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ABSTRACT 

JANARDHANAN MUKUND NILAKANTAN (B. TECH) 

Assembly Line balancing (ALB) problems deal with the allocation of the tasks 

among workstations such a way that the precedence relations are not violated and a 

given objective function is optimized. It is a fundamental problem in continuous 

production line, and it is one of the difficult optimization problems. Installing assembly 

line is a long-term decision and required high capital investments. Hence, it is very 

important to design the assembly line and balance the workload on the workstations. 

The assembly line has to be rebalanced periodically or if there is a change in the 

production plan or process. Based on the strategic goals of the manufacturers, the 

performance measures have to be carefully chosen, since balancing decisions have a 

long term effect.  

Due to the technological advancements, human workforce is replaced by robots to 

perform the tasks in an assembly line. Different robots with different capacity and 

specialization are available to perform the assembly task, hence it is required to choose 

the best fit robot among the available robots such a way that it helps in improving the 

productivity of the assembly line. Robotic assembly line balancing (RALB) problem 

aims at assigning the tasks to workstation and allocate robot for each workstation in 

such a way that the productivity is improved.  Very few researchers have proposed 

models for balancing a robotic assembly line.  

The main objective of this research is to develop efficient algorithms to solve 

robotic assembly line balancing problems. RALB problem is NP-hard, since the basic 

version of assembly line balancing problems falls under this category. To solve problem 

of this nature it is necessary to use metaheuristic algorithms. RALB problems with 

different objective functions are proposed and solved. 

The objectives considered for the RALB study are: minimizing cycle time, 

minimizing energy consumption, minimizing assembly line cost and maximizing line 

efficiency of a robotic assembly line. Straight and U-shaped RALB problems are 

considered. The results obtained for the two assembly line problems are compared. 



 

 

RALB problem with an objective of minimizing cycle time is solved using Particle 

Swarm Optimization (PSO) and hybrid models of PSO and efficient metaheuristics. 

Two allocation procedures are used for allocating tasks and robots in the assembly line. 

PSO and its variants are the metaheuristics proposed to solve the RALB problem. PSO 

is also hybridized with Genetic Algorithm and Cuckoo search to solve RALB problem. 

Proposed algorithms are able to produce better results when compared with the 

benchmark results reported in the literature.  

Manufacturing industries give importance to the reduction of energy consumption 

due to the increase in energy cost and to create an eco-friendly environment. Due to the 

importance of reducing energy consumption in an assembly line, an energy based 

RALB problem is proposed. RALB problem with an objective of minimizing energy 

consumption for straight and U-shaped robotic assembly line is proposed. Particle 

swarm optimization algorithm is the metaheuristic used to solve the proposed model.  

Cost reduction is one of the important tasks for the manufacturing companies 

throughout the world. In this thesis, a cost based RALB problem is also proposed. The 

objective considered in this problem is to minimize the assembly line cost. Particle 

swarm optimization and Differential evolution algorithms are proposed to solve the 

problem.  Straight and U-shaped robotic assembly line problems are solved using the 

proposed algorithms and the results obtained are presented 

Since the investment in assembly line is high, industries try to maximize their usage 

in the shortest time possible. Maximizing the line efficiency is another measure 

considered in this thesis. Particle swarm optimization and Differential evolution 

algorithms are proposed to solve this RALB problem. Line efficiency of both straight 

and U-shaped configuration of robotic assembly line is compared.   

The research on RALB problem optimizing various performance measures 

considered reveals that U-shaped robotic assembly line is better than straight robotic 

assembly line.  

Keywords: Robotic assembly line, Optimization, Metaheuristic Algorithms. 
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CHAPTER 1 

1 Introduction 

 Overview 

An assembly process aims at bringing together two or more component parts in 

order to form a new product. In an assembly process parts are added successively to an 

assembly until a final finished product is completed. In a product, which is to be 

assembled is often designated as a job. For each product manufactured, there are 

different small components which will be required to undergo assembly operations. 

Assembly operations can be automated or if the components or required quantities are 

small, assembly operations are executed at individual workstations manually. In case 

of large products like aircrafts, ships, etc., the products are fixed at a location and 

workers move from product to product performing the operation to form the final 

product. Flow-line is the most common assembly line where products are assembled 

when the product moves from one workstation to the next in the line and at each 

workstation the operations are performed. 

Henry Ford developed the first assembly line in 1913 and used that assembly line 

for mass production of Ford model T automobiles (Alp, 2004). Henry Ford observed 

that time taken for the assembly process could be reduced and quality of the product 

assembled would increase if the assembly process is divided into small individual tasks 

and these tasks are distributed among a set of operators working on assembly 

workstations along the line. The operators are required to work on a set of tasks and are 

not required to work on all tasks. Thus the operators become specialized to perform a 

particular set of tasks and this helps in increasing the speed of the work and quality of 

the product also increases due to their expertise.  

For improving efficiency of the work, Ford applied certain operating principles to 

his production line and this led to the development of flow-line technology. Workers 

and tools are placed in the sequence of operations so that each part travels the minimum 

distance and a material handling system is used for transferring parts from one 

workstation to the next in a sequence. The movement of parts in the line at equal 
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intervals helped improving the quality, increase the production rate and also the 

production cost (Fernandes, 1992).  

Due to the increased demand and changing market needs, production companies 

face the challenge of upgrading the production systems. Customers today look for 

products with different product variants with different distinctive features from other 

products available in the market. There is an increased demand to make the production 

system more flexible to meet the demands and needs of the market.   

Due to the fluctuating customer demand it is difficult for the mass production line 

to respond quickly. Production lines are designed in such a way that tasks are grouped 

to workstations in an orderly manner so that line efficiency is maximized. This problem 

is known as the Simple Assembly Line Balancing (SALB) problems. Simple assembly 

lines are arranged in a straight line. Many firms nowadays incorporate just in time (JIT) 

principles and group technology into assembly line production, and these modern 

assembly lines are often organized as a ‘U- shaped line’  (Alp, 2004) repetitive and job 

shop applying JIT principles is beneficial. By implementing JIT concepts one of the 

major change in an assembly line would be to replace the traditional straight line with 

U-shaped assembly line (Toksarı et al., 2008). The advantages of the U-shaped 

assembly line when compared to straight line are reduction in the movements of the 

operators, improved productivity, flexible workforce planning depending on the 

demand during the planning phase and better material handling. Demand fluctuation 

can be easily tackled in U-shaped assembly line since there are more possibilities of 

grouping tasks into workstations on the U-shaped line (Monden, 1983, Hirano, 1988). 

Scholl and Klein (1999b) define the U-shaped assembly line balancing (UALB) 

problem as an extension of the simple assembly line balancing (SALB) problem with 

respect to the precedence constraints. 

Assembly process is considered to be one of the important contributing factors for 

the product cost. Hence, extensive efforts have been taken for improving the cost 

effectiveness and efficiency of the assembly operations. Assembly production lines can 

be manually operated, automated, or of mixed design.  Manual assembly is 

characterized by high labor costs and for automated assembly there is a need of very 

high investment for the development of dedicated equipment for the process. In both 

methods, there is always a need for performing the operations at highly efficient 
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manner. Development of flexible assembly systems (FAS) equipped with assembly 

robots is the main method used for improving the flexibility in the production system 

(Owen, 1986). FAS are used to meet the increasing demands from the customers and 

the manufacturers are required to reduce the time to the market. Robots play an 

important role in FAS and helps in performing specialized operations in an assembly 

line. Use of robots helps in achieving the flexibility and automation in an assembly line. 

When flexible equipment like robot are used for performing assembly tasks, the issue 

of designing an assembly line is of utmost importance. The major design issue is to 

assign tasks at the workstations and select the robot (best-fit) which performs these 

tasks to its fullest potential  (Bukchin and Tzur, 2000).   

Robots are programmed to perform a wide variety of assembly tasks and 

application. Advanced technology has helped to develop different robots with different 

specifications and capabilities. Balancing the workload of the workstation in a robotic 

assembly line is an important task and it helps to maximize the production rate of the 

line. Objective of allocating the proper robot for the workstation is very critical for the 

performance of robotic assembly line. Robotic assembly line balancing (RALB) aims 

at assigning tasks to each workstation and assignment of robots to the workstations in 

such a way that productivity is improved (Levitin et al., 2006). To perform tasks in a 

workstation, robots with specific tooling is developed. Tooling for the robot is attached 

to the robot at the workstation in order to avoid wastage of time for tool change.  

Tooling design can be done after balancing the assembly line. Major objectives of 

balancing a robotic assembly line include: optimal balancing of the assembly line for a 

given number of workstations or achieve a given production rate and allocate the best-

fit robot to each workstation. When a new product is planned for assembly due to the 

availability of different robot types, robots need to be reassigned. Each robot has 

different capabilities and specialization to perform various tasks.  

In case of manual assembly line, there is a considerable amount of variation in the 

actual processing time when compared to the standard time estimated for the line 

balancing. Due to this, achieving a perfect line balance is only of theoretical 

importance. But in case of robotic assembly line balancing there would be not much of 

variation from the designed assembly line and task performance times. Any imbalance 

in the line and idle time at any of the workstation will result in reducing the performance 

of the system (Gao et al., 2009). 
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Research on assembly lines has been an important subject of study for many years 

in the field of combinatorial optimization and operation research. Problem could be 

simply defined such that for a set of given tasks, each of the tasks are associated with 

cost information and the workstation where these tasks can be executed. Assignment of 

tasks to the workstations is a solution for an assembly line problem.  

Variety of problems occurs in an assembly line due to the large number of 

variations and constraints. With regard to workstations, there could be different models: 

linear flow workstations, U-shaped workstations and parallel workstations performing 

the tasks simultaneously. With respect to tasks, they can be classified into tasks which 

can be grouped (related) or tasks which cannot be grouped (unrelated tasks). Most 

common optimization subjects in assembly lines are: minimize the number of 

workstations required to execute all the tasks; the maximum processing time that can 

be assigned to a single workstation (cycle time); amount of time that a station needs to 

wait to perform its allocated task (idle time). 

 Optimization techniques to solve assembly line balancing 

problems 

Assembly line balancing problem falls under the category of non-deterministic 

polynomial time hard (NP-hard) (Gutjahr and Nemhauser, 1964). ALB problem falls 

under the category of NP-hard due to the computational complexity of the problem 

(Karp, 1972). Bin-packing problem is one such problem where there is no precedence 

relationship and falls under the category of NP-hard in the strong sense (Erel and Sarin, 

1998). Therefore, simplest version of ALB also falls under the same category. 

 Due to the combinatorial nature of the problem, there is always a need to reduce 

the time taken for computing. There is no single method available for solving all 

optimization problems efficiently (Rao, 2009). Hence, over the years number of 

optimization techniques has been developed for solving combinatorial problems. 

Optimization techniques can be broadly classified into exact methods (conventional 

methods) and approximate methods (modern heuristics) (Rothlauf, 2011). Exact 

optimization methods are those which guarantee an optimal solution and for 

approximate optimization methods there is no guarantee for optimal solution. Exact 

methods are fast and gives exact solution. Exact methods are based on exhaustive 

search and this is only possible when then number of solution is small so that all solution 
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possibility can be checked within an acceptable time span. Optimization methods like 

branch and bound and dynamic programming methods work on partially available 

solutions and it helps in cutting off the parts of search space without evaluating them. 

These algorithms are often time consuming and they are not used for solving real-world 

engineering application problems (Sivanandam et al. 2007). These methods cannot be 

used to solve real-world problems either due to large search space. Other search 

methods like local search methods and gradient based methods are different. For local 

search technique, a new point is created within the neighborhood of the current point 

and if the neighborhood point is better than the current point based on the quality of the 

solution, it becomes the new current point.  Gradient based methods are those types of 

methods which can be used to solve continuous problems. But most of the real world 

industrial optimization problems are not continuous instead they are discrete and 

combinatorial problems.  

Approximate methods help at escaping the local optima and try to find the global 

optimum solution. Advantage of using approximate algorithms is that they are not 

attached to any specific domain problem. Hence, heuristic methods are used to solve 

real optimization problems which are generally complex (Martí and Reinelt, 2011). 

Heuristics tries to produce acceptable solution for a complex problem in reasonable 

computational time using common sense logic. Size of the problem also sometimes 

makes it almost impossible to solve optimally. Therefore heuristic methods helps to 

save computational time but at the cost of not guaranteeing the optimal solution. 

Metaheuristics are problem-independent techniques and are designed to solve 

approximately wide range of optimization problems without having to adapt deeply into 

each problem. The Greek prefix “meta” present in the name is to indicate that these are 

“higher level” heuristics when compared to problem specific heuristics (Boussaïd et al., 

2013). 

 These algorithms are applied when there are no satisfactory problem specific 

algorithms to solve them. Complex problems in industries ranging from finance to 

production management are solved using metaheuristics (Glover and Kochenberger, 

2003). The metaheuristics approach for solving optimization problem starts with an 

obtained initial solution or with a set of initial solutions, and then an improved search 

guided by certain principles.  
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Metaheuristic algorithms are developed based on the learning from nature system 

and are often bio-inspired, and they are widely used algorithms for optimization 

problems (Yang and Deb, 2014).  Nature-inspired (bio-inspired) algorithms are those 

algorithms which are inspired by nature phenomenon. Genetic algorithm (GA) and 

Differential Evolution algorithm (DE) are inspired based on the biological evolutionary 

process. Algorithms like particle swarm optimization algorithm (PSO), artificial bee 

colony algorithm (ABC), Cuckoo search (CS) and ant colony optimization algorithm 

(ACO) are developed based on the behavior of animals. These algorithms have been 

widely applied in various fields. These algorithms receive wide attention from 

researchers from various fields of engineering due to easiness in implementation and 

ability to obtain better solution for hard problems (Boussaïd et al., 2013). 

Assembly line balancing problems falls under the category of NP-hard (Scholl and 

Becker, 2006) and solving these problems optimally by total enumeration is not 

practical with real-world or large-size problems. Thus researchers shift their focus 

towards metaheuristics approaches as a popular way to address these hard problems. 

Metaheuristics are efficient as they are fast and simple to implement. The focus of 

research thus shifts towards the development of efficient metaheuristics algorithms to 

solve assembly line balancing problems. Various optimization problems are solved by 

using metaheuristics which provides a general algorithmic framework (Sörensen and 

Glover, 2013). 

From the literature, it could be observed that researchers use optimization or 

simulation models to solve assembly line balancing problems. In this section the 

concept of assembly line with straight shaped and U-shaped line configurations are 

discussed. Concepts of manual and automated assembly lines are also discussed along 

with optimization techniques available to solve these types of problems are discussed. 

In this research, metaheuristic algorithms are proposed to solve robotic assembly line 

balancing problems with different objectives.  

Metaheuristic algorithms like particle swarm optimization, differential evolution 

and hybrid algorithms is to be implemented to solve robotic assembly line balancing 

problems. These metaheuristic algorithms are used due to the following advantages: 

fast convergence, fewer parameters setting, and the easiness to implement. Therefore, 

PSO and DE has been applied to solve different types of engineering problems (Wu et 
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al., 2011). Hybridized metaheuristics are also implemented and hybrid metaheuristics 

helps to improve the search capability of algorithms. Hybrid algorithms combines the 

advantages of each algorithm, while minimizing any significant disadvantage. 

Hybridization can generally make some improvements in terms of quality of the 

solution and the computational time (Ting et al., 2015).  

 Robotic assembly line with straight line configuration to minimize energy 

consumption and assembly line cost has not been addressed by earlier researchers. 

Mathematical models for Robotic U-shaped balancing problems to optimize cycle time, 

energy consumption and assembly line cost has not been addressed by earlier 

researchers. The objective of this research is to focus on these areas. 

 Organization of the thesis 

In this thesis an attempt has been made to develop metaheuristic algorithms for 

solving robotic assembly line balancing problems. This research also aims at proposing 

mathematical models to solve robotic assembly line balancing problems with different 

objectives. The chapters in this thesis are organized in the following manner.  

Chapter 2 - Literature Survey - The detailed literature survey on different types of 

assembly line balancing problems are presented in this chapter. This chapter also gives 

the details of different optimization techniques used by researchers to solve assembly 

line balancing problems. The research gaps and a summarized state of the art is also 

presented based on the detailed literature survey.  

Chapter 3 - Problem Definition - Details of research problems considered in the 

present work is discussed via problem statement, research objectives and research 

approach.  

Chapter 4 - Mathematical Models for RALB problems - The details of 

mathematical models for RALB problems with different objectives are presented. 

Assumptions for the problems considered are also presented.  

Chapter 5 - PSO and Hybrid PSO for RALB Problem to minimize cycle time -

Different metaheuristics are applied to solve RALB problems with the objective of 

minimizing the cycle time. Details of the experimental study and case studies are 

presented here. Parameters for different metaheuristics are investigated through 
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experiments. The parameter selection procedure is explained. Solutions obtained using 

different metaheuristics are presented in detail. Comparative study is conducted for 

those problems where benchmark results are available. RALB problems with to two 

configurations (straight and U-shaped) are discussed in detail.  

Chapter 6 – PSO to solve energy based RALB problems- This chapter presents 

RALB problems with an objective of minimizing energy consumption in a robotic 

assembly line. Metaheuristics are proposed to solve the problem. Results obtained for 

the proposed models are presented in this chapter.   

Chapter 7 - PSO and DE to solve cost based RALB problems - Detailed 

performance evaluation of the proposed algorithm to solve the RALB problem with an 

objective of minimizing total assembly line cost for straight and U-shaped robotic 

assembly line are presented in this chapter.  

Chapter 8 - PSO and DE for RALB problem to maximize line efficiency - This 

chapter presents different approaches adapted to solve the RALB problem with an 

objective of maximizing line efficiency for straight and U-shaped robotic assembly line.  

Chapter 9 - Conclusion - A discussion and summary of the main findings of this 

research are presented in this chapter. In addition, it also contains the direction in which 

future work can be carried out. 



 

  CHAPTER 2  

2 Literature Survey 

This chapter introduces the basic concepts and assesses the current status of 

research in assembly line balancing (ALB) problems. This section provides details of 

classification of ALB problems. Furthermore, this section presents the background 

work of assembly line balancing and robotic assembly line balancing problems which 

form the basis of this research work. Finally, this chapter also provides overview of 

solution techniques for solving different variety of ALB problems that have been 

considered in research studies till date.  

 Assembly lines 

An assembly line is a manufacturing process where parts of a product are combined 

in accordance with a predetermined sequence. The basic form of an assembly line 

consists of a set of workstations, connected to each other through transportation 

mechanisms, usually conveyor belts.  In order to produce or manufacture a type of 

product set of tasks is repeated at each workstation. Global market continuously gives 

pressure to manufacturer to compete with competitors from all over the world due to 

increased market demand. Hence, manufacturer needs to speed up the time to market 

and should try to minimize the cost of production for remaining competitive in the 

market (Alp, 2004). In manufacturing sector, assembly is considered one of the 

important processes.  Assembly process account for more than 20% of total 

manufacturing cost and consumes up to 50% of total production time (Pan, 2005). 

Assembly lines are mostly used for car manufacturing, electronic appliances and 

computer assemblies. 

Modern assembly line and its basic concept are credited to Ransom Olds (Domm, 

2009). Olds used the concepts to build the first mass produced automobile in 1901. 

Henry Ford  in 1913 modified the assembly line by introducing conveyor belts where 

they could produce a Model T in ninety three minutes often overshadows the 

development of Olds (Capacho Betancourt, 2008).  Assembly lines are most commonly 

found in automotive industries and other industries where assembly of washing 

machines, mobile phones, refrigerators and computers are considered. In the recent 
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years assembly lines are used for low volume production of customized products 

(Scholl et al., 2008).  

Over the years due to the demand different types of assembly lines based on the 

requirement have been developed. Due to these developments in assembly lines, need 

for balancing the assembly lines arises. Design of efficient assembly lines received 

considerable attention from both companies and academicians over the years. A well-

known assembly design problem is assembly line balancing (ALB), which deals with 

the allocation of the tasks among workstations so that a given objective function is 

optimized. Assembly line balancing is defined as follows by Erel et al. (2001): Line 

balancing is the process of allocating a set of tasks to an ordered sequence of stations 

in such a way that performance measures like cycle time, number of stations are 

optimized subject to precedence relations among the tasks.  Classification of assembly 

line balancing problems is presented in Section 2.3. 

 Definition of assembly line balancing (ALB) 

Assembly line consists of set of workstations along a conveyor belt or any material 

handling mechanism which is capable of moving one piece from one workstation to 

another. The piece/objects enter the assembly line and moves from one workstation to 

another workstation till the end of the line.  Tasks (operations) are repeatedly performed 

on the piece which enters a workstation; the time between two pieces which enters the 

workstation is named cycle time. Work is divided into elementary units named tasks. 

These tasks are not further divisible and the time taken to perform the task is task time 

or processing time. These tasks are subjected to restrictions like precedence constraints.  

The aim of balancing is to allocate equivalent amount tasks to different workstations in 

an optimal way and reduce the cycle time.  

Different industrial environments use assembly line production systems for 

manufacturing a large variety of products. Consumer good like cars, engines, domestic 

appliances and other electrical appliances are assembled in an assembly line. Products 

are different and so it is necessary to implement different production systems (Scholl 

and Klein, 1999a). An existing assembly line is to be re-balanced regularly or after 

changes in the present production plan. Objective functions need to be carefully chosen 
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because of the long-term effect of the balancing decisions, keeping in mind the strategic 

goal of the manufacturer (Gen et al., 2008).  

2.2.1 Basic terminologies  

 Tasks (operations): Assembling a product on a line requires dividing the 

total work content into a set of elementary operation. Task is the smallest, 

indivisible work element of the total work content.  

 Task time: The time required to perform the smallest work element during 

the assembly process. 

 Cycle time: The time interval between the completion times of two 

consecutive units.  

 Workstation: Area in a workplace which is equipped with operators/robots 

to perform the tasks 

 Precedence relations: The predetermined order in which tasks needs to be 

assembled. A task cannot be processed if any of its predecessors is not 

processed.  

 Workstation time: The sum of task times of the task allotted in the 

workstation. 

 Classification of ALB problems 

There are different kinds of problems in the ALB. Based on Baybars (1986) 

classification, ALB problems are divided into: the Simple Assembly Line Balancing 

(SALB) problems and General Assembly Line Balancing (GALB) problems. Based on 

Ghosh and Gagnon (1989) classification, the two main problems are further classified 

based on their stochastic and deterministic nature. Figure 2.1 shows the most common 

classification for assembly line balancing problems. 
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Figure 2.1 Classification of Assembly Line Balancing Problems 

2.3.1 Simple Assembly Line Balancing 

The basic version of the ALB model is the simple assembly line balancing (SALB) 

problem. This assembly is capable of producing one type of a product. Different 

versions of SALB models have been considered (Scholl and Klein, 1999a). SALB can 

be classified by its objective function and their different problem versions are SALB -

1, SALB-2, SALB-F and SALB-E (Kilincci and Bayhan, 2006). SALB-1 aims at 

assigning tasks to workstations such a way that number of workstations is minimized 

whereas SALB-2 problem aims at minimizing the cycle time by assigning the tasks to 

the given set of work stations. Compared to the previous version, SALB-F determines 

whether or not a feasible assembly configuration exists for a given combination of cycle 

time and number of workstations. SALB-E attempts to maximize the line efficiency by 

minimizing the number of workstations and cycle time simultaneously. SALB-2 is 

suitable for rebalancing an existing line whereas SALB-1 is more appropriate for 

designing a new assembly line (Capacho Betancourt, 2008).  Scholl et al. (2008) 
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reported the recent surveys of solution procedures for all the above mentioned 

problems. Other assembly line balancing problems which are not SALB is classified 

into a group called General assembly line balancing (GALB). Most problems under 

GALB are U-shaped assembly line, two-sided assembly line and robotic assembly lines 

problems. 

2.3.2 U-shaped Assembly Line Balancing 

In the recent years manufacturers have adopted the principle of just-in time 

approach for manufacturing processes. This helps to improve the productivity, profit 

and quality of the product. Just in Time (JIT) is beneficial for the companies which do 

repetitive jobs. Due to implementation of JIT techniques there is a requirement of 

replacing straight assembly line with U-shaped assembly line.  U-shaped configuration 

is more flexible due to different possible ways of allocations. In case of the U-shaped 

assembly lines entrance and exit are in the same position (Toklu and özcan, 2008).  The 

main advantages of the U-shaped assembly line when compared to a straight line are 

the reduction of the repetitive movement of operators and improvement in productivity. 

Operators/workers in U-shaped assembly line become more multi-skilled by 

performing tasks located in different parts of the line. It also helps in developing 

communication skills and problem solving skills of the workers (Miltenburg, 1998).  U-

shaped assembly line is highly flexible and changes can be made depending on the 

demand. U-shaped line also improves the material handling (Toksarı et al., 2008). Task 

can be assigned to a workstation after all its predecessor or all successors are assigned 

to an earlier or the same workstation in U-shaped assembly line. This is the 

distinguishing feature of U-shaped assembly line balancing problems that must allow 

for the forward and backward assignment of tasks to workstations (Kara, 2008). 

Problems involving U-shaped assembly line falls under the category of U-shaped 

assembly line balancing (UALB) problem. Similar to SALB, problems with different 

objectives for UALB (UALB-1, UALB-2, UALB-E and UALB-F) are available in the 

literature (Scholl and Klein, 1999b). Most of the characteristics of SALB defined by 

Baybars (1986) are also valid for UALB. 

Scholl and Klein (1999b) describe three problem versions: 

 UALBP-1: Minimize the number of stations for a given cycle time. 

 UALBP-2: Minimize the cycle time when the number of workstations are fixed. 
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 UALBP-E: Maximize the line efficiency E. 

2.3.3 Robotic Assembly Line Balancing 

Based on the level of automation of the assembly line it can be divided into two: 

Manual assembly line and Robotic assembly line.  In case of manual lines, the tasks are 

performed by human operators. Due to the availability of robots which can work 24 

hours a day without fatigue, in the recent years, robots are extensively used in assembly 

lines and these assembly systems are called Robotic Assembly Lines (RAL) (Levitin et 

al., 2006).  

Automation is changing assembly applications significantly. Using robots in 

assembly line helps to increase the output (productivity) and to reduce costs. Robots 

are ideal solutions for assembly applications because they are accurate and consistent. 

They work quickly without tiring or stopping. Quality of the product improves when 

assembled and manufactured by robots. Robots guarantee precision, consistency and 

speed in an assembly line. Advances in technology allows development of robots which 

can assemble nearly anything, no matter how small or unique. Robots help those 

assemblies which require less human intervention. Robots have different capabilities 

and efficiencies to perform assembly tasks. Hence it is required to assign the proper 

robot for each station in a balanced way. An important problem in this context is how 

assembly lines are managed and how the assembly line is balanced. The robotic 

assembly line balancing (RALB) problem is based on a distributing the work among 

the robots with an attempt to balance the whole assembly line. It aims at maximizing 

the efficiency of the line. With regards to manual assembly line, there is always a 

variation in actual task performance compared to the standard time estimated for line 

balancing. In case of manual assembly line balancing, optimal balance is of theoretical 

importance but whereas the performance of robotic assembly lines depends strictly on 

the quality of its balance, and on robot assignment (Levitin et al., 2006).. The two types 

of RALB problems addressed in the literature are: RALB-1, where the objective is to 

minimize the number of workstations when the cycle time is fixed and RALB-2 which 

deals with minimizing the cycle time when the number of workstations are fixed (Gao 

et al., 2009).  
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2.3.4 ALB problems based on models, layout and number of products 

Assembly lines are classified based on the layout and shape of the line, the number 

of products and models being processed in the line. Based on the model structure, 

assembly line balancing problems can be classified based on the number of different 

products which can be produced on the same line.  Three types of problems based on 

the model type are: single-model assembly line balancing, mixed-model assembly line 

balancing (MALB) problem and multi-model assembly line balancing (Kumar, 2013).   

 Single-model assembly line is the classical configuration in which one model 

of a unique product type is assembled continuously (Figure 2.2). Example: In 

an automobile industry same models of a car can be manufactured using this 

type of assembly line. 

 

Figure 2.2 Single-model assembly line 

 Multi-Model assembly line involves more than one product produced in 

batches. Different models with significant difference between each other are 

processed in this line (Figure 2.3). This model helps to reduce the setup time 

significantly (Kumar, 2013). Example: In an automobile industry different car 

models can be manufactured in batches.  

 

Figure 2.3 Multi-model assembly line 

 In mixed-model assembly line different types of a product are assembled 

simultaneously in the line. The production process does not involve setup time 

since all types of products will require similar type of task to be executed 

(Figure 2.4). Example: In an automobile industry different car models can be 

manufactured but not in batch mode. 
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Figure 2.4 Mixed-model assembly line 

Assembly lines can be classified based on the line or shape of the layout. Different 

types available are: Serial line, Two-sided lines, Parallel lines and U-shaped lines.  

 Serial lines: products are processed and assembled through a group of 

workstations which are arranged in a straight line (Ajenblit and Wainwright, 

1998). Figure 2.5 shows the representation of serial assembly line. 

 

Figure 2.5 Serial assembly line 

 Two-sided lines: consists of two serial lines in parallel with pairs of 

workstations opposite to each other work on the same work piece 

simultaneously (Figure 2.6). This type of configurations is found commonly in 

the automotive industry. Left and right sides of the line are used simultaneously 

to perform different assembly tasks of the same product on both sides (Wu et 

al., 2008). 

 

Figure 2.6 Two-sided assembly line 

 Parallel lines: this type of assembly lines can be used when multiple products 

are assembled (Figure 2.7). Same products are also assembled on multiple 

identical assembly lines based on the demand (Gökçen et al., 2006).  
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Figure 2.7 Parallel assembly line 

 U-shaped line: in this type of layout, tasks are arranged around a U-shaped line. 

Entry and exit are located in the same side, close to each other (Figure 2.8). This 

type of layout helps for better management and control (Avikal et al., 2013).  

 

Figure 2.8 U-shaped assembly line 

Different researchers have proposed multi-objective assembly line balancing 

(MOALB) problem where several objectives such as minimizing either the total cost or 

the number of stations, or maximizing the efficiency of the line, etc. are considered 

simultaneously (Hamta et al., 2013, Rashid et al., 2012).  

2.3.5 ALB problems based on cost and energy consumption 

Due to stiff competitive environment, assembly line industries try for attaining the 

goals of producing products at low cost and high quality in a reasonable time. 

Manufacturers need to speed up the time to market and at the same time minimize the 

manufacturing cost to ensure that their products remain competitive (Padrón et al., 

2009). Under the economic perspective, cost reduction is considered to be one of the 

major objectives.  Cost-oriented assembly line balancing is a generalized form of time-

based assembly line balancing. The cost-oriented assembly line balancing problem 

aims at assigning all tasks to workstations without violating any precedence relation 

and by taking into consideration the cycle time production cost is minimized 

(Rosenberg and Ziegler, 1992). Sarin et al. (1999) considered a stochastic assembly line 
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balancing problem for the objective of minimizing the total labor cost and the expected 

incompletion cost arising from tasks not completed within the prescribed cycle time. 

Amen (2000a) developed a cost-oriented balancing model for a single model assembly 

line where a vast quantity of one single product is assembled in which the total cost per 

product unit is minimized. Amen (2000b) dealt with problem which occurs in final 

assembly of automotive, consumer durables or personal computers where production is 

very labor-intensive and wage rates are dependent on the requirements and qualification 

of the workforce. Roshani et al. (2012) mainly dealt with cost-oriented two-sided 

assembly line balancing problem which occur in the final assembly of products which 

are very labor intensive.  

Extensive studied have been conducted on assembly line balancing problems as 

seen in the reviews of Becker and Scholl (2006) and Kriengkorakot and Pianthong 

(2012). Salveson (1955) first formulated mathematically ALB problem. ALB problems 

mainly deals with assigning tasks to workstations in an assembly line, in such a way 

that the assignment is in a balanced manner. Classical objective of an assembly line 

balancing problem is to minimize the number of workstations for a given cycle time. 

Minimizing the cycle time of the assembly line for a fixed number of workstations is 

the objective considered and is referred to as time-oriented line balancing (Amen, 

2001).  Minimizing cost of the assembly line is also an important objective considered 

in case of assembly line balancing problems. Few minimization objectives considered 

in case of assembly line balancing problems reported in literature are: throughput time, 

cost of machinery (Bukchin and Tzur, 2000), inventory cost, labor cost and number of 

buffers(Capacho Betancourt, 2008). Few maximization objectives considered include 

production rate, line efficiency and profit (Becker and Scholl, 2006). Recently, Boysen 

et al. (2007) attempted at classifying the different version of ALB. They proposed an 

approach which uses tuple notation [α|β|γ] which is adopted in the classification of 

machine scheduling. ‘α’ represents the set of six attributes which determines whether a 

unique product or model is being considered. ‘β’ describes the workstation, line 

considered and it also defines the movement of work pieces, line layout and other 

constraints. And finally, ‘γ’ describes the objectives to be evaluated.  

Under the economic perspective, minimizing the energy consumption is 

considered to be one of the major objectives.  Extensive efforts are being under taken 

to improve the efficiency and cost effectiveness of these assembly systems (Sanderson 
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et al., 1990). One of the major goal of many modern manufacturers in the recent years 

is to decrease the cost of production by any possible means while satisfying the 

environmental regulations and ensuring quality (Gungor and Gupta, 1999). Energy 

consumption is considered to be a very important cost element in a manufacturing 

enterprise (Kilian, 2008). Due to the rise in energy price and increased demand for 

environmental compliance, efficient energy management and sustainable energy have 

become important factors for business competitive advantages. Reduced usage of 

energy helps the industries to save cost and become more competitive. This is a key 

factor for promoting green and sustainable practices (Ngai et al., 2013).  Significance 

of reducing energy consumption has been realized in the recent years and stressed more 

than ever (Liu et al., 2014). Electricity is one of the important forms of energy which is 

used in a manufacturing sector.  Production of electricity is a highly polluted process. 

Due to the consumption of electricity, amount of carbon dioxide emission generated 

would be around 20% (Dai et al., 2013). Thus there is a need for manufacturing 

companies to reduce the energy consumption and become more environmental friendly. 

Depletion of reserves of energy commodities such as petroleum and other fossils fuels 

and growing concern over global warming, recently there has been a growing interest 

for minimization of energy consumption by the industries (Mouzon and Yildirim, 

2008). By using energy efficient manufacturing system the energy consumption can be 

reduced (Chryssolouris, 2005).  In manufacturing a car (Press, body, paint and assembly 

shops) the industry could consume energy up to 700kwh/vehicle. It is reported that 

energy cost is about 9-12% of the total manufacturing cost and by reducing 20% of the 

energy cost; the total manufacturing cost can be reduced by 2-2.4% (Fysikopoulos et 

al., 2012). The authors proposed an empirical study of the energy consumption of an 

automobile body shop with robot based lines.  

It is evident that industrial systems involve a great variety of characteristics and 

problem variations. Considerable amount of research is being done to fill the gap 

between research works and real industrial environment. In the literature, there are 

several models for balancing the different types of assembly line balancing problems. 

Section 2.3 summarizes the most common assembly line balancing problems.  
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 Importance of assembly line balancing 

Distribution of total workload of the assembly line between each workstations so 

that idle times are as low as possible is referred to as balancing of an assembly line. 

Objective of worker/robotic based assembly line is to balance the workload of 

worker/robot which helps in minimizing the loss and cost. Different components such 

as products, operations, material handling and assembly line characteristics in the 

production system need to adapt to any of the changes which occurs to these 

components without causing much loss. Taking this into consideration, periodically 

balancing the process, loss for the whole system could be completely removed.  Balance 

losses of an assembly line are bound to happen and there is a very small possibility of 

obtaining a perfect balance of workload due to dynamic features of the system. In real 

environment it is not practically possible to allocate work among the workstations 

equally and hence there is always a balance loss.  

By understanding the source of these losses, balance losses can be minimized for 

the assembly line (Törenli, 2009).  An example problem is used to illustrate the losses 

of balanced and unbalanced assembly lines. Figure 2.9 and Figure 2.10 shows two 

different balancing conditions of an assembly line for a problem with 4 workstations. 

The numbers on top of the bars in the graph shows the workstation time. Figure 2.9 

shows that workstation 2 is overloaded and work station 3 and 4 needs to wait for 

workstation 2 to complete the job in the line.  Figure 2.10 shows the balanced allocation 

of workload among the workstations. Idle time at workstation is the primary indicators 

of the balance losses of an assembly line. Idle time at a workstation shows that there is 

an excess capacity at that station which is undesired. Idle time of the line is calculated 

using Equation 2.1. 

    (2.1) 

In the given example, for unbalanced assembly line the cycle time is 25 and idle 

time is found out to be 45, whereas in case of balanced assembly line the cycle time is 

15 and idle time is found out to be 5. It was analyzed from this example that, the firms 

will have to balance the assembly line to minimize the loss due to idle time. Balancing 

the assembly line helps at promoting one piece at a time, avoids overburden at the 

workstations, helps at minimizing the wastage and reduces the variation.   

1
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Figure 2.9 Unbalanced Assembly Line 

 

Figure 2.10 Balanced Assembly Line 

 Optimization techniques to solve ALB problems  

Different types of procedures have been developed to solve assembly line 

balancing problems. Exact methods have been developed to solve assembly line 

balancing problems due to the NP-hard nature of the problem. Even though, exact 

methods guarantee optimum solution, problems with small size assembly tasks could 

only be solved using these methods due to the high computational load (Capacho 

Betancourt, 2008). Approximate methods like heuristics and metaheuristics are 

developed to solve problems with large assembly tasks aimed at producing solutions 
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which are nearer to the optimal solution. The remaining sections of this chapter gives 

details of the different procedures reported in literature for solving SALB, UALB and 

RALB problems.  

Few review papers are available which summarizes the different procedures used 

to solve the assembly line balancing problems. Numerous metaheuristics have been 

developed to solve SALB problems. A detailed summary of different exact methods 

and metaheuristics for SALB problems are presented in Scholl and Becker (2006). 

Becker and Scholl (2006) presented the detailed survey of procedures used for solving 

problems other than SALB. Detailed classification and overviews of methods used in 

solving assembly line balancing problems are presented in Sivasankaran and 

Shahabudeen (2014). 

2.5.1 Techniques for solving SALB problems  

 Details of exact algorithms developed for solving SALB problem are presented in 

(Baybars, 1986, Erel and Sarin, 1998). Dynamic programming procedure is first 

developed by Jackson (1956) to solve assembly line balancing problems. It is later 

modified by (Held et al., 1963). It could be seen that these procedures require large 

memory requirement. This drawback is reduced by the procedures proposed by Schrage 

and Baker (1978), Kao and Queyranne (1982). Thangavelu and Shetty (1971) 

developed a 0-1 integer programming algorithm to solve simple assembly line 

balancing problem with an objective of minimizing the number of workstations for a 

given cycle time. Different operational requirements such as zoning, sequencing, idle 

time, cycle time and cost are considered by Deckro and Rangachari (1990) in 

developing a goal programming model with an objective of minimizing the number of 

workstations.  Scholl and Klein (1999a) presented the branch and bound algorithm for 

solving the same problem. For solving SALB-1 effective methods like FABLE, 

EUREKA, and SALOM are developed (Johnson, 1988, Hoffmann, 1992, Scholl and 

Klein, 1997). TBB2 and SALOME2 are used to solve SALB-2 problem which uses 

branch and bound algorithm (Klein and Scholl, 1996). Kilincci and Bayhan (2006) 

solved SALB-1 problem using Petri-net algorithms. Petri net is a mathematical and 

graphical tool to model and analyze discrete event systems. Kilincci (2010) solved 

SALB-2 problem with an objective of minimization of variations in workloads among 

the workstations. The author developed Petri-net algorithm for solving the problem.  



Chapter 2 

Literature survey 

 

Page | 23  

 

Mathematical models can generate optimal solutions, however in case of large size 

problems it is difficult to obtain solution in an acceptable time span, hence development 

of heuristics are required.  Ranked positional weight (RPW) proposed by Helgeson and 

Birnie (1961) is one of the first proposed heuristic. Tasks are ranked in descending 

order of their positional weights. Other heuristic rules are maximum task time, 

maximum number of successors, minimum slack, minimum earliest and latest 

workstation. Arcus (1965) developed COMSOAL (Computer Method of Sequencing 

Operations for Assembly Lines) to solve SALB problems. A comparative evaluation of 

six popular assembly line balancing heuristics namely, ranked positional weight, 

Kilbridge and Wester, Moodie and Young, Hoffman precedence matrix, immediate 

update first fit, and rank and assign heuristic are presented in (Ponnambalam et al., 

1999).  The evaluation criteria used are the number of excess stations given, line 

efficiency, smoothness index and CPU time. Detailed literature survey of heuristic 

methods can be found in (Erel and Sarin, 1998, Scholl and Becker, 2006). Most research 

on SALB focuses on SALB-1 and SALB-2, and few studies deal with the optimization 

of assembly line balancing efficiency (Wei and Chao, 2011). Plans and Corominas 

(1999) developed a mixed integer programming model and heuristic approach to solve 

a SALB-E problem. Wei and Chao (2011) proposed a model for SALB-E and the 

solution procedure is developed which minimizes the total idle time to optimize the 

assembly line balancing efficiency.  

Different types of metaheuristics have been developed to solve assembly line 

balancing problems. Metaheuristics use different concepts derived from artificial 

intelligence, evolutionary algorithms inspired from mechanisms of natural evolution 

(Pierreval et al., 2003).  From the literature it could be found that metaheuristics can 

also be called as soft computing techniques, evolutionary algorithms and nature 

inspired algorithms. Detailed literature survey of metaheuristics applied on assembly 

line balancing problems are presented in Rashid et al. (2012) and Sivasankaran and 

Shahabudeen(2014). 

Tabu search (TS) is a metaheuristic algorithm which uses local search methods. 

These methods are applied to solve SALB-1 and SALB-2 problems (Chiang, 1998, 

Scholl and Voß, 1997). Ant Colony Optimization (ACO) developed based on the 

behavior of ants searching for their food.  Bautista and Pereira (2002) applied ACO to 

solve SALB-1 problem. Zheng et al. (2013) proposed an improved version of ant colony 
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optimization algorithm to solve assembly line balancing (SALB-2) problem. ACO is 

employed to search for different better combination of tasks to be allotted at each 

workstation. (Lai and Liu, 2009) uses ACO to optimize the efficiency of a sewing line. 

Simulated annealing (SA) is a technique inspired from physical annealing of solids has 

been applied to solve assembly line balancing problems. Suresh and Sahu (1994) 

applied SA for solving a stochastic variant of SALB-1 problem. Seyed-Alagheband et 

al. (2011) developed a new simulated annealing algorithm to solve type 2 assembly line 

balancing with sequence-dependent setup times between tasks. Genetic Algorithm 

(GA) developed by John Holland follows the biological evolution where the concept of 

survival of fittest is taken into consideration.  

From the literature survey, it could be seen that most of common metaheuristic 

algorithm which is extensively used in assembly line balancing problems is genetic 

algorithms and its hybrid versions. Rubinovitz and Levitin (1995) developed a genetic 

algorithm to solve a single model assembly line balancing problem with deterministic 

processing time. The results obtained through this method are compared with MUST 

algorithm (Dar-El and Rubinovitch, 1979). Simple assembly line balancing problem 

with different objectives: maximizing the number of workstations, minimization of 

cycle time maximizing the work load smoothness and maximizing work relatedness are 

solved using a genetic algorithm along with repair method (Kim and Kim, 1996). A 

multi-objective genetic algorithm for solving simple assembly line balancing problem 

with objectives of minimizing workstations, maximizing line efficiency and 

smoothness index is developed by Ponnambalam et al. (2000). A genetic algorithm with 

heuristic generated initial population is developed by Chong et al. (2008) for solving a 

simple assembly line balancing problem (SALB-1) with realized cycle time as the 

fitness function. Performance of this proposed algorithm is compared with results 

obtained using genetic algorithm with a randomly generated initial population. A hybrid 

genetic algorithm with a local search is developed by Gonçalves and De Almeida 

(2002) for solving an assembly line balancing problem with an objective of maximizing 

the balancing efficiency for a given cycle time. The chromosome representation of the 

problem in this approach is based on random keys. A heuristic priority rule is used to 

assign task to the workstations in which the priorities of the operations are defined by 

the chromosome.  
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Particle swarm optimization (PSO) developed by Kennedy and Eberhart (1995) is 

based on the social behavior of bird flocking or fish schooling. PSO is quite similar to 

GA, but there are no evolution operators in case of PSO. From the literature it could be 

seen that PSO has been seldom applied for solving simple assembly line balancing 

problems (Economics, 2011). Economics (2011) applied PSO to solve a SALB-1 

problem and the results obtained through this method are compared with results 

reported in the literature. Petropoulos and Nearchou (2011) applied PSO to solve a 

simple assembly line balancing problem with two- and three-criteria problem utilizing 

the cycle time of the line, the workload smoothness among the workstations, and the 

balance delay time of the assembly line. The results obtained through numerical 

experiments are compared with the existing two algorithms reported in the literature 

and it could be seen that PSO performs better in terms of quality of the solution of the 

problems. Differential evolution (DE) is a metaheuristic developed by Storn and Price 

(1997). Nearchou (2005) applied DE to solve SALB-1 problem. Extensive 

experimental work over available benchmarks test problems show the effectiveness of 

the proposed approach. Later, Nearchou (2007) also applied DE to SALB-2 problem. 

The results obtained through this method are found to be far superior compared to the 

results reported in the literature. Several other metaheuristics have been used to solve 

simple assembly line balancing problems. Detailed literature survey by Rashid et al. 

(2012) shows the different metaheuristics used to solve different variety of assembly 

line balancing problems.  

2.5.2 Techniques for solving U-shaped ALB problems  

In the last decade, issues related to U-shaped assembly lines received more 

attention (Aase et al., 2004). It could be seen from the literature, research on U-shaped 

assembly lines are less compared to straight assembly lines. Similar to SALB, U-shaped 

assembly line balancing can be classified into mainly three groups: UALB-1-objective 

is to minimize the number of workstations when the cycle time is fixed, UALB-2- 

objective is to minimize the cycle time when the number of workstations is fixed and 

UALB-E- objective is to maximize the efficiency of the assembly line. There is a 

growing interest in the literature to organize traditional assembly lines as U- lines to 

improve the performance. Although there are many literatures on traditional straight 

assembly lines, the work on U-shaped assembly line is limited. 
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  Miltenburg and Wijngaard (1994) developed a dynamic programming (DP) 

formulation for evaluating a single model U-type assembly line with an objective of 

minimizing the number of stations. The proposed DP formulation could solve small 

size problems with 11 tasks and for solving large problems they developed a heuristic 

based on ranked positional weight technique (RPWT).  Urban (1998) formulated an 

integer programing problem to solve a U-shaped assembly line with 45 tasks. Variety 

of U-shaped assembly line problems is solved by using Branch and Bound method 

(Scholl and Klein, 1999b).  They proposed a technique which is called ULINO (U-line 

Optimizer) uses a depth-first Branch and Bound algorithm which minimizes the number 

of stations, cycle time or both. The proposed algorithm is used to obtain optimal results 

for problems up to 297 tasks. Gökçen and Agˇpak (2006) developed a goal 

programming model for simple U-shaped assembly line  balancing problem for 

optimizing different objectives by taking into consideration of different constraints like 

cycle time, assignment, workstation and task load. The proposed model was illustrated 

with numerical examples. Several reviews on exact methods developed to solve U-

shaped assembly line balancing problems are available in literatures (Nakade and Ohno, 

1999, Miltenburg, 1998, Zhang and Cheng, 2010).  

Like the traditional assembly line balancing problem, U-shaped assembly line 

balancing problem is also NP hard nature (Miltenburg and Sparling, 1995). Different 

heuristics and metaheuristics have been proposed to solve U-shaped assembly line 

balancing problems.  Ajenblit and Wainwright (1998) presented a genetic algorithm for 

UALB with an objective of balancing the workload and minimizing total idle time. Erel 

et al. (2001) proposed a simulated annealing method for solving a U- type Assembly 

line balancing problem. Martinez and Duff (2004) proposed heuristic approaches to 

solve the U-shaped line balancing problem augmented by genetic algorithms. They 

used ten task assignment rules. Baykasoğlu (2006) developed a new multi-objective 

simulated annealing (SA) algorithm for solving simple and U type assembly line 

balancing problems with an objective of maximizing smoothness index and maximizing 

the efficiency of the assembly line. Task assignment rules are used in constructing 

feasible solution. The proposed algorithm could obtain optimal results in acceptable 

time span. Later, Khaw and Ponnambalam (2009) developed a hybrid algorithm by 

combining 15 task assignment rules and ant colony optimization (ACO) algorithm for 

solving the same problem. Results obtained through this method are compared with the 
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results reported in the literature and it could be seen that newly developed algorithm 

performs better in terms of quality of the solution for most of the problems. Baykasoğlu 

and Özbakır (2007) developed a multi rule based genetic algorithm (MRGA-SUALB) 

for probabilistic based U-line balancing problem with the objective of minimizing the 

number of stations for a given cycle time. The proposed algorithm integrates 

COMSOAL method, task assignment rules, and genetic algorithm. The results obtained 

are compared with the optimal solutions and it could be observed that all the problems 

could achieve the optimal solution except for one problem from the datasets. Hwang et 

al. (2008) developed a multi-objective genetic algorithm (moGA) to solve the U-shaped 

assembly line balancing problem. Two performance criteria’s (number of workstations 

(the line efficiency) and the variation of workload) are evaluated. The numerical 

experiments shows that the proposed algorithm produces good or better results 

compared to previously reported literature.  Sirovetnukul and Chutima (2010) 

developed a novel algorithm, named Particle Swarm Optimization with Negative 

Knowledge (PSONK) to solve a single U-shaped assembly line problem aiming to 

minimize the number of workers, equity of workload and the shortest walking time. 

The performance of PSONK are compared with Non-dominated Sorting Genetic 

Algorithm-II (NSGA-II) and it could be analyzed from PSONK outperforms NSGA-II.  

Many heuristics and metaheuristics are applied to solve variety of U-shaped 

assembly line balancing problems and detailed reviews are presented (Kim et al., 2000, 

Kim et al., 2006). This section presented a summary of most relevant literature related 

to single model U-shaped assembly line balancing problems with different objectives. 

Section 2.5.3 presents a summary of procedures used to solve cost and energy based 

assembly line balancing problems.  

2.5.3 Techniques for solving cost and energy based ALB problems  

Long term or short terms operating costs are incorporated in cost based line 

balancing problems. Exact methods, heuristics and metaheuristics have been applied to 

solve cost based assembly line balancing problems. Researchers considered labor cost, 

setup cost, equipment cost and inventory cost for developing solutions for cost based 

assembly line balancing problems (Hazır et al., 2014). The cost based assembly line 

balancing problem is a generalization of the time based assembly line balancing 

problem (Rosenberg and Ziegler, 1992). Labor costs contribute significantly to the total 
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production costs. Labor cost depends on the work content and the qualification of the 

worker. Due to demand from the market, industries always required to employ new 

employees, instead companies prefer to go for overtime. However, there will be an 

increase in cost due to overtime. Rosenberg and Ziegler (1992) developed two new 

heuristic algorithms (Wage Rate Method (WR) and the Wage Rate Smoothing-Method 

(WRS)) to solve cost based assembly line balancing where the objective is to minimize 

the total production cost. The results obtained using the heuristics are compared with 

the known heuristics Positional Weight Method (PW) and the Positional Weight Wage 

Rate Difference Method (PWWD). It can be concluded from the experimental results 

that PWWD and WRS are superior to PW and WR. Amen (2000a) developed a model 

to minimize the total labor and capital cost. Wage rate of a station is calculated by 

maximum of wage rates of the allocated tasks, since most demanding tasks define the 

qualification needed by the worker.  An exact backtracking method is developed which 

is used for solving the cost based assembly line balancing problem. Experimental 

investigations show that the new method finds optimal solutions for small and medium-

size problem in acceptable time. Amen (2000b) developed two new heuristic methods: 

A new priority rule `best change of idle cost is proposed. This priority rule is different 

from other priority rules because it is the only one which considers that production cost 

are the result of both, production time and cost rates.  Comparison on the quality of the 

solution and computational time of the developed algorithm are reported in (Amen, 

2001). Scholl and Becker (2005) showed one of the rules developed by Amen is 

incorrect and gives the corrected and simplified version of this rule. Padrón et al. (2009) 

developed a combination of heuristic model and exact algorithm with intelligent task 

allocation or line zone constrains with an objective of minimizing cost solution in a 

feasible computational time. Cost function considers short term operating costs, task 

and work station capital investment costs. Erel et al. (2005) considered the probabilistic 

assembly line balancing problem in U-shaped assembly line with an objective of 

minimizing total labor cost and total expected incompletion cost for a given cycle time. 

They used beam search, which is a special type of Tabu Search algorithm. The 

performance of the proposed method is evaluated on various test problems and the 

results of the experiments show that the average performance of the proposed method 

is better than results reported in the literature.  Roshani et al. (2012), extended Amen’s 

approach for two-sided assembly lines and used simulated annealing for solving the 
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problem. Yazdanparast et al. (2011) developed a cost oriented approach and developed 

a mathematical model to solve General Assembly Line Balancing Problem with Setups 

(GALBPS).  A numerical example is illustrated using Lingo 11 software.  

The review reveals that the literature on cost based assembly line balancing 

problems are very minimal when compared to other types of assembly line balancing 

problems. However, Hazır et al. (2014) presented a survey paper in which problems, 

approaches and analytical models on cost based assembly line balancing are analyzed.  

Key objectives evaluated in assembly line balancing problems are cost, cycle time 

and efficiency. It could be seen that research on minimizing energy consumption in 

manufacturing systems has been rather limited (Dai et al., 2013). Very limited 

researches related to assembly line problems in the context of minimizing energy 

consumption are available and few of them are briefly discussed below. Fysikopoulos 

et al. (2012) presented an empirical study of the energy consumption of an automotive 

assembly line, under various scenarios and demand profiles are presented by them. (Luo 

et al., 2013) proposed a multi-objective ant colony optimization metaheuristic to 

optimize production efficiency and electric power cost (EPC) with the presence of time-

of-use (TOU) electricity prices.  Dai et al. (2013) proposed an energy efficient model 

for flexible flow shop scheduling (FFS). A mathematical model for a FFS problem 

which is based on an energy-efficient mechanism is described by them. An improved 

genetic-simulated annealing algorithm is adopted due to NP-hard nature of the problem 

to make a significant trade-off between the make-span and the total energy consumption 

to implement a feasible scheduling.  Mouzon et al. (2007) presented a multi-objective 

mathematical programming model for scheduling jobs on a single CNC machine with 

an objective of reducing energy consumption and completion time. Shrouf et al. (2014) 

developed a mathematical model for minimizing the energy consumption cost in a 

single machine production system considering variable energy prices during a day. To 

solve the problem they proposed a genetic algorithm (GA) to obtain ‘near’ optimal 

solutions. Performance of the proposed GA is compared with an analytical solution 

generated. He et al. (2012) developed a model which deals with task oriented energy 

consumption in a machining manufacturing system by incorporating an event graph 

methodology. SIMULINK simulation environment is used to solve the model.  
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This section presented a summary of most relevant literature related to cost and 

energy based assembly line balancing problems. Section 2.5.4 presents the relevant 

literature related to robotic assembly line balancing problems. 

2.5.4 Techniques for solving RALB problems 

Robotic assembly line balancing (RALB) problem is an extension of SALB 

problems. Robots are replaced to perform the assembly tasks instead of human labor. 

RALB aims at allocating tasks to the workstations and allocate the best available robot 

to each workstation. Robotic assembly lines are designed and balanced very well to 

function efficiently due to high investment required to implement such system. RALB 

problems are classified into two groups mainly: RALB-1 and RALB-2. This section 

provides the most relevant literature related to RALB problems.  

Graves and Lamar (1983) presented a method for selecting workstations from a set 

of non-identical candidates and tasks are assigned to the selected workstations. The 

objective of the method is to maximize the workload of the stations and to minimize 

the total cost. Graves and Redfield (1988) dealt with a problem where multi-products 

are assembled, where families of similar products are produced.  The objective of the 

work is to minimize the variable and fixed operating costs of the systems which are 

capable of producing the products in the desired volumes. To solve the problem they 

used a graph system where each arc represents the workstation, using the shortest path 

on the graph, the problem is solved. Khouja et al. (2000) developed a method of using 

statistical procedures for designing robotic assembly cells. Two stages are there in the 

proposed methodology. First stage uses a fuzzy clustering algorithm for grouping 

similar tasks and in the second stage using a Mahalanobis distance procedure 

appropriate robots are allotted for the task groups.  Nicosia et al. (2002) presented a 

dynamic programming algorithm and introduced several fathoming rules to solve the 

problem where tasks needs to be assigned to an ordered sequence of non-identical 

workstations without violating precedence relationships and cycle time. The objective 

is to minimize the cost of the workstations. The formulation of this work is very similar 

to RALB problem.  

RALB problem is first formulated by Rubinovitz and Bukchin (1991). RALB 

problem deals at allocating equal amounts of tasks to workstations and assigning the 

most efficient robots to perform the tasks assigned to the workstations. Objective is to 
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minimize the number of workstations for a given cycle time.  Rubinovitz et al. (1993) 

developed a RALB problem with the objective of minimizing the number of 

workstation. Branch and Bond frontier search is used to obtain solutions for very large 

and complex problems. Bukchin and Tzur (2000) treated the previous problem with a 

new objective of minimizing the total cost when cycle time is fixed. An optimal and 

heuristic algorithm is developed for designing a flexible assembly line where several 

equipment alternatives are available. Small size problems are solved using Branch and 

Bound algorithms. Large problems are also solved using heuristics proposed. For 

designing a flexible robotic assembly line with a set of family products, Tsai and Yao 

(1993) proposed an integer programming model combined with a simulation 

adjustment phase. The objective of the proposed work is to minimize the standard 

deviation of the output rates of all workstations which measures the quality of the 

balance of the line. With the aim of minimizing the total number of robotic cells, Kim 

and Park (1995) developed a mathematical formulation and a cutting plane algorithm 

for assigning of assembly tasks on a serial robotic assembly line. The literature 

mentioned so far reported the works related to RALB-1.  

The literature related to RALB-2 discussed in this section mainly deals with the 

objective to minimize cycle time when the number of workstations are fixed in a robotic 

assembly line. Levitin et al. (2006) developed a method for the robotic assembly line 

balancing (RALB) problem with an objective of minimizing cycle time. The method 

aims at achieving a balanced distribution of tasks amongst the workstations and assigns 

the best fit robot to perform the tasks allocated to these workstations. Two heuristics 

methods are proposed for assigning tasks and robots. Genetic Algorithm (GA) is 

proposed to solve the problem. To improve the quality of the solution a local exchange 

procedure is also implemented. Sensitivity analysis is conducted on the randomly 

generated datasets for obtaining the best possible combination of GA parameters.  Gao 

et al. (2009) developed a 0-1 integer programming problem for solving RALB-2 

problem. A hybrid genetic algorithm (hGA) is developed to find efficient solutions for 

the problem. The proposed genetic algorithm uses partial representation technique, 

which expresses only part of the decision information about a candidate solution in the 

chromosome. The coding space contains only partial candidate solutions including the 

optimal one. New crossover and mutation operators are developed to adapt to the nature 

of the problem. To improve the search ability, local search procedures are also 
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implemented by them. Yoosefelahi et al. (2012) presented a multi objective model for 

RALB to minimize the cycle time, robot setup costs and robot costs. A new mixed-

integer linear programming model is also developed to solve the problem. Since the 

problem is NP-hard, three versions of multi-objective evolution strategies (MOES) are 

employed. It is concluded that hybrid MOES is efficient based on the simulation results 

obtained. Daoud et al. (2014) proposed several evolutionary algorithms and a discrete 

event simulation model to solve robotic assembly line balancing problem and an 

automated packaging line dedicated for dairy food products is the case study considered 

for evaluating the proposed model.  

To provide an overview of this section, Table 2.1 summarizes the literature on 

RALB Studies are categorized according to the objectives and optimization techniques.  

Table 2.1 Summary of research on RALB problems 

Model Objective Procedure Reference 

Assignment of tasks 

to non-identical 

workstations 

without violating 

precedence 

relations. 

Minimize the cost of 

workstations 

Dynamic 

Programming 
Nicosia et al. (2002) 

RALB-1 problem 

Minimize the 

number of 

workstations 

- 
Rubinovitz and 

Bukchin (1991) 

RALB-1 problem 

Minimize the 

number of 

workstations 

Branch & Bound 
Rubinovitz et al. 

(1993) 

RALB problem 
Minimize the 

equipment cost 

An exact and 

heuristic branch 

& bound 

Bukchin and Tzur 

(2000) 

RALB-2 problem 
Minimize the cycle 

time 

Two versions of 

Genetic Algorithm 
Levitin et al.(2006) 

RALB-2 problem 
Minimize the cycle 

time 

Hybrid Genetic 

Algorithm 
Gao et al.(2009) 

RALB-2 problem 

Minimize the cycle 

time, robot cost, 

setup costs 

Three versions of 

multi-objective 

evolution strategies 

Yoosefelahi et 

al.(2012) 

RALB -E problem 
Maximize line 

efficiency 

Three evolutionary 

algorithms & Local 

Search 

Daoud et al.(2014) 

 

 State of the Art 

From the literature survey done, the key problems addressed under the assembly 

line balancing problems are as follows:  
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i. Optimizing different objectives for a straight assembly line. 

Different optimization techniques are used to solve straight line assembly line 

balancing problems with an objective of minimizing cycle time, minimizing the 

number of workstation, minimizing assembly line cost and maximize the line 

efficiency.  Different optimization techniques used are branch and bound, genetic 

algorithm, simulated annealing, particle swarm optimization, differential 

evolution and etc.  

ii. Optimizing different objectives for a U-shaped assembly line.  

Objective of minimizing cycle time, minimizing number of workstations and 

maximizing line efficiency in a U-shaped assembly line are done using different 

optimization techniques. Different metaheuristics are proposed to solve this 

problem.  

iii. Straight line robotic assembly line balancing problem with different objectives. 

Robotic assembly line balancing in a straight assembly line with objective of 

minimizing cycle time, minimizing the number of workstations and maximizing 

line efficiency are done using few optimization techniques.  Metaheuristics like 

genetic algorithms and its hybrid version is proposed to solve the problem. 

In summary, this chapter reports the literature related to assembly line balancing. 

Literature survey reveals the different types of assembly lines in detail. This chapter 

provides detailed information of the need of balancing an assembly line in an industrial 

sector and the importance of this type of research in academics. Different problems 

classified under the problems are discussed. This survey provides a detailed review of 

the different solution procedures applied to solve the ALB problems. As discussed in 

Section 2.5.4 researchers have proposed models and solution procedures for solving 

robotic assembly line balancing (RALB) problems. The work on RALB is very limited 

and hence this thesis seeks to develop efficient algorithms to solve problems in RALB 

with different objectives.  

 



 

 

CHAPTER 3 

3 Problem Definition 

In this chapter, details of the research problem considered for the study are 

presented through motivation of research, problem statement, and research objectives.  

 Motivation of the research 

Due to the increased demand for productivity, quality, cost reduction and optimal 

utilization of the available resources researchers have motivated to do continuous 

research in modeling and evaluation of manufacturing systems. Assembly line is one 

of the major components in manufacturing sector. Availability of different types of 

robots to perform the assembly tasks, led to the development of automated assembly 

line. Research interest in robotic/automated/flexible assembly is the main motivation 

of this research. The research interest surrounding Flexible Manufacturing System, 

Flexible Assembly System, Computer Integrated Manufacturing, and application of 

metaheuristic algorithms to solve the problems from these systems has attracted many 

researchers to work in the area of assembly line balancing problems 

The topic has become relevant in the present day, since the international 

manufacturing strategy and operations are inclined towards the research of automated 

assembly systems and considers it strategically important at the professional forefront. 

There is a growing demand and importance for automated assembly systems, which 

require a robust integrative technological perspective and pragmatic approach for long 

term investment. 

In the recent years, different metaheuristics have been proposed to solve assembly 

line balancing problems. Different types of bio-inspired algorithms are genetic 

algorithms, simulated annealing, differential evolution, ant and bee algorithms, bat 

algorithm, particle swarm optimization, harmony search, firefly algorithm, cuckoo 

search and others. This research focuses on using PSO, DE and Cuckoo search for 

solving RALB problems. There has been very minimal research done on robotic 

assembly line balancing problem with different objectives. Hence the motivation of this 
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study is also focused towards the development of different variations of RALB 

problems. 

 Problem statement 

Even though the benefits of using robotic/ automated assembly line are substantial, 

it can be inferred from the literature that only few papers describe the design and 

optimization of robotic assembly line balancing (RALB) problems. To the best of the 

author’s knowledge the following important aspects has not been reported till date. 

Important aspects of RALB which did not find place in the existing literature are as 

follows: 

i. Modeling and optimization of U-shaped robotic assembly line balancing 

problems with different objectives. 

ii. Modeling and optimization of energy based robotic assembly line balancing 

problems for a straight and U-shaped robotic assembly line. 

iii. Modeling and optimization of cost based robotic assembly line balancing 

problems for a straight and U-shaped robotic assembly line. 

Henceforth, the research is to address and understand the above mentioned 

shortcomings and to develop efficient algorithms for solving robotic assembly line 

balancing problems to obtain better quality solution. 

 Research objectives 

Based on the findings from the literature survey, the following have been set as the 

objectives of this research: 

1. To develop efficient metaheuristic algorithms to find best solution for the straight 

robotic assembly line balancing problems with an objective of minimizing the 

cycle time when number of workstations are fixed and compare the performance 

of results obtained through these algorithms with results published in literature.  

2. To develop an efficient algorithm for a U-Shaped Robotic Assembly Line with 

the objective of minimizing the cycle time. 

3. To develop an efficient metaheuristic algorithm for solving energy based robotic 

assembly line problem for both straight and U-shaped robotic assembly line. 
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4. To develop an efficient algorithm for solving cost based robotic assembly line 

balancing problem in both straight and U-shaped robotic assembly line. 

5. To develop efficient metaheuristics algorithm to solve a robotic assembly line 

problem with an objective of maximizing the line efficiency.  

 The scope of the current study is limited to the development of efficient 

metaheuristic algorithms for solving robotic assembly line balancing problems.  

 Research approach  

Following steps are adopted for developing efficient models for solving robotic 

assembly line balancing problems. 

1. Design and development of metaheuristic solution procedure to solve RALB 

problem using different metaheuristic algorithms. 

2. Validate the developed model by evaluating the benchmark literature datasets and 

datasets which are generated based on the literature. 

3. Investigate the performance of the proposed metaheuristic by comparing the 

reported results using other solution procedures.  

4. Performing parametric study for different metaheuristic algorithms to find out the 

best combination of parameters for solving the problem effectively  

5. Drawing conclusions and discussing the directions for future work. 

The motivation of research, problem statement, research objectives and the 

proposed research approach are presented in detail in this chapter. Next chapter presents 

the assumptions and mathematical model for RALB problems in detail. 

 



 

CHAPTER 4 

4 Mathematical Models for RALB 

Problems 

The objectives of the research are presented in the previous chapter. This chapter 

provides the details of the mathematical models for robotic assembly line balancing 

problems with different objectives. Assumptions and notations considered for different 

problems are also listed in this chapter.  

 Straight RALB problem - minimizing cycle time 

Robotic assembly lines are used by manufacturers for producing high volume 

product and to produce products with high quality. Workstations are connected together 

with a material handling system for an assembly line. An assembly line helps at 

assembling components into a final product. At each workstation a set of tasks are to 

be performed to assembly a product. The precedence constraints need to be specified 

and it specifies the order in which the tasks are to be executed. The assembly line system 

must be configured for the assembly of the product where tasks are assigned to the 

workstations and best available robot is allocated to the workstation with an objective 

of minimizing the cycle time of the assembly line. Mathematical model is developed 

based on the objective of minimizing cycle time when the number of workstations is 

fixed for a straight robotic assembly line.  

4.1.1 Assumptions and Mathematical Model 

The following assumptions are considered while developing the mathematical 

model. The assumptions considered in this model are similar to those followed by 

Levitin et al. (2006) and Gao et al. (2009).  

 A unique model of single product is assembled on a straight robotic assembly line. 

 Tasks cannot be subdivided and tasks can be processed only if the task sequence 

meets the precedence requirements.  

 Tasks cannot be shared among other workstations. 

 Time taken for performing a task depends on the type of the robot allocated. 
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 Robot type to be assigned to a workstation is selected among other types of robot 

based on the time taken by the robot to perform the tasks allocated within 

minimum time.  

 At a time only one robot could be assigned to a workstation. 

 Number of workstations is equal to the number of available robots. 

 Any task can be performed at any workstation and by any robot if the precedence 

relation is not violated. Task is carried out by a robot at a workstation where it is 

assigned.   

 There is no limitations in the availability of the robots (i.e. number of robots of 

same capability is unrestricted).  

 Cost of purchasing the robot is not considered. 

 In a single model assembly line, the material handling, loading and unloading 

time, as well as set-up and tool changing time are negligible, because the tooling 

changes are minimized in a robotic assembly line. This assumption is realistic on 

a single-model assembly line. If tool change or other type of set-up activity is 

necessary, it can be included in the task time. 

 Levitin et al. (2006) mentioned two main objectives in their paper: Optimal 

balance of the assembly line and allocation of the best fit robot to each workstation. 

Achieving these two objectives are only possible when the assumption that robot type 

is selected based on the time taken by the robot to perform the tasks allocated with 

minimum time is considered. Since this consideration helps to reduce the cycle time of 

the assembly line and assign a best fit robot to workstations, it is followed in this model. 

The model presented below is the modification of the one presented by Gao et al. (2009) 

considering the assumption presented above. The zero-one integer programming (IP) 

model for the problem of minimizing cycle time for a straight robotic assembly line is 

presented below. 

 Decision Variables  

 

 

  1          

  0,  { if task i is assigned to workstation s

is otherwisex 

1     is    

0,  { if robot h allocated to workstation s

sh otherwisey 
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 Zero-One Integer formulation: 

      (4.1) 

    (4.2) 

  

        (4.3) 

        (4.4)  

       (4.5) 

       (4.6) 

 

The objective Equation 4.1 is to minimize the cycle time of the robotic assembly 

line. Equation 4.2 defines the precedence relationship among the tasks. It ensures that 

for a pair of tasks with precedence relation, the precedent cannot be assigned to a 

workstation after the one to which its successor is assigned. Equation 4.3 ensures that 

each task has to be assigned to one workstation and Equation 4.4 ensures that each 

workstation is equipped with one robot. It is notable that objective is non-linear. Hence, 

it is hard for traditional exact optimization techniques to solve the problem. 

 U-shaped RALB problem - minimizing cycle time 

Assembly tasks of different types are performed at each work station. These tasks 

are to be completed to produce a final product. Precedence constraints are specified and 

it determines the order in which tasks should be executed. Tasks are to be assigned to 

the work station and the best robot needs to be allotted to the work station to perform 

the tasks. The assembly of the tasks is to be performed in a U-shaped robotic assembly 

line with a main objective of minimizing the cycle time.  

1
1 1

min max . .
N Na w

ih is sh
s Nw i i

c t x y
 

 


 




1 1

. . 0 ;
N Nw w

is js

s s

s t  s.x s.x ,    i pre(j) j
 

    

1

1
Nw

is

s

x          i


 

1

1
Nw

sh
s

y          s


 

0 1isx { , }    s,i 

0 1 ,shy { , }    h s 



Chapter 4 

Mathematical models for RALB problems 

 

Page | 40  

 

4.2.1 Assumptions and Mathematical Model 

The assumptions used for the mathematical model for U-shaped robotic assembly 

line are same as the one mentioned in Section 4.1.1 and these assumptions are based on 

the assumptions used by Levitin et al. (2006) and Gao et al. (2009) for RALB problems. 

Based on the definition proposed by Gutjahr and Nemhauser (1964) for a straight line 

assembly line problem, Miltenburg and Wijngaard (1994) presented a definition for the 

simple U-shaped assembly line problem. Gao et al. (2009) presented a formulation for 

type-II RALB. The formulation presented in this thesis is based on these definitions. 

The model presented is for U-shaped robotic assembly line balancing problem with an 

objective of minimizing cycle time when number of workstations is fixed.  

Zero-one integer programming (IP) model for this problem is formulated as 

follows: 

 The problem is, for a given set of tasks F= {g | g = 1, 2, .. .,n}, a set of precedence 

constraints  P = { (i, j) | task i must be completed before task j }, a set of task times T = 

{ t(g) | g = 1, 2, ... ., n }, and a cycle time C, find a collection of subsets of F, (L1, L2, . 

. . , LN) where La = {g|  task g is done at workstation a } and the workstations and tasks 

are arranged in a U-shape. 

 Decision Variables  

 

 

 Zero-One Integer formulation: 

     (4.7) 

For each task j: 

    (4.8) 

  1          

  0,  { if task i is assigned to workstation s

is otherwisex 

1     is    

0,  { if robot h allocated to workstation s

sh otherwisey 
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       (4.9) 

        (4.10) 

       (4.11) 

       (4.12) 

The objective of Equation 4.7 is to minimize the cycle time of the robotic assembly 

line. Equation 4.8 ensures the precedence constraints are not violated on the U-shaped 

assembly line. Equation 4.9 ensures that each task has to be assigned to one workstation 

and Equation 4.10 ensures that each workstation is equipped with one robot. Objective 

function is non-linear. Hence, it is hard for traditional exact optimization techniques to 

solve the problem. 

 RALB problem - minimizing energy consumption 

In an assembly line, different assembly tasks are to be performed by each 

workstation to assemble and produce a given product, while precedence constraints of 

the tasks are specified. A set of workstations and robots are considered in the assembly 

line. In a balanced assembly line, tasks needs to be assigned to the workstations and 

best robot needs to be allotted to the station to perform the assembly tasks with 

minimum energy consumption. The mathematical model presented here is similar to 

the one presented in previous sections except the objective function. The objective in 

this model is to minimize the energy consumption in straight and U-shaped robotic 

assembly line. Other than the assumptions presented in Section 4.1.1 and 4.2.1 few new 

assumptions are incorporated for developing this model.   

4.3.1 Assumptions and Mathematical Model 

This section presents the new set of assumptions used for the mathematical model 

development.  

Assumptions considered are: 

 Robots power consumptions are assumed. Using the power of each robot, energy 

consumption is calculated. 

1

1                          
Nw

is

s

x          i


 

1

1
Nw

sh

s

y          s


 

0 1isx { , }    s,i 

0 1 ,shy { , }    h s 



Chapter 4 

Mathematical models for RALB problems 

 

Page | 42  

 

 The planning horizon is not included in the model. The proposed algorithm and 

the models are tested using the benchmark problems available in the literature. 

Hence, the maintenance operations are not considered in this study. 

According to the assumptions considered, a zero-one integer programming (IP) 

model for this problem is formulated as follows: 

 Decision Variables  

 

 

 Zero-One Integer formulation: 

      (4.13) 

    (4.14) 

       (4.15) 

        (4.16) 

       (4.17) 

       (4.18)  

The objective of the energy based model (Equation 4.13) is to minimize the total 

energy consumption. Equation 4.14 defines the precedence relationship among the 

tasks. It ensures that for a pair of tasks with precedence relation, the precedent cannot 

be assigned to a workstation after the one to which its successor is assigned. Equation 

4.15 ensures that each task has to be assigned to one workstation and Equation 4.16 

ensures that each workstation is equipped with one robot. Objective is non-linear. 

Hence, it is hard for traditional exact optimization techniques to solve the problem. 
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The model presented is for straight robotic assembly line, in case of U-shaped 

robotic assembly line precedence relationship equation changes. Hence Equation 4.14 

is replaced by Equation 4.19. 

For each task j: 

   (4.19) 

 RALB problem - minimizing assembly line cost 

A robotic assembly line consists of several workstations, each of them being 

responsible for performing a specific set of tasks done by a robot. The cost of 

performing the tasks is different from robot to robot, since the robots are manufactured 

from different vendors with different capabilities and specifications.  Selection of most 

suitable robot among many alternatives to perform a set of tasks in a particular 

workstation with a specific objective is a typical optimization problem. RALB problem 

considered here is to find the optimal set of tasks allotted to each work stations such 

that precedence constraints between tasks or other constraints are met and selection of 

suitable robot type to execute the tasks. The objective considered here is minimization 

of overall assembly line cost. 

4.4.1 Assumptions and Mathematical Model  

The following assumptions are considered in the model formulation of proposed 

robotic assembly line balancing problem.  

 Robot initial costs are assumed. It includes installation, maintenance and service 

cost for the entire service life. The service life is limited to 5 years. 

 All robots are working 20hrs a day and 300 days in a year. 

 Equivalent uniform annual costs of all robots are calculated with annual fixed 

interest rate @10%. 

A zero-one integer programming (IP) model for this problem is formulated as follows: 

 Decision Variables  
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 Zero-One Integer formulation: 

     (4.20) 

    (4.21) 

       (4.22) 

        (4.23) 

       (4.24) 

       (4.25) 

The objective of the energy based model (Equation 4.20) is to minimize the total 

assembly line cost. Equation 4.21 defines the precedence relationship among the tasks. 

It ensures that for a pair of tasks with precedence relation, the precedent cannot be 

assigned to a workstation after the one to which its successor is assigned. Equation 4.22 

ensures that each task has to be assigned to one workstation and Equation 4.23 ensures 

that each workstation is equipped with one robot. It is notable that objective function is 

non-linear. Hence, it is hard for traditional exact optimization techniques to solve the 

problem. 

The model presented is for straight robotic assembly line, in case of U-shaped 

robotic assembly line precedence relationship equation changes. Hence Equation 4.21 

is replaced by Equation 4.26. 

For each task j: 

   (4.26) 
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 RALB problem - maximizing line efficiency 

Different assembly tasks are performed by each station to produce a final product 

in an assembly line. Assembly lines are of two layouts (straight and U-shaped layout). 

In a balanced robotic assembly line, tasks are assigned to workstation and the best robot 

is allotted to the workstation to perform the task allotted. Major objective of this 

problem is to achieve maximum line efficiency for the assembly line. In case of straight 

robotic assembly line, the set of possible assignable tasks are decided by those tasks 

whose predecessors are already assigned. In case of U-shaped robotic assembly line, 

the set of assignable tasks is determined by all those tasks whose predecessors or 

successors have already been assigned. 

4.5.1 Assumptions and Mathematical Model 

Assumptions considered for development of this model is similar to the assumption 

used for developing the mathematical model where the objective of minimizing the 

cycle time is considered.  

A zero-one integer programming (IP) model for this problem is formulated as follows: 

 Decision Variables  

 

 

 Zero-One Integer formulation: 

        (4.27) 

    (4.28) 

       (4.29) 

        (4.30) 
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       (4.31) 

       (4.32) 

The objective of the model is to maximize the line efficiency. Equation 4.28 

defines the precedence relationship among the tasks. It ensures that for a pair of tasks 

with precedence relation, the precedent cannot be assigned to a workstation after the 

one to which its successor is assigned in case of straight robotic assembly line. Equation 

4.29 ensures that each task has to be assigned to one workstation and Equation 4.30 

ensures that each workstation is equipped with one robot. Objective function of the 

model is non-linear and therefore it is hard for traditional exact optimization techniques 

to solve the problem. 

The model presented is for straight robotic assembly line, in case of U-shaped 

robotic assembly line precedence relationship equation changes. Hence Equation 4.28 

is replaced by Equation 4.26. Line efficiency of a given assembly line is the direct 

indication of the efficiency (Khaw and Ponnambalam, 2009). The line efficiency is 

calculated as follows.   

      (4.33)         

Where Sk is the kth workstation time, Nw is the total number of workstations and c 

is the cycle time.  

 Summary  

The assumptions and mathematical models proposed for different robotic assembly 

line balancing problems with different objective functions are presented in this chapter.  

Zero-One Integer formulation is presented for the objective of minimizing the 

cycle time in a straight robotic assembly line. Assumptions considered to solve the 

problem are also presented. The chapter presents the mathematical model for U-shaped 

robotic assembly line with the objective of minimizing the cycle time. The set of 
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assumptions for this model is same as the one presented for the straight robotic 

assembly line.  

Mathematical model to minimize the energy consumption in a robotic assembly 

line is presented. The assumptions considered for this model is also presented.  The 

variation needed in the model when the layout of the assembly line considered is U-

shaped is also explained.  

The mathematical model for the objective of minimizing the assembly line cost is 

also discussed along with the assumptions considered. The model is presented for the 

straight and U-shaped layout of robotic assembly line.  

Mathematical model for the objective of maximizing line efficiency in a straight 

and U-shaped robotic assembly line is also presented. The assumptions for this model 

are same as the assumptions used for the model where the objective is to minimize the 

cycle time. 

 



 

CHAPTER 5 

5 Particle Swarm Optimization & Hybrid 

Particle Swarm Optimization for RALB 

Problem to Minimize Cycle Time 

Metaheuristics have been widely used for solving combinatorial optimization 

problems. This is mainly due to the increasing computational speed of computers, 

which helps the use of metaheuristics to solve real world problems. Metaheuristics are 

often hybridized with local search methods to improve the rate of convergence. 

Different metaheuristics such as genetic algorithm, simulated annealing and tabu search 

are proposed in the literature to solve assembly line balancing problems. In this section 

different metaheuristics like Particle swarm optimization, PSO Variants and hybrid 

Cuckoo search- PSO are proposed to solve robotic assembly line balancing problems 

with objective of minimizing the cycle time of the robotic assembly line. The model 

will be referred to as RALB-2 in this thesis. The solution to the RALB problem includes 

an attempt for optimal assignment of robots to line stations and a balanced distribution 

of work between different stations.  

In this research metaheuristic algorithms like particle swarm optimization, 

differential evolution and hybrid algorithms are implemented to solve robotic assembly 

line balancing problems with an objective of minimizing cycle time. PSO is used due 

to the easiness in implementation, faster convergence and very less parameters to fine 

tune (Wu et al., 2011). Hybridized metaheuristics are also implemented to solve RALB 

problems.  Search capability of the algorithm is improved by hybridizing metaheuristics 

and this helps to improve the quality of the solution. 

 Standard Particle Swarm Optimization for straight RALB 

In the recent years, extensive study has been done to understand the social 

psychology of fish schools, birds flock and bug swarm. It is observed that social 

behavior play a very crucial role in the survival of species and its adaptation to the 

environment change. Particle swarm optimization (PSO) is a relatively new approach 

in the modern metaheuristics for optimization. PSO is one of the evolutionary 
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computation methods. Particle Swarm Optimization (PSO) is a computational method 

developed by Kennedy and Eberhart (1995). This method is motivated by simulation 

of social behavior. This algorithm has been widely used to solve optimization problems. 

Ease of implementation, robustness and very few parameters to adjust makes PSO very 

attractive among researchers. PSO is a population based search algorithm and is 

initialized with a random set of population solutions, called particles (swarm). Each 

particle in PSO is associated with a velocity.  

PSO originates from social psychology as a simulation of socio-cognitive 

processes to model abstract concept of swarm intelligence that has the following several 

advantages: 

 Easy to implement 

 Few parameters to fine tune 

 Relatively smaller population size 

 Relatively small number of function evaluations to converge 

 Faster computation 

Particles fly through the search space with a specified velocity which is 

dynamically adjusted based on their historical behaviors. For each iteration ‘t’, each 

particle ‘i’ keeps tracks of its coordinates in the problem space which are associated 

with the best solution it has achieved so far. This value is called local best (ePt
i). Another 

best value which is tracked is the overall best value, and its location obtained so far by 

any particle in the population. This location is called global best (G). Based on the 

concept proposed by Kennedy and Eberhart, in every iteration, there is a change in the 

velocity of each particle which makes the move towards possibly new ePt
i and Gt.  

Pseudo code of the standard PSO algorithm is presented in Figure 5.1. 



Chapter 5 

PSO & Hybrid PSO for RALB problem to minimize cycle time 

 

Page | 50  

 

for each particle  

    Initialize particle 

end 

do 
    for each particle  

        Calculate fitness value 

        If the fitness value is better than the best fitness value (Local Best) in history 

            set current value as the new Local Best 

end 

    Choose the particle with the best fitness value of all the particles as the Global Best 

    for each particle  

        Calculate particle velocity according Equation 5.1 

        Update particle position according Equation 5.2 

    end  

while maximum iterations criteria is not attained 

Figure 5.1 Pseudo code of standard PSO 

The generic PSO algorithm for a problem is given below: 

Step 1: Initialization of the populations: Generate set of particles with random position 

or values and initial velocities. 

Step 2: For each particle, evaluate the optimization function yielded by the particle.  

Step 3: Initialize the particle best. Each particle remembers the best result achieved so 

far (personal best) and exchanges information with other particles to determine the best 

particle (global best) among the swarm. 

Step 4: Apply velocity and move the particle according to Equation 5.1 and Equation 

5.2, respectively:  

Velocity update equation: 

   (5.1) 

Particle’s moves from their current position to the new position using Equation 

5.2  Each particle’s position is updated in each generation by adding the velocity vector 

to the position vector.  

Position update equation: 

         (5.2) 

1
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Where U1 and U2 are known as velocity coefficients (random numbers between 0 

and 1), c1, c2and c3 are known as acceleration coefficients, vi
t is the initial velocity, ePt

i 

is the Local best, Gt is the global best solution at generation ‘t’ and Pi
t is the current 

particle position. The parameters U1, U2 are used to maintain the diversity of the 

population, and they are uniformly distributed in the range of zero and one and the 

values of U1 and U2 varies for all iterations.  

Step 5: Go back to step until the termination criterion is met.  

The Equation 5.1 and 5.2 describe the trajectory in which the particles fly. Equation 

5.1 describes how the velocity is updated and Equation 5.2 describes the position update 

of the particle which is flying in the search space. Equation 5.1 consists of three parts. 

First part is known as momentum part. The velocity cannot be changed abruptly and it 

is changed from the current velocity. Second part is known as cognitive part which 

signifies the private thinking of itself learning from its own flying experience. Third 

part is known as social part which represents the collaboration among particles learning 

from the group flying experience (Blondin, 2009).  

In Equation 5.2, if the sum of three parts on the right side exceeds a constant value 

specified by the user, then the velocity on that dimension is assigned to be vmax that is 

particles velocity is restricted to a maximum velocity vmax which is an important 

parameter. Large value of vmax helps the particles to fly past the good solution areas. 

Small vmax might lead particles to fall in the local minima, which makes them unable to 

fly into better solution area. From the literature, it could be observed that vmax is usually 

set as a constant value. But researchers have developed dynamically changing vmax for 

improving the performance of PSO. The velocity calculation applied in this research is 

adopted from the PSO algorithm developed by Clerc (2004).  

Various operations performed for computing particle velocity and updating particle 

positions (Rameshkumar et al., 2005) are explained below: 

Subtraction (position – position) operator: Let us assume to positions x1 and x2 

representing two different task sequences. The difference of x2 - x1 is a velocity v. In 

the Equation 5.1, for example subtracting two positions i.e. (epi
t – Pi

t) results in a 

velocity which is a set of transpositions. 
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Addition (position + velocity) operator: Let us assume x to be the position and v to 

be the velocity of the particle. New position x1 is calculated by applying the first 

transposition of v to x, i.e, x1= x + v then the second one to the result etc. 

Addition (velocity + velocity) operator: Let us assume two velocities v1 and v2. In 

order to calculate v1 + v2, the list of transpositions which contains first the 'ones' of v1, 

followed by the 'ones' of v2 is considered. 

Multiplication (Coefficient × velocity) operator: Let c be the learning coefficient and 

v be the velocity. c × v results in a new velocity. 

Let us assume the following data for a numerical illustration of velocity and 

position update (without reference to iteration) in a RALB problem with 11 tasks: 

Local Best  ePt
i : (1,2,6,3,4,5,7,8,10,9,11), Global Best G:(1,2,3,4,5,6,7,8,9,10,11) 

Particle Pi
t : (1,2,3,6,5,4,7,8,10,9,11)  and Initial velocity vi

t: (2, 3) (4, 5). 

Initial value of velocity is randomly generated with length of the velocity pair 

restricted to 2. Similarly, velocity index is computed for other particles. These 

sequences represent 11 task problem arranged as per the precedence order for RALB 

problem.  The number of velocity pair for the problem considered is 2. Parameters 

chosen for the example: c1=1, c2=1 and c3=2 are the acceleration coefficients and U1, 

U2, U3 ranges between 0 and 1. Let U1=0.8, U2=0.3. Using Equation 5.1 the velocity of 

the particle is calculated. If the coefficient value is 0.8, then 80 percent of the velocity 

components are randomly selected and are applied to generate velocity of the particle 

and similarly position of the particle is also updated. 

The velocity for the particle is updated using Equation 5.1. 

vi
t+1 = (2,3)(4,5)+0.8 x [(1,2,6,3,4,5,7,8,10,9,11)–(1,2,3,6,5,4,7,8,10,9,11)]+0.6 x 

[(1,2,3,4,5,6,7,8,9,10,11)-(1,2 ,3,6,5,4,7,8,10,9,11)] 

      = (2,3)(4,5)+0.8 x (2,3)(4,5)  +0.6 x (3,5)(8,9) = (2,3)( 4,5 )(8,9 ) 

Position of the particle ‘i’ is updated using Equation 5.2. Particles move from their 

current position to the new position. 

Pi
t+1 = (1,2,3,6,5,4,7,8,10,9,11)+(2,3) (4,5)(8,9) = (1,3,2,5,6,4,7,10, 8,9,11) 
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In this chapter, PSO, PSO variants and hybridized Cuckoo Search-PSO is proposed 

to solve RALB problems. Results obtained from these algorithms are compared with 

benchmark results obtained for RALB problem with an objective of minimizing the 

cycle time.  

5.1.1 Implementation of PSO 

The implementation details of PSO on RALB-2 problem with an objective of 

minimizing cycle time are explained in this section.  

a) Population Initialization  

Metaheuristic algorithms generally start with a randomly generated search space 

(Huang et al., 2014) which evolves iteratively to find nearer to optimal solutions. 

Instead of starting the search process from a set of random solutions, a set of priority 

rules reported in the literature are used to reach better solution at a faster rate.  

Table 5.1 Initial population generated using the heuristic rules 

Methods Particle Generated 

Maximum Rank Positional Weight 1 2 6 3 4 5 7 8 10 9 11 

Minimum Inverse Positional Weight 1 5 4 3 2 7 9 6 8 10 11 

Minimum Total Number Of  Predecessors Tasks 1 2 3 4 5 6 8 10 7 9 11 

Maximum Total Number of Follower Tasks 1 2 3 4 5 6 7 8 9 10 11 

Maximum Task Time 1 5 2 6 3 4 7 8 10 9 11 

Minimum Task Time 1 4 3 2 5 7 9 6 8 10 11 

 

Table 5.2 Performance time for 11 tasks by 4 robots/workers 

Tasks Robot 1 Robot  2 Robot 3 Robot 4 Average Time ( ) 
1 81 37 51 49 54.5 

2 109 101 90 42 85.5 

3 65 80 38 52 58.75 

4 51 41 91 40 55.75 

5 92 36 33 25 46.5 

6 77 65 83 71 74 

7 51 51 40 49 47.75 

8 50 42 34 44 42.5 

9 43 76 41 33 48.25 

10 45 46 41 77 52.25 

11 76 38 83 87 71 

Six particles are generated using the six heuristic rules (Ponnambalam et al., 2000): 

maximum rank positional weight, minimum inverse positional weight, minimum total 

number of predecessors tasks, maximum total number of follower tasks, maximum and 

minimum task time. Remaining swarm particles are randomly generated. There are 
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twenty five particles in the initial swam.  Table 5.1 shows set of particles formed using 

those methods and remaining particles are generated randomly which are satisfying the 

precedence condition. The precedence graph shown in Figure 5.2 and processing time 

shown in Table 5.2 are used to generate the information provided in Table 5.1. 

 

Figure 5.2 Precedence Graph of 11 task problem 

It is to be noted that the particle structure is a string, consists of tasks to be 

performed in RALB problem satisfying the precedence constraints. After the swarm is 

initialized, each particle is assigned with random velocity and length of the velocity of 

each particle is generated randomly which is explained in the next section. The six 

heuristic rules used are explained with an example for better understanding. 

1. Maximum Rank Positional Weight 

Each task is prioritized based on the cumulative assembly time associated with 

itself and its successors. The steps for forming the sequence using Maximum Rank 

Positional Weight are as below: 

1. Let S (i)  Set of successors of tasks i.  

2. Tasks ordered such that i < r implies i not  S(r).  

3. Task r is then a member of S (i) only if there is an immediate successor 

relationship from i to r.  

4. Each task has its own task time using which the Positional Weight of a particular 

task i is calculated. 

       (5.3) 

5. Based on the positional weight the tasks are ranked in descending order. Sequence 

formed based on the rank is: 1 2 6 3 4 5 7 810 9 11. Table 5.3 shows the rank 

calculated based on positional weight.  
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Table 5.3 Maximum Rank Positional Weight 

Tasks Average Immediate Successors Pwi Rank 

1 54.5 2,3,4,5 344.75 1 

2 85.5 6 290.25 2 

3 58.75 7 190.75 4 

4 55.75 7 187.75 5 

5 46.5 7 178.5 6 

6 74.0 8 204.75 3 

7 47.75 9 132 7 

8 42.5 10 130.75 8 

9 48.25 11 84.25 10 

10 52.25 11 88.25 9 

11 36.0 0 36 11 

 

2. Minimum Inverse Positional Weight 

Positional Weight of each task is calculated based on its immediate predecessor’s 

cumulative task time. 

1. Let P (i)  Set of predecessors of tasks i.  

2. Tasks ordered such that i < r implies i  P(r).  

3. Task i is then a member of P(r) only if there is an immediate predecessor 

relationship from r to i.  

4. Each task has its own task time using which the Positional Weight of a particular 

task i is calculated. 

     (5.4) 

6. Based on the positional weight the tasks are ranked in ascending order. Sequence 

formed is 1 5 4 3 2 7 9 6 8 10 11. Table 5.4 shows the rank calculated based on 

positional weight.  

Table 5.4 Minimum Inverse Positional Weight 

 

 

 


)(iPr ri ttPw

Tasks Average Time Immediate Predecessors Pwi Rank 

1 54.5 - 54.5 1 

2 85.5 1 140 5 

3 58.75 1 113.25 4 

4 55.75 1 110.25 3 

5 46.5 1 101 2 

6 74 2 214 8 

7 47.75 3,4,5 161 6 

8 42.5 6 256.5 9 

9 48.25 7 197 7 

10 52.25 8 308.75 10 

11 36 10,9 344.75 11 
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3. Minimum Total Number of Predecessor tasks 

Steps involved in this method 

1. Find the total number of predecessors of each task. 

2. Sort the tasks based on the total number of predecessors in ascending order 

3. After sorting the final sequence is formed. Sequence formed is 1 2 3 4 5 6 8 10 7 

9 11. Table 5.5 presents the details used for this heuristic.  

Table 5.5 Total Number of Predecessor tasks 

 

Tasks 

Total Number of 

Predecessors 

Total Number of 

Predecessors after sorting 

1 0 0 

2 1 1 

3 1 1 

4 1 1 

5 1 1 

6 2 2 

7 4 3 

8 3 4 

9 7 4 

10 4 7 

11 10 10 

 

4. Maximum Total Number of Follower Tasks 

1. Steps involved in this method 

2. Find the total number of successors of each task. 

3. Sort the tasks based on the total number of successors in descending order 

4. After sorting the final sequence is formed. So sequence formed is 1 2 3 4 5 6 7 8 

9 10 11. Table 5.6 shows the details used to form a sequence in this heuristic. 

Table 5.6 Maximum Total Number of Follower Tasks 

 

 

 

Tasks 

Total Number of 

Successors 

Total Number of 

Successors  after sorting 

1 10 10 

2 4 4 

3 3 3 

4 3 3 

5 3 3 

6 3 3 

7 2 2 

8 2 2 

9 1 1 

10 1 1 

11 0 0 
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5.Maximum Task Time 

  The average task time is used for the formation of the sequence. Task is sorted in 

descending order with respective to their average task time. And final sequence is 

formed based on the precedence condition. Based on the precedence the sequence 

formed is 1 5 2 6 3 4 7 8 10 9 11. Table 5.7 presents the details of the average task time. 

Table 5.7 Maximum Total Number of Follower Tasks 

Tasks Average Task time (Sorted) 

2 85.5 

6 74 

3 58.75 

4 55.75 

1 54.5 

10 52.25 

9 48.25 

7 47.75 

5 46.5 

8 42.5 

11 36 

 

 

6.Minimum Task Time 

  The average task time is used for the formation of the sequence. Task is sorted in 

ascending order with respective to their average task time. And final sequence is formed 

based on the precedence condition. So the sequence formed meeting the precedence 

constraints is 1 4 3 2 5 7 9 6 8 10 11. Table 5.8 presents the details of average task time.  

Table 5.8 Maximum Total Number of Follower Tasks 

Tasks Average Task time (Sorted) 

11 36 

8 42.5 

5 46.5 

7 47.75 

9 48.25 

10 52.25 

1 54.5 

4 55.75 

3 58.75 

6 74 

2 85.5 

 

Remaining particles are formed by forward, backward and double swapping and 

the precedence constraints are met. 
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b) Initial Velocity 

Initial velocities for the particles are randomly generated and they represent the 

number of pairs of transpositions. Table 5.9 shows the maximum number of velocity 

pairs used. From second iteration onwards velocity update Equation 5.1 is used. Based 

on the problem size the numbers of velocity pairs are selected.  From Table 5.9, 

different task ranges are presented for which the maximum numbers of velocity pairs 

are presented. The number of velocity pairs is selected for different problems depending 

on the tasks size. The number of velocity pairs is kept same throughout all generations. 

For example, if the task size within the range of 0-20, the number of velocity pair to be 

selected should be 4. If the numbers of velocity pairs are more than the required number 

of pairs in subsequent generations, the excess pairs are excluded. 

Table 5.9 Maximum number of Velocity Pairs 

Task Range Maximum Velocity Pairs 

0-20 4 

20-40 8 

40-60 10 

60-80 25 

80-100 30 

100-120 40 

120-140 50 

140-200 65 

200-300 75 

 

Two procedures are developed for assignment of tasks and robots to different 

workstations: recursive procedure and a successive assignment procedure. These 

procedures are used for finding out the cycle time of the assembly line. This is the 

objective function which is evaluated using PSO.  Recursive and consecutive 

procedures developed for the RALB problem in a straight robotic assembly line, are 

discussed and illustrated in detail in the following sections 

c) Solution Representation and Fitness Evaluation Cycle time minimization for 

straight RALB 

Each sequence represents a solution which corresponds to a particle in PSO. A 

sample sequence is shown in Figure 5.3(a) is presented for 11 task RALB problem. 

Each integer in a sequence represents the task in an assembly line which needs to be 

performed by a robot in a particular work station. The number of tasks to be assigned 

to each work station is based on the cycle time.  The tasks and robot allocation after 
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decoding the sequence are also shown in Figure 5.3(b). Each integer in the sequence 

shown in Figure 5.3(a) is ordered according to their technological precedence 

constraints. Assigning the tasks to workstation and the robot assignment for the 

workstation is done using two heuristic procedures: recursive assignment and 

consecutive assignment procedure.   

 

(a) 

 

(b) 

Figure 5.3 a) Sample Task Sequence b) Tasks assigned after decoding the 

sequence 

Cycle time is used as the fitness value to be evaluated. Tasks and robots are 

assigned to workstation using these heuristic procedures proposed by (Levitin et al., 

2006). 

Recursive Allocation Method (Cycle Time Calculation) 

The method helps in assigning tasks to workstations in such a way the precedence 

relationship is not violated.  The data required for this method are: performance time, 

number of robots and precedence relationship. Based on the performance time data, 

using the heuristics particles are generated which is used for the allocation procedure. 

Average performance time of each task is required for executing this method. Recursive 

heuristic method is used for finding the cycle time of the assembly line (Levitin et al., 

2006).   
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The recursive procedure divides the sequence ‘sq’ into M = Nw parts, and tries to 

achieve the maximal equality of total execution times for all stations. ‘sq’ is the feasible 

sequence generated based on the heuristics.  

The average performance time for each task ‘i’ is evaluated: 

        (5.5)                            

 where  if and  otherwise. 

The procedure divides the sequence into two parts (based on the set of elements 

from the left position pl=1 to the right position pr=Na) in such a way that it satisfies the 

A/B ratio, where A= [M/2] and B =M -A 

To find this position i (pl ≤ i ≤ pr) such that Time Ratio value (TR). 

                      (5.6) 

The value of time ratio (TR) should be as close as possible to the ratio A/B.  

Using Equation 5.6, value of TR is calculated when the initial sequence is divided 

into two parts where, pl=1;pr=i and pl=i+1;pr=Na. Resulting parts are further divided 

into M=A and M = B parts respectively using the same procedure recursively until M 

reaches 1. At the end of the recursion, the sequence is divided based on the above 

conditions and the workstations are fixed. Based on the task allocation, procedure 

allocated robots which can perform the allocated tasks in minimum performance time.  

An example of the procedure is presented in Figure 5.4 and Figure 5.5 based on 

the performance time data available in Table 5.2 and precedence graph in Figure 5.2. 

Figure 5.4 presents the recursive allocation procedure for the sequence of tasks 1-3-2-

4-5-6-7-9-8-10-11; this sequence meets the precedence relationship. From the Figure 

5.4 task to be allocated to each workstation is identified and in Figure 5.5 the shaded 

boxes represents the robot which needs to be selected for performing the tasks allocated 

to the workstation. Robots are selected based on the minimum robot performance time. 

The values below the boxes in Figure 5.5 shows the workstation time which is 

calculated based on the robot task time. Figure 5.6 shows the final allocation done based 

on the recursive procedure. And the cycle time obtained from the procedure is 199.  
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Figure 5.4 Recursive Procedure for splitting tasks to the given workstations 

Figure 5.5 Allocation of the best fit robot - recursive allocation procedure 

Figure 5.6 Final solution based on recursive allocation procedure 

Consecutive Allocation Method (Cycle Time Calculation) 

The consecutive allocation method is used for solving RALB problems for the task 

and robot allocation. This procedure helps in calculating the cycle time for the straight 

robotic assembly line (Levitin et al., 2006). This heuristic method is used to minimize 
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the cycle time of an assembly line. This procedure helps in calculating the cycle time 

for the straight robotic assembly line. An initial cycle time, C0 is considered for starting 

the procedure. The procedure aims at assigning tasks and robots consecutively to the 

workstations in an efficient manner. The procedure allows the assignment of maximum 

number of tasks to be performed at each workstation by the available robots. C0 value 

is i4ncremented by one if all tasks are not possible to be allocated to the workstations. 

The stepwise procedure of the consecutive heuristic is explained in this section. 

Step 1: Initial value of C0 is the average of the minimum performance time of robots 

for the tasks. C0 is calculated as follows:  

 Initial assembly line time     (5.7) 

The robot performance times shown in Table 5.2 are used for the illustration. The 

following feasible sequence of tasks which meets the precedence constraints is 

considered for illustration.  

 

Initial C0 for the sample data is calculated and it is 109. 

C0= [37+42+38+40+25+65+40+34+33+41+38]/4=108.25. Here 

37,42,38,40,25,65,50,34,33,41,38 are the minimum robot task times (refer Table 5.2). 

Step 2: Workstation is opened and tasks are allocated based on the sequence in the order 

of occurrence, procedure checks if one or more robot could perform the allocated tasks 

within C0. For each workstation‘s’ it has a set of preferred/ allotted robots H which is 

defined as follows:   

    (5.8) 

Here, m (h) is the maximal number of activities a robot h can perform in the given 

sequence sq during a time lesser than C0 . 

      (5.9) 

Next, it defines the robot (worker) to be assigned to the workstation s as: 
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      (5.10)
 

 

Step 3: Start position (p1s+1) for the next station is calculated 

       (5.11) 

Step 2 is repeated until all tasks are assigned to given number of workstations. 

Step 4: If all tasks cannot be assigned to the given number of workstations within the 

initial C0, C0 is incremented by ‘one’ and steps 2 and 3 are repeated until all the tasks 

gets allotted to the give number of workstations.  

Step 5: Robot is assigned to the workstation based on the minimum robot performance 

time for the allotted tasks. 

Step 6: The cycle time of the assembly line is evaluated. The workstation time which 

is the maximum among all the workstation time is the cycle time of the assembly line.  

Figure 5.7 represents the allocation when C0 is 109; tasks 8, 10 and 11 remain 

unassigned. C0 was incremented by one to allocate all the tasks and procedure finds the 

solution for all the four workstations after C0 reaches 143 as shown in Figure 5.8. Cycle 

time of the given sequence is 143 when allocation is done based on consecutive 

allocation procedure. In Figure 5.8, shaded portion shows the robot which is allotted to 

the workstation to perform the tasks.  Values shown next to the boxes are the task 

performance time for the corresponding robot. Figure 5.9 shows the final allocation 

done based on the recursive procedure. And the cycle time obtained from the procedure 

is 143. 

 

Figure 5.7 Task and Robot allocation - consecutive method with initial C0 

( ) , if ( ) ( )   s sh s k T k T h h H   

11 1 1 ( ( )) 1s w sp pr p m h s     
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Figure 5.8 Allocation of best fit robot - consecutive allocation procedure 

 

Figure 5.9 Final solution based on consecutive allocation procedure 

d) Exchange Procedure (Solution Improvement) 

A local exchange procedure is used to improve the quality of the solution. The best 

solution obtained for all iteration is subjected to the local exchange procedure to find 

out if any improvement can be achieved. The procedure is explained below: 

Step 1: The final global best and final workstation assignments obtained from PSO is 

used as the input for the local exchange procedure. 

Step 2: Procedure finds the station with highest cycle time and tries to shift a task to the 

adjacent workstations with lower cycle time in such a manner that task added to the 

adjacent station does not exceed the cycle time of the station from where we removed. 

Now consider two workstations f and q with total execution times Tf and Tq such 

that Tf >Tq. If shifting of activities from station f to q is feasible, the new execution time 

after shifting is as follows: 

        (5.12) 

         (5.13) 

The exchange is worth-while if 

*

,f f r iT T t 

irqq tTT ,
* 
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        (5.14) 

Step 3: From the solution obtained from the above Step 2, find the station with the 

lowest cycle time and try to shift a task from the adjacent workstations to it. The 

workstation h with minimum cycle time (Th) is found and the adjacent workstation g 

such that . If shifting of activities from g to h is feasible, the new execution time 

is as follows 

         (5.15) 

        (5.16) 

The exchange is worth-while if 

         (5.17) 

This procedure is used in exchange procedure to distribute the tasks amongst the 

workstations to get a balanced cycle time between them. 

Step 4: Repeat step 2 and step 3 until termination condition is satisfied. The termination 

condition assumed to be 25 iterations. 

An example of exchange procedure is explained below in Table 5.10. 25-9 problem 

of RALB benchmark data is chosen to illustrate the exchange procedure.  

The precedence relations of tasks and processing times of the 25 tasks by the 9 

robots available in the literature are presented in Table 5.11.  

The procedure starts with a cycle time of 127. After performing the Step 2, cycle 

time is reduced to 125, procedure proceeds with Step 3 by checking for lowest cycle 

time and tries to allocate tasks to workstation with lower cycle time. Step 2 and Step 3 

are repeated for maximum of 25 iterations and cycle time was reduced to 114. Exchange 

procedure can be performed only if the precedence relationship is not violated. 

 

 

 

 

 

fqf TTT },max{ **

h g
T T

irgg tTT ,
* 

irhh tTT ,
* 

ghg TTT },max{ **



Chapter 5 

PSO & Hybrid PSO for RALB problem to minimize cycle time 

 

Page | 66  

 

Table 5.10: Illustration of Local Exchange Procedure 

Sequence produced using  PSO :  

1  2  3  4  8  9  5  6  7  11  12  15  17  23  13  14  16  19  20  21  25  10  24  22  18 

Step1: Task and Robot Assigned for 

the given sequence 
 

Step 3: Shifting activities to 

workstations with lowest C.T. 

Workstations 

and Tasks 
Robot Cycle Time  

Workstations 

and Tasks 
Robot Cycle Time 

S1: 1 2 4 59  S1: 1 2 3 4 114 

S2: 3 4 8 7 117  S2: 4 8 2 81 

S3: 9 5 6 7 94  S3: 9 5 6 7 7 116 

S4: 7 11 12 7 127  S4: 11 12 7 105 

S5: 15 17 23 4 114  S5: 15 17 23 4 114 

S6: 13 14 16 19 7 125  S6: 13 14 16 19 7 125 

S7: 20 21 25 8 105  S7: 20 21 25 8 105 

S8: 10 24 4 63  S8: 10 24 4 63 

S9: 22 18 7 80  S9: 22 18 7 80 

       

Step 2: Shifting activities from 

workstations highest C.T. 
 

Step 4: Repeat steps 2 and 3 for 25 

iterations to get the solution 

Workstations 

and Tasks 
Robot Cycle Time  

Workstations 

and Tasks 
Robot Cycle Time 

S1: 1 2 4 59  S1: 1 2 3 4 114 

S2: 3 4 8 7 117  S2: 4 8 9 7 107 

S3: 9 5 6 7 7 116  S3: 5 6 7 7 91 

S4: 11 12 7 105  S4: 11 12 7 105 

S5: 15 17 23 4 114  S5: 15 17 23 4 114 

S6: 13 14 16 19 7 125  S6: 13 14 16 7 99 

S7: 20 21 25 8 105  S7: 19 20 21 7 100 

S8: 10 24 4 63  S8: 2510 24 4 102 

S9: 22 18 7 80  S9: 22 18 7 80 
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Table 5.11 Performance times of 25 tasks for 9 Robots 

Task No: Predecessor Tasks 
Performance Time 

R1 R2 R3 R4 R5 R6 R7 R8 R9 

1 - 75 52 52 33 52 63 84 43 38 

2 - 108 32 34 26 49 105 28 27 33 

3 1,2 135 55 73 55 58 133 35 64 67 

4 3 89 47 56 69 57 116 40 87 53 

5 4 53 47 48 46 56 84 34 91 50 

6 5 55 62 33 26 43 56 35 51 55 

7 6 30 33 38 23 30 52 22 37 37 

8 4 46 34 77 37 74 47 42 31 28 

9 8 62 54 36 43 57 45 25 39 33 

10 6,9 52 40 45 37 74 56 41 72 51 

11 7,8 111 77 65 71 64 81 57 66 100 

12 7 49 34 43 43 58 107 48 60 46 

13 9,11 87 32 32 45 34 38 22 40 52 

14 13 49 73 46 32 46 49 42 43 69 

15 12 64 90 68 39 47 121 72 61 54 

16 14 85 128 45 74 44 126 35 64 60 

17 15 42 34 31 35 34 40 35 30 28 

18 16,17 55 47 95 60 56 55 37 75 69 

19 14 56 44 37 51 33 62 26 27 31 

20 14 63 61 58 45 67 126 52 44 75 

21 20 64 38 32 41 30 34 22 33 34 

22 15,19,21 93 106 50 36 106 57 43 84 52 

23 17 48 52 45 40 58 49 58 77 59 

24 21 58 47 40 26 81 109 29 75 35 

25 18,20,23 42 38 39 39 30 40 39 28 32 

 

 PSO variants and Hybrid PSO models for straight RALB 

Four different PSO variants and three hybrid PSO models are proposed to solve 

RALB problems. PSO variants and hybrid models proposed are explained in this 

section. Four variants of PSO are developed based on the variation in the velocity 

update equation. And hybrid models are developed based on the hybridized PSO. PSO 

is hybridized with genetic algorithm and cuckoo search.  

5.2.1 PSO variants with inertia weight and constriction factor 

Shi and Eberhart (1998) added a new parameter into the original PSO algorithm 

since the standard version of PSO had no control over the previous velocity of the 
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particles. Newer version of PSO is incorporated with an inertia weight w which 

addresses the shortcoming of the standard PSO. The inertia weight helps to control the 

impact of the previous history of velocities on the current one. Inertia weight w value 

can be a positive constant or positive linear or nonlinear function of time. The dynamic 

equation of PSO with inertia weight is modified to be: 

      
(5.18)

 

Inertia weight helps to balance between global and local search abilities. Large 

value of inertia weight facilitates global search, while small value facilitates local 

search. Position update equation remains the same. In this research, this variant of PSO 

would be referred as PSO-W 

Clerc and Kennedy (2002) introduced a parameter called constriction factor (χ) 

which may help to ensure convergence to the global minimum.  A simplified method 

of incorporating the parameters is given in Equation 5.19, where χ is a function of c1 

and c2. 

 
     (5.19) 

 
        (5.20)

 

Where,  .
 

Here c1 and c2 are weight of personal best and weight of global best, respectively; 

c1 and c2 are two positive constant values usually set equal to 2.05 (Eberhart and Shi, 

2000) and are also called cognitive and social parameter, respectively.  U1 and U2 are 

random numbers distributed uniformly between 0 and 1. The position of each particle 

is then updated using Equation 5.2 This variant of PSO will be referred to as PSO-C in 

this thesis. 

5.2.2 PSO variants with time varying inertia weight and constriction factor  

Shi and Eberhart (1998) found significant improvement in performance of PSO 

with the linearly decreasing inertia weight over each iteration, time-varying inertia 

weight (TVIW) is defined as follows:  

       (5.21) 
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Where wmax and wmin are the maximum and minimum values of the inertia weight 

respectively, iter is the current iteration number and maxiter is the maximum number 

of allowable iterations. The calculated ‘w’ is used in the Equation 5.18 for PSO-W. For 

population based optimization methods, it is preferred to encourage the individuals to 

search the entire search space without wandering around the local optima during the 

initial stages, later stages it is very important to move towards the global optima, to find 

the optimum solution efficiently. This variant of PSO will be referred to as PSO-TVIW 

in this thesis.  

To address the above mentioned concern, Ratnaweera et al. (2004) proposed time 

varying acceleration coefficient (TVAC) as a new strategy for the PSO. The method 

reduces the cognitive component (c1) and increases the social component (c2) of 

acceleration coefficient, with time. Large value of c1 and small value of c2 at the 

beginning allows the particles to search the whole search space, instead of moving 

towards the local best. In later stages, values of c1 need to be small and large values of 

c2 helps the particles to converge to the global optima.  

Time-varying acceleration coefficient (TVAC) is defined as follows: 

       (5.22) 

       (5.23) 

Where c1i and c2i are the initial values of the acceleration coefficient c1 and c2 and 

c1f and c2f are the final values of the acceleration coefficient c1 and c2, respectively. The 

calculated c1 and c2 are used in Equation 5.19 for PSO-TVAC. This variant of PSO will 

be referred to as PSO-TVAC in this thesis.  

5.2.3 Hybrid PSO variants with inertia weight and constriction factor 

Angeline (1998) pointed out that the PSO performs well in the early iterations, but 

has problems reaching a near optimal solution in several real-valued function 

optimization problems.  

Hybrid models of Genetic algorithm (GA) and PSO helps in improving the quality 

of the solution obtained (Eberhart and Shi, 1998, Angeline, 1998). Hybrid GA-PSO 

algorithm basically employs a major aspect of the classical GA approach, which is the 

capability of “breeding.” PSO algorithm has been strengthened using breeding 

ffi c
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technique similar to that applied in GA. The pseudo code for the hybrid PSO is 

presented in Figure 5.10.   

------------------------------------------------------------------------------------------------------------- 

procedure Hybrid PSO 

input (problem data, PSO parameters) 

begin 

               𝑡 ← 0; 
             𝐟𝐨𝐫(𝑖 = 1, 𝑁) 

                  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒   𝑃𝑖
𝑡; 

          𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑍 (𝑃𝑖
𝑡);  

                 𝑃𝑖
𝑡

 
𝑒

 
← 𝑃𝑖

𝑡; 

            𝐞𝐧𝐝  
 𝐺 ← 𝑃𝑖

𝑡   ℎ𝑎𝑣𝑖𝑛𝑔 𝑚𝑖𝑛 {𝑍( 𝑃𝑖
𝑡

 
𝑒 );    𝑖 = 1, 𝑁  }  

 

 

 
   

 𝐟𝐨𝐫 (𝑖 = 1, 𝑁)  

 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒  𝑣𝑖
𝑡; 

             𝐞𝐧𝐝  
 do { 

    𝐟𝐨𝐫(𝑖 = 1, 𝑁) 
Update Position Pi

t+1 

Update Velocity vi
t+1 (Using Equation 5.18 and 5.19) 

𝐞𝐧𝐝  
Breeding  

               𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 

               𝑈𝑝𝑑𝑎𝑡𝑒 𝑃𝑖
𝑡

 
𝑒

 
 𝑎𝑛𝑑 𝐺, (𝑖 = 1, 𝑁) 

               𝑡  ← 𝑡 + 1 

       } ( 𝐰𝐡𝐢𝐥𝐞 (𝑡 < 𝑡𝑚𝑎𝑥
 )) 

          output G   (Apply Exchange Procedure for the output) 

-------------------------------------------------------------------------------------------------------------- 

Figure 5.10 Pseudo Code of Hybrid PSO 

However, some researchers have included mutation or simple replacement of the 

best fitted value, as a means of improvement to the standard PSO formulation (Naka et 

al., 2003, El-Dib et al., 2004)  Lovbjerg et al.(2001) shown in their work that PSO 

hybrid with breeding has the potential to reach a better optimum than the standard PSO.  

Breeding is included for both the variants of PSO. Velocity update is done based on the 

Equation 5.18 for HPSO-W and 5.19 for HPSO-C.  

The difference in the hybrid PSO is the incorporation of breeding. The 

implementation of breeding is explained below with an example.  
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5.2.3.1 Breeding 

Step 1: Two particles are selected randomly from the population to perform the 

breeding process. This particles selected are for 11 task problem of RALB. The particle 

meets the precedence relationship. 

  parent1  

 

 

Let the velocity of parent1 be: (2, 3) (4, 5) (3, 4) (8, 9) 

   parent2 

1 2 5 3 6 4 8 7 9 10 11 

 

Let the velocity of parent2 be: (1, 2) (3, 4) (2, 4) (3, 5) (8, 9) 

Step 2: Generate children for the parents selected using Equations 5.24 and 5.25.  

     (5.24)                                

       

     (5.25) 

For the parents selected, the children generated are, 

  child1 

1 2 3 6 5 4 8 7 9 10 11 

  child2 

1 2 5 3 6 4 7 8 10 9 11 

 

Here U is assumed to be 0.5. So it means 50% values will be taken from each parent 

to form child. For child1 50% of values come from first parent and remaining 50% 

comes from the second parent. For child2 50% of values come from second parent and 

50% of remaining values comes from the first parent. A reordering procedure as 

illustrated by (Levitin et al., 2006) is adopted to repair the infeasible child formed. 

Step 3: Velocity Calculation of Child 

             (5.26) 

                                     (5.27)      

)(*)1()(*)( 211 pparentUpparentUpchild 

)(*)1()(*)( 122 pparentUpparentUpchild 
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1
211

vparentvparent
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
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2
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vparentvparent
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1 2 3 6 5 4 7 8 10 9 11 
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Where, is the number of velocity pairs in parent1 and  

is the number of velocity pairs of parent2. Velocity of the child1 and child2 are 

calculated using Equation 5.26 and 5.27 respectively as follows:  

Velocity of child1:  

= (2,3)(4,5)(3,4)(8,9)(1,2)(2,4)(3,5) * (4/9) = (2,3)(4,5)(3,4)(8,9)(1,2)(2,4)(3,5) * 0.4 

= (2, 3) (4, 5) (3, 4) 

Velocity of child2:  

= (2,3)(4,5)(3,4)(8,9)(1,2)(2,4)(3,5) * (5/9) =(2,3)(4,5)(3,4)(8,9)(1,2)(2,4)(3,5) * 0.5 

= (2,3)(4,5)(3,4)(8,9) 

(Note: the ratio (5/9) 0.5 is used randomly to inherit 50% of velocity pairs for the child.) 

Step 4: The parent particles are replaced by their child particles, thereby keeping the 

population size fixed if the fitness value of the child is better than the parent otherwise 

parents are retained. 

5.2.4 Hybrid Cuckoo Search-PSO variant 

Recently, Yang and Deb (2009) proposed a new metaheuristic algorithm called 

cuckoo search (CS) because of the  obligate brood parasitism of some cuckoo species 

by laying their eggs in the nests of other host birds (of other species).  CS algorithm has 

shown good performance for solving both benchmark unconstrained functions and real-

world problems in manufacturing scheduling (Burnwal and Deb, 2013, Long et al., 

2014). The CS is based on three idealized rules (Yang and Deb, 2009): 

 Each cuckoo lays one egg at a time, and dumps it in a randomly chosen host nest; 

 The best nests with high quality of eggs (solutions) will carry over to the next 

generations; 

 The number of available host nests is fixed, and a host can discover an alien egg 

with a probability pa. In this case, the host bird can either throw the egg away or 

abandon the nest to build a completely new nest in a new location. 

In this section, a hybrid CS-PSO algorithm is proposed to solve RALB problem. 

The pseudo code of the hybrid CS-PSO is given in the Figure 5.11. 

  

|)(| 1 vparent |)(| 2 vparent
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begin 

Generate initial a population of n host nests, xi (i=1,2,...n);  

Evaluate objective function x=(x1,...xd)
T;  

while(t<MaxGeneration) or (stop criterion); 

    Randomly select two cuckoos in the population; 

    Generate a new cuckoo using OX operator; 

    Evaluate the new cuckoo and record the local best (Fi);    

Choose a nest among (say j) randomly; 

if (Fi < F j) 

Replace j by the new solution; 

end 

Move cuckoo birds using Equation 5.1 and 5.2; 

Abandon a fraction (pa) of worse nests; 

Build new ones at new locations using single point crossover; 

Rank the solutions and find the current best; 

end while 

 Record the global best 

 end 

 

Figure 5.11 Pseudo code of hybrid CS-PSO algorithm 

Nature of cuckoo birds is that they do not raise their own eggs and never build their 

own nests, instead they lay their eggs in the nest of other host birds. If the alien egg is 

discovered by the host bird, it will either throw these alien eggs away or simply abandon 

its nest and build a new nest elsewhere. Thus, cuckoo birds always look for a better 

place in order to decrease the chance of their eggs to be discovered (Burnwal and Deb, 

2013). In the hybridized algorithm, communication for cuckoo birds is incorporated by 

hybridizing CS with PSO. Motive of this is to communication and inform each cuckoo 

bird to migrate to a better place. Each cuckoo bird will record the best personal 

experience as local best (ept
i) during its own life. In addition to this, the local among all 

the birds called Global best (Gt) is also recorded. The cuckoo birds’ communication is 

established through the local, global best and they update their position and velocity 

using these parameters using Equation 5.1 and 5.2 of the PSO algorithm.  

5.2.4.1 New Cuckoo Generation   

New cuckoos are generated by using Order crossover (OX) operator which is 

proposed by Davis (1985). In case of RALB problem, the sequence (cuckoo) is the 

group of tasks arranged in such a way that it satisfies the precedence conditions. 

Working of the OX operator is explained below: 

 Select a subsection of task sequence from one parent at random. 
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 Produce a proto-child by copying the substring of task sequence into the 

corresponding positions. 

 Delete the tasks that are already in the substring from the second parent. The 

resulted sequence of tasks contains tasks that the proto-child needs. 

 Place the tasks into the unfixed positions of the proto-child from left to right 

according to the order of the sequence in the second parent. 

 

Figure 5.12 Illustration of the OX operator 

An illustration is presented in Figure 5.12. Two cuckoos from the population are 

selected and OX operator is applied to generate a new cuckoo. The new child cuckoo 

generated is shown in the figure.  

5.2.4.2 Replacement of abandoned cuckoos 

New cuckoos are generated from the abandoned cuckoos using Single Point Cross 

over method. It is a cross over method where a single crossover point on both parent 

strings is selected. All data beyond that point is swapped between the two parent 

organisms. The resulting sequences are the children. An illustration is presented in 

Figure 5.13.  

 

Figure 5.13 Illustration of the Single Point Cross over 
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5.2.4.3 Repair mechanism 

If the child cuckoos created using the crossover methods is not meeting the 

precedence constraints, the cuckoo is repaired using a re-ordering procedure which 

restores the feasibility of the generated sequence according to the precedence 

constraints. Detailed description of the reordering procedure is illustrated by 

Rubinovitz and Levitin (1995). 

 Experimental and Computational Study for Standard PSO 

The results of computational analysis for different metaheuristic algorithms are 

presented in this section 

5.3.1 Parameter Selection for standard PSO 

Performance of PSO mainly depends on the parameters used. Extensive 

experiments are done to find the best optimal parameters. Initially three data sets are 

chosen to find the parameters which produces good solution. The three problems 

selected are 35 tasks-12 robots, 70 tasks- 19 robots and 148 tasks-29 robots problems. 

These problems are solved for all combination of the parameters for 10 test runs. 

Quality of solution is given importance compared to the computational time. The details 

of the analysis conducted for both the allocation methods (recursive and consecutive 

methods) and the parameters chosen for the proposed PSO is explained in this section. 

Stopping condition: The proposed two methods are terminated if the iteration 

approaches a predefined criteria, usually a sufficiently good fitness or in this case, a 

predefined maximum number of iterations (generations) is used. Different stopping 

conditions are tested such as 5, 10, 15, 25 and 30 and best solution is obtained when 

number of generation is 25, which is shown in Figure 5.14 for recursive allocation 

procedure and Figure 5.15 for consecutive allocation procedure. From the Figure 5.14 

it is observed that for both the allocation methods procedure starts producing the same 

solution for most of the runs after 25th iteration. Values shown in Figure 5.14 represent 

the cycle time obtained for different stopping condition.  

Acceleration coefficients: c1, c2 and c3 are assumed to have the value of 1 or 2. 

Various combinations of c1, c2 and c3 with 1 and 2 are tried to find the best possible 

combination. The complete set of combinations of acceleration coefficients tested for 
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both recursive and consecutive allocation method are shown in Table 5.12. 

Performances of the algorithms are tested on three problems for finding the best 

combination of acceleration coefficients.  Figure 5.16 shows the performance of 

proposed recursive allocation procedure for different combination of acceleration 

coefficients. Group B with c1=1, c2=1 and c3=2 produces good results for the three 

problems presented here. Same combination of acceleration coefficients is used for 

evaluating all the problems available in the literature. Figure 5.17 shows the 

performance of proposed consecutive allocation procedure for different combination of 

acceleration coefficients. From Figure 5.17, Group D with c1=1, c2=2 and c3=2 has the 

best combination of acceleration coefficients to get the minimum cycle time for all the 

three problems considered. For solving all the problems from the literature, acceleration 

coefficients from Group D is used. 

 

 

Figure 5.14 Performance of PSO for stopping condition of recursive 

allocation procedure  
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Figure 5.15 Performance of PSO for stopping condition of consecutive 

allocation procedure  

 

Figure 5.16 Performance of PSO for acceleration coefficients of recursive 

allocation procedure 
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Figure 5.17 Performance of PSO for acceleration coefficients of consecutive 

allocation procedure 

 

Population Size: Different ranges of population size of the swarm (initial particles) 

are tested and from the analysis done, best solution is obtained when the population 

size is 25 for both recursive and consecutive algorithm. Figure 5.18 shows the 

performance of PSO for different population size for three problems for recursive 

allocation procedure and Figure 5.19 shows the performance of consecutive allocation 

procedure for the three sample problems with different population size. It is analyzed 

that, when the population size increases the quality of the solution increases. 

Table 5.12 Selection of c1, c2 and c3 

Acceleration Coefficients 

Group c1 c2 c3 

A 1 1 1 

B 1 1 2 

C 1 2 1 

D 1 2 2 

E 2 1 1 

F 2 1 2 

G 2 2 1 

H 2 2 2 
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Figure 5.18 Performance of PSO for population size of recursive allocation 

procedure 

 

Figure 5.19 Performance of PSO for population size of consecutive allocation 

procedure 

5.3.2 Computational Study for Standard PSO 

The computational experiments are conducted in order to test the performance of 

the proposed standard PSO on RALB-2 problems. The details of the experiments 

conducted are presented in this section. Large set of benchmark problems are evaluated 

to check the performance of the proposed algorithms. Precedence graphs which are 

widely used in SALB-I literature (Scholl, 1995) are selected from 

http://www.assembly-line-balancin.de/ to perform the experimental study. Gao et al. 

(2009) generated 32 test problems for the computational study of RALB-2 problems by 
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adding the robot task times to the original datasets prepared by Scholl (1995). Problem 

size varies between 25 and 297 tasks. Eight different problems available in the literature 

with different combination of robot problems are considered for the computational 

study.  Table 5.13 presents the details of the 8 problems considered and the data’s are 

collected from various industries used by earlier researchers. The procedure adopted 

for developing the datasets are presented in their work.  The two proposed (recursive 

and consecutive) algorithms are evaluated using the 32 benchmark problems available 

in the literature. For each test problem, the number of workstations is equal to the 

number of robots and only one robot of particular type can be allocated to one 

workstation. Each task is assigned to one workstation and the robot type are selected 

for that workstation without violating precedence constraints, and the processing time 

of a task at the assigned station is dependent on the type of robot selected for that 

workstation. In this problem formulation, assignment of robot type differs from Gao et 

al.'s model. Gao et al. (2009) confined only to one robot is available in each robot type. 

Though their model differs in one aspect, the solution of hybrid GA (Gao et al., 2009) 

can be used to fix the upper bound for the problem under consideration. 

Table 5.13 Source of Datasets 

Problem 

Size 
Source Reference 

25 Randomly Generated (Rosenberg and Ziegler, 1992) 

35 Assembly of an auto engineer cradle (Gunther et al., 1983) 

53 Assembly of Hot Tank (Hahn, 1972) 

70 Electronic Industry (Tonge, 1960) 

89 Assembly of Refrigerator (Lutz, 1974) 

111 Mixed Assembly Line (Arcus, 1965) 

148 Assembly of small Utility Vehicles (Bartholdi, 1993) 

297 Assembly of an Engine (Scholl, 1999) 

 

The solution to the RALB problem includes an attempt for optimal assignment of 

robots to line stations and a balanced distribution of work between different stations. 

The results obtained by evaluating 32 test problems for the objective of minimizing 

cycle time in a straight robotic assembly line balancing (RALB-2) problems are 

presented in Table 5.14. Column I shows the problem number. Column II shows the 

task size of the problems evaluated and Column III shows the number of 

workstations/robots for each problem. Column IV shows the WEST ratio of the 

problem (explained in the next section) and V shows the cycle time for the 32 test 

problems, Column VI show computational time and Column VII shows the modified 
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cycle time for hGA algorithm. Results obtained from Cplex (optimization solver) are 

presented in Column VIII and IX. Column X and XI shows the cycle time and 

computational time obtained using the proposed PSO for recursive allocation 

procedure. Results obtained from proposed PSO for consecutive allocation procedure 

is presented in Column XII and XIII. 

IBM Cplex Optimization studio Version 12.6.0.0 is used to solve the problems. All 

32 problems could not generate solution using Cplex. Since, the objective function of 

the formulation for this problem is non-linear and hence it is hard for traditional exact 

optimization techniques to solve the problems. Cplex could generate the solutions for 

the first fourteen problems and the optimization solver displays an error message as, 

‘Search Space Exceeded’. Results obtained by the proposed algorithms are compared 

with results obtained using hybrid GA (upper bound for the problem) (Gao et al., 2009) 

and Cplex solver solutions. The non-deterministic nature of the algorithm and problem 

makes it necessary to run same problem multiple times. Each problem is run ten times 

and most of the runs converged to the same solution    for each of the problems. It is 

found that the results of PSO using both allocation procedures are very close to Cplex 

solutions and PSO with Consecutive procedure yields better results when compared to 

PSO with recursive and hGA.  
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Table 5.14 Results of the 32 straight RALB-2 problems 
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1 

25 

3 8.33 503 5 2 503 0.5 503 3.5 503 2.65 

2 4 6.25 327 5 2 292 8.85 327 3.9 327 2.9 

3 6 4.17 213 6 2 200 463 208 4.2 208 3.0 

4 9 2.78 123 7 3 109 4002 114 4.8 114 3.25 

5 

35 

4 8.75 449 12 5 341 59 347 7.7 344 4.9 

6 5 7.00 344 16 7 329 562 338 7.9 336 5.4 

7 7 5.00 222 22 9 201 3672 219 7.9 214 6.9 

8 12 2.92 113 30 12 106 3620 115 8.3 105 8.5 

9 

53 

5 10.60 554 17 7 449 72 538 22.0 454 13.1 

10 7 7.57 320 21 9 283 3680 304 22.4 301 14.9 

11 10 5.30 230 27 11 221 3627 228 22.7 224 16.2 

12 14 3.39 162 35 14 142 3729 153 22.9 146 19.9 

13 

70 

7 10.00 449 40 16 394 4007 448 46.4 431 29.0 

14 10 7.00 272 53 22 245 3700 266 47.3 269 32.5 

15 14 5.00 204 64 26 N/A N/A 204 47.8 200 39.1 

16 19 3.68 154 82 33 N/A N/A 153 48.2 147 43.4 

17 

89 

8 11.13 494 46 19 N/A N/A 479 88.7 463 41.9 

18 12 7.42 370 58 24 N/A N/A 345 89.4 355 50.4 

19 16 5.56 236 71 29 N/A N/A 234 92.1 234 59.6 

20 21 4.24 205 89 36 N/A N/A 201 93.2 176 75.3 

21 

111 

9 12.33 557 157 64 N/A N/A 551 167.2 526 82.3 

22 13 8.54 319 192 78 N/A N/A 316 167.6 316 89.5 

23 17 6.53 257 229 93 N/A N/A 257 168.2 254 98.5 

24 22 5.05 192 271 110 N/A N/A 190 171.2 185 110.8 

25  

148 

 

 

10 14.80 600 240 98 N/A N/A 593 381.1 603 179.8 

26 14 10.57 427 297 121 N/A N/A 426 385.5 420 205.5 

27 21 7.05 300 332 135 N/A N/A 299 390.4 277 215.9 

28 29 5.10 202 417 169 N/A N/A 200 490.9 190 230.3 

29 

297 

19 15.63 646 824 335 N/A N/A 767 1123.5 608 891.8 

30 29 10.24 430 907 369 N/A N/A 451 1235.3 397 997.6 

31 38 7.82 344 996 405 N/A N/A 350 1365.2 295 1269.9 

32 50 5.94 256 1103 448 N/A N/A 257 1392.3 245 1390.8 

 

Results in Table 5.14 shows that the proposed approaches are quite efficient with 

PSO algorithm to find out the best solutions for almost all data sets.  Both recursive and 

consecutive procedures converged to same set of solution for the first four problems. 

However the proposed PSO with recursive procedure could not obtain better results for 

large dataset problem (297 task problems), whereas PSO with consecutive procedure 

yields better results for the entire 32 test problems. 

The computational time (CPU Time) taken for PSO algorithm with recursive 

allocation procedure is more when compared to PSO with consecutive allocation 
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procedure for all the thirty two datasets but lesser than hybrid GA for 17 out of 32 

problems. Whereas, computation time for PSO with consecutive procedure is lower 

than that of PSO with recursive procedure and hGA for all datasets. But PSO with 

consecutive procedure takes more time for the large size datasets problems (297 task 

problems). This could be due to the size of the problem and more time is taken for the 

exchange procedure (local search).  hGA and PSO are coded on different computers, 

hence it is difficult to compare the computational times. An approximate comparison 

of CPU execution times is done using Passmark Performance Test 8.0 software. The 

hybrid GA (hGA) algorithm is executed on a Pentium 4 processor (2.6-GHz).The 

proposed PSO algorithms are coded in C++ and are tested on Intel core i5 processor 

(2.3 GHz). Using the Passmark Performance Test 8.0 software, the factor for the 

computer used to solve PSO algorithms is fixed to 1 and for the computer used to solve 

hGA is found to be 0.406. Since there are too many factors affecting the CPU times it 

is difficult to do a fair comparison. In Table 5.14, column VII gives the modified CPU 

time of the average best solution computational time. From the table it is found that 

modified CPU time for hGA is lower than that of the proposed algorithms for most of 

the datasets. This could be due to large solution space and the local exchange procedure 

used. However for the proposed algorithms, quality of the solution is given importance 

compared to the computational time. Figure 5.20 shows that the average CPU time for 

the proposed PSO procedures are comparable to hGA for the problems up to 111 task 

problems. Average CPU times for the proposed PSO procedures are comparable to hGA 

for the problems up to 111 task problems. Table 5.15 shows the percentage deviation 

for both PSO procedures from the benchmark results. It is found that recursive 

allocation procedure with PSO is able to produce results with an average reduction of 

1.35% and PSO with consecutive allocation procedure performs well and reduces the 

objective function with an average reduction of 5.55%. 
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Figure 5.20 Comparison of Average Computational Time 

 

Table 5.15 Percentage Deviation of cycle time for PSO with recursive and 

consecutive procedure 

Problem 

No: 

Problem 

Dataset 

% 

Deviation-

Recursive 

% 

Deviation-

Consecutive 

 
Problem 

No: 

Problem 

Dataset 

% 

Deviation-

Recursive 

% 

Deviation- 

Consecutive 

1 25-3 0 0  17 8 -3.04 -6.28 

2 25-4 0 0  18 12 -6.76 -4.05 

3 25-6 -2.34 -2.34  19 16 -0.85 -0.85 

4 25-9 -7.32 -7.32  20 21 -1.95 -14.15 

5 35-4 -22.72 -23.39  21 9 -1.08 -5.57 

6 35-5 -1.74 -2.33  22 13 -0.94 -0.94 

7 35-7 -1.35 -3.6  23 17 0 -1.17 

8 35-12 1.77 -7.08  24 22 -1.04 -3.65 

9 53-5 -2.89 -18.05  25 10 -1.17 0.5 

10 53-7 -5.0 -5.94  26 14 -0.23 -1.64 

11 53-10 -0.87 -2.61  27 21 -0.33 -7.67 

12 53-14 -5.56 -9.88  28 29 -0.99 -5.94 

13 70-7 -0.22 -4.01  29 19 18.73 -5.88 

14 70-10 -2.21 -1.1  30 29 4.88 -7.67 

15 70-14 0 -1.96  31 38 1.74 -14.24 

16 70-19 -.0.65 -4.55  32 50 0.39 -4.3 

 
 Average Reduction 

(%) 
-1.36 -5.5 

 

5.3.3 Complexity of the problem 

Computational complexity of the simple ALB is known to be a non-deterministic 

polynomial time hard (NP-hard) problem (Karp, 1972). Faaland et al. (1992) stated that 

the procedures which attempts to find optimal solution would have a complexity of at 

least 2N. Due to the complexity of the problem, to solve problems of practical size 

metaheuristic remains the only option for the researchers. Different measures are 
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reported in the literature which is used to show the complexity of RALB. F-ratio 

proposed by Mansoor and Yadin (1971), WEST ratio proposed by Dar-El (1973) and 

relative complexity proposed by Bhattacharjee and Sahu (1990) are used in this thesis 

to show the complexity of RALB problems. Simple assembly line balancing problem 

falls under the category of NP-hard (Gutjahr and Nemhauser, 1964). RALB problem is 

further complicated with addition of different robot types. Hence, RALB is also NP-

hard.  

Total nodes are to be calculated to measure the complexity of the given RALB 

problem. Total nodes measures the computational time required to reach a solution, 

counting the total number of nodes generated in the search process. Total number of 

nodes of the problem is directly proportional to the number of iterations in the 

algorithm, and hence, the computational time (Rubinovitz et al., 1993).  The following 

parameters were used to characterize the RALB problem complexity: 

 

1. Assembly Flexibility- F- Ratio measures the flexibility in creating assembly 

sequences developed by Mansoor and Yadin (1971) and defined as follows: Let Pij be 

an element of a precedence matrix P, such that: 

 

Then, F-ratio is calculated as follows: 

where Z is the number of zeroes in P, and Na is the number of assembly tasks. F-ratio 

value is therefore between zero and one. When there are no precedence constraints 

between tasks (any sequence is feasible) F-ratio is zero and one when only a single 

assembly sequence is feasible. Assembly tasks are often characterized by relatively low 

F-ratios. Problems with eight levels of F-ratio are generated and evaluated. Figure 5.21 

shows F-ratio versus Computational time for 8 problems sets for two allocation 

procedures. Computational time is presented in Table 5.14. It is noted that 

computational time is an increasing function of F-ratio. A high F-ratio indicates that 

there are fewer alternatives for assigning tasks to workstations where as low F-ratio 

gives different ways of assignment. Complexity of the line balancing problem depends 

on F-ratio (Bhattacharjee and Sahu, 1990). From Figure 5.21 it is observed that 

consecutive allocation procedure solves the problems in a significantly shorter time. In 

  1   task  precedes task  is assigned to robot  in station 
  0,  {

if i j h s
i j otherwiseP 

- 2x / ( x( 1))a aF Ratio Z N N 
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summary, consecutive allocation procedure performs better in terms of computational 

time and quality of the solution is superior.  

2. WEST ratio- Defined by Dar-El (1973) measures the average number of tasks 

per workstation. This measure shows the expected quality of achievable solutions and 

complexity of the problem. (Gao et al., 2009) generated WEST ratios ranging from 2 

to 15 to generated 32 RALB problems. For each problem, the number of workstations 

is equal to the number of robots, and every task can be processed on any robot. WEST 

ratio considered in this research is shown in Table 5.14.  

3. Relative Complexity- R= (V-Q)/Q, where V= Computational time for the 

solution of the problem whose complexity is to be measured and Q= minimum 

Computational time for the set of the problems under study (Bhattacharjee and Sahu, 

1990).  Table 5.16 shows the relative complexity for the 32 test problems evaluated 

using recursive and consecutive procedure for straight robotic assembly line. The 

relative complexity significantly increases when the problem size increases for both the 

procedures. However, recursive allocation procedure relative complexity is higher than 

that of consecutive due to higher computational time.   

 

Figure 5.21 F ratio vs computational time 
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Table 5.16 Relative Complexity of Recursive and Consecutive PSO 

procedures 

Problem 

No: 

Problem 

Dataset 

% 

Deviation-

Recursive 

% 

Deviation-

Consecutive 

 
Problem 

No: 

Problem 

Dataset 

% 

Deviation-

Recursive 

% 

Deviation- 

Consecutive 

1 25-3 0 0 17 89-8 25.34 15.811 

2 25-4 1.11 1.09 18 89-12 25.54 19.01 

3 25-6 1.20 1.13 19 89-16 26.31 22.49 

4 25-9 1.37 1.22 20 89-21 26.62 28.41 

5 35-4 2.2 1.84 21 111-9 47.77 31.05 

6 35-5 2.25 2.03 22 111-13 47.88 33.77 

7 35-7 2.25 2.60 23 111-17 48.05 37.16 

8 35-12 2.37 3.20 24 111-22 48.91 41.811 

9 53-5 6.28 4.94 25 148-10 108.88 67.84 

10 53-7 6.40 5.62 26 148-14 110.142 77.54 

11 53-10 6.48 6.11 27 148-21 111.54 81.47 

12 53-14 6.54 7.50 28 148-29 140.25 86.90 

13 70-7 13.25 10.94 29 297-19 321.0 336.52 

14 70-10 13.51 12.26 30 297-29 352.94 376.45 

15 70-14 13.65 14.75 31 297-38 390.05 479.20 

16 70-19 13.77 16.37 32 297-50 397.8 524.83 

 

In summary, it is noteworthy that the proposed consecutive allocation procedure 

was giving promising results in terms of quality of solution and computational time. 

Hence, proposed PSO variants and hybrid PSO algorithms for RALB are solved only 

using consecutive allocation procedure. Following sections presents the details of 

parameters used for the PSO variants and hybrid models.  

5.3.4 Parametric study on PSO variants and hybrid PSO models  

The performance of the PSO variants and hybrid PSO models are generally 

affected by the use of parameters. Extensive experiments and tuning are conducted to 

find the optimal parameters on all the variants. Three problems of different 

characteristics are chosen to find the parameters which yielded best solution. Different 

combinations of the parameters are tested until the best combination is achieved. 

Solution quality is given importance compared to the computational time in selecting 

the parameters chosen for all the variants are explained in this section 

5.3.4.1 Parameters for PSO –W and PSO-C 

Inertia weight w, in Equation 5.18, is considered to be critical for the PSO 

performance. Shi and Eberhart (1998) initially investigated the characteristics when the 

w values range between 0 and 1. Large value of inertia weight helps to search in the 
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new areas while small inertia weight will facilitate local search i.e. searching in the 

present area. According to Eberhart and Shi (2000), the optimal strategy is to set w to 

0.9 initially and then reduce it linearly to 0.4. In this research, inertia weight is set 0.6 

for all the generations. Motivation of this concept to select a value in the mid-range is 

to explore the solution space at an earlier stage and to converge to the solution at faster 

speed. Three different problems of different characteristics are tested with different 

values of inertia weight and it is found that when inertia weight was set as 0.6, the best 

solution is achieved. Figure 5.22 shows the performance variation when different 

ranges of inertia weight are tested. When inertia weight is set as 0.6, the procedure finds 

the best solution. For c1 and c2 (acceleration coefficients), a set of trial and error run 

with different range is performed for PSO-W. Table 5.17 shows the set of values tested 

for the selection of c1 and c2. After conducting experiments with different combination 

of parameters it is found that the best solution is obtained when c1=1 and c2=2 (Group 

B). Figure 5.23 shows the performance of PSO-W variant based on the acceleration 

coefficients. Since the original PSO was tested with 25 generations, PSO-W was tested 

with 25 generations and results are reported based on these parameters.  

 

Figure 5.22 Performance variations when different inertia weights are used for 

PSO-W variant 
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Figure 5.23 Performance variations when different groups of acceleration 

coefficients are used for PSO-W variant 

 

Table 5.17 Selection of c1 and c2 

Acceleration Coefficients 

Group c1 c2 

A 1 1 

B 1 1 

C 1 2 

D 1 2 

 

Typically, when PSO-C method is used,   is set to 4.1 and the χ is thus 0.729. 

Proper fine-tuning of the parameters c1 and c2 in Eq. (18) may result in faster 

convergence of the algorithm and alleviation of the local minima. The parameters U1 

and U2 are used to maintain the diversity of the population and are randomly generated 

values between zero and one and it varies iteratively. Ratnaweera et al. (2004) reported 

that it will be better to choose a larger cognitive parameter, c1, than a social parameter, 

c2, but with c1 + c2 ≤ 4. Hence in this research, c1 is set to 2.4 and c2 to be 1.7. PSO-C 

is also tested with 25 iterations for all the problems.  

5.3.4.2 Parameters for PSO –TVIW and PSO-TVAC 

Linearly decreasing inertia weight over the generation has found significant 

improvement in performance of PSO (Shi and Eberhart, 1998). Parameters for this 

variant are chosen based on the parameters reported in (Marinakis and Marinaki, 2010).  

Parameters chosen for PSO-TVIW are as follows: wmax=0.9, wmin=0.4. c1 and c2 chosen 


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for this variant is same as the one chosen for PSO-W (c1=1 and c2=2). The maximum 

number of iteration is set to 25 (maxiter). 

For PSO-TVAC, parameters are chosen based on the parameters reported in 

(Arumugam, 2008). Parameters chosen for this variant are as follows: c1i=2.5, c1f=0.5, 

c2i=0.5, c2f =2.5. Based on the values calculated for c1 and c2 using Equation 5.22 and 

5.23 in all iterations, constriction factor is calculated and velocity is updated by using 

Equation 5.19. For PSO-TVAC variant the maximum number of iteration is set 25.  

5.3.4.3 Parameters for HPSO-W and HPSO-C 

Different combinations of parameters are tested for HPSO-W. The inertia weight 

w is chosen as 0.6. c1 and c2 are also varied from 1 to 2. Best combination for c1 and c2 

are 1 and 2 same as that of PSO-W. Quality of solution is given importance compared 

to the computational time. This variant of PSO is an extension of PSO-W, where PSO-

W is incorporated with breeding concept of GA. Total number of iterations selected is 

25.  

PSO-C incorporated with breeding is the variation in this variant, HPSO-C. Most 

important parameter in this method is the constriction factor.  Same constriction factor 

used for PSO-C is used for this variant. To set the constriction factor as 0.729, c1 is set 

to 2.4 and c2 to be 1.7. Problems are tested for 25 iterations same as PSO-C.  

5.3.4.4 Parameters for hybrid CS-PSO 

The parameter setting of hybrid CS-PSO algorithm is described in this section. 

Fraction of worst nests chosen (pa) is fixed as a constant for all generations in the 

traditional cuckoo search algorithm. Dynamic pa is incorporated in this hybrid 

algorithm. The probability is dynamically updated (Valian et al., 2011) using Equation 

5.28 

      (5.28) 

Where N and gn are the number of total iterations and the current iteration 

respectively. 

 It is found that pamax =0.8 and pamin=0.1 generates better results. The population 

size, acceleration coefficients are the same as explained in Section 5.3.1. The proposed 

method is terminated if the iteration approaches a predefined criteria, usually a 

)()( minmaxmax aaaa pp
N

gn
pgnp 
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sufficiently good fitness or in this case, a predefined maximum number of iterations 

(generations) is used. When the number of iterations was set to 25, quality of solution 

was not satisfactory, hence different stopping conditions are tested such as 5, 10, 15, 

25, 30 and 35 to choose the best iteration. Best solution is obtained when number of 

generation is 30. It is observed that after 30th iteration the procedure produces the same 

solution for most of the runs. Figure 5.24 shows the performance of algorithm based on 

the number of generations for three problems (35-12, 70-19, 148-29). 

 

Figure 5.24 Performance of hybrid CS-PSO in terms of stopping condition 

5.3.5 Computational study on PSO variants and Hybrid PSO models  

All the four variants and hybrid models of PSO are tested on the 32 benchmark 

problems. Detailed results obtained using four variants and Hybrid PSO models are 

presented in this section. Table 5.19 reports the detailed comparison of the four variants 

(Set I) for the RALB problems where the variants are developed based on variations in 

the velocity update equation and Table 5.20 reports the detailed comparison of the 

hybrid models of PSO (Set II) of RALB problems which are developed by hybridizing 

PSO with two other metaheuristic algorithms for the objective of minimizing cycle time 

in a robotic assembly line.  

The results obtained by evaluating 32 test problems are presented in Table 5.19 

and Table 5.20. Column I shows the problem number. Column II shows the task size 

of the problems evaluated and Column III shows the number of workstations/robots for 

each problem. Column IV shows the cycle time for the 32 test problems, Column V 
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shows the modified cycle time for hGA algorithm. Results obtained from four variants 

of PSO are presented in the remaining columns. Computational time and percentage 

deviation in the results obtained are also presented. The first five columns are same for 

Table 5.20 and this table presents the details of the results obtained for the hybridized 

versions of PSO. 

As reported earlier in Section 5.3.3, proposed RALB-2 is solved using the 

optimization solver Cplex. The results obtained with PSO variants and hybrid PSO 

models are compared with the Cplex solution. It is found that the results of all PSO 

variants and hybrid models are very close to Cplex solutions and it could be clearly 

observed that hybrid CS-PSO produces better results when compared to other variants. 

Detailed analysis on the variation in the objective function value (cycle time) when 

compared with the benchmark result reported by (Gao et al., 2009) is presented in the 

tables. It could be observed that all proposed PSO algorithms attained the same solution 

for the first three problems. Among all the proposed PSO algorithms, hybrid CS-PSO 

performs better in terms of quality of the solution.  Average percentage deviation of the 

results obtained using PSO-W when compared with the benchmark data is found to be 

3.0% for the thirty two problems, for PSO-C the average percentage deviation is higher 

when compared to PSO-W and it is calculated as 5.7%. Average percentage deviation 

for PSO-TVIW and PSO-TVAC is almost same and it is found to be 6.4%. For the 

hybridized PSO variants, the average deviation is found to be higher when compared 

with the other four variants. Average percentage deviation found for HPSO-W is 6.5%, 

for HPSO-C average percentage deviation in the objective function evaluated is 7.5% 

and for hybrid CS-PSO it is found to be 7.6%. So it can be concluded that hybridizing 

algorithms helps in improving the quality of the solution compared to other variants.  

The good performance of proposed hybrid CS-PSO is due to the implementation of 

local search schemes and different methods adopted to create new solution in the search 

space.  

Quality of the solution is given importance compared to the computational time in 

this thesis. Table 5.18 and 5.19 also shows the computational time taken by all the 

proposed PSO algorithms. The proposed PSO variants to solve RALB-2 provide good 

quality solution in practical time. And it is observed that HPSO-C takes more time when 

compared to other variants. Among the hybridized variants the computational time for 

hybrid CS-PSO is lesser than HPSO-C and not much of difference when compared with 
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HPSO-W. HPSO-C variant needs to spend more time on selection of good quality 

solutions, local search and crossover operation. Results show that CPU times of the 

proposed hybrid PSO models are comparable to hGA for the problems up to 111 task 

problems. 

In order to demonstrate the performance of the proposed PSO approaches, a real 

world problem from an automobile industry is chosen. The final assembly of an engine 

cradle is being undertaken (Gunther et al., 1983). Assembly consists of 35 tasks with 5 

workstations and 5 robots to perform these tasks.  Precedence relations and processing 

times of 35 tasks by 5 robots are presented in Appendix 1. All the proposed approaches 

of PSO are compared with the upper bound of hybrid GA. Table 5.18 shows the station 

and robot assignment with their cycle time.  Amongst the proposed approaches it is 

analyzed that hybrid CS-PSO algorithm produces better results for RALB when 

compared to other proposed approaches. Cycle time obtained for hybrid CS-PSO is 332 

and all the cycle time obtained by other proposed PSO algorithms are better than the 

result obtained using hybrid GA of 344. 

5.3.6 Summary of the findings on RALB-2 problem study  

In this section, a study on robotic assembly line balancing (RALB) problem with 

an objective of minimizing cycle time is considered. Optimization of cycle time is an 

important problem in a manufacturing industry. RALB problems falls under the 

category of NP-hard, hence an efficient metaheuristic algorithm (PSO) and its variants 

are proposed to solve the problem. Two heuristics (recursive and consecutive) are used 

to optimally allocate tasks to the workstations and assign the best fit robot to perform 

the tasks allocated.  The heuristic is used to evaluate the cycle time of the balanced 

assembly line. Two heuristics are solved on benchmark datasets using standard PSO 

and the performance the proposed algorithms are compared with the benchmark results 

reported in the literature. Local exchange procedure is incorporated to improve the 

quality of the solution obtained through these methods and to escape from the local 

optima. Simulation experiments have been carried out over the thirty two bench mark 

data sets available in the literature. IBM Cplex Optimization studio Version 12.6.0.0 is 

also used to solve the problems. Cplex could only solve the first fourteen problems from 

the benchmark datasets. From the computational study conducted, it is concluded that 

consecutive allocation procedure performs better in terms of quality of the solution. 
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Hence, consecutive allocation procedure is solved using variants of PSO and hybrid 

PSO models. It is found that the results of PSO variants and hybrid PSO models are 

very close to Cplex solutions which show the effectiveness of the proposed algorithms. 

Computational results show that hybrid CS-PSO performs better among all the other 

proposed approaches when compared with benchmark results. However, computational 

time for hybrid CS-PSO variant is high for large size datasets but quality of solution is 

given importance compared to the computational time.  

  Table 5.18 Solutions Obtained for RALB-2 problem for 35 tasks by 5 robots 

Hybrid GA Sequence (Gao et. al 2009) 

1 5 10 6 7 8 14 12 17 18 19 9 20 15 16 21 22 23 24 13 

25 26 27 2 3 4 30 34 31 32 11 28 33 35 29 

Station Start points: 1 14 20 25 30 

Robot Assignment: 4 3 1 5 2 

Cycle Time:  344 

Standard PSO Sequence-Recursive:  

1 5 17 10 12 2 3 6 7 14 15 16 18 19 20 21 25 22 26 30 

31 8 9 32 23 24 27 34 13 4 11 28 33 35 29 

Station Split points:  1 3 19 31 34 

Robot Assignment: 2 2 4 1 2 

Cycle Time: 338 

Standard PSO Sequence-Consecutive: 

 1 10 12 17 2 3 4 5 6 7 18 19 14  15 16  20  21  25  26  

22  23  8 9  13  24  27  34  11  30  31  32  33  28  29  35 

Station Start points: 1 4 14 22 34 

Robot Assignment: 2 2 4 1 2 

Cycle Time:336 

PSO-W Sequence: 

 1 10 2 17 12 3 5 6 7 18 19 20 14 15 8 9 13 16 21 22 30 

31 23 25 24 26 27 34 32 4 11 28 33 29 35 

Station Start points: 1 6 15 31 34 

Robot Assignment: 2 2 1 1 2 

Cycle Time: 343 

PSO-C Sequence:  

1 17 10 12 5 6 7 2 14 15 16 18 19 3 4 20 21 22 23 30 

24 31 25 26 27 8 9 13 32 11 28 33 35 34 29 

Station Start points: 1 7 3 24 9 

Robot Assignment: 2 2 4 1 2 

Cycle Time: 341 

PSO-TVIW Sequence 

: 1 2 17 12 10 5 6 7 18 19 14 15 16 20 21 25 26 22 23 

24 27 30 8 9 13 31 32 34 3 4 11 28 33 35 29 

Station Start points: 1 6 16 24 34 

Robot Assignment: 2 2 4 1 2 

Cycle Time: 341 

PSO-TVAC Sequence:  

1 10 12 2 17 5 6 7 14 15 18 19 20 8 16 21 30 22 23 25 

26 3 4 24 27 9 3 1 32 13 34 11 28 33 35 29 

Station Start points: 1 6 20 25 31 

Robot Assignment: 2 2 1 4 2 

Cycle Time: 338 

 HPSO-W  Sequence: 

 1 2 17 10 5 12 3 4 6 7 18 19 20 14 15 16 21 25 26 22 8 

23 24 30 31 27 34 9 13 32 11 33 28 29 35 

Station Start points: 1 3 20 22 34 

Robot Assignment: 2 2 4 1 2 

Cycle Time: 336 

HPSO-C Sequence:  

1 17 5 6 7 10 14 15 16 12 18 19 20 2 3 4 21 30 25 22 

23 24 26 27 8 9 13 11 31 32 33 34 28 35 29 

Station Start points: 1 14 2 22 13 

Robot Assignment: 4 2 2 1 2 

Cycle Time: 334 

Hybrid CS-PSO Sequence: 

110 17 5 6 8 2 3 7 12 18 14 15 16 19 20 21 25 26 22 23 

4 9 24 27 30 31 32 13 34 11 33 28 29 35 

Station Start points: 1 2 15 22 31 

Robot Assignment:   4 2 4 1 2 

Cycle Time: 332 
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Table 5.19 Results obtained by PSO variants for RALB-2 problems- Set I 

 

 

1 25-3 503 2 503 2.3 0 503 2.9 0 503 3.2 0 503 3.2 0

2 25-4 327 2 327 2.4 0 327 3 0 327 3 0 327 3.1 0

3 25-6 213 2 200 2.7 6.1 200 3.5 6.1 200 3.8 6.1 200 4.5 6.1

4 25-9 123 3 115 3 6.5 114 3.8 7.31 110 4.3 10.56 110 5.1 10.6

5 35-4 449 5 376 3.7 16.26 342 3.9 23.83 341 3.9 24.05 342 4.1 23.83

6 35-5 344 7 343 4 0.29 341 4.5 0.87 341 5.2 0.87 338 6.8 1.74

7 35-7 222 9 216 7 2.7 211 7.2 4.95 211 7.2 4.95 212 7.4 4.5

8 35-12 113 12 104 6.2 7.96 103 7.5 8.84 103 7.9 8.84 103 8.7 8.84

9 53-5 554 7 512 13.3 7.58 453 13.8 18.23 454 14 18.05 453 14.2 18.23

10 53-7 320 9 324 14.5 -1.25 294 15.2 8.125 293 15.8 8.43 295 16.3 7.81

11 53-10 230 11 224 16.8 2.61 227 18.3 1.3 231 18.5 -0.43 234 18.6 -1.73

12 53-14 162 14 146 18.4 9.88 144 19.2 11.1 142 19.2 12.34 145 19.8 10.49

13 70-7 449 16 447 28.5 0.45 444 30.2 1.11 429 30.5 4.45 429 29.5 4.45

14 70-10 272 22 261 28.8 4.04 259 30.6 4.77 258 30.8 5.14 263 29.8 3.3

15 70-14 204 26 199 36 2.45 197 37.2 3.43 195 37.6 4.41 195 37.3 4.41

16 70-19 154 33 144 50.2 6.49 142 51.5 7.79 146 51.8 5.19 143 52 7.14

17 89-8 494 19 461 50.9 6.68 463 51.8 6.27 459 52.2 7.08 468 52.2 5.26

18 89-12 370 24 354 52.1 4.32 315 53.5 14.86 314 54.2 15.13 311 55.1 15.94

19 89-16 236 29 247 56.6 -4.66 231 58.2 2.11 221 58.5 6.35 233 60.2 1.27

20 89-21 205 36 171 62.2 16.59 177 64.2 13.65 177 65.1 13.65 173 73.2 15.6

21 111-9 557 64 529 87.4 5.03 528 90.2 5.2 535 91.8 3.94 528 92.6 5.2

22 111-13 319 78 321 93.1 -0.63 347 94.8 -8.77 322 97.5 -0.94 322 100.9 -0.94

23 111-17 257 93 246 93.6 4.28 250 96.6 2.72 253 96.8 1.55 249 98.9 3.11

24 111-22 192 110 201 98.2 -4.69 203 108.5 -5.72 203 110.2 -5.72 189 110.2 1.56

25 148-10 600 98 628 195.2 -4.67 585 200.5 2.5 603 200.8 -0.5 582 201.2 3

26 148-14 427 121 412 206.1 3.51 417 206.5 2.34 421 207.2 1.405 431 207.6 -0.93

27 148-21 300 135 292 205.3 2.67 272 208.6 9.33 273 210.8 9 284 218.5 5.33

28 148-29 202 169 203 215.8 -0.5 187 220.8 7.42 189 222.3 6.43 189 225.5 6.43

29 297-19 646 335 692 1123.5 -7.12 676 1358.2 -4.64 646 1380.4 0 635 1413.2 1.7

30 297-29 430 369 428 1135.9 0.47 399 1438.6 7.2 392 1438.6 8.83 400 1456.2 6.97

31 297-38 344 405 328 1140.2 4.65 294 1440.4 14.53 294 1440.4 14.53 293 1450.6 14.82

32 297-50 256 448 256 1148.7 0 234 1458.8 8.59 225 1453.8 12.1 225 1458.8 12.1
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Table 5.20 Results obtained by hybrid PSO models for RALB-2 problems-Set II

 

1 25-3 503 2 503 3.4 0 503 3.6 0 503 3.6 0

2 25-4 327 2 327 3.3 0 327 3.5 0 327 3.9 0

3 25-6 213 2 200 4.2 6.1 200 4.8 6.1 200 4.2 6.1

4 25-9 123 3 112 4.9 8.94 110 5.2 10.56 110 4.5 10.56

5 35-4 449 5 342 4.3 23.83 342 4.5 23.83 341 5.2 24.05

6 35-5 344 7 336 6.8 2.32 334 7.1 2.9 332 6.3 3.48

7 35-7 222 9 214 7 3.6 211 7.2 4.95 211 6.9 4.95

8 35-12 113 12 103 8.5 8.84 103 8.9 8.84 103 8.9 8.84

9 53-5 554 7 452 13.6 18.41 450 13.6 18.77 449 13.5 18.95

10 53-7 320 9 295 15.1 7.81 294 15.1 8.12 294 16.8 8.12

11 53-10 230 11 234 17.5 -1.73 234 17.6 -1.73 221 17.9 3.91

12 53-14 162 14 144 19.4 11.11 143 19.6 11.72 142 20 12.34

13 70-7 449 16 430 29.8 4.23 430 30.8 4.23 430 32.9 4.23

14 70-10 272 22 262 29.6 3.67 256 31.2 5.88 264 35.8 2.94

15 70-14 204 26 195 37.4 4.41 194 38.7 4.9 194 43.3 4.9

16 70-19 154 33 141 51.6 8.44 140 51.9 9.09 140 47.8 9.09

17 89-8 494 19 460 54.5 6.88 458 56.1 7.28 460 45.7 6.88

18 89-12 370 24 314 56.2 15.13 308 58.8 16.75 320 51.6 13.51

19 89-16 236 29 223 62.3 5.5 222 65.3 5.93 219 63.3 7.2

20 89-21 205 36 172 82.3 16.09 170 85.2 17.07 170 80.5 17.07

21 111-9 557 64 524 93.2 5.92 524 94.4 5.92 523 85.5 6.1

22 111-13 319 78 322 98.2 -0.94 322 98.4 -0.94 321 92.5 -0.62

23 111-17 257 93 247 99.2 3.89 244 104.4 5.05 240 107.4 6.61

24 111-22 192 110 184 108.8 4.16 182 110.5 5.2 182 114.5 5.2

25 148-10 600 98 585 201.5 2.5 580 202.5 3.33 593 183.5 1.16

26 148-14 427 121 421 207.8 1.4 416 208.5 2.57 419 207.9 1.87

27 148-21 300 135 285 220.9 5 274 222.4 8.66 273 219.5 9

28 148-29 202 169 188 228.1 6.93 187 229.1 7.42 189 242.2 6.43

29 297-19 646 335 606 1423.7 6.19 597 1435.5 7.58 594 1118.3 8.04

30 297-29 430 369 411 1460.2 4.41 396 1468.2 7.9 394 1331.3 8.37

31 297-38 344 405 303 1465.8 11.91 295 1475.6 14.24 305 1593.5 11.33

32 297-50 256 448 244 1472.9 4.68 232 1488.2 9.37 221 1664.3 13.67
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 U- Shaped RALB problem 

Assembly lines are classified mainly into two types based on the nature of flow: 

straight (traditional) assembly lines with single and multi/mixed products and U-shaped 

assembly lines (also called U-lines) with single and multi/mixed products. 

Implementation of U-shaped layout helps the manufacturer to increase or decrease the 

number of operators based on the change in demand (Aigbedo and Monden, 1997). 

Distinguishing feature of U-shaped assembly lines is that it allows task to be assigned 

to the workstations after all its predecessor or successor are assigned to the earlier or 

same workstation. This feature of U-shaped assembly line balancing problems allows 

for the forward and backward assignment of tasks to workstations (Kara, 2008).  U-

shaped layout helps to reduce the cycle time and cost of assembly which attracts 

different industries to implement this system (Kubota, 2011, Yalaoui et al., 2013).  

U-shaped layout was introduced at a subsidiary factory of Toyota Motor Corp. 

Implementation helped the company to save the capital expenditure and reduce the 

production time. By implementing U-shaped layout more than one task can be 

performed at once on a vehicle, such as installing the engine in the front while adding 

underbody parts in the back. In automobile assembly, vehicles are carried on a conveyor 

belt and the length of the assembly line could be reduced to one-third of the length when 

compared to traditional assembly lines. The company could save up to 40 percent in 

their total capital expenditure by implementing U-shaped assembly line. (Kubota, 

2011).   

The largest integrated moving assembly line the world was introduced by Boeing 

in 2010 after implementing U-shaped assembly line in their manufacturing industry 

(Fetters-Walp, 2010). New record rate of assembling 8.3 aircraft per month or 100 per 

year could be achieved by Boeing after implementing U-shaped assembly layout. The 

company could reduce the flow time and production cost. By implementing U-shaped 

assembly lines an easier work environment could be created for the operators (Boeing, 

2014).    

Robotic assembly lines are widely used in these industries. RALB problem is the 

generalized form of tradition assembly line balancing problem. Few researchers have 

proposed algorithms to solve the problem of this nature. However, there is no research 

undertaken in the field of robotic assembly line-balancing problem with a U-shaped 
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configuration (RUALB). This thesis mainly aims to propose efficient metaheuristic 

based search algorithm to solve U-shaped robotic assembly line balancing (RUALB) 

problem. The main objective of the algorithm is to minimize the cycle time when the 

number of workstations are fixed in a U-shaped assembly line layout. Following 

sections present the details of U-shaped robotic assembly line balancing and algorithms 

used to solve the problem.  

5.4.1 PSO to solve RUALB problem 

 It is already proven by many researchers that simple assembly line balancing 

problem is NP-hard (Gutjahr and Nemhauser, 1964). RUALB problem is further 

complicated with addition of robots and U-shaped configuration. Hence, RUALB is 

also NP-hard. Different metaheuristics are used to solve problems of this nature. In this 

research, PSO algorithm which has achieved great success in optimizing engineering 

problems (Guo et al., 2013)are used to solve RUALB problem. As explained in the 

previous section, PSO is a population-based stochastic optimization technique  

PSO is developed based on the social behavior of organisms. Basic advantages of 

using particle swarm optimization algorithm to solve this problem (Lee and Park, 2006, 

Hu et al., 2014) are: simple to implement when compared to other evolutionary 

algorithms, there are no overlapping and mutation calculation and very less parameters 

to fine tune.  

The pragmatic issues in using or any other metaheuristics algorithms are to find 

optimal control parameters. PSO parameters optimized in this thesis are initial 

population, acceleration coefficients and stopping condition. The experimental studies 

followed to obtain the optimal parameters are explained in Section 5.5.5. 

5.4.2 Initial Population and Initial velocity  

PSO algorithms start with an initial population and initial velocity. The same 

procedure adopted in Section 5.1.1 to solve straight robotic assembly line is used for 

solving RUALB problem. However the fitness evaluation procedure is different from 

the one presented for RALB. A new fitness evaluation method is developed for solving 

RUALB problem with an objective of minimizing cycle time in a U-shaped robotic 

assembly line. Section 5.4.3 presents the details on how the cycle time (objective 

function) is evaluated. 
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5.4.3 Fitness Evaluation in RUALB (Task and robot allocation) 

A consecutive heuristic procedure proposed by Levitin et al. (2006) for straight 

robotic assembly line is adopted in this thesis. This heuristic allocates tasks and robots 

to workstations with an objective of minimizing the cycle time of the assembly line. An 

efficient method is developed for allocating tasks and robots to workstations in a U-

shaped robotic assembly line.   

Procedure starts with an initial cycle time of the assembly line, C0.  Major objective 

of the procedure is to allocate maximum number of tasks at each workstation. Tasks 

are allocated to the workstation in U-shaped assembly line by moving forward and 

backward through the precedence diagram in contrast to a typical forward move in the 

traditional assembly systems. Best robots to perform the tasks allotted to the 

workstations are checked for allotment. C0 is incremented by ‘one’ if certain tasks 

cannot be assigned within the given initial C0 value and this procedure continues until 

all the tasks are assigned to all the workstations. This section presents the stepwise 

procedure adopted for finding out the cycle time of the U-shaped robotic assembly line. 

Step 1: C0, the initial value of cycle time is the mean of the minimum performance time 

of robots for the tasks.  

Initial assembly line time     (5.29) 

The following feasible sequence of tasks (Figure 5.25) is considered for 

illustration. Initial C0 is calculated using the robot performance times as shown in Table 

5.2.  

1 3 2 4 5 6 7 9 8 10 11 

Figure 5.25 Example sequence considered for illustration 

The sequence meets the precedence constraints. Initial C0 for the example is found 

out to be 109 where 37,42,38,40,25,65,50,34,33,41,38 are the minimum robot task 

times (refer Table 5.2). 

C0= (37+42+38+40+25+65+40+34+33+41+38)/4=108.25 

Step 2:  First workstation is opened and tasks are allocated in such a way the procedure 

chooses the tasks from either side of the sequence and checks if one or more robot can 
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perform the allocated tasks within C0. The set of assignable tasks are determined by all 

those tasks whose predecessors or successors have already been assigned. Tasks are 

allocated to workstations by moving forward and backward through the precedence 

diagram. 

 Each workstation‘s’ has a set of preferred/ allotted robots H which is defined as 

follows: 

   for       (5.30) 

Here m (h) is the maximal number of tasks a robot h can perform in the given 

sequence sq during a time lesser than C0. 

     (5.31) 

Next, it defines the robot to be assigned to the workstation s as: 

     (5.32) 

Step 3: The start position of the next stations (p1s+1) is calculated, 

        (5.33) 

Repeat Step 2 and 3, until all tasks are assigned to given number of workstations. 

Step 4: By repeating Steps 2 and 3, if there are still some more tasks left to be assigned 

to the workstations, C0 is incremented by ‘one’ and steps 2 to 3 are repeated until all 

tasks are allotted to the given number of workstations. 

Step 5: Best fit robot is assigned to each workstation. Best fit robot is determined based 

on the objective of minimizing cycle time.  Table 5.21 shows how the best fit robot is 

selected for the example shown in Figure 5.27. Three tasks (1, 11, and 10) are assigned 

in the workstation 1 and Robot 2 is assigned to this workstation as explained in Table 

5.21. Robot 2 performs the assigned tasks in lower time compared to other robots. 

Hence, Robot 2 is the best fit robot for Workstation 1. The total robot task time for each 

robot is calculated using Table 5.2.  
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Table 5.21 Illustration of best fit robot selection  

Workstation Tasks Assigned Total Robot task time 

1 1, 10 and 11 

Robot 1: 81+45+76=202 

Robot 2: 37+46+38=121 

Robot 3: 51+41+83=175 

Robot 4: 49+77+87=213 

 

Step 6: The maximum workstation time (sum of the minimum robot performance time 

for the tasks assigned to the station) is the cycle time for the sequence. 

For the sequence shown in Figure 5.25, C0 is calculated and is found to be 109. 

Procedure tries to initially allocate the tasks to the workstation and assign the best fit 

robots within the initial C0 but the initial cycle time cannot allocate tasks 7 and 9 as 

shown in Figure 5.26. To accommodate all the tasks C0 is incremented by one and when 

C0 reaches 121 all tasks could be assigned and robot is assigned to perform all tasks as 

shown in Figure 5.27.  Shaded portion in Figure 5.27 shows the tasks and robot 

allocation details. 

5.4.4 Differences between straight and U-shaped robotic assembly line 

In a straight line configuration workstations are positioned on a straight line 

whereas in case of U- shaped assembly line, the line is configured into a U-shaped 

configuration. Figure 5.28 shows a sample solution where tasks are assigned in a 

straight line for the sequence mentioned in the previous Section 5.1.1.  Figure 5.29 

shows a sample solution for tasks assigned in U-shaped form. 
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Figure 5.26 Example of assignment procedure for initial cycle time 

  

Figure 5.27 Final Assignment solution for U-shaped RALB 

*(numbers within oval shapes represent the task number) 
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Figure 5.28 Straight Robotic Assembly Line 

From Figure 5.28, it is understood that tasks are assigned in the order of the 

sequence generated without violating the precedence constraints for straight robotic 

assembly line. For U-shaped assembly line, tasks are allocated by searching forward 

and backward through the precedence diagram (numbers within oval shapes represent 

the task number). In case of U-shaped robotic assembly line, each task and any of its 

successor and/or predecessor can be allocated in the same workstation. U-shaped layout 

is easier to relocate the robot to balance the work load depending on the demand. This 

flexibility and adaptability of U-shaped layout makes it more attractive approach 

compared to straight line. The cycle time for the given sample is found to be 143 for 

straight robotic assembly line and for U-shaped robotic assembly line the cycle time is 

found to be 121 (Figure 5.29).  

 

Figure 5.29 U-shaped Robotic Assembly Line  

5.4.5 Computational Study for RUALB problems 

To test the performance of the proposed PSO on RUALB problems computational 

experiments are conducted. The proposed algorithm is coded in C++ and the 

performances are tested on Intel core i5 processor (2.3 GHz). The details of the 

experiments conducted are presented in this section.  
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5.4.5.1 Datasets for computational study  

The datasets used for computational study for straight robotic assembly line 

problems is used for evaluating the performance of RUALB problems also. Details of 

the precedence graphs used are available in http://www.assembly-line-balancing.de/. 

Thirty two test problems generated by Gao et al. (2009) for robotic assembly line are 

used in this research.  

5.4.5.2 Parameters used for PSO to solve RUALB problems 

Parameters selected influence the performance of PSO. The parameters used to 

solve RUALB problems are chosen based on the experiments conducted in order to get 

a satisfactory solution quality in an acceptable computational time. Experiments are 

performed to test the influence of each parameter on the solution quality. To find the 

best combination of parameters, three datasets of different size are chosen. Parameters 

with different combination are tested until the best combination is achieved. Quality of 

the solution is given utmost importance and not on the computational time in selecting 

the best set of parameters, Following are the parameters tested and used in the proposed 

PSO to solve RUALB problems. 

Stopping condition: Proposed algorithm is terminated if the iteration approaches a 

predefined maximum number of generations or sufficiently good fitness value. In this 

case a predefined maximum number of iterations (generations) is used. Different 

stopping conditions are tested such as 5,10,15,25 and 30. Three problems of different 

sizes based on the task size are tested for these different stopping condition and it is 

observed that, the best solution could be attained when the number of iterations 

(generations) is set to 25. Figure 5.30 illustrates the performance of the PSO algorithm 

based on the stopping condition for three selected datasets (small, medium and large 

size dataset). Problems are 35-12, 70-19, 148-29 where 35, 70, 148 are the number of 

tasks whereas 12, 19, 29 indicates the number of robots and work stations available to 

perform the tasks. The numbers in the graph represent the cycle time obtained for the 

three selected problems under different stopping conditions. And after 25th iteration, 

the algorithm started converging to same solution. The stopping condition (number of 

generations) for all the problems tested for RUALB problems is set to 25.  
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Figure 5.30 Performance of PSO in terms of stopping condition 

Acceleration coefficients: The same set of different combination of acceleration 

coefficients used to solve PSO in straight robotic assembly line is also tested for solving 

RUALB problems. Table 5.12 shows the different combinations of c1, c2 and c3 tested. 

Three problems are taken into consideration for the testing. Problems selected are 53-

5, 297-19, and 148-14 where 53,148,297 refer to the number of tasks and 5, 19 and 14 

indicates the number of robots and work stations available to perform the tasks. From 

the Figure 5.31 it is analyzed that Group D (c1=1, c2=2 and c3=2) produced best 

solutions and this combination of acceleration coefficients are used to solve all the 

problems. 

 

Figure 5.31 Selection of acceleration coefficients based on the performance 

of the algorithm 
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5.4.5.3 Performance of u-shaped robotic assembly line versus straight RALB 

32 test problems available from the literature are evaluated using the proposed PSO 

algorithm. Due to non-deterministic nature of the problem and algorithm, it is necessary 

to run same problem multiple times to obtain the optimal solution. All problems are run 

ten times and most of the runs converged to same solution for most of the problems. 

The results obtained by evaluating 32 test problems for RUALB are presented in Table 

5.22. Column I shows the type of problem. The problems are classified into three 

categories: small (up to 35 tasks), medium (up to 89 tasks) and large (above 100 tasks). 

Column II in table shows the problem name (source of the file). Table 5.13 presents the 

source of the datasets evaluated. Column III and Column IV shows the number of tasks 

and number of workstations considered for the evaluation. Column V reports the cycle 

time for straight robotic assembly line as reported by Gao et al. (2009). Column VI 

shows the results obtained from Cplex (optimization software). Cplex can only find 

optimal solutions for four small size problems (25-3, 25-4, 25-6 and 25-9) in an 

acceptable computational time. Cplex could not get the solutions for the rest of the 

problems. Column VII reports the cycle time obtained for the same problems for the U-

shaped robotic assembly line using the proposed PSO.  Column VIII shows the 

percentage deviation of the cycle time and Column IX reports the average percentage 

deviation for the three problem categories.  

From the results presented in Table 5.22 it can be observed that proposed PSO 

algorithm finds better solution for 28 out of 32 instances. When comparing the solutions 

obtained for U-shaped robotic assembly line with straight robotic assembly line, the 

proposed PSO algorithm  generate better results for all small size problems. Average 

improvement in the cycle time for small size problems is found to be 6.99%. Average 

improvement in the cycle time for medium size problems is found to be 6.32% and it is 

observed that out of 12 problems only 2 problems could not yield better solution when 

compared to straight robotic assembly line. Average percentage improvement for large 

size category is found to be 4.85%. It may be noted that 10 out of 12 problems (large 

size) yield better solution when compared with straight robotic assembly line. From the 

results in Table 5.22 it is clearly evident that the cycle time of U-shaped robotic 

assembly line is better than that of straight robotic assembly line. For the problem 

addressed here, the selection of best available robots helps to reduce the cycle time and 

in turn increases the productivity of the assembly line.  
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Simple assembly line balancing problems falls under NP-hard category (Gutjahr 

and Nemhauser, 1964). RUALB problem is further complicated with addition of robots 

and U-shaped configuration. Hence, RUALB is also NP-hard. Computational time 

required to reach a solution is required for calculating the complexity of the problem 

addressed.  Section 5.3.3 gives the details of complexity measures used for RALB 

problems same set of complexity measures are used for RUALB problems. Details of 

the complexity measures used for RUALB problem. 

1. Assembly Flexibility-Problems with eight levels of F-ratio are generated and 

evaluated. Figure 5.32 shows F-ratio versus Computational time for 8 problems 

sets for RUALB allocation procedure. Computational time is presented in Table 

5.23. It is noted that computational time is an increasing function of F-ratio. A 

high F-ratio indicates that there are fewer alternatives for assigning tasks to 

workstations where as low F-ratio gives different ways of assignment. 

2. WEST Ratio- WEST Ratio of the problems of RUALB is similar to the WEST 

Ratio of RALB. Table 5.14 gives the details of WEST Ratio of the problems 

evaluated.  

3. Relative Complexity- Table 5.23 presents the relative complexity of the problem 

addressed. Relative complexity is calculated based on the computational time 

taken by each problem.  The relative complexity of the problem increases with 

the increase in task size of the problem. 

 

Figure 5.32 F-ratio vs Computational Time for RUALB problems 
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Table 5.22 Results of the 32 benchmark problems for RUALB  
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Rosenberg 

 

 

25 

3 503 500* 500 0.5 

6.99% 

4 327 318* 318 2.75 

6 213 188* 188 11.73 

9 123 114* 114 7.31 

Gunther 

 

 

35 

4 449 - 355 20.93 

5 344 - 332 3.48 

7 222 - 221 0.45 

12 113 - 103 8.84 

6.32% 
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Hahn 

 

 

53 

5 554 - 459 17.14 

7 320 - 286 10.62 

10 230 - 220 4.34 

14 162 - 148 8.64 

Tonge 

 

 

70 

7 449 - 447 0.44 

10 272 - 272 0 

14 204 - 211 -3.43 

19 154 - 144 6.49 

Lutz 

 

 

89 

8 494 - 496 -0.49 

12 370 - 326 11.89 

16 236 - 224 5.08 

21 205 - 174 15.12 
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Arcus 

 

 

111 

9 557 - 545 2.15 

4.85% 

13 319 - 320 -0.313 

17 257 - 256 0.38 

22 192 - 186 3.12 

Bartholdi 

 

 

148 

10 600 - 629 -4.83 

14 427 - 421 1.40 

21 300 - 283 5.66 

29 202 - 187 7.42 

Scholl 

 

 

297 

19 646 - 597 7.58 

29 430 - 394 8.37 

38 344 - 293 14.8 

50 256 - 224 12.5 

To test the performance of the proposed algorithm an actual assembly line 

balancing problem is used. The final assembly operation of a major automobile 

manufacturer where the assembly of engine cradles is considered (Gunther et al., 1983). 

In the problem there are 35 tasks to be performed and 5 robots are chosen to perform 

these tasks in the assembly line. The problem consists of 45 direct precedence relations 
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among 35 tasks and processing times of 35 tasks by 5 robots are shown in Appendix 1. 

The solutions obtained for the problem using PSO for U-shaped assembly line and 

solution obtained for straight robotic assembly line using hybrid GA are reported in 

Table 5.24. The table shows the details of the tasks and robots to be allocated at each 

workstation. In summary, cycle time for the U-shaped robotic assembly line is lower 

when compared to the straight robotic assembly line.  

Table 5.23 Relative Complexity of RUALB problem 

P
ro

b
le

m
 N

o
: 

P
ro

b
le

m
 

D
a

ta
se

t 

C
o

m
p

u
ta

ti
o

n
a

l 

T
im

e
 

R
el

a
ti

v
e
 

C
o

m
p

le
x

it
y

 

 

P
ro

b
le

m
 N

o
: 

P
ro

b
le

m
 

D
a

ta
se

t 

C
o

m
p

u
ta

ti
o

n
a

l 

T
im

e
 

R
el

a
ti

v
e
 

C
o

m
p

le
x

it
y

 

1 25-3 8.0 0  17 89-8 84.5 9.56 

2 25-4 9.2 0.15  18 89-12 87.1 9.88 

3 25-6 10.5 0.31  19 89-16 91.2 10.40 

4 25-9 13.5 0.68  20 89-21 95.3 10.91 

5 35-4 16.8 1.10  21 111-9 234.2 28.27 

6 35-5 19.5 1.43  22 111-13 253.7 30.71 

7 35-7 27.5 2.43  23 111-17 298.5 36.31 

8 35-12 31.5 2.93  24 111-22 348.9 42.61 

9 53-5 32.5 3.06  25 148-10 445.8 54.72 

10 53-7 34.8 3.35  26 148-14 519.2 63.9 

11 53-10 35.6 3.45  27 148-21 595.1 73.38 

12 53-14 41.2 4.15  28 148-29 655.3 80.91 

13 70-7 60.1 6.51  29 297-19 1573.2 195.65 

14 70-10 66.8 7.35  30 297-29 1693.8 210.72 

15 70-14 72.4 8.05  31 297-38 1752.9 218.11 

16 70-19 82.2 9.27  32 297-50 1802.3 224.28 

 

5.4.6 Summary of the findings on RUALB problem  

Robotic U-shaped assembly line balancing (RUALB) problem is considered in the 

previous section. It is found from the literature that very few researchers have worked 

on this problem. To solve the problem of minimizing cycle time in a U-shaped robotic 

assembly line, particle swarm optimization algorithm is proposed. The tasks and robot 

assignment in U-shaped configuration is highly complex when compared to straight 

assembly line. The performance of the proposed PSO on RUALB reported in this 

section is for the benchmark problems with eight precedence graphs only. Thirty two 

benchmark problems originally proposed by earlier researchers to solve RALB, is used 

to the test the performance of RUALB. Different parametrical studies are conducted to 

do the computational analysis. Results shows that proposed PSO algorithm for robotic 
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U-shaped assembly line reports minimal cycle time when compared to that of straight 

robotic assembly line for twenty eight out of thirty two problems. From the 

computational study, results shows that computational time for the proposed algorithm 

is high large data sets which could be due to large search space in U-shaped layout 

setup. Different complexity measures are also presented. 

Table 5.24 Solutions Obtained for 35 task problem with 5 robots    

Hybrid GA Task Sequence for Straight RALB:  

1 5 10 6 7 8 14 12 17 18 19 9 20 15 16 21 22 23 24 13 25 26 27 2 3 4 30 34 31 32 11 28 33 35 29 

Workstation Number Tasks Allocated Robot Workstation Time 

Workstation 1 1 5 10 6 7 8 Robot 4 332 

Workstation 2 14 12 17 18 19 9 Robot 3 344 

Workstation 3 20 15 16 21 22 23 24 13 Robot 1 344 

Workstation 4 25 26 27 2 3 4 Robot 5 330 

Workstation 5 30 34 31 32 11 28 33 35 29 Robot 2 333 

 

PSO  Task Sequence for RUALB:  

1 12 10 5 6 7 18 14 19 15 2 17 16 20 21 22 30 8 23 3 25 31 4 9 11 13 24 26 27 32 28 33 34 35 29 

Workstation Number Tasks Allocated Robot Workstation Time 

Workstation 1 1  29  34  2  3  35  28  33 Robot 2 322 

Workstation 2 4  27  26  32  31  30  24 Robot 1 311 

Workstation 3 11  17  10  5  6  8  9 Robot 2 333 

Workstation 4 7  23  25  22  21  20 Robot 4 331 

Workstation 5 14  19  15  16  13  18  12 Robot 2 314 

 Summary  

In this chapter, RALB problem with an objective of minimizing cycle time is 

considered.  Optimizing cycle time is an important problem in manufacturing systems. 

Since the problems addressed here is well known as NP-hard, metaheuristic algorithms 

are developed to solve the problem.  Two heuristics are used for the effective allocation 

of tasks and robots to create a balanced assembly line. Using the standard PSO, two 

heuristics are solved and the performances are compared with the benchmark results. 

IBM Cplex Optimization studio Version 12.6.0.0 is also used to solve the problems. 

Only fourteen problems out of thirty two benchmark datasets could be solved using 

Cplex. When comparing the results obtained using recursive and consecutive, it is 

observed that consecutive allocation procedure performs better in terms of quality of 

solution. Hence, consecutive allocation procedure is used to solve four variants of PSO 

and hybrid PSO models.  PSO variants are developed based on the variation in the 
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velocity update equation of PSO. Hybrid PSO models are developed by hybridizing 

PSO with other metaheuristics. It is found that the results of PSO and variants of PSO 

are very close to Cplex solutions which show the effectiveness of the proposed 

algorithm. Among the four variants and hybrid PSO algorithms, hybrid CS-PSO 

performs better in terms of the quality of the solution for most of the problems tested.  

Computational times for the proposed variants are also presented. The complexity of 

RALB is also presented with various complexity measures.  

 The chapter also presented a new model for solving a robotic U-shaped assembly 

line balancing (RUALB) problem for the objective of minimizing cycle time in a U-

shaped robotic assembly line.  The literature on this problem is very limited.  Particle 

swarm optimization is proposed to solve the problem. The tasks and robot assignment 

in the U-shaped configuration are highly complex compared to a straight assembly line. 

Thirty-two benchmark problems originally proposed by earlier researchers to solve 

RALB-2 were adopted to test the performance. Parameters are chosen based on pilot 

studies and from the experimental results it is observed that cycle time for U-shaped 

robotic assembly line is lower than that of the straight robotic assembly line.  Different 

complexity measures are also presented along with the computational time details. The 

limitations of this work are that only one robot can be assigned to only one workstation. 

It cannot handle multiple workstations, the workstations in the assembly line cannot 

split the tasks and the computational time increases significantly when the problem size 

increases. 

 



 

CHAPTER 6 

6 Particle Swarm Optimization to Solve 

Energy Based RALB Problems 

Increasing energy cost and need of creating eco-friendly environment 

manufacturing industries gives importance for reducing energy consumption. Robotic 

assembly lines are used extensively and these systems are cost intensive. Hence, there 

is a requirement of efficiently balancing the assembly line by allocating equal amount 

of work to workstations and assigning the best fit robot to perform the tasks allocated 

to the workstations. No research could be found on optimizing cycle time and total 

energy consumption concurrently in robotic assembly line systems to date. The 

objective of this section is to propose models with dual focus on time and energy to 

minimize the cycle time and total energy consumption simultaneously, one model (time 

based model) with the primary focus to optimize cycle time and the other model (energy 

based model) with the primary focus to optimize total energy consumption.  

The models proposed have a significant managerial implication in real assembly 

line systems. Suitable models could be selected based on the priorities of the 

management. The two models proposed in this section are very well applicable to 

automobile body shop with robot based lines. The main objective is to propose an 

optimization model to optimize time and energy and to solve the model using a heuristic 

algorithm. Since the problem falls under the category of NP-hard, Particle Swarm 

Optimization algorithm is used to optimize the objectives of two models proposed. 

Time based model optimizes the cycle time of the robotic assembly line as the primary 

objective and the total energy consumption as the secondary objective. Whereas, energy 

based model optimizes the total energy consumption of the robotic assembly line as the 

primary objective and cycle time as the secondary objective. Assignment of tasks to 

workstation and the robot assignment for the workstation is similar to the consecutive 

allocation procedure. 

 Straight RALB - Cycle time and Energy consumption  

This section presents the procedure followed to find out the cycle time and energy 

consumed in a straight robotic assembly line. Cycle time and energy consumed for a 
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straight robotic assembly line is calculated using time based model and energy based 

model. The following section, describes in detail the procedure implemented. 

6.1.1 Time based model 

Using the time based model, tasks are allocated to the workstations and best fit 

robots are allotted to perform the allocated tasks in a straight robotic assembly line. The 

energy consumed for performing the allocated tasks is calculated. As explained in 

section 5.1.1, the tasks in the sequence will be allocated using the consecutive allocation 

procedure. In this procedure cycle time is calculated. The maximum of the workstation 

time is the cycle time for the assignment made. Workstation time is the sum of robot 

processing times of the tasks by the allotted robots. Total energy consumption for the 

assignment made is calculated.  Energy consumption for a workstation is calculated by 

multiplying the total robot task time by the power consumed by that robot. Total energy 

consumption for the assignment is obtained by adding the energy consumed by all 

workstations. For the illustration purpose refer Figure 5.7, Figure 5.8 and Figure 5.9. In 

the example shown in Figure 5.8, workstations time are calculated and the cycle time 

is evaluated to be 143. From Figure 5.9, workstation times of different workstations are 

shown. These workstation times are used to calculate the energy consumption.  

Workstation times are 143, 136, 115 and 84. Refer Figure 5.9 for the workstation times 

and Appendix 2 for the power consumption values of the robots. Energy consumption 

of each workstation is calculated using the workstation times and the power 

consumption of the robot which is allotted to perform the tasks at the workstation: 

Energy consumption at a workstation = Workstation time Power Consumption of the 

robot  

 Energy consumption at Workstation 1 = 143 0.35= 50.05 kJ 

 Energy consumption at Workstation 2 = 136 0.35= 47.6 kJ 

 Energy consumption at Workstation 3 =115 0.3=34.5 kJ 

 Energy consumption at Workstation 4 = 84 0.4= 33.6 kJ 

Total energy consumption of the assignment= 50.05+47.6+34.5+33.6=165.7 kJ 

and the cycle time of the assignment is 143. The results obtained for the 11 tasks 

problem using time based model is shown in Figure 6.1. The figure shows the tasks and 

robot allocation along with the workstation times and the energy consumption at each 

workstation. 

×

×

×

×

×
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Figure 6.1 Final Solution for time based model in a straight RALB 

6.1.2 Energy Based Model for straight robotic assembly line  

This procedure is used to calculate the total energy consumption of a straight 

robotic assembly line. An initial energy consumption of the assembly line, E0 is used 

to start the procedure. It is checked if the tasks can be assigned to the workstations until 

the sum of energy consumption of the tasks is less than or equal to E0 and that respective 

robot which consume less energy is assigned to the workstation to perform the tasks. If 

it is not possible to assign the tasks to the workstation within the given initial E0 value, 

E0 is incremented by ‘one’ and the assignment procedure is repeated until all the tasks 

are assigned to the workstations. Total energy consumption of the assembly line is 

calculated by adding the energy consumed at each workstation. Stepwise illustration is 

provided for explaining the task and robot allocation using the energy based model. 

Precedence graph shown in Figure 5.2 and energy consumption of the robots shown in 

Table 6.1 are used for the illustration.  

Step 1. Feasible sequence of tasks (1-3-2-4-5-6-7-9-8-10-11) which meets the 

precedence constraints is considered for illustration. Initial value of E0 is the mean of 

minimum energy consumption of the robots for the tasks. The initial energy 

consumption (E0) of the assembly line is calculated using  

       (6.1) 

Table 6.1 shows the energy consumption of the robots; using this data initial E0 

for the example is found out to be 35.   

E0= [15+15+11+13+9+19+12+10+11+11+15]/4= 35 

Step 2. The first station is opened and the procedure tries to allocate the tasks according 

to the sequence in the order of occurrence, if one or more robot could perform the 
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allocated tasks within E0. Each workstation s has a set of preferred/ allotted robots H 

which is defined as follows: 

      (6.2) 

where m (h) is the maximal number of tasks a robot h can perform in the given 

sequence sq within  E0 . 

  

     (6.3) 

Next, it defines the robot to be assigned to the workstation s as: 

 If         (6.4)
 
 

Step 3. The start of position of the next workstation is calculated as follows: 

  
      (6.5) 

Step 2 is to be repeated until all tasks are assigned to given number of workstations. 

Step 4. If the tasks are not possible to be assigned within the given E0, increment E0 by 

‘one’ and repeat the steps 2 and 3 until all the tasks are allotted.  

Step 5. The total energy consumption for the assignment is calculated by adding the 

energy consumption of all workstation. 

Step 6. The workstation time of the assignment made is calculated by finding out the 

time taken by the robot at each workstation. The maximum workstation time is the cycle 

time of the assignment made.  

In the example for energy based model, it is found that tasks 10 and 11 are left 

unassigned as when E0=35 as shown in Figure 6.2 a). E0 is incremented till 43 for 

accommodating all the tasks in the four workstations and the completed allocation is 

shown in Figure 6.2 b). The total energy consumption of the assembly line when tasks 

are allocated based on the energy model is found to be 150 kJ (27+37+43+43). The 

workstation time of the each workstation is calculated by adding the processing time of 

the tasks assigned to that workstation for the robot assigned. In this example 

workstation time of the assignment made is calculated by using the processing time 

given in Table 5.2  

Time at Workstation 1 (Robot 3) = 51+38=89 
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Time at Workstation 2 (Robot 4) = 42+40+25=107 

Time at Workstation 3 (Robot 1) = 77+51+43=171 

Time at Workstation 4 (Robot 1) = 50+45+76=171 

The maximum workstation time is the cycle time of the assignment made and the 

cycle time is 171. The results obtained for the 11 tasks problem using energy based 

model is shown in Figure 6.3. 

 

Table 6.1   Energy consumption for 11 tasks by 4 robots 

Tasks Robot 1 Robot  2 Robot 3 Robot 4 

1 20 15 15 17 

2 27 40 27 15 

3 16 32 11 18 

4 13 16 27 14 

5 23 14 10 9 

6 19 26 25 25 

7 13 20 12 17 

8 13 17 10 15 

9 11 30 12 12 

10 11 18 12 27 

11 19 15 25 30 

 

 

Figure 6.2 a) Task and Robot allocation using energy based model with initial E0 
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Figure 6.2 b) Completed allocation using energy based model 

 

Figure 6.3 Final Solution for the energy based model in a straight RALB 

6.1.3 Energy Consumed by Robots during standby mode 

Energy consumed by robots or any electrical equipment’s when it is switched off 

or not performing the main function is termed as standby energy. Energy consumption 

during standby mode is an increasing fraction of energy use in Organization for 

Economic Cooperation and Development (OECD) countries. Due to the increased 

usage of new technologies and equipment’s there is a growth in standby power usage. 

It is observed that by reducing the stand by energy consumption worldwide there could 

be reduction of CO2 emission by one percent. Energy consumed during standby mode 

is calculated by assuming that power consumed by the robot during the standby mode 

is 10% of the original power (Bertoldi et al., 2002). This is an assumption considered 

in this section to calculate the energy consumed during standby time. An assembly line 

is considered to be completely balanced if the total slack (i.e., the sum of the stand-by 

times of all the stations along the line) is as low as possible. However, in practical cases 

it is difficult to get 100% efficient balanced assembly line. In this section, the energy 

consumed by the workstations during the (standby mode) is also considered.  Standby 

time is calculated as follows: 

 Stand by time of workstation= Cycle Time- Workstation time   (6.6) 
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The steps involved in calculation of energy consumed in an assembly line are as 

follows: 

1. Calculate Cycle Time of the assembly line. 

2. Find the standby time of each workstation.  

3. Calculate the standby energy consumed by the robots allotted to the workstation.  

Energy is calculated by using (E=P t) here P is the power of the robot allotted to 

the workstation and t corresponds to the standby time of the workstation. Sum up all 

the standby energy of all the workstations in an assembly line. 

Table 6.2 shows an example problem with 9 workstations. Column I show the 

workstation number, Column II shows the robots assigned after task allocation. Column 

III and IV shows the workstation time and standby time of the workstation. In this 

problem cycle time is found to be 110. Using the standby time and power of the robot 

(Refer Appendix 2), standby time energy is calculated.  The standby time energy is 

evaluated for both the models and it is added to the energy consumption during the 

production time to get the total energy consumed in an assembly line. Both the models 

employ the same procedure for the evaluation of the standby energy consumption.  

Table 6.2 Standby time Energy Evaluation 

Workstation 

Number 

Robot 

Assigned 

Workstation 

Time 

Standby  

Time 

Standby  

Energy (kJ) 

1 4 59 51 2.04 

2 7 109 1 0.025 

3 4 92 18 0.72 

4 9 110* 0 0 

5 7 104 6 0.15 

6 4 109 1 0.04 

7 7 87 23 0.575 

8 7 98 12 0.3 

9 7 98 12 0.3 

*Cycle Time Total Standby Energy 4.15 kJ 

  

6.1.4 PSO for solving time and energy based model 

PSO algorithm is proposed to solve both the proposed models. PSO algorithm 

starts with an initial population and initial velocity. Initial population is generated based 

on the heuristics as explained in Section 5.1.1. Same set of velocity pairs are used for 

×
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the velocity update.  Pseudo code of PSO as shown in Figure 5.1 is adopted for solving 

this problem. 

Velocity and position of the particles in PSO are updated using Equation 5.1 and 

5.2. The equation is reproduced here for the reader’s clarity.  

Position update is done iteratively using Equation 5.2 

                                                                                 

The velocity of each particle is updated iteratively Equation 5.1 

                   

Where U1 and U2 are the velocity coefficients (random numbers between 0 and 1), 

vi
t is the initial velocity, ePt

i is the Local best, G is the Global best and Pi
t  is the current 

particle position, c1, c2 and c3 are the acceleration coefficients respectively.  

6.1.5 Computational study and Discussions 

The computational experiments are conducted in order to test the performance of 

the two proposed models for straight robotic assembly line (RAL) problem. PSO is 

proposed to solve the problem. The following section describes the experiments 

conducted. 

6.1.5.1 Datasets for time based model and energy based model 

Gao et al. (2009) generated 32 test problems for RALB using 8 precedence graphs 

available in http://www.assembly-line-balancing.de/ and the time data of 32 test 

problems are used for evaluation of both the models. Power consumption by robots is 

randomly generated and it is shown in Appendix 2 for small size datasets and for large 

size datasets it is shown in Appendix 3. The energy consumption of a task i by robot h 

is calculated as follows: 

         (6.7) 

Where, tih is processing time of the task i by robot h. Ph is the power consumption 

of robot h. The datasets are divided into two groups: small and large size datasets. Small 

dataset contains problems with 25 tasks to 70 tasks. Large size datasets consists of 

problem with tasks 89 tasks to 297 tasks. 
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6.1.5.2 Parameters of two models proposed  

32 test problems are solved for the proposed two models using PSO algorithm. The 

parameters used in PSO are chosen experimentally in order to get a satisfactory solution 

quality in an acceptable time span. It is well recognized that the parameter values 

significantly affect the solution quality. Experiments are performed to find the optimal 

parameters. Three data sets of different sizes are chosen to find the parameters which 

yielded best solution. Different combinations of the parameters are tested until the best 

combination is achieved. Quality of solution is given importance compared to the 

computational time in selecting the parameters. PSO Parameters chosen to evaluate the 

two models are shown in Table 6.3 

Table 6.3 PSO Parameters selected for evaluating the models 

Time Based Model Energy Based Model 

Population size: 25 Population size 25 

Number of iterations: 30 Number of iterations:40 

Learning coefficients: c1-1, c2-1 and c3-2 Learning coefficients: c1-1, c2-2 and c3-2 

 

6.1.5.3 Performance analysis of two proposed models 

The two models are evaluated on the two factors using cycle time and total energy 

consumption. The total energy consumption and cycle time obtained using the two 

proposed models are presented in Table 6.4 and Table 6.5. Results obtained from the 

computational analysis for small size datasets are presented in Table 6.4 and Table 6.5 

shows the results for large size datasets. Sum of energy consumption during the 

production mode and standby mode is the total energy consumption of the assembly 

line.  Graphical comparison of the total energy consumption for both small and large 

size datasets is presented in Figure 6.4 and Figure 6.5. It is observed from the tables 

and graphs that the total energy consumption is lower for energy based model and cycle 

time is lower for the time based model for all the datasets evaluated here. 

The average of the difference in the energy consumption between the models is 

taken to find out the average energy saving.  The average energy saving for small size 

datasets is found to be around 113 kilojoules. The average energy savings for the large 

size datasets is found to be 1062 kilojoules. Figure 6.6 and Figure 6.7 represents the 

difference in energy consumption between the time based model and energy based 
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model and the graph represents the energy saved by using energy based model when 

compared to the time based model. 

Table 6.4 Total energy consumption and cycle time evaluated for small size 

datasets 

Small 

Size 

Datasets 

Time Based Model Energy Based Model 

Total Energy 

Consumption 

(kilojoules) 

Cycle 

Time 

Total Energy 

Consumption 

(kilojoules) 

Cycle 

Time 

25-3 514 503 494 641 

25-4 347 293 342 314 

25-6 420 221 365 235 

25-9 265 110 248 142 

35-4 1091 341 1072 516 

35-5 959 357 929 424 

35-7 1180 226 1015 342 

35-12 755 105 697 160 

53-5 2707 454 2700 587 

53-7 2197 293 1989 343 

53-10 2513 224 2215 273 

53-14 2237 146 2177 200 

70-7 4218 446 4146 463 

70-10 3228 259 3069 290 

70-14 4092 194 3871 290 

70-19 3732 139 3323 255 

 

Table 6.5 Total energy consumption and cycle time evaluated for large size 

datasets 

Large 

Size 

Datasets 

Time Based Model Energy Based Model 

Total Energy 

Consumption 

(kilojoules) 

Cycle 

Time 

Total Energy 

Consumption 

(kilojoules) 

Cycle 

Time 

89-8 5078 464 5043 562 

89-12 6314 317 5683 430 

89-16 5191 219 5119 340 

89-21 4734 176 4250 206 

111-9 4734 526 4250 735 

111-13 8207 317 7267 396 

111-17 7403 250 6945 280 

111-22 7400 185 6909 255 

148-10 10166 556 9840 678 

148-14 12045 420 10654 461 

148-21 11467 272 10131 335 

148-29 9290 190 8606 263 

297-19 26849 594 25232 809 

297-29 26161 428 24970 466 

297-38 25450 295 22862 348 

297-50 24870 256 22243 348 
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Figure 6.4 Comparison of Energy consumption in small size datasets for two 

models in straight RALB 

 

Figure 6.5 Comparison of Energy consumption for large size datasets for two 

models in straight RALB 
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Figure 6.6 Energy saving potential in small size datasets for energy based model 

in straight RALB 

 

 

Figure 6.7 Energy saving potential in large size datasets for energy based model 

in straight RALB 

It is observed from the Figure 6.6  that datasets with more amount of tasks, the 

energy saved is high for most of the problems in the group of large size datasets when 

energy based model is considered.   Figure 6.7 represents the energy saving for large 

size datasets and it is observed that higher the number of task in the problem evaluated, 

energy saving is more in case of energy based model. Figure 6.8 and Figure 6.9 shows 
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the performance of time based model in terms of cycle time. Time based model 

performs better for both small and large size datasets when compared with the energy 

based model in case of minimizing the cycle time. Average reduction in cycle time 

when the time based model is compared with energy based model is found to be 73 

units for small size datasets and for large size datasets average cycle time reduction is 

found to be 109 units.  

 

Figure 6.8 Comparison of Cycle Time in small size datasets between two models 

in straight RALB 

 

Figure 6.9 Comparison of Cycle Time in large size datasets between two models 

in straight RALB 
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Two factors which are very important in a manufacturing setup are: increase the 

productivity and also to reduce the energy consumption. The objective of the work is 

to propose two models with dual focus on time and energy consumption in a straight 

robotic assembly line. Based on the priority of the management, the primary focus 

between time and energy could vary at different time horizon. The appropriate model 

could be selected based on the priority. These comparison results could be used for 

important managerial implications in real life assembly line systems. 

6.1.5.4 Computational time  

The solution quality is given more importance than the computational time. The 

average computational time for the time based model and energy based model for the 

32 problems evaluated are presented in Table 6.6. Computational results shows that 

time taken for computing the time based model is very less compared to that of the 

energy based model for large size datasets.  

Table 6.6 Average Computational Time in seconds for the proposed models 

Problem 

Set 
Tasks 

No. of 

Problems 

CPU Time 

Time Based 

Evaluation 

Energy Based 

Evaluation 

1 25 4 3 5 

2 35 4 8 9 

3 53 4 18 21 

4 70 4 46 54 

5 89 4 62 79 

6 111 4 106 130 

7 148 4 246 295 

8 297 4 1246 1512 

 

 U-shaped RALB - Cycle time and Energy consumption  

This section presents the procedure followed to find out the cycle time and energy 

consumed in a U-shaped robotic assembly line. Cycle time and energy consumed for a 

U-shaped robotic assembly line is calculated using time based model and energy based 

model. The following section, describes in detail the procedure implemented for finding 

the cycle time and energy consumption in a U-shaped robotic assembly line layout by 

balancing the tasks and robots. Until now, U-shaped robotic assembly line has received 

very less attention. Besides what is proposed here, it could be seen that no research has 

been done on optimizing cycle time and energy consumption in a U-shaped robotic 

assembly line. Two models are proposed to evaluate the cycle time and energy 
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consumption in an assembly line. These models could be selected based on the demands 

and priorities of the management. This problem falls under NP-hard; hence PSO is used 

for solving the two models. Procedures implemented to evaluate the cycle time and 

energy consumption using the two models are presented here.  

6.2.1 Time based model for U-shaped robotic assembly line 

Time based model proposed here calculates the cycle time of the U-shaped robotic 

assembly line by allocating tasks and robots optimally. For the allocation made, the 

energy consumed by each workstation is calculated. The standby energy consumed is 

also evaluated. The sum of energy consumed during production mode and standby 

mode is the total energy consumed by the U-shaped robotic assembly line. As explained 

in Section 5.5.3, the tasks are allocated to the workstations and best fit robots are 

allotted to the workstations to perform the allocated tasks in a U-shaped assembly lime. 

The stepwise procedure involved in calculating the cycle time and energy consumed in 

U-shaped robotic assembly line is presented here. In this procedure cycle time is 

calculated. The maximum of the workstation time is the cycle time for the assignment 

made. Workstation time is the sum of robot processing times of the tasks by the allotted 

robots. Total energy consumption for the assignment made is calculated.  Energy 

consumption for a workstation is calculated by multiplying the total robot task time by 

the power consumed by that robot. Total energy consumption for the assignment is 

obtained by adding the energy consumed by all workstations. In the example shown in 

Figure 5.29, workstations time are calculated and the cycle time is evaluated to be 121. 

The workstation times are used to calculate the energy consumption.  Workstation times 

are 121, 115, 107 and 116. Using the power consumption for 11 task problem presented 

in Appendix 2, the energy consumption of each workstation is calculated using the 

workstation times and the power consumption of the robot which is allotted to perform 

the tasks at the workstation: 

Energy consumption at a workstation= Workstation time Power Consumption of the 

robot  

Energy consumption at Workstation 1=121 0.4= 48.4 kJ 

Energy consumption at Workstation 2= 115 0.3= 34.5 kJ 

Energy consumption at Workstation 3=107 0.35=37.45 kJ 

Energy consumption at Workstation 4= 116 0.4= 46.4 kJ 

×

×

×

×

×
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Total energy consumption of the assignment= 48.4+34.5+37.45+46.4= 166.75 kJ 

and the cycle time of the assignment is 121. The results obtained for the 11 tasks 

problem using time based model is shown in Figure 6.10. The figure shows the tasks 

and robot allocation along with the workstation times and the energy consumption at 

each workstation. The energy consumed during the standby mode is calculated using 

the workstation times and it is found to be 0.95 kJ. The total energy consumption for 

the U-shaped robotic assembly line using time based model is the sum of energy 

consumption during the production mode and energy consumption during the standby 

mode and the total energy consumption is 167.7 kJ. 

 

Figure 6.10 Solution for the time based model in a U-shaped RALB 

6.2.2 Energy Based Model for U-shaped robotic assembly line 

This procedure is used to calculate the total energy consumption of a U-shaped 

robotic assembly line. Task allocation procedure is different from the straight robotic 

assembly line allocation. This procedure also starts with an initial energy consumption 

of the assembly line. In U-shaped robotic assembly line, tasks are allocated to the 

workstation by moving forward and backward through the precedence diagram in 

contrast to a typical forward move in the traditional assembly systems. Best robot which 

can perform the tasks allotted to the workstations with minimum energy consumption 

are checked for allotment. The procedure tries to allocate the maximum number of tasks 

to the workstations without violating the precedence constraints. If the initial E0 cannot 

accommodate all the tasks, E0 is incremented by one and the procedure is repeated to 

accommodate all the tasks. The allocation done gives the energy consumption at each 

workstation. The time taken by each workstation is also calculated which is used to find 

the cycle time and standby time for each workstation. Using the standby time for each 
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workstation, the energy consumed during the standby mode is calculated. The total 

energy consumed by the U-shaped assembly line is the sum of energy consumption 

during production mode and standby mode. An illustration is provided in this section 

which explains the task and robot allocation and calculation of energy consumption in 

a U-shaped robotic assembly line. Sequence of tasks which meets the precedence 

constraints is considered for illustration. Let, the sequence be, 1-3-2-4-5-6-7-9-8-10-

11. 11 task and 4 workstation problem is considered for the illustration. Energy 

consumption details of each tasks and robots are presented in Table 6.1. 

Step 1. E0 is calculated and it is found to be 35 using Equation 6.1.  

Step 2.  For the initial E0, the procedure tries to allocate the tasks to the workstations 

starting from the first workstation. Procedure allocates the maximum tasks by checking 

either side of the sequence if any of the robots could perform the tasks within E0. Since 

it is U-shaped, search space is more due to different possible combinations 

Step 3. If the previous workstation cannot accommodate more tasks, the next 

workstation is allocated with the remaining tasks.  

Step 4.  After trying with initial E0, if the procedure still was not able to assign all the 

tasks within the E0, E0 is increment by ’one’ and repeat the Step 2 and 3 until all tasks 

get assigned to the workstation. 

Step 5. Robots are allotted to each workstation with certain set of tasks. Robot which 

performs the allotted tasks with minimum energy consumption is selected and 

allocated.  

Step 6. Using the robot allocated and tasks in the workstation, the workstation time is 

calculated for the tasks allocated.   

Step 7. The workstation with the maximum workstation time is the cycle time of the 

allocation. 

Step 8. Using the workstation times, the standby time of each workstation is calculated 

and the energy consumed during the standby mode is calculated using the power 

consumption of the robots allotted to each workstation. 
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Step 9. Sum of the energy consumption during production mode and energy 

consumption during the standby mode gives the total energy consumption of the 

assembly line.  

For energy based model in U-shaped robotic assembly, when the allocation was 

attempted with initial E0 it was found that tasks 6 and 7 are left unassigned. E0 is 

incremented till 47 for accommodating all the tasks in the four workstations and the 

complete the allocation. The energy consumption of the assembly line during the 

production mode when tasks are allocated based on the energy model is found to be 

151 kJ (30+33+41+47). The workstation time of the each workstation is calculated by 

adding the processing time of the tasks assigned to that workstation for the robot 

assigned. In this example workstation time of the assignment made is calculated by 

using the processing time given in Table 5.2  

Time at Workstation 1(Robot 2) = 37+38=75, Time at Workstation 2(Robot 3) = 

38+34+41=113 

Time at Workstation 3(Robot 4) = 42+40+33=115 and Time at Workstation 

4(Robot 3) = 33+83+40=156. The maximum workstation time is the cycle time of the 

assignment made and the cycle time is 156. The results obtained for the 11 tasks 

problem using energy based model is shown in Figure 6.11.  

 

Figure 6.11 Solution for the energy based model in a U-shaped RALB 

6.2.3 PSO to solve proposed models in U-shaped RALB 

PSO is used for solving the proposed model with an objective of minimizing the 

cycle time (time based model) and total energy consumption (energy based model) for 

U-shaped robotic assembly line. The computational experiments are conducted in order 
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to test the performance of the two proposed models. The following section describes 

the experiments conducted. 

6.2.3.1 Datasets for time based model and energy based model 

Thirty two test problems for RALB proposed by Gao et al. (2009) are used for 

evaluating the two models to solve energy consumption and cycle time in a U-shaped 

robotic assembly line. Power consumption of robots which are used for the dataset 

generation is presented in Appendix 2 for small size datasets (up to 70 task problems) 

and for large size datasets (89 tasks to 297 tasks problem) power consumption details 

are presented in Appendix 3.  

6.2.3.2 Parameter settings for PSO 

Pilot studies have been conducted on three different datasets of different sizes to 

arrive at the best value of population size in the proposed PSO. From the studies it is 

found that both the proposed models works well with a swarm size of 25 for minimizing 

energy consumption for the energy based model and minimizing cycle time for the time 

based model.  The acceleration coefficients are also selected by trying different 

combinations for c1, c2 and c3. Similarly, studies have been carried out to find the 

suitable stopping condition and the best values are 25 iterations in time based model 

and for energy based model the total number of iterations is 30. Table 6.7 summarizes 

the parameters of PSO used to solve the proposed models. During the experimental 

study, quality of solution is given importance compared to the computational time.  

Table 6.7 Parameters of PSO selected for evaluating the two models 

Time Based Model Energy Based Model 

Population size: 25 Population size 25 

Number of iterations: 30 Number of iterations:40 

Learning coefficients: c1-1, c2-2 and c3-2 Learning coefficients: c1-1, c2-2 and c3-2 

  

6.2.3.3 Performance analysis of two proposed models 

The performances of two models are evaluated to find out the cycle time and 

energy consumption. The proposed models are coded in C++ and the performances are 

tested on Intel core i5 processor (2.3 GHz). The datasets are divided into two groups: 

small size datasets and large size datasets. The complete details of the results obtained 

by using the time based and energy based model for small size datasets are presented 

in Table 6.8 and Table 6.9 shows the results obtained for the two models for the large 
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size datasets. The energy consumption reported here is the sum of energy consumption 

during the production mode and energy consumption during the standby mode.  

Table 6.8 Results of performance evaluation of two models for small size datasets 

in U-shaped RALB 

Small 
size 

Datasets 

Time Based Model Energy Based Model 

Total Energy 

Consumption 

(kJ) 

Cycle 

Time 

Total Energy 

Consumption 

(kJ) 

Cycle 

Time 

25-3 546 500 496 546 

25-4 333 293 345 320 

25-6 361 188 359 213 

25-9 281 109 246 157 

35-4 1094 355 1042 509 

35-5 1003 333 861 360 

35-7 1157 221 1005 307 

35-12 743 103 651 126 

53-5 2713 443 2665 452 

53-7 2111 286 1982 330 

53-10 2640 220 2172 252 

53-14 2139 144 2039 183 

70-7 4410 442 4257 557 

70-10 2715 264 3050 294 

70-14 4149 194 3845 275 

70-19 3754 139 3229 189 

 

Figure 6.12 and  Figure 6.13 presents the energy consumption obtained using the 

time based model and energy based and it is evident from the figure that energy based 

model is better in terms of minimizing energy consumption when compared with time 

based model for both the groups of datasets. However, two datasets in the small size 

datasets (25-4 and 70-10) did not get lower energy consumption using energy based 

model.  
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Table 6.9 Results of performance evaluation of two models for large size datasets 

in U-shaped RALB 

 

Large 

size 
Datasets 

Time Based Model Energy Based Model 

Total Energy 

Consumption 

(kJ) 

Cycle 

Time 

Total Energy 

Consumption 

(kJ) 

Cycle 

Time 

89-8 5472 481 4826 532 

89-12 5978 315 5665 420 

89-16 5221 218 4969 322 

89-21 4668 169 4218 201 

111-9 9440 522 7230 688 

111-13 7936 316 7167 377 

111-17 7309 256 6861 265 

111-22 6974 181 6800 228 

148-10 11127 619 9828 671 

148-14 11552 417 10506 458 

148-21 11103 270 10079 318 

148-29 8576 187 8415 198 

297-19 25821 591 24658 697 

297-29 25787 390 24666 448 

297-38 25061 293 22446 345 

297-50 24116 222 22022 341 

 

 

 

Figure 6.12 Comparison of energy consumption for small size datasets in U-

shaped RALB 
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Figure 6.13 Comparison of energy consumption for large size datasets in U-

shaped RALB 

Energy consumption for energy based model is lower when compared to energy 

consumption obtained for time based model. Differences in energy consumption 

between two models are taken and the average of the difference is taken to calculate the 

average savings. It is observed the average energy saving by using energy based model 

for small size datasets is around 119 kilojoules. The average energy which can be saved 

by using energy based model over time based model for large size datasets is found to 

be 987 kilojoules. Figure 6.14 and Figure 6.15 represents the difference in energy 

consumption (energy saving potential) between the time based model and energy based 

model and the graph represents the energy saved by using energy based model when 

compared to the time based model. From Figure 6.14 it is observed that two problems 

from the datasets are not able to produce better results for energy based model and they 

are represented as negative peaks in the graph.  



Chapter 6 

PSO to solve energy based RALB problems 

 

Page | 134  

 

 

Figure 6.14 Energy saving potential in small size datasets for energy based model 

in U-shaped RALB 

Figure 6.16 and Figure 6.17 represent the comparison for the cycle time evaluated 

by using the two models. And it is clearly evident that cycle time of time based model 

is lower when compared to the cycle time obtained using energy based model for all 

the thirty problems evaluated.  The average reduction in cycle time by using time based 

model for small size datasets is 52 cycle time units and for large size datasets average 

reduction in cycle time is 66 units. 

The manufacturing companies give utmost importance to increase the 

productivity and reduce the energy consumption. The objective of the work presented 

here is to propose two models which focus on time and energy consumption 

concurrently in a U-shaped robotic assembly line. Based on the demands and 

requirements of the managements, industrial managers can chose any of the two 

proposed models for applying it in real life assembly line systems. 
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Figure 6.15 Energy saving potential in large size datasets for energy based model 

in U-shaped RALB 

 

Figure 6.16 Comparison of cycle time obtained for small size datasets in U-

shaped RALB 
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Figure 6.17 Comparison of cycle time obtained for large size datasets in U-

shaped RALB 

6.2.3.4 Computational time  

The average computational time for the time based model and energy based model 

for the 32 problems of U-shaped robotic assembly line evaluated are presented in Table 

6.10. Computational results shows that time taken for computing the time based model 

is very less compared to that of the energy based model for large size datasets.  

Table 6.10 Average Computational Time for the proposed two models 

Problem 

Set 
Tasks 

No. of 

Problems 

CPU Time 

Time Based 

Evaluation 

Energy Based 

Evaluation 

1 25 4 10 13 

2 35 4 24 25 

3 53 4 38 39 

4 70 4 72 75 

5 89 4 93 94 

6 111 4 287 354 

7 148 4 559 676 

8 297 4 1726 1854 

The time consumed for large size datasets from 111 tasks is very high for energy 

based model when compared to time based model. However, when comparing the time 

consumed to solve U-shaped robotic assembly line is higher when compared with the 

computational time for evaluating straight robotic assembly line problems. This is due 

to large search space and different possible combinations in U-shaped layout.  
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6.2.4 Comparison of straight and U-shaped RALB 

The total energy consumption and cycle obtained using energy based model and 

time based model for straight and U-shaped robotic assembly line are compared. Table 

6.11 is formed by extracting the results from Table 6.4, Table 6.5, Table 6.8 and Table 

6.9.  The results indicate that energy consumption is very low for U-shaped robotic 

assembly line when compared to the energy consumption in straight robotic assembly 

line. Twenty nine out of thirty two datasets yielded lower energy consumption for U-

shaped robotic assembly line. Average energy savings which is achieved by using U-

shaped robotic assembly line over straight robotic assembly line is calculated as 26 

kilojoules for small size datasets (up to problem number 16) and 169 kilojoules for large 

size datasets.  

Table 6.11 Comparison: energy consumption between straight & U-shaped 

RALB 

Problem 

No: 

Problem 

Dataset 

Energy 

Consumption (kJ) 
 

Problem 

No: 

Problem 

Dataset 

Energy 

Consumption (kJ) 

Straight 

RALB 

U-shaped 

RALB 
 

Straight 

RALB 

U-shaped 

RALB 

1 25-3 494 496  17 89-8 5043 4826 

2 25-4 342 345  18 89-12 5683 5665 

3 25-6 365 359  19 89-16 5119 4969 

4 25-9 248 246  20 89-21 4250 4218 

5 35-4 1072 1042  21 111-9 7307 7230 

6 35-5 929 861  22 111-13 7267 7167 

7 35-7 1015 1005  23 111-17 6945 6861 

8 35-12 697 651  24 111-22 6909 6800 

9 53-5 2700 2665  25 148-10 9840 9828 

10 53-7 1989 1982  26 148-14 10654 10506 

11 53-10 2215 2172  27 148-21 10131 10079 

12 53-14 2177 2039  28 148-29 8606 8415 

13 70-7 4146 4257  29 297-19 25232 24658 

14 70-10 3069 3050  30 297-29 24970 24666 

15 70-14 3871 3845  31 297-38 22862 22446 

16 70-19 3323 3229  32 297-50 22243 22022 

Average Energy  Savings for 

U-shaped 
26 kJ  

Average Energy  Savings for 

U-shaped 
169 kJ 

 

Cycle time of both straight and U-shaped robotic assembly line obtained using time 

based model are extracted and the results are presented in Table 6.12.  
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Table 6.12 Comparison: cycle time between straight & U-shaped RALB 

Problem 

No: 

Problem 

Dataset 

Cycle Time  
Problem 

No: 

Problem 

Dataset 

Cycle Time 

Straight 

RALB 

U-shaped 

RALB 
 

Straight 

RALB 

U-shaped 

RALB 

1 25-3 503 500  17 89-8 464 481 

2 25-4 293 293  18 89-12 317 315 

3 25-6 221 188  19 89-16 219 218 

4 25-9 110 109  20 89-21 176 169 

5 35-4 341 355  21 111-9 526 522 

6 35-5 357 333  22 111-13 317 316 

7 35-7 226 221  23 111-17 250 256 

8 35-12 105 103  24 111-22 185 181 

9 53-5 454 443  25 148-10 556 619 

10 53-7 293 286  26 148-14 420 417 

11 53-10 224 220  27 148-21 272 270 

12 53-14 146 144  28 148-29 190 187 

13 70-7 446 442  29 297-19 594 591 

14 70-10 259 264  30 297-29 428 390 

15 70-14 194 194  31 297-38 295 293 

16 70-19 139 139  32 297-50 256 222 

Average Percentage 

Reduction in cycle time using 

U-shaped 

1.80%  

Average Percentage 

Reduction in cycle time using 

U-shaped 

1.07% 

 

From Table 6.12, it is observed that cycle time of U-shaped robotic assembly line 

obtained using the time based model is lower than the cycle time for straight robotic 

assembly line problems for 28 out of 32 problems evaluated. The average percentage 

reduction in cycle time by using U-shaped layout for the small size datasets is computed 

as 1.8% for small size datasets and the average percentage reduction in cycle time for 

large size datasets is computed as 1.07%. Hence it is concluded from this study that U-

shaped robotic assembly line performs better than straight robotic assembly line for the 

objective of minimizing cycle time as well as minimizing energy consumption.  

 Summary  

In manufacturing systems, optimizing cycle time and energy consumption is a very 

important problem. Reducing energy consumptions helps to improve the productivity 

and manufacturing companies give importance due to the serious environmental 

impacts and rising energy cost. Creating an eco-friendly manufacturing system by 
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minimizing energy consumption is very important in present day context. In this 

chapter, a study on robotic assembly line balancing problem with an objective of 

minimizing cycle time and energy consumption simultaneously is considered for two 

layouts of robotic assembly line (straight and U-shaped).  

The work presented in this chapter is an important addition to the literature where 

majority of the work on robotic assembly line dealt with the objective of minimizing 

cycle time.  A heuristic is developed for minimizing cycle time and total energy 

consumption in both the layouts of robotic assembly lines.  A particle swarm 

optimization algorithm is proposed to solve the proposed models. Thirty two datasets 

available in the literature has only time and precedence information. The energy data is 

embedded into the existing datasets for developing datasets to solve the proposed 

model. The objective of this work is to propose models with the dual focus on time and 

energy. The computational experiments are conducted on the two models proposed in 

this chapter for both the layouts. Energy saving potential for the proposed models is 

also studied.  Depending upon the priority of the management, the primary focus 

between time and energy could vary at different time horizon. The appropriate model 

could be selected based on the priority of the management. A comparative study is 

conducted for the results obtained for two layouts (straight and U-shaped) and it is 

concluded from the experimental results that U-shaped robotic assembly line performs 

better in terms of minimizing energy consumption and cycle time when compared with 

straight robotic assembly line for most of the datasets. 

 



 

CHAPTER 7 

7 Particle Swarm Optimization & 

Differential Evolution to Solve Cost 

Based RALB Problems 

In today's competitive world, reducing the cost of the manufacturing component of 

production is on the mind of manufacturers all over the globe. In a manufacturing 

scenario, assembly is one of the most important processes. In an assembly line robots 

are widely used instead of manual labor. By using robots, cost incurred due to manual 

labor like salary, employee management and safety are eliminated. By employing 

robots the companies can reduce the direct and overhead costs. In this work, a new 

robotic assembly line balancing (RALB) problem is developed with an objective of 

minimizing the total production cost of an assembly line by allocating tasks to the 

workstations and assigning the cost efficient robot available. PSO and DE are used to 

solve the problem. 

 Straight RALB - Minimizing Assembly Line Cost  

This section presents the procedure followed to find out the total assembly line cost 

in a straight robotic assembly line (RAL). Most of the researchers considered only the 

objective of minimizing the cycle time in a robotic assembly line. Consecutive 

allocation procedure is adopted for task and robot allocation with an objective of 

minimizing the total assembly line cost.  

7.1.1 Consecutive Allocation procedure- Straight line  

Aim of this allocation procedure is to assign tasks to the workstations and allocate 

the best fit robot which performs the task with minimum performance cost. The 

procedure starts with an initial assembly line cost. The tasks are allocated to the 

workstation within the initial assembly line cost. The initial assembly line cost is 

determined using Equation 7.1. The procedure tries to allocate the maximum tasks to 

each workstation for the initial assembly line cost. If the procedure cannot find the 

optimal allocation within the initial value, the initial value is incremented and the 

procedure is repeated until all the tasks get assigned.  
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Initial assembly line cost 𝑃0 = ⌈ ⌉   (7.1) 

Following steps are involved in consecutive assignment procedure with an 

example task sequence (1-4-5-3-7-9-2-6-8-10-11): 

Step 1.  Minimum cost to perform each task by any robot among the given set of robot 

is used to calculate the initial value of P0. In the given example below initial P0 is found 

out to be 98 (refer Table 7.1). 

P0= [33+40+35+36+24+57+37+31+31+36+33]/4=98. 

Step 2.   For the calculated P0, the procedure tries to allocate the first task to the first 

workstation and checks if any of the robot can perform the task within the initial 

assembly line cost.  

Step 3. If yes, the next immediate task in the sequence is allotted to the same work 

station and checks for the robot to perform those tasks with in the P0. 

Step 4. Tasks are further added to the same station until the cost value exceeds the initial 

P0 value. 

Step 5. If further tasks cannot be assigned to the workstation next workstation is opened 

and tasks are allotted.  

Step 6. Repeat this procedure until all the tasks are allotted and robots are assigned.  

Step 7. If tasks are left unassigned within the initial P0, P0 is incremented by ‘1’ and 

procedure is repeated until all tasks get allotted. 

Step 8.  The workstation with the tasks allotted is allotted with the best robot which 

performs the allotted tasks with minimum performance cost.  

Step 9. The overall assembly line cost is calculated by summing up the cost of 

performing the allotted task in each workstation by the allocated robots.  

Using the performance cost and precedence relations data presented in Table 7.1, 

the given sample sequence is evaluated. Figure 7.1 shows the allocation of tasks when 

P0 is 98 and it is observed that tasks 6,8,10 and 11 are left unassigned. P0 is incremented 

till 110 for the complete allocation as shown in Figure 7.2. The total assembly line cost 
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is calculated by summing the cost to perform the allotted tasks at each workstation and 

for the sample problem the total assembly line cost is 429. 

 

Figure 7.1 Allocation done for initial assembly line cost 

 

Figure 7.2 Final allocation of tasks and robots using consecutive allocation 

procedure in straight RALB 

Table 7.1 Performance cost data and precedence relations for 11 task problem 

Task 
Precedence 

Relations 

Cost for performing the tasks 
Average Cost 

R1 R2 R3 R4 

1 - 65 33 47 47 48.0 

2 1 88 89 82 40 75.0 

3 1 52 70 35 50 52.0 

4 1 41 36 83 38 50.0 

5 1 74 32 30 24 40.0 

6 2 62 57 76 68 66.0 

7 3,4,5 41 45 37 47 42.0 

8 6 40 37 31 42 38.0 

9 7 35 67 38 31 43.0 

10 8 36 40 38 73 47.0 

11 9,10 61 33 76 83 63.0 
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7.1.2 PSO variants and DE to solve cost based model in straight RALB 

Since this problem is a well-known NP-hard, four variants of particle swarm 

optimization algorithm and Differential Evolution (DE) algorithm are proposed to solve 

the consecutive allocation procedure. Four variants as explained in Section 5.2 are 

implemented to solve the problem.  Differential Evolution algorithm is also developed 

to solve the problem. This section gives the details on how DE is implemented.  

7.1.2.1 Differential Evolution 

Storn and Price (1997) proposed a simple algorithm for optimization and 

engineering problems called Differential Evolution (DE). DE is used to solve different 

optimization problems and it is reported that DE outperforms other popular 

evolutionary algorithms (Ali and Törn, 2004, Kaelo and Ali, 2006).  Problems with 

discrete decision variables such as machine layout problem (Nearchou, 2006), and 

flow-shop scheduling problems (Nearchou and Omirou, 2006) have been tested with 

DE and better results are reported. Implementation of DE on solving the cost based 

robotic assembly line problem is explained in the following sections. The algorithm 

starts with an initial set of random population (target vectors).  In DE mutation and 

crossover are done first before selection process. While in GA, selection process come 

first and follows by crossover and mutation.  A new set of vectors called donor vectors 

are created using target vectors. A crossover operation is carried out between target 

vectors and the corresponding donor vectors to generate trial vectors. The selection 

operation is done by comparing the fitness values of each target vectors and trial 

vectors. If the trial vector has a better fitness then target vector then it will be selected 

into the population otherwise target vector will be selected. The above mentioned three 

processes are repeated until the termination condition is satisfied. Figure 7.3 shows the 

flowchart of DE.  



Chapter 7 

PSO & DE to solve cost based RALB problems 

 

Page | 144  

 

 

Figure 7.3 Flowchart for differential evolution 

 

The details of how each of the steps is implemented to solve the proposed problem 

are presented here.  

a) Initial Population  

 DE procedure starts with the initial set of population called as ‘target vectors’. 

Each member (vector) of this population encodes a potential solution for the problem. 

The vector represents a sequence of numbers (tasks) arranged such a way that it meets 

the precedence relationship.  Based on the heuristics used for generating the initial 

population for PSO in section 5.1.1, the same heuristics are used for generating initial 

population in DE for solving the cost based model RALB problems 

b) Mutation  

In DE there are different variants for mutation operator (Qin and Suganthan, 2005). 

Only one variant is selected and implemented in this thesis. A population of donor 

vectors is created by perturbing the population of target vectors. Perturbation is 
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performed by adding the difference between two randomly selected target vectors to a 

third target vector which is given in the  

      (7.2) 

F is known as the mutation scale factor. For an example let us consider three 

vectors: 

xr1,G={1,2,6,3,4,5,7,8,10,9,11}, xr2,G={1,2,3,4,5,6,7,8,9,10,11} and 

xr3,G={1,2,3,6,5,4,7,8,10,9,11} 

yig = {1,2,6,3,4,5,7,8,10,9,11}+F*{1,2,3,4,5,6,7,8,9,10,11}-{1,2,3,6,5,4,7,8,10,9,11} 

The pairs of transpositions to get xr3,G from xr2,G are identified. Then apply the 

mutation factor, the number of pairs are selected and these pairs are used to 

transposition the values in xr1,g with F=0.5, yig is generated as explained below.  

yig={1,2,6,3,4,5,7,8,10,9,11}+0.5*(3,5)(8,9)  

   ={1,2,6,3,4,5,7,8,10,9,11}+(8,9)={1,2,6,3,4,5,7,8,9,10,11} 

c) Crossover  

Once the mutation phase is complete, the crossover process is activated. Set of trial 

vectors are created by choosing between the donor vector and target vector. Crossover 

is done for a set of selected vectors in the population.  Number of vectors for crossover 

is selected based on crossover rate CR. Trail vectors are generated by using OX operator 

(Order Crossover) proposed by Davis (1985). A sample illustration of the procedure for 

this crossover is presented in Section 5.2.4.1. 

d) Selection  

The selection scheme of DE also differs from that of other evolutionary algorithms 

(Ali et al., 2009). The population for the next generation is selected from the individual 

in current population and its corresponding trial vector. Target vector competes with 

their corresponding trial vector to be selected on to the next generation/iteration. The 

vector with the better fitness value is copied to the next generation. In this research, 

vector with minimum assembly line cost is selected. The rule of selection is according 

to the following rule: 

              (7.3) 

1, 2, 3,( ),   1,...5ig r g r G r Gy x F x x where i   
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The algorithm is terminated if the iteration approaches a predefined criteria, in this 

case, a predefined maximum number of iterations (generations) is used. 

7.1.3 Cost Model Dataset Generation 

There are no cost data available to optimize the assembly line cost for a robotic 

assembly line. This section presents the procedure followed to generate the cost data 

for the RALB problem. Eight representative precedence graphs and from 

http://www.assembly-line-balancing.de/, which are widely used in the SALB-I 

literature (Scholl, 1993) and processing times of robots available in Gao et al. (2009) 

are used to generate the datasets. The hourly rate of the robots is calculated from the 

standard procedure of finding annual cost of a capital intensive resource.   

       (7.4) 

 Here, UAC = Equivalent uniform annual cost ($/yr); i = annual interest rate and 

n= number of years, (A/P, i, n) = capital recovery factor that converts initial cost at year 

0 into a series of equivalent uniform annual year-end values. 

For given values of i and n, (A/ P, i, n) can be computed as follows 

         (7.5) 

Value of (A/ P, i, n) can also be found in interest tables that are widely available. 

Hourly cost of robot is calculated by dividing the annual cost with total annual hours 

per year. Cost of robot for a specific time can be calculated with hourly cost of robot.  

The annual interest rate i is assumed as 10% and n is assumed as 5 years. Number of 

annual hours per year is calculated as total working hours multiplied by total number 

of working days. Number of annual hours is taken as 6000hr/yr (20hr/day*300days/yr). 

After calculating the cost per hour of a robot, cost of performing a set of task by a robot 

is calculated by using the performance time. An example is shown for a better 

understanding on how the cost data is generated.  
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The steps shows how the cost of a robot for a specific time. Initial robot cost is 

$1,100,000.  

Step 1: Calculate UAC for robot  

 UAC = IC (A/P, i, n) 

    = 1,100,000* 0.2638) 

 Uniform Annual Cost = $ 29, 0180 

  *A/P Value is calculated for 5 years with interest rate 10% 

Step 2:  Calculate Hourly Rate of the robot 

Total number of hours per year = (20 hr/day) (300 day/yr) = 6000 hr/yr.  

       Cost Per Hour = 290180/6000 

            = $ 48.36333/hr                                                                 

  *Assembly line is considered to work for 20 hours a day for 300 days in a year. 

Step 3: Cost of the robot for a specific time 

Time taken to perform a task by robot 1 is 81minutes. 

Cost of robot per time = 48.3633*81 /60 = $ 65.2905  

Similarly, cost data for all 32 problems have been generated. It is assumed that 

costs such as robot cost, setup cost, transportation cost are included in the initial cost of 

the robot. Table 7.1 is developed based on the UAC cost and subsequent tasks times of 

robots available.  Appendix 4 shows the random robot cost assumed for developing 

datasets for small size datasets (up to 70 tasks problems) and Appendix 5 for large size 

datasets (above 89 tasks problems).  

7.1.4 Parameter settings 

The parameters used in PSO variants are chosen by conducting pilot simulation on 

three different problems. Different combinations of the parameters are tested until the 

best combination is achieved. Quality of solution is given importance compared to the 

computational time in selecting the parameters. For all the four variants of PSO the 

population size and the total number of generations are kept same. The parameters 

obtained after the pilot simulation study are presented in Table 7.2  
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From the experimental studies conducted it is found that proposed DE algorithm 

works well when the initial size of the population is set to 25 and the mutation factor is 

set to 0.5 and crossover rate is fixed as 0.9. The total number of generations is fixed to 

25. DE parameters chosen are also shown in Table 7.2. 

F is a mutation scaling factor of the difference vector (Equation 7.2). This 

parameter helps to control the evolving rate of the population. F is chosen to be a value 

in the range [0, 2] for original DE algorithm (Storn and Price, 1997). When small F 

values are used it could lead to premature convergence and high values can slow down 

the search (Mohamed et al., 2012). From the literature review it is found that mutation 

factor 0.5 is better and this value is used for solving all the thirty two problems. 

Crossover rate (CR) reflects the probability with which the trial individual inherits the 

actual individual’s genes (Feoktistov, 2006). If the CR value is relatively high, this will 

increase the population diversity and improve the convergence speed (Mohamed et al., 

2012). Different levels of crossover rate (0.3, 0.5, 0.7, and 0.9) are tested. Three 

problems of different task size are evaluated using the different levels of crossover. Best 

solution is obtained when the CR value is set as 0.9. 

Table 7.2 Parameters selected for PSO variants and DE 

Parameters for PSO variants Parameters for DE 

Population size: 25 Population size: 25 

Number of iterations: 30 Number of iterations: 30 

PSO-W: w=0.6, c1=1 and c2=2 

PSO-C: c1= 2.4 and c2=1.7 

PSO-TVIW: wmax=0.9, wmin=0.4, c1=1 and c2=2 

PSO-TVAC:  c1i=2.5, c1f=0.5, c2i=0.5, c2f =2.5 

Mutation factor: 0.5 

Crossover rate: 0.9 

7.1.5 Performance analysis for straight RALB 

Thirty two test problems are solved for the proposed allocation procedure using 

PSO variants and Differential evolution algorithm.  The performances of the model are 

evaluated to find total assembly line cost in a straight robotic assembly line. The 

proposed model is coded in C++ and the performances of PSO and DE are tested on 

Intel core i5 processor (2.3 GHz). The datasets evaluated are divided into two groups: 

small (up to 70 task problems) and large size datasets (from 89 task problems). Table 

7.3 shows the results obtained for the proposed four variants of PSO and DE using 

consecutive allocation procedure for the objective of minimizing total assembly line 

cost. 
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Table 7.3 Results for cost based straight RALB problems using consecutive 

allocation procedure 
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25-3 1279 1240 1218 1218 1218  89-8 3192 3186 3179 3175 3124 

25-4 992 992 922 984 984  89-12 2892 2894 2877 2874 2863 

25-6 830 810 806 804 803  89-16 2492 2482 2475 2471 2472 

25-9 754 748 750 746 723  89-21 2314 2312 2310 2304 2288 

35-4 945 945 945 945 945  111-9 4307 4245 4271 4244 4231 

35-5 1356 1340 1339 1326 1317  111-13 3404 3364 3360 3360 3335 

35-7 1347 1335 1332 1322 1273  111-17 3396 3392 3364 3317 3299 

35-12 868 870 861 861 845  111-22 2858 2853 2846 2806 2794 

53-5 2238 2238 2234 2230 2230  148-10 5681 5657 5625 5621 5613 

53-7 1859 1857 1846 1783 1768  148-14 4270 4250 4232 4230 4220 

53-10 1683 1673 1677 1675 1666  148-21 3900 3895 3884 3764 3722 

53-14 1379 1366 1354 1334 1299  148-29 3822 3816 3815 3796 3744 

70-7 2378 2372 2375 2329 2319  297-19 8512 8500 8434 8412 8311 

70-10 2276 2275 2262 2263 2173  297-29 7879 7812 7807 7725 7570 

70-14 2013 2007 1997 1970 1966  297-38 7796 7795 7791 7738 7598 

70-19 1794 1798 1775 1758 1718  297-50 8568 8561 8345 8337 8320 

 

From Table 7.3, it is observed that DE algorithm produces better results for 31 out 

of 32 datasets when compared with the PSO variants for the allocation done using 

consecutive allocation procedure for the objective of minimizing the total assembly line 

cost.  When comparing the results of PSO variants and DE, only PSO-TVAC produced 

results nearer to DE results. The best results found by the proposed algorithms are 

presented in bold.  Average computational time (program running time) taken by four 

PSO variants and DE algorithm is recorded and is reported here in Table 7.4. Among 

the four PSO variants and DE, computational time for small size datasets is low for DE 

algorithm and for large size datasets DE takes more time when compared with other 

four PSO variants.   
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Table 7.4 Average Computation Time for consecutive allocation procedure 

Problems 
Average Computation Time 

PSO-W PSO-C PSO-TVIW PSO-TVAC DE 

25 14 14 14 12 12 

35 22 23 23 19 17 

53 33 34 32 29 27 

70 71 73 67 65 63 

89 92 94 88 90 124 

111 142 144 136 133 148 

148 304 305 302 309 352 

297 1295 1295 1292 1310 1370 

 

7.1.6 Time based and cost based model for straight RALB 

Manufacturing industries gives importance for reducing the production cost due to 

high investment cost incurred for setting up production systems and robotic assembly 

lines. Industries use robotic assembly lines extensively and these systems are very cost 

intensive. Due to this, industries need to use the resources available optimally. In the 

literature survey, no research could be found on optimizing cycle time and total 

assembly line cost concurrently for RAL. In this research, two models are proposed 

with dual focus on time and cost to minimize the cycle time and total assembly line cost 

simultaneously.  The first model (cost based model) focusses on the objective of 

minimizing the total assembly line cost as the primary objective and second model (time 

based model) focusses on the objective of minimizing cycle time as the primary 

objective in a straight robotic assembly line. 

Results obtained from the previous section for assembly line cost using differential 

evolution is considered in this section. The consecutive allocation procedure reports the 

best solution possible for the objective of minimizing the total assembly line cost (cost 

based model) using the cost data of tasks for DE algorithm. Using the task and robot 

performance time details the workstation times are calculated. Using the same 

parameters used for DE, the cycle time (time based model) is also evaluated for all 

thirty problems for the objective of minimizing cycle time. For the allocation evaluated, 

the procedure calculates the assembly line cost of each workstation and the total 

assembly line cost is calculated.   
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For a sample sequence (1-4-5-3-7-9-2-6-8-10-11), the allocation is done using the 

cost based model for the objective of minimizing the total assembly line cost. The 

workstations are allotted with the tasks and robots are allotted based on the objective 

of minimizing assembly line cost and using the time data for the problem the 

workstation times are calculated.  Table 7.5 shows the task and robot allocation for the 

sample sequence. Figure 7.4 shows the workstation times and assembly line cost of 

each workstation.  

Table 7.5 Task and robot allocation using cost based model 

Workstation Tasks Robot Allotted 

Workstation 1 1, 4, 5 Robot 2 

Workstation 2 3, 7, 9 Robot 3 

Workstation 3 2, 6 Robot 4 

Workstation 4 8, 10, 11 Robot 2 

 

The workstation time is calculated using the time data available in Table 5.2.  Time 

at Workstation 1 (Robot 2) =37+41+36=114, Time at Workstation 2 (Robot 3) = 

38+40+41=119, Time at Workstation 3 (Robot 4) =42+71=113 and Time at 

Workstation 4 (Robot 3) = 42+46+38=126. The cycle time is 126 and the total assembly 

line cost is 429. 

 

Figure 7.4 Workstation cost and cycle time allocation done using cost based 

model 

The same sequence is considered for the allocation of tasks and robots with an 

objective of minimizing cycle time using the time data of the tasks. Consecutive 

procedure explained in Section 5.1.1 is used for the cycle time calculation.  Table 7.6 

shows the allocation of tasks and robots allotted using the time based model.  

Using Table 7.1, the cost of the assembly at each workstation is calculated for the 

allocation made based on the objective of minimizing cycle time and the overall 

assembly line cost is calculated by taking the sum of the cost to perform the tasks at 
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each workstation using the cost data. Cost for Workstation 1 (Robot 2) 

=33+36+32=101, Cost for Workstation 2 (Robot 3) = 35+37+38=110, Cost for 

Workstation 3 (Robot 4) =40+68+42=150 and Cost for Workstation 4 (Robot 3) = 

40+33=73. Figure 7.5 shows the robot and task allocation with the workstation cost and 

workstation time in a straight robotic assembly line. The cycle time is 157 and the total 

assembly line cost is 434. 

Table 7.6 Task and robot allocation using time based model 

Workstation Tasks Robot Allotted 

Workstation 1 1, 4, 5 Robot 2 

Workstation 2 3, 7, 9 Robot 3 

Workstation 3 2, 6, 8 Robot 4 

Workstation 4 10, 11 Robot 2 

 

 

Figure 7.5 Workstation cost and cycle time using time based model   

Results of thirty two problems generated are compared for both the objectives in a 

straight robotic assembly line. The datasets are divided into two groups: small size 

datasets and large size datasets. The complete details of the results obtained by using 

the time based and cost based model for small size datasets (Problem No: 1 to 16) and 

for large size datasets (Problem No: 17 to 32) are presented in Table 7.7. From the 

tables it is evident that cost based model is better in terms of minimizing the total 

assembly line cost when compared with time based model for both the groups of 

datasets and cycle time is better for time based data model when compared with the 

cost based data model. 

Assembly line cost evaluated using cost based model is lower when compared to 

assembly line cost obtained for time based model in a straight robotic assembly line. 

Differences in assembly line cost between two models are taken and the average of the 

difference is taken to calculate the average cost savings. It is observed the average cost 

saving by using cost based model for small size datasets is around 205 cost units. The 
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average cost which can be saved by using cost based model over time based model for 

large size dataset is found to be 573 cost units. Figure 7.6 and Figure 7.7 represents the 

difference in cost of the assembly line (cost saving potential) between the time based 

model and cost based model and the graph represents the cost saved by using cost based 

model when compared to the time based model.  

 

Figure 7.6 Cost saving potential in small size datasets for cost based model in 

straight RALB 

 

Figure 7.7 Cost saving potential in large size datasets for cost based model in 

straight RALB 
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Table 7.7 Comparison of assembly line cost and cycle time for two models in 

straight RALB 

P
ro

b
le

m
 N

o
: 

P
ro

b
le

m
 

D
a

ta
se

t 

Assembly 

Line Cost 

Cycle 

Time 
 

P
ro

b
le

m
 N

o
: 

P
ro

b
le

m
 

D
a

ta
se

t 

Assembly 

Line Cost 

Cycle 

Time 

C
o

st
 

M
o

d
el

 

T
im

e 

M
o

d
el

 

C
o

st
 

M
o

d
el

 

T
im

e 

M
o

d
el

 

 

C
o

st
 

M
o

d
el

 

T
im

e 

M
o

d
el

 

C
o

st
 

M
o

d
el

 

T
im

e 

M
o

d
el

 

1 25-3 1218 1331 706 503  17 89-8 3124 3264 516 461 

2 25-4 984 984 299 293  18 89-12 2863 2904 383 320 

3 25-6 803 815 221 200  19 89-16 2472 2641 292 219 

4 25-9 723 750 124 114  20 89-21 2288 2716 244 170 

5 35-4 945 947 374 342  21 111-9 4231 4284 698 521 

6 35-5 1317 1551 464 333  22 111-13 3335 3375 438 321 

7 35-7 1273 1507 279 211  23 111-17 3299 4088 349 243 

8 35-12 845 918 130 104  24 111-22 2794 3179 293 184 

9 53-5 2230 3371 561 449  25 148-10 5613 5832 881 586 

10 53-7 1768 1832 362 295  26 148-14 4220 4431 561 419 

11 53-10 1666 1877 252 224  27 148-21 3722 4528 321 273 

12 53-14 1299 1398 168 142  28 148-29 3744 4374 236 190 

13 70-7 2319 2348 504 430  29 297-19 8311 10301 675 594 

14 70-10 2173 2360 351 262  30 297-29 7570 8876 503 394 

15 70-14 1966 2118 247 194  31 297-38 7598 8771 365 305 

16 70-19 1718 2413 176 139  32 297-50 8320 9112 331 221 

 

When comparing the cycle time among two models it is observed that cycle time 

obtained by time based model is lower. The average reduction in cycle time by using 

time based model for small size datasets is 61 cycle time units and for large size datasets 

average reduction in cycle time is 104 units. 

Depending upon the priority of the management, the primary focus between time 

and cost could vary at different time horizon. The appropriate model could be selected 

based on the priority of the management. 

 U-shaped RALB – Assembly line cost  

This section presents the procedure followed to find out the total assembly line cost 

in a U-shaped robotic assembly line. Consecutive allocation procedure is proposed for 

task and robot allocation with an objective of minimizing the total assembly line cost 

in a U-shaped robotic assembly line.  
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7.2.1 Task and robot allocation procedure in U-shaped RALB 

This procedure is used to calculate the total assembly line cost of a U-shaped 

robotic assembly line. The procedure for task allocation varies from the straight robotic 

assembly line. U-shaped allocation allows more possibilities for task allocation. Tasks 

are allocated to the workstation by moving forward and backward through the 

precedence diagram in contrast to a typical forward move in the traditional assembly 

systems. An initial assembly line cost (P0) is calculated to start the procedure. The 

procedure tries to allocate the maximum number of tasks to the workstations without 

violating the precedence constraints. If the initial P0 cannot accommodate all the tasks, 

P0 is incremented by one and the procedure is repeated to accommodate all the tasks. 

The allocation done gives the cost to perform the task allotted to each workstation. The 

total assembly line cost is calculated by taking the sum of cost incurred at each 

workstation. An illustration is provided in this section which explains the task and robot 

allocation and calculation of energy consumption in a U-shaped robotic assembly line. 

Sequence of tasks which meets the precedence constraints is considered for illustration. 

Let, the sequence be, (1-4-5-3-7-9-2-6-8-10-11): 11 task and 4 workstation problem is 

considered for the illustration. Performance cost data details of each tasks and robots 

are presented in Table 7.1. 

Step 1. Using Equation 7.1, P0 is calculated and it is found to be 98.  

Step 2.  For the initial P0, the procedure tries to allocate the tasks to the workstations 

starting from the first workstation. Procedure checks the both sides of the sequence if 

any of the robots could perform the tasks within P0. Different possible combinations 

are available in U-shaped. The procedure chooses the combination which minimizes 

the cost at each workstation. 

Step 3.  Next workstation is open and remaining tasks from the sequence are allocated 

if the initial assembly line cost cannot allocate all the tasks. 

Step 4.  The initial value of assembly line cost is incremented if tasks are still left 

unassigned for the initial value and Step 2 and 3 are repeated until all tasks get assigned 

to the workstation. 

Step 5. Robots are allotted to each workstation with certain set of tasks. Robots which 

perform the allotted tasks in minimum cost is allotted to the workstation  
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Step 6. The sum of cost of each workstation gives the total assembly line cost.    

For cost based model in U-shaped robotic assembly, when the allocation was 

attempted with initial P0 it was found that tasks 2, 7 and 9 are left unassigned. P0 is 

incremented till 108 to accommodate all the tasks to the four workstations. The total 

assembly line cost of the given sequence is calculated as 419 cost units. Figure 7.8 

shows the allocation based on the cost based model in a U-shaped RAL.  

 

Figure 7.8 Final task and robot allocation in a U-shaped RALB for cost 

7.2.2 PSO Variants and DE to solve cost based model in U-shaped RALB 

Since this problem also falls under the category of NP-hard, four variants of 

particle swarm optimization algorithm and Differential Evolution (DE) algorithms are 

proposed to solve both the proposed models. Four variants as explained in Section 5.2 

are implemented to solve the problem.  Details of Differential Evolution algorithm 

developed to solve the problem are presented in Section 7.1.2. The same set of 

parameters used for solving cost based model in straight line is adopted to solve U-

shaped cost based robotic assembly line problems.   

7.2.3 Performance analysis for cost based U-shaped RALB 

Thirty two test problems are solved using PSO variants and Differential evolution 

algorithm for the objective of minimizing the assembly line cost.  The proposed model 

is coded in C++ and the performances are tested on Intel core i5 processor (2.3 GHz). 

The datasets evaluated are divided into two groups: small size datasets and large size 

datasets. Table 7.8 shows the results obtained for the proposed four variants of PSO 

and DE for U-shaped robotic assembly line balancing problems. The results reported 

are the best solution found using the four variants of PSO and DE From the table it is 

analyzed that the results obtained for DE reports better results when compared with the 
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results obtained using the four variants. There is significant improvement in the solution 

quality when DE algorithm is used to generate the results.  

Average computational time (program running time) taken by 4 PSO variants and 

DE algorithm is recorded and is reported here in Table 7.9.  Computational time to 

perform the datasets with small size is low whereas for large size datasets computational 

time is high.  Among the four variants and DE, computational time for small size 

datasets is low for PSO-TVAC algorithm and for large size datasets DE takes lesser 

time when compared with the 4 PSO variants.  Among the four variants the time taken 

by PSO-TVAC is lower for all the thirty two datasets. Results obtained using DE show 

that DE is better for all the problems in terms of the objective, its robustness and 

computational efficiency can be improved by fine tuning the parameters for getting the 

solution at a faster rate for the small size datasets.  

Table 7.8 Results for cost based U-shaped RALB problems using PSO variants 

and DE 
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25-3 1229 1229 1222 1225 1206  89-8 3262 3146 3152 3126 3121 

25-4 1010 991 987 984 965  89-12 2865 2850 2831 2792 2773 

25-6 822 815 798 796 778  89-16 2470 2448 2413 2392 2388 

25-9 730 720 715 719 704  89-21 2312 2300 2286 2279 2254 

35-4 945 945 945 945 945  111-9 4209 4242 4199 4161 4135 

35-5 1422 1337 1326 1319 1299  111-13 3329 3322 3308 3302 3294 

35-7 1334 1312 1308 1306 1306  111-17 3292 3279 3255 3237 3209 

35-12 857 858 855 806 795  111-22 2821 2789 2762 2728 2730 

53-5 2238 2195 2159 2167 2195  148-10 5596 5585 5526 5509 5488 

53-7 1747 1739 1730 1720 1739  148-14 4279 4167 4169 4166 4164 

53-10 1683 1678 1661 1652 1649  148-21 3768 3722 3740 3690 3664 

53-14 1313 1309 1306 1294 1266  148-29 3690 3678 3595 3586 3574 

70-7 2378 2368 2367 2346 2339  297-19 8510 8391 8340 8340 8253 

70-10 2237 2223 2208 2185 2152  297-29 7707 7650 7638 7676 7460 

70-14 1980 1954 1947 1929 1918  297-38 7627 7622 7542 7551 7514 

70-19 1700 1733 1702 1689 1659  297-50 8364 8378 8277 8234 8234 
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Table 7.9 Average Computational time for cost based U-shaped RALB  

Problems 
Average Computation Time 

PSO-W PSO-C PSO-TVIW PSO-TVAC DE 

25 18 17 18 16 17 

35 24 25 25 22 24 

53 36 39 42 32 33 

70 75 78 77 69 72 

89 98 99 98 95 93 

111 148 145 149 139 135 

148 317 315 320 314 310 

297 1350 1355 1362 1345 1340 

 

7.2.4 Time and Cost based model in U-shaped RALB 

Resources at an industry need to be optimally used to reduce the loss incurred by 

operating cost intensive robotic assembly line systems. From the literature, it is found 

that no research is found where both the assembly line cost and cycle time are optimized 

concurrently in a U-shaped robotic assembly line. In this research, two models are 

proposed with dual focus on time and cost to minimize the cycle time and total assembly 

line cost simultaneously.  The first model (cost based model) focusses on the objective 

of minimizing the total assembly line cost as the primary objective and second model 

(time based model) focusses on the objective of minimizing cycle time as the primary 

objective in a straight robotic assembly line (RAL).  

In the previous section, DE algorithm reported the best solution among the 

proposed algorithms. The results obtained from DE are used in this section for 

calculating the cycle time for the cost based model. Using the task and robot details, 

the workstation times are calculated and the workstation time which is the maximum is 

the cycle time of the allocation.  

A sample sequence which is used in the previous section to show the allocation 

based on the objective of minimizing the total assembly line cost is used here. Table 

5.2 is used for finding the workstation time. Time at Workstation 1 (Robot 2) 

=37+41+38=116, Time at Workstation 2 (Robot 3) = 38+33+41=112, Time at 

Workstation 3 (Robot 3) =40+34+31=115 and Time at Workstation 4 (Robot 4) = 

42+71=113. The cycle time of the U-shaped robotic assembly line is 116 and the total 

assembly line cost is 419 as shown in Figure 7.9.  
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Figure 7.9 Workstation cost and time in U-shaped RALB using cost based model 

Using the same set of parameters used to solve the cost based model, the allocation 

procedure used for U-shaped allocation in robotic assembly line for the objective of 

minimizing the cycle time (time based model) is evaluated (Table 5.2). Procedure 

explained in Section 5.5.3 is used for allocation of tasks and robots based on the 

objective of minimizing the cycle time. For the allocation made using this model, the 

assembly line cost is calculated.  Figure 7.10 shows the final allocation of tasks and 

robots based on the objective of minimizing the cycle time. Using Table 7.1, the overall 

assembly line cost is calculated by taking the sum of the cost to perform the tasks at 

each workstation. Cost for Workstation 1(Robot 2) =33+36+33=102, Cost for 

Workstation 2(Robot 3) = 30+31+38=99, Cost for Workstation 3(Robot 4) 

=33+76=150 and Cost for Workstation 4(Robot 3) = 40+47+31=118. The cycle time is 

124 and the total assembly line cost is 430 when the allocation is done based on the 

objective of minimizing the cycle time in a U-shaped robotic assembly line. 

 

Figure 7.10 Workstation cost and time in U-shaped RALB using time based 

model 
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Both the objectives of minimizing cycle time and assembly line cost in a U-shaped 

robotic assembly line are tested on the thirty two problems generated. Two groups of 

datasets (small and large size datasets) are available. The detailed results obtained by 

using the time based and cost based model for U-shaped robotic assembly line for small 

size datasets (Problem No: 1 to 16) and for large size datasets (Problem No: 17 to 32) 

are presented in Table 7.10 . From the tables it is evident that cost based model is better 

in terms of minimizing the total assembly line cost when compared with time based 

model for both the groups of datasets and cycle time is better for time based data model 

when compared with the cost based data model for U-shaped robotic assembly line 

except for two datasets (53-7 and 148-14). 

Assembly line cost evaluated using cost based model is lower when compared to 

assembly line cost obtained for time based model in a U-shaped robotic assembly line. 

Difference in assembly line cost between two models is taken and the average of the 

difference is taken to calculate the average cost savings. It is observed the average cost 

saving by using cost based model for small size datasets is around 237 cost units. The 

average cost which can be saved by using cost based model over time based model for 

large dataset is found to be 502 cost units.  

 

Figure 7.11 Cost saving potential in small size datasets for cost based model in U-

shaped RALB 
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Table 7.10 Comparison of assembly line cost and cycle time for two models in U-

shaped RALB 
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1 25-3 1206 1451 583 500  17 89-8 3121 3174 598 481 

2 25-4 965 989 303 318  18 89-12 2850 2921 425 319 

3 25-6 778 1101 189 183  19 89-16 2448 2513 252 219 

4 25-9 704 740 114 110  20 89-21 2254 2561 216 170 

5 35-4 945 947 355 343  21 111-9 4135 4343 690 522 

6 35-5 1299 1582 473 336  22 111-13 3294 3300 366 319 

7 35-7 1306 1439 268 212  23 111-17 3209 3809 311 242 

8 35-12 795 907 128 103  24 111-22 2730 3049 238 181 

9 53-5 2195 3512 660 447  25 148-10 5596 5697 818 619 

10 53-7 1739 1725 359 283  26 148-14 4164 4161 446 411 

11 53-10 1649 1921 253 220  27 148-21 3664 4438 321 270 

12 53-14 1266 1295 162 144  28 148-29 3574 5003 230 188 

13 70-7 2339 2439 483 427  29 297-19 8253 8913 686 591 

14 70-10 2152 2263 339 264  30 297-29 7460 8702 513 390 

15 70-14 1918 2089 217 195  31 297-38 7514 8579 357 292 

16 70-19 1659 2322 168 138  32 297-50 8234 9373 305 222 

Figure 7.11 and Figure 7.12 represents the difference in cost of the assembly line 

(cost saving potential) between the time based model and cost based model and the 

graph represents the cost saved by using cost based model when compared to the time 

based model. 

 

Figure 7.12 Cost saving potential in large size datasets for cost based model in U-

shaped RALB 
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When comparing the cycle time among two models it is observed that cycle time 

obtained by time based model is lower. The average reduction in cycle time by using 

time based model for small size datasets is 52 cycle time units and for large size datasets 

average reduction in cycle time is 84 units. 

 Comparison of straight and U-shaped RALB 

The total assembly line cost and cycle time obtained using cost based model for 

straight and U-shaped robotic assembly line are compared. Table 7.11 is formed by 

extracting the results from Table 7.7 and Table 7.10 obtained for minimizing total 

assembly line cost from straight and U-shaped robotic assembly line using cost based 

model results.  

Table 7.11 Comparison of assembly line cost - straight and U-shaped RALB 
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1 25-3 1218 1206  17 89-8 3124 3121 

2 25-4 984 965  18 89-12 2863 2850 

3 25-6 803 778  19 89-16 2472 2448 

4 25-9 723 704  20 89-21 2288 2254 

5 35-4 945 945  21 111-9 4231 4135 

6 35-5 1317 1299  22 111-13 3335 3294 

7 35-7 1273 1306  23 111-17 3299 3209 

8 35-12 845 795  24 111-22 2794 2730 

9 53-5 2230 2195  25 148-10 5613 5596 

10 53-7 1768 1739  26 148-14 4220 4164 

11 53-10 1666 1649  27 148-21 3722 3664 

12 53-14 1299 1266  28 148-29 3744 3574 

13 70-7 2319 2339  29 297-19 8311 8253 

14 70-10 2173 2152  30 297-29 7570 7460 

15 70-14 1966 1918  31 297-38 7598 7514 

16 70-19 1718 1659  32 297-50 8320 8234 

Average Cost 

Savings for U-

shaped 

21 cost units  

Average Cost 

Savings for U-

shaped 

63 cost units 

The results indicate that total assembly line cost is very low for U-shaped robotic 

assembly line when compared to the total assembly line cost in straight robotic 
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assembly line. Thirty out of thirty two datasets yielded lower assembly line cost for U-

shaped robotic assembly line. Average cost savings which is achieved by using U-

shaped robotic assembly line over straight robotic assembly line is calculated as 21 cost 

units for small size datasets (up to problem number 16) and 63 cost units for large size 

datasets. Cycle time of both straight and U-shaped robotic assembly line obtained using 

time based model are extracted from Table 7.7 and Table 7.10 and the results are 

presented in Table 7.12. 

Table 7.12 Comparison of cycle time - straight and U-shaped RALB 
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1 25-3 503 500  17 89-8 461 481 

2 25-4 293 318  18 89-12 320 319 

3 25-6 200 183  19 89-16 219 219 

4 25-9 114 110  20 89-21 170 170 

5 35-4 342 343  21 111-9 521 521 

6 35-5 333 336  22 111-13 321 319 

7 35-7 211 212  23 111-17 243 242 

8 35-12 104 103  24 111-22 184 181 

9 53-5 449 447  25 148-10 586 619 

10 53-7 295 283  26 148-14 419 411 

11 53-10 224 220  27 148-21 273 270 

12 53-14 142 144  28 148-29 190 188 

13 70-7 430 427  29 297-19 594 591 

14 70-10 262 264  30 297-29 394 390 

15 70-14 194 195  31 297-38 305 292 

16 70-19 139 138  32 297-50 221 222 

Average % Reduction 

in cycle time using U-

shaped 

0.5%  

Average % Reduction in 

cycle time using U-

shaped 

0.15% 

From Table 7.12, it is observed that cycle time of U-shaped robotic assembly line 

obtained using the time based model is lower than the cycle time for straight robotic 

assembly line problems for 28 out of 32 problems. The average percentage reduction 

in cycle time by U-shaped layout for the small size datasets is computed as 1.5% and 

the average percentage reduction in cycle time for large size datasets is computed as 

0.5%.  Twenty three out of thirty two problems obtained better cycle time for U-shaped 

robotic assembly line when compared with straight robotic assembly line.  Hence it is 
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concluded from this study that U-shaped robotic assembly line performs better than 

straight robotic assembly line for the objective of minimizing cycle time as well as 

minimizing total assembly line cost.  

 Summary 

In this chapter, a new robotic assembly line balancing problem with an objective 

of minimizing assembly line cost in addition to cycle time is developed. The author 

could not find any literature on optimizing assembly line cost in robotic assembly line 

systems to date. The work presented in this chapter is an important addition to the 

literature where majority of the work on robotic assembly line dealt with the objective 

of minimizing cycle time.   In a large assembly line, different robotic systems can be 

used to perform the tasks in the assembly line. Robot needs to be assigned to the work 

stations based on the minimum cost required to perform the tasks which are allocated 

to the work stations based on heuristic methods. Consecutive allocation is implemented 

for robot and task allocation for straight and U-shaped robotic assembly line. Robots 

are allotted to the work station based on the cost and the total cost of the assembly line 

is calculated. Since this problem is well known as NP-hard, PSO variants and 

differential evolution algorithm has been proposed to solve this problem. Data sets have 

been developed and tested with the proposed algorithms and the results are reported for 

both straight and U-shaped RALB problems. Among the PSO variants and DE, it is 

observed that DE reports better quality of solution. Parametric study is conducted on 

selected problems to choose the efficient set of parameters for PSO and DE. 

Computational time is also reported.  

As part of the experimental study, the cost of the assembly line is also calculated 

for the allocation done based on the objective of minimizing cycle time. The potential 

cost savings which is achieved by allocating tasks and robots based on the cost based 

model is calculated for both straight and U-shaped robotic assembly line.  Cycle time 

for both the layouts is also calculated for the allocation done based on cost.  Assembly 

line cost and cycle time obtained for both the layouts are compared and it is concluded 

from the results obtained that U-shaped robotic assembly line reports better cycle time 

and assembly line cost when compared with straight robotic assembly line.  These 

models can be strongly recommended to solve problem instances that occur in practice, 

regardless of the characteristics of the actual real-world problem.



 

CHAPTER 8 

8 Particle Swarm Optimization & 

Differential Evolution for RALB 

Problem to Maximize Line Efficiency 

Efficiency is a crucial factor in industrial production lines as it results in an 

improved production and checks the utilization of available resources.  When the line 

efficiency is high, it can be inferred that all resources are well utilized. Thus, excess 

resources can be allocated for performing other tasks. Industries spend appropriate cost 

of production when the line efficiency is high. Industries would be able to produce more 

output in shorter time and will be meeting the demand of the customers if the efficiency 

is high.  Maximizing line efficiency is the key to profitability. Two models are proposed 

to calculate line efficiency in a robotic assembly line. The first model is based on the 

line efficiency calculated based on the workstation times which are calculated using 

time data of the tasks. Second model is developed based on the objective of minimizing 

energy consumption. The workstation times are calculated for the allocation made 

based on this objective. The workstation times are used to calculate the line efficiency. 

Metaheuristics like PSO and DE are used to solve RALB problem with an objective of 

maximizing the line efficiency of two layouts (straight and U-shaped) of robotic 

assembly line. This chapter presents the procedure proposed and the results obtained 

using the metaheuristics.  

 Line Efficiency calculation in Straight and U-shaped RALB  

This chapter describes a type of robotic assembly line balancing problem, in which 

assembly tasks are allocated to the workstation and the workstation is allotted with a 

best fit robot which performs the allotted tasks in minimum time with an objective of 

maximizing line efficiency. The objective function evaluated in this research for 

straight and U-shaped type of assembly line is Line Efficiency (LE).  Line efficiency is 

calculated when the workstation times are minimized in a robotic assembly line. Cycle 

time and smoothness index of the efficient assembly line is also calculated. Two layout 

types of robotic assembly line are evaluated. Particle swarm optimization (PSO) and 

Differential evolution (DE) are the two metaheuristic algorithms used as the 
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optimization tool to solve this problem. Benchmark datasets are used for solving the 

two layouts (straight and U-shaped).  

Steps involved in Line Efficiency Calculation 

i. Allocation of tasks to the workstations based on the consecutive procedure 

(Section 5.1.1). This procedure tries to allocate tasks to the workstation by 

minimizing the workstation time.  

ii. Workstations are allotted with the robots which perform the allotted tasks in 

minimum time.  

iii. The workstation time is calculated for the allocation of tasks and robots. 

iv. The workstation with the maximum workstation time is the cycle time of the 

allocation. 

v. Line efficiency is calculated using Equation 8.1. Line efficiency is the direct 

indication of the efficiency of a given assembly line. The efficiency gives results 

in percentage from 0 to 100%.  

        (8.1) 

Here Sk is the workstation time, Nw is total number of workstations and C is the 

cycle time  

Figure 8.1 shows the tasks allocation and workstation times calculated using the 

consecutive allocation procedure for a straight robotic assembly line.  In the assembly 

line sequence considered number of workstation is 4 and cycle time is 143.   

 

Figure 8.1 Task allocation and Workstation times in straight RALB 
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Straight line robotic assembly line’s efficiency is calculated as follows: 

= (143+136+115+84)/ (4*143)*100 = 83.56% 

Task and robot allocation in a U-shaped assembly line is done using the same 

procedure except for the task allocation, the tasks are selected from both the sides of 

the sequence and constraints are checked (Refer Section 5.5.3). Figure 8.2 shows the 

tasks allocated for U-shaped robotic assembly line for the same sequence used for 

straight robotic assembly line. The line efficiency is calculated using the Equation 8.1. 

U-shaped robotic assembly line’s efficiency is: LE= (121+115+107+116)/ 

(4*121)*100=94.83%. 

 

Figure 8.2 Allocation in a U-shaped RALB and workstation times 

 PSO and DE to solve time based model line efficiency  

Since the assembly line balancing problems falls under the category of NP-hard, 

two different metaheuristics are used to solve the RALB problem with an objective of 

maximizing the line efficiency when the workstation times are minimized. Two layout 

of RALB: straight and U-shaped RAL are solved using these two metaheuristics.  

8.2.1 Particle Swarm Optimization  

PSO algorithm is proposed to solve the RALB problem with an objective of 

maximizing the line efficiency. PSO algorithm starts with an initial population and 

initial velocity. Heuristics explained in Section 5.1.1 are used for generating the initial 

population. Velocity pairs used in Section 5.1.1 is adopted for the velocity update. 

When the local best and global best are selected, the particle with higher assembly line 
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efficiency is considered. PSO is used to solve both straight and U-shaped layouts of 

robotic assembly line.  

8.2.2 Differential Evolution 

Differential Evolution algorithm is also proposed to solve the RALB problem with 

an objective of maximizing the line efficiency. Same procedure used for generating the 

initial population in PSO is adopted for DE also. DE procedure undergoes mutation, 

cross and selection operation. Section 7.1.2 explains the details on how to implement 

DE.  Same procedure is adopted for solving this model of RALB also. The difference 

in DE model will be in the selection operation, where the fitness value of target and 

trial vectors is compared and the vector which has a better fitness is copied to the next 

generation. In this model, the fitness value compared is the line efficiency. The vector 

with higher efficiency is copied to the next generation. Two layouts (straight and U-

shaped) of RAL are solved using Differential evolution. 

8.2.3 Parameters for PSO and DE 

Performance of PSO and DE mainly relies on the parameters selected.  Parameters 

are selected based on the tests conducted in order to get a satisfactory solution quality 

in an acceptable time span.  Influence of each parameter on the solution quality is tested. 

Three datasets of different task size are chosen to find the best combination of 

parameters. Three parameters fine-tuned for PSO are stopping condition, population 

size and acceleration coefficients.  For DE, the parameters fine-tuned are population 

size, stopping condition, cross over rate. Table 8.1 summarizes the parameters used to 

solve RALB problems with an objective of maximizing line efficiency when the 

workstation times are minimized.   

Table 8.1 Parameters for PSO and DE for RALB problem  

Parameters for PSO Parameters for DE 

Population size: 25 Population size: 25 

Number of iterations: 30 Number of iterations: 30 

Acceleration Coefficients: 

c1=1, c2=2 and c3=2 

Mutation factor: 0.5 

Crossover rate: 0.9 

8.2.4 Performance analysis of PSO and DE for straight RALB 

All the 32 test problems are evaluated using the proposed PSO and DE algorithm. 

The non-deterministic nature of the algorithm and problem makes it necessary to run 
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same problem multiple times. Each problem is run ten times and most of the runs 

converged to the same solution for each of the problems. The results obtained by 

evaluating 32 test problems are presented in Table 8.2. Column I presents the problem 

evaluated, Column II, III and IV presents the line efficiency, cycle time and smoothness 

index of the best solution evaluated using PSO algorithm. Colum V, VI and VII presents 

the results obtained using DE algorithm. Results reported are the best solution obtained 

for both the algorithms. Smoothness index of the assembly line is calculated for the 

allocation obtained. Smoothness Index is an index to indicate the relative smoothness 

of a given assembly line. When smoothness index is zero it indicates that the assembly 

line is perfectly balanced. Equation for smoothness index (SI) is:  

      (8.2) 

Here Smax is the station with the maximum station time and Sk is the current 

workstation time, k is the workstation number (being evaluated) and Nw is the number 

of workstations. 

The problems are classified into two categories based on the tasks size: small (up 

to 70 tasks problems) and large (above 89 tasks problems). Proposed algorithms 

allocate robots to the workstation by allocating the robots and tasks which minimizes 

the workstation times. Using the solution obtained, the workstation time and cycle time 

of the assembly line are calculated. The workstation time and cycle time is used for 

calculating the line efficiency of the assembly line. Thus line efficiency is obtained by 

minimizing the workstation times. From the experiments conducted it is observed that 

27 out of 32 datasets could obtain better line efficiency for PSO when compared to DE. 

The efficiency reported for 25-3 problem is same for both the algorithms. PSO obtained 

average improvement of 4.2% in the line efficiency when compared to PSO for small 

size datasets (up to 70 task problems) and average improvement in the efficiency line 

efficiency for large size datasets (above 89 task problems) when using PSO is found to 

be 1.0%. Percentage could be low for large size datasets because both PSO and DE 

reach solutions which are nearer to each other. However, the cycle time of PSO when 

compared with cycle time of DE is lower for the five datasets which did not yield better 

efficiency. When comparing the smoothness index between two algorithms, it is 
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observed that PSO produces better smoothness index when compared to DE. Table 8.3 

reports the computational time for both the algorithms.  

Table 8.2 Line Efficiency of straight RALB for PSO and DE 

Work 

Station/ 

Robots 

PSO  DE 

Line 

Efficiency 

%) 

Cycle 

Time 

Smoothness 

Index 

Line 

Efficiency 

(%) 

Cycle 

Time 

Smoothness 

Index 

25-3 97.3 503 18.6 97.3 503 18.6 

25-4 97.1 294 13.4 88.6 329 40.4 

25-6 90.5 200 22.5 88.2 208 29.3 

25-9 87.4 110 20.4 84.5 114 23.3 

35-4 99.4 342 2.5 98.0 347 9.6 

35-5 95.2 329 42.2 93.0 335 31.9 

35-7 93.0 213 21.5 92.0 219 21.7 

35-12 90.5 103 14.7 82.3 115 24.5 

53-5 97.5 449 16.3 92.1 485 45.2 

53-7 97.8 294 10.2 93.4 304 26 

53-10 94.5 224 15.2 91.4 234 24.3 

53-14 91.2 143 16.6 82.2 161 32 

70-7 95.9 430 21.3 95.0 447 29.2 

70-10 95.4 262 15.4 93.8 272 21 

70-14 93.2 199 17.8 87.6 211 29.6 

70-19 90.7 141 17.7 87.5 144 23.5 

89-8 80.6 483 45.3 82.3 486 35.6 

89-12 96.2 317 16.4 94.3 317 22.6 

89-16 98.8 223 22.3 90.8 247 41.1 

89-21 90.6 172 19.05 88.2 174 23.1 

111-9 97.2 521 18.73 97.8 523 16.9 

111-13 96.1 321 16.0 95.6 321 19.9 

111-17 94.0 243 21.1 93.2 247 19.7 

111-22 91.7 183 18.0 91.7 183 18 

148-10 98.0 627 16.9 96.2 641 32.2 

148-14 96.3 419 18.2 96.4 420 18.2 

148-21 95.2 272 15.5 94.5 273 15.5 

148-29 90.8 188 20.5 92.8 189 18 

297-19 97.3 593 19.4 97.1 594 20.7 

297-29 94.2 397 27.1 93.3 399 31.3 

297-38 94.2 295 21.8 91.2 305 31 

297-50 92.0 224 21.7 92.4 225 19.8 

 

It is observed that PSO reports the solution at a faster rate than DE for all the 

datasets. However ,the algorithm structured based on DE provides reasonable good 

quality assignment of tasks and robots to workstations for large size problems in 

practical computational time but PSO algorithm could obtain better solution for all sets 

of problems at a faster rate. The computational time for DE could be on the higher side 

when compared to PSO due to repeated fitness value evaluation in case of selection 
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operation. In conclusion, PSO performs better in terms of quality of solution and 

computational time when compared to DE. 

Table 8.3 Average Computational time of PSO and DE for straight RALB 

Problems 
Average Computational Time 

PSO DE 

25 5 7 

35 17 21 

53 21 26 

70 55 60 

89 61 66 

111 185 236 

148 355 477 

297 990 1007 

8.2.5 Performance analysis for U-shaped RALB 

This section presents the results obtained for U-shaped robotic assembly line for 

the objective of maximizing line efficiency by minimizing the workstation times. Both 

PSO and DE are used to find the solution for this type of RALB problem.  Parameters 

used in the previous section are used for solving this problem. Thirty two problems 

available from the literature are used to test the performance of the proposed algorithms.   

The results obtained by evaluating 32 test problems are presented in Table 8.4. 

Results reported are the best solution obtained for both the algorithms. Column I 

presents the problem evaluated, Column II, III and IV presents the line efficiency, cycle 

time and smoothness index of the best solution evaluated using PSO algorithm. Column 

V, VI and VII presents the results obtained using DE algorithm. Results reported are 

the best solution obtained for both the algorithms. 

From the experiments conducted it is observed that 23 out of 32 datasets obtained 

same or better line efficiency for PSO when compared to DE. However, five datasets 

reported the same results for both the algorithms. Average improvement of only 1.05% 

in the line efficiency is obtained for PSO when compared to DE for small size datasets 

(up to 70 task problems) and the average improvement of line efficiency for large size 

datasets (above 89 task problems) when using PSO is found to be 0. 2%. Percentage 

could be low for both datasets because both PSO and DE reach solutions which are 

nearer to each other and few results are same for both the datasets. When comparing 
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the cycle time results obtained using PSO are better than DE for 21 datasets and 10 

datasets reported the same cycle time. When comparing the smoothness index between 

two algorithms, it is observed that PSO produces better results for 21 datasets and 7 

datasets produced same smoothness index. Smoothness index would vary even if the 

cycle time is same due to the variation in the workstation times.  

Table 8.4 Line Efficiency of U-shaped RALB for PSO and DE  

Work 

Station/ 

Robots 

PSO DE 

Line 

Efficiency 

(%) 

Cycle 

Time 

Smoothness 

Index 

Line 

Efficiency 

(%) 

Cycle 

Time 

Smoothness 

Index 

25-3 99.1 500 6.02 99.1 500 6.02 

25-4 98 294 4.1 91.5 318 33.5 

25-6 96.9 183 7.3 96.9 183 7.3 

25-9 89.0 109 15.9 88.9 109 15.8 

35-4 98.6 345 3.6 98.6 345 3.6 

35-5 96.7 333 11.8 97.4 334 11.8 

35-7 94.6 210 14.2 94.8 215 13.5 

35-12 90.9 103 13.8 87.3 106 17.8 

53-5 98.6 443 8.02 97.3 459 16.7 

53-7 95.7 283 16.9 93.8 286 21.8 

53-10 94.5 215 16.3 93.7 220 16.4 

53-14 92.3 141 15.4 90.0 148 18.3 

70-7 97.7 427 11.8 97.4 427 12.2 

70-10 95.6 262 15.1 94.0 266 22 

70-14 91.7 197 23.9 92.8 199 18 

70-19 88.9 140 19.9 89.2 140 17.9 

89-8 83.4 476 19.9 84.0 475 19.9 

89-12 94.5 312 19.7 96.0 315 16.4 

89-16 98.2 222 21.5 98.2 224 22.03 

89-21 90.4 169 24.2 88.6 172 25 

111-9 96.7 519 19.6 96.8 520 23.6 

111-13 95.4 317 19.2 94.4 319 23.5 

111-17 93.8 242 18.3 93.8 242 18.3 

111-22 90.0 181 21.4 90.1 181 22.1 

148-10 97.2 619 19.9 96.7 629 26.3 

148-14 94.2 416 27.3 94.0 418 32.2 

148-21 92.6 269 21.2 92.7 275 22.5 

148-29 90.2 187 22 89.9 187 22.5 

297-19 96.7 588 24.5 96.4 589 24.5 

297-29 94.0 389 32.7 93.4 390 34.2 

297-38 94.1 288 20.3 93.6 291 22.9 

297-50 91.0 222 21.1 90.9 222 22.7 

Table 8.5 reports the average computational time for both the algorithms when 

evaluated for U-shaped robotic assembly line.  It is observed that PSO performs at a 

faster rate than that of DE for almost all datasets. However, DE reports reasonably good 

quality solution for all the problems. Computational time for U-shaped RALB problems 

is higher due to the large search space.  
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The robustness and computational efficiency can be still improved if parameters 

are fine tuned. In conclusion, PSO performs better in terms of quality of solution and 

computational time when compared to DE. 

Table 8.5 Average Computational time of PSO and DE for U-shaped RALB 

Problems 
Average Computational Time 

PSO DE 

25 7 9 

35 18 20 

53 35 41 

70 59 65 

89 103 120 

111 245 273 

148 415 511 

297 1055 1188 

8.2.6 Comparison for straight and U-shaped RALB 

The line efficiency and cycle time obtained for straight and U-shaped robotic 

assembly line using PSO and DE are compared when time data are used. Table 8.6 is 

formed by extracting the results obtained for the objective of maximizing the line 

efficiency for straight (Table 8.2) and U-shaped robotic assembly line (Table 8.4) using 

PSO and DE and Table 8.7 reports the cycle time obtained for both the layouts (straight 

and U-shaped) using PSO and DE.   

U-shaped robotic assembly line produces better line efficiency for all the small size 

datasets (up to 70 task problems) when compared with straight robotic assembly line 

for both PSO and DE.  For large size datasets, line efficiency reported using PSO is 

better for straight robotic assembly line when compared to the U-shaped assembly for 

most of the datasets in this group.  For DE, eight problems in the group reports better 

efficiency for straight robotic assembly line when compared with U-shaped RALB. The 

variation in workstation time is lower when assembled through straight line, hence the 

line efficiency is higher for the large size dataset problems. However, from the tables it 

is observed that even though the efficiency for U-shaped is lower for these large size 

datasets, the cycle time for U-shaped RALB are still lower when compared to straight 

robotic assembly line.  
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 In conclusion, U-shaped robotic assembly line performs better in case of line 

efficiency and cycle time for small size datasets. And for large size datasets, line 

efficiency is higher for straight robotic assembly line and cycle time is better for U-

shaped robotic assembly line when the objective is to maximize the line efficiency by 

minimizing the workstation times. 

Table 8.6 Comparison of Line Efficiency obtained using time data between 

straight and U-shaped RALB  
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1 25-3 97.3 99.1 97.3 99.1  17 89-8 80.6 83.4 82.3 84 

2 25-4 97.1 98 88.6 91.5  18 89-12 96.2 94.5 94.3 96 

3 25-6 90.5 96.9 88.2 96.9  19 89-16 98.8 98.2 90.8 98.2 

4 25-9 87.4 89 84.5 88.9  20 89-21 90.6 90.4 88.2 88.6 

5 35-4 99.4 98.6 98 98.6  21 111-9 97.2 96.7 97.8 96.8 

6 35-5 95.2 96.7 93 97.4  22 111-13 96.1 95.4 95.6 94.4 

7 35-7 93 94.6 92 94.8  23 111-17 94 93.8 93.2 93.8 

8 35-12 90.5 90.9 82.3 87.3  24 111-22 91.7 90 91.7 90.1 

9 53-5 97.5 98.6 92.1 97.3  25 148-10 98 97.2 96.2 96.7 

10 53-7 97.8 95.7 93.4 93.8  26 148-14 96.3 94.2 96.4 94 

11 53-10 94.5 94.5 91.4 93.7  27 148-21 95.2 92.6 94.5 92.7 

12 53-14 91.2 92.3 82.2 90  28 148-29 90.8 90.2 92.8 89.9 

13 70-7 95.9 97.7 95 97.4  29 297-19 97.3 96.7 97.1 96.4 

14 70-10 95.4 95.6 93.8 94  30 297-29 94.2 94 93.3 93.4 

15 70-14 93.2 91.7 87.6 92.8  31 297-38 94.2 94.1 91.2 93.6 

16 70-19 90.7 88.9 87.5 89.2  32 297-50 92 91 92.4 90.9 
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Table 8.7 Comparison of Cycle time obtained using time data between 

straight and U-shaped RALB 
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1 25-3 503 500 503 500  17 89-8 483 476 486 475 

2 25-4 294 294 329 318  18 89-12 317 312 317 315 

3 25-6 200 183 208 183  19 89-16 223 222 247 224 

4 25-9 110 109 114 109  20 89-21 172 169 174 172 

5 35-4 342 345 347 345  21 111-9 521 519 523 520 

6 35-5 329 333 335 334  22 111-13 321 317 321 319 

7 35-7 213 210 219 215  23 111-17 243 242 247 242 

8 35-12 103 103 115 106  24 111-22 183 181 183 181 

9 53-5 449 443 485 459  25 148-10 627 619 641 629 

10 53-7 294 283 304 286  26 148-14 419 416 420 418 

11 53-10 224 215 234 220  27 148-21 272 269 273 275 

12 53-14 143 141 161 148  28 148-29 188 187 189 187 

13 70-7 430 427 447 427  29 297-19 593 588 594 589 

14 70-10 262 262 272 266  30 297-29 397 389 399 390 

15 70-14 199 197 211 199  31 297-38 295 288 305 291 

16 70-19 141 140 144 140  32 297-50 224 222 225 222 

 Line Efficiency calculation using energy data 

Objective of this problem is to maximize the line efficiency by minimizing the 

energy consumption in a robotic assembly line. Till date no research has been reported 

on the objective of optimizing the line efficiency when the energy consumption is 

minimized. The objective function evaluated for this research for straight and U-shaped 

type of assembly line is Line Efficiency (LE).  The section below explains how the line 

efficiency is calculated in a straight and U-shaped robotic assembly line when energy 

consumption at workstations is minimized. The steps involved in the line efficiency 

calculation are explained below.  

Steps involved in Line Efficiency Calculation in straight RAL 

i. Tasks are allocated to the workstation based on the energy consumption data 

(Section 6.1.1) in a straight robotic assembly line. The procedure tries to allocate 

the tasks to the workstation by minimizing the energy consumption at each 

workstation.  
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ii. The best available robot which performs the allotted tasks with minimum 

energy consumption is allotted to the workstation.  

iii. Based on the tasks and robot allocated to the workstation, workstation times are 

calculated using the robot performance time data.  

iv. The workstation with the maximum workstation time is the cycle time of the 

allocation. 

v. Line efficiency is calculated using Equation 8.1. Line efficiency is the direct 

indication of the efficiency of a given assembly line.  

Figure 8.3 shows the tasks and robot allocation for the given sequence of tasks. 

Energy consumed and workstation times calculated are presented in the figure. 

Allocation is done based on the objective of minimizing the energy consumption 

allocation and workstation times calculated on procedure for a straight robotic assembly 

line.  The workstation times are used to calculate the line efficiency.  

 

Figure 8.3 Workstation times and energy consumption in straight RALB 

Straight line robotic assembly line’s efficiency is calculated as follows: 

= (89+107+171+171)/ (4*171)*100=78.65% 

Similarly, for U-shaped robotic assembly line procedure to evaluate the line 

efficiency is same except for the task allocation. The tasks are allocated from either side 

of the sequence. Section 6.2.2 explains the procedure of tasks and robot allocation in a 

U-shaped robotic assembly line. The tasks and robots are allocated with an objective of 

minimizing the energy consumption at each workstation.  Figure 8.4 shows the 

allocation done based on energy consumption data. The details of the workstation times 

and energy consumed are presented in the graph. Using the workstation times, the line 

efficiency is calculated.  
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Line Efficiency:  (75+113+115+156) / (4*156)*100 = 74%. 

 

Figure 8.4 Workstation times and energy consumption in U-shaped RALB 

8.3.1 Performance in straight RALB for energy data 

Straight robotic assembly line is evaluated using PSO and DE with the objective 

of maximizing the line efficiency when the energy consumption is minimized. Energy 

data is used for the allocation of tasks and robots, using the allocation details the 

workstation time and cycle time of the assembly line are calculated. The workstation 

time and cycle time is used for calculating the line efficiency of the assembly line. All 

the 32 test problems are evaluated using the proposed PSO and DE algorithm. The non-

deterministic nature of the algorithm and problem makes it necessary to run same 

problem multiple times.  All the problems are run for ten times and it is observed that 

most of the runs converged to same solution. The parameters used for evaluating the 

line efficiency in Section 8.3.3 is used for evaluating the line efficiency in this section 

also. The results reported are the best solutions obtained for both the algorithms for the 

objective of maximizing the line efficiency. Best results obtained by evaluating 32 test 

problems using PSO and DE are presented in Table 8.8. Column I presents the problem 

evaluated, Column II, III and IV presents the line efficiency, energy consumption and 

cycle time of the best solution evaluated using PSO algorithm. Column V, VI and VII 

presents the results obtained using DE algorithm.  

From the experiments conducted it is observed that 30 out of 32 datasets obtained 

same or better line efficiency for DE when compared to PSO. And one dataset reported 

the same results for both the algorithms.  When comparing the results between PSO and 

DE, it is observed that DE produces results with an average improvement in the line 

efficiency of 7.8 % for small size datasets (up to 70 task problems) and the average 

improvement in the line efficiency for large size datasets is found to be 8.1%.   
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Table 8.8 Line Efficiency of straight RALB for PSO and DE using energy 

data 

Work 

Station/ 

Robots 

 PSO  DE 

Line 

Efficiency 

(%) 

Energy 

Consumption 

(kJ) 

Cycle 

Time 

Line 

Efficiency 

(%) 

Energy 

Consumption 

(kJ) 

Cycle 

Time 

25-3 98.1 489 521 98.4 502 536 

25-4 85.3 353 342 90.3 343 329 

25-6 88.0 357 207 88.0 357 207 

25-9 74.5 235 143 76.4 242 147 

35-4 90.2 1037 518 80.9 1045 516 

35-5 76.7 900 444 96.4 890 357 

35-7 77.5 1000 343 85.8 989 314 

35-12 68.7 688 153 73.9 687 130 

53-5 74.1 2680 605 75.7 2680 590 

53-7 69.9 1970 439 90.6 1970 345 

53-10 80.7 2186 308 83.6 2148 263 

53-14 73.6 2016 202 79.8 2050 183 

70-7 94.2 4093 620 94.4 4191 633 

70-10 88.5 3046 290 90.3 3106 302 

70-14 67 3815 338 83.2 3766 256 

70-19 63.1 3243 232 71.2 3225 204 

89-8 75.4 4956 562 77.0 4922 562 

89-12 80.0 5509 438 81.3 5499 438 

89-16 83.2 4906 288 92.6 4887 265 

89-21 72.5 4150 236 74.3 4182 232 

111-9 84.11 7149 529 92.2 7131 674 

111-13 82.1 7030 396 89.0 7137 391 

111-17 88.3 6857 280 92.1 6877 266 

111-22 72.3 6630 255 87.7 6667 215 

148-10 94.6 9798 688 95.8 9798 678 

148-14 88.7 10524 461 90.7 10645 466 

148-21 75.3 10084 384 83.5 9927 335 

148-29 57.1 8334 317 68.3 8508 263 

297-19 78.3 24518 809 88.7 24351 688 

297-29 87.4 24554 458 83.8 24404 528 

297-38 84.2 22485 409 86.1 22482 348 

297-50 64.8 21089 348 80.4 21050 336 

 

The results reported for the line efficiency is calculated by minimizing the energy 

consumption of the workstation. When comparing the energy consumption for the two 

algorithms, it is observed that the energy consumption is lower for 21 datasets and for 

the other datasets PSO reported lower energy consumption. 25 datasets reported same 

or better cycle time for DE when compared with PSO.  Even though cycle time is low 

for 7 datasets for PSO, line efficiency is still better for DE. This is due to the variation 

of workstation times which affects the line efficiency.  

Table 8.9 reports the average computational time for both the algorithms when 

evaluated for straight robotic assembly line using energy data.  DE performs at a faster 
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rate when compared to PSO for almost all datasets. However, PSO also reports results 

at a reasonable computational time. Computational time for large problem (297 tasks) 

is high for DE. This could be due to the large size of the problem and repeated selection 

process of DE. Computational performance of PSO can be improved if parameters are 

further fine-tuned. In conclusion, DE performs better than PSO in terms of quality of 

the solution and computational time.   

Table 8.9 Average Computational time of PSO and DE for straight RALB 

using energy data 

Problems 
Average Computational Time 

PSO DE 

25 9 8 

35 23 20 

53 41 36 

70 73 67 

89 95 92 

111 288 281 

148 550 540 

297 1700 1739 

 

8.3.2 Performance analysis in U-shaped RALB for energy data 

Best results obtained for PSO and DE for the objective of maximizing the line 

efficiency when the energy consumption is minimized is presented in Table 8.10.  The 

parameters used for evaluating the line efficiency in Section 8.3.3 is used for evaluating 

the line efficiency in this section also. Similar to Table 8.8, Column I presents the 

problem evaluated, Column II, III and IV presents the line efficiency, energy 

consumption and cycle time of the best solution evaluated using PSO algorithm. 

Column V, VI and VII presents the results obtained using DE algorithm in Table 8.10. 

It is observed from the experiments conducted, 28 out of 32 datasets better line 

efficiency for DE when compared to PSO. DE obtained average improvement of 6.2 % 

in the line efficiency when compared to PSO for small size datasets (up to 70 task 

problems) and the improvement of line efficiency for large size datasets when using 

DE is found to be 2.0%. 
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Table 8.10 Line Efficiency of U-shaped RALB for PSO and DE using energy 

data 

Work 

Station/ 

Robots 

PSO DE 

Line 

Efficiency 

(%) 

Energy 

Consumption 

(kJ) 

Cycle 

Time 

Line 

Efficiency 

(%) 

Energy 

Consumption 

(kJ) 

Cycle 

Time 

25-3 85.6 488 561 98.6 493 496 

25-4 87.7 336 334 90.7 341 320 

25-6 85.6 358 230 87.3 363 230 

25-9 72.7 242 148 72.6 244 154 

35-4 79.2 1010 535 82.4 1045 477 

35-5 87.1 855 397 94.4 909 380 

35-7 87.2 983 307 87.5 998 302 

35-12 81.2 653 125 86.4 681 122 

53-5 77.08 2638 610 96.3 2680 464 

53-7 89.7 1959 330 95.8 1970 326 

53-10 83.6 2133 260 91.3 2150 249 

53-14 80.2 1990 183 83.6 2003 183 

70-7 94.6 4256 640 95.7 4364 656 

70-10 87.7 3013 298 89.3 3050 294 

70-14 72.4 3700 272 78.9 3739 266 

70-19 79.0 3063 170 81.0 3223 176 

89-8 77.1 4926 558 77.3 4991 545 

89-12 80.2 5496 426 82.7 5537 424 

89-16 81.4 4753 285 90.7 4798 269 

89-21 82.7 4135 200 84.9 4158 201 

111-9 95.1 7138 696 90.4 7172 688 

111-13 83.3 6818 378 89.3 7078 377 

111-17 89.9 6688 266 92.5 6804 265 

111-22 83.9 6518 217 80.8 6538 223 

148-10 94.8 9798 671 96.4 9798 664 

148-14 90.2 10395 458 85.7 10732 521 

148-21 83.8 10235 394 84.8 9894 318 

148-29 86.5 8186 200 88.3 8296 198 

297-19 88.3 24313 696 88.8 24320 695 

297-29 67.0 24302 592 78.9 24456 500 

297-38 85.3 22037 350 85.9 22585 357 

297-50 86.1 20647 255 86.4 20888 256 

Percentage could be low for large size datasets because both PSO and DE could 

reach solutions which are nearer to each other. The results reported for the line 

efficiency is calculated by minimizing the energy consumption of the workstation. 

From the table, cycle time obtained for both DE and PSO are reported along with the 

energy consumption of the assembly line. It could be seen that cycle time is lower in 

case of DE solution for 25 out of 32 problems. When comparing the energy 

consumption amongst the two models, it could be seen that PSO is getting lower energy 

consumption compared to that of DE for 31 out of 32 problems addressed here.   
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Table 8.11 reports the computational time for both the algorithms. The algorithm 

structured based on PSO provides reasonable quality assignment of tasks and robots to 

workstations for small size problems in practical computational time but DE algorithm 

could obtain the solution for the same set of solution at a faster rate. In case of large 

size datasets (148 and 297 task problems), DE algorithm takes more computational time 

than PSO. The computational time for DE could be on the higher side when compared 

to PSO due to repeated fitness value evaluation in case of selection operation. Results 

show that DE is better for larger size problems in terms of line efficiency, its robustness 

and computational efficiency can be improved by fine tuning the parameters. In 

conclusion, DE performs better than PSO in terms of quality of the solution and 

computational time.   

Table 8.11 Average Computational time of PSO and DE for U-shaped RALB 

using energy data 

Problems 
Average Computational Time 

PSO DE 

25 11 9 

35 26 22 

53 44 38 

70 75 70 

89 99 97 

111 295 317 

148 560 585 

297 1728 1820 

8.3.3 Comparison of straight and U-shaped RALB for energy data results 

The line efficiency and cycle time obtained for straight and U-shaped robotic 

assembly line using PSO and DE are compared when energy data are used. Table 8.12 

is formed by extracting the results obtained for the objective of maximizing the line 

efficiency for straight and U-shaped robotic assembly line using PSO and DE, Table 

8.13 reports the cycle time obtained for both the layouts using PSO and DE and Table 

8.14 reports the energy consumption calculated for both the layouts.  

Eleven problems in the small size datasets groups reported better efficiency for U-

shaped robotic assembly line when compared with straight robotic assembly line for 

DE. And in large size dataset group, ten problems reported better efficiency for U-

shaped robotic assembly line.  
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Table 8.12 Comparison of Line Efficiency obtained using energy data between 

straight and U-shaped RALB 
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1 25-3 98.1 85.6 98.4 98.6  17 89-8 75.4 77.1 77 77.3 

2 25-4 85.3 87.7 90.3 90.7  18 89-12 80 80.2 81.3 82.7 

3 25-6 88 85.6 88.0 87.3  19 89-16 83.2 81.4 92.6 90.7 

4 25-9 74.5 72.7 76.4 72.6  20 89-21 72.5 82.7 74.3 84.9 

5 35-4 90.2 79.2 80.9 82.4  21 111-9 84.11 95.1 92.2 90.4 

6 35-5 76.7 87.1 96.4 94.4  22 111-13 82.1 83.3 89 89.3 

7 35-7 77.5 87.2 85.8 87.5  23 111-17 88.3 89.9 92.1 92.5 

8 35-12 68.7 81.2 73.9 86.4  24 111-22 72.3 83.9 87.7 80.8 

9 53-5 74.1 77.0 75.7 96.3  25 148-10 94.6 94.8 95.8 96.4 

10 53-7 69.9 89.7 90.6 95.8  26 148-14 88.7 90.2 90.7 85.7 

11 53-10 80.7 83.6 83.6 91.3  27 148-21 75.3 83.8 83.5 84.8 

12 53-14 73.6 80.2 79.8 83.6  28 148-29 57.1 86.5 68.3 88.3 

13 70-7 94.2 94.6 94.4 95.7  29 297-19 78.3 88.3 88.7 88.8 

14 70-10 88.5 87.7 90.3 89.3  30 297-29 87.4 67 83.8 78.9 

15 70-14 67 72.4 83.2 78.9  31 297-38 84.2 85.3 86.1 85.9 

16 70-19 63.1 79.0 71.2 81.0  32 297-50 64.8 86.1 80.4 86.4 

 

When comparing the line efficiency between the straight and U-shaped RALB for 

PSO, it is observed that line efficiency of U-shaped is better for eleven datasets in the 

small dataset group and fourteen datasets in the large dataset group reports better line 

efficiency for U-shaped.  So, it is clearly seen that U-shaped RALB performs better in 

terms of line efficiency when the allocation is done based on the energy based data 

where the objective is to minimize the energy consumption of the assembly line.  

Table 8.13 provides a comparison for cycle time obtained for both the algorithms. 

For small size datasets when the results are obtained using PSO, U-shaped RALB 

obtains lower results for nine problems in the group when compared with straight 

robotic assembly line and when cycle time is compared for same datasets for DE, it is 

observed that eleven problems obtains lower cycle time than straight robotic assembly 

line. For large size datasets using PSO, U-shaped RAL reports better solution for 

thirteen datasets when compared with straight RAL. And when the cycle time is 

compared for DE for the large size datasets, ten datasets in the group reported lower 

cycle time for U-shaped RALB.   
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Table 8.13 Comparison of cycle time obtained using energy data between 

straight and U-shaped RALB 
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1 25-3 521 561 536 496  17 89-8 562 558 562 545 

2 25-4 342 334 329 320  18 89-12 438 426 438 424 

3 25-6 207 230 207 230  19 89-16 288 285 265 269 

4 25-9 143 148 147 154  20 89-21 236 200 232 201 

5 35-4 518 535 516 477  21 111-9 529 696 674 688 

6 35-5 444 397 357 380  22 111-13 396 378 391 377 

7 35-7 343 307 314 302  23 111-17 280 266 266 265 

8 35-12 153 125 130 122  24 111-22 255 217 215 223 

9 53-5 605 610 590 464  25 148-10 688 671 678 664 

10 53-7 439 330 345 326  26 148-14 461 458 466 521 

11 53-10 308 260 263 249  27 148-21 384 394 335 318 

12 53-14 202 183 183 183  28 148-29 317 200 263 198 

13 70-7 620 640 633 656  29 297-19 809 696 688 695 

14 70-10 290 298 302 294  30 297-29 458 592 528 500 

15 70-14 338 272 256 266  31 297-38 409 350 348 357 

16 70-19 232 170 204 176  32 297-50 348 255 336 256 

 

 Energy consumption reported here are obtained by taking the sum of energy 

consumption at each workstation. From Table 8.14, for small size datasets U-shaped 

RALB reports lesser energy consumption for thirteen datasets when the results are 

taken using PSO and when the results are taken based on DE, energy consumption is 

lower in U-shaped RALB for eight datasets. Even though only eight datasets are lower 

for DE for small size datasets, the line efficiency is better in these problems for U-

shaped. For large size datasets, results obtained using PSO reports that fifteen datasets 

reports lower energy consumption for U-shaped and when the energy consumption is 

compared for DE, it is observed that U-shaped reports lower energy consumption for 

eleven datasets when compared with the energy consumption of straight RALB. 

In conclusion, U-shaped robotic assembly line performs better in terms of line 

efficiency, cycle time and energy consumption for most of the problems in both small 

and large size datasets when compared with straight robotic assembly line when the 



Chapter 8 

PSO & DE for RALB problem to maximize line efficiency 

 

Page | 184  

 

objective of maximizing the line efficiency is done by minimizing the energy 

consumption. 

Table 8.14 Comparison of energy consumption obtained between straight 

and U-shaped RALB using energy data 
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1 25-3 489 488 502 493  17 89-8 4956 4926 4922 4991 

2 25-4 353 336 343 341  18 89-12 5509 5496 5499 5537 

3 25-6 357 358 357 363  19 89-16 4906 4753 4887 4798 

4 25-9 235 242 242 244  20 89-21 4150 4135 4182 4158 

5 35-4 1037 1010 1045 1045  21 111-9 7149 7138 7131 7172 

6 35-5 900 855 890 909  22 111-13 7030 6818 7137 7078 

7 35-7 1000 983 989 998  23 111-17 6857 6688 6877 6804 

8 35-12 688 653 687 681  24 111-22 6630 6518 6667 6538 

9 53-5 2680 2638 2680 2680  25 148-10 9798 9798 9798 9798 

10 53-7 1970 1959 1970 1970  26 148-14 10524 10395 10645 10732 

11 53-10 2186 2133 2148 2150  27 148-21 10084 10235 9927 9894 

12 53-14 2016 1990 2050 2003  28 148-29 8334 8186 8508 8296 

13 70-7 4093 4256 4191 4364  29 297-19 24518 24313 24351 24320 

14 70-10 3046 3013 3106 3050  30 297-29 24554 24302 24404 24456 

15 70-14 3815 3700 3766 3739  31 297-38 22485 22037 22482 22585 

16 70-19 3243 3063 3225 3223  32 297-50 21089 20647 21050 20888 

 Summary 

Line efficiency is one of the important objectives to optimize in assembly lines. Line 

efficiency helps to analyze if all the resources available are utilized efficiently.  Industries can 

produce more products in shorter time when the line efficiency is high. Two models to 

calculate the efficiency are presented in this chapter. The first model is developed based on 

the objective of minimizing the workstation times for a robotic assembly line using the time 

data. The two layouts (straight and U-shaped) of robotic assembly line are tested for the 

performance. The line efficiency obtained for the two layouts are compared along with the 

cycle time and smoothness index of the best solution obtained.  Particle swarm optimization 

(PSO) and Differential evolution (DE) are the two metaheuristic algorithms used as the 

optimization tool to solve this problem for both the layouts (straight and U-shaped).  

Among the two optimization tools it is observed that PSO performs better for both the 

layouts. From the results it is concluded that U-shaped robotic assembly line performs 
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better in case of line efficiency and cycle time for small size datasets. And for large size 

datasets, line efficiency is higher for straight robotic assembly line and cycle time is 

better for U-shaped robotic assembly line when the objective is to maximize the line 

efficiency by minimizing the workstation times. 

Second model developed is based on the objective of minimizing the energy 

consumption for a robotic assembly line. The line efficiency of the assembly line which 

performs the tasks with minimum energy consumption is evaluated. The line efficiency 

is calculated and compared for both the layouts (straight and U-shaped). Particle swarm 

optimization (PSO) and Differential evolution (DE) are the two metaheuristic 

algorithms used as the optimization tool to solve this problem for both the layouts. It is 

observed that DE performs better for both the layouts for most of the datasets. The 

comparison of results obtained for both the layouts are presented. It is observed that DE 

performs better in terms of the objective function when compared to PSO.  It is 

concluded that U-shaped robotic assembly line performs better in terms of line 

efficiency, cycle time and energy consumption for most of the problems in both small 

and large size datasets. 

 



 

CHAPTER 9 

9 Conclusion 

A summary of research work conducted on robotic assembly line balancing 

problems to optimize different objectives are presented in this thesis. The major 

contributions made and the scope of future work is also presented.  

The literature survey revealed that researches on assembly line balancing problems 

have been conducted extensively and different optimization methods are developed in 

the past. Most of the methods are designed for balancing manual assembly lines. 

Detailed literature survey for different types of assembly line balancing problems and 

different optimization techniques are presented in Chapter 2. It is observed that, only 

few literatures could be found on robotic assembly line balancing problems. The 

research gaps are identified and the research objectives are framed.  Different research 

objectives to be addressed in thesis are presented in Chapter 3. Mathematical models 

for different RALB problems are presented along with the assumptions considered to 

solve these problems.  

 RALB problem to minimize cycle time 

RALB problem is developed and solved to optimize the cycle time of a robotic 

assembly line. The procedures and results obtained for this model are presented in 

Chapter 5. The existing literature survey is comprehensively analysed to identify if 

available solution could be improved.  IBM Cplex Optimization studio Version 12.6.0.0 

standard optimization software is used to solve the problems to get optimal solutions. 

It is observed that only fourteen problems in the datasets could be solved within an 

acceptable time span. Two allocation procedures are implemented to improve the 

quality of the available solution. PSO is proposed to solve the problem. Results of the 

proposed models are improved using a local exchange procedure. Out of the two 

allocation procedures, consecutive allocation procedure performs better. PSO variants 

and hybrid PSO algorithms are also proposed to solve the problem. Variants are 

developed based on the variation in the velocity update in PSO and hybrid models are 

developed by hybridizing with GA (breeding) and Cuckoo Search. The performances 

of the variants and hybrid algorithms of PSO are tested on benchmark problems and the 
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obtained results are compared with the reported results. Set of experiments are 

conducted to investigate the effects of the parameters on the solution quality. Results 

show that the proposed hybrid CS-PSO algorithm reports better solution than the 

solution reported in the literature.  The robotic assembly line considered is a straight 

assembly line problem where the tasks and workstations are arranged in a straight line.  

A new robotic U-shaped assembly line balancing (RUALB) problem is also 

presented. No work has been reported on U-shaped robotic assembly line. The major 

objective of the problem developed is to minimize the cycle time of the assembly line 

when the assembly line can be arranged for a U-shaped configuration. Allocation of 

tasks and robots in U-shaped configuration is highly complex when compared to the 

straight assembly line. Tasks are assigned to the workstations when either all of their 

predecessors or all of their successors have already been assigned to workstations. PSO 

algorithm is proposed to solve this problem. Thirty-two benchmark problems originally 

proposed by earlier researchers to solve RALB were adopted to the test the performance 

of RUALB. Extensive computational experiments were conducted and the results are 

reported in Chapter 5.  From the results, it is observed that the cycle time of U-shaped 

robotic assembly line is lower than the straight robotic assembly line. To measure the 

complexity of the problem different complexity measures are used and the results are 

reported in this chapter.  

 RALB problem to minimize energy consumption 

These days, manufacturing industries gives utmost importance for reducing the 

energy consumption due to the increasing energy cost and fast depletion of energy 

sources. The industries need to reduce the energy consumption to improve their 

profitability. Models are developed with an objective of minimizing energy 

consumption in a robotic assembly line.  From the literature, it is observed that there 

has been no previous work reported on optimizing energy consumption in a robotic 

assembly line. Particle swarm optimization algorithm is proposed to solve the proposed 

models. Datasets to solve the proposed model is developed by embedding the energy 

data into the benchmark datasets. Using the developed energy data and existing time 

datasets, the energy consumption and the subsequent cycle time is evaluated for both 

the layouts. The energy consumption of the robotic assembly line when the allocation 

of tasks and robots are done based on the objective of minimizing the cycle time is also 



Chapter 9 

Conclusion 

 

Page | 188  

 

calculated. This is proposed to check the energy saving capacity in the model proposed 

when the allocation of tasks and robots are performed. Several computational 

experiments are conducted for both the layouts and the best solution obtained for each 

models are presented in Chapter 6. A comparative analysis is done on the straight and 

U-shaped robotic assembly line to check which layout is better. From the study, it is 

concluded that U-shaped performs better for both the objectives of minimizing cycle 

time and energy consumption.  

 RALB problem to minimize assembly line cost 

A new robotic assembly line balancing problem with an objective of minimizing 

assembly line cost is developed. Robot needs to be optimally assigned to the work 

stations such a way that the cost to perform these allocated tasks by robots be the 

minimum. Tasks and robots are allocated based on consecutive allocation heuristic. 

From the literature, it is observed that there has been no previous work reported on 

optimizing assembly line cost of a robotic assembly line. NP-hard nature of the problem 

makes it necessary to implement different metaheuristic algorithms (PSO Variants and 

DE) to solve the problem. Datasets are randomly generated by using the existing 

benchmark datasets. Results obtained by metaheuristic algorithms are tested on the 

datasets developed. It is observed that DE performs better than PSO in terms of the 

quality of the solution.  

Sample problems are used to find the parameters to be used in the algorithms. 

Cycle time is also calculated from the cost and the performance is compared. It can be 

clearly concluded that U-shaped layout performs better than the straight robotic 

assembly line layout for the objective of minimizing the assembly line cost. Assembly 

line cost is also calculated for the problems when the allocation is conducted based on 

the objective of minimizing the cycle time. Both assembly line cost and cycle time for 

both the layouts are compared and it is concluded from the results obtained that U-

shaped robotic assembly line reports better cycle time and assembly line cost when 

compared with straight robotic assembly line. Industrial managers can chose any of the 

models based on the priorities and demands. 
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 RALB problem to maximize line efficiency 

Two models for evaluating the line efficiency of the robotic assembly line are 

proposed. First model aims at maximizing the line efficiency by minimizing the 

workstation times and the second model aims at maximizing the line efficiency by 

minimizing the energy consumption of the workstations. The two models are solved for 

both layouts (straight and U-shaped) of robotic assembly line using PSO and DE 

algorithms. Extensive experiments are conducted on the benchmark data. Sample 

problems are used to fix the parameters to be used for the algorithms. Based on the 

comparative analysis, it is observed that for the first model, line efficiency is better for 

U-shaped robotic assembly line and line efficiency is better for straight line for the large 

size datasets. This is due to the variation of workstation times which affects the line 

efficiency. PSO and DE algorithm showed the same trend in the results. The cycle time 

and smoothness index are also evaluated and compared.  

From the analysis on the second model, it is observed that for both PSO and DE, 

U-shaped robotic assembly line performs better in terms of line efficiency when 

compared to straight robotic assembly line. The cycle times of the problems tested 

along with the energy consumption for both the layouts are compared and it is 

concluded that U-shaped robotic assembly line performs better.  

 Contribution of this thesis 

Efficient metaheuristic algorithms are proposed and solved for: 

i. Robotic assembly line balancing problem with the objective of minimizing 

the cycle time for straight and U-shaped robotic assembly line.  

ii. Energy based robotic assembly line problem for both straight and U-shaped 

robotic assembly line with an objective of minimizing the energy 

consumption. 

iii. Cost based robotic assembly line balancing problem in both straight and U-

shaped robotic assembly line with an objective of minimizing the total 

assembly line cost. 

iv. Robotic assembly line problem with an objective of maximising the line 

efficiency by minimizing workstation times and minimizing energy 

consumption at each workstation.  
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 Limitations of this research 

The limitations of this research work are that only one robot can be assigned to one 

workstation. Assigned robot cannot handle multiple workstations. Tasks which are 

assigned to the workstation cannot be split. Computational time increases significantly 

when the problem size increases. 

 Future Research Proposals 

Few areas of further research in RALB problems are:  

i. Different other efficient metaheuristics can also be applied for the presently 

developed RALB problems.  

ii. Robotic assembly line could be designed for two-sided and parallel 

assembly line. 

iii. The models proposed in thesis are for a single model, robotic assembly 

lines could be designed for assembly of mixed and multi products.  

iv. For energy based robotic assembly line balancing problems, algorithm 

could be tested on a specific time horizon where factors such as 

maintenance operation and effect of failures of the resources in the system 

could be included. The planning horizon can also be included in the model. 
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Appendix 1- Performance times of 35 tasks by 5 Robots 
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1 - 142 67 88 56 84 

2 1 92 45 183 56 69 

3 2 56 25 36 37 37 

4 3 64 61 53 45 47 

5 1 62 29 92 35 95 

6 5 68 51 132 83 177 

7 1,6 93 90 137 71 158 

8 6 59 73 90 51 116 

9 8 29 36 36 51 50 

10 1 53 55 37 36 43 

11 4 63 40 85 59 51 

12 1 42 73 49 109 49 

13 9 42 36 91 64 47 

14 7,10 77 46 93 68 66 

15 14 37 45 50 37 83 

16 15 28 28 73 47 37 

17 - 65 49 41 53 51 

18 7,12 93 49 63 151 101 

19 18 103 37 62 54 89 

20 17,19 38 55 38 29 34 

21 16,20 51 83 122 67 117 

22 21 36 43 57 47 60 

23 22 70 87 74 63 146 

24 23 42 83 108 49 49 

25 21 103 55 66 54 83 

26 25 36 78 64 34 48 

27 24,26 44 82 49 68 46 

28 11,13 105 36 69 119 94 

29 28 58 31 59 37 60 

30 21 43 37 59 53 64 

31 30 42 32 51 82 113 

32 21,31 40 39 89 45 91 

33 11,13,27,32 32 31 99 57 46 

34 27 93 37 50 53 91 

35 33 37 50 72 84 53 
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Appendix 2- Power data for small size datasets (Power in kW)  
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Appendix 3 -Robot Power Details for Large Size data (Power in kW)
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Appendix 4 -Robot Cost data for small size datasets
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Appendix 5 -Robot Cost data for large size datasets
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