirely from 
theory also demonstrate significant basis set dependence, as 
noted by Szabados.18 Further, the derivation of theory-based 
scaling factors is nontrivial for large systems as the third-order 
energies required are computationally expensive for Feenberg 
scaling, and substantially more so for fitting to the FCI wave 
function.  For  a  comprehensive  review   of  spin-component 
scaled methods including those not mentioned here, see ref 21. 

Apart  from  improving  MP2  energies  in  terms  of  their 
agreement with higher levels of theory,22  a well-documented 
phenomenon known as basis set superposition error (BSSE) 
must also be addressed for accurate interaction energies. BSSE 
manifests itself as an artificial overstabilization that arises from 
an unbalanced description of orbitals at the interface between 
interacting molecules and exists within the Linear Combination 
of Atomic Orbitals (LCAO) framework. The counterpoise 
(CP) correction scheme by Boys and Bernardi23 is the most 
common method used to quantify this error and involves the 
calculation of the complex and monomers in their own basis 
set, and the basis set of the complex, as shown in eqs 2−4, 

 

ΔEint = Ecomplex − ∑ Ei 

component was then determined empirically in order to best 
reproduce  a  set  of  51  reaction  energies  computed  at  the 

CP 

i 
 All BFs 

(2) 

QCISD(T)  level  of  theory  with  an  augmented  quadruple-ζ 
basis set, ultimately yielding β = 1/3. 

Following Grimme’s initial work on SCS-MP2, a number of 

ΔEint = Ecomplex − ∑ Ei 
i 

 
CP 

 

(3) 

derivatives  have  emerged  that  aim  to  further  optimize  these 
coefficients.  Most  notably,  scaled  opposite-spin  MP2  (SOS- 

ΔEBSSE = ΔEint − ΔEint (4) 

MP2) was proposed by Jung et al.14 in an attempt to achieve 
comparable accuracy with respect to SCS-MP2 while neglecting 
entirely the same-spin component (α = 1.3, β = 0). By 
neglecting the same-spin component, SOS-MP2 in conjunction 
with the RI approximation can be shown to have an increased 

where Ei is monomer i in the complex and superscript “All BFs” 
indicates  the  presence  of  ghost  atoms  representing  the  basis 
functions of the entire complex, that is, all basis functions. 

It becomes obvious that the removal of BSSE is nontrivial for 
clusters of large sizes which are necessary to account for the ffects in condensed systems such as ionic liquids;12

 

scalability of O(N 4), while conventional and RI-MP2 both have 
a scalability of O(N5). Other noteworthy SCS-MP2 derivatives 
include  the  SCS(MI)-MP2  approach  by  Distasio  and  Head- 
Gordon,15 where the coefficients were scaled using multivariate 
linear  regression  analysis  fitted  to  intermolecular  interaction 
energies  of  the  S22  data  set16    with  respect  to  CCSD(T) 
benchmark data (α = 0.40, β = 1.29); and the SCSN-MP2 
approach by Hill and Platts,17 which is optimized for nucleic 
acid base pair interaction energies using LMP2 and the RI 
approximation (α = 0, β = 1.76). Their study also presented 
data showing impact of basis set in the choice of coefficients 
with α ranging from 1.29 to 1.75, and β ranging from 0.17 to 
0.40 involving double-, triple-, quadruple-ζ, and CBS 
extrapolated MP2 energies. 

In  terms  of  a  theoretical  understanding  of  the  scaling 
coefficients,   Szabados18    utilized   two-parameter   Feenberg 
scaling19 of the zeroth order Hamiltonian to minimize the 
third-order energy, thereby deriving α and β without fitting to 
benchmark levels of theory. In Szabados’ study, the average 
values were α = 1.12 and β = 0.84 for the systems examined. 
Subsequently, Fink20  has presented scaling factors where α = 
1.15 and β = 0.75, the latter being almost three times that of the 
original SCS-MP2 method. Fink’s coefficients were found for 

many-body e 
the number of calculations required increases as 2N + 1 where 
N is the number of monomers in the complex. Our group has 
shown that, for ionic liquids, the near-linearly scalable (with 
respect to the number of CPUs used) FMO approach is an 
extremely  accurate  method  for  the  calculation  of  the  total 
electronic  energy,  that  is,  Ecomplex.12   In  essence,  the  FMO 
method works by considering the total electronic energy as the 
sum of the constituent fragments (monomers) that are then 
corrected by many-body terms up to an arbitrary order; usually 
two- (dimer) or three-body (trimer) effects are considered (see 
ref 24 for a detailed description of FMO theory). While the 
total electronic energy is straightforward, the calculation of each 
monomer in the basis set of the complex is challenging. This is 
due to a limitation of the FMO method where all fragments 
must have occupied orbitals; fragments consisting entirely of 
ghost  atoms,  and  therefore  contain  no  electrons,  are  not 
allowed. With this in mind, scaling factors well suited to the 
ionic liquid (semi-Coulombic) systems our group is interested 
in,  fitted  to  CP  corrected  interaction  energies,  are  likely  to 
minimize  the  cumulative  error  associated  with  scaling  large 
systems and the BSSE. Interestingly, Antony and  Grimme25 

have noted that with a triple-ζ quality basis set, BSSE is 
minimized through a cancellation of errors, with several other 
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Figure 1. Summary of cations (left) and anions (right) used in this study. 

 
 studies showing that CP correction of SCS-MP2 energies has a 

detrimental effect.22,26,27  Zahn et al.22  have shown that, in the 
case of ionic liquids, uncorrected SCS-MP2 energies alone may 
produce acceptable energies, thus circumventing the need for 
CP correction. While this is a positive finding, the data in that 
study   indicate   that   while   SCS-MP2   is   undoubtedly   an 
improvement, there are still many outliers within a considerable 
error range, particularly for the cc-pVTZ basis set. 

We present a detailed analysis of the performance of MP2 
with respect to benchmark energies of a series of semi- 
Coulombic IL systems calculated at the CCSD(T)/CBS level 
of theory and new scaling factors for SCS- and SOS-MP2 
approaches to spin-component scaled MP2. This includes a 
discussion of CBS extrapolation in section 3.2, correlation 
energy recovery in MP2 in section 3.3, the importance of CP 
correction in section 3.4, and finally a detailed discussion of 
newly fitted SCS- and SOS-MP2 scaling factors in section 3.5. 
With an exclusive focus on refining the SCS- and SOS-MP2 
methods, DFT-based methods such as DFT-D3 are beyond the 
scope of this paper. 

 
2. THEORETICAL PROCEDURES 
A series of 186 energetically favorable IL conformations were 
optimized using the GAUSSIAN 09 suite of programs28 

including [C(1−4)mim]X (1-alkyl-3-methylimidazolium based 
ILs) and [C(1−4)mpyr]X (N-methyl-N-alkylpyrrolidinium based 
ILs)  where  X  =  Br−,  Cl−,  [BF4]−,  [PF6]−,  [DCA]− 

(dicyanamide), [tos]− (tosylate), [mes]− (mesylate), and 
[NTf2]− (bis(trifluoromethylsulfonyl)amide), the structures of 
which are shown in Figure 1. This comprehensive set of IL 
structures canvasses the predominant structural motifs involved 
extensively in, but not limited to, synthetic catalysis and 
electrochemical applications.29,30 All conformations are avail- 
able for download as part of the ESI and have been published in 
part by our group previously;3 a sample of these conformations 
is shown in Figures 2 and 3 for [C2mim]Br/Cl, [C2mpyr]Br/ 
Cl, [C2mim][NTf2], and [C2mpyr][NTf2], which all possess an 
ethyl group. In these examples, a number of key interactions are 
highlighted; [C2mim]Cl/Br P1−P4 shows the anion interacting 
above (P1), below (P4) and in the plane of the imidazolium 
ring (P2 and P3) where the anion in P2 interacts more with the 
methyl group and in P3, it interacts more with the alkyl group. 
In the case of the pyrrolidinium cations, there  are  typically 
three key areas of interaction, where the anion interacts above 
the  pyrrolidinium  ring  (P1)  and  on  either  side  of  the  plane 

 

 
 

Figure 2. [C2mim]Br/Cl and [C2mpyr]Br/Cl structures, anion 
positions labeled as P1−P4. 

 
described by the methyl group, nitrogen atom, and the alkyl 
group (P2 and P3). More complex interactions can be seen in 
Figure 3 for the [NTf2]− anion, as in these cases the [NTf2]− 

anion can interact either via the imide or sulfonyl groups. 
Similar to the structures in Figure 2, [C2mim][NTf2] has been 
constructed with interactions above  (P1),  below  (P4)  and  in 
the plane (P2) of the imidazolium ring. An additional structure 
(P3) shows interaction primarily via the sulfonyl group, which 
adopts a geometry that is between an exclusively above- and in- 
plane  configuration.  The  [C2mpyr][NTf2]  set  shows  inter- 
actions  in  each  of  the  three  areas  given  for  the  Br−/Cl− 
examples, however, also include the multiple modes of 
interaction; P1, P3, and P4 interact primarily via the imide 
group, whereas P2, P5, and P6 interact primarily via the 
sulfonyl groups. 

The selection of ion pair conformations involved systematic 
rotation of single bonds within each isolated ion such that the 
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required for analysis here. Excluded ILs include the [C3mim]- 
[NTf2], [C4mim][NTf2], and [C4mim][tos] series. All single- 
point  energy  calculations  were  performed  using  the  Psi4 
software   package31    with   frozen-core   and   density-fitting 
approximations.   In   addition,   the   frozen   natural   orbital 
approximation for CCSD(T) was used to truncate the virtual 
orbital space, thus providing further acceleration with little 
impact on accuracy.32 MP2 energies were calculated using 17 
popular basis sets, their abbreviations given in parentheses: 
Ahlrichs’ def2-SV(P) (KSV(P)), def2-SVP (KSVP), def2-TZVP 
(KTZVP), def2-TZVPP (KTZVPP) basis sets;33 Dunning’s 
correlation consistent cc-pVDZ (CCD), aug-cc-pVDZ 
(ACCD),  cc-pVTZ  (CCT),  aug-cc-pVTZ  (ACCT),  cc-pVQZ 
(CCQ), aug-cc-pVQZ (ACCQ) basis sets;34−36 and Dunning’s 
correlation consistent basis sets with tight d-functions added, 
namely,  cc-pV(D+d)Z  (CC(D+d)),  aug-cc-pV(D+d)Z 
(ACC(D+d)),  cc-pV(T+d)Z  (CC(T+d)),  and  aug-cc-pV(T 
+d)Z (ACC(T+d));37 last, Truhlar’s May and June “calendar” 
basis sets jun-cc-pVDZ (JCCD), jun-cc-pVTZ (JCCT), and 
may-cc-pVTZ (MCCT).38 The calendar basis sets have varying 
levels of reduced augmentation when compared with the fully 
augmented  Dunning’s  basis  sets,  prefixed  with  “aug”.  MP2 
energies were also calculated at the complete basis set (CBS) 
limit by two-point extrapolation performed with cc-pVDZ and 
cc-pVTZ basis sets (D → T extrapolation), as well as cc-pVTZ 
and cc-pVQZ basis sets (T → Q extrapolation), including their 
augmented counterparts. A limited subset of ILs were also 
calculated with aug-cc-pVQZ and aug-cc-pV5Z basis sets for a 
Q → 5 extrapolation, including the [C1mim]X and [C1mpyr]Y 
where X = Br−, Cl−, [BF4]−, [PF6]−, [DCA]−, [tos]−, [mes]−, 
and [NTf2]−, Y = Cl−, [BF4]−, [DCA]−. All extrapolations 
followed  a  Helgaker  et  al.39   scheme  where  the  correlation 
energy converges as X−3, as shown in eq 5, 

 
X3ΔEMP2/X − Y3ΔEMP2/Y 

ΔEMP2/CBS = X3 − Y3 (5) 
 

Figure 3. [C2mim][NTf2] and [C2mpyr][NTf2] structures, anion 
positions labeled as P1−P6. 

 
global minima of each were identified. Then, ion pairs were 
formed  by  pairing  the  minimum  energy  anion  and  cation 
geometries in three to six conformations designed to reflect the 
diversity of the expected configurations in the condensed phase. 
In the case of the [Cnmim]+ series, the MP2/6-31+G(d,p) level 
of theory was used for optimization due to the importance of 
dispersion forces, except for the halides which were optimized 
using MP2/aug-cc-pVDZ due to orbital linear dependence 
issues. The [Cnmpyr]+ series was optimized at the B3LYP/6- 
31+G(d) level of theory. It should be noted that while the 
diversity of structures remains an important consideration, the 
level of theory used for optimization should have minimal 
impact on the subsequent single-point energy calculations. As 
the same structures are used for both the MP2 and benchmark 
energy calculations described below, our methodology remains 
valid despite some disparity between structure optimization 
methods. 

Single-point energy calculations at the MP2 level of theory 
were performed on the entire set of 186 ILs; however, 
CCSD(T) calculations were performed on a smaller subset of 
174 ILs, as the excluded systems were too time-consuming to 
calculate. The reduced set was used in all analyses except in 
section 3.2, since CCSD(T)/CBS benchmark energies were not 

 

where X and Y are the cardinal numbers of the respective basis 
sets used for extrapolation (X = 3, Y = 4), and MP2/X and 
MP2/Y are MP2 energies at basis sets X and Y, respectively. 

Correlation energies at the CCSD(T)/CBS level of theory 
were calculated using the method by Jurecka et al. as given in 
eq  6,16,40 

 

 
where the difference between MP2 and CCSD(T) is 
considered converged with small basis setsaug-cc-pVDZ in 
this  caseand  can  therefore  be  added  to  the  MP2/CBS 
energies to form a reasonable approximation for CCSD(T)/ 
CBS. All components of the CCSD(T)/CBS benchmark were 
corrected for BSSE using the Boys and Bernardi counterpoise 
correction scheme23  as described by eqs 2−4. 

All errors presented in this paper, unless otherwise specified, 
are with respect to the CCSD(T)/CBS benchmark. Where box 
and whisker  plots are used, the horizontal  line bisecting the 
boxes   indicate   the   median   values,   the   upper   and   lower 
boundaries  of  the  box  indicate  the  first  and  third  quartiles, 
and  the  whiskers  indicate  data  extrema.  Where  appropriate, 
data have been analyzed using standard statistical measures, 
including mean error, mean absolute error, maximum absolute 
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N i i 

N i i 

 
error, and standard deviation. Mean error and mean absolute 
error were calculated according to eqs 7 and 8, respectively, 
where N is the sample size, xi is the ith benchmark ion pair 
interaction energy (e.g., CCSD(T)/CBS energy), x̂i is the ith 
estimated ion pair interation energy (e.g., SCS-MP2 energy). 

 
mol−1), (b) the exclusion of augmentation reduces computa- 
tion time, and (c) the likelihood for orbital linear dependence is 
reduced. It is also noted that for the subset of ILs calculated 
using Q → 5, the mean absolute error from the T → Q 
energies was found to be only 0.06 kJ mol−1, with a maximum −1 

N of 0.22 kJ mol . While this is only a small proportion of the 
ME =  1 ∑ (x − x ̂ ) 

i=1 (7) 
 

N 

total  ILs  studied,  with  the  exception  of  bromide,  all  cations 
were included. Therefore, it is reasonable to conclude that the 
CBS  limit  is  sufficiently  reached  with  a  T  → Q  two-point 
extrapolation. 

MAE = 
1 ∑ (|x − x ̂ |) 

i=1 (8) 

Second, in the case of D → T extrapolation, basis set 
augmentation plays a more important role. Taking the 
augmented  T  → Q  energies  as  the  benchmark,  a  mean  and 

Errors  mentioned  in-text  are  given  as  the  mean  error  with 
uncertainty shown as one standard deviation either side of the 
mean, unless otherwise specified. Confidence intervals (CIs) for 
the   regression   coefficients   have   been   derived   using   the 
bootstrapping technique combined with a bias corrected and 
accelerated approach41  over 10 000 replicates. 

 
3. RESULTS AND DISCUSSION 

3.1. Significance of Dispersion Energy. As previously 
mentioned,  difficulties  in  accurately  calculating  the  energetic 
properties of ionic liquids arise primarily due to the relative 
significance  of  dispersion  interactions  (accounted  for  mainly 
through electron correlation) compared with the electrostatic 
component (included mainly in the Hartree−Fock energy). In 
the set of ILs ion pairs examined in this study, correlation 
energy at the CCSD(T)/CBS limit corresponds to a 
contribution on average of approximately 7−20% to the overall 
interaction energy, or about 27−70 kJ mol−1, which is in 
accordance with an earlier study in our group.3 Additionally, we 
have shown contributions upward of 20% in large clusters12 and 
has been shown to exceed as much as 60% in a molecular 
dynamics study by Shimizu et al.42 The accuracy of the 
dispersion component is, therefore, critical  to  understanding 
the overall energetic behavior of ionic liquids owing to both its 
magnitude and variability between structurally distinct systems. 

3.2. MP2 Complete Basis Set Extrapolation and the 
Choice of Basis Sets. The behavior of the MP2/CBS 
extrapolation  with  respect  to  the  choice  of  basis  set  was 
analyzed in terms of the effects of basis set augmentation (i.e., 
addition of diffuse functions) and in terms of the two points 
selected for the extrapolation (namely, the choice of double-ζ 
→ triple-ζ (D → T) versus a triple-ζ → quadruple-ζ (T → Q) 
extrapolation). In the case of the former, augmentation refers to 
Dunning’s  basis  sets  with  the  “aug” prefix;  specifically,  aug-cc- 
pVDZ, aug-cc-pVTZ and aug-cc-pVQZ. 

First, an analysis of the role of basis set augmentation has 
shown that for T → Q extrapolation, basis set augmentation 
does not have a significant impact on the extrapolated energies 
with an mean absolute difference of only 0.66 kJ mol−1 and a 
maximum absolute difference of only 1.05 kJ mol−1  between 
the extrapolation performed with and without augmented basis 
functions. Interestingly, while the BSSE is reduced when using 
augmented  basis  sets  in  general,  only  ILs  containing  the 
bromide anion show a marked increase in BSSE by 135% on 
average, which is contrary to expectations owing to the 
increased “completeness” of the augmented basis sets. For all 
other ion pairs, BSSE was reduced by an average of 34%. With 
this in mind, the use of nonaugmented basis sets are 
recommended   for   T   →  Q   extrapolation   because   (a)   the 
energies after CP correction differ negligibly (−0.66 ± 0.35 kJ 

maximum absolute error of 0.43 kJ mol−1 and 1.49 kJ mol−1 

were  found  for  the  augmented  D  → T,  respectively.  When 
augmentation is removed, errors increase with a mean and 
maximum absolute error of 1.26 kJ mol−1 and 3.02 kJ mol−1, 
respectively. These results indicate that an augmented D → T 
extrapolation  is  sufficient  in  reaching  the  CBS  limit,  and 
without  augmentation,  results  are  still  “chemically  accurate” 
after CCSD(T) corrections (shown in eq 6) are included. For 
the purposes of this study, however, D → T extrapolations are 
not suitable for the basis of CCSD(T)/CBS benchmark 
energies as the unsigned CCSD(T) correction on top  of 
MP2 is approximately 2.15 ± 1.92 kJ mol−1 (7.75 kJ mol−1 

maximum), which is on the order of the MP2/CBS 
extrapolation errors themselves. 

3.3. Recovery of MP2 Correlation Energies. The ability 
for CP corrected MP2 to recover electron correlation energy as 
a function of basis set has been assessed for the ionic liquids 
test set used in this study, with CCSD(T)/CBS energies used 
as the benchmark. Figure 4 shows that, at the CBS limit, MP2 

 

 
 

Figure 4. Average CP corrected MP2 correlation energy recovery with 
respect to CCSD(T)/CBS; error bars shown as one  standard 
deviation. 

 
 

overestimates correlation by 2% on average, representing a 
marginal increase from the aug-cc-pVQZ basis set, which 
recovered on average 100% of the correlation energy. In the 
extreme case, ILs that included the [DCA]− anion consistently 
showed disproportionate recovery of correlation energy; 
[C3mim][DCA] was overestimated by as much  as  13%,  and 
still by 8% with the aug-cc-pVTZ basis set where the average 
recovery overall was 96%. 

It has been shown that MP2, at its CBS limit, tends to 
overestimate  the  correlation  energy,  consistent  with  previous 
literature involving dispersion-driven interactions.16,43,44 Diffi- 
culties arise due the unsystematic treatment of different ion-pair 
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interactions; notably, those involving the [DCA]−  anion.  To 
this end, CCSD(T) benchmark energies are essential when 
providing a reference energy to which the spin components can 
be fitted. 

3.4. Importance   of   Counterpoise   Correction.  A 
complicating factor in the accurate determination of dispersion 
energy is the basis set superposition error (BSSE), which is an 
artifact of a truncated basis set that manifests as an 
overstabilization  and  converges  to  zero  as  the  basis  set  is 
increased. Minimisation of BSSE effects is typically achieved in 
two ways: (1) a sufficiently large basis set (generally triple-ζ 
quality or greater) is used, and (2) counterpoise correction is 
performed.23 The counterpoise approach to BSSE correction 
calculates the monomers in the basis set of the complex, which 
is believed to cancel out the BSSE energy. The magnitude of 
BSSE  is  therefore  the  difference  between  the  corrected  and 
uncorrected  interaction  energies.  Figure  5  shows  the  BSSE 

 

 
 

Figure 5. Histogram of BSSE for MP2/aug-cc-pVTZ interaction 
energies. 

 

 
 

distribution for the IL test set using the  MP2/aug-cc-pVTZ 
level of theory, routinely used in studies of energetic properties 
of ILs.45−49  With this level of theory, 63% of the test set show 

 

BSSE greater than 10 kJ mol−1 and would consequently be of 
little value should counterpoise correction not be performed. 

It should be noted that with the exception of the above, this 
paper does not address BSSE exclusively; errors discussed 
herein are  considered with respect to the CCSD(T)/CBS 
benchmark and therefore as an aggregate quantity composed of 
both  insufficient  correlation  recovery  (see  section  3.3)  and 
BSSE. 

The effect of CP correction on reproducing CCSD(T)/CBS 
energies was investigated, with Figure 6 indicating that in order 
to maintain chemical accuracy, CP correction remains 
important even with the aug-cc-pVQZ basis set. The unscaled 
MP2 errors are notably unsystematic when compared to the CP 
corrected MP2 errors, suggesting that there is an unpredictable 
interplay between errors arising from basis set incompleteness 
(i.e., basis set superposition error), and the inherent limitation 
of  MP2  to  accurately  capture  correlation  energy;  the  two 
opposing effects may fortuitously cancel in some instances. The 
result yields somewhat surprising errors where, for example, the 
non-CP corrected cc-pVDZ basis set gives errors of 1.01 ± 4.52 
kJ mol−1 whereas the much more complete aug-cc-pVQZ basis 
set gives errors of 5.94 ± 4.36 kJ mol−1. These errors become 
systematic and follow expected trends after CP correction with 
errors of −17.00 ± 4.47 kJ mol−1 and 0.19 ± 2.50 kJ mol−1 for 
cc-pVDZ and aug-cc-pVQZ, respectively. 

Interestingly, CP correction of SCS-MP2 and SOS-MP2 
appears to have a detrimental effect. In considering three 
sufficiently  large  basis  sets  (def2-TZVPP,  aug-cc-pVTZ,  and 
aug-cc-pVQZ), Figure 7 shows that, regardless of the basis set 
chosen, CP correction has a negative impact on accuracy of 
SCS-MP2   with   mean   absolute   errors   (MAEs)   increasing 
significantly   from   the   CP   corrected   standard   MP2,   even 
beyond that of the non-CP corrected standard MP2 energies. 
It can be seen that the MAEs of SCS-MP2 non-CP corrected 
energies for the def2-TZVPP (4.07 kJ mol−1) and aug-cc-pVTZ 
(2.52 kJ mol−1) basis sets are qualitatively indistinguishable 
from their CP corrected standard MP2 counterparts at 4.66 kJ 
mol−1  and 2.45 kJ mol−1, respectively. The SCS-MP2 non-CP 

 

 
 

Figure 6. Comparison of errors between standard (i.e., no CP correction) (left) and counterpoise corrected (right) MP2 energies. 
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CCSD(T)/CBS 

 

 
 

Figure 7. Comparison of errors between SCS-MP2 and standard MP2 
with and without CP correction. 

 
 

corrected  energies  using  the  aug-cc-pVQZ  basis  set  do  not 
perform as well as the triple-ζ basis sets with only a marginal 
improvement yielding a MAE of 4.50 kJ mol−1, compared to 
the non-CP corrected standard MP2 error of 5.97 kJ mol−1.  A 
detailed analysis of the performance  of SCS- and SOS-MP2 
both  with  and  without  CP  correction  is  shown  in  Figure  8, 
where  it  can  be  seen  that  when  CP  corrected,  errors  tend 
toward  an  approximate  10  kJ  mol−1   underestimation  when 
compared  with  the  CCSD(T)  benchmark. 

These results show that, when using conventional MP2, CP 
correction is essential in order to achieve energies that closely 
reproduce CCSD(T)/CBS. While smaller basis sets may 
fortuitously cancel out inadequacies of MP2 with basis set 
incompleteness, it would not be possible to rely on these 
assumptions for other systems. Conversely, CP correction does 
not improve the errors for SCS- and SOS-MP2 methods, and it 
is best to use these uncorrected, preferably with a triple-ζ basis 
set. The convenient observation that SCS-MP2 performs best 
with a triple-ζ basis set (and not higher) indicates a significant 
basis  set  dependence  where  there  currently  exists  no  well- 
established convention or recommendation. The remainder of 
this paper is concerned with the refitting of the scaling 
coefficients,  with  particular  focus  on  the  ideal  basis  set 
combination. 

3.5. Fitted Spin-Component Scaled and Spin-Oppo- 
site Scaled MP2. In this study, we present updated scaling 
factors for the same- and opposite-spin components for semi- 
Coulombic systems that take into account basis set  effects, 
fitted to 174 ionic liquids calculated at the  CCSD(T)/CBS 
level  of  theory.  Coefficients  for  17  popular  basis  sets  were 
determined   using   both   a   standard   multiple   least-squares 
regression described by eq 9, 

corr 

 
approaching zero. As the primary motivation is for computa- 
tionally efficient, yet accurate, large-scale energy calculations of 
condensed semi-Coulombic systems, it follows that fitting to 
counterpoise corrected spin components is not advantageous in 
this regard. 

Table 1 shows the coefficients determined for the SCS- and 
SOS-MP2 methods, respectively. In addition to coefficients 
determined  for  all  basis  sets,  two  sets  of  coefficients  are 
calculated for the CBS limit; “CBS(aug)” refers to the aug-cc- 
pVTZ → aug-cc-pVQZ extrapolation, while “CBS” refers to the 
cc-pVTZ → cc-pVQZ extrapolation. The CBS limit will be 
referred to explicitly as one or the other in this section. 

The scaling factors presented here show instances where the 
α coefficient is negative, and this has been argued a nonphysical 
quantity15,17  as by definition both spin components themselves 
must be negative. Work by Hill and Platts,17 as well as Distasio 
and Head-Gordon,15 show that negative coefficients can arise 
from their respective means of data fitting. Distasio and Head- 
Gordon argue that this can be an artifact of both a biased 
training set and basis set deficiencies; their study shows that 
when fitting to a large basis set (>double-ζ quality), invalid 
coefficients are not present. Our data shows negative scaling 
factors even for basis sets such as aug-cc-pVQZ and CBS(aug), 
which are not only extensive, but at the limits of practical usage. 
This suggests that there exists no universal set of coefficients 
that statistically best scale MP2 while eliminating nonphysical 
quantities and also highlights the importance of considering 
MP2 in conjunction with its basis set. 

It should be noted that an alternative position regarding the 
regression  coefficients  might  be  taken  whereby  the  physical 
rationality is disregarded in  preference to a purely statistical 
interpretation. In this case, it can be argued that by virtue of the 
multiple  linear  regression  procedure,  regardless  of  sign,  the 
coefficients are statistically more likely to produce an improved 
energy. This has the advantage of exposing the reader  to  a 
wider range of valid coefficients and consequently basis sets of 
lower computational complexity. The authors are of the view 
that  physically  sensible  coefficients  are  preferable,  but  we 
present all data here to stimulate further discussion on  this 
topic. 

With the success of SCS-MP2, it seems invariably the case 
that  applying  some  set  of  coefficients  improves  the  MP2 
energies by some degree. However, with the rise of alternative 
schemes such as SCSN-MP2 and SCS(MI)-MP2, a one-size- 
fits-all   solution   is   evidently   insufficient.   Therefore,   the 
consideration of which  chemical  systems  are  similar  enough 
to warrant their own coefficients is important; those that do not 
fit the model will naturally form outliers in the linear regression 
and  may  ultimately  decrease  the  quality  of  the  fit  for  the 
remaining data set. Further, our data shows that the choice of 

ΔECCSD(T)/CBS ≈ α(ΔEOS) + β(ΔESS) (9) basis  set  may  significantly  affect  the  behavior  of  the  spin 
where ΔEcorr                 is the CCSD(T)/CBS correlation energy 
and ΔEOS and ΔESS represent the opposite- and same-spin 
contributions to the MP2 interaction correlation energy, 
respectively. All multiple linear regression calculations were 
performed using the R statistical package.50

 

The CCSD(T)/CBS correlation energies have been fitted to 
spin components that have not been  counterpoise  corrected. 
The rationale for this is 2-fold: first, as previously mentioned, 
there  has  already  been  observed  an  error  cancellation  effect 
with SCS-MP2 and the triple-ζ basis sets that we wish to exploit 
further. Second, we present scaling factors for very extensive 
basis  sets   including  at  the   CBS   limit  that   have   BSSE 

components and may do so even with only marginal effects on 
the overall interaction energy. We discuss one such instance of 
this; however, detailed diagnostic plots of all regressions 
performed are available in the Supporting Information. 

Figure 9 shows a Q−Q plot (quantile−quantile plot) that 
assumes a normal residual error distribution; data lying on the 
diagonal indicates that this assumption holds. It can be seen 
that while the cc-pVTZ regression behaves predictably  with 
very few outlying data points, the introduction of augmented 
basis functions causes quite a distinct deviation among the 
bromide  series.  Chemically  speaking,  this  is  unsurprising  as 
bromide  is  a  large  anion  and  the  introduction  of  diffuse 
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Figure 8. Errors of CP corrected (a) and uncorrected (b) standard spin-component scaled MP2 energies. 
 
 

functions is likely to allow interactions that would otherwise be 
insignificant in the remaining systems, thereby causing the error 
distribution to deviate from normality. While the specific error 

In order to objectively identify the ideal combination of basis 
set and scaling factors, we make use of the bootstrapping 
technique  combined  with  a  bias  corrected  and  accelerated 

41 
distributions between the various basis sets differ, as the size of approach for estimating the errors associated with the scaling 

 
the  basis  set  increases,  it  generally  observed  that  the  error 
distributions   become   increasingly   specific   to   the   anion 
combinations.  In  other  words,  one  could  take  steps  to  scale 
the spin components of each subset of IL; however, this would 
bring the utility of such coefficients into question. 

factors.  Briefly,  bootstrapping  is  a  resampling  technique  for 
estimating  the  errors  associated  with  a  sample  population. 
Bootstrapping involves repeated, random resampling allowing 
replacement. The parametersin this case, α and β 
coefficientsare  estimated  for  each  random  sample  popula- 
tion, and overall errors are derived. Bootstrapping is advanta- 
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SCS-MP2 
 

mean error  std. dev. 
basis set α 95% CI β 95% CI (kJ mol−1) (kJ mol−1) 

SOS-MP2 

 
α 

 
95% CI 

mean error 
(kJ mol−1) 

Std. Dev. 
(kJ mol−1) 

 

Table 1. Fitted SCS-MP2 and SOS-MP2 Coefficients 
 
 

 
 

KSV(P) 

 
 

0.35 

 
 

[−0.05, 0.75] 

 
 

1.88 

 
 

[1.34, 2.41] 

 
 

−0.48 

 
 

4.40 

 
 

1.76 

 
 

[1.73, 1.78] 

 
 

−0.47 

 
 

5.01 
KSVP 0.83 [0.55, 1.08] 1.10 [0.76, 1.46] −0.22 3.72 1.67 [1.64, 1.69] −0.22 4.08 
KTZVP 0.61 [0.37, 0.86] 1.30 [1.04, 1.57] −0.32 1.97 1.76 [1.74, 1.78] −0.47 2.48 
KTZVPP 0.98 [0.76, 1.21] 0.77 [0.51, 1.02] −0.15 1.71 1.64 [1.63, 1.66] −0.19 1.90 
CCD 0.69 [0.41, 0.96] 1.32 [0.99, 1.66] −0.34 4.38 1.73 [1.70, 1.76] −0.37 4.85 
JCCD 0.43 [0.14, 0.74] 1.63 [1.27, 1.97] −0.58 3.14 1.76 [1.73, 1.78] −0.88 3.94 
ACCD −0.29 [−0.47, −0.07] 2.23 [1.96, 2.47] −0.32 2.45 1.40 [1.38, 1.42] −0.72 3.98 
CCT 1.05 [0.87, 1.24] 0.68 [0.47, 0.89] −0.03 1.55 1.64 [1.63, 1.65] −0.05 1.71 
MCCT 0.65 [0.42, 0.91] 1.23 [0.94, 1.48] −0.32 2.26 1.72 [1.70, 1.74] −0.46 2.63 
JCCT 0.17 [0.00, 0.39] 1.74 [1.50, 1.93] −0.33 1.98 1.65 [1.63, 1.67] −0.67 2.98 
ACCT 0.07 [−0.17, 0.28] 1.77 [1.51, 2.06] −0.32 2.60 1.45 [1.43, 1.47] −0.42 3.41 
CCQ 0.76 [0.59, 0.94] 1.04 [0.85, 1.23] −0.15 1.37 1.70 [1.69, 1.71] −0.23 1.72 
ACCQ −0.54 [−0.83, −0.24] 2.51 [2.18, 2.84] −0.31 2.68 1.60 [1.57, 1.62] −0.61 3.96 
CC(D+d) 0.71 [0.44, 0.96] 1.31 [1.00, 1.63] −0.29 4.16 1.74 [1.72, 1.77] −0.32 4.66 
ACC(D+d) −0.25 [−0.43, −0.03] 2.19 [1.90, 2.41] −0.31 2.36 1.41 [1.39, 1.43] −0.71 3.90 
CC(T+d) 1.02 [0.84, 1.19] 0.72 [0.53, 0.93] −0.03 1.51 1.64 [1.63, 1.65] −0.06 1.70 
ACC(T+d) 0.07 [−0.16, 0.28] 1.78 [1.51, 2.05] −0.32 2.60 1.45 [1.43, 1.47] −0.43 3.42 
CBS(aug) −1.00 [−1.23, −0.76] 2.99 [2.73, 3.23] −0.24 2.52 1.72 [1.68, 1.75] −0.88 4.87 
CBS 0.00 [−0.15, 0.15] 1.88 [1.72, 2.04] −0.21 1.78 1.74 [1.72, 1.75] −0.48 2.70 

 

 
 

Figure 9. Q−Q plots of SCS-IL-MP2 multiple linear regression for cc-pVTZ (left) and aug-cc-pVTZ (right) basis sets. 
 

geous because it makes no assumptions of the underlying error 
distribution. In this instance, the coefficients were found over 
10 000 replicates with the 95th percentile confidence interval 
(CI) presented herein. 

Figures 10 and 11 show the range of the 95% CIs shown in 
Table 1 for the SCS- and SOS-IL-MP2 scaling factors. The 
more narrow the interval, the more certainty there is for the 
coefficients  to  be  generally  applicable.  Specifically,  if  the 
training data set for any particular basis set contains 
disproportionately influential points, random variation of their 
quantity in the bootstrapping iterations will broaden the 
confidence interval. Conversely, should no influential data 
points be present, the coefficients will be invariant with respect 
to the randomly resampled data. 

 
As indicated by the range of the confidence intervals, SCS- 

and  SOS-MP2  coefficients  are  best  fitted  to  MP2  energies 
calculated  with  cc-pVTZ,  cc-pV(T+d)Z,  and  cc-pVQZ  basis 
sets, as well as at the CBS limit when extrapolated without 
augmentation. For SCS-MP2 (SOS-MP2), the overall errors 
produced for each of these basis sets are qualitatively 
indistinguishable at −0.03 ± 1.55 kJ mol−1  (−0.05 ± 1.71 kJ 
mol−1), −0.03 ± 1.51 kJ mol−1 (−0.06 ± 1.70 kJ mol−1), −0.15 
± 1.37 kJ mol−1 (−0.23 ± 1.72 kJ mol−1), and −0.21 ± 1.78 kJ 
mol−1  (−0.48 ± 2.70 kJ mol−1), respectively. The cc-pV(T 
+d)Z basis set differs from cc-pVTZ only in the addition of 
tight d-functions on Al−Ar atoms37 and is shown here to 
provide essentially no change to the fitting errors for both SCS- 
and SOS-MP2. The use of cc-pV(T+d)Z is difficult to justify 
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Figure 10. 95% confidence interval range for the opposite- (α) and 
same-spin (β) component coefficients in the SCS-IL-MP2 scheme. 

 

 
 

Figure 11. 95% confidence interval range for the opposite-spin (α) 
component coefficient in the SOS-IL-MP2 scheme. 

 

 
Figure 12. IL benchmark errors at the MP2/cc-pVTZ level of theory. 

 
the appropriate scaling factors (SCS-IL-MP2: α = 1.05, β 
= 0.68; SOS-IL-MP2: α = 1.64, β = 0.00) should be used. 

(3) SOS-IL-MP2  should  be used  in  instances where the 
calculation is  accelerated  by omitting the  same-spin 
component.14

 

 
4. FUTURE WORK 
We have presented scaling factors for MP2 that are based not 
only on a wide variety of IL anion/cation combinations but also 
a wide variety of energetically favorable conformations. 
Considering the simple example of a two ion pair cluster of 
[C1mim]Cl  as  shown  in  Figure  13,  the  two  chlorides  are 

 

given the small change in comparison to cc-pVTZ, which 
provides remarkable accuracy after scaling and is well within the 
practical limitations of current computer hardware. 

The performance of scaled  MP2/cc-pVTZ  energies  are 
shown in Figure 12, termed “SCS-IL-MP2” and “SOS-IL-MP2”, 
in comparison to standard MP2 (with and without CP 
correction), standard SCS- and SOS-MP2, as well as the 
SCSN and SCS(MI) variants. While the range of errors are 
comparable, it is important to note that the error distribution 
produced by SCS-IL-MP2 and SOS-IL-MP2 are much more 
evenly distributed both about the median value and about zero. 
Further, it is worth noting that the errors for both SCS-IL-MP2 
and SOS-IL-MP2 differ by subkilojoule amounts and therefore 
its  use  would  be  advantageous  where  software  permits  the 
omission of same-spin contributions and hence accelerated 
calculation. 

We provide the following guidelines for calculating MP2 
energies of semi-Coulombic IL systems using the newly fitted 
coefficients: 

 (1) Basis sets with augmentation should be avoided; they 
typically result in negative coefficients (or confidence 
intervals that extend into negative values) and the errors 
tend to be nonuniform. 

(2) For energy calculations where high accuracy is desired 
(<1.0 kJ mol−1  on average), MP2/cc-pVTZ along with 

 

 
 

Figure 13. Example of a cluster of two [C1mim]Cl ion pairs. 
 
 

interacting  both  in  the  plane  of  the  imidazolium  ring  and 
above/below the ring. These two distinct modes of interaction 
are included in the fitting data set used in this study, as are 
many others. Furthermore, both dispersion and BSSE originate 
from  interactions  that  do  not  extend  significantly  beyond 
neighboring  ions;  indeed,  dispersion  interactions  are  already 
accounted  for  sufficiently  as  a  sum  of  pairwise  (two-body) 
interactions  at  the  MP2  level  of  theory.12    It  is  therefore 
hypothesized that by including a variety of conformations of ion 
pairs,  the  coefficients  will  be  better  suited  to  large  scale 
calculations in which a variety of interaction modes may exist 
and  traditional  CP  correction  is  infeasible.  In  particular,  we 
believe that methods such as the FMO approach that rely on 
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■ 

■ 

■ 

 
the explicit inclusion of pairwise interactions to describe 
energetics of large-scale  ionic systems  would  greatly benefit 
from increased accuracy of the MP2 method at lower 
computational  cost.  The  applicability  of  the  recommended 
SCS-IL and SOS-IL-MP2 coefficients previously discussed to 
large IL clusters will be addressed in a follow-up paper. 

Further, this paper has dealt exclusively with IL conforma- 
tions in the equilibrium geometry and the question of how this 
method performs for nonequilibrium structures remains 
unanswered. Thus, the validity of our scaling factors for ILs 
over a portion of their potential energy surfaces will be assessed 
in a follow-up paper reflecting a methodology similar to the 
analysis of the S66 × 8 data set by Řezać ̌ et al.51

 
 

5. CONCLUSIONS 
Spin-component scaled MP2 methods have historically shown 
to  be  advantageous  in  reproducing  CCSD(T)/CBS  energies, 
with   a   number   of   different   derivations   presented   in   the 
literature.  In  this  paper,  we  have  presented  scaling  factors 
fitted to a series of 174 semi-Coulombic ionic liquid systems in 
a variety of conformations for 17 popular basis sets, with MP2/ 
cc-pVTZ having been shown to produce the most reliable 
energies, deviating on average less than 1.0 kJ mol−1 from the 
CCSD(T)/CBS benchmark. A strong basis set dependence was 
observed with the best-fitting basis set identified as cc-pVTZ. 
Other basis sets introduced increased error and in some cases 
produced unrealistic negative coefficients. Coefficients of α = 
1.05, β = 0.68 and α = 1.64, β = 0 in combination with MP2/cc- 
pVTZ spin-components form our “SCS-IL-MP2” and “SOS-IL- 
MP2” methods, respectively. Our new coefficients have been 
fitted to CP corrected CCSD(T)/CBS benchmark energies and 
consequently result in minimal basis set superposition errors. 
Additionally, the SOS-IL-MP2 method has errors almost 
identical to the SCS-IL-MP2 and therefore can be used in 
preference to the SCS-IL-MP2 method owing to the improved 
efficiency achieved by neglecting the same-spin component as 
in  the  original  SOS-MP2  implementation.  These  coefficients 
will be applied to investigate energetics of larger clusters of 
ionic materials in  view of circumventing the need for time- 
consuming CP correction. This new SCS-IL-MP2 method can 
be considered as an improved second order of Møller−Plesset 
perturbation theory for reliable studies of energetics of any 
noncovalently  bound  complex  dominated  by  the  interplay  of 
electrostatics, induction, and dispersion forces. 
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SCS-IL-MP2 produces accurate interaction energies for ionic 
liquid clusters 
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Abstract: Accurate energetics of intermolecular interactions are 
difficult to predict using quantum chemical methods due to their 
great computational expense. Here the application of our recently 
developed SCS-IL-MP2 method is reported for ionic liquid (IL) 
clusters of two and four ion pairs. Interaction energies were on 
average within 1.5 kJ mol-1 per ion pair of the CCSD(T)/CBS 
benchmark for clusters of both two and four ion pairs. This is a 
marked improvement by a factor of four to conventional MP2/CBS, 

 
involves scaling the opposite- and same-spin components by 
1.05 and 0.68, respectively, for MP2 energies calculated with the 
relatively small Dunning’s correlation-consistent triple-ζ quality 
basis set, cc-pVTZ. As SCS-IL-MP2 can be coupled with 
efficient algorithms for integral evaluation (e.g. the Resolution-of- 
Identity approximation[12]) and does not require CP correction, 
exceptional accuracy can be achieved at just a fraction of the 
computational cost that would be required for CP corrected MP2 
calculations, let alone the benchmark method, CCSD(T) that 7 

which was on average between 5 and 8 kJ mol-1 per ion pair in these scales as N with respect to molecular size. 
clusters. SCS-IL-MP2 substantially improves interaction energies for 
semi-Coulomb systems such as ILs, where electrostatic, dispersion 
and induction forces play are equally important, with CCSD(T) 
quality at a greatly reduced expense. SCS-IL-MP2 may be suitable 
for ab initio molecular dynamics or static quantum chemical 
calculations, for which large-scale ensembles of ionic species are of 
interest. 

 
 

Ionic liquids (ILs) are becoming increasingly relevant in a diverse 
set of applications, including as electrolytes in energy storage 
devices,[1] synthetic catalysis,[2] mechanical lubricants[3] and 
pharmaceutically active ingredients,[4] to name just a few. 
Liquids qualifying as ILs (e.g. with melting points below 100°C) 
are said to number in the trillions, given common anion and 
cation combinations that give rise to low melting points, and 
possible mixtures thereof.[5] This incredibly large number of 
potential IL formulations means that the existence of suitable 
candidates for any given application would not be an 
unreasonable assumption, however identification of such a 
candidate is a formidable task. As yet, accurate and widely 
applicable models short of wavefunction-based quantum 
chemical methods are lacking.[6] Consequently, efforts to reduce 
the notorious computational cost associated with quantum 
chemical approaches are advantageous for the development of 
a priori design methodologies for ILs.[7]

 

Previously, we have reported an extension[8] to the widely 
used spin-component scaled MP2, SCS-MP2,[9] and scaling 
opposite-spin  MP2,  SOS-MP2,[10]    approaches  in  electronic 
structure theory where the spin components of second-order 
Møller-Plesset perturbation theory are scaled to reproduce 
higher levels of theory that are considered benchmark (e.g. 
coupled-cluster with single, double and perturbative triple 
excitations, CCSD(T)), shown in eq 1. 

In this study, we show that in addition to achieving high 
accuracy for clusters consisting of ion pairs of routinely used 
ionic liquids, the SCS-IL-MP2 method supersedes conventional 
CP corrected MP2 for ionic liquid clusters of two and four ion 
pairs. We assert that SCS-IL-MP2 is consequently an ideal 
method by which the Fragment Molecular Orbital approach[13] 

(FMO) may be applied to determine accurate electronic energies 
with near-linear scalability that would otherwise be hampered by 
CP correction and be almost certainly inaccessible with current 
coupled cluster methods. This approach is expected to produce 
favourable results owing to the fact that the dispersion energy is 
primarily accounted for as a two-body effect.[7] The newly 
proposed SCS-IL-MP2 method[8] was originally constructed for 
single ion pairs that included all possible energetically 
favourable configurations between the imidazolium or 
pyrrolidinium cations and a number of routinely used anions. 
Since BSSE is expected to be a somewhat localised source of 
error,[8] the SCS-IL-MP2 method seems suited to account for its 
effect through the scaled opposite- and same-spin components. 

Two  and  four  ion  pair  IL  clusters  consisting  of  1,3- 
dimethylimidazolium (C1mim), N-methyl-N-ethylpyrrolidinium 
(C2mpyr) and N-ethylpyridinium (C2py) cations, and 
tetrafluoroborate (BF4), dicyanamide (N(CN)2), bromide (Br) and 
chloride (Cl) anions (see Figure 1) were constructed in an 
recursive way. Energetically favourable ion pair configurations 
were assembled into ion pair dimers and these dimer units were 
duplicated and then assembled as ion pair tetramers. At each 
iteration the ion cluster was optimised. Two- and four-ion pair 
structures were optimised with the two-body FMO approach at 
the MP2/cc-pVDZ level of theory using the GAMESS software 
package.[14]

 

corr ≈ 𝛼𝛼Δ𝐸𝐸 + 𝛽𝛽(Δ𝐸𝐸 ) (1) 
𝐸𝐸CCSD(T)/CBS OS SS 

This new method, termed SCS-IL-MP2, was parameterised via 
multiple linear regression techniques to identify the ideal basis 
set and spin component coefficients for an extensive set of 174 
IL  ion  pairs,  which  reproduced  CCSD(T)  energies  within 
1.0 kJ mol-1 on average and largely eliminated the need for basis 
set superposition error (BSSE) correction as commonly 
performed via the counterpoise (CP) method.[11]   SCS-IL-MP2 
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Figure 1. Polyatomic ions used in this study. 
 

It has to be noted that the specific geometries used in this study 
are not of particular importance as fully optimized minima (and 
not necessarily global minima) on the potential energy surface 
are already sufficient to generate a robust set of benchmark 
energies to assess the performance of SCS-IL-MP2. In doing so, 

mailto:katya.izgorodina@monash.edu


 

SCS-IL 1.5 0.9 1.5 0.9 
SOS-IL 1.7 0.9 1.9 0.8 
SCS/CCT 7.2 1.8 7.0 2.5 
SCS/CCT(CP) 21.2 1.5 23.7 2.2 
SCS/CCQ 7.5 1.6 7.2 2.2 
MP2/CCT(CP) 6.3 3.5 5.6 3.0 
MP2/CCQ(CP) 2.9 2.3 3.5 2.7 
MP2/CBS(CP) 5.4 3.3 8.2 3.8 
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the versatility and robustness of SCS-IL-MP2 may be verified in 
a more diverse set of situations, such as those that may be 
found in condensed phase molecular dynamics simulations, for 
example. 

Benchmark CCSD(T)/CBS-quality correlation interaction 
energies were computed by adding the CP corrected interaction 
energy difference between MP2/aug-cc-pVDZ and 
CCSD(T)/aug-cc-pVDZ to two-point extrapolated MP2/CBS 
energies calculated using cc-pVTZ (abbreviated as CCT) and 
cc-pVQZ (abbreviated as CCQ) basis sets, as shown in eqs. 2 
and 3.[15] We have previously shown that the use of augmented 
basis functions (denoted by the “aug-” prefix) is unnecessary for 
CBS extrapolation.[8]

 

interactions between these non-polar regions of the ions interact. 
In clusters (a) and (c), π-π stacking interactions between cations 
is present, further contributing to the non-negligible dispersion 
contribution found typically in ionic liquids.[7, 21] All clusters show 
multiple  ion  binding  sites;  the  imidazolium  clusters  exhibit 
interactions  inline  with,  and  either  side  of  the  plane  of  the 
imidazolium ring; pyrrolidinium clusters have several exposed 
faces about the nitrogen atom, in which the anion may interact; 
and the pyridinium clusters have interaction sites on either face 
of the ring and in the plane near the nitrogen atom. The SCS-IL- 
MP2 method was fitted in view of accounting for the variety of 
interaction modes with multiple ion pair configurations used in 
the fitting procedure, so it is expected to perform consistently in ! ! corr = ! ∆!MP2/X!! ∆!MP2/Y clusters, in which multiple interaction sites are unavoidable. It 

∆𝐸𝐸MP2/CBS !!!!!

 (2

) 

has to be emphasised that the N-ethyl-pyridinium cation was not 
included in the original study for scaling the opposite- and same- 

corr = ∆𝐸𝐸corr +   ∆𝐸𝐸corr − ∆𝐸𝐸corr 

∆𝐸𝐸CCSD(T)/CB

S 

MP2/CBS CCSD(T)/ACCD MP2/ACCD (3) spin  components  in  the  SCS-IL-MP2  method.  Therefore, 

The MP2/CBS extrapolation scheme shown in eq 1 follows 
the standard Helgaker approach,[16] in which MP2/X and MP2/Y 
represent MP2 correlation energies at two correlation-consistent 
basis sets, cc-pVTZ and cc-pVQZ, and X and Y are 
corresponding cardinal numbers (X = 3 and Y = 4). All energies 
were calculated with density-fitting, and CCSD(T) calculations 
were calculated either using the frozen natural orbital 
approximation[17] or where unfeasible, the domain based local 
pair natural orbital coupled cluster approximation (DLPNO- 
CCSD(T)).[18] All single-point energies were performed with the 
Psi4 software package[19] except for the DLPNO-CCSD(T) 
energies, which were calculated using ORCA.[20]

 

 
a) 

clusters with the C2py cation represent the ultimate test for the 
performance of SCS-IL-MP2 for ionic liquid clusters. 

The overall performance of SCS-IL-MP2 (abbreviated as 
SCS-IL) can be seen in Table 1 producing lowest mean absolute 
errors (MAE) compared to the other methods. The standard 
deviation of just 0.9 kJ mol-1 indicates a narrow error distribution 
regardless of ionic cluster size and chemical nature of 
constituent cations and anions. 

 
Two ion pairs Four ion pairs MAE

 Std. Dev. MAE Std. Dev. 

 
 
 
 
 
 
 
 

Table 1. Mean absolute error (MAE) and the standard deviation for correlation 
-1 

b) interaction energies of the two- and four-ion pair given in kJ mol per ion pair. 
The  non-counterpoised  corrected  SCS-MP2  method  (abbreviated  here  as 
SCS) is included here for comparison. CP indicates that the energy was 
counterpoise-corrected using the Boys and Benardi method. 

 
 
 
 
 
 
 
 

c) 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Four-ion pair cluster examples; a) [C1mim]Br, b) [C2mpyr]Br and c) 
[C2py]Br. 

 
 

Figure 2 shows examples of the IL clusters used. The 
bromide anion is shown here, as it is generally representative of 

the positions of all other anion types in this series. A number of 
interaction modes are observed in these clusters; in clusters (b) and  
(c),  alkyl  chains  are  positioned  such  that  dispersion 



 

 Mean 
error 

Max 
error 

Mean 
error 

Max 
error 

SCS-IL 2.3 (1.7) 6.4 1.9 (1.2) 3.6 
SOS-IL 2.6 (1.6) 5.4 2.4 (1.1) 4.3 
SCS/CCT 10.6 (2.4) 14.4 8.5 (2.1) 12.2 
SCS/CCT(CP) 32.0 (5.7) 45.1 29.8 (4.6) 38.8 
SCS/CCQ 11.3 (3.0) 19.6 9.0 (2.5) 12.3 
MP2/CCT(CP) 10.2 (6.8) 26.4 7.6 (5.0) 18.5 
MP2/CCQ(CP) 4.2 (3.6) 14.6 4.1 (2.7) 9.7 
MP2/CBS(CP) 7.5 (3.5) 14.7 9.6 (3.5) 15.0 

 

 
When relative errors are expressed in terms of the 

percentage of the total correlation interaction energy as in 
Table 2, SCS-IL-MP2 gives the lowest average and 
maximum errors among all methods studied in both two and 
four ion pair systems. SCS-IL-MP2 produces errors as low 
as 2.3% for the two ion pair systems, and 1.9% for the four 
ion pair systems. This indicates that the error relative to 
the interaction energy of the cluster is largely invariant 
with cluster size. Indeed, a decrease in percentage error 
is observed due to the increased interaction energy 
resulting from the many-body effects present in IL 
clusters.[7]

 

 
Two ion pairs Four ion pairs 



 

Er
ro

r 
p

e
r 

io
n

 p
ai

r 
(k

J 
m

o
l-1

) 
Er

ro
r 

p
er

 io
n

 p
ai

r 
(k

J 
m

o
l-1

) 

Section 4.4. SCS-IL-MP2 produces accurate interaction energies for ionic liquid 
COMMcUluNstIeCrsATION 68 
Table 2. Mean, standard deviation in parentheses, and maximum error as a 
percentage of the total correlation interaction correlation energy for the two- 
and four-ion pair clusters. The non-counterpoised corrected SCS-MP2 method 
(abbreviated here as SCS) is included here for comparison. CP indicates that 
the energy was counterpoise-corrected using the Boys and Benardi method. 

pVQZ may reproduce CCSD(T) energies in the majority of cases, 
outliers such as ILs with the N(CN)2 anion cannot be corrected 
and a  priori knowledge  of presence “potentially  difficult” 
anions/cations is usually not possible; 2) SCS-IL-MP2 can 
provide comparable accuracy whilst minimising the likelihood of 
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outliers at only  a  fraction of the computational expense, as 
counterpoise correction is not required and the smaller cc-pVTZ 
basis set is required; 3) SCS-IL-MP2 was independently tested 
for a set of ionic liquids that were not included in the original 
dataset. 

A key property of SCS-IL-MP2 involves its avoidance of 
CP correction. Indeed, CP correction for the original SCS-MP2 
has been shown to have a detrimental effect on the quality of the 
interaction energies produced, whereas CP correction for 
standard MP2 energies are essential.[8] The precise origin of this 
effect is not well known, although it is hypothesised that there is 
a favourable balance between the basis set incompleteness 
errors and rate of correlation energy recovery that results in a 
uniquely well-fitting regression when MP2 spin components 
calculated using the cc-pVTZ basis set are fitted to a CP 
corrected set of CCSD(T)/CBS benchmark energies. It has been 
established that this is the most well-fitting basis set combination 
having performed rigorous statistical analysis of 17 popular 
basis sets in the original SCS-IL-MP2 paper.[8]

 

In a practical sense, the absence of CP correction means 
that the analysis of IL clusters becomes ever more 
computationally accessible; whereas a CP corrected interaction 
energy would require each monomer (ion) to be calculated in the 
basis set of the entire clusters, SCS-IL-MP2 requires only the 
actual cluster to be calculated with each ions being calculated in 
isolation. Therefore, not only is the overall computational 
complexity of the  calculation  reduced, but also  the  problem 
becomes  very  well  suited  to  highly  parallel  fragmentation 

Figure 3. Two-ion pair (a) and four-ion pair (b) cluster interaction energy error 
given per ion pair. The SCS-MP2 method (abbreviated here as SCS) is 
included here for comparison. CP indicates that the energy was counterpoise- 
corrected using the Boys and Benardi method. 

 
Figure 3 shows the errors for all the systems studied, given 

on a per ion pair basis. It can be seen that SCS-IL-MP2 
consistently outperforms the original SCS formulation for both 
the triple- and quadruple-ζ quality basis sets for the clusters 
studied. Of particular note are the results from the C2py series 
that was not part of the original SCS-IL-MP2 fitting set. Here, 
SCS-IL-MP2 gives errors that are sub-kJ mol-1 per ion pair for 
the two-ion pair set, and less than 2 kJ mol-1 per ion pair for the 
four ion pair set. These results show that the fitted SCS-IL-MP2 
coefficients are likely to be suitable to broad range of semi- 
Coulomb systems, in which electrostatic, dispersion and 
induction forces are non-negligible and play an equally important 
role. 

The vast majority of systems are described with increased 
accuracy and consistency by the SCS-IL-MP2 methods, with the 
performance being generally comparable to CP corrected MP2 
energies calculated at the cc-pVQZ basis set, and exceeding 
MP2/CBS extrapolated energies. Notable outliers for the 
standard MP2 methods in general are the dicyanamide-based 
ILs, which often have a substantially overestimated correlation 
energy contribution that increases with the size of the basis set 
as was previously shown for ion pairs with the N(CN)2 anion[8] 

For these systems, SCS-IL-MP2 is able to provide a consistently 
high level of accuracy that is superior to the standard MP2 
method as well as the original SCS formulation. To this end, 
three conclusions can be drawn: 1) while CP corrected MP2/cc- 

approaches, such as the FMO approach. Using standard MP2, 
the application of the FMO approach, FMO-MP2, can be made 
of near-linear scalability only for large-scale clusters of ionic 
liquids,[7] whereas scalability of energy calculations for individual 
ions in the basis set of the cluster are still hindered by scalability 
of the underlying MP2 method, i.e. N5 where N is the number of 
basis functions. Thus, the bottleneck of any interaction energy 
calculation of large-scale ionic clusters is the CP correction itself. 
It is obvious that SCS-IL-MP2 does not change how a 
combination of the FMO approach with standard MP2 is applied. 
The new method brings a significant short cut  through 
elimination of the time consuming CP step. 

The new SCS-IL-MP2 method for calculating the 
interaction energies of ionic liquid clusters represents a 
remarkably accurate and efficient route by which the bulk 
properties of ILs can be characterised. By leveraging an already 
well-established framework, SCS-MP2, it has been shown that 
by fine-tuning the scaling factors applied to the spin components 
of the MP2 correlation interaction energy with only the relatively 
small cc-pVTZ basis set, accuracy approaching CCSD(T)/CBS 
quality can be achieved for both ion pairs as well as large-scale 
clusters of ionic liquids. The latter represents a tremendous 
achievement as it allows for not only accurate calculations of 
energetics of novel ionic liquids through highly parallel 
techniques such as the FMO approach but also development of 
more accurate forces fields that are extremely needed for 
molecular dynamics simulations with predictive power.[22]
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Cluster interaction energies 

 
Table S1. CCSD(T)/CBS benchmark correlation energies. Superscript asterisk 
indicates that the 2-‐IP cluster was calculated using the DLPNO-‐CCSD(T) 
approximation. DLPNO-‐CCSD(T) was used for the 4-‐IP clusters. All energies CP 
corrected.   

2-‐IP 4-‐IP 
 

IL cluster total per ion pair cluster total per ion pair 

[C1mim][BF4] 

[C1mim]Br 

[C1mim]Cl 

[C1mim][N(CN)2] 

[C mpyr][BF ]* 
1 4 

-‐108.9 

-‐123.0 

-‐115.2 

-‐164.3 

-‐105.1 

-‐54.4 

-‐61.5 

-‐57.6 

-‐82.1 

-‐52.6 

-‐230.6 

-‐316.8 

-‐299.5 

-‐421.5 

-‐268.3 

-‐57.7 

-‐79.2 

-‐74.9 

-‐105.4 

-‐67.1 

[C1mpyr]Br 

[C1mpyr]Cl 

[C1mpyr][N(CN)2] 

[C mpyr][BF ]* 
2 4 

-‐132.6 

-‐124.0 

-‐152.5 

-‐112.8 

-‐66.3 

-‐62.0 

-‐76.3 

-‐56.4 

-‐299.0 

-‐298.3 

-‐403.9 

-‐271.6 

-‐74.7 

-‐74.6 

-‐101.0 

-‐67.9 

[C2mpyr]Br 

[C2mpyr]Cl 

[C  mpyr][N(CN)  ]* 
2 2 

-‐135.9 

-‐138.1 

-‐165.5 

-‐68.0 

-‐69.1 

-‐82.8 

-‐311.4 

-‐308.3 

-‐360.4 

-‐77.8 

-‐77.1 

-‐90.1 

[C py][BF ]* 
2 4 

-‐112.5 -‐56.3 — — 

[C2py]Br 

[C2py]Cl 

-‐156.9 

-‐152.5 

-‐78.5 

-‐76.2 

-‐399.5 

-‐352.9 

-‐99.9 

-‐88.2 

[C2py][N(CN)2] -‐172.9 -‐86.5 — — 

 

Note:  Omitted  4-‐IP  energies  were  unable  to  be  completed  due  to  software  limitations 
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Table S2. MP2/CBS interaction energies 
2-‐IP 4-‐IP 

IL ΔE ΔECP BSSE ΔECP per IP ΔE ΔECP BSSE ΔECP per IP 
 

[C1mim][BF4] -‐107.3 -‐102.4 4.9 -‐51.2 -‐249.1 -‐238.5 10.7 -‐59.6 
[C1mim]Br -‐144.7 -‐130.6 14.1 -‐65.3 -‐378.7 -‐344.9 33.8 -‐86.2 

[C1mim]Cl -‐126.0 -‐120.2 5.7 -‐60.1 -‐337.3 -‐323.3 14.0 -‐80.8 

[C1mim][N(CN)2] -‐188.2 -‐184.8 3.4 -‐92.4 -‐492.0 -‐482.6 9.4 -‐120.7 

[C1mpyr][BF4] -‐113.8 -‐108.6 5.3 -‐54.3 -‐298.6 -‐285.9 12.7 -‐71.5 

[C1mpyr]Br -‐155.5 -‐140.8 14.7 -‐70.4 -‐365.1 -‐329.5 35.6 -‐82.4 

[C1mpyr]Cl -‐136.7 -‐130.8 5.9 -‐65.4 -‐340.2 -‐326.4 13.8 -‐81.6 

[C1mpyr][N(CN)2] -‐169.6 -‐165.5 4.2 -‐82.8 -‐450.1 -‐439.6 10.5 -‐109.9 

[C2mpyr][BF4] -‐123.9 -‐118.3 5.6 -‐59.2 -‐295.5 -‐282.8 12.7 -‐70.7 

[C2mpyr]Br -‐160.1 -‐144.5 15.5 -‐72.3 -‐380.6 -‐343.5 37.1 -‐85.9 

[C2mpyr]Cl -‐153.0 -‐146.7 6.4 -‐73.4 -‐357.6 -‐343.1 14.5 -‐85.8 

[C2mpyr][N(CN)2] -‐186.7 -‐182.6 4.1 -‐91.3 -‐424.4 -‐414.6 9.8 -‐103.7 

[C2py][BF4] -‐120.6 -‐116.0 4.6 -‐58.0 -‐360.6 -‐348.3 12.3 -‐87.1 

[C2py]Br -‐187.7 -‐174.8 12.9 -‐87.4 -‐476.0 -‐444.0 32.0 -‐111.0 

[C2py]Cl -‐175.0 -‐169.1 5.9 -‐84.6 -‐413.8 -‐400.4 13.4 -‐100.1 

[C2py][N(CN)2] -‐202.0 -‐198.4 3.6 -‐99.2 -‐513.5 -‐503.6 9.9 -‐125.9 
 

Table S3. MP2/cc-‐pVTZ interaction energies 
2-‐IP 4-‐IP 

IL ΔE ΔECP BSSE ΔECP per IP ΔE ΔECP BSSE ΔECP per IP 
 

[C1mim][BF4] -‐115.4 -‐80.1 35.3 -‐40.1 -‐264.4 -‐188.0 76.4 -‐47.0 
[C1mim]Br -‐135.1 -‐105.2 29.9 -‐52.6 -‐354.9 -‐283.9 71.0 -‐71.0 

[C1mim]Cl -‐124.0 -‐96.4 27.7 -‐48.2 -‐331.5 -‐265.4 66.2 -‐66.4 

[C1mim][N(CN)2] -‐183.7 -‐160.2 23.5 -‐80.1 -‐481.7 -‐422.1 59.6 -‐105.5 

[C1mpyr][BF4] -‐121.7 -‐89.6 32.1 -‐44.8 -‐315.9 -‐235.2 80.7 -‐58.8 

[C1mpyr]Br -‐148.0 -‐118.7 29.3 -‐59.4 -‐346.0 -‐277.6 68.4 -‐69.4 

[C1mpyr]Cl -‐137.4 -‐110.3 27.1 -‐55.2 -‐341.2 -‐276.5 64.7 -‐69.1 

[C1mpyr][N(CN)2] -‐169.9 -‐147.4 22.5 -‐73.7 -‐451.3 -‐390.8 60.5 -‐97.7 

[C2mpyr][BF4] -‐133.2 -‐98.7 34.6 -‐49.4 -‐315.5 -‐235.6 79.9 -‐58.9 

[C2mpyr]Br -‐153.2 -‐122.4 30.8 -‐61.2 -‐363.5 -‐291.8 71.8 -‐73.0 

[C2mpyr]Cl -‐155.3 -‐125.9 29.5 -‐63.0 -‐361.0 -‐294.3 66.8 -‐73.6 

[C2mpyr][N(CN)2] -‐186.8 -‐162.4 24.4 -‐81.2 -‐425.6 -‐369.0 56.5 -‐92.3 

[C2py][BF4] -‐126.1 -‐93.1 33.0 -‐46.6 -‐376.1 -‐286.3 89.8 -‐71.6 

[C2py]Br -‐178.3 -‐146.9 31.5 -‐73.5 -‐454.8 -‐378.8 75.9 -‐94.7 

[C2py]Cl -‐172.4 -‐142.1 30.2 -‐71.1 -‐408.9 -‐340.1 68.8 -‐85.0 

[C2py][N(CN)2] -‐198.9 -‐174.2 24.7 -‐87.1 -‐507.4 -‐445.5 62.0 -‐111.4 
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Table S4. MP2/cc-‐pVQZ interaction energies 
2-‐IP 4-‐IP 

IL ΔE ΔECP BSSE ΔECP per IP ΔE ΔECP BSSE ΔECP per IP 
 

[C1mim][BF4] -‐110.7 -‐93.0 17.7 -‐46.5 -‐255.6 -‐217.2 38.4 -‐54.3 
[C1mim]Br -‐140.6 -‐119.9 20.8 -‐60.0 -‐368.7 -‐319.1 49.5 -‐79.8 

[C1mim]Cl -‐125.2 -‐110.2 15.0 -‐55.1 -‐334.8 -‐298.9 36.0 -‐74.7 

[C1mim][N(CN)2] -‐186.3 -‐174.4 11.9 -‐87.2 -‐487.7 -‐457.1 30.6 -‐114.3 

[C1mpyr][BF4] -‐117.2 -‐100.6 16.6 -‐50.3 -‐305.9 -‐264.5 41.3 -‐66.1 

[C1mpyr]Br -‐152.4 -‐131.5 20.9 -‐65.8 -‐357.1 -‐307.6 49.4 -‐76.9 

[C1mpyr]Cl -‐137.0 -‐122.1 14.8 -‐61.1 -‐340.6 -‐305.3 35.3 -‐76.3 

[C1mpyr][N(CN)2] -‐169.7 -‐157.8 11.9 -‐78.9 -‐450.6 -‐419.0 31.6 -‐104.8 

[C2mpyr][BF4] -‐127.9 -‐110.0 17.8 -‐55.0 -‐303.9 -‐262.8 41.1 -‐65.7 

[C2mpyr]Br -‐157.2 -‐135.2 22.0 -‐67.6 -‐373.4 -‐321.7 51.7 -‐80.4 

[C2mpyr]Cl -‐154.0 -‐137.9 16.1 -‐69.0 -‐359.1 -‐322.5 36.5 -‐80.6 

[C2mpyr][N(CN)2] -‐186.8 -‐174.1 12.7 -‐87.1 -‐424.9 -‐395.4 29.5 -‐98.9 

[C2py][BF4] -‐122.9 -‐106.3 16.6 -‐53.2 -‐367.1 -‐322.1 45.0 -‐80.5 

[C2py]Br -‐183.7 -‐163.0 20.7 -‐81.5 -‐467.1 -‐416.5 50.5 -‐104.1 

[C2py]Cl -‐173.9 -‐157.7 16.2 -‐78.9 -‐411.7 -‐374.9 36.8 -‐93.7 

[C2py][N(CN)2] -‐200.7 -‐188.2 12.5 -‐94.1 -‐511.0 -‐479.1 31.9 -‐119.8 
 

Table S5. SCS-‐MP2/cc-‐pVTZ interaction energies 
2-‐IP 4-‐IP 

IL ΔE ΔECP BSSE ΔECP per IP ΔE ΔECP BSSE ΔECP per IP 
 

[C1mim][BF4] -‐93.2 -‐59.8 33.3 -‐29.9 -‐213.3 -‐141.1 72.2 -‐35.3 
[C1mim]Br -‐107.6 -‐79.1 28.5 -‐39.6 -‐281.3 -‐213.4 67.9 -‐53.4 

[C1mim]Cl -‐98.9 -‐71.8 27.0 -‐35.9 -‐262.9 -‐198.2 64.8 -‐49.6 

[C1mim][N(CN)2] -‐144.0 -‐121.2 22.8 -‐60.6 -‐379.2 -‐321.0 58.2 -‐80.3 

[C1mpyr][BF4] -‐97.4 -‐67.2 30.3 -‐33.6 -‐252.6 -‐176.3 76.3 -‐44.1 

[C1mpyr]Br -‐117.9 -‐90.0 27.9 -‐45.0 -‐275.1 -‐210.1 65.0 -‐52.5 

[C1mpyr]Cl -‐109.6 -‐83.2 26.4 -‐41.6 -‐272.1 -‐208.8 63.2 -‐52.2 

[C1mpyr][N(CN)2] -‐134.7 -‐113.0 21.7 -‐56.5 -‐357.6 -‐298.5 59.0 -‐74.6 

[C2mpyr][BF4] -‐107.1 -‐74.3 32.7 -‐37.2 -‐253.2 -‐177.3 75.9 -‐44.3 

[C2mpyr]Br -‐122.2 -‐92.9 29.3 -‐46.5 -‐289.7 -‐221.4 68.3 -‐55.4 

[C2mpyr]Cl -‐124.1 -‐95.2 28.9 -‐47.6 -‐288.4 -‐222.9 65.4 -‐55.7 

[C2mpyr][N(CN)2] -‐148.1 -‐124.3 23.8 -‐62.2 -‐337.5 -‐282.5 55.0 -‐70.6 

[C2py][BF4] -‐102.1 -‐70.9 31.2 -‐35.5 -‐301.8 -‐216.3 85.6 -‐54.1 

[C2py]Br -‐141.0 -‐110.8 30.2 -‐55.4 -‐360.6 -‐287.4 73.2 -‐71.9 

[C2py]Cl -‐136.4 -‐106.8 29.7 -‐53.4 -‐324.6 -‐257.1 67.5 -‐64.3 

[C2py][N(CN)2] -‐158.7 -‐134.8 23.9 -‐67.4 -‐406.7 -‐346.1 60.6 -‐86.5 
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Table S6. SCS-‐MP2/cc-‐pVQZ interaction energies 
2-‐IP 4-‐IP 

IL ΔE ΔECP BSSE ΔECP per IP ΔE ΔECP BSSE ΔECP per IP 
 

[C1mim][BF4] -‐87.6 -‐70.2 17.4 -‐35.1 -‐202.5 -‐164.8 37.7 -‐41.2 
[C1mim]Br -‐111.5 -‐91.5 19.9 -‐45.8 -‐291.2 -‐243.5 47.8 -‐60.9 

[C1mim]Cl -‐98.4 -‐83.4 15.0 -‐41.7 -‐262.7 -‐226.5 36.1 -‐56.6 

[C1mim][N(CN)2] -‐145.3 -‐133.3 12.0 -‐66.7 -‐381.8 -‐350.7 31.0 -‐87.7 

[C1mpyr][BF4] -‐92.4 -‐76.2 16.2 -‐38.1 -‐241.3 -‐200.6 40.7 -‐50.2 

[C1mpyr]Br -‐121.2 -‐101.1 20.1 -‐50.6 -‐283.7 -‐236.2 47.5 -‐59.1 

[C1mpyr]Cl -‐108.3 -‐93.4 14.8 -‐46.7 -‐269.2 -‐233.8 35.4 -‐58.5 

[C1mpyr][N(CN)2] -‐134.0 -‐122.0 12.0 -‐61.0 -‐355.0 -‐322.9 32.1 -‐80.7 

[C2mpyr][BF4] -‐101.2 -‐83.7 17.5 -‐41.9 -‐240.5 -‐199.9 40.5 -‐50.0 

[C2mpyr]Br -‐125.2 -‐104.1 21.1 -‐52.1 -‐297.3 -‐247.5 49.8 -‐61.9 

[C2mpyr]Cl -‐121.8 -‐105.6 16.2 -‐52.8 -‐284.1 -‐247.4 36.8 -‐61.9 

[C2mpyr][N(CN)2] -‐147.3 -‐134.5 12.9 -‐67.3 -‐335.1 -‐305.2 29.9 -‐76.3 

[C2py][BF4] -‐97.8 -‐81.5 16.2 -‐40.8 -‐290.2 -‐245.7 44.5 -‐61.4 

[C2py]Br -‐144.9 -‐124.8 20.1 -‐62.4 -‐369.3 -‐320.1 49.2 -‐80.0 

[C2py]Cl -‐136.5 -‐120.2 16.3 -‐60.1 -‐324.1 -‐287.1 37.1 -‐71.8 

[C2py][N(CN)2] -‐159.2 -‐146.6 12.6 -‐73.3 -‐406.9 -‐374.5 32.4 -‐93.6 
 

Table S7. SCS-‐IL-‐MP2 interaction energies 
2-‐IP 4-‐IP 

IL ΔE ΔECP BSSE ΔEnon-‐CP per IP ΔE ΔECP BSSE ΔEnon-‐CP per IP 
 

[C1mim][BF4] -‐101.9 -‐68.7 33.2 -‐51.0 -‐233.4 -‐161.5 72.0 -‐58.4 
[C1mim]Br -‐118.7 -‐90.4 28.2 -‐59.4 -‐311.2 -‐244.0 67.2 -‐77.8 

[C1mim]Cl -‐109.0 -‐82.6 26.4 -‐54.5 -‐290.7 -‐227.5 63.2 -‐72.7 

[C1mim][N(CN)2] -‐160.4 -‐138.0 22.4 -‐80.2 -‐421.2 -‐364.3 56.9 -‐105.3 

[C1mpyr][BF4] -‐107.1 -‐76.9 30.2 -‐53.6 -‐277.9 -‐201.9 76.0 -‐69.5 

[C1mpyr]Br -‐130.0 -‐102.3 27.7 -‐65.0 -‐303.7 -‐239.2 64.6 -‐75.9 

[C1mpyr]Cl -‐120.8 -‐94.9 25.9 -‐60.4 -‐299.9 -‐238.0 61.8 -‐75.0 

[C1mpyr][N(CN)2] -‐149.0 -‐127.6 21.4 -‐74.5 -‐395.6 -‐337.8 57.8 -‐98.9 

[C2mpyr][BF4] -‐117.4 -‐84.9 32.6 -‐58.7 -‐278.0 -‐202.5 75.4 -‐69.5 

[C2mpyr]Br -‐134.6 -‐105.6 29.1 -‐67.3 -‐319.4 -‐251.6 67.8 -‐79.9 

[C2mpyr]Cl -‐136.6 -‐108.4 28.2 -‐68.3 -‐317.5 -‐253.6 63.9 -‐79.4 

[C2mpyr][N(CN)2] -‐163.8 -‐140.5 23.3 -‐81.9 -‐373.2 -‐319.3 53.9 -‐93.3 

[C2py][BF4] -‐111.5 -‐80.4 31.1 -‐55.8 -‐331.3 -‐246.5 84.8 -‐82.8 

[C2py]Br -‐156.2 -‐126.4 29.8 -‐78.1 -‐398.8 -‐326.7 72.1 -‐99.7 

[C2py]Cl -‐151.0 -‐122.1 28.9 -‐75.5 -‐358.7 -‐292.9 65.9 -‐89.7 

[C2py][N(CN)2] -‐174.8 -‐151.3 23.5 -‐87.4 -‐446.8 -‐387.6 59.2 -‐111.7 
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Table S8. SOS-‐IL-‐MP2 interaction energies 
2-‐IP 4-‐IP 

IL ΔE ΔECP BSSE ΔEnon-‐CP per IP ΔE ΔECP BSSE ΔEnon-‐CP per IP 
 

[C1mim][BF4] -‐103.8 -‐62.9 40.9 -‐51.9 -‐237.7 -‐149.1 88.5 -‐59.4 
[C1mim]Br -‐118.8 -‐83.7 35.1 -‐59.4 -‐309.5 -‐225.7 83.8 -‐77.4 

[C1mim]Cl -‐109.2 -‐75.4 33.8 -‐54.6 -‐289.4 -‐208.5 80.9 -‐72.4 

[C1mim][N(CN)2] -‐157.2 -‐128.8 28.4 -‐78.6 -‐415.1 -‐342.5 72.6 -‐103.8 

[C1mpyr][BF4] -‐107.9 -‐70.8 37.1 -‐54.0 -‐279.7 -‐186.1 93.7 -‐69.9 

[C1mpyr]Br -‐130.1 -‐95.7 34.3 -‐65.1 -‐303.3 -‐223.3 80.0 -‐75.8 

[C1mpyr]Cl -‐121.1 -‐88.2 32.9 -‐60.6 -‐300.6 -‐221.7 78.9 -‐75.2 

[C1mpyr][N(CN)2] -‐148.3 -‐121.4 26.9 -‐74.2 -‐393.4 -‐319.7 73.7 -‐98.4 

[C2mpyr][BF4] -‐118.9 -‐78.7 40.2 -‐59.5 -‐281.1 -‐187.7 93.4 -‐70.3 

[C2mpyr]Br -‐135.1 -‐99.1 36.0 -‐67.6 -‐320.0 -‐235.9 84.2 -‐80.0 

[C2mpyr]Cl -‐137.3 -‐101.2 36.1 -‐68.7 -‐319.0 -‐237.2 81.8 -‐79.8 

[C2mpyr][N(CN)2] -‐163.0 -‐133.3 29.6 -‐81.5 -‐371.5 -‐302.9 68.6 -‐92.9 

[C2py][BF4] -‐114.0 -‐75.7 38.3 -‐57.0 -‐335.0 -‐229.6 105.4 -‐83.8 

[C2py]Br -‐154.9 -‐117.5 37.4 -‐77.5 -‐396.9 -‐306.2 90.7 -‐99.2 

[C2py]Cl -‐149.9 -‐112.8 37.1 -‐75.0 -‐357.6 -‐273.1 84.5 -‐89.4 

[C2py][N(CN)2] -‐175.4 -‐145.7 29.7 -‐87.7 -‐451.1 -‐375.4 75.7 -‐112.8 
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Chapter 5 
 
 
 
 

Revisiting density functional 
theory: 
The improvement and application 
of empirical dispersion corrections 

 
 
 
 

5.1 Introduction 
 
 

The use of Kohn-Sham density functional theory (DFT)[1] in quantum chemistry has 
become routine and is considered by many to be the most popular approach to molec- 
ular energetics. DFT, however, is known for being notoriously poor in reproducing 
electron correlation effects as the exact relationship between electron density and the 
corresponding energy is unknown, although formally proven to exist.[2] As such, signif- 
icant effort has been made in producing functionals that approximate this relationship. 
The forms taken by these functionals vary significantly amongst the myriad of those 
that are currently available, however many rely on the assumption that the properties 
of accepted models, such as the well-characterised uniform electron gas[2] or the two- 
electron helium atom,[3] can be transferred to more complex chemical systems. While 
such assumptions have made significant inroads to accurate molecular descriptions, it 
appears these simplified approximations are unlikely to produce consistently accurate re- 
sults amongst the wide variety of chemical systems of interest, including charge-transfer 
complexes[4] and ionic liquids (ILs).[5] Indeed, the classification of DFT as an “ab ini- 
tio” method may be considered somewhat of a misnomer given that functionals are often 
tailored to a particular class of chemical system or specific test sets,[6, 7] which limits 
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their broad applicability. Indeed, Becke introduced the concept of the “density func- 
tional approximation” in order to make the distinction between DFT, which is exact, 
and its application, which is approximate and may contain empirical or non-empirical 
parameters.[8] 

 
Given that the inherent limitation of DFT is in its description of the van der Waals 
interaction,[9] it has been proposed by Grimme that pairwise atom empirical dispersion 
coefficients be developed such that the dispersion energy can be described as the power 
series expansion such as in eq. 5.1. At the time of writing, there have been three versions 
of the empirical dispersion correction methodology proposed by Grimme;[10–12] this 
chapter is concerned exclusively with the latest version, DFT-D version 3 (DFT-D3).[12] 

 
The original two-body DFT-D3 formulation defined the dispersion correction as: 

 
 

EDFT-D3(zero) 1 ) ) ij s n  f  (n, r  ) (5.1) 
disp = − 2 n   n 

i/=j n≥6,n even ij 
damp ij 

 

This summation is usually truncated at n = 8 and is summed over all atom pairs, i and 
j. In this formulation, fdamp is a distance dependent damping function that attempts 
to correct for divergence of the dispersion energy as rij → 0, given in eq. 5.2, known as 
“zero damping.” The other variable in this expression is the sn term, which has been 
labelled a density functional (DF) dependent term and is a global scaling factor for the 
nth order dispersion energy. The sn terms are required because the DF will already 
contribute some approximation of the true dispersion energy and therefore only some 
proportion of the empirical correction is used. 

 
 
 

fdamp(n, rij ) = 1 + 6(r 
1 

/(sr,n 

 

R0 ))−αn 
(5.2) 

 
The damping function given above depends on an atom pair cut-off radius, R0 , which is 
defined as the sum of the van der Waals radii of the atom pair. This approximation has 
an additional correction via a scaling factor, sr,n, which is specific to the approximation 
order (n = 6 or 8). This was originally fitted via a least-squares regression method for 
sr,6 and set to unity for sr,8. The remaining parameter, αn, has been set to 14 for n = 6 
and for n > 6, αn+2  = αn + 2. 

 
An alternative Becke-Johnson (BJ) damping function has been proposed,[13] which takes 
the following form: 

 

 
 

EDFT-D3(BJ) 1 ) ) ij 
s n   

disp = − 2 n rn 0 n (5.3) 
i/=j n≥6,n even ij + [f (Rij )] 
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C 
C ij 

 
 
 

f (R0 ) = a1R0 
 + a2 (5.4) 

ij ij 
 
 

In this case, the BJ damping functions results in a finite dispersion correction at rij = 0. 
Here, the atom cut-off term proposed by Johnson and Becke[14] was adopted and is 
defined as: 

ij 

ij = 6 
8 

(5.5) 

In both the zero damping and BJ damping forms of DFT-D3, the DF dependent terms, 
s6 and s8 are tunable. For the zero damping function, tunable terms include sr,6 and 
sr,8, and for the BJ damping function, a1 and a2. In the official DFT-D3 parameter 
set, s6 was held at unity, and only the s8 term  was  fitted.  For  the  zero  damping 
function, only sr,6 was proposed to be scaled with sr,8 held at unity. When fitting the 
BJ damping function, both a1 and a2 were allowed to vary. Parameters for the original 
DFT-D3 formulation were optimised against the S66 data set[15] using CCSD(T)/CBS 
benchmark energies. 

In this study, the tunable coefficients are refitted in order to reproduce CCSD(T)/CBS 
energies for an extensive set of ionic liquid ion pairs (IPs) by providing empirical correc- 
tions for pure Hartree-Fock (HF) energies, and energies calculated using the GGA-type 
PBE[16, 17] and BLYP[3, 18, 19] DFs, which are used routinely in ab initio molecular dy- 
namics (AIMD).[20–24] Both zero and BJ damping functions are assessed in cases where 
all coefficients are permitted to vary, and where some restrictions are applied, including 
as described in Grimme’s original methodology.[12, 13] The refitted DFT-D3 parameters 
are then validated against a subset of ILs that are scanned along a coordinate of the 
potential energy surface (PES) in order to evaluate the performance at non-equilibrium 
geometries, with benchmark interaction PESs calculated at CCSD(T)/CBS. Ionic liq- 
uid specific SCS-MP2 (SCS-IL-MP2)[25] PESs have also been produced for comparison. 
This study embodies the concepts raised in Chapter 4 where it is asserted that the ap- 
plication of any empirical corrections are necessarily fitted to only a subset of chemical 
systems; that is, the only way to consistently reproduce high-quality energies is simply 
to employ higher levels of theory. As a consequence, the refined DFT-D3 parameters 
are designed specifically for semi-Coulombic systems in exactly the same sense as the 
SCS-IL-MP2 method. 
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5.2 Theoretical procedures 

 
 
5.2.1 Fitting data 

 
 
The IPs analysed consisted of a set of 174 ILs involving several energetically favourable 

+ + 
configurations for each. The cations and anions consisted of [C(1−4)mim] and [C(1−4)mpyr] 
combined with Br−, Cl−, tetrafluoroborate ([BF4]−), hexafluorophosphate ([PF6]−), di- 
cyanamide ([DCA]−), tosylate ([tos]−), mesylate ([mes]−) and bis(trifluoromethylsulfonyl)amide 
([NTf2]−). Structures and associated interaction energies are available as part of the 
Electronic Supporting Information in reference [25] and described in detail in Chapter 
4, Section 4.3.  Examples of the conformations included in the fitting set are shown in 
Figures 5.1 and 5.2. 

 

 
Figure 5.1:  Examples of IL IP conformations for Br−  and Cl−  anions.  Reprinted 

with permission from Rigby et al.[25] Copyright 2014 American Chemical Society. 
 
 
The DFT-D3 program (V3.1 Rev 0)[12] produced by the Grimme group was interfaced 
with the R statistical package[26] such that appropriate parameters were passed from R 
to the DFT-D3 program dynamically (s6, s8, sr,6 and sr,8 for zero damping, and s6, s8, 
a1  and a2  for BJ damping).  A Nedler and Mead optimisation procedure[27] was then 
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Figure 5.2:  Examples of IL IP conformations for the [NTf2]−  anion. Reprinted with 

permission from Rigby et al.[25] Copyright 2014 American Chemical Society. 
 
 

performed to minimise the sum of the squared residuals. Fitting was performed using 
the structures and CCSD(T)/CBS quality benchmark interaction energies previously 
published as part of the SCS-IL-MP2 study (see Chapter 4 and reference [25]). Param- 
eters fitted for HF-D3 were fitted against the CCSD(T) correlation energy component 
only, whereas the BLYP and PBE functionals (both used in conjunction with the aug- 
cc-pVTZ basis set) were fitted against the CCSD(T)/CBS correlation energy added to 
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the HF/aug-cc-pVQZ interaction energy, which is considered to be at the CBS limit for 
the HF wavefunction. 

 
For the zero damping function, parameters were fitted as: 

 
 
(A) all unrestricted 

 
(B) s6 fixed at unity 

 
(C) s6 and sr,8 fixed at unity (as in reference [12]) 

And for the BJ damping function: 

(A) all unrestricted 
 
(B) s6 fixed at unity (as in reference [13]) 

 
 
The above letter codes are used throughout the remainder of this chapter to refer to 
the fitting conditions used for each set of coefficients proposed. Where the damping 
function used is not evident in the context of the discussion, it may be referred to in 
parentheses alongside these letter codes; e.g. BLYP-D3 (A,BJ). 

 
In order to characterise the performance of the DFT-D3 corrections, zeroth-order symmetry- 
adapted perturbation theory (SAPT0)[28, 29] interaction energy decompositions were 
performed for the 174 IL IPs using the Psi4 software package[30] and the jun-cc-pVDZ 
basis set,[31] which has been recommended previously for SAPT0 calculations.[32] 

 
 
5.2.2 Potential  energy  surfaces 

 
 

PESs were generated for a selection of IPs consisting of the [C(1,2)mim]+ and [C(1,2)mpyr]+ 

cations, and all the previously mentioned anions in Section 5.2.1. Between one and five 
conformations of each IP, totalling 49 IL IPs, were scanned at displacements from −0.1 Å 
to +0.7 Å at 0.1 Å increments.  Displacements were made along the vector defined by 
the atoms closest to the geometric midpoints of each ion, and were relaxed at each 
step using a counterpoise (CP) corrected gradient.  Optimisations were performed with 
MP2/def2-TZVPP using the Turbomole 6.5 software package.[33] Single-point energies 
at CCSD(T)/CBS, spin-component scaled second-order Møller Plesset perturbation the- 
ory (SCS-MP2),[34] SCS-IL-MP2,[25] BLYP/aug-cc-pVTZ and PBE/aug-cc-pVTZ were 
calculated using the Psi4 software package.[30] CCSD(T)/CBS energies were calculated 
according to the method by Jurec̆ka et al.,[35, 36] shown in eq. 5.7 where the MP2/CBS 
interaction energy[37] (see eq.  5.6) is added to the CCSD(T) correction as calculated 
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MP2/X − Y ∆E 

int 

 

 
with a smaller basis set (i.e. aug-cc-pVDZ). For the two-point second-order Møller Ples- 
set perturbation theory (MP2) extrapolation scheme given in eq. 5.6, X (3) and Y (4) 
correspond to the cardinal numbers of the basis sets X (aug-cc-pVTZ) and Y (aug-cc- 
pVQZ). The frozen natural orbital approximation was used in order to accelerate the 
CCSD(T) calculation with minimal loss in accuracy.[38] 

 

 
 

∆Ecorr X3∆Ecorr 3  corr 
MP2/Y 

MP2/CBS = (5.6) 
X3 − Y 3 

 
 
 

∆Ecorr corr corr corr 
CCSD(T)/CBS = ∆EMP2/CBS + (∆ECCSD(T)/ACCD − ∆EMP2/ACCD) 

         
CCSD(T) correction 

(5.7) 

 

 
All interaction energies were corrected for basis set superposition error (BSSE) according 
to the Boys and Bernardi approach[39] as shown below in eqs. 5.8 – 5.10, where “All 
BFs” denotes calculations performed in the full basis set of the cluster, and index i 
denotes each monomer (ion) in the cluster. 

 
 

∆Eint = Ecomplex − 
) 

Ei (5.8) 
i 

int  = Ecomplex − 
) 

Ei (5.9) 
∆ECP All BFs 

 
i 

 

∆EBSSE = ∆ECP − ∆Eint (5.10) 
 
 
 

5.2.3 Ionic liquid clusters 
 
 

DFT-D3 corrections to the interaction energy for the HF wavefunction, and BLYP and 
PBE functionals were calculated for a series of two- and four-IP clusters created from IPs 
of the 1,3-dimethylimidazolium ([C1mim]+), N,N -dimethylpyrrolidinium ([C1mpyr]+), 
N -methyl-N -ethylpyrrolidinium ([C2mpyr]+) and N -ethylpyridinium ([C2py]+) cations 
in combination with the Br−, Cl−, [BF4]− and [DCA]− anions. These ions represent 
some of the more commonly used cations, and a set of anions that encompass a number 
of distinctive characteristics including: (a) monoatomic (Cl− and Br−), (b) larger spher- 
ical ([BF4]−), and (c) delocalised charge ([DCA]−) anions. The cations included: (a) 
delocalised ([C1mim]+, [C2py]+) and (b) localised ([C1mpyr]+, [C2mpyr]+) charge. In 
particular, the [C2py]+ cation was not included in the initial fitting set and is therefore 
an indicator of the broader applicability of the fitted coefficients. 
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These IL clusters were previously used for the submitted paper concerning the per- 
formance of SCS-IL-MP2 for IL clusters provided in Chapter 4, Section 4.4 and their 
conformations are described in detail therein. In brief, the clusters were optimised us- 
ing the fragment molecular orbital (FMO) approach truncated at the two-body term, in 
conjunction with the MP2 wavefunction and the cc-pVDZ basis set. In order to evaluate 
the performance of the DFT-D3 interaction energy correction, CP corrected DFT inter- 
action energies were determined for the PBE and BLYP functional in conjunction with 
the aug-cc-pVTZ basis set. These DFT interaction energies were then added to their cor- 
responding DFT-D3 correction, except for the HF-D3 correction, which was compared 
directly with the benchmark correlation interaction energies. Benchmark correlation 
interaction energies at an approximate CCSD(T)/CBS level of theory,  previously de- 
termined in the submitted publication, were used again here.∗ Owing to the increased 
system size, benchmark CCSD(T)/CBS quality total interaction energies were calculated 
by adding CP corrected HF/cc-pVQZ interaction energies to the CCSD(T)/CBS corre- 
lation interaction energies. Here it is assumed that the small mean absolute error (MAE) 
between HF/cc-pVQZ and HF/aug-cc-pVQZ, found to be only 1.14 ± 0.90 kJ mol−1 for 
the IP fitting set, is reproduced in the IL clusters. 

 
 
 
5.3 Results and discussion 

 
 
5.3.1 Fitting set 

 
 
Summarised in Tables 5.1 and 5.2 are the DFT-D3 coefficients considered in this study 
for HF wavefunction, PBE and BLYP DFs for the zero and BJ damping functions, 
respectively. The letters in parentheses indicate the fitting conditions, and these cor- 
respond with those listed in Section 5.2.1. In the majority of cases, the coefficients 
obtained appeared within a reasonable range, with the exception of the freely fitted 
HF-D3 in conjunction with the zero damping function. In this case, the s8 coefficient 
was determined to be −119.7570, which appears anomalous when compared to all other 
cases. To this end, the “HF-D3 (A)” fitting conditions have been omitted from the 
analysis that follows. 

 
 
5.3.1.1 Choice of functional and damping function 

 
 
Figures 5.3a and 5.3b show the error distribution for both the zero and BJ damping 
functions. The box boundaries indicate the first and third quartiles, the line bisecting 

∗Benchmark energies are given in the supporting information in Section 4.5 
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DFT-D3 type s6 sr,6 s8 sr,8  
HF-D3 orig. 1.0000F 1.1500 1.7460 1.0000F  
HF-D3 (A) 1.4698 0.6682 −119.7570 2.2507  
HF-D3 (B) 1.0000F 0.6862 0.4443 0.7062  
HF-D3 (C) 1.0000F 0.6067 0.7129 1.0000F  
PBE-D3 orig. 1.0000F 1.2170 0.7220 1.0000F  
PBE-D3 (A) 3.6840 1.0844 −9.4507 1.2329  
PBE-D3 (B) 1.0000F 0.9858 −1.1022 1.4316  
PBE-D3 (C) 1.0000F 0.9987 −0.0555 1.0000F  
BLYP-D3 orig. 1.0000F 1.0940 1.6820 1.0000F  
BLYP-D3 (A) 0.2540 0.4621 2.1983 0.9929  
BLYP-D3 (B) 1.0000F 0.9412 0.6393 0.8544  
BLYP-D3 (C) 1.0000F 0.8513 0.6092 1.0000F  

 
 Summary of DFT-D3 coeffi 

 
cients for 

 
the zero damping function. F 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 
 

 
cates that this coefficient was fixed during the optimisation. 

indi- 

 
DFT-D3 type s6 s8 a1 a2 

HF-D3 orig. 1.0000F 0.9171 0.3385 2.8830 
HF-D3 (A) 0.6488 1.3599 −0.1459 4.8801 
HF-D3 (B) 1.0000F 0.8877 −0.5293 6.6430 
PBE-D3 orig. 1.0000F 0.7375 0.4289 4.4407 
PBE-D3 (A) −0.5092 4.1538 1.2479 0.4698 
PBE-D3 (B) 1.0000F 0.6778 1.0148 1.3323 
BLYP-D3 orig. 1.0000F 2.6996 0.4298 4.2359 
BLYP-D3 (A) 0.1749 2.9878 0.6583 2.3956 
BLYP-D3 (B) 1.0000F 1.3139 0.4333 3.2632 

 
Table 5.2: Summary of DFT-D3 coefficients for the BJ damping function. F indicates 

that this coefficient was fixed during the optimisation. 
 
 

the box indicates the median value, and the whiskers indicate the extrema. These error 
distributions are expressed using standard statistical measures in Table 5.3 in terms 
of the MAE, maximum absolute error and standard deviation. Based on these data, 
it can be seen that for the original DFT-D3 parameters, the performance of the BJ 
damping function reflects the assertions by Grimme et al. that there is a marginal 
improvement in errors obtained using this damping function as compared with the zero 
damping function.[13] Interestingly, there is no clearly superior damping function when 
the respective coefficients are re-fitted, although the following observations can be made: 
(1) HF-D3 errors are generally smaller by all measures for the BJ damping function 
and does not result in any spurious coefficients with unrealistic values; (2) there is little 
distinction between the zero and BJ functions for the DFs in terms of the MAE, although 
the smallest errors are observed with the zero damping function (PBE-D3 (A)). These 
results reinforce the finding by Grimme et al. that the damping function form is not 
critical in obtaining accurate DFT-D3 interaction energies,[13] however after coefficient 
optimisation, the appropriate damping function is likely to be dependent on the DF 
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(a) Zero damping function 
(b) 

BJ damping function 
 

Figure 5.3: DFT-D3 fitting errors 
 
 
used. 

 
As the HF wavefunction is considered non-correlated, it can be used as a pure measure of 
the damping function suitability. The behaviour of DFT-D3 for HF interaction energies 
indicates that the BJ damping function indeed provides a more sound description of the 
short-ranged correlation energy, which is again in agreement with Grimme et al.[13] This 
is particularly evident given that the fitting procedure results in “well-behaving” coef- 
ficients whereas the zero damping function produced physically unrealistic values for s8 

(−119.7570). It is argued here, however, that a dispersion correction model that is more 
physically realistic should not necessarily be accepted over one that produces improved 
results, and that improved results do not necessarily follow from a more physically re- 
alistic model. Given that the DFT-D3 correction is necessarily correcting a physically 
unrealistic approximation for correlation effects – the DF itself – the DFT-D3 correction 
functions not only as an additional dispersion energy contribution, but also as a form of 
error cancellation that can counter any shortcomings of the DF. Error cancellations must 
therefore mirror the physical unreality of the flawed approximation and thus should not 
be restricted to one that adheres to the prescriptive definitions of the chemical interac- 
tions in question (e.g. that the dispersion energy should converge to a finite value at 
r = 0 [14]). Therefore, the exact form that the DFT-D3 correction should take is more 
importantly connected to the ability for it to produce accurate energetics and not how 
faithful the formulation is to a rigorous description of dispersion. Consequently, it should 
be reiterated that it would be näıve to suggest any particular damping function as the 
most superior for all DFs and chemical systems. However, it can be suggested here that 
the BJ damping function is most suitable for HF-D3 and BLYP-D3 corrections, while 
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damping function DFT-D3 type MAE Max. Error St. Dev. 
 HF-D3 orig. 10.63 26.61 9.26 
 HF-D3 (B) 5.31 11.83 3.51 
 HF-D3 (C) 6.35 15.84 4.24 
 PBE-D3 orig. 3.39 7.52 1.86 
 PBE-D3 (A) 1.56 5.46 1.23 

Zero PBE-D3 (B) 2.26 5.43 1.34 
 PBE-D3 (C) 2.42 5.96 1.38 
 BLYP-D3 orig. 3.70 9.66 2.32 
 BLYP-D3 (A) 2.28 8.12 1.95 
 BLYP-D3 (B) 3.07 6.98 1.58 
 BLYP-D3 (C) 3.27 7.36 1.40 
 HF-D3 orig. 5.52 12.90 3.79 
 HF-D3 (A) 3.99 11.29 2.56 
 HF-D3 (B) 4.03 11.81 2.67 
 PBE-D3 orig. 4.08 10.59 2.73 

BJ PBE-D3 (A) 3.31 9.22 2.38 
 PBE-D3 (B) 3.52 8.96 2.27 
 BLYP-D3 orig. 3.18 11.77 2.50 
 BLYP-D3 (A) 1.82 6.79 1.49 
 BLYP-D3 (B) 1.91 7.39 1.60 

 

Table 5.3:  MAE, maximum error and standard deviation for the original and fitted DFT-
D3 parameters given in kJ mol−1 

 
 

the zero damping function is ideal for the PBE-D3 corrections. In particular, the zero 
damping function in combination with the PBE functional with coefficients optimised 
without restriction (PBE-D3 (A)) results in the smallest errors of 1.56 ± 1.23 kJ mol−1. 

 
 
 

5.3.1.2 Predictors of error 
 
 

Multiple linear regression was performed in order to determine the most significant 
predictors of error for the DFT-D3 energies with respect to the absolute values of SAPT0 
interaction energy components – electrostatic (ES), exchange (EX), induction (IND), 
induction-exchange (IND-EX), dispersion (DISP), and dispersion-exchange (DISP-EX) 
– as described by eq. 5.11. Correlation coefficients given in Table 5.4 indicate how the 
strength of particular components of the interaction energy might affect the quality of 
the DFT-D3 correction. The p-values given are a measure of significance based on the 
Student’s t distribution, and may be interpreted as the probability that the relationship 
described by the coefficient occurred randomly (i.e. is not real); a p-value of 0.05 would 
therefore signify that there is a 95% chance that the given coefficient is a true description 
of the relationship. In the ideal case, results should indicate that the error is independent 
from the interaction energy composition (correlation coefficients close to zero), and 
any correlation that is found should be insignificant (p-values close to unity).  While 
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SAPT0 is a low-order interaction energy decomposition method neglecting higher-order 
correlation contributions, it is used here as to generate an approximate “fingerprint” 
of the overall nature of the interaction. From this it was found that regardless of the 
damping function, the quality of the DFT-D3 correction was generally dictated by the 
strength of the exchange contribution to the dispersion energy (dispersion-exchange), 
which was most evident for the corrected HF wavefunction. 

 
 
 
 
∆ECCSD(T)/CBS−∆EDFT-D3 ≈ α|EES|+β|EEX|+γ|EIND|+δ|EIND-EX|+c|EDISP|+ζ|EDISP-EX| 

(5.11) 
 

The correlation between the HF-D3 error and the magnitude of the dispersion-exchange 
contribution is indicative of a fundamental incompatibility when equating  the  power 
series expansion of the dispersion energy employed by the DFT-D3 approach with the 
overall correlation energy. By expressing the dispersion energy as in eq. 5.1, the role of 
the damping function becomes not only one of avoiding a singularity at r = 0 but also to 
implicitly account for exchange effects, which are short-ranged.[40, 41] It is unsurprising 
that the damping function cannot wholly account for short-ranged effects on dispersion 
interactions that are purely the result of electron correlation, however it highlights the 
need to account for these effects by other means, i.e. the DF. This does not imply 
that HF-D3 energies are without value; the overall error was only 3.99 ± 2.56 kJ mol−1 

for the  least  restrictive  fitting  conditions  and  the  BJ  damping  function  (HF-D3  (B)). 
In this case errors originated primarily from Cl− and Br− anions, which are strongly 
coordinating anions[42] with significant orbital overlap resulting in higher exchange- 
dispersion contributions. HF-D3 may provide a means by which correlation energies are 
rapidly estimated, and could produce reliable geometries, although this remains to be 
seen. 

 
The regression coefficients indicate no strong relationships exist between the SAPT0 
energy decompositions and the DFT-D3 errors as applied to DFs (as opposed to the HF 
wavefunction). In particular, the BLYP-D3 energies fitted with the zero damping func- 
tion show exceptionally weak (coefficient near zero) and insignificant (higher p-values) 
correlation between exchange-dispersion energies, and the PBE functional shows a sig- 
nificant yet weak negative correlation. This is consistent with the low errors observed 
for these functionals with the DFT-D3 correction. 
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damping function 

 
DFT-D3 type 

|EES| 
coeff. 

 
p 

|EEX| 
coeff. 

 
p 

|EIND| 
coeff. 

 
p 

|EIND-EX| 
coeff. p 

|EDISP| 
coeff. p 

|EDISP-EX| 
coeff. p 

HF-D3 orig. −0.0246 0.0095 0.4723 0.0000 −0.3337 0.0001 0.1815 0.0658 −0.3440 0.0001 1.2256 0.1289 
HF-D3 (B) 0.0003 0.9519 −0.1514 0.0002 0.1376 0.0007 −0.2328 0.0000 −0.0183 0.6505 2.1829 0.0000 
HF-D3 (C) 0.0038 0.4253 −0.1567 0.0002 0.1277 0.0024 −0.1934 0.0001 −0.0591 0.1588 2.3021 0.0000 
PBE-D3 orig. −0.0062 0.0265 0.0744 0.0023 0.0110 0.6524 0.0283 0.3342 0.1117 0.0000 −1.0501 0.0000 
PBE-D3 (A) 0.0078 0.0000 0.0603 0.0002 −0.0849 0.0000 0.0765 0.0001 −0.0128 0.4290 −0.2637 0.0936 

Zero PBE-D3 (B) 0.0077 0.0001 0.0679 0.0000 −0.0410 0.0141 0.0580 0.0037 0.0145 0.3872 −0.7935 0.0000 
PBE-D3 (C) 0.0081 0.0001 0.0493 0.0041 −0.0131 0.4471 0.0381 0.0661 0.0166 0.3404 −0.7920 0.0000 
BLYP-D3 orig. 0.0008 0.7893 0.1312 0.0000 −0.1632 0.0000 0.1059 0.0005 0.0123 0.6237 0.0523 0.8302 
BLYP-D3 (A) 0.0122 0.0002 −0.0121 0.6597 −0.0273 0.3287 0.0281 0.3995 −0.0006 0.9841 0.0269 0.9214 
BLYP-D3 (B) 0.0077 0.0007 0.0560 0.0039 −0.0775 0.0001 0.0594 0.0115 −0.0409 0.0385 0.1152 0.5459 

  BLYP-D3 (C) 0.0092     0.0000 0.0350     0.0599     −0.0565     0.0031 0.0472     0.0370     −0.0067     0.7247     −0.0260     0.8877 
  

 

 
 
 
 
 
BJ 

HF-D3 orig. 
HF-D3 (A) 

−0.0097 
−0.0012 

0.0063 
0.7010 

−0.0931 
−0.1123 

0.0024 
0.0001 

0.1522 
0.1135 

0.0000 
0.0001 

−0.2629 
−0.2640 

0.0000 
0.0000 

−0.0950 
−0.0340 

0.0025 
0.2300 

2.3450 
2.1692 

0.0000 
0.0000 

HF-D3 (B) 0.0043 0.2342 −0.1165 0.0003 0.0970 0.0027 −0.2269 0.0000 −0.0681 0.0355 2.1324 0.0000 
PBE-D3 orig. 0.0062 0.1093 0.1141 0.0008 −0.1471 0.0000 0.0927 0.0232 −0.0463 0.1774 0.2478 0.4559 
PBE-D3 (A) 0.0093 0.0130 0.0513 0.1117 −0.0595 0.0698 −0.0085 0.8280 −0.0807 0.0151 0.5007 0.1184 
PBE-D3 (B) 0.0106 0.0035 0.0459 0.1403 −0.0582 0.0665 0.0134 0.7214 −0.0387 0.2253 0.1846 0.5497 
BLYP-D3 orig. 0.0174 0.0000 0.1131 0.0005 −0.1606 0.0000 0.1078 0.0056 −0.1129 0.0006 0.0778 0.8051 

 BLYP-D3 (A) 0.0128 0.0000 0.0343 0.0858 −0.0605 0.0032 0.0755 0.0021 −0.0110 0.5903 −0.4261 0.0325 
  BLYP-D3 (B) 0.0162    0.0000 0.0275    0.1877    −0.0681    0.0015 0.0887    0.0006    −0.0187    0.3809    −0.4308    0.0386 
  

 
Table 5.4: Regression coefficients and p-values using the absolute values of the SAPT0 energy decomposition as predictors of the DFT-D3 error. 
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5.3.2 Potential  energy  surfaces 

 
 
The PESs for a total of 49 IL IPs were evaluated at nine points of 0.1 Å increments at a 
displacement of −0.1 Å to +0.7 Å from the equilibrium distance, optimised at each step 
using a CP corrected gradient. The errors resulting from the original and fitted DFT-D3 
parameters, calculated with respect to a CCSD(T)/CBS benchmark, were determined 
at each point. Appendix B, Section B.2 presents detailed histograms to describe these 
error distributions. The MAEs for each PES generated are shown in Figure 5.6 as a 
function of displacement from the equilibrium geometry, given in kJ mol−1. 

 

By far the most accurate method of all presented is SCS-IL-MP2. Here, the MAE 
observed ranged from 0.8 to 1.3 kJ mol−1 with a standard deviation consistently be- 
low 1 kJ mol−1. Furthermore, Figure B.23 in Appendix B shows the error distribution 
histogram as extremely narrow and without outlying values. This strongly substan- 
tiates claims made in the submitted publication, Section 4.4, showing the suitability 
of SCS-IL-MP2 for IL clusters and consequently highlights the versatility of this ap- 
proach. Amongst the dispersion corrected methods, BLYP-D3 (A) with the zero damp- 
ing function yields the lowest errors of the dispersion corrected DFs, ranging from 1.2 
to 1.6 kJ mol−1 and standard deviations of between 0.8 and 1.4 kJ mol−1. For the best- 
fitting DF identified in Section 5.3.1.1, PBE-D3 (A) with the zero damping function, 
errors ranged from 2.0 to 2.3 kJ mol−1 with standard deviations ranging from 1.6 to 
1.7 kJ mol−1. Given the difference between these two dispersion corrected DFs is at or 
below 1 kJ mol−1, it would be premature to favour one over the other by this measure. 
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Figure  5.4:  BLYP-D3 (A) BJ damp- 
ing function potential energy surface 

error histogram 

Figure  5.5:  BLYP-D3 (B) BJ damp- 
ing function potential energy surface 

error histogram 
 
The BJ damping function with the s6  = 1 fitting restriction applied (denoted by the 
(B) suffix) appears to produce marginally improved PESs compared to the freely fitted 
case (denoted by the (A) suffix). This effect is most distinct when comparing the error 
distributions for BLYP-D3 (A) and (B) shown in Figures 5.4 and 5.5, which include the 
residuals of all 49 ILs at each of the nine points of the PES. The distributions show 
a notable shift towards lower errors with s6 fixed at unity, indicating that the error 
minimisation performed for the fitting set (see Section 5.2.1) may apply only locally 
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at the equilibrium structures used for fitting and is not suitable for other geometries, 
resulting in an increased overall error. For the two DFs corrected using the zero damping 
function, the most accurate values were obtained with no restriction in fitting. Based 
on this criterion there appears to be no compelling reason to restrict any coefficients for 
this damping function except for the HF wavefunction where the s8 coefficient did not 
optimise to a realistic value. 
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Figure 5.6:  Errors over a 0.8 Å PES 
 
 

It can be seen in Figure 5.6 and Table 5.5 that in the significant majority of cases (16 of 
20), a reduction in error is observed as the displacement is increased; only the refitted 
HF-D3 parameters (zero damping: (C), BJ damping: (A) and (B)) exhibited  slight 
increase in error with distance. It is worth noting that the PBE-D3 (A) PES exhibits an 
error gradient of zero, indicating that the error is, on average, less sensitive to changes 
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damping function DFT-D3 type error grad. (kJ mol−1 Å−1) 
HF-D3 orig. −8.5 
HF-D3 (B) 1.2 
HF-D3 (C) −1.6 
PBE-D3 orig. −1.7 
PBE-D3 (A) 0.0 

Zero PBE-D3 (B) −1.2 
PBE-D3 (C) −1.1 
BLYP-D3 orig. −2.2 
BLYP-D3 (A) −0.7 
BLYP-D3 (B) −1.0 

  BLYP-D3 (C) −1.1   
HF-D3 orig. −1.3 
HF-D3 (A) 1.6 
HF-D3 (B) 0.7 
PBE-D3 orig. −3.0 

BJ PBE-D3 (A) −1.3 
PBE-D3 (B) −1.3 
BLYP-D3 orig. −2.0 
BLYP-D3 (A) −0.9 

  BLYP-D3  (B) −0.8   
 

Table 5.5: Gradient of the error assuming a linear fit along the PES 
 
 
in geometry. Consequently it is possible that the PBE functional may be better suited 
to AIMD as the PES generated includes mainly unbiased systematic error that could 
potentially produce superior trajectories although this aspect should be the subject of 
future studies. 

 

 
 
5.3.3 Application to clusters 

 
 
Tables 5.6 and 5.7 (pp. 94 – 95) show the interaction energy errors with respect to 
CCSD(T)/CBS with all errors mentioned in this section given per ion pair. The DFT- 
D3 approaches were analysed in terms of their MAE, as well as the proportion of ILs 
that yield an error less than 1, 5 and 10 kJ mol−1, expressed as a percentage. In so 
doing, not only the performance of the DFT-D3 correction on average can be evaluated, 
but the distribution of the errors may too be understood. 

 
 
 
5.3.3.1 Performance of the zero damping function 

 
 
The zero damping function yielded the smallest MAEs for the PBE-D3 (B) fitting con- 
ditions for both the two and four IPs of 2.5 and 3.4 kJ mol−1, respectively, with 100% of 
the clusters under 10 kJ mol−1. Interestingly, while PBE-D3 (C) produced a marginally 



Chapter 5.  The improvement and application of empirical dispersion corrections 93  
 

elevated MAE (2.6 and 3.8 kJ mol−1 for two and four IPs, respectively), the distribu- 
tion of errors favoured lower errors suggesting that in this case outliers bias the MAE. 
PBE-D3 (C) produces the same proportion of sub-kilojoule errors as PBE-D3 (B) for 
two IPs (31%), however an increase is observed for the four IP clusters of 7% (from 14% 
to 21%). For errors less than 5 kJ mol−1, the proportion of two IP clusters increased by 
6% from PBE-D3 (B) (75%) to (C) (81%) and was unchanged for the four IP clusters at 
79%. Surprisingly, the original PBE-D3 result produced results with errors below PBE- 
D3 (A), which was identified as the best-fitting case for the initial fitting set in Section 
5.2.1. HF represents the most improvement after fitting with increased proportion of IL 
clusters with errors under 10 kJ mol−1 from just 25% to 69% for two IPs and from 21% 
to 57% for four IPs for HF-D3 (B). 

 
 
 

5.3.3.2 Performance of the Becke-Johnson damping function 
 
 

The performance of the BJ damping function for the HF wavefunction showed a sub- 
stantial improvement in all cases over the zero damping function; Grimme’s original 
HF-D3 parameters resulted in a decrease in MAE from 18.7 to 6.9 kJ mol−1 and 17.8 
to 6.8kJ mol−1 for the two- and four-IP clusters, respectively. After fitting, HF-D3 (B) 
showed remarkably low errors of just 4.5 and 3.3 kJ mol−1 for the two- and four-IP clus- 
ters, with all errors less than 10 kJ mol−1. The best performing case for the BJ damping 
functional was the original PBE parameters, with errors of approximately 3 kJ mol−1, 
although there was one outlier for the two-IP clusters of 11 kJ mol−1. The BLYP-D3 
(B) parameters, despite a marginal increase (only 0.5 kJ mol−1) in MAE for two-IP 
clusters, provide a subtly improved description of the energetics; no clusters show errors 
greater than 10 kJ mol−1, and the proportion of four-IP clusters with errors less than 
1 kJ mol−1 increases from 14 to 50%. 
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HF orig. HF(B) HF(C) PBE orig. PBE(A) PBE(B) PBE(C) BLYP orig. BLYP(A) BLYP(B) BLYP(C) 
 2IP 4IP 2IP 4IP 2IP 4IP 2IP 4IP 2IP 4IP 2IP 4IP 2IP 4IP 2IP 4IP 2IP 4IP 2IP 4IP 2IP 4IP 
[C1mim][BF4] 4.3 0.2 4.1 7.0 4.2 7.8 6.8 2.9 2.9 2.2 5.3 1.6 4.7 0.7 3.8 0.4 5.5 2.8 4.9 1.7 4.9 1.6 
[C1mpyr][BF4] 2.3 4.5 8.7 11.8 8.5 13.6 3.7 8.0 9.8 18.3 5.6 9.3 6.2 10.8 6.1 12.7 5.0 7.3 6.9 10.6 7.3 11.0 
[C2mpyr][BF4] 0.8 0.1 10.8 12.0 10.8 12.1 3.8 5.0 10.5 13.0 5.4 5.7 6.3 7.3 6.9 8.2 5.1 4.1 7.5 8.1 8.0 8.6 
[C2py][BF4] 5.9 – 0.1 – 1.2 – 5.2 – 0.4 – 3.3 – 2.9 – 1.3 – 2.4 – 2.7 – 2.6 – 
[C1mim]Br 22.5 22.5 11.9 12.6 14.3 13.7 4.3 4.4 8.6 5.5 4.7 4.0 4.7 3.7 9.5 7.7 7.2 7.1 9.8 9.2 11.1 10.3 
[C1mpyr]Br 24.4 21.8 11.7 10.2 13.7 11.5 0.9 4.1 2.3 1.5 1.1 3.8 1.2 4.3 4.8 1.4 1.4 0.3 2.9 0.7 3.6 1.5 
[C2mpyr]Br 24.6 21.6 11.2 8.9 13.4 10.4 0.6 3.7 4.0 0.7 0.0 2.8 0.4 3.7 5.4 1.8 2.6 1.0 3.1 1.0 3.8 1.7 
[C2py]Br 26.3 27.6 10.3 13.1 12.8 14.2 1.2 0.8 0.8 0.3 2.6 0.4 2.5 0.9 3.2 3.1 0.6 2.5 1.6 4.1 2.5 4.9 
[C1mim]Cl 22.1 21.4 6.5 6.9 9.5 8.5 5.9 5.7 5.8 1.4 5.2 3.9 5.1 3.6 12.5 10.1 10.3 9.9 11.4 9.9 12.0 10.4 
[C1mpyr]Cl 25.0 22.9 7.6 5.5 10.5 7.8 1.1 1.8 0.1 6.9 0.0 2.9 0.1 3.4 8.3 5.0 5.0 3.9 4.0 1.9 4.0 1.9 
[C2mpyr]Cl 25.2 20.3 5.1 1.0 8.4 3.5 1.8 2.5 0.1 7.6 0.5 3.6 0.2 4.4 8.4 3.5 5.8 3.3 4.5 0.8 4.4 0.6 
[C2py]Cl 26.7 25.1 6.0 5.6 9.1 7.6 1.6 0.2 2.1 5.4 1.1 2.3 0.8 2.6 7.2 4.6 3.3 3.2 4.0 2.7 4.2 2.6 
[C1mim][DCA] 22.3 23.7 6.8 10.0 7.4 9.2 3.5 5.0 5.1 7.4 0.4 1.6 0.3 0.3 3.5 2.5 6.6 9.7 3.8 5.2 3.0 4.2 
[C1mpyr][DCA] 20.0 22.0 1.9 0.8 3.4 1.8 0.6 2.9 6.3 11.5 1.1 0.6 2.2 1.1 2.0 2.4 4.8 8.1 0.1 0.9 1.3 0.8 
[C2mpyr][DCA] 21.2 15.7 0.3 3.6 1.6 3.2 2.9 1.8 8.7 16.8 0.7 5.1 1.3 6.3 2.5 2.9 3.7 1.6 0.5 4.4 1.8 5.8 
[C2py][DCA] 25.8 – 8.5 – 8.9 – 7.2 – 2.6 – 3.3 – 3.0 – 5.8 – 6.4 – 4.6 – 3.7 – 
MAE 18.7 17.8 7.0 7.8 8.6 8.9 3.2 3.5 4.4 7.0 2.5 3.4 2.6 3.8 5.7 4.7 4.7 4.6 4.5 4.4 4.9 4.7 
% E < 1 kJ mol−1 6 14 13 7 0 0 19 14 25 14 31 14 31 21 0 7 6 14 13 21 0 14 
% E < 5 kJ mol−1 19 21 25 21 25 21 75 86 56 36 75 79 81 79 44 71 50 64 75 64 75 64 
% E < 10 kJ mol−1 25 21 69 57 63 57 100 100 94 71 100 100 100 93 94 86 94 100 94 93 88 79 

 
Table 5.6: Absolute errors for DFT-D3 energies applied to clusters of two and four IPs using the zero damping function given per IP in kJ mol−1. The MAE 

and percentage of ILs with errors less than 1, 5 and 10 kJ mol−1 are also given. 
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HF orig. HF(A) HF(B) PBE orig. PBE(A) PBE(B) BLYP orig. BLYP(A) BLYP(B) 
 2IP 4IP 2IP 4IP 2IP 4IP 2IP 4IP 2IP 4IP 2IP 4IP 2IP 4IP 2IP 4IP 2IP 4IP 
[C1mim][BF4] 0.9 4.4 1.6 1.2 1.6 1.7 11.0 7.6 6.7 3.9 6.3 2.5 14.0 10.7 9.7 7.4 9.3 6.2 
[C1mpyr][BF4] 3.3 7.9 1.3 0.8 2.3 1.0 1.0 1.0 4.6 5.6 5.3 9.3 5.6 3.3 0.9 0.5 0.3 2.2 
[C2mpyr][BF4] 5.5 6.4 0.3 0.1 0.6 0.3 1.2 1.2 4.5 3.6 5.7 6.9 5.1 5.3 0.7 2.0 0.4 0.5 
[C2py][BF4] 1.2 – 3.3 – 2.9 – 8.9 – 5.4 – 4.7 – 11.1 – 7.2 – 6.8 – 
[C1mim]Br 11.6 10.6 3.5 4.1 3.5 3.2 3.7 3.9 8.6 8.7 7.0 6.2 8.4 8.0 8.3 8.1 7.0 6.4 
[C1mpyr]Br 11.5 9.2 5.5 3.9 5.4 3.2 1.0 3.6 1.2 0.2 0.1 2.9 5.6 3.1 2.9 1.6 2.4 0.2 
[C2mpyr]Br 11.2 8.2 5.5 3.6 5.2 2.6 0.7 3.2 2.0 0.5 0.2 2.9 5.5 2.9 3.5 2.2 2.5 0.2 
[C2py]Br 9.6 11.1 1.7 5.2 1.1 3.5 2.6 0.1 0.5 2.8 1.4 0.2 2.2 3.3 0.2 2.8 1.2 0.6 
[C1mim]Cl 9.1 7.4 4.0 3.9 3.7 2.6 5.1 5.1 6.5 5.9 5.4 4.0 11.6 10.9 9.4 8.8 8.7 7.5 
[C1mpyr]Cl 10.0 7.2 7.1 5.3 7.2 4.5 0.8 1.5 0.3 1.4 1.0 4.3 9.1 7.0 4.5 3.7 4.4 2.1 
[C2mpyr]Cl 8.5 3.7 6.1 3.0 6.1 2.1 1.5 2.0 0.3 3.3 1.2 6.0 9.3 5.8 4.7 2.4 4.3 0.7 
[C2py]Cl 7.8 6.3 2.9 3.7 2.4 2.5 0.1 1.0 1.2 2.0 1.5 3.6 6.4 4.8 1.6 1.2 1.4 0.0 
[C1mim][DCA] 6.9 8.0 10.3 13.3 8.8 10.0 1.7 3.3 3.0 0.7 3.5 3.2 2.9 2.2 0.8 2.6 0.3 0.1 
[C1mpyr][DCA] 3.5 2.3 7.8 9.6 6.9 7.7 0.0 2.6 5.1 2.5 6.7 6.7 2.2 3.8 0.6 1.9 2.3 1.6 
[C2mpyr][DCA] 1.9 2.9 6.3 3.3 5.7 1.4 1.7 2.5 4.7 7.7 5.8 11.1 3.3 1.2 1.3 3.6 2.5 6.6 
[C2py][DCA] 8.2 – 10.7 – 9.1 – 4.7 – 0.1 – 0.3 – 4.4 – 1.1 – 0.4 – 
MAE 6.9 6.8 4.9 4.4 4.5 3.3 2.9 2.8 3.4 3.5 3.5 5.0 6.7 5.2 3.6 3.5 3.4 2.5 
% E < 1 kJ mol−1 6 0 6 14 6 14 31 14 25 21 19 7 0 0 31 7 25 50 
% E < 5 kJ mol−1 31 29 50 71 50 86 81 86 69 71 56 57 31 57 75 79 75 71 
% E < 10 kJ mol−1 81 86 88 93 100 100 94 100 100 100 100 93 81 86 100 100 100 100 

 
Table 5.7: Absolute errors for DFT-D3 energies applied to clusters of two and four IPs using the BJ damping function given per IP in kJ mol−1. The MAE 

and percentage of ILs with errors less than 1, 5 and 10 kJ mol−1 are also given. 
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5.4    Conclusions 

 
 
This chapter has examined the refinement of the DFT-D3 parameters for the HF wave- 
function and the PBE and BLYP density functionals in order to reproduce CCSD(T)/CBS 
interaction energies of ILs from IPs and clusters of up to four IPs. This has involved 
both freely fitting, and fitting with restrictions in accordance with the original method- 
ology, the s6 and s8 coefficients as well as relevant coefficients for the zero[12] (sr,6 and 
sr,8) and BJ damping functions (a1 and a2).[13] The fitted coefficients were then tested 
for their ability to reproduce PESs and ion clusters. 

 

In general, the differences between the fitted DFT-D3 parameters were insignificant, 
varying within only 1 or 2 kJ mol−1 for most measures. Of particular note, however, was 
the significant improvement when fitting the HF-D3 correction. The original parameters 
for the HF wavefunction gave unacceptably high errors up to 27 kJ mol−1 for the zero 
damping function, and 13 kJ mol−1 for the BJ damping function per ion pair. After 
fitting with the BJ damping function, HF-D3 (B) produced  interaction  energies  with 
errors less than 5 kJ mol−1 for ion pairs, as well as clusters on a per ion pair basis. This 
result, while not as accurate as the fitted DFT functionals, is quite remarkable and may 
be a worthwhile approach to rapidly calculate properties such as interaction energies, 
interaction energy decompositions or geometries. 

 
The margin of error is low for each fitted set of DFT-D3 parameters and there remains 
no clearly superior DFT-D3 functional/coefficient combination that performs compar- 
atively well. That is, the fitted dispersion correction is able to compensate for the 
deficiencies present in the DFs. This notwithstanding, there are still noteworthy obser- 
vations that have been made. While it is logical that allowing the maximum number 
of coefficients to vary during coefficient optimisation inevitably results in the smallest 
errors, transferring these fitted parameters does not necessarily correspond to similarly 
reduced errors when applied to the PES or clusters. It was found that for the zero damp- 
ing function, freely fitted parameters prevailed with the most accurate PESs, however 
for the BJ damping function, it was essential to fix s6 to unity. It should be noted that 
fixing s6 to unity does not necessarily mean that unity is the “correct” value; from this 
the only claim that can be made with confidence is that s6 should be excluded from the 
fitting procedure. Interestingly, although the DFT-D3 parameters that produced the 
lowest errors was BLYP-D3 (B,BJ), the PBE-D3 (A,zero) produced only a very subtle 
increase in MAE and an error gradient of zero; that is, an error insensitive to changes in 
geometry. Therefore it would be reasonable to assert that the increase in error for the 
PBE-D3 (A,zero) approach is simply a fluctuation resulting from a less diverse set of 
ILs used for the PESs. The small differences in error mean that it cannot be said with 
confidence which of these two corrected DFs do indeed produce the superior result. 

 

When considering IL clusters, the best performing DFT-D3 approach was PBE-D3 (B) 
with the zero damping function; MAEs of 2.5 and 3.5 kJ mol−1 per ion pair for two and 
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four IP systems and in no cases did the errors exceed 10 kJ mol−1. For the BJ damping 
function, the original PBE-D3 parameters gave the lowest MAE for the two IP case, 
however there was one system in excess of 10 kJ mol−1. BLYP-D3 (B), on the other 
hand, shows only a slight increase of the two IP MAE and the lowest four IP MAE 
with all of the errors less than 10 kJ mol−1. On these grounds it is argued the best 
performing DFT-D3 approach for the BJ damping function when applied to clusters. 

 

The question of which approach is the most reliable based on these data is evidently 
not straightforward and may indeed be of no consequence given the relatively small 
differences between them. Nevertheless, it is possible to make some recommendations, 
and these are detailed as follows. First and foremost, it is clear that  the SCS-IL- 
MP2 approach is predictable and consistent in all aspects outlined in this chapter and 
therefore is preferred over all DFT-D3 approaches. In terms of the DFT-D3 options 
presented here, the BLYP-D3 (B) approach in conjunction with the BJ damping function 
is a reasonable compromise, in view of accurately treating large ionic clusters. This 
DFT-D3 parameter set provides errors of 1.91 ± 1.60 kJ mol−1  (compared with 1.56 ± 
1.23 kJ mol−1 for PBE-D3 (A,zero)), is almost indistinguishable in terms of the MAEs 
(see Figure 5.6e) and produces cluster energies where all systems investigated were below 
10 kJ mol−1  of which over 70% of clusters were below 5 kJ mol−1. 

 
A description of the changes to the original DFT-D3 source code is provided as a Unix 
diff-style patch in Appendix C. 
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Nyulászi, Tibor Pasinszki, and Barbara Kirchner. Simulating the vibrational spec- 
tra of ionic liquid systems: 1-ethyl-3-methylimidazolium acetate and its mixtures. 
The Journal of Chemical Physics, 141(2), 2014. 

 
[21] Dzmitry S. Firaha and Barbara Kirchner. CO2 absorption in the protic ionic liquid 

ethylammonium nitrate. Journal of Chemical & Engineering Data, Article ASAP, 
2014. 

 
[22] Rajdeep Singh Payal and Sundaram Balasubramanian. Dissolution of cellulose in 

ionic liquids: an ab initio molecular dynamics simulation study. Physical Chemistry 
Chemical Physics, 16:17458–17465, 2014. 

 
[23] P. Ganesh, De-en Jiang, and P. R. C. Kent. Accurate static and dynamic properties 

of liquid electrolytes for Li-ion batteries from ab initio molecular dynamics. The 
Journal of Physical Chemistry B, 115(12):3085–3090, 2011. PMID: 21384941. 

 
[24] Alfonso S. Pensado, Martin Brehm, Jens Thar, Ari P. Seitsonen, and Barbara 

Kirchner. Effect of dispersion on the structure and dynamics of the ionic liquid 1- 
ethyl-3-methylimidazolium thiocyanate. ChemPhysChem, 13(7):1845–1853, 2012. 

 
[25] Jason Rigby and Ekaterina I. Izgorodina. New SCS- and SOS-MP2 coefficients 

fitted to semi-coulombic systems. Journal of Chemical Theory and Computation, 
10(8):3111–3122, 2014. 

 
[26] R Development Core Team. R: A Language and Environment for Statistical Com- 

puting. R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN 
3-900051-07-0. 



Chapter 5.  The improvement and application of empirical dispersion corrections 100  
 

 
[27] J. A. Nelder and R. Mead. A simplex method for function minimization. The 

Computer Journal, 7(4):308–313, 1965. 
 
[28] Bogumil Jeziorski, Robert Moszynski, and Krzysztof Szalewicz. Perturbation the- 

ory approach to intermolecular potential energy surfaces of van der Waals com- 
plexes. Chemical Reviews, 94(7):1887–1930, 1994. 

 
[29] Edward G. Hohenstein and C. David Sherrill. Density fitting and cholesky decompo- 

sition approximations in symmetry-adapted  perturbation  theory:  Implementation 
and application to probe the nature of π-π interactions in linear acenes. The Journal 
of Chemical Physics, 132(18), 2010. 

 
[30] Justin M. Turney, Andrew C. Simmonett, Robert M. Parrish, Edward G. Hohen- 

stein, Francesco A. Evangelista, Justin T. Fermann, Benjamin J. Mintz, Lori A. 
Burns, Jeremiah J. Wilke, Micah L. Abrams, Nicholas J. Russ, Matthew L. 
Leininger, Curtis L. Janssen, Edward T. Seidl, Wesley D. Allen, Henry F. Schae- 
fer, Rollin A. King, Edward F. Valeev, C. David Sherrill, and T. Daniel Crawford. 
Psi4: an open-source ab initio electronic structure program. Wiley Interdisciplinary 
Reviews: Computational Molecular Science, 2(4):556–565, 2012. 

 
[31] Ewa Papajak, Jingjing Zheng, Xuefei Xu, Hannah R. Leverentz, and Donald G. 

Truhlar. Perspectives on basis sets beautiful: Seasonal plantings of diffuse basis 
functions. Journal of Chemical Theory and Computation, 7(10):3027–3034, 2011. 

 
[32] Edward G. Hohenstein and C. David Sherrill. Wavefunction methods for non- 

covalent interactions. Wiley Interdisciplinary Reviews: Computational Molecular 
Science, 2(2):304–326, 2012. 

 
[33] TURBOMOLE V6.5 2013, a development of University of Karlsruhe and 

Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 
2007; available from 
http://www.turbomole.com. 

 
[34] Stefan Grimme. Improved second-order Møller–Plesset perturbation theory by sep- 

arate scaling of parallel- and antiparallel-spin pair correlation energies. The Journal 
of Chemical Physics, 118(20):9095–9102, 2003. 

 
[35] Petr Jurec̆ka and Pavel Hobza. On the convergence of the (δECCSD(T)δEMP2) 

term for complexes with multiple H-bonds. Chemical Physics Letters, 365(1–2):89– 
94, 2002. 

 
[36] Petr Jurec̆ka, Jiri Sponer, Jiri Cerny, and Pavel Hobza. Benchmark database of 

accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small 
model complexes, DNA base pairs, and amino acid pairs. Physical Chemistry Chem- 
ical Physics, 8:1985–1993, 2006. 

http://www.turbomole.com/


Chapter 5.  The improvement and application of empirical dispersion corrections 101  
 

 
[37] T. Helgaker, J. Olsen, and P. Jørgensen. Molecular Electronic-Structure Theory. 

Wiley: New York, 2000. 
 

[38] A. Eugene DePrince and C. David Sherrill. Accurate noncovalent interaction ener- 
gies using truncated basis sets based on frozen natural orbitals. Journal of Chemical 
Theory and Computation, 9(1):293–299, 2013. 

 
[39] S.F.  Boys  and F. Bernardi. The  calculation of small molecular  interactions  by 

the differences of separate total energies. some procedures with reduced errors. 
Molecular Physics, 19(4):553–566, 1970. 

 
[40] A.J. Stone. The Theory of Intermolecular Forces. International Series of Mono- 

graphs on Chemistry. Clarendon Press, 1997. 
 

[41] Matthew P. Hodges and Anthony J. Stone. A new representation of the dispersion 
interaction. Molecular Physics, 98(5):275–286, 2000. 

 
[42] Kevin J. Fraser, Ekaterina I. Izgorodina, Maria Forsyth, Janet L. Scott, and Dou- 

glas R. MacFarlane. Liquids intermediate between “molecular” and “ionic” liquids: 
Liquid ion pairs? Chemical Communications, pages 3817–3819, 2007. 



Chapter 5.  The improvement and application of empirical dispersion corrections 102 

 

 



 

 
 
 
 
 
 
 
 

Chapter 6 
 
 
 
 

Conclusions and future work 
 
 
 
 
 

6.1 Conclusions 
 
 

This thesis has aimed to justify, and develop methodology, for the accurate calculation 
of intermolecular energetics of ionic liquids (ILs) on a large scale using methods based 
on ab initio quantum chemical techniques. This was achieved in the following ways: 

 
Identifying shortcomings of classical large-scale approaches 
Chapter 2 sought to challenge the assumptions made when characterising the electro- 
static interaction as applied to molecular dynamics (MD) simulations.  A number of 
atomic partial charge schemes in widespread use were selected and tested against a set 
of desirable characteristics: that (a) charges converge with increasing basis set size; (b) 
the charges are invariant with changes to the coordinate system; (c) minor structural 
changes do not unduly affect the resulting charges; (d) charge transfer effects present in 
ILs are adequately captured; and (e) the symmetry of charges is preserved in symmetric 
molecules. It was found that the most reliable atomic partial charge scheme was the 
“geodesic” scheme belonging to the restrained electrostatic potentials (RESP) family, 
which are often not adequately explained in the literature. In addition, dipole moments 
were derived from these partial charge schemes that gave weight to the importance of 
using polarisable classical models, or indeed ab initio quantum mechanical models, since 
ILs are highly polarisable. This necessitates some flexibility of the atomic partial charges 
such that they may adapt to the local environment of the individual ions during the 
course of the simulation, which conventional MD simulations do not allow. While it was 
found that charges can vary dramatically depending on the scheme used, the careful use 
of atomic partial charge schemes may still produce reliable forcefields, or at least serve 
as a rapid diagnostic tool to quantify electrostatic interactions and charge transfer. 

 
Demonstrating the need for large-scale ab initio calculations 
The linear-scaling fragment molecular orbital (FMO) approach in conjunction with the 
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second-order Møller Plesset perturbation theory (MP2) level of theory was used in Chap- 
ter 3 for a series of ILs arranged in clusters of increasing size. Here it was shown that 
the many-body effects can be substantial with the overall interaction energy on a per 
ion pair basis increasing rapidly as the cluster size is increased. It has been shown that 
at least three-body effects are necessary to reproduce a full-wavefunction MP2 energy 
using the FMO approach, and only at eight ion pairs (IPs) does the dispersion compo- 
nent of the interaction energy begin to plateau on a per ion pair basis. Of particular 
interest is the proportion of this energy arising from dispersion forces, which was found 
to only be around 8% for a single ion pair, but as much as 20% for an eight ion pair 
cluster. As the dispersion force is an effect originating purely from electron correlation, 
this chapter serves to portray ab initio quantum mechanical approaches as an essential 
tool in deriving a priori intermolecular energetics where the dispersion component of 
the interaction energy is poorly understood. 

 
Developing a quantum chemistry toolbox for semi-Coulombic chemical sys- 
tems 
Chapters 3, 4 and 5 have developed a set of methodologies to pave the way for large- 
scale IL calculations using quantum chemical approaches. In addition to establishing 
the need for large-scale calculations as described above, Chapter 3 quantifies the relia- 
bility of the FMO framework for semi-Coulombic IL systems where it was shown that a 
conventional correlated electronic structure theory, MP2, could be reproduced with sub- 
kJ mol−1  accuracy by truncating at the three-body term of the many-body expansion. 
As the FMO framework is designed to leverage highly parallel computing architectures, 
boasting near-linear scalability with respect to the number of central processing units 
(CPUs), this represents a tool that is central to the application of correlated levels of 
theory to large chemical systems. These are normally limited by the “exponential wall” 
that is a consequence of poor scalability with respect to system size, upwards of scal- 
ing as the seventh power for CCSD(T). With this, only counterpoise (CP) correction 
remains non-trivial as this method of basis set superposition error (BSSE) correction is 
not amenable to fragmented techniques. 

 

Chapter 4 tailors the widely used spin-component scaled second-order Møller Plesset 
perturbation theory (SCS-MP2) in order to reproduce CCSD(T)/CBS interaction ener- 
gies of ILs by refitting the spin component scaling coefficients to a representative set of 
ILs. This has resulted in the new SCS-IL-MP2 approach. The SCS-IL-MP2 approach is 
unique in that an explicit design goal was to implicitly account for BSSE, thus avoiding 
the need for CP correction that was identified as a key bottleneck. This was achieved 
by both fitting to CP corrected benchmark interaction energies and identifying the ideal 
basis set that produced the best fitting coefficients; the mean absolute error (MAE) for 
the cc-pVTZ basis set was less than 1 kJ mol−1. With the use of density-fitting, not 
only do MP2 energies at the cc-pVTZ basis set represent a trivial case for small- to 
medium-sized systems, but in conjunction with the FMO approach, the bottleneck is 
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shifted to one of CPU count rather than the “exponential wall,” disk or memory re- 
quirements. The performance of SCS-IL-MP2 was shown to retain its accuracy beyond 
the ion pair in Section 4.4 where performance was at least equivalent to MP2/cc-pVQZ 
if not better. 

 

Chapter 5 investigated an alternative approach to reproducing CCSD(T)/CBS energies 
by utilising type empirical dispersion corrections. In this chapter, the original formu- 
lation was compared against parameters refitted against the same set as in Chapter 4 
designed to reproduce benchmark energies under a number of different fitting conditions. 
These were determined for the PBE and BLYP functionals, as well as for the Hartree- 
Fock (HF) wavefunction. The two density functionals (DFs) were selected as they are 
in widespread use when performing ab initio molecular dynamics (AIMD) simulations, 
particularly for ILs. The performance of these dispersion corrections were analysed by a 
number of measures: firstly, the ability to produce a reduced MAE, maximum error and 
standard deviation for the fitting set was assessed. Then, a subset of ILs were scanned 
over a potential energy surface (PES) with the interionic distance ranging from −0.1 Å 
to +0.7 Å relative to the equilibrium geometry in view of identifying the DFT-D version 
3 (DFT-D3) parameters that provide the most accurate surface. Finally, these param- 
eters were tested against clusters of two and four IPs in size, with the best performing 
parameters identified in terms of their MAE and error distribution. It was found that 
in most cases, the selection of the DF and associated DFT-D3 parameters was often 
of little consequence with all reaching within 1 to 2 kJ mol−1 per IP, however refitted 
HF-D3 parameters showed a substantial improvement, particularly when used with the 
Becke-Johnson (BJ) damping function. Refitted HF-D3 and the BJ damping function 
was able to consistently provide interaction energy errors below 5 kJ mol−1 per IP. It 
should be noted that both HF and DFT levels of theory are easily performed within the 
FMO framework and easily applied to large chemical systems. 

 
 
 

6.2 Future work 
 
 

By providing a set of rigorously tested approaches and refinements to accepted and 
widely used formalisms, namely the FMO, spin component scaled, and DFT-D3 ap- 
proaches, one is well positioned to further investigate the physicochemical properties of 
ILs. Therefore a major aspect of future work involves implementing periodic boundary 
conditions for the FMO approach and then performing AIMD simulations in order to (a) 
determine suitable simulation box sizes, and (b) ultimately reproduce bulk properties 
of ILs. It is worthwhile investigating how accurately properties may be reproduced by 
means of SCS-IL-MP2 and DFT-D3 approaches, as well as further investigation into 
conventional and polarisable classical MD approaches. 



Chapter 6. Conclusions and future work 106  
 

 
Insofar as the dispersion corrected DFT approaches are concerned, the ability for these 
to produce accurate geometries – particularly in the case of HF-D3 – should be examined 
as a means to rapidly generate either valid, or reasonable starting guess structures for 
further  investigation. 



 

 
 
 
 
 
 
 
 

Appendix A 
 
 
 
 

Chemistry in the cloud 
 
 
 
 
 

A.1 Background 
 
 

The term “cloud computing” has been defined by the National Institute of Standards 
and Technology, U.S. Department of Commerce as “. . . a model for enabling ubitquitous, 
convenient, on-demand network access to a shared pool of configurable computing re- 
sources that can be rapidly provisioned and released with minimal management effort 
or service provider interaction.”[1] More specifically, cloud computing services are typ- 
ically categorised as one of either “Software as a Service,” “Platform as a Service,” or 
“Infrastructure as a Service.” These are abbreviated as SaaS, PaaS and IaaS, respec- 
tively. The differences in these models is essentially one of user control. SaaS providers 
offer computational resources configured to run only designated software applications, 
PaaS providers allow user-designed software to be provisioned but restrict access to the 
underlying operating system, and finally IaaS providers require that the user configure 
and manage the operating system and installed applications on virtual hardware. This 
Appendix will address exclusively IaaS services. 

 
 
 

A.2 The NeCTAR research cloud 
 
 

The National eResearch Collaboration Tools and Resources (NeCTAR) research cloud[2] 
is a government funded IaaS provider, providing federated compute resources established 
in eight locations, totalling approximately 30,000 cores at the time of writing. Cloud 
resources are provisioned and managed by OpenStack software.[3] As the NeCTAR re- 
sources (and OpenStack service providers in general) operate under the IaaS model, the 
allocation and usage of compute resources is made in terms of instances and cores. An 
instance is a self-contained “machine” with its own virtual hardware that is equivalent 
to an individual computer, and the number of cores is no different to the number of cores 
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in a physical computer. The term “virtual” here is used because the physical machines 
used to power the cloud services may emulate several individual machines, but this is 
invisible to the end user. 

 
Given that the user of an IaaS service is responsible for the configuration of the in- 
stances at an operating system level, leveraging these distributed resources is challeng- 
ing. Whereas traditional compute clusters tend to offer a preconfigured software stack 
and compute nodes that are tightly integrated, a cloud provider simply makes available 
hardware platforms upon which user-configured operating systems and software may 
run – a significant disincentive for those unfamiliar with how to replicate a traditional 
cluster and manage a queuing system such as Torque[4] or Slurm.[5] 

 
 
 
A.3 A cloud-friendly queueing system 

 
 
In order to simplify and automate the use of cloud resources to assist in undertaking 
research included in this thesis, a new cloud resource manager was developed known as 
“openstack-queue.” Designed using the Apache jClouds toolkit,[6] openstack-queue is 
able to automatically instantiate cloud instances, deploy software, initiate computation, 
collect results and terminate instances on-demand. In this way, cloud resources are 
made available to other users of the cloud infrastructure while no jobs are running, and 
the method of operation is very similar to Torque in that commands such as qsub and 
qstat may be loosely emulated. 

 
Openstack-queue is available as an open source software package, including full source 
code   documentation,   on   Github   here:     https://github.com/jasonrig/openstack-queue 
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Appendix B 
 
 
 
 

DFT-D3 error histograms 
 
 
 
 
 

B.1 Fitting  set  histograms 
 
 

B.1.1 Zero damping function 
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Figure  B.1:   HF-D3  orig.   zero 
damping function fitting set error 

histogram 

Figure     B.2: HF-D3  (B)  zero 
damping function fitting set error 

histogram 
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Figure     B.3: HF-D3  (C)  zero 
damping function fitting set error 

histogram 

Figure B.4:  PBE-D3 orig.  zero 
damping function fitting set error 

histogram 
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Figure  B.5:    PBE-D3  (A)  zero 
damping function fitting set error 

histogram 

Figure  B.6:   PBE-D3  (B)  zero 
damping function fitting set error 

histogram 
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Figure  B.7:   PBE-D3  (C)  zero 
damping function fitting set error 

histogram 

Figure B.8:  BLYP-D3 orig.  zero 
damping function fitting set error 

histogram 
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Figure  B.9:   BLYP-D3  (A)  zero 
damping function fitting set error 

histogram 

Figure B.10: BLYP-D3 (B) zero 
damping function fitting set error 

histogram 
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Figure B.11: BLYP-D3 (C) zero damping function fitting set error histogram 

 
 
 

B.1.2 Becke-Johnson damping function 
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Figure B.12:  HF-D3 orig.   BJ 
damping function fitting set error 

histogram 

Figure  B.13: HF-D3 (A) BJ 
damping function fitting set error 

histogram 
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Figure  B.14: HF-D3 (B) BJ 
damping function fitting set error 

histogram 

Figure  B.15:  PBE-D3 orig.  BJ 
damping function fitting set error 

histogram 
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Figure B.16:  PBE-D3 (A) BJ 
damping function fitting set error 

histogram 

Figure B.17:  PBE-D3 (B) BJ 
damping function fitting set error 

histogram 
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Figure B.18: BLYP-D3 orig. BJ 
damping function fitting set error 

histogram 

Figure B.19: BLYP-D3 (A) BJ 
damping function fitting set error 

histogram 
 

 
 

60 
BLYP-D3 (B.BJ) 

 
50 

 

40 
 

30 
 

20 
 

10 
 

0 
0 7 14 21 28 35 

Absolute error (kJ mol-1) 

 
Figure B.20: BLYP-D3 (B) BJ damping function fitting set error histogram 

 
 
 
B.2 Potential energy surface histograms 

 
 
The following error histograms for the potential energy surfaces discussed in Chapter 5 
include errors for each point of each ionic liquid (IL), totalling 441 single point energies 
(49 ILs at nine points along the surface). Therefore these histograms serve to evaluate 
the goodness of fit overall and not the performance of the DFT-D3 correction as a 
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function of distance; that is, the distinction between performance at a particular distance 
versus performance for particular ion pair or subset of ion pairs cannot be made. 

 

 
 

B.2.1 MP2 approaches 
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Figure B.21:   MP2/cc-pVTZ po- 
tential energy surface error his- 

togram 

Figure B.22: SCS-MP2/cc- 
pVTZ potential energy surface er- 

ror histogram 
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Figure B.23: SCS-IL-MP2 potential energy surface error histogram 

 
 
 

B.2.2 Uncorrected DFT functionals 
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Figure B.24:  PBE potential en- 

ergy surface error histogram 
Figure    B.25: BLYP  potential 

energy surface error histogram 
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B.2.3 Corrected DFT functionals and HF wavefunction 

 
 
B.2.3.1 Zero damping function 
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Figure  B.26:  HF-D3 orig.  zero 
damping  function  potential  en- 

ergy surface error histogram 

Figure  B.27:    HF-D3  (B)  zero 
damping  function  potential  en- 

ergy surface error histogram 
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Figure  B.28:    HF-D3  (C)  zero 
damping  function  potential  en- 

ergy surface error histogram 

Figure B.29:  PBE-D3 orig.  zero 
damping  function  potential  en- 

ergy surface error histogram 
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Figure  B.30:   PBE-D3  (A) zero 
damping  function  potential  en- 

ergy surface error histogram 

Figure  B.31:   PBE-D3 (B) zero 
damping  function  potential  en- 

ergy surface error histogram 
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Figure  B.32:   PBE-D3 (C) zero 
damping  function  potential  en- 

ergy surface error histogram 

Figure     B.33: BLYP-D3  orig. 
zero damping function potential 

energy surface error histogram 
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Figure B.34:  BLYP-D3 (A) zero 
damping  function  potential  en- 

ergy surface error histogram 

Figure B.35:  BLYP-D3 (B) zero 
damping  function  potential  en- 

ergy surface error histogram 
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Figure B.36:  BLYP-D3 (C) zero damping function potential energy surface error 

histogram 
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B.2.3.2 Becke-Johnson damping function 
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Figure  B.37:   HF-D3  orig.    BJ 
damping  function  potential  en- 

ergy surface error histogram 

Figure  B.38: HF-D3 (A) BJ 
damping  function  potential  en- 

ergy surface error histogram 
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Figure  B.39: HF-D3 (B) BJ 
damping  function  potential  en- 

ergy surface error histogram 

Figure  B.40:  PBE-D3 orig.  BJ 
damping  function  potential  en- 

ergy surface error histogram 
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Figure B.41:  PBE-D3 (A) BJ 
damping  function  potential  en- 

ergy surface error histogram 

Figure B.42:  PBE-D3 (B) BJ 
damping  function  potential  en- 

ergy surface error histogram 
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Figure     B.43: BLYP-D3  orig. 
BJ damping function potential en- 

ergy surface error histogram 

Figure B.44: BLYP-D3 (A) BJ 
damping  function  potential  en- 

ergy surface error histogram 
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Figure B.45:  BLYP-D3 (B) BJ damping function potential energy surface error his- 

togram 
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Appendix C 
 
 
 
 

DFT-D3 code patch for new 
coefficients 

 
 
 
 

The following code patch may be applied to the dftd3.f file that is part of the official 
DFT-D3 package, version 3.3.1.0 that is available from http://www.thch.uni-bonn. 
de/tc/index.php?section=downloads&subsection=DFT-D3&lang=english at the time 
of writing. The patch was generated using the Unix diff command. 

 
After compiling the patched code, the corrections outlined in Section 5.3.1, Tables 5.1 
and 5.2 may be invoked by executing dftd3  <coord  filename>  -func  <functional> 
-zero or dftd3 <coord filename> -func <functional>  -bj for the zero or BJ damp- 
ing functions, respectively. The <functional> parameter may be replaced with the text 
in quotes in the patch detailed below. For example, for HF-D3 (A) with BJ damping 
one may execute dftd3 <coord filename> -func hf-il-a -bj. 

 
 

---  dftd3-original/dftd3.3.1.0/dftd3.f 2014-06-30 22:40:02.000000000 +1000 
 

+++  dftd3-custom/dftd3.3.1.0/dftd3.f 2014-09-12 12:04:17.758600712 +1000 
 

@@ -909,6 +909,33 @@ 
 

alp =14.0d0 
 
 

select case (func) 
 

+ case   ("hf-il-a") 
 

+ s6 =0.6488 
 

+ rs6 =-0.1459 
 

+ s18  =1.3599 
 

+ rs18=4.8801 
 

+ case    ("pbe-il-a") 
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+ s6 =-0.5092 
 

+ rs6  =1.2479 
 

+ s18  =4.1538 
 

+ rs18=0.4698 
 

+ case   ("blyp-il-a") 
 

+ s6 =0.1749 
 

+ rs6  =0.6583 
 

+ s18  =2.9878 
 

+ rs18=2.3956 
 

+ case   ("hf-il-b") 
 

+ rs6 =-0.5293 
 

+ s18  =0.8877 
 

+ rs18=6.6430 
 

+ case    ("pbe-il-b") 
 

+ rs6  =1.0148 
 

+ s18  =0.6778 
 

+ rs18=1.3323 
 

+ case   ("blyp-il-b") 
 

+ rs6  =0.4333 
 

+ s18  =1.3139 
 

+ rs18=3.2632 
 

case ("b-p") 
 

rs6 =0.3946 
 

s18 =3.2822 
 

@@  -1145,6 +1172,37 @@ 
 

c default def2-QZVP (almost basis set limit) 

if(.not.TZ)  then 

select case (func) 
 

+ case   ("hf-il-b") 
 

+ rs6  =0.6862 
 

+ s18  =0.4443 
 

+ rs18=0.7062 
 

+ case   ("hf-il-c") 
 

+ rs6  =0.6067 
 

+ s18  =0.7129 
 

+ case    ("pbe-il-a") 
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+ s6 =3.6840 
 

+ rs6  =1.0844 
 

+ s18   =-9.4507 
 

+ rs18=1.2329 
 

+ case    ("pbe-il-b") 
 

+ rs6  =0.9858 
 

+ s18   =-1.1022 
 

+ rs18=1.4316 
 

+ case    ("pbe-il-c") 
 

+ rs6  =0.9987 
 

+ s18   =-0.0555 
 

+ case   ("blyp-il-a") 
 

+ s6 =0.2540 
 

+ rs6  =0.4621 
 

+ s18  =2.1983 
 

+ rs18=0.9929 
 

+ case   ("blyp-il-b") 
 

+ rs6  =0.9412 
 

+ s18  =0.6393 
 

+ rs18=0.8544 
 

+ case    ("blyp-il-c") 
 

+ rs6  =0.8513 
 

+ s18  =0.6092 
 

case   ("slater-dirac-exchange") 

rs6 =0.999 

s18 =-1.957 
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