

EFFICIENT APPROACHES FOR

ROBOTIC ASSEMBLY LINE

BALANCING PROBLEMS

JANARDHANAN MUKUND NILAKANTAN (B. TECH)

Submitted in total fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

SCHOOL OF ENGINEERING

MONASH UNIVERSITY

FEBRUARY 2015

 Notice 1
Under the Copyright Act 1968, this thesis must be used only under the normal conditions of
scholarly fair dealing. In particular no results or conclusions should be extracted from it, nor
should it be copied or closely paraphrased in whole or in part without the written consent of the
author. Proper written acknowledgement should be made for any assistance obtained from this
thesis.

ABSTRACT

JANARDHANAN MUKUND NILAKANTAN (B. TECH)

Assembly Line balancing (ALB) problems deal with the allocation of the tasks

among workstations such a way that the precedence relations are not violated and a

given objective function is optimized. It is a fundamental problem in continuous

production line, and it is one of the difficult optimization problems. Installing assembly

line is a long-term decision and required high capital investments. Hence, it is very

important to design the assembly line and balance the workload on the workstations.

The assembly line has to be rebalanced periodically or if there is a change in the

production plan or process. Based on the strategic goals of the manufacturers, the

performance measures have to be carefully chosen, since balancing decisions have a

long term effect.

Due to the technological advancements, human workforce is replaced by robots to

perform the tasks in an assembly line. Different robots with different capacity and

specialization are available to perform the assembly task, hence it is required to choose

the best fit robot among the available robots such a way that it helps in improving the

productivity of the assembly line. Robotic assembly line balancing (RALB) problem

aims at assigning the tasks to workstation and allocate robot for each workstation in

such a way that the productivity is improved. Very few researchers have proposed

models for balancing a robotic assembly line.

The main objective of this research is to develop efficient algorithms to solve

robotic assembly line balancing problems. RALB problem is NP-hard, since the basic

version of assembly line balancing problems falls under this category. To solve problem

of this nature it is necessary to use metaheuristic algorithms. RALB problems with

different objective functions are proposed and solved.

The objectives considered for the RALB study are: minimizing cycle time,

minimizing energy consumption, minimizing assembly line cost and maximizing line

efficiency of a robotic assembly line. Straight and U-shaped RALB problems are

considered. The results obtained for the two assembly line problems are compared.

RALB problem with an objective of minimizing cycle time is solved using Particle

Swarm Optimization (PSO) and hybrid models of PSO and efficient metaheuristics.

Two allocation procedures are used for allocating tasks and robots in the assembly line.

PSO and its variants are the metaheuristics proposed to solve the RALB problem. PSO

is also hybridized with Genetic Algorithm and Cuckoo search to solve RALB problem.

Proposed algorithms are able to produce better results when compared with the

benchmark results reported in the literature.

Manufacturing industries give importance to the reduction of energy consumption

due to the increase in energy cost and to create an eco-friendly environment. Due to the

importance of reducing energy consumption in an assembly line, an energy based

RALB problem is proposed. RALB problem with an objective of minimizing energy

consumption for straight and U-shaped robotic assembly line is proposed. Particle

swarm optimization algorithm is the metaheuristic used to solve the proposed model.

Cost reduction is one of the important tasks for the manufacturing companies

throughout the world. In this thesis, a cost based RALB problem is also proposed. The

objective considered in this problem is to minimize the assembly line cost. Particle

swarm optimization and Differential evolution algorithms are proposed to solve the

problem. Straight and U-shaped robotic assembly line problems are solved using the

proposed algorithms and the results obtained are presented

Since the investment in assembly line is high, industries try to maximize their usage

in the shortest time possible. Maximizing the line efficiency is another measure

considered in this thesis. Particle swarm optimization and Differential evolution

algorithms are proposed to solve this RALB problem. Line efficiency of both straight

and U-shaped configuration of robotic assembly line is compared.

The research on RALB problem optimizing various performance measures

considered reveals that U-shaped robotic assembly line is better than straight robotic

assembly line.

Keywords: Robotic assembly line, Optimization, Metaheuristic Algorithms.

DECLARATION

I declare that, to the best of my knowledge, the research described herein is original

except where the work of others is indicated and acknowledged, and that the thesis has

not, in whole, or in part, been submitted for any other degree at this or any other

university.

Under the Copyright Act 1968, this thesis must be used only under normal

conditions of scholarly fair dealing. In particular, no results or conclusions should be

extracted from it, nor should be copied or closely paraphrased, in whole or in part

without the written consent of the author. Proper written acknowledgement should be

made for any assistance obtained from the thesis.

I certify that I have made all reasonable efforts to secure copyright permissions for

third party content included in this thesis and have not knowingly added copyright

content to my work without owner’s permission.

Signatur

Date: ___________________________
5th February 2015

Page | iv

ACKNOWLEDGEMENTS

I wish to express my special appreciation and thanks to my supervisor Professor

S.G. Ponnambalam for his advice during my doctoral research endeavour. He motivated

me to remain focused on my research objectives to achieve this goal and showed

immense interest in my work by always being available to advise me. His advice on

both my research as well as my personal career is priceless and I will hold it close to

my heart.

I would like to thank Professor Jawahar and Dr Kanagaraj (TCE, India) for their

brilliant comments and suggestions. They gave their most genuine feedback, direction,

and assistance whenever I needed them. Let me also thank Professor George Huang

(University of Hong Kong) for the opportunity he gave me to work under him as part

of my doctoral research. I would like to express my humble gratitude to the

administrative and technical staff members of the School of Engineering, who were

kind enough to advise and help me in their respective roles.

Let me also thank my best friends Ajith, Akshay, Jose, Paul and Rohit, who, from

different corners of the world, shared their thoughts over phone calls, e-mails and Skype

conversations and were always available whenever I needed them. I would also like to

thank all my PhD colleagues - Nishan, Hasuli, Ajay, Amrutha, Vignesh, Jiten, Kasun,

Lakshmi, Altaf, Jason, Shan, Yasir, and Rish - for being there to encourage me during

my moments of deep anxiety, while awaiting some positive outcome. Let me also thank

my housemates Devangi and Rangika for their support during my stay at Indah Villa. I

am indebted to Anirudh for his selfless support in editing my thesis.

At this juncture, I express my deep gratitude to my parents-in-law and my sister-

in-law for their constant encouragement and immense support during the course of my

research. Let me thank my parents and my brother deeply, for their unconditional trust,

timely encouragement and continual prayers. Without them, this research would never

have been conducted and this thesis be written.

Finally, I thank my love, Mathangi and our love, Ameya, my wife and our little

daughter, for their constant motivation and extra support, which helped me remain

perseverant to conduct my research in the most efficient way. Mathangi is a great

companion whose love, support, best composure and encouragement helped me remain

the most productive throughout this venture of mine.

Page | v

TABLE OF CONTENTS

ABSTRACT ii

ACKNOWLEDGEMENTS iv

LIST OF FIGURES ix

LIST OF TABLES xiii

LIST OF ABBREVIATIONS xvi

LIST OF NOTATIONS xviii

LIST OF PUBLICATIONS xix

1. INTRODUCTION 1

 Overview 1

 Optimization techniques to solve assembly line balancing problems 4

 Organization of the thesis 7

2. LITERATURE SURVEY 9

 Assembly lines 9

 Definition of assembly line balancing (ALB) 10

2.2.1 Basic terminologies 11

 Classification of ALB problems 11

2.3.1 Simple Assembly Line Balancing 12

2.3.2 U-shaped Assembly Line Balancing 13

2.3.3 Robotic Assembly Line Balancing 14

2.3.4 ALB problems based on models, layout and number of products 15

2.3.5 ALB problems based on cost and energy consumption 17

 Importance of assembly line balancing 20

 Optimization techniques to solve ALB problems 21

2.5.1 Techniques for solving SALB problems 22

2.5.2 Techniques for solving U-shaped ALB problems 25

2.5.3 Techniques for solving cost and energy based ALB problems 27

2.5.4 Techniques for solving RALB problems 30

 State of the Art 32

3. PROBLEM DEFINITION 34

 Motivation of the research 34

Page | vi

 Problem statement 35

 Research objectives 35

 Research approach 36

4. MATHEMATICAL MODELS FOR RALB PROBLEMS 37

 Straight RALB problem - minimizing cycle time 37

4.1.1 Assumptions and Mathematical Model 37

 U-shaped RALB problem - minimizing cycle time 39

4.2.1 Assumptions and Mathematical Model 40

 RALB problem - minimizing energy consumption 41

4.3.1 Assumptions and Mathematical Model 41

 RALB problem - minimizing assembly line cost 43

4.4.1 Assumptions and Mathematical Model 43

 RALB problem - maximizing line efficiency 45

4.5.1 Assumptions and Mathematical Model 45

 Summary 46

5. PARTICLE SWARM OPTIMIZATION & HYBRID PARTICLE SWARM

OPTIMIZATION FOR RALB PROBLEM TO MINIMIZE CYCLE TIME 48

 Standard Particle Swarm Optimization for straight RALB 48

5.1.1 Implementation of PSO 53

 PSO variants and Hybrid PSO models for straight RALB 67

5.2.1 PSO variants with inertia weight and constriction factor 67

5.2.2 PSO variants with time varying inertia weight and constriction factor 68

5.2.3 Hybrid PSO variants with inertia weight and constriction factor 69

5.2.4 Hybrid Cuckoo Search-PSO variant 72

 Experimental and Computational Study for Standard PSO 75

5.3.1 Parameter Selection for standard PSO 75

5.3.2 Computational Study for Standard PSO 79

5.3.3 Complexity of the problem 84

5.3.4 Parametric study on PSO variants and hybrid PSO models 87

5.3.5 Computational study on PSO variants and Hybrid PSO models 91

5.3.6 Summary of the findings on RALB-2 problem study 93

 U- Shaped RALB problem 97

5.4.1 PSO to solve RUALB problem 98

Page | vii

5.4.2 Initial Population and Initial velocity 98

5.4.3 Fitness Evaluation in RUALB (Task and robot allocation) 99

5.4.4 Differences between straight and U-shaped robotic assembly line 101

5.4.5 Computational Study for RUALB problems 103

5.4.6 Summary of the findings on RUALB problem 109

 Summary 110

6. PARTICLE SWARM OPTIMIZATION TO SOLVE ENERGY BASED RALB

PROBLEMS 112

 Straight RALB - Cycle time and Energy consumption 112

6.1.1 Time based model 113

6.1.2 Energy Based Model for straight robotic assembly line 114

6.1.3 Energy Consumed by Robots during standby mode 117

6.1.4 PSO for solving time and energy based model 118

6.1.5 Computational study and Discussions 119

 U-shaped RALB - Cycle time and Energy consumption 125

6.2.1 Time based model for U-shaped robotic assembly line 126

6.2.2 Energy Based Model for U-shaped robotic assembly line 127

6.2.3 PSO to solve proposed models in U-shaped RALB 129

6.2.4 Comparison of straight and U-shaped RALB 137

 Summary 138

7. PARTICLE SWARM OPTIMIZATION & DIFFERENTIAL EVOLUTION TO

SOLVE COST BASED RALB PROBLEMS 140

 Straight RALB - Minimizing Assembly Line Cost 140

7.1.1 Consecutive Allocation procedure- Straight line 140

7.1.2 PSO variants and DE to solve cost based model in straight RALB 143

7.1.3 Cost Model Dataset Generation 146

7.1.4 Parameter settings 147

7.1.5 Performance analysis for straight RALB 148

7.1.6 Time based and cost based model for straight RALB 150

 U-shaped RALB – Assembly line cost 154

7.2.1 Task and robot allocation procedure in U-shaped RALB 155

7.2.2 PSO Variants and DE to solve cost based model in U-shaped RALB 156

7.2.3 Performance analysis for cost based U-shaped RALB 156

7.2.4 Time and Cost based model in U-shaped RALB 158

Page | viii

 Comparison of straight and U-shaped RALB 162

 Summary 164

8. PARTICLE SWARM OPTIMIZATION & DIFFERENTIAL EVOLUTION FOR

RALB PROBLEM TO MAXIMIZE LINE EFFICIENCY 165

 Line Efficiency calculation in Straight and U-shaped RALB 165

 PSO and DE to solve time based model line efficiency 167

8.2.1 Particle Swarm Optimization 167

8.2.2 Differential Evolution 168

8.2.3 Parameters for PSO and DE 168

8.2.4 Performance analysis of PSO and DE for straight RALB 168

8.2.5 Performance analysis for U-shaped RALB 171

8.2.6 Comparison for straight and U-shaped RALB 173

 Line Efficiency calculation using energy data 175

8.3.1 Performance in straight RALB for energy data 177

8.3.2 Performance analysis in U-shaped RALB for energy data 179

8.3.3 Comparison of straight and U-shaped RALB for energy data results 181

 Summary 184

CONCLUSION 186

 RALB problem to minimize cycle time 186

 RALB problem to minimize energy consumption 187

 RALB problem to minimize assembly line cost 188

 RALB problem to maximize line efficiency 189

 Contribution of this thesis 189

9.6 Limitations of this research 190

 Future Research Proposals 190

REFERENCES 191

APPENDIX 203

Page | ix

LIST OF FIGURES

Figure 2.1 Classification of Assembly Line Balancing Problems 12

Figure 2.2 Single-model assembly line 15

Figure 2.3 Multi-model assembly line 15

Figure 2.4 Mixed-model assembly line 16

Figure 2.5 Serial assembly line 16

Figure 2.6 Two-sided assembly line 16

Figure 2.7 Parallel assembly line 17

Figure 2.8 U-shaped assembly line 17

Figure 2.9 Unbalanced Assembly Line 21

Figure 2.10 Balanced Assembly Line 21

Figure 5.1 Pseudo code of standard PSO 50

Figure 5.2 Precedence Graph of 11 task problem 54

Figure 5.3a Sample Task Sequence 59

Figure 5.3b Tasks assigned after decoding the sequence 59

Figure 5.4 Recursive Procedure for splitting tasks to the given

workstations

61

Figure 5.5 Allocation of the best fit robot - recursive allocation procedure 61

Figure 5.6 Final solution based on recursive allocation procedure 61

Figure 5.7 Task and Robot allocation - consecutive method with initial C0 63

Figure 5.8 Allocation of best fit robot - consecutive allocation procedure 64

Figure 5.9 Final solution based on consecutive allocation procedure 64

Figure 5.10 Pseudo Code of Hybrid PSO 70

Figure 5.11 Pseudo code of hybrid CS-PSO algorithm 73

Figure 5.12 Illustration of the OX operator 74

Figure 5.13 Illustration of the Single Point Cross over 74

Figure 5.14 Performance of PSO for stopping condition of recursive

allocation procedure

76

Figure 5.15 Performance of PSO for stopping condition of consecutive

allocation procedure

77

Page | x

Figure 5.16 Performance of PSO for acceleration coefficients of recursive

allocation procedure

77

Figure 5.17 Performance of PSO for acceleration coefficients of

consecutive allocation procedure

78

Figure 5.18 Performance of PSO for population size of recursive allocation

procedure

79

Figure 5.19 Performance of PSO for population size of consecutive

allocation procedure

79

Figure 5.20 Comparison of Average Computational Time 84

Figure 5.21 F ratio vs computational time 86

Figure 5.22 Performance variations when different inertia weights are used

for PSO-W variant

88

Figure 5.23 Performance variations when different groups of acceleration

coefficients are used for PSO-W variant

89

Figure 5.24 Performance of hybrid CS-PSO in terms of stopping condition 91

Figure 5.25 Example sequence considered for illustration 99

Figure 5.26 Example of assignment procedure for initial cycle time 102

Figure 5.27 Final Assignment solution for U-shaped RALB 102

Figure 5.28 Straight Robotic Assembly Line 103

Figure 5.29 U-shaped Robotic Assembly Line 103

Figure 5.30 Performance of PSO in terms of stopping condition 105

Figure 5.31 Selection of acceleration coefficients based on the performance

of the algorithm

105

Figure 5.32 F-ratio vs Computational Time for RUALB problems 107

Figure 6.1 Final Solution for time based model in a straight RALB 114

Figure 6.2a Task and Robot allocation using energy based model with

initial E0

116

Figure 6.2b Completed allocation using energy based model 117

Figure 6.3 Final Solution for the energy based model in a straight RALB 117

Figure 6.4 Comparison of Energy consumption in small size datasets for

two models in straight RALB

122

Figure 6.5 Comparison of Energy consumption for large size datasets for

two models in straight RALB

122

Page | xi

Figure 6.6 Energy saving potential in small size datasets for energy based

model in straight RALB

123

Figure 6.7 Energy saving potential in large size datasets for energy based

model in straight RALB

123

Figure 6.8 Comparison of Cycle Time in small size datasets between two

models in straight RALB

124

Figure 6.9 Comparison of Cycle Time in large size datasets between two

models in straight RALB

124

Figure 6.10 Solution for the time based model in a U-shaped RALB 127

Figure 6.11 Solution for the energy based model in a U-shaped RALB 129

Figure 6.12 Comparison of energy consumption for small size datasets in

U-shaped RALB

132

Figure 6.13 Comparison of energy consumption for large size datasets in

U-shaped RALB

133

Figure 6.14 Energy saving potential in small size datasets for energy based

model in U-shaped RALB

134

Figure 6.15 Energy saving potential in large size datasets for energy based

model in U-shaped RALB

135

Figure 6.16 Comparison of cycle time obtained for small size datasets in

U-shaped RALB

135

Figure 6.17 Comparison of cycle time obtained for large size datasets in U-

shaped RALB

136

Figure 7.1 Allocation done for initial assembly line cost 142

Figure 7.2 Final allocation of tasks and robots using consecutive

allocation procedure in straight RALB

142

Figure 7.3 Flowchart for differential evolution 144

Figure 7.4 Workstation cost and cycle time allocation done using cost

based model

151

Figure 7.5 Workstation cost and cycle time using time based model 153

Figure 7.6 Cost saving potential in small size datasets for cost based

model in straight RALB

153

Figure 7.7 Cost saving potential in large size datasets for cost based

model in straight RALB

153

Page | xii

Figure 7.8 Final task and robot allocation in a U-shaped RALB for cost 156

Figure 7.9 Workstation cost and time in U-shaped RALB using cost

based model

159

Figure 7.10 Workstation cost and time in U-shaped RALB using time

based model

159

Figure 7.11 Cost saving potential in small size datasets for cost based

model in U-shaped RALB

160

Figure 7.12 Cost saving potential in large size datasets for cost based

model in U-shaped RALB

161

Figure 8.1 Task allocation and Workstation times in straight RALB 166

Figure 8.2 Allocation in a U-shaped RALB and workstation times 167

Figure 8.3 Workstation times and energy consumption in straight RALB 176

Figure 8.4 Workstation times and energy consumption in U-shaped

RALB

177

Page | xiii

LIST OF TABLES

Table 2.1 Summary of research on RALB problems 32

Table 5.1 Initial population generated using the heuristic rules 53

Table 5.2 Performance time for 11 tasks by 4 robots 53

Table 5.3 Maximum Rank Positional Weight 55

Table 5.4 Minimum Inverse Positional Weight 55

Table 5.5 Total Number of Predecessor tasks 56

Table 5.6 Maximum Total Number of Follower Tasks 56

Table 5.7 Maximum Task time 57

Table 5.8 Minimum Task time 57

Table 5.9 Maximum number of Velocity Pairs 58

Table 5.10 Illustration of Local Exchange Procedure 66

Table 5.11 Performance times of 25 tasks for 9 Robots 67

Table 5.12 Selection of c1, c2 and c3 78

Table 5.13 Source of Datasets 80

Table 5.14 Results of the 32 straight RALB-2 problems 82

Table 5.15 Percentage Deviation of cycle time for PSO with recursive and

consecutive procedure

84

Table 5.16 Relative Complexity of Recursive and Consecutive PSO

procedures

87

Table 5.17 Selection of c1 and c2 89

Table 5.18 Solutions Obtained for RALB-2 problem for 35 tasks by 5

robots

94

Table 5.19 Results obtained by PSO variants for RALB-2 problems- Set I 95

Table 5.20 Results obtained by hybrid PSO models for RALB-2 problems-

Set II

96

Table 5.21 Illustration of best fit robot selection 101

Table 5.22 Results of the 32 benchmark problems for RUALB 108

Table 5.23 Relative Complexity of RUALB problem 109

Table 5.24 Solutions Obtained for 35 task problem with 5 robots 110

Table 6.1 Energy consumption for 11 tasks by 4 robots 116

Page | xiv

Table 6.2 Standby time Energy Evaluation 118

Table 6.3 PSO Parameters selected for evaluating the models 120

Table 6.4 Total energy consumption and cycle time evaluated for small

size datasets

121

Table 6.5 Total energy consumption and cycle time evaluated for large

size datasets

121

Table 6.6 Average Computational Time in seconds for the proposed

models

125

Table 6.7 Parameters of PSO selected for evaluating the two models 130

Table 6.8 Results of performance evaluation of two models for small size

datasets in U-shaped RALB

131

Table 6.9 Results of performance evaluation of two models for large size

datasets in U-shaped RALB

132

Table 6.10 Average Computational Time for the proposed two models 136

Table 6.11 Comparison: energy consumption between straight & U-shaped

RAL

137

Table 6.12 Comparison: cycle time between straight & U-shaped RALB 138

Table 7.1 Performance cost data and precedence relations for 11 task

problem

142

Table 7.2 Parameters selected for PSO variants and DE 148

Table 7.3 Results for cost based straight RALB problems using

consecutive allocation procedure

149

Table 7.4 Average Computation Time for consecutive allocation

procedure

150

Table 7.5 Task and robot allocation using cost based model 151

Table 7.6 Task and robot allocation using time based model 152

Table 7.7 Comparison of assembly line cost and cycle time for two models

in straight RALB

154

Table 7.8 Results for cost based U-shaped RALB problems using PSO

variants and DE

157

Table 7.9 Average Computational time for cost based U-shaped RALB 158

Page | xv

Table 7.10 Comparison of assembly line cost and cycle time for two models

in U-shaped RALB

161

Table 7.11 Comparison of assembly line cost - straight and U-shaped

RALB

162

Table 7.12 Comparison of cycle time - straight and U-shaped RALB 163

Table 8.1 Parameters for PSO and DE for RALB problem 168

Table 8.2 Line Efficiency of straight RALB for PSO and DE 170

Table 8.3 Average Computational time of PSO and DE for straight RALB 171

Table 8.4 Line Efficiency of U-shaped RALB for PSO and DE 172

Table 8.5 Average Computational time of PSO and DE for U-shaped

RALB

173

Table 8.6 Comparison of Line Efficiency obtained using time data

between straight and U-shaped RALB

174

Table 8.7 Comparison of Cycle time obtained using time data between

straight and U-shaped RALB

175

Table 8.8 Line Efficiency of straight RALB for PSO and DE using energy

data

178

Table 8.9 Average Computational time of PSO and DE for straight RALB

using energy data

179

Table 8.10 Line Efficiency of U-shaped RALB for PSO and DE using

energy data

180

Table 8.11 Average Computational time of PSO and DE for U-shaped

RALB using energy data

181

Table 8.12 Comparison of Line Efficiency obtained using energy data

between straight and U-shaped RALB

182

Table 8.13 Comparison of cycle time obtained using energy data between

straight and U-shaped RALB

183

Table 8.14 Comparison of energy consumption obtained between straight

and U-shaped RALB using energy data

184

Page | xvi

LIST OF ABBREVIATIONS

SALB Simple Assembly Line Balancing

JIT Just in Time

UALB U-shaped Assembly Line Balancing

FAS Flexible Assembly Systems

RALB Robotic Assembly Line Balancing

NP Non-deterministic Polynomial time

GA Genetic Algorithm

DE Differential Evolution

PSO Particle Swarm Optimization

ABC Artificial Bee Colony

CS Cuckoo Search

ACO Ant Colony Optimization

ALB Assembly Line Balancing

GALB General Assembly Line Balancing

RAL Robotic Assembly Line

MOALB Multi objective Assembly Line Balancing

MALB Mixed-model Assembly Line Balancing

COMSOAL Computer Method of Sequencing Operations for Assembly Lines

moGA Multi-objective Genetic Algorithm

PSONK
named Particle Swarm Optimization with Negative Knowledge

(PSONK)

NSGA Non-dominated Sorting Genetic Algorithm

WR Wage Rate Method

WRS Wage Rate Smoothing-Method

PWWD Positional Weight Wage Rate Difference Method

PW Positional Weight Method

GALBPS General Assembly Line Balancing Problem with Setups

EPC Electric Power Cost

TOU Time-of-Use

FFS Flexible Flow Shop Scheduling

Page | xvii

hGA Hybrid Genetic Algorithm

MOES Multi-Objective Evolution Strategies

IP Integer Programming

PW Positional Weight

TR Time Ratio

PSO-W Particle Swarm Optimization with inertia weight

PSO-C Particle Swarm Optimization with constriction factor

TVIW Time Varying Inertia Weight

TVAC Time Varying Acceleration Coefficient

OECD

Organization for Economic Cooperation and Development

countries

Page | xviii

LIST OF NOTATIONS

Indices

i, j : Index of assembly tasks, i, j =1,2,…Na

h : Index of robot types, h =1,2,…Nr

s : Index of workstation, s =1,2,…Nw

Parameters

c : Cycle time

tih : processing time of task i by robot type h

Ts : total execution time for workstation s

pre(i) : set of immediate predecessors of task i

F : Set of tasks

H : Set of available robots

S : Set of workstations

Nw : Number of workstations

Na : Number of tasks

Nr : Number of robots

sq : Sequence of tasks represents feasible solution

P : A set of precedence constraints

vr
t+1 Velocity of particle ‘r’ at generation ‘t’

C0 : Initial cycle time

E : Energy consumption (E=P.tih)

E0 : Initial energy consumption of an assembly line

Es : total energy consumption for workstation s

eih : energy consumption of task i by robot h

cih : cost of performing the task i by robot h

P0 : initial estimation of assembly line cost

LE : Line Efficiency

Sk : kth workstation time

Pw : Positional weight

Page | xix

LIST OF PUBLICATIONS

Journals

Mukund Nilakantan, J., & Ponnambalam, S. G. 2014. Robotic U-shaped

Assembly Line Balancing using Particle Swarm Optimization. Engineering

Optimization, Taylor and Francis. DOI:10.1080/0305215X.2014.998664.

Mukund Nilakantan, J., Huang, G.Q & Ponnambalam, S.G. 2014. An

investigation on minimizing cycle time and total energy consumption in Robotic

Assembly Line Systems. Journal of Cleaner Production, Elsevier, DOI:

10.1016/j.jclepro.2014.11.041.

Mukund Nilakantan, J., Ponnambalam, S.G., Jawahar & N., Kanagaraj, G. 2015.

Bio-inspired search algorithms to solve robotic assembly line balancing problems.

Neural Computing and Applications, Springer. DOI: 10.1007/s00521-014-1811-x

Mukund Nilakantan, J., Ponnambalam, S.G. & Jawahar N. Maximizing line

efficiency of a U-shaped robotic assembly line by minimizing the total energy

consumption using evolutionary algorithms; Accepted for publication in Engineering

Computations with minor amendments, Emerald (under review).

Mukund Nilakantan, J., & Ponnambalam, S.G. Solving Cost-based Robotic

Assembly Line Balancing Problems for Straight & U-Shaped Configuration; Submitted

to Journal of Manufacturing Systems, Elsevier (under review).

Page | xx

Conferences

Mukund Nilakantan, J., & Ponnambalam, S. G. 2012. An efficient PSO for type II

robotic assembly line balancing problem. In: Proceedings of IEEE International

Conference on Automation Science and Engineering (CASE), pp. 600-605. ISBN:

978-1-4673-0429-0.

Mukund Nilakantan, J., & Ponnambalam, S. G. 2014. Solving cost based robotic

assembly line problems using variants of particle swarm optimization. In:

Proceedings of IEEE International Conference on Control, Instrumentation,

Communication and Computational Technologies (ICCICCT), pp 469-475. ISBN:

978-1-4799-4190-2.

Mukund Nilakantan, J., & Ponnambalam, S. G. 2014. Optimizing the efficiency of

Straight and U-shaped Robotic Assembly Lines. 5th Joint International Conference

on Swarm, Evolutionary and Memetic Computing (SEMCCO 2014) & Fuzzy and

Neural Computing (FANCCO 2014); presented and proceedings will be published

in Springer LNCS volume.

Mukund Nilakantan, J., & Ponnambalam, S.G. 2015. Minimizing energy

consumption in a U-shaped robotic assembly line. Accepted and to be presented in

18th Conference of Process Integration, Modelling and Optimisation for Energy

Saving and Pollution Reduction; proceedings to be published in Chemical

Engineering Transactions.

CHAPTER 1

1 Introduction

 Overview

An assembly process aims at bringing together two or more component parts in

order to form a new product. In an assembly process parts are added successively to an

assembly until a final finished product is completed. In a product, which is to be

assembled is often designated as a job. For each product manufactured, there are

different small components which will be required to undergo assembly operations.

Assembly operations can be automated or if the components or required quantities are

small, assembly operations are executed at individual workstations manually. In case

of large products like aircrafts, ships, etc., the products are fixed at a location and

workers move from product to product performing the operation to form the final

product. Flow-line is the most common assembly line where products are assembled

when the product moves from one workstation to the next in the line and at each

workstation the operations are performed.

Henry Ford developed the first assembly line in 1913 and used that assembly line

for mass production of Ford model T automobiles (Alp, 2004). Henry Ford observed

that time taken for the assembly process could be reduced and quality of the product

assembled would increase if the assembly process is divided into small individual tasks

and these tasks are distributed among a set of operators working on assembly

workstations along the line. The operators are required to work on a set of tasks and are

not required to work on all tasks. Thus the operators become specialized to perform a

particular set of tasks and this helps in increasing the speed of the work and quality of

the product also increases due to their expertise.

For improving efficiency of the work, Ford applied certain operating principles to

his production line and this led to the development of flow-line technology. Workers

and tools are placed in the sequence of operations so that each part travels the minimum

distance and a material handling system is used for transferring parts from one

workstation to the next in a sequence. The movement of parts in the line at equal

Chapter 1

Introduction

Page | 2

intervals helped improving the quality, increase the production rate and also the

production cost (Fernandes, 1992).

Due to the increased demand and changing market needs, production companies

face the challenge of upgrading the production systems. Customers today look for

products with different product variants with different distinctive features from other

products available in the market. There is an increased demand to make the production

system more flexible to meet the demands and needs of the market.

Due to the fluctuating customer demand it is difficult for the mass production line

to respond quickly. Production lines are designed in such a way that tasks are grouped

to workstations in an orderly manner so that line efficiency is maximized. This problem

is known as the Simple Assembly Line Balancing (SALB) problems. Simple assembly

lines are arranged in a straight line. Many firms nowadays incorporate just in time (JIT)

principles and group technology into assembly line production, and these modern

assembly lines are often organized as a ‘U- shaped line’ (Alp, 2004) repetitive and job

shop applying JIT principles is beneficial. By implementing JIT concepts one of the

major change in an assembly line would be to replace the traditional straight line with

U-shaped assembly line (Toksarı et al., 2008). The advantages of the U-shaped

assembly line when compared to straight line are reduction in the movements of the

operators, improved productivity, flexible workforce planning depending on the

demand during the planning phase and better material handling. Demand fluctuation

can be easily tackled in U-shaped assembly line since there are more possibilities of

grouping tasks into workstations on the U-shaped line (Monden, 1983, Hirano, 1988).

Scholl and Klein (1999b) define the U-shaped assembly line balancing (UALB)

problem as an extension of the simple assembly line balancing (SALB) problem with

respect to the precedence constraints.

Assembly process is considered to be one of the important contributing factors for

the product cost. Hence, extensive efforts have been taken for improving the cost

effectiveness and efficiency of the assembly operations. Assembly production lines can

be manually operated, automated, or of mixed design. Manual assembly is

characterized by high labor costs and for automated assembly there is a need of very

high investment for the development of dedicated equipment for the process. In both

methods, there is always a need for performing the operations at highly efficient

Chapter 1

Introduction

Page | 3

manner. Development of flexible assembly systems (FAS) equipped with assembly

robots is the main method used for improving the flexibility in the production system

(Owen, 1986). FAS are used to meet the increasing demands from the customers and

the manufacturers are required to reduce the time to the market. Robots play an

important role in FAS and helps in performing specialized operations in an assembly

line. Use of robots helps in achieving the flexibility and automation in an assembly line.

When flexible equipment like robot are used for performing assembly tasks, the issue

of designing an assembly line is of utmost importance. The major design issue is to

assign tasks at the workstations and select the robot (best-fit) which performs these

tasks to its fullest potential (Bukchin and Tzur, 2000).

Robots are programmed to perform a wide variety of assembly tasks and

application. Advanced technology has helped to develop different robots with different

specifications and capabilities. Balancing the workload of the workstation in a robotic

assembly line is an important task and it helps to maximize the production rate of the

line. Objective of allocating the proper robot for the workstation is very critical for the

performance of robotic assembly line. Robotic assembly line balancing (RALB) aims

at assigning tasks to each workstation and assignment of robots to the workstations in

such a way that productivity is improved (Levitin et al., 2006). To perform tasks in a

workstation, robots with specific tooling is developed. Tooling for the robot is attached

to the robot at the workstation in order to avoid wastage of time for tool change.

Tooling design can be done after balancing the assembly line. Major objectives of

balancing a robotic assembly line include: optimal balancing of the assembly line for a

given number of workstations or achieve a given production rate and allocate the best-

fit robot to each workstation. When a new product is planned for assembly due to the

availability of different robot types, robots need to be reassigned. Each robot has

different capabilities and specialization to perform various tasks.

In case of manual assembly line, there is a considerable amount of variation in the

actual processing time when compared to the standard time estimated for the line

balancing. Due to this, achieving a perfect line balance is only of theoretical

importance. But in case of robotic assembly line balancing there would be not much of

variation from the designed assembly line and task performance times. Any imbalance

in the line and idle time at any of the workstation will result in reducing the performance

of the system (Gao et al., 2009).

Chapter 1

Introduction

Page | 4

Research on assembly lines has been an important subject of study for many years

in the field of combinatorial optimization and operation research. Problem could be

simply defined such that for a set of given tasks, each of the tasks are associated with

cost information and the workstation where these tasks can be executed. Assignment of

tasks to the workstations is a solution for an assembly line problem.

Variety of problems occurs in an assembly line due to the large number of

variations and constraints. With regard to workstations, there could be different models:

linear flow workstations, U-shaped workstations and parallel workstations performing

the tasks simultaneously. With respect to tasks, they can be classified into tasks which

can be grouped (related) or tasks which cannot be grouped (unrelated tasks). Most

common optimization subjects in assembly lines are: minimize the number of

workstations required to execute all the tasks; the maximum processing time that can

be assigned to a single workstation (cycle time); amount of time that a station needs to

wait to perform its allocated task (idle time).

 Optimization techniques to solve assembly line balancing

problems

Assembly line balancing problem falls under the category of non-deterministic

polynomial time hard (NP-hard) (Gutjahr and Nemhauser, 1964). ALB problem falls

under the category of NP-hard due to the computational complexity of the problem

(Karp, 1972). Bin-packing problem is one such problem where there is no precedence

relationship and falls under the category of NP-hard in the strong sense (Erel and Sarin,

1998). Therefore, simplest version of ALB also falls under the same category.

 Due to the combinatorial nature of the problem, there is always a need to reduce

the time taken for computing. There is no single method available for solving all

optimization problems efficiently (Rao, 2009). Hence, over the years number of

optimization techniques has been developed for solving combinatorial problems.

Optimization techniques can be broadly classified into exact methods (conventional

methods) and approximate methods (modern heuristics) (Rothlauf, 2011). Exact

optimization methods are those which guarantee an optimal solution and for

approximate optimization methods there is no guarantee for optimal solution. Exact

methods are fast and gives exact solution. Exact methods are based on exhaustive

search and this is only possible when then number of solution is small so that all solution

Chapter 1

Introduction

Page | 5

possibility can be checked within an acceptable time span. Optimization methods like

branch and bound and dynamic programming methods work on partially available

solutions and it helps in cutting off the parts of search space without evaluating them.

These algorithms are often time consuming and they are not used for solving real-world

engineering application problems (Sivanandam et al. 2007). These methods cannot be

used to solve real-world problems either due to large search space. Other search

methods like local search methods and gradient based methods are different. For local

search technique, a new point is created within the neighborhood of the current point

and if the neighborhood point is better than the current point based on the quality of the

solution, it becomes the new current point. Gradient based methods are those types of

methods which can be used to solve continuous problems. But most of the real world

industrial optimization problems are not continuous instead they are discrete and

combinatorial problems.

Approximate methods help at escaping the local optima and try to find the global

optimum solution. Advantage of using approximate algorithms is that they are not

attached to any specific domain problem. Hence, heuristic methods are used to solve

real optimization problems which are generally complex (Martí and Reinelt, 2011).

Heuristics tries to produce acceptable solution for a complex problem in reasonable

computational time using common sense logic. Size of the problem also sometimes

makes it almost impossible to solve optimally. Therefore heuristic methods helps to

save computational time but at the cost of not guaranteeing the optimal solution.

Metaheuristics are problem-independent techniques and are designed to solve

approximately wide range of optimization problems without having to adapt deeply into

each problem. The Greek prefix “meta” present in the name is to indicate that these are

“higher level” heuristics when compared to problem specific heuristics (Boussaïd et al.,

2013).

 These algorithms are applied when there are no satisfactory problem specific

algorithms to solve them. Complex problems in industries ranging from finance to

production management are solved using metaheuristics (Glover and Kochenberger,

2003). The metaheuristics approach for solving optimization problem starts with an

obtained initial solution or with a set of initial solutions, and then an improved search

guided by certain principles.

Chapter 1

Introduction

Page | 6

Metaheuristic algorithms are developed based on the learning from nature system

and are often bio-inspired, and they are widely used algorithms for optimization

problems (Yang and Deb, 2014). Nature-inspired (bio-inspired) algorithms are those

algorithms which are inspired by nature phenomenon. Genetic algorithm (GA) and

Differential Evolution algorithm (DE) are inspired based on the biological evolutionary

process. Algorithms like particle swarm optimization algorithm (PSO), artificial bee

colony algorithm (ABC), Cuckoo search (CS) and ant colony optimization algorithm

(ACO) are developed based on the behavior of animals. These algorithms have been

widely applied in various fields. These algorithms receive wide attention from

researchers from various fields of engineering due to easiness in implementation and

ability to obtain better solution for hard problems (Boussaïd et al., 2013).

Assembly line balancing problems falls under the category of NP-hard (Scholl and

Becker, 2006) and solving these problems optimally by total enumeration is not

practical with real-world or large-size problems. Thus researchers shift their focus

towards metaheuristics approaches as a popular way to address these hard problems.

Metaheuristics are efficient as they are fast and simple to implement. The focus of

research thus shifts towards the development of efficient metaheuristics algorithms to

solve assembly line balancing problems. Various optimization problems are solved by

using metaheuristics which provides a general algorithmic framework (Sörensen and

Glover, 2013).

From the literature, it could be observed that researchers use optimization or

simulation models to solve assembly line balancing problems. In this section the

concept of assembly line with straight shaped and U-shaped line configurations are

discussed. Concepts of manual and automated assembly lines are also discussed along

with optimization techniques available to solve these types of problems are discussed.

In this research, metaheuristic algorithms are proposed to solve robotic assembly line

balancing problems with different objectives.

Metaheuristic algorithms like particle swarm optimization, differential evolution

and hybrid algorithms is to be implemented to solve robotic assembly line balancing

problems. These metaheuristic algorithms are used due to the following advantages:

fast convergence, fewer parameters setting, and the easiness to implement. Therefore,

PSO and DE has been applied to solve different types of engineering problems (Wu et

Chapter 1

Introduction

Page | 7

al., 2011). Hybridized metaheuristics are also implemented and hybrid metaheuristics

helps to improve the search capability of algorithms. Hybrid algorithms combines the

advantages of each algorithm, while minimizing any significant disadvantage.

Hybridization can generally make some improvements in terms of quality of the

solution and the computational time (Ting et al., 2015).

 Robotic assembly line with straight line configuration to minimize energy

consumption and assembly line cost has not been addressed by earlier researchers.

Mathematical models for Robotic U-shaped balancing problems to optimize cycle time,

energy consumption and assembly line cost has not been addressed by earlier

researchers. The objective of this research is to focus on these areas.

 Organization of the thesis

In this thesis an attempt has been made to develop metaheuristic algorithms for

solving robotic assembly line balancing problems. This research also aims at proposing

mathematical models to solve robotic assembly line balancing problems with different

objectives. The chapters in this thesis are organized in the following manner.

Chapter 2 - Literature Survey - The detailed literature survey on different types of

assembly line balancing problems are presented in this chapter. This chapter also gives

the details of different optimization techniques used by researchers to solve assembly

line balancing problems. The research gaps and a summarized state of the art is also

presented based on the detailed literature survey.

Chapter 3 - Problem Definition - Details of research problems considered in the

present work is discussed via problem statement, research objectives and research

approach.

Chapter 4 - Mathematical Models for RALB problems - The details of

mathematical models for RALB problems with different objectives are presented.

Assumptions for the problems considered are also presented.

Chapter 5 - PSO and Hybrid PSO for RALB Problem to minimize cycle time -

Different metaheuristics are applied to solve RALB problems with the objective of

minimizing the cycle time. Details of the experimental study and case studies are

presented here. Parameters for different metaheuristics are investigated through

Chapter 1

Introduction

Page | 8

experiments. The parameter selection procedure is explained. Solutions obtained using

different metaheuristics are presented in detail. Comparative study is conducted for

those problems where benchmark results are available. RALB problems with to two

configurations (straight and U-shaped) are discussed in detail.

Chapter 6 – PSO to solve energy based RALB problems- This chapter presents

RALB problems with an objective of minimizing energy consumption in a robotic

assembly line. Metaheuristics are proposed to solve the problem. Results obtained for

the proposed models are presented in this chapter.

Chapter 7 - PSO and DE to solve cost based RALB problems - Detailed

performance evaluation of the proposed algorithm to solve the RALB problem with an

objective of minimizing total assembly line cost for straight and U-shaped robotic

assembly line are presented in this chapter.

Chapter 8 - PSO and DE for RALB problem to maximize line efficiency - This

chapter presents different approaches adapted to solve the RALB problem with an

objective of maximizing line efficiency for straight and U-shaped robotic assembly line.

Chapter 9 - Conclusion - A discussion and summary of the main findings of this

research are presented in this chapter. In addition, it also contains the direction in which

future work can be carried out.

 CHAPTER 2

2 Literature Survey

This chapter introduces the basic concepts and assesses the current status of

research in assembly line balancing (ALB) problems. This section provides details of

classification of ALB problems. Furthermore, this section presents the background

work of assembly line balancing and robotic assembly line balancing problems which

form the basis of this research work. Finally, this chapter also provides overview of

solution techniques for solving different variety of ALB problems that have been

considered in research studies till date.

 Assembly lines

An assembly line is a manufacturing process where parts of a product are combined

in accordance with a predetermined sequence. The basic form of an assembly line

consists of a set of workstations, connected to each other through transportation

mechanisms, usually conveyor belts. In order to produce or manufacture a type of

product set of tasks is repeated at each workstation. Global market continuously gives

pressure to manufacturer to compete with competitors from all over the world due to

increased market demand. Hence, manufacturer needs to speed up the time to market

and should try to minimize the cost of production for remaining competitive in the

market (Alp, 2004). In manufacturing sector, assembly is considered one of the

important processes. Assembly process account for more than 20% of total

manufacturing cost and consumes up to 50% of total production time (Pan, 2005).

Assembly lines are mostly used for car manufacturing, electronic appliances and

computer assemblies.

Modern assembly line and its basic concept are credited to Ransom Olds (Domm,

2009). Olds used the concepts to build the first mass produced automobile in 1901.

Henry Ford in 1913 modified the assembly line by introducing conveyor belts where

they could produce a Model T in ninety three minutes often overshadows the

development of Olds (Capacho Betancourt, 2008). Assembly lines are most commonly

found in automotive industries and other industries where assembly of washing

machines, mobile phones, refrigerators and computers are considered. In the recent

Chapter 2

Literature survey

Page | 10

years assembly lines are used for low volume production of customized products

(Scholl et al., 2008).

Over the years due to the demand different types of assembly lines based on the

requirement have been developed. Due to these developments in assembly lines, need

for balancing the assembly lines arises. Design of efficient assembly lines received

considerable attention from both companies and academicians over the years. A well-

known assembly design problem is assembly line balancing (ALB), which deals with

the allocation of the tasks among workstations so that a given objective function is

optimized. Assembly line balancing is defined as follows by Erel et al. (2001): Line

balancing is the process of allocating a set of tasks to an ordered sequence of stations

in such a way that performance measures like cycle time, number of stations are

optimized subject to precedence relations among the tasks. Classification of assembly

line balancing problems is presented in Section 2.3.

 Definition of assembly line balancing (ALB)

Assembly line consists of set of workstations along a conveyor belt or any material

handling mechanism which is capable of moving one piece from one workstation to

another. The piece/objects enter the assembly line and moves from one workstation to

another workstation till the end of the line. Tasks (operations) are repeatedly performed

on the piece which enters a workstation; the time between two pieces which enters the

workstation is named cycle time. Work is divided into elementary units named tasks.

These tasks are not further divisible and the time taken to perform the task is task time

or processing time. These tasks are subjected to restrictions like precedence constraints.

The aim of balancing is to allocate equivalent amount tasks to different workstations in

an optimal way and reduce the cycle time.

Different industrial environments use assembly line production systems for

manufacturing a large variety of products. Consumer good like cars, engines, domestic

appliances and other electrical appliances are assembled in an assembly line. Products

are different and so it is necessary to implement different production systems (Scholl

and Klein, 1999a). An existing assembly line is to be re-balanced regularly or after

changes in the present production plan. Objective functions need to be carefully chosen

Chapter 2

Literature survey

Page | 11

because of the long-term effect of the balancing decisions, keeping in mind the strategic

goal of the manufacturer (Gen et al., 2008).

2.2.1 Basic terminologies

 Tasks (operations): Assembling a product on a line requires dividing the

total work content into a set of elementary operation. Task is the smallest,

indivisible work element of the total work content.

 Task time: The time required to perform the smallest work element during

the assembly process.

 Cycle time: The time interval between the completion times of two

consecutive units.

 Workstation: Area in a workplace which is equipped with operators/robots

to perform the tasks

 Precedence relations: The predetermined order in which tasks needs to be

assembled. A task cannot be processed if any of its predecessors is not

processed.

 Workstation time: The sum of task times of the task allotted in the

workstation.

 Classification of ALB problems

There are different kinds of problems in the ALB. Based on Baybars (1986)

classification, ALB problems are divided into: the Simple Assembly Line Balancing

(SALB) problems and General Assembly Line Balancing (GALB) problems. Based on

Ghosh and Gagnon (1989) classification, the two main problems are further classified

based on their stochastic and deterministic nature. Figure 2.1 shows the most common

classification for assembly line balancing problems.

Chapter 2

Literature survey

Page | 12

Figure 2.1 Classification of Assembly Line Balancing Problems

2.3.1 Simple Assembly Line Balancing

The basic version of the ALB model is the simple assembly line balancing (SALB)

problem. This assembly is capable of producing one type of a product. Different

versions of SALB models have been considered (Scholl and Klein, 1999a). SALB can

be classified by its objective function and their different problem versions are SALB -

1, SALB-2, SALB-F and SALB-E (Kilincci and Bayhan, 2006). SALB-1 aims at

assigning tasks to workstations such a way that number of workstations is minimized

whereas SALB-2 problem aims at minimizing the cycle time by assigning the tasks to

the given set of work stations. Compared to the previous version, SALB-F determines

whether or not a feasible assembly configuration exists for a given combination of cycle

time and number of workstations. SALB-E attempts to maximize the line efficiency by

minimizing the number of workstations and cycle time simultaneously. SALB-2 is

suitable for rebalancing an existing line whereas SALB-1 is more appropriate for

designing a new assembly line (Capacho Betancourt, 2008). Scholl et al. (2008)

Assembly Line

Balancing (ALB)

Problems

SALB

GALB

SALB - 1

SALB - 2

SALB - 3

SALB - E

SALB – F

UALB

RALB

MALB

MOALB

UALB-1

UALB-2

UALB-2

UALB-2

Chapter 2

Literature survey

Page | 13

reported the recent surveys of solution procedures for all the above mentioned

problems. Other assembly line balancing problems which are not SALB is classified

into a group called General assembly line balancing (GALB). Most problems under

GALB are U-shaped assembly line, two-sided assembly line and robotic assembly lines

problems.

2.3.2 U-shaped Assembly Line Balancing

In the recent years manufacturers have adopted the principle of just-in time

approach for manufacturing processes. This helps to improve the productivity, profit

and quality of the product. Just in Time (JIT) is beneficial for the companies which do

repetitive jobs. Due to implementation of JIT techniques there is a requirement of

replacing straight assembly line with U-shaped assembly line. U-shaped configuration

is more flexible due to different possible ways of allocations. In case of the U-shaped

assembly lines entrance and exit are in the same position (Toklu and özcan, 2008). The

main advantages of the U-shaped assembly line when compared to a straight line are

the reduction of the repetitive movement of operators and improvement in productivity.

Operators/workers in U-shaped assembly line become more multi-skilled by

performing tasks located in different parts of the line. It also helps in developing

communication skills and problem solving skills of the workers (Miltenburg, 1998). U-

shaped assembly line is highly flexible and changes can be made depending on the

demand. U-shaped line also improves the material handling (Toksarı et al., 2008). Task

can be assigned to a workstation after all its predecessor or all successors are assigned

to an earlier or the same workstation in U-shaped assembly line. This is the

distinguishing feature of U-shaped assembly line balancing problems that must allow

for the forward and backward assignment of tasks to workstations (Kara, 2008).

Problems involving U-shaped assembly line falls under the category of U-shaped

assembly line balancing (UALB) problem. Similar to SALB, problems with different

objectives for UALB (UALB-1, UALB-2, UALB-E and UALB-F) are available in the

literature (Scholl and Klein, 1999b). Most of the characteristics of SALB defined by

Baybars (1986) are also valid for UALB.

Scholl and Klein (1999b) describe three problem versions:

 UALBP-1: Minimize the number of stations for a given cycle time.

 UALBP-2: Minimize the cycle time when the number of workstations are fixed.

Chapter 2

Literature survey

Page | 14

 UALBP-E: Maximize the line efficiency E.

2.3.3 Robotic Assembly Line Balancing

Based on the level of automation of the assembly line it can be divided into two:

Manual assembly line and Robotic assembly line. In case of manual lines, the tasks are

performed by human operators. Due to the availability of robots which can work 24

hours a day without fatigue, in the recent years, robots are extensively used in assembly

lines and these assembly systems are called Robotic Assembly Lines (RAL) (Levitin et

al., 2006).

Automation is changing assembly applications significantly. Using robots in

assembly line helps to increase the output (productivity) and to reduce costs. Robots

are ideal solutions for assembly applications because they are accurate and consistent.

They work quickly without tiring or stopping. Quality of the product improves when

assembled and manufactured by robots. Robots guarantee precision, consistency and

speed in an assembly line. Advances in technology allows development of robots which

can assemble nearly anything, no matter how small or unique. Robots help those

assemblies which require less human intervention. Robots have different capabilities

and efficiencies to perform assembly tasks. Hence it is required to assign the proper

robot for each station in a balanced way. An important problem in this context is how

assembly lines are managed and how the assembly line is balanced. The robotic

assembly line balancing (RALB) problem is based on a distributing the work among

the robots with an attempt to balance the whole assembly line. It aims at maximizing

the efficiency of the line. With regards to manual assembly line, there is always a

variation in actual task performance compared to the standard time estimated for line

balancing. In case of manual assembly line balancing, optimal balance is of theoretical

importance but whereas the performance of robotic assembly lines depends strictly on

the quality of its balance, and on robot assignment (Levitin et al., 2006).. The two types

of RALB problems addressed in the literature are: RALB-1, where the objective is to

minimize the number of workstations when the cycle time is fixed and RALB-2 which

deals with minimizing the cycle time when the number of workstations are fixed (Gao

et al., 2009).

Chapter 2

Literature survey

Page | 15

2.3.4 ALB problems based on models, layout and number of products

Assembly lines are classified based on the layout and shape of the line, the number

of products and models being processed in the line. Based on the model structure,

assembly line balancing problems can be classified based on the number of different

products which can be produced on the same line. Three types of problems based on

the model type are: single-model assembly line balancing, mixed-model assembly line

balancing (MALB) problem and multi-model assembly line balancing (Kumar, 2013).

 Single-model assembly line is the classical configuration in which one model

of a unique product type is assembled continuously (Figure 2.2). Example: In

an automobile industry same models of a car can be manufactured using this

type of assembly line.

Figure 2.2 Single-model assembly line

 Multi-Model assembly line involves more than one product produced in

batches. Different models with significant difference between each other are

processed in this line (Figure 2.3). This model helps to reduce the setup time

significantly (Kumar, 2013). Example: In an automobile industry different car

models can be manufactured in batches.

Figure 2.3 Multi-model assembly line

 In mixed-model assembly line different types of a product are assembled

simultaneously in the line. The production process does not involve setup time

since all types of products will require similar type of task to be executed

(Figure 2.4). Example: In an automobile industry different car models can be

manufactured but not in batch mode.

Chapter 2

Literature survey

Page | 16

Figure 2.4 Mixed-model assembly line

Assembly lines can be classified based on the line or shape of the layout. Different

types available are: Serial line, Two-sided lines, Parallel lines and U-shaped lines.

 Serial lines: products are processed and assembled through a group of

workstations which are arranged in a straight line (Ajenblit and Wainwright,

1998). Figure 2.5 shows the representation of serial assembly line.

Figure 2.5 Serial assembly line

 Two-sided lines: consists of two serial lines in parallel with pairs of

workstations opposite to each other work on the same work piece

simultaneously (Figure 2.6). This type of configurations is found commonly in

the automotive industry. Left and right sides of the line are used simultaneously

to perform different assembly tasks of the same product on both sides (Wu et

al., 2008).

Figure 2.6 Two-sided assembly line

 Parallel lines: this type of assembly lines can be used when multiple products

are assembled (Figure 2.7). Same products are also assembled on multiple

identical assembly lines based on the demand (Gökçen et al., 2006).

Chapter 2

Literature survey

Page | 17

Figure 2.7 Parallel assembly line

 U-shaped line: in this type of layout, tasks are arranged around a U-shaped line.

Entry and exit are located in the same side, close to each other (Figure 2.8). This

type of layout helps for better management and control (Avikal et al., 2013).

Figure 2.8 U-shaped assembly line

Different researchers have proposed multi-objective assembly line balancing

(MOALB) problem where several objectives such as minimizing either the total cost or

the number of stations, or maximizing the efficiency of the line, etc. are considered

simultaneously (Hamta et al., 2013, Rashid et al., 2012).

2.3.5 ALB problems based on cost and energy consumption

Due to stiff competitive environment, assembly line industries try for attaining the

goals of producing products at low cost and high quality in a reasonable time.

Manufacturers need to speed up the time to market and at the same time minimize the

manufacturing cost to ensure that their products remain competitive (Padrón et al.,

2009). Under the economic perspective, cost reduction is considered to be one of the

major objectives. Cost-oriented assembly line balancing is a generalized form of time-

based assembly line balancing. The cost-oriented assembly line balancing problem

aims at assigning all tasks to workstations without violating any precedence relation

and by taking into consideration the cycle time production cost is minimized

(Rosenberg and Ziegler, 1992). Sarin et al. (1999) considered a stochastic assembly line

Chapter 2

Literature survey

Page | 18

balancing problem for the objective of minimizing the total labor cost and the expected

incompletion cost arising from tasks not completed within the prescribed cycle time.

Amen (2000a) developed a cost-oriented balancing model for a single model assembly

line where a vast quantity of one single product is assembled in which the total cost per

product unit is minimized. Amen (2000b) dealt with problem which occurs in final

assembly of automotive, consumer durables or personal computers where production is

very labor-intensive and wage rates are dependent on the requirements and qualification

of the workforce. Roshani et al. (2012) mainly dealt with cost-oriented two-sided

assembly line balancing problem which occur in the final assembly of products which

are very labor intensive.

Extensive studied have been conducted on assembly line balancing problems as

seen in the reviews of Becker and Scholl (2006) and Kriengkorakot and Pianthong

(2012). Salveson (1955) first formulated mathematically ALB problem. ALB problems

mainly deals with assigning tasks to workstations in an assembly line, in such a way

that the assignment is in a balanced manner. Classical objective of an assembly line

balancing problem is to minimize the number of workstations for a given cycle time.

Minimizing the cycle time of the assembly line for a fixed number of workstations is

the objective considered and is referred to as time-oriented line balancing (Amen,

2001). Minimizing cost of the assembly line is also an important objective considered

in case of assembly line balancing problems. Few minimization objectives considered

in case of assembly line balancing problems reported in literature are: throughput time,

cost of machinery (Bukchin and Tzur, 2000), inventory cost, labor cost and number of

buffers(Capacho Betancourt, 2008). Few maximization objectives considered include

production rate, line efficiency and profit (Becker and Scholl, 2006). Recently, Boysen

et al. (2007) attempted at classifying the different version of ALB. They proposed an

approach which uses tuple notation [α|β|γ] which is adopted in the classification of

machine scheduling. ‘α’ represents the set of six attributes which determines whether a

unique product or model is being considered. ‘β’ describes the workstation, line

considered and it also defines the movement of work pieces, line layout and other

constraints. And finally, ‘γ’ describes the objectives to be evaluated.

Under the economic perspective, minimizing the energy consumption is

considered to be one of the major objectives. Extensive efforts are being under taken

to improve the efficiency and cost effectiveness of these assembly systems (Sanderson

Chapter 2

Literature survey

Page | 19

et al., 1990). One of the major goal of many modern manufacturers in the recent years

is to decrease the cost of production by any possible means while satisfying the

environmental regulations and ensuring quality (Gungor and Gupta, 1999). Energy

consumption is considered to be a very important cost element in a manufacturing

enterprise (Kilian, 2008). Due to the rise in energy price and increased demand for

environmental compliance, efficient energy management and sustainable energy have

become important factors for business competitive advantages. Reduced usage of

energy helps the industries to save cost and become more competitive. This is a key

factor for promoting green and sustainable practices (Ngai et al., 2013). Significance

of reducing energy consumption has been realized in the recent years and stressed more

than ever (Liu et al., 2014). Electricity is one of the important forms of energy which is

used in a manufacturing sector. Production of electricity is a highly polluted process.

Due to the consumption of electricity, amount of carbon dioxide emission generated

would be around 20% (Dai et al., 2013). Thus there is a need for manufacturing

companies to reduce the energy consumption and become more environmental friendly.

Depletion of reserves of energy commodities such as petroleum and other fossils fuels

and growing concern over global warming, recently there has been a growing interest

for minimization of energy consumption by the industries (Mouzon and Yildirim,

2008). By using energy efficient manufacturing system the energy consumption can be

reduced (Chryssolouris, 2005). In manufacturing a car (Press, body, paint and assembly

shops) the industry could consume energy up to 700kwh/vehicle. It is reported that

energy cost is about 9-12% of the total manufacturing cost and by reducing 20% of the

energy cost; the total manufacturing cost can be reduced by 2-2.4% (Fysikopoulos et

al., 2012). The authors proposed an empirical study of the energy consumption of an

automobile body shop with robot based lines.

It is evident that industrial systems involve a great variety of characteristics and

problem variations. Considerable amount of research is being done to fill the gap

between research works and real industrial environment. In the literature, there are

several models for balancing the different types of assembly line balancing problems.

Section 2.3 summarizes the most common assembly line balancing problems.

Chapter 2

Literature survey

Page | 20

 Importance of assembly line balancing

Distribution of total workload of the assembly line between each workstations so

that idle times are as low as possible is referred to as balancing of an assembly line.

Objective of worker/robotic based assembly line is to balance the workload of

worker/robot which helps in minimizing the loss and cost. Different components such

as products, operations, material handling and assembly line characteristics in the

production system need to adapt to any of the changes which occurs to these

components without causing much loss. Taking this into consideration, periodically

balancing the process, loss for the whole system could be completely removed. Balance

losses of an assembly line are bound to happen and there is a very small possibility of

obtaining a perfect balance of workload due to dynamic features of the system. In real

environment it is not practically possible to allocate work among the workstations

equally and hence there is always a balance loss.

By understanding the source of these losses, balance losses can be minimized for

the assembly line (Törenli, 2009). An example problem is used to illustrate the losses

of balanced and unbalanced assembly lines. Figure 2.9 and Figure 2.10 shows two

different balancing conditions of an assembly line for a problem with 4 workstations.

The numbers on top of the bars in the graph shows the workstation time. Figure 2.9

shows that workstation 2 is overloaded and work station 3 and 4 needs to wait for

workstation 2 to complete the job in the line. Figure 2.10 shows the balanced allocation

of workload among the workstations. Idle time at workstation is the primary indicators

of the balance losses of an assembly line. Idle time at a workstation shows that there is

an excess capacity at that station which is undesired. Idle time of the line is calculated

using Equation 2.1.

 (2.1)

In the given example, for unbalanced assembly line the cycle time is 25 and idle

time is found out to be 45, whereas in case of balanced assembly line the cycle time is

15 and idle time is found out to be 5. It was analyzed from this example that, the firms

will have to balance the assembly line to minimize the loss due to idle time. Balancing

the assembly line helps at promoting one piece at a time, avoids overburden at the

workstations, helps at minimizing the wastage and reduces the variation.

1

 ()
wN

i

Idle time of workstations Cycle Time of the assembly line workstation time



 

Chapter 2

Literature survey

Page | 21

Figure 2.9 Unbalanced Assembly Line

Figure 2.10 Balanced Assembly Line

 Optimization techniques to solve ALB problems

Different types of procedures have been developed to solve assembly line

balancing problems. Exact methods have been developed to solve assembly line

balancing problems due to the NP-hard nature of the problem. Even though, exact

methods guarantee optimum solution, problems with small size assembly tasks could

only be solved using these methods due to the high computational load (Capacho

Betancourt, 2008). Approximate methods like heuristics and metaheuristics are

developed to solve problems with large assembly tasks aimed at producing solutions

5

25

15

10

0

5

10

15

20

25

30

Work Station 1 Work Station 2 Work Station 3 Work Station 4

C
yc

le
 T

im
e

Work Stations

Demonstration of an unbalanced assembly line for 4
workstation problem (Cycle time is 25)

15 15 15

10

5

7

9

11

13

15

17

Work Station 1 Work Station 2 Work Station 3 Work Station 4

Cy
cl

e
TI

m
e

Work Stations

Demonstration of an balanced assembly line for 4
workstation problem (Cycle time is 15)

Chapter 2

Literature survey

Page | 22

which are nearer to the optimal solution. The remaining sections of this chapter gives

details of the different procedures reported in literature for solving SALB, UALB and

RALB problems.

Few review papers are available which summarizes the different procedures used

to solve the assembly line balancing problems. Numerous metaheuristics have been

developed to solve SALB problems. A detailed summary of different exact methods

and metaheuristics for SALB problems are presented in Scholl and Becker (2006).

Becker and Scholl (2006) presented the detailed survey of procedures used for solving

problems other than SALB. Detailed classification and overviews of methods used in

solving assembly line balancing problems are presented in Sivasankaran and

Shahabudeen (2014).

2.5.1 Techniques for solving SALB problems

 Details of exact algorithms developed for solving SALB problem are presented in

(Baybars, 1986, Erel and Sarin, 1998). Dynamic programming procedure is first

developed by Jackson (1956) to solve assembly line balancing problems. It is later

modified by (Held et al., 1963). It could be seen that these procedures require large

memory requirement. This drawback is reduced by the procedures proposed by Schrage

and Baker (1978), Kao and Queyranne (1982). Thangavelu and Shetty (1971)

developed a 0-1 integer programming algorithm to solve simple assembly line

balancing problem with an objective of minimizing the number of workstations for a

given cycle time. Different operational requirements such as zoning, sequencing, idle

time, cycle time and cost are considered by Deckro and Rangachari (1990) in

developing a goal programming model with an objective of minimizing the number of

workstations. Scholl and Klein (1999a) presented the branch and bound algorithm for

solving the same problem. For solving SALB-1 effective methods like FABLE,

EUREKA, and SALOM are developed (Johnson, 1988, Hoffmann, 1992, Scholl and

Klein, 1997). TBB2 and SALOME2 are used to solve SALB-2 problem which uses

branch and bound algorithm (Klein and Scholl, 1996). Kilincci and Bayhan (2006)

solved SALB-1 problem using Petri-net algorithms. Petri net is a mathematical and

graphical tool to model and analyze discrete event systems. Kilincci (2010) solved

SALB-2 problem with an objective of minimization of variations in workloads among

the workstations. The author developed Petri-net algorithm for solving the problem.

Chapter 2

Literature survey

Page | 23

Mathematical models can generate optimal solutions, however in case of large size

problems it is difficult to obtain solution in an acceptable time span, hence development

of heuristics are required. Ranked positional weight (RPW) proposed by Helgeson and

Birnie (1961) is one of the first proposed heuristic. Tasks are ranked in descending

order of their positional weights. Other heuristic rules are maximum task time,

maximum number of successors, minimum slack, minimum earliest and latest

workstation. Arcus (1965) developed COMSOAL (Computer Method of Sequencing

Operations for Assembly Lines) to solve SALB problems. A comparative evaluation of

six popular assembly line balancing heuristics namely, ranked positional weight,

Kilbridge and Wester, Moodie and Young, Hoffman precedence matrix, immediate

update first fit, and rank and assign heuristic are presented in (Ponnambalam et al.,

1999). The evaluation criteria used are the number of excess stations given, line

efficiency, smoothness index and CPU time. Detailed literature survey of heuristic

methods can be found in (Erel and Sarin, 1998, Scholl and Becker, 2006). Most research

on SALB focuses on SALB-1 and SALB-2, and few studies deal with the optimization

of assembly line balancing efficiency (Wei and Chao, 2011). Plans and Corominas

(1999) developed a mixed integer programming model and heuristic approach to solve

a SALB-E problem. Wei and Chao (2011) proposed a model for SALB-E and the

solution procedure is developed which minimizes the total idle time to optimize the

assembly line balancing efficiency.

Different types of metaheuristics have been developed to solve assembly line

balancing problems. Metaheuristics use different concepts derived from artificial

intelligence, evolutionary algorithms inspired from mechanisms of natural evolution

(Pierreval et al., 2003). From the literature it could be found that metaheuristics can

also be called as soft computing techniques, evolutionary algorithms and nature

inspired algorithms. Detailed literature survey of metaheuristics applied on assembly

line balancing problems are presented in Rashid et al. (2012) and Sivasankaran and

Shahabudeen(2014).

Tabu search (TS) is a metaheuristic algorithm which uses local search methods.

These methods are applied to solve SALB-1 and SALB-2 problems (Chiang, 1998,

Scholl and Voß, 1997). Ant Colony Optimization (ACO) developed based on the

behavior of ants searching for their food. Bautista and Pereira (2002) applied ACO to

solve SALB-1 problem. Zheng et al. (2013) proposed an improved version of ant colony

Chapter 2

Literature survey

Page | 24

optimization algorithm to solve assembly line balancing (SALB-2) problem. ACO is

employed to search for different better combination of tasks to be allotted at each

workstation. (Lai and Liu, 2009) uses ACO to optimize the efficiency of a sewing line.

Simulated annealing (SA) is a technique inspired from physical annealing of solids has

been applied to solve assembly line balancing problems. Suresh and Sahu (1994)

applied SA for solving a stochastic variant of SALB-1 problem. Seyed-Alagheband et

al. (2011) developed a new simulated annealing algorithm to solve type 2 assembly line

balancing with sequence-dependent setup times between tasks. Genetic Algorithm

(GA) developed by John Holland follows the biological evolution where the concept of

survival of fittest is taken into consideration.

From the literature survey, it could be seen that most of common metaheuristic

algorithm which is extensively used in assembly line balancing problems is genetic

algorithms and its hybrid versions. Rubinovitz and Levitin (1995) developed a genetic

algorithm to solve a single model assembly line balancing problem with deterministic

processing time. The results obtained through this method are compared with MUST

algorithm (Dar-El and Rubinovitch, 1979). Simple assembly line balancing problem

with different objectives: maximizing the number of workstations, minimization of

cycle time maximizing the work load smoothness and maximizing work relatedness are

solved using a genetic algorithm along with repair method (Kim and Kim, 1996). A

multi-objective genetic algorithm for solving simple assembly line balancing problem

with objectives of minimizing workstations, maximizing line efficiency and

smoothness index is developed by Ponnambalam et al. (2000). A genetic algorithm with

heuristic generated initial population is developed by Chong et al. (2008) for solving a

simple assembly line balancing problem (SALB-1) with realized cycle time as the

fitness function. Performance of this proposed algorithm is compared with results

obtained using genetic algorithm with a randomly generated initial population. A hybrid

genetic algorithm with a local search is developed by Gonçalves and De Almeida

(2002) for solving an assembly line balancing problem with an objective of maximizing

the balancing efficiency for a given cycle time. The chromosome representation of the

problem in this approach is based on random keys. A heuristic priority rule is used to

assign task to the workstations in which the priorities of the operations are defined by

the chromosome.

Chapter 2

Literature survey

Page | 25

Particle swarm optimization (PSO) developed by Kennedy and Eberhart (1995) is

based on the social behavior of bird flocking or fish schooling. PSO is quite similar to

GA, but there are no evolution operators in case of PSO. From the literature it could be

seen that PSO has been seldom applied for solving simple assembly line balancing

problems (Economics, 2011). Economics (2011) applied PSO to solve a SALB-1

problem and the results obtained through this method are compared with results

reported in the literature. Petropoulos and Nearchou (2011) applied PSO to solve a

simple assembly line balancing problem with two- and three-criteria problem utilizing

the cycle time of the line, the workload smoothness among the workstations, and the

balance delay time of the assembly line. The results obtained through numerical

experiments are compared with the existing two algorithms reported in the literature

and it could be seen that PSO performs better in terms of quality of the solution of the

problems. Differential evolution (DE) is a metaheuristic developed by Storn and Price

(1997). Nearchou (2005) applied DE to solve SALB-1 problem. Extensive

experimental work over available benchmarks test problems show the effectiveness of

the proposed approach. Later, Nearchou (2007) also applied DE to SALB-2 problem.

The results obtained through this method are found to be far superior compared to the

results reported in the literature. Several other metaheuristics have been used to solve

simple assembly line balancing problems. Detailed literature survey by Rashid et al.

(2012) shows the different metaheuristics used to solve different variety of assembly

line balancing problems.

2.5.2 Techniques for solving U-shaped ALB problems

In the last decade, issues related to U-shaped assembly lines received more

attention (Aase et al., 2004). It could be seen from the literature, research on U-shaped

assembly lines are less compared to straight assembly lines. Similar to SALB, U-shaped

assembly line balancing can be classified into mainly three groups: UALB-1-objective

is to minimize the number of workstations when the cycle time is fixed, UALB-2-

objective is to minimize the cycle time when the number of workstations is fixed and

UALB-E- objective is to maximize the efficiency of the assembly line. There is a

growing interest in the literature to organize traditional assembly lines as U- lines to

improve the performance. Although there are many literatures on traditional straight

assembly lines, the work on U-shaped assembly line is limited.

Chapter 2

Literature survey

Page | 26

 Miltenburg and Wijngaard (1994) developed a dynamic programming (DP)

formulation for evaluating a single model U-type assembly line with an objective of

minimizing the number of stations. The proposed DP formulation could solve small

size problems with 11 tasks and for solving large problems they developed a heuristic

based on ranked positional weight technique (RPWT). Urban (1998) formulated an

integer programing problem to solve a U-shaped assembly line with 45 tasks. Variety

of U-shaped assembly line problems is solved by using Branch and Bound method

(Scholl and Klein, 1999b). They proposed a technique which is called ULINO (U-line

Optimizer) uses a depth-first Branch and Bound algorithm which minimizes the number

of stations, cycle time or both. The proposed algorithm is used to obtain optimal results

for problems up to 297 tasks. Gökçen and Agˇpak (2006) developed a goal

programming model for simple U-shaped assembly line balancing problem for

optimizing different objectives by taking into consideration of different constraints like

cycle time, assignment, workstation and task load. The proposed model was illustrated

with numerical examples. Several reviews on exact methods developed to solve U-

shaped assembly line balancing problems are available in literatures (Nakade and Ohno,

1999, Miltenburg, 1998, Zhang and Cheng, 2010).

Like the traditional assembly line balancing problem, U-shaped assembly line

balancing problem is also NP hard nature (Miltenburg and Sparling, 1995). Different

heuristics and metaheuristics have been proposed to solve U-shaped assembly line

balancing problems. Ajenblit and Wainwright (1998) presented a genetic algorithm for

UALB with an objective of balancing the workload and minimizing total idle time. Erel

et al. (2001) proposed a simulated annealing method for solving a U- type Assembly

line balancing problem. Martinez and Duff (2004) proposed heuristic approaches to

solve the U-shaped line balancing problem augmented by genetic algorithms. They

used ten task assignment rules. Baykasoğlu (2006) developed a new multi-objective

simulated annealing (SA) algorithm for solving simple and U type assembly line

balancing problems with an objective of maximizing smoothness index and maximizing

the efficiency of the assembly line. Task assignment rules are used in constructing

feasible solution. The proposed algorithm could obtain optimal results in acceptable

time span. Later, Khaw and Ponnambalam (2009) developed a hybrid algorithm by

combining 15 task assignment rules and ant colony optimization (ACO) algorithm for

solving the same problem. Results obtained through this method are compared with the

Chapter 2

Literature survey

Page | 27

results reported in the literature and it could be seen that newly developed algorithm

performs better in terms of quality of the solution for most of the problems. Baykasoğlu

and Özbakır (2007) developed a multi rule based genetic algorithm (MRGA-SUALB)

for probabilistic based U-line balancing problem with the objective of minimizing the

number of stations for a given cycle time. The proposed algorithm integrates

COMSOAL method, task assignment rules, and genetic algorithm. The results obtained

are compared with the optimal solutions and it could be observed that all the problems

could achieve the optimal solution except for one problem from the datasets. Hwang et

al. (2008) developed a multi-objective genetic algorithm (moGA) to solve the U-shaped

assembly line balancing problem. Two performance criteria’s (number of workstations

(the line efficiency) and the variation of workload) are evaluated. The numerical

experiments shows that the proposed algorithm produces good or better results

compared to previously reported literature. Sirovetnukul and Chutima (2010)

developed a novel algorithm, named Particle Swarm Optimization with Negative

Knowledge (PSONK) to solve a single U-shaped assembly line problem aiming to

minimize the number of workers, equity of workload and the shortest walking time.

The performance of PSONK are compared with Non-dominated Sorting Genetic

Algorithm-II (NSGA-II) and it could be analyzed from PSONK outperforms NSGA-II.

Many heuristics and metaheuristics are applied to solve variety of U-shaped

assembly line balancing problems and detailed reviews are presented (Kim et al., 2000,

Kim et al., 2006). This section presented a summary of most relevant literature related

to single model U-shaped assembly line balancing problems with different objectives.

Section 2.5.3 presents a summary of procedures used to solve cost and energy based

assembly line balancing problems.

2.5.3 Techniques for solving cost and energy based ALB problems

Long term or short terms operating costs are incorporated in cost based line

balancing problems. Exact methods, heuristics and metaheuristics have been applied to

solve cost based assembly line balancing problems. Researchers considered labor cost,

setup cost, equipment cost and inventory cost for developing solutions for cost based

assembly line balancing problems (Hazır et al., 2014). The cost based assembly line

balancing problem is a generalization of the time based assembly line balancing

problem (Rosenberg and Ziegler, 1992). Labor costs contribute significantly to the total

Chapter 2

Literature survey

Page | 28

production costs. Labor cost depends on the work content and the qualification of the

worker. Due to demand from the market, industries always required to employ new

employees, instead companies prefer to go for overtime. However, there will be an

increase in cost due to overtime. Rosenberg and Ziegler (1992) developed two new

heuristic algorithms (Wage Rate Method (WR) and the Wage Rate Smoothing-Method

(WRS)) to solve cost based assembly line balancing where the objective is to minimize

the total production cost. The results obtained using the heuristics are compared with

the known heuristics Positional Weight Method (PW) and the Positional Weight Wage

Rate Difference Method (PWWD). It can be concluded from the experimental results

that PWWD and WRS are superior to PW and WR. Amen (2000a) developed a model

to minimize the total labor and capital cost. Wage rate of a station is calculated by

maximum of wage rates of the allocated tasks, since most demanding tasks define the

qualification needed by the worker. An exact backtracking method is developed which

is used for solving the cost based assembly line balancing problem. Experimental

investigations show that the new method finds optimal solutions for small and medium-

size problem in acceptable time. Amen (2000b) developed two new heuristic methods:

A new priority rule `best change of idle cost is proposed. This priority rule is different

from other priority rules because it is the only one which considers that production cost

are the result of both, production time and cost rates. Comparison on the quality of the

solution and computational time of the developed algorithm are reported in (Amen,

2001). Scholl and Becker (2005) showed one of the rules developed by Amen is

incorrect and gives the corrected and simplified version of this rule. Padrón et al. (2009)

developed a combination of heuristic model and exact algorithm with intelligent task

allocation or line zone constrains with an objective of minimizing cost solution in a

feasible computational time. Cost function considers short term operating costs, task

and work station capital investment costs. Erel et al. (2005) considered the probabilistic

assembly line balancing problem in U-shaped assembly line with an objective of

minimizing total labor cost and total expected incompletion cost for a given cycle time.

They used beam search, which is a special type of Tabu Search algorithm. The

performance of the proposed method is evaluated on various test problems and the

results of the experiments show that the average performance of the proposed method

is better than results reported in the literature. Roshani et al. (2012), extended Amen’s

approach for two-sided assembly lines and used simulated annealing for solving the

Chapter 2

Literature survey

Page | 29

problem. Yazdanparast et al. (2011) developed a cost oriented approach and developed

a mathematical model to solve General Assembly Line Balancing Problem with Setups

(GALBPS). A numerical example is illustrated using Lingo 11 software.

The review reveals that the literature on cost based assembly line balancing

problems are very minimal when compared to other types of assembly line balancing

problems. However, Hazır et al. (2014) presented a survey paper in which problems,

approaches and analytical models on cost based assembly line balancing are analyzed.

Key objectives evaluated in assembly line balancing problems are cost, cycle time

and efficiency. It could be seen that research on minimizing energy consumption in

manufacturing systems has been rather limited (Dai et al., 2013). Very limited

researches related to assembly line problems in the context of minimizing energy

consumption are available and few of them are briefly discussed below. Fysikopoulos

et al. (2012) presented an empirical study of the energy consumption of an automotive

assembly line, under various scenarios and demand profiles are presented by them. (Luo

et al., 2013) proposed a multi-objective ant colony optimization metaheuristic to

optimize production efficiency and electric power cost (EPC) with the presence of time-

of-use (TOU) electricity prices. Dai et al. (2013) proposed an energy efficient model

for flexible flow shop scheduling (FFS). A mathematical model for a FFS problem

which is based on an energy-efficient mechanism is described by them. An improved

genetic-simulated annealing algorithm is adopted due to NP-hard nature of the problem

to make a significant trade-off between the make-span and the total energy consumption

to implement a feasible scheduling. Mouzon et al. (2007) presented a multi-objective

mathematical programming model for scheduling jobs on a single CNC machine with

an objective of reducing energy consumption and completion time. Shrouf et al. (2014)

developed a mathematical model for minimizing the energy consumption cost in a

single machine production system considering variable energy prices during a day. To

solve the problem they proposed a genetic algorithm (GA) to obtain ‘near’ optimal

solutions. Performance of the proposed GA is compared with an analytical solution

generated. He et al. (2012) developed a model which deals with task oriented energy

consumption in a machining manufacturing system by incorporating an event graph

methodology. SIMULINK simulation environment is used to solve the model.

Chapter 2

Literature survey

Page | 30

This section presented a summary of most relevant literature related to cost and

energy based assembly line balancing problems. Section 2.5.4 presents the relevant

literature related to robotic assembly line balancing problems.

2.5.4 Techniques for solving RALB problems

Robotic assembly line balancing (RALB) problem is an extension of SALB

problems. Robots are replaced to perform the assembly tasks instead of human labor.

RALB aims at allocating tasks to the workstations and allocate the best available robot

to each workstation. Robotic assembly lines are designed and balanced very well to

function efficiently due to high investment required to implement such system. RALB

problems are classified into two groups mainly: RALB-1 and RALB-2. This section

provides the most relevant literature related to RALB problems.

Graves and Lamar (1983) presented a method for selecting workstations from a set

of non-identical candidates and tasks are assigned to the selected workstations. The

objective of the method is to maximize the workload of the stations and to minimize

the total cost. Graves and Redfield (1988) dealt with a problem where multi-products

are assembled, where families of similar products are produced. The objective of the

work is to minimize the variable and fixed operating costs of the systems which are

capable of producing the products in the desired volumes. To solve the problem they

used a graph system where each arc represents the workstation, using the shortest path

on the graph, the problem is solved. Khouja et al. (2000) developed a method of using

statistical procedures for designing robotic assembly cells. Two stages are there in the

proposed methodology. First stage uses a fuzzy clustering algorithm for grouping

similar tasks and in the second stage using a Mahalanobis distance procedure

appropriate robots are allotted for the task groups. Nicosia et al. (2002) presented a

dynamic programming algorithm and introduced several fathoming rules to solve the

problem where tasks needs to be assigned to an ordered sequence of non-identical

workstations without violating precedence relationships and cycle time. The objective

is to minimize the cost of the workstations. The formulation of this work is very similar

to RALB problem.

RALB problem is first formulated by Rubinovitz and Bukchin (1991). RALB

problem deals at allocating equal amounts of tasks to workstations and assigning the

most efficient robots to perform the tasks assigned to the workstations. Objective is to

Chapter 2

Literature survey

Page | 31

minimize the number of workstations for a given cycle time. Rubinovitz et al. (1993)

developed a RALB problem with the objective of minimizing the number of

workstation. Branch and Bond frontier search is used to obtain solutions for very large

and complex problems. Bukchin and Tzur (2000) treated the previous problem with a

new objective of minimizing the total cost when cycle time is fixed. An optimal and

heuristic algorithm is developed for designing a flexible assembly line where several

equipment alternatives are available. Small size problems are solved using Branch and

Bound algorithms. Large problems are also solved using heuristics proposed. For

designing a flexible robotic assembly line with a set of family products, Tsai and Yao

(1993) proposed an integer programming model combined with a simulation

adjustment phase. The objective of the proposed work is to minimize the standard

deviation of the output rates of all workstations which measures the quality of the

balance of the line. With the aim of minimizing the total number of robotic cells, Kim

and Park (1995) developed a mathematical formulation and a cutting plane algorithm

for assigning of assembly tasks on a serial robotic assembly line. The literature

mentioned so far reported the works related to RALB-1.

The literature related to RALB-2 discussed in this section mainly deals with the

objective to minimize cycle time when the number of workstations are fixed in a robotic

assembly line. Levitin et al. (2006) developed a method for the robotic assembly line

balancing (RALB) problem with an objective of minimizing cycle time. The method

aims at achieving a balanced distribution of tasks amongst the workstations and assigns

the best fit robot to perform the tasks allocated to these workstations. Two heuristics

methods are proposed for assigning tasks and robots. Genetic Algorithm (GA) is

proposed to solve the problem. To improve the quality of the solution a local exchange

procedure is also implemented. Sensitivity analysis is conducted on the randomly

generated datasets for obtaining the best possible combination of GA parameters. Gao

et al. (2009) developed a 0-1 integer programming problem for solving RALB-2

problem. A hybrid genetic algorithm (hGA) is developed to find efficient solutions for

the problem. The proposed genetic algorithm uses partial representation technique,

which expresses only part of the decision information about a candidate solution in the

chromosome. The coding space contains only partial candidate solutions including the

optimal one. New crossover and mutation operators are developed to adapt to the nature

of the problem. To improve the search ability, local search procedures are also

Chapter 2

Literature survey

Page | 32

implemented by them. Yoosefelahi et al. (2012) presented a multi objective model for

RALB to minimize the cycle time, robot setup costs and robot costs. A new mixed-

integer linear programming model is also developed to solve the problem. Since the

problem is NP-hard, three versions of multi-objective evolution strategies (MOES) are

employed. It is concluded that hybrid MOES is efficient based on the simulation results

obtained. Daoud et al. (2014) proposed several evolutionary algorithms and a discrete

event simulation model to solve robotic assembly line balancing problem and an

automated packaging line dedicated for dairy food products is the case study considered

for evaluating the proposed model.

To provide an overview of this section, Table 2.1 summarizes the literature on

RALB Studies are categorized according to the objectives and optimization techniques.

Table 2.1 Summary of research on RALB problems

Model Objective Procedure Reference

Assignment of tasks

to non-identical

workstations

without violating

precedence

relations.

Minimize the cost of

workstations

Dynamic

Programming
Nicosia et al. (2002)

RALB-1 problem

Minimize the

number of

workstations

-
Rubinovitz and

Bukchin (1991)

RALB-1 problem

Minimize the

number of

workstations

Branch & Bound
Rubinovitz et al.

(1993)

RALB problem
Minimize the

equipment cost

An exact and

heuristic branch

& bound

Bukchin and Tzur

(2000)

RALB-2 problem
Minimize the cycle

time

Two versions of

Genetic Algorithm
Levitin et al.(2006)

RALB-2 problem
Minimize the cycle

time

Hybrid Genetic

Algorithm
Gao et al.(2009)

RALB-2 problem

Minimize the cycle

time, robot cost,

setup costs

Three versions of

multi-objective

evolution strategies

Yoosefelahi et

al.(2012)

RALB -E problem
Maximize line

efficiency

Three evolutionary

algorithms & Local

Search

Daoud et al.(2014)

 State of the Art

From the literature survey done, the key problems addressed under the assembly

line balancing problems are as follows:

Chapter 2

Literature survey

Page | 33

i. Optimizing different objectives for a straight assembly line.

Different optimization techniques are used to solve straight line assembly line

balancing problems with an objective of minimizing cycle time, minimizing the

number of workstation, minimizing assembly line cost and maximize the line

efficiency. Different optimization techniques used are branch and bound, genetic

algorithm, simulated annealing, particle swarm optimization, differential

evolution and etc.

ii. Optimizing different objectives for a U-shaped assembly line.

Objective of minimizing cycle time, minimizing number of workstations and

maximizing line efficiency in a U-shaped assembly line are done using different

optimization techniques. Different metaheuristics are proposed to solve this

problem.

iii. Straight line robotic assembly line balancing problem with different objectives.

Robotic assembly line balancing in a straight assembly line with objective of

minimizing cycle time, minimizing the number of workstations and maximizing

line efficiency are done using few optimization techniques. Metaheuristics like

genetic algorithms and its hybrid version is proposed to solve the problem.

In summary, this chapter reports the literature related to assembly line balancing.

Literature survey reveals the different types of assembly lines in detail. This chapter

provides detailed information of the need of balancing an assembly line in an industrial

sector and the importance of this type of research in academics. Different problems

classified under the problems are discussed. This survey provides a detailed review of

the different solution procedures applied to solve the ALB problems. As discussed in

Section 2.5.4 researchers have proposed models and solution procedures for solving

robotic assembly line balancing (RALB) problems. The work on RALB is very limited

and hence this thesis seeks to develop efficient algorithms to solve problems in RALB

with different objectives.

CHAPTER 3

3 Problem Definition

In this chapter, details of the research problem considered for the study are

presented through motivation of research, problem statement, and research objectives.

 Motivation of the research

Due to the increased demand for productivity, quality, cost reduction and optimal

utilization of the available resources researchers have motivated to do continuous

research in modeling and evaluation of manufacturing systems. Assembly line is one

of the major components in manufacturing sector. Availability of different types of

robots to perform the assembly tasks, led to the development of automated assembly

line. Research interest in robotic/automated/flexible assembly is the main motivation

of this research. The research interest surrounding Flexible Manufacturing System,

Flexible Assembly System, Computer Integrated Manufacturing, and application of

metaheuristic algorithms to solve the problems from these systems has attracted many

researchers to work in the area of assembly line balancing problems

The topic has become relevant in the present day, since the international

manufacturing strategy and operations are inclined towards the research of automated

assembly systems and considers it strategically important at the professional forefront.

There is a growing demand and importance for automated assembly systems, which

require a robust integrative technological perspective and pragmatic approach for long

term investment.

In the recent years, different metaheuristics have been proposed to solve assembly

line balancing problems. Different types of bio-inspired algorithms are genetic

algorithms, simulated annealing, differential evolution, ant and bee algorithms, bat

algorithm, particle swarm optimization, harmony search, firefly algorithm, cuckoo

search and others. This research focuses on using PSO, DE and Cuckoo search for

solving RALB problems. There has been very minimal research done on robotic

assembly line balancing problem with different objectives. Hence the motivation of this

Chapter 3

Problem definition

Page | 35

study is also focused towards the development of different variations of RALB

problems.

 Problem statement

Even though the benefits of using robotic/ automated assembly line are substantial,

it can be inferred from the literature that only few papers describe the design and

optimization of robotic assembly line balancing (RALB) problems. To the best of the

author’s knowledge the following important aspects has not been reported till date.

Important aspects of RALB which did not find place in the existing literature are as

follows:

i. Modeling and optimization of U-shaped robotic assembly line balancing

problems with different objectives.

ii. Modeling and optimization of energy based robotic assembly line balancing

problems for a straight and U-shaped robotic assembly line.

iii. Modeling and optimization of cost based robotic assembly line balancing

problems for a straight and U-shaped robotic assembly line.

Henceforth, the research is to address and understand the above mentioned

shortcomings and to develop efficient algorithms for solving robotic assembly line

balancing problems to obtain better quality solution.

 Research objectives

Based on the findings from the literature survey, the following have been set as the

objectives of this research:

1. To develop efficient metaheuristic algorithms to find best solution for the straight

robotic assembly line balancing problems with an objective of minimizing the

cycle time when number of workstations are fixed and compare the performance

of results obtained through these algorithms with results published in literature.

2. To develop an efficient algorithm for a U-Shaped Robotic Assembly Line with

the objective of minimizing the cycle time.

3. To develop an efficient metaheuristic algorithm for solving energy based robotic

assembly line problem for both straight and U-shaped robotic assembly line.

Chapter 3

Problem definition

Page | 36

4. To develop an efficient algorithm for solving cost based robotic assembly line

balancing problem in both straight and U-shaped robotic assembly line.

5. To develop efficient metaheuristics algorithm to solve a robotic assembly line

problem with an objective of maximizing the line efficiency.

 The scope of the current study is limited to the development of efficient

metaheuristic algorithms for solving robotic assembly line balancing problems.

 Research approach

Following steps are adopted for developing efficient models for solving robotic

assembly line balancing problems.

1. Design and development of metaheuristic solution procedure to solve RALB

problem using different metaheuristic algorithms.

2. Validate the developed model by evaluating the benchmark literature datasets and

datasets which are generated based on the literature.

3. Investigate the performance of the proposed metaheuristic by comparing the

reported results using other solution procedures.

4. Performing parametric study for different metaheuristic algorithms to find out the

best combination of parameters for solving the problem effectively

5. Drawing conclusions and discussing the directions for future work.

The motivation of research, problem statement, research objectives and the

proposed research approach are presented in detail in this chapter. Next chapter presents

the assumptions and mathematical model for RALB problems in detail.

CHAPTER 4

4 Mathematical Models for RALB

Problems

The objectives of the research are presented in the previous chapter. This chapter

provides the details of the mathematical models for robotic assembly line balancing

problems with different objectives. Assumptions and notations considered for different

problems are also listed in this chapter.

 Straight RALB problem - minimizing cycle time

Robotic assembly lines are used by manufacturers for producing high volume

product and to produce products with high quality. Workstations are connected together

with a material handling system for an assembly line. An assembly line helps at

assembling components into a final product. At each workstation a set of tasks are to

be performed to assembly a product. The precedence constraints need to be specified

and it specifies the order in which the tasks are to be executed. The assembly line system

must be configured for the assembly of the product where tasks are assigned to the

workstations and best available robot is allocated to the workstation with an objective

of minimizing the cycle time of the assembly line. Mathematical model is developed

based on the objective of minimizing cycle time when the number of workstations is

fixed for a straight robotic assembly line.

4.1.1 Assumptions and Mathematical Model

The following assumptions are considered while developing the mathematical

model. The assumptions considered in this model are similar to those followed by

Levitin et al. (2006) and Gao et al. (2009).

 A unique model of single product is assembled on a straight robotic assembly line.

 Tasks cannot be subdivided and tasks can be processed only if the task sequence

meets the precedence requirements.

 Tasks cannot be shared among other workstations.

 Time taken for performing a task depends on the type of the robot allocated.

Chapter 4

Mathematical models for RALB problems

Page | 38

 Robot type to be assigned to a workstation is selected among other types of robot

based on the time taken by the robot to perform the tasks allocated within

minimum time.

 At a time only one robot could be assigned to a workstation.

 Number of workstations is equal to the number of available robots.

 Any task can be performed at any workstation and by any robot if the precedence

relation is not violated. Task is carried out by a robot at a workstation where it is

assigned.

 There is no limitations in the availability of the robots (i.e. number of robots of

same capability is unrestricted).

 Cost of purchasing the robot is not considered.

 In a single model assembly line, the material handling, loading and unloading

time, as well as set-up and tool changing time are negligible, because the tooling

changes are minimized in a robotic assembly line. This assumption is realistic on

a single-model assembly line. If tool change or other type of set-up activity is

necessary, it can be included in the task time.

 Levitin et al. (2006) mentioned two main objectives in their paper: Optimal

balance of the assembly line and allocation of the best fit robot to each workstation.

Achieving these two objectives are only possible when the assumption that robot type

is selected based on the time taken by the robot to perform the tasks allocated with

minimum time is considered. Since this consideration helps to reduce the cycle time of

the assembly line and assign a best fit robot to workstations, it is followed in this model.

The model presented below is the modification of the one presented by Gao et al. (2009)

considering the assumption presented above. The zero-one integer programming (IP)

model for the problem of minimizing cycle time for a straight robotic assembly line is

presented below.

 Decision Variables

 1

 0, { if task i is assigned to workstation s

is otherwisex 

1 is

0, { if robot h allocated to workstation s

sh otherwisey 

Chapter 4

Mathematical models for RALB problems

Page | 39

 Zero-One Integer formulation:

 (4.1)

 (4.2)

 (4.3)

 (4.4)

 (4.5)

 (4.6)

The objective Equation 4.1 is to minimize the cycle time of the robotic assembly

line. Equation 4.2 defines the precedence relationship among the tasks. It ensures that

for a pair of tasks with precedence relation, the precedent cannot be assigned to a

workstation after the one to which its successor is assigned. Equation 4.3 ensures that

each task has to be assigned to one workstation and Equation 4.4 ensures that each

workstation is equipped with one robot. It is notable that objective is non-linear. Hence,

it is hard for traditional exact optimization techniques to solve the problem.

 U-shaped RALB problem - minimizing cycle time

Assembly tasks of different types are performed at each work station. These tasks

are to be completed to produce a final product. Precedence constraints are specified and

it determines the order in which tasks should be executed. Tasks are to be assigned to

the work station and the best robot needs to be allotted to the work station to perform

the tasks. The assembly of the tasks is to be performed in a U-shaped robotic assembly

line with a main objective of minimizing the cycle time.

1
1 1

min max . .
N Na w

ih is sh
s Nw i i

c t x y
 

 


 




1 1

. . 0 ;
N Nw w

is js

s s

s t s.x s.x , i pre(j) j
 

    

1

1
Nw

is

s

x i


 

1

1
Nw

sh
s

y s


 

0 1isx { , } s,i 

0 1 ,shy { , } h s 

Chapter 4

Mathematical models for RALB problems

Page | 40

4.2.1 Assumptions and Mathematical Model

The assumptions used for the mathematical model for U-shaped robotic assembly

line are same as the one mentioned in Section 4.1.1 and these assumptions are based on

the assumptions used by Levitin et al. (2006) and Gao et al. (2009) for RALB problems.

Based on the definition proposed by Gutjahr and Nemhauser (1964) for a straight line

assembly line problem, Miltenburg and Wijngaard (1994) presented a definition for the

simple U-shaped assembly line problem. Gao et al. (2009) presented a formulation for

type-II RALB. The formulation presented in this thesis is based on these definitions.

The model presented is for U-shaped robotic assembly line balancing problem with an

objective of minimizing cycle time when number of workstations is fixed.

Zero-one integer programming (IP) model for this problem is formulated as

follows:

 The problem is, for a given set of tasks F= {g | g = 1, 2, .. .,n}, a set of precedence

constraints P = { (i, j) | task i must be completed before task j }, a set of task times T =

{ t(g) | g = 1, 2,, n }, and a cycle time C, find a collection of subsets of F, (L1, L2, .

. . , LN) where La = {g| task g is done at workstation a } and the workstations and tasks

are arranged in a U-shape.

 Decision Variables

 Zero-One Integer formulation:

 (4.7)

For each task j:

 (4.8)

 1

 0, { if task i is assigned to workstation s

is otherwisex 

1 is

0, { if robot h allocated to workstation s

sh otherwisey 

1
1 1

min max . .
N Na w

ih is sh
s Nw i i

c t x y
 

 


 




if (,) , , , then , for all ;or

if (,) , , , then , for all ;

a b

b c

i j P i L j L a b i

j k P y L k L c b k

   

   

Chapter 4

Mathematical models for RALB problems

Page | 41

 (4.9)

 (4.10)

 (4.11)

 (4.12)

The objective of Equation 4.7 is to minimize the cycle time of the robotic assembly

line. Equation 4.8 ensures the precedence constraints are not violated on the U-shaped

assembly line. Equation 4.9 ensures that each task has to be assigned to one workstation

and Equation 4.10 ensures that each workstation is equipped with one robot. Objective

function is non-linear. Hence, it is hard for traditional exact optimization techniques to

solve the problem.

 RALB problem - minimizing energy consumption

In an assembly line, different assembly tasks are to be performed by each

workstation to assemble and produce a given product, while precedence constraints of

the tasks are specified. A set of workstations and robots are considered in the assembly

line. In a balanced assembly line, tasks needs to be assigned to the workstations and

best robot needs to be allotted to the station to perform the assembly tasks with

minimum energy consumption. The mathematical model presented here is similar to

the one presented in previous sections except the objective function. The objective in

this model is to minimize the energy consumption in straight and U-shaped robotic

assembly line. Other than the assumptions presented in Section 4.1.1 and 4.2.1 few new

assumptions are incorporated for developing this model.

4.3.1 Assumptions and Mathematical Model

This section presents the new set of assumptions used for the mathematical model

development.

Assumptions considered are:

 Robots power consumptions are assumed. Using the power of each robot, energy

consumption is calculated.

1

1
Nw

is

s

x i


 

1

1
Nw

sh

s

y s


 

0 1isx { , } s,i 

0 1 ,shy { , } h s 

Chapter 4

Mathematical models for RALB problems

Page | 42

 The planning horizon is not included in the model. The proposed algorithm and

the models are tested using the benchmark problems available in the literature.

Hence, the maintenance operations are not considered in this study.

According to the assumptions considered, a zero-one integer programming (IP)

model for this problem is formulated as follows:

 Decision Variables

 Zero-One Integer formulation:

 (4.13)

 (4.14)

 (4.15)

 (4.16)

 (4.17)

 (4.18)

The objective of the energy based model (Equation 4.13) is to minimize the total

energy consumption. Equation 4.14 defines the precedence relationship among the

tasks. It ensures that for a pair of tasks with precedence relation, the precedent cannot

be assigned to a workstation after the one to which its successor is assigned. Equation

4.15 ensures that each task has to be assigned to one workstation and Equation 4.16

ensures that each workstation is equipped with one robot. Objective is non-linear.

Hence, it is hard for traditional exact optimization techniques to solve the problem.

 1

 0, { if task i is assigned to workstation s

is otherwisex 

1 is

0, { if robot h allocated to workstation s

sh otherwisey 

1 1 1

min
N NNw a w

ih is sh

i i i

E e x y
  


 


 

1 1

. . 0 ;
N Nw w

is js

s s

s t s.x s.x , i pre(j) j
 

    

1

1
Nw

is

s

x i


 

1

1
Nw

sh

s

y s


 

0 1isx { , } s,i 

0 1 ,shy { , } h s 

Chapter 4

Mathematical models for RALB problems

Page | 43

The model presented is for straight robotic assembly line, in case of U-shaped

robotic assembly line precedence relationship equation changes. Hence Equation 4.14

is replaced by Equation 4.19.

For each task j:

 (4.19)

 RALB problem - minimizing assembly line cost

A robotic assembly line consists of several workstations, each of them being

responsible for performing a specific set of tasks done by a robot. The cost of

performing the tasks is different from robot to robot, since the robots are manufactured

from different vendors with different capabilities and specifications. Selection of most

suitable robot among many alternatives to perform a set of tasks in a particular

workstation with a specific objective is a typical optimization problem. RALB problem

considered here is to find the optimal set of tasks allotted to each work stations such

that precedence constraints between tasks or other constraints are met and selection of

suitable robot type to execute the tasks. The objective considered here is minimization

of overall assembly line cost.

4.4.1 Assumptions and Mathematical Model

The following assumptions are considered in the model formulation of proposed

robotic assembly line balancing problem.

 Robot initial costs are assumed. It includes installation, maintenance and service

cost for the entire service life. The service life is limited to 5 years.

 All robots are working 20hrs a day and 300 days in a year.

 Equivalent uniform annual costs of all robots are calculated with annual fixed

interest rate @10%.

A zero-one integer programming (IP) model for this problem is formulated as follows:

 Decision Variables

if (,) , , , then , for all ;or

if (,) , , , then , for all ;

a b

b c

i j P i L j L a b i

j k P y L k L c b k

   

   

 1

 0, { if task i is assigned to workstation s

is otherwisex 

Chapter 4

Mathematical models for RALB problems

Page | 44

 Zero-One Integer formulation:

 (4.20)

 (4.21)

 (4.22)

 (4.23)

 (4.24)

 (4.25)

The objective of the energy based model (Equation 4.20) is to minimize the total

assembly line cost. Equation 4.21 defines the precedence relationship among the tasks.

It ensures that for a pair of tasks with precedence relation, the precedent cannot be

assigned to a workstation after the one to which its successor is assigned. Equation 4.22

ensures that each task has to be assigned to one workstation and Equation 4.23 ensures

that each workstation is equipped with one robot. It is notable that objective function is

non-linear. Hence, it is hard for traditional exact optimization techniques to solve the

problem.

The model presented is for straight robotic assembly line, in case of U-shaped

robotic assembly line precedence relationship equation changes. Hence Equation 4.21

is replaced by Equation 4.26.

For each task j:

 (4.26)

1 is

0, { if robot h allocated to workstation s

sh otherwisey 

1 1 1

min
N N Nw a w

ih is sh

i i i

Cost c x y
  


 


 

1 1

. . 0 ;
N Nw w

is js

s s

s t s.x s.x , i pre(j) j
 

    

1

1
Nw

is

s

x i


 

1

1
Nw

sh

s

y s


 

0 1isx { , } s,i 

0 1 ,shy { , } h s 

if (,) , , , then , for all ;or

if (,) , , , then , for all ;

a b

b c

i j P i L j L a b i

j k P y L k L c b k

   

   

Chapter 4

Mathematical models for RALB problems

Page | 45

 RALB problem - maximizing line efficiency

Different assembly tasks are performed by each station to produce a final product

in an assembly line. Assembly lines are of two layouts (straight and U-shaped layout).

In a balanced robotic assembly line, tasks are assigned to workstation and the best robot

is allotted to the workstation to perform the task allotted. Major objective of this

problem is to achieve maximum line efficiency for the assembly line. In case of straight

robotic assembly line, the set of possible assignable tasks are decided by those tasks

whose predecessors are already assigned. In case of U-shaped robotic assembly line,

the set of assignable tasks is determined by all those tasks whose predecessors or

successors have already been assigned.

4.5.1 Assumptions and Mathematical Model

Assumptions considered for development of this model is similar to the assumption

used for developing the mathematical model where the objective of minimizing the

cycle time is considered.

A zero-one integer programming (IP) model for this problem is formulated as follows:

 Decision Variables

 Zero-One Integer formulation:

 (4.27)

 (4.28)

 (4.29)

 (4.30)

 1

 0, { if task i is assigned to workstation s

is otherwisex 

1 is

0, { if robot h allocated to workstation s

sh otherwisey 

max Z LE

1 1

. . 0 ;
N Nw w

is js

s s

s t s.x s.x , i pre(j) j
 

    

1

1
Nw

is

s

x i


 

1

1
Nw

sh

s

y s


 

Chapter 4

Mathematical models for RALB problems

Page | 46

 (4.31)

 (4.32)

The objective of the model is to maximize the line efficiency. Equation 4.28

defines the precedence relationship among the tasks. It ensures that for a pair of tasks

with precedence relation, the precedent cannot be assigned to a workstation after the

one to which its successor is assigned in case of straight robotic assembly line. Equation

4.29 ensures that each task has to be assigned to one workstation and Equation 4.30

ensures that each workstation is equipped with one robot. Objective function of the

model is non-linear and therefore it is hard for traditional exact optimization techniques

to solve the problem.

The model presented is for straight robotic assembly line, in case of U-shaped

robotic assembly line precedence relationship equation changes. Hence Equation 4.28

is replaced by Equation 4.26. Line efficiency of a given assembly line is the direct

indication of the efficiency (Khaw and Ponnambalam, 2009). The line efficiency is

calculated as follows.

 (4.33)

Where Sk is the kth workstation time, Nw is the total number of workstations and c

is the cycle time.

 Summary

The assumptions and mathematical models proposed for different robotic assembly

line balancing problems with different objective functions are presented in this chapter.

Zero-One Integer formulation is presented for the objective of minimizing the

cycle time in a straight robotic assembly line. Assumptions considered to solve the

problem are also presented. The chapter presents the mathematical model for U-shaped

robotic assembly line with the objective of minimizing the cycle time. The set of

0 1isx { , } s,i 

0 1 ,shy { , } h s 

1 *100
*

Nw

k

k

w

S

LE
N c





Chapter 4

Mathematical models for RALB problems

Page | 47

assumptions for this model is same as the one presented for the straight robotic

assembly line.

Mathematical model to minimize the energy consumption in a robotic assembly

line is presented. The assumptions considered for this model is also presented. The

variation needed in the model when the layout of the assembly line considered is U-

shaped is also explained.

The mathematical model for the objective of minimizing the assembly line cost is

also discussed along with the assumptions considered. The model is presented for the

straight and U-shaped layout of robotic assembly line.

Mathematical model for the objective of maximizing line efficiency in a straight

and U-shaped robotic assembly line is also presented. The assumptions for this model

are same as the assumptions used for the model where the objective is to minimize the

cycle time.

CHAPTER 5

5 Particle Swarm Optimization & Hybrid

Particle Swarm Optimization for RALB

Problem to Minimize Cycle Time

Metaheuristics have been widely used for solving combinatorial optimization

problems. This is mainly due to the increasing computational speed of computers,

which helps the use of metaheuristics to solve real world problems. Metaheuristics are

often hybridized with local search methods to improve the rate of convergence.

Different metaheuristics such as genetic algorithm, simulated annealing and tabu search

are proposed in the literature to solve assembly line balancing problems. In this section

different metaheuristics like Particle swarm optimization, PSO Variants and hybrid

Cuckoo search- PSO are proposed to solve robotic assembly line balancing problems

with objective of minimizing the cycle time of the robotic assembly line. The model

will be referred to as RALB-2 in this thesis. The solution to the RALB problem includes

an attempt for optimal assignment of robots to line stations and a balanced distribution

of work between different stations.

In this research metaheuristic algorithms like particle swarm optimization,

differential evolution and hybrid algorithms are implemented to solve robotic assembly

line balancing problems with an objective of minimizing cycle time. PSO is used due

to the easiness in implementation, faster convergence and very less parameters to fine

tune (Wu et al., 2011). Hybridized metaheuristics are also implemented to solve RALB

problems. Search capability of the algorithm is improved by hybridizing metaheuristics

and this helps to improve the quality of the solution.

 Standard Particle Swarm Optimization for straight RALB

In the recent years, extensive study has been done to understand the social

psychology of fish schools, birds flock and bug swarm. It is observed that social

behavior play a very crucial role in the survival of species and its adaptation to the

environment change. Particle swarm optimization (PSO) is a relatively new approach

in the modern metaheuristics for optimization. PSO is one of the evolutionary

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 49

computation methods. Particle Swarm Optimization (PSO) is a computational method

developed by Kennedy and Eberhart (1995). This method is motivated by simulation

of social behavior. This algorithm has been widely used to solve optimization problems.

Ease of implementation, robustness and very few parameters to adjust makes PSO very

attractive among researchers. PSO is a population based search algorithm and is

initialized with a random set of population solutions, called particles (swarm). Each

particle in PSO is associated with a velocity.

PSO originates from social psychology as a simulation of socio-cognitive

processes to model abstract concept of swarm intelligence that has the following several

advantages:

 Easy to implement

 Few parameters to fine tune

 Relatively smaller population size

 Relatively small number of function evaluations to converge

 Faster computation

Particles fly through the search space with a specified velocity which is

dynamically adjusted based on their historical behaviors. For each iteration ‘t’, each

particle ‘i’ keeps tracks of its coordinates in the problem space which are associated

with the best solution it has achieved so far. This value is called local best (ePt
i). Another

best value which is tracked is the overall best value, and its location obtained so far by

any particle in the population. This location is called global best (G). Based on the

concept proposed by Kennedy and Eberhart, in every iteration, there is a change in the

velocity of each particle which makes the move towards possibly new ePt
i and Gt.

Pseudo code of the standard PSO algorithm is presented in Figure 5.1.

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 50

for each particle

 Initialize particle

end

do
 for each particle

 Calculate fitness value

 If the fitness value is better than the best fitness value (Local Best) in history

 set current value as the new Local Best

end

 Choose the particle with the best fitness value of all the particles as the Global Best

 for each particle

 Calculate particle velocity according Equation 5.1

 Update particle position according Equation 5.2

 end

while maximum iterations criteria is not attained

Figure 5.1 Pseudo code of standard PSO

The generic PSO algorithm for a problem is given below:

Step 1: Initialization of the populations: Generate set of particles with random position

or values and initial velocities.

Step 2: For each particle, evaluate the optimization function yielded by the particle.

Step 3: Initialize the particle best. Each particle remembers the best result achieved so

far (personal best) and exchanges information with other particles to determine the best

particle (global best) among the swarm.

Step 4: Apply velocity and move the particle according to Equation 5.1 and Equation

5.2, respectively:

Velocity update equation:

 (5.1)

Particle’s moves from their current position to the new position using Equation

5.2 Each particle’s position is updated in each generation by adding the velocity vector

to the position vector.

Position update equation:

 (5.2)

1

1 2 1 3 2

 x [x ()] x [x ()]t t e t t t t
i i i i i

Momentum Part Cognitive Part Social Part

v c v c U P P c U G P
   

1 1t t t

i i iP P v  

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 51

Where U1 and U2 are known as velocity coefficients (random numbers between 0

and 1), c1, c2and c3 are known as acceleration coefficients, vi
t is the initial velocity, ePt

i

is the Local best, Gt is the global best solution at generation ‘t’ and Pi
t is the current

particle position. The parameters U1, U2 are used to maintain the diversity of the

population, and they are uniformly distributed in the range of zero and one and the

values of U1 and U2 varies for all iterations.

Step 5: Go back to step until the termination criterion is met.

The Equation 5.1 and 5.2 describe the trajectory in which the particles fly. Equation

5.1 describes how the velocity is updated and Equation 5.2 describes the position update

of the particle which is flying in the search space. Equation 5.1 consists of three parts.

First part is known as momentum part. The velocity cannot be changed abruptly and it

is changed from the current velocity. Second part is known as cognitive part which

signifies the private thinking of itself learning from its own flying experience. Third

part is known as social part which represents the collaboration among particles learning

from the group flying experience (Blondin, 2009).

In Equation 5.2, if the sum of three parts on the right side exceeds a constant value

specified by the user, then the velocity on that dimension is assigned to be vmax that is

particles velocity is restricted to a maximum velocity vmax which is an important

parameter. Large value of vmax helps the particles to fly past the good solution areas.

Small vmax might lead particles to fall in the local minima, which makes them unable to

fly into better solution area. From the literature, it could be observed that vmax is usually

set as a constant value. But researchers have developed dynamically changing vmax for

improving the performance of PSO. The velocity calculation applied in this research is

adopted from the PSO algorithm developed by Clerc (2004).

Various operations performed for computing particle velocity and updating particle

positions (Rameshkumar et al., 2005) are explained below:

Subtraction (position – position) operator: Let us assume to positions x1 and x2

representing two different task sequences. The difference of x2 - x1 is a velocity v. In

the Equation 5.1, for example subtracting two positions i.e. (epi
t – Pi

t) results in a

velocity which is a set of transpositions.

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 52

Addition (position + velocity) operator: Let us assume x to be the position and v to

be the velocity of the particle. New position x1 is calculated by applying the first

transposition of v to x, i.e, x1= x + v then the second one to the result etc.

Addition (velocity + velocity) operator: Let us assume two velocities v1 and v2. In

order to calculate v1 + v2, the list of transpositions which contains first the 'ones' of v1,

followed by the 'ones' of v2 is considered.

Multiplication (Coefficient × velocity) operator: Let c be the learning coefficient and

v be the velocity. c × v results in a new velocity.

Let us assume the following data for a numerical illustration of velocity and

position update (without reference to iteration) in a RALB problem with 11 tasks:

Local Best ePt
i : (1,2,6,3,4,5,7,8,10,9,11), Global Best G:(1,2,3,4,5,6,7,8,9,10,11)

Particle Pi
t : (1,2,3,6,5,4,7,8,10,9,11) and Initial velocity vi

t: (2, 3) (4, 5).

Initial value of velocity is randomly generated with length of the velocity pair

restricted to 2. Similarly, velocity index is computed for other particles. These

sequences represent 11 task problem arranged as per the precedence order for RALB

problem. The number of velocity pair for the problem considered is 2. Parameters

chosen for the example: c1=1, c2=1 and c3=2 are the acceleration coefficients and U1,

U2, U3 ranges between 0 and 1. Let U1=0.8, U2=0.3. Using Equation 5.1 the velocity of

the particle is calculated. If the coefficient value is 0.8, then 80 percent of the velocity

components are randomly selected and are applied to generate velocity of the particle

and similarly position of the particle is also updated.

The velocity for the particle is updated using Equation 5.1.

vi
t+1 = (2,3)(4,5)+0.8 x [(1,2,6,3,4,5,7,8,10,9,11)–(1,2,3,6,5,4,7,8,10,9,11)]+0.6 x

[(1,2,3,4,5,6,7,8,9,10,11)-(1,2 ,3,6,5,4,7,8,10,9,11)]

 = (2,3)(4,5)+0.8 x (2,3)(4,5) +0.6 x (3,5)(8,9) = (2,3)(4,5)(8,9)

Position of the particle ‘i’ is updated using Equation 5.2. Particles move from their

current position to the new position.

Pi
t+1 = (1,2,3,6,5,4,7,8,10,9,11)+(2,3) (4,5)(8,9) = (1,3,2,5,6,4,7,10, 8,9,11)

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 53

In this chapter, PSO, PSO variants and hybridized Cuckoo Search-PSO is proposed

to solve RALB problems. Results obtained from these algorithms are compared with

benchmark results obtained for RALB problem with an objective of minimizing the

cycle time.

5.1.1 Implementation of PSO

The implementation details of PSO on RALB-2 problem with an objective of

minimizing cycle time are explained in this section.

a) Population Initialization

Metaheuristic algorithms generally start with a randomly generated search space

(Huang et al., 2014) which evolves iteratively to find nearer to optimal solutions.

Instead of starting the search process from a set of random solutions, a set of priority

rules reported in the literature are used to reach better solution at a faster rate.

Table 5.1 Initial population generated using the heuristic rules

Methods Particle Generated

Maximum Rank Positional Weight 1 2 6 3 4 5 7 8 10 9 11

Minimum Inverse Positional Weight 1 5 4 3 2 7 9 6 8 10 11

Minimum Total Number Of Predecessors Tasks 1 2 3 4 5 6 8 10 7 9 11

Maximum Total Number of Follower Tasks 1 2 3 4 5 6 7 8 9 10 11

Maximum Task Time 1 5 2 6 3 4 7 8 10 9 11

Minimum Task Time 1 4 3 2 5 7 9 6 8 10 11

Table 5.2 Performance time for 11 tasks by 4 robots/workers

Tasks Robot 1 Robot 2 Robot 3 Robot 4 Average Time ()
1 81 37 51 49 54.5

2 109 101 90 42 85.5

3 65 80 38 52 58.75

4 51 41 91 40 55.75

5 92 36 33 25 46.5

6 77 65 83 71 74

7 51 51 40 49 47.75

8 50 42 34 44 42.5

9 43 76 41 33 48.25

10 45 46 41 77 52.25

11 76 38 83 87 71

Six particles are generated using the six heuristic rules (Ponnambalam et al., 2000):

maximum rank positional weight, minimum inverse positional weight, minimum total

number of predecessors tasks, maximum total number of follower tasks, maximum and

minimum task time. Remaining swarm particles are randomly generated. There are

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 54

twenty five particles in the initial swam. Table 5.1 shows set of particles formed using

those methods and remaining particles are generated randomly which are satisfying the

precedence condition. The precedence graph shown in Figure 5.2 and processing time

shown in Table 5.2 are used to generate the information provided in Table 5.1.

Figure 5.2 Precedence Graph of 11 task problem

It is to be noted that the particle structure is a string, consists of tasks to be

performed in RALB problem satisfying the precedence constraints. After the swarm is

initialized, each particle is assigned with random velocity and length of the velocity of

each particle is generated randomly which is explained in the next section. The six

heuristic rules used are explained with an example for better understanding.

1. Maximum Rank Positional Weight

Each task is prioritized based on the cumulative assembly time associated with

itself and its successors. The steps for forming the sequence using Maximum Rank

Positional Weight are as below:

1. Let S (i)  Set of successors of tasks i.

2. Tasks ordered such that i < r implies i not  S(r).

3. Task r is then a member of S (i) only if there is an immediate successor

relationship from i to r.

4. Each task has its own task time using which the Positional Weight of a particular

task i is calculated.

 (5.3)

5. Based on the positional weight the tasks are ranked in descending order. Sequence

formed based on the rank is: 1 2 6 3 4 5 7 810 9 11. Table 5.3 shows the rank

calculated based on positional weight.

1
11

10

9

8

7

6

5

4

3

2

()i rr S i
Pw t t


 

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 55

Table 5.3 Maximum Rank Positional Weight

Tasks Average Immediate Successors Pwi Rank

1 54.5 2,3,4,5 344.75 1

2 85.5 6 290.25 2

3 58.75 7 190.75 4

4 55.75 7 187.75 5

5 46.5 7 178.5 6

6 74.0 8 204.75 3

7 47.75 9 132 7

8 42.5 10 130.75 8

9 48.25 11 84.25 10

10 52.25 11 88.25 9

11 36.0 0 36 11

2. Minimum Inverse Positional Weight

Positional Weight of each task is calculated based on its immediate predecessor’s

cumulative task time.

1. Let P (i)  Set of predecessors of tasks i.

2. Tasks ordered such that i < r implies i  P(r).

3. Task i is then a member of P(r) only if there is an immediate predecessor

relationship from r to i.

4. Each task has its own task time using which the Positional Weight of a particular

task i is calculated.

 (5.4)

6. Based on the positional weight the tasks are ranked in ascending order. Sequence

formed is 1 5 4 3 2 7 9 6 8 10 11. Table 5.4 shows the rank calculated based on

positional weight.

Table 5.4 Minimum Inverse Positional Weight

 


)(iPr ri ttPw

Tasks Average Time Immediate Predecessors Pwi Rank

1 54.5 - 54.5 1

2 85.5 1 140 5

3 58.75 1 113.25 4

4 55.75 1 110.25 3

5 46.5 1 101 2

6 74 2 214 8

7 47.75 3,4,5 161 6

8 42.5 6 256.5 9

9 48.25 7 197 7

10 52.25 8 308.75 10

11 36 10,9 344.75 11

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 56

3. Minimum Total Number of Predecessor tasks

Steps involved in this method

1. Find the total number of predecessors of each task.

2. Sort the tasks based on the total number of predecessors in ascending order

3. After sorting the final sequence is formed. Sequence formed is 1 2 3 4 5 6 8 10 7

9 11. Table 5.5 presents the details used for this heuristic.

Table 5.5 Total Number of Predecessor tasks

Tasks

Total Number of

Predecessors

Total Number of

Predecessors after sorting

1 0 0

2 1 1

3 1 1

4 1 1

5 1 1

6 2 2

7 4 3

8 3 4

9 7 4

10 4 7

11 10 10

4. Maximum Total Number of Follower Tasks

1. Steps involved in this method

2. Find the total number of successors of each task.

3. Sort the tasks based on the total number of successors in descending order

4. After sorting the final sequence is formed. So sequence formed is 1 2 3 4 5 6 7 8

9 10 11. Table 5.6 shows the details used to form a sequence in this heuristic.

Table 5.6 Maximum Total Number of Follower Tasks

Tasks

Total Number of

Successors

Total Number of

Successors after sorting

1 10 10

2 4 4

3 3 3

4 3 3

5 3 3

6 3 3

7 2 2

8 2 2

9 1 1

10 1 1

11 0 0

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 57

5.Maximum Task Time

 The average task time is used for the formation of the sequence. Task is sorted in

descending order with respective to their average task time. And final sequence is

formed based on the precedence condition. Based on the precedence the sequence

formed is 1 5 2 6 3 4 7 8 10 9 11. Table 5.7 presents the details of the average task time.

Table 5.7 Maximum Total Number of Follower Tasks

Tasks Average Task time (Sorted)

2 85.5

6 74

3 58.75

4 55.75

1 54.5

10 52.25

9 48.25

7 47.75

5 46.5

8 42.5

11 36

6.Minimum Task Time

 The average task time is used for the formation of the sequence. Task is sorted in

ascending order with respective to their average task time. And final sequence is formed

based on the precedence condition. So the sequence formed meeting the precedence

constraints is 1 4 3 2 5 7 9 6 8 10 11. Table 5.8 presents the details of average task time.

Table 5.8 Maximum Total Number of Follower Tasks

Tasks Average Task time (Sorted)

11 36

8 42.5

5 46.5

7 47.75

9 48.25

10 52.25

1 54.5

4 55.75

3 58.75

6 74

2 85.5

Remaining particles are formed by forward, backward and double swapping and

the precedence constraints are met.

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 58

b) Initial Velocity

Initial velocities for the particles are randomly generated and they represent the

number of pairs of transpositions. Table 5.9 shows the maximum number of velocity

pairs used. From second iteration onwards velocity update Equation 5.1 is used. Based

on the problem size the numbers of velocity pairs are selected. From Table 5.9,

different task ranges are presented for which the maximum numbers of velocity pairs

are presented. The number of velocity pairs is selected for different problems depending

on the tasks size. The number of velocity pairs is kept same throughout all generations.

For example, if the task size within the range of 0-20, the number of velocity pair to be

selected should be 4. If the numbers of velocity pairs are more than the required number

of pairs in subsequent generations, the excess pairs are excluded.

Table 5.9 Maximum number of Velocity Pairs

Task Range Maximum Velocity Pairs

0-20 4

20-40 8

40-60 10

60-80 25

80-100 30

100-120 40

120-140 50

140-200 65

200-300 75

Two procedures are developed for assignment of tasks and robots to different

workstations: recursive procedure and a successive assignment procedure. These

procedures are used for finding out the cycle time of the assembly line. This is the

objective function which is evaluated using PSO. Recursive and consecutive

procedures developed for the RALB problem in a straight robotic assembly line, are

discussed and illustrated in detail in the following sections

c) Solution Representation and Fitness Evaluation Cycle time minimization for

straight RALB

Each sequence represents a solution which corresponds to a particle in PSO. A

sample sequence is shown in Figure 5.3(a) is presented for 11 task RALB problem.

Each integer in a sequence represents the task in an assembly line which needs to be

performed by a robot in a particular work station. The number of tasks to be assigned

to each work station is based on the cycle time. The tasks and robot allocation after

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 59

decoding the sequence are also shown in Figure 5.3(b). Each integer in the sequence

shown in Figure 5.3(a) is ordered according to their technological precedence

constraints. Assigning the tasks to workstation and the robot assignment for the

workstation is done using two heuristic procedures: recursive assignment and

consecutive assignment procedure.

(a)

(b)

Figure 5.3 a) Sample Task Sequence b) Tasks assigned after decoding the

sequence

Cycle time is used as the fitness value to be evaluated. Tasks and robots are

assigned to workstation using these heuristic procedures proposed by (Levitin et al.,

2006).

Recursive Allocation Method (Cycle Time Calculation)

The method helps in assigning tasks to workstations in such a way the precedence

relationship is not violated. The data required for this method are: performance time,

number of robots and precedence relationship. Based on the performance time data,

using the heuristics particles are generated which is used for the allocation procedure.

Average performance time of each task is required for executing this method. Recursive

heuristic method is used for finding the cycle time of the assembly line (Levitin et al.,

2006).

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 60

The recursive procedure divides the sequence ‘sq’ into M = Nw parts, and tries to

achieve the maximal equality of total execution times for all stations. ‘sq’ is the feasible

sequence generated based on the heuristics.

The average performance time for each task ‘i’ is evaluated:

 (5.5)

 where if and otherwise.

The procedure divides the sequence into two parts (based on the set of elements

from the left position pl=1 to the right position pr=Na) in such a way that it satisfies the

A/B ratio, where A= [M/2] and B =M -A

To find this position i (pl ≤ i ≤ pr) such that Time Ratio value (TR).

 (5.6)

The value of time ratio (TR) should be as close as possible to the ratio A/B.

Using Equation 5.6, value of TR is calculated when the initial sequence is divided

into two parts where, pl=1;pr=i and pl=i+1;pr=Na. Resulting parts are further divided

into M=A and M = B parts respectively using the same procedure recursively until M

reaches 1. At the end of the recursion, the sequence is divided based on the above

conditions and the workstations are fixed. Based on the task allocation, procedure

allocated robots which can perform the allocated tasks in minimum performance time.

An example of the procedure is presented in Figure 5.4 and Figure 5.5 based on

the performance time data available in Table 5.2 and precedence graph in Figure 5.2.

Figure 5.4 presents the recursive allocation procedure for the sequence of tasks 1-3-2-

4-5-6-7-9-8-10-11; this sequence meets the precedence relationship. From the Figure

5.4 task to be allocated to each workstation is identified and in Figure 5.5 the shaded

boxes represents the robot which needs to be selected for performing the tasks allocated

to the workstation. Robots are selected based on the minimum robot performance time.

The values below the boxes in Figure 5.5 shows the workstation time which is

calculated based on the robot task time. Figure 5.6 shows the final allocation done based

on the recursive procedure. And the cycle time obtained from the procedure is 199.

, ,

1 1

/
N Nr r

i ih h i h i

h h

t  
 

 

, 0h i  hit   , 1h i 

() ()

1

/

pri

sq j s j

j pl j i

TR  
  

 

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 61

Figure 5.4 Recursive Procedure for splitting tasks to the given workstations

Figure 5.5 Allocation of the best fit robot - recursive allocation procedure

Figure 5.6 Final solution based on recursive allocation procedure

Consecutive Allocation Method (Cycle Time Calculation)

The consecutive allocation method is used for solving RALB problems for the task

and robot allocation. This procedure helps in calculating the cycle time for the straight

robotic assembly line (Levitin et al., 2006). This heuristic method is used to minimize

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 62

the cycle time of an assembly line. This procedure helps in calculating the cycle time

for the straight robotic assembly line. An initial cycle time, C0 is considered for starting

the procedure. The procedure aims at assigning tasks and robots consecutively to the

workstations in an efficient manner. The procedure allows the assignment of maximum

number of tasks to be performed at each workstation by the available robots. C0 value

is i4ncremented by one if all tasks are not possible to be allocated to the workstations.

The stepwise procedure of the consecutive heuristic is explained in this section.

Step 1: Initial value of C0 is the average of the minimum performance time of robots

for the tasks. C0 is calculated as follows:

 Initial assembly line time (5.7)

The robot performance times shown in Table 5.2 are used for the illustration. The

following feasible sequence of tasks which meets the precedence constraints is

considered for illustration.

Initial C0 for the sample data is calculated and it is 109.

C0= [37+42+38+40+25+65+40+34+33+41+38]/4=108.25. Here

37,42,38,40,25,65,50,34,33,41,38 are the minimum robot task times (refer Table 5.2).

Step 2: Workstation is opened and tasks are allocated based on the sequence in the order

of occurrence, procedure checks if one or more robot could perform the allocated tasks

within C0. For each workstation‘s’ it has a set of preferred/ allotted robots H which is

defined as follows:

 (5.8)

Here, m (h) is the maximal number of activities a robot h can perform in the given

sequence sq during a time lesser than C0 .

 (5.9)

Next, it defines the robot (worker) to be assigned to the workstation s as:

0 ,
1

1

min /
Na

i h w
i Nrj

C t N
 



 
  
 


, () (), where 1 rk H if m k m h h N   

1 () 1 () 1

, () 0 ,

1 1

() ()
p m h p m hs s

s h sq k h sq

k p k ps s

T h t C t k
  

 

   

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 63

 (5.10)

Step 3: Start position (p1s+1) for the next station is calculated

 (5.11)

Step 2 is repeated until all tasks are assigned to given number of workstations.

Step 4: If all tasks cannot be assigned to the given number of workstations within the

initial C0, C0 is incremented by ‘one’ and steps 2 and 3 are repeated until all the tasks

gets allotted to the give number of workstations.

Step 5: Robot is assigned to the workstation based on the minimum robot performance

time for the allotted tasks.

Step 6: The cycle time of the assembly line is evaluated. The workstation time which

is the maximum among all the workstation time is the cycle time of the assembly line.

Figure 5.7 represents the allocation when C0 is 109; tasks 8, 10 and 11 remain

unassigned. C0 was incremented by one to allocate all the tasks and procedure finds the

solution for all the four workstations after C0 reaches 143 as shown in Figure 5.8. Cycle

time of the given sequence is 143 when allocation is done based on consecutive

allocation procedure. In Figure 5.8, shaded portion shows the robot which is allotted to

the workstation to perform the tasks. Values shown next to the boxes are the task

performance time for the corresponding robot. Figure 5.9 shows the final allocation

done based on the recursive procedure. And the cycle time obtained from the procedure

is 143.

Figure 5.7 Task and Robot allocation - consecutive method with initial C0

() , if () () s sh s k T k T h h H   

11 1 1 (()) 1s w sp pr p m h s     

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 64

Figure 5.8 Allocation of best fit robot - consecutive allocation procedure

Figure 5.9 Final solution based on consecutive allocation procedure

d) Exchange Procedure (Solution Improvement)

A local exchange procedure is used to improve the quality of the solution. The best

solution obtained for all iteration is subjected to the local exchange procedure to find

out if any improvement can be achieved. The procedure is explained below:

Step 1: The final global best and final workstation assignments obtained from PSO is

used as the input for the local exchange procedure.

Step 2: Procedure finds the station with highest cycle time and tries to shift a task to the

adjacent workstations with lower cycle time in such a manner that task added to the

adjacent station does not exceed the cycle time of the station from where we removed.

Now consider two workstations f and q with total execution times Tf and Tq such

that Tf >Tq. If shifting of activities from station f to q is feasible, the new execution time

after shifting is as follows:

 (5.12)

 (5.13)

The exchange is worth-while if

*

,f f r iT T t 

irqq tTT ,
* 

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 65

 (5.14)

Step 3: From the solution obtained from the above Step 2, find the station with the

lowest cycle time and try to shift a task from the adjacent workstations to it. The

workstation h with minimum cycle time (Th) is found and the adjacent workstation g

such that . If shifting of activities from g to h is feasible, the new execution time

is as follows

 (5.15)

 (5.16)

The exchange is worth-while if

 (5.17)

This procedure is used in exchange procedure to distribute the tasks amongst the

workstations to get a balanced cycle time between them.

Step 4: Repeat step 2 and step 3 until termination condition is satisfied. The termination

condition assumed to be 25 iterations.

An example of exchange procedure is explained below in Table 5.10. 25-9 problem

of RALB benchmark data is chosen to illustrate the exchange procedure.

The precedence relations of tasks and processing times of the 25 tasks by the 9

robots available in the literature are presented in Table 5.11.

The procedure starts with a cycle time of 127. After performing the Step 2, cycle

time is reduced to 125, procedure proceeds with Step 3 by checking for lowest cycle

time and tries to allocate tasks to workstation with lower cycle time. Step 2 and Step 3

are repeated for maximum of 25 iterations and cycle time was reduced to 114. Exchange

procedure can be performed only if the precedence relationship is not violated.

fqf TTT },max{ **

h g
T T

irgg tTT ,
* 

irhh tTT ,
* 

ghg TTT },max{ **

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 66

Table 5.10: Illustration of Local Exchange Procedure

Sequence produced using PSO :

1 2 3 4 8 9 5 6 7 11 12 15 17 23 13 14 16 19 20 21 25 10 24 22 18

Step1: Task and Robot Assigned for

the given sequence

Step 3: Shifting activities to

workstations with lowest C.T.

Workstations

and Tasks
Robot Cycle Time

Workstations

and Tasks
Robot Cycle Time

S1: 1 2 4 59 S1: 1 2 3 4 114

S2: 3 4 8 7 117 S2: 4 8 2 81

S3: 9 5 6 7 94 S3: 9 5 6 7 7 116

S4: 7 11 12 7 127 S4: 11 12 7 105

S5: 15 17 23 4 114 S5: 15 17 23 4 114

S6: 13 14 16 19 7 125 S6: 13 14 16 19 7 125

S7: 20 21 25 8 105 S7: 20 21 25 8 105

S8: 10 24 4 63 S8: 10 24 4 63

S9: 22 18 7 80 S9: 22 18 7 80

Step 2: Shifting activities from

workstations highest C.T.

Step 4: Repeat steps 2 and 3 for 25

iterations to get the solution

Workstations

and Tasks
Robot Cycle Time

Workstations

and Tasks
Robot Cycle Time

S1: 1 2 4 59 S1: 1 2 3 4 114

S2: 3 4 8 7 117 S2: 4 8 9 7 107

S3: 9 5 6 7 7 116 S3: 5 6 7 7 91

S4: 11 12 7 105 S4: 11 12 7 105

S5: 15 17 23 4 114 S5: 15 17 23 4 114

S6: 13 14 16 19 7 125 S6: 13 14 16 7 99

S7: 20 21 25 8 105 S7: 19 20 21 7 100

S8: 10 24 4 63 S8: 2510 24 4 102

S9: 22 18 7 80 S9: 22 18 7 80

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 67

Table 5.11 Performance times of 25 tasks for 9 Robots

Task No: Predecessor Tasks
Performance Time

R1 R2 R3 R4 R5 R6 R7 R8 R9

1 - 75 52 52 33 52 63 84 43 38

2 - 108 32 34 26 49 105 28 27 33

3 1,2 135 55 73 55 58 133 35 64 67

4 3 89 47 56 69 57 116 40 87 53

5 4 53 47 48 46 56 84 34 91 50

6 5 55 62 33 26 43 56 35 51 55

7 6 30 33 38 23 30 52 22 37 37

8 4 46 34 77 37 74 47 42 31 28

9 8 62 54 36 43 57 45 25 39 33

10 6,9 52 40 45 37 74 56 41 72 51

11 7,8 111 77 65 71 64 81 57 66 100

12 7 49 34 43 43 58 107 48 60 46

13 9,11 87 32 32 45 34 38 22 40 52

14 13 49 73 46 32 46 49 42 43 69

15 12 64 90 68 39 47 121 72 61 54

16 14 85 128 45 74 44 126 35 64 60

17 15 42 34 31 35 34 40 35 30 28

18 16,17 55 47 95 60 56 55 37 75 69

19 14 56 44 37 51 33 62 26 27 31

20 14 63 61 58 45 67 126 52 44 75

21 20 64 38 32 41 30 34 22 33 34

22 15,19,21 93 106 50 36 106 57 43 84 52

23 17 48 52 45 40 58 49 58 77 59

24 21 58 47 40 26 81 109 29 75 35

25 18,20,23 42 38 39 39 30 40 39 28 32

 PSO variants and Hybrid PSO models for straight RALB

Four different PSO variants and three hybrid PSO models are proposed to solve

RALB problems. PSO variants and hybrid models proposed are explained in this

section. Four variants of PSO are developed based on the variation in the velocity

update equation. And hybrid models are developed based on the hybridized PSO. PSO

is hybridized with genetic algorithm and cuckoo search.

5.2.1 PSO variants with inertia weight and constriction factor

Shi and Eberhart (1998) added a new parameter into the original PSO algorithm

since the standard version of PSO had no control over the previous velocity of the

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 68

particles. Newer version of PSO is incorporated with an inertia weight w which

addresses the shortcoming of the standard PSO. The inertia weight helps to control the

impact of the previous history of velocities on the current one. Inertia weight w value

can be a positive constant or positive linear or nonlinear function of time. The dynamic

equation of PSO with inertia weight is modified to be:

(5.18)

Inertia weight helps to balance between global and local search abilities. Large

value of inertia weight facilitates global search, while small value facilitates local

search. Position update equation remains the same. In this research, this variant of PSO

would be referred as PSO-W

Clerc and Kennedy (2002) introduced a parameter called constriction factor (χ)

which may help to ensure convergence to the global minimum. A simplified method

of incorporating the parameters is given in Equation 5.19, where χ is a function of c1

and c2.

 (5.19)

 (5.20)

Where, .

Here c1 and c2 are weight of personal best and weight of global best, respectively;

c1 and c2 are two positive constant values usually set equal to 2.05 (Eberhart and Shi,

2000) and are also called cognitive and social parameter, respectively. U1 and U2 are

random numbers distributed uniformly between 0 and 1. The position of each particle

is then updated using Equation 5.2 This variant of PSO will be referred to as PSO-C in

this thesis.

5.2.2 PSO variants with time varying inertia weight and constriction factor

Shi and Eberhart (1998) found significant improvement in performance of PSO

with the linearly decreasing inertia weight over each iteration, time-varying inertia

weight (TVIW) is defined as follows:

 (5.21)

1
* () ()1 1 2 2

t t e t t t
i w v c U P P c U G Pi i i iv 

    

1
* [() ()]1 1 2 2

t t e t t t
i v c U P P c U G Pi i i iv 


    

|)4(2|

2







1 2 , 4c c   

iter
iter

ww
ww *

max

minmax
max




Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 69

Where wmax and wmin are the maximum and minimum values of the inertia weight

respectively, iter is the current iteration number and maxiter is the maximum number

of allowable iterations. The calculated ‘w’ is used in the Equation 5.18 for PSO-W. For

population based optimization methods, it is preferred to encourage the individuals to

search the entire search space without wandering around the local optima during the

initial stages, later stages it is very important to move towards the global optima, to find

the optimum solution efficiently. This variant of PSO will be referred to as PSO-TVIW

in this thesis.

To address the above mentioned concern, Ratnaweera et al. (2004) proposed time

varying acceleration coefficient (TVAC) as a new strategy for the PSO. The method

reduces the cognitive component (c1) and increases the social component (c2) of

acceleration coefficient, with time. Large value of c1 and small value of c2 at the

beginning allows the particles to search the whole search space, instead of moving

towards the local best. In later stages, values of c1 need to be small and large values of

c2 helps the particles to converge to the global optima.

Time-varying acceleration coefficient (TVAC) is defined as follows:

 (5.22)

 (5.23)

Where c1i and c2i are the initial values of the acceleration coefficient c1 and c2 and

c1f and c2f are the final values of the acceleration coefficient c1 and c2, respectively. The

calculated c1 and c2 are used in Equation 5.19 for PSO-TVAC. This variant of PSO will

be referred to as PSO-TVAC in this thesis.

5.2.3 Hybrid PSO variants with inertia weight and constriction factor

Angeline (1998) pointed out that the PSO performs well in the early iterations, but

has problems reaching a near optimal solution in several real-valued function

optimization problems.

Hybrid models of Genetic algorithm (GA) and PSO helps in improving the quality

of the solution obtained (Eberhart and Shi, 1998, Angeline, 1998). Hybrid GA-PSO

algorithm basically employs a major aspect of the classical GA approach, which is the

capability of “breeding.” PSO algorithm has been strengthened using breeding

ffi c
iter

iteriter
ccc 1111)

max

max
)((




2 2 2 2

max
()()

max
i f f

iter iter
c c c c

iter


  

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 70

technique similar to that applied in GA. The pseudo code for the hybrid PSO is

presented in Figure 5.10.

procedure Hybrid PSO

input (problem data, PSO parameters)

begin

 𝑡 ← 0;
 𝐟𝐨𝐫(𝑖 = 1, 𝑁)

 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑃𝑖
𝑡;

 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑍 (𝑃𝑖
𝑡);

 𝑃𝑖
𝑡

𝑒

← 𝑃𝑖

𝑡;

 𝐞𝐧𝐝
 𝐺 ← 𝑃𝑖

𝑡 ℎ𝑎𝑣𝑖𝑛𝑔 𝑚𝑖𝑛 {𝑍(𝑃𝑖
𝑡

𝑒); 𝑖 = 1, 𝑁 }

 𝐟𝐨𝐫 (𝑖 = 1, 𝑁)

 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑣𝑖
𝑡;

 𝐞𝐧𝐝
 do {

 𝐟𝐨𝐫(𝑖 = 1, 𝑁)
Update Position Pi

t+1

Update Velocity vi
t+1 (Using Equation 5.18 and 5.19)

𝐞𝐧𝐝
Breeding

 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

 𝑈𝑝𝑑𝑎𝑡𝑒 𝑃𝑖
𝑡

𝑒

 𝑎𝑛𝑑 𝐺, (𝑖 = 1, 𝑁)

 𝑡 ← 𝑡 + 1

 } (𝐰𝐡𝐢𝐥𝐞 (𝑡 < 𝑡𝑚𝑎𝑥
))

 output G (Apply Exchange Procedure for the output)

--

Figure 5.10 Pseudo Code of Hybrid PSO

However, some researchers have included mutation or simple replacement of the

best fitted value, as a means of improvement to the standard PSO formulation (Naka et

al., 2003, El-Dib et al., 2004) Lovbjerg et al.(2001) shown in their work that PSO

hybrid with breeding has the potential to reach a better optimum than the standard PSO.

Breeding is included for both the variants of PSO. Velocity update is done based on the

Equation 5.18 for HPSO-W and 5.19 for HPSO-C.

The difference in the hybrid PSO is the incorporation of breeding. The

implementation of breeding is explained below with an example.

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 71

5.2.3.1 Breeding

Step 1: Two particles are selected randomly from the population to perform the

breeding process. This particles selected are for 11 task problem of RALB. The particle

meets the precedence relationship.

 parent1

Let the velocity of parent1 be: (2, 3) (4, 5) (3, 4) (8, 9)

 parent2

1 2 5 3 6 4 8 7 9 10 11

Let the velocity of parent2 be: (1, 2) (3, 4) (2, 4) (3, 5) (8, 9)

Step 2: Generate children for the parents selected using Equations 5.24 and 5.25.

 (5.24)

 (5.25)

For the parents selected, the children generated are,

 child1

1 2 3 6 5 4 8 7 9 10 11

 child2

1 2 5 3 6 4 7 8 10 9 11

Here U is assumed to be 0.5. So it means 50% values will be taken from each parent

to form child. For child1 50% of values come from first parent and remaining 50%

comes from the second parent. For child2 50% of values come from second parent and

50% of remaining values comes from the first parent. A reordering procedure as

illustrated by (Levitin et al., 2006) is adopted to repair the infeasible child formed.

Step 3: Velocity Calculation of Child

 (5.26)

 (5.27)

)(*)1()(*)(211 pparentUpparentUpchild 

)(*)1()(*)(122 pparentUpparentUpchild 

|)()(|

|)(|
*))()(()(

21

1
211

vparentvparent

vparent
vparentvparentvchild




|)()(|

|)(|
*))()(()(

21

2
212

vparentvparent

vparent
vparentvparentvchild




1 2 3 6 5 4 7 8 10 9 11

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 72

Where, is the number of velocity pairs in parent1 and

is the number of velocity pairs of parent2. Velocity of the child1 and child2 are

calculated using Equation 5.26 and 5.27 respectively as follows:

Velocity of child1:

= (2,3)(4,5)(3,4)(8,9)(1,2)(2,4)(3,5) * (4/9) = (2,3)(4,5)(3,4)(8,9)(1,2)(2,4)(3,5) * 0.4

= (2, 3) (4, 5) (3, 4)

Velocity of child2:

= (2,3)(4,5)(3,4)(8,9)(1,2)(2,4)(3,5) * (5/9) =(2,3)(4,5)(3,4)(8,9)(1,2)(2,4)(3,5) * 0.5

= (2,3)(4,5)(3,4)(8,9)

(Note: the ratio (5/9) 0.5 is used randomly to inherit 50% of velocity pairs for the child.)

Step 4: The parent particles are replaced by their child particles, thereby keeping the

population size fixed if the fitness value of the child is better than the parent otherwise

parents are retained.

5.2.4 Hybrid Cuckoo Search-PSO variant

Recently, Yang and Deb (2009) proposed a new metaheuristic algorithm called

cuckoo search (CS) because of the obligate brood parasitism of some cuckoo species

by laying their eggs in the nests of other host birds (of other species). CS algorithm has

shown good performance for solving both benchmark unconstrained functions and real-

world problems in manufacturing scheduling (Burnwal and Deb, 2013, Long et al.,

2014). The CS is based on three idealized rules (Yang and Deb, 2009):

 Each cuckoo lays one egg at a time, and dumps it in a randomly chosen host nest;

 The best nests with high quality of eggs (solutions) will carry over to the next

generations;

 The number of available host nests is fixed, and a host can discover an alien egg

with a probability pa. In this case, the host bird can either throw the egg away or

abandon the nest to build a completely new nest in a new location.

In this section, a hybrid CS-PSO algorithm is proposed to solve RALB problem.

The pseudo code of the hybrid CS-PSO is given in the Figure 5.11.

|)(| 1 vparent |)(| 2 vparent

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 73

begin

Generate initial a population of n host nests, xi (i=1,2,...n);

Evaluate objective function x=(x1,...xd)
T;

while(t<MaxGeneration) or (stop criterion);

 Randomly select two cuckoos in the population;

 Generate a new cuckoo using OX operator;

 Evaluate the new cuckoo and record the local best (Fi);

Choose a nest among (say j) randomly;

if (Fi < F j)

Replace j by the new solution;

end

Move cuckoo birds using Equation 5.1 and 5.2;

Abandon a fraction (pa) of worse nests;

Build new ones at new locations using single point crossover;

Rank the solutions and find the current best;

end while

 Record the global best

 end

Figure 5.11 Pseudo code of hybrid CS-PSO algorithm

Nature of cuckoo birds is that they do not raise their own eggs and never build their

own nests, instead they lay their eggs in the nest of other host birds. If the alien egg is

discovered by the host bird, it will either throw these alien eggs away or simply abandon

its nest and build a new nest elsewhere. Thus, cuckoo birds always look for a better

place in order to decrease the chance of their eggs to be discovered (Burnwal and Deb,

2013). In the hybridized algorithm, communication for cuckoo birds is incorporated by

hybridizing CS with PSO. Motive of this is to communication and inform each cuckoo

bird to migrate to a better place. Each cuckoo bird will record the best personal

experience as local best (ept
i) during its own life. In addition to this, the local among all

the birds called Global best (Gt) is also recorded. The cuckoo birds’ communication is

established through the local, global best and they update their position and velocity

using these parameters using Equation 5.1 and 5.2 of the PSO algorithm.

5.2.4.1 New Cuckoo Generation

New cuckoos are generated by using Order crossover (OX) operator which is

proposed by Davis (1985). In case of RALB problem, the sequence (cuckoo) is the

group of tasks arranged in such a way that it satisfies the precedence conditions.

Working of the OX operator is explained below:

 Select a subsection of task sequence from one parent at random.

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 74

 Produce a proto-child by copying the substring of task sequence into the

corresponding positions.

 Delete the tasks that are already in the substring from the second parent. The

resulted sequence of tasks contains tasks that the proto-child needs.

 Place the tasks into the unfixed positions of the proto-child from left to right

according to the order of the sequence in the second parent.

Figure 5.12 Illustration of the OX operator

An illustration is presented in Figure 5.12. Two cuckoos from the population are

selected and OX operator is applied to generate a new cuckoo. The new child cuckoo

generated is shown in the figure.

5.2.4.2 Replacement of abandoned cuckoos

New cuckoos are generated from the abandoned cuckoos using Single Point Cross

over method. It is a cross over method where a single crossover point on both parent

strings is selected. All data beyond that point is swapped between the two parent

organisms. The resulting sequences are the children. An illustration is presented in

Figure 5.13.

Figure 5.13 Illustration of the Single Point Cross over

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 75

5.2.4.3 Repair mechanism

If the child cuckoos created using the crossover methods is not meeting the

precedence constraints, the cuckoo is repaired using a re-ordering procedure which

restores the feasibility of the generated sequence according to the precedence

constraints. Detailed description of the reordering procedure is illustrated by

Rubinovitz and Levitin (1995).

 Experimental and Computational Study for Standard PSO

The results of computational analysis for different metaheuristic algorithms are

presented in this section

5.3.1 Parameter Selection for standard PSO

Performance of PSO mainly depends on the parameters used. Extensive

experiments are done to find the best optimal parameters. Initially three data sets are

chosen to find the parameters which produces good solution. The three problems

selected are 35 tasks-12 robots, 70 tasks- 19 robots and 148 tasks-29 robots problems.

These problems are solved for all combination of the parameters for 10 test runs.

Quality of solution is given importance compared to the computational time. The details

of the analysis conducted for both the allocation methods (recursive and consecutive

methods) and the parameters chosen for the proposed PSO is explained in this section.

Stopping condition: The proposed two methods are terminated if the iteration

approaches a predefined criteria, usually a sufficiently good fitness or in this case, a

predefined maximum number of iterations (generations) is used. Different stopping

conditions are tested such as 5, 10, 15, 25 and 30 and best solution is obtained when

number of generation is 25, which is shown in Figure 5.14 for recursive allocation

procedure and Figure 5.15 for consecutive allocation procedure. From the Figure 5.14

it is observed that for both the allocation methods procedure starts producing the same

solution for most of the runs after 25th iteration. Values shown in Figure 5.14 represent

the cycle time obtained for different stopping condition.

Acceleration coefficients: c1, c2 and c3 are assumed to have the value of 1 or 2.

Various combinations of c1, c2 and c3 with 1 and 2 are tried to find the best possible

combination. The complete set of combinations of acceleration coefficients tested for

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 76

both recursive and consecutive allocation method are shown in Table 5.12.

Performances of the algorithms are tested on three problems for finding the best

combination of acceleration coefficients. Figure 5.16 shows the performance of

proposed recursive allocation procedure for different combination of acceleration

coefficients. Group B with c1=1, c2=1 and c3=2 produces good results for the three

problems presented here. Same combination of acceleration coefficients is used for

evaluating all the problems available in the literature. Figure 5.17 shows the

performance of proposed consecutive allocation procedure for different combination of

acceleration coefficients. From Figure 5.17, Group D with c1=1, c2=2 and c3=2 has the

best combination of acceleration coefficients to get the minimum cycle time for all the

three problems considered. For solving all the problems from the literature, acceleration

coefficients from Group D is used.

Figure 5.14 Performance of PSO for stopping condition of recursive

allocation procedure

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 77

Figure 5.15 Performance of PSO for stopping condition of consecutive

allocation procedure

Figure 5.16 Performance of PSO for acceleration coefficients of recursive

allocation procedure

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 78

Figure 5.17 Performance of PSO for acceleration coefficients of consecutive

allocation procedure

Population Size: Different ranges of population size of the swarm (initial particles)

are tested and from the analysis done, best solution is obtained when the population

size is 25 for both recursive and consecutive algorithm. Figure 5.18 shows the

performance of PSO for different population size for three problems for recursive

allocation procedure and Figure 5.19 shows the performance of consecutive allocation

procedure for the three sample problems with different population size. It is analyzed

that, when the population size increases the quality of the solution increases.

Table 5.12 Selection of c1, c2 and c3

Acceleration Coefficients

Group c1 c2 c3

A 1 1 1

B 1 1 2

C 1 2 1

D 1 2 2

E 2 1 1

F 2 1 2

G 2 2 1

H 2 2 2

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 79

Figure 5.18 Performance of PSO for population size of recursive allocation

procedure

Figure 5.19 Performance of PSO for population size of consecutive allocation

procedure

5.3.2 Computational Study for Standard PSO

The computational experiments are conducted in order to test the performance of

the proposed standard PSO on RALB-2 problems. The details of the experiments

conducted are presented in this section. Large set of benchmark problems are evaluated

to check the performance of the proposed algorithms. Precedence graphs which are

widely used in SALB-I literature (Scholl, 1995) are selected from

http://www.assembly-line-balancin.de/ to perform the experimental study. Gao et al.

(2009) generated 32 test problems for the computational study of RALB-2 problems by

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 80

adding the robot task times to the original datasets prepared by Scholl (1995). Problem

size varies between 25 and 297 tasks. Eight different problems available in the literature

with different combination of robot problems are considered for the computational

study. Table 5.13 presents the details of the 8 problems considered and the data’s are

collected from various industries used by earlier researchers. The procedure adopted

for developing the datasets are presented in their work. The two proposed (recursive

and consecutive) algorithms are evaluated using the 32 benchmark problems available

in the literature. For each test problem, the number of workstations is equal to the

number of robots and only one robot of particular type can be allocated to one

workstation. Each task is assigned to one workstation and the robot type are selected

for that workstation without violating precedence constraints, and the processing time

of a task at the assigned station is dependent on the type of robot selected for that

workstation. In this problem formulation, assignment of robot type differs from Gao et

al.'s model. Gao et al. (2009) confined only to one robot is available in each robot type.

Though their model differs in one aspect, the solution of hybrid GA (Gao et al., 2009)

can be used to fix the upper bound for the problem under consideration.

Table 5.13 Source of Datasets

Problem

Size
Source Reference

25 Randomly Generated (Rosenberg and Ziegler, 1992)

35 Assembly of an auto engineer cradle (Gunther et al., 1983)

53 Assembly of Hot Tank (Hahn, 1972)

70 Electronic Industry (Tonge, 1960)

89 Assembly of Refrigerator (Lutz, 1974)

111 Mixed Assembly Line (Arcus, 1965)

148 Assembly of small Utility Vehicles (Bartholdi, 1993)

297 Assembly of an Engine (Scholl, 1999)

The solution to the RALB problem includes an attempt for optimal assignment of

robots to line stations and a balanced distribution of work between different stations.

The results obtained by evaluating 32 test problems for the objective of minimizing

cycle time in a straight robotic assembly line balancing (RALB-2) problems are

presented in Table 5.14. Column I shows the problem number. Column II shows the

task size of the problems evaluated and Column III shows the number of

workstations/robots for each problem. Column IV shows the WEST ratio of the

problem (explained in the next section) and V shows the cycle time for the 32 test

problems, Column VI show computational time and Column VII shows the modified

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 81

cycle time for hGA algorithm. Results obtained from Cplex (optimization solver) are

presented in Column VIII and IX. Column X and XI shows the cycle time and

computational time obtained using the proposed PSO for recursive allocation

procedure. Results obtained from proposed PSO for consecutive allocation procedure

is presented in Column XII and XIII.

IBM Cplex Optimization studio Version 12.6.0.0 is used to solve the problems. All

32 problems could not generate solution using Cplex. Since, the objective function of

the formulation for this problem is non-linear and hence it is hard for traditional exact

optimization techniques to solve the problems. Cplex could generate the solutions for

the first fourteen problems and the optimization solver displays an error message as,

‘Search Space Exceeded’. Results obtained by the proposed algorithms are compared

with results obtained using hybrid GA (upper bound for the problem) (Gao et al., 2009)

and Cplex solver solutions. The non-deterministic nature of the algorithm and problem

makes it necessary to run same problem multiple times. Each problem is run ten times

and most of the runs converged to the same solution for each of the problems. It is

found that the results of PSO using both allocation procedures are very close to Cplex

solutions and PSO with Consecutive procedure yields better results when compared to

PSO with recursive and hGA.

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 82

Table 5.14 Results of the 32 straight RALB-2 problems

P
ro

b
le

m
 N

u
m

b
er

N
o

.
o

f
T

a
sk

s

W
o

rk
 S

ta
ti

o
n

/R
o

b
o

ts

W
E

S
T

 R
a

ti
o

Hybrid GA

(Gao et al., 2009)

Cplex

PSO-

Recursive

Algorithm

PSO-

Consecutive

Algorithm

C
y

cl
e

T
im

e

C
P

U
 T

im
e

(s
ec

)

M
o

d
if

ie
d

C
P

U
 T

im
e

(s
ec

)

C
y

cl
e

T
im

e

C
P

U
 T

im
e

(s
ec

)

C
y

cl
e

T
im

e

C
P

U
 T

im
e

(s
ec

)

C
y

cl
e

T
im

e

C
P

U
 T

im
e

(s
ec

)

1

25

3 8.33 503 5 2 503 0.5 503 3.5 503 2.65

2 4 6.25 327 5 2 292 8.85 327 3.9 327 2.9

3 6 4.17 213 6 2 200 463 208 4.2 208 3.0

4 9 2.78 123 7 3 109 4002 114 4.8 114 3.25

5

35

4 8.75 449 12 5 341 59 347 7.7 344 4.9

6 5 7.00 344 16 7 329 562 338 7.9 336 5.4

7 7 5.00 222 22 9 201 3672 219 7.9 214 6.9

8 12 2.92 113 30 12 106 3620 115 8.3 105 8.5

9

53

5 10.60 554 17 7 449 72 538 22.0 454 13.1

10 7 7.57 320 21 9 283 3680 304 22.4 301 14.9

11 10 5.30 230 27 11 221 3627 228 22.7 224 16.2

12 14 3.39 162 35 14 142 3729 153 22.9 146 19.9

13

70

7 10.00 449 40 16 394 4007 448 46.4 431 29.0

14 10 7.00 272 53 22 245 3700 266 47.3 269 32.5

15 14 5.00 204 64 26 N/A N/A 204 47.8 200 39.1

16 19 3.68 154 82 33 N/A N/A 153 48.2 147 43.4

17

89

8 11.13 494 46 19 N/A N/A 479 88.7 463 41.9

18 12 7.42 370 58 24 N/A N/A 345 89.4 355 50.4

19 16 5.56 236 71 29 N/A N/A 234 92.1 234 59.6

20 21 4.24 205 89 36 N/A N/A 201 93.2 176 75.3

21

111

9 12.33 557 157 64 N/A N/A 551 167.2 526 82.3

22 13 8.54 319 192 78 N/A N/A 316 167.6 316 89.5

23 17 6.53 257 229 93 N/A N/A 257 168.2 254 98.5

24 22 5.05 192 271 110 N/A N/A 190 171.2 185 110.8

25

148

10 14.80 600 240 98 N/A N/A 593 381.1 603 179.8

26 14 10.57 427 297 121 N/A N/A 426 385.5 420 205.5

27 21 7.05 300 332 135 N/A N/A 299 390.4 277 215.9

28 29 5.10 202 417 169 N/A N/A 200 490.9 190 230.3

29

297

19 15.63 646 824 335 N/A N/A 767 1123.5 608 891.8

30 29 10.24 430 907 369 N/A N/A 451 1235.3 397 997.6

31 38 7.82 344 996 405 N/A N/A 350 1365.2 295 1269.9

32 50 5.94 256 1103 448 N/A N/A 257 1392.3 245 1390.8

Results in Table 5.14 shows that the proposed approaches are quite efficient with

PSO algorithm to find out the best solutions for almost all data sets. Both recursive and

consecutive procedures converged to same set of solution for the first four problems.

However the proposed PSO with recursive procedure could not obtain better results for

large dataset problem (297 task problems), whereas PSO with consecutive procedure

yields better results for the entire 32 test problems.

The computational time (CPU Time) taken for PSO algorithm with recursive

allocation procedure is more when compared to PSO with consecutive allocation

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 83

procedure for all the thirty two datasets but lesser than hybrid GA for 17 out of 32

problems. Whereas, computation time for PSO with consecutive procedure is lower

than that of PSO with recursive procedure and hGA for all datasets. But PSO with

consecutive procedure takes more time for the large size datasets problems (297 task

problems). This could be due to the size of the problem and more time is taken for the

exchange procedure (local search). hGA and PSO are coded on different computers,

hence it is difficult to compare the computational times. An approximate comparison

of CPU execution times is done using Passmark Performance Test 8.0 software. The

hybrid GA (hGA) algorithm is executed on a Pentium 4 processor (2.6-GHz).The

proposed PSO algorithms are coded in C++ and are tested on Intel core i5 processor

(2.3 GHz). Using the Passmark Performance Test 8.0 software, the factor for the

computer used to solve PSO algorithms is fixed to 1 and for the computer used to solve

hGA is found to be 0.406. Since there are too many factors affecting the CPU times it

is difficult to do a fair comparison. In Table 5.14, column VII gives the modified CPU

time of the average best solution computational time. From the table it is found that

modified CPU time for hGA is lower than that of the proposed algorithms for most of

the datasets. This could be due to large solution space and the local exchange procedure

used. However for the proposed algorithms, quality of the solution is given importance

compared to the computational time. Figure 5.20 shows that the average CPU time for

the proposed PSO procedures are comparable to hGA for the problems up to 111 task

problems. Average CPU times for the proposed PSO procedures are comparable to hGA

for the problems up to 111 task problems. Table 5.15 shows the percentage deviation

for both PSO procedures from the benchmark results. It is found that recursive

allocation procedure with PSO is able to produce results with an average reduction of

1.35% and PSO with consecutive allocation procedure performs well and reduces the

objective function with an average reduction of 5.55%.

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 84

Figure 5.20 Comparison of Average Computational Time

Table 5.15 Percentage Deviation of cycle time for PSO with recursive and

consecutive procedure

Problem

No:

Problem

Dataset

%

Deviation-

Recursive

%

Deviation-

Consecutive

Problem

No:

Problem

Dataset

%

Deviation-

Recursive

%

Deviation-

Consecutive

1 25-3 0 0 17 8 -3.04 -6.28

2 25-4 0 0 18 12 -6.76 -4.05

3 25-6 -2.34 -2.34 19 16 -0.85 -0.85

4 25-9 -7.32 -7.32 20 21 -1.95 -14.15

5 35-4 -22.72 -23.39 21 9 -1.08 -5.57

6 35-5 -1.74 -2.33 22 13 -0.94 -0.94

7 35-7 -1.35 -3.6 23 17 0 -1.17

8 35-12 1.77 -7.08 24 22 -1.04 -3.65

9 53-5 -2.89 -18.05 25 10 -1.17 0.5

10 53-7 -5.0 -5.94 26 14 -0.23 -1.64

11 53-10 -0.87 -2.61 27 21 -0.33 -7.67

12 53-14 -5.56 -9.88 28 29 -0.99 -5.94

13 70-7 -0.22 -4.01 29 19 18.73 -5.88

14 70-10 -2.21 -1.1 30 29 4.88 -7.67

15 70-14 0 -1.96 31 38 1.74 -14.24

16 70-19 -.0.65 -4.55 32 50 0.39 -4.3

 Average Reduction

(%)
-1.36 -5.5

5.3.3 Complexity of the problem

Computational complexity of the simple ALB is known to be a non-deterministic

polynomial time hard (NP-hard) problem (Karp, 1972). Faaland et al. (1992) stated that

the procedures which attempts to find optimal solution would have a complexity of at

least 2N. Due to the complexity of the problem, to solve problems of practical size

metaheuristic remains the only option for the researchers. Different measures are

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 85

reported in the literature which is used to show the complexity of RALB. F-ratio

proposed by Mansoor and Yadin (1971), WEST ratio proposed by Dar-El (1973) and

relative complexity proposed by Bhattacharjee and Sahu (1990) are used in this thesis

to show the complexity of RALB problems. Simple assembly line balancing problem

falls under the category of NP-hard (Gutjahr and Nemhauser, 1964). RALB problem is

further complicated with addition of different robot types. Hence, RALB is also NP-

hard.

Total nodes are to be calculated to measure the complexity of the given RALB

problem. Total nodes measures the computational time required to reach a solution,

counting the total number of nodes generated in the search process. Total number of

nodes of the problem is directly proportional to the number of iterations in the

algorithm, and hence, the computational time (Rubinovitz et al., 1993). The following

parameters were used to characterize the RALB problem complexity:

1. Assembly Flexibility- F- Ratio measures the flexibility in creating assembly

sequences developed by Mansoor and Yadin (1971) and defined as follows: Let Pij be

an element of a precedence matrix P, such that:

Then, F-ratio is calculated as follows:

where Z is the number of zeroes in P, and Na is the number of assembly tasks. F-ratio

value is therefore between zero and one. When there are no precedence constraints

between tasks (any sequence is feasible) F-ratio is zero and one when only a single

assembly sequence is feasible. Assembly tasks are often characterized by relatively low

F-ratios. Problems with eight levels of F-ratio are generated and evaluated. Figure 5.21

shows F-ratio versus Computational time for 8 problems sets for two allocation

procedures. Computational time is presented in Table 5.14. It is noted that

computational time is an increasing function of F-ratio. A high F-ratio indicates that

there are fewer alternatives for assigning tasks to workstations where as low F-ratio

gives different ways of assignment. Complexity of the line balancing problem depends

on F-ratio (Bhattacharjee and Sahu, 1990). From Figure 5.21 it is observed that

consecutive allocation procedure solves the problems in a significantly shorter time. In

 1 task precedes task is assigned to robot in station
 0, {

if i j h s
i j otherwiseP 

- 2x / (x(1))a aF Ratio Z N N 

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 86

summary, consecutive allocation procedure performs better in terms of computational

time and quality of the solution is superior.

2. WEST ratio- Defined by Dar-El (1973) measures the average number of tasks

per workstation. This measure shows the expected quality of achievable solutions and

complexity of the problem. (Gao et al., 2009) generated WEST ratios ranging from 2

to 15 to generated 32 RALB problems. For each problem, the number of workstations

is equal to the number of robots, and every task can be processed on any robot. WEST

ratio considered in this research is shown in Table 5.14.

3. Relative Complexity- R= (V-Q)/Q, where V= Computational time for the

solution of the problem whose complexity is to be measured and Q= minimum

Computational time for the set of the problems under study (Bhattacharjee and Sahu,

1990). Table 5.16 shows the relative complexity for the 32 test problems evaluated

using recursive and consecutive procedure for straight robotic assembly line. The

relative complexity significantly increases when the problem size increases for both the

procedures. However, recursive allocation procedure relative complexity is higher than

that of consecutive due to higher computational time.

Figure 5.21 F ratio vs computational time

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 87

Table 5.16 Relative Complexity of Recursive and Consecutive PSO

procedures

Problem

No:

Problem

Dataset

%

Deviation-

Recursive

%

Deviation-

Consecutive

Problem

No:

Problem

Dataset

%

Deviation-

Recursive

%

Deviation-

Consecutive

1 25-3 0 0 17 89-8 25.34 15.811

2 25-4 1.11 1.09 18 89-12 25.54 19.01

3 25-6 1.20 1.13 19 89-16 26.31 22.49

4 25-9 1.37 1.22 20 89-21 26.62 28.41

5 35-4 2.2 1.84 21 111-9 47.77 31.05

6 35-5 2.25 2.03 22 111-13 47.88 33.77

7 35-7 2.25 2.60 23 111-17 48.05 37.16

8 35-12 2.37 3.20 24 111-22 48.91 41.811

9 53-5 6.28 4.94 25 148-10 108.88 67.84

10 53-7 6.40 5.62 26 148-14 110.142 77.54

11 53-10 6.48 6.11 27 148-21 111.54 81.47

12 53-14 6.54 7.50 28 148-29 140.25 86.90

13 70-7 13.25 10.94 29 297-19 321.0 336.52

14 70-10 13.51 12.26 30 297-29 352.94 376.45

15 70-14 13.65 14.75 31 297-38 390.05 479.20

16 70-19 13.77 16.37 32 297-50 397.8 524.83

In summary, it is noteworthy that the proposed consecutive allocation procedure

was giving promising results in terms of quality of solution and computational time.

Hence, proposed PSO variants and hybrid PSO algorithms for RALB are solved only

using consecutive allocation procedure. Following sections presents the details of

parameters used for the PSO variants and hybrid models.

5.3.4 Parametric study on PSO variants and hybrid PSO models

The performance of the PSO variants and hybrid PSO models are generally

affected by the use of parameters. Extensive experiments and tuning are conducted to

find the optimal parameters on all the variants. Three problems of different

characteristics are chosen to find the parameters which yielded best solution. Different

combinations of the parameters are tested until the best combination is achieved.

Solution quality is given importance compared to the computational time in selecting

the parameters chosen for all the variants are explained in this section

5.3.4.1 Parameters for PSO –W and PSO-C

Inertia weight w, in Equation 5.18, is considered to be critical for the PSO

performance. Shi and Eberhart (1998) initially investigated the characteristics when the

w values range between 0 and 1. Large value of inertia weight helps to search in the

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 88

new areas while small inertia weight will facilitate local search i.e. searching in the

present area. According to Eberhart and Shi (2000), the optimal strategy is to set w to

0.9 initially and then reduce it linearly to 0.4. In this research, inertia weight is set 0.6

for all the generations. Motivation of this concept to select a value in the mid-range is

to explore the solution space at an earlier stage and to converge to the solution at faster

speed. Three different problems of different characteristics are tested with different

values of inertia weight and it is found that when inertia weight was set as 0.6, the best

solution is achieved. Figure 5.22 shows the performance variation when different

ranges of inertia weight are tested. When inertia weight is set as 0.6, the procedure finds

the best solution. For c1 and c2 (acceleration coefficients), a set of trial and error run

with different range is performed for PSO-W. Table 5.17 shows the set of values tested

for the selection of c1 and c2. After conducting experiments with different combination

of parameters it is found that the best solution is obtained when c1=1 and c2=2 (Group

B). Figure 5.23 shows the performance of PSO-W variant based on the acceleration

coefficients. Since the original PSO was tested with 25 generations, PSO-W was tested

with 25 generations and results are reported based on these parameters.

Figure 5.22 Performance variations when different inertia weights are used for

PSO-W variant

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 89

Figure 5.23 Performance variations when different groups of acceleration

coefficients are used for PSO-W variant

Table 5.17 Selection of c1 and c2

Acceleration Coefficients

Group c1 c2

A 1 1

B 1 1

C 1 2

D 1 2

Typically, when PSO-C method is used, is set to 4.1 and the χ is thus 0.729.

Proper fine-tuning of the parameters c1 and c2 in Eq. (18) may result in faster

convergence of the algorithm and alleviation of the local minima. The parameters U1

and U2 are used to maintain the diversity of the population and are randomly generated

values between zero and one and it varies iteratively. Ratnaweera et al. (2004) reported

that it will be better to choose a larger cognitive parameter, c1, than a social parameter,

c2, but with c1 + c2 ≤ 4. Hence in this research, c1 is set to 2.4 and c2 to be 1.7. PSO-C

is also tested with 25 iterations for all the problems.

5.3.4.2 Parameters for PSO –TVIW and PSO-TVAC

Linearly decreasing inertia weight over the generation has found significant

improvement in performance of PSO (Shi and Eberhart, 1998). Parameters for this

variant are chosen based on the parameters reported in (Marinakis and Marinaki, 2010).

Parameters chosen for PSO-TVIW are as follows: wmax=0.9, wmin=0.4. c1 and c2 chosen



Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 90

for this variant is same as the one chosen for PSO-W (c1=1 and c2=2). The maximum

number of iteration is set to 25 (maxiter).

For PSO-TVAC, parameters are chosen based on the parameters reported in

(Arumugam, 2008). Parameters chosen for this variant are as follows: c1i=2.5, c1f=0.5,

c2i=0.5, c2f =2.5. Based on the values calculated for c1 and c2 using Equation 5.22 and

5.23 in all iterations, constriction factor is calculated and velocity is updated by using

Equation 5.19. For PSO-TVAC variant the maximum number of iteration is set 25.

5.3.4.3 Parameters for HPSO-W and HPSO-C

Different combinations of parameters are tested for HPSO-W. The inertia weight

w is chosen as 0.6. c1 and c2 are also varied from 1 to 2. Best combination for c1 and c2

are 1 and 2 same as that of PSO-W. Quality of solution is given importance compared

to the computational time. This variant of PSO is an extension of PSO-W, where PSO-

W is incorporated with breeding concept of GA. Total number of iterations selected is

25.

PSO-C incorporated with breeding is the variation in this variant, HPSO-C. Most

important parameter in this method is the constriction factor. Same constriction factor

used for PSO-C is used for this variant. To set the constriction factor as 0.729, c1 is set

to 2.4 and c2 to be 1.7. Problems are tested for 25 iterations same as PSO-C.

5.3.4.4 Parameters for hybrid CS-PSO

The parameter setting of hybrid CS-PSO algorithm is described in this section.

Fraction of worst nests chosen (pa) is fixed as a constant for all generations in the

traditional cuckoo search algorithm. Dynamic pa is incorporated in this hybrid

algorithm. The probability is dynamically updated (Valian et al., 2011) using Equation

5.28

 (5.28)

Where N and gn are the number of total iterations and the current iteration

respectively.

 It is found that pamax =0.8 and pamin=0.1 generates better results. The population

size, acceleration coefficients are the same as explained in Section 5.3.1. The proposed

method is terminated if the iteration approaches a predefined criteria, usually a

)()(minmaxmax aaaa pp
N

gn
pgnp 

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 91

sufficiently good fitness or in this case, a predefined maximum number of iterations

(generations) is used. When the number of iterations was set to 25, quality of solution

was not satisfactory, hence different stopping conditions are tested such as 5, 10, 15,

25, 30 and 35 to choose the best iteration. Best solution is obtained when number of

generation is 30. It is observed that after 30th iteration the procedure produces the same

solution for most of the runs. Figure 5.24 shows the performance of algorithm based on

the number of generations for three problems (35-12, 70-19, 148-29).

Figure 5.24 Performance of hybrid CS-PSO in terms of stopping condition

5.3.5 Computational study on PSO variants and Hybrid PSO models

All the four variants and hybrid models of PSO are tested on the 32 benchmark

problems. Detailed results obtained using four variants and Hybrid PSO models are

presented in this section. Table 5.19 reports the detailed comparison of the four variants

(Set I) for the RALB problems where the variants are developed based on variations in

the velocity update equation and Table 5.20 reports the detailed comparison of the

hybrid models of PSO (Set II) of RALB problems which are developed by hybridizing

PSO with two other metaheuristic algorithms for the objective of minimizing cycle time

in a robotic assembly line.

The results obtained by evaluating 32 test problems are presented in Table 5.19

and Table 5.20. Column I shows the problem number. Column II shows the task size

of the problems evaluated and Column III shows the number of workstations/robots for

each problem. Column IV shows the cycle time for the 32 test problems, Column V

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 92

shows the modified cycle time for hGA algorithm. Results obtained from four variants

of PSO are presented in the remaining columns. Computational time and percentage

deviation in the results obtained are also presented. The first five columns are same for

Table 5.20 and this table presents the details of the results obtained for the hybridized

versions of PSO.

As reported earlier in Section 5.3.3, proposed RALB-2 is solved using the

optimization solver Cplex. The results obtained with PSO variants and hybrid PSO

models are compared with the Cplex solution. It is found that the results of all PSO

variants and hybrid models are very close to Cplex solutions and it could be clearly

observed that hybrid CS-PSO produces better results when compared to other variants.

Detailed analysis on the variation in the objective function value (cycle time) when

compared with the benchmark result reported by (Gao et al., 2009) is presented in the

tables. It could be observed that all proposed PSO algorithms attained the same solution

for the first three problems. Among all the proposed PSO algorithms, hybrid CS-PSO

performs better in terms of quality of the solution. Average percentage deviation of the

results obtained using PSO-W when compared with the benchmark data is found to be

3.0% for the thirty two problems, for PSO-C the average percentage deviation is higher

when compared to PSO-W and it is calculated as 5.7%. Average percentage deviation

for PSO-TVIW and PSO-TVAC is almost same and it is found to be 6.4%. For the

hybridized PSO variants, the average deviation is found to be higher when compared

with the other four variants. Average percentage deviation found for HPSO-W is 6.5%,

for HPSO-C average percentage deviation in the objective function evaluated is 7.5%

and for hybrid CS-PSO it is found to be 7.6%. So it can be concluded that hybridizing

algorithms helps in improving the quality of the solution compared to other variants.

The good performance of proposed hybrid CS-PSO is due to the implementation of

local search schemes and different methods adopted to create new solution in the search

space.

Quality of the solution is given importance compared to the computational time in

this thesis. Table 5.18 and 5.19 also shows the computational time taken by all the

proposed PSO algorithms. The proposed PSO variants to solve RALB-2 provide good

quality solution in practical time. And it is observed that HPSO-C takes more time when

compared to other variants. Among the hybridized variants the computational time for

hybrid CS-PSO is lesser than HPSO-C and not much of difference when compared with

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 93

HPSO-W. HPSO-C variant needs to spend more time on selection of good quality

solutions, local search and crossover operation. Results show that CPU times of the

proposed hybrid PSO models are comparable to hGA for the problems up to 111 task

problems.

In order to demonstrate the performance of the proposed PSO approaches, a real

world problem from an automobile industry is chosen. The final assembly of an engine

cradle is being undertaken (Gunther et al., 1983). Assembly consists of 35 tasks with 5

workstations and 5 robots to perform these tasks. Precedence relations and processing

times of 35 tasks by 5 robots are presented in Appendix 1. All the proposed approaches

of PSO are compared with the upper bound of hybrid GA. Table 5.18 shows the station

and robot assignment with their cycle time. Amongst the proposed approaches it is

analyzed that hybrid CS-PSO algorithm produces better results for RALB when

compared to other proposed approaches. Cycle time obtained for hybrid CS-PSO is 332

and all the cycle time obtained by other proposed PSO algorithms are better than the

result obtained using hybrid GA of 344.

5.3.6 Summary of the findings on RALB-2 problem study

In this section, a study on robotic assembly line balancing (RALB) problem with

an objective of minimizing cycle time is considered. Optimization of cycle time is an

important problem in a manufacturing industry. RALB problems falls under the

category of NP-hard, hence an efficient metaheuristic algorithm (PSO) and its variants

are proposed to solve the problem. Two heuristics (recursive and consecutive) are used

to optimally allocate tasks to the workstations and assign the best fit robot to perform

the tasks allocated. The heuristic is used to evaluate the cycle time of the balanced

assembly line. Two heuristics are solved on benchmark datasets using standard PSO

and the performance the proposed algorithms are compared with the benchmark results

reported in the literature. Local exchange procedure is incorporated to improve the

quality of the solution obtained through these methods and to escape from the local

optima. Simulation experiments have been carried out over the thirty two bench mark

data sets available in the literature. IBM Cplex Optimization studio Version 12.6.0.0 is

also used to solve the problems. Cplex could only solve the first fourteen problems from

the benchmark datasets. From the computational study conducted, it is concluded that

consecutive allocation procedure performs better in terms of quality of the solution.

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 94

Hence, consecutive allocation procedure is solved using variants of PSO and hybrid

PSO models. It is found that the results of PSO variants and hybrid PSO models are

very close to Cplex solutions which show the effectiveness of the proposed algorithms.

Computational results show that hybrid CS-PSO performs better among all the other

proposed approaches when compared with benchmark results. However, computational

time for hybrid CS-PSO variant is high for large size datasets but quality of solution is

given importance compared to the computational time.

 Table 5.18 Solutions Obtained for RALB-2 problem for 35 tasks by 5 robots

Hybrid GA Sequence (Gao et. al 2009)

1 5 10 6 7 8 14 12 17 18 19 9 20 15 16 21 22 23 24 13

25 26 27 2 3 4 30 34 31 32 11 28 33 35 29

Station Start points: 1 14 20 25 30

Robot Assignment: 4 3 1 5 2

Cycle Time: 344

Standard PSO Sequence-Recursive:

1 5 17 10 12 2 3 6 7 14 15 16 18 19 20 21 25 22 26 30

31 8 9 32 23 24 27 34 13 4 11 28 33 35 29

Station Split points: 1 3 19 31 34

Robot Assignment: 2 2 4 1 2

Cycle Time: 338

Standard PSO Sequence-Consecutive:

 1 10 12 17 2 3 4 5 6 7 18 19 14 15 16 20 21 25 26

22 23 8 9 13 24 27 34 11 30 31 32 33 28 29 35

Station Start points: 1 4 14 22 34

Robot Assignment: 2 2 4 1 2

Cycle Time:336

PSO-W Sequence:

 1 10 2 17 12 3 5 6 7 18 19 20 14 15 8 9 13 16 21 22 30

31 23 25 24 26 27 34 32 4 11 28 33 29 35

Station Start points: 1 6 15 31 34

Robot Assignment: 2 2 1 1 2

Cycle Time: 343

PSO-C Sequence:

1 17 10 12 5 6 7 2 14 15 16 18 19 3 4 20 21 22 23 30

24 31 25 26 27 8 9 13 32 11 28 33 35 34 29

Station Start points: 1 7 3 24 9

Robot Assignment: 2 2 4 1 2

Cycle Time: 341

PSO-TVIW Sequence

: 1 2 17 12 10 5 6 7 18 19 14 15 16 20 21 25 26 22 23

24 27 30 8 9 13 31 32 34 3 4 11 28 33 35 29

Station Start points: 1 6 16 24 34

Robot Assignment: 2 2 4 1 2

Cycle Time: 341

PSO-TVAC Sequence:

1 10 12 2 17 5 6 7 14 15 18 19 20 8 16 21 30 22 23 25

26 3 4 24 27 9 3 1 32 13 34 11 28 33 35 29

Station Start points: 1 6 20 25 31

Robot Assignment: 2 2 1 4 2

Cycle Time: 338

 HPSO-W Sequence:

 1 2 17 10 5 12 3 4 6 7 18 19 20 14 15 16 21 25 26 22 8

23 24 30 31 27 34 9 13 32 11 33 28 29 35

Station Start points: 1 3 20 22 34

Robot Assignment: 2 2 4 1 2

Cycle Time: 336

HPSO-C Sequence:

1 17 5 6 7 10 14 15 16 12 18 19 20 2 3 4 21 30 25 22

23 24 26 27 8 9 13 11 31 32 33 34 28 35 29

Station Start points: 1 14 2 22 13

Robot Assignment: 4 2 2 1 2

Cycle Time: 334

Hybrid CS-PSO Sequence:

110 17 5 6 8 2 3 7 12 18 14 15 16 19 20 21 25 26 22 23

4 9 24 27 30 31 32 13 34 11 33 28 29 35

Station Start points: 1 2 15 22 31

Robot Assignment: 4 2 4 1 2

Cycle Time: 332

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 95

Table 5.19 Results obtained by PSO variants for RALB-2 problems- Set I

1 25-3 503 2 503 2.3 0 503 2.9 0 503 3.2 0 503 3.2 0

2 25-4 327 2 327 2.4 0 327 3 0 327 3 0 327 3.1 0

3 25-6 213 2 200 2.7 6.1 200 3.5 6.1 200 3.8 6.1 200 4.5 6.1

4 25-9 123 3 115 3 6.5 114 3.8 7.31 110 4.3 10.56 110 5.1 10.6

5 35-4 449 5 376 3.7 16.26 342 3.9 23.83 341 3.9 24.05 342 4.1 23.83

6 35-5 344 7 343 4 0.29 341 4.5 0.87 341 5.2 0.87 338 6.8 1.74

7 35-7 222 9 216 7 2.7 211 7.2 4.95 211 7.2 4.95 212 7.4 4.5

8 35-12 113 12 104 6.2 7.96 103 7.5 8.84 103 7.9 8.84 103 8.7 8.84

9 53-5 554 7 512 13.3 7.58 453 13.8 18.23 454 14 18.05 453 14.2 18.23

10 53-7 320 9 324 14.5 -1.25 294 15.2 8.125 293 15.8 8.43 295 16.3 7.81

11 53-10 230 11 224 16.8 2.61 227 18.3 1.3 231 18.5 -0.43 234 18.6 -1.73

12 53-14 162 14 146 18.4 9.88 144 19.2 11.1 142 19.2 12.34 145 19.8 10.49

13 70-7 449 16 447 28.5 0.45 444 30.2 1.11 429 30.5 4.45 429 29.5 4.45

14 70-10 272 22 261 28.8 4.04 259 30.6 4.77 258 30.8 5.14 263 29.8 3.3

15 70-14 204 26 199 36 2.45 197 37.2 3.43 195 37.6 4.41 195 37.3 4.41

16 70-19 154 33 144 50.2 6.49 142 51.5 7.79 146 51.8 5.19 143 52 7.14

17 89-8 494 19 461 50.9 6.68 463 51.8 6.27 459 52.2 7.08 468 52.2 5.26

18 89-12 370 24 354 52.1 4.32 315 53.5 14.86 314 54.2 15.13 311 55.1 15.94

19 89-16 236 29 247 56.6 -4.66 231 58.2 2.11 221 58.5 6.35 233 60.2 1.27

20 89-21 205 36 171 62.2 16.59 177 64.2 13.65 177 65.1 13.65 173 73.2 15.6

21 111-9 557 64 529 87.4 5.03 528 90.2 5.2 535 91.8 3.94 528 92.6 5.2

22 111-13 319 78 321 93.1 -0.63 347 94.8 -8.77 322 97.5 -0.94 322 100.9 -0.94

23 111-17 257 93 246 93.6 4.28 250 96.6 2.72 253 96.8 1.55 249 98.9 3.11

24 111-22 192 110 201 98.2 -4.69 203 108.5 -5.72 203 110.2 -5.72 189 110.2 1.56

25 148-10 600 98 628 195.2 -4.67 585 200.5 2.5 603 200.8 -0.5 582 201.2 3

26 148-14 427 121 412 206.1 3.51 417 206.5 2.34 421 207.2 1.405 431 207.6 -0.93

27 148-21 300 135 292 205.3 2.67 272 208.6 9.33 273 210.8 9 284 218.5 5.33

28 148-29 202 169 203 215.8 -0.5 187 220.8 7.42 189 222.3 6.43 189 225.5 6.43

29 297-19 646 335 692 1123.5 -7.12 676 1358.2 -4.64 646 1380.4 0 635 1413.2 1.7

30 297-29 430 369 428 1135.9 0.47 399 1438.6 7.2 392 1438.6 8.83 400 1456.2 6.97

31 297-38 344 405 328 1140.2 4.65 294 1440.4 14.53 294 1440.4 14.53 293 1450.6 14.82

32 297-50 256 448 256 1148.7 0 234 1458.8 8.59 225 1453.8 12.1 225 1458.8 12.1

Avg % age

Dev.

Avg % age

Dev.3.1% 5.8% 6.4% 6.4%

M
o

d
if

ie
d

 C
P

U
 T

im
e
 (

se
c
)

C
P

U
 T

im
e
 (

se
c
)

C
P

U
 T

im
e
 (

se
c
)

C
P

U
 T

im
e
 (

se
c
)

C
P

U
 T

im
e
 (

se
c
)

Avg % age

Dev.

Avg % age

Dev.

%
 a

g
e
 d

e
v

ia
ti

o
n

PSO-TVIW PSO-TVAC

C
y

c
le

 T
im

e

C
y

c
le

 T
im

e

%
 a

g
e
 d

e
v

ia
ti

o
n

C
y

c
le

 T
im

e

%
 a

g
e
 d

e
v

ia
ti

o
n

C
y

c
le

 T
im

e

%
 a

g
e
 d

e
v

ia
ti

o
n

C
y

c
le

 T
im

e

P
r
o

b
le

m
 N

u
m

b
e
r

D
a

ta
se

ts

hGA (Gao et

al., 2009)
PSO-W PSO-C

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 96

Table 5.20 Results obtained by hybrid PSO models for RALB-2 problems-Set II

1 25-3 503 2 503 3.4 0 503 3.6 0 503 3.6 0

2 25-4 327 2 327 3.3 0 327 3.5 0 327 3.9 0

3 25-6 213 2 200 4.2 6.1 200 4.8 6.1 200 4.2 6.1

4 25-9 123 3 112 4.9 8.94 110 5.2 10.56 110 4.5 10.56

5 35-4 449 5 342 4.3 23.83 342 4.5 23.83 341 5.2 24.05

6 35-5 344 7 336 6.8 2.32 334 7.1 2.9 332 6.3 3.48

7 35-7 222 9 214 7 3.6 211 7.2 4.95 211 6.9 4.95

8 35-12 113 12 103 8.5 8.84 103 8.9 8.84 103 8.9 8.84

9 53-5 554 7 452 13.6 18.41 450 13.6 18.77 449 13.5 18.95

10 53-7 320 9 295 15.1 7.81 294 15.1 8.12 294 16.8 8.12

11 53-10 230 11 234 17.5 -1.73 234 17.6 -1.73 221 17.9 3.91

12 53-14 162 14 144 19.4 11.11 143 19.6 11.72 142 20 12.34

13 70-7 449 16 430 29.8 4.23 430 30.8 4.23 430 32.9 4.23

14 70-10 272 22 262 29.6 3.67 256 31.2 5.88 264 35.8 2.94

15 70-14 204 26 195 37.4 4.41 194 38.7 4.9 194 43.3 4.9

16 70-19 154 33 141 51.6 8.44 140 51.9 9.09 140 47.8 9.09

17 89-8 494 19 460 54.5 6.88 458 56.1 7.28 460 45.7 6.88

18 89-12 370 24 314 56.2 15.13 308 58.8 16.75 320 51.6 13.51

19 89-16 236 29 223 62.3 5.5 222 65.3 5.93 219 63.3 7.2

20 89-21 205 36 172 82.3 16.09 170 85.2 17.07 170 80.5 17.07

21 111-9 557 64 524 93.2 5.92 524 94.4 5.92 523 85.5 6.1

22 111-13 319 78 322 98.2 -0.94 322 98.4 -0.94 321 92.5 -0.62

23 111-17 257 93 247 99.2 3.89 244 104.4 5.05 240 107.4 6.61

24 111-22 192 110 184 108.8 4.16 182 110.5 5.2 182 114.5 5.2

25 148-10 600 98 585 201.5 2.5 580 202.5 3.33 593 183.5 1.16

26 148-14 427 121 421 207.8 1.4 416 208.5 2.57 419 207.9 1.87

27 148-21 300 135 285 220.9 5 274 222.4 8.66 273 219.5 9

28 148-29 202 169 188 228.1 6.93 187 229.1 7.42 189 242.2 6.43

29 297-19 646 335 606 1423.7 6.19 597 1435.5 7.58 594 1118.3 8.04

30 297-29 430 369 411 1460.2 4.41 396 1468.2 7.9 394 1331.3 8.37

31 297-38 344 405 303 1465.8 11.91 295 1475.6 14.24 305 1593.5 11.33

32 297-50 256 448 244 1472.9 4.68 232 1488.2 9.37 221 1664.3 13.67

Avg % age

Dev.6.5% 7.5% 7.6%

M
o

d
if

ie
d

 C
P

U
 T

im
e
 (

se
c
)

C
P

U
 T

im
e
 (

se
c
)

C
P

U
 T

im
e
 (

se
c
)

C
P

U
 T

im
e
 (

se
c
)

Avg % age

Dev.

Avg % age

Dev.

Hybrid CS-PSO

C
y

c
le

 T
im

e

C
y

c
le

 T
im

e

%
 a

g
e
 d

e
v

ia
ti

o
n

C
y

c
le

 T
im

e

%
 a

g
e
 d

e
v

ia
ti

o
n

C
y

c
le

 T
im

e

%
 a

g
e
 d

e
v

ia
ti

o
n

P
r
o

b
le

m
 N

u
m

b
e
r

D
a

ta
se

ts

hGA (Gao et

al., 2009)
HPSO-W HPSO-C

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 97

 U- Shaped RALB problem

Assembly lines are classified mainly into two types based on the nature of flow:

straight (traditional) assembly lines with single and multi/mixed products and U-shaped

assembly lines (also called U-lines) with single and multi/mixed products.

Implementation of U-shaped layout helps the manufacturer to increase or decrease the

number of operators based on the change in demand (Aigbedo and Monden, 1997).

Distinguishing feature of U-shaped assembly lines is that it allows task to be assigned

to the workstations after all its predecessor or successor are assigned to the earlier or

same workstation. This feature of U-shaped assembly line balancing problems allows

for the forward and backward assignment of tasks to workstations (Kara, 2008). U-

shaped layout helps to reduce the cycle time and cost of assembly which attracts

different industries to implement this system (Kubota, 2011, Yalaoui et al., 2013).

U-shaped layout was introduced at a subsidiary factory of Toyota Motor Corp.

Implementation helped the company to save the capital expenditure and reduce the

production time. By implementing U-shaped layout more than one task can be

performed at once on a vehicle, such as installing the engine in the front while adding

underbody parts in the back. In automobile assembly, vehicles are carried on a conveyor

belt and the length of the assembly line could be reduced to one-third of the length when

compared to traditional assembly lines. The company could save up to 40 percent in

their total capital expenditure by implementing U-shaped assembly line. (Kubota,

2011).

The largest integrated moving assembly line the world was introduced by Boeing

in 2010 after implementing U-shaped assembly line in their manufacturing industry

(Fetters-Walp, 2010). New record rate of assembling 8.3 aircraft per month or 100 per

year could be achieved by Boeing after implementing U-shaped assembly layout. The

company could reduce the flow time and production cost. By implementing U-shaped

assembly lines an easier work environment could be created for the operators (Boeing,

2014).

Robotic assembly lines are widely used in these industries. RALB problem is the

generalized form of tradition assembly line balancing problem. Few researchers have

proposed algorithms to solve the problem of this nature. However, there is no research

undertaken in the field of robotic assembly line-balancing problem with a U-shaped

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 98

configuration (RUALB). This thesis mainly aims to propose efficient metaheuristic

based search algorithm to solve U-shaped robotic assembly line balancing (RUALB)

problem. The main objective of the algorithm is to minimize the cycle time when the

number of workstations are fixed in a U-shaped assembly line layout. Following

sections present the details of U-shaped robotic assembly line balancing and algorithms

used to solve the problem.

5.4.1 PSO to solve RUALB problem

 It is already proven by many researchers that simple assembly line balancing

problem is NP-hard (Gutjahr and Nemhauser, 1964). RUALB problem is further

complicated with addition of robots and U-shaped configuration. Hence, RUALB is

also NP-hard. Different metaheuristics are used to solve problems of this nature. In this

research, PSO algorithm which has achieved great success in optimizing engineering

problems (Guo et al., 2013)are used to solve RUALB problem. As explained in the

previous section, PSO is a population-based stochastic optimization technique

PSO is developed based on the social behavior of organisms. Basic advantages of

using particle swarm optimization algorithm to solve this problem (Lee and Park, 2006,

Hu et al., 2014) are: simple to implement when compared to other evolutionary

algorithms, there are no overlapping and mutation calculation and very less parameters

to fine tune.

The pragmatic issues in using or any other metaheuristics algorithms are to find

optimal control parameters. PSO parameters optimized in this thesis are initial

population, acceleration coefficients and stopping condition. The experimental studies

followed to obtain the optimal parameters are explained in Section 5.5.5.

5.4.2 Initial Population and Initial velocity

PSO algorithms start with an initial population and initial velocity. The same

procedure adopted in Section 5.1.1 to solve straight robotic assembly line is used for

solving RUALB problem. However the fitness evaluation procedure is different from

the one presented for RALB. A new fitness evaluation method is developed for solving

RUALB problem with an objective of minimizing cycle time in a U-shaped robotic

assembly line. Section 5.4.3 presents the details on how the cycle time (objective

function) is evaluated.

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 99

5.4.3 Fitness Evaluation in RUALB (Task and robot allocation)

A consecutive heuristic procedure proposed by Levitin et al. (2006) for straight

robotic assembly line is adopted in this thesis. This heuristic allocates tasks and robots

to workstations with an objective of minimizing the cycle time of the assembly line. An

efficient method is developed for allocating tasks and robots to workstations in a U-

shaped robotic assembly line.

Procedure starts with an initial cycle time of the assembly line, C0. Major objective

of the procedure is to allocate maximum number of tasks at each workstation. Tasks

are allocated to the workstation in U-shaped assembly line by moving forward and

backward through the precedence diagram in contrast to a typical forward move in the

traditional assembly systems. Best robots to perform the tasks allotted to the

workstations are checked for allotment. C0 is incremented by ‘one’ if certain tasks

cannot be assigned within the given initial C0 value and this procedure continues until

all the tasks are assigned to all the workstations. This section presents the stepwise

procedure adopted for finding out the cycle time of the U-shaped robotic assembly line.

Step 1: C0, the initial value of cycle time is the mean of the minimum performance time

of robots for the tasks.

Initial assembly line time (5.29)

The following feasible sequence of tasks (Figure 5.25) is considered for

illustration. Initial C0 is calculated using the robot performance times as shown in Table

5.2.

1 3 2 4 5 6 7 9 8 10 11

Figure 5.25 Example sequence considered for illustration

The sequence meets the precedence constraints. Initial C0 for the example is found

out to be 109 where 37,42,38,40,25,65,50,34,33,41,38 are the minimum robot task

times (refer Table 5.2).

C0= (37+42+38+40+25+65+40+34+33+41+38)/4=108.25

Step 2: First workstation is opened and tasks are allocated in such a way the procedure

chooses the tasks from either side of the sequence and checks if one or more robot can

0
1

1

[min /]
a

r

N

ih w
i N

j

C t N
 



 

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 100

perform the allocated tasks within C0. The set of assignable tasks are determined by all

those tasks whose predecessors or successors have already been assigned. Tasks are

allocated to workstations by moving forward and backward through the precedence

diagram.

 Each workstation‘s’ has a set of preferred/ allotted robots H which is defined as

follows:

 for (5.30)

Here m (h) is the maximal number of tasks a robot h can perform in the given

sequence sq during a time lesser than C0.

 (5.31)

Next, it defines the robot to be assigned to the workstation s as:

 (5.32)

Step 3: The start position of the next stations (p1s+1) is calculated,

 (5.33)

Repeat Step 2 and 3, until all tasks are assigned to given number of workstations.

Step 4: By repeating Steps 2 and 3, if there are still some more tasks left to be assigned

to the workstations, C0 is incremented by ‘one’ and steps 2 to 3 are repeated until all

tasks are allotted to the given number of workstations.

Step 5: Best fit robot is assigned to each workstation. Best fit robot is determined based

on the objective of minimizing cycle time. Table 5.21 shows how the best fit robot is

selected for the example shown in Figure 5.27. Three tasks (1, 11, and 10) are assigned

in the workstation 1 and Robot 2 is assigned to this workstation as explained in Table

5.21. Robot 2 performs the assigned tasks in lower time compared to other robots.

Hence, Robot 2 is the best fit robot for Workstation 1. The total robot task time for each

robot is calculated using Table 5.2.

, () (),r H if m r m h  r
Nh 1

1 () 1 () 1

, () 0 ,

1 1

() ()
p m h p m hs s

s h sq r h sq

r p r ps s

T h t C t r
  

 

   

() , () ()
s s

h s r if T r T h h H   

11 1 1 (()) 1s s sp pr p m h s     

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 101

Table 5.21 Illustration of best fit robot selection

Workstation Tasks Assigned Total Robot task time

1 1, 10 and 11

Robot 1: 81+45+76=202

Robot 2: 37+46+38=121

Robot 3: 51+41+83=175

Robot 4: 49+77+87=213

Step 6: The maximum workstation time (sum of the minimum robot performance time

for the tasks assigned to the station) is the cycle time for the sequence.

For the sequence shown in Figure 5.25, C0 is calculated and is found to be 109.

Procedure tries to initially allocate the tasks to the workstation and assign the best fit

robots within the initial C0 but the initial cycle time cannot allocate tasks 7 and 9 as

shown in Figure 5.26. To accommodate all the tasks C0 is incremented by one and when

C0 reaches 121 all tasks could be assigned and robot is assigned to perform all tasks as

shown in Figure 5.27. Shaded portion in Figure 5.27 shows the tasks and robot

allocation details.

5.4.4 Differences between straight and U-shaped robotic assembly line

In a straight line configuration workstations are positioned on a straight line

whereas in case of U- shaped assembly line, the line is configured into a U-shaped

configuration. Figure 5.28 shows a sample solution where tasks are assigned in a

straight line for the sequence mentioned in the previous Section 5.1.1. Figure 5.29

shows a sample solution for tasks assigned in U-shaped form.

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 102

Figure 5.26 Example of assignment procedure for initial cycle time

Figure 5.27 Final Assignment solution for U-shaped RALB

*(numbers within oval shapes represent the task number)

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 103

Figure 5.28 Straight Robotic Assembly Line

From Figure 5.28, it is understood that tasks are assigned in the order of the

sequence generated without violating the precedence constraints for straight robotic

assembly line. For U-shaped assembly line, tasks are allocated by searching forward

and backward through the precedence diagram (numbers within oval shapes represent

the task number). In case of U-shaped robotic assembly line, each task and any of its

successor and/or predecessor can be allocated in the same workstation. U-shaped layout

is easier to relocate the robot to balance the work load depending on the demand. This

flexibility and adaptability of U-shaped layout makes it more attractive approach

compared to straight line. The cycle time for the given sample is found to be 143 for

straight robotic assembly line and for U-shaped robotic assembly line the cycle time is

found to be 121 (Figure 5.29).

Figure 5.29 U-shaped Robotic Assembly Line

5.4.5 Computational Study for RUALB problems

To test the performance of the proposed PSO on RUALB problems computational

experiments are conducted. The proposed algorithm is coded in C++ and the

performances are tested on Intel core i5 processor (2.3 GHz). The details of the

experiments conducted are presented in this section.

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 104

5.4.5.1 Datasets for computational study

The datasets used for computational study for straight robotic assembly line

problems is used for evaluating the performance of RUALB problems also. Details of

the precedence graphs used are available in http://www.assembly-line-balancing.de/.

Thirty two test problems generated by Gao et al. (2009) for robotic assembly line are

used in this research.

5.4.5.2 Parameters used for PSO to solve RUALB problems

Parameters selected influence the performance of PSO. The parameters used to

solve RUALB problems are chosen based on the experiments conducted in order to get

a satisfactory solution quality in an acceptable computational time. Experiments are

performed to test the influence of each parameter on the solution quality. To find the

best combination of parameters, three datasets of different size are chosen. Parameters

with different combination are tested until the best combination is achieved. Quality of

the solution is given utmost importance and not on the computational time in selecting

the best set of parameters, Following are the parameters tested and used in the proposed

PSO to solve RUALB problems.

Stopping condition: Proposed algorithm is terminated if the iteration approaches a

predefined maximum number of generations or sufficiently good fitness value. In this

case a predefined maximum number of iterations (generations) is used. Different

stopping conditions are tested such as 5,10,15,25 and 30. Three problems of different

sizes based on the task size are tested for these different stopping condition and it is

observed that, the best solution could be attained when the number of iterations

(generations) is set to 25. Figure 5.30 illustrates the performance of the PSO algorithm

based on the stopping condition for three selected datasets (small, medium and large

size dataset). Problems are 35-12, 70-19, 148-29 where 35, 70, 148 are the number of

tasks whereas 12, 19, 29 indicates the number of robots and work stations available to

perform the tasks. The numbers in the graph represent the cycle time obtained for the

three selected problems under different stopping conditions. And after 25th iteration,

the algorithm started converging to same solution. The stopping condition (number of

generations) for all the problems tested for RUALB problems is set to 25.

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 105

Figure 5.30 Performance of PSO in terms of stopping condition

Acceleration coefficients: The same set of different combination of acceleration

coefficients used to solve PSO in straight robotic assembly line is also tested for solving

RUALB problems. Table 5.12 shows the different combinations of c1, c2 and c3 tested.

Three problems are taken into consideration for the testing. Problems selected are 53-

5, 297-19, and 148-14 where 53,148,297 refer to the number of tasks and 5, 19 and 14

indicates the number of robots and work stations available to perform the tasks. From

the Figure 5.31 it is analyzed that Group D (c1=1, c2=2 and c3=2) produced best

solutions and this combination of acceleration coefficients are used to solve all the

problems.

Figure 5.31 Selection of acceleration coefficients based on the performance

of the algorithm

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 106

5.4.5.3 Performance of u-shaped robotic assembly line versus straight RALB

32 test problems available from the literature are evaluated using the proposed PSO

algorithm. Due to non-deterministic nature of the problem and algorithm, it is necessary

to run same problem multiple times to obtain the optimal solution. All problems are run

ten times and most of the runs converged to same solution for most of the problems.

The results obtained by evaluating 32 test problems for RUALB are presented in Table

5.22. Column I shows the type of problem. The problems are classified into three

categories: small (up to 35 tasks), medium (up to 89 tasks) and large (above 100 tasks).

Column II in table shows the problem name (source of the file). Table 5.13 presents the

source of the datasets evaluated. Column III and Column IV shows the number of tasks

and number of workstations considered for the evaluation. Column V reports the cycle

time for straight robotic assembly line as reported by Gao et al. (2009). Column VI

shows the results obtained from Cplex (optimization software). Cplex can only find

optimal solutions for four small size problems (25-3, 25-4, 25-6 and 25-9) in an

acceptable computational time. Cplex could not get the solutions for the rest of the

problems. Column VII reports the cycle time obtained for the same problems for the U-

shaped robotic assembly line using the proposed PSO. Column VIII shows the

percentage deviation of the cycle time and Column IX reports the average percentage

deviation for the three problem categories.

From the results presented in Table 5.22 it can be observed that proposed PSO

algorithm finds better solution for 28 out of 32 instances. When comparing the solutions

obtained for U-shaped robotic assembly line with straight robotic assembly line, the

proposed PSO algorithm generate better results for all small size problems. Average

improvement in the cycle time for small size problems is found to be 6.99%. Average

improvement in the cycle time for medium size problems is found to be 6.32% and it is

observed that out of 12 problems only 2 problems could not yield better solution when

compared to straight robotic assembly line. Average percentage improvement for large

size category is found to be 4.85%. It may be noted that 10 out of 12 problems (large

size) yield better solution when compared with straight robotic assembly line. From the

results in Table 5.22 it is clearly evident that the cycle time of U-shaped robotic

assembly line is better than that of straight robotic assembly line. For the problem

addressed here, the selection of best available robots helps to reduce the cycle time and

in turn increases the productivity of the assembly line.

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 107

Simple assembly line balancing problems falls under NP-hard category (Gutjahr

and Nemhauser, 1964). RUALB problem is further complicated with addition of robots

and U-shaped configuration. Hence, RUALB is also NP-hard. Computational time

required to reach a solution is required for calculating the complexity of the problem

addressed. Section 5.3.3 gives the details of complexity measures used for RALB

problems same set of complexity measures are used for RUALB problems. Details of

the complexity measures used for RUALB problem.

1. Assembly Flexibility-Problems with eight levels of F-ratio are generated and

evaluated. Figure 5.32 shows F-ratio versus Computational time for 8 problems

sets for RUALB allocation procedure. Computational time is presented in Table

5.23. It is noted that computational time is an increasing function of F-ratio. A

high F-ratio indicates that there are fewer alternatives for assigning tasks to

workstations where as low F-ratio gives different ways of assignment.

2. WEST Ratio- WEST Ratio of the problems of RUALB is similar to the WEST

Ratio of RALB. Table 5.14 gives the details of WEST Ratio of the problems

evaluated.

3. Relative Complexity- Table 5.23 presents the relative complexity of the problem

addressed. Relative complexity is calculated based on the computational time

taken by each problem. The relative complexity of the problem increases with

the increase in task size of the problem.

Figure 5.32 F-ratio vs Computational Time for RUALB problems

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 108

Table 5.22 Results of the 32 benchmark problems for RUALB

P
ro

b
le

m
 T

y
p

e

P
ro

b
le

m
 N

a
m

e

T
a

sk
s

W
o

rk

S
ta

ti
o

n
s/

R
o

b
o

ts

Cycle Time

%
 d

ev
ia

ti
o

n

A
v

er
a

g
e

%

D
ev

ia
ti

o
n

S
tr

a
ig

h
t

R
A

L
B

(G
a

o
 e

t
a

l.
,

2
0

0
9
)

C
p

le
x

P
S

O

R
U

A
L

B

S
m

a
ll

 S
iz

e
P

ro
b

le
m

Rosenberg

25

3 503 500* 500 0.5

6.99%

4 327 318* 318 2.75

6 213 188* 188 11.73

9 123 114* 114 7.31

Gunther

35

4 449 - 355 20.93

5 344 - 332 3.48

7 222 - 221 0.45

12 113 - 103 8.84

6.32%

M
ed

iu
m

 S
iz

e
P

ro
b

le
m

Hahn

53

5 554 - 459 17.14

7 320 - 286 10.62

10 230 - 220 4.34

14 162 - 148 8.64

Tonge

70

7 449 - 447 0.44

10 272 - 272 0

14 204 - 211 -3.43

19 154 - 144 6.49

Lutz

89

8 494 - 496 -0.49

12 370 - 326 11.89

16 236 - 224 5.08

21 205 - 174 15.12

L
a

rg
e

 S
iz

e
P

ro
b

le
m

Arcus

111

9 557 - 545 2.15

4.85%

13 319 - 320 -0.313

17 257 - 256 0.38

22 192 - 186 3.12

Bartholdi

148

10 600 - 629 -4.83

14 427 - 421 1.40

21 300 - 283 5.66

29 202 - 187 7.42

Scholl

297

19 646 - 597 7.58

29 430 - 394 8.37

38 344 - 293 14.8

50 256 - 224 12.5

To test the performance of the proposed algorithm an actual assembly line

balancing problem is used. The final assembly operation of a major automobile

manufacturer where the assembly of engine cradles is considered (Gunther et al., 1983).

In the problem there are 35 tasks to be performed and 5 robots are chosen to perform

these tasks in the assembly line. The problem consists of 45 direct precedence relations

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 109

among 35 tasks and processing times of 35 tasks by 5 robots are shown in Appendix 1.

The solutions obtained for the problem using PSO for U-shaped assembly line and

solution obtained for straight robotic assembly line using hybrid GA are reported in

Table 5.24. The table shows the details of the tasks and robots to be allocated at each

workstation. In summary, cycle time for the U-shaped robotic assembly line is lower

when compared to the straight robotic assembly line.

Table 5.23 Relative Complexity of RUALB problem

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

C
o

m
p

u
ta

ti
o

n
a

l

T
im

e

R
el

a
ti

v
e

C
o

m
p

le
x

it
y

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

C
o

m
p

u
ta

ti
o

n
a

l

T
im

e

R
el

a
ti

v
e

C
o

m
p

le
x

it
y

1 25-3 8.0 0 17 89-8 84.5 9.56

2 25-4 9.2 0.15 18 89-12 87.1 9.88

3 25-6 10.5 0.31 19 89-16 91.2 10.40

4 25-9 13.5 0.68 20 89-21 95.3 10.91

5 35-4 16.8 1.10 21 111-9 234.2 28.27

6 35-5 19.5 1.43 22 111-13 253.7 30.71

7 35-7 27.5 2.43 23 111-17 298.5 36.31

8 35-12 31.5 2.93 24 111-22 348.9 42.61

9 53-5 32.5 3.06 25 148-10 445.8 54.72

10 53-7 34.8 3.35 26 148-14 519.2 63.9

11 53-10 35.6 3.45 27 148-21 595.1 73.38

12 53-14 41.2 4.15 28 148-29 655.3 80.91

13 70-7 60.1 6.51 29 297-19 1573.2 195.65

14 70-10 66.8 7.35 30 297-29 1693.8 210.72

15 70-14 72.4 8.05 31 297-38 1752.9 218.11

16 70-19 82.2 9.27 32 297-50 1802.3 224.28

5.4.6 Summary of the findings on RUALB problem

Robotic U-shaped assembly line balancing (RUALB) problem is considered in the

previous section. It is found from the literature that very few researchers have worked

on this problem. To solve the problem of minimizing cycle time in a U-shaped robotic

assembly line, particle swarm optimization algorithm is proposed. The tasks and robot

assignment in U-shaped configuration is highly complex when compared to straight

assembly line. The performance of the proposed PSO on RUALB reported in this

section is for the benchmark problems with eight precedence graphs only. Thirty two

benchmark problems originally proposed by earlier researchers to solve RALB, is used

to the test the performance of RUALB. Different parametrical studies are conducted to

do the computational analysis. Results shows that proposed PSO algorithm for robotic

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 110

U-shaped assembly line reports minimal cycle time when compared to that of straight

robotic assembly line for twenty eight out of thirty two problems. From the

computational study, results shows that computational time for the proposed algorithm

is high large data sets which could be due to large search space in U-shaped layout

setup. Different complexity measures are also presented.

Table 5.24 Solutions Obtained for 35 task problem with 5 robots

Hybrid GA Task Sequence for Straight RALB:

1 5 10 6 7 8 14 12 17 18 19 9 20 15 16 21 22 23 24 13 25 26 27 2 3 4 30 34 31 32 11 28 33 35 29

Workstation Number Tasks Allocated Robot Workstation Time

Workstation 1 1 5 10 6 7 8 Robot 4 332

Workstation 2 14 12 17 18 19 9 Robot 3 344

Workstation 3 20 15 16 21 22 23 24 13 Robot 1 344

Workstation 4 25 26 27 2 3 4 Robot 5 330

Workstation 5 30 34 31 32 11 28 33 35 29 Robot 2 333

PSO Task Sequence for RUALB:

1 12 10 5 6 7 18 14 19 15 2 17 16 20 21 22 30 8 23 3 25 31 4 9 11 13 24 26 27 32 28 33 34 35 29

Workstation Number Tasks Allocated Robot Workstation Time

Workstation 1 1 29 34 2 3 35 28 33 Robot 2 322

Workstation 2 4 27 26 32 31 30 24 Robot 1 311

Workstation 3 11 17 10 5 6 8 9 Robot 2 333

Workstation 4 7 23 25 22 21 20 Robot 4 331

Workstation 5 14 19 15 16 13 18 12 Robot 2 314

 Summary

In this chapter, RALB problem with an objective of minimizing cycle time is

considered. Optimizing cycle time is an important problem in manufacturing systems.

Since the problems addressed here is well known as NP-hard, metaheuristic algorithms

are developed to solve the problem. Two heuristics are used for the effective allocation

of tasks and robots to create a balanced assembly line. Using the standard PSO, two

heuristics are solved and the performances are compared with the benchmark results.

IBM Cplex Optimization studio Version 12.6.0.0 is also used to solve the problems.

Only fourteen problems out of thirty two benchmark datasets could be solved using

Cplex. When comparing the results obtained using recursive and consecutive, it is

observed that consecutive allocation procedure performs better in terms of quality of

solution. Hence, consecutive allocation procedure is used to solve four variants of PSO

and hybrid PSO models. PSO variants are developed based on the variation in the

Chapter 5

PSO & Hybrid PSO for RALB problem to minimize cycle time

Page | 111

velocity update equation of PSO. Hybrid PSO models are developed by hybridizing

PSO with other metaheuristics. It is found that the results of PSO and variants of PSO

are very close to Cplex solutions which show the effectiveness of the proposed

algorithm. Among the four variants and hybrid PSO algorithms, hybrid CS-PSO

performs better in terms of the quality of the solution for most of the problems tested.

Computational times for the proposed variants are also presented. The complexity of

RALB is also presented with various complexity measures.

 The chapter also presented a new model for solving a robotic U-shaped assembly

line balancing (RUALB) problem for the objective of minimizing cycle time in a U-

shaped robotic assembly line. The literature on this problem is very limited. Particle

swarm optimization is proposed to solve the problem. The tasks and robot assignment

in the U-shaped configuration are highly complex compared to a straight assembly line.

Thirty-two benchmark problems originally proposed by earlier researchers to solve

RALB-2 were adopted to test the performance. Parameters are chosen based on pilot

studies and from the experimental results it is observed that cycle time for U-shaped

robotic assembly line is lower than that of the straight robotic assembly line. Different

complexity measures are also presented along with the computational time details. The

limitations of this work are that only one robot can be assigned to only one workstation.

It cannot handle multiple workstations, the workstations in the assembly line cannot

split the tasks and the computational time increases significantly when the problem size

increases.

CHAPTER 6

6 Particle Swarm Optimization to Solve

Energy Based RALB Problems

Increasing energy cost and need of creating eco-friendly environment

manufacturing industries gives importance for reducing energy consumption. Robotic

assembly lines are used extensively and these systems are cost intensive. Hence, there

is a requirement of efficiently balancing the assembly line by allocating equal amount

of work to workstations and assigning the best fit robot to perform the tasks allocated

to the workstations. No research could be found on optimizing cycle time and total

energy consumption concurrently in robotic assembly line systems to date. The

objective of this section is to propose models with dual focus on time and energy to

minimize the cycle time and total energy consumption simultaneously, one model (time

based model) with the primary focus to optimize cycle time and the other model (energy

based model) with the primary focus to optimize total energy consumption.

The models proposed have a significant managerial implication in real assembly

line systems. Suitable models could be selected based on the priorities of the

management. The two models proposed in this section are very well applicable to

automobile body shop with robot based lines. The main objective is to propose an

optimization model to optimize time and energy and to solve the model using a heuristic

algorithm. Since the problem falls under the category of NP-hard, Particle Swarm

Optimization algorithm is used to optimize the objectives of two models proposed.

Time based model optimizes the cycle time of the robotic assembly line as the primary

objective and the total energy consumption as the secondary objective. Whereas, energy

based model optimizes the total energy consumption of the robotic assembly line as the

primary objective and cycle time as the secondary objective. Assignment of tasks to

workstation and the robot assignment for the workstation is similar to the consecutive

allocation procedure.

 Straight RALB - Cycle time and Energy consumption

This section presents the procedure followed to find out the cycle time and energy

consumed in a straight robotic assembly line. Cycle time and energy consumed for a

Chapter 6

PSO to solve energy based RALB problems

Page | 113

straight robotic assembly line is calculated using time based model and energy based

model. The following section, describes in detail the procedure implemented.

6.1.1 Time based model

Using the time based model, tasks are allocated to the workstations and best fit

robots are allotted to perform the allocated tasks in a straight robotic assembly line. The

energy consumed for performing the allocated tasks is calculated. As explained in

section 5.1.1, the tasks in the sequence will be allocated using the consecutive allocation

procedure. In this procedure cycle time is calculated. The maximum of the workstation

time is the cycle time for the assignment made. Workstation time is the sum of robot

processing times of the tasks by the allotted robots. Total energy consumption for the

assignment made is calculated. Energy consumption for a workstation is calculated by

multiplying the total robot task time by the power consumed by that robot. Total energy

consumption for the assignment is obtained by adding the energy consumed by all

workstations. For the illustration purpose refer Figure 5.7, Figure 5.8 and Figure 5.9. In

the example shown in Figure 5.8, workstations time are calculated and the cycle time

is evaluated to be 143. From Figure 5.9, workstation times of different workstations are

shown. These workstation times are used to calculate the energy consumption.

Workstation times are 143, 136, 115 and 84. Refer Figure 5.9 for the workstation times

and Appendix 2 for the power consumption values of the robots. Energy consumption

of each workstation is calculated using the workstation times and the power

consumption of the robot which is allotted to perform the tasks at the workstation:

Energy consumption at a workstation = Workstation time Power Consumption of the

robot

 Energy consumption at Workstation 1 = 143 0.35= 50.05 kJ

 Energy consumption at Workstation 2 = 136 0.35= 47.6 kJ

 Energy consumption at Workstation 3 =115 0.3=34.5 kJ

 Energy consumption at Workstation 4 = 84 0.4= 33.6 kJ

Total energy consumption of the assignment= 50.05+47.6+34.5+33.6=165.7 kJ

and the cycle time of the assignment is 143. The results obtained for the 11 tasks

problem using time based model is shown in Figure 6.1. The figure shows the tasks and

robot allocation along with the workstation times and the energy consumption at each

workstation.

×

×

×

×

×

Chapter 6

PSO to solve energy based RALB problems

Page | 114

Figure 6.1 Final Solution for time based model in a straight RALB

6.1.2 Energy Based Model for straight robotic assembly line

This procedure is used to calculate the total energy consumption of a straight

robotic assembly line. An initial energy consumption of the assembly line, E0 is used

to start the procedure. It is checked if the tasks can be assigned to the workstations until

the sum of energy consumption of the tasks is less than or equal to E0 and that respective

robot which consume less energy is assigned to the workstation to perform the tasks. If

it is not possible to assign the tasks to the workstation within the given initial E0 value,

E0 is incremented by ‘one’ and the assignment procedure is repeated until all the tasks

are assigned to the workstations. Total energy consumption of the assembly line is

calculated by adding the energy consumed at each workstation. Stepwise illustration is

provided for explaining the task and robot allocation using the energy based model.

Precedence graph shown in Figure 5.2 and energy consumption of the robots shown in

Table 6.1 are used for the illustration.

Step 1. Feasible sequence of tasks (1-3-2-4-5-6-7-9-8-10-11) which meets the

precedence constraints is considered for illustration. Initial value of E0 is the mean of

minimum energy consumption of the robots for the tasks. The initial energy

consumption (E0) of the assembly line is calculated using

 (6.1)

Table 6.1 shows the energy consumption of the robots; using this data initial E0

for the example is found out to be 35.

E0= [15+15+11+13+9+19+12+10+11+11+15]/4= 35

Step 2. The first station is opened and the procedure tries to allocate the tasks according

to the sequence in the order of occurrence, if one or more robot could perform the

0
1

1

[min /]
a

r

N

hi w
i N

j

E e N
 



 

Chapter 6

PSO to solve energy based RALB problems

Page | 115

allocated tasks within E0. Each workstation s has a set of preferred/ allotted robots H

which is defined as follows:

 (6.2)

where m (h) is the maximal number of tasks a robot h can perform in the given

sequence sq within E0 .

 (6.3)

Next, it defines the robot to be assigned to the workstation s as:

 If (6.4)

Step 3. The start of position of the next workstation is calculated as follows:

 (6.5)

Step 2 is to be repeated until all tasks are assigned to given number of workstations.

Step 4. If the tasks are not possible to be assigned within the given E0, increment E0 by

‘one’ and repeat the steps 2 and 3 until all the tasks are allotted.

Step 5. The total energy consumption for the assignment is calculated by adding the

energy consumption of all workstation.

Step 6. The workstation time of the assignment made is calculated by finding out the

time taken by the robot at each workstation. The maximum workstation time is the cycle

time of the assignment made.

In the example for energy based model, it is found that tasks 10 and 11 are left

unassigned as when E0=35 as shown in Figure 6.2 a). E0 is incremented till 43 for

accommodating all the tasks in the four workstations and the completed allocation is

shown in Figure 6.2 b). The total energy consumption of the assembly line when tasks

are allocated based on the energy model is found to be 150 kJ (27+37+43+43). The

workstation time of the each workstation is calculated by adding the processing time of

the tasks assigned to that workstation for the robot assigned. In this example

workstation time of the assignment made is calculated by using the processing time

given in Table 5.2

Time at Workstation 1 (Robot 3) = 51+38=89

, () (), where 1 rk H if m k m h h N   

1 () 1 () 1

, () 0 ,

1 1

() ()
w w

w w

p m h p m h

s h sq k h sq

k p k p

E h e E e k
  

 

   

ksh )(() ()s sE k E h Hh

11 1 1 (()) 1s s sp pr p m h s     

Chapter 6

PSO to solve energy based RALB problems

Page | 116

Time at Workstation 2 (Robot 4) = 42+40+25=107

Time at Workstation 3 (Robot 1) = 77+51+43=171

Time at Workstation 4 (Robot 1) = 50+45+76=171

The maximum workstation time is the cycle time of the assignment made and the

cycle time is 171. The results obtained for the 11 tasks problem using energy based

model is shown in Figure 6.3.

Table 6.1 Energy consumption for 11 tasks by 4 robots

Tasks Robot 1 Robot 2 Robot 3 Robot 4

1 20 15 15 17

2 27 40 27 15

3 16 32 11 18

4 13 16 27 14

5 23 14 10 9

6 19 26 25 25

7 13 20 12 17

8 13 17 10 15

9 11 30 12 12

10 11 18 12 27

11 19 15 25 30

Figure 6.2 a) Task and Robot allocation using energy based model with initial E0

Chapter 6

PSO to solve energy based RALB problems

Page | 117

Figure 6.2 b) Completed allocation using energy based model

Figure 6.3 Final Solution for the energy based model in a straight RALB

6.1.3 Energy Consumed by Robots during standby mode

Energy consumed by robots or any electrical equipment’s when it is switched off

or not performing the main function is termed as standby energy. Energy consumption

during standby mode is an increasing fraction of energy use in Organization for

Economic Cooperation and Development (OECD) countries. Due to the increased

usage of new technologies and equipment’s there is a growth in standby power usage.

It is observed that by reducing the stand by energy consumption worldwide there could

be reduction of CO2 emission by one percent. Energy consumed during standby mode

is calculated by assuming that power consumed by the robot during the standby mode

is 10% of the original power (Bertoldi et al., 2002). This is an assumption considered

in this section to calculate the energy consumed during standby time. An assembly line

is considered to be completely balanced if the total slack (i.e., the sum of the stand-by

times of all the stations along the line) is as low as possible. However, in practical cases

it is difficult to get 100% efficient balanced assembly line. In this section, the energy

consumed by the workstations during the (standby mode) is also considered. Standby

time is calculated as follows:

 Stand by time of workstation= Cycle Time- Workstation time (6.6)

Chapter 6

PSO to solve energy based RALB problems

Page | 118

The steps involved in calculation of energy consumed in an assembly line are as

follows:

1. Calculate Cycle Time of the assembly line.

2. Find the standby time of each workstation.

3. Calculate the standby energy consumed by the robots allotted to the workstation.

Energy is calculated by using (E=P t) here P is the power of the robot allotted to

the workstation and t corresponds to the standby time of the workstation. Sum up all

the standby energy of all the workstations in an assembly line.

Table 6.2 shows an example problem with 9 workstations. Column I show the

workstation number, Column II shows the robots assigned after task allocation. Column

III and IV shows the workstation time and standby time of the workstation. In this

problem cycle time is found to be 110. Using the standby time and power of the robot

(Refer Appendix 2), standby time energy is calculated. The standby time energy is

evaluated for both the models and it is added to the energy consumption during the

production time to get the total energy consumed in an assembly line. Both the models

employ the same procedure for the evaluation of the standby energy consumption.

Table 6.2 Standby time Energy Evaluation

Workstation

Number

Robot

Assigned

Workstation

Time

Standby

Time

Standby

Energy (kJ)

1 4 59 51 2.04

2 7 109 1 0.025

3 4 92 18 0.72

4 9 110* 0 0

5 7 104 6 0.15

6 4 109 1 0.04

7 7 87 23 0.575

8 7 98 12 0.3

9 7 98 12 0.3

*Cycle Time Total Standby Energy 4.15 kJ

6.1.4 PSO for solving time and energy based model

PSO algorithm is proposed to solve both the proposed models. PSO algorithm

starts with an initial population and initial velocity. Initial population is generated based

on the heuristics as explained in Section 5.1.1. Same set of velocity pairs are used for

×

Chapter 6

PSO to solve energy based RALB problems

Page | 119

the velocity update. Pseudo code of PSO as shown in Figure 5.1 is adopted for solving

this problem.

Velocity and position of the particles in PSO are updated using Equation 5.1 and

5.2. The equation is reproduced here for the reader’s clarity.

Position update is done iteratively using Equation 5.2

The velocity of each particle is updated iteratively Equation 5.1

Where U1 and U2 are the velocity coefficients (random numbers between 0 and 1),

vi
t is the initial velocity, ePt

i is the Local best, G is the Global best and Pi
t is the current

particle position, c1, c2 and c3 are the acceleration coefficients respectively.

6.1.5 Computational study and Discussions

The computational experiments are conducted in order to test the performance of

the two proposed models for straight robotic assembly line (RAL) problem. PSO is

proposed to solve the problem. The following section describes the experiments

conducted.

6.1.5.1 Datasets for time based model and energy based model

Gao et al. (2009) generated 32 test problems for RALB using 8 precedence graphs

available in http://www.assembly-line-balancing.de/ and the time data of 32 test

problems are used for evaluation of both the models. Power consumption by robots is

randomly generated and it is shown in Appendix 2 for small size datasets and for large

size datasets it is shown in Appendix 3. The energy consumption of a task i by robot h

is calculated as follows:

 (6.7)

Where, tih is processing time of the task i by robot h. Ph is the power consumption

of robot h. The datasets are divided into two groups: small and large size datasets. Small

dataset contains problems with 25 tasks to 70 tasks. Large size datasets consists of

problem with tasks 89 tasks to 297 tasks.

11 


t

i

t

i

t

i vPP

1
 x [x ()] x [x ()]1 2 1 3 2

t t e t t t
i c v c U P P c U G Pi i i iv 

    

 h ihE P t 

Chapter 6

PSO to solve energy based RALB problems

Page | 120

6.1.5.2 Parameters of two models proposed

32 test problems are solved for the proposed two models using PSO algorithm. The

parameters used in PSO are chosen experimentally in order to get a satisfactory solution

quality in an acceptable time span. It is well recognized that the parameter values

significantly affect the solution quality. Experiments are performed to find the optimal

parameters. Three data sets of different sizes are chosen to find the parameters which

yielded best solution. Different combinations of the parameters are tested until the best

combination is achieved. Quality of solution is given importance compared to the

computational time in selecting the parameters. PSO Parameters chosen to evaluate the

two models are shown in Table 6.3

Table 6.3 PSO Parameters selected for evaluating the models

Time Based Model Energy Based Model

Population size: 25 Population size 25

Number of iterations: 30 Number of iterations:40

Learning coefficients: c1-1, c2-1 and c3-2 Learning coefficients: c1-1, c2-2 and c3-2

6.1.5.3 Performance analysis of two proposed models

The two models are evaluated on the two factors using cycle time and total energy

consumption. The total energy consumption and cycle time obtained using the two

proposed models are presented in Table 6.4 and Table 6.5. Results obtained from the

computational analysis for small size datasets are presented in Table 6.4 and Table 6.5

shows the results for large size datasets. Sum of energy consumption during the

production mode and standby mode is the total energy consumption of the assembly

line. Graphical comparison of the total energy consumption for both small and large

size datasets is presented in Figure 6.4 and Figure 6.5. It is observed from the tables

and graphs that the total energy consumption is lower for energy based model and cycle

time is lower for the time based model for all the datasets evaluated here.

The average of the difference in the energy consumption between the models is

taken to find out the average energy saving. The average energy saving for small size

datasets is found to be around 113 kilojoules. The average energy savings for the large

size datasets is found to be 1062 kilojoules. Figure 6.6 and Figure 6.7 represents the

difference in energy consumption between the time based model and energy based

Chapter 6

PSO to solve energy based RALB problems

Page | 121

model and the graph represents the energy saved by using energy based model when

compared to the time based model.

Table 6.4 Total energy consumption and cycle time evaluated for small size

datasets

Small

Size

Datasets

Time Based Model Energy Based Model

Total Energy

Consumption

(kilojoules)

Cycle

Time

Total Energy

Consumption

(kilojoules)

Cycle

Time

25-3 514 503 494 641

25-4 347 293 342 314

25-6 420 221 365 235

25-9 265 110 248 142

35-4 1091 341 1072 516

35-5 959 357 929 424

35-7 1180 226 1015 342

35-12 755 105 697 160

53-5 2707 454 2700 587

53-7 2197 293 1989 343

53-10 2513 224 2215 273

53-14 2237 146 2177 200

70-7 4218 446 4146 463

70-10 3228 259 3069 290

70-14 4092 194 3871 290

70-19 3732 139 3323 255

Table 6.5 Total energy consumption and cycle time evaluated for large size

datasets

Large

Size

Datasets

Time Based Model Energy Based Model

Total Energy

Consumption

(kilojoules)

Cycle

Time

Total Energy

Consumption

(kilojoules)

Cycle

Time

89-8 5078 464 5043 562

89-12 6314 317 5683 430

89-16 5191 219 5119 340

89-21 4734 176 4250 206

111-9 4734 526 4250 735

111-13 8207 317 7267 396

111-17 7403 250 6945 280

111-22 7400 185 6909 255

148-10 10166 556 9840 678

148-14 12045 420 10654 461

148-21 11467 272 10131 335

148-29 9290 190 8606 263

297-19 26849 594 25232 809

297-29 26161 428 24970 466

297-38 25450 295 22862 348

297-50 24870 256 22243 348

Chapter 6

PSO to solve energy based RALB problems

Page | 122

Figure 6.4 Comparison of Energy consumption in small size datasets for two

models in straight RALB

Figure 6.5 Comparison of Energy consumption for large size datasets for two

models in straight RALB

Chapter 6

PSO to solve energy based RALB problems

Page | 123

Figure 6.6 Energy saving potential in small size datasets for energy based model

in straight RALB

Figure 6.7 Energy saving potential in large size datasets for energy based model

in straight RALB

It is observed from the Figure 6.6 that datasets with more amount of tasks, the

energy saved is high for most of the problems in the group of large size datasets when

energy based model is considered. Figure 6.7 represents the energy saving for large

size datasets and it is observed that higher the number of task in the problem evaluated,

energy saving is more in case of energy based model. Figure 6.8 and Figure 6.9 shows

Chapter 6

PSO to solve energy based RALB problems

Page | 124

the performance of time based model in terms of cycle time. Time based model

performs better for both small and large size datasets when compared with the energy

based model in case of minimizing the cycle time. Average reduction in cycle time

when the time based model is compared with energy based model is found to be 73

units for small size datasets and for large size datasets average cycle time reduction is

found to be 109 units.

Figure 6.8 Comparison of Cycle Time in small size datasets between two models

in straight RALB

Figure 6.9 Comparison of Cycle Time in large size datasets between two models

in straight RALB

Chapter 6

PSO to solve energy based RALB problems

Page | 125

Two factors which are very important in a manufacturing setup are: increase the

productivity and also to reduce the energy consumption. The objective of the work is

to propose two models with dual focus on time and energy consumption in a straight

robotic assembly line. Based on the priority of the management, the primary focus

between time and energy could vary at different time horizon. The appropriate model

could be selected based on the priority. These comparison results could be used for

important managerial implications in real life assembly line systems.

6.1.5.4 Computational time

The solution quality is given more importance than the computational time. The

average computational time for the time based model and energy based model for the

32 problems evaluated are presented in Table 6.6. Computational results shows that

time taken for computing the time based model is very less compared to that of the

energy based model for large size datasets.

Table 6.6 Average Computational Time in seconds for the proposed models

Problem

Set
Tasks

No. of

Problems

CPU Time

Time Based

Evaluation

Energy Based

Evaluation

1 25 4 3 5

2 35 4 8 9

3 53 4 18 21

4 70 4 46 54

5 89 4 62 79

6 111 4 106 130

7 148 4 246 295

8 297 4 1246 1512

 U-shaped RALB - Cycle time and Energy consumption

This section presents the procedure followed to find out the cycle time and energy

consumed in a U-shaped robotic assembly line. Cycle time and energy consumed for a

U-shaped robotic assembly line is calculated using time based model and energy based

model. The following section, describes in detail the procedure implemented for finding

the cycle time and energy consumption in a U-shaped robotic assembly line layout by

balancing the tasks and robots. Until now, U-shaped robotic assembly line has received

very less attention. Besides what is proposed here, it could be seen that no research has

been done on optimizing cycle time and energy consumption in a U-shaped robotic

assembly line. Two models are proposed to evaluate the cycle time and energy

Chapter 6

PSO to solve energy based RALB problems

Page | 126

consumption in an assembly line. These models could be selected based on the demands

and priorities of the management. This problem falls under NP-hard; hence PSO is used

for solving the two models. Procedures implemented to evaluate the cycle time and

energy consumption using the two models are presented here.

6.2.1 Time based model for U-shaped robotic assembly line

Time based model proposed here calculates the cycle time of the U-shaped robotic

assembly line by allocating tasks and robots optimally. For the allocation made, the

energy consumed by each workstation is calculated. The standby energy consumed is

also evaluated. The sum of energy consumed during production mode and standby

mode is the total energy consumed by the U-shaped robotic assembly line. As explained

in Section 5.5.3, the tasks are allocated to the workstations and best fit robots are

allotted to the workstations to perform the allocated tasks in a U-shaped assembly lime.

The stepwise procedure involved in calculating the cycle time and energy consumed in

U-shaped robotic assembly line is presented here. In this procedure cycle time is

calculated. The maximum of the workstation time is the cycle time for the assignment

made. Workstation time is the sum of robot processing times of the tasks by the allotted

robots. Total energy consumption for the assignment made is calculated. Energy

consumption for a workstation is calculated by multiplying the total robot task time by

the power consumed by that robot. Total energy consumption for the assignment is

obtained by adding the energy consumed by all workstations. In the example shown in

Figure 5.29, workstations time are calculated and the cycle time is evaluated to be 121.

The workstation times are used to calculate the energy consumption. Workstation times

are 121, 115, 107 and 116. Using the power consumption for 11 task problem presented

in Appendix 2, the energy consumption of each workstation is calculated using the

workstation times and the power consumption of the robot which is allotted to perform

the tasks at the workstation:

Energy consumption at a workstation= Workstation time Power Consumption of the

robot

Energy consumption at Workstation 1=121 0.4= 48.4 kJ

Energy consumption at Workstation 2= 115 0.3= 34.5 kJ

Energy consumption at Workstation 3=107 0.35=37.45 kJ

Energy consumption at Workstation 4= 116 0.4= 46.4 kJ

×

×

×

×

×

Chapter 6

PSO to solve energy based RALB problems

Page | 127

Total energy consumption of the assignment= 48.4+34.5+37.45+46.4= 166.75 kJ

and the cycle time of the assignment is 121. The results obtained for the 11 tasks

problem using time based model is shown in Figure 6.10. The figure shows the tasks

and robot allocation along with the workstation times and the energy consumption at

each workstation. The energy consumed during the standby mode is calculated using

the workstation times and it is found to be 0.95 kJ. The total energy consumption for

the U-shaped robotic assembly line using time based model is the sum of energy

consumption during the production mode and energy consumption during the standby

mode and the total energy consumption is 167.7 kJ.

Figure 6.10 Solution for the time based model in a U-shaped RALB

6.2.2 Energy Based Model for U-shaped robotic assembly line

This procedure is used to calculate the total energy consumption of a U-shaped

robotic assembly line. Task allocation procedure is different from the straight robotic

assembly line allocation. This procedure also starts with an initial energy consumption

of the assembly line. In U-shaped robotic assembly line, tasks are allocated to the

workstation by moving forward and backward through the precedence diagram in

contrast to a typical forward move in the traditional assembly systems. Best robot which

can perform the tasks allotted to the workstations with minimum energy consumption

are checked for allotment. The procedure tries to allocate the maximum number of tasks

to the workstations without violating the precedence constraints. If the initial E0 cannot

accommodate all the tasks, E0 is incremented by one and the procedure is repeated to

accommodate all the tasks. The allocation done gives the energy consumption at each

workstation. The time taken by each workstation is also calculated which is used to find

the cycle time and standby time for each workstation. Using the standby time for each

Chapter 6

PSO to solve energy based RALB problems

Page | 128

workstation, the energy consumed during the standby mode is calculated. The total

energy consumed by the U-shaped assembly line is the sum of energy consumption

during production mode and standby mode. An illustration is provided in this section

which explains the task and robot allocation and calculation of energy consumption in

a U-shaped robotic assembly line. Sequence of tasks which meets the precedence

constraints is considered for illustration. Let, the sequence be, 1-3-2-4-5-6-7-9-8-10-

11. 11 task and 4 workstation problem is considered for the illustration. Energy

consumption details of each tasks and robots are presented in Table 6.1.

Step 1. E0 is calculated and it is found to be 35 using Equation 6.1.

Step 2. For the initial E0, the procedure tries to allocate the tasks to the workstations

starting from the first workstation. Procedure allocates the maximum tasks by checking

either side of the sequence if any of the robots could perform the tasks within E0. Since

it is U-shaped, search space is more due to different possible combinations

Step 3. If the previous workstation cannot accommodate more tasks, the next

workstation is allocated with the remaining tasks.

Step 4. After trying with initial E0, if the procedure still was not able to assign all the

tasks within the E0, E0 is increment by ’one’ and repeat the Step 2 and 3 until all tasks

get assigned to the workstation.

Step 5. Robots are allotted to each workstation with certain set of tasks. Robot which

performs the allotted tasks with minimum energy consumption is selected and

allocated.

Step 6. Using the robot allocated and tasks in the workstation, the workstation time is

calculated for the tasks allocated.

Step 7. The workstation with the maximum workstation time is the cycle time of the

allocation.

Step 8. Using the workstation times, the standby time of each workstation is calculated

and the energy consumed during the standby mode is calculated using the power

consumption of the robots allotted to each workstation.

Chapter 6

PSO to solve energy based RALB problems

Page | 129

Step 9. Sum of the energy consumption during production mode and energy

consumption during the standby mode gives the total energy consumption of the

assembly line.

For energy based model in U-shaped robotic assembly, when the allocation was

attempted with initial E0 it was found that tasks 6 and 7 are left unassigned. E0 is

incremented till 47 for accommodating all the tasks in the four workstations and the

complete the allocation. The energy consumption of the assembly line during the

production mode when tasks are allocated based on the energy model is found to be

151 kJ (30+33+41+47). The workstation time of the each workstation is calculated by

adding the processing time of the tasks assigned to that workstation for the robot

assigned. In this example workstation time of the assignment made is calculated by

using the processing time given in Table 5.2

Time at Workstation 1(Robot 2) = 37+38=75, Time at Workstation 2(Robot 3) =

38+34+41=113

Time at Workstation 3(Robot 4) = 42+40+33=115 and Time at Workstation

4(Robot 3) = 33+83+40=156. The maximum workstation time is the cycle time of the

assignment made and the cycle time is 156. The results obtained for the 11 tasks

problem using energy based model is shown in Figure 6.11.

Figure 6.11 Solution for the energy based model in a U-shaped RALB

6.2.3 PSO to solve proposed models in U-shaped RALB

PSO is used for solving the proposed model with an objective of minimizing the

cycle time (time based model) and total energy consumption (energy based model) for

U-shaped robotic assembly line. The computational experiments are conducted in order

Chapter 6

PSO to solve energy based RALB problems

Page | 130

to test the performance of the two proposed models. The following section describes

the experiments conducted.

6.2.3.1 Datasets for time based model and energy based model

Thirty two test problems for RALB proposed by Gao et al. (2009) are used for

evaluating the two models to solve energy consumption and cycle time in a U-shaped

robotic assembly line. Power consumption of robots which are used for the dataset

generation is presented in Appendix 2 for small size datasets (up to 70 task problems)

and for large size datasets (89 tasks to 297 tasks problem) power consumption details

are presented in Appendix 3.

6.2.3.2 Parameter settings for PSO

Pilot studies have been conducted on three different datasets of different sizes to

arrive at the best value of population size in the proposed PSO. From the studies it is

found that both the proposed models works well with a swarm size of 25 for minimizing

energy consumption for the energy based model and minimizing cycle time for the time

based model. The acceleration coefficients are also selected by trying different

combinations for c1, c2 and c3. Similarly, studies have been carried out to find the

suitable stopping condition and the best values are 25 iterations in time based model

and for energy based model the total number of iterations is 30. Table 6.7 summarizes

the parameters of PSO used to solve the proposed models. During the experimental

study, quality of solution is given importance compared to the computational time.

Table 6.7 Parameters of PSO selected for evaluating the two models

Time Based Model Energy Based Model

Population size: 25 Population size 25

Number of iterations: 30 Number of iterations:40

Learning coefficients: c1-1, c2-2 and c3-2 Learning coefficients: c1-1, c2-2 and c3-2

6.2.3.3 Performance analysis of two proposed models

The performances of two models are evaluated to find out the cycle time and

energy consumption. The proposed models are coded in C++ and the performances are

tested on Intel core i5 processor (2.3 GHz). The datasets are divided into two groups:

small size datasets and large size datasets. The complete details of the results obtained

by using the time based and energy based model for small size datasets are presented

in Table 6.8 and Table 6.9 shows the results obtained for the two models for the large

Chapter 6

PSO to solve energy based RALB problems

Page | 131

size datasets. The energy consumption reported here is the sum of energy consumption

during the production mode and energy consumption during the standby mode.

Table 6.8 Results of performance evaluation of two models for small size datasets

in U-shaped RALB

Small
size

Datasets

Time Based Model Energy Based Model

Total Energy

Consumption

(kJ)

Cycle

Time

Total Energy

Consumption

(kJ)

Cycle

Time

25-3 546 500 496 546

25-4 333 293 345 320

25-6 361 188 359 213

25-9 281 109 246 157

35-4 1094 355 1042 509

35-5 1003 333 861 360

35-7 1157 221 1005 307

35-12 743 103 651 126

53-5 2713 443 2665 452

53-7 2111 286 1982 330

53-10 2640 220 2172 252

53-14 2139 144 2039 183

70-7 4410 442 4257 557

70-10 2715 264 3050 294

70-14 4149 194 3845 275

70-19 3754 139 3229 189

Figure 6.12 and Figure 6.13 presents the energy consumption obtained using the

time based model and energy based and it is evident from the figure that energy based

model is better in terms of minimizing energy consumption when compared with time

based model for both the groups of datasets. However, two datasets in the small size

datasets (25-4 and 70-10) did not get lower energy consumption using energy based

model.

Chapter 6

PSO to solve energy based RALB problems

Page | 132

Table 6.9 Results of performance evaluation of two models for large size datasets

in U-shaped RALB

Large

size
Datasets

Time Based Model Energy Based Model

Total Energy

Consumption

(kJ)

Cycle

Time

Total Energy

Consumption

(kJ)

Cycle

Time

89-8 5472 481 4826 532

89-12 5978 315 5665 420

89-16 5221 218 4969 322

89-21 4668 169 4218 201

111-9 9440 522 7230 688

111-13 7936 316 7167 377

111-17 7309 256 6861 265

111-22 6974 181 6800 228

148-10 11127 619 9828 671

148-14 11552 417 10506 458

148-21 11103 270 10079 318

148-29 8576 187 8415 198

297-19 25821 591 24658 697

297-29 25787 390 24666 448

297-38 25061 293 22446 345

297-50 24116 222 22022 341

Figure 6.12 Comparison of energy consumption for small size datasets in U-

shaped RALB

Chapter 6

PSO to solve energy based RALB problems

Page | 133

Figure 6.13 Comparison of energy consumption for large size datasets in U-

shaped RALB

Energy consumption for energy based model is lower when compared to energy

consumption obtained for time based model. Differences in energy consumption

between two models are taken and the average of the difference is taken to calculate the

average savings. It is observed the average energy saving by using energy based model

for small size datasets is around 119 kilojoules. The average energy which can be saved

by using energy based model over time based model for large size datasets is found to

be 987 kilojoules. Figure 6.14 and Figure 6.15 represents the difference in energy

consumption (energy saving potential) between the time based model and energy based

model and the graph represents the energy saved by using energy based model when

compared to the time based model. From Figure 6.14 it is observed that two problems

from the datasets are not able to produce better results for energy based model and they

are represented as negative peaks in the graph.

Chapter 6

PSO to solve energy based RALB problems

Page | 134

Figure 6.14 Energy saving potential in small size datasets for energy based model

in U-shaped RALB

Figure 6.16 and Figure 6.17 represent the comparison for the cycle time evaluated

by using the two models. And it is clearly evident that cycle time of time based model

is lower when compared to the cycle time obtained using energy based model for all

the thirty problems evaluated. The average reduction in cycle time by using time based

model for small size datasets is 52 cycle time units and for large size datasets average

reduction in cycle time is 66 units.

The manufacturing companies give utmost importance to increase the

productivity and reduce the energy consumption. The objective of the work presented

here is to propose two models which focus on time and energy consumption

concurrently in a U-shaped robotic assembly line. Based on the demands and

requirements of the managements, industrial managers can chose any of the two

proposed models for applying it in real life assembly line systems.

Chapter 6

PSO to solve energy based RALB problems

Page | 135

Figure 6.15 Energy saving potential in large size datasets for energy based model

in U-shaped RALB

Figure 6.16 Comparison of cycle time obtained for small size datasets in U-

shaped RALB

Chapter 6

PSO to solve energy based RALB problems

Page | 136

Figure 6.17 Comparison of cycle time obtained for large size datasets in U-

shaped RALB

6.2.3.4 Computational time

The average computational time for the time based model and energy based model

for the 32 problems of U-shaped robotic assembly line evaluated are presented in Table

6.10. Computational results shows that time taken for computing the time based model

is very less compared to that of the energy based model for large size datasets.

Table 6.10 Average Computational Time for the proposed two models

Problem

Set
Tasks

No. of

Problems

CPU Time

Time Based

Evaluation

Energy Based

Evaluation

1 25 4 10 13

2 35 4 24 25

3 53 4 38 39

4 70 4 72 75

5 89 4 93 94

6 111 4 287 354

7 148 4 559 676

8 297 4 1726 1854

The time consumed for large size datasets from 111 tasks is very high for energy

based model when compared to time based model. However, when comparing the time

consumed to solve U-shaped robotic assembly line is higher when compared with the

computational time for evaluating straight robotic assembly line problems. This is due

to large search space and different possible combinations in U-shaped layout.

Chapter 6

PSO to solve energy based RALB problems

Page | 137

6.2.4 Comparison of straight and U-shaped RALB

The total energy consumption and cycle obtained using energy based model and

time based model for straight and U-shaped robotic assembly line are compared. Table

6.11 is formed by extracting the results from Table 6.4, Table 6.5, Table 6.8 and Table

6.9. The results indicate that energy consumption is very low for U-shaped robotic

assembly line when compared to the energy consumption in straight robotic assembly

line. Twenty nine out of thirty two datasets yielded lower energy consumption for U-

shaped robotic assembly line. Average energy savings which is achieved by using U-

shaped robotic assembly line over straight robotic assembly line is calculated as 26

kilojoules for small size datasets (up to problem number 16) and 169 kilojoules for large

size datasets.

Table 6.11 Comparison: energy consumption between straight & U-shaped

RALB

Problem

No:

Problem

Dataset

Energy

Consumption (kJ)

Problem

No:

Problem

Dataset

Energy

Consumption (kJ)

Straight

RALB

U-shaped

RALB

Straight

RALB

U-shaped

RALB

1 25-3 494 496 17 89-8 5043 4826

2 25-4 342 345 18 89-12 5683 5665

3 25-6 365 359 19 89-16 5119 4969

4 25-9 248 246 20 89-21 4250 4218

5 35-4 1072 1042 21 111-9 7307 7230

6 35-5 929 861 22 111-13 7267 7167

7 35-7 1015 1005 23 111-17 6945 6861

8 35-12 697 651 24 111-22 6909 6800

9 53-5 2700 2665 25 148-10 9840 9828

10 53-7 1989 1982 26 148-14 10654 10506

11 53-10 2215 2172 27 148-21 10131 10079

12 53-14 2177 2039 28 148-29 8606 8415

13 70-7 4146 4257 29 297-19 25232 24658

14 70-10 3069 3050 30 297-29 24970 24666

15 70-14 3871 3845 31 297-38 22862 22446

16 70-19 3323 3229 32 297-50 22243 22022

Average Energy Savings for

U-shaped
26 kJ

Average Energy Savings for

U-shaped
169 kJ

Cycle time of both straight and U-shaped robotic assembly line obtained using time

based model are extracted and the results are presented in Table 6.12.

Chapter 6

PSO to solve energy based RALB problems

Page | 138

Table 6.12 Comparison: cycle time between straight & U-shaped RALB

Problem

No:

Problem

Dataset

Cycle Time
Problem

No:

Problem

Dataset

Cycle Time

Straight

RALB

U-shaped

RALB

Straight

RALB

U-shaped

RALB

1 25-3 503 500 17 89-8 464 481

2 25-4 293 293 18 89-12 317 315

3 25-6 221 188 19 89-16 219 218

4 25-9 110 109 20 89-21 176 169

5 35-4 341 355 21 111-9 526 522

6 35-5 357 333 22 111-13 317 316

7 35-7 226 221 23 111-17 250 256

8 35-12 105 103 24 111-22 185 181

9 53-5 454 443 25 148-10 556 619

10 53-7 293 286 26 148-14 420 417

11 53-10 224 220 27 148-21 272 270

12 53-14 146 144 28 148-29 190 187

13 70-7 446 442 29 297-19 594 591

14 70-10 259 264 30 297-29 428 390

15 70-14 194 194 31 297-38 295 293

16 70-19 139 139 32 297-50 256 222

Average Percentage

Reduction in cycle time using

U-shaped

1.80%

Average Percentage

Reduction in cycle time using

U-shaped

1.07%

From Table 6.12, it is observed that cycle time of U-shaped robotic assembly line

obtained using the time based model is lower than the cycle time for straight robotic

assembly line problems for 28 out of 32 problems evaluated. The average percentage

reduction in cycle time by using U-shaped layout for the small size datasets is computed

as 1.8% for small size datasets and the average percentage reduction in cycle time for

large size datasets is computed as 1.07%. Hence it is concluded from this study that U-

shaped robotic assembly line performs better than straight robotic assembly line for the

objective of minimizing cycle time as well as minimizing energy consumption.

 Summary

In manufacturing systems, optimizing cycle time and energy consumption is a very

important problem. Reducing energy consumptions helps to improve the productivity

and manufacturing companies give importance due to the serious environmental

impacts and rising energy cost. Creating an eco-friendly manufacturing system by

Chapter 6

PSO to solve energy based RALB problems

Page | 139

minimizing energy consumption is very important in present day context. In this

chapter, a study on robotic assembly line balancing problem with an objective of

minimizing cycle time and energy consumption simultaneously is considered for two

layouts of robotic assembly line (straight and U-shaped).

The work presented in this chapter is an important addition to the literature where

majority of the work on robotic assembly line dealt with the objective of minimizing

cycle time. A heuristic is developed for minimizing cycle time and total energy

consumption in both the layouts of robotic assembly lines. A particle swarm

optimization algorithm is proposed to solve the proposed models. Thirty two datasets

available in the literature has only time and precedence information. The energy data is

embedded into the existing datasets for developing datasets to solve the proposed

model. The objective of this work is to propose models with the dual focus on time and

energy. The computational experiments are conducted on the two models proposed in

this chapter for both the layouts. Energy saving potential for the proposed models is

also studied. Depending upon the priority of the management, the primary focus

between time and energy could vary at different time horizon. The appropriate model

could be selected based on the priority of the management. A comparative study is

conducted for the results obtained for two layouts (straight and U-shaped) and it is

concluded from the experimental results that U-shaped robotic assembly line performs

better in terms of minimizing energy consumption and cycle time when compared with

straight robotic assembly line for most of the datasets.

CHAPTER 7

7 Particle Swarm Optimization &

Differential Evolution to Solve Cost

Based RALB Problems

In today's competitive world, reducing the cost of the manufacturing component of

production is on the mind of manufacturers all over the globe. In a manufacturing

scenario, assembly is one of the most important processes. In an assembly line robots

are widely used instead of manual labor. By using robots, cost incurred due to manual

labor like salary, employee management and safety are eliminated. By employing

robots the companies can reduce the direct and overhead costs. In this work, a new

robotic assembly line balancing (RALB) problem is developed with an objective of

minimizing the total production cost of an assembly line by allocating tasks to the

workstations and assigning the cost efficient robot available. PSO and DE are used to

solve the problem.

 Straight RALB - Minimizing Assembly Line Cost

This section presents the procedure followed to find out the total assembly line cost

in a straight robotic assembly line (RAL). Most of the researchers considered only the

objective of minimizing the cycle time in a robotic assembly line. Consecutive

allocation procedure is adopted for task and robot allocation with an objective of

minimizing the total assembly line cost.

7.1.1 Consecutive Allocation procedure- Straight line

Aim of this allocation procedure is to assign tasks to the workstations and allocate

the best fit robot which performs the task with minimum performance cost. The

procedure starts with an initial assembly line cost. The tasks are allocated to the

workstation within the initial assembly line cost. The initial assembly line cost is

determined using Equation 7.1. The procedure tries to allocate the maximum tasks to

each workstation for the initial assembly line cost. If the procedure cannot find the

optimal allocation within the initial value, the initial value is incremented and the

procedure is repeated until all the tasks get assigned.

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 141

Initial assembly line cost 𝑃0 = ⌈ ⌉ (7.1)

Following steps are involved in consecutive assignment procedure with an

example task sequence (1-4-5-3-7-9-2-6-8-10-11):

Step 1. Minimum cost to perform each task by any robot among the given set of robot

is used to calculate the initial value of P0. In the given example below initial P0 is found

out to be 98 (refer Table 7.1).

P0= [33+40+35+36+24+57+37+31+31+36+33]/4=98.

Step 2. For the calculated P0, the procedure tries to allocate the first task to the first

workstation and checks if any of the robot can perform the task within the initial

assembly line cost.

Step 3. If yes, the next immediate task in the sequence is allotted to the same work

station and checks for the robot to perform those tasks with in the P0.

Step 4. Tasks are further added to the same station until the cost value exceeds the initial

P0 value.

Step 5. If further tasks cannot be assigned to the workstation next workstation is opened

and tasks are allotted.

Step 6. Repeat this procedure until all the tasks are allotted and robots are assigned.

Step 7. If tasks are left unassigned within the initial P0, P0 is incremented by ‘1’ and

procedure is repeated until all tasks get allotted.

Step 8. The workstation with the tasks allotted is allotted with the best robot which

performs the allotted tasks with minimum performance cost.

Step 9. The overall assembly line cost is calculated by summing up the cost of

performing the allotted task in each workstation by the allocated robots.

Using the performance cost and precedence relations data presented in Table 7.1,

the given sample sequence is evaluated. Figure 7.1 shows the allocation of tasks when

P0 is 98 and it is observed that tasks 6,8,10 and 11 are left unassigned. P0 is incremented

till 110 for the complete allocation as shown in Figure 7.2. The total assembly line cost

w

N

j

ji
Ni

Nc
a

r

/min
1

,
1






Chapter 7

PSO & DE to solve cost based RALB problems

Page | 142

is calculated by summing the cost to perform the allotted tasks at each workstation and

for the sample problem the total assembly line cost is 429.

Figure 7.1 Allocation done for initial assembly line cost

Figure 7.2 Final allocation of tasks and robots using consecutive allocation

procedure in straight RALB

Table 7.1 Performance cost data and precedence relations for 11 task problem

Task
Precedence

Relations

Cost for performing the tasks
Average Cost

R1 R2 R3 R4

1 - 65 33 47 47 48.0

2 1 88 89 82 40 75.0

3 1 52 70 35 50 52.0

4 1 41 36 83 38 50.0

5 1 74 32 30 24 40.0

6 2 62 57 76 68 66.0

7 3,4,5 41 45 37 47 42.0

8 6 40 37 31 42 38.0

9 7 35 67 38 31 43.0

10 8 36 40 38 73 47.0

11 9,10 61 33 76 83 63.0

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 143

7.1.2 PSO variants and DE to solve cost based model in straight RALB

Since this problem is a well-known NP-hard, four variants of particle swarm

optimization algorithm and Differential Evolution (DE) algorithm are proposed to solve

the consecutive allocation procedure. Four variants as explained in Section 5.2 are

implemented to solve the problem. Differential Evolution algorithm is also developed

to solve the problem. This section gives the details on how DE is implemented.

7.1.2.1 Differential Evolution

Storn and Price (1997) proposed a simple algorithm for optimization and

engineering problems called Differential Evolution (DE). DE is used to solve different

optimization problems and it is reported that DE outperforms other popular

evolutionary algorithms (Ali and Törn, 2004, Kaelo and Ali, 2006). Problems with

discrete decision variables such as machine layout problem (Nearchou, 2006), and

flow-shop scheduling problems (Nearchou and Omirou, 2006) have been tested with

DE and better results are reported. Implementation of DE on solving the cost based

robotic assembly line problem is explained in the following sections. The algorithm

starts with an initial set of random population (target vectors). In DE mutation and

crossover are done first before selection process. While in GA, selection process come

first and follows by crossover and mutation. A new set of vectors called donor vectors

are created using target vectors. A crossover operation is carried out between target

vectors and the corresponding donor vectors to generate trial vectors. The selection

operation is done by comparing the fitness values of each target vectors and trial

vectors. If the trial vector has a better fitness then target vector then it will be selected

into the population otherwise target vector will be selected. The above mentioned three

processes are repeated until the termination condition is satisfied. Figure 7.3 shows the

flowchart of DE.

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 144

Figure 7.3 Flowchart for differential evolution

The details of how each of the steps is implemented to solve the proposed problem

are presented here.

a) Initial Population

 DE procedure starts with the initial set of population called as ‘target vectors’.

Each member (vector) of this population encodes a potential solution for the problem.

The vector represents a sequence of numbers (tasks) arranged such a way that it meets

the precedence relationship. Based on the heuristics used for generating the initial

population for PSO in section 5.1.1, the same heuristics are used for generating initial

population in DE for solving the cost based model RALB problems

b) Mutation

In DE there are different variants for mutation operator (Qin and Suganthan, 2005).

Only one variant is selected and implemented in this thesis. A population of donor

vectors is created by perturbing the population of target vectors. Perturbation is

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 145

performed by adding the difference between two randomly selected target vectors to a

third target vector which is given in the

 (7.2)

F is known as the mutation scale factor. For an example let us consider three

vectors:

xr1,G={1,2,6,3,4,5,7,8,10,9,11}, xr2,G={1,2,3,4,5,6,7,8,9,10,11} and

xr3,G={1,2,3,6,5,4,7,8,10,9,11}

yig = {1,2,6,3,4,5,7,8,10,9,11}+F*{1,2,3,4,5,6,7,8,9,10,11}-{1,2,3,6,5,4,7,8,10,9,11}

The pairs of transpositions to get xr3,G from xr2,G are identified. Then apply the

mutation factor, the number of pairs are selected and these pairs are used to

transposition the values in xr1,g with F=0.5, yig is generated as explained below.

yig={1,2,6,3,4,5,7,8,10,9,11}+0.5*(3,5)(8,9)

 ={1,2,6,3,4,5,7,8,10,9,11}+(8,9)={1,2,6,3,4,5,7,8,9,10,11}

c) Crossover

Once the mutation phase is complete, the crossover process is activated. Set of trial

vectors are created by choosing between the donor vector and target vector. Crossover

is done for a set of selected vectors in the population. Number of vectors for crossover

is selected based on crossover rate CR. Trail vectors are generated by using OX operator

(Order Crossover) proposed by Davis (1985). A sample illustration of the procedure for

this crossover is presented in Section 5.2.4.1.

d) Selection

The selection scheme of DE also differs from that of other evolutionary algorithms

(Ali et al., 2009). The population for the next generation is selected from the individual

in current population and its corresponding trial vector. Target vector competes with

their corresponding trial vector to be selected on to the next generation/iteration. The

vector with the better fitness value is copied to the next generation. In this research,

vector with minimum assembly line cost is selected. The rule of selection is according

to the following rule:

 (7.3)

1, 2, 3,(), 1,...5ig r g r G r Gy x F x x where i   

i,G , , Z () ()

,G 1 0, { i G i Gif f Z f x

i otherwisex


 

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 146

The algorithm is terminated if the iteration approaches a predefined criteria, in this

case, a predefined maximum number of iterations (generations) is used.

7.1.3 Cost Model Dataset Generation

There are no cost data available to optimize the assembly line cost for a robotic

assembly line. This section presents the procedure followed to generate the cost data

for the RALB problem. Eight representative precedence graphs and from

http://www.assembly-line-balancing.de/, which are widely used in the SALB-I

literature (Scholl, 1993) and processing times of robots available in Gao et al. (2009)

are used to generate the datasets. The hourly rate of the robots is calculated from the

standard procedure of finding annual cost of a capital intensive resource.

 (7.4)

 Here, UAC = Equivalent uniform annual cost ($/yr); i = annual interest rate and

n= number of years, (A/P, i, n) = capital recovery factor that converts initial cost at year

0 into a series of equivalent uniform annual year-end values.

For given values of i and n, (A/ P, i, n) can be computed as follows

 (7.5)

Value of (A/ P, i, n) can also be found in interest tables that are widely available.

Hourly cost of robot is calculated by dividing the annual cost with total annual hours

per year. Cost of robot for a specific time can be calculated with hourly cost of robot.

The annual interest rate i is assumed as 10% and n is assumed as 5 years. Number of

annual hours per year is calculated as total working hours multiplied by total number

of working days. Number of annual hours is taken as 6000hr/yr (20hr/day*300days/yr).

After calculating the cost per hour of a robot, cost of performing a set of task by a robot

is calculated by using the performance time. An example is shown for a better

understanding on how the cost data is generated.

),,/(* niPAICUAC 

1)1(

)1(*
),,/(






n

n

i

ii
niPA

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 147

The steps shows how the cost of a robot for a specific time. Initial robot cost is

$1,100,000.

Step 1: Calculate UAC for robot

 UAC = IC (A/P, i, n)

 = 1,100,000* 0.2638)

 Uniform Annual Cost = $ 29, 0180

 *A/P Value is calculated for 5 years with interest rate 10%

Step 2: Calculate Hourly Rate of the robot

Total number of hours per year = (20 hr/day) (300 day/yr) = 6000 hr/yr.

 Cost Per Hour = 290180/6000

 = $ 48.36333/hr

 *Assembly line is considered to work for 20 hours a day for 300 days in a year.

Step 3: Cost of the robot for a specific time

Time taken to perform a task by robot 1 is 81minutes.

Cost of robot per time = 48.3633*81 /60 = $ 65.2905

Similarly, cost data for all 32 problems have been generated. It is assumed that

costs such as robot cost, setup cost, transportation cost are included in the initial cost of

the robot. Table 7.1 is developed based on the UAC cost and subsequent tasks times of

robots available. Appendix 4 shows the random robot cost assumed for developing

datasets for small size datasets (up to 70 tasks problems) and Appendix 5 for large size

datasets (above 89 tasks problems).

7.1.4 Parameter settings

The parameters used in PSO variants are chosen by conducting pilot simulation on

three different problems. Different combinations of the parameters are tested until the

best combination is achieved. Quality of solution is given importance compared to the

computational time in selecting the parameters. For all the four variants of PSO the

population size and the total number of generations are kept same. The parameters

obtained after the pilot simulation study are presented in Table 7.2

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 148

From the experimental studies conducted it is found that proposed DE algorithm

works well when the initial size of the population is set to 25 and the mutation factor is

set to 0.5 and crossover rate is fixed as 0.9. The total number of generations is fixed to

25. DE parameters chosen are also shown in Table 7.2.

F is a mutation scaling factor of the difference vector (Equation 7.2). This

parameter helps to control the evolving rate of the population. F is chosen to be a value

in the range [0, 2] for original DE algorithm (Storn and Price, 1997). When small F

values are used it could lead to premature convergence and high values can slow down

the search (Mohamed et al., 2012). From the literature review it is found that mutation

factor 0.5 is better and this value is used for solving all the thirty two problems.

Crossover rate (CR) reflects the probability with which the trial individual inherits the

actual individual’s genes (Feoktistov, 2006). If the CR value is relatively high, this will

increase the population diversity and improve the convergence speed (Mohamed et al.,

2012). Different levels of crossover rate (0.3, 0.5, 0.7, and 0.9) are tested. Three

problems of different task size are evaluated using the different levels of crossover. Best

solution is obtained when the CR value is set as 0.9.

Table 7.2 Parameters selected for PSO variants and DE

Parameters for PSO variants Parameters for DE

Population size: 25 Population size: 25

Number of iterations: 30 Number of iterations: 30

PSO-W: w=0.6, c1=1 and c2=2

PSO-C: c1= 2.4 and c2=1.7

PSO-TVIW: wmax=0.9, wmin=0.4, c1=1 and c2=2

PSO-TVAC: c1i=2.5, c1f=0.5, c2i=0.5, c2f =2.5

Mutation factor: 0.5

Crossover rate: 0.9

7.1.5 Performance analysis for straight RALB

Thirty two test problems are solved for the proposed allocation procedure using

PSO variants and Differential evolution algorithm. The performances of the model are

evaluated to find total assembly line cost in a straight robotic assembly line. The

proposed model is coded in C++ and the performances of PSO and DE are tested on

Intel core i5 processor (2.3 GHz). The datasets evaluated are divided into two groups:

small (up to 70 task problems) and large size datasets (from 89 task problems). Table

7.3 shows the results obtained for the proposed four variants of PSO and DE using

consecutive allocation procedure for the objective of minimizing total assembly line

cost.

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 149

Table 7.3 Results for cost based straight RALB problems using consecutive

allocation procedure

D
a

ta
se

t
Total Assembly Line Cost

 D
a

ta
se

t

Total Assembly Line Cost

P
S

O
-W

P
S

O
-C

P
S

O
-T

V
IW

P
S

O
-T

V
A

C

D
E

P
S

O
-W

P
S

O
-C

P
S

O
-T

V
IW

P
S

O
-T

V
A

C

D
E

25-3 1279 1240 1218 1218 1218 89-8 3192 3186 3179 3175 3124

25-4 992 992 922 984 984 89-12 2892 2894 2877 2874 2863

25-6 830 810 806 804 803 89-16 2492 2482 2475 2471 2472

25-9 754 748 750 746 723 89-21 2314 2312 2310 2304 2288

35-4 945 945 945 945 945 111-9 4307 4245 4271 4244 4231

35-5 1356 1340 1339 1326 1317 111-13 3404 3364 3360 3360 3335

35-7 1347 1335 1332 1322 1273 111-17 3396 3392 3364 3317 3299

35-12 868 870 861 861 845 111-22 2858 2853 2846 2806 2794

53-5 2238 2238 2234 2230 2230 148-10 5681 5657 5625 5621 5613

53-7 1859 1857 1846 1783 1768 148-14 4270 4250 4232 4230 4220

53-10 1683 1673 1677 1675 1666 148-21 3900 3895 3884 3764 3722

53-14 1379 1366 1354 1334 1299 148-29 3822 3816 3815 3796 3744

70-7 2378 2372 2375 2329 2319 297-19 8512 8500 8434 8412 8311

70-10 2276 2275 2262 2263 2173 297-29 7879 7812 7807 7725 7570

70-14 2013 2007 1997 1970 1966 297-38 7796 7795 7791 7738 7598

70-19 1794 1798 1775 1758 1718 297-50 8568 8561 8345 8337 8320

From Table 7.3, it is observed that DE algorithm produces better results for 31 out

of 32 datasets when compared with the PSO variants for the allocation done using

consecutive allocation procedure for the objective of minimizing the total assembly line

cost. When comparing the results of PSO variants and DE, only PSO-TVAC produced

results nearer to DE results. The best results found by the proposed algorithms are

presented in bold. Average computational time (program running time) taken by four

PSO variants and DE algorithm is recorded and is reported here in Table 7.4. Among

the four PSO variants and DE, computational time for small size datasets is low for DE

algorithm and for large size datasets DE takes more time when compared with other

four PSO variants.

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 150

Table 7.4 Average Computation Time for consecutive allocation procedure

Problems
Average Computation Time

PSO-W PSO-C PSO-TVIW PSO-TVAC DE

25 14 14 14 12 12

35 22 23 23 19 17

53 33 34 32 29 27

70 71 73 67 65 63

89 92 94 88 90 124

111 142 144 136 133 148

148 304 305 302 309 352

297 1295 1295 1292 1310 1370

7.1.6 Time based and cost based model for straight RALB

Manufacturing industries gives importance for reducing the production cost due to

high investment cost incurred for setting up production systems and robotic assembly

lines. Industries use robotic assembly lines extensively and these systems are very cost

intensive. Due to this, industries need to use the resources available optimally. In the

literature survey, no research could be found on optimizing cycle time and total

assembly line cost concurrently for RAL. In this research, two models are proposed

with dual focus on time and cost to minimize the cycle time and total assembly line cost

simultaneously. The first model (cost based model) focusses on the objective of

minimizing the total assembly line cost as the primary objective and second model (time

based model) focusses on the objective of minimizing cycle time as the primary

objective in a straight robotic assembly line.

Results obtained from the previous section for assembly line cost using differential

evolution is considered in this section. The consecutive allocation procedure reports the

best solution possible for the objective of minimizing the total assembly line cost (cost

based model) using the cost data of tasks for DE algorithm. Using the task and robot

performance time details the workstation times are calculated. Using the same

parameters used for DE, the cycle time (time based model) is also evaluated for all

thirty problems for the objective of minimizing cycle time. For the allocation evaluated,

the procedure calculates the assembly line cost of each workstation and the total

assembly line cost is calculated.

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 151

For a sample sequence (1-4-5-3-7-9-2-6-8-10-11), the allocation is done using the

cost based model for the objective of minimizing the total assembly line cost. The

workstations are allotted with the tasks and robots are allotted based on the objective

of minimizing assembly line cost and using the time data for the problem the

workstation times are calculated. Table 7.5 shows the task and robot allocation for the

sample sequence. Figure 7.4 shows the workstation times and assembly line cost of

each workstation.

Table 7.5 Task and robot allocation using cost based model

Workstation Tasks Robot Allotted

Workstation 1 1, 4, 5 Robot 2

Workstation 2 3, 7, 9 Robot 3

Workstation 3 2, 6 Robot 4

Workstation 4 8, 10, 11 Robot 2

The workstation time is calculated using the time data available in Table 5.2. Time

at Workstation 1 (Robot 2) =37+41+36=114, Time at Workstation 2 (Robot 3) =

38+40+41=119, Time at Workstation 3 (Robot 4) =42+71=113 and Time at

Workstation 4 (Robot 3) = 42+46+38=126. The cycle time is 126 and the total assembly

line cost is 429.

Figure 7.4 Workstation cost and cycle time allocation done using cost based

model

The same sequence is considered for the allocation of tasks and robots with an

objective of minimizing cycle time using the time data of the tasks. Consecutive

procedure explained in Section 5.1.1 is used for the cycle time calculation. Table 7.6

shows the allocation of tasks and robots allotted using the time based model.

Using Table 7.1, the cost of the assembly at each workstation is calculated for the

allocation made based on the objective of minimizing cycle time and the overall

assembly line cost is calculated by taking the sum of the cost to perform the tasks at

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 152

each workstation using the cost data. Cost for Workstation 1 (Robot 2)

=33+36+32=101, Cost for Workstation 2 (Robot 3) = 35+37+38=110, Cost for

Workstation 3 (Robot 4) =40+68+42=150 and Cost for Workstation 4 (Robot 3) =

40+33=73. Figure 7.5 shows the robot and task allocation with the workstation cost and

workstation time in a straight robotic assembly line. The cycle time is 157 and the total

assembly line cost is 434.

Table 7.6 Task and robot allocation using time based model

Workstation Tasks Robot Allotted

Workstation 1 1, 4, 5 Robot 2

Workstation 2 3, 7, 9 Robot 3

Workstation 3 2, 6, 8 Robot 4

Workstation 4 10, 11 Robot 2

Figure 7.5 Workstation cost and cycle time using time based model

Results of thirty two problems generated are compared for both the objectives in a

straight robotic assembly line. The datasets are divided into two groups: small size

datasets and large size datasets. The complete details of the results obtained by using

the time based and cost based model for small size datasets (Problem No: 1 to 16) and

for large size datasets (Problem No: 17 to 32) are presented in Table 7.7. From the

tables it is evident that cost based model is better in terms of minimizing the total

assembly line cost when compared with time based model for both the groups of

datasets and cycle time is better for time based data model when compared with the

cost based data model.

Assembly line cost evaluated using cost based model is lower when compared to

assembly line cost obtained for time based model in a straight robotic assembly line.

Differences in assembly line cost between two models are taken and the average of the

difference is taken to calculate the average cost savings. It is observed the average cost

saving by using cost based model for small size datasets is around 205 cost units. The

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 153

average cost which can be saved by using cost based model over time based model for

large size dataset is found to be 573 cost units. Figure 7.6 and Figure 7.7 represents the

difference in cost of the assembly line (cost saving potential) between the time based

model and cost based model and the graph represents the cost saved by using cost based

model when compared to the time based model.

Figure 7.6 Cost saving potential in small size datasets for cost based model in

straight RALB

Figure 7.7 Cost saving potential in large size datasets for cost based model in

straight RALB

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 154

Table 7.7 Comparison of assembly line cost and cycle time for two models in

straight RALB

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

Assembly

Line Cost

Cycle

Time

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

Assembly

Line Cost

Cycle

Time

C
o

st

M
o

d
el

T
im

e

M
o

d
el

C
o

st

M
o

d
el

T
im

e

M
o

d
el

C
o

st

M
o

d
el

T
im

e

M
o

d
el

C
o

st

M
o

d
el

T
im

e

M
o

d
el

1 25-3 1218 1331 706 503 17 89-8 3124 3264 516 461

2 25-4 984 984 299 293 18 89-12 2863 2904 383 320

3 25-6 803 815 221 200 19 89-16 2472 2641 292 219

4 25-9 723 750 124 114 20 89-21 2288 2716 244 170

5 35-4 945 947 374 342 21 111-9 4231 4284 698 521

6 35-5 1317 1551 464 333 22 111-13 3335 3375 438 321

7 35-7 1273 1507 279 211 23 111-17 3299 4088 349 243

8 35-12 845 918 130 104 24 111-22 2794 3179 293 184

9 53-5 2230 3371 561 449 25 148-10 5613 5832 881 586

10 53-7 1768 1832 362 295 26 148-14 4220 4431 561 419

11 53-10 1666 1877 252 224 27 148-21 3722 4528 321 273

12 53-14 1299 1398 168 142 28 148-29 3744 4374 236 190

13 70-7 2319 2348 504 430 29 297-19 8311 10301 675 594

14 70-10 2173 2360 351 262 30 297-29 7570 8876 503 394

15 70-14 1966 2118 247 194 31 297-38 7598 8771 365 305

16 70-19 1718 2413 176 139 32 297-50 8320 9112 331 221

When comparing the cycle time among two models it is observed that cycle time

obtained by time based model is lower. The average reduction in cycle time by using

time based model for small size datasets is 61 cycle time units and for large size datasets

average reduction in cycle time is 104 units.

Depending upon the priority of the management, the primary focus between time

and cost could vary at different time horizon. The appropriate model could be selected

based on the priority of the management.

 U-shaped RALB – Assembly line cost

This section presents the procedure followed to find out the total assembly line cost

in a U-shaped robotic assembly line. Consecutive allocation procedure is proposed for

task and robot allocation with an objective of minimizing the total assembly line cost

in a U-shaped robotic assembly line.

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 155

7.2.1 Task and robot allocation procedure in U-shaped RALB

This procedure is used to calculate the total assembly line cost of a U-shaped

robotic assembly line. The procedure for task allocation varies from the straight robotic

assembly line. U-shaped allocation allows more possibilities for task allocation. Tasks

are allocated to the workstation by moving forward and backward through the

precedence diagram in contrast to a typical forward move in the traditional assembly

systems. An initial assembly line cost (P0) is calculated to start the procedure. The

procedure tries to allocate the maximum number of tasks to the workstations without

violating the precedence constraints. If the initial P0 cannot accommodate all the tasks,

P0 is incremented by one and the procedure is repeated to accommodate all the tasks.

The allocation done gives the cost to perform the task allotted to each workstation. The

total assembly line cost is calculated by taking the sum of cost incurred at each

workstation. An illustration is provided in this section which explains the task and robot

allocation and calculation of energy consumption in a U-shaped robotic assembly line.

Sequence of tasks which meets the precedence constraints is considered for illustration.

Let, the sequence be, (1-4-5-3-7-9-2-6-8-10-11): 11 task and 4 workstation problem is

considered for the illustration. Performance cost data details of each tasks and robots

are presented in Table 7.1.

Step 1. Using Equation 7.1, P0 is calculated and it is found to be 98.

Step 2. For the initial P0, the procedure tries to allocate the tasks to the workstations

starting from the first workstation. Procedure checks the both sides of the sequence if

any of the robots could perform the tasks within P0. Different possible combinations

are available in U-shaped. The procedure chooses the combination which minimizes

the cost at each workstation.

Step 3. Next workstation is open and remaining tasks from the sequence are allocated

if the initial assembly line cost cannot allocate all the tasks.

Step 4. The initial value of assembly line cost is incremented if tasks are still left

unassigned for the initial value and Step 2 and 3 are repeated until all tasks get assigned

to the workstation.

Step 5. Robots are allotted to each workstation with certain set of tasks. Robots which

perform the allotted tasks in minimum cost is allotted to the workstation

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 156

Step 6. The sum of cost of each workstation gives the total assembly line cost.

For cost based model in U-shaped robotic assembly, when the allocation was

attempted with initial P0 it was found that tasks 2, 7 and 9 are left unassigned. P0 is

incremented till 108 to accommodate all the tasks to the four workstations. The total

assembly line cost of the given sequence is calculated as 419 cost units. Figure 7.8

shows the allocation based on the cost based model in a U-shaped RAL.

Figure 7.8 Final task and robot allocation in a U-shaped RALB for cost

7.2.2 PSO Variants and DE to solve cost based model in U-shaped RALB

Since this problem also falls under the category of NP-hard, four variants of

particle swarm optimization algorithm and Differential Evolution (DE) algorithms are

proposed to solve both the proposed models. Four variants as explained in Section 5.2

are implemented to solve the problem. Details of Differential Evolution algorithm

developed to solve the problem are presented in Section 7.1.2. The same set of

parameters used for solving cost based model in straight line is adopted to solve U-

shaped cost based robotic assembly line problems.

7.2.3 Performance analysis for cost based U-shaped RALB

Thirty two test problems are solved using PSO variants and Differential evolution

algorithm for the objective of minimizing the assembly line cost. The proposed model

is coded in C++ and the performances are tested on Intel core i5 processor (2.3 GHz).

The datasets evaluated are divided into two groups: small size datasets and large size

datasets. Table 7.8 shows the results obtained for the proposed four variants of PSO

and DE for U-shaped robotic assembly line balancing problems. The results reported

are the best solution found using the four variants of PSO and DE From the table it is

analyzed that the results obtained for DE reports better results when compared with the

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 157

results obtained using the four variants. There is significant improvement in the solution

quality when DE algorithm is used to generate the results.

Average computational time (program running time) taken by 4 PSO variants and

DE algorithm is recorded and is reported here in Table 7.9. Computational time to

perform the datasets with small size is low whereas for large size datasets computational

time is high. Among the four variants and DE, computational time for small size

datasets is low for PSO-TVAC algorithm and for large size datasets DE takes lesser

time when compared with the 4 PSO variants. Among the four variants the time taken

by PSO-TVAC is lower for all the thirty two datasets. Results obtained using DE show

that DE is better for all the problems in terms of the objective, its robustness and

computational efficiency can be improved by fine tuning the parameters for getting the

solution at a faster rate for the small size datasets.

Table 7.8 Results for cost based U-shaped RALB problems using PSO variants

and DE

D
a

ta
se

t

Total Assembly Line Cost

D
a

ta
se

t

Total Assembly Line Cost

P
S

O
-W

P
S

O
-C

P
S

O
-T

V
IW

P
S

O
-T

V
A

C

D
E

P
S

O
-W

P
S

O
-C

P
S

O
-T

V
IW

P
S

O
-T

V
A

C

D
E

25-3 1229 1229 1222 1225 1206 89-8 3262 3146 3152 3126 3121

25-4 1010 991 987 984 965 89-12 2865 2850 2831 2792 2773

25-6 822 815 798 796 778 89-16 2470 2448 2413 2392 2388

25-9 730 720 715 719 704 89-21 2312 2300 2286 2279 2254

35-4 945 945 945 945 945 111-9 4209 4242 4199 4161 4135

35-5 1422 1337 1326 1319 1299 111-13 3329 3322 3308 3302 3294

35-7 1334 1312 1308 1306 1306 111-17 3292 3279 3255 3237 3209

35-12 857 858 855 806 795 111-22 2821 2789 2762 2728 2730

53-5 2238 2195 2159 2167 2195 148-10 5596 5585 5526 5509 5488

53-7 1747 1739 1730 1720 1739 148-14 4279 4167 4169 4166 4164

53-10 1683 1678 1661 1652 1649 148-21 3768 3722 3740 3690 3664

53-14 1313 1309 1306 1294 1266 148-29 3690 3678 3595 3586 3574

70-7 2378 2368 2367 2346 2339 297-19 8510 8391 8340 8340 8253

70-10 2237 2223 2208 2185 2152 297-29 7707 7650 7638 7676 7460

70-14 1980 1954 1947 1929 1918 297-38 7627 7622 7542 7551 7514

70-19 1700 1733 1702 1689 1659 297-50 8364 8378 8277 8234 8234

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 158

Table 7.9 Average Computational time for cost based U-shaped RALB

Problems
Average Computation Time

PSO-W PSO-C PSO-TVIW PSO-TVAC DE

25 18 17 18 16 17

35 24 25 25 22 24

53 36 39 42 32 33

70 75 78 77 69 72

89 98 99 98 95 93

111 148 145 149 139 135

148 317 315 320 314 310

297 1350 1355 1362 1345 1340

7.2.4 Time and Cost based model in U-shaped RALB

Resources at an industry need to be optimally used to reduce the loss incurred by

operating cost intensive robotic assembly line systems. From the literature, it is found

that no research is found where both the assembly line cost and cycle time are optimized

concurrently in a U-shaped robotic assembly line. In this research, two models are

proposed with dual focus on time and cost to minimize the cycle time and total assembly

line cost simultaneously. The first model (cost based model) focusses on the objective

of minimizing the total assembly line cost as the primary objective and second model

(time based model) focusses on the objective of minimizing cycle time as the primary

objective in a straight robotic assembly line (RAL).

In the previous section, DE algorithm reported the best solution among the

proposed algorithms. The results obtained from DE are used in this section for

calculating the cycle time for the cost based model. Using the task and robot details,

the workstation times are calculated and the workstation time which is the maximum is

the cycle time of the allocation.

A sample sequence which is used in the previous section to show the allocation

based on the objective of minimizing the total assembly line cost is used here. Table

5.2 is used for finding the workstation time. Time at Workstation 1 (Robot 2)

=37+41+38=116, Time at Workstation 2 (Robot 3) = 38+33+41=112, Time at

Workstation 3 (Robot 3) =40+34+31=115 and Time at Workstation 4 (Robot 4) =

42+71=113. The cycle time of the U-shaped robotic assembly line is 116 and the total

assembly line cost is 419 as shown in Figure 7.9.

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 159

Figure 7.9 Workstation cost and time in U-shaped RALB using cost based model

Using the same set of parameters used to solve the cost based model, the allocation

procedure used for U-shaped allocation in robotic assembly line for the objective of

minimizing the cycle time (time based model) is evaluated (Table 5.2). Procedure

explained in Section 5.5.3 is used for allocation of tasks and robots based on the

objective of minimizing the cycle time. For the allocation made using this model, the

assembly line cost is calculated. Figure 7.10 shows the final allocation of tasks and

robots based on the objective of minimizing the cycle time. Using Table 7.1, the overall

assembly line cost is calculated by taking the sum of the cost to perform the tasks at

each workstation. Cost for Workstation 1(Robot 2) =33+36+33=102, Cost for

Workstation 2(Robot 3) = 30+31+38=99, Cost for Workstation 3(Robot 4)

=33+76=150 and Cost for Workstation 4(Robot 3) = 40+47+31=118. The cycle time is

124 and the total assembly line cost is 430 when the allocation is done based on the

objective of minimizing the cycle time in a U-shaped robotic assembly line.

Figure 7.10 Workstation cost and time in U-shaped RALB using time based

model

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 160

Both the objectives of minimizing cycle time and assembly line cost in a U-shaped

robotic assembly line are tested on the thirty two problems generated. Two groups of

datasets (small and large size datasets) are available. The detailed results obtained by

using the time based and cost based model for U-shaped robotic assembly line for small

size datasets (Problem No: 1 to 16) and for large size datasets (Problem No: 17 to 32)

are presented in Table 7.10 . From the tables it is evident that cost based model is better

in terms of minimizing the total assembly line cost when compared with time based

model for both the groups of datasets and cycle time is better for time based data model

when compared with the cost based data model for U-shaped robotic assembly line

except for two datasets (53-7 and 148-14).

Assembly line cost evaluated using cost based model is lower when compared to

assembly line cost obtained for time based model in a U-shaped robotic assembly line.

Difference in assembly line cost between two models is taken and the average of the

difference is taken to calculate the average cost savings. It is observed the average cost

saving by using cost based model for small size datasets is around 237 cost units. The

average cost which can be saved by using cost based model over time based model for

large dataset is found to be 502 cost units.

Figure 7.11 Cost saving potential in small size datasets for cost based model in U-

shaped RALB

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 161

Table 7.10 Comparison of assembly line cost and cycle time for two models in U-

shaped RALB

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

Assembly

Line Cost

Cycle

Time

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

Assembly

Line Cost

Cycle

Time

C
o

st

M
o

d
el

T
im

e

M
o

d
el

C
o

st

M
o

d
el

T
im

e

M
o

d
el

C
o

st

M
o

d
el

T
im

e

M
o

d
el

C
o

st

M
o

d
el

T
im

e

M
o

d
el

1 25-3 1206 1451 583 500 17 89-8 3121 3174 598 481

2 25-4 965 989 303 318 18 89-12 2850 2921 425 319

3 25-6 778 1101 189 183 19 89-16 2448 2513 252 219

4 25-9 704 740 114 110 20 89-21 2254 2561 216 170

5 35-4 945 947 355 343 21 111-9 4135 4343 690 522

6 35-5 1299 1582 473 336 22 111-13 3294 3300 366 319

7 35-7 1306 1439 268 212 23 111-17 3209 3809 311 242

8 35-12 795 907 128 103 24 111-22 2730 3049 238 181

9 53-5 2195 3512 660 447 25 148-10 5596 5697 818 619

10 53-7 1739 1725 359 283 26 148-14 4164 4161 446 411

11 53-10 1649 1921 253 220 27 148-21 3664 4438 321 270

12 53-14 1266 1295 162 144 28 148-29 3574 5003 230 188

13 70-7 2339 2439 483 427 29 297-19 8253 8913 686 591

14 70-10 2152 2263 339 264 30 297-29 7460 8702 513 390

15 70-14 1918 2089 217 195 31 297-38 7514 8579 357 292

16 70-19 1659 2322 168 138 32 297-50 8234 9373 305 222

Figure 7.11 and Figure 7.12 represents the difference in cost of the assembly line

(cost saving potential) between the time based model and cost based model and the

graph represents the cost saved by using cost based model when compared to the time

based model.

Figure 7.12 Cost saving potential in large size datasets for cost based model in U-

shaped RALB

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 162

When comparing the cycle time among two models it is observed that cycle time

obtained by time based model is lower. The average reduction in cycle time by using

time based model for small size datasets is 52 cycle time units and for large size datasets

average reduction in cycle time is 84 units.

 Comparison of straight and U-shaped RALB

The total assembly line cost and cycle time obtained using cost based model for

straight and U-shaped robotic assembly line are compared. Table 7.11 is formed by

extracting the results from Table 7.7 and Table 7.10 obtained for minimizing total

assembly line cost from straight and U-shaped robotic assembly line using cost based

model results.

Table 7.11 Comparison of assembly line cost - straight and U-shaped RALB

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

Assembly

Line Cost

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

Assembly

Line Cost

S
tr

a
ig

h
t

R
A

L
B

U
-S

h
a

p
ed

R
A

L
B

S
tr

a
ig

h
t

R
A

L
B

U
-S

h
a

p
ed

R
A

L
B

1 25-3 1218 1206 17 89-8 3124 3121

2 25-4 984 965 18 89-12 2863 2850

3 25-6 803 778 19 89-16 2472 2448

4 25-9 723 704 20 89-21 2288 2254

5 35-4 945 945 21 111-9 4231 4135

6 35-5 1317 1299 22 111-13 3335 3294

7 35-7 1273 1306 23 111-17 3299 3209

8 35-12 845 795 24 111-22 2794 2730

9 53-5 2230 2195 25 148-10 5613 5596

10 53-7 1768 1739 26 148-14 4220 4164

11 53-10 1666 1649 27 148-21 3722 3664

12 53-14 1299 1266 28 148-29 3744 3574

13 70-7 2319 2339 29 297-19 8311 8253

14 70-10 2173 2152 30 297-29 7570 7460

15 70-14 1966 1918 31 297-38 7598 7514

16 70-19 1718 1659 32 297-50 8320 8234

Average Cost

Savings for U-

shaped

21 cost units

Average Cost

Savings for U-

shaped

63 cost units

The results indicate that total assembly line cost is very low for U-shaped robotic

assembly line when compared to the total assembly line cost in straight robotic

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 163

assembly line. Thirty out of thirty two datasets yielded lower assembly line cost for U-

shaped robotic assembly line. Average cost savings which is achieved by using U-

shaped robotic assembly line over straight robotic assembly line is calculated as 21 cost

units for small size datasets (up to problem number 16) and 63 cost units for large size

datasets. Cycle time of both straight and U-shaped robotic assembly line obtained using

time based model are extracted from Table 7.7 and Table 7.10 and the results are

presented in Table 7.12.

Table 7.12 Comparison of cycle time - straight and U-shaped RALB

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

Cycle Time

P
ro

b
le

m
 N

o
:

P
ro

b
le

m

D
a

ta
se

t

Cycle Time

S
tr

a
ig

h
t

R
A

L
B

U
-S

h
a

p
ed

R
A

L
B

S
tr

a
ig

h
t

R
A

L
B

U
-S

h
a

p
ed

R
A

L
B

1 25-3 503 500 17 89-8 461 481

2 25-4 293 318 18 89-12 320 319

3 25-6 200 183 19 89-16 219 219

4 25-9 114 110 20 89-21 170 170

5 35-4 342 343 21 111-9 521 521

6 35-5 333 336 22 111-13 321 319

7 35-7 211 212 23 111-17 243 242

8 35-12 104 103 24 111-22 184 181

9 53-5 449 447 25 148-10 586 619

10 53-7 295 283 26 148-14 419 411

11 53-10 224 220 27 148-21 273 270

12 53-14 142 144 28 148-29 190 188

13 70-7 430 427 29 297-19 594 591

14 70-10 262 264 30 297-29 394 390

15 70-14 194 195 31 297-38 305 292

16 70-19 139 138 32 297-50 221 222

Average % Reduction

in cycle time using U-

shaped

0.5%

Average % Reduction in

cycle time using U-

shaped

0.15%

From Table 7.12, it is observed that cycle time of U-shaped robotic assembly line

obtained using the time based model is lower than the cycle time for straight robotic

assembly line problems for 28 out of 32 problems. The average percentage reduction

in cycle time by U-shaped layout for the small size datasets is computed as 1.5% and

the average percentage reduction in cycle time for large size datasets is computed as

0.5%. Twenty three out of thirty two problems obtained better cycle time for U-shaped

robotic assembly line when compared with straight robotic assembly line. Hence it is

Chapter 7

PSO & DE to solve cost based RALB problems

Page | 164

concluded from this study that U-shaped robotic assembly line performs better than

straight robotic assembly line for the objective of minimizing cycle time as well as

minimizing total assembly line cost.

 Summary

In this chapter, a new robotic assembly line balancing problem with an objective

of minimizing assembly line cost in addition to cycle time is developed. The author

could not find any literature on optimizing assembly line cost in robotic assembly line

systems to date. The work presented in this chapter is an important addition to the

literature where majority of the work on robotic assembly line dealt with the objective

of minimizing cycle time. In a large assembly line, different robotic systems can be

used to perform the tasks in the assembly line. Robot needs to be assigned to the work

stations based on the minimum cost required to perform the tasks which are allocated

to the work stations based on heuristic methods. Consecutive allocation is implemented

for robot and task allocation for straight and U-shaped robotic assembly line. Robots

are allotted to the work station based on the cost and the total cost of the assembly line

is calculated. Since this problem is well known as NP-hard, PSO variants and

differential evolution algorithm has been proposed to solve this problem. Data sets have

been developed and tested with the proposed algorithms and the results are reported for

both straight and U-shaped RALB problems. Among the PSO variants and DE, it is

observed that DE reports better quality of solution. Parametric study is conducted on

selected problems to choose the efficient set of parameters for PSO and DE.

Computational time is also reported.

As part of the experimental study, the cost of the assembly line is also calculated

for the allocation done based on the objective of minimizing cycle time. The potential

cost savings which is achieved by allocating tasks and robots based on the cost based

model is calculated for both straight and U-shaped robotic assembly line. Cycle time

for both the layouts is also calculated for the allocation done based on cost. Assembly

line cost and cycle time obtained for both the layouts are compared and it is concluded

from the results obtained that U-shaped robotic assembly line reports better cycle time

and assembly line cost when compared with straight robotic assembly line. These

models can be strongly recommended to solve problem instances that occur in practice,

regardless of the characteristics of the actual real-world problem.

CHAPTER 8

8 Particle Swarm Optimization &

Differential Evolution for RALB

Problem to Maximize Line Efficiency

Efficiency is a crucial factor in industrial production lines as it results in an

improved production and checks the utilization of available resources. When the line

efficiency is high, it can be inferred that all resources are well utilized. Thus, excess

resources can be allocated for performing other tasks. Industries spend appropriate cost

of production when the line efficiency is high. Industries would be able to produce more

output in shorter time and will be meeting the demand of the customers if the efficiency

is high. Maximizing line efficiency is the key to profitability. Two models are proposed

to calculate line efficiency in a robotic assembly line. The first model is based on the

line efficiency calculated based on the workstation times which are calculated using

time data of the tasks. Second model is developed based on the objective of minimizing

energy consumption. The workstation times are calculated for the allocation made

based on this objective. The workstation times are used to calculate the line efficiency.

Metaheuristics like PSO and DE are used to solve RALB problem with an objective of

maximizing the line efficiency of two layouts (straight and U-shaped) of robotic

assembly line. This chapter presents the procedure proposed and the results obtained

using the metaheuristics.

 Line Efficiency calculation in Straight and U-shaped RALB

This chapter describes a type of robotic assembly line balancing problem, in which

assembly tasks are allocated to the workstation and the workstation is allotted with a

best fit robot which performs the allotted tasks in minimum time with an objective of

maximizing line efficiency. The objective function evaluated in this research for

straight and U-shaped type of assembly line is Line Efficiency (LE). Line efficiency is

calculated when the workstation times are minimized in a robotic assembly line. Cycle

time and smoothness index of the efficient assembly line is also calculated. Two layout

types of robotic assembly line are evaluated. Particle swarm optimization (PSO) and

Differential evolution (DE) are the two metaheuristic algorithms used as the

Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 166

optimization tool to solve this problem. Benchmark datasets are used for solving the

two layouts (straight and U-shaped).

Steps involved in Line Efficiency Calculation

i. Allocation of tasks to the workstations based on the consecutive procedure

(Section 5.1.1). This procedure tries to allocate tasks to the workstation by

minimizing the workstation time.

ii. Workstations are allotted with the robots which perform the allotted tasks in

minimum time.

iii. The workstation time is calculated for the allocation of tasks and robots.

iv. The workstation with the maximum workstation time is the cycle time of the

allocation.

v. Line efficiency is calculated using Equation 8.1. Line efficiency is the direct

indication of the efficiency of a given assembly line. The efficiency gives results

in percentage from 0 to 100%.

 (8.1)

Here Sk is the workstation time, Nw is total number of workstations and C is the

cycle time

Figure 8.1 shows the tasks allocation and workstation times calculated using the

consecutive allocation procedure for a straight robotic assembly line. In the assembly

line sequence considered number of workstation is 4 and cycle time is 143.

Figure 8.1 Task allocation and Workstation times in straight RALB

1 *100
*

wN

k

k

w

S

LE
N c





Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 167

Straight line robotic assembly line’s efficiency is calculated as follows:

= (143+136+115+84)/ (4*143)*100 = 83.56%

Task and robot allocation in a U-shaped assembly line is done using the same

procedure except for the task allocation, the tasks are selected from both the sides of

the sequence and constraints are checked (Refer Section 5.5.3). Figure 8.2 shows the

tasks allocated for U-shaped robotic assembly line for the same sequence used for

straight robotic assembly line. The line efficiency is calculated using the Equation 8.1.

U-shaped robotic assembly line’s efficiency is: LE= (121+115+107+116)/

(4*121)*100=94.83%.

Figure 8.2 Allocation in a U-shaped RALB and workstation times

 PSO and DE to solve time based model line efficiency

Since the assembly line balancing problems falls under the category of NP-hard,

two different metaheuristics are used to solve the RALB problem with an objective of

maximizing the line efficiency when the workstation times are minimized. Two layout

of RALB: straight and U-shaped RAL are solved using these two metaheuristics.

8.2.1 Particle Swarm Optimization

PSO algorithm is proposed to solve the RALB problem with an objective of

maximizing the line efficiency. PSO algorithm starts with an initial population and

initial velocity. Heuristics explained in Section 5.1.1 are used for generating the initial

population. Velocity pairs used in Section 5.1.1 is adopted for the velocity update.

When the local best and global best are selected, the particle with higher assembly line

1 *100
*

Nw

k

k

w

S

LE
N c





Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 168

efficiency is considered. PSO is used to solve both straight and U-shaped layouts of

robotic assembly line.

8.2.2 Differential Evolution

Differential Evolution algorithm is also proposed to solve the RALB problem with

an objective of maximizing the line efficiency. Same procedure used for generating the

initial population in PSO is adopted for DE also. DE procedure undergoes mutation,

cross and selection operation. Section 7.1.2 explains the details on how to implement

DE. Same procedure is adopted for solving this model of RALB also. The difference

in DE model will be in the selection operation, where the fitness value of target and

trial vectors is compared and the vector which has a better fitness is copied to the next

generation. In this model, the fitness value compared is the line efficiency. The vector

with higher efficiency is copied to the next generation. Two layouts (straight and U-

shaped) of RAL are solved using Differential evolution.

8.2.3 Parameters for PSO and DE

Performance of PSO and DE mainly relies on the parameters selected. Parameters

are selected based on the tests conducted in order to get a satisfactory solution quality

in an acceptable time span. Influence of each parameter on the solution quality is tested.

Three datasets of different task size are chosen to find the best combination of

parameters. Three parameters fine-tuned for PSO are stopping condition, population

size and acceleration coefficients. For DE, the parameters fine-tuned are population

size, stopping condition, cross over rate. Table 8.1 summarizes the parameters used to

solve RALB problems with an objective of maximizing line efficiency when the

workstation times are minimized.

Table 8.1 Parameters for PSO and DE for RALB problem

Parameters for PSO Parameters for DE

Population size: 25 Population size: 25

Number of iterations: 30 Number of iterations: 30

Acceleration Coefficients:

c1=1, c2=2 and c3=2

Mutation factor: 0.5

Crossover rate: 0.9

8.2.4 Performance analysis of PSO and DE for straight RALB

All the 32 test problems are evaluated using the proposed PSO and DE algorithm.

The non-deterministic nature of the algorithm and problem makes it necessary to run

Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 169

same problem multiple times. Each problem is run ten times and most of the runs

converged to the same solution for each of the problems. The results obtained by

evaluating 32 test problems are presented in Table 8.2. Column I presents the problem

evaluated, Column II, III and IV presents the line efficiency, cycle time and smoothness

index of the best solution evaluated using PSO algorithm. Colum V, VI and VII presents

the results obtained using DE algorithm. Results reported are the best solution obtained

for both the algorithms. Smoothness index of the assembly line is calculated for the

allocation obtained. Smoothness Index is an index to indicate the relative smoothness

of a given assembly line. When smoothness index is zero it indicates that the assembly

line is perfectly balanced. Equation for smoothness index (SI) is:

 (8.2)

Here Smax is the station with the maximum station time and Sk is the current

workstation time, k is the workstation number (being evaluated) and Nw is the number

of workstations.

The problems are classified into two categories based on the tasks size: small (up

to 70 tasks problems) and large (above 89 tasks problems). Proposed algorithms

allocate robots to the workstation by allocating the robots and tasks which minimizes

the workstation times. Using the solution obtained, the workstation time and cycle time

of the assembly line are calculated. The workstation time and cycle time is used for

calculating the line efficiency of the assembly line. Thus line efficiency is obtained by

minimizing the workstation times. From the experiments conducted it is observed that

27 out of 32 datasets could obtain better line efficiency for PSO when compared to DE.

The efficiency reported for 25-3 problem is same for both the algorithms. PSO obtained

average improvement of 4.2% in the line efficiency when compared to PSO for small

size datasets (up to 70 task problems) and average improvement in the efficiency line

efficiency for large size datasets (above 89 task problems) when using PSO is found to

be 1.0%. Percentage could be low for large size datasets because both PSO and DE

reach solutions which are nearer to each other. However, the cycle time of PSO when

compared with cycle time of DE is lower for the five datasets which did not yield better

efficiency. When comparing the smoothness index between two algorithms, it is

2
max

1

()

m

k

k

w

S S

SI
N









Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 170

observed that PSO produces better smoothness index when compared to DE. Table 8.3

reports the computational time for both the algorithms.

Table 8.2 Line Efficiency of straight RALB for PSO and DE

Work

Station/

Robots

PSO DE

Line

Efficiency

%)

Cycle

Time

Smoothness

Index

Line

Efficiency

(%)

Cycle

Time

Smoothness

Index

25-3 97.3 503 18.6 97.3 503 18.6

25-4 97.1 294 13.4 88.6 329 40.4

25-6 90.5 200 22.5 88.2 208 29.3

25-9 87.4 110 20.4 84.5 114 23.3

35-4 99.4 342 2.5 98.0 347 9.6

35-5 95.2 329 42.2 93.0 335 31.9

35-7 93.0 213 21.5 92.0 219 21.7

35-12 90.5 103 14.7 82.3 115 24.5

53-5 97.5 449 16.3 92.1 485 45.2

53-7 97.8 294 10.2 93.4 304 26

53-10 94.5 224 15.2 91.4 234 24.3

53-14 91.2 143 16.6 82.2 161 32

70-7 95.9 430 21.3 95.0 447 29.2

70-10 95.4 262 15.4 93.8 272 21

70-14 93.2 199 17.8 87.6 211 29.6

70-19 90.7 141 17.7 87.5 144 23.5

89-8 80.6 483 45.3 82.3 486 35.6

89-12 96.2 317 16.4 94.3 317 22.6

89-16 98.8 223 22.3 90.8 247 41.1

89-21 90.6 172 19.05 88.2 174 23.1

111-9 97.2 521 18.73 97.8 523 16.9

111-13 96.1 321 16.0 95.6 321 19.9

111-17 94.0 243 21.1 93.2 247 19.7

111-22 91.7 183 18.0 91.7 183 18

148-10 98.0 627 16.9 96.2 641 32.2

148-14 96.3 419 18.2 96.4 420 18.2

148-21 95.2 272 15.5 94.5 273 15.5

148-29 90.8 188 20.5 92.8 189 18

297-19 97.3 593 19.4 97.1 594 20.7

297-29 94.2 397 27.1 93.3 399 31.3

297-38 94.2 295 21.8 91.2 305 31

297-50 92.0 224 21.7 92.4 225 19.8

It is observed that PSO reports the solution at a faster rate than DE for all the

datasets. However ,the algorithm structured based on DE provides reasonable good

quality assignment of tasks and robots to workstations for large size problems in

practical computational time but PSO algorithm could obtain better solution for all sets

of problems at a faster rate. The computational time for DE could be on the higher side

when compared to PSO due to repeated fitness value evaluation in case of selection

Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 171

operation. In conclusion, PSO performs better in terms of quality of solution and

computational time when compared to DE.

Table 8.3 Average Computational time of PSO and DE for straight RALB

Problems
Average Computational Time

PSO DE

25 5 7

35 17 21

53 21 26

70 55 60

89 61 66

111 185 236

148 355 477

297 990 1007

8.2.5 Performance analysis for U-shaped RALB

This section presents the results obtained for U-shaped robotic assembly line for

the objective of maximizing line efficiency by minimizing the workstation times. Both

PSO and DE are used to find the solution for this type of RALB problem. Parameters

used in the previous section are used for solving this problem. Thirty two problems

available from the literature are used to test the performance of the proposed algorithms.

The results obtained by evaluating 32 test problems are presented in Table 8.4.

Results reported are the best solution obtained for both the algorithms. Column I

presents the problem evaluated, Column II, III and IV presents the line efficiency, cycle

time and smoothness index of the best solution evaluated using PSO algorithm. Column

V, VI and VII presents the results obtained using DE algorithm. Results reported are

the best solution obtained for both the algorithms.

From the experiments conducted it is observed that 23 out of 32 datasets obtained

same or better line efficiency for PSO when compared to DE. However, five datasets

reported the same results for both the algorithms. Average improvement of only 1.05%

in the line efficiency is obtained for PSO when compared to DE for small size datasets

(up to 70 task problems) and the average improvement of line efficiency for large size

datasets (above 89 task problems) when using PSO is found to be 0. 2%. Percentage

could be low for both datasets because both PSO and DE reach solutions which are

nearer to each other and few results are same for both the datasets. When comparing

Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 172

the cycle time results obtained using PSO are better than DE for 21 datasets and 10

datasets reported the same cycle time. When comparing the smoothness index between

two algorithms, it is observed that PSO produces better results for 21 datasets and 7

datasets produced same smoothness index. Smoothness index would vary even if the

cycle time is same due to the variation in the workstation times.

Table 8.4 Line Efficiency of U-shaped RALB for PSO and DE

Work

Station/

Robots

PSO DE

Line

Efficiency

(%)

Cycle

Time

Smoothness

Index

Line

Efficiency

(%)

Cycle

Time

Smoothness

Index

25-3 99.1 500 6.02 99.1 500 6.02

25-4 98 294 4.1 91.5 318 33.5

25-6 96.9 183 7.3 96.9 183 7.3

25-9 89.0 109 15.9 88.9 109 15.8

35-4 98.6 345 3.6 98.6 345 3.6

35-5 96.7 333 11.8 97.4 334 11.8

35-7 94.6 210 14.2 94.8 215 13.5

35-12 90.9 103 13.8 87.3 106 17.8

53-5 98.6 443 8.02 97.3 459 16.7

53-7 95.7 283 16.9 93.8 286 21.8

53-10 94.5 215 16.3 93.7 220 16.4

53-14 92.3 141 15.4 90.0 148 18.3

70-7 97.7 427 11.8 97.4 427 12.2

70-10 95.6 262 15.1 94.0 266 22

70-14 91.7 197 23.9 92.8 199 18

70-19 88.9 140 19.9 89.2 140 17.9

89-8 83.4 476 19.9 84.0 475 19.9

89-12 94.5 312 19.7 96.0 315 16.4

89-16 98.2 222 21.5 98.2 224 22.03

89-21 90.4 169 24.2 88.6 172 25

111-9 96.7 519 19.6 96.8 520 23.6

111-13 95.4 317 19.2 94.4 319 23.5

111-17 93.8 242 18.3 93.8 242 18.3

111-22 90.0 181 21.4 90.1 181 22.1

148-10 97.2 619 19.9 96.7 629 26.3

148-14 94.2 416 27.3 94.0 418 32.2

148-21 92.6 269 21.2 92.7 275 22.5

148-29 90.2 187 22 89.9 187 22.5

297-19 96.7 588 24.5 96.4 589 24.5

297-29 94.0 389 32.7 93.4 390 34.2

297-38 94.1 288 20.3 93.6 291 22.9

297-50 91.0 222 21.1 90.9 222 22.7

Table 8.5 reports the average computational time for both the algorithms when

evaluated for U-shaped robotic assembly line. It is observed that PSO performs at a

faster rate than that of DE for almost all datasets. However, DE reports reasonably good

quality solution for all the problems. Computational time for U-shaped RALB problems

is higher due to the large search space.

Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 173

The robustness and computational efficiency can be still improved if parameters

are fine tuned. In conclusion, PSO performs better in terms of quality of solution and

computational time when compared to DE.

Table 8.5 Average Computational time of PSO and DE for U-shaped RALB

Problems
Average Computational Time

PSO DE

25 7 9

35 18 20

53 35 41

70 59 65

89 103 120

111 245 273

148 415 511

297 1055 1188

8.2.6 Comparison for straight and U-shaped RALB

The line efficiency and cycle time obtained for straight and U-shaped robotic

assembly line using PSO and DE are compared when time data are used. Table 8.6 is

formed by extracting the results obtained for the objective of maximizing the line

efficiency for straight (Table 8.2) and U-shaped robotic assembly line (Table 8.4) using

PSO and DE and Table 8.7 reports the cycle time obtained for both the layouts (straight

and U-shaped) using PSO and DE.

U-shaped robotic assembly line produces better line efficiency for all the small size

datasets (up to 70 task problems) when compared with straight robotic assembly line

for both PSO and DE. For large size datasets, line efficiency reported using PSO is

better for straight robotic assembly line when compared to the U-shaped assembly for

most of the datasets in this group. For DE, eight problems in the group reports better

efficiency for straight robotic assembly line when compared with U-shaped RALB. The

variation in workstation time is lower when assembled through straight line, hence the

line efficiency is higher for the large size dataset problems. However, from the tables it

is observed that even though the efficiency for U-shaped is lower for these large size

datasets, the cycle time for U-shaped RALB are still lower when compared to straight

robotic assembly line.

Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 174

 In conclusion, U-shaped robotic assembly line performs better in case of line

efficiency and cycle time for small size datasets. And for large size datasets, line

efficiency is higher for straight robotic assembly line and cycle time is better for U-

shaped robotic assembly line when the objective is to maximize the line efficiency by

minimizing the workstation times.

Table 8.6 Comparison of Line Efficiency obtained using time data between

straight and U-shaped RALB

P
ro

b
le

m
 N

o
:

P
ro

b
le

m
 D

a
ta

se
t

Line Efficiency

P
ro

b
le

m
 N

o
:

P
ro

b
le

m
 D

a
ta

se
t

Line Efficiency

 PSO DE

 PSO DE

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

1 25-3 97.3 99.1 97.3 99.1 17 89-8 80.6 83.4 82.3 84

2 25-4 97.1 98 88.6 91.5 18 89-12 96.2 94.5 94.3 96

3 25-6 90.5 96.9 88.2 96.9 19 89-16 98.8 98.2 90.8 98.2

4 25-9 87.4 89 84.5 88.9 20 89-21 90.6 90.4 88.2 88.6

5 35-4 99.4 98.6 98 98.6 21 111-9 97.2 96.7 97.8 96.8

6 35-5 95.2 96.7 93 97.4 22 111-13 96.1 95.4 95.6 94.4

7 35-7 93 94.6 92 94.8 23 111-17 94 93.8 93.2 93.8

8 35-12 90.5 90.9 82.3 87.3 24 111-22 91.7 90 91.7 90.1

9 53-5 97.5 98.6 92.1 97.3 25 148-10 98 97.2 96.2 96.7

10 53-7 97.8 95.7 93.4 93.8 26 148-14 96.3 94.2 96.4 94

11 53-10 94.5 94.5 91.4 93.7 27 148-21 95.2 92.6 94.5 92.7

12 53-14 91.2 92.3 82.2 90 28 148-29 90.8 90.2 92.8 89.9

13 70-7 95.9 97.7 95 97.4 29 297-19 97.3 96.7 97.1 96.4

14 70-10 95.4 95.6 93.8 94 30 297-29 94.2 94 93.3 93.4

15 70-14 93.2 91.7 87.6 92.8 31 297-38 94.2 94.1 91.2 93.6

16 70-19 90.7 88.9 87.5 89.2 32 297-50 92 91 92.4 90.9

Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 175

Table 8.7 Comparison of Cycle time obtained using time data between

straight and U-shaped RALB

P
ro

b
le

m
 N

o
:

P
ro

b
le

m
 D

a
ta

se
t

Cycle Time

P
ro

b
le

m
 N

o
:

P
ro

b
le

m
 D

a
ta

se
t

Cycle Time

 PSO DE

 PSO DE

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

1 25-3 503 500 503 500 17 89-8 483 476 486 475

2 25-4 294 294 329 318 18 89-12 317 312 317 315

3 25-6 200 183 208 183 19 89-16 223 222 247 224

4 25-9 110 109 114 109 20 89-21 172 169 174 172

5 35-4 342 345 347 345 21 111-9 521 519 523 520

6 35-5 329 333 335 334 22 111-13 321 317 321 319

7 35-7 213 210 219 215 23 111-17 243 242 247 242

8 35-12 103 103 115 106 24 111-22 183 181 183 181

9 53-5 449 443 485 459 25 148-10 627 619 641 629

10 53-7 294 283 304 286 26 148-14 419 416 420 418

11 53-10 224 215 234 220 27 148-21 272 269 273 275

12 53-14 143 141 161 148 28 148-29 188 187 189 187

13 70-7 430 427 447 427 29 297-19 593 588 594 589

14 70-10 262 262 272 266 30 297-29 397 389 399 390

15 70-14 199 197 211 199 31 297-38 295 288 305 291

16 70-19 141 140 144 140 32 297-50 224 222 225 222

 Line Efficiency calculation using energy data

Objective of this problem is to maximize the line efficiency by minimizing the

energy consumption in a robotic assembly line. Till date no research has been reported

on the objective of optimizing the line efficiency when the energy consumption is

minimized. The objective function evaluated for this research for straight and U-shaped

type of assembly line is Line Efficiency (LE). The section below explains how the line

efficiency is calculated in a straight and U-shaped robotic assembly line when energy

consumption at workstations is minimized. The steps involved in the line efficiency

calculation are explained below.

Steps involved in Line Efficiency Calculation in straight RAL

i. Tasks are allocated to the workstation based on the energy consumption data

(Section 6.1.1) in a straight robotic assembly line. The procedure tries to allocate

the tasks to the workstation by minimizing the energy consumption at each

workstation.

Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 176

ii. The best available robot which performs the allotted tasks with minimum

energy consumption is allotted to the workstation.

iii. Based on the tasks and robot allocated to the workstation, workstation times are

calculated using the robot performance time data.

iv. The workstation with the maximum workstation time is the cycle time of the

allocation.

v. Line efficiency is calculated using Equation 8.1. Line efficiency is the direct

indication of the efficiency of a given assembly line.

Figure 8.3 shows the tasks and robot allocation for the given sequence of tasks.

Energy consumed and workstation times calculated are presented in the figure.

Allocation is done based on the objective of minimizing the energy consumption

allocation and workstation times calculated on procedure for a straight robotic assembly

line. The workstation times are used to calculate the line efficiency.

Figure 8.3 Workstation times and energy consumption in straight RALB

Straight line robotic assembly line’s efficiency is calculated as follows:

= (89+107+171+171)/ (4*171)*100=78.65%

Similarly, for U-shaped robotic assembly line procedure to evaluate the line

efficiency is same except for the task allocation. The tasks are allocated from either side

of the sequence. Section 6.2.2 explains the procedure of tasks and robot allocation in a

U-shaped robotic assembly line. The tasks and robots are allocated with an objective of

minimizing the energy consumption at each workstation. Figure 8.4 shows the

allocation done based on energy consumption data. The details of the workstation times

and energy consumed are presented in the graph. Using the workstation times, the line

efficiency is calculated.

1 *100
*

wN

k

k

w

S

LE
N c





Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 177

Line Efficiency: (75+113+115+156) / (4*156)*100 = 74%.

Figure 8.4 Workstation times and energy consumption in U-shaped RALB

8.3.1 Performance in straight RALB for energy data

Straight robotic assembly line is evaluated using PSO and DE with the objective

of maximizing the line efficiency when the energy consumption is minimized. Energy

data is used for the allocation of tasks and robots, using the allocation details the

workstation time and cycle time of the assembly line are calculated. The workstation

time and cycle time is used for calculating the line efficiency of the assembly line. All

the 32 test problems are evaluated using the proposed PSO and DE algorithm. The non-

deterministic nature of the algorithm and problem makes it necessary to run same

problem multiple times. All the problems are run for ten times and it is observed that

most of the runs converged to same solution. The parameters used for evaluating the

line efficiency in Section 8.3.3 is used for evaluating the line efficiency in this section

also. The results reported are the best solutions obtained for both the algorithms for the

objective of maximizing the line efficiency. Best results obtained by evaluating 32 test

problems using PSO and DE are presented in Table 8.8. Column I presents the problem

evaluated, Column II, III and IV presents the line efficiency, energy consumption and

cycle time of the best solution evaluated using PSO algorithm. Column V, VI and VII

presents the results obtained using DE algorithm.

From the experiments conducted it is observed that 30 out of 32 datasets obtained

same or better line efficiency for DE when compared to PSO. And one dataset reported

the same results for both the algorithms. When comparing the results between PSO and

DE, it is observed that DE produces results with an average improvement in the line

efficiency of 7.8 % for small size datasets (up to 70 task problems) and the average

improvement in the line efficiency for large size datasets is found to be 8.1%.

Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 178

Table 8.8 Line Efficiency of straight RALB for PSO and DE using energy

data

Work

Station/

Robots

 PSO DE

Line

Efficiency

(%)

Energy

Consumption

(kJ)

Cycle

Time

Line

Efficiency

(%)

Energy

Consumption

(kJ)

Cycle

Time

25-3 98.1 489 521 98.4 502 536

25-4 85.3 353 342 90.3 343 329

25-6 88.0 357 207 88.0 357 207

25-9 74.5 235 143 76.4 242 147

35-4 90.2 1037 518 80.9 1045 516

35-5 76.7 900 444 96.4 890 357

35-7 77.5 1000 343 85.8 989 314

35-12 68.7 688 153 73.9 687 130

53-5 74.1 2680 605 75.7 2680 590

53-7 69.9 1970 439 90.6 1970 345

53-10 80.7 2186 308 83.6 2148 263

53-14 73.6 2016 202 79.8 2050 183

70-7 94.2 4093 620 94.4 4191 633

70-10 88.5 3046 290 90.3 3106 302

70-14 67 3815 338 83.2 3766 256

70-19 63.1 3243 232 71.2 3225 204

89-8 75.4 4956 562 77.0 4922 562

89-12 80.0 5509 438 81.3 5499 438

89-16 83.2 4906 288 92.6 4887 265

89-21 72.5 4150 236 74.3 4182 232

111-9 84.11 7149 529 92.2 7131 674

111-13 82.1 7030 396 89.0 7137 391

111-17 88.3 6857 280 92.1 6877 266

111-22 72.3 6630 255 87.7 6667 215

148-10 94.6 9798 688 95.8 9798 678

148-14 88.7 10524 461 90.7 10645 466

148-21 75.3 10084 384 83.5 9927 335

148-29 57.1 8334 317 68.3 8508 263

297-19 78.3 24518 809 88.7 24351 688

297-29 87.4 24554 458 83.8 24404 528

297-38 84.2 22485 409 86.1 22482 348

297-50 64.8 21089 348 80.4 21050 336

The results reported for the line efficiency is calculated by minimizing the energy

consumption of the workstation. When comparing the energy consumption for the two

algorithms, it is observed that the energy consumption is lower for 21 datasets and for

the other datasets PSO reported lower energy consumption. 25 datasets reported same

or better cycle time for DE when compared with PSO. Even though cycle time is low

for 7 datasets for PSO, line efficiency is still better for DE. This is due to the variation

of workstation times which affects the line efficiency.

Table 8.9 reports the average computational time for both the algorithms when

evaluated for straight robotic assembly line using energy data. DE performs at a faster

Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 179

rate when compared to PSO for almost all datasets. However, PSO also reports results

at a reasonable computational time. Computational time for large problem (297 tasks)

is high for DE. This could be due to the large size of the problem and repeated selection

process of DE. Computational performance of PSO can be improved if parameters are

further fine-tuned. In conclusion, DE performs better than PSO in terms of quality of

the solution and computational time.

Table 8.9 Average Computational time of PSO and DE for straight RALB

using energy data

Problems
Average Computational Time

PSO DE

25 9 8

35 23 20

53 41 36

70 73 67

89 95 92

111 288 281

148 550 540

297 1700 1739

8.3.2 Performance analysis in U-shaped RALB for energy data

Best results obtained for PSO and DE for the objective of maximizing the line

efficiency when the energy consumption is minimized is presented in Table 8.10. The

parameters used for evaluating the line efficiency in Section 8.3.3 is used for evaluating

the line efficiency in this section also. Similar to Table 8.8, Column I presents the

problem evaluated, Column II, III and IV presents the line efficiency, energy

consumption and cycle time of the best solution evaluated using PSO algorithm.

Column V, VI and VII presents the results obtained using DE algorithm in Table 8.10.

It is observed from the experiments conducted, 28 out of 32 datasets better line

efficiency for DE when compared to PSO. DE obtained average improvement of 6.2 %

in the line efficiency when compared to PSO for small size datasets (up to 70 task

problems) and the improvement of line efficiency for large size datasets when using

DE is found to be 2.0%.

Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 180

Table 8.10 Line Efficiency of U-shaped RALB for PSO and DE using energy

data

Work

Station/

Robots

PSO DE

Line

Efficiency

(%)

Energy

Consumption

(kJ)

Cycle

Time

Line

Efficiency

(%)

Energy

Consumption

(kJ)

Cycle

Time

25-3 85.6 488 561 98.6 493 496

25-4 87.7 336 334 90.7 341 320

25-6 85.6 358 230 87.3 363 230

25-9 72.7 242 148 72.6 244 154

35-4 79.2 1010 535 82.4 1045 477

35-5 87.1 855 397 94.4 909 380

35-7 87.2 983 307 87.5 998 302

35-12 81.2 653 125 86.4 681 122

53-5 77.08 2638 610 96.3 2680 464

53-7 89.7 1959 330 95.8 1970 326

53-10 83.6 2133 260 91.3 2150 249

53-14 80.2 1990 183 83.6 2003 183

70-7 94.6 4256 640 95.7 4364 656

70-10 87.7 3013 298 89.3 3050 294

70-14 72.4 3700 272 78.9 3739 266

70-19 79.0 3063 170 81.0 3223 176

89-8 77.1 4926 558 77.3 4991 545

89-12 80.2 5496 426 82.7 5537 424

89-16 81.4 4753 285 90.7 4798 269

89-21 82.7 4135 200 84.9 4158 201

111-9 95.1 7138 696 90.4 7172 688

111-13 83.3 6818 378 89.3 7078 377

111-17 89.9 6688 266 92.5 6804 265

111-22 83.9 6518 217 80.8 6538 223

148-10 94.8 9798 671 96.4 9798 664

148-14 90.2 10395 458 85.7 10732 521

148-21 83.8 10235 394 84.8 9894 318

148-29 86.5 8186 200 88.3 8296 198

297-19 88.3 24313 696 88.8 24320 695

297-29 67.0 24302 592 78.9 24456 500

297-38 85.3 22037 350 85.9 22585 357

297-50 86.1 20647 255 86.4 20888 256

Percentage could be low for large size datasets because both PSO and DE could

reach solutions which are nearer to each other. The results reported for the line

efficiency is calculated by minimizing the energy consumption of the workstation.

From the table, cycle time obtained for both DE and PSO are reported along with the

energy consumption of the assembly line. It could be seen that cycle time is lower in

case of DE solution for 25 out of 32 problems. When comparing the energy

consumption amongst the two models, it could be seen that PSO is getting lower energy

consumption compared to that of DE for 31 out of 32 problems addressed here.

Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 181

Table 8.11 reports the computational time for both the algorithms. The algorithm

structured based on PSO provides reasonable quality assignment of tasks and robots to

workstations for small size problems in practical computational time but DE algorithm

could obtain the solution for the same set of solution at a faster rate. In case of large

size datasets (148 and 297 task problems), DE algorithm takes more computational time

than PSO. The computational time for DE could be on the higher side when compared

to PSO due to repeated fitness value evaluation in case of selection operation. Results

show that DE is better for larger size problems in terms of line efficiency, its robustness

and computational efficiency can be improved by fine tuning the parameters. In

conclusion, DE performs better than PSO in terms of quality of the solution and

computational time.

Table 8.11 Average Computational time of PSO and DE for U-shaped RALB

using energy data

Problems
Average Computational Time

PSO DE

25 11 9

35 26 22

53 44 38

70 75 70

89 99 97

111 295 317

148 560 585

297 1728 1820

8.3.3 Comparison of straight and U-shaped RALB for energy data results

The line efficiency and cycle time obtained for straight and U-shaped robotic

assembly line using PSO and DE are compared when energy data are used. Table 8.12

is formed by extracting the results obtained for the objective of maximizing the line

efficiency for straight and U-shaped robotic assembly line using PSO and DE, Table

8.13 reports the cycle time obtained for both the layouts using PSO and DE and Table

8.14 reports the energy consumption calculated for both the layouts.

Eleven problems in the small size datasets groups reported better efficiency for U-

shaped robotic assembly line when compared with straight robotic assembly line for

DE. And in large size dataset group, ten problems reported better efficiency for U-

shaped robotic assembly line.

Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 182

Table 8.12 Comparison of Line Efficiency obtained using energy data between

straight and U-shaped RALB

P
ro

b
le

m
 N

o
:

P
ro

b
le

m
 D

a
ta

se
t

Line Efficiency

P
ro

b
le

m
 N

o
:

P
ro

b
le

m
 D

a
ta

se
t

Line Efficiency

PSO DE

PSO DE

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

1 25-3 98.1 85.6 98.4 98.6 17 89-8 75.4 77.1 77 77.3

2 25-4 85.3 87.7 90.3 90.7 18 89-12 80 80.2 81.3 82.7

3 25-6 88 85.6 88.0 87.3 19 89-16 83.2 81.4 92.6 90.7

4 25-9 74.5 72.7 76.4 72.6 20 89-21 72.5 82.7 74.3 84.9

5 35-4 90.2 79.2 80.9 82.4 21 111-9 84.11 95.1 92.2 90.4

6 35-5 76.7 87.1 96.4 94.4 22 111-13 82.1 83.3 89 89.3

7 35-7 77.5 87.2 85.8 87.5 23 111-17 88.3 89.9 92.1 92.5

8 35-12 68.7 81.2 73.9 86.4 24 111-22 72.3 83.9 87.7 80.8

9 53-5 74.1 77.0 75.7 96.3 25 148-10 94.6 94.8 95.8 96.4

10 53-7 69.9 89.7 90.6 95.8 26 148-14 88.7 90.2 90.7 85.7

11 53-10 80.7 83.6 83.6 91.3 27 148-21 75.3 83.8 83.5 84.8

12 53-14 73.6 80.2 79.8 83.6 28 148-29 57.1 86.5 68.3 88.3

13 70-7 94.2 94.6 94.4 95.7 29 297-19 78.3 88.3 88.7 88.8

14 70-10 88.5 87.7 90.3 89.3 30 297-29 87.4 67 83.8 78.9

15 70-14 67 72.4 83.2 78.9 31 297-38 84.2 85.3 86.1 85.9

16 70-19 63.1 79.0 71.2 81.0 32 297-50 64.8 86.1 80.4 86.4

When comparing the line efficiency between the straight and U-shaped RALB for

PSO, it is observed that line efficiency of U-shaped is better for eleven datasets in the

small dataset group and fourteen datasets in the large dataset group reports better line

efficiency for U-shaped. So, it is clearly seen that U-shaped RALB performs better in

terms of line efficiency when the allocation is done based on the energy based data

where the objective is to minimize the energy consumption of the assembly line.

Table 8.13 provides a comparison for cycle time obtained for both the algorithms.

For small size datasets when the results are obtained using PSO, U-shaped RALB

obtains lower results for nine problems in the group when compared with straight

robotic assembly line and when cycle time is compared for same datasets for DE, it is

observed that eleven problems obtains lower cycle time than straight robotic assembly

line. For large size datasets using PSO, U-shaped RAL reports better solution for

thirteen datasets when compared with straight RAL. And when the cycle time is

compared for DE for the large size datasets, ten datasets in the group reported lower

cycle time for U-shaped RALB.

Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 183

Table 8.13 Comparison of cycle time obtained using energy data between

straight and U-shaped RALB

P
ro

b
le

m
 N

o
:

P
ro

b
le

m
 D

a
ta

se
t

Cycle Time

P
ro

b
le

m
 N

o
:

P
ro

b
le

m
 D

a
ta

se
t

Cycle Time

PSO DE

 PSO DE

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

1 25-3 521 561 536 496 17 89-8 562 558 562 545

2 25-4 342 334 329 320 18 89-12 438 426 438 424

3 25-6 207 230 207 230 19 89-16 288 285 265 269

4 25-9 143 148 147 154 20 89-21 236 200 232 201

5 35-4 518 535 516 477 21 111-9 529 696 674 688

6 35-5 444 397 357 380 22 111-13 396 378 391 377

7 35-7 343 307 314 302 23 111-17 280 266 266 265

8 35-12 153 125 130 122 24 111-22 255 217 215 223

9 53-5 605 610 590 464 25 148-10 688 671 678 664

10 53-7 439 330 345 326 26 148-14 461 458 466 521

11 53-10 308 260 263 249 27 148-21 384 394 335 318

12 53-14 202 183 183 183 28 148-29 317 200 263 198

13 70-7 620 640 633 656 29 297-19 809 696 688 695

14 70-10 290 298 302 294 30 297-29 458 592 528 500

15 70-14 338 272 256 266 31 297-38 409 350 348 357

16 70-19 232 170 204 176 32 297-50 348 255 336 256

 Energy consumption reported here are obtained by taking the sum of energy

consumption at each workstation. From Table 8.14, for small size datasets U-shaped

RALB reports lesser energy consumption for thirteen datasets when the results are

taken using PSO and when the results are taken based on DE, energy consumption is

lower in U-shaped RALB for eight datasets. Even though only eight datasets are lower

for DE for small size datasets, the line efficiency is better in these problems for U-

shaped. For large size datasets, results obtained using PSO reports that fifteen datasets

reports lower energy consumption for U-shaped and when the energy consumption is

compared for DE, it is observed that U-shaped reports lower energy consumption for

eleven datasets when compared with the energy consumption of straight RALB.

In conclusion, U-shaped robotic assembly line performs better in terms of line

efficiency, cycle time and energy consumption for most of the problems in both small

and large size datasets when compared with straight robotic assembly line when the

Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 184

objective of maximizing the line efficiency is done by minimizing the energy

consumption.

Table 8.14 Comparison of energy consumption obtained between straight

and U-shaped RALB using energy data

P
ro

b
le

m
 N

o
:

P
ro

b
le

m
 D

a
ta

se
t

Energy Consumption(kJ)

P
ro

b
le

m
 N

o
:

P
ro

b
le

m
 D

a
ta

se
t

Energy Consumption(kJ)

PSO DE

 PSO DE

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

S
tr

a
ig

h
t

R
A

L
B

U
-s

h
a

p
ed

R
A

L
B

1 25-3 489 488 502 493 17 89-8 4956 4926 4922 4991

2 25-4 353 336 343 341 18 89-12 5509 5496 5499 5537

3 25-6 357 358 357 363 19 89-16 4906 4753 4887 4798

4 25-9 235 242 242 244 20 89-21 4150 4135 4182 4158

5 35-4 1037 1010 1045 1045 21 111-9 7149 7138 7131 7172

6 35-5 900 855 890 909 22 111-13 7030 6818 7137 7078

7 35-7 1000 983 989 998 23 111-17 6857 6688 6877 6804

8 35-12 688 653 687 681 24 111-22 6630 6518 6667 6538

9 53-5 2680 2638 2680 2680 25 148-10 9798 9798 9798 9798

10 53-7 1970 1959 1970 1970 26 148-14 10524 10395 10645 10732

11 53-10 2186 2133 2148 2150 27 148-21 10084 10235 9927 9894

12 53-14 2016 1990 2050 2003 28 148-29 8334 8186 8508 8296

13 70-7 4093 4256 4191 4364 29 297-19 24518 24313 24351 24320

14 70-10 3046 3013 3106 3050 30 297-29 24554 24302 24404 24456

15 70-14 3815 3700 3766 3739 31 297-38 22485 22037 22482 22585

16 70-19 3243 3063 3225 3223 32 297-50 21089 20647 21050 20888

 Summary

Line efficiency is one of the important objectives to optimize in assembly lines. Line

efficiency helps to analyze if all the resources available are utilized efficiently. Industries can

produce more products in shorter time when the line efficiency is high. Two models to

calculate the efficiency are presented in this chapter. The first model is developed based on

the objective of minimizing the workstation times for a robotic assembly line using the time

data. The two layouts (straight and U-shaped) of robotic assembly line are tested for the

performance. The line efficiency obtained for the two layouts are compared along with the

cycle time and smoothness index of the best solution obtained. Particle swarm optimization

(PSO) and Differential evolution (DE) are the two metaheuristic algorithms used as the

optimization tool to solve this problem for both the layouts (straight and U-shaped).

Among the two optimization tools it is observed that PSO performs better for both the

layouts. From the results it is concluded that U-shaped robotic assembly line performs

Chapter 8

PSO & DE for RALB problem to maximize line efficiency

Page | 185

better in case of line efficiency and cycle time for small size datasets. And for large size

datasets, line efficiency is higher for straight robotic assembly line and cycle time is

better for U-shaped robotic assembly line when the objective is to maximize the line

efficiency by minimizing the workstation times.

Second model developed is based on the objective of minimizing the energy

consumption for a robotic assembly line. The line efficiency of the assembly line which

performs the tasks with minimum energy consumption is evaluated. The line efficiency

is calculated and compared for both the layouts (straight and U-shaped). Particle swarm

optimization (PSO) and Differential evolution (DE) are the two metaheuristic

algorithms used as the optimization tool to solve this problem for both the layouts. It is

observed that DE performs better for both the layouts for most of the datasets. The

comparison of results obtained for both the layouts are presented. It is observed that DE

performs better in terms of the objective function when compared to PSO. It is

concluded that U-shaped robotic assembly line performs better in terms of line

efficiency, cycle time and energy consumption for most of the problems in both small

and large size datasets.

CHAPTER 9

9 Conclusion

A summary of research work conducted on robotic assembly line balancing

problems to optimize different objectives are presented in this thesis. The major

contributions made and the scope of future work is also presented.

The literature survey revealed that researches on assembly line balancing problems

have been conducted extensively and different optimization methods are developed in

the past. Most of the methods are designed for balancing manual assembly lines.

Detailed literature survey for different types of assembly line balancing problems and

different optimization techniques are presented in Chapter 2. It is observed that, only

few literatures could be found on robotic assembly line balancing problems. The

research gaps are identified and the research objectives are framed. Different research

objectives to be addressed in thesis are presented in Chapter 3. Mathematical models

for different RALB problems are presented along with the assumptions considered to

solve these problems.

 RALB problem to minimize cycle time

RALB problem is developed and solved to optimize the cycle time of a robotic

assembly line. The procedures and results obtained for this model are presented in

Chapter 5. The existing literature survey is comprehensively analysed to identify if

available solution could be improved. IBM Cplex Optimization studio Version 12.6.0.0

standard optimization software is used to solve the problems to get optimal solutions.

It is observed that only fourteen problems in the datasets could be solved within an

acceptable time span. Two allocation procedures are implemented to improve the

quality of the available solution. PSO is proposed to solve the problem. Results of the

proposed models are improved using a local exchange procedure. Out of the two

allocation procedures, consecutive allocation procedure performs better. PSO variants

and hybrid PSO algorithms are also proposed to solve the problem. Variants are

developed based on the variation in the velocity update in PSO and hybrid models are

developed by hybridizing with GA (breeding) and Cuckoo Search. The performances

of the variants and hybrid algorithms of PSO are tested on benchmark problems and the

Chapter 9

Conclusion

Page | 187

obtained results are compared with the reported results. Set of experiments are

conducted to investigate the effects of the parameters on the solution quality. Results

show that the proposed hybrid CS-PSO algorithm reports better solution than the

solution reported in the literature. The robotic assembly line considered is a straight

assembly line problem where the tasks and workstations are arranged in a straight line.

A new robotic U-shaped assembly line balancing (RUALB) problem is also

presented. No work has been reported on U-shaped robotic assembly line. The major

objective of the problem developed is to minimize the cycle time of the assembly line

when the assembly line can be arranged for a U-shaped configuration. Allocation of

tasks and robots in U-shaped configuration is highly complex when compared to the

straight assembly line. Tasks are assigned to the workstations when either all of their

predecessors or all of their successors have already been assigned to workstations. PSO

algorithm is proposed to solve this problem. Thirty-two benchmark problems originally

proposed by earlier researchers to solve RALB were adopted to the test the performance

of RUALB. Extensive computational experiments were conducted and the results are

reported in Chapter 5. From the results, it is observed that the cycle time of U-shaped

robotic assembly line is lower than the straight robotic assembly line. To measure the

complexity of the problem different complexity measures are used and the results are

reported in this chapter.

 RALB problem to minimize energy consumption

These days, manufacturing industries gives utmost importance for reducing the

energy consumption due to the increasing energy cost and fast depletion of energy

sources. The industries need to reduce the energy consumption to improve their

profitability. Models are developed with an objective of minimizing energy

consumption in a robotic assembly line. From the literature, it is observed that there

has been no previous work reported on optimizing energy consumption in a robotic

assembly line. Particle swarm optimization algorithm is proposed to solve the proposed

models. Datasets to solve the proposed model is developed by embedding the energy

data into the benchmark datasets. Using the developed energy data and existing time

datasets, the energy consumption and the subsequent cycle time is evaluated for both

the layouts. The energy consumption of the robotic assembly line when the allocation

of tasks and robots are done based on the objective of minimizing the cycle time is also

Chapter 9

Conclusion

Page | 188

calculated. This is proposed to check the energy saving capacity in the model proposed

when the allocation of tasks and robots are performed. Several computational

experiments are conducted for both the layouts and the best solution obtained for each

models are presented in Chapter 6. A comparative analysis is done on the straight and

U-shaped robotic assembly line to check which layout is better. From the study, it is

concluded that U-shaped performs better for both the objectives of minimizing cycle

time and energy consumption.

 RALB problem to minimize assembly line cost

A new robotic assembly line balancing problem with an objective of minimizing

assembly line cost is developed. Robot needs to be optimally assigned to the work

stations such a way that the cost to perform these allocated tasks by robots be the

minimum. Tasks and robots are allocated based on consecutive allocation heuristic.

From the literature, it is observed that there has been no previous work reported on

optimizing assembly line cost of a robotic assembly line. NP-hard nature of the problem

makes it necessary to implement different metaheuristic algorithms (PSO Variants and

DE) to solve the problem. Datasets are randomly generated by using the existing

benchmark datasets. Results obtained by metaheuristic algorithms are tested on the

datasets developed. It is observed that DE performs better than PSO in terms of the

quality of the solution.

Sample problems are used to find the parameters to be used in the algorithms.

Cycle time is also calculated from the cost and the performance is compared. It can be

clearly concluded that U-shaped layout performs better than the straight robotic

assembly line layout for the objective of minimizing the assembly line cost. Assembly

line cost is also calculated for the problems when the allocation is conducted based on

the objective of minimizing the cycle time. Both assembly line cost and cycle time for

both the layouts are compared and it is concluded from the results obtained that U-

shaped robotic assembly line reports better cycle time and assembly line cost when

compared with straight robotic assembly line. Industrial managers can chose any of the

models based on the priorities and demands.

Chapter 9

Conclusion

Page | 189

 RALB problem to maximize line efficiency

Two models for evaluating the line efficiency of the robotic assembly line are

proposed. First model aims at maximizing the line efficiency by minimizing the

workstation times and the second model aims at maximizing the line efficiency by

minimizing the energy consumption of the workstations. The two models are solved for

both layouts (straight and U-shaped) of robotic assembly line using PSO and DE

algorithms. Extensive experiments are conducted on the benchmark data. Sample

problems are used to fix the parameters to be used for the algorithms. Based on the

comparative analysis, it is observed that for the first model, line efficiency is better for

U-shaped robotic assembly line and line efficiency is better for straight line for the large

size datasets. This is due to the variation of workstation times which affects the line

efficiency. PSO and DE algorithm showed the same trend in the results. The cycle time

and smoothness index are also evaluated and compared.

From the analysis on the second model, it is observed that for both PSO and DE,

U-shaped robotic assembly line performs better in terms of line efficiency when

compared to straight robotic assembly line. The cycle times of the problems tested

along with the energy consumption for both the layouts are compared and it is

concluded that U-shaped robotic assembly line performs better.

 Contribution of this thesis

Efficient metaheuristic algorithms are proposed and solved for:

i. Robotic assembly line balancing problem with the objective of minimizing

the cycle time for straight and U-shaped robotic assembly line.

ii. Energy based robotic assembly line problem for both straight and U-shaped

robotic assembly line with an objective of minimizing the energy

consumption.

iii. Cost based robotic assembly line balancing problem in both straight and U-

shaped robotic assembly line with an objective of minimizing the total

assembly line cost.

iv. Robotic assembly line problem with an objective of maximising the line

efficiency by minimizing workstation times and minimizing energy

consumption at each workstation.

Chapter 9

Conclusion

Page | 190

 Limitations of this research

The limitations of this research work are that only one robot can be assigned to one

workstation. Assigned robot cannot handle multiple workstations. Tasks which are

assigned to the workstation cannot be split. Computational time increases significantly

when the problem size increases.

 Future Research Proposals

Few areas of further research in RALB problems are:

i. Different other efficient metaheuristics can also be applied for the presently

developed RALB problems.

ii. Robotic assembly line could be designed for two-sided and parallel

assembly line.

iii. The models proposed in thesis are for a single model, robotic assembly

lines could be designed for assembly of mixed and multi products.

iv. For energy based robotic assembly line balancing problems, algorithm

could be tested on a specific time horizon where factors such as

maintenance operation and effect of failures of the resources in the system

could be included. The planning horizon can also be included in the model.

REFERENCES

Aase, G. R., Olson, J. R. & Schniederjans, M. J. 2004. U-shaped assembly line layouts

and their impact on labor productivity: An experimental study. European

Journal of Operational Research, 156, 698-711.

Aigbedo, H. & Monden, Y. 1997. A parametric procedure for multicriterion sequence

scheduling for JustIn-Time mixed-model assembly lines. International Journal

of Production Research, 35, 2543-2564.

Ajenblit, D. A. & Wainwright, R. L. 1998. Applying genetic algorithms to the U-shaped

assembly line balancing problem. In: Proceedings of World Congress on

Computational Intelligence, Anchorage, Alaska. IEEE, 96-101.

Ali, M. M. & Törn, A. 2004. Population set-based global optimization algorithms: some

modifications and numerical studies. Computers & Operations Research, 31,

1703-1725.

Alp, A. 2004. Ant colony optimization for the single model U-type assembly line

balancing problem. PhD Thesis, Bilkent University.

Amen, M. 2000a. An exact method for cost-oriented assembly line balancing.

International Journal of Production Economics, 64, 187-195.

Amen, M. 2000b. Heuristic methods for cost-oriented assembly line balancing: A

survey. International Journal of Production Economics, 68, 1-14.

Amen, M. 2001. Heuristic methods for cost-oriented assembly line balancing: A

comparison on solution quality and computing time. International Journal of

Production Economics, 69, 255-264.

Angeline, P. J. 1998. Evolutionary optimization versus particle swarm optimization:

Philosophy and performance differences. In: Proceedings of Evolutionary

Programming VII, Springer, 601-610.

Arcus, A. L. 1965. A computer method of sequencing operations for assembly lines.

International Journal of Production Research, 4, 259-277.

Arumugam, M. S., Rao, Mvc , Aarthi,Chandramohan 2008. A new and improved

version of particle swarm optimization algorithm with global–local best

parameters. Knowledge and Information systems, 16, 331-357.

Avikal, S., Jain, R., Mishra, P. & Yadav, H. 2013. A heuristic approach for U-shaped

assembly line balancing to improve labor productivity. Computers & Industrial

Engineering, 64, 895-901.

Bartholdi, J. 1993. Balancing two-sided assembly lines: A case study. International

Journal of Prodction Research, 31, 2447-2461.

Bautista, J. & Pereira, J. 2002. Ant algorithms for assembly line balancing. Ant

algorithms. Springer.

References

Page | 192

Baybars, I. 1986. A survey of exact algorithms for the simple assembly line balancing

problem. Management science, 32, 909-932.

Baykasoğlu, A. 2006. Multi-rule multi-objective simulated annealing algorithm for

straight and U type assembly line balancing problems. Journal of Intelligent

Manufacturing, 17, 217-232.

Baykasoğlu, A. & Özbakır, L. 2007. Stochastic U-line balancing using genetic

algorithms. The International Journal of Advanced Manufacturing Technology,

32, 139-147.

Becker, C. & Scholl, A. 2006. A survey on problems and methods in generalized

assembly line balancing. European Journal of Operational Research, 168, 694-

715.

Bertoldi, P., Aebischer, B., Edlington, C., Hershberg, C., Lebot, B., Lin, J., Marker, T.,

Meier, A., Nakagami, H. & Shibata, Y. 2002. Standby power use: How big is

the problem? What policies and technical solutions can address it? Lawrence

Berkeley National Laboratory.

Bhattacharjee, T. & Sahu, S. 1990. Complexity of single model assembly line balancing

problems. Engineering costs and production economics, 18, 203-214.

Blondin, J. 2009. Particle swarm optimization: A tutorial. from site:

http://cs.armstrong.edu/saad/csci8100/pso_tutorial.pdf

Boeing. 2014. “ Boeing 777 Moving Production Line”. Boeing. Accessed October 29.

http://www.boeing.com/boeing/commercial/777family/777movingline.page

Boussaïd, I., Lepagnot, J. & Siarry, P. 2013. A survey on optimization metaheuristics.

Information Sciences, 237, 82-117.

Boysen, N., Fliedner, M. & Scholl, A. 2007. A classification of assembly line balancing

problems. European Journal of Operational Research, 183, 674-693.

Bukchin, J. & Tzur, M. 2000. Design of flexible assembly line to minimize equipment

cost. Iie Transactions, 32, 585-598.

Burnwal, S. & Deb, S. 2013. Scheduling optimization of flexible manufacturing system

using cuckoo search-based approach. The International Journal of Advanced

Manufacturing Technology, 64, 951-959.

Capacho Betancourt, L. 2008. ASALBP: the alternative subgraphs assembly line

balancing problem. Formalization and resolution procedures. PhD Thesis,

Polytechnic University of Catalonia. Institute of Industrial and Control

Engineering.

Chiang, W.-C. 1998. The application of a tabu search metaheuristic to the assembly

line balancing problem. Annals of Operations Research, 77, 209-227.

Chong, K. E., Omar, M. K. & Bakar, N. A. 2008. Solving assembly line balancing

problem using genetic algorithm with heuristics-treated initial population. In:

Proceedings of World Congress on Engineering, London, U.K.

Chryssolouris, G. 2005. Manufacturing systems: theory and practice, Springer.

References

Page | 193

Clerc, M. 2004. Discrete particle swarm optimization, illustrated by the traveling

salesman problem. New Optimization Techniques in Engineering. Springer

Berlin Heidelberg.

Clerc, M. & Kennedy, J. 2002. The particle swarm-explosion, stability, and

convergence in a multidimensional complex space. IEEE Transactions on

Evolutionary Computation, 6, 58-73.

Dai, M., Tang, D., Giret, A., Salido, M. A. & Li, W. 2013. Energy-efficient scheduling

for a flexible flow shop using an improved genetic-simulated annealing

algorithm. Robotics and Computer-Integrated Manufacturing, 29, 418-429.

Daoud, S., Chehade, H., Yalaoui, F. & Amodeo, L. 2014. Solving a robotic assembly

line balancing problem using efficient hybrid methods. Journal of Heuristics,

20, 235-259.

Dar-El, E. 1973. MALB—A heuristic technique for balancing large single-model

assembly lines. AIIE transactions, 5, 343-356.

Dar-El, E. & Rubinovitch, Y. 1979. MUST-A multiple solutions technique for

balancing single model assembly lines. Management Science, 25, 1105-1114.

Davis, L. Applying adaptive algorithms to epistatic domains. 1985. In: Proceedings of

IJCAI, 162-164.

Deckro, R. F. & Rangachari, S. 1990. A goal approach to assembly line balancing.

Computers & Operations Research, 17, 509-521.

Domm, R. W. 2009. Michigan Yesterday & Today. Voyageur Press.

Eberhart, R. C. & Shi, Y. Comparison between genetic algorithms and particle swarm

optimization. In: Proceedings of Evolutionary Programming VII, 1998.

Springer, 611-616.

Eberhart, R. C. & Shi, Y. 2000. Comparing inertia weights and constriction factors in

particle swarm optimization. In: Proceedings of Evolutionary Computation,

IEEE, 84-88.

Economics, Z. 2011. Simple assembly line balancing using particle swarm optimization

algorithm. International Journal of Digital Content Technology and its

Applications, 5, 297-304.

El-Dib, A., Youssef, H. K., El-Metwally, M. & Osman, Z. 2004. Load flow solution

using hybrid particle swarm optimization. In: Proceedings of International

Conference on Electrical, Electronic and Computer Engineering, IEEE, 742-

746.

Erel, E., Sabuncuoglu, I. & Aksu, B. 2001. Balancing of U-type assembly systems using

simulated annealing. International Journal of Production Research, 39, 3003-

3015.

Erel, E., Sabuncuoglu, I. & Sekerci, H. 2005. Stochastic assembly line balancing using

beam search. International Journal of Production Research, 43, 1411-1426.

Erel, E. & Sarin, S. C. 1998. A survey of the assembly line balancing procedures.

Production Planning & Control, 9, 414-434.

References

Page | 194

Faaland, B. H., Klastorin, T. D., Schmitt, T. G. & Shtub, A. 1992. Assembly Line

Balancing with Resource Dependent Task Times. Decision Sciences, 23, 343-

364.

Feoktistov, V. 2006. Differential evolution, Springer.

Fernandes, L. 1992. Heuristic methods for the mixed-model assembly line balancing

and sequencing. MSc. Dissertation, Lehigh University.

Fetters-Walp,E.2010. Moving to a quicker pace Available:

http://www.boeing.com/Features/2010/05/bca_moving_line_05_24_10.html.

Fysikopoulos, A., Anagnostakis, D., Salonitis, K. & Chryssolouris, G. 2012. An

Empirical Study of the Energy Consumption in Automotive Assembly. Procedia

CIRP, 3, 477-482.

Gao, J., Sun, L., Wang, L. & Gen, M. 2009. An efficient approach for type II robotic

assembly line balancing problems. Computers & Industrial Engineering, 56,

1065-1080.

Gen, M., Cheng, R. & Lin, L. 2008. Assembly Line Balancing Models. Network

Models and Optimization: Multiobjective Genetic Algorithm Approach, 477-

550.

Ghosh, S. & Gagnon, R. J. 1989. A comprehensive literature review and analysis of the

design, balancing and scheduling of assembly systems. International Journal of

Production Research, 27, 637-670.

Glover, F., & Kochenberger, G. A. (Eds.). 2003) Handbook of metaheuristics. Springer

Science & Business Media.

Gökçen, H. & AgˇPak, K. 2006. A goal programming approach to simple U-line

balancing problem. European Journal of Operational Research, 171, 577-585.

Gökçen, H., Ağpak, K. & Benzer, R. 2006. Balancing of parallel assembly lines.

International Journal of Production Economics, 103, 600-609.

Gonçalves, J. F. & De Almeida, J. R. 2002. A hybrid genetic algorithm for assembly

line balancing. Journal of Heuristics, 8, 629-642.

Graves, S. C. & Lamar, B. W. 1983. An integer programming procedure for assembly

system design problems. Operations Research, 31, 522-545.

Graves, S. C. & Redfield, C. H. 1988. Equipment selection and task assignment for

multiproduct assembly system design. International Journal of Flexible

Manufacturing Systems, 1, 31-50.

Gungor, A. & Gupta, S. M. 1999. Issues in environmentally conscious manufacturing

and product recovery: a survey. Computers & Industrial Engineering, 36, 811-

853.

Gunther, R. E., Johnson, G. D. & Peterson, R. S. 1983. Currently practiced formulations

for the assembly line balance problem. Journal of Operations Management, 3,

209-221.

References

Page | 195

Guo, W., Li, W., Zhang, Q., Wang, L., Wu, Q. & Ren, H. 2013. Biogeography-based

particle swarm optimization with fuzzy elitism and its applications to

constrained engineering problems. Engineering Optimization, 46, 1465-1484.

Gutjahr, A. L. & Nemhauser, G. L. 1964. An algorithm for the line balancing problem.

Management Science, 11, 308-315.

Hahn, R. 1972. Produktionsplanung bei Linienfertigung, .

Hamta, N., Fatemi Ghomi, S. M. T., Jolai, F., & Akbarpour Shirazi, M. 2013. A hybrid

PSO algorithm for a multi-objective assembly line balancing problem with

flexible operation times, sequence-dependent setup times and learning

effect. International Journal of Production Economics, 141(1), 99-111.

Hazır, O., Delorme, X. & Dolgui, A. 2014. A Survey on Cost and Profit Oriented

Assembly Line Balancing. In: Proceedings of The International Federation of

Automatic Control, Cape Town, South Africa. 6159-6167.

He, Y., Liu, B., Zhang, X., Gao, H. & Liu, X. 2012. A modeling method of task-oriented

energy consumption for machining manufacturing system. Journal of Cleaner

Production, 23, 167-174.

Held, M., Karp, R. M. & Shareshian, R. 1963. Assembly-line balancing-dynamic

programming with precedence constraints. Operations Research, 11, 442-459.

Helgeson, W. & Birnie, D. 1961. Assembly line balancing using the ranked positional

weight technique. Journal of Industrial Engineering, 12, 394-398.

Hirano, H. 1988. JIT factory revolution: A pictorial guide to factory design of the

future, Productivity Press.

Hoffmann, T. R. 1992. EUREKA: A hybrid system for assembly line balancing.

Management Science, 38, 39-47.

Hu, X., Zhang, Y., Zeng, N. & Wang, D. 2014. A Novel Assembly Line Balancing

Method Based on PSO Algorithm. Mathematical Problems in Engineering,

Volume(2014), Article ID 743695, Pages 10.

Huang, K.-W., Chen, J.-L., Yang, C.-S. & Tsai, C.-W. 2014. A memetic particle swarm

optimization algorithm for solving the DNA fragment assembly problem.

Neural Computing and Applications, 1-12. doi:10.1007/s00521-014-1659-0.

Hwang, R. K., Katayama, H. & Gen, M. 2008. U-shaped assembly line balancing

problem with genetic algorithm. International Journal of Production Research,

46, 4637-4649.

Jackson, J. R. 1956. A computing procedure for a line balancing problem. Management

Science, 2, 261-271.

Johnson, R. V. 1988. Optimally balancing large assembly lines with “FABLE”.

Management Science, 34, 240-253.

Kaelo, P. & Ali, M. 2006. A numerical study of some modified differential evolution

algorithms. European journal of operational research, 169, 1176-1184.

References

Page | 196

Kao, E. P. & Queyranne, M. 1982. On dynamic programming methods for assembly

line balancing. Operations Research, 30, 375-390.

Kara, Y. 2008. Line balancing and model sequencing to reduce work overload in

mixed-model U-line production environments. Engineering Optimization, 40,

669-684.

Karp, R. M. 1972. Reducibility among combinatorial problems, Springer.

Kennedy, J. & Eberhart, R. 1995. Particle swarm optimization. In: Proceedings of

International Conference on Neural Networks, IEEE, 1942-1948 vol.4.

Khaw, C. L. & Ponnambalam, S. G. 2009. Multi-rule multi-objective ant colony

optimization for straight and U-type assembly line balancing problem. In:

Proceedings of International Conference on Automation Science and

Engineering, IEEE, 177-182.

Khouja, M., Booth, D. E., Suh, M. & Mahaney Jr, J. K. 2000. Statistical procedures for

task assignment and robot selection in assembly cells. International Journal of

Computer Integrated Manufacturing, 13, 95-106.

Kilian, L. 2008. The economic effects of energy price shocks. Journal of Economic

Literature, 871-909.

Kilincci, O. 2010. A Petri net-based heuristic for simple assembly line balancing

problem of type 2. The International Journal of Advanced Manufacturing

Technology, 46, 329-338.

Kilincci, O. & Bayhan, G. M. 2006. A Petri net approach for simple assembly line

balancing problems. The International Journal of Advanced Manufacturing

Technology, 30, 1165-1173.

Kim, H. & Park, S. 1995. A strong cutting plane algorithm for the robotic assembly line

balancing problem. International Journal of Production Research, 33, 2311-

2323.

Kim, Y. K., Kim, J. Y. & Kim, Y. 2006. An endosymbiotic evolutionary algorithm for

the integration of balancing and sequencing in mixed-model U-lines. European

Journal of Operational Research, 168, 838-852.

Kim, Y. K., Kim, S. J. & Kim, J. Y. 2000. Balancing and sequencing mixed-model U-

lines with a co-evolutionary algorithm. Production Planning & Control, 11, 754-

764.

Kim, Y. K. & Kim, Y. J. 1996. Genetic algorithms for assembly line balancing with

various objectives. Computers & Industrial Engineering, 30, 397-409.

Klein, R. & Scholl, A. 1996. Maximizing the production rate in simple assembly line

balancing—a branch and bound procedure. European Journal of Operational

Research, 91, 367-385.

Kriengkorakot, N. & Pianthong, N. 2012. The assembly line balancing problem: review

articles. KKU Engineering Journal, 34, 133-140.

Kubota, Y. 2011. Toyota’s New Assembly Line Saves Time, Costs: Report.

Available:http://www.reuters.com/assets/print?aid=USTRE70M07H20110123

References

Page | 197

Kumar, D. M. 2013. Assembly Line Balancing: A Review of Developments and Trends

in Approach to Industrial Application. Global Journal of Researches In

Engineering, 13.

Lai, L. K. & Liu, J. N. 2009. ALBO: An assembly line balance optimization model

using ant colony optimization. In: Proceedings of International Conference on

Natural Computation, IEEE, 8-12.

Lee, K. Y. & Park, J.-B. 2006. Application of particle swarm optimization to economic

dispatch problem: advantages and disadvantages. In: Proceedings of IEEE

Power Systems Conference and Exposition, PSCE'06, IEEE, 188-192.

Levitin, G., Rubinovitz, J. & Shnits, B. 2006. A genetic algorithm for robotic assembly

line balancing. European Journal of Operational Research, 168, 811-825.

Liu, Y., Dong, H., Lohse, N., Petrovic, S. & Gindy, N. 2014. An investigation into

minimising total energy consumption and total weighted tardiness in job shops.

Journal of Cleaner Production, 65, 87-96.

Long, W., Liang, X., Huang, Y. & Chen, Y. 2014. An effective hybrid cuckoo search

algorithm for constrained global optimization. Neural Computing and

Applications, 25(3–4), 911–926.

Luo, H., Du, B., Huang, G. Q., Chen, H. & Li, X. 2013. Hybrid flow shop scheduling

considering machine electricity consumption cost. International Journal of

Production Economics, 146, 423-439.

Lutz, L. 1974. Abtakten von Montagelinien, Krausskopf.

Mansoor, E. M. & Yadin, M. 1971. On the problem of assembly line balancing, in

Developments in Operations Research, Avi-Itzhak, B. (ed), Gordon and Breach,

New York, p.361.

Marinakis, Y. & Marinaki, M. 2010. A hybrid genetic–Particle Swarm Optimization

Algorithm for the vehicle routing problem. Expert Systems with Applications,

37, 1446-1455.

Martí, R. & Reinelt, G. 2011. The linear ordering problem: exact and heuristic methods

in combinatorial optimization, Springer.

Martinez, U. & Duff, W. S. 2004. Heuristic approaches to solve the U-shaped line

balancing problem augmented by genetic algorithms. In: Proceedings of

Systems and Information Engineering Design Symposium, IEEE, 287-293.

Miltenburg, G. & Wijngaard, J. 1994. The U-line line balancing problem. Management

Science, 40, 1378-1388.

Miltenburg, J. 1998. Balancing U-lines in a multiple U-line facility. European Journal

of Operational Research, 109, 1-23.

Miltenburg, J. & Sparling, D. 1995. Optimal solution algorithms for the U-line

balancing problem. Working Paper, McMaster University, Hamilton, Ontario,

Canada.

References

Page | 198

Mohamed, A. W., Sabry, H. Z. & Khorshid, M. 2012. An alternative differential

evolution algorithm for global optimization. Journal of Advanced Research, 3,

149-165.

Monden, Y. 1983. Toyota production system: practical approach to production

management, Industrial Engineering and Management Press, Institute of

Industrial Engineers Norcross, GA.

Mouzon, G. & Yildirim, M. B. 2008. A framework to minimise total energy

consumption and total tardiness on a single machine. International Journal of

Sustainable Engineering, 1, 105-116.

Mouzon, G., Yildirim, M. B. & Twomey, J. 2007. Operational methods for

minimization of energy consumption of manufacturing equipment.

International Journal of Production Research, 45, 4247-4271.

Naka, S., Genji, T., Yura, T. & Fukuyama, Y. 2003. A hybrid particle swarm

optimization for distribution state estimation. IEEE Transactions on Power

Systems, 18, 60-68.

Nakade, K. & Ohno, K. 1999. An optimal worker allocation problem for a U-shaped

production line. International Journal of Production Economics, 60, 353-358.

Nearchou, A. C. 2005. A differential evolution algorithm for simple assembly line

balancing. In: Proceedings of 16th International Federation of Automatic

Control (IFAC) World Congress, Prague, 1462-1462.

Nearchou, A. C. 2006. Meta-heuristics from nature for the loop layout design problem.

International Journal of Production Economics, 101, 312-328.

Nearchou, A. C. 2007. Balancing large assembly lines by a new heuristic based on

differential evolution method. The International Journal of Advanced

Manufacturing Technology, 34, 1016-1029.

Nearchou, A. C. & Omirou, S. L. 2006. Differential evolution for sequencing and

scheduling optimization. Journal of Heuristics, 12, 395-411.

Ngai, E. W., Ng, C. D. & Huang, G. 2013. Energy Sustainability for Production Design

and Operations. International Journal of Production Economics, 146, 383-385.

Nicosia, G., Pacciarelli, D. & Pacifici, A. 2002. Optimally balancing assembly lines

with different workstations. Discrete Applied Mathematics, 118, 99-113.

Owen, T. 1986. Assembly with robots, Prentice-Hall, Inc.

Padrón, M., Irizarry, M. D. L. A., Resto, P. & Mejía, H. P. 2009. A methodology for

cost-oriented assembly line balancing problems. Journal of Manufacturing

Technology Management, 20, 1147-1165.

Pan, C. 2005. Integrating CAD files and automatic assembly sequence planning. Phd

Dissertation. Iowa State University.

Petropoulos, D. I. & Nearchou, A. C. 2011. A particle swarm optimization algorithm

for balancing assembly lines. Assembly Automation, 31, 118-129.

References

Page | 199

Pierreval, H., Caux, C., Paris, J. & Viguier, F. 2003. Evolutionary approaches to the

design and organization of manufacturing systems. Computers & Industrial

Engineering, 44, 339-364.

Plans, J. & Corominas, A. 1999. Modelling and solving the SALB-E problem. In:

Proceedings of International Symposium on Assembly and Task Planning,

IEEE, 356-360.

Ponnambalam, S., Aravindan, P. & Naidu, G. M. 1999. A comparative evaluation of

assembly line balancing heuristics. The International Journal of Advanced

Manufacturing Technology, 15, 577-586.

Ponnambalam, S., Aravindan, P. & Naidu, G. M. 2000. A multi-objective genetic

algorithm for solving assembly line balancing problem. The International

Journal of Advanced Manufacturing Technology, 16, 341-352.

Qin, A. K. & Suganthan, P. N. 2005. Self-adaptive differential evolution algorithm for

numerical optimization. In: Proceedings of Congress on Evolutionary

Computation, IEEE, 1785-1791.

Rao, S. S. 2009. Engineering optimization: theory and practice. John Wiley & Sons.

Rameshkumar, K., Suresh, R. K., & Mohanasundaram, K. M. (2005). Discrete particle

swarm optimization (DPSO) algorithm for permutation flowshop scheduling to

minimize makespan. In: Proceedings of Advances in Natural Computation,

Springer Berlin Heidelberg ,572-581.

Rashid, M. F. F., Hutabarat, W. & Tiwari, A. 2012. A review on assembly sequence

planning and assembly line balancing optimisation using soft computing

approaches. The International Journal of Advanced Manufacturing Technology,

59, 335-349.

Ratnaweera, A., Halgamuge, S. & Watson, H. C. 2004. Self-organizing hierarchical

particle swarm optimizer with time-varying acceleration coefficients. IEEE

Transactions on Evolutionary Computation, 8, 240-255.

Rosenberg, O. & Ziegler, H. 1992. A comparison of heuristic algorithms for cost-

oriented assembly line balancing. Zeitschrift für Operations Research, 36, 477-

495.

Roshani, A., Fattahi, P., Roshani, A., Salehi, M. & Roshani, A. 2012. Cost-oriented

two-sided assembly line balancing problem: A simulated annealing approach.

International Journal of Computer Integrated Manufacturing, 25, 689-715.

Rothlauf, F. 2011. Design of modern heuristics: principles and application, Springer.

Rubinovitz, J. & Bukchin, J. 1991. Design and balancing of robotic assembly lines,

Society of Manufacturing Engineers.

Rubinovitz, J., Bukchin, J. & Lenz, E. 1993. RALB–A heuristic algorithm for design

and balancing of robotic assembly lines. CIRP Annals-Manufacturing

Technology, 42, 497-500.

Rubinovitz, J. & Levitin, G. 1995. Genetic algorithm for assembly line balancing.

International Journal of Production Economics, 41, 343-354.

References

Page | 200

Salveson, M. E. 1955. The assembly line balancing problem. Journal of Industrial

Engineering, 6, 18-25.

Sanderson, A. C., De Mello, L. S. H. & Zhang, H. 1990. Assembly sequence planning.

AI Magazine, 11, 62.

Sarin, S. C., Erel, E. & Dar-El, E. M. 1999. A methodology for solving single-model,

stochastic assembly line balancing problem. Omega, 27, 525-535.

Scholl, A. 1995. Data of assembly line balancing problems. Darmstadt Technical

University, Department of Business Administration, Economics and Law,

Institute for Business Studies (BWL).

Scholl, A. 1999. Balancing and sequencing of assembly lines, Physica-Verlag

Heidelberg.

Scholl, A. & Becker, C. 2005. A note on “An exact method for cost-oriented assembly

line balancing”. International Journal of Production Economics, 97, 343-352.

Scholl, A. & Becker, C. 2006. State-of-the-art exact and heuristic solution procedures

for simple assembly line balancing. European Journal of Operational Research,

168, 666-693.

Scholl, A., Boysen, N. & Fliedner, M. 2008. The sequence-dependent assembly line

balancing problem. OR Spectrum, 30, 579-609.

Scholl, A. & Klein, R. 1997. SALOME: A bidirectional branch-and-bound procedure

for assembly line balancing. INFORMS Journal on Computing, 9, 319-334.

Scholl, A. & Klein, R. 1999a. Balancing assembly lines effectively–a computational

comparison. European Journal of Operational Research, 114, 50-58.

Scholl, A. & Klein, R. 1999b. ULINO: Optimally balancing U-shaped JIT assembly

lines. International Journal of Production Research, 37, 721-736.

Scholl, A. & Voß, S. 1997. Simple assembly line balancing—Heuristic approaches.

Journal of Heuristics, 2, 217-244.

Schrage, L. & Baker, K. R. 1978. Dynamic programming solution of sequencing

problems with precedence constraints. Operations research, 26, 444-449.

Seyed-Alagheband, S., Ghomi, S. F. & Zandieh, M. 2011. A simulated annealing

algorithm for balancing the assembly line type II problem with sequence-

dependent setup times between tasks. International Journal of Production

Research, 49, 805-825.

Shi, Y. & Eberhart, R. C. 1998. Parameter selection in particle swarm optimization. In:

Proceedings of Evolutionary Programming VII, Springer, 591-600.

Shrouf, F., Ordieres-Meré, J., García-Sánchez, A. & Ortega-Mier, M. 2014. Optimizing

the production scheduling of a single machine to minimize total energy

consumption costs. Journal of Cleaner Production, 67, 197-207.

Sirovetnukul, R. & Chutima, P. 2010. Multi-objective particle swarm optimization with

negative knowledge for U-shaped assembly line worker allocation problems.

References

Page | 201

In: Proceedings of International Conference on Industrial Engineering and

Engineering Management (IEEM), IEEE, 2033-2038.

Sivanandam, S. N., Visalakshi, P., & Bhuvaneswari, A. 2007. Multiprocessor

Scheduling Using Hybrid Particle Swarm Optimization with Dynamically

Varying Inertia. International Journal of Computer Science & Applications,

4(3), 95-106.

Sivasankaran, P. & Shahabudeen, P. 2014. Literature review of assembly line balancing

problems. The International Journal of Advanced Manufacturing Technology,

1-30.

Sörensen, K. & Glover, F. W. 2013. Metaheuristics. Encyclopedia of Operations

Research and Management Science. Springer.

Storn, R. & Price, K. 1997. Differential evolution–a simple and efficient heuristic for

global optimization over continuous spaces. Journal of global optimization, 11,

341-359.

Suresh, G. & Sahu, S. 1994. Stochastic assembly line balancing using simulated

annealing. International Journal of Prodction Research, 32, 1801-1810.

Thangavelu, S. & Shetty, C. 1971. Assembly line balancing by zero-one integer

programming. AIIE Transactions, 3, 61-68.

Ting, T. O., Yang, X. S., Cheng, S., & Huang, K. 2015. Hybrid Metaheuristic

Algorithms: Past, Present, and Future. In: Proceedings of Recent Advances in

Swarm Intelligence and Evolutionary Computation (Springer International

Publishing), 71-83.

Toklu, B. & Özcan, U. 2008. A fuzzy goal programming model for the simple U-line

balancing problem with multiple objectives. Engineering Optimization, 40,

191-204.

Toksarı, M. D., İşleyen, S. K., Güner, E. & Baykoç, Ö. F. 2008. Simple and U-type

assembly line balancing problems with a learning effect. Applied Mathematical

Modelling, 32, 2954-2961.

Tonge, F. M. 1960. A heuristic program for assembly line balancing. Mathematics

Division, RAND Corporation, Santa Monica. California, U.S.A.

Törenli, A. 2009. Assembly line design and optimization. MSc. Dissertation, Chalmers

University of Technology.

Tsai, D.-M. & Yao, M.-J. 1993. A line-balance-based capacity planning procedure for

series-type robotic assembly line. International Journal of Production Research,

31, 1901-1920.

Urban, T. L. 1998. Note. Optimal balancing of U-shaped assembly lines. Management

Science, 44, 738-741.

Valian, E., Mohanna, S. & Tavakoli, S. 2011. Improved cuckoo search algorithm for

global optimization. International Journal of Communications and Information

Technology, 1, 31-44.

References

Page | 202

Wei, N.-C. & Chao, I. 2011. A solution procedure for type E simple assembly line

balancing problem. Computers & Industrial Engineering, 61, 824-830.

Wu, E.-F., Jin, Y., Bao, J.-S. & Hu, X.-F. 2008. A branch-and-bound algorithm for two-

sided assembly line balancing. The International Journal of Advanced

Manufacturing Technology, 39, 1009-1015.

Wu, Y. C., Lee, W. P., & Chien, C. W. 2011. Modified the performance of differential

evolution algorithm with dual evolution strategy. In: Proceedings of 2009

International Conference on Machine Learning and Computing, Vol. 3, 57-63.

Yalaoui, A., Chehade, H., Yalaoui, F. & Amodeo, L. 2013. Optimization of Logistics,

John Wiley & Sons.

Yang, X.-S. & Deb, S. Cuckoo search via Lévy flights. 2009. In: Proceedings of World

Congress on Nature & Biologically Inspired Computing, IEEE, 210-214.

Yang, X.-S. & Deb, S. 2014. Cuckoo search: recent advances and applications. Neural

Computing and Applications, 24, 169-174.

Yazdanparast, V., Hajihosseini, H. & Bahalke, A. 2011. Cost Oriented Assembly Line

Balancing Problem with Sequence Dependent Setup Times. Journal of Applied

Sciences Research, 7.

Yoosefelahi, A., Aminnayeri, M., Mosadegh, H. & Ardakani, H. D. 2012. Type II

robotic assembly line balancing problem: An evolution strategies algorithm for

a multi-objective model. Journal of Manufacturing Systems, 31, 139-151.

Zhang, Z. & Cheng, W. An Exact Method for U-shaped Assembly Line Balancing

Problem. In: Proceedings of International Workshop on Intelligent Systems and

Applications (ISA), 2010. IEEE, 1-4.

Zheng, Q., Li, M., Li, Y. & Tang, Q. 2013. Station ant colony optimization for the type

2 assembly line balancing problem. The International Journal of Advanced

Manufacturing Technology, 66, 1859-1870.

APPENDIX

Appendix 1- Performance times of 35 tasks by 5 Robots

T
a

sk

P
re

d
ec

e
ss

o
r

T
a

sk
s

R
o

b
o

t
1

R
o

b
o

t
2

R
o

b
o

t
3

R
o

b
o

t
4

R
o

b
o

t
5

1 - 142 67 88 56 84

2 1 92 45 183 56 69

3 2 56 25 36 37 37

4 3 64 61 53 45 47

5 1 62 29 92 35 95

6 5 68 51 132 83 177

7 1,6 93 90 137 71 158

8 6 59 73 90 51 116

9 8 29 36 36 51 50

10 1 53 55 37 36 43

11 4 63 40 85 59 51

12 1 42 73 49 109 49

13 9 42 36 91 64 47

14 7,10 77 46 93 68 66

15 14 37 45 50 37 83

16 15 28 28 73 47 37

17 - 65 49 41 53 51

18 7,12 93 49 63 151 101

19 18 103 37 62 54 89

20 17,19 38 55 38 29 34

21 16,20 51 83 122 67 117

22 21 36 43 57 47 60

23 22 70 87 74 63 146

24 23 42 83 108 49 49

25 21 103 55 66 54 83

26 25 36 78 64 34 48

27 24,26 44 82 49 68 46

28 11,13 105 36 69 119 94

29 28 58 31 59 37 60

30 21 43 37 59 53 64

31 30 42 32 51 82 113

32 21,31 40 39 89 45 91

33 11,13,27,32 32 31 99 57 46

34 27 93 37 50 53 91

35 33 37 50 72 84 53

Appendix

Page | 204

Appendix 2- Power data for small size datasets (Power in kW)

P
r
o
b
le

m
R

1
R

2
R

3
R

4
R

5
R

6
R

7
R

8
R

9
R

1
0

R
1

1
R

1
2

R
1

3
R

1
4

R
1

5
R

1
6

R
1

7
R

1
8

R
1

9

1
1

-4
0
.2

5
0
.4

0
.3

0
.3

5
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

2
5

-3
0
.4

0
.3

5
0
.3

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

2
5

-4
0
.2

5
0
.4

0
.3

0
.3

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

2
5

-6
0
.3

0
.4

0
.4

0
.3

0
.3

0
.3

5
--

--
--

--
--

--
--

--
--

--
--

--
--

2
5

-9
0
.2

0
.3

0
.2

5
0
.4

0
.3

5
0
.4

0
.2

5
0
.3

0
.3

--
--

--
--

--
--

--
--

--
--

3
5

-4
0
.5

0
.8

0
.8

0
.9

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

3
5

-5
0
.7

0
.5

0
.8

0
.9

0
.5

--
--

--
--

--
--

--
--

--
--

--
--

--
--

3
5

-7
0
.9

0
.8

0
.5

0
.9

0
.7

0
.8

0
.5

--
--

--
--

--
--

--
--

--
--

--
--

3
5

-1
2

0
.9

0
.8

0
.6

0
.8

0
.9

0
.5

0
.5

0
.6

0
.7

0
.5

0
.7

0
.9

--
--

--
--

--
--

--

5
3

-5
1
.1

1
.2

1
.5

0
.9

1
.3

--
--

--
--

--
--

--
--

--
--

--
--

--
--

5
3

-7
1
.5

0
.9

1
.2

1
.1

1
.2

1
.3

1
.5

--
--

--
--

--
--

--
--

--
--

--
--

5
3

-1
0

1
.1

0
.9

1
.2

1
.5

1
.3

0
.9

1
.2

1
.4

1
.1

0
.9

--
--

--
--

--
--

--
--

--

5
3

-1
4

0
.9

1
.2

1
.5

1
.1

1
.4

0
.9

1
.2

0
.9

1
.5

1
.3

1
.2

1
.4

1
.3

0
.9

--
--

--
--

--

7
0

-7
1
.4

1
.4

1
.7

1
.5

1
.3

1
.5

1
.4

--
--

--
--

--
--

--
--

--
--

--
--

7
0

-1
0

1
.2

1
.6

1
.1

1
.7

1
.2

1
.5

1
.4

1
.8

1
.6

1
.7

--
--

--
--

--
--

--
--

--

7
0

-1
4

1
.8

1
.4

1
.5

1
.7

1
.1

1
.4

1
.5

1
.3

1
.8

1
.6

1
.1

1
.7

1
.4

1
.2

--
--

--
--

--

7
0

-1
9

1
.5

1
.8

1
.1

1
.7

1
.3

1
.6

1
.6

1
.2

1
.8

1
.3

1
.7

1
.6

1
.3

1
.1

1
.3

1
.1

1
.1

1
.5

1
.7

*
S

o
u
rc

e
o
f

th
e

d
at

a:
 R

an
d
o
m

ly
 g

en
er

at
ed

.

Appendix

Page | 205

Appendix 3 -Robot Power Details for Large Size data (Power in kW)

P
r
o
b
le

m
R

1
R

2
R

3
R

4
R

5
R

6
R

7
R

8
R

9
R

1
0

R
1

1
R

1
2

R
1

3
R

1
4

R
1

5
R

1
6

R
1

7
R

1
8

R
1

9
R

2
0

R
2

1
R

2
2

R
2

3
R

2
4

R
2

5

8
9

-8
1
.1

1
.8

1
.5

1
.2

1
.9

1
.4

1
.2

1
.6

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

8
9

-1
2

1
.8

1
.2

1
.4

1
.2

1
.4

1
.4

1
.6

1
.7

1
.9

1
.5

1
.1

1
.5

--
--

--
--

--
--

--
--

--
--

--
--

--

8
9

-1
6

1
.5

1
.6

1
.7

1
.4

1
.6

1
.7

1
.4

1
.5

1
.8

1
.4

1
.2

1
.5

1
.6

1
.4

1
.3

1
.3

--
--

--
--

--
--

--
--

--

8
9

-2
1

1
.5

1
.1

1
.7

1
.8

1
.6

1
.4

1
.7

1
.8

1
.3

1
.9

1
.9

1
.5

1
.4

1
.3

1
.6

1
.6

1
.4

1
.9

1
.6

1
.1

1
.4

--
--

--
--

1
1

1
-9

2
.1

1
.7

2
.4

1
.8

1
.2

2
.2

1
.5

1
.8

2
.3

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1
1

1
-1

3
1
.8

2
.1

1
.5

2
.2

2
.3

2
.4

1
.9

1
.7

1
.9

2
.2

2
.1

2
.3

2
.4

--
--

--
--

--
--

--
--

--
--

--
--

1
1

1
-1

7
1
.7

1
.9

1
.6

2
.2

2
.1

1
.8

1
.6

1
.5

2
.1

1
.6

2
.3

1
.9

1
.8

2
.4

1
.7

2
.2

2
.1

--
--

--
--

--
--

--
--

1
1

1
-2

2
2
.1

1
.5

1
.5

1
.6

1
.7

1
.6

2
.1

2
.4

1
.8

1
.9

1
.5

1
.7

1
.6

2
.2

1
.8

1
.6

2
.3

2
.1

1
.6

1
.7

2
.2

2
.4

--
--

--

1
4

8
-1

0
2
.1

2
.2

1
.8

2
.4

1
.6

1
.5

2
.0

2
.3

2
.4

2
.5

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

1
4

8
-1

4
2
.2

2
.0

2
.1

2
.4

1
.8

2
.4

1
.7

1
.5

1
.7

2
.1

2
.2

2
.0

1
.7

2
.3

--
--

--
--

--
--

--
--

--
--

--

1
4

8
-2

1
2
.4

1
.5

1
.6

2
.4

2
.4

1
.5

1
.9

1
.6

2
.0

2
.0

2
.1

2
.2

2
.0

2
.1

1
.5

1
.9

2
.0

2
.1

1
.8

2
.1

2
.0

--
--

--
--

1
4

8
-2

9
:

2
.2

2
.3

1
.6

1
.6

2
.4

2
.3

2
.0

1
.6

2
.2

1
.6

1
.6

2
.1

1
.7

1
.6

1
.7

1
.7

2
.4

2
.2

2
.2

1
.8

1
.8

1
.5

2
.1

1
.9

1
.8

2
9

7
-1

9
2
.8

2
.2

2
.3

2
.4

2
.6

2
.4

1
.9

2
.0

2
.2

2
.3

1
.9

2
.6

3
.0

2
.7

2
.5

2
.5

2
.2

2
.1

2
.7

--
--

--
--

--
--

2
9

7
-2

9
:

2
.3

1
.9

2
.3

2
.1

2
.1

2
.0

2
.9

2
.1

2
.2

2
.8

2
.7

2
.5

2
.1

2
.8

2
.0

0
.1

3
.0

2
.4

2
.7

2
.9

2
.2

2
.2

2
.1

2
.1

2
.8

2
9

7
-3

8
:

2
.3

2
.3

1
.8

2
.0

2
.9

1
.8

2
.4

2
.3

2
.9

2
.0

2
.8

2
.0

2
.7

2
.9

2
.7

2
.2

2
.3

2
.5

2
.6

2
.5

2
.1

1
.8

2
.1

2
.9

2
.5

2
9

7
-5

0
:

2
.4

2
.3

2
.5

2
.4

2
.2

2
.0

2
.5

2
.3

2
.3

2
.4

2
.0

2
.7

2
.3

2
.6

2
.4

2
.4

2
.5

2
.1

2
.3

1
.9

2
.0

2
.3

2
.9

2
.2

2
.4

P
r
o
b
le

m
R

2
6

R
2

7
R

2
8

R
2

9
R

3
0

R
3

1
R

3
2

R
3

3
R

3
4

R
3

5
R

3
6

R
3

7
R

3
8

R
3

9
R

4
0

R
4

1
R

4
2

R
4

3
R

4
4

R
4

5
R

4
6

R
4

7
R

4
8

R
4

9
R

5
0

8
9

-8
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

8
9

-1
2

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

8
9

-1
6

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

8
9

-2
1

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

1
1

1
-9

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

1
1

1
-1

3
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1
1

1
-1

7
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1
1

1
-2

2
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1
4

8
-1

0
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1
4

8
-1

4
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1
4

8
-2

1
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1
4

8
-2

9
:

1
.9

2
.4

1
.7

1
.5

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

2
9

7
-1

9
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

2
9

7
-2

9
:

2
.1

2
.7

2
.6

2
.7

2
.9

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

2
9

7
-3

8
:

2
.8

1
.9

1
.9

2
.1

2
.7

2
.4

2
.2

1
.9

2
.6

2
.7

3
.0

2
.5

2
.8

--
--

--
--

--
--

--
--

--
--

--
--

2
9

7
-5

0
:

2
.2

2
.7

1
.8

2
.9

1
.8

1
.8

1
.8

2
.4

2
.3

2
.2

2
.2

1
.9

1
.8

2
.6

2
.1

2
.6

2
.5

2
.6

2
.5

1
.8

2
.8

2
.3

2
.4

2
.9

2
.7

*
S

o
u
rc

e
o
f

th
e

d
at

a:
 R

an
d
o
m

ly
 g

en
er

at
ed

.

Appendix

Page | 206

Appendix 4 -Robot Cost data for small size datasets

P
r
o
b
le

m
R

1
R

2
R

3
R

4
R

5
R

6
R

7
R

8
R

9
R

1
0

R
1

1
R

1
2

R
1

3
R

1
4

R
1

5
R

1
6

R
1

7
R

1
8

R
1

9

1
1

-4
1
.1

1
.2

1
.2

5
1
.3

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

2
5

-3
1

1
.5

1
.2

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

2
5

-4
1

1
.2

5
1
.1

5
1
.2

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

2
5

-6
1
.0

5
0
.9

5
1

1
.2

1
.5

1
.3

--
--

--
--

--
--

--
--

--
--

--
--

--

2
5

-9
1
.3

1
.5

1
1
.2

0
.9

5
1

1
.1

1
.2

5
1
.1

--
--

--
--

--
--

--
--

--
--

3
5

-4
1
.0

5
0
.9

5
1

1
.2

--
--

--
--

--
--

--
--

--
--

--
--

--
--

3
5

-5
1

1
.5

0
.8

1
.2

0
.8

7
--

--
--

--
--

--
--

--
--

--
--

--
--

--

3
5

-7
1
.3

5
0
.9

5
1
.1

1
.2

5
1

1
.5

1
.1

5
--

--
--

--
--

--
--

--
--

--
--

--

3
5

-1
2

1
.1

5
1
.2

5
0
.8

2
5

0
.9

5
1

1
.5

1
.3

5
1
.1

1
.2

0
.8

7
5

1
.1

5
0
.9

7
5

--
--

--
--

--
--

5
3

-5
1

1
.2

5
0
.9

5
1
.2

1
.1

5
--

--
--

--
--

--
--

--
--

--
--

--
--

--

5
3

-7
1
.2

1
.2

5
1
.0

2
5

0
.9

5
1
.1

1
.3

1
.1

5
--

--
--

--
--

--
--

5
3

-1
0

1
.3

1
.0

5
1
.1

1
.3

5
1
.1

5
1
.2

5
1
.2

1
.2

2
5

1
.4

0
.9

5
--

--
--

--
--

--
--

5
3

-1
4

1
.2

1
.2

5
1
.0

2
5

0
.9

5
1
.1

1
.3

1
.2

1
.3

5
1
.4

0
.9

2
5

0
.9

1
.0

5
1
.1

5
1

--
--

--
--

--

7
0

-7
1

1
.3

1
.1

5
1
.0

5
1
.1

1
.2

5
1
.2

--
--

--
--

--
--

--
--

7
0

-1
0

1
.3

1
.0

5
1
.1

1
.3

5
1
.1

5
1
.2

5
1
.2

1
.2

2
5

1
.4

0
.9

5
--

--
--

--
--

--
--

--
--

7
0

-1
4

1
.2

1
.2

5
1
.0

2
5

0
.9

5
1
.1

1
.3

1
.2

1
.3

5
1
.4

0
.9

2
5

0
.9

1
.0

5
1
.1

5
1

7
0

-1
9

1
0
.8

2
0
.9

1
.0

5
1
.3

1
.4

1
1
.1

0
.9

5
1
.2

2
5

0
.9

5
1
.2

1
.3

5
1
.2

5
1
.3

2
5

1
.1

5
1
.2

5
1
.3

0
.8

*
A

ll
 t

h
e

v
al

u
es

 a
re

 t
o
 b

e
m

u
lt

ip
li

ed
 b

y
 1

0
6
 t

o
 g

et
 t

h
e

ac
tu

al
 d

at
a

Appendix

Page | 207

Appendix 5 -Robot Cost data for large size datasets

P
r
o
b
le

m
R

1
R

2
R

3
R

4
R

5
R

6
R

7
R

8
R

9
R

1
0

R
1

1
R

1
2

R
1

3
R

1
4

R
1

5
R

1
6

R
1

7
R

1
8

R
1

9
R

2
0

R
2

1
R

2
2

R
2

3
R

2
4

R
2

5

8
9

-8
1

1
.3

1
.1

5
1

.0
5

0
.8

5
1

.2
5

1
.2

1
.1

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

8
9

-1
2

1
.1

5
1

.2
5

0
.8

2
5

0
.9

5
1

1
.5

1
.3

5
1

.1
1

.2
0

.8
7

5
1

.1
5

0
.9

7
5

--
--

--
--

--
--

--
--

--
--

--
--

--

8
9

-1
6

1
.2

2
5

1
.3

2
5

1
.3

0
.9

1
.1

1
.2

5
1

.1
1

.1
5

1
1

.0
5

1
.3

0
.9

5
1

.0
5

1
.4

1
.3

2
5

1
.2

2
5

--
--

--
--

--
--

--
--

--

8
9

-2
1

1
.2

2
5

1
.3

2
5

1
.3

0
.8

0
.9

5
1

.2
5

1
.1

1
.1

5
1

1
.0

5
1

.3
0

.9
5

1
.0

5
0

.8
5

1
.3

2
5

1
.2

2
5

0
.9

5
0

.9
1

.4
1

.2
1

.1
--

--
--

--

1
1

1
-9

1
.3

5
1

.2
1

.3
1

.0
5

0
.9

5
1

.2
5

1
.1

1
.1

5
1

.2
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

1
1

1
-1

3
1

.0
5

1
.3

2
5

1
.3

1
.1

5
1

.2
2

5
1

.2
5

1
.1

1
.1

5
1

1
.2

2
5

1
.2

0
.9

5
1

.3
5

--
--

--
--

--
--

--
--

--
--

--
--

1
1

1
-1

7
1

.0
5

1
.3

2
5

1
.3

1
.1

5
1

.2
2

5
1

.2
5

1
.1

1
.1

5
1

1
.2

2
5

1
.2

0
.9

5
0

.9
1

.3
5

1
1

.2
2

5
1

.0
5

--
--

--
--

--
--

--
--

1
1

1
-2

2
1

1
.4

1
.3

0
.8

0
.9

5
1

.2
5

1
1

.1
1

1
1

.3
0

.9
5

1
0

.8
1

.3
1

.2
0

.9
5

1
.2

1
.3

1
.1

1
.2

0
.9

--
--

--

1
4

8
-1

0
1

.3
1

.3
2

5
0

.9
5

1
.2

1
.4

1
.2

5
1

.2
2

5
1

.1
5

1
1

.0
5

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

1
4

8
-1

4
1

.2
1

.2
5

1
0

.9
5

1
1

.3
1

.2
1

.3
1

.4
0

.9
0

.9
1

1
.1

5
1

--
--

--
--

--
--

--
--

--
--

--

1
4

8
-2

1
1

.2
2

5
1

.3
2

5
1

.3
0

.8
0

.9
5

1
.2

5
1

.1
1

.1
5

1
1

.0
5

1
.3

0
.9

5
1

.0
5

0
.8

5
1

.3
2

1
.2

2
5

0
.9

5
0

.9
1

.4
1

.2
1

.1
--

--
--

--

1
4

8
-2

9
:

1
.2

2
5

1
.3

2
5

1
.3

0
.8

0
.9

5
1

.2
5

1
.2

5
1

.1
1

.1
5

1
1

.0
5

1
.3

0
.9

5
1

.0
5

0
.8

5
1

.3
2

5
1

.2
2

5
0

.9
5

1
.4

1
.2

1
.1

1
.2

2
5

1
.3

2
5

1
.3

0
.8

2
9

7
-1

9
1

.2
2

5
1

.3
2

5
1

.3
0

.8
0

.9
5

1
.2

5
1

.1
1

.1
5

1
1

.0
5

1
.3

0
.9

5
1

.0
5

0
.8

5
1

.3
2

5
1

.2
2

5
0

.9
5

0
.9

1
.4

--
--

--
--

--
--

2
9

7
-2

9
:

1
.2

1
.3

1
.3

0
.8

0
.9

5
1

.2
5

1
1

.1
5

1
1

1
.3

0
.9

5
1

0
.8

5
1

.3
1

.2
0

.9
5

0
.9

1
.4

1
.2

1
.1

1
.2

1
.3

1
.3

0
.8

2
9

7
-3

8
:

1
.2

1
.3

1
.3

1
.0

5
1

.3
1

.2
5

1
1

.1
1

.1
1

1
.3

1
1

0
.9

1
.3

1
.2

0
.9

1
1

.4
1

.2
1

.1
1

.2
1

.3
1

.3
0

.8

2
9

7
-5

0
:

1
.2

2
5

1
.2

2
5

1
.3

2
5

1
.3

1
.1

5
0

.9
5

1
.2

5
1

.1
1

.1
5

1
1

.0
5

1
.3

0
.9

5
1

.0
5

0
.8

5
1

.3
2

5
1

.3
2

5
1

.2
5

5
0

.9
5

0
.9

1
.3

2
1

.3
1

.0
5

1
.3

5
1

.2
5

P
r
o
b
le

m
R

2
6

R
2

7
R

2
8

R
2

9
R

3
0

R
3

1
R

3
2

R
3

3
R

3
4

R
3

5
R

3
6

R
3

7
R

3
8

R
3

9
R

4
0

R
4

1
R

4
2

R
4

3
R

4
4

R
4

5
R

4
6

R
4

7
R

4
8

R
4

9
R

5
0

8
9

-8
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

8
9

-1
2

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

8
9

-1
6

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

8
9

-2
1

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

1
1

1
-9

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

1
1

1
-1

3
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1
1

1
-1

7
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1
1

1
-2

2
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1
4

8
-1

0
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1
4

8
-1

4
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1
4

8
-2

1
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

1
4

8
-2

9
:

0
.9

5
1

.2
5

1
.1

1
.1

5
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

2
9

7
-1

9
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

2
9

7
-2

9
:

0
.9

5
1

.2
5

1
1

.1
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

2
9

7
-3

8
:

0
.9

5
1

.2
5

1
.1

1
.1

5
1

.2
1

.3
1

.3
1

.1
5

0
.9

5
1

.2
5

1
1

.1
5

1
--

--
--

--
--

--
--

--
--

--
--

--

2
9

7
-5

0
:

1
.1

1
.1

5
1

.1
5

1
.0

5
1

.3
0

.9
7

5
1

.0
5

0
.9

2
5

1
.3

2
5

1
.2

2
5

0
.9

5
1

.0
5

1
.4

1
.2

1
.1

1
.2

2
5

1
.3

2
5

1
.3

0
.8

0
.9

5
1

.2
5

1
.1

1
.1

5
1

.4
1

.2
5

*
A

ll
 t

h
e

v
al

u
es

 a
re

 t
o
 b

e
m

u
lt

ip
li

ed
 b

y
 1

0
6
 t

o
 g

et
 t

h
e

ac
tu

al
 d

at
a

