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Abstract

Time series is the major source of information to study characteristics of the atmo-

spheric boundary layer (ABL), which is frequently dominated by various types of

events embedded in the time series with di↵erent levels of noise. To understand

physical dynamics of the atmospheric turbulence, the individual events need to be

detected and studied about their physical and structural characteristics. In spite

of the attention that has been given to studying events among the atmospheric sci-

ence community, the detection of events still presents a challenge, and thus their

characteristics and contributions to the ABL remain poorly understood. Besides

the existence of high level noise in turbulence, the main di�culty is that many of

the events that are responsible for the variability in the atmospheric turbulence

time series are previously unknown, especially in the stable ABL.

This dissertation develops a new method for detecting and classifying structures

from turbulence time series. The main idea of the method is in defining events as

time-series subsequences that are significantly di↵erent from noise. This switches

the focus of the event detection approach towards defining the characteristics of

noise, which is in many situations an easier problem than defining a structure.

For atmospheric time series, a natural characterization of the noise is red noise,

which is a stationary AR(1) process. The proposed method consists of two steps.

The first step of the method is event extraction based on noise tests. We perform a

noise test on each subsequence extracted from the series using a sliding window.

ix



All the subsequences recognized as noise are removed from further analysis, and

the events are extracted from the remaining non-noise subsequences. This step

does not assume particular geometries or amplitudes of the flow structures. In

the second step, the detected structures are classified into groups with similar

characteristics. This step groups large numbers of detected events such that it

opens a pathway for the detailed study of their characteristics, and helps to gain

understanding of events with previously unknown origin. In order to account for

the underlying characteristics of the extracted events, a feature-based clustering

method is used, which first summarizes each event with its global measures before

performing clustering in the feature space. It yields substantially better results

than clustering based on raw data of the events.

The developed R package TED is tested on artificial time series with di↵erent levels

of complexity and real world atmospheric turbulence time series. The results on

artificial data show that events used to generate the data can be exactly detected

and clustered. The method is robust to high levels of noise, which is advantageous

regarding very noisy turbulence time series. Application of the method to a well-

known real world turbulence dataset demonstrates that the method successfully

extracts realistic flow structures, which are in line with previous studies that have

examined the underlying physical mechanisms of several isolated events on that

dataset. From the application of the method to a more complicated turbulence

dataset, about which no published results can be found regarding extraction of

unknown events, the proposed method is able to detect and distinguish events

with di↵erent dynamical characteristics even though the clustering step is only

based on statistical measures of characteristics of events from time series.

x
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Chapter 1

Introduction

1.1 Background

Turbulence is one of the most challenging and exciting areas of fluid mechanics.

A complicated series of structures take place that eventually lead to the flow be-

coming turbulent. To understand how turbulence is generated and dissipated, its

internal structure needs to be studied (Robinson, 1991). In a geophysical context,

atmospheric turbulence is characterized by frequently occurring recognizable

structures atop the more random background motions. These flow structures

are usually responsible for the intrinsic phenomena of turbulence such as the

transport of mass, heat and momentum, and exert significant e↵ects on turbulent

mixing and dissipative properties (Hussain, 1983; Bergström and Högström, 1989).

They explain the rather organized and deterministic part of turbulence while the

remaining component is represented by more random superimposed background

motions (Hussain, 1983; Turner and Leclerc, 1994; Beluši’ and Mahrt, 2012; Cam-

panharo et al., 2008). Therefore, comprehensive studies of these flow structures

provide a powerful tool to improve our knowledge of turbulence flows. Likewise,

in order to better understand the turbulence in the atmospheric boundary layer
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(ABL), the major question is how to isolate the structures from the background

noise (Turner and Leclerc, 1994).

Over the last decades, despite a large body of knowledge that has been established

in the field of turbulent structures, the detection of such structures in the ABL

still presents a challenge. Firstly, high levels of noise are present in atmospheric

turbulence, which significantly increases the fundamental complexity of turbu-

lence phenomena. Secondly, many processes that characterize the variability in

atmospheric turbulence time series are from previously unknown origins, espe-

cially in the stable ABL (Mahrt, 2011a). As a result, the complete picture of the

flow structures and their dynamics remain poorly identified. However, these flow

structures are responsible for the production of turbulence in the boundary layer

and understanding them would significantly contribute to the general understand-

ing of turbulent flows. They need to be detected from background fluctuations

to get insights into the dynamical properties and behavior of the atmospheric

turbulence flows in terms of elementary structures.

“Events" and “structures" are used interchangeably in this thesis since “event" is

another name for a “structure". Structures are physical objects that we can be

viewed as events in time series. Because events are not exactly defined or well

known in literature, the focus of this thesis is to first detect events from time

series, and then analyse their dynamics to better understand what they are.

1.2 Event Detection in Atmospheric Sciences

Since the existence of non-random structures in turbulence was recognized, many

methods have been proposed to detect structures and study their nature. Some

of the methods that have been used mostly for detection and location of events

are summarized in this section. Each of them has unique criteria for definition of
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events and therefore yields di↵erent results. The notation has been unified in the

following description.

1.2.1 Variable Interval Time-Averaging (VITA)

The VITAmethod was firstly proposed by Blackwelder and Kaplan (1976) to detect

the occurrence of events in turbulence. The basic idea is that the appearance of

flow structures is supposed to result in larger fluctuation, which can be measured

by variance of short-time averages. For a signal f (s), its short-time variance

cvar(t,T ) at time t in the short-time-averaging interval T is defined as

cvar(t,T ) =
1
T

Z t+T
2

t�T
2

f 2(s)ds �
0
BBBBB@
1
T

Z t+T
2

t�T
2

f (s)ds

1
CCCCCA

2

. (1.2.1)

Blackwelder and Kaplan (1976) stated that the detection of events uses a threshold

✓ on the short-time variance cvar(t,T ). When cvar(t,T ) exceeds ✓�2
f , it indicates an

event, where �2
f is the variance of the signal f (s). Accordingly, the event detecting

function for VITA is

DVITA =

8>>>>><>>>>>:

1, if cvar(t,T ) � ✓�2
f ,

0, otherwise,
(1.2.2)

1.2.2 Windowed Averaged Gradient (WAG)

The WAG method was introduced by Antonia and Fulachier (1989) as an alterna-

tive to VITA. In this method, the abrupt changes associated with flow events are

detected by measuring the average gradient Grad(t,T ) at time t over some time

interval T :

Grad(t,T ) =
1
T

0
BBBB@

Z t

t�T
2

f (s)ds �
Z t+ t

2

T
f (s)ds

1
CCCCA . (1.2.3)
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The definition of the event detecting function for WAG is similar to that in VITA:

DWAG =

8>>>>><>>>>>:

1, if Grad(t,T ) � ✓�f ,

0, otherwise,
(1.2.4)

where �f is the standard deviation of the signal f (s).

The results of event detection using both VITA andWAG, to a large extent, depend

on the choice of parameters: the threshold ✓, which indicates the strength of

detected structures, and the short-time interval T , which relates to the time scale.

Usually the threshold is chosen by seeking a balance between better statistical

accuracy, which is given by a smaller ✓, and greater event significance given by a

larger ✓ (Segalini and Alfredsson, 2012). Having chosen the two parameters, de-

termination of the number of flow events is made according to the corresponding

criterion.

1.2.3 Quadrant Analysis

Each of the three velocity components (streamwise u, cross-streamwise v, vertical

w) can be separated into its mean value (u, v, w) and the fluctuating component

(u0, v0, w0). Quadrant analysis, firstly introduced by Wallace et al. (1972), aims to

find large |u0w0 | values in the quadrant of the u0 �w0 plane. The technique is based

on the scatterplot of u0 versus w0, whose Cartesian axes define four quadrants:

• Quadrant 1 (Q1): u0 > 0, w0 > 0;

• Quadrant 2 (Q2): u0 < 0, w0 > 0;

• Quadrant 3 (Q3): u0 < 0, w0 < 0;

• Quadrant 4 (Q4): u0 > 0, w0 < 0.
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The second quadrant Q2 and the fourth quadrant Q4 have been mostly used by

researchers, which characterize “ejection-like" and “sweep-like" events, respec-

tively (e.g., Wallace et al., 1972; Rajagopalan and Antonia, 1982; Thomas and

Foken, 2007a; Steiner et al., 2011). This method has been used in the turbulence

community to detect strong “sweep-like" or “ejection-like" events. The event

detecting function is defined as:

DQ =

8>>>>><>>>>>:

1, if |u0w0 | > ✓ and u0w0 < 0

0, otherwise,
(1.2.5)

The number and duration of events detected with quadrant analysis are sensitive

to the threshold parameter ✓. The number of events decreases quickly with larger

✓ (e.g., Bergström and Högström, 1989; Zhu et al., 2007; Steiner et al., 2011).

1.2.4 Wavelet Analysis

Since the introduction of the wavelet transform to turbulence research in Farge

(1992) and the suitability of wavelets analysis for the detection of events in turbu-

lence was verified in Collineau and Brunet (1993a,b), multiple wavelet methods

have successfully identified events from turbulence data (e.g., Gilliam et al., 2000;

Chen and Hu, 2003; Thomas and Foken, 2005; Barthlott et al., 2007; Segalini and

Alfredsson, 2012). It has been rapidly accepted as an objective method to detect

structures since it does not require specifications of parameters (e.g., specifica-

tion of the threshold level is required in VITA, WAG and quadrant techniques).

Wavelet analysis constructs a time-frequency representation of a signal using

wavelet functions o↵ering very good time and frequency localization, which in the

detection of events provides information on both moment of occurrence (time) and

the representative duration (frequency) of events. Essentially, wavelet transforms
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reveal the relative contributions of di↵erent time scales to the overall fluctuation

of the signal by decomposing a signal into scaled and translated wavelet functions.

The continuous wavelet transform of a signal x(t) can be represented as:

Wb(a) =
1
a

Z +1

�1
x(t) 

 
t � b
a

!
dt, (1.2.6)

where  (t) is the chosen mother wavelet function, a is the wavelet scale, b is

position translation, and Wb(a) represents the wavelet coe�cients.

The choice of wavelet function, which determines the final waveform shape, is

particularly important since the di↵erences between di↵erent mother wavelet

functions influence how the scaled signals and the wavelets are defined. Collineau

and Brunet (1993a) compared four wavelet functions (Mexican-Hat, HAAR, RAMP

and WAVE) for detection of jumps and concluded that the Mexican-Hat wavelet

outperforms others on the tested time series. Since then, several studies have

used the Mexican-Hat wavelet to detect structures in turbulence data (e.g., Chen

et al., 1997; Thomas and Foken, 2005; Barthlott et al., 2007; Feigenwinter and Vogt,

2005).

The mean time scale of events can be found by finding the peaks of the global

wavelet spectrum over all time scales (e.g., Collineau and Brunet, 1993a; Mahrt,

1991; Mahrt and Gibson, 1992). The zero-crossings of the wavelet coe�cients

at the scale of the maximum global wavelet spectrum provide information on

the moments of event occurrence. The global wavelet spectrum (also known as

wavelet variance), introduced by Collineau and Brunet (1993a), can be obtained

by integrating the square modulus of the wavelet coe�cients over all translations

for each wavelet scale:

W (a) =
1
a

Z +1

�1
|Wb(a)|2db. (1.2.7)
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As an example, we here summarize the main steps of the popular wavelet method

in Thomas and Foken (2005), which is used for the comparison with the proposed

method in Chapter 5 of this thesis. For each half hour interval of data, it detects

structures following these main steps:

1. Normalize the given signal by subtracting the mean and dividing by the

standard deviation.

2. Filter out low frequency motions from the high frequency turbulence using

the BIOR5.5 wavelet function as a low pass filter, which consists of two

sets of wavelets generated by a mother wavelet and a dual wavelet. The

BIOR5.5 wavelet function has been shown to outperform HARR regarding

localization in frequency (Kumar and Foufoula-Georgiou, 1994).

3. Determine the event duration (characteristic time scale) using the Morlet

wavelet function according to the peak scale of the global wavelet spectrum.

The Morlet wavelet function is defined as:

 (t) = ⇡�1/4e�i!0te�t
2/2. (1.2.8)

It exhibits only one distinct peak when used to calculate the global wavelet

spectrum (Thomas and Foken, 2005).

4. Detect individual structures by defining the zero-crossings of the Mexican-

Hat wavelet coe�cients at the chosen time scale as the moments of event

occurrence (Collineau and Brunet, 1993a; Thomas and Foken, 2005). The

Maxican-Hat wavelet is defined as the negative normalized second derivative

of a Gaussian function e�t
2/2:

 (t) =
2p

3⇡1/4
(1� t2)e�t2/2. (1.2.9)
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Increasing- or decreasing-type structures can then be identified by observing

the signs of the wavelet coe�cients at the zero-crossing points.

1.2.5 Other Methods

Besides the above-mentioned event detection methods, some studies assume

events have some types of geometric shapes and search for them in a supervised

manner. The ramp function is most frequently used (e.g., Antonia and Fulachier,

1989; Wilczak, 1984; Chen et al., 1997; Shapland et al., 2012a,b; Barthlott et al.,

2007) while other patterns such as sine functions for waves or step functions for

microfronts are also assumed (e.g., Mahrt, 2010; Beluši’ and Mahrt, 2012). Phase

relationship has also been used as an indicator of structures (e.g., Campanharo

et al., 2008; Chian et al., 2008).

1.2.6 A Summary of Event Detection Methods

As shown above, each event detection method focuses on certain components in

the data. A summary of them is as follows.

• The existing methods search for structures with specific characteristics such

as sharp gradients, large amplitudes, certain geometrical shapes, or high

phase correlation. Variable Interval Time-Averaging (VITA) technique (e.g.,

Blackwelder and Kaplan, 1976; Collineau and Brunet, 1993b; Segalini and

Alfredsson, 2012) looks for abrupt changes by calculating the short-time

variance over a fixed time interval; Windowed Averaged Gradient (WAG)

technique (e.g., Antonia and Fulachier, 1989; Bisset et al., 1990; Collineau

and Brunet, 1993b) detects rapid changes using a measure of the average

gradient over some window length; the popular wavelet-based technique

searches for large amplitudes with certain geometrical shapes resembling
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the expected structure given by the chosen wavelet function (e.g., Farge,

1992; Collineau and Brunet, 1993a; Gilliam et al., 2000; Chen and Hu, 2003;

Thomas and Foken, 2005; Barthlott et al., 2007; Segalini and Alfredsson,

2012). Other methods focus on di↵erent preassumptions of events.

• The VITA, WAG and quadrant techniques depend on the choices of several

parameters which limits their application for an objective detection (Bogard

and Tiederman, 1986).

• The objective wavelet-based methods perform better than others (e.g.,

Collineau and Brunet, 1993b; Hudgins and Kaspersen, 1999; Segalini and

Alfredsson, 2012), but they are not good at distinguishing between signal

and noise of comparable amplitudes and even tend to yield structures when

provided with a noise-only time series (Collineau and Brunet, 1993a; Kang

et al., 2014c).

In conclusion, the existing event detection methods, which emphasize only a

very limited number of large-amplitude or sharp-jump patterns, leave many

other structures existing in the stable boundary layer not detected. Their origins,

characteristics, and e↵ects are currently unknown, although they could be an

important contributor to the overall mixing and production of turbulence in

stable conditions. In such situations, it is desirable to establish an event detection

method that does not assume predefined geometries or other underlying physical

processes.

1.3 Pattern Searching in Time Series Analysis

While the objective of detecting flow structures is to derive detailed physical

properties of turbulence, an organization of the detected events into groups, if

achievable, is essential to ease the analysis and understanding of typical dynamical
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and behavioral patterns in stable ABL. From the perspective of time series data

mining, event detection and classification in turbulence corresponds to extraction

of previously unknown, frequently occurring patterns in time series.

An initial idea to achieve that is to cluster all the subsequences extracted using a

sliding window and get the prototypes of the typical shapes in the series. However,

Keogh et al. (2003) demonstrates that the clustering of overlapping subsequences

of time series yields meaningless results since it always returns sine wave cluster

centers regardless of the dataset. That triggered a great interest in the topic of

motif discovery, which is proposed to make clustering of time-series subsequences

meaningful. Motif discovery finds every subsequence (named motif) that approxi-

mately appears recurrently in a longer time series. This idea was transferred from

gene analysis in bioinformatics. Since the definition of motif discovery was first

introduced in Lin et al. (2002), several algorithms have been proposed (e.g., Mueen

et al., 2009b; Chiu et al., 2003; Mueen et al., 2009a; Yankov et al., 2007; Wilson

et al., 2008; Lam et al., 2011; Castro and Azevedo, 2012). In Lin et al. (2002), two

user-defined parameters — a range R and a motif length n are specified. Two

subsequences whose Euclidean distance is less than R forms a match. The most

significant motif, known as 1-motif, is defined as the subsequence which has the

largest number of non-trivial matches. Its generalization to k-motif returns the

top-k motifs.

1.3.1 Pattern Searching Using Approximate Algorithms

The exact motif discovery solution for a time series presents high computational

complexity (e.g. Lin et al., 2005; Mueen et al., 2009b; Castro and Azevedo, 2010).

For that reason, most researchers have focused on approximate solutions to dis-

cover motifs, that can reduce the complexity by a large constant factor. Approx-

imate algorithms search for motifs from discrete approximations of time series
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instead of the raw time series. Lin et al. (2003) proposed a symbolic represen-

tation of time series, called SAX (Symbolic Aggregate approXimation), which

provides opportunities for borrowing the already established techniques for find-

ing the overrepresented DNA sequences in bioinformatics. For example, Chiu et al.

(2003) proposed a probabilistic motif finding method based on random projection

algorithm, which was successfully used in research for pattern discovery in biose-

quences. SAX representation of each time series subsequence is used to construct

the base structure for the projection algorithm. It then hashes the subsequences

into buckets. Buckets with multiple entries represent potential motif candidates.

In Ferreira et al. (2006), time series subsequences were first transformed into the

SAX representation before finding motifs in time series of proteins. In Tanaka et al.

(2005), the authors introduced an algorithm to find motifs in multivariate time

series. They firstly transform the multivariate time series into one signal using

Principal Component Analysis. Motifs are found from the univariate data based

on the algorithm in Chiu et al. (2003). Lin et al. (2005) used the SAX technique to

generate a set of symbol strings for the subsequences from the time series, which

are filtered into a su�x tree. The width of the tree branch shows the frequency of

potential motifs. Wilson et al. (2008) proposed MTA (Motif Tracking Algorithm)

using a novel immune inspired approach to evolve a population of trackers that

seek out and match the motifs present in a time series. The first step of MTA

is converting a time series to a symbolic representation using SAX. Castro and

Azevedo (2012) presented an approach to calculate the statistical significance

of the time series motifs. To derive each motif’s significance p-value, they used

iSAX (enhanced from SAX by Shieh and Keogh (2008)) to discretize the time series

motifs.
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1.3.2 Exact Pattern Searching

The above literature mainly uses approximate algorithms to find motifs. More re-

cently, under the nearest-neighbor motif definition, Mueen et al. (2009b) proposed

the first tractable exact motif discovery algorithmMK, to find exact motifs directly

in the raw time series data. The motif search is made more e�cient by early

abandoning the Euclidean distance computation as soon as the cumulative sum

goes beyond the current best-so-far and using the heuristic information calculated

by the linear ordering of the distance of an object with respect to a few random

reference points. MK, which is able to process very large datasets by up to three

orders of magnitude faster than an exhaustive brute-force algorithm, is a sound

contribution discussed a lot in the studies of motif discovery search (e.g., Mueen

and Keogh, 2010; Lam et al., 2011; Castro and Azevedo, 2010; McGovern et al.,

2011), so it is used in Chapter 4 of this thesis for a comparison with the proposed

method.

1.3.3 A Summary of Pattern Searching

The potential application of the reviewed pattern searching algorithms in turbu-

lence time series is summarized as follows.

1. The algorithms based on symbolic approximation are not advantageous for

turbulence data. Besides their non-exact nature, approximate algorithms

would introduce more di�culty in separating random noise from events

when background randommotions have comparable amplitudes than events,

which can frequently happen in turbulence data.

2. The exact motif discovery algorithm is automatic and e�cient. But we show

later in the thesis that it tends to include a greater portion of noise in motifs
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given the existence of the large amount of noise and the variety of noise

types in turbulence data (Kang et al., 2014c).

1.4 Objectives

Given a turbulence time series and assuming it is composed of non-random

structures embedded in random noise, the goal of this thesis is to propose a novel

method to extract and classify the structures from the time series and analyze

their dynamics. From the above discussions, firstly, the initial idea of clustering

sliding time series subsequences to get recurring structures is not suitable because

of its meaninglessness (Keogh et al., 2003). Secondly, the existing event detection

methods in atmospheric sciences require assumptions on the event geometry or

amplitudes, which is not advantageous for finding a larger variety of types of

events (e.g., Antonia et al., 1979; Wilczak, 1984; Collineau and Brunet, 1993a,b).

Thirdly, the motif discovery algorithms in the time series data mining community

tend to yield non-accurate events because of the ubiquity of noise in turbulence

data (Kang et al., 2014c).

To address these limitations, the following detailed objectives are set in this thesis.

1. Develop a method to detect and classify events from very noisy turbulence

time series. The event detection method does not require any assumptions

of characteristics of events in terms of their geometric properties. It is

expected to be able to deal with the high level of background noise found in

atmospheric turbulence time series. Also, it should be applicable for di↵erent

atmospheric conditions and not limited to the scale of the phenomena.

The event classification method needs to group the detected events into

clusters with similar physical characteristics. Firstly, for easier physical

interpretation of event clusters, the classification is expected to capture
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the global characteristics of event time series so that events in each cluster

have similar geometric shapes. Secondly, since the detected events do not

necessarily have the same length, clustering should not assume time series

with the same length.

2. Demonstrate the applicability of the proposed method — test the method on

a well-known atmospheric turbulence time series, and validate the method

by comparing application results to previous studies of the underlying

physical mechanisms behind the dataset.

3. Apply the method to study the generally unknown stable ABL — detect the

existing events, find the main physical and structural dynamics of di↵erent

types of events and explore how these events a↵ect atmospheric stability

and turbulence.

4. Develop statistical software for the method and make it easily available for

further analysis of ABL data.

1.5 Thesis Outline

This thesis addresses the first three objectives outlined above in five individual

publications, which are included between the thesis introduction and conclusion

chapters; and the fourth objective is addressed by a developed R software package,

the manual of which is located in the thesis appendix. The contents in each chapter

and their connections are described as below.

Chapter 1 of the thesis is an introductory chapter highlighting the motivations,

di�culties of turbulence data analysis, discussion of literature and the objectives,

which are briefly introduced above.
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Chapters 2 to 4 address the first objective — method development. In Chapter 2

(Kang, 2012), we study unsupervised change detection in time series, by which

we can see how detected patterns transit from one type to another. We propose a

Growing Feature Quantization (GFQ) approach using a set of features to charac-

terize a time series subsequence and then introduce a user defined parameter to

control the growth rate of the cluster formation. Changes are defined as the transi-

tion of subsequences from one cluster to another. This method reveals transition

migration of subsequences between existing clusters.

Chapter 3 (Kang et al., 2014d) continues addressing the first objective. Despite

the usefulness of GFQ in the synthetic and benchmarking data, it turns out to

be not as applicable to turbulence data, due to the complexity of turbulence

time series. This leads to two questions: (1) what are events? (2) what are their

major characteristics? We start from the typical type of events that are frequently

studied in literature — coherent structures. Note that other structures such as

waves, microfronts, gravity currents, and other unknown phenomena can also be

events. Detection of coherent structures assumes certain definitions of coherent

structure, among which the most common one was given by Hussain (1983): “A

coherent structure is a connected turbulent fluid mass with instantaneously phase-

correlated vorticity over its spatial extent.” Since then, the phase correlation

is generally assumed to be a typical characteristic of structures, which could

potentially be used for event detection. The main objective of this chapter is to

study the relationship between coherent structures and their phase correlations.

We first apply a standard wavelet-based technique to detect coherent structures

from a real-world dataset (Thomas and Foken, 2005; Barthlott et al., 2007), and

examine their phase correlations using two di↵erent measures — the coherence

index (Sahraoui, 2008; Chian et al., 2008; Koga et al., 2008; Hada et al., 2003),

and the nonlinearity measure based on nonlinear prediction error (nmnpe) (e.g.,

Sugihara and May, 1990; Schreiber and Schmitz, 1997; Rhodes and Morari, 1998;
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Choudhury et al., 2008b,a; Schreiber and Schmitz, 2000). It turns out that coherent

structures do not necessarily have strong phase correlation. Therefore, using phase

correlation as an indicator of coherent structures is not reliable.

Chapter 4 (Kang et al., 2013) results from the uncertainty in the definition of

structures and provides a big step to approach the first objective. In this chapter,

considering the di�culty of directly quantifying characteristics of events, we shift

our focus from finding events to firstly finding the noise in the time series since

there is a large amount of noise in between the events. Since the focus of this

study is on atmospheric time series, red noise is assumed for the background

noise (Storch and Zwiers, 1999; Ghil et al., 2002), although other types of noise are

considered as well. Once noise is recognised and excluded, we define the remain-

ing parts of the time series as potential events. A two-step method is proposed

to realize the objective. As mentioned above, the first step is to extract events,

by performing a noise test on each subsequence extracted from the series using

a sliding window. All the subsequences recognized as pure noise are removed

from further analysis, and the events are extracted from the remaining non-noise

subsequences. The second step is to cluster the extracted events into similar

patterns. This step is based on a set of features that carry the information about

global characteristics of an event (Wang et al., 2006). The proposed method, by

firstly removing the noise subsequences and considering global characteristics

rather than raw data, avoids the “meaningless subsequence clustering" limitation

demonstrated in Keogh et al. (2003).

Chapter 5 (Kang et al., 2014c) is to address the second objective. To make the

method ready for further research, we verify it against a frequently studied

real world ABL dataset — CASES-99 (Poulos et al., 2002). One day of the 1-

s averages of the thermocouple temperature data from CASES-99 is used for

extraction, clustering and interpretation of events. Physical characteristics of

events in each cluster are analyzed. Since a number of published studies have
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examined the underlying physical mechanisms of several isolated events on that

day (Thomas et al., 2006; Wilczak, 1984; Williams and Hacker, 1992; Sun et al.,

2012; Blumen et al., 2001; Poulos et al., 2002), we test the performance of the

method by comparing the results and insights with the previous studies.

Chapter 6 (Kang et al., 2014a) is to address the third objective. The method is

applied, with some improvements, on a more complicated turbulence dataset —

FLOSSII (Mahrt, 2011b). This dataset is frequently characterized by the stable

ABL, which has unknown structures. No published results can be found regarding

extraction of previously unknown events. Apart from that, only a few studies

have carried out a detailed and comprehensive analysis on the global physical

characteristics of events in stable ABL. In this context, the purpose of this chapter

is to find the events, classify them, characterize the dynamical and structural

properties of di↵erent kinds of events, and especially discuss the contribution of

events to atmospheric stability and turbulence.

Chapter 7 presents some concluding remarks with an overview of the results, the

contributions of the thesis and directions for future work.

Appendix A (Kang et al., 2014b), which comes last in this thesis, is to address the

fourth objective. The event detection method was developed in R language (R Core

Team, 2013). We have contributed the developed R package TED (Turbulence

Event Detection and classification) to the Comprehensive R Archive Network

(CRAN), a network of WWW sites holding the R distributions and contributed

code, to share our work with the community. The manual of the package is

appended.

Since this is a “Thesis by Publication" which consists of a new introduction and

conclusion with published papers in between, unfortunately, it has inevitably

created some amount of repetition among chapters. For the sake of thesis unity,
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all the references of publications are located in a single Bibliography after chapter

7 and acknowledgements in the publications are covered by the thesis Acknowl-

edgement.
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Chapter 2
Real-time Change Detection in Time
Series Based on Growing Feature

Quantization



Chapter 2 is based on the article Kang Y. 2012. Real-time change detection in

time series based on growing feature quantization. In: Proceedings of the 2012

International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–6,

doi: 10.1109/IJCNN.2012.6252381.

Abstract. An unsupervised time series change detection method based on an extension

of Vector Quantization (VQ) clustering is proposed. The method clusters the subse-

quences extracted with a sliding window in feature space. Changes can be defined as

transition of subsequences from one cluster to another. The method can be used to

achieve real time detection of the change points in a time series. Using data on road ca-

sualties in Great Britain, historical data on Nile river discharges, MODerate-resolution

Imaging Spectroradiometer (MODIS) Normalized Di↵erence Vegetation Index data

and x simulated data. It is shown that the detected changes coincide with identifiable

political, historical, environmental or simulated events that might have caused these

changes. Further, the online method has the potential for revealing the insights into the

nature of the changes and the transition behaviours of the system.

Keywords. Change Detection; Feature Space; Vector Quantization; Time Series.

References are considered at the end of the thesis.



Chapter 2

Real-time Change Detection in Time

Series Based on Growing Feature

Quantization

2.1 Introduction

Time Series data are generated, maintained, and processed within a broad of

application domains in di↵erent fields. Mining such time series data becomes

vital as the applications demand for understanding of the underlying processes or

phenomena that generate the data. A specific interesting mining task is to detect

changes in a given time series. Early identification of changes in a time series is

one of the most promising topics in statistics (Verbesselt et al., 2010a; Zeileis et al.,

2003; Bai and Perron, 2003; Verbesselt et al., 2010b) and data mining (Sharifzadeh

et al., 2005; Kifer et al., 2004; Firoiu and Cohen, 2002; Keogh et al., 2001b; Tsai

and Shieh, 2009) due to the numerous applications where early warning systems

are needed. Also, known as change detection or sometimes event detection,

this problem covers a broad range of areas of application including land cover

25



Chapter 2 – Kang (2012)

change detection (Verbesselt et al., 2010a; Salmon et al., 2011; Lunetta et al., 2006),

early warning of pandemic outbreaks (Culotta, 2010), signal segmentation in

data streams (Keogh et al., 2001b; Firoiu and Cohen, 2002), fault detection in

engineering systems (Fujimaki et al., 2005), telecommunication network (Burge

et al., 1997), economics (Jouini and Boutahar, 2005) and business (Tsai and Shieh,

2009).

The aim of this paper is to propose a new method for real-time change detec-

tion, that generates insights into the transition behaviours of the system. Vector

Quantization (VQ) is a popular and widely applied clustering algorithm (Gray,

1984), which moves clustering centres denoted as code-book vectors towards

accumulation points in the data set. The algorithm will be described in section

2.3.2. We propose a growing VQ approach using a set of features to characterise a

time series subsequence and then introduced a user defined parameter to control

the growth rate of the cluster formation. Then changes are defined as the transi-

tion of subsequences from one cluster to another. This method reveals transition

migration of subsequences between existing clusters and helps find new states of

the system.

The paper is organised as follows. Section 2.2 presents a brief review of relevant

research. Section 2.3.1 represents the feature extraction of sliding windows.

Section 2.3.2 presents vector quantization clustering and change detection based

on a new algorithm which we call growing feature quantization (GFQ). Section

2.3.3 describes how to recognise changes and transitions between clusters. Section

2.4 presents the results for three well-known datasets and two simulated time

series. Section 2.5 presents the conclusions.
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2.2 Related Work

A typical statistical formulation of change-point detection is to consider probabil-

ity distributions from which data in the past and present intervals are generated,

and regard the current time point as a change point if two distributions are sig-

nificantly di↵erent (Kawahara and Sugiyama, 2009). Various other approaches

have been investigated, such as the CUSUM (CUmulative SUM) (Zeileis et al.,

2003; Verbesselt et al., 2010a), direct density-ratio estimation (Kawahara and

Sugiyama, 2009) and unsupervised time series subsequence clustering (Salmon

et al., 2011). CUSUM detects changes by investigating the sum of linear regression

errors. When the errors exceed a threshold, we consider that the time series no

longer fits the regression model and a change occurred. Direct density-ratio esti-

mation is a non-parametric approach to estimate the ratio of probability densities.

Whether there is a change point is decided by monitoring the logarithm of the

likelihood ratio. The unsupervised time series subsequence clustering clusters the

subsequences and defines the transition of the subsequence from one cluster to

another as a change. However, those approaches only give indication if change

has occurred rather than providing insights into the nature of the change and

the transition behaviour of the system. In Salmon et al. (2011), the unsupervised

clustering method to detect land cover change has the potential for revealing

patterns in the system, but it could not be used to deal with recently acquired

data.

Considering that a rapid response or early warning is crucial in many cases,

this paper proposes a method for real time detection of the change points in time

series. The proposed method is based on time series subsequence clustering. There

are two main categories in time series clustering (Keogh et al., 2003). “Whole

clustering" is similar to that of conventional clustering of discrete objects. The

entire time series is taken as a discrete object. In contrast, “subsequence clustering"
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is performed on individual subsequences extracted with a sliding window. A

subsequence xp(t) for a time series x(t) with length m is

xp(t) = (x(tp), · · · ,x(tp+w�1)) (2.2.1)

for 1  p  m �w + 1, where w is the length of the subsequence. The sequential

subsequences in (1) are extracted using a sliding window with a length of w and

position p, which is incremented with a natural number N. Widespread use of

subsequence clustering has been made in di↵erent areas. However, the sliding

window causes the clustering procedure to create meaningless results as it forms

sine wave cluster centres regardless of the data set, which makes the clusters

extracted by any clustering algorithm essentially random (Keogh et al., 2003).

To address this problem, several solutions have been used. Keogh et al. (2003)

demonstrated a meaningful motif-based-clustering method. Chen (2005) and

Goldin et al. (2006) used alternative distance measures to make sequential time

series clustering meaningful. In Wang et al. (2006), global measures describing

time series were proposed to capture the underlying characteristics: trend, sea-

sonality, periodity, serial correlation, skewness, kurtosis, chaos, nonlinearity and

self-similarity, and the clustering was performed on the subsequences defined

by a feature vector of these measures. Salmon et al. (2011) demonstrated three

di↵erent unsupervised clustering approaches that operate on short term Fourier

transform coe�cients computed over subsequences that are extracted with a tem-

poral sliding window and created meaningful sequential time series. Here we

borrow the idea of Salmon et al. (2011) and Wang et al. (2006) and use a set of

subsequence features to map the original subsequences into feature space before

clustering subsequences meaningfully. However, changes are detected here in an

on-line manner while Salmon et al. (2011) operates clustering o↵-line.
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2.3 Proposed Methodology

2.3.1 Feature Extraction

It is claimed in Keogh et al. (2003) that non-overlapping sliding windows, with

their positions incremented by exactly the periodic length, would produce valid

clusters when applied to a periodic time series. However, using the magnitude

of the first few Fast Fourier Transform (FFT) components of xp(t) to characterise

the subsequences makes the sliding window position p not have to be shifted by

a fixed amount, but can be incremented by any natural number N (Salmon et al.,

2011). For each subsequence xp(t), the features xp(f ) are computed as

Xp(f ) = |F (xp(t))| (2.3.1)

where F (·) represents the Fourier transform. The window length w depends on

the type of time series. For seasonal time series, w is always fixed at the number

of samples corresponding to the length of the cycle.

Moreover, additional features beyond FFT components like chaotic properties,

serial correlation and so on (Wang et al., 2006) could be calculated to characterize

the time series subsequences.

2.3.2 Unsupervised Change Detection: Growing Feature Quan-

tization

VQ clustering is a classical quantization technique to divide a large set of points

(vectors) into groups. Each group is represented by its centroid point. Its goal is

to discover structure in the data by finding how the data is clustered. In VQ, there

is a codebook which is defined by a set of M prototype vectors. M is chosen by the
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user and the initial prototype vectors are chosen arbitrarily. An input belongs to

cluster i if i is the index of the closest prototype. From the mathematical point of

view, vector quantization is basically a simplified version of k-means (Lughofer,

2008). The simple idea is in Algorithm 1.

Algorithm 1 VQ
1: Choose the number of clusters M
2: Initialize the prototypes w1, · · · ,wm
3: Randomly pick an input x
4: Find the winning cluster w⇤ by finding the prototype vector satisfying

|w⇤ � x|  |wi � x|, i = 1, · · · ,M (2.3.2)

5: Update the winning prototype weights according to

w̄⇤new = w̄⇤old + ⌘ ⇤ (x � w̄⇤old) (2.3.3)

where ⌘ is the adaptation value

Algorithm 1 can not be applied for data sets with an unknown number of clusters.

Various clustering approaches have been presented in an incremental manner such

as sequential k-means (Duda et al., 2001), dynamic Self Organised Maps (SOM)

(Alahakoon et al., 2000) and Growing Neural Gas (Jirayusakul and Auwatana-

mongkol, 2007; Sledge and Keller, 2008). The GFQ clustering is proposed in this

paper. The goal is to cluster the subsequence features incrementally, by which

new clusters can be recognized in time and the number of clusters do not have

to be known in advance. In some systems like infectious diseases the earliest

possible warning of a change is required, while in other systems an early warning

of changes costs a lot of energy, money and sometimes panic. To enable the sen-

sitivity of the system to be controlled, a user defined single parameter R is used.

For each incoming feature vector x, if this condition is fulfilled:

distance(x,w⇤) � R (2.3.4)
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Figure 2.1: How the choice of R influences the number of clusters

where w⇤ is the winning prototype, we create a new cluster, which x belongs to.

Otherwise, x belongs to the winning cluster. The number of clusters will become

smaller with the parameter R growing (Fig. 2.1). This parameter, determined by

trial and error, should be around
p
d/3, where d is the dimension of the feature

space. Of course, this parameter can be flexibly tuned according to the real world

context to reduce false alarms or increase early warnings. The whole process is

summarized in Algorithm 2.

A one-pass incremental and evolving variant of VQ were demonstrated in Lughofer

(2008) by incorporating a vigilance parameter, exploiting the idea in the adaptive

resonance theory (ART) (Carpenter and Grossberg, 2010). However the prototype

vectors are not rescaled when the incoming input is outside the estimated range,

which actually places the new input on a di↵erent scale to the prototype vectors.
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Algorithm 2 GFQ
1: Initialize a threshold R, which gives a radius around a cluster prototype, in

which feature vectors must lie to belong to the cluster
2: Initialize an adaptation value ⌘, which depends on the number of inputs in

the cluster
3: Collect a few data samples to obtain the estimated maximum and minimum

for each feature component, and hence the estimated ranges of each feature
4: Initialize C = 1, where C is the current number of clusters; initialize a cluster

prototype w1, which is the first normalized input
5: Read the next incoming subsequence and calculate its feature vector x as the

new input
6: if x is outside the estimated range then
7: Update the ranges of each feature
8: Rescale the current cluster prototypes using the updated ranges of each

feature
9: else

10: Use the current estimated ranges of each feature
11: Normalize the input to [0,1]d according to the ranges, where d is the dimension

of the feature space. Name the normalized input as x̂
12: Find the winning cluster w⇤ by finding the prototype vector satisfying

|w⇤ � x̂|  |wi � x̂|, i = 1, · · · ,C (2.3.5)

13: if distance(x̂,w⇤) < R then
14: Make x̂ a member of w⇤

15: Let C = C
16: Update the winning cluster center:

w̄⇤new = w̄⇤old + ⌘ ⇤ (x̂ � w̄⇤old) (2.3.6)

17: Update the adaptation rule:

⌘ = 1/(number of inputs in the cluster) (2.3.7)

18: else
19: Create a new cluster; make x̂ a member (and the center) of the new cluster
20: Let C = C +1
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2.3.3 Recognising changes and transition behaviours

Changes in time series are defined as the transition of the subsequence from one

cluster to another within the feature space which characterise the time series

subsequences. Thus the transition behaviours can be identified according to the

memberships of the subsequences. It reveals whether the transition is between

existing clusters or it changes to a new state. In this way, the states of the system

can be both qualitatively and quantitatively described.

2.4 Results

2.4.1 The seatbelt data

The seatbelt data is a monthly time series (from Jan 1969 to Dec 1984) of the

number of car drivers in Great Britain killed or seriously injured in tra�c accidents.

There are two breakpoints in this time series, which are Oct 1973—associated

with petrol rationing and the introduction of lower speed limits during the first

oil crisis—and Jan 1983—associated with the seat belt law introduced in the

UK on 1983-01-31 (Harvey and Durbin, 1986). The sliding window length is

fixed at w = 12 samples to correspond to the length of the annual cycle. We

use magnitudes of the first four FFT components to characterize the sliding

windows. Global features like chaotic properties are not used here because the

short length of the subsequences and the short sliding step will not make those

features of the subsequences well distinguished. In Fig. 2.2, the circles represent

the ending points of the corresponding subsequences. Di↵erent colors means

the subsequences are grouped into di↵erent clusters. From Fig. 2.2, using GFQ

clustering, the transitions from one cluster to another can be seen both in end of

1973 and beginning of 1983.

33



Chapter 2 – Kang (2012)

Figure 2.2: SeatBelt time series

To reveal the transition process in this system, denote the three clusters in this

system as states S1,S2,S3. At the end of 1973, the system changed from S1 to

S2, after which the system went back to state S1 from the beginning of 1976 till

1983. After that, there came a new state S3 in the beginning of 1983 because of

the introduction of the seat belt law.

To make comparisons, Fig. 2.3 gives the clustering results using growing vector

quantization based on raw data (but not features). The results are in line with

the “meaningless " interpretation reported in Keogh et al. (2003). On the other

hand, Fig. 2.2 indicates the meaningful subsequence clustering based on features.

Fig. 2.4 gives the clustering results using k-means based on features. The two

main changes identified using GFQ are roughly in accordance with the changes

detected using k-means. This indicates that GFQ can obtain similar quality results

as k-means but GFQ clustering is a real-time method, in which the number of

clusters don’t have to be known in advance.
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Figure 2.3: SeatBelt time series subsequence clustering using growing vector quantiza-
tion based on raw data

Figure 2.4: SeatBelt time series subsequence clustering using k-means based on features
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Figure 2.5: Nile time series with changes using GFQ

2.4.2 The Nile data

The Nile data is a time series of the annual flow of the river Nile at Aswan from

1871 to 1970 (Zeileis et al., 2003; Cobb, 1978). It measures annual discharge

at Aswan in 108m3. From Fig. 2.5, we can see that there is a change around

1900. The obvious reason is the Aswan dam that was built in 1898. Fig. 2.6

shows the distance from the data points to the winning prototype. From 1871,

the data points are moving further from the first prototype until a new cluster is

created around 1900 when the distance of the incoming data points to the original

prototype exceeds the pre-defined threshold R.
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Figure 2.6: Distances to prototypes

2.4.3 The MODIS NDVI data

The MODIS NDVI data is an NDVI time series of a pinus radiata plantation

(Verbesselt et al., 2010a). The transition of clusters can be seen in Fig. 2.7 around

the year 2004, which is the known harvest year.

2.4.4 Simulated time series

Simulated time series are generated by summing individually simulated seasonal,

noise and trend components (Verbesselt et al., 2010a). The seasonal component is

created using an asymmetric Gaussian function for each season, which has been

shown to perform well when used to extract seasonality (Jonsson and Eklundh,

2002). The noise component is generated using a random number generator that

follows a normal distribution. The trend component was generated by selecting a

constant. Two drops and linear recovery phases in trend component are simulated
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Figure 2.7: MODIS time series

in Fig. 2.8. An additional change in seasonal component is simulated in Fig. 2.9.

From the transition of the subsequence membership, the simulated changes are

detected easily.
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Figure 2.8: Simulated time series

Figure 2.9: Simulated time series
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2.5 Conclusion

In this paper, a method for real-time time series change detection is proposed. It

is based on an extension of VQ—known as growing feature quantization (GFQ)

clustering, which provides insights into the transitions of the time series subse-

quence states. In order to avoid the meaninglessness limitation pointed out in

Keogh et al. (2003), the method uses features instead of raw data to characterise

the time series subsequences. According to the experiments on three frequently

used time series as well as two simulated data, the proposed approach performs

as well as k-means, but it can be used to detect changes in a real-time manner

and the number of clusters don’t have to be known in advance. In addition, the

method can reveal the transitions among the system, provide insights into the

nature of the pattern changes and find new states coming in the current system.

Further research is necessary to study the choice of subsequence features. Exten-

sion of features to a more comprehensive feature set will be studied. Future work

also involves the choice of the threshold R. This parameter can be flexibly tuned

according to the real world context to reduce false alarms or increase early warn-

ings. That means it depends on trade-o↵ between the benefits of early warning

and the misclassification costs in the system. It is necessary to find an optimal

threshold R⇤ to detect changes reasonably for a specified system. Besides, larger

datasets in more fields of application such as sleep staging (Stanus, 1986; Acharya

et al., 2010; Lee et al., 2009; GüneÊ et al., 2010) will be tested using GFQ change

detection approach.
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Chapter 3
A Note on the Relationship between
Turbulent Coherent Structures and

Phase Correlation



Chapter 3 is based on the article Kang Y, Belu�i’ D, Smith-Miles K. 2014d.

A note on the relationship between turbulent coherent structures and phase

correlation. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(2):

023114, doi: http://dx.doi.org/10.1063/1.4875260.

Abstract. Various definitions of coherent structures exist in turbulence research, but

a common assumption is that coherent structures have correlated spectral phases. As

a result, randomization of phases is believed, generally, to remove coherent structures

from the measured data. Here we reexamine these assumptions using atmospheric

turbulence measurements. Small-scale coherent structures are detected in the usual

way using the wavelet transform. A considerable percentage of the detected structures

are not phase correlated, although some of them are clearly organized in space and time.

At larger scales, structures have even higher degree of spatio-temporal coherence but

are also associated with weak phase correlation. A series of specific examples are shown

to demonstrate this. These results warn about the vague terminology and assumptions

around coherent structures, particularly for complex real-world turbulence.

References are considered at the end of the thesis.



Chapter 3

A Note on the Relationship between

Turbulent Coherent Structures and

Phase Correlation

3.1 Introduction

The complexity of turbulent flows is sometimes addressed by studying their

deterministic coherent structures, which have significant influence on the flow

and the random background motions (Ouellette, 2012). As a result, identifying

coherent structures from turbulent flows, which is akin to distinguishing order

from disorder, has been a popular topic in turbulence research. This has resulted

in a number of methods for their detection, all of which assume certain definitions

of a coherent structure. Perhaps the most common assumption is that coherent

structures are phase correlated. The relationship between coherent structures

and phase correlation dates back to the early works on coherent structures, when

Hussain (1981, 1983, 1986) defines a coherent structure as “a connected turbulent

fluid mass with instantaneously phase-correlated vorticity over its spatial extent".
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Even though Hussain (1986) writes “In principle, concepts like coherent structures

are best left implicit”, he still gives the definition to facilitate measurements and

analysis of coherent structures. Measurements of real world turbulence, such

as in the atmospheric boundary layer, are predominantly in-situ and result in

single-point time series. The spatial information is missing in those cases, and raw

turbulence variables in time domain are assumed to be phase correlated instead.

The lack of spatial information also limits the use of recent techniques focused

on the Lagrangian characteristics of coherent structures, which seem to be more

suitable for detecting coherent structures than the Eulerian techniques (Peacock

and Dabiri, 2010; Tang et al., 2010; Tang and Peacock, 2010; Miranda et al., 2013).

It appears that since the definition was given, it has become commonly assumed

that the phase correlation is a necessary characteristic of a coherent structure. A

typical example is the phase randomization technique, which has been applied in

many dynamical systems for examining their non-linearity (e.g. Jeong et al., 2002;

Lan et al., 2005; Guarin-Lopez et al., 2010; Kugiumtzis, 2002; Waser, 2010; Pereda

et al., 1998), testing for chaos (Gomes et al., 2000; Lan et al., 2005; Campanharo

et al., 2008; Lin, 2005; Jeong et al., 2002), or removing coherent structures (e.g.

Beluši’ and Mahrt, 2012; Arzner et al., 2006; Campanharo et al., 2008; Chian et al.,

2008; Koga et al., 2008; Sahraoui, 2008). It has been shown to work well for a

variety of applications, ranging from simple dynamical systems, such as the Lorenz

attractor (Provenzale et al., 1992), to more complex astrophysics and atmospheric

fluid flows (e.g. Arzner et al., 2006; Campanharo et al., 2008). A literature review

of applications of phase randomization indicates that it is regarded as a tool

that can be universally applied, with no reports of its limitations. However,

Beluši’ and Mahrt (2012) find that in complex atmospheric flows, the phase

randomization does not remove all structures. While this is not surprising, since

the atmosphere contains myriads of structures with di↵erent characteristics and
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generating mechanisms, it calls into question the assumed universal relationship

between coherent structures and phase correlation.

The relationship between coherent structures and phase correlation is examined

in two ways. We first apply a standard wavelet-based technique to detect coherent

structures from a real world dataset. Their phase correlation is examined using

two measures — the coherence index (Sahraoui, 2008; Chian et al., 2008; Koga

et al., 2008; Hada et al., 2003), and the nonlinearity measure based on nonlinear

prediction error (nmnpe) (e.g. Sugihara and May, 1990; Schreiber and Schmitz,

1997; Rhodes and Morari, 1998; Choudhury et al., 2008b,a; Schreiber and Schmitz,

2000). Both measures are obtained from a comparison between statistics of the

original time series and its phase-randomized surrogates, which is a general

approach for detecting nonlinearity (Theiler et al., 1992; Schreiber and Schmitz,

2000). The coherence index uses the first order structure function as the statistic,

while nmnpe uses the nonlinear prediction error. The two di↵erent measures are

used in order to cross-validate the results. The details of the methods are discussed

in Section 3.2.3 and Section 3.2.4.

The second way is to examine specific examples of coherent structures that are

coherent in space and time, but are not phase correlated. The spatio-temporal

coherence of structures is examined from the time-height cross-sections of tur-

bulent variables and their relationships. Results in Section 3.3 show that some

physical coherent structures in turbulent flows indeed have weak phase correla-

tion. This may be important for analyses where the e↵ects of coherent structures

are examined by removing them from the original data.
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3.2 Data and Methods

3.2.1 Dataset Description

The data are from the CASES-99 field experiment (Poulos et al., 2002). The mea-

surements were performed during October 1999 on a 60-m tower located at a rural

grass site near Leon, Kansas, USA. The tower was equipped with thermocouples

and sonic anemometers at several levels. The thermocouples sampled data at 5

Hz and were located at 34 vertical levels (0.23 m, 0.63 m, 2.3 m, and every 1.8

m above 2.3 m) (Sun et al., 2012), while the 20-Hz sonic data were measured at

seven vertical levels (1.5, 5, 10, 20, 30, 40, 50, and 55 m). A detailed description

of the CASES-99 experiment can be found in Poulos et al. (2002). Here we use the

thermocouple and sonic anemometer data downsampled to 2 Hz.

3.2.2 Wavelet Detection of Coherent Structures

Detecting coherent structures from time series using wavelets is the most frequent

approach in the atmospheric turbulence research. It has been shown to outperform

other classical approaches, such as the Variable Interval Time-Averaging (VITA)

(Blackwelder and Kaplan, 1976) and the Windowed Averaged Gradient (WAG)

(Bisset et al., 1990). We use the method proposed by Thomas and Foken (2005). It

is an automated and quasi-online coherent structure detection algorithm based on

wavelets, which first high-pass filters the time series by using the bi-orthogonal

wavelets BIOR5.5, then uses the Morlet wavelet to determine the characteristic

scales of structures, and finally detects the individual structures using the Mexican

hat wavelet. Following Barthlott et al. (2007), we additionally apply a threshold

of 40% of the absolute maximum of the wavelet coe�cients at the characteristic

scale to reduce the number of false detections.
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3.2.3 Estimation of Coherence Index

A general index of coherence CI(q,⌧) (Sahraoui, 2008) is used to estimate the

degree of phase correlation among Fourier modes of a time series. CI(q,⌧) evalu-

ates the standardized di↵erence between the structure functions of the original

time series xO(t) and its phase randomized surrogate xR(t). Phase randomiza-

tion randomly scrambles the Fourier phases of the time series while keeping the

spectral magnitudes unchanged. The surrogate time series xR(t) is a stationary

Gaussian linear process obtained after taking the inverse Fourier transform of the

phase-randomized spectrum. The completely coherent surrogate xC(t) is used for

standardization of the di↵erence. xC(t) is obtained by making the phases constant.

Formally,

CI(q,⌧) =
 |SO(q,⌧)� SR(q,⌧)|
|SO(q,⌧ � SR(q,⌧))|+ |SO(q,⌧)� SC(q,⌧)|

!1/q
, (3.2.1)

where Si(q,⌧) is the qth order structure function: Si(q,⌧) = h|xi(t + ⌧)� xi(t)|qi,

i 2 {O,R,C} and ⌧ is the time lag. It has been shown that di↵erent orders (q = 1,3,4)

yield mainly similar coherence index (Sahraoui, 2008), so we use q = 1 to simplify

the calculations. With this choice of q, our coherence index becomes comparable

to the index used in Chian et al. (2008), Koga et al. (2008), Hada et al. (2003). The

coherence index values range from 0 to 1, where 0 indicates the original time series

with random phases, and 1 with completely correlated phases. The maximum ⌧

considered here is 1/4 of the time series length, as suggested by Sahraoui (2008).
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3.2.4 Nonlinearity Measure Based on Nonlinear Prediction Er-

ror (nmnpe)

The nonlinearity measure nmnpe compares the predictability of a time series

x(t) with its phase randomized surrogates. Nonlinear time series with phase

correlation are more predictable than their surrogates, and thus have smaller

nonlinear prediction errors (Choudhury et al., 2008b; Schreiber and Schmitz,

2000, 1997). Nonlinear prediction uses an embedding matrix X consisting of

delay vectors (~xi , i = 1,2, · · · ,n�m+1) as the rows in m dimensions:

X =

2
66666666666666666666664

x(1) x(2) · · · x(m)

x(2) x(3) · · · x(m+1)

· · · · · · · · · · · ·

x(n�m+1) x(n�m+2) · · · x(n)

3
77777777777777777777775

For each row (delay vector) of X, its k nearest m-dimensional delay vectors are

found using Euclidean distances. If the k nearest delay vectors for ~xi are ~xjp ,

p = 1,2, · · · , k, the nonlinear prediction error for the time series x(t) is defined as

TX(m,k) =
n�mX

i=1

0
BBBBBB@x(i +m)� 1

k

kX

p=1

x(jp +m)

1
CCCCCCA

2

. (3.2.2)

The nonlinearity measure for the time series x(t) is obtained from

nmnpe =
T̄R � TX
3�R

, (3.2.3)

where TX is the nonlinear prediction error of the original data, while T̄R and �R

are the mean and standard deviation of the nonlinear prediction errors of the

surrogates. Following Choudhury et al. (2008b), we use k = 8 and generate 50
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surrogates to get the statistical distribution of the measures. The maximum m

considered here is 1/4 of the time series length, which is consistent with the

maximum of ⌧ in Section 3.2.3. For nonlinear time series, we have nmnpe � 1,

while when nmnpe < 1, the time series is considered to be phase-uncorrelated.

3.3 Results

3.3.1 Wavelet-Detected Coherent Structures

Wavelet analysis is applied to each 30 min of the thermocouple temperature

time series at the seventh level (9.5 m), from 1100 LST 5 October 1999 to 1100

LST 6 October 1999. Similar results can be obtained for other days. In total,

252 structures are found with di↵erent event duration, and the coherence index

is calculated for each identified structure. Fig. 3.1(a) shows the distribution

of the maximum coherence index over the considered lags ⌧ (see Section 3.2.3)

for the detected coherent structures. Even though these structures are termed

“coherent”, about 25% of them have the maximum coherence index smaller than

0.3 and 59% smaller than 0.5. These coherent structures are deemed to have

weak phase correlation. Fig. 3.1(b) shows the distribution of the maximum nmnpe

over the considered embedding dimension m (see Section 3.2.4). About 72%

of the events are not phase-correlated according to this measure. Some of the

phase-uncorrelated events are shown as examples in the next subsection.

3.3.2 Examples of Phase-Uncorrelated Coherent Structures

A number of examples of space and time coherent structures with weak phase

correlation are presented. Fig. 3.2 shows two coherent structures detected from

the CASES-99 temperature time series. The coherence index of the structures is
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Figure 3.1: Frequency distributions of (a) the maximum coherence index over the
considered lags and (b) the maximum nonlinearity measure nmnpe for the
coherent structures extracted from the CASES-99 data using wavelets.

below 0.3 for all considered lags ⌧. The maximum nmnpe values are smaller than

1 for both events, which confirms that they are linear processes without phase

correlation. The time-height vertical cross-sections of temperature and horizontal

wind speed (Fig. 3.3) show that both structures are vertically coherent over the

distance of at least 50 m. The temperature and horizontal wind speed are out

of phase, indicating that the structures are organized motions in convectively

unstable boundary layer turbulence. In such conditions, upward turbulent motion

results in negative speed perturbations and positive temperature perturbations,

and vice versa. This relationship is confirmed for the current cases by examining

the relative phase angles between the vertical wind speed and temperature or

horizontal wind speed (not shown).

Turbulence in the atmosphere occurs on a wide range of scales, and the energy

and spatial scale of organized structures generally increase with time scale. We

therefore expect to observe structures with higher degree of coherence over the

measurement tower height at larger scales. Here we show two examples from

the same dataset with about ten times larger time scales, on the order of 10 min.

These structures are not extracted using the current wavelet method, because

52



Chapter 3 – Kang et al. (2014d)

it is designed to detect structures with time scales of the order of 1 min, which

is typical in atmospheric science applications. Fig. 3.4 shows the two coherent

structures over a 30-min period. The coherence index is small, indicating that

these structures have low phase correlation. The latter is confirmed by the maxi-

mum nmnpe values less than 1. However, the time-height cross sections (Fig. 3.5)

show that they are organized, vertically propagating events generated aloft. They

occurred during the night in a stably stratified boundary layer, which points to

gravity waves as the most probable generating mechanism. Such top-down propa-

gating events are ubiquitous in the stable atmospheric boundary layer (Einaudi

et al., 1989).
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Figure 3.2: (Color online) Two coherent structure examples from the CASES-99 tem-
perature data (T), and their coherence index as a function of time lag ⌧.
The maximum ⌧ is 1/4 of the time series length (see Section 3.2.3). The
maximum nmnpe values for all considered embedding dimensions m (see
Section 3.2.4) of the two events are �0.09 and 0.35, respectively.
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Figure 3.3: (Color online) Time-height cross-sections of the two coherent structures
shown in Fig. 3.2 for (top panels) the normalized temperature perturbation
from the 34 thermocouples and (middle panels) the normalized horizontal
wind speed from the seven sonics. The bottom panels show time series
of the normalized temperature T at 9.5 m and the normalized horizontal
wind speed U at the sonic anemometer level 3 (10 m).
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Figure 3.4: (Color online) As in Fig. 3.2, except for coherent structures at larger scales.
The structure onset times are (top panels) 2200 LST 7 October and (bottom
panels) 2000 LST 10 October 1999. The maximum nmnpe values of the
two events are 0.02 and 0.53, respectively.
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Figure 3.5: (Color online) As in Fig. 3.3, except that shown are the two coherent
structures from Fig. 3.4. For presentation purposes, the two variables are
low-pass filtered at 6.2 s using the bi-orthogonal wavelet BIOR5.5.
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3.4 Conclusion

We show that the space and time organized structures in turbulent flow do not

necessarily have correlated phases. This warns against assuming that randomizing

spectral phases removes all coherent structures from the turbulence time series

in all cases. While this assumption is still applicable to many systems as has

been shown in previous studies, caution should be used when analyzing complex

real-world turbulent flows.

Equivalently, using the term “coherent structure” might not be su�cient to trans-

fer the true meaning without additional description. For example, the phase

correlation of coherent structures is not frequently assumed in atmospheric sci-

ence studies, which in practice may result in a considerable increase in the number

of detected events. On the other hand, in cases where coherent structures need

to be removed from the data, phase randomization is a typically used tool, but

may not be reliable. Any comparison of results of studies using such di↵erently

defined coherent structures is not advisable, especially if the goal is to review the

common dynamics or e↵ects of coherent structures.
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Chapter 4
How to Extract Meaningful Shapes

from Noisy Time-Series
Subsequences?



Chapter 4 is based on the article Kang Y, Smith-Miles K, Belu�i’ D. 2013. How

to extract meaningful shapes from noisy time-series subsequences? In: Proceed-

ings of the 2013 IEEE Symposium on Computational Intelligence and Data

Mining (CIDM). IEEE, pp. 65–72, doi: 10.1109/CIDM.2013.6597219.

Abstract. A method for extracting and classifying shapes from noisy time series is

proposed. The method consists of two steps. The first step is to perform a noise test on

each subsequence extracted from the series using a sliding window. All the subsequences

recognized as noise are removed from further analysis, and the shapes are extracted from

the remaining non- noise subsequences. The second step is to cluster these extracted

shapes. Although extracted from subsequences, these shapes form a non-overlapping

set of time series subsequences and are hence amenable to meaningful clustering. The

method is primarily designed for extracting and classifying shapes from very noisy

real-world time series. Tests using artificial data with di↵erent levels of white noise and

the red noise, and the real-world atmospheric turbulence data naturally characterized

by strong red noise show that the method is able to correctly extract and cluster shapes

from artificial data and that it has great potential for locating shapes in very noisy

real-world time series.

Keywords. Shape Extraction; Noisy Time Series; White Noise Test; Red Noise Test;

Clustering.

References are considered at the end of the thesis.



Chapter 4

How to Extract Meaningful Shapes

from Noisy Time-Series Subse-

quences?

4.1 Introduction

Time series mining can be found within a broad range of application domains.

It becomes vital with the increasing demand for understanding the underlying

processes or phenomena that generate the data. A specific interesting time series

mining task is to detect shapes (patterns) in a given noisy time series, which are

not noise and have meaningful interpretation in the real world.

Pattern searching in data is a hot topic in a diverse range of application fields.

For example, in bioinformatics, much attention has been given to the problem of

sequence matching and sequence pattern identification (Guan et al., 1996; Benson

and Waterman, 1994; Rigoutsos and Floratos, 1998; Tompa, 1999; Bailey et al.,

2009). For real-valued sequences (i.e., time series), numerous algorithms have been
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proposed to detect pre-defined patterns (Keogh et al., 2000; Beluši’ and Mahrt,

2012; Keogh et al., 2001a, 2002; Das et al., 1998; Agrawal et al., 1993; Pong Chan

and Fu, 1999; Hochheiser and Shneiderman, 2002; Singh, 2000). However, in

most cases, the patterns in time series are not known in advance. Therefore, the

extraction of previously unknown, frequently occurring patterns in time series

has been recently recognized as an interesting task (Lin et al., 2002; Mueen et al.,

2009b; Chiu et al., 2003; Mueen et al., 2009a; Lam et al., 2011). To detect shapes in

time series, an initial idea was to cluster all the subsequences extracted using a

sliding window and get the prototypes of the typical shapes in the series. However,

the sliding window leads to meaningless clustering results as it always forms sine

wave cluster centres regardless of the data set (Keogh et al., 2003). To avoid this

problem, Keogh et al. (2003) proposed a solution by considering the concept of

time series motifs. Recently, Lin et al. (2002) proposed an e�cient algorithm to

find time series motifs by using the discrete representation of time series. The

exact motif discovery algorithm proposed by Mueen et al. (2009b), used as a

comparison in this paper in Section 4.4.1, automatically constructs "dictionaries"

of recurring patterns in a faster and e�cient way. Chiu et al. (2003) introduced a

time- and space-e�cient method to find motifs in time series based on a pattern

discovery algorithm in biosequences.

The aim of this paper is to propose a new method for extraction of typical shapes

which repeat within time series, especially in very noisy time series data. The

method proposed in this paper is also based on sliding windows, but the clus-

tering is performed in a meaningful way. The approach will be introduced in

detail in Section 4.2. The main contribution of our approach is that it avoids the

meaningless subsequence clustering interpretation in Keogh et al. (2003) and finds

frequently occurring shapes in a meaningful way. More importantly, the method

is applicable to di↵erent noise types and levels in the time series, which is very

advantagous when dealing with very noisy time series.
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The rest of this paper is organised as follows. Section 4.2 presents the new method.

Section 4.3 introduces the data used in the experiments. Section 4.4 presents

the experiment results for artificial time series and real world time series and

compares the results with some related work. Finally in section 4.5 we draw some

conclusions and highlight directions for future work.

4.2 Proposed Methodology

The method proposed in this paper consists of two steps. In the first step, a noise

test is performed on sliding subsequences extracted from a time series. The shapes

are located and detected based on the noise test p values. The details are given in

Section 4.2.1 and Section 4.2.2. This step is at the same time the major strength

and weakness of the method: the noise test ensures that the method is able to

distinguish signal from noise even with high noise levels, but the method is not

applicable to time series without noise separating individual shapes. The second

step is to group the shapes found in the first step into clusters. The clustering

method used here yields members of the same cluster behaving similarly in terms

of shape characteristics. Details of the second step will be demonstrated in Section

4.2.3.

4.2.1 Noise Test in Time Series

White Noise Test

White noise is a model mostly frequently seen in time series. We use Ljung-Box

test to show whether the data are independently distributed (Box and Pierce,

1970). It is defined as:

H0: The data are independently distributed.
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H1: The data are not independently distributed.

The test statistic is:

Q = n(n+2)⌃h
k=1

ˆ(⇢2k )
n� k (4.2.1)

where n is the sample size, ⇢̂k is the sample autocorrelation lag k, and h is the

number of lags being tested. We set h ⇡ ln(n), which is suggested by simulation

studies in Tsay (2005).

Red Noise Test

Putting the frequent use of white noise in time series aside, analysis of time series

related to many areas, such as climate, relies on ‘red noise’ as a simple model for

correlation in the series (Percival, 2010). That is why we introduce the red noise

test as an alternative to the white noise test for certain applications. Equation

(4.2.2) shows an autocorrelation model with lag 1 and an error term represented

as white noise. Such an autocorrelation model is called red noise, or a first order

Markov process (Percival, 2010). Simply speaking, red noise is interpreted as a

first-order autoregressive (AR(1)) stationary Gaussian process at unit lag (Storch

and Zwiers, 1999).

x(t) = �x(t � 1) + ✏(t) (4.2.2)

where x(t) is the value of variable s at time t, � is the autocorrelation coe�cient

with lag 1, ✏(t) is the value of white noise function at time t.

To test whether a series is red noise, firstly we fit an AR(1) model on the series, and

then perform white noise test on the model residuals. If the white noise test shows

that the AR(1) model residuals are white noise, then the given series is claimed to

be red noise.
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4.2.2 The First Step: Shape Extraction in Time Series

To extract shapes, we first perform noise test on each individual subsequence

extracted with a sliding window.

Definition 1. A subsequence xq(t) for a time series x(t) with length m is

xq(t) = (x(tq), · · · ,x(tq+w�1)) (4.2.3)

for 1  q m�w+1, where w is the sliding window size, which is also the length of

the subsequence.

The sliding window size w is pre-chosen according to the real world context. The

sequential subsequences in Equation (4.2.3) are extracted using a sliding window

with a length of w and position q, which is incremented with a natural number

N. A noise test is performed on each extracted subsequence. Assuming the test

p value of the qth subsequence xq(t) is pq, we can obtain a p value series for the

time series x(t) : p1,p2, · · · ,pm�w+1. We define a subsequence as a shape if its noise

test p value is smaller than a predefined significant level. If there is a consecutive

sequence of subsequences defined as shapes according to the noise test, we pick

the middle one to avoid fractional shapes which don’t contain a complete pattern.

The formal definitions are as follows.

Definition 2. A shape is a subsequence whose noise test p value is smaller than a

predefined significant level ↵ (↵ = 0.05 is used in this paper).

Definition 3. Assume there exists a consecutive sequence of p values ps,ps+1, · · · ,pt
which satisfies: (1) pi  ↵, i = s, s +1, · · · , t; (2) t � s � w/2, then we define the subse-

quence xb t+s2 c(t) as the shape we are interested in.

The first step assumes the existence of noise regions that separate individual

shapes. This is a crucial assumption and limitation of this method, because
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otherwise it could not distinguish between di↵erent shapes. As we also see, this

step extracts the shapes from the time series without organising them in categories

or clusters. Therefore, the following second step is required in order to cluster the

extracted shapes.

4.2.3 The Second Step: Clustering of the Extracted Shapes

Since the shapes extracted in the first step are not overlapping, any clustering

algorithm could be used for their classification. In order to account for the

global characteristics of the shapes, a feature-based Ward’s hierarchical clustering

method will be used here (Wang et al., 2006). It clusters the extracted shapes using

the Euclidean distances among a set of features calculated from the raw data,

rather than the distances among the raw data itself. In this paper, the following

features of subsequences are used: standard deviation, non-linearity (Wang et al.,

2006), serial-correlation (Wang et al., 2006), trend, maximum, minimum, standard

deviation and serial-correlation of the first order di↵erence of the subsequences.

The feature set can be chosen for a specific application to best capture the under-

lying characteristics of the shapes. In a word, the second step groups the n shapes

extracted from the first step in an d-dimension (with d = 8 using the mentioned

feature set) feature space to obtain the k typical shapes extracted from noise.

4.3 Experimental Data

Here, we demonstrate how the artificial time series were generated and introduce

the real world data used in the experiments.
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4.3.1 Artificial Time Series

Wewill use the shapes in the classic Cylinder-Bell-Funnel data (Keogh and Kasetty,

2002). This dataset consists of random instantiations of the patterns, with Gaus-

sian noise added. Besides these three shapes, we will also include a single-cycle

sine function as another shape supposed to be extracted. Figure 4.1 shows an

instance of each of the four patterns.
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Figure 4.1: Examples of Cylinder, Bell, Funnel and sine shapes.

Artificial Time Series with White Noise

Based on the four shapes shown above, we generated a dataset that contains 5

instances of each shape, which are randomly concatenated with each two neigh-

bouring instances separated by a white noise time series with the same length,
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which is 128. The white noise is generated using a random number generator that

follows a normal distribution N (0,�2). The generated time series with � = 1 is

shown in the top panel of Figure 4.2.
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Figure 4.2: Artificial time series with white noise with � = 1 (top panel) and Ljung-
Box test p values for subsequences extracted from the artificial time series
(bottom panel). The red dashed and green dotdash lines represent zero line
and the threshold ↵ = 0.05, which also apply to the following figures.

Artificial Time Series with Higher Level White Noise

To demonstrate how the method is influenced by the white noise level, we generate

time series with higher white noise value, 2 ⇤� and 3 ⇤� respectively, and obtain
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more noisy artificial time series. That is to say, instead of N (0,1), the white noise

used to generate artificial time series in Section 4.3.1 follow the distribution

N (0,22) and N (0,32) respectively.

Artificial Time Series with Red Noise

Instead of using white noise, we also generate the time series by including red

noise:

x(t) = 0.3 ⇤ x(t � 1) + ✏(t),where ✏(t) ⇠N (0,1)

in the artificial time series.

4.3.2 Real World Time Series: The Temperature and Vertical

Wind Speed

The temperature and vertical wind speed turbulence data were measured by a

sonic anemometer with 60 Hz sampling frequency. The anemometer was located

at the height of 34 m above the ground during the FLOSSslowromancapii@ ex-

periment in northern Colorado (Mahrt, 2011b). Here we average a sample of the

measured data over 180 points, which creates the time series with 3s interval as

the input to the method (see the top and middle panels of Figure 4.3). The time

series are clearly very noisy and it is very di�cult to locate interesting non-noise

shapes using our eyes. We demonstrate the potential of the new method in finding

shapes in these time series in Section 4.4.2.
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4.4 Results

4.4.1 Shape Extraction in Artificial Time Series

Artificial Time Series with White Noise

As we know the length of embedded shapes is 128, we use w = 128 in this artificial

time series to extract shapes. In real world applications, w is determined by

experience and robustness. The bottom panel of Figure 4.2 depicts the p value

series of the sliding subsequences of length 128 extracted from the artificially

generated time series (See the top panel of Figure 4.2). Note here although we

know the types of shapes embedded, we assume they are not known in advance,

which is mostly the case in reality. Using the proposed algorithm, the shapes are

found according to Definition 3, and are shown in Figure 4.4. As can be seen from

Figure 4.4, there are exactly the four patterns that were used to generate the time

series: cylinder, bell, funnel and sine shapes.

After extracting the shapes, the hierarchical clustering is performed in order to

find similar patterns among the shapes. This makes the expected results of the

method nominally similar to the mentioned motifs in Lin et al. (2002), Keogh

et al. (2003) and Mueen et al. (2009b). Figure 4.5 shows the dendrogram from

hierarchical clustering on the extracted shapes based on the features (Wang et al.,

2006). The four patterns which form the artificial time series are clearly found

from this dendrogram. For the purpose of comparison, Figure 4.6 shows the

dendrogram from hierarchical clustering of the shapes based on raw data, without

using the features. As we can see from the figure, the four patterns are not

distinguished in expected groups.
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Figure 4.3: Temperature (top panel) and vertical wind speed time series (middle panel)
with 1000 data points measured at the same location; red noise test p
values on vertical wind speed time series (bottom panel).
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Figure 4.4: The 20 shapes extracted from the artificial time series shown in the top
panel of Figure 4.2.

Furthermore, the clustering can also be performed in an on-line manner. Growing

Feature Quantization (GFQ) (Kang, 2012), using only one user defined threshold

to control the growth rate of the cluster formation, is able to do on-line clustering

on the extracted shapes. As soon as the shape is detected, the GFQ method decides

automatically which cluster this shape belongs to. Figure 4.7 gives the relationship
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Figure 4.5: Dendrogram from hierarchical clustering of the extracted shapes based on
features.

between the threshold used in GFQ and the number of clusters obtained. The

figure suggest that there are four clusters because this is associated with the largest

range of threshold values. The results of clustering shapes using GFQ are shown

in Figure 4.8. Each colour of shapes represents a single cluster category. Although

the fourth shape is mis-clustered, it is still thought provoking since the clustering

is performed in an real-time manner. And the reason for the mis-clustering might

be because the fourth shape is still in the early stage of learning process of GFQ.

In order to compare our results with the motif discovery algorithm in Mueen et al.

(2009b), we use their algorithm on the same artificial data by setting the factor of

the cluster radius X to be X = 1.5 and number of clusters K = 6 to show the first

6 motifs. Figure 4.9 shows the motifs of length 128 obtained by their algorithm
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Figure 4.6: Dendrogram from hierarchical clustering of the extracted shapes based on
raw data.

in the entire time series shown in the top panel of Figure 4.2. We can see that

in the first two motifs, there are di↵erent patterns mixed together in the same

cluster. In order to avoid this, we try to decrease the factor of the cluster radius to

be X = 1.3. Figure 4.10 shows the motifs obtained in this case. The algorithm is

automatic and e�cient, and the motifs found using Euclidean distance are quite

meaningful. However, because of the existence of white noise among shapes, some

motifs found, e.g., the members in the third and fourth motif in Figure 4.9 have

plentiful noise included and those in the fifth motif are actually white noise. We

can also see that in Figure 4.10, there are a number of subsequences which are

noise being identified as a member of motifs. The approach proposed here can

address this problem by only considering the non-noise subsequences in time
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Figure 4.7: The relationship between the threshold used in GFQ and the number of
clusters obtained.

series to be shapes. Furthermore, the new approach clusters the shapes based on

features instead of euclidean distances among raw subsequences. This keeps the

global shape (motif) characteristics and avoids subsequences which are similar

in euclidean distances but distinct in shapes from being grouped together. On

the other hand, it helps subsequences that are similar in shapes but with di↵erent

shifts or lengths, e.g., the Cylinder shape members in Figure 4.5, being grouped in

the same cluster.

Artificial Time Series with Higher White Noise Levels

From Section 4.4.1, the pre-embedded shapes are well recognised using the new

method under a certain noise level. But the problem will become more challeng-

ing with the noise level increased. In order to demonstrate that the method is

applicable under a high-noise level, we increase the noise levels of the artificial

time series in Section 4.4.1 to 2⇤� and 3⇤� . The corresponding p values are shown

in Figure 4.11 and Figure 4.12, respectively. Even with the increase of the noise

level to three times of the original, the method still recognizes the shapes. With
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Figure 4.8: The clustering results of the extracted shapes based on GFQ; four colours
represent four di↵erent clusters.

that level of noise, the visual recognition of shapes from the time series would be

very di�cult.
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Figure 4.9: The six motifs found using the algorithm inMueen et al. (2009b) (X = 1.5).

Artificial Time Series with Red Noise

As a step towards real-world data, particularly in broad field of geophysics, artifi-

cial time series are created with red noise instead of white noise. The shapes are

correctly recognised using the red noise test in the method (See the middle panel

of Figure 4.13). However, when we perform white noise test on this time series,

the p-value series (See the bottom panel of Figure 4.13) can not clearly separate

shapes from noise. This proves that the method can be used for various types of

noisy data provided the proper assumptions are made on the nature of noise.
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Figure 4.10: The six motifs found using the algorithm in Mueen et al. (2009b) (X =
1.3).

4.4.2 Real World Application: The Temperature and Vertical

Wind Speed Time Series

Using sliding window size w = 60, which corresponds to a time scale of 3 minutes,

the results of the red noise test on subsequences extracted from the vertical wind

speed time series are shown in the bottom panel of Figure 4.3. The figure shows

that there is only one segment in which the p values are consecutively smaller

than ↵. Assume ps is the first subsequence satisfying p < ↵ and pt is the last one
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Figure 4.11: Artificial time series with white noise (top panel) and Ljung-Box test p
values for subsequences (noise level is 2 ⇤�) (bottom panel).

in this segment meeting p > ↵. In this complicated real world time series, to

avoid missing any possible shapes, instead of choosing the middle subsequence

as in Definition 3, we choose the entire segment from time point ps to time point

pt +w � 1 = pt +59 as the shape. This segment is shown in Figure 4.14, together

with the corresponding segment of the temperature time series. The existence

of the phase angle between the vertical wind speed and temperature implies a

gravity-wave origin of the shape. The visually determined value of approximately

⇡/2 indicates that this is a signature of an atmospheric internal gravity wave
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Figure 4.12: Artificial time series with white noise (top panel) and Ljung-Box test p
values for subsequences (noise level is 3 ⇤�) (bottom panel).

(Beluši’ and Mahrt, 2012). Further detailed analysis would be required to describe

the dynamics of this event, but this is beyond the scope of this study. However, this

example illustrates that the method is capable of extracting physically meaningful

shapes from real-world turbulence time series, which are among the most complex

time series found in nature.

82



Chapter 4 – Kang et al. (2013)

0 1000 2000 3000 4000 5000

−4
−2

0
2

4
6

8

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p.
va
lu
e

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p.
va
lu
e

Figure 4.13: Artificial time series with red noise (top panel), red noise test p val-
ues for subsequences (middle panel) and white noise test p values for
subsequences (bottom panel).
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Figure 4.14: The detected shapes from the vertical wind speed and temperature time
series.

4.5 Conclusion

A new method for shape extraction from time series is proposed. It is based on

two steps: a noise test, which is performed on each subsequence extracted from

the time series, and clustering of the extracted shapes into similar patterns. The

second step is based on a set of features, which keeps the information of the main

characteristics of shapes and is shown to yield better results than the clustering

based on raw data. Shape patterns found using these two steps are compared

with the motif discovery algorithm proposed in Mueen et al. (2009b). The main

contribution of the new method is that it ignores the noise part in time series and

focuses on the non-noise subsequences, which improves the meaningfulness of

the shape searching procedure. Furthermore, the proposed method is robust to

higher noise levels, which is a strong advantage regarding very noisy time series.

The proposed method is applied to both artificial data and real world data. Shapes

used to generate the artificial data are exactly found using the method. Regarding

the real world time series, the results show that the method has potential for
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application. More research is necessary to further study the real world time series

and investigate the extraction and interpretation of shapes.
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Chapter 5
Detecting and Classifying Events in

Noisy Time Series



Chapter 5 is based on the article Kang Y, Belu�i’ D, Smith-Miles K. 2014c. De-

tecting and classifying events in noisy time series. Journal of the Atmospheric

Sciences 71(3): 1090–1104, doi: 10.1175/JAS-D-13-0182.1.

Abstract. Time series are characterized by a myriad of di↵erent shapes and structures.

A number of events that appear in atmospheric time series result from as yet unidentified

physical mechanisms. This is particularly the case for stable boundary layers, where

the usual statistical turbulence approaches do not work well and increasing evidence

relates the bulk of their dynamics to generally unknown individual events.

This study explores the possibility of extracting and classifying events from time series

without previous knowledge of their generating mechanisms. The goal is to group large

numbers of events in a useful way that will open a pathway for the detailed study of their

characteristics, and help to gain understanding of events with previously unknown ori-

gin. A two-step method is developed that extracts events from background fluctuations

and groups dynamically similar events into clusters. The method is tested on artificial

time series with di↵erent levels of complexity and on atmospheric turbulence time series.

The results indicate that the method successfully recognizes and classifies various events

of unknown origin and even distinguishes di↵erent physical characteristics based only

on a single-variable time series. The method is simple and highly flexible, and it does not

assume any knowledge about the shape geometries, amplitudes, or underlying physical

mechanisms. Therefore, with proper modifications, it can be applied to time series from

a wider range of research areas.

References are considered at the end of the thesis.



Chapter 5

Detecting and Classifying Events in

Noisy Time Series

5.1 Introduction

Time series can be regarded as progressions of various shapes in time. In a broader

geophysical context, shapes, or events, are embedded in various levels of noise

that is usually of a certain type or color. The motions in the atmosphere exhibit

scale interactions such that the power spectra usually decrease with scale as a

negative power of the wave number. This is the characteristic shared with red

noise, and as a result atmospheric time series are frequently modeled using a

first-order autoregressive process (AR(1)). Individual studies of atmospheric time

series predominantly focus on a relatively narrow range of scales, particularly

when describing the underlying dynamical processes. Practically this means

that the distinction between noise and “meaningful” features will depend on

the scale under consideration. For example, scales of atmospheric waves vary

from large planetary waves to those limited by the atmospheric stability at the

small end. Researchers interested in planetary waves will tend to disregard
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small-scale atmospheric boundary layer (ABL) waves and other processes as noise.

Likewise, at smaller, turbulence scales, distinct fluctuation patterns frequently

occurring in turbulent flows are termed coherent structures. Coherent structures

are distinguished from background fluctuations or noise, and are examined with

the goal of understanding important physical characteristics of turbulent flows

in terms of elementary structures (e.g., Chen and Hu, 2003; Thomas and Foken,

2005, 2007b; Barthlott et al., 2007).

The usual approach for studying various structures in atmospheric time series is

to assume that a certain familiar physical process results in a specific recognizable

temporal trace, and to then search for such a trace in the time series. This can be

accomplished by searching for certain geometries, such as sine functions for waves

and ramp-cli↵ patterns for coherent structures, or for certain properties, such

as large amplitudes or sharp changes (e.g., Antonia et al., 1979; Wilczak, 1984;

Chen et al., 1997; Barthlott et al., 2007; Beluši’ and Mahrt, 2012; Shapland et al.,

2012a,b; Segalini and Alfredsson, 2012). Recent studies of the stable weak-wind

ABL indicate that many of the processes that are responsible for the variability in

the time series are unknown (e.g., Mahrt, 2011b). Such situations do not allow for

the above-mentioned approach, but request the opposite strategy — extracting

“meaningful”, but unknown events from the time series and then understanding

their underlying physical mechanisms.

In the stable ABL, gravity waves, transient drainage flows and other systems

occur seemingly randomly and either superimpose on the turbulence or a↵ect

it by increasing or decreasing its intensity. Currently there are no general ways

to clearly distinguish turbulence from waves and other mechanisms, despite the

frequent usage of several pragmatic techniques for that purpose. The usual way to

study ABL turbulence is deductive, where the hypothesis of turbulence similarity

is used to indirectly infer the characteristics of structures in the flow field. This is

achieved by assuming that the turbulence statistical e↵ects, which result from a
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myriad of interactions of individual flow structures, are uniquely determined by

larger-scale flow and surface characteristics. Here the larger scales are assumed

to be separated from turbulence scales, and also to be stationary, homogeneous,

and known with su�cient accuracy. While this approach has led to a useful

quantification of ABL e↵ects in numerical models, its limitations are becoming

increasingly apparent (e.g., Nappo et al., 2014). Another way of studying and

improving the understanding of the stable ABL dynamics is inductive. This

approach involves analysis and understanding of individual structures found in

data, with the potential of generalizing the results provided a significant number

of structures could be explained or characterized by such approach. Since the

representation of stable boundary layers in atmospheric models is in critical need

of improvement (e.g., Baklanov et al., 2011; Holtslag et al., 2013; Nappo et al.,

2014) and depends a lot on the understanding of the underlying processes, the

inductive approach might contribute to that end.

This study presents a step in that direction. A method is developed for extracting

and classifying events in time series automatically, without any pre-assumed

or pre-defined characteristics of events in terms of their magnitude, geometry

or periodicity. The goal is to recognize and classify di↵erent events in order to

alleviate further analysis of their behavior and underlying mechanisms. The

method is presented and validated against a well-known dataset to ascertain that

it can be used for further research. While the primary motivation for developing

the method is the study of various structures in the stable boundary layer, the

method is not limited by atmospheric stability or the scale of the phenomena.

The paper is organized as follows. The details of the two-stepmethod are discussed

in section 5.2. The method is first tested on artificially generated time series

with di↵erent complexities of noise — white and red noise — hence progressing

towards the real-world atmospheric conditions. This is detailed in section 5.3. The

method is then applied to atmospheric turbulence data, as discussed in section 5.4.
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The basic assumptions of the method are further tested in section 5.5, and the

conclusions are drawn in section 5.6.

5.2 Methodology

A number of clustering techniques have been developed and used over the last

several decades for classifying structures found in di↵erent datasets, including

various areas of the atmospheric science (e.g., Weber and Kaufmann, 1995; Elsner,

2003; Pope et al., 2009; Beluši’ et al., 2013). However, it has been shown that

the usual clustering techniques return meaningless results when directly applied

to sliding and overlapping time series subsequences, because they always yield

cluster centers in the form of a sinusoid, regardless of the dataset (Keogh et al.,

2003). Therefore, if the goal of analysis is to extract and classify events from

time series, a solution is to employ a preprocessing step before clustering. As a

result, the method developed here consists of two steps. The first step extracts

events from time series using a simple distinction between signal (i.e., events)

and noise, and the second step classifies the events using hierarchical clustering.

When distinguishing between events and noise in the first step, the characteristics

(i.e., color) of noise are assumed to be known a priori. A specific test for that noise

color can then be developed and performed for a given scale of interest. Having

performed the noise test, the events are defined simply as those subsequences of

time series that are significantly di↵erent from the noise.

5.2.1 Noise Tests for Time Series

The first step of the method depends on the specification of the characteristics of

background noise in a time series. Here we use two di↵erent noise models, which
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do not exhaust all possibilities for formulation of noise characteristics in various

applications.

White Noise Test

White noise is a process most frequently seen in time series, in which data points at

di↵erent times are not correlated. The Ljung-Box test is applied here for examining

whether data points are independently distributed (Box and Pierce, 1970). The

test is defined as:

H0: Data are independently distributed.

H1: Data are not independently distributed.

The test statistic is:

Q = n(n+2)⌃h
k=1

ˆ(⇢2k )
n� k

where n is the sample size, ⇢̂k is the sample auto-correlation at lag k, and h is the

number of lags being tested. As suggested by simulation studies in Tsay (2005),

we use h ⇡ ln(n). Under the null hypothesis H0, the asymptotic distribution of

Q is �2 with h degrees of freedom. In order to determine whether H0 should be

rejected or not, the probability p of obtaining a test statistic at least as extreme as

the actually observed statistic under �2(h) is used. The null hypothesis is rejected

when the p value is less than a predetermined significance level ↵, which is often

0.05, indicating that the observed result would be highly unlikely under the null

hypothesis. In our case, this means that the data is not white noise.

Red Noise Test

Red noise is modeled as a first-order autoregressive process AR(1). Given a time

series with red noise, the white noise test from section 5.2.1 would not recognize
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any part of the time series as noise, hence a separate test for red noise needs to be

introduced.

Equation (5.2.1) defines AR(1) as a first-order auto-correlation model with the

error term represented by a white noise process:

x(t) = � ⇤ x(t � 1) + ✏(t) (5.2.1)

where x(t) is a time series, � is the first-order auto-correlation coe�cient (0 < � < 1)

and ✏(t) is the white noise process with standard deviation �✏. In short, a red noise

process can be interpreted as an AR(1) process with positive correlation at unit

lag (Storch and Zwiers, 1999; Chen et al., 2013).

Considering that AR(1) modeling is only applicable and limited to stationary

processes and that some time series are non-stationary, a stationarity test is applied

firstly to the given time series x(t). A non-parametric test called Phillips-Perron

(PP) Unit Root Test (Banerjee et al., 1993; Perron, 1988) is used here, as it does not

assume any characteristic structure of the data. This test is for the null hypothesis

that x(t) has a unit root, i.e. is non-stationary, against a stationary alternative. The

test has been implemented in many statistical softwares such as R package stats

(R Core Team, 2013) and Matlab Toolbox Econometrics. Further details of the test

can be found in Banerjee et al. (1993) and Perron (1988). If x(t) is non-stationary

according to the test, then x(t) is di↵erent from red noise because red noise is

a stationary process. In this case we assign p = 0, which is consistent with x(t)

being di↵erent from noise (see section 5.2.1). Otherwise, if x(t) is stationary, the

following red noise test, which is based on the definition of an AR(1) process,

is applied. Firstly, the AR(1) model x̃(t) = � ⇤ x̃(t � 1) is fitted to the time series

x(t), and the residuals ✏(t) = x(t)� x̃(t) are calculated. Then the white noise test is

performed on the residuals. If the residuals are white noise, then the underlying

process of the given time series is claimed to be red noise.
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Defining the characteristics of noise is not necessarily a straightforward task for

real-world data. For example, the focus of this study is on atmospheric time series,

which are generally characterized by red noise (e.g., Storch and Zwiers, 1999;

Ghil et al., 2002; Chen et al., 2013). However, red noise, or an AR(1) process, is

frequently fitted to climate time series in order to reproduce the signal, rather

than to represent the background noise. It should be recalled here that AR(1)

is a stationary linear stochastic process that does not support oscillations (e.g.,

Storch and Zwiers, 1999). Defining events in the present method as non-AR(1)

processes means that the events are non-stationary and/or oscillatory and/or

non-linear motions. Other signals end up classified as noise, which can contain

physical AR(1)-like motions, measurement errors or any other white or red noise

signal, none of which are of interest in this context. Additional discussion of these

matters is given in section 5.5.

5.2.2 The First Step: Event Detection

The first step locates and detects events by performing a noise test on sliding

subequences extracted from the time series. A subsequence is considered to be an

event if its characteristics are significantly di↵erent from noise. This step is both

the major strength and weakness of the method, as it ensures that events can be

distinguished from noise even with high noise levels, but it can only be applied if

noise separates individual events or at least trains of events in the time series. The

procedure is as follows. Using a sliding window, a noise test is performed on each

subsequence. A subsequence xq(t) for a time series x(t) with length m is defined

as

xq(t) = (x(tq), · · · ,x(tq+l�1))

for 1  q m� l +1, where l is the sliding window size, which is also the length

of the subsequence. The sliding window sizes l are pre-chosen according to the
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scales of interest. For the analysis of multiple scales, various tests have shown

that better results are obtained by keeping l constant and block averaging the

time series to a desired scale. This is a consequence of the dependence of the

test statistic Q on the window length l, and keeping l constant returns consistent

results for all scales. After performing a noise test, a test p value is obtained for

each subsequence. Assuming the test p value of the qth subsequence xq(t) is pq,

the result is a p value series: p1,p2, · · · ,pm�l+1. When the subsequence test p value

is smaller than a predefined significance level, we reject the H0 hypothesis from

section 5.2.1. This means that the subsequence’s raw data points for white noise

test or residuals for red noise test are correlated, which in turn implies that the

subsequence is significantly di↵erent from noise. Such subsequence is defined

as a potential event. If there exists a real event starting at some time point t0

with the time scale 4t , a noise test on sliding subsequences will in general return

consecutive potential events from the time point t0�4t1 to t0+4t2, where 4t1,2  4t .

Therefore, an event is defined only if the consecutive sequence of potential events

is long enough. In that case, the central potential event in the progression is

chosen to represent the final event, in order to avoid fractional events which do

not contain a complete pattern.

More formally, a potential event is defined as a subsequence whose noise test

p value is smaller than a predefined significant level ↵. Here we use ↵ = 0.05.

Assume there exists a consecutive progression of p values ps,ps+1, · · · ,pe which

satisfies:

1. pi  ↵, i = s, s +1, · · · , e

2. e � s � l/2.
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Then we define the middle subsequence xb e+s2 c(t) as the event we are searching

for, which is the complete pattern. This definition of the event will be somewhat

relaxed when applying the method to complex real-world data.

This step tacitly assumes the existence of noise regions between individual events

or trains of events, because otherwise the method could not distinguish between

di↵erent events. This needs to be considered in applications of the method. The

applications to the real-world atmospheric turbulence show that this apparent

limitation is not important there, since the time series appear to be composed of

intermittent non-AR(1) structures embedded between the regions characterized

by AR(1) processes.

In this step, the users need to choose the sliding window sizes l. At present, this

choice is subjective and is based on experience and context. In special situations,

such as for canopy turbulence, one could use well-established wavelet techniques

for determining the relevant time scale (e.g., Collineau and Brunet, 1993b) and

choose l accordingly. However, a general recommendation cannot be given at

the current level of understanding. As we also see, this step extracts events from

time series without organizing them in categories or clusters. This motivates us to

design the second step in order to cluster the extracted events for the convenience

of comparing and characterizing di↵erent types of events.

It should be noted that other techniques could be used for the method’s first step.

One such example are commonly used wavelet-based approaches for extraction

of structures. Wavelets are not used here because they favor large amplitude

events or signals, they do not distinguish between signal and noise of comparable

amplitude, and they tend to detect structures even when only noise is present

in time series (e.g., Collineau and Brunet, 1993b). An example for the latter is

that given an artificial time series of linear stationary stochastic Gaussian process

without periodicity (i.e., a Gaussian AR(1) process), the wavelet based methods
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will find a number of structures, regardless of the fact that the structures are

usually considered to be nonlinear, non-Gaussian, etc. While wavelets work

well for time series where relatively known structures are present, such as in

convective or canopy turbulence, the above mentioned wavelet issues could pose

serious limitations in stable situations, or in other applications where building

blocks of time series are similarly unknown. Additional discussion about wavelet

characteristics is given in section 5.3.2.

5.2.3 The Second Step: Clustering of Detected Events

Clustering is one of the most important tools used by the data analyzers (Williams,

2011). It aims to organize objects into groups such that objects in the same group

are similar to one another and di↵erent from those in other groups. This is

achieved by clustering on the basis of a distance measure between observations.

The technique separates data into clusters which are easier for the analyzers to

compare and interpret. Hierarchical clustering is one of the most widely used data

clustering methods. The idea is to build a binary tree of the data that successively

merges similar groups of points according to a dissimilarity measure until all the

data are merged into a single cluster. Then the visualization of this tree provides a

direct and useful summary of the data. In the end, a choice needs to be made on

the number of clusters.

In this step, we use clustering analysis to find the similarity among the events

obtained in the first step. In order to account for the global characteristics of the

extracted events, a feature-based hierarchical clustering method is used (Wang

et al., 2006). In this approach, each extracted event is first described using a

feature vector, and then the events are clustered according to the Euclidean

distances among the feature vectors, rather than the distances among the raw data

of events. The feature set can be chosen for a specific application to best capture
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the underlying characteristics of the events. In this paper, the following features

of subsequences are considered: standard deviation, non-linearity (Wang et al.,

2006), serial correlation (Wang et al., 2006), trend, period, kurtosis, skewness,

non-smoothness as well as the maximum, minimum, standard deviation, serial-

correlation and kurtosis of the first order di↵erence of the subsequences. The

period for the time series x(t) is a revised version of the algorithm in Wang et al.

(2006) and is determined as follows.

• Calculate the autocorrelation function (acf) for all lags up to 1/3 of the time

series length n.

• A local peak is defined at the lag where the acf value is larger than five points

before and after it.

• The period is defined as the first peak which is larger than the critical value

1.96/
p
n (Enders, 2003).

• If no peak satisfies the condition above, there is no periodicity in x(t).

The non-smoothness is defined as �D/D, where D(t) = x(t + 5) � x(t). The other

features can be easily obtained using their usual definitions or from the cited

references. Besides the above-mentioned statistical features, other features that

can characterize events in a specific real world context should also be considered

(see section 5.4). To summarize, the second step groups the ne events extracted

in the first step in a d-dimensional (with d being the number of features in the

chosen feature set) feature space in order to obtain k < ne typical clusters of events.

In this step, the users need to choose a set of features relevant to their applications,

and the number of clusters.
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5.2.4 Phase Randomization

At least some of the detected events in atmospheric time series will be coherent

structures. Some definitions of coherent structures require the existence of spec-

tral phase correlation (e.g., Provenzale et al., 1992; Gilliam et al., 2000; Chian

et al., 2008). As a result, randomization of phase should remove the coherent

structures from time series (e.g., Campanharo et al., 2008; Beluši’ and Mahrt,

2012). Therefore, if the method works properly, it should find considerably more

events before than after phase randomization. This fact can be used to validate

the first step of the method.

The phase randomization procedure for a subsequence is as follows: (1) Take

the Fourier transform of the subsequence to obtain the spectral amplitude and

phase. (2) Randomize the phase information by randomly reshu✏ing phases while

keeping the amplitudes unchanged. (3) Use the inverse Fourier transform to return

to the time domain. This results in a phase-randomized surrogate of the original

subsequence. The results of the method validation using phase randomization are

shown in section 5.5.2.

5.3 Application to Artificial Data

Artificial time series are generated with the goal of testing the method in controlled

environments. A known number of di↵erent structures is inserted in noise of

various levels and characteristics. The complexity of noise increases towards red

noise, which is a step that leads towards applications to real-world datasets.
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Figure 5.1: Examples of box, ramp-cli↵, cli↵-ramp and sine shapes.

5.3.1 Data Generation

The three basic shapes from the classic Cylinder-Bell-Funnel dataset (Keogh and

Kasetty, 2002) are used to create the time series. The cylinder is characterized by

a plateau from time a to b, the bell by a gradual increase from a to b followed by

a sudden decline, and the funnel by a sudden increase at time a and a gradual

decrease until b. Here we call these shapes box, ramp-cli↵, and cli↵-ramp, respec-

tively, and they represent the typical shapes of structures found in atmospheric

time series (e.g., Beluši’ and Mahrt, 2012), as well as in many other fields. A sine

function is additionally included to represent a typical wave signal. The length of

the region containing a shape is kept fixed to 128 points. In order to make the task

of finding shapes more challenging and hence closer to realistic data, the shapes

have variable lengths smaller than 128. The start and end points of shapes vary: a

from 16 to 32 and b from 64 to 128. Fig. 5.1 shows an instance of each of the four

shapes with some Gaussian noise added.
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Figure 5.2: Artificial time series with background white noise with � = 1 (top panel)
and the corresponding Ljung-Box test p values (bottom panel). The dot-
dashed lines represent the threshold ↵ = 0.05. A p value smaller than
the threshold ↵ indicates a possible shape. Notice that a single p value
corresponds to a subsequence of length l = 128, and the location of p in the
time series corresponds to the central point of the subsequence.

Time Series with White Noise

Using the four basic shapes, a dataset is generated that contains five instances

of each pattern with white noise added as the background. The 20 shapes are

distributed in random order, and two neighboring shapes are always separated

by a white noise time series with the same length (128). The white noise series

is generated using a random number generator following a normal distribution

N (0,�2). An instance of generated artificial time series with � = 1 is shown in the

top panel of Fig. 5.2.

Time Series with Higher White Noise Levels

The robustness of the method to the level of noise is examined by generating a

time series with the level of white noise of 3 ⇤� . The top panel of Fig. 5.5 shows

the artificial time series with noise level N (0,32).
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Time Series with Red Noise

As a step towards atmospheric turbulence data, artificial time series are generated

with red noise. The first half of this artificial time series consists of four basic

shapes and background red noise: x(t) = � ⇤ x(t � 1) + ✏(t) where � = 0.4 and

✏(t) ⇠N (0,1). The second half consists of two di↵erent segments of red noise with

equal lengths, where � = 0.4,✏(t) ⇠N (0,1) and � = 0.8,✏(t) ⇠N (0,4), respectively.

The generated time series is shown in Fig. 5.6.

5.3.2 Results

BackgroundWhite Noise

In this case we know that the length of the embedded shape regions is 128, so we

use a sliding window with the same length l = 128 for extracting shapes. In real

world cases, l is not known a priori and its values are determined according to the

scales of interest. For the second step of the method, the following features are

used for this dataset to summarize the extracted shapes: standard deviation, non-

linearity, serial-correlation, trend, and maximum, minimum, standard deviation

and serial-correlation of the first order di↵erence of the subsequences. The bottom

panel of Fig. 5.2 depicts the p value series of the sliding subsequences of length

128 extracted from the artificially generated time series in the top panel. Notice

that each shape is related to a sequence of p < ↵ = 0.05, so the choice needs to be

made about the exact location of the shape. Here we use the middle subsequence

according to the definition above. It should be mentioned that although the shapes

of the structures are known a priori in this example, the method does not assume

that. The latter is important for applications to general real-world cases. The

method finds 20 shapes, which are shown in Fig. 5.3. As can be seen from the
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Figure 5.3: The 20 shapes extracted from the artificial time series shown in the top
panel of Fig. 5.2. The dashed lines in the background show the original
shapes used to generate the time series.

figure, these are exactly the 20 shapes that were used to generate the time series:

five instances of box, ramp-cli↵, cli↵-ramp and sine shapes.

Once the shapes are extracted, hierarchical clustering is performed on them in the

feature space in order to group similar types of shapes together. The dendrogram

for the hierarchical clustering is shown in Fig. 5.4 (Wang et al., 2006). It is

cut into four clusters since in this case we know that four types of shapes are

included in the time series. As the figure shows, same patterns are clearly grouped

together, regardless of the di↵erences in lengths or start and end points of shapes.
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Figure 5.4: Dendrogram from hierarchical clustering of the extracted shapes based on
features; the vertical line shows where the binary tree is cut to get the four
basic types of shapes.

This is one of the highlights of the present approach. It clusters the shapes

based on features rather than raw data, which means that shapes with similar

characteristics but di↵erent lengths or lags are recognized as similar and clustered

together, although the euclidean distances based on raw data are large. This is an

important advantage of the method when applied to real world data because the

shapes in real world are never with exactly the same durations or phases.

Higher Levels of BackgroundWhite Noise

The above section shows that the new algorithm performs well at finding shapes

from artificial time series under a certain noise level. The task becomes more
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Figure 5.5: The same as Fig. 5.2, except that the white noise level is increased to 3
times as before. The detected shapes are colored red in the top panel.

challenging with higher noise values because of the di�culties in distinguishing

shapes from noise. To illustrate the results, the bottom panel of Fig. 5.5 shows the

p value series corresponding to the time series with 3 ⇤� noise level. According to

the p value series and the definition of shapes, 20 shapes are detected. Even with

the magnification of the noise level to three times of the original, the method can

still clearly separate shapes form noise. The visual recognition of shapes from the

time series would be di�cult with this level of noise. The clustering returns the

same results as before since the shapes are correctly extracted, so that step is not

repeated here.

Background Red Noise

The red noise test is applied to the artificial data with four shapes and the back-

ground red noise, shown in Fig. 5.6. The white noise test would not recognize

any part of this time series as noise, meaning that the entire time series would be

seen as a single large shape. This indicates the importance of correct modeling of

background noise before applying the method. Using the present method, the four

shapes are correctly detected (Fig. 5.6, top panel). Lower panel of Fig. 5.6 depicts

the structures detected by a wavelet-based method that is commonly used for
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coherent structure detection (e.g., Thomas and Foken, 2005; Barthlott et al., 2007).

The method detects structures at zero-crossings of wavelet coe�cients for a certain

scale. The wavelet method also finds all four shapes in the first half. However, it

detects some noise regions as structures as well. This is particularly evident for

the red noise with � = 0.8,✏t ⇠N (0,4) in the last quarter of the time series, which

may be confused for structures by appearance. Applying the threshold of 40% of

the absolute maximum of the coe�cients at that scale, which was introduced in

Barthlott et al. (2007) for reducing the number of false detections, partially helps

by reducing the detection of small-amplitude noise as structures. Regions with

larger-amplitude noise are still detected as structures. However, now the third

shape, which has a smaller amplitude, is not detected because it falls below the

threshold. This example illustrates the benefits of the present method, because

it does not depend on amplitudes nor geometries of the signal or noise, but only

on the predefined characteristics of undesired noise. The clustering step is not

applied here.
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Figure 5.6: Time series with background red noise and the comparison with wavelets.
The first half of this artificial time series consists of four basic shapes and
background red noise with the auto-correlation coe�cient � = 0.4. The
second half consists of two equal-length segments of pure red noise with
two di↵erent values of �: 0.4 and 0.8 and their ✏(t) follows N (0,1) and
N (0,4) respectively. The color-coded parts in the top panel show shapes
detected using the present method. The bottom panel shows individual
coherent structures detected using the wavelets zero-crossing method (open
circles) at event duration of 132 and the wavelet coe�cients (red line). The
lower dashed line is the zero line and the upper line indicates 40% of the
absolute maximum of the coe�cients at this scale.

5.4 Application to Real World Turbulence Data

5.4.1 Data Description

Data from the Cooperative Atmosphere-Surface Exchange Study (CASES-99) are

used to test the performance of the method on real-world turbulence. CASES-99

was conducted over a relatively flat-terrain rural grassland site near Leon, Kansas,

USA, during October 1999 (Poulos et al., 2002). As a part of the extensive observa-

tions, a 60-m tower was equipped with thermocouples at 34 vertical levels (0.23

m, 0.63 m, 2.3 m, and every 1.8 m above 2.3 m) that sampled air temperature five
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times per second (Sun et al., 2012), while 20-Hz sonic anemometer measurements

were taken at seven levels (1.5, 5, 10, 20, 30, 40, 50, and 55 m).

We use 1-s averages of the thermocouple and sonic anemometer data. The ther-

mocouple at the seventh level (9.5 m) from 11:00 LST of 5 October to 11:00 LST

of 6 October is analyzed for extraction, clustering and explanation of shapes of

structures. The purpose of using this time period from CASES-99 is to benefit

from a number of previous studies that have examined the underlying physical

mechanisms of several isolated events on that day. The performance of the method

on a real-world dataset is then easily validated by comparing the results with the

previous studies.

5.4.2 Event Extraction and Clustering

As discussed before, red noise is used to represent the background noise of real

world turbulence data. Accordingly, we use the red noise test for the first step of

the method. Faced with the usual case of a consecutive progression of p values

ps,ps+1, · · · ,pe of the corresponding subsequences, which satisfy the two rules in

the definition of the event (see section 5.2.2), the event would be chosen as the

middle subsequence for simple artificial data with known lengths of shapes. In the

real-world context, choosing only the middle subsequence might result in losing

certain parts of the event or train of events. This uncertainty is the consequence

of the nonexistence of clear scale separation in the atmospheric flow, whereby

events at scales that are somewhat smaller or larger than the prescribed window

length l are still significantly di↵erent than smaller-scale noise over the range l.

So, to take into account a trade-o↵ between not losing events and not keeping too

much background noise, in real-world applications we choose the segment from

the time point s + l/4 to the time point (e + l � 1)� l/4, where s is the starting point

of the sth potential event and e + l �1 the ending point of the eth. The length of
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l/4 that is discarded within the first and last potential event was determined by

trial and error to avoid keeping too much noise before and after the event. The

latter does not impact the final result, because the clustering part of the method is

based on global characteristics of events and, as such, it is not influenced by the

existence of some noise at the edges of events. With such choice, the window size

l is the minimum length of a recognized event, and there is no upper limit to the

length of an event.

Using window length l = 120 s (120 points on 1 Hz data), the first step of the

method returns 102 events from the temperature time series. Each event is then

characterized by a feature vector describing its global characteristics. For this

dataset, the following features are used: standard deviation, kurtosis, skewness,

period, non-smoothness, and maximum, minimum and kurtosis of the first order

di↵erence of the subsequences. Thus the hierarchical clustering algorithm is

supposed to cluster the 95 eight-dimensional feature vectors into groups to find

similarities among them. However, correlation analysis on the 95 events shows

that some of the eight features are correlated, e.g., the correlation between the

kurtosis and the kurtosis of the first order di↵erence is 0.91. Therefore, before

clustering, we apply the principal component analysis (PCA) to the feature vector

to reduce the correlation as well as the dimension. By inspecting the eigenvalues,

we choose the first five PCA components to represent the original eight features.

Visualization of the clustering is shown in the binary tree in Fig. 5.7. To make the

groups clearly separated, the tree is cut into six clusters shown in the six sidebars

in Fig. 5.7. The number of clusters was chosen subjectively by visualizing the

heatmap and examining the results for several di↵erent numbers of clusters.
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Figure 5.7: Heatmap for clustering of the extracted events. The hierarchical tree is cut
into six clusters represented by the six sidebars. The vertical line shows
where the binary tree is cut.

5.4.3 Characteristics of Events

The following demonstrates the advantages of clustering the events and illustrates

that the underlying mechanisms are physically meaningful. Fig. 5.8 shows the

transition of cluster numbers for the extracted events, together with the stability

associated with each underlying structure. The stability is quantified by the

gradient Richardson number Ri = (g/✓0)@✓/@z(@V/@z)�2, where g is the gravity

acceleration, ✓ is the potential temperature, V is the wind vector, and the overline

denotes the time average over the duration of an event. The vertical gradients

are calculated using 1.5 and 10 m levels for V, and 0.63 and 9.5 m levels for ✓.

The time evolution of clusters is related to the evolution of the stability, although

the stability is not one of the features used in the clustering procedure. This
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Figure 5.8: Time evolution of the cluster number and Richardson number of extracted
events. The horizontal dotted line denotes Ri = 0. The times on the top
correspond to the event times when larger cluster transitions occur. The
events were detected in the time series from 1100 LST 5 October to 1100
LST 6 October.

indicates that clustering is able to group together structures with similar physical

characteristics, given only a single-variable time series as the input.

Fig. 5.9 depicts the average depth of structures for each cluster. Since some

structures are tilted vertically, the depths are determined by calculating the

lagged vertical correlation. The correlation is calculated between the studied

thermocouple at 9.5 m and the remaining 27 levels aloft for each event. In order

to avoid spurious correlations, the maximum allowed lag, which depends on

the event length le, is chosen to be 10 ⇤ log(le). The maximum lagged correlation

coe�cients are averaged at each height for all events in a cluster, and the average

depth of each cluster is obtained as the height where the vertical correlation

coe�cient falls below 1/e. Clusters 1, 2 and 6 are characterized by deep events,

particularly Cluster 6 where the average structure depth is larger than the tower

height so it could not be determined. Combining this information with previous

results yields that Clusters 1 and 2 are predominantly composed of deep statically

unstable events, while Cluster 6 contains deep stable events. Structures in Cluster

3 are shallow with unstable stratification, and those in Cluster 5 are shallow and
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Table 5.1: Main characteristics of each cluster. The smoothness, defined as D/�D,
where D(t) = x(t +5)� x(t), is shown instead of its reciprocal — the non-
smoothness defined in section 5.2.3 — for the purpose of legibility.

Cluster Ri Depth (m) Smoothness Kurtosis Skewness Period (s)

1 -1.07 35.9 3.37 3.85 1.02 31

2 -0.73 35.9 3.78 3.72 0.98 No

3 -0.40 14.4 3.72 9.47 1.82 No

4 0.00 14.4 9.48 3.04 0.29 No

5 0.12 7.2 8.20 3.61 0.62 23

6 0.70 >48.6 12.68 2.26 0.20 No

stably stratified. The distinction between deep and shallow events sustains the

usefulness of the present clustering method in that it distinguishes between both

the stability and depth of structures even though that information is not fed to

the method. It also implies that the characteristics of events in time series carry

the information of a wide range of characteristics of underlying structures, which

leads to the possibility of classifying and understanding certain atmospheric

processes solely from their traces in single-point time series. The latter is clearly

true for some specific cases, but is limited for complex three-dimensional motions.

In order to further visualize the clustering results, Fig. 5.10 depicts examples

of events in each cluster, and Table 5.1 shows the main characteristics of the six

clusters. To summarize, the Cluster 1 examples have the structure typical of

periodical deep ramp structures in unstable atmospheric conditions (See Table

5.1). At the same time, Cluster 5 contains periodical but shallow structures in

stable conditions. Two of the six clusters, Clusters 2 and 3, contain all the single-

cycle ramp shapes in unstable conditions. Fig. 5.9 shows that the ramp structures

in Cluster 2 are mostly deep, while those in Cluster 3 are shallow but sharper

since this cluster has the largest kurtosis value. Ramp-like shapes in near-neutral
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conditions are grouped in Cluster 4. Meanwhile, the most smooth shapes go to

Cluster 6. The Cluster 6 structures are deep and apparently wave-like.

A closer look into individual events further demonstrates their physical origin.

For example, Fig. 5.11 shows the time-height cross-sections of temperature and

vertical velocity for a ramp-like event from Cluster 2. The structure is similar

to the one visualized from sodar data using a wavelet transform in Thomas et al.

(2006). The temperature and vertical velocity are in phase over the tower height,

closely resembling the ramps in convectively unstable ABL studied by e.g. Wilczak

(1984) and Williams and Hacker (1992). Another example is the event from

Cluster 6 that starts at 19:17:06 LST on 5 October. It is a part of the wave-like

top-down event studied by Sun et al. (2012) that was found to be responsible for

turbulence intermittency. The example event for Cluster 5 that starts at 23:39:03

LST on 5 October is again a part of the Kelvin-Helmholtz instablity event that

was thoroughly examined in previous studies using other available data during

CASES-99, such as radiosondes and a Doppler lidar (e.g., Blumen et al., 2001;

Poulos et al., 2002; Sun et al., 2012). Further analysis of physical mechanisms is

left for a follow-up study.
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Figure 5.9: Vertical correlations between the thermocouple at 9.5 m and those aloft,
averaged over all events for each cluster. The dashes lines show a one
standard deviation interval around the mean for each level. The vertical
dotted lines represent e�1. Titles show mean event depths for each cluster.
When the depth is larger than the tower height, it is shown as > 48.6 m, i.e.
larger than the di↵erence between the highest thermocouple at 58.1 m and
the reference thermocouple at 9.5 m.
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Figure 5.10: Examples of events from the six clusters: two instances are shown from
each cluster. The time of onset of an event is given in each title (the times
are between 1100 LST 5 October and 1100 LST 6 October).
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Figure 5.11: Time-height cross-section of the ramp structure that starts at 11:38:16
LST on 5October showing (a) the temperature perturbation (T (z, t)�T (z),
where the overline denotes the time average over the event duration at
each level) from the 34 thermocouples and (b) vertical velocity from the
seven sonics. (c) The temperature time series with the mean removed of
the ramp shape at 9.5 m that was recognized by the method. Also shown
is the vertical wind speed at the sonic anemometer level 3 (10 m).
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5.5 Testing the Event Extraction Approach

An important assumption of the first step of the method in real-world atmospheric

application is that an event can be defined as a non-AR(1) process. The suitability

of such assumption might not be immediately obvious, so we proceed with two

tests that justify this approach. The first test, which is more qualitative, introduces

a non-linear component into the linear AR(1) model (Gluhovsky and Agee, 2007)

and examines the behavior of the event extraction method. As shown below, the

time series generated with higher levels of non-linearity visually exhibit more

expressed shapes. The second test investigates changes of event numbers after

performing phase randomization (Maiwald et al., 2008) on a real-world time series.

The two tests are presented in detail below.

5.5.1 Artificial AR(1) Time Series with a Non-linear Compo-

nent

We randomly generate 1000 AR(1) time series with the length l = 500:

x(t) = � ⇤ x(t � 1) + ✏(t),

where 0 < � < 1 and �2
✏ = 1��2, which makes �2

x = 1. We use � = 0.9 here to be

consistent with the values found from the real world case.

The next step is introducing a non-linear component into the 1000 generated time

series (Gluhovsky and Agee, 2007):

y(t) = x(t) + a ⇤ (x2(t)� 1),
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Figure 5.12: AR(1) time series generated with di↵erent values of the non-linearity
parameter a.

where a is a parameter that controls the non-linearity of y(t).

Fig. 5.12 illustrates the changes that occur in the time series as the non-linearity

increases. It is clear even from simple visual inspection that individual shapes

become more distinguishable with stronger non-linearity. The event extraction

method should be able to recognize such di↵erences quantitatively. This is verified

by examining the response of the method’s red noise test to increasing non-

linearity. The percentage of time series with p > 0.05 is determined for each

value of a, where a ranges from 0 to 0.4 by 0.02. Recall that p > 0.05 indicates

noise. Fig. 5.13 shows that the percentage decreases with the increase of the

non-linearity parameter a. This means that time series become less AR(1)-like as

the non-linearity increases, which implies that the method correctly finds more

events with stronger non-linearity.

5.5.2 Phase Randomization

As described in section 5.2.4, phase randomization removes coherent structures

from time series and can be used to validate the present method. The number of

detected events is expected to be significantly smaller in the phase randomized

data compared to the original data. It should be noted that the present method
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Figure 5.13: Percentage of the time series characterized by p > 0.05 (i.e., that are
recognised as AR(1) or red noise) vs. the non-linearity parameter a.

does not detect only the coherent structures defined in the usual ways. For

example, a periodic wave is not strictly a coherent structure because of the absence

of phase correlation (e.g., Kuznetsov and Zakharov, 2000), but it is still recognized

as an event by our method. In order to alleviate the phase randomization test,

we choose a part of the CASES-99 temperature time series during the daytime

convective conditions, when the typical ramp-like coherent structures dominate

the flow (Wilczak, 1984). The length of the chosen section of the time series

is N = 20000. The performance of the event extraction method is tested by

comparing the number of events obtained from two time series of p values — p1(t)

and p2(t). p1(t) is obtained from the unmodified data using the red noise test as

in section 5.2.2, while p2(t) is obtained by phase-randomizing each subsequence

before performing the red noise test. The number of events obtained by the

method before phase randomization is 26. Using the average over 100 realizations
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of phase randomization in order to reduce the uncertainty, only six events are

found after phase randomization. This indicates that the method does not falsely

recognize events that are not present in the time series.

5.6 Conclusions

A new method for classification of events from time series is developed. The

method distinguishes between signal and noise, provided that the nature of the

background noise in time series is known in advance. The method is based on two

steps:

• A noise test is performed on each sliding subsequence from the time series.

The events are extracted as subsequences that are significantly di↵erent from

noise. This step requires the specification of the characteristics or color of

the background noise. Tests are done with white and red noise for artificially

generated time series, while red noise is assumed as the model for real-world

atmospheric datasets.

• The extracted events are clustered into similar patterns. The second step is

based on a set of features that carry the information about global character-

istics of an event. This feature-based clustering yields substantially better

results than clustering based on raw data.

The method is robust to high levels of noise, which is advantageous regarding the

ubiquity of very noisy time series. The application to atmospheric boundary layer

time series shows that the method successfully extracts realistic flow structures.

The feature-based clustering of the extracted events groups them into clusters with

similar physical characteristics, even though the only input into the clustering

method is single-variable time series. Finally, the events are detected automatically
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without predefining geometries or assuming underlying physical processes. This

makes the method a useful tool in exploratory analysis of the dynamics behind

time series.

The method is also very flexible and can be tailored to di↵erent purposes. The

first step can be adjusted to di↵erent noise characteristics and the definition of

the event can be modified. The second step is highly customizable by choosing

di↵erent sets of features that are best suited for a specific purpose. The method

can be potentially used in areas such as searching for non-noise patterns in solar

wind time series (Bolzan et al., 2009), financial time series with underlying red

noise (Fu et al., 2001) and other areas concerned with extracting meaningful events

from di↵erent types of noise.
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Chapter 6 is based on the article Kang Y, Belu�i’ D, Smith-Miles K. 2014a.

Classes of structures in the stable atmospheric boundary layer (Submitted).

Quarterly Journal of the Royal Meteorological Society .

Abstract. This paper analyses ubiquitous flow structures that a↵ect the dynamics

of stable atmospheric boundary layers. These structures introduce non-stationarity

and intermittency to turbulent mixing, thus invalidating the usual scaling laws and

numerical model parametrizations, but their characteristics and generating mechanisms

are still generally unknown. Detecting these unknown events from time series requires

techniques that do not assume particular geometries or amplitudes of the flow structures.

We use a recently developed such method with some modifications to study the nighttime

structures over a three-month period during the FLOSSII experiment.

The structures cover about 26% of the dataset, and can be categorized using clustering

into only three classes with similar characteristics. The largest class, including about

50% of the events, contains smooth structures, often with wave-like shapes, that occur

in stronger winds and weak stability. The second class includes sharper structures

with large kurtosis. It is characterized by weaker winds and stronger stability. The

smallest class, including about 20% of the events, contains predominantly sharp step-

like structures, or microfronts. They occur in weakest winds with strong stability.

Sharper, and particularly shallower, structures are related to transient low-level wind

maxima that generate inflection points and may a↵ect generation of turbulence. Fur-

thermore, large wind directional shear, which is another source of transient inflection

points, is generated even by deep coherent structures when the background wind is

weaker than the structure intensity.

These results show that the complexity of structures can be reduced for the purpose of

further analysis using a proper classification. Mapping common characteristics of such
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events leads to their better understanding, which, if combined with similar analyses of

other boundary layer data, could lead to improving their e↵ects in numerical models.

Keywords. Submesoscale motions; Coherent structures; Detection of events; Turbu-

lence intermittency; Time series; Clustering

References are considered at the end of the thesis.
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Chapter 6

Classes of Structures in the Stable

Atmospheric Boundary Layer

6.1 Introduction

Stable atmospheric boundary layer (ABL) still presents a challenge in all three

aspects of atmospheric research: observations, theory andmodelling (e.g., Holtslag

et al., 2013; Mahrt, 2014). The di�culty of the challenge increases with stability,

leaving the majority of the very stable ABL characteristics unknown (e.g., Mahrt,

2014). As a result, numerical models perform poorly in those conditions and

the model developers are forced to introduce various artificial enhancements of

mixing to keep the models within acceptable performance limits (e.g., Sandu et al.,

2013).

A conspicuous characteristic of stable ABL is significant non-stationarity and the

associated turbulence intermittency. The turbulent time and length scales can

decrease to very small values, leaving a spectrum of generally unknown motions

that bridge the gap between the largest turbulence scales and mesoscales. These
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motions are usually termed submesoscale or submeso motions (e.g., Acevedo

et al., 2013; Beluši’ and Güttler, 2010; Mahrt, 2009), although some studies

additionally use terms such as hybrid motions (e.g., Mahrt, 2014) or dirty waves

(e.g., Nappo et al., 2014), to distinguish between di↵erent subgroups of motions.

The physical mechanisms of these motions are generally not understood, except

for a number of individual, usually large-amplitude cases, that were interpreted

as Kelvin-Helmholtz instability (Blumen et al., 2001), gravity waves and density

currents (e.g., Sun et al., 2002, 2004; Viana et al., 2009, 2010). Otherwise, it is not

uncommon to assume that these non-turbulent structures are waves, although

distinguishing between waves and other phenomena is not straightforward with

the usual limited observations (e.g., Nappo et al., 2014).

Unlike for convective or forest-canopy boundary layers, where many studies

have extracted flow structures and analysed their implications for scalar and

momentum fluxes, there are only a couple of studies dealing with structures in the

stable boundary layer. The majority of these studies examined turbulent coherent

structures with time scales on the order of 1 min. Barthlott et al. (2007) studied

ramp-like turbulent coherent structures over an open field both in unstable and

stable surface layer using wavelet analysis. They found that temperature ramp

intensity increases with stability and wind shear in stable conditions. Mahrt (2010)

extracted large-amplitude step-like temperature structures (microfronts) on time

scales of minutes to tens of minutes in stable conditions over a locally flat-terrain

site. He classified them into cold, warm and gust microfronts, and concluded

that, unlike the typical density currents, cold and warm microfronts are thermally

indirect circulations that require an external energy source. However, a myriad of

other structures exist in stable boundary layer time series that cannot be detected

if only ramp or step geometries are assumed. Their origin, characteristics, and

e↵ects are currently unknown, although they could be an important contributor

to the overall mixing in stable conditions.
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The main goal of this study is to examine whether the stable ABL structures can

be extracted and usefully classified into groups with similar characteristics. If

achievable, the classification would enable the analysis and understanding of

typical dynamical and behavioural patterns in stable ABL for di↵erent surfaces

and conditions. The measure of usefulness of a classification are groups of similar

events that are distinguished from other groups and allow common interpretation

of their dynamical and/or structural characteristics. Another relevant criterion is

that the classified events should include a significant portion of the total length of

the analysed time series. An important constraint is that the stable ABL structures

are generally unknown, so the usual methods that are focused on specific charac-

teristics of events, such as their geometrical shapes (microfronts, sinusoidal waves,

ramp-cli↵ patterns, etc.) (e.g., Mahrt, 2010; Beluši’ and Mahrt, 2012), amplitudes

(majority of methods, including wavelets) (Antonia et al., 1979; Wilczak, 1984;

Collineau and Brunet, 1993b; Thomas and Foken, 2005; Barthlott et al., 2007),

phase relationships (dynamical systems approaches using phase randomization)

(e.g., Campanharo et al., 2008; Chian et al., 2008; Kang et al., 2014d), or e↵ects on

turbulent fluxes (quadrant analysis) (e.g., Katul et al., 1997), might return biased

samples (Kang et al., 2014c). A recently developed method for detecting and classi-

fying events from time series defines events as non-noise time-series subsequences

(Kang et al., 2014c). This definition turns the focus towards characterizing the

noise, which is typically an easier problem than characterizing events. As a result,

the method does not use any assumptions about physical, structural or amplitude

characteristics of events, and as such is appropriate for analysing stable ABL time

series.

Furthermore, this paper strives to answer the following questions:

• What types of events exist in stable ABL?
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• What are the main physical and structural characteristics of di↵erent types

of events?

• How do these events a↵ect stability and turbulence?

6.2 Data and Methods

6.2.1 Data

The turbulence data were collected during Fluxes over Snow Surfaces II (FLOSSII)

experiment conducted in the North Park Basin in north-western Colorado, USA,

from 20 November 2002 to 4 April 2003 (Mahrt, 2010). The site is locally flat grass

surface frequently covered with snow. The North Park Basin extends about 30

km from west to east and 50 km from south to north, and is located between two

mountain ranges extending in the north-south direction with heights of 1000 –

1500 m. Seven sonic anemometers were mounted on a 34-m tower at the following

vertical levels: 1, 2, 5, 10, 15, 20, and 30 m. The tower was located at the southern

part of a shallow sub-basin that is approximately 4 km wide (Mahrt, 2010).

Quality-controlled 6-s averages of the night-time temperature data from 130

nights at the second tower level (2 m) are used for extraction, clustering and

characterization of events. We use 6-s averages for small-scale turbulent fluxes

following the discussion in Mahrt et al. (2012), where a clear turbulent signal

in weak-wind conditions was always present only for time scales smaller than 5

s. Therefore, the priority here is not to include the contribution of all turbulent

scales, but to ensure that only the “pure” turbulence contributes to the fluxes

in all conditions, including the most stable ones. The fluxes at larger scales are

calculated from the 6-s data, with the averaging length equal to the event length.

As described in the following subsections, the nominal event length is a constant
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parameter in the method (equal to 720 s here), but the final length depends on the

characteristics of each event and can become somewhat larger than the nominal

event length. As a result, the event-scale fluxes obtained with di↵erent averaging

lengths include motions on di↵erent scales and are not directly comparable. In

many cases, there will be considerable contribution of pure turbulent motions

to the event-scale flux, particularly for stronger winds, while in other cases the

submeso motions will dominate.

Aside from studying the usual variables, we examine the intensity defined as

� max =  max � min, where  stands for wind direction (dir), temperature (T),

horizontal wind speed (U) or vertical velocity (w). In the case of wind direction,

the di↵erences, ranging from 0� to 180�, are calculated between all data points in

an event, and �dirmax is taken as the maximum di↵erence.

6.2.2 Event Detection and Classification Method

We use a slightly modified version of the method introduced by Kang et al. (2014c),

which consists of two steps. The first step detects events from background noise in

time series. The second step clusters the detected events, so that similar patterns

are grouped together for further analysis of their common characteristics and

behaviour.

Step one: event detection

The main task of the first step is separating events from noise. Sequential sub-

sequences of the time series x(t) are obtained using a sliding window with a

predefined length scale l. The qth subsequence can be expressed as

xq(t) = (x(tq), · · · ,x(tq+l�1)),
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where 1  q  m � l + 1, and m is the length of the time series x(t). Events are

defined as those subsequences that are significantly di↵erent from noise. Note

that this step requires specification of the characteristics or colour of background

noise. We use red noise, which is typically assumed for atmospheric processes.

Red noise is an AR(1) process with positive correlation at unit lag (Chen et al.,

2013):

x(t) = � ⇤ x(t � 1) + ✏(t), (6.2.1)

where � is the first-order auto-correlation coe�cient (0 < � < 1) and ✏(t) is the

white noise process with standard deviation �✏. Events are detected by performing

noise tests on the subsequences. Each subsequence is assigned a p value according

to a noise test. When the p value is smaller than a predefined significance level ↵

(↵ = 0.05), it indicates a potential event. The event is detected when a consecutive

sequence of potential events is longer than l/2 (Kang et al., 2014c). The method

follows Kang et al. (2014c), with some minor modifications as explained below.

The individual steps of obtaining the pq value of the subsequence xq(t) are sum-

marized in Figure 6.1. The original method (Kang et al., 2014c) uses a stationarity

test before proceeding with red noise testing. The Phillips-Perron (PP) Unit Root

Test (Banerjee et al., 1993; Perron, 1988) is used to test for the null hypothesis that

xq(t) is a unit root process (� = 1), i.e. that it is non-stationary, against a stationary

alternative. This test is used because the AR(1) modelling is only applicable to

stationary processes. If the null hypothesis is not rejected, the process is non-

stationary. The PP test does not reject the null hypothesis for simple random walk

processes (� = 1), and also for special situations when the process is stationary

with a structural break. Simple random-walk processes are not considered as

events, but the stationary processes with structural breaks are, so the original

method (Kang et al., 2014c) is modified by introducing an additional test to distin-

guish them — Zivot & Andrews (ZA) unit root test (Zivot and Andrews, 1992).

This test allows for a structural break in either the intercept or in the slope of
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the linear trend function of the underlying series. Zivot and Andrews (1992) get

the asymptotic distribution of ZA test statistic by Monte-Carlo simulation with

5000 replications under the null hypothesis of a random walk. The 1%, 5% and

10% critical values are then obtained from the asymptotic distribution. We draw

a conclusion of rejection or non-rejection of the unit root null hypothesis based

on the 5% asymptotic critical values. Rejection of the null hypothesis indicates a

potential event (stationary process with a structural break). Random walk pro-

cesses result in non-rejection of the null hypothesis. In our case, when the ZA test

statistic value for xq(t) is more extreme than the 5% critical value, which indicates

a potential event, we assign pq = 0, and otherwise pq = 1.

A red noise test is performed on the stationary subsequences obtained from the

PP test. The test is based on the definition of red noise given in (6.2.1). We fit

an AR(1) model to each subsequence xq(t) and test whether the model residuals

are white noise. If the residuals are white noise, then xq(t) is considered to be red

noise (Kang et al., 2014c); otherwise, xq(t) is defined as a potential event. The pq

value is the p value of the white noise test for the AR(1) model residuals. Note

that since red noise test recognizes a process with a linear trend as a potential

event, subsequences are de-trended prior to the red noise test if the goodness-of-fit

of the linear model fitted on the subsequence is larger than 0.85. A white noise

process can be regarded as a red noise process with � = 0, so the red noise test

recognizes a white noise process as noise as well. Therefore, the rejection of red

noise hypothesis means that the process is neither red nor white noise. Further

details of the red noise test can be found in Kang et al. (2014c).

Finally, whenever there is a consecutive progression of p values ps,ps+1, · · · ,pe
satisfying

• pi  ↵, i = s, s +1, · · · , e
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Figure 6.1: Flow chart of the event detection procedure for a subsequence xq(t).

• e � s � l/2,

the event is defined as the segment from the time point s + l/4 to the time point

(e + l � 1)� l/4, where s is the starting point of the sth potential event and e + l � 1

the ending point of the eth. The length of l/4 is discarded to remove excess

background noise at the start and end of the event (Kang et al., 2014c). Note that

using this definition, the event length le � l.

Step two: event clustering

The first step detects the events without organizing them into groups. The second

step clusters the detected events to ease the interpretation and understanding

of their characteristics. Considering the complexity of turbulence and submeso

events, and their variability in length, a characteristic-based k-means clustering

method is used in this step (Wang et al., 2006; Kang et al., 2014c). Each event

extracted in the first step is firstly summarized using a feature vector. Then the

events are clustered in the feature space, in which the cluster prototypes are

chosen as the events nearest to the cluster centers. Features used here are standard
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deviation � , kurtosis, skewness, HD (the absolute Di↵erence between averages

of the first and second Half), nonsmoothness, test statistic of PP test and ZA

test, and maximum, minimum, and kurtosis of the first-order di↵erence of the

events. TheHD of an event xe(t) with length le is defined asHD = |H2�H1|, where

H2 = 1
le/2

leP
i=le/2+1

xe(ti) and H1 = 1
le/2

le/2P
i=1

xe(ti). The nonsmoothness of xe(t) is defined

as �D/D, where D(t) = xe(t +10)� xe(t).

A number of indices have been developed for objective estimation of the number

of clusters, each with its own inadequacies. Using multiple indices together and

choosing the number of clusters given by the majority of indices (Charrad et al.,

2013) has shown as optimal for our purposes.

6.3 Results

6.3.1 Event Extraction and Clustering

Using the window size l = 120 (120 points on 6-s averaged data), the first step

of the method yields 926 events from the 2-m temperature time series, which

accounts for about 26% of the total time series length. In order to establish

whether the frequency of occurrence of events changes with atmospheric stability,

we calculated the gradient Richardson number (Ri) values for both events and

non-events, using Ri = (g/✓0)@✓/@z(@V/@z)�2, where g is the gravity acceleration,

✓ is the potential temperature, V is the wind vector, and the overline denotes the

time average over the duration of an event or non-event. The vertical gradients

are calculated using 1 and 30 m levels. Non-events refer to all remaining parts of

the time series after the events are removed. They are divided into segments with

the length equal to the sliding window length l before calculating Ri. The events

and non-events are grouped together into three stability bins with 0 < Ri  0.25,
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0.25 < Ri  1, and Ri > 1. The frequency of occurrence of events for a Ri bin is

calculated as the percentage of the total time in the Ri bin that is occupied by

events. The events account for 19.1%, 42.0%, and 23.5 % of the total time for

the three bins, respectively. The events tend to occur with similar frequencies

for dynamically unstable (0 < Ri  0.25) and strongly stable (Ri > 1) regimes,

but are about twice more common in the intermediate stability range (0.25 <

Ri  1). A possible explanation is that for dynamically unstable conditions, the

common presence of turbulent mixing transfers the energy towards smaller scales,

leaving less organisation and fewer structures at the time scales larger than 10

min that are in focus here. For strongly stable conditions, the lack of instability

mechanisms internal to the flow might be responsible for the lower occurrence of

events, because then the organised structures have to be predominantly externally

generated (such as drainage currents and terrain waves). The high occurrence in

the intermediate stability range thus emerges as the favourable combination of the

two e↵ects: higher probability of internal instabilities and less turbulence. The

twice higher occurrence in these conditions compared to very stable conditions

suggests that the structures at the current location are nearly equally produced

by internal and external mechanisms. This finding has important ramifications

for numerical model performance. While internal mechanisms are to a certain

extent taken into account in numerical model parameterizations, the e↵ects of

the external unresolved structures are not. Depending on their influence on

turbulent mixing and fluxes, the absence of nearly half (all) of the structures could

be a significant source of the numerical model under-performance in stable (very

stable) conditions.

In the second step, each event is represented using a feature vector. Principal

component analysis (PCA) is performed to reduce the correlation among some

of the features. The k-means clustering algorithm is then performed in the five-

dimensional space obtained from the PCA analysis. We obtain the optimal number
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of clusters k = 3 using the method from Charrad et al. (2013). There are 450, 289,

and 187 events in clusters 1, 2, and 3, respectively.

Table 6.1 shows the feature values for each cluster. A pairwise t test is performed

to validate the distinction among the three clusters for each feature, and almost

all the features are significantly di↵erent between the three clusters. Such a small

number of clusters is somewhat surprising, because it suggests that the complexity

of stable ABL over a three-month period could be divided into only three major

categories of structures.

6.3.2 Characteristics of Events

Figure 6.2 shows the three nearest and three furthest events from the cluster

centroid for each cluster. Combining these examples with Table 6.1, we see that

cluster 1 has the smoothest structures, since events in this cluster do not have large

sudden change and are stationary (or trend-stationary). Physically, from Figure 6.3

we see that cluster 1 encompasses the events with strongest winds and turbulence.

Consequently, they are characterized by the weakest stability (median Ri < 0.25).

This agrees well with the analysis of Sun et al. (2012), where they indicate that

in stable conditions, the wind speed is the predominant factor in generating

turbulence, which then acts to reduce the static stability by mixing the vertical

temperature di↵erences. This naturally results in small temperature intensities

(DTmax), which implies smooth structures. The wind direction shifts are also

small, which could be due to only the inverse dependence of wind direction

variability on wind speed in cases when the cross-wind variance does not depend

on the mean wind speed (Beluši’ and Mahrt, 2008), such as for submeso motions

(Vickers and Mahrt, 2007). However, the cross-wind intensity (not shown) is also

the smallest for cluster 1.
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Figure 6.2: Examples of events in cluster 1 (left panels; red), 2 (middle panels; green)
and 3 (right panels; blue). Shown are the three events nearest to the cluster
center (top three panels), and the three furthest (bottom three panels).
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Table 6.1: Centroids of the events in each cluster. The parameters are defined in sec-
tion 6.2.2. “Di↵” stands for the first order di↵erence. The smoothness
is shown instead of its reciprocal — the non-smoothness defined in sec-
tion 6.2.2 — for the purpose of legibility.

Cluster 1 2 3

Smoothness 0.805 0.738 0.705

� (K) 0.457 0.435 0.609

HD (K) 0.241 0.133 0.424

Kurtosis 2.459 3.530 1.873

Skewness 0.279 0.639 0.336

Di↵ max (K) 0.432 0.590 0.426

Di↵ min (K) -0.409 -0.548 -0.461

Di↵ kurtosis 2.959 5.615 6.439

PPstat -5.378 -3.926 -2.641

ZAstat -7.191 -5.192 -3.992

Clusters 2 and 3 are characterised with sharp structures that have large skewness

and first-order di↵erence kurtosis (Table 6.1). Cluster 3 stands out as being

mostly composed of well-defined step-like structures (microfronts; e.g., Beluši’

and Mahrt, 2012; Mahrt, 2010), while cluster 2 sharp changes are irregular and

predominantly short-lived, and may sometimes appear as ramp-cli↵ patterns.

Both clusters have weaker winds, which are associated with weaker turbulent

mixing and hence stronger stability, larger wind direction shifts and temperature

intensity. The di↵erence is that cluster 3 is farther along the line of decreasing

wind speed and increasing stability. The increase in wind direction shifts with

cluster number is associated with the increase in the cross-wind intensity. The
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common observation is that for non-turbulent scales, the cross-wind variance does

not scale with the mean wind speed. We examined the cross-wind variability by

calculating the cross-wind variance and intensity for each event using di↵erent

input data averaging lengths (6 s, 1 min, 5 min), and found consistent behaviour

for all scales — the cross-wind variability always increases with cluster number,

i.e., with decreasing wind speed (not shown). The examined time scales include

the usual submeso scales, so our results di↵er from Vickers and Mahrt (2007).

The vertical profiles of main physical characteristics of events in each cluster are

shown in Figures 6.4 and 6.5. The wind speed on average gradually increases with

height for all clusters. Both the wind speed and shear decrease with increasing

cluster number. Here the wind shear is defined as the vertical derivative of the

wind speed, which allows for negative shear values that point to decrease of wind

speed with height. The decrease of wind speed at a certain level indicates the

existence of a wind maximum below that level. A low-level wind maximum

creates an inflection point in the wind profile within the ABL, which increases the

chance for instability and turbulence development. Figure 6.4 shows that cluster 1

has infrequent wind maxima (i.e., negative shear values), which mostly appear at

higher tower levels. Wind maxima occur more frequently in clusters 2 and 3. Due

to its importance for the development of instabilities, the occurrence of low-level

wind maxima is further analysed in the next subsection.

Vertical profiles of the wind direction di↵erence from level 1 are also shown, where

the range of di↵erences is [-180�, 180�]. This representation of wind direction

simplifies the analysis of the vertical profile, but at a cost of loosing the information

about the mean wind direction. The di↵erence also represents a bulk measure

of directional shear for each height. Mahrt et al. (2013) discuss the influence of

directional shear on generation of turbulence in weak-wind conditions. They

show that for strong stability, directional shear increases with stability, while the

turbulence strength remains roughly constant. This led them to a hypothesis
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Figure 6.3: Boxplots of main physical characteristics for cluster 1, 2 and 3 (red, green
and blue) at level 2 (2 m). The line in each box represents the median of
that cluster, while the bottom and top of the box are the 25th and 75th
percentiles. The whiskers extend to the minimum or maximum values
within 1.5 times the box height from either side of the box. The subscript
‘6s’ denotes the 6-s averaging interval for the fluxes.
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that the directional shear may o↵set the turbulence destruction from increasing

stability. Figure 6.4 shows that the direction di↵erence is predominantly positive

(i.e., clockwise) and increases with height. The increasing clockwise turning with

height is consistent with the Ekman model, even though the profiles only reach

30 m above the ground. The direction di↵erence considerably increases with

cluster number, both in the median and the spread, which is consistent with the

increasing directional shear with stability reported by Mahrt et al. (2013).

As already seen from Figure 6.3, the temperature intensity increases with stability.

For strong winds in cluster 1, the temperature intensity is almost independent of

height, while it decreases with height for clusters 2 and 3. This can be explained

if we assume that temperature variability in stable conditions is predominantly

generated by vertical displacements. Since the stability decreases with height,

the same vertical displacements result in smaller temperature perturbations with

height. However, for all three clusters, the vertical velocity intensity increases

with height. This increase probably o↵sets the e↵ects of stability decrease for

cluster 1. For clusters 2 and 3, the vertical velocity intensity increase is even larger,

but it does not seem to have the same e↵ect on temperature. The latter could

be explained if the events are predominantly density currents, in which case the

temperature perturbations are caused by impinging air masses that have di↵erent

temperatures.

The vertical velocity variance increases with height up to 5 m, where it has a

pronounced maximum for cluster 1, and approximately plateaus for clusters 2

and 3. This could suggest that the majority of events are associated with elevated

turbulence, similar to the upside-down boundary layer discussed in Mahrt (1999).

However, Mahrt et al. (2013) argue that the ubiquitous increase of w02 with height

in stable conditions can be attributed to non-turbulent motions and introduce

an alternative measure of “pure” turbulence strength w0T 0/�T , which they show

decreases with height according to expectations. In our cases, this measure has a
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weak maximum at 5 and 2 m for clusters 1 and 2, respectively, and for cluster 3 it

is constant with height below 2 m and decreases aloft (not shown). This can be

explained by the fact that we study mostly non-stationary structures with spatial

coherence (including gravity waves, drainage currents, etc.), and as such they

will tend to generate shear and instabilities at a certain height above the surface.

However, this does not explain the systematic decrease of the downward heat

flux with height. For example, in the typical upside-down situations, both the

variances and the downward heat flux increase with height or have an elevated

maximum (Mahrt, 1999).

The event-scale vertical heat flux has smaller magnitude than the turbulent heat

flux, but with much higher tendency towards positive values, i.e., towards coun-

tergradient or upward heat flux. This is particularly evident for cluster 3, where

the upward heat flux occurs for more than 30% of the events, increasing to about

50% at higher levels. The countergradient heat flux has been associated with

various structures previously, predominantly with gravity waves (e.g., Einaudi

and Finnigan, 1993; Viana et al., 2009), while our results show that it can occur

with the microfronts and other step-like sharp structures. The event-scale vertical

velocity variance increases with height, which is probably due to larger vertical

length-scales of the perturbations associated with the event time-scales. As a

result, these motions become confined close to the ground surface reducing the

variance.

6.3.3 Shallow vs. Deep Events

Deep events account for 64%, 57%, and 78% of clusters 1, 2, and 3, respectively.

Table 6.2 gives a summary of physical characteristics for deep and shallow events

in each cluster. The depths are determined by calculating the lagged vertical

correlation of the temperature signal between level 2 (2 m) and higher levels. The
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Figure 6.4: Vertical profiles of the main averaged characteristics of events in cluster
1 (left panels; red), 2 (middle panels; green) and 3 (right panels; blue).
dU/dz is the vertical wind shear, calculated as the vertical derivative of the
mean wind speed U. dir - dir1m is the mean wind direction di↵erence from
level 1 (1 m).
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Figure 6.5: Vertical profiles of the main turbulent characteristics of events in cluster 1
(left panels; red), 2 (middle panels; green) and 3 (right panels; blue). The
subscripts ’6s’ and ’event’ denote the averaging intervals for the fluxes (6 s
and event length, respectively).
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vertical extent of an event is defined while the maximum correlation coe�cient

is larger than 1/e (Kang et al., 2014c). Deep events are defined as events whose

depth is equal to or larger than 28 m, which is the height di↵erence between the

top of the tower and level 2, while shallow events have depths less than 28 m.

Table 6.2 indicates that shallow and deep events in cluster 1 have similar char-

acteristics. Since the method clusters the events based on the features such as

smoothness, the similarity between deep and shallow events for this strong-wind

cluster is consistent with the dependence of smoothness predominantly on wind

speed. In other words, large wind speeds occur in cluster 1 regardless of the

vertical extent of structures.

Unlike cluster 1, there are substantial di↵erences between shallow and deep

structures in clusters 2 and 3, and these di↵erences are similar in both clusters.

Shallow structures have considerably weaker winds than deep structures, which

is followed by the usual progression of weaker turbulence and stronger stability.

However, there are no significant di↵erences between the shallow and deep struc-

tures in temperature intensity. This can be explained by smaller amplitudes of

vertical velocity perturbations for shallow structures, which coupled with larger

vertical temperature gradients for shallow structures results in similar amplitudes

of temperature perturbations. Nevertheless, the turbulent vertical wind variance

and heat flux are considerably smaller for shallow structures.

The relationship between the event depths and stability for clusters 2 and 3 sug-

gests that the dynamically important structures are predominantly generated and

propagate in the ABL surface inversion, rather than appearing from aloft. The

ABL height generally decreases with stability as a result of decreasing turbulent

mixing. Events that are generated as non-turbulent perturbations of the ABL sur-

face inversion, such as shallow gravity waves, have their vertical extent limited by

the ABL height. Density-current types of events, such as microfronts or drainage
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currents, depend on the depth of the intruding denser air mass, which is again

limited by the ABL height at its origin. The events whose depths most likely do

not depend on the ABL surface inversion height or stability are those generated

by Kelvin-Helmholtz instability at elevated shear layers. Our results therefore

suggest that Kelvin-Helmholtz instability is not the dominant mechanism for

very stable weak-wind events. A more extensive analysis is required for proving

such conjecture (e.g., Finnigan et al., 1984), but this would require wind and

temperature measurements significantly above the current tower height of 30 m.

Another important aspect is the influence of the event depth on wind shear.

Figure 6.6 shows percentages of negative dU/dz values for deep and shallow

events in each cluster. The percentage of events associated with low-level wind

maxima is larger for stronger stability (i.e., for higher cluster number), and for

shallower events within a cluster. The percentage also increases with height, as

do the intra-cluster di↵erences between shallow and deep events. Note that these

low-level wind maxima are not related to the usual persistent nocturnal low-level

jet (e.g., Banta et al., 2002), but are associated with the sporadic propagating

structures. As the inflection points associated with the low-level wind maxima

may lead to more turbulence, the sporadic nature of the structures can result

in intermittent turbulence. However, it should be noted that on average, the

structures do not increase turbulence. The distribution of e↵ects of structures on

turbulence and stability for each cluster is symmetric with near-zero mean— there

is about the same number of structures that increase and decrease turbulence

or stability. The individual di↵erences in e↵ects of structures are therefore not

captured by the current classification. This could be circumvented in future

analysis by including other features for clustering, such as the e↵ects of structures

on stability and turbulence.
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Table 6.2: Median of main physical characteristics of the deep (shallow) events in each
cluster. The subscript ’6s’ denotes the 6-s averaging interval for the fluxes.

Cluster 1 2 3

U (m s-1) 3.727 (3.176) 2.932 (1.438) 2.032 (1.175)

Ri 0.140 (0.213) 0.193 (0.586) 0.293 (0.907)

Ddirmax (o) 28.58 (27.85) 52.49(84.71) 84.88 (125.0)

w0T06s (K m s-1) -0.022 (-0.019) -0.014 (-0.004) -0.006 (-0.002)

w0w06s (m2 s-2) 0.076 (0.046) 0.049 (0.008) 0.026 (0.006)

DTmax (K) 1.416 (1.288) 1.720 (1.900) 2.219 (2.215)

Dwmax (m s-1) 0.519 (0.413) 0.531 (0.366) 0.471 (0.333)

DUmax (m s-1) 2.735 (2.197) 3.021 (1.751) 2.945 (1.799)

6.3.4 Examples of Clustered Events

Typical examples of a deep and shallow event are examined for each cluster.

Figure 6.7 depicts two events from cluster 1. The deep event has moderate wind

speed, and appears as a wave-like perturbation. Further analysis revealed that the

current method recognized only a part of a larger-scale wave with several cycles

(not shown). This is a consequence of a given window length for detecting events,

and although the final event length is flexible, a structure with a too large time

scale might be only partially detected or not detected at all. A remedy for such

partial detection is to perform multi-scale analysis using several window lengths.

Choosing the largest scale that still recognises an event would encompass the

entire event. However, we do not attempt this approach here, because the focus

of this study is on a narrow range of scales. The wind speed and temperature

wave perturbations are in phase, while the phase of vertical velocity cannot be
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Figure 6.6: Vertical profiles of the percentage of negative vertical wind shear values
(calculated as the vertical derivative of the mean wind speed) for the deep
(solid lines) and shallow (dashed lines) events in each cluster.

determined with confidence. The wind direction is steadily from about 220� (not

shown), and the vertical wind direction change is small, on average not surpassing

10� between 30 m and 1 m. The turbulence peaks at 5 m, and is associated with

local wave-induced increases of wind speed. Out of the six examples shown

here, this event is probably the closest to the typical conceptual consideration of

turbulence generated by non-stationary events.

The shallow event in cluster 1 (Fig. 6.7) is a result of an impinging surface-based

warm air mass that extends to about 10 m above ground. The wind has a wave-like

structure with the maximum speed at 15 m above ground before the arrival of the

warm air mass. As in Mahrt (2010), the cold air ahead of the warm air mass rises

while the warm air within the air mass sinks, which requires a source of kinetic

energy. The arrival of the warm air mass is marked with locally enhanced turbulent
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mixing. The maximum vertical wind direction change exceeds 160� between 1

and 30 m during weak-wind periods. Although the temperature event is shallow,

the wind structure extends over the tower height without significant change. The

structure is superimposed on the background mean wind, which averaged over

the event length resembles the Ekman spiral with wind vector turning clockwise

with height. The wind turning, together with the low background wind speeds,

enable the structure with a relatively small amplitude to diversely a↵ect di↵erent

levels. At higher levels, the wind direction is steady from about 300�, and the

wave-like structure results in quasi-periodic wind minima and maxima. At 1 m,

the same structure causes the wind to oscillate out of phase with higher levels,

so that the wind speed increases at 1 m while decreasing aloft. This is clearly

illustrated by the wind hodographs for di↵erent levels (Fig. 6.8a). The hodograph

shape that is very similar at all heights veers with height and moves between

di↵erent quadrants. However, similar shapes in opposite quadrants result in the

out-of-phase behaviour, which can generate increased vertical wind speed shear.

Furthermore, if similar structures are in neighbouring quadrants, then the wind

direction exhibits change with height. If, as in the current case, the oscillation is

at the border between two quadrants, then both wind direction and speed may

considerably vary with height.

Examples for cluster 2 are two ramp-like structures with the temperature am-

plitude at 2 m of about 2 K for the deep and 0.3 K for the shallow event (Fig.

6.9). The wind speed and turbulence are also considerably larger for the deep

event. The deep event is associated with intermittent occurrences of stronger

turbulence, which is generated above the ground and agrees with the concept of

upside-down boundary layer. The turbulence increases are associated with the

sporadic increases of wind shear that occur without obvious regularity. The verti-

cal wind direction change is small, which seems to be typical for deep events. The

ramp-like temperature jump is in phase with the wind speed increase of about 4
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Figure 6.7: Time-height cross-sections for a deep (left) and shallow (right) event in
cluster 1, from the seven levels of measurements. Shown are the temper-
ature with mean removed at each level (T), the horizontal wind speed U,
the absolute wind direction di↵erence from level 1 (dir-dir1m), the 1-min
averaged vertical velocity with mean removed at each level (w), and the 1-
min averaged vertical velocity variance at the 6-s time scale (ww). Bottom
panels show the time series of temperature T and horizontal wind speed U
at level 2 (2 m).

155



Chapter 6 – Kang et al. (2014a)

−0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

u (m s−1)

v 
(m

 s
−

1
)

 

 
(a)

1 m
10 m
20 m

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

u (m s−1)
v 

(m
 s

−
1
)

(b)

 

 
1 m

5 m

15 m
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and (b) the shallow example event in cluster 2 (see Fig. 6.9) at level 1 (1
m), 3 (5 m) and 5 (15 m). The initial data point at each level is marked
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m s�1, and is preceded by a deep positive vertical velocity perturbation. The phase

relationships suggests a possible wave origin of the event, although this cannot be

confirmed since not even a single clear cycle is present. Further analysis would

require higher vertical profiles and information about the horizontal propagation

of the event.

The shallow event is associated with very weak winds throughout the depth of

the tower. The wind maximum averaged over the entire event is at about 15 m,

but the time development is irregular and on occasions the maximum is found at

or below 2 m. About 500 s into the event, the wind speed has decreased above 5

m, while a short-lived low-level wind maximum appears below 5 m. The wind

direction di↵erence between lower and upper levels significantly increases at that

time, reaching about 160� between 1 and 10 m. The wind at levels above 10 m is

vertically coupled, having approximately same wind direction behaviour, which is

consistently di↵erent from the low-level wind direction. The hodographs at three

di↵erent levels exhibit a similar structure, which appears as if resulting from the
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same physical process (Fig. 6.8b). However, as discussed above, when the mean

wind speed is very low and varies with height, the same or similar hodograph

structure may result in significantly di↵erent wind direction between di↵erent

levels. In this case, the same orientation of the hodographs does not even imply

the same sense of the wind vector rotation. The wind vector, which has the origin

at the centre, rotates clockwise with time at 1 m during the central part of the

event, where the vertical wind direction di↵erence is the largest (see Fig. 6.9).

At the same time, the rotation at 15 m is counter-clockwise despite the similar

structure. The 5-m level is part of a transition zone and behaves as a blend of the

levels below and above. The di↵erent sense of wind vector rotation at di↵erent

levels is in this case the cause of the large directional shear. The responsible

mechanism is a structure with vertically similar shape that is embedded in the

background with low wind speed that changes with height. Note that the initial

(i.e., background for current purposes) wind direction is almost constant with

height (Fig. 6.9), and the structure has similar shape in the vertical, implying

that only the interaction between the two creates the counter-rotating winds at

di↵erent levels. An interaction resulting with this type of event is much more

likely to occur for weak winds. Although the initial background wind direction is

almost constant with height, and the structure that a↵ects it is non-stationary, the

wind averaged over the event follows Ekman-like turning (Fig. 6.8b).

Both cluster 3 examples are step-like or microfront structures (Fig. 6.10). The

first event is a deep warm microfront that is associated with a similar-shaped

wind speed structure exhibiting a deep positive jump which is in phase with the

temperature increase. This event resembles a class of gust microfronts studied by

Mahrt (2010), with the maximum rising motion coinciding with the gust in this

case. The structure is associated with a weak clockwise wind turning with time

from southerly to more south-westerly direction (not shown), typically resulting

from downward turbulent transport of westerly momentum (Mahrt, 2010). The
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Figure 6.9: As in Figure 6.7, except that shown are two examples from cluster 2.
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turbulence is mostly generated at higher levels, except after the passage of the

microfront where patches of stronger turbulence occur in the first 10 m above the

ground.

The shallow example is a typical cold microfront (Fig. 6.10). The surface wind

below 5 m suddenly shifts from easterly to northerly flow in phase with the

microfront passage (not shown). The source of the cold air is the cold pool located

north of the tower (Mahrt, 2010). The wind shift results in a large vertical wind

direction change behind the microfront. The wind speed starts decreasing about

2.5 min before the temperature, shortly peaks near the surface at the temperature

discontinuity and increases after the microfront passage. The initial decrease of

the wind speed does not seem to be related to the surface temperature structure.

The strongest turbulent mixing is found at the top of the cold microfront head,

resembling other such occurrences (e.g., Hohreiter, 2008).
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Figure 6.10: As in Figure 6.7, except that shown are two examples from cluster 3.
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6.4 Conclusions

Events in the stable ABL were detected and classified using a recently developed

method (Kang et al., 2014c) with a few modifications. The detected events were

categorized into three broad groups or clusters, although they span a wide range

of di↵erent structural shapes, intensities and background conditions. The current

classification using clustering is based only on statistical measures of charac-

teristics of events from time series. Yet, the similarities within and di↵erences

between such clusters are associated with corresponding dynamical similarities

and di↵erences. The first cluster encompasses smoothest, sometimes wave-like

structures that are associated with largest wind speeds, strong turbulence and

weak stability. The second and third clusters have predominantly sharp structures,

which are step-like (microfronts) for the third cluster. They have weak winds and

turbulence, strong stability and are associated with large wind direction shifts.

The vertical structure of clustered events shows that the occurrence of low-level

wind maxima increases with stability, and is more likely for shallow events. These

wind maxima are mostly non-stationary, introduce inflection points and thus

can a↵ect the generation of intermittent turbulence. Large wind directional

shear, which can be another source of inflection points, can occur also when deep

coherent structures modify the weak background wind profile. The individual

examples examined here were associated with intermittent turbulence that can

be generated either at higher levels, corresponding to the upside-down boundary

layer, or near the surface, although in that case peaking at about 5 m above the

ground.

None of these phenomena are resolved or taken into account in numerical models,

except through artificially increased mixing. This study provides an avenue for

addressing the complexity of the events and their characteristics, which can help
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in obtaining their systematic physical or statistical description and consequently

improving their treatment in numerical models. More and di↵erent data is needed

for the latter, which can be achieved by extensive measurements of di↵erent stable

boundary layers using new techniques and instrumentation.

We note that further improvements can be made to the current method. For

example, the multi-scale nature of atmospheric data calls for a range of window

lengths for the detection of events, which comes with the unavoidable overlap

between events at di↵erent scales that needs to be addressed. Furthermore, to

cluster events, the method uses generic time series features that are not specifically

tailored to the nature of atmospheric time series, and future work could investigate

more problem specific features.
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Chapter 7

Conclusion

7.1 Contributions of the Thesis

In this thesis, the aim is to develop a new method for detecting and classifying

structures from turbulence time series. In the literature of turbulence event

detection, researchers usually assume structures have certain geometrical shapes

or other physical properties and detect them by finding the predefined patterns.

However, these predefined patterns may not fully explain turbulence phenomena.

The emphasis put on certain types of structures leaves others unidentified. This

thesis contributes to the literature by proposing newmethodologies that can detect

and classify flow structures without those assumptions. Through the application

of these new methods to artificially generated datasets and real world datasets of

interest, it is empirically shown that the new methods can yield realistic results

and they appear able to provide substantial insights into the understanding of

turbulent transport processes.

In Chapter 2, a real-time change detection method is proposed by which we can

visualize how structures transit from one cluster to another. Results on synthetic
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and benchmarking datasets are consistent with the real world explanations. How-

ever, when we applied the method to turbulence data, it did not work as well as

for the synthetic and benchmarking data. The main reason lies in the complexity

of turbulence time series. That is also why so little literature could be found about

this topic in atmospheric science.

In Chapter 3, it is found that the space and time organized structures in turbulent

flow do not necessarily have correlated phases. From both measures used to

quantify the phase correlation, a significant proportion of the structures detected

using wavelet-based method from the thermocouple temperature time series are

weakly phase-correlated. A number of examples of space and time coherent

structures with weak phase correlation are presented. The results warn about the

vague terminology and assumptions around coherent structures, particularly for

complex real-world turbulence. Furthermore, this study indicates there is great

uncertainty in the definition of structures.

In Chapter 4, the main contribution is proposing a two-step method for event de-

tection and classification, which shifts the focus from defining structures towards

defining noise (i.e., non-events). In the first step, it ignores the noise part in a

time series by performing noise tests and focuses on the non-noise subsequences,

which improves the meaningfulness of the event searching procedure by avoiding

the meaningless limitation of subsequence clustering described in Keogh et al.

(2003). In the second step, performing clustering in the feature space keeps the in-

formation of the main characteristics of event shapes and has been shown to yield

better results than the clustering based on raw data. Furthermore, it improves the

interpretability of clusters. Experimental results on synthetic datasets show that

events used to generate the data can be exactly detected and clustered. It has been

shown that the proposed method is robust to higher noise levels, which is a strong

advantage regarding very noisy time series like turbulence. More importantly,

events can be detected without predefining geometries or assuming underlying
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physical processes. Results on the real world time series show that the method

has great potential for application. We left further research and analysis on real

world time series to the following chapters.

In Chapter 5, the main contribution is testing the proposed two-step method on

real world atmospheric turbulence time series. The application to one day of

CASES-99 data shows that the method successfully extracts realistic flow struc-

tures. Using a number of previous studies that have examined the underlying

physical mechanisms of several isolated events in that dataset, we found that the

results from our method are consistent with previous studies. The detected events

are grouped into six clusters based on their statistical features. It has been shown

that the six clusters have very di↵erent physical behaviors, although no physi-

cal features are used for clustering. Also shown in this chapter is a comparison

between the proposed method and the popular wavelet-based event detection

method. While wavelet analysis works well when there are relatively well-known

structures in time series, it is not good at distinguishing between events and noise

of comparable amplitude, and tends to detect structures even when only noise is

present in time series since it favors large amplitude events.

In Chapter 6, we analyze ubiquitous flow structures and their e↵ects on the dy-

namics of stable atmospheric boundary layers. The detected events from the

FLOSSII dataset are grouped into three broad clusters, although they span a wide

range of di↵erent structural shapes, intensities and background conditions. The

current classification using clustering is based only on statistical measures of

events from time series. Yet, the similarities within and di↵erences between such

clusters are associated with corresponding dynamical similarities and di↵erences.

For example, the first cluster encompasses smoothest, sometimes wave-like struc-

tures that are associated with largest wind speeds, strong turbulence and weak

atmospheric stability. The second and third clusters have predominantly sharp

structures, which are step-like for the third cluster. They have weak winds and
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turbulence, strong stability and are associated with large wind direction shifts.

The complexity of structures is thus reduced , which can help in devising their

treatment in numerical models.

Appendix A is the manual of the developed R package TED, which has been

contributed to CRAN (Kang et al., 2014b).

7.2 Future Directions

These results clearly demonstrate that the merits of the which can outperform

other investigated methods in the literature. However, the results also raise a

number of questions which deserve further research.

1. Sliding window length. A subjective choice of the sliding window length

when performing the noise tests makes the proposed method flexible to

users, which can be chosen according to the time scale users are interested

in. However, in order to make the method more convenient to use, further

research may involve studying the possibility of an objective suggestion to

users, or at least provide some directions, e.g., finding window size ranges

within which the method yields the same results.

2. Feature set. In the second step of the method, a limited number of generic

time series features are used to cluster events. In future work, a more

comprehensive set of statistical features could be designed, which calls for

an automatic method for choosing useful ones from them. Further, none of

the features are related to the nature of atmospheric time series, and future

work could investigate more problem specific features, rather than genetic

time series metrics.
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3. Overlapping events. Existence of multi-scale events in atmospheric data and

our way of defining events lead to some unavoidable overlaps between events

at di↵erent scales. This deserves attention in the future.

4. Event detection from other measured variables in ABL. The current focus is

limited to temperature time series. Further work could study other variables

such as wind speed. It would be interesting to see what kind of events

can be detected from wind speed and how they are related to those from

temperature time series.

5. Application to other atmospheric turbulence data. Another natural direction

of further research is to apply the method to other datasets with di↵er-

ent atmospheric conditions. An interesting question is whether the broad

classification of events applies to most of the datasets in ABL.

While this thesis has been focused on event detection and classification in atmo-

spheric turbulence, the developed methods naturally find broader applicability

in many other areas that involve the search for patterns in noisy time series.

Such applications include financial trading (e.g., Fu et al., 2001), machine condi-

tion monitoring (e.g., Chen, 1992), early detection of epidemic outbreaks (e.g.,

Hashimoto et al., 2000), structure detection in other types of turbulence flows

(e.g., Bolzan et al., 2009), to name just a few.

169



yanfei kang
ss



Bibliography



yanfei kang
ss



Bibliography

Acevedo OC, Costa FD, Oliveira PES, Puhales FS, Degrazia GA, Roberti DR.

2013. The influence of submeso processes on stable boundary layer similarity

relationships. Journal of the Atmospheric Sciences 71(1): 207–225, doi: 10.1175/

JAS-D-13-0131.1.

Acharya UR, Chua ECP, Chua KC,Min LC, Tamura T. 2010. Analysis and automatic

identification of sleep stages using higher order spectra. International journal of

neural systems 20(6): 509–521, doi: 10.1142/S0129065710002589.

Agrawal R, Faloutsos C, Swami AN. 1993. E�cient Similarity Search In Sequence

Databases. In: Proceedings of the 4th International Conference of Foundations

of Data Organization and Algorithms (FODO), Lomet D (ed). Springer Verlag:

Chicago, Illinois, pp. 69–84.

Alahakoon D, Halgamuge S, Srinivasan B. 2000. Dynamic self-organizing maps

with controlled growth for knowledge discovery. IEEE Transactions on Neural

Networks 11(3): 601–614, doi: 10.1109/72.846732.

Antonia R, Fulachier L. 1989. Topology of a turbulent boundary layer with and

without wall suction. Journal of Fluid Mechanics 198: 429–451, doi: 10.1017/

S0022112089000200.

Antonia RA, Chambers AJ, Friehe CA, Atta CWV. 1979. Temperature ramps in the

atmospheric surface layer. Journal of the Atmospheric Sciences 36(1): 99–108, doi:

10.1175/1520-0469(1979)036<0099:TRITAS>2.0.CO;2.

173



Arzner K, Knaepen B, Carati D, Denewet N, Vlahos L. 2006. The e↵ect of coherent

structures on stochastic acceleration in MHD turbulence. The Astrophysical

Journal 637(1): 322–332, doi: 10.1086/498341.

Bai J, Perron P. 2003. Computation and analysis of multiple structural change

models. Journal of Applied Econometrics 18(1): 1–22, doi: 10.1002/jae.659.

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW,

Noble WS. 2009. Meme suite: tools for motif discovery and searching. Nucleic

Acids Research 37(suppl 2): W202–W208, doi: 10.1093/nar/gkp335.

Baklanov AA, Grisogono B, Bornstein R, Mahrt L, Zilitinkevich SS, Taylor P,

Larsen SE, Rotach MW, Fernando HJS. 2011. The nature, theory, and modeling

of atmospheric planetary boundary layers. Bulletin of the American Meteorological

Society 92(2): 123–128, doi: 10.1175/2010BAMS2797.1.

Banerjee A, Dolado JJ, Galbraith JW, Hendry D. 1993. Co-integration, error correc-

tion, and the econometric analysis of non-stationary data. OUP Catalogue, Oxford

University Press, ISBN 9780198288107, doi: 10.1093/0198288107.001.0001.

Banta R, Newsom R, Lundquist J, Pichugina Y, Coulter R, Mahrt L. 2002. Nocturnal

low-level jet characteristics over Kansas during CASES-99. Boundary-Layer

Meteorology 105(2): 221–252, doi: 10.1023/A:1019992330866.

Barthlott C, Drobinski P, Fesquet C, Dubos T, Pietras C. 2007. Long-term study of

coherent structures in the atmospheric surface layer. Boundary-Layer Meteorology

125(1): 1–24, doi: 10.1007/s10546-007-9190-9.

Beluši’ D, Hrastinski M, Ve÷enaj Ž, Grisogono B. 2013. Wind regimes associated

with a mountain gap at the northeastern Adriatic Coast. Journal of Applied

Meteorology and Climatology 52(9): 2089–2105, doi: 10.1175/JAMC-D-12-0306.

1.

174



Beluši’D, Güttler I. 2010. Can mesoscale motions reproduce meandering motions?

Quarterly Journal of the Royal Meteorological Society 136(648): 553–565, doi:

10.1002/qj.606.

Beluši’ D, Mahrt L. 2008. Estimation of length scales from mesoscale networks.

Tellus A 60(4): 706–715, doi: 10.1111/j.1600-0870.2008.00328.x.

Beluši’ D, Mahrt L. 2012. Is geometry more universal than physics in atmospheric

boundary layer flow? Journal of Geophysical Research 117: D09115, doi: 10.1029/

2011JD016987.

Benson G, Waterman MS. 1994. A method for fast database search for all k-

nucleotide repeats. Nucleic Acids Research 22(22): 4828–4836, doi: 10.1093/nar/

22.22.4828.

Bergström H, Högström U. 1989. Turbulent exchange above a pine forest II. or-

ganized structures. Boundary-Layer Meteorology 49(3): 231–263, doi: 10.1007/

BF00120972.

Bisset D, Antonia R, Browne L. 1990. Spatial organization of large structures in

the turbulent far wake of a cylinder. Journal of Fluid Mechanics 218: 439–461,

doi: 10.1017/S0022112090001069.

Blackwelder R, Kaplan R. 1976. On the wall structure of the turbulent

boundary layer. Journal of Fluid Mechanics 76(1): 89–112, doi: 10.1017/

S0022112076003145.

Blumen W, Banta R, Burns SP, Fritts DC, Newsom R, Poulos GS, Sun J. 2001.

Turbulence statistics of a kelvin-helmholtz billow event observed in the night-

time boundary layer during the cooperative atmosphere-surface exchange study

field program. Dynamics of Atmospheres and Oceans 34(2-4): 189–204, doi: 10.

1016/S0377-0265(01)00067-7.

175



Bogard D, Tiederman W. 1986. Burst detection with single-point velocity

measurements. Journal of Fluid Mechanics 162: 389–413, doi: 10.1017/

S0022112086002094.

Bolzan M, Guarnieri F, Vieira PC. 2009. Comparisons between two wavelet func-

tions in extracting coherent structures from solar wind time series. Brazilian

Journal of Physics 39(1): 12–17, doi: 10.1590/S0103-97332009000100002.

Box GEP, Pierce DA. 1970. Distribution of residual autocorrelations in

Autoregressive-Integrated moving average time series models. Journal of the

American Statistical Association 65(332): 1509–1526, doi: 10.1080/01621459.

1970.10481180.

Burge P, Shawe-Taylor J, Cooke C, Moreau Y, Preneel B, Stoermann C. 1997.

Fraud detection and management in mobile telecommunications networks. In:

Proceedings of the 1997 European Conference on Security and Detection (ECOS).

pp. 91–96, doi: 10.1049/cp:19970429.

Campanharo ASLO, Ramos FM, Macau EEN, Rosa RR, Bolzan MJA, Sá LDA. 2008.

Searching chaos and coherent structures in the atmospheric turbulence above

the Amazon forest. Philosophical Transactions of the Royal Society A 366(1865):

579–589, doi: 10.1098/rsta.2007.2118.

Carpenter GA, Grossberg S. 2010. Adaptive resonance theory. In: Encyclopedia of

Machine Learning, Sammut C, Webb GI (eds), Springer, ISBN 978-0-387-30768-8,

pp. 22–35.

Castro N, Azevedo P. 2010. Multiresolution motif discovery in time series. In:

Proceedings of the 2010 SIAM International Conference on Data Mining (SDM).

SIAM, pp. 665–676, doi: 10.1137/1.9781611972801.73.

Castro NC, Azevedo PJ. 2012. Significant motifs in time series. Statistical Analysis

and Data Mining 5(1): 35–53, doi: 10.1002/sam.11134.

176



Charrad M, Ghazzali N, Boiteau V, Niknafs A. 2013. NbClust: An examination

of indices for determining the number of clusters: NbClust package. URL

http://CRAN.R-project.org/package=NbClust. R package version 1.4.

Chen J, Hu F. 2003. Coherent structures detected in atmospheric boundary-layer

turbulence using wavelet transforms at Huaihe river basin, China. Boundary-

Layer Meteorology 107(2): 429–444, doi: 10.1023/A:1022162030155.

Chen JR. 2005. Making subsequence time series clustering meaningful. In: Proceed-

ings of the Fifth IEEE International Conference on Data Mining. IEEE Computer

Society, ISBN 0-7695-2278-5, pp. 114–121, doi: 10.1109/ICDM.2005.91.

Chen W, Novak MD, Black TA, Lee X. 1997. Coherent eddies and temperature

structure functions for three contrasting surfaces. Part II: Renewal model for

sensible heat flux. Boundary-Layer Meteorology 84(1): 125–147, doi: 10.1023/a:

1000342918158.

Chen X, Wang M, Zhang Y, Feng Y, Wu Z, Huang NE. 2013. Detecting signal from

data with noise: Theory and applications. Journal of the Atmospheric Sciences

70(5): 1489–1504, doi: 10.1175/JAS-D-12-0213.1.

Chen Y. 1992. Machinery condition monitoring by inverse filtering and statistical

analysis. Mechanical Systems and Signal Processing 6(2): 177–189, doi: 10.1016/

0888-3270(92)90064-P.

Chian ACL, Miranda RA, Koga D, Bolzan MJA, Ramos FM, Rempel EL. 2008.

Analysis of phase coherence in fully developed atmospheric turbulence: Ama-

zon forest canopy. Nonlinear Processes in Geophysics 15(4): 567–573, doi:

10.5194/npg-15-567-2008.

Chiu B, Keogh E, Lonardi S. 2003. Probabilistic discovery of time series motifs.

In: Proceedings of the 9th ACM SIGKDD international conference on Knowledge

177

http://CRAN.R-project.org/package=NbClust


discovery and data mining (KDD). ACM: New York, NY, USA, ISBN 1-58113-737-

0, pp. 493–498, doi: 10.1145/956750.956808.

Choudhury SM, Shah SL, Thornhill NF. 2008a. Measures of nonlinearity–a review.

In: Diagnosis of Process Nonlinearities and Valve Stiction, Springer, pp. 69–75.

Choudhury SM, Shah SL, Thornhill NF. 2008b. A nonlinearity measure based on

surrogate data analysis. In: Diagnosis of Process Nonlinearities and Valve Stiction,

Springer, pp. 93–110.

Cobb GW. 1978. The problem of the nile: Conditional solution to a changepoint

problem. Biometrika 65(2): 243–251, doi: 10.2307/2335202.

Collineau S, Brunet Y. 1993a. Detection of turbulent coherent motions in a forest

canopy part I: Wavelet analysis. Boundary-Layer Meteorology 65(4): 357–379,

doi: 10.1007/BF00707033.

Collineau S, Brunet Y. 1993b. Detection of turbulent coherent motions in a forest

canopy part II: Time-scales and conditional averages. Boundary-Layer Meteorol-

ogy 66(1-2): 49–73, doi: 10.1007/BF00705459.

Culotta A. 2010. Towards detecting influenza epidemics by analyzing twitter

messages. In: Proceedings of the First Workshop on Social Media Analytics (SOMA).

ACM: New York, NY, USA, ISBN 978-1-4503-0217-3, pp. 115–122, doi: 10.1145/

1964858.1964874.

Das G, Lin KI, Mannila H, Renganathan G, Smyth P. 1998. Rule discovery from

time series. In: Proceedings of the 4th International Conference on Knowledge

Discovery and Data Mining (KDD). AAAI Press: New York, NY, USA, pp. 16–22.

Duda RO, Hart PE, Stork DG. 2001. Pattern Classification (2nd Edition). Wiley-

Interscience, 2 edn, ISBN 978-0-471-05669-0.

178



Einaudi F, Bedard AJ, Finnigan JJ. 1989. A climatology of gravity waves and

other coherent disturbances at the boulder atmospheric observatory during

March–April 1984. Journal of the Atmospheric Sciences 46(3): 303–329, doi:

10.1175/1520-0469(1989)046<0303:ACOGWA>2.0.CO;2.

Einaudi F, Finnigan JJ. 1993. Wave-turbulence dynamics in the stably stratified

boundary layer. Journal of the Atmospheric Sciences 50(13): 1841–1864, doi:

10.1175/1520-0469(1993)050<1841:WTDITS>2.0.CO;2.

Elsner JB. 2003. Tracking hurricanes. Bulletin of the American Meteorological Society

84(3): 353–356, doi: 10.1175/BAMS-84-3-353.

Enders W. 2003. Applied econometric times series. Wiley, 3 edn, ISBN 978-0-470-

57425-6.

Farge M. 1992. Wavelet transforms and their applications to turbulence. Annual

Review of Fluid Mechanics 24(1): 395–458.

Feigenwinter C, Vogt R. 2005. Detection and analysis of coherent structures in

urban turbulence. Theoretical and Applied Climatology 81(3-4): 219–230, doi:

10.1007/s00704-004-0111-2.

Ferreira PG, Azevedo PJ, Silva CG, Brito RM. 2006. Mining approximate motifs in

time series. In: Discovery Science, Lecture Notes in Computer Science, vol. 4265,

Todorovski L, Lavrav̂ N, Jantke KP (eds), Springer Berlin Heidelberg, ISBN

978-3-540-46491-4, pp. 89–101, doi: 10.1007/11893318_12.

Finnigan JJ, Einaudi F, Fua D. 1984. The interaction between an internal gravity

wave and turbulence in the stably-stratified nocturnal boundary layer. Journal

of the Atmospheric Sciences 41(16): 2409–2436, doi: 10.1175/1520-0469(1984)

041<2409:TIBAIG>2.0.CO;2.

Firoiu L, Cohen PR. 2002. Segmenting time series with a hybrid neural networks -

hidden markov model. In: Proceedings of the Eighteenth National Conference on

179



Artificial Intelligence. American Association for Artificial Intelligence: Menlo

Park, CA, USA, ISBN 0-262-51129-0, pp. 247–252.

Fu Tc, Chung Fl, Ng V, Luk R. 2001. Pattern discovery from stock time series using

self-organizing maps. In: Workshop Notes of KDD2001 Workshop on Temporal

Data Mining. pp. 26–29.

Fujimaki R, Yairi T, Machida K. 2005. An approach to spacecraft anomaly detection

problem using kernel feature space. In: Proceedings of the eleventh ACM SIGKDD

international conference on Knowledge discovery in data mining (KDD), Grossman

R, Bayardo R, Bennett KP (eds). ACM, pp. 401–410, doi: 10.1145/1081870.

1081917.

Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robert-

son AW, Saunders A, Tian Y, Varadi F, Yiou P. 2002. Advanced spectral

methods for climatic time series. Reviews of Geophysics 40(1): 1003, doi:

10.1029/2000RG000092.

Gilliam X, Dunyak J, Doggett A, Smith D. 2000. Coherent structure detection using

wavelet analysis in long time-series. Journal of Wind Engineering and Industrial

Aerodynamics 88(2): 183 – 195, doi: 10.1016/S0167-6105(00)00048-9.

Gluhovsky A, Agee E. 2007. On the analysis of atmospheric and climatic time

series. Journal of Applied Meteorology and Climatology 46(7): 1125–1129, doi:

10.1175/JAM2512.1.

Goldin DQ, Mardales R, Nagy G. 2006. In search of meaning for time series

subsequence clustering: matching algorithms based on a new distance measure.

In: Proceedings of the 15th ACM international conference on Information and

knowledge management, Yu PS, Tsotras VJ, Fox EA, Liu B (eds). ACM, ISBN

1-59593-433-2, pp. 347–356, doi: 10.1145/1183614.1183666.

180



Gomes M, Souza A, Guimaraes H, Aguirre L. 2000. Investigation of determinism

in heart rate variability. Chaos: An Interdisciplinary Journal of Nonlinear Science

10(2): 398–410, doi: 10.1063/1.166507.

Gray R. 1984. Vector quantization. ASSP Magazine, IEEE 1(2): 4 –29, doi: 10.1109/

MASSP.1984.1162229.

Guan, Uberbacher, Guan X, Uberbacher EC. 1996. A fast look-up algorithm for

detecting repetitive DNA sequences. In: Proceedings of the Pacific Symposium on

Biocomputing (PSB). Singapore, pp. 718–719.

Guarin-Lopez D, Orozco-Gutierrez A, Delgado-Trejos E, Guijarro-Estelles E. 2010.

On detecting determinism and nonlinearity in microelectrode recording signals:

Approach based on non-stationary surrogate data methods. In: Proceedings of

the 2010 Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBC). IEEE, pp. 4032–4035.

GüneÊ S, Polat K, Yosunkaya «. 2010. E�cient sleep stage recognition system based

on eeg signal using k-means clustering based feature weighting. Expert Systems

with Applications 37(12): 7922–7928, doi: 10.1016/j.eswa.2010.04.043.

Hada T, Koga D, Yamamoto E. 2003. Phase coherence of MHD waves in the solar

wind. Space science reviews 107(1-2): 463–466, doi: 10.1023/A:1025506124402.

Harvey AC, Durbin J. 1986. The e↵ects of seat belt legislation on british road

casualties: A case study in structural time series modelling. International Journal

of Forecasting 2(4): 496–497, doi: 10.1016/0169-2070(86)90097-X.

Hashimoto S, Murakami Y, Taniguchi K, Nagai M. 2000. Detection of epidemics in

their early stage through infectious disease surveillance. International journal of

epidemiology 29(5): 905–910, doi: 10.1093/ije/29.5.905.

181



Hochheiser H, Shneiderman B. 2002. Visual queries for finding patterns in time

series data. Technical report, Computer Science Department, University of

Maryland.

Hohreiter V. 2008. Finescale structure and dynamics of an atmospheric tem-

perature interface. Journal of the Atmospheric Sciences 65(5): 1701–1710, doi:

10.1175/2007JAS2576.1.

Holtslag AAM, Svensson G, Baas P, Basu S, Beare B, Beljaars ACM, Bosveld FC,

Cuxart J, Lindvall J, Steeneveld GJ, TjernströmM, Van DeWiel BJH. 2013. Stable

atmospheric boundary layers and diurnal cycles: Challenges for weather and

climate models. Bulletin of the American Meteorological Society 94(11): 1691–

1706, doi: 10.1175/BAMS-D-11-00187.1.

Hudgins L, Kaspersen JH. 1999. Wavelets and detection of coherent structures in

fluid turbulence. In: Wavelets in Physics, vol. 1. pp. 201–226.

Hussain AKMF. 1981. Role of coherent structures in turbulent shear flows. Pro-

ceedings of the Indian Academy of Sciences Section C: Engineering Sciences 4(2):

129–175, doi: 10.1007/BF02896739.

Hussain AKMF. 1983. Coherent structures – reality and myth. Physics of Fluids

26(10): 2816–2850, doi: 10.1063/1.864048.

Hussain AKMF. 1986. Coherent structures and turbulence. Journal of Fluid Me-

chanics 173: 303–356, doi: 10.1017/S0022112086001192.

Jeong J, Gore JC, Peterson BS. 2002. Detecting determinism in short time series,

with an application to the analysis of a stationary EEG recording. Biological

cybernetics 86(5): 335–342, doi: 10.1007/s00422-001-0299-5.

Jirayusakul A, Auwatanamongkol S. 2007. A supervised growing neural gas algo-

rithm for cluster analysis. International Journal of Hybrid Intelligent Systems 4(2):

129–141.

182



Jonsson P, Eklundh L. 2002. Seasonality extraction by function fitting to time-

series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing

40(8): 1824 – 1832, doi: 10.1109/TGRS.2002.802519.

Jouini J, Boutahar M. 2005. Evidence on structural changes in U.S. time series.

Economic Modelling 22(3): 391–422, doi: 10.1016/j.econmod.2004.06.003.

Kang Y. 2012. Real-time change detection in time series based on growing feature

quantization. In: Proceedings of the 2012 International Joint Conference on Neural

Networks (IJCNN). IEEE, pp. 1–6, doi: 10.1109/IJCNN.2012.6252381.

Kang Y, Beluši’ D, Smith-Miles K. 2014a. Classes of structures in the stable atmo-

spheric boundary layer (Submitted). Quarterly Journal of the Royal Meteorological

Society .

Kang Y, Beluši’ D, Smith-Miles K. 2014b. TED: Turbulence Event Detection

and classification. URL http://CRAN.R-project.org/package=TED. R package

version 1.0.

Kang Y, Beluši’ D, Smith-Miles K. 2014c. Detecting and classifying events in

noisy time series. Journal of the Atmospheric Sciences 71(3): 1090–1104, doi:

10.1175/JAS-D-13-0182.1.

Kang Y, Beluši’ D, Smith-Miles K. 2014d. A note on the relationship between

turbulent coherent structures and phase correlation. Chaos: An Interdisciplinary

Journal of Nonlinear Science 24(2): 023114, doi: http://dx.doi.org/10.1063/1.

4875260.

Kang Y, Smith-Miles K, Beluši’ D. 2013. How to extract meaningful shapes from

noisy time-series subsequences? In: Proceedings of the 2013 IEEE Symposium

on Computational Intelligence and Data Mining (CIDM). IEEE, pp. 65–72, doi:

10.1109/CIDM.2013.6597219.

183

http://CRAN.R-project.org/package=TED


Katul G, Kuhn G, Schieldge J, Hsieh CI. 1997. The ejection-sweep character of

scalar fluxes in the unstable surface layer. Boundary-Layer Meteorology 83(1):

1–26, doi: 10.1023/A:1000293516830.

Kawahara Y, Sugiyama M. 2009. Change-point detection in time-series data

by direct density-ratio estimation. In: Proceedings of the 2009 SIAM Interna-

tional Conference on Data Mining (ICDM). SIAM, pp. 389–400, doi: 10.1137/1.

9781611972795.34.

Keogh E, Chakrabarti K, Pazzani M, Mehrotra S. 2001a. Locally adaptive dimen-

sionality reduction for indexing large time series databases. ACM SIGMOD

Record 30(2): 151–162, doi: 10.1145/376284.375680.

Keogh E, Chakrabarti K, Pazzani MJ, Mehrotra S. 2000. Dimensionality reduction

for fast similarity search in large time series databases. Journal of Knowledge and

Information Systems 3(3): 263–286.

Keogh E, Chu S, Hart D, Pazzani MJ. 2001b. An online algorithm for segmenting

time series. In: Proceedings of the 2001 IEEE International Conference on Data

Mining (ICDM). IEEE Computer Society: Washington, DC, USA, ISBN 0-7695-

1119-8, pp. 289–296, doi: 10.1109/ICDM.2001.989531.

Keogh E, Hochheiser H, Shneiderman B. 2002. An augmented visual query mech-

anism for finding patterns in time series data. In: Flexible Query Answering

Systems, Lecture Notes in Computer Science, vol. 2522, Carbonell J, Siekmann J,

Andreasen T, Christiansen H, Motro A, Larsen H (eds), Springer Berlin Heidel-

berg, ISBN 978-3-540-00074-7, pp. 240–250, doi: 10.1007/3-540-36109-X_19.

Keogh E, Kasetty S. 2002. On the need for time series data mining benchmarks: a

survey and empirical demonstration. In: Proceedings of the 8th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD). ACM:

Edmonton, Alberta, Canada, pp. 102–111.

184



Keogh E, Lin J, Truppel W. 2003. Clustering of time series subsequences is mean-

ingless: implications for previous and future research. In: Proceedings of the

3rd IEEE International Conference on Data Mining (ICDM). pp. 115–122, doi:

10.1109/ICDM.2003.1250910.

Kifer D, Ben-David S, Gehrke J. 2004. Detecting change in data streams. In:

Proceedings of the Thirtieth International Conference on Very Large Data Bases

(VLDB), vol. 30. VLDB Endowment, ISBN 0-12-088469-0, pp. 180–191, doi:

10.1007/PL00011669.

Koga D, Chian ACL, Hada T, Rempel EL. 2008. Experimental evidence of phase

coherence of magnetohydrodynamic turbulence in the solar wind: GEOTAIL

satellite data. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences 366: 447–457, doi: 10.1098/rsta.2007.2102.

Kugiumtzis D. 2002. Surrogate data test on time series. In: Modelling and Forecast-

ing Financial Data, Springer, pp. 267–282.

Kumar P, Foufoula-Georgiou E. 1994. Wavelet analysis in geophysics: An introduc-

tion. In: Wavelets in geophysics, Foufoula-Georgiou E, Kumar P (eds), Academic

Press New York, pp. 1–43.

Kuznetsov E, Zakharov V. 2000. Nonlinear coherent phenomena in continuous

media. In: Nonlinear Science at the Dawn of the 21st Century, Christiansen P,

Sorensen M, Scott A (eds), Springer-Verlag, Berlin, pp. 3–45.

Lam HT, Calders T, Pham N. 2011. Online discovery of top-k similar motifs in

time series data. In: Proceedings of SIAM International Conference on Data Mining

(SDM). SIAM / Omnipress: Mesa, Arizona, USA, pp. 1004–1015.

Lan LW, Lin FY, Kuo AY. 2005. Identification for chaotic phenomena in short-term

tra�c flows: A parsimony procedure with surrogate data. Journal of the Eastern

Asia Society for Transportation Studies 6: 1518–1533.

185



Lee YH, Chen YS, Chen LF. 2009. Automated sleep staging using single EEG

channel for REM sleep deprivation. In: Ninth IEEE International Conference on

Bioinformatics and BioEngineering (BIBE). pp. 439–442, doi: 10.1109/BIBE.2009.

68.

Lin FY. 2005. Tra�c flow analysis with di↵eerent time scales. Journal of the Eastern

Asia Society for Transportation Studies 6: 1624–1636.

Lin J, Keogh E, Lonardi S. 2005. Visualizing and discovering non-trivial patterns

in large time series databases. Information Visualization 4(2): 61–82, doi: 10.

1057/palgrave.ivs.9500089.

Lin J, Keogh E, Lonardi S, Chiu B. 2003. A symbolic representation of time series,

with implications for streaming algorithms. In: Proceedings of the 8th ACM

SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery

(DMKD). ACM: New York, NY, USA, pp. 2–11, doi: 10.1145/882082.882086.

Lin J, Keogh E, Lonardi S, Patel P. 2002. Finding Motifs in Time Series. In: Pro-

ceedings of the 2nd Workshop on Temporal Data Mining, at the 8th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD). ACM:

Edmonton, Alberta, Canada, pp. 53–68, doi: 10.1.1.19.6629.

Lughofer E. 2008. Extensions of vector quantization for incremental clustering.

Pattern Recognition 41(3): 995–1011, doi: 10.1016/j.patcog.2007.07.019.

Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Worthy LD. 2006. Land-cover

change detection using multi-temporal MODIS NDVI data. Remote Sensing of

Environment 105(2): 142–154, doi: 10.1016/j.rse.2006.06.018.

Mahrt L. 1991. Eddy asymmetry in the sheared heated boundary layer. Jour-

nal of the Atmospheric Sciences 48(3): 472–492, doi: 10.1175/1520-0469(1991)

048<0472:EAITSH>2.0.CO;2.

186



Mahrt L. 1999. Stratified atmospheric boundary layers. Boundary-Layer Meteorol-

ogy 90(3): 375–396, doi: 10.1023/A:1001765727956.

Mahrt L. 2009. Characteristics of submeso winds in the stable boundary layer.

Boundary-Layer Meteorology 130(1): 1–14, doi: 10.1007/s10546-008-9336-4.

Mahrt L. 2010. Common microfronts and other solitary events in the nocturnal

boundary layer. Quarterly Journal of the Royal Meteorological Society 136(652):

1712–1722, doi: 10.1002/qj.694.

Mahrt L. 2011a. Surface wind direction variability. Journal of Applied Meteorology

and Climatology 50(1): 144–152, doi: 10.1175/2010JAMC2560.1.

Mahrt L. 2011b. Surface wind direction variability. Journal of Applied Meteorology

and Climatology 50(1): 144–152, doi: 10.1175/2010JAMC2560.1.

Mahrt L. 2014. Stably stratified atmospheric boundary layers. Annual Review of

Fluid Mechanics 46(1): 23–45, doi: 10.1146/annurev-fluid-010313-141354.

Mahrt L, Gibson W. 1992. Flux decomposition into coherent structures. Boundary-

Layer Meteorology 60(1-2): 143–168, doi: 10.1007/BF00122065.

Mahrt L, Richardson S, Seaman N, Stau↵er D. 2012. Turbulence in the nocturnal

boundary layer with light and variable winds. Quarterly Journal of the Royal

Meteorological Society 138(667): 1430–1439, doi: 10.1002/qj.1884.

Mahrt L, Thomas C, Richardson S, Seaman N, Stau↵er D, Zeeman M. 2013.

Non-stationary generation of weak turbulence for very stable and weak-

wind conditions. Boundary-Layer Meteorology 147(2): 179–199, doi: 10.1007/

s10546-012-9782-x.

Maiwald T, Mammen E, Nandi S, Timmer J. 2008. Surrogate data – a qualitative

and quantitative analysis. In: Mathematical Methods in Signal Processing and Digi-

tal Image Analysis, Dahlhaus R, Kurths J, Maass P, Timmer J (eds), Understanding

187



Complex Systems, Springer Berlin Heidelberg, ISBN 978-3-540-75631-6, pp.

41–74, doi: 10.1007/978-3-540-75632-3_2.

McGovern A, Rosendahl DH, Brown RA, Droegemeier KK. 2011. Identifying

predictive multi-dimensional time series motifs: an application to severe

weather prediction. Data Mining and Knowledge Discovery 22(1-2): 232–258,

doi: 10.1007/s10618-010-0193-7.

Miranda RA, Rempel EL, Chian ACL, Seehafer N, Toledo BA, Muñoz PR. 2013. La-

grangian coherent structures at the onset of hyperchaos in the two-dimensional

navier-stokes equations. Chaos: An Interdisciplinary Journal of Nonlinear Science

23(3): 033 107–033 107, doi: 10.1063/1.4811297.

Mueen A, Keogh E. 2010. Online discovery and maintenance of time series motifs.

In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. ACM: New York, NY, USA, ISBN 978-1-4503-0055-1,

pp. 1089–1098, doi: 10.1145/1835804.1835941.

Mueen A, Keogh E, Bigdely-Shamlo N. 2009a. Finding time series motifs in disk-

resident data. In: Proceedings of the 9th IEEE International Conference on Data

Mining (ICDM). IEEE Computer Society: Washington, DC, USA, ISBN 978-0-

7695-3895-2, pp. 367–376, doi: 10.1109/ICDM.2009.15.

Mueen A, Keogh E, Zhu Q, Cash S, Westover MB. 2009b. Exact discovery of time

series motifs. In: Proceedings of the 2009 SIAM International Conference on Data

Mining (SDM). SIAM: Sparks, Nevada, USA, pp. 473–484.

Nappo C, Sun J, Mahrt L, Beluši’ D. 2014. Determining wave–turbulence interac-

tions in the stable boundary layer. Bulletin of the American Meteorological Society

95(1): ES11–ES13, doi: 10.1175/BAMS-D-12-00235.1.

Ouellette NT. 2012. On the dynamical role of coherent structures in turbulence.

Comptes Rendus Physique 13(9): 866–877, doi: 10.1016/j.crhy.2012.09.006.

188



Peacock T, Dabiri J. 2010. Introduction to focus issue: Lagrangian coherent struc-

tures. Chaos: An Interdisciplinary Journal of Nonlinear Science 20(1): 017 501–

017 501, doi: 10.1063/1.3278173.

Percival D. 2010. An ominibus test for red noise, with applications to climatology

time series. In: An Ominibus Test for Red Noise, with Applications to Climatology

Time Series. Presented 26 March 2010 at CSIRO Mathematics, Informatics and

Statistics’s TechFest: Modelling Complex Systems, Hobart, Tasmania.

Pereda E, Gamundi A, Rial R, Gonzalez J. 1998. Non-linear behaviour of human

eeg: fractal exponent versus correlation dimension in awake and sleep stages.

Neuroscience letters 250(2): 91–94, doi: 10.1016/S0304-3940(98)00435-2.

Perron P. 1988. Trends and random walks in macroeconomic time series: Further

evidence from a new approach. Journal of economic dynamics and control 12(2-3):

297–332, doi: 10.1016/0165-1889(88)90043-7.

Pong Chan K, Fu AWC. 1999. E�cient time series matching by wavelets. In:

Proceedings of the 15th International Conference on Data Engineering (ICDE),

Kitsuregawa M, Papazoglou MP, Pu C (eds). IEEE Computer Society: Sydney,

Australia, ISBN 0-7695-0071-4, pp. 126–133, doi: 10.1109/ICDE.1999.754915.

Pope M, Jakob C, Reeder MJ. 2009. Objective classification of tropical mesoscale

convective systems. Journal of Climate 22(22): 5797–5808, doi: 10.1175/

2009JCLI2777.1.

Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta

R, Newsom R, Cuxart J, Terradellas E, Balsley B, Jensen M. 2002. CASES-99: A

comprehensive investigation of the stable nocturnal boundary layer. Bulletin of

the American Meteorological Society 83: 555–581, doi: 10.1175/1520-0477(2002)

083<0555:CACIOT>2.3.CO;2.

189



Provenzale A, Smith L, Vio R, Murante G. 1992. Distinguishing between low-

dimensional dynamics and randomness in measured time series. Physica D:

Nonlinear Phenomena 58(1): 31–49, doi: 10.1016/0167-2789(92)90100-2.

R Core Team. 2013. R: A language and environment for statistical computing.

URL http://www.R-project.org/. ISBN 3-900051-07-0.

Rajagopalan S, Antonia R. 1982. Use of a quadrant analysis technique to identify

coherent structures in a turbulent boundary layer. Physics of Fluids (1958-1988)

25(6): 949–956, doi: 10.1063/1.863848.

Rhodes C, Morari M. 1998. Determining the model order of nonlinear in-

put/output systems. AIChE Journal 44(1): 151–163, doi: 10.1002/aic.

690440116.

Rigoutsos I, Floratos A. 1998. Combinatorial pattern discovery in biological se-

quences: The TEIRESIAS algorithm. Bioinformatics 14(1): 55–67, doi: 10.1093/

bioinformatics/14.1.55.

Robinson SK. 1991. Coherent motions in the turbulent boundary layer. Annual

Review of Fluid Mechanics 23(1): 601–639, doi: 10.1146/annurev.fl.24.010192.

002143.

Sahraoui F. 2008. Diagnosis of magnetic structures and intermittency in space-

plasma turbulence using the technique of surrogate data. Physical Review E 78:

026 402, doi: 10.1103/PhysRevE.78.026402.

Salmon B, Olivier J, Wessels K, Kleynhans W, van den Bergh F, Steenkamp K. 2011.

Unsupervised land cover change detection: Meaningful sequential time series

analysis. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE

Journal of 4(2): 327 –335, doi: 10.1109/JSTARS.2010.2053918.

Sandu I, Beljaars A, Bechtold P, Mauritsen T, Balsamo G. 2013. Why is it so di�cult

to represent stably stratified conditions in numerical weather prediction (NWP)

190

http://www.R-project.org/


models? Journal of Advances in Modeling Earth Systems 5(2): 117–133, doi:

10.1002/jame.20013.

Schreiber T, Schmitz A. 1997. Discrimination power of measures for nonlinearity

in a time series. Physical Review E 55(5): 5443, doi: 10.1103/PhysRevE.55.5443.

Schreiber T, Schmitz A. 2000. Surrogate time series. Physica D: Nonlinear Phenom-

ena 142(3): 346–382, doi: 10.1016/S0167-2789(00)00043-9.

Segalini A, Alfredsson P. 2012. Techniques for the eduction of coherent structures

from flow measurements in the atmospheric boundary layer. Boundary-Layer

Meteorology 143(3): 433–450, doi: 10.1007/s10546-012-9708-7.

Shapland T, McElrone A, Snyder R, Paw U K. 2012a. Structure function analy-

sis of two-scale scalar ramps. Part I: Theory and modelling. Boundary-Layer

Meteorology 145(1): 5–25, doi: 10.1007/s10546-012-9742-5.

Shapland T, McElrone A, Snyder R, Paw U K. 2012b. Structure function anal-

ysis of two-scale scalar ramps. Part II: Ramp characteristics and surface re-

newal flux estimation. Boundary-Layer Meteorology 145(1): 27–44, doi: 10.1007/

s10546-012-9740-7.

Sharifzadeh M, Azmoodeh F, Shahabi C. 2005. Change detection in time series

data using wavelet footprints. In: Advances in Spatial and Temporal Databases,

Lecture Notes in Computer Science, vol. 3633, Bauzer Medeiros C, Egenhofer

M, Bertino E (eds). Springer Berlin Heidelberg, ISBN 978-3-540-28127-6, pp.

127–144, doi: 10.1007/11535331_8.

Shieh J, Keogh E. 2008. iSAX: Indexing and mining terabyte sized time series.

In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD). ACM: New York, NY, USA, pp. 623–631, doi:

10.1145/1401890.1401966.

191



Singh S. 2000. Pattern modelling in time-series forecasting. Cybernetics and Systems

- an International Journal 31(1): 49–65, doi: 10.1080/019697200124919.

Sledge I, Keller J. 2008. Growing neural gas for temporal clustering. In: Proceedings

of the 19th International Conference on Pattern Recognition (ICPR). pp. 1–4, doi:

10.1109/ICPR.2008.4761768.

Stanus E. 1986. Computerized sleep stages analysis. Signal Processing 10(1): 101–

102, doi: 10.1016/0165-1684(86)90070-8.

Steiner A, Pressley S, Botros A, Jones E, Chung S, Edburg S. 2011. Analysis of

coherent structures and atmosphere-canopy coupling strength during the CAB-

INEX field campaign. Atmospheric Chemistry and Physics 11(23): 11 921–11 936,

doi: 10.5194/acp-11-11921-2011.

Storch HV, Zwiers FW. 1999. Statistical analysis in climate research. Cambridge

University Press, ISBN 978-0521012300.

Sugihara G, May RM. 1990. Nonlinear forecasting as a way of distinguishing

chaos from measurement error in time series. Nature 344(6268): 734–741, doi:

doi:10.1038/344734a0.

Sun J, Burns SP, Lenschow DH, Banta R, Newsom R, Coulter R, Frasier S, Ince T,

Nappo C, Cuxart J, Blumen W, Lee X, Hu XZ. 2002. Intermittent turbulence

associated with a density current passage in the stable boundary layer. Boundary-

Layer Meteorology 105(2): 199–219, doi: 10.1023/A:1019969131774.

Sun J, Lenschow DH, Burns SP, Banta RM, Newsom RK, Coulter R, Frasier S, Ince

T, Nappo C, Balsley B, Jensen M, Mahrt L, Miller D, Skelly B. 2004. Atmospheric

disturbances that generate intermittent turbulence in nocturnal boundary layers.

Boundary-Layer Meteorology 110(2): 255–279, doi: 10.1023/A:1026097926169.

192



Sun J, Mahrt L, Banta RM, Pichugina YL. 2012. Turbulence regimes and turbulence

intermittency in the stable boundary layer during CASES-99. Journal of the

Atmospheric Sciences 69(1): 338–351, doi: 10.1175/JAS-D-11-082.1.

Tanaka Y, Iwamoto K, Uehara K. 2005. Discovery of time-series motif from multi-

dimensional data based on mdl principle. Machine Learning 58(2-3): 269–300,

doi: 10.1007/s10994-005-5829-2.

Tang W, Chan PW, Haller G. 2010. Accurate extraction of lagrangian coherent

structures over finite domains with application to flight data analysis over

Hong Kong international airport. Chaos: An Interdisciplinary Journal of Nonlinear

Science 20(1): 017 502–017 502, doi: 10.1063/1.3276061.

Tang W, Peacock T. 2010. Lagrangian coherent structures and internal wave at-

tractors. Chaos: An Interdisciplinary Journal of Nonlinear Science 20(1): 017 508–

017 508, doi: 10.1063/1.3273054.

Theiler J, Eubank S, Longtin A, Galdrikian B, Doyne Farmer J. 1992. Testing for

nonlinearity in time series: the method of surrogate data. Physica D: Nonlinear

Phenomena 58(1): 77–94, doi: 10.1016/0167-2789(92)90102-S.

Thomas C, Foken T. 2005. Detection of long-term coherent exchange over spruce

forest using wavelet analysis. Theoretical and Applied Climatology 80(2-4): 91–

104, doi: 10.1007/s00704-004-0093-0.

Thomas C, Foken T. 2007a. Flux contribution of coherent structures and its impli-

cations for the exchange of energy and matter in a tall spruce canopy. Boundary-

Layer Meteorology 123(2): 317–337, doi: 10.1007/s10546-006-9144-7.

Thomas C, Foken T. 2007b. Organised motion in a tall spruce canopy: temporal

scales, structure spacing and terrain e↵ects. Boundary-Layer Meteorology 122(1):

123–147, doi: 10.1007/s10546-006-9087-z.

193



Thomas C, Mayer JC, Meixner FX, Foken T. 2006. Analysis of low-frequency tur-

bulence above tall vegetation using a doppler sodar. Boundary-Layer Meteorology

119(3): 563–587, doi: 10.1007/s10546-005-9038-0.

Tompa M. 1999. An exact method for finding short motifs in sequences, with

application to the ribosome binding site problem. In: Proceedings of the 7th

International Conference on Intelligent Systems for Molecular Biology. AAAI Press,

ISBN 1-57735-083-9, pp. 262–271.

Tsai CY, Shieh YC. 2009. A change detection method for sequential patterns.

Decision Support Systems 46(2): 501–511, doi: 10.1016/j.dss.2008.09.003.

Tsay RS. 2005. Analysis of financial time series. Wiley-Interscience, 2 edn, ISBN

978-1-118-01709-8.

Turner B, Leclerc M. 1994. Conditional sampling of coherent structures in at-

mospheric turbulence using the wavelet transform. Journal of Atmospheric and

Oceanic Technology 11(1): 205–209.

Verbesselt J, Hyndman R, Newnham G, Culvenor D. 2010a. Detecting trend and

seasonal changes in satellite image time series. Remote Sensing of Environment

114(1): 106–115, doi: DOI:10.1016/j.rse.2009.08.014.

Verbesselt J, Hyndman R, Zeileis A, Culvenor D. 2010b. Phenological change

detection while accounting for abrupt and gradual trends in satellite image time

series. Remote Sensing of Environment 114(12): 2970–2980, doi: 10.1016/j.rse.

2010.08.003.

Viana S, Terradellas S, Yagüe C. 2010. Analysis of gravity waves generated at the

top of a drainage flow. Journal of the Atmospheric Sciences 67(12): 3949–3966,

doi: 10.1175/2010JAS3508.1.

Viana S, Yagüe C, Maqueda G. 2009. Propagation and e↵ects of a mesoscale

gravity wave over a weakly-stratified nocturnal boundary layer during the

194



SABLES2006 field campaign. Boundary-Layer Meteorology 133(2): 165–188, doi:

10.1007/s10546-009-9420-4.

Vickers D, Mahrt L. 2007. Observations of the cross-wind velocity variance in

the stable boundary layer. Environmental Fluid Mechanics 7(1): 55–71, doi:

10.1007/s10652-006-9010-7.

Wallace JM, Eckelmann H, Brodkey RS. 1972. The wall region in turbu-

lent shear flow. Journal of Fluid Mechanics 54(01): 39–48, doi: 10.1017/

S0022112072000515.

Wang X, Smith KA, Hyndman RJ. 2006. Characteristic-based clustering for time

series data. Data Mining and Knowledge Discovery 13(3): 335–364, doi: 10.1007/

s10618-005-0039-x.

Waser M. 2010. Nonlinear dependencies in and between time series. Master’s

thesis, Vienna University of Technology, Vienna.

Weber RO, Kaufmann P. 1995. Automated classification scheme for wind fields.

Journal of Applied Meteorology 34(5): 1133–1141, doi: 10.1175/1520-0450(1995)

034<1133:ACSFWF>2.0.CO;2.

Wilczak JM. 1984. Large-scale eddies in the unstably stratified atmospheric surface

layer. Part I: Velocity and temperature structure. Journal of the Atmospheric

Sciences 41(24): 3537–3550, doi: 10.1175/1520-0469(1984)041<3537:LSEITU>

2.0.CO;2.

Williams A, Hacker J. 1992. The composite shape and structure of coherent eddies

in the convective boundary layer. Boundary-Layer Meteorology 61(3): 213–245,

doi: 10.1007/BF02042933.

Williams G. 2011. Data mining with Rattle and R: The art of excavating data for

knowledge discovery (use R!). Springer, doi: 10.1007/978-1-4419-9890-3.

195



Wilson W, Birkin P, Aickelin U. 2008. The motif tracking algorithm. Inter-

national Journal of Automation and Computing 5(1): 32–44, doi: 10.1007/

s11633-008-0032-0.

Yankov D, Keogh E, Medina J, Chiu B, Zordan V. 2007. Detecting time series

motifs under uniform scaling. In: Proceedings of the 13th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, KDD ’07. ACM: New

York, NY, USA, ISBN 978-1-59593-609-7, pp. 844–853, doi: 10.1145/1281192.

1281282.

Zeileis A, Kleiber C, Krämer W, Hornik K. 2003. Testing and dating of structural

changes in practice. Computational Statistics & Data Analysis 44(1-2): 109–123,

doi: 0.1016/S0167-9473(03)00030-6.

Zhu W, van Hout R, Katz J. 2007. PIV measurements in the atmospheric boundary

layer within and above a mature corn canopy. part ii: Quadrant-hole analysis.

Journal of the atmospheric sciences 64(8): 2825–2838, doi: 10.1175/JAS3990.1.

Zivot E, Andrews DWK. 1992. Further evidence on the great crash, the oil-price

shock, and the unit-root hypothesis. Journal of Business & Economic Statistics

20(1): 25–44, doi: 10.1198/073500102753410372.

196



Appendix



yanfei kang
ss



Appendix A

Manual for the R package TED: Tur-

bulence Event Detection and classi-

fication

Package ‘TED’

Type Package

Title Turbulence time series Event Detection and classification

Version 1.0

Date 2014-05-08

Author Yanfei Kang, Danijel Belusic and Kate Smith-Miles

Maintainer Yanfei Kang <yanfei.kang@monash.edu>

Description

TED performs event detection and classification in turbulence time series.
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LazyLoad yes

Repository CRAN

Depends R (>= 3.0.2)

Imports foreach, zoo, fields, animation, geoR, tcltk, utils, RcppArmadillo

Suggests doMC

NeedsCompilation no

License GPL (>=2)

R topics documented:

ted-package Detect and classify events from turbulence time series

Description

TED performs event detection and classification in turbulence time series. The

method consists of two steps. The event detection step locates and detects

events by performing noise tests on sliding subsequences extracted from the

time series. A subsequence is considered to be a potential event if its char-

acteristics are significantly di↵erent from noise. The event is defined only if

the consecutive sequence of potential events is long enough. This step does

not rely on pre-assumption of events in terms of their magnitude, geometry,

or stationarity. The main function eventDetection should be used for this

step. The event classification step is to classify the events into groups with

similar global characteristics. Each event is summarised using a feature vector,
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and then the events are clustered according to the Euclidean distances among

the feature vectors. The main function eventCluster should be used for the

classification step. Examples of event detection and classification can be found

in the package for both artificial data and real world turbulence data.

Details

The package contains two main functions:

eventDetection: to detect events from time series as described in Kang et al.

(2014b).

eventCluster: to classify the detect events from time series as described in

Kang et al. (2014b).

The package also contains functions for visualising the events:

plotevents: to plot the detected and classified events.

aniplotevents: to generate a gif to visualize the event detection process.

Other sub-functions are:

cbfs: to generate an artificial event with white noise.

cbfs_red: to generate an artificial event with red noise.

detrendc: to conditionally detrend a time series.

eventExtraction: to extract events from the noise test results of a time series.

measures: to calculate statistical characteristics of an event.

noiseTests: to perform noise tests for a time series.

ts2mat: to reshape a vector into a matrix.

ur.za.fast: unit root test for events considering a structrual break.

The real world turbulence dataset used in this package is available by loading:

CASES99: one day of 1-s averages of the thermocouple temperature data from

CASES-99 dataset (Poulos et al. (2002)).
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Author(s)

Yanfei Kang, Danijel Belusic and Kate Smith-Miles

Maintainer: Yanfei Kang <yanfei.kang@monash.edu>

References
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aniplotevents Generate a gif to visualise the event detection process

Description

This function generates a gif file demonstrating how the event detection process

is implemented.

Usage

aniplotevents(x, w, noiseType = c("white", "red"), alpha = �.�5,

main = "Animation plot of events", xlab = "t", ylab = "x",

movie.name = "animation.gif", interval = �.�5,

ani.width = 1���, ani.height = 4��, outdir = getwd())

Arguments

x a vector or a time series.

w a scalar specifying the size of the sliding window.

noiseType background noise type assumed for x. There are two options:

white noise or red noise.

alpha the significance level. When the noise test p value of the subse-

quence is smaller than this significance level, it is defined as a

potential event.

main title of the animiation plot; default is ‘Animation plot of event

detection’.

xlab x label of the animation plot; default is ‘t’.

ylab y label of the animation plot; default is ‘x’.
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movie.name name of the output gif file; default is ‘animation.gif’.

interval a positive number to set the time interval of the animation (unit

in seconds); default is 0.05.

ani.width width of the gif file (unit in px), default is 1000.

ani.height height of the gif file (unit in px); default is 400.

outdir character: specify the output directory when exporting the

animations; default to be the current working directory.

Value

...

References

Yihui Xie (2013). Animation: An R Package for Creating Animations and

Demonstrating Statistical Methods. Journal of Statistical Software, 53(1), 1-27.

http://www.jstatsoft.org/v53/i�1/.

See Also

noiseTests, eventExtraction, plotevents

Examples

set.seed(123)

# generate an artificial time series

x=c(rnorm(128),cbfs(type="box"),rnorm(128),cbfs(type="rc"),rnorm(128))

# generate a gif file to show the event detection process

# aniplotevents(x,w=128,noiseType="white",outdir=getwd())
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CASES99 One day of 1-s averages of the thermocouple temperature

data from CASES-99 dataset

Description

These are 1-s averages of the CASES-99 (Poulos et al. 2002) thermocouple

temperature data at the seventh level (9.5 m) from 1100 LST 5 October to 1100

LST 6 October.

Usage

data(CASES99)

Details

Cooperative Atmosphere-Surface Exchange Study (CASES-99) was conducted

over a relatively flat-terrain rural grassland site near Leon, Kansas, during

October 1999. As a part of the extensive observations, a 60-m tower was

equipped with thermocouples at 34 vertical levels (0.23, 0.63, 2.3 m, and every

1.8 m above 2.3 m) that sampled air temperature five times per second (Sun et

al. 2012), while 20-Hz sonic anemometer measurements were taken at seven

levels (1.5, 5, 10, 20, 30, 40, 50, and 55 m). 1-s averages of the CASES-99

thermocouple temperature data at the seventh level (9.5 m) from 1100 LST

5 October to 1100 LST 6 October are taken as an example for detection and

clustering of events.

Source

Gregory S. Poulos, William Blumen, David C. Fritts, Julie K. Lundquist, Jielun

Sun, Sean P. Burns, Carmen Nappo, Robert Banta, Rob Newsom, Joan Cuxart,
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Enric Terradellas, Ben Balsley, and Michael Jensen. CASES-99: A comprehen-

sive investigation of the stable nocturnal boundary layer (2002). Bulletin of the

American Meteorological Society, 83(4):555-581.

Examples

data(CASES99)

cbfs Generate an artificial event with white noise

Description

This function generates a box, cli↵-ramp, ramp-cli↵ or a sine function with

di↵erent levels of white noise as the background noise. Length of the generated

event is 128. Generation of events are similar to that of Cylinder-Bell-Funnel

dataset in the reference below (Keogh and Lin 2005).

Usage

cbfs(type = c("box", "rc", "cr", "sine"), A = 1�, sigma = 1)

Arguments

type type of the event to be generated. There are four options: ‘box’,

‘rc’,‘cr’,‘sine’ representing a box, cli↵-ramp, ramp-cli↵ or a sine

function.

A amplitude of the event; default is 10.

sigma a scalar specifying the level of white noise. Default is 1, which

means the standard deviation of noise is 1.
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Value

an artificial event with white noise.

References

Eamonn Keogh and Jessica Lin (2005). Clustering of time-series subsequences

is meaningless: implications for previous and future research. Knowl. Inf.

Syst., 8(2), 154-177. http://dblp.uni-trier.de/db/journals/kais/kais8.

html#KeoghL�5.

Yanfei Kang, Kate Smith-Miles, Danijel Belusic (2013). How to extract meaning-

ful shapes from noisy time-series subsequences? 2013 IEEE Symposium on Com-

putational Intelligence and Data Mining, Singapore, 65-72. http://ieeexplore.

ieee.org/stamp/stamp.jsp?tp=&arnumber=6597219&isnumber=65972�8.

Yanfei Kang, Danijel Belusic, Kate Smith-Miles (2014). Detecting and Clas-

sifying Events in Noisy Time Series. J. Atmos. Sci., 71, 1090-1104. http:

//dx.doi.org/1�.1175/JAS-D-13-�182.1.

Examples

# generate a box function with white noise

set.seed(123)

x1 = cbfs(type = "box", sigma = 1)

# generate a box function with higher level noise

set.seed(123)

x2 = cbfs(type = "box", sigma = 3)

# plot them

par(mfrow=c(1,2))

plot(x1,type="l",xlab="t",ylab=expression(x[1]))

plot(x2,type="l",xlab="t",ylab=expression(x[2]))
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cbfs_red Generate an artificial event with red noise

Description

This function generates a box, cli↵-ramp, ramp-cli↵ or a sine function with red

noise (AR(1)) as the background noise. Length of the generated event is 128.

Usage

cbfs_red(type = c("box", "rc", "cr", "sine"), A = 1�, s = 1,

coeff = �.5)

Arguments

type type of the event to be generated. There are four options: “box",

“rc",“cr",“sine" representing a box, cli↵-ramp, ramp-cli↵ or a

sine function.

A amplitude of the event; default is 10.

s standard deviation of the AR(1) model innovations. Default is

1.

coeff coe�cient of the AR(1) process, which is used to control the

level of red noise. Default is 0.5.

Value

an artificial event with red noise.
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Examples

# generate a box function with red noise

set.seed(123)

x = cbfs_red(type = "box", coeff=�.5, s=1, A=1�)

# plot it

plot(x,type="l",xlab="t",ylab="x")

detrendc Conditionally detrend a time series

Description

This function detrends a time series when its linear trend is more significant

than a threshold.

Usage

detrendc(x, thres = �.85)

Arguments

x a vector or time series.

thres a scalar specifying the threshold. When the adjusted R square

coe�cient of the linear fitting is larger than this threshold, the

linear trend is substracted from the original time series. Default

is 0.85.

Value

detrended x.
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Examples

t=seq(�.��1,1,�.��1)

set.seed(123)

x=1�*t+rnorm(1���)

dtrx=detrendc(x)

# plot the simulated x

plot(t,x,ty="l",xlab="t",ylab="x")

# plot the detrended x

lines(t,dtrx,col=2)

legend(�,12,legend=c("x","detrended x"),col=c(1,2),lty=1)

eventCluster Cluster detected events

Description

This function groups the detected events into clusters.

Usage

eventCluster(events, k�)

Arguments

events an object of class ‘events’.

k� the number of clusters.
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Details

The clustering is based on statistical characteristics of event. Each extracted

event is first described using a feature vector, and then the events are clustered

according to the Euclidean distances among the feature vectors. Note that

before clustering, we apply principal component analysis (PCA) to the feature

vectors to reduce the correlation as well as the dimension of the feature space.

Value

a list consisting of:

cl a vector indicating which cluster each event belongs to.

center a matrix which gives cluster centroids.

pca PCA results for characteristics of the detected events.

References

Xiaozhe Wang, Kate Smith-Miles and Rob Hyndman (2005). Characteristic-

Based Clustering for Time Series Data. Data Mining and Knowledge Discovery.

13(3), 335-364. http://dx.doi.org//1�.1��7/s1�618-��5-��39-x

Yanfei Kang, Danijel Belusic, Kate Smith-Miles (2014). Detecting and Clas-

sifying Events in Noisy Time Series. J. Atmos. Sci., 71, 1090-1104. http:

//dx.doi.org/1�.1175/JAS-D-13-�182.1.

Gregory S. Poulos, William Blumen, David C. Fritts, Julie K. Lundquist, Jielun

Sun, Sean P. Burns, Carmen Nappo, Robert Banta, Rob Newsom, Joan Cuxart,

Enric Terradellas, Ben Balsley, and Michael Jensen. CASES-99: A comprehen-

sive investigation of the stable nocturnal boundary layer (2002). Bulletin of the

American Meteorological Society, 83(4):555-581.
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See Also

measures

Examples

##################################

# An artificial example

##################################

set.seed(123)

n=128

types=c("box","rc","cr","sine")

shapes=matrix(NA,2�,n)

for (i in 1:2�){

shapes[i,]=cbfs(type=types[sample(1:4,1)])

}

whitenoise=ts2mat(rnorm(128*2�),128)

# generate x which randomly combine the four types of events with each

# two of them separated by noise

x=c(rnorm(128),t(cbind(shapes,whitenoise)))

# plot(x,ty="l")

# specify a sliding window size

w=128

# specify a significant level

alpha=�.�5

# event detection

# events=eventDetection(x,w,"white",parallel=FALSE,alpha, "art")

# clustering

# cc=eventCluster(events,4)

# myclkm=cc$cl

##################################
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# CASES-99 dataset (9.5m)

##################################

# a sliding window length chosen by the user

w=12�;

# specify a significant level

alpha=�.�5

data(CASES99)

# CASESevents=eventDetection(CASES99,w,"red",FALSE,�.�5,"real")

# cc=eventCluster(CASESevents,3)

# cc$center

# myclkm=cc$cl

# visualise the clustering in 2-dimension PCA space

# pc.cr=cc$pca

# pca.dim1 <- pc.cr$scores[,1]

# pca.dim2 <- pc.cr$scores[,2]

# plot(pca.dim1,pca.dim2,col=myclkm+1,

# + main="PCA plots for k-means clustering",pch=16)

eventDetection Detect events from time series

Description

This function finds events from a time series.

Usage

eventDetection(x, w, noiseType = c("white", "red"),

parallel = FALSE, alpha = �.�5, data = c("art", "real"))
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Arguments

x a vector or time series.

w size of the sliding window.

noiseType background noise type assumed for x. There are two options:

white noise or red noise.

parallel logical, if TRUE then codes are executed in parallel using fore-

ach package. The user must register a parallel backend to use

by the doMC package.

alpha the significance level. When the noise test p value of the subse-

quence is smaller than this significance level, it is defined as a

potential event. Default is 0.05.

data type of data being analysed. There are two options: ‘art’ if

analysed data is artificial data and ‘real’ if analysed data is

real world turbulence data. Please see the details in Kang et al.

(2014).

Value

an object of class ‘events’ with the components listed below:

x the original time series.

start a vector consisting of starting points of events.

end a vector consisting of ending points of events.

nevents number of detected events.
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References

Yanfei Kang, Danijel Belusic, Kate Smith-Miles (2014): Detecting and Clas-

sifying Events in Noisy Time Series. J. Atmos. Sci., 71, 1090-1104. http:

//dx.doi.org/1�.1175/JAS-D-13-�182.1.

Gregory S. Poulos, William Blumen, David C. Fritts, Julie K. Lundquist, Jielun

Sun, Sean P. Burns, Carmen Nappo, Robert Banta, Rob Newsom, Joan Cuxart,

Enric Terradellas, Ben Balsley, and Michael Jensen. CASES-99: A comprehen-

sive investigation of the stable nocturnal boundary layer (2002). Bulletin of the

American Meteorological Society, 83(4):555-581.

See Also

noiseTests, eventExtraction, plotevents

Examples

##################################

# 1st art eg (white noise)

##################################

set.seed(123)

n=128

types=c("box","rc","cr","sine")

shapes=matrix(NA,2�,n)

for (i in 1:2�){

shapes[i,]=cbfs(type=types[sample(1:4,1)])

}

whitenoise=ts2mat(rnorm(128*2�),128)

# generate x which randomly combine the four types of events with each

# two of them separated by noise

x=c(rnorm(128),t(cbind(shapes,whitenoise)))
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plot(x,ty="l")

# specify a sliding window size and significant level

# w=128; alpha=�.�5

# events=eventDetection(x,w,"white",parallel=FALSE,alpha,"art")

##################################

# 2nd art eg (red noise)

##################################

set.seed(123)

# set a red noise level

coeff=�.5;s=1

# generated x with red noise as the background; this time series is the

# one used in Kang et al. (2�14)

x=c(arima.sim(list(order = c(1,�,�),ar=coeff),n=5��,sd=s),

+ cbfs_red("rc"),

+ arima.sim(list(order = c(1,�,�),ar=coeff),n=4��,sd=s),

+ cbfs_red("cr"),

+ arima.sim(list(order = c(1,�,�),ar=coeff),n=4��,sd=s),

+ cbfs_red("box"),

+ arima.sim(list(order = c(1,�,�),ar=coeff),n=4��,sd=s),

+ cbfs_red("sine"),

+ arima.sim(list(order = c(1,�,�),ar=coeff),n=1���,sd=s),

+ arima.sim(list(order = c(1,�,�),ar=�.8),n=11��,sd=4))

# specify a sliding window size and significant level

# w=128; alpha=�.�5

# event detection

# events=eventDetection(x,w,"red",parallel=FALSE,alpha,"art")

##################################

# CASES-99 dataset (9.5m)

##################################

# window size which needs to be chosen by the user

w=12�
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# specify a significant level

alpha=�.�5

# event detection from CASES99 data

# data(CASES99)

# CASESevents=eventDetection(CASES99,w,"red",FALSE,alpha,"real")

eventExtraction Extract events from time series

Description

This function returns the starting and ending points of events according to the

noise test results from a time series.

Usage

eventExtraction(tests, w, alpha = �.�5)

Arguments

tests test p values from the noist tests for the subsequences.

w sliding window size.

alpha the significance level. When the noise test p value of the subse-

quence is smaller than this significance level, it is a potential

event. Default is 0.05.

Value

a list consisting:
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start a vector consisting of starting points of events.

end a vector consisting of ending points of events.

tests smoothed test p value series.

nevents number of detected events.

References

Yanfei Kang, Danijel Belusic, Kate Smith-Miles (2014): Detecting and Clas-

sifying Events in Noisy Time Series. J. Atmos. Sci., 71, 1090-1104. http:

//dx.doi.org/1�.1175/JAS-D-13-�182.1.

measures Calculate statistical characteristics of an event

Description

This function calculates statistical characteristics for detected events.

Usage

measures(x)

Arguments

x a time series

Details

Measures used here are standard deviation, kurtosis, skewness, HD (the abso-

lute Di↵erence between averages of the first and second Half ), nonsmoothness,
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test statistic of PP test and ZA test, and maximum, minimum, and kurtosis

of the first-order di↵erence of the events. Please see the reference for details

(Kang et al. 2014).

Value

a vector consisting of statistical characteristics of event x

References

Yanfei Kang, Danijel Belusic, Kate Smith-Miles (2014). Classes of structures in

the stable at- mospheric boundary layer. Submitted to Quarterly Journal of the

Royal Meteorological Society.

See Also

eventCluster

Examples

set.seed(123)

n=128

measures(cbfs("box"))

measures(cbfs("sine"))

noiseTests Perform noise tests for a time series
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Description

This function performs noise tests on the sliding subsequences extracted from

a time series.

Usage

noiseTests(x, w, noiseType = c("white", "red"), parallel = FALSE)

Arguments

x a vector or a time series.

w a scalar specifying the size of the sliding window.

noiseType background noise assumed for x. There are two options: “white"

or “red" .

parallel logical, if TRUE then codes are executed in parallel using the

foreach package. The user must register a parallel backend to

use by the doMC package.

Details

When using this function, the user needs to choose the background noise

type via noiseType according to the application context. In atmospheric tur-

bulence, red noise is used. We first use the Phillips-Perron (PP) Unit Root

Test to test for the unit root process. For the stationary processes, red noise

tests are performed to test for events. For those cases tested to be unit root

processes, we have to take into consideration a special situation when there

is a structural break in the process. The reason comes from the di�culty

for PP test to distinguish random walk processes from a stationary process

contaminated by a structural break, both of which result in non-rejection of
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the null hypothesis. Random-walk processes are not considered as events since

they are known to be brownian noise, but stationary processes with structure

breaks are, so it is essential to distinguish them. To this end, an additional test

called Zivot & Andrews (ZA) unit root test is introduced.This test allows for

a structural break in either the intercept or in the slope of the trend function

of the underlying series. Rejection of the null hypothesis indicates a potential

event (stationary process with a structural break). Random walk processes

result in non-rejection of the null hypothesis.

Value

test p value series for the time series x.

References

Pierre Perron (1998). Trends and random walks in macroeconomic time series:

Further evidence from a new approach. Journal of economic dynamics and

control, 12(2), 297-332. http://dx.doi.org/1�.1�16/�3�4-3932(82)9��12-5.

Eric Zivot and Donald W K Andrews (1992). Further evidence on the

great crash, the oil-price shock, and the unit-root hypothesis. Journal of

Business & Economic Statistics, 20(1), 25-44. http://dx.doi.org/1�.1198/

�735��1�275341�372.

Yanfei Kang, Danijel Belusic and Kate Smith-Miles (2014). Detecting and

Classifying Events in Noisy Time Series. J. Atmos. Sci., 71, 1090-1104. http:

//dx.doi.org/1�.1175/JAS-D-13-�182.1.

See Also

eventExtraction, plotevents
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Examples

set.seed(123)

n=128

types=c("box","rc","cr","sine")

shapes=matrix(NA,2�,n)

for (i in 1:2�){

shapes[i,]=cbfs(type=types[sample(1:4,1)])

}

whitenoise=ts2mat(rnorm(128*2�),128)

# generate x which randomly combine the four types of events with each

# two of them separated by noise

x=c(t(cbind(shapes,whitenoise)))

plot(x,ty="l")

w=128

# execute loops sequentially

tests=noiseTests(x,w,"white",parallel=FALSE)

# execute loops in parallel using doMC package (for non-Windows users)

# tests=noiseTests(x,w,"white",parallel=TRUE)

plotevents Plot the detected events

Description

This function plots the detected events from a time series.

Usage

plotevents(events, cluster = FALSE, mycl, ...)
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Arguments

events an object of class ‘events’.

cluster logical, if TRUE then the detected events are highlighted using

di↵erent colors for di↵erent clusters

mycl a vector specifying which cluster each event belongs to

... other arguments that can be passed to plot

Value

...

References

Yanfei Kang, Danijel Belusic and Kate Smith-Miles (2014). Detecting and

Classifying Events in Noisy Time Series. J. Atmos. Sci., 71, 1090-1104. http:

//dx.doi.org/1�.1175/JAS-D-13-�182.1.

See Also

noiseTests, eventExtraction, eventDetection

Examples

##################################

# 1st art eg (white noise)

##################################

set.seed(123)

n=128

types=c("box","rc","cr","sine")

shapes=matrix(NA,2�,n)
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for (i in 1:2�){

shapes[i,]=cbfs(type=types[sample(1:4,1)])

}

whitenoise=ts2mat(rnorm(128*2�),128)

# generate x which randomly combine the four types of events with each

# two of them separated by noise

x=c(rnorm(128),t(cbind(shapes,whitenoise)))

plot(x,ty="l")

w=128; alpha=�.�5

# event detection

# events=eventDetection(x,w,"white",FALSE,alpha,"art")

# clustering events

# cc=eventCluster(events,4)

# myclkm=cc$cl

# plot the clustered events

# plotevents(events,cluster=TRUE, myclkm)

##################################

# 2nd art eg (red noise)

##################################

set.seed(123)

# generate a time series with red noise; this is the same with the one

# used in Kang et al. (2�14)

coeff=�.5;s=1

x=c(arima.sim(list(order = c(1,�,�),ar=coeff),n=5��,sd=s),

+ cbfs_red("rc"),

+ arima.sim(list(order = c(1,�,�),ar=coeff),n=4��,sd=s),

+ cbfs_red("cr"),

+ arima.sim(list(order = c(1,�,�),ar=coeff),n=4��,sd=s),

+ cbfs_red("box"),

+ arima.sim(list(order = c(1,�,�),ar=coeff),n=4��,sd=s),

+ cbfs_red("sine"),
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+ arima.sim(list(order = c(1,�,�),ar=coeff),n=1���,sd=s),

+ arima.sim(list(order = c(1,�,�),ar=�.8),n=11��,sd=4))

w=128; alpha=�.�5

# event detection

# events=eventDetection(x,w,"red",parallel=FALSE,alpha,"art")

# plot events without clustering

# plotevents(events)

ts2mat Reshape a vector into a matrix

Description

This function reshapes a vector into a matrix whose row elements are taken

from the vector. Orders of elements keep unchanged from the vector.

Usage

ts2mat(x, w)

Arguments

x a vector or a time series

w a number specifying number of columns of the matrix

Value

a matrix
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Examples

x=ts2mat(c(1:(128*2�)),128)

dim(x)

x[1,1:2�]

ur.za.fast Unit root test for events considering a structrual break

Description

This function performs the Zivot & Andrews unit root test, which allows a

break at an unknown point in either the intercept, the linear trend or in both.

Usage

ur.za.fast(y, model = c("intercept", "trend", "both"),

lag = NULL)

Arguments

y a vector or a time series.

model Three choices: “intercept", “trend" or “both".

lag a scalar chosen as lag.

Details

This function is written refering to the ur.za function in the urza package

(Pfa↵ 2008), but it speeds up executation using the RcppArmadillo package.

Allowing a structrual break, this function returns flag to be 0 if the time series

is stationary and 1 if it is a unit root process.
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Value

a list consisting of:

flag 0 if the time series is is stationary; 1 if it is a unit root process.

teststat ZA unit root test statistic.

References

Eric Zivot and Donald W K Andrews (1992). Further evidence on the

great crash, the oil-price shock, and the unit-root hypothesis. Journal of

Business & Economic Statistics, 20(1), 25-44. http://dx.doi.org/1�.1198/

�735��1�275341�372.

Pfa↵, Bernhard (2008). Analysis of Integrated and Cointegrated Time Se-

ries with R. Second Edition. Springer, New York. http://www.springer.com/

statistics/statistical+theory+and+methods/book/978-�-387-75966-1.

See Also

noiseTests

Examples

# this is a box function

set.seed(123)

x=cbfs_red("box")

ur.za.fast(x,"both")

# this is a cliff-ramp

set.seed(123)

x=cbfs_red("cr")

ur.za.fast(x,"both")
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# this is a random walk process

set.seed(123)

x=cumsum(rnorm(3��))

ur.za.fast(x,"both")
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