
Simulating Astrophysical Magnetic Fields with Smoothed Particle
Magnetohydrodynamics

by

Terrence Stanislaus Tricco
B.Sc.(Hons), M.Sc.

A thesis submitted to the
Monash Institute of Graduate Research

to fulfill the requirements for the degree of
Doctor of Philosophy.

School of Mathematical Sciences
Monash University

Melbourne, Australia

April 1, 2015



Contents

Copyright Notice vii

Summary viii

Declaration of Published Material x

Acknowledgments xii

List of Figures xxii

List of Tables xxiii

1 Introduction 1

2 Smoothed particle magnetohydrodynamics 4

2.1 Continuum magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Momentum equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Induction equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Summary of ideal MHD equations . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 Wave solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Discretised magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Estimating the density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Setting the smoothing length . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Interpolation basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 r ·B and r⇥B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.5 Energy equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.6 Induction equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.7 Conservative equations of motion . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.8 Removing the tensile instability . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.9 Summary of discretised MHD equations . . . . . . . . . . . . . . . . . . . 20

2.2.10 Capturing shocks and discontinuities . . . . . . . . . . . . . . . . . . . . . 21

2.2.10.1 Artificial viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ii



2.2.10.2 Artificial resistivity . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.10.3 Thermal conductivity . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.11 Reducing artificial dissipation . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.11.1 Artificial viscosity switches . . . . . . . . . . . . . . . . . . . . . 24

2.2.11.2 Artificial resistivity switches . . . . . . . . . . . . . . . . . . . . 25

2.2.11.3 Thermal conductivity switches . . . . . . . . . . . . . . . . . . . 26

2.2.12 Leapfrog time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Constrained hyperbolic divergence cleaning 31

3.1 Previous approaches to treat r ·B = 0 in SPMHD . . . . . . . . . . . . . . . . . 32

3.2 Hyperbolic divergence cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Hyperbolic divergence cleaning for the MHD equations . . . . . . . . . . . 34

3.2.2 Energy associated with the  field . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2.1 Energy conservation as part of the ideal MHD equations . . . . 35

3.3 Hyperbolic divergence cleaning in SPMHD . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Hyperbolic divergence cleaning in SPMHD . . . . . . . . . . . . . . . . . 36

3.3.2 Energy conservation of discretised hyperbolic divergence cleaning . . . . . 37

3.3.2.1 Hyperbolic cleaning with di↵erence operator for r ·B . . . . . . 37

3.3.2.2 Hyperbolic cleaning with symmetric operator for r ·B . . . . . 38

3.3.2.3 Hyperbolic cleaning as part of the SPMHD equations . . . . . . 38

3.3.3 Energy loss due to damping . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Divergence advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1.3 Optimal choice of damping parameter in 2D . . . . . . . . . . . 42

3.4.2 Static cleaning test: density jump . . . . . . . . . . . . . . . . . . . . . . 43

3.4.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Static cleaning test: free boundaries . . . . . . . . . . . . . . . . . . . . . 44

3.4.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.4 2D Blast wave in a magnetised medium . . . . . . . . . . . . . . . . . . . 46

3.4.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.4.3 Operator choice for r ·B . . . . . . . . . . . . . . . . . . . . . . 48

3.4.4.4 Optimal damping values . . . . . . . . . . . . . . . . . . . . . . 48

3.4.4.5 Tensile instability correction . . . . . . . . . . . . . . . . . . . . 48

3.4.5 Orszag-Tang Vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

iii



3.4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.5.3 Cleaning using symmetric r ·B . . . . . . . . . . . . . . . . . . 53

3.4.5.4 Optimal damping values . . . . . . . . . . . . . . . . . . . . . . 53

3.4.5.5 Resolution study . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.6 Three dimensional divergence advection . . . . . . . . . . . . . . . . . . . 55

3.4.6.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.6.2 Optimal values of the damping parameter . . . . . . . . . . . . . 56

3.4.7 Gravitational collapse of a magnetised molecular cloud core . . . . . . . . 57

3.4.7.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.7.3 Optimal sigma values . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.7.4 Inclusion of the 1
2 (r · v) term . . . . . . . . . . . . . . . . . . . 59

3.4.8 Magnetised Mach 10 turbulence . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.8.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Enhancing the cleaning method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Over-cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.2 Sub-cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.3 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.3.1 Orszag-Tang vortex . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.3.2 Static test: cleaning to r ·B = 0 . . . . . . . . . . . . . . . . . . 65

3.6 Velocity divergence cleaning for weakly compressible SPH . . . . . . . . . . . . . 66

3.6.1 Weakly compressible SPH . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.2 Hyperbolic divergence cleaning for the velocity field . . . . . . . . . . . . 67

3.6.3 Discretised hyperbolic velocity divergence cleaning . . . . . . . . . . . . . 68

3.6.4 Oscillating water drop test . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 A switch to reduce resistivity 74

4.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.2 Choice of signal velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.3 Switches using a second derivative . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Shocktube 1B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Shocktube 2A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.3 Shocktube 5A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.4 Polarised Alfvén Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.5 Orszag-Tang vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.6 Mach 10 MHD turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

iv



4.3 Generalisation to other dissipation terms . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 New artificial viscosity switch . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.2 New thermal conductivity switch . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.3 Tests of artificial viscosity and thermal conductivity switches . . . . . . . 88

4.3.3.1 Viscosity: Sod shocktube . . . . . . . . . . . . . . . . . . . . . . 88

4.3.3.2 Thermal conductivity: Kelvin-Helmholtz instability . . . . . . . 89

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Turbulent dynamo amplification of magnetic fields 95

5.1 Comparison details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Numerical codes and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.1 Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.2 Phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.3 Computational cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.4 Analysis methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.4.1 Power spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.4.2 Probability distribution functions . . . . . . . . . . . . . . . . . 102

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.1 Initial transient growth; t/tc . 2 . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.2 Growth phase; 2 . t/tc . 10–40 . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.2.1 Correlation with the density field . . . . . . . . . . . . . . . . . 106

5.3.2.2 Magnetic energy growth rates . . . . . . . . . . . . . . . . . . . 106

5.3.2.3 Magnetic energy power spectra . . . . . . . . . . . . . . . . . . . 107

5.3.2.4 Approach to saturation . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.2.5 PDFs of B2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.3 Saturation phase; 15 . t/tc . 100 . . . . . . . . . . . . . . . . . . . . . . 112

5.3.3.1 Magnetic energy saturation level . . . . . . . . . . . . . . . . . . 112
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Summary

Numerical methods to improve the treatment of magnetic fields in smoothed field magneto-

hydrodynamics (SPMHD) are developed and tested. A mixed hyperbolic/parabolic scheme is

developed which “cleans” divergence error from the magnetic field. The method introduces

a scalar field which is coupled to the magnetic field. A conservative form for the hyperbolic

equations is obtained by first defining the energy content of the new field, then using it in the

discretised Lagrangian to obtain equations which manifestly conserve energy. This is shown to

require conjugate first derivative operators in the SPMHD cleaning equations. Average diver-

gence error is shown to be an order of magnitude lower for all test cases considered, and allows

for the stable simulation of the gravitational collapse of magnetised molecular cloud cores. The

e↵ectiveness of the cleaning may be improved by explicitly increasing the hyperbolic wave speed

or by cycling the cleaning equations between timesteps. In the latter, it is possible to achieve

r ·B = 0 in SPMHD. The method is adapted to work with a velocity field, demonstrating that

it can reduce density variations in weakly compressible SPH simulations by a factor of 2.

A switch to reduce dissipation of the magnetic field from artificial resistivity is developed.

Discontinuities in the magnetic field are located by monitoring jumps in the gradient of the

magnetic field at the resolution scale relative to the magnitude of the magnetic field. This

yields a simple yet robust method to reduce dissipation away from shocked regions. Compared

to the existing switch in the literature, this leads to sharper shock profiles in shocktube tests,

lower overall dissipation of magnetic energy, and importantly, is able to capture magnetic shocks

in the highly super-Alfvénic regime.

These numerical methods are compared against grid-based MHD methods by comparison

of the small-scale dynamo amplification of a magnetic field in driven, isothermal, supersonic

turbulence. We use the SPMHD code, Phantom, and the grid-based code, Flash. We find that

the growth rate of Flash is largely insensitive to the numerical resolution, whereas Phantom

shows a resolution dependence that arises from the scaling of the numerical dissipation terms.

The saturation level of the magnetic energy in both codes is about 2–4% of the mean kinetic

energy, increasing with higher magnetic Reynolds numbers. Phantom requires lower resolution

to saturate at the same energy level as Flash. The time-averaged saturated magnetic spectra

have a similar shape between the two methods, though Phantom contains twice as much

energy on large scales. Both codes have PDFs of magnetic field strength that are log-normal,

which become lopsided as the magnetic field saturates. We find encouraging agreement between

viii



grid- and particle methods for ideal MHD, concluding that SPMHD is able to reliably simulate

the small-scale dynamo amplification of magnetic fields. We note that quantitative agreement

on growth rates can only be achieved by including explicit, physical terms for viscosity and

resistivity, because those are the terms that primarily control the growth rate and saturation

level of the turbulent dynamo.
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Chapter 1

Introduction

... magnetic fields may be included without di�culty ...

Gingold and Monaghan (1977)

Magnetic fields are ubiquitous throughout the Universe. It is believed that even if the

Universe began unmagnetised, battery e↵ects would lead to an initial magnetisation of baryonic

matter (e.g., the Biermann battery, Biermann 1950, see also the review by Widrow et al. 2012).

Since magnetic monopoles do not exist in nature, there are no ‘sinks’ of magnetic field and it is

di�cult to destroy them. Therefore, once an initial magnetisation is present, dynamo processes

can lead to ever stronger magnetic fields.

Nearly all current theoretical problems in astrophysics involve magnetic fields to some de-

gree. Neutron stars have some of the strongest magnetic fields in the Universe. The magnetic

fields of galaxies are thought to be dynamically relevant for their evolution, and are responsible

for determining the propagation of cosmic rays. The magnetic field of the Sun is responsible

for sunspots and solar flares.

Magnetic fields also play an important role in all stages of the star formation process. Stars

form in cold (⇠10K) clouds of molecular gas (primarily H2), which contain between 103–107 M�

of material. Supersonic turbulence in these clouds plays a key role in regulating star formation

(see review by McKee and Ostriker, 2007). As the supersonic shock waves collide in the cloud,

they create dense filaments which act as the nucleation sites along which stars can form. These

provide the dense cores that begin the star formation process (Larson, 1981). The extra pressure

from magnetic fields help guard against gravitational collapse, and numerical studies has shown

that this can reduce star formation rates (e.g., Nakamura and Li, 2008; Price and Bate, 2008,

2009; Padoan and Nordlund, 2011; Federrath and Klessen, 2012).

On the scale of individual protostars, magnetic fields are responsible for driving jets and out-

flows — a signature of star formation. As a molecular cloud core collapses under its gravitational

weight, conservation of angular momentum leads to an increase in angular velocity, winding

up magnetic field lines. There are two ways in which the magnetic field may drive an outflow.

One occurs when the tension in the field lines becomes too strong, driving material outwards as
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the magnetic field pops out of the plane of the disc (the ‘magnetic tower’, Lynden-Bell, 1996,

2003). The other is when material is centrifugally accelerated along poloidal magnetic field

lines, essentially being ‘sling shotted’ away from the protostar (Blandford and Payne, 1982).

Outflows are important sources of removing angular momentum from the star-disc system and

in reducing the e�ciency of gas conversion into stars.

Magnetic fields also play an important role in the accretion discs around young stars. Mag-

netised, di↵erentially rotating flows are well known to be susceptible to the magneto-rotational

instability (Balbus and Hawley, 1991). Consider two pieces of material on nearby orbits that are

joined by a magnetic field line. As they drift apart, the tension in the magnetic field line resists

the motion. This pulls the two pieces towards each other, causing the material in the inner orbit

to slow down, and the material in the outer orbit to speed up. However, this only causes the

inner material to drop to a lower orbit, and the outer material to drift outwards, exacerbating

the problem. By this process, angular momentum is transported outwards through the disc.

This instability leads to turbulence, and is thought to play a key role in driving accretion onto

young stars.

Observations of magnetic fields may be obtained directly through Zeeman splitting mea-

surements of spectral lines, or indirectly by the linear polarisation of thermal emission from

dust grains. However, Zeeman measurements only yield information about the magnetic field

along the line of sight, and the polarisation of dust grains only about its orientation in the

plane of the sky. Therefore, the full information about the magnetic field is di�cult to obtain.

Furthermore, performing these observations may require a considerable amount of time, for

example, Troland and Crutcher (2008)’s survey of Zeeman measurements of magnetic fields in

molecular cloud cores involved ⇠500 hours of observing time.

An important approach to test astrophysical theories is through the use of numerical simu-

lation, and it is crucial that these numerical experiments reflect reality as closely as possible in

order to yield meaningful results. This is accomplished through careful design and calibration

of numerical methods.

This thesis is focused on improving the treatment of magnetic fields in smoothed parti-

cle magnetohydrodynamics (SPMHD), a Lagrangian particle based numerical method built on

smoothed particle hydrodynamics (SPH). The general picture of SPH is to solve the equations

of hydrodynamics by discretising a fluid into a collection of particles that mimic fluid behaviour.

SPH has many advantages for astrophysics. One, the resolution is tied to the mass. Regions

of higher mass have more particles, thus more resolution, which is advantageous as the densest

areas are typically the most interesting (e.g., stars forming in a molecular cloud). Two, it is triv-

ial to incorporate gravitational N-body methods since SPH is a particle based scheme. Three,

advection is done perfectly, that is, without any dissipation, since it is a Lagrangian method.

Four, it can easily handle complex geometries. Five, the Courant timestep does not depend

upon the fluid velocity, thus allowing larger timesteps. And six, perhaps its strongest attribute,

it has exact simultaneous conservation of mass, momentum, angular momentum, energy, and
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entropy to the precision of the time-stepping algorithm. This makes SPH significantly robust

and stable since it reflects the conservation properties of nature.

SPH is widely used in astrophysics for the preceding reasons. For example, the cosmological

code Gadget 2 (Springel, 2005) has over 1900 citations at the time of writing. The impetus to

include other physics in SPH, such as magnetic fields, is clear. The foundation of SPMHD has

been laid substantially through the Ph.D. research of Daniel Price (see Price and Monaghan

2004a,b, 2005 and also the recent review by Price 2012), building on the earlier work of Phillips

and Monaghan (1985) and Morris (1996). This thesis follows as its spiritual successor, shoring

up the remaining deficiencies to build a method that is able to accurately simulate a wide range

of astrophysical problems.

The thesis is structured as follows: In Chapter 2, the current state of SPMHD is reviewed.

First, the continuum equations of ideal MHD are derived, which is more than mere exercise

as this will elucidate some of the numerical issues to be discussed. The numerical method is

built up step-by-step. We provide an overview of how to estimate the density for the set of

SPH particles, how to adaptively set the resolution based on density, how to perform basic

interpolation of quantities, and how to obtain the discretised form of the induction, energy,

and momentum equations. The numerical instability present in the equations of motion will

be discussed, along with strategies for its treatment. Methods for the capturing of shocks and

discontinuities are outlined.

In Chapter 3, the constrained hyperbolic divergence cleaning method to uphold the divergence-

free constraint of the magnetic field in SPMHD is developed and tested. Past approaches to

treat the divergence-free constraint in SPMHD are summarised first. In Chapter 4, a method to

reduce numerical dissipation of the magnetic field is presented and tested. Chapter 5 presents

a comparison of the SPMHD methods developed against grid-based methods on the simulation

of small-scale dynamo amplification of a magnetic field. The thesis is summarised in Chapter 6.



Chapter 2

Smoothed particle

magnetohydrodynamics

Smoothed particle magnetohydrodynamics (SPMHD) is a numerical method for solving the

equations of magnetohydrodynamics (MHD) based on the smoothed particle hydrodynamics

(SPH) method (Gingold and Monaghan, 1977; Lucy, 1977). The basic premise is to discretise

the fluid by mass into a set of particles. To recover continuum behaviour from the collection of

point particles, a weighting kernel is used to smooth their quantities over a local volume. Fluid

properties can be reconstructed at any point in space by summing the weighted contributions

of nearby particles.

The first attempts to include magnetic fields in SPH were performed by Gingold and Mon-

aghan (1977) who considered magnetic polytropes, though in a form which did not conserve

momentum or angular momentum. The basic SPMHD method has its roots in the work by

Phillips and Monaghan (1985), who formulated equations of motion that conserve momen-

tum, and applied the method to three-dimensional simulations of gravitationally collapsing

gas clouds (Phillips, 1986a,b). The modern SPMHD method was developed by Price and

Monaghan (2004a,b, 2005), who constructed fully conservative equations incorporating varying

resolution, formulated magnetic shock capturing terms, and investigated approaches to treat

the divergence-free constraint on the magnetic field. Since then, SPMHD has been applied to

studies of protostar formation (Price and Bate, 2007; Bürzle et al., 2011a,b; Price et al., 2012;

Bate et al., 2014b), star cluster formation (Price and Bate, 2008, 2009), neutron star mergers

(Price and Rosswog, 2006), and magnetic fields in galaxies and galaxy clusters (Price and Bate,

2008; Donnert et al., 2009; Kotarba et al., 2009, 2010, 2011; Bonafede et al., 2011; Beck et al.,

2012, 2013).

Technical di�culties in SPMHD arise from the divergence-free constraint on the magnetic

field – an issue faced by any numerical MHD method. Magnetic monopoles are introduced

if this constraint is not upheld, which is not only physically inaccurate, but leads to spurious

monopole accelerations. This causes numerical instability when it exceeds the isotropic pressure.

4
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The details of the issues surrounding r ·B = 0 in SPMHD will be discussed as the method is

presented throughout this chapter and in Chapter 3.

We begin by deriving the continuum equations of ideal MHD along with the MHD wave

solutions. This process is instructive and leads to further understanding of some of the finer

points of the numerical scheme. The SPMHD discretised version of the MHD equations will

then be constructed. It begins with a method to estimate density in SPH, and a review of basic

SPH interpolation theory. With this, the discretised induction equation used to evolve the

magnetic field can be obtained. Using the density estimate and discretised induction equation,

the conservative equations of motion are built through a Lagrangian approach. The instability

present in these equations will be discussed, along with approaches for removing it, making

particular note of how it is related to the divergence-free constraint of the magnetic field.

Dissipation terms for capturing shocks are presented, followed by methods to reduce dissipation.

2.1 Continuum magnetohydrodynamics

Ideal MHD is the merger of fluid dynamics with electromagnetic theory. Several useful text-

books for magnetohydrodynamic theory are Choudhuri (1998); Gri�ths (1999); Batchelor

(2000); Bellan (2006). The relevant equations are given by Euler fluid flow, describing the

motion of an inviscid fluid,

@⇢

@t
= �r · (⇢v), (2.1)

@v

@t
= �(v ·r)v � rP

⇢
, (2.2)

Maxwell’s equations of electromagnetism,

r⇥E = �@B
@t

, (2.3)

r ·E =
⌧

✏0
, (2.4)

r⇥B = µ0

✓
J+ ✏0

@E

@t

◆
, (2.5)

r ·B = 0, (2.6)

and the Lorentz force law,

⇢
@v

@t
= ⌧E+ J⇥B. (2.7)

Here, v is the fluid velocity, ⇢ is the density, P is the thermal pressure, E is the electric field,

B is the magnetic field, ⌧ is the charge density, J is the current density, µ0 is the permeability

of free space, and ✏0 is the permittivity.

One key assumption is made: The fluid is highly ionised. This means that while the fluid can

carry a magnetic field, on macroscopic scales (relevant for astrophysical systems), the positive
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and negative charges will average out and the fluid will be electrically neutral. Furthermore,

since there is a significant number of free electrons, the fluid can be treated as an ideal conductor.

Both of these conditions imply that the stationary electric field inside the fluid can be treated

as negligible.

2.1.1 Momentum equation

Forces from the magnetic field are due to the Lorentz force law (Equation 2.7). Assuming that

E = 0 and does not vary with time, we can use Equation 2.5 to define the current density in

terms of the magnetic field, such that the Lorentz force becomes

@v

@t
=

1

µ0⇢
(r⇥B)⇥B. (2.8)

This may be rewritten as
@v

@t
= � 1

2µ0⇢
rB2 +

1

µ0⇢
(B ·r)B, (2.9)

from which it becomes clear that the magnetic field exerts two forces on the fluid. One is an

isotropic magnetic pressure, which pushes fluid down gradients of magnetic field strength. The

second is an attractive force directed along magnetic field lines, which functions like a tension

in the magnetic field lines.

The total force on the fluid is the combination of pressure and magnetic forces. The mo-

mentum equation is therefore the addition of Equation 2.2 and 2.9, yielding

dv

dt
= �1

⇢
r
✓
P +

B2

2µ0

◆
+

1

µ0⇢
(B ·r)B. (2.10)

Here we have introduced the material derivative, d/dt = @/@t + (v · r)v, which follows the

frame of reference of a parcel of fluid along its streamline. As SPH is a particle based method,

it is natural to write equations using the material derivative.

The momentum equation can be written in terms of a stress tensor. Assuming that the

magnetic field is divergence-free, the stress tensor can be defined as

Sij = ��ij
✓
P +

B2

2µ0

◆
+

BiBj

µ0
, (2.11)

which leads to
dvi

dt
=

1

⇢

@Sij

@xj
. (2.12)

Expanding this, the momentum equation becomes

dv

dt
= �1

⇢
r
✓
P +

B2

2µ0

◆
+

1

⇢
r ·
✓
BB

µ0

◆
. (2.13)

This is similar to Equation 2.10 except in the magnetic tension term. It contains an extra
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tensional force, B(r · B)/µ0⇢, which appears due to the assumption that r · B = 0. The

conservative form of the SPMHD momentum equation is obtained by using the stress tensor,

though since it may be unsafe to assume the magnetic field is divergence-free when solving the

equations numerically, this extra force term requires careful consideration. This is discussed in

Sections 2.2.7 and 2.2.8.

2.1.2 Induction equation

The current density may be defined using Ohm’s law,

J0 = �E0, (2.14)

which expresses the current density, J0, in terms of the electric field in the co-moving frame of

an observer and the electrical conductivity, �, of the material, which is treated as constant. In

a fixed frame of reference, the electric field is given by

E0 = E+ v ⇥B, (2.15)

giving Ohm’s law as

J = � (E+ v ⇥B) , (2.16)

which is the combination of current induced by an electric field and by moving through a

magnetic field. This permits the electric field in to be expressed as

E = �v ⇥B+
J

�
. (2.17)

Taking the curl of Equation 2.17, the electric field may be replaced using Equation 2.3 to obtain

an evolution equation for the magnetic field as

@B

@t
= r⇥ (v ⇥B)� 1

�
r⇥ J. (2.18)

In the limit of ideal MHD (infinite conductivity, � ! 1), the term involving the current

density drops out. For non-ideal MHD, J may be replaced using Equation 2.5 (neglecting the

displacement current, @E/@t), obtaining

@B

@t
= r⇥ (v ⇥B)� ⌘r⇥ (r⇥B) , (2.19)

where ⌘ = 1/�µ0 is the magnetic resistivity.

In ideal MHD, the conductivity of the fluid is taken to be infinite, therefore ⌘ = 0. Expanding

the first term of Equation 2.19, we can write

@B

@t
= �(v ·r)B� (r · v)B+ (B ·r)v + (r ·B)v, (2.20)
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or by using r ·B = 0 and the material derivative,

dB

dt
= (B ·r)v � (r · v)B. (2.21)

The first term a↵ects the magnetic field through shearing motion, while the second will increase

the magnetic field when undergoing compression.

2.1.3 Summary of ideal MHD equations

The concise set of ideal MHD equations to be solved are

d⇢

dt
= �⇢r · v, (2.22)

dv

dt
= �1

⇢
r
✓
P +

B2

2µ0

◆
+

1

⇢
r ·
✓
BB

µ0

◆
, (2.23)

dB

dt
= � (B ·r)v +B (r · v) , (2.24)

r ·B = 0. (2.25)

2.1.4 Wave solutions

The ideal MHD wave equations permit three wave modes, not just sound waves as found in

simple fluids (i.e., Euler fluids). Understanding the ideal MHD wave solutions will be useful

when introducing shock capturing schemes to our numerical method.

The ideal MHD wave modes can be obtained as follows. Assume a uniform density fluid at

rest with a constant magnetic field. The equation of state is taken to be isothermal, P = c2s⇢,

where cs is the speed of sound. Small perturbations are introduced to the density, velocity, and

magnetic fields such that

⇢ = ⇢0 + �⇢, (2.26)

v = �v, (2.27)

B = B0 + �B, (2.28)

where ⇢0 and B0 are the background density and magnetic fields, with �⇢, �v, and �B perturba-

tions to each field. The perturbations are taken to be su�ciently small so as to not disturb the

equilibrium values of the fluid, thus the background fields remain constant in time. Inserting

Equations 2.26–2.28 into the ideal MHD equations, the set of linearised equations are then

@�⇢

@t
= �⇢0r · �v, (2.29)

@�v

@t
= �c2sr�⇢

⇢0
+

1

µ0⇢0
(r⇥ �B)⇥B0, (2.30)

@�B

@t
= r⇥ (�v ⇥B0). (2.31)
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Second order e↵ects are assumed negligible so those terms involving multiple perturbations are

discarded.

We assume that the perturbations have wave-like solutions of the form exp(ik · r � i!t),

where k is the wave vector. Equations 2.29 and 2.30 become

!�⇢ = ⇢0k · �v, (2.32)

!�v = c2s

✓
k · �v
!

◆
k� (B0 · k) �B

µ0⇢0
+

(B0 · �B)k

µ0⇢0
, (2.33)

where in deriving Equation 2.33, we have made use of Equation 2.32 to substitute �⇢. Taking

the time derivative of Equation 2.33, and using Equation 2.31, we obtain

⇥
!2 � (vA · k)2⇤ �v =

⇥
(c2s + v2A)(k · �v)� (vA · �v)(k · vA)

⇤
k� [(vA · k)(k · �v)]vA, (2.34)

where we have defined vA ⌘ B0/
p
µ0⇢0, known as the Alfvén speed.

Taking the magnetic field to be in the z-direction and k vector in the y-z plane, that is

B = Bẑ and k = k
y

ŷ + k
z

ẑ, Equation 2.34 yields the following set of equations,

0

B@
!2 � v2Ak

2
z

0 0

0 !2 � c2sk
2
y

� v2Ak
2 �c2skykz

0 �c2skykz !2 � c2sk
2
z

1

CA �v =

0

B@
0

0

0

1

CA . (2.35)

The first component is

(!2 � v2Ak
2
z

)�v
x

= 0. (2.36)

Since this is directed along v
x

, orthogonal to both the direction of wave propagation and

magnetic field, this is a transverse oscillation known as an Alfvén wave. These have phase

velocity !/k
z

= vA, directed along the orientation of the magnetic field. Alfvén waves can be

understood as occurring from the tension present in magnetic field lines, operating in a similar

fashion to vibrating strings in a string instrument.

Waves in the y-z plane are found from the determinant,

!4 � (c2s + v2A)k
2!2 + c2sv

2
Ak

2
z

k2. (2.37)

Using the quadratic formula, we can solve for !2/k2, finding phase velocity

!2

k2
=

1

2

�
c2s + v2A

�± 1

2

✓�
c2s + v2A

�� 4c2sv
2
A

k2
z

k2

◆1/2

. (2.38)

The wave velocity is in the same plane as the wave vector, therefore these are longitudinal

waves. If no magnetic field is present, that is vA = 0, these reduce to ordinary sound waves.

These two wave types occur from the combination of magnetic and thermal pressure. One wave

mode has its speed boosted by the addition of magnetic pressure (called fast MHD wave). The
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second wave mode is preferentially guided by the magnetic field, such that propagation across

magnetic field lines is halted (slow MHD waves).

2.2 Discretised magnetohydrodynamics

The beauty of SPH is in its simplicity and intuitiveness. The basic method can be derived from

first principles such that the discretised equations which are solved are the physical equations

governing the system of discrete particles. Therefore, SPH inherently has the conservation

properties of real physics, giving the method numerical stability and robustness.

In this section, an overview of SPMHD is presented. Focus will be on how the MHD equa-

tions (2.22–2.25) are solved numerically, highlighting how the discretised equations are obtained

and the numerical challenges specific to SPMHD. For a complete background on interpolation

theory, properties of smoothing kernels, stability analysis, and other deeper technical issues,

the reader is referred to the PhD thesis of Morris (1996) and the reviews by Monaghan (2005)

and Price (2012).

2.2.1 Estimating the density

The first step is to obtain an estimate of the density. This is accomplished by taking a weighted

summation of the mass of neighbouring particles within a characteristic radius h, known as the

smoothing length. The density in SPH is estimated as

⇢(r
a

) =
X

b

m
b

W (|r
a

� r
b

|, h
a

) , (2.39)

where W is the weighting function known as the smoothing kernel. We assume that each

particle is allowed its own smoothing length and that it is spatially varying.

The density sum of Equation 2.39 can be used to calculate the density of a particle whenever

required. It is unnecessary under general circumstances to evolve the density of a particle

using its time derivative. However, for constructing the SPMHD equations, the discretised

version of the continuity equation is useful. It can be obtained by taking the time derivative of

Equation 2.39, yielding

d⇢
a

dt
=
X

b

m
b

✓
@W

ab

(h
a

)

@r
a

· dra
dt

+
@W

ab

(h
a

)

@r
b

· drb
dt

+
@W

ab

(h
a

)

@h
a

@h
a

@⇢
a

d⇢
a

dt

◆
, (2.40)

where we have made use of the chain rule and introduced the shorthand notation W
ab

(h
a

) ⌘
W (|r

a

� r
b

|, h
a

). Using dr/dt = v and the anti-symmetry of the kernel gradient, that is

r
a

W
ab

(h
a

) ⌘ �r
b

W
ab

(h
a

), this can be simplified to yield

d⇢
a

dt
=

1

⌦
a

X

b

m
b

(v
a

� v
b

) ·r
a

W
ab

(h
a

), (2.41)
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where r
a

is the gradient taken respect to the coordinates of particle a and

⌦
a

= 1�
X

b

m
b

@W
ab

(h
a

)

@h
a

@h
a

@⇢
a

. (2.42)

The ⌦ term is important to correctly account for spatially varying smoothing lengths (see

Springel and Hernquist, 2002; Monaghan, 2002). In general, they should be used when comput-

ing any derivative estimate. In particular, inclusion of these terms into the SPMHD momentum,

induction, and energy equations has been shown to improve the representation of wave prop-

agation and shocks (Price and Monaghan, 2004b). Obtaining @h
a

/@⇢
a

may be done through

Equation 2.43 below, as given by Equation 2.44.

2.2.2 Setting the smoothing length

The smoothing length is individually set per particle by mutually solving

h
a

= ⌘h

✓
m

a

⇢
a

◆1/⌫

(2.43)

with the density summation (Equation 2.39). The derivative is given by

@h
a

@⇢
a

= � h
a

⌫⇢
a

, (2.44)

and Equation 2.43 leads to an expression for the density as

⇢
a

= m
a

✓
h
a

⌘h

◆�⌫
. (2.45)

Here, ⌫ = 1, 2, 3 is the dimension of the system and ⌘h is a dimensionless quantity specifying the

ratio of smoothing length to particle spacing. For the spline family of kernels (Schönberg, 1946;

Monaghan, 1985; Monaghan and Lattanzio, 1985), this is typically chosen to be ⌘h = 1.2. Since

the density itself is a function of smoothing length, this requires iteration until both quantities

converge. This is an expensive process, as the density summation needs to be re-evaluated for

each iteration, which may further necessitate performing a neighbour search.

A root finding technique can be used to find the smoothing length and density for each

particle. The function to find the root of is

f(h) ⌘ m
a

✓
h
a

⌘h

◆�⌫
�
X

b

m
b

W
ab

(h
a

). (2.46)

That is, the root, f(h) = 0, occurs when the expected density (from Equation 2.45) agrees with

the density as calculated through summation (Equation 2.39).

The root can be found with the Newton-Raphson technique (e.g. Price and Monaghan,
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2004b, 2007). The smoothing length may be iterated according to

hnew = hold � f(h)

f 0(h)
, (2.47)

where f 0(h) is the first derivative of f(h),

f 0(h) = � ⌫

h
a

m
a

✓
h
a

⌘h

◆�⌫
�
X

b

m
b

@W
ab

(h
a

)

@h
a

. (2.48)

For convenience of implementation, this may be rewritten using ⌦
a

as

f 0(h) = �⌫⇢a⌦a

h
a

, (2.49)

where ⇢
a

is the expression in Equation 2.45. By using the tangent of f(h) to iterate towards

the root, the method has second order convergence and as such is an e�cient means to solve

for h and ⇢. However, it may fail if the tangent of f(h) is nearly parallel, leading to the next

iteration to significantly overshoot the root and diverge. This risk can be curbed by including a

check to restrict modification of h between iterations by no more than, say, 20%. For a typical

SPMHD calculation, the risk of the method diverging is minimal (and usually indicative of a

more serious problem elsewhere).

An approach guaranteed to converge, though slower with only linear convergence, is to use

a bisection method. The method is simple. If the converged value of h is known to lie within a

specified interval, then the interval can be halved until it is found. Which half of the interval

to reject can be determined through f(h), where if f(h) > 0, then h should be decreased from

its current value, otherwise h should be increased on the next iteration.

Convergence can be determined by monitoring the relative di↵erence in h (or ⇢) between

iterations. This is determined according to

|hnew � hold|
h0

< ✏, (2.50)

where ✏ ⇠ 10�4. Note that h0, the value of the smoothing length before the first iteration, is

used so that the denominator remains fixed and convergence occurs only when hnew agrees with

hold.

A simple approach to reduce the number of overall iterations is to time integrate the smooth-

ing length, predicting a value close to the root before beginning the root finding technique. Tak-

ing the time derivative of Equation 2.43, and using the continuity equation (Equation 2.22), we

obtain
dh

a

dt
=

h
a

⌫
r · v

a

. (2.51)

Given that r · v is usually calculated in an SPH code, this adds almost no additional compu-

tational cost, yet can significantly increase the overall e�ciency of the code.
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At the beginning of each timestep, the step-by-step approach to setting the smoothing length

per particle is:

1. Compute the density using summation.

2. Iterate to hnew using Equation 2.47 (or other root-solving technique).

3. Do hnew and hold agree within the specified tolerance (Equation 2.50)?

(a) Yes, accept and proceed to step 4.

(b) No, begin again from step 1

4. Predict h for the next timestep using Equation 2.51.

2.2.3 Interpolation basics

In order to define the discretised induction equation, it is necessary to understand the basics

of SPH interpolation theory. This is not a comprehensive review, but will introduce the basics

necessary to formulate the SPMHD equations. Throughout this section, we assume that the

smoothing length is uniform and constant so that the presentation may be clearer. Inserting ⌦

terms to account for variable smoothing lengths may be appropriately inserted where gradients

of the smoothing kernel are taken.

In the continuum limit, the value of a quantity A can be obtained by using a delta function

to pluck that value at a specified location, that is

A(r) =

Z
A(r0)�(r� r0)dr0. (2.52)

In SPH, the smoothing kernel plays the role of the delta function. It has property such that

lim
h!0

W (|r� r0|, h) = �(r� r0). (2.53)

The kernel is assumed to be spherically symmetric, and normalised such that
R
WdV = 1. In

a discretised system, the integral is replaced by a summation over elements. The quantity A

can be obtained through

A
a

=
X

b

m
b

⇢
b

A
b

W
ab

, (2.54)

wherem
b

/⇢
b

acts like the volume element of the integral. This reduces to the density summation

if A ⌘ ⇢, and is the traditional way to introduce SPH. In this thesis however, we use the mass

weighted summation

A
a

=
1

⇢
a

X

b

m
b

A
b

W
ab

, (2.55)

where ⇢
a

acts like the normalisation on the summation. If A is a constant, this returns A

exactly. Though for clarity of presentation, we continue using Equation 2.54.
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The derivative of Equation 2.54 is

r
a

A
a

=
X

b

m
b

⇢
b

A
b

r
a

W
ab

. (2.56)

However, this yields a poor estimate of the gradient. For example, constant functions will yield

a non-zero result. Higher accuracy gradient estimates may be obtained by taking a Taylor series

expansion to obtain error terms, then subtracting those errors from the gradient (Morris, 1996;

Price, 2004). The Taylor series expansion of A
b

in Equation 2.56 about r
a

is

r
a

A
a

= A
a

X

b

m
b

⇢
b

r
a

W
ab

+
@A

a

@r↵

X

b

m
b

⇢
b

(r
b

� r
a

)↵r
a

W
ab

+
1

2

@2A
a

@r�@r�

X

b

m
b

⇢
b

(r
b

� r
a

)�(r
b

� r
a

)�r
a

W
ab

+O(h3). (2.57)

Thus, the gradient estimate can be made first order by subtracting the first error term in the

Taylor series, yielding

r
a

A
a

= �
X

b

m
b

⇢
b

(A
a

�A
b

)r
a

W
ab

+O(h), (2.58)

which is exact for constant functions. This is the most common form for calculating gradients in

SPH. Obtaining divergence and curl estimates for vector quantities may be obtained through a

similar procedure as the preceding, with the divergence and curl of the magnetic field presented

in Section 2.2.4.

A second order estimate can be obtained by subtracting the second error term of the Taylor

series, yielding
@A

a

@r↵
= ��↵�

X

b

m
b

⇢
b

(A
a

�A
b

)r�W
ab

+O(h2), (2.59)

where

�↵� =

 
�
X

b

m
b

⇢
b

(r
b

� r
a

)↵r�W
ab

!�1

(2.60)

is a matrix that acts as a correction to the kernel gradient. This approach has been used

by Bonet and Lok (1999). This second order derivative estimate adds more computational

expensive since it requires a matrix inversion and storage of the 3⇥ 3 matrix elements.

While second derivatives may be estimated by taking the derivative of Equation 2.58, this

is quite sensitive to particle disorder and leads to a poor estimate. A less noisy estimate is to

take two first derivatives, applying Equation 2.58 (or Equation 2.59) twice in succession. This

is more expensive as it requires two loops over particle neighbours. An alternative approach is
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that of Brookshaw (1985), whereby a second derivative estimate is obtained from

r2
a

A
a

= 2
X

b

m
b

⇢
b

(A
a

�A
b

)
r
ab

·r
a

W
ab

r2
ab

. (2.61)

This may also be written as

r2
a

A
a

= 2
X

b

m
b

⇢
b

(A
a

�A
b

)
F
ab

|r
ab

| , (2.62)

making use of the definition r
a

W
ab

⌘ r̂
ab

F
ab

, where F
ab

is the scalar portion of the kernel

derivative. We note that there is inconsistent usage of this definition in the literature. Notably

the SPH review by Price (2012) uses the aforementioned definition, whereas the SPH review by

Monaghan (2005) instead uses r
a

W
ab

⌘ r
ab

F
ab

, di↵ering by a factor 1/|r
ab

|. A reader should

be careful of this di↵erence in the literature. In this thesis, we adopt usage consistent with

Price (2012) (r
a

W
ab

⌘ r̂
ab

F
ab

).

This second derivative estimate may be obtained through Taylor series expansion of A(r0)

about r in the integral approximation,

Z �
A(r)�A(r0)

� (r� r0) ·r
a

W (r)

(r� r0)2
dr0 =

1

2
r2A(r) +O((r� r0)2). (2.63)

This functionally approximates a second derivative by dividing the first derivative of the smooth-

ing kernel by the particle spacing, r
ab

.

2.2.4 r ·B and r⇥B

The divergence and curl of the magnetic field may be obtained in a similar manner to the first

derivative estimates of scalar quantities. The divergence and curl equivalents of Equation 2.56

are given by

r ·B
a

=
X

b

m
b

⇢
b

B
b

·r
a

W
ab

(2.64)

and

r⇥B
a

= �
X

b

m
b

⇢
b

B
b

⇥r
a

W
ab

. (2.65)

It is possible to obtain first order accurate estimates of the first derivatives through other

means than the Taylor series expansion presented in the preceding section. For the divergence

operator, consider the identity

r ·A =
1

⇢
[r · (⇢A)�A · (r⇢)] . (2.66)

Inserting the simple first derivative operators from Equations 2.56, 2.64 and 2.65 will yield first

order accurate estimates. In this thesis, we use the mass weighted summations, with the first
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order accurate divergence and curl of the magnetic field given by (including variable smoothing

length terms)

r ·B
a

= � 1

⌦
a

⇢
a

X

b

m
b

(B
a

�B
b

) ·r
a

W
ab

(h
a

) (2.67)

and

r⇥B
a

=
1

⌦
a

⇢
a

X

b

m
b

(B
a

�B
b

)⇥r
a

W
ab

(h
a

). (2.68)

Other identities lead to other first derivative estimates. The identity

r ·A = ⇢


r ·
✓
A

⇢

◆
+

A

⇢2
·r⇢

�
. (2.69)

may be used to obtain an entirely di↵erent form for the first derivative. The divergence and

curl with this operator (including variable smoothing length terms) are

r ·B
a

= ⇢
a

X

b

m
b


B

a

⌦
a

⇢2
a

·r
a

W
ab

(h
a

) +
B

b

⌦
b

⇢2
b

·r
a

W
ab

(h
b

)

�
, (2.70)

and

r⇥B
a

= �⇢
a

X

b

m
b


B

a

⌦
a

⇢2
a

⇥r
a

W
ab

(h
a

) +
B

b

⌦
b

⇢2
b

⇥r
a

W
ab

(h
b

)

�
. (2.71)

The error for these estimates is large (O(1)), and yield non-zero results for constant functions.

We refer to the first derivative operators as the ‘di↵erence’ measure (Equation 2.67 and 2.68)

and the ‘symmetric’ measure (Equation 2.70 and 2.71). It is noteworthy that the symmetric

measure of r ·B is what will appear in the equations of motion, and the implications of this

derivative estimate will be discussed in Section 2.2.8.

2.2.5 Energy equation

The equations of motion need to be coupled to an equation of state to determine the thermal

pressure. If the pressure is a function of internal energy, u, a suitable equation must be used

to evolve u in time. Consider the thermodynamic relation,

du = Tds� PdV, (2.72)

where T is the temperature, s is the entropy, V is the volume, and quantities are expressed

per unit mass. Since SPMHD is inherently dissipationless, ds may be taken to be zero. (Al-

ternatively, if the pressure is a function of entropy, the entropy per particle may be passively

advected and increased only from added sources of dissipation.) Converting dV to be per unit

mass, the time derivative of u is
du

dt
=

P

⇢2
d⇢

dt
. (2.73)
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Using the SPH continuity equation (Equation 2.41), the discretised internal energy equation is

thus
du

a

dt
=

P
a

⌦
a

⇢2
a

X

b

m
b

v
ab

·r
a

W
ab

(h
a

). (2.74)

2.2.6 Induction equation

Using basic interpolation theory, the induction equation (Equation 2.24) may be discretised as

dB
a

dt
= � 1

⌦
a

⇢
a

X

b

m
b

[v
ab

(B
a

·r
a

W
ab

(h
a

))�B
a

(v
ab

·r
a

W
ab

(h
a

))] . (2.75)

Alternatively, the quantity B/⇢ could be evolved. Rewriting the induction equation as

d

dt

✓
B

⇢

◆
=

✓
B

⇢
·r
◆
v, (2.76)

the SPMHD form is

d

dt

✓
B

a

⇢
a

◆
= � 1

⌦
a

⇢2
a

X

b

m
b

v
ab

(B
a

·r
a

W
ab

(h
a

)) . (2.77)

Both approaches are utilised throughout this thesis, depending on the code used. Neither

approach confers any significant advantage over the other (Price, 2012).

2.2.7 Conservative equations of motion

The equations of motion for SPMHD will be obtained by using the Lagrangian for the discretised

system (Price, 2004; Price and Monaghan, 2004b). This will yield the equations of motion that

physically govern the system, providing a method that has exact conservation of momentum,

energy, and entropy. Consider the SPMHD Lagrangian,

LSPH =
X

a

m
a

✓
1
2v

2
a

� u
a

� B2
a

2µ0⇢a

◆
. (2.78)

The action integral, S =
R
Ldt, is stationary. Therefore, small perturbations must not change

the solution, that is

�S =

Z
�Ldt = 0. (2.79)

If small deviations are introduced into the Lagrangian about �r
a

, then

�L
a

= m
a

v
a

· �v
a

�
X

b

m
b

@u

@⇢

����
s

�⇢
b

+
X

b

m
b

B2
b

2µ0⇢2
b

�⇢
b

�
X

b

m
b

B
b

µ0⇢
b

· �B
b

. (2.80)



Chapter 2. Smoothed particle magnetohydrodynamics 18

Using the density summation (Equation 2.39) and induction equation (Equation 2.75) as con-

straints, the variations �⇢ and �B can be written in terms of �r according to

�⇢
b

=
1

⌦
b

X

c

m
c

(�r
b

� �r
c

) ·r
b

W
bc

(h
b

), (2.81)

�B
b

=
1

⌦
b

⇢
b

X

c

m
c

[B
b

(�r
b

� �r
c

) ·r
b

W
bc

(h
b

)� (�r
b

� �r
c

)B
b

·r
b

W
bc

(h
b

)] . (2.82)

Inserting these into Equation 2.80 and using the thermodynamic relation (Equation 2.73), we

obtain

�L
a

=m
a

v
a

· �v
a

�
X

b

m
b

P
b

⌦
b

⇢2
b

X

c

m
c

(�r
b

� �r
c

) ·r
b

W
bc

(h
b

)

+
X

b

m
b

B2
b

2µ0⌦
b

⇢2
b

X

c

m
c

(�r
b

� �r
c

) ·r
b

W
bc

(h
b

)

�
X

b

m
b

B
b

·B
b

µ0⌦
b

⇢2
b

·
X

c

m
c

(�r
b

� �r
c

) ·r
b

W
bc

(h
b

)

�
X

b

m
b

B
b

µ0⌦
b

⇢2
b

·
X

c

m
c

(�r
b

� �r
c

)B
b

·r
b

W
bc

(h
b

). (2.83)

The perturbations in �r
b

and �r
c

can be removed by multiplying the latter terms by �r
a

/�r
a

,

introducing delta functions into the equation and yielding

�L
a

=m
a

v
a

· �v
a

� �r
a

·
"
X

b

m
b

P
b

⌦
b

⇢2
b

X

c

m
c

(�
ab

� �
ac

)r
b

W
bc

(h
b

)

�
X

b

m
b

B2
b

2µ0⌦
b

⇢2
b

X

c

m
c

(�
ab

� �
ac

)r
b

W
bc

(h
b

)

+
X

b

m
b

B
b

µ0⌦
b

⇢2
b

X

c

m
c

(�
ab

� �
ac

)B
b

·r
b

W
bc

(h
b

)

#
. (2.84)

Simplifying out the delta functions and using the anti-symmetry of the kernel gradient (r
a

W
ab

=

�r
b

W
ab

), we obtain

�L
a

=m
a

v
a

· �v
a

�m
a

�r
a

·
(
X

b

m
b


P
a

⌦
a

⇢2
a

r
a

W
ab

(h
a

) +
P
b

⌦
b

⇢2
b

r
a

W
ab

(h
b

)

�

� m
a

2µ0

X

b

m
b


B2

a

⌦
a

⇢2
a

r
a

W
ab

(h
a

) +
B2

b

⌦
b

⇢2
b

r
a

W
ab

(h
b

)

�

+
m

a

µ0

X

b

m
b


B

a

⌦
a

⇢2
a

B
a

·r
a

W
ab

(h
a

) +
B

b

⌦
b

⇢2
b

B
b

·r
a

W
ab

(h
b

)

�)
. (2.85)

Inserting Equation 2.85 into 2.79 and integrating the velocity term by parts, the equations
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of motion are found to be

dv
a

dt
=�

X

b

m
b


P
a

⌦
a

⇢2
a

r
a

W
ab

(h
a

) +
P
b

⌦
b

⇢2
b

r
a

W
ab

(h
b

)

�

� 1

2µ0

X

b

m
b


B2

a

⌦
a

⇢2
a

r
a

W
ab

(h
a

) +
B2

b

⌦
b

⇢2
b

r
a

W
ab

(h
b

)

�

+
1

µ0

X

b

m
b


B

a

⌦
a

⇢2
a

B
a

·r
a

W
ab

(h
a

) +
B

b

⌦
b

⇢2
b

B
b

·r
a

W
ab

(h
b

)

�
. (2.86)

This is equivalent to writing the momentum equation in terms of the stress tensor. The impli-

cation of this is that the tension force contains a component due to monopole moments. The

issue of monopole forces is complicated in SPMHD, in that even for a field which is constant

and uniform (i.e., r ·B = 0), the discretisation used in the momentum equation may produce

monopole forces. We discuss the implications of this below.

2.2.8 Removing the tensile instability

Phillips and Monaghan (1985) noted that the conservative form of the SPMHD equations

contain an instability when the magnetic tension exceeds the isotropic pressure, causing the

particles to unphysically clump. This arises due to monopole forces. Describing the momentum

equation in terms of the stress tensor assumes that the magnetic field contains no monopole

moments – a condition which may not be upheld numerically. As noted in Section 2.1.1, the

tension force is equivalent to (B · r)B + B(r · B) when writing the momentum equation in

terms of the stress tensor. The force contributions proportional to r · B are present in order

to be momentum conserving in the presence of monopoles.

Several approaches have been taken to counteract this instability. Phillips and Monaghan

(1985) used the simple and e↵ective technique of adding a constant pressure to the system to

ensure the total force between particles was always repulsive. This preserves conservation of

momentum, though no longer conserves energy and incurs a computational cost to determine

the amount of stress to add.

Non-momentum conserving approaches have also been investigated. Meglicki et al. (1995)

solved the Lorentz force directly using J⇥B, rather than using the stress tensor, though Morris

(1996) showed that this approach is poor at capturing shocks due to its poor conservation

properties. Morris (1996) formulated an approach which uses the conservative form for the

magnetic pressure term, but with a more accurate estimate for the magnetic tension. Børve et al.

(2001) used the conservative form for both the magnetic pressure and tension, but explicitly

subtracted the non-physical force arising from monopole contribution. This is the approach we

use.

The premise is to subtract the monopole force contribution from the conservative equations
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of motion using the same discretisation for r ·B as in the momentum equation, that is,

�B(r ·B) = �B
a

X

b

m
b

✓
B

a

⌦
a

⇢2
a

·r
a

W
ab

(h
a

) +
B

b

⌦
b

⇢2
b

·r
a

W
ab

(h
b

)

◆
. (2.87)

This yields a numerically stable solution. Stability analysis by Børve et al. (2004) showed that

the instability manifests only when 1
2B

2 > P , therefore they introduce an adjustable parameter

�̂, showing that multiplying the force correction (Equation 2.87) by �̂ = 1
2 is still su�cient to

correct the instability in the magnetic pressure-dominated regime. Indeed, recently Barnes et al.

(2012) have recommended using �̂ = 1
2 for general SPMHD calculations. However, we find in

this thesis (Section 3.4.4.5) that using �̂ < 1 can produce numerical artefacts (c.f. Figure 3.12).

While using �̂ = 1
2 is technically su�cient to correct for the instability, it leaves the particles

in a near-pressureless state. We therefore strongly recommend using �̂ = 1 and adopt this

throughout unless otherwise specified. Note that with �̂ = 1 the induction and momentum

equations are formally equivalent to Powell’s eight wave approach (Powell, 1994).

The discretisation used to calculate r ·B in the momentum equation slightly complicates

the issue of momentum loss as it is a rather poor estimate of the divergence (having errors

O(1)). For example, even if the magnetic field is constant and uniform, thus r ·B = 0 should

be true, monopole forces may arise due to particle disorder alone. Typical errors introduced

from particle disorder are minimal, however if the magnetic field is highly unphysical, the

momentum loss can become quite significant. It is important to use a method to maintain

the solenoidal constraint on the magnetic field to minimise spurious momentum injection. For

example, when the divergence cleaning method developed in Chapter 3 is used in simulations

of protostar formation, the momentum drift is only 1% of that when no divergence control is

used (Figure 3.23).

2.2.9 Summary of discretised MHD equations

The SPMHD equations which are solved (including the tensile instability correction) are

⇢
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=
X

b

m
b

W
ab

(h
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), (2.88)

h
a

=⌘h
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, (2.89)
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), (2.90)
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dB
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dt
=� 1
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du
a

dt
=

P
a

⌦
a

⇢2
a

X

b

m
b

v
ab

·r
a

W
ab

(h
a

). (2.92)

2.2.10 Capturing shocks and discontinuities

Discontinuities in the fluid require special treatment in numerical hydrodynamics. The SPMHD

equations assume that the evolved quantities are di↵erentiable, which no longer is true when

the quantity becomes multi-valued at shocks and discontinuities. Artificial dissipation terms

are used in SPMHD to smooth discontinuities over the resolution scale so that the fluid remains

single valued.

2.2.10.1 Artificial viscosity

Artificial viscosity is used to not just to smooth shocks, but to damp the oscillations in particles

which have been shocked. Since SPH particles behave similar to a molecular system, oscillations

are introduced in the particle motion on the length scale of the inter-particle separation. It is

therefore important to damp these oscillations.

Monaghan (1997) derived a form of artificial viscosity by analogy with Riemann solvers.

Treating a pair of particles as the left and right states of the Riemann problem, an artificial

viscosity can be obtained of the form

dv
a

dt
= �

X

b

m
b

⇢
ab

vsigv
ab

· r̂
ab

r
a

W
ab

, (2.93)

where overscored quantities are averages. It utilises a signal velocity representing the speed of

information propagation between the two states, vsig = 1
2↵(vmhd,a + vmhd,b � �v

ab

· r̂
ab

), where

vmhd is the fast MHD wave speed, and ↵ = 1 and � = 2 are dimensionless constants. This will

generate heat according to

du
a

dt
= �1

2

X

b

m
b

⇢
ab

vsig(v
ab

· r̂
ab

)2r̂
ab

·r
a

W
ab

. (2.94)

Hubber et al. (2013) found that using the harmonic mean instead of the arithmetic mean for ⇢
ab

may confer an advantage when there is a large density contrast, as this will give more weight

to the lower density region.

The � term accounts for the relative motion of particle pairs, and is important for prevent-

ing penetration of particles through each other and maintaining the coherency of shockfronts

(Monaghan, 1989).
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2.2.10.2 Artificial resistivity

Artificial resistivity was developed by Price and Monaghan (2004a, 2005). It adds dissipation

to the magnetic field according to

dB
a

dt
= ⇢

a

X

b

m
b

vBsig
⇢2
ab

(B
a

�B
b

) r̂
ab

·r
a

W
ab

, (2.95)

where the signal velocity for artificial resistivity may have its own dimensionless parameter

↵B, which is analogous to ↵ in artificial viscosity. In Section 4.1.2, we find that using vBsig =
1
2↵B(vmhd,a+ vmhd,b) is su�cient for capturing magnetic discontinuities, with no need for the �

term. By inspection with Equation 2.61, this is equivalent to adding a physical dissipation term

r2B with dissipation parameter ⌘ ⇠ 1
2v

B
sigh. Dissipated energy may be added to the internal

energy through
du
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. (2.96)

Artificial resistivity is applied to both approaching and receding particles, since discontinuities

in the magnetic field can occur during both compression and rarefaction, and to all components

of the magnetic field (rather than just along the line of sight like artificial viscosity) since

magnetic discontinuities can occur oblique to the motion (Price and Monaghan, 2004a, 2005).

2.2.10.3 Thermal conductivity

In deriving the internal energy equation (Equation 2.74), it is assumed that the density is

di↵erentiable, and this assumption is carried onto the internal energy (or entropy). Unless

treated, this leads to a multivalued pressure at contact discontinuities, causing an artificial

surface tension to appear. This can prevent fluid mixing, for example, stifling the formation

of Kelvin-Helmholtz instabilities and the breakup of cold clumps of gas falling into a warm

environment (Agertz et al., 2007). In some sense, the problem arises because the conservation

of SPH is too good. It has no inherent numerical dissipation. This has lead to the belief that

SPH cannot handle contact discontinuities (e.g., Sijacki et al., 2012; Hayward et al., 2014),

however this issue is no di↵erent than running SPH without an artificial viscosity and saying

it cannot capture shocks. The issue of contact discontinuities can be treated through a simple

fix.

Monaghan (1997) (see also Chow and Monaghan, 1997) introduced an artificial conductivity

term, where internal energy is di↵used according to

du
a

dt
= �

X

b

m
b

⇢
ab

↵
u

vusig(ua � u
b

)r̂
ab

·r
a

W
ab

(h
a

), (2.97)

where ↵
u

is a dimensionless parameter. Section 2.2.11.3 discusses choices for the thermal con-

ductivity signal velocity, vusig. This form is similar to earlier work on heat di↵usion (Brookshaw,
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1985). Using this will mix energy (or entropy) between particles, mitigating the surface tension

e↵ect at contact discontinuities.

Developments have been made towards implementations of SPH that inherently handle

pressure discontinuities without the need for artificial dissipation (Ritchie and Thomas, 2002;

Saitoh and Makino, 2013; Hopkins, 2013). The idea is to calculate the pressure through an

integral representation thereby making no assumptions about its di↵erentiability. For example,

the pressure can be obtained through summation of internal energy according to

P
a

=
X

b

(� � 1)m
a

u
a

W
ab

(h
a

), (2.98)

from which suitable equations of motion may be derived which utilise not the density summa-

tion, but rather the pressure summation.

Price (2008) compared the Ritchie and Thomas (2002) method to standard SPH with an

artificial conductivity term, finding that while the Ritchie and Thomas (2002) approach has a

more continuous pressure distribution when simulating Kelvin-Helmholtz instabilities, it leads

to more particle noise. However, Hopkins (2013) constructed equations of motion though a

Lagrangian derivation which incorporate ‘pressure ⌦’ terms to account for variable smoothing

lengths, and found that the method works well at simulating Kelvin-Helmholtz and Rayleigh-

Taylor instabilities. Notably, Hopkins (2013) find that it is still better to estimate the density

from the standard mass summation, rather than solving for it from the pressure summation.

Using the latter may lead to multivalued densities in mixed regions near contact discontinuities.

Read et al. (2010) used the integral representation of Ritchie and Thomas (2002) to set

pressures in their OSPH method (Optimised SPH). However, in Read and Hayfield (2012)

they argue that while this will avoid multivalued pressures by construction and has excellent

performance for multiphase flows, it performs poorly for strong shocks (such as a Sedov blast

wave). For this reason, their updated SPHS method (the second S is for ‘switch’) uses an

artificial conductivity to treat contact discontinuities.

Overall, the pressure summation formulations hold promise as a way to formulate the SPH

equations of motion that inherently handles contact discontinuities, though requires more in-

vestigation.

2.2.11 Reducing artificial dissipation

The artificial dissipation terms are intended for the smoothing of fluid quantities at the location

of shocks and discontinuities. It is unnecessary (and typically undesirable) to add dissipation

to regions of the fluid away from discontinuities. Therefore, this lends to the idea of a switch,

where if the location of discontinuities can be determined, the dissipation can be activated

only in those regions. Most methods regulate the applied dissipation by varying the ↵ and ↵B

parameters.
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2.2.11.1 Artificial viscosity switches

The most widely used artificial viscosity switch is that from Morris and Monaghan (1997). The

idea is to set ↵ individually per particle, which is time integrated according to

d↵
a

dt
= max(�r · v

a

, 0)� ↵� ↵0

⌧
. (2.99)

This increases ↵ in regions undergoing compression, reducing it post-shock to its minimum value

↵0 in a timescale ⌧ = h/�
v

vmhd. It is important to enforce ↵ 2 [↵0, 1], and it is common to

use ↵0 = 0.1. It is typical to choose �
v

= 0.1, which corresponds to decay over five smoothing

lengths. This slow decay is important in order to apply dissipation behind the shock front

and damp out post-shock oscillations. The ↵ term in the artificial viscosity is replaced by the

average between particle pairs to maintain conservation. In this thesis, we exclusively use the

Morris and Monaghan (1997) switch to reduce artificial viscosity.

Balsara (1995) introduced an artificial viscosity limiter which reduces dissipation in the

presence of shearing flows, and as such is well suited for accretion discs. Defining

f
a

=
|r · v

a

|
|r · v

a

|+ |r⇥ v
a

|+ 0.0001cs/ha
, (2.100)

the artificial viscosity is reduced by multiplying it by the average f
ab

between each particle pair.

The limiter is designed to approach unity in regions of strong compression, yet tend towards

zero when strong shearing motions are present.

Cullen and Dehnen (2010) designed a switch to improve on the Morris and Monaghan (1997)

switch. They found that using d(r · v)/dt as the shock detector is better able to distinguish

between converging flows and weak shocks. In their method, ↵ is not increased through time

integration, but directly by setting

↵
a

=
h2
a

A
a

v2sig + h2
a

A
a

, (2.101)

where A = ⇠max(�d(r·v)/dt, 0). To reduce dissipation when shearing flows are dominant over

convergent flows, they use a limiter, ⇠, which is similar in form to that of the Balsara (1995)

limiter. Furthermore, r · v and its time derivative are estimated with higher order operators

in order to avoid false compression detection in strong shear flows. The value of ↵ is set via

Equation 2.101 whenever it exceeds the current value, otherwise it is decayed by integrating

d↵
a

dt
= �↵� ↵0

⌧
. (2.102)

This slow decay is necessary to retain significant values of ↵ behind the shock front to damp

post-shock oscillations. An advantage to the Cullen and Dehnen (2010) switch is that ↵ is

increased immediately when a shock is detected. Since the Morris and Monaghan (1997) switch
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increases ↵ through time integration, Cullen and Dehnen (2010) found that this leads to ↵

peaking behind the shock front. Additionally, Cullen and Dehnen (2010) suggest that their

method allows for ↵0 = 0, letting artificial viscosity be completely removed in regions away

from shocks.

Read and Hayfield (2012) used a switch in their SPHS method that utilises r(r · v) to

locate discontinuities and shocks. It operates similarly to the Cullen and Dehnen (2010) switch.

Defining

ASPHS =

8
><

>:

h2
a

|r(r · v
a

)|
h2
a

|r(r · v
a

)|+ h
a

|r · v
a

|+ 0.05cs
r · v

a

< 0,

0 otherwise,

(2.103)

↵ is immediately increased to

↵
a

= ASPHS (2.104)

when ASPHS exceeds the current value of ↵, otherwise it is slowly decayed according to

d↵
a

dt
=

8
><

>:

�↵a

�ASPHS

⌧
↵0 < ASPHS < ↵

a

,

�↵a

� ↵0

⌧
ASPHS < ↵0.

(2.105)

They enforce ↵ 2 [0, 1], letting artificial viscosity be completely switched o↵ similar to Cullen

and Dehnen (2010). Since second derivatives are sensitive to particle disorder, this method re-

quires a good estimate in order to avoid unnecessarily triggering dissipation. Read and Hayfield

(2012) use a polynomial fit to obtain both the first and second derivatives. This requires the

inversion of a 10⇥10 matrix in 3D, with each element requiring a summation over neighbouring

particles, and therefore adds significant computational expense. Read and Hayfield (2012) use

the Balsara (1995) limiter formed from these higher order derivative estimates. Notably, they

use this switch for all other dissipation terms, with the polynomial fit adjusted to the particular

fluid quantity.

2.2.11.2 Artificial resistivity switches

Price and Monaghan (2005) added a switch for artificial resistivity based on analogy to the

Morris and Monaghan (1997) switch for artificial viscosity. In this case,

d↵B,a

dt
= max

✓ |r⇥B
a

|p
µ0⇢a

,
|r ·B

a

|p
µ0⇢a

◆
� ↵B � ↵B,0

⌧
. (2.106)

Barnes et al. (2012) found that ↵B,0 = 0 may be used, as this still lead to satisfactory results in

their shock tube and other two-dimensional MHD tests. Using the cosmological Santa Barbara

cluster simulation (Frenk et al., 1999) that included magnetic fields, they found that this choice

is optimal to reduce spurious dissipation. Tricco and Price (2013b) formulated a new artificial

resistivity switch that supersedes the Price and Monaghan (2005) switch, the details of which
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are presented in Chapter 4.

2.2.11.3 Thermal conductivity switches

Real systems transfer heat between two states of unequal temperature. However, the primary

purpose of the thermal conductivity term in SPH is to treat numerical errors, di↵using heat

across discontinuities to avoid discontinuous pressures. Various switches have been developed

for thermal conductivity. They either vary ↵
u

(typically using the sound speed for the signal

velocity) or keep a constant ↵
u

= 1 and vary the signal velocity.

Price (2008) introduced a thermal conductivity switch that defines the signal velocity to be

vusig =

s
|P

a

� P
b

|
⇢
ab

, (2.107)

such that conductivity is applied only where there is a di↵erence in pressure. In this manner,

for jumps in internal energy which are counterbalanced by jumps in density (i.e., the pressure

is constant across the interface), internal energy is di↵used only until the pressure is equalised.

Valcke et al. (2010) commented that this signal velocity assumes that regions of lower

internal energy will have lower pressure, thereby as energy is transferred into the low energy

region, the pressure di↵erence will close. However, if this is not the case, for example with an

ideal gas equation of state (i.e., P = [� � 1]⇢u) where the low internal energy region may have

higher pressure due to a high density, then transferring energy into the low energy will only

cause the pressure di↵erence to increase. They suggest modifying the signal velocity according

to

vusig = sign[(P
a

� P
b

)(u
a

� u
b

)]

s
|P

a

� P
b

|
⇢
ab

, (2.108)

such that its sign is determined by the pressure and internal energy di↵erences. This may,

however, cause heat to transfer from low to high energy states.

Price and Monaghan (2005) introduced an artificial conductivity switch based on the second

derivative of u, whereby ↵u is time integrated according to

d↵u,a

dt
= 0.1h2

a

|r2u
a

|� (↵u,a � ↵u,0)

⌧
. (2.109)

However, as discussed for artificial viscosity switches based on second derivatives, this requires

a good estimate in order to limit the sensitivity to particle disorder.

The limitation of these approaches is that they do not recognise systems for which pressure

gradients are balanced by external forces (such as gravity). This can lead to continual di↵usion

despite being in hydrostatic equilibrium. In consideration of this, Valdarnini (2012) set the

artificial conductivity’s signal velocity to be

vusig = |v
ab

· r̂
ab

|, (2.110)
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which is essentially a measure of the divergence of the velocity. They additionally use a (slightly

modified) form of the Price and Monaghan (2005) ↵u switch.

Read and Hayfield (2012) set ↵
u

according to the same higher order SPHS switch for artificial

viscosity, such that di↵usion is only applied in regions of converging flow. This may be more

well suited for gravitational systems. In this case, they set the artificial conductivity signal

velocity to be the artificial viscosity signal velocity multiplied by a pressure limiter, equivalent

to using

vusig =
|P

a

� P
b

|
P
a

+ P
b

(cs,a + cs,b � 3v
ab

· r̂
ab

) . (2.111)

They enforce the signal velocity to be positive definite by setting it to 0 whenever cs,a + cs,b �
3v

ab

· r̂
ab

< 0.

Wadsley et al. (2008) used artificial thermal conductivity to model turbulent mixing at

the sub-resolution scale, following the assumption of Smagorinsky (1963) that these e↵ects are

primarily di↵usive. Their method utilises the absolute value of the velocity di↵erence, and is

equivalent to using

vusig = |v
a

� v
b

| hab|r
ab

| . (2.112)

Shen et al. (2010) modified the method to instead use the trace-free shear tensor, setting

vusig =
1

2

⇣
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|h2
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+ |Sij
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b

⌘
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| , (2.113)
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and
eSij

a

= � 1

⌦
a

⇢
a

X

b

m
b

(vj
a

� vj
b

)ri

a

W
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. (2.115)

Using this measure of velocity promotes mixing in shearing flows, with no mixing for compressive

or purely rotating flows. They use ↵u = 0.1.

2.2.12 Leapfrog time integration

The SPMHD equations are time integrated in this thesis using leapfrog integration. This

integrator is time reversible and symplectic. Despite being only second order accurate, it has

several desirable properties. One is that is it cost e↵ective, requiring only one force evaluation

per time step. Contrast that to the two force evaluations required by second order Runge-

Kutta methods. Another is that the method is explicit when accelerations have no velocity

dependence (such as accelerations arising from pressure or gravity). Perhaps most importantly,

it has excellent stability properties as a consequence of its time reversibility. It inherently

conserves the energy of the system. Each timestep is a canonical transformation of the discrete

Hamiltonian, so that even though the discrete Hamiltonian is only an approximation to the true
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energy of the system, the area of its phase space is preserved (what is called, ‘symplectic’). This

means that while the errors are second order and it may not produce the exact solution, it does

reproduce the qualitative behaviour of the system. This may be of substantially more benefit.

For a thorough introduction on time integration schemes and their properties, see Hairer et al.

(2006).

In practice, the desirable properties of the leapfrog scheme are not exactly upheld when

performing SPMHD simulations. Using variable size timesteps break the time reversibility of the

scheme, though there have been attempts to design time-stepping methods which are reversible

(e.g. Hut et al., 1995; Preto and Tremaine, 1999). Letting particles evolve on individual timestep

sizes also break its symplectic nature. Furthermore, artificial viscosity introduces velocity-

dependent accelerations, and the magnetic field introduces a third variable that depends both

upon the velocity and itself. The scheme cannot be fully explicit in such a scenario.

The leapfrog scheme is often written in a staggered way,

x1 = x0 + v1/2�t,

v3/2 = v1/2 + a(x1)�t,

where x, v, and a are the positions, velocities, and accelerations with superscripts referring to

the time step. The timestep size is �t. Each position and velocity update utilises the velocity

and acceleration, respectively, at the midpoint of the timestep and these are always explicitly

available due to the staggered nature in which the variables are updated.

For SPMHD, the magnetic field is integrated alongside the velocity. The scheme is by

necessity modified to be implicit because accelerations arise from both the magnetic field and,

due to the artificial viscosity, the velocity. Thus, a predictor-corrector type scheme is used to

update the velocity and magnetic field. Starting from the initial state x0, v0, and B0, they are

first updated to

v1/2 = v0 + a(x0,v0,B0)
�t

2
,

B1/2 = B0 + Ḃ(x0,v0,B0)
�t

2
,

x1 = x0 + v1/2�t,

where Ḃ ⌘ @B/@t. The velocity and magnetic field at the end of the timestep are predicted

according to

v⇤ = v0 + a(x0,v0,B0)�t,

B⇤ = B0 + Ḃ(x0,v0,B0)�t.

Using the predicted values, the derivatives a and Ḃ are calculated, with the corrector step given
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by

v1 = v1/2 + a(x1,v⇤,B⇤)
�t

2
,

B1 = B1/2 + Ḃ(x1,v⇤,B⇤)
�t

2
.

The predictor-corrector is iterated until v⇤ and v1 converge.

This scheme corresponds to the Kick-Drift-Kick (KDK) update: velocities are updated half

a step, positions a full step, then velocities half a step (Quinn et al., 1997; Springel, 2005).

Though equivalent to a Drift-Kick-Drift (DKD) scheme for constant timesteps, it has been

demonstrated that there are advantages to using the KDK scheme when using variable timestep

sizes based on acceleration. The KDK scheme will base the timestep on a0, whereas the DKD

update will use the acceleration from half a timestep behind. This leads to the DKD scheme

growing errors at four times the rate of the KDK (Springel, 2005). Additionally, when using

individual particle timesteps in a hierarchical block scheme, the KDK scheme will synchronise

accelerations for all active particles.

The timestep criterion used in this work is the Courant-Friedrichs-Lewy (CFL) condition

(Courant et al., 1928), given by

�t = Ccourmin
a

✓
h
a

vsig,a

◆
, (2.116)

where vsig is the maximum signal velocity used in the artificial viscosity given in Section 2.2.10.1.

We use Ccour ⇠ 0.3. Physically, this condition ensures that the time resolution is su�cient to

capture sound and MHD wave propagation. We also impose the following criterion based on

the acceleration,

�t = Cf min
a

✓
h
a

|a
a

|
◆1/2

, (2.117)

with Cf ⇠ 0.25.
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Chapter 3

Constrained hyperbolic divergence

cleaning

A key problem in numerical magnetohydrodynamics (MHD) is maintenance of the divergence

constraint, r · B = 0 from Maxwell’s equations. If this is not maintained, a spurious force

parallel to the magnetic field appears which can lead to numerical instability. A variety of

methods have been developed to combat numerical divergence error, including Brackbill and

Barnes (1980) projection method, Evans and Hawley (1988) constrained transport, and Powell

(1994) and Powell et al. (1999)’s eight wave approach or variants thereof. In general, these

methods either aim to “clean” any divergence of the magnetic field that has been generated,

or to alter the MHD formulation so that the divergence constraint is satisfied by construction.

Tóth (2000) provides an excellent comparison of these schemes.

It is important to consider in which discretisation the magnetic field is considered divergence-

free. Even methods such as constrained transport which guarantee divergence-free magnetic

fields only do so in a particular discretisation, though if the order of the method is su�cient,

a low divergence error in one discretisation will correspond to a low divergence error in other

discretions. As such, it is not just the goal of methods to not just keep r · B exactly zero in

one discretisation, but to prevent the growth of numerical artefacts in di↵erent discretisations

— such as those used in the force terms.

Dedner et al. (2002)’s hyperbolic divergence cleaning scheme has found popular use in both

Eulerian (i.e., Mignone and Tzeferacos, 2010; Wang and Abel, 2009) and Lagrangian codes

(Gaburov and Nitadori, 2011; Pakmor et al., 2011). To facilitate cleaning of divergence errors,

an additional field  is coupled to the magnetic field. The Dedner et al. (2002) scheme was

originally adapted to SPMHD by Price and Monaghan (2005) (hereafter PM05), but was not

adopted for two main reasons: i) the reduction in divergence error was relatively small (a factor

of ⇠ 2–3) and ii) on certain test cases it was found that it could lead to an increase in the

divergence error. As such, its use was not recommended (c.f. Price, 2012).

Our aim here is to provide a formulation of hyperbolic divergence cleaning for SPMHD

31
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that is guaranteed to be stable and ensures a negative definite contribution to the magnetic

energy. This means that the divergence cleaning is guaranteed to decrease the errors associated

with non-zero divergence of the magnetic field, in turn leading to a method that is suitable for

general use in SPMHD simulations.

We begin with a summary of past approaches to handle r · B = 0 in SPMHD. In Sec-

tion 3.2, hyperbolic cleaning as part of the ideal MHD equations is introduced, followed by

defining an energy term associated with the  field (Section 3.2.2). Using this energy term, we

derive a new form for the  -evolution equation which conserves total energy (Section 3.2.2.1).

In Section 3.3, the discretisation of hyperbolic cleaning into SPMHD is discussed and we show

how the constraint of energy conservation can be used to construct a formulation that is nu-

merically stable. In particular, this leads to a requirement for the discretisation of r · B and

r used in the induction and  -evolution equations to form a conjugate pair (Section 3.3.2.1

and Section 3.3.2.2). Importantly, we prove that the dissipative (parabolic) term in the evolu-

tion of  gives a negative definite contribution to magnetic energy (Section 3.3.3). Our new,

constrained formulation of hyperbolic cleaning in SPMHD is then applied to a suite of test

problems designed to evaluate all aspects of the algorithm and to derive parameter ranges suit-

able for general use (Section 3.4). The final test (Section 3.4.7) is drawn from our current

work on applying the method to star formation problems and shows that our technique per-

forms well in practice, dramatically improving the accuracy and robustness of realistic SPMHD

simulations in three dimensions. Approaches to enhance the cleaning method are investigated

in Section 3.5. The cleaning scheme is adapted for use on velocity fields in conjunction with

simulations of weakly compressible SPH for the modelling of incompressible fluids (Section 3.6).

The results are discussed and summarised in Section 3.7.

3.1 Previous approaches to treat r ·B = 0 in SPMHD

The divergence-free constraint of the magnetic field has been the main technical di�culty in

SPMHD. Evolving the magnetic field directly via the induction equation (as in Phillips and

Monaghan, 1985) places no restriction on the divergence of the magnetic field. Even for a

magnetic field that is initially divergence-free, numerical errors will introduce divergence in the

field. Therefore, approaches are required to explicitly handle the divergence-free constraint on

the magnetic field.

One class of techniques is to evolve the magnetic field in a way that enforces the divergence-

free constraint by construction. Use of the Euler potentials, B = r↵ ⇥ r�, were proposed

as early as Phillips and Monaghan (1985). Due to the Lagrangian nature of SPH, the scalar

variables are advected exactly, which means the magnetic field can be reconstructed simply

from the particle positions relative to the initial conditions. This approach has been used in

simulations of protostar formation (Price and Bate, 2007), star cluster formation (Price and

Bate, 2008, 2009), neutron star mergers (Price and Rosswog, 2006), and the magnetic fields of
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galaxies (Dobbs and Price, 2008; Kotarba et al., 2009). However, the Euler potentials cannot

represent certain magnetic field topologies, and winding motions cannot be modelled past one

rotation as the field is essentially “reset” with each turn (Brandenburg, 2010). It is also di�cult

to incorporate Ohmic dissipation.

Price (2010) investigated use of the vector potential formulation of the magnetic field (B =

r⇥A) as a way to overcome these limitations while still retaining the guarantee of zero physical

divergence in the field. However, this results in an even larger instability in the equations of

motion, and significant di�culties were found with the time evolution of the vector potential.

Price (2010) concluded that this was not a viable approach.

The constrained transport method (Evans and Hawley, 1988) enforces r ·B = 0 by recon-

structing the magnetic field from the electric flux across surfaces. The flux on one side of a

surface is exactly balanced by the flux on the other side, therefore if the initial magnetic field is

divergence-free, it will remain so. Mocz et al. (2014) recently proposed a constrained transport

implementation for unstructured meshes. However, it is not clear how to adapt constrained

transport to SPMHD since there are no clearly defined surfaces.

A second class of techniques is to evolve the magnetic field as normal with the induction

equation, then “clean” errors out of the field. Morris (1996) added parabolic di↵usion terms to

smooth the magnetic field at the resolution scale. The artificial resistivity formulation of Price

and Monaghan (2004a, 2005) has been used for the same purpose (e.g. Bürzle et al., 2011a).

However, artificial resistivity is intended for shock capturing, and dissipates both physical and

unphysical components of the field. Børve et al. (2001) used periodic smoothing of the magnetic

field to remove fluctuations below the resolution limit, though this adds computational expense

and is time resolution dependent.

Brackbill and Barnes (1980) used a projection method to obtain a divergence-free magnetic

field. Considering an “unclean” magnetic field, B⇤, it can be written in terms of its physical

and unphysical components according to B⇤ = r ⇥A +r�, where A is the vector potential

and is the physical portion of the field (since the divergence of the curl is zero). From this, we

can state that r ·B⇤ = r2�, and then by solving for �, the divergence-free magnetic field can

be obtained from B = B⇤�r�. PM05 tested this approach for SPMHD, finding that it worked

well for simple test problems. The disadvantage to this approach is the computational cost in

solving the elliptic set of equations. Even using a tree for e�ciency will still have O(N lgN)

algorithmic complexity. However, it would be worth revisiting this approach and testing it

further.

Dedner et al. (2002) coupled parabolic di↵usion terms with a hyperbolic set of equations.

This improves the e↵ectiveness of the parabolic di↵usion, and remains computationally inex-

pensive. PM05 first investigated its use for SPMHD, however found that it could cause the

divergence of the magnetic field to increase in some situations. We here present a conservative

implementation of mixed hyperbolic / parabolic cleaning that is constrained to always decrease

the divergence of the magnetic field.
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3.2 Hyperbolic divergence cleaning

3.2.1 Hyperbolic divergence cleaning for the MHD equations

Hyperbolic divergence cleaning involves the introduction of a new scalar field,  , that is coupled

to the magnetic field by a term appearing in the induction equation,

✓
dB

dt

◆

 

= �r , (3.1)

and the field  evolves according to

d 

dt
= �c2hr ·B�  

⌧
. (3.2)

In the comoving frame of the fluid, Equation 3.1 and 3.2 combine to produce a damped wave

equation
@2(r ·B)

@t2
� c2hr2(r ·B) +

1

⌧

@(r ·B)

@t
= 0. (3.3)

The equation above shows that this approach spreads divergence of the magnetic field like

a wave away from a source, diluting the initial divergence over a larger area, enabling the

parabolic (di↵usion) term, � /⌧ , to act more e↵ectively in reducing it to zero. The wave

speed, ch, is chosen to be the fastest speed permissible by the time step, typically equal to the

speed of the fast MHD wave. A key consideration is setting the damping strength correctly to

achieve critical damping of the wave, which maximises the benefit of wave propagation without

damping being too weak. Dedner et al. (2002) suggested using 1/⌧ = chcr where cr = 0.18,

though this is problematic as cr is not a dimensionless quantity. Instead, PM05 define

1

⌧
⌘ �

 

ch
h

, (3.4)

where h is the smoothing length and �
 

is a dimensionless quantity specifying the damping

strength. PM05 found that optimal cleaning was obtained for �
 

2 [0.4, 0.8] in their tests. A

similar form was also adopted by Mignone and Tzeferacos (2010) in their Eulerian code, who

suggested values �
 

2 [0, 1].

3.2.2 Energy associated with the  field

For later purposes it will be useful to define an energy term associated with the  field, e
 

(here defined as the energy per unit mass). Specifically, the energy should be defined such

that, in the absence of damping terms, any change in magnetic energy should be balanced by

a corresponding change in e
 

. This is not merely a book-keeping exercise, as it will enable us

to construct a formulation of hyperbolic divergence cleaning in SPMHD that is guaranteed to

be stable.

If we consider the closed system of equations formed by Equations 3.1 and 3.2, the total
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energy of the system can be specified according to

E =

Z 
B2

2µ0⇢
+ e

 

�
⇢dV. (3.5)

Conservation of energy in this subsystem implies

dE

dt
=

Z "
B

µ0⇢
·
✓
dB

dt

◆

 

+
de

 

dt

#
⇢dV = 0, (3.6)

where we have used the fact that d(⇢dV )/dt = 0. We assume that the time derivative of e
 

can be related to the time derivative of  , giving

Z "
B

µ0⇢
·
✓
dB

dt

◆

 

+ �
d 

dt

#
⇢dV = 0, (3.7)

where � is an unspecified variable to be determined. Using Equations 3.1 and 3.2 in the absence

of damping gives Z 
� B

µ0⇢
·r � �c2hr ·B

�
⇢dV = 0. (3.8)

Integrating the first term by parts, we obtain

Z 
 

µ0⇢
� �c2h

�
(r ·B)⇢dV � 1

µ0

Z

s

 B · dŝ = 0. (3.9)

We take the surface integral in Equation 3.9 to be zero. If the bounding surface is taken to be

at infinity, then this assumption is reasonable as it should be expected that the amplitude of

a divergence wave would be diluted to zero at such a limit. For closed systems, it is not clear

how the surface term should be treated. However, similar surface terms appear in the standard

SPH formulation and are treated by the addition of di↵usion terms to capture discontinuities

(Price, 2008). For this reason we investigated adding an artificial  -di↵usion term to account for

 -discontinuities, but found no particular advantage to using this in practice (see Appendix A).

From Equation 3.9 we conclude that energy conservation requires � ⌘  /µ0⇢c
2
h, and there-

fore that the specific energy of the  field should be defined according to

e
 

⌘  2

2µ0⇢c2h
. (3.10)

3.2.2.1 Energy conservation as part of the ideal MHD equations

Considering total energy conservation with hyperbolic divergence cleaning included as part of

the set of ideal MHD equations, additional terms relating to d⇢/dt appear in the preceding

analysis (along with kinetic and other energy terms). Any terms not involving  do not need

to be considered as they conserve energy together (see Price and Monaghan, 2004b), so energy
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conservation reduces to the condition

Z "
B

µ0⇢
·
✓
dB

dt

◆

 

+
 

µ0⇢c2h

d 

dt
�  2

2µ0⇢2
a

c2h

d⇢

dt

#
⇢dV = 0. (3.11)

The first two terms balance each other, however, the third term remains. There are several

possible approaches to ensuring total energy conservation with respect to this term. One

approach which we explored was to derive the MHD+cleaning equations from a Lagrangian that

includes the e
 

term. The result is that an additional isotropic pressure term, �1
2 

2/(µ0c
2
h),

appears in the momentum equation. Since it is undesirable to change the physical forces in the

system, we instead adopt a simpler approach, which is to slightly modify the evolution equation

for  .

From the continuity equation (Equation 2.22), we can deduce that the third term in Equa-

tion 3.11 will be balanced by replacing Equation 3.2 with

d 

dt
= �c2hr ·B�  

⌧
� 1

2 r · v. (3.12)

3.3 Hyperbolic divergence cleaning in SPMHD

3.3.1 Hyperbolic divergence cleaning in SPMHD

Hyperbolic divergence cleaning in SPMHD can be constructed for either the di↵erence (Equa-

tion 2.67) or symmetric (Equation 2.70) measure of r ·B by using the appropriate operator in

Equation 3.12. While both measure the divergence of the magnetic field, they do not provide

the same measurement. For example, if a random distribution of particles is given a uniform

magnetic field, the di↵erence form will measure precisely zero — since the magnetic field is

equal for all particles — but the symmetric form will not because it will reflect the disordered

particle arrangement. Thus, it may be expected that the di↵erence operator in general gives a

more accurate measure of r · B and should be the operator used for cleaning. On the other

hand, it is the symmetric form which is used in the momentum equation (Equation 2.86) and

correspondingly in the tensile instability correction (Equation 2.87), and cleaning in this oper-

ator may be more e↵ective at improving the conservation of momentum. Thus in the context

of divergence cleaning, it is not clear a priori which of the two should be preferred. This is one

of the questions we will seek to answer in our tests.

It is also not clear how the operator for r should be chosen. In PM05 a di↵erence operator

was used for both r ·B and r . However, the choice of operator for r turns out to be an

important issue in ensuring a stable method.
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3.3.2 Energy conservation of discretised hyperbolic divergence cleaning

The key constraint we wish to impose on our divergence cleaning scheme is that the total

magnetic energy should never increase due to cleaning. That is, any magnetic energy transferred

into the  -field should either be conserved or dissipated. Specifically, in the absence of damping

terms, the propagation of divergence waves should conserve energy, not only in the continuum

limit but also in the discrete system. We can thus use the e
 

derived in Section 3.2.2 to derive

stable formulations of hyperbolic divergence cleaning for SPMHD — for either di↵erence or

symmetric r ·B operators.

As in Section 3.2.2, we first consider only the subsystem formed by Equations 3.1 and 3.2.

This means that for the moment we do not consider additional terms related to d⇢/dt (these

are discussed in Section 3.3.2.3). The total energy of the subsystem (Equation 3.5) can be

discretised by writing the integral as a sum and replacing the mass element ⇢dV with the

particle mass m, giving

E =
X

a

m
a


B2

a

µ0⇢a
+

 2
a

µ0⇢ac2h

�
. (3.13)

Assuming that the total energy of the subsystem is conserved, we have

dE

dt
=
X

a

m
a

"
B

a

µ0⇢a
·
✓
dB

a

dt

◆

 

+
 
a

µ0⇢ac2h

d 
a

dt

#
= 0. (3.14)

3.3.2.1 Hyperbolic cleaning with di↵erence operator for r ·B
If we choose to clean using the di↵erence operator for r · B, then the SPMHD version of

Equation 3.2 in the absence of the damping term is given by

d 
a

dt
= c2h

1

⌦
a

⇢
a

X

b

m
b

(B
a

�B
b

) ·r
a

W
ab

(h
a

). (3.15)

Using this in Equation 3.14, we have

X
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m
a
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B
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·
✓
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W
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Expanding the right hand side into two separate terms gives

X

a

m
a

µ0⇢a
B

a
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✓
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W
ab

(h
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), (3.17)

where by swapping the arbitrary summation indices a and b in the second term on the right

hand side and using the anti-symmetry of the kernel gradient (r
a

W
ab

= �r
b

W
ba

), we can
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simplify to find
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(3.18)

This gives the SPMHD version of Equation 3.1 in the form

✓
dB
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�
. (3.19)

Thus, by choosing the di↵erence operator for r ·B, the symmetric operator for r is im-

posed. That is, the total energy of the hyperbolic divergence cleaning scheme is only conserved

if the operators are chosen to form a conjugate pair (c.f. Cummins and Rudman, 1999; Price,

2010, 2012; Wurster et al., 2014). This is an important improvement over the PM05 implemen-

tation which used a di↵erence operator for both. We demonstrate in Section 3.4 that indeed the

use of conjugate operators significantly improves the robustness and stability of our cleaning

algorithm in practice.

3.3.2.2 Hyperbolic cleaning with symmetric operator for r ·B
An energy-conserving formulation can also be constructed for divergence cleaning with the

symmetric operator. That is, with Equation 3.2 discretised according to

d 
a

dt
= �c2h⇢a

X

b
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b


B
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⌦
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)

�
, (3.20)

the discrete version of Equation 3.1 which must be used to conserve energy is constrained to be

✓
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which again forms a conjugate pair.

3.3.2.3 Hyperbolic cleaning as part of the SPMHD equations

In Section 3.2.2.1, the evolution equation for  was modified to include a �1
2 (r · v) term

(Equation 3.12). This was done to conserve energy in the presence of d⇢/dt terms. The

discretised form of r ·v in Equation 3.12 should therefore be the same as that used in the SPH

continuity equation (Equation 2.41), which leads to

�1
2 a

(r · v
a

) =
 
a

2⌦
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b
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b
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) ·r
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). (3.22)
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3.3.3 Energy loss due to damping

For completeness, it is important to prove that the damping term in Equation 3.12 will result

in a negative definite energy change. Inserting the damping term into the total change of  

energy, we see that

✓
dE

dt

◆

damp

=
X

a

m
a

 
a

µ0⇢ac2h

✓
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a

dt

◆

damp
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X

a

m
a

 2
a

µ0⇢ac2h⌧
, (3.23)

which is indeed negative definite. These energy changes could be balanced with equivalent

increases in thermal energy to keep the total energy constant. The issue with doing this is that

the heat generated is not necessarily deposited in the same location as it was removed from

the magnetic field, due to the transport of divergence errors inherent in the hyperbolic cleaning

scheme. Thus, we do not add such heat gains as part of our method, although the term above

can be used to keep track of the energy loss due to divergence cleaning.

3.4 Tests

We have designed our numerical tests to examine the following key aspects of our constrained

hyperbolic divergence cleaning algorithm:

i) The importance of the energy-conserving, “constrained” formulation compared to a non-

conservative, or “unconstrained”, approach,

ii) Whether or not cleaning using the symmetric r · B operator (Section 3.3.2.2) provides

any advantage over use of the di↵erence operator (Section 3.3.2.1), e.g. by improving

momentum conservation,

iii) Optimal parameter choices for �
 

,

iv) The practical e↵ect of including the �1
2 r · v term (Equation 3.12).

In particular, we have investigated these aspects both in isolation using simple idealised setups,

as well as their combined e↵ects in more realistic 2 and 3D simulations. Our goal is to verify the

robustness of the algorithm for practical application in astrophysics, though it o↵ers a general

solution to maintaining the divergence constraint in SPMHD.

As well as examining the divergence of the magnetic field using the operators given by

Equation 2.67 and 2.70, we measure the divergence error in the standard manner for SPMHD

with the dimensionless quantity,
h|r ·B|

|B| . (3.24)

To prevent artificially high values where |B| ! 0, a small parameter ✏ is added to |B| in the

denominator, where ✏ ⇠ 1% of the maximum B-field value. We find this is only necessary for

the Orszag-Tang vortex problem.
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All of the tests have been performed using a Leapfrog integrator with magnetic field in-

tegrated alongside the velocity (Section 2.2.12) and timesteps set according to the standard

condition �t < min
a

(Ccourha/vmhd,a), where Ccour = 0.2 and vmhd,a is the MHD fast wave

speed on each particle. We therefore use ch = max
a

(vmhd,a) in the hyperbolic cleaning, except

for the final test (Section 3.4.7) where ch is individual to each particle. The damping parameter

is chosen to be �
 

= 0.4 (�
 

= 0.8 for the star formation test), except for cases when it is

varied to find optimal values. Unless otherwise indicated, we use the standard SPH cubic spline

kernel for all tests with ⌘h = 1.2 in Equation 2.43 corresponding to ⇠ 18 neighbours in 2D and

⇠ 58 neighbours in 3D. The magnetic field is specified in units such that µ0 = 1 in the code

(c.f. Price and Monaghan, 2004a). Artificial resistivity is only used where noted, in which case

it is applied as described in Section 2.2.10.2.

3.4.1 Divergence advection

The simplest test we consider consists of divergence in the magnetic field artificially induced in

the initial conditions and advected by a uniform flow. The test is performed in a two dimensional

periodic domain with three dimensional magnetic and velocity fields (2.5D). The first version

of this test is identical to the ‘divergence advection problem’ from Dedner et al. (2002), as

generalised by PM05. We use this to illustrate the basic features of the hyperbolic/parabolic

cleaning approach and to examine the optimal choice of �
 

when the divergence error has a

scale comparable to the numerical resolution.

3.4.1.1 Setup

The domain is a square area of fluid in the region x, y 2 [�0.5, 1.5]. The system has uniform

density ⇢ = 1, with pressure P = 6 and � = 5/3. The velocity field is v = [1, 1] and B
z

= 1/
p
4⇡.

A perturbation is created in the x-component of the magnetic field of the form

B
x

=
1p
4⇡

h
(r/r0)

8 � 2 (r/r0)
4 + 1

i
; r < r0, (3.25)

where r ⌘
p

x2 + y2 and r0 specifies the radial extent. We set up the problem using 50 ⇥ 50

particles on a square lattice, giving h = 1.2�x = 0.048.

3.4.1.2 Results

Figure 3.1 shows renderings of r · B at various times from three calculations: no cleaning,

undamped cleaning (purely hyperbolic), and damped cleaning (mixed hyperbolic/parabolic)

with r0 = 1/
p
8, following Dedner et al. (2002). These three calculations illustrate the basic

ideas behind the divergence cleaning scheme: In the absence of any cleaning (top), the magnetic

field and its divergence perturbation is advected without change on the particles. With the

addition of hyperbolic cleaning (middle), the divergence errors are spread in a wave-like manner
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Figure 3.1: A fluid with uniform velocity has a blob of divergence introduced to the initial
conditions. In the top row, no cleaning is applied and the divergence blob is advected exactly
with the flow. Undamped cleaning (purely hyperbolic) is applied to the centre row and the
divergence in the magnetic field is spread through the system as a system of interacting waves.
In the bottom row, damped cleaning (mixed hyperbolic/parabolic) is utilised and the divergence
in the magnetic field is rapidly removed.



Chapter 3. Constrained hyperbolic divergence cleaning 42

















     



































     



















Figure 3.2: Average and maximum r ·B in code units, measured using the di↵erence operator
(Equation 2.67), as a function of time for the divergence advection test with r0 = 1/

p
8.

Without cleaning, the divergence for this simple problem remains constant. Using undamped
cleaning (purely hyperbolic), the maximum divergence is reduced with an increase in average
throughout the system. With damped cleaning (mixed hyperbolic/parabolic), both average
and maximum are rapidly reduced.

throughout the domain. Finally, the addition of the parabolic damping term (bottom row) acts

to rapidly di↵use the divergence error to zero.

This is demonstrated more quantitatively in Figure 3.2, which shows the average and max-

imum values of |r ·B| as a function of time for the three calculations. While purely hyperbolic

cleaning can be seen to quickly reduce the maximum divergence error, the average error in-

creases. The parabolic damping means that both the average and maximum values are reduced

by an order of magnitude in roughly the time it takes for the hyperbolic waves to cross the

simulation domain (t ⇠ 0.3), and by roughly 5 orders of magnitude after several crossing times

(t & 2). After this time the divergence error continues to decrease, but at a much slower rate

(this is more obvious in Figure 3.3 for the case r0 = h). We attribute the turnover in the

decay rate to the rapid removal of the short wavelength errors by the cleaning scheme, leaving

only slowly decaying long-wavelength modes. This result suggests that such long-wavelength

modes will decay on the order of the wave crossing time. We have confirmed this interpreta-

tion by verifying that the transition to a slow decay is independent of timestepping, resolution

and is similar using the quintic (see Price, 2012) instead of the cubic spline kernel. See also

Section 3.5.3.2 for further examination of this.

3.4.1.3 Optimal choice of damping parameter in 2D

As noted by PM05, the optimal choice of damping parameter, �
 

, for this problem with

r0 = 1/
p
8 is somewhat misleading, since in reality one expects divergence errors arising in

simulations to have length scales of order the smoothing length. Thus, Figure 3.3 shows the

average and maximum r · B in a series of calculations employing r0 = h and values of �
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Figure 3.3: The e↵ect of varying the damping parameter �
 

on the average and maximum r ·B
for the divergence advection test with r0 = h. The best results for 2D are obtained for values
between 0.2–0.3.

between 0.1 and 0.6. The results are similar to those shown in Figure 3.2, with best results

obtained in this 2D case using �
 

⇠ 0.2–0.3.

3.4.2 Static cleaning test: density jump

Our second test is a variant on the divergence advection problem, with identical setup (r0 =

1/
p
8) except that the right half of the domain has its density increased by a factor of two.

The idea is to examine the reflection and refraction of the divergence waves as they transition

between media of di↵ering densities, as may frequently occur in applications of SPMHD. To

simplify the test, we solve only the subset of equations given by Equations 3.1–3.2 — that is,

the system can only evolve due to divergence cleaning.

3.4.2.1 Setup

The setup is performed in 2D with 25 ⇥ 50 particles on a square lattice in the left half of the

domain (x < 0.5, ⇢ = 1), and 35⇥ 70 particles placed in the right half of the domain (x > 0.5,

⇢ = 2), with all particles of equal mass, giving a 2:1 density jump at x = 0.5. The actual

density on the particles is found in the usual manner by iterating the smoothing length and

density self-consistently as described in Section 2.2.2. The velocity field is set to zero, all other

system parameters are set as previously for the divergence advection test (Section 3.4.1), and

periodic boundary conditions are employed.

3.4.2.2 Results

Figure 3.4 shows the propagation of purely hyperbolic (�
 

= 0) divergence waves in this test

using i) the non-energy conserving formulation with di↵erence operators for both r ·B (Equa-

tion 2.67) and r (Equation 3.21), and ii) our new constrained hyperbolic divergence cleaning
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Figure 3.4: Results of the static cleaning test across a 2:1 density jump. Undamped non-
conservative cleaning (top) increases the divergence of the magnetic field at the density jump,
in turn leading to numerical instability (Figure 3.5). Using our constrained divergence cleaning
method (bottom), the waves cross the density boundary without issue and the scheme remains
stable.

scheme with a di↵erence operator for r · B and the conjugate, symmetric operator for r 
(Equation 3.19). The corresponding time evolution of the maximum |r · B| is shown in Fig-

ure 3.5. Using the unconstrained formulation, the interaction of the divergence wave with the

density jump causes amplification of the divergence errors (top row of Figure 3.4), in turn lead-

ing to exponential growth in the total energy and numerical instability (left panel of Figure 3.5).

By contrast, our new conservative formulation remains stable and continues to reduce the di-

vergence error throughout the domain (bottom row of Figure 3.4 and right panel of Figure 3.5).

3.4.3 Static cleaning test: free boundaries

A further variant of the divergence advection test we consider replaces the periodic boundaries

by a free boundary, since many applications of SPMHD involve free boundaries (e.g. the merger

of two neutron stars, Price and Rosswog 2006, or studies of galaxy interactions, Kotarba et al.

2010, 2011).

3.4.3.1 Setup

The setup is identical to the divergence advection problem (Section 3.4.1) with r0 = 1/
p
8,

except that the domain is a circular area of fluid with ⇢ = 1 for r  1 and ⇢ = 0 (no particles)

for r > 1, set up using a total of 1976 particles placed on a square lattice. The divergence

perturbation is introduced at the centre of the circle, and the velocity field is set to zero.

Rather than impose an external confining potential, we solve only Equations 3.1–3.2 without



Chapter 3. Constrained hyperbolic divergence cleaning 45



















     






























     














Figure 3.5: Maximum values of r · B (di↵erence) for the density jump test for the non-
conservative formulation (left) and the new constrained divergence cleaning (right). The inter-
action between the divergence waves and the density jump for the non-conservative formulation
is unstable, for both damped and undamped cleaning. Using constrained divergence cleaning
is stable across the density jump, with damped cleaning reducing r ·B as in previous tests.

Figure 3.6: r·B of the static cleaning test using free boundaries. In the case of non-conservative
cleaning (top row), the interaction of the divergence waves with the boundary cause unchecked
divergence growth. Using constrained cleaning (bottom row), the boundary interaction is not
problematic.
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the full MHD equations, as in Section 3.4.2.

3.4.3.2 Results

Figure 3.6 shows the results of purely hyperbolic cleaning (�
 

= 0) for this case. As in

Figure 3.4, the top row shows the unconstrained and non-conservative di↵erence/di↵erence

formulation, while the bottom row shows results using the conservative di↵erence/symmetric

combination. Similar results are also found in this case, with divergence errors piling up at

the free boundary in the non-conservative formulation leading to numerical instability, but our

constrained formulation remaining stable.

3.4.4 2D Blast wave in a magnetised medium

We now turn to tests that are more representative of the dynamics encountered in typical

astrophysical simulations, beginning with a blast wave expanding in a magnetised medium. In

this case the initial magnetic field is divergence-free, meaning that the only divergence errors

are those created by numerical errors during the course of a simulation — rather than the

artificial errors we have induced in the previous tests. Based on the results from the previous

tests, in this and subsequent tests we apply cleaning only using constrained, energy-conserving

formulations — that is, with conjugate operators for r · B and r . We use this problem to

the examine the e↵ectiveness of the divergence cleaning in the presence of strong shocks, as

well as to investigate whether cleaning should be performed using the di↵erence or symmetric

r ·B operator. As with the divergence advection test, a key goal is to find optimal values for

the damping parameter �
 

.

3.4.4.1 Setup

The implementation of the blast wave follows that of Londrillo and Del Zanna (2000). The

domain is a unit square with periodic boundaries, set up with 512⇥590 particles on a triangular

lattice with ⇢ = 1. The fluid is at rest with magnetic field B
x

= 10. The pressure of the fluid

is set to P = 1, with � = 1.4, except a region of the centre of radius 0.125 has its pressure

increased by a factor of 100 by increasing its thermal energy. An adiabatic equation of state is

used.

3.4.4.2 Results

Figure 3.7 shows the density and magnetic field lines at t = 0.03 for i) the control case without

cleaning and no artificial resistivity (left), ii) including artificial resistivity (centre) and iii) no

resistivity, but cleaned using the di↵erence operator (right). At this time, the MHD fast shock

has expanded to fill the domain, yet has not crossed the periodic boundaries to begin interacting

with itself, and the three cases show only minimal di↵erences in density structure. The average

and maximum divergence error as a function of time are shown in Figure 3.8. Although the
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Figure 3.7: Renderings of the density together with overlaid magnetic field lines in the MHD
blast wave problem at t = 0.03, showing the control case with no resistivity and no cleaning
(left), with resistivity (centre), and with divergence cleaning (right). Only minor di↵erences in
the density evolution are evident.
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Figure 3.8: Average and maximum of h|r ·B|/|B| as a function of time for the blast wave test.
At t = 0.03, resistivity has reduced the average error by a factor of 4 compared to the control
case, while divergence cleaning has reduced the average divergence error by a factor of 20. The
maximum error has been reduced by a factor of 2 and 8, respectively.
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density renderings at t = 0.03 are quite similar, we can see that adding divergence cleaning

has reduced the average and maximum divergence error by a factor of 20 and 8, respectively

at t = 0.03, compared to the control case, with factors of 5 and 4 improvement compared to

the case with artificial resistivity alone. Thus, divergence cleaning is even more e↵ective than

resistivity at enforcing the divergence constraint.

3.4.4.3 Operator choice for r ·B
To answer the question of whether there is any advantage to cleaning with the symmetric r ·B
operator, the blast wave problem was simulated for three cases: no cleaning; cleaning using

the di↵erence operator for r ·B; and cleaning using the symmetric operator. The question is

further complicated by fact that the operator used for cleaning may di↵er from the operator

used to measure the error. We therefore show r ·B for these three cases measured with both

the symmetric (Figure 3.9) and di↵erence (Figure 3.10) operators, so that the e↵ect of cleaning

using one operator can be seen in both.

The symmetric operator for r · B can be seen to pick up a non-zero divergence error on

the leading edge of the magnetic wave from the blast (Figure 3.9) despite the fact that the

magnetic field shows no error in this region when measured with the di↵erence operator (Fig-

ure 3.10). This suggests that the symmetric operator is mainly reflecting the disordered particle

arrangement. In turn, it can be seen that in this region, cleaning using the symmetric operator

introduces divergence error when measured with the di↵erence operator as it attempts to adjust

the magnetic field based on the particle arrangement (centre panel of Figure 3.10). Neverthe-

less, it is true that cleaning with the symmetric operator does produce the greatest reduction in

the divergence when measured in the symmetric operator, and may still have potential advan-

tages in terms of momentum conservation (this is examined further in Section 3.4.5). However,

we conclude that cleaning is best performed with the di↵erence operator, since it shows not

only the best results when measured with the di↵erence operator (right panel of Figure 3.10),

but also an improvement even when measured with the symmetric operator (centre panel of

Figure 3.9).

3.4.4.4 Optimal damping values

Figure 3.11 shows the average and maximum divergence error as a function of time for di↵ering

strengths of the damping parameter �
 

in the range [0.1, 0.6]. The best results are obtained

with 0.2 < �
 

< 0.3, in agreement with the other two dimensional tests.

3.4.4.5 Tensile instability correction

Finally, we noticed important consequences in this test concerning the �̂B(r ·B) correction for

the tensile instability (Section 2.2.8). Since using �̂ = 0.5 is in principle su�cient to prevent

the instability, its use has been suggested by Børve et al. (2004), Barnes et al. (2012), and
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Figure 3.9: r · B in the blast wave problem at t = 0.03 measured in code units using the
symmetric r · B operator, showing the control case (left), r · B measured with the opposing
operator to that used in the cleaning (centre) and r ·B measured with the same operator used
in the cleaning (right). Note in particular that the symmetric operator measures a divergence
error around the leading edge of the fast MHD wave, even though the field is quite regular.
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Figure 3.10: As in Figure 3.9, but showing r ·B measured using the di↵erence operator. With
this operator, no r ·B is measured along the leading edge of the magnetic edge for the control
and di↵erence-cleaned cases. However, symmetric cleaning produces spurious divergence in this
region when measured with the di↵erence operator, because changes have been induced in the
magnetic field to compensate for particle disorder.
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Figure 3.11: Average and maximum h|r ·B|/|B| for the blast wave test with varying damping
strengths. The best results are obtained for values of �

 

between 0.2–0.3.

Figure 3.12: Density of the blast wave problem with overlaid magnetic field lines, without any
divergence cleaning, but examining the impact of the ��̂B(r · B) term used to correct the
tensile instability. Results shown use �̂ = 0.5 (left), �̂ = 0.75 (centre) and �̂ = 1.0 (right).
Using only �̂ = 0.5 is found to result in irregularities along the shock fronts, which are not
present using �̂ = 1. Thus, using �̂ = 0.5 is not recommended.
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Price (2012). However, we found this to be problematic in our simulations of the blast wave

problem: Figure 3.12 shows the density with overlaid magnetic field lines at t = 0.03 using �̂

= 0.5, 0.75 and 1.0 (left to right). With only �̂ = 0.5 (left panel), irregularities can be seen

to form in the densest parts of the shockwave. These are not present when performing the full

�̂ = 1 subtraction (right panel).

3.4.5 Orszag-Tang Vortex

The final two dimensional test is the Orszag-Tang vortex (Orszag and Tang, 1979), which

has been widely used as a test of MHD codes (e.g. Fromang et al., 2006; Stone et al., 2008;

Dolag and Stasyszyn, 2009). It consists of a magnetic vortex superimposed onto a velocity

vortex generating several classes of interacting shock waves. The complex dynamics provides

an excellent test of the constrained hyperbolic divergence cleaning method. To measure the

e↵ectiveness of the method in this case, the results are compared against that of simulations

using artificial resistivity (with particle independent strengths as described in Section 2.2.11.2)

and Euler Potentials as measures of divergence control. This test is also used to examine

whether or not cleaning using the symmetric operator for r · B provides any advantage in

terms of momentum conservation. As previously, the damping parameter �
 

is varied to find

optimal values.

3.4.5.1 Setup

The problem is set up in a box with dimensions x, y 2 [0, 1] with periodic boundary conditions.

The initial gas state is set to ⇢ = 25/(36⇡), P = 5/(12⇡), � = 5/3, with velocity field v =

[� sin(2⇡y), sin(2⇡x)]. The initial magnetic field is B = [� sin(2⇡y), sin(4⇡x)]. All examples

presented use 512⇥ 590 particles initially arranged on a triangular lattice.

3.4.5.2 Results

Figure 3.13 shows the density (top), magnetic pressure (middle row), and r ·B (bottom row)

at t = 1.0 for four cases: i) control, ii) using artificial resistivity, iii) employing Euler Potentials,

and iv) applying divergence cleaning. This time is chosen because the divergence errors in the

control case are large enough to produce small scale disturbances in the density and magnetic

pressure fields. By adding resistivity or using Euler Potentials, the average h|r · B|/|B| is
decreased by an order of magnitude (c.f. second and third panels in bottom row of Figure 3.13

and the left panel of Figure 3.14). When divergence cleaning is used, the average divergence

error is reduced by almost two orders of magnitude (red/dashed line in left panel of Figure 3.14).

In addition to the average and maximum divergence error for the above four cases, Figure 3.14

also presents the results from a case where artificial resistivity has been applied in tandem with

divergence cleaning. In this case, the average h|r · B|/|B| is reduced by nearly an order of

magnitude compared to resistivity alone, and when compared to the control case, this results in
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Figure 3.13: The density (top row), magnetic pressure (middle row), and the di↵erence mea-
surement of r · B (bottom row) in the Orszag-Tang vortex at t = 1.0 comparing the control
case (far left), including artificial resistivity (centre left), evolving the magnetic field using Euler
Potentials (centre right), and applying the constrained divergence cleaning method (far right).
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Figure 3.14: Average (left) and maximum (right) h|r·B|/|B| in the Orszag-Tang vortex problem
with (top to bottom in left panel) no divergence control, using Euler Potentials, adding an arti-
ficial resistivity, using divergence cleaning, and cleaning while including resistivity. Divergence
cleaning has lower divergence error than when using Euler Potentials or artificial resistivity, and
continues to reduce divergence error even when used in combination with artificial resistivity.

two orders of magnitude reduction in the average together with an order of magnitude reduction

in the maximum.

3.4.5.3 Cleaning using symmetric r ·B
Since the symmetric operator for r ·B is used in the momentum equation and tensile instability

correction term, it was hoped that its use for cleaning would confer some advantage over

the di↵erence measure by way of improved momentum conservation. However, as shown in

Figure 3.15, no significant di↵erence in the momentum is found between cleaning with the

symmetric operator compared to the di↵erence operator. Figure 3.16 shows the magnetic

energy profile of the system for t  0.5, where all test cases (control, resistivity, Euler Potentials,

di↵erence cleaning) yield the same profile, except for symmetric cleaning which shows a ⇠ 10%

reduction in magnetic energy compared to the other solutions. This occurs due to the symmetric

operator removing magnetic energy to compensate for irregularities in particle position (which

begin to occur at t ⇠ 0.15). Furthermore, although we have already shown in Section 3.4.4.3

that use of �̂ = 1
2 in the tensile instability correction could result in numerical artefacts in the

blast wave test, we also found large errors in the density and magnetic field profiles when �̂ = 1
2

is used in combination with symmetric cleaning on the Orszag-Tang problem. For these reasons,

we recommend using �̂ = 1 and applying cleaning only with the di↵erence r ·B operator.

3.4.5.4 Optimal damping values

As with the previous tests, the damping parameter �
 

was varied to find the best results

(Figure 3.17), which, as previously, were obtained for 0.2 < �
 

< 0.3 for this 2D test.
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Figure 3.15: Total linear momentum for
the Orszag-Tang vortex for divergence
cleaning using the di↵erence and symmet-
ric operators of r ·B. There is no signifi-
cant distinction between the two.
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Figure 3.16: Magnetic energy as a function
of time in the Orszag-Tang vortex test. Us-
ing the symmetric form of r ·B for diver-
gence cleaning leads to a 10% reduction in
magnetic energy by t = 0.5 compared to
the other schemes.
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Figure 3.17: Average (left) and maximum (right) divergence error in the Orszag-Tang vortex
problem, varying the damping parameter �

 

. The best results are obtained with values ⇠
0.2� 0.3.
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Figure 3.18: Density of the Orszag-Tang vortex at resolutions of 128⇥148, 256⇥296, 512⇥590,
and 1024⇥1182 particles (left to right), with comparison to results obtained using the Athena
code for 10242 grid cells (far right). As the resolution is increased, high density islands begin
to form which is also observed in results from the Athena code.

3.4.5.5 Resolution study

Finally, the Orszag-Tang vortex test was performed for a series of increasing resolution: 128⇥
148, 256⇥ 296, 512⇥ 590, and 1024⇥ 1182 particles. Divergence cleaning, without resistivity,

was used for all cases. The densities of these runs at t = 1.0 are shown in Figure 3.18, along

with results obtained using the Athena code (Stone et al., 2008) with 10242 grid cells. In the

largest resolution case, high density islands begin to form in the solution. These features arise

from the tearing mode instability of non-ideal MHD (Furth et al., 1963), caused by magnetic

reconnection along a current sheet. They are also exhibited in the results from the Athena

code, and can be seen at lower resolutions in SPMHD when the Euler Potentials are used (see

Figure 3.13 for an example). Despite the symmetrical initial state, the islands show artificial

asymmetries resulting from momentum not being exactly conserved in SPMHD. Figure 3.19

shows the average and maximum divergence error (left and right panels, respectively). Though

the maximum error remains similar for all cases, the average is seen to decrease with increasing

resolution.

3.4.6 Three dimensional divergence advection

We now turn to 3D tests, beginning with a three dimensional generalisation of the divergence

advection problem. In particular, we wish to determine the optimal values for �
 

when the

divergence waves propagate in three dimensions rather than two.

3.4.6.1 Setup

The principle of the test remains similar to 2D versions, except a cubic volume of fluid is used

in the region x, y, z 2 [�0.5, 1.5]. The initial velocity field is extended to v = [1, 1, 1] to add

drift in the z-direction. The magnetic field remains as previously, B
z

= 1/
p
4⇡, with a spherical

perturbation introduced to the x-component of the field as given by Equation 3.25, except now
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Figure 3.19: Average (left) and maximum (right) divergence error in the Orszag-Tang vortex
at resolutions of 128 ⇥ 148, 256 ⇥ 296, 512 ⇥ 590, and 1024 ⇥ 1182 particles. The maximum
divergence error remains similar for the di↵erent resolutions, but the average divergence error
decreases with increasing resolution.
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Figure 3.20: Average and maximum divergence error in the 3D advection test for varying
strengths of the damping parameter, �

 

. The best results are obtained for �
 

⇠ 0.8–1.2.

using r =
p
x2 + y2 + z2. The radial extent r0 = h is chosen to mimic a divergence error at the

resolution scale. The density and pressure remain unchanged, with ⇢ = 1, P = 6, and � = 5/3.

The problem is set up on a cubic lattice with 503 particles.

3.4.6.2 Optimal values of the damping parameter

This test was performed for �
 

2 [0.2, 1.2] with results of the average and maximum divergence

given by Figure 3.20. The optimal cleaning is obtained for �
 

⇠ 0.8–1.2, which di↵ers from the

optimal values obtained for the 2D tests of �
 

⇠ 0.2–0.3. This is attributed to the hyperbolic

wave spreading over a volume instead of an area, thus being more e↵ective than in our 2D tests,

and therefore requiring a higher value of �
 

to achieve critical damping.
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3.4.7 Gravitational collapse of a magnetised molecular cloud core

Our most complex test is drawn from our intended application: simulations of star formation

that involve magnetic fields (Price et al., 2012). These simulations follow Price and Bate (2007),

where an initial one solar mass sphere of gas with uniform magnetic field in the z-direction

and in solid body rotation contracts under self-gravity to form a protostar with surrounding

disc. However, at times near peak density, the magnetic field in the dense central region

becomes strong and can produce high divergence errors. This has limited the range of initial

magnetic field strengths which could be simulated, as if the divergence grows too large, the

tensile instability correction term injects enough momentum into the system to erroneously

eject the protostar out of its disc (Price and Federrath, 2010b). Thus, this simulation proves

an excellent demonstration of the capabilities of the constrained hyperbolic divergence cleaning

method to reduce divergence errors in realistic, 3D simulations.

3.4.7.1 Setup

This simulation uses the code, sphNG. The sphere of gas has radius R = 4 ⇥ 1016cm with

uniform density ⇢ = 7.43⇥10�18 g cm�3 and is set in solid body rotation with ⌦ = 1.77 ⇥ 10�13

rad s�1. A barotropic equation of state is used, as described in Price and Bate (2007). The

magnetic field strength is set to give a mass-to-magnetic flux ratio of 5 times the critical value

for magnetic fields to provide support against gravitational collapse. To avoid edge e↵ects with

the magnetic field, the sphere is embedded in a periodic box of length 4R containing material

surrounding the sphere set in pressure equilibrium with density ratio 1:30. This test uses only a

minimal amount of resistivity, with ↵
B

2 [0, 0.1]. Self-gravity is simulated using a hierarchical

binary tree where each node contains mutual nearest neighbours (Benz et al., 1990), with

gravitational force softening using the SPH kernel as described by Price and Monaghan (2007).

The free fall time is ⇠ 24000 years. A sink particle (Bate et al., 1995) is inserted once the gas

density surpasses ⇢sink = 10�10 g cm�3, and accretes particles within a radius of 6.7 AU. The

mass and momentum of accreted particles are added to the sink particle, but no information is

retained about the magnetic field.

3.4.7.2 Results

Figure 3.21 shows column density comparisons of simulations with (right) and without (left)

divergence cleaning at t = 1.1 free fall time, showing that drastic improvements to the results

are obtained by incorporating divergence cleaning. Most importantly, the protostar remains

stable in its disc. The average and maximum divergence error are both reduced by roughly

an order of magnitude (Figure 3.22), and this leads to a corresponding improvement in the

momentum conservation of around two orders of magnitude (Figure 3.23).
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Figure 3.21: Renderings of the column density of the star formation simulation at t = 1.1
free fall times. The simulation without cleaning (left) su↵ers a dramatic loss of momentum
conservation (c.f. Figure 3.23) induced by high divergence errors (c.f. Figure 3.22). By contrast,
the simulation with our new divergence cleaning scheme applied (right) remains stable and
launches a steady, collimated outflow (Price et al., 2012).
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Figure 3.22: Average divergence error as
a function of time for the star formation
simulation, which shows that adding diver-
gence cleaning reduces the divergence error
by an order of magnitude.
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Figure 3.23: Magnitude of the total linear
momentum in the star formation simula-
tion. The system initially has zero net mo-
mentum, which increases due to the mag-
netic tensile instability correction and tree-
based gravitational forces. After the pro-
tostar forms (t = 1), the momentum con-
servation in the divergence cleaning case is
improved by two orders of magnitude over
the control case.



Chapter 3. Constrained hyperbolic divergence cleaning 59







       
































       






















Figure 3.24: Average and maximum divergence error in the star formation simulation, varying
the damping parameter in the range �

 

2 [0.2, 1.2]. The best results are obtained with �
 

⇠
0.8–1.2.

3.4.7.3 Optimal sigma values

This simulation was repeated for several values of the damping parameter in the range �
 

2
[0.2�1.2], with the results on average and maximum divergence error presented in Figure 3.24.

Optimal results were obtained for �
 

⇠ 0.8–1.2, which agrees with values found for the 3D

advection test (Section 3.4.6.2).

3.4.7.4 Inclusion of the 1
2 (r · v) term

Adding 1
2 (r · v) to the evolution equation for  was motivated by energy conservation con-

siderations, but the resulting question is what e↵ect this has on divergence cleaning. The star

formation simulation represents the ideal test case with which to examine this, with a large

r · v present due to the gravitational collapse of the gas. We have performed this simulation

both with and without this term, using �
 

= 0.8, and found no distinguishable di↵erence in

the linear momentum, and average and maximum h|r · B|/|B| profiles. Similar results were

obtained also found in the other tests. We conclude that, although this term is necessary for

strict energy conservation, it has almost zero e↵ect on the e↵ectiveness of the cleaning scheme.

3.4.8 Magnetised Mach 10 turbulence

To fully investigate the importance of the 1
2 (r · v) term, we turn to ‘turbulence in a box’

simulations of driven, magnetised, Mach 10 turbulence. Such a calculation will have many

interacting shocks, and for this calculation, produces density variations up to 1000⇥ the initial

density. There is substantial and continual compression and rarefaction of the gas, and as such,

is the perfect testbed to test the e↵ect of a term which includes r ·v. This test utilises the same

simulation setup as in Section 4.2.6, with the full details and a comparison of results between

SPMHD and grid-based methods presented in Chapter 5.
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Figure 3.25: Average and maximum divergence error in the magnetised, Mach 10 turbulence
calculation with and without the 1

2 (r·v) term in the  evolution equation. No distinguishable
di↵erence is present between the calculations, and we conclude that this term is not important
for the e↵ectiveness of the cleaning method.

3.4.8.1 Setup

The system is set in a periodic box of unit length, L = 1. The initial density is uniform ⇢ = 1,

and the initial velocity is v = 0. The initial magnetic field is set B
z

=
p
2⇥10�5. The equation

of state is isothermal, P = cs⇢, with cs = 1. The resolution is 1283 particles. The Morris and

Monaghan (1997) switch for artificial viscosity has been used, along with the artificial resistivity

switch developed in Chapter 4.

The turbulence is stochastically driven at large scales (1 < k < 3, peaked at k = 2) by

a force obtained from the Ornsetin-Uhlenbeck process (Eswaran and Pope, 1988; Federrath

et al., 2010). This keeps the turbulence in a statistical steady state at rms velocity Mach 10

(M = 10). The autocorrelation time of the driving motion is one turbulent turnover time,

tc = L/(2Mcs). The turbulence is driven using using only the solenoidal component of the

driving force, obtained through construction in Fourier space.

The calculations have been run both with and without the 1
2 (r ·v) term in the divergence

cleaning. Both calculations use �
 

= 1.0.

3.4.8.2 Results

Figure 3.25 shows the average and maximum h|r · B|/|B| over a period of 40tc. No distin-

guishable di↵erence is found in the average and maximum divergence error. As with the star

formation calculation, we conclude that the inclusion of this term does not improve the e↵ective-

ness of the cleaning and is not needed for stability. Even in the presence of strong compression

and rarefaction of the gas, this term has no practical e↵ect on the cleaning method.
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3.5 Enhancing the cleaning method

The constrained implementation of mixed hyperbolic/parabolic divergence cleaning only ap-

proximately upholds the divergence-free constraint on the magnetic field. The maximum ef-

fectiveness of the cleaning is limited by the explicit timestep constraint, as it must obey the

Courant condition in order to ensure stability of the hyperbolic waves. In the following section,

we investigate two approaches to enhance the e↵ectiveness of the cleaning method, in particular

demonstrating how the method can be used to achieve r ·B = 0.

3.5.1 Over-cleaning

The simplest approach to improve the e↵ectiveness of the cleaning is to increase ch. Introduc-

ing a factor, fovc � 1, the cleaning wave speed is adjusted to ch ! fovcch. This requires a

corresponding reduction in timestep according to �t ! �t/fovc. We call this method ‘over-

cleaning’.

This incurs a significant computational cost as the full simulation is slowed down by a

commensurate amount to the over-cleaning factor. If 10 times over-cleaning is used, then the

simulation will run 10 times slower. This sacrifices the cheap computational cost of hyperbolic

divergence cleaning, however the simplicity of this approach has found practical use by Bate

et al. (2014b) who used 30⇥ over-cleaning to reduce divergence errors in their simulations of

protostar formation.

3.5.2 Sub-cycling

The second approach investigated is to cycle the cleaning equations in-between timesteps. After

each timestep, the errors introduced into the magnetic field are removed by running the cleaning

equations in isolation. The dynamics of the simulation halted during the sub-cycles. This is

similar to the ‘static cleaning’ tests in Section 3.4.2 and 3.4.3.

This approach is significantly cheaper in computational expense compared to over-cleaning.

It does not slow the evolution of the system down (timestep size remains as normal). Since the

particle positions remain static during the sub-cycles, only one neighbour search is required to

be performed at the start of the iterations.

A second advantage is that sub-cycling allows for the continual cleaning of the magnetic

field until the error falls below a desired tolerance. This guarantees the divergence error to be

below that tolerance at all times.

Implementing sub-cycling with individual timesteps requires special consideration. Consider

the situation of a subset of particles which are ‘active’, surrounded by particles which are

‘inactive’. If sub-cycling is run on just the active set of particles, then the magnetic field near

the boundary between the two sets of particles may be become distorted as the cleaning is

unable to remove the errors on the adjacent inactive particles. Running sub-cycling on the full

system is expensive (especially if the active regions constitute only a tiny fraction of the full
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system). One approach would be to perform iterations in a hierarchy according to the timestep

bins. The particles on the smallest timestep bin could be cleaned every iteration, the particles

on the second smallest timestep bin are cleaned every second iteration, and so on.

3.5.3 Numerical tests

Our tests compare the e↵ectiveness of over-cleaning and sub-cycling. To allow direct compar-

ison, sub-cycling is run for a fixed number of iterations so that it compares more directly to

over-cleaning. However, tests are also performed where sub-cycling is run with a tolerance on

the average h|r ·B|/|B|. Following these tests, we consider a ‘static’ test of an evolved state

of the Orszag-Tang vortex where the optimal value of �
 

in the damping term for sub-cycling

is investigated. We will show that sub-cycling is able to clean the magnetic field all the way to

r ·B = 0.

3.5.3.1 Orszag-Tang vortex

The e↵ectiveness of over-cleaning and sub-cycling is investigated using the Orszag-Tang vortex.

The initial state of the problem is described in Section 3.4.5. For these tests, we used 5122

particles arranged on a square lattice. In all cases, artificial resistivity is applied using the new

resistivity switch described in Chapter 4.

The vortex is simulated using 10, 20, and 100⇥ over-cleaning (fovc = 10, 20, and 100)

and sub-cycling with 10, 20, and 100 iterations (9, 19, and 99 between timesteps plus the

cleaning performed on the system timestep). These are intended to provide an overall level

of cleaning that is comparable between the two approaches. A calculation using ‘normal’

hyperbolic divergence cleaning (with �
 

= 0.3) is included to act as a reference.

Figure 3.26 shows the average divergence error in the system, showing that over-cleaning

and sub-cycling yield similar average divergence error when the over-cleaning factor and number

of sub-cycling iterations are equal. Each factor of 10 increase in the over-cleaning factor and

iteration count yield approximately half an order of magnitude decrease in average divergence

error.

The computational expense of the over-cleaning and sub-cycling calculations is given in

Table 3.1. Over-cleaning is almost directly proportional to the over-cleaning factor used, with

10⇥ over-cleaning corresponding to 12⇥ increase in computation time. On the other hand, 10

iterations of sub-cycling only increases computation time by 3.4⇥. Overall, sub-cycling is ⇠ 4–5

times more computationally e�cient than over-cleaning.

Additional simulations were performed where sub-cycling was run until the average diver-

gence error was below 0.1%, 0.05%, and 0.02%. There was no limit placed on the number

of iterations. Figure 3.27 shows the average divergence error is maintained at the specified

tolerance.

The number of iterations per sub-cycle step is given in the second panel of Figure 3.27.

The 0.1% average error case requires no iterations until late in the simulation, and then only
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Figure 3.26: The Orszag-Tang vortex with 10, 20, and 100⇥ over-cleaning and 10, 20, and 100
iterations of sub-cycling. Over-cleaning and sub-cycling have similar results when the over-
clean factor and iteration count are the same. Each factor of 10 increase in the over-cleaning
factor and sub-cycling iteration count yield half an order of magnitude reduction in average
divergence error.

Table 3.1: Computational Cost of Over-cleaning and Sub-cycling

Calculation cpu hours Relative expense
Normal cleaning 17.6 1.0⇥
10⇥ over-cleaning 212.5 12.1⇥
20⇥ over-cleaning 460.3 26.2⇥
100⇥ over-cleaning 1956.0 111.1⇥
10⇥ sub-cycling 60.0 3.4⇥
20⇥ sub-cycling 96.5 5.5⇥
100⇥ sub-cycling 372.3 21.2⇥

0.1% tolerance sub-cycling 25.3 1.4⇥
0.05% tolerance sub-cycling 34.7 2.0⇥
0.02% tolerance sub-cycling 125.1 7.1⇥
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Figure 3.27: The average divergence error in the Orszag-Tang vortex when sub-cycling is used
to keep the average error below 0.1%, 0.05%, and 0.02%. The right panel shows the number
of iterations required per timestep. The large peak in the 0.02% tolerance case at t ⇠ 0.15 is
due to the particles breaking o↵ their initial lattice arrangement, requiring ⇠ 1000 iterations
for this case to treat.

an extra 1 or 2 per timestep. The 0.05% average error case is under 10 iterations at all time.

However, the 0.02% average error case requires ⇠1000 iterations early when the particles first

break o↵ their initial lattice arrangement (t ⇠ 0.15), after which 20–40 iterations are performed

on average. A simulation was performed where the tolerance on average divergence error was

set to 0.01%, but this caused a prohibitive number of iterations at t ⇠ 0.15 (> 105 iterations).

It would be advisable to impose a maximum number of iterations to prevent such situations

from stalling the calculation.

We note that no high density islands form in any of the over-cleaning or sub-cycling calcu-

lations. These features appeared in the 512 ⇥ 590 particle calculation using Euler Potentials

(Figure 3.13), as well as the high resolution 1024 ⇥ 1182 particle divergence cleaning calcula-

tion from Figure 3.18 and the Athena calculation in the same figure. They do not appear in

the 20482 particle calculations performed in Section 4.2.5, despite being even higher resolution.

The di↵erence in the 20482 particle calculations is they included an artificial resistivity, whereas

the 1024 ⇥ 1182 particle calculation did not. The formation of these features is related to the

tearing mode instability of non-deal MHD (Furth et al., 1963), whereby magnetic reconnection

causes magnetic islands to form along current sheets. Thus, these features are related to the

dissipation of the magnetic field, not from divergence errors in the magnetic field, though are

sensitive to the degree of resistivity present. For example, they form in the 1024⇥1182 particle

calculation when no artificial resistivity is applied, yet do not form in the higher resolution

20482 calculation when a minimal amount of artificial resistivity is present. They form in the

512 ⇥ 590 particle Euler Potentials calculation, yet do not appear in the over-cleaning and

sub-cycling calculations of similar resolution (but which contain artificial resistivity).
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Figure 3.28: Comparing values of �
 

in the damping parameter to obtain an optimal value
for sub-cycling, with the left panel for 105 iterations and right panel the first 5000. Short
wavelength errors are quickly removed using �

 

= 0.3 (right panel), though performs poorly at
removing slowly long wavelength modes (left panel). Using �

 

= 0.03, though initially worse
at reducing divergence error, is found to remove long wavelength errors in the shortest number
of iterations.

3.5.3.2 Static test: cleaning to r ·B = 0

The tolerance on average divergence error may be set arbitrarily low when performing sub-

cycling, and it is possible to achieve r ·B = 0 as we will show.

For this test, we take the t = 1 evolved state of the Orszag-Tang vortex from the reference

calculation in Section 3.5.3.1, and perform sub-cycling for 105 iterations. Figure 3.28 shows

the average divergence error versus iteration count for a set of calculations varying the �
 

parameter in the damping term. Our results show that r · B = 0 is achievable to arbitrarily

small precision in SPMHD, provided a su�cient number of iterations are performed.

The calculations requiring the minimum number of iterations to reach average divergence

error below 10�15 are the �
 

= 0.02–0.03 cases (⇠ 104 iterations). These �
 

values are 10⇥
smaller than the optimal value of �

 

found during the testing of the divergence cleaning method

(0.03 to 0.3). The �
 

= 0.3 case still has not reached < 10�15 average divergence error after

105 iterations. This di↵erence may be understood through the di↵ering rates on the removal of

small and long wavelength errors. The right panel of Figure 3.28 shows the first 5000 iterations

of these set of calculations, which shows that �
 

⇠ 0.3 provides the most rapid reduction of

divergence error for the first ⇠ 300 iterations. Divergence error is introduced into the system

at small wavelengths, which this level of damping is most e↵ective at removing (and hence is

optimal when the system is evolving and continually injecting divergence error). However, the

reduction of average divergence error slows significantly after ⇠ 300 iterations because at that

stage, only large wavelength errors remain which slowly decay. While �
 

⇠ 0.03 is initially

worse, the hyperbolic waves are allowed to propagate more e↵ectively, averaging the errors
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throughout the system, which in turn allows the di↵usion term to become more e↵ective at

reducing the long wavelength modes.

To investigate this further, we performed a calculation using a static snapshot of the Orszag-

Tang vortex where cleaning was performed each iteration using a range of damping values

between �
 

2 [0.01, 0.4], with the value of �
 

that yielded the largest reduction in divergence

error being accepted and the magnetic field evolved one step with that value. This process

was repeated each timestep, with the aim of mapping out the optimal values of �
 

for high

numbers of iterations. It was found that the �
 

oscillated each iteration below the maximum

value (0.4) and the minimum value (0.01) for ⇠ 500 iterations, then remained at �
 

= 0.01

for ⇠ 500 iterations, with this pattern repeating. It initially yielded reduction of divergence

error on par with the fixed �
 

= 0.3 case, with long-term reduction similar, but not as rapid,

as the fixed �
 

= 0.03 case. Considering these results, it would be best to run sub-cycling with

fixed �
 

= 0.3 for several hundred iterations to remove short wavelength errors, then switch to

�
 

= 0.03 for the reduction of long wavelength errors.

We also make note that the choice of time integration scheme is important when taking

> 103–104 iterations. The errors introduced from Euler integration can become significant over

this many iterations, corrupting the magnetic field. Leapfrog integration may be implemented

with a predictor step for  (as it depends upon both itself and B) in a manner similar to

Section 2.2.12. It does require derivative evaluations of r (for dB/dt) and r ·B (for d /dt)

to occur out of phase with each other. The tests performed here use a second order Runge-Kutta

scheme, which we find to be adequate.

3.6 Velocity divergence cleaning for weakly compressible SPH

Incompressible fluids are divergence-free in the velocity field, thus approaches utilised to satisfy

the magnetic divergence constraint can be adapted to work with the velocity divergence con-

straint. A popular method is incompressible SPH (ISPH), which uses a projection method to

construct a divergence-free velocity field via the solution of a Poisson equation (Cummins and

Rudman, 1999). Another is weakly compressible SPH (WCSPH), where, rather than directly

ensure the velocity field is divergence-free, a sti↵ equation of state is used to limit density vari-

ations. Both have advantages and disadvantages, as highlighted in the comparison of Lee et al.

(2008). In short, WCSPH is simple to program, but ISPH tends to produce smoother velocity

and pressure fields. ISPH has the computational expense of solving an elliptic equation, but

WCSPH is also expensive because its high sound speed produces small timesteps due to the

Courant condition. ISPH is known to produce numerical instability if particle distributions

become highly disordered, though there have been attempts to modify ISPH to fix this issue

(Shao and Lo, 2003; Hu and Adams, 2007; Lind et al., 2012). Xu et al. (2009) tested and

compared a number of ISPH approaches.

In this section, the constrained hyperbolic divergence cleaning method is adapted for use
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on the velocity field, and test its e↵ectiveness at reducing density variations in the weakly

compressible approximation (see also Tricco and Price, 2012b).

3.6.1 Weakly compressible SPH

A common method for modelling incompressible fluid behaviour with SPH is to use a sti↵ equa-

tion of state with the standard Lagrangian SPH formulation. This sacrifices true incompress-

ibility for simplicity of implementation. However, this does not imply computational e�ciency

as the high speed of sound (⇠ 10⇥ maximum fluid velocity as a minimum) necessitates small

sized time steps for stability. Using the equation of state

P =
c2s⇢0
7

 ✓
⇢

⇢0

◆7

� 1

!
, (3.26)

where ⇢0 is the reference density of the fluid and cs is the sound speed, this typically results in

density variations of ⇠ 1% (Monaghan, 1994).

The equations of motion which are solved are
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In this case, we evolve the density using the SPH equivalent of the continuity equation (Equa-

tion 2.41) rather than by summation, as this can lead to sharper profiles near free surfaces.

The smoothing length of the particles is held constant, initially calculated according to Equa-

tion 2.43.

3.6.2 Hyperbolic divergence cleaning for the velocity field

Since the continuity equation relies on r · v to evolve density, minimising this quantity should

lead to improvements in the representation of incompressibility. We now construct a formulation

of divergence cleaning suitable for the velocity field. The cleaning equations to be solved are

modified to become

dv

dt
=� r 

⇢
, (3.28)

d 

dt
=� c2h⇢r · v �  

⌧
. (3.29)

As the intended application is for incompressible fluids, we assume throughout this section that

the density is uniform and constant. Equations 3.28 and 3.29 still combine to produce the

equivalent of the damped wave equation of Equation 3.3.

We follow a procedure in step with that of Section 3.2. Consider the closed system of

equations given by Equations 3.28 & 3.29. The total energy of this velocity-cleaning subsystem
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is

E =

Z 
v2

2
+ ẽ

 

�
⇢dV, (3.30)

where ẽ
 

is the energy of the  field. Constraining the energy of this subsystem to be conserved

implies
dE

dt
=

Z 
v · dv

dt
+ �

d 

dt

�
⇢dV = 0, (3.31)

where � is an unspecified variable to be determined. Inserting Equation 3.28 and 3.29 yields

Z 
�v · r 

⇢
� �c2h⇢r · v

�
⇢dV = 0. (3.32)

Integrating the first term by parts, we obtain

Z 
 

⇢
� �c2h⇢

�
(r · v)⇢dV +

Z

s

 v · dŝ = 0, (3.33)

which leads to � =  /c2h⇢
2 and hence

ẽ
 

=
 2

2c2h⇢
2
. (3.34)

Using this energy term in Equation 3.30 will yield d⇢/dt terms, but we neglect the addition of

these terms under the assumption of incompressibility.

3.6.3 Discretised hyperbolic velocity divergence cleaning

With the appropriate energy term for this cleaning system, the constrained SPH implementation

may be constructed. We clean using the same r ·v operator as in the continuity equation, that

is,

r · v
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The SPH discretised version of Equation 3.30 is
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Di↵erentiating with respect to time and using Equations 3.29 and 3.35, we obtain
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By splitting the RHS into two halves, swapping summations on one half, then combining, it is

concluded that
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Figure 3.29: Snapshots of the oscillating water drop test. The circular drop has an initial
velocity which squeezes it into an elliptical shape along the y-axis. A radial force is present
which halts the expansion of the drop, then contracts it to its original shape before expanding
along the opposite axis. This behaviour repeats causing the drop to oscillate alternately along
the two axes.
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Figure 3.30: Average r · v of the elliptic
water drop test. Average velocity diver-
gence is reduced by approximately an order
of magnitude when divergence cleaning is
applied.
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Figure 3.31: Maximum density variation
during the elliptic water drop test. Apply-
ing divergence cleaning to the velocity field
reduces density changes from the reference
density by ⇠ 0.5.

As before, conjugate operators for r · v and r become imposed. In addition to exactly

conserving energy, this form for r also conserves momentum. The evolution equation for  is
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3.6.4 Oscillating water drop test

To investigate the e↵ectiveness of our velocity cleaning algorithm, it is applied to an oscillating

elliptic water drop. The water drop is initially circular and is free standing. A radial force

is exerted upon it, and with an initial velocity which is compressional along one axis, the

drop oscillates, squeezing alternately along the two axes. This behaviour is demonstrated in

Figure 3.29.
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Figure 3.32: Total kinetic energy of the elliptic water
drop test. No significant discrepancies exist between the
control and divergence cleaned tests.

The drop is modelled using the weakly compressible approximation (Equations 3.27 and

2.41 with Equation 3.26 as the equation of state). The reference density is ⇢0 = 1000 kg m�2,

and the initial velocity field is v = [�100x, 100y]. The radial force is �1002r. The drop has

radius R = 1, and a total of 1976 particles are used arranged on a square lattice.

The evolution of the drop is tracked until t = 0.1, approximately two oscillation periods.

Figure 3.30 shows the average velocity divergence of the system as a function of time for both

the cleaned and uncleaned systems. Applying cleaning reduces the average divergence by nearly

an order of magnitude, similar to results obtained for magnetic field cleaning. This leads to a

reduction in maximum density error by a factor of two (Figure 3.31). The dissipation of kinetic

energy by the cleaning algorithm is insignificant, as shown in Figure 3.32.

3.7 Summary

In this chapter we have developed an implementation of Dedner et al. (2002)’s hyperbolic

divergence cleaning for SPMHD that is constrained to be numerically stable and to always

decrease the magnetic energy (see also Tricco and Price, 2012a). To achieve this, we first

defined the energy associated with the scalar  field (Section 3.2.2). This term was used to

show that when the density varies over time, the evolution equation of  should be modified to

include a �1
2 (r · v) term in order to conserve energy.

In Section 3.3.2 we derived an energy conserving formulation of divergence cleaning for

SPMHD. By using the  energy term, we showed that if a di↵erence operator is chosen to

discretise r ·B in the d /dt equation, then the conjugate, symmetric operator for r should

be used (Section 3.3.2.1). Similarly, with symmetric r ·B, di↵erence r should be used in the

induction equation (Section 3.3.2.2). Use of conjugate operators was found to be the key to a

numerically stable formulation. In Section 3.3.2.3, we presented the correct SPMHD form of
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the �1
2 (r · v) term, and in Section 3.3.3, demonstrated that parabolic damping will always

lead to negative definite changes of energy.

Tests of our constrained hyperbolic divergence cleaning were presented in Section 3.4. The

selection of tests were for both 2 and 3D, and were designed to evaluate our method in isolation

using simple, idealised systems and also in more realistic applications. Our idealised 2D tests

consisted of a divergence advection test (Section 3.4.1), and variants involving a density jump

(Section 3.4.2) and free boundaries (Section 3.4.3). The more complex 2D tests were an MHD

blast wave (Section 3.4.4) and the Orszag-Tang vortex (Section 3.4.5). A version of the diver-

gence advection test extended to 3D was used in Section 3.4.6. Results from the gravitational

collapse of a molecular cloud core, representing our most challenging test case and a gauge of

divergence cleaning applied to “real” applications, were presented in Section 3.4.7. Calculations

of magnetised, supersonic turbulence were examined in Section 3.4.8. From the results of these

tests, we draw the following conclusions:

i) Constrained hyperbolic/parabolic divergence cleaning provides an e↵ective method of

maintaining the divergence constraint in SPMHD, typically maintaining the average h|r ·
B|/|B| to between 0.1–1%.

ii) The constrained formulation using conjugate operators for r · B and r is stable at

density jumps and free boundaries, in contrast to previous implementations.

iii) We strongly recommend cleaning using the di↵erence operator for r ·B. Cleaning using

the symmetric operator was not found to provide any advantage over the di↵erence oper-

ator in terms of momentum conservation and was found to dissipate physical components

of the magnetic field as well as the divergence error.

iv) Constrained divergence cleaning is more e↵ective than artificial resistivity at reducing the

divergence error, and still reduces the divergence error further when used in combination

with resistivity.

v) Divergence cleaning can provide an improvement of up to two orders of magnitude in

momentum conservation when applied to realistic, 3D simulations.

vi) Optimal values for the damping parameter �
 

were found to be �
 

= 0.2–0.3 in 2D and

�
 

= 0.8–1.2 in 3D for all of the test problems considered in this thesis.

vii) Addition of the �1
2 r · v term to the d /dt equation, while necessary for strict energy

conservation of the hyperbolic cleaning equations, was found to have no noticeable e↵ect

even when the gas is strongly compacted, such as in simulations of star formation and

magnetised, Mach 10 turbulence.

viii) We found numerical artefacts in several problems when subtracting only �1
2B(r · B)

in the momentum equation to counteract the tensile instability. Instead, we strongly

recommend using the full �B(r ·B) correction.
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Two approaches were investigated to enhance the cleaning method in Section 3.5: Over-

cleaning, where the cleaning wave speed is explicitly increased with a corresponding decrease

in the size of the timestep, and sub-cycling, where the cleaning equations are solved in isola-

tion between timesteps. Both reduce the average divergence error, yielding half an order of

magnitude reduction per factor of ten increase in wave speed or number of sub-cycle iterations.

Sub-cycling is able to keep average divergence error below a specified tolerance at all times, and

it was shown that given enough iterations, the divergence error may be reduced to arbitrarily

low limits. It was found that high number of iterations (> 300), using �
 

= 0.03 is optimal to

reduce long wavelength errors.

In Section 3.6, we constructed cleaning equations for the velocity field for use in weakly com-

pressible SPH simulations (see also Tricco and Price, 2012b). The velocity divergence cleaning

equations conserve energy and momentum. When the velocity field was cleaned in weakly com-

pressible SPH simulations of an oscillating water drop, density variations were reduced by half,

with negligible kinetic energy dissipation. Though these results are encouraging, additional

work is required, in particular, for cases involving boundary particles.

In summary, our constrained hyperbolic divergence cleaning scheme is a robust and e↵ective

method for enforcing the divergence constraint in SPMHD simulations, providing a pathway to

accurate simulation of a wide range of magnetic phenomena in astrophysics and beyond.
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Chapter 4

A switch to reduce resistivity

Magnetised shocks and discontinuities pervade the interstellar medium (Elmegreen and Scalo,

2004; Gaensler et al., 2011). Capturing these properly in numerical simulations is critical

to accurately predicting the formation of stars from turbulent, magnetised, molecular clouds

(Federrath and Klessen, 2012), and this necessitates adding numerical dissipation to simulations.

On the other hand, estimates of the microscopic viscosity and resistivity in the interstellar

medium suggest very high values of the kinematic and magnetic Reynolds numbers, respectively,

typically orders of magnitude higher than can be achieved in numerical codes (c.f. Elmegreen

and Scalo, 2004). Thus, it is important to minimise numerical dissipation in simulation codes.

This is typically done by improving the shock capturing scheme so that dissipation away from

shocks is reduced, though the Reynolds number near the shock may still be decreased.

The usual approach to shock-capturing in SPH is to treat discontinuities in fluid variables

by adding dissipation terms which smooth the variable across sharp jumps in order to resolve

the discontinuity (Section 2.2.10). Artificial viscosity for treatment of hydrodynamic shocks

was developed by Monaghan and Gingold (1983). In this work, we use the form of artificial

viscosity by Monaghan (1997), developed by analogy with Riemann solvers (Section 2.2.10.1).

In SPMHD, an artificial resistivity for the magnetic field is included to capture magnetic shocks

and discontinuities (i.e., current sheets) (Section 2.2.10.2). However, the choice of signal velocity

in the artificial resistivity is less clear than for the artificial viscosity. Ideal MHD has three wave

solutions but without reconstructing the full Riemann state it is not possible to determine the

type of shock. Thus, this is typically chosen to be the speed of the fast MHD wave. Since this

is rather dissipative, Price (2012) instead suggested using the averaged Alfvén velocity as the

choice of signal velocity (though see Section 4.2.6)

A switch may be employed for ↵B to reduce dissipation away from shocks. Price and

Monaghan (2005) (PM05) suggested a switch based on analogy with Morris and Monaghan

(1997) (see Section 2.2.11.2). This switch works satisfactorily for many problems, leading to

sharper jump profiles and a decrease in the overall dissipation of the magnetic field. However,

Price et al. (2012) noted in their star formation simulations that, even with this switch, excess

dissipation could suppress the formation of protostellar jets.
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Our need for a new resistivity switch is motivated by the failure of the PM05 switch in the

limit where the Alfvén speed is much smaller than the sound speed, as will be shown in section

4.2.6. Since ↵B / |r⇥B| (assuming r ·B is negligible), this means that ↵B is related to the

magnitude of the magnetic field. Thus, for weak fields ↵B may remain quite small even in the

presence of strong shocks.

In this chapter, we present a new switch for ↵B that captures shocks in the magnetic field in

both weak and strong fields. This addresses the deficiencies of the previous switch and results in

less overall dissipation of magnetic energy. The chapter is organised as follows: In Section 4.1,

the new resistivity formulation and implementation is described. Section 4.2 contains a suite of

tests designed to test the e�cacy of the new switch and to compare results against the previous

switch. Section 4.3 extends the concept of the switch to develop switches for artificial viscosity

and thermal conductivity. Results are summarised in Section 4.4.

4.1 Formulation

Our approach is to utilise rB, the 3⇥ 3 gradient matrix of B, as the shock indicator. For each

particle, ↵B is directly set to the dimensionless quantity

↵B,a

=
h
a

|rB
a

|
|B

a

| . (4.1)

This is artificially restricted to the range ↵B 2 [0, 1] so that zero dissipation is applied in regions

away from discontinuities.

By using the norm of the gradient of the magnetic field normalised by the magnitude of

the magnetic field, the dependence on magnetic field strength is removed and this gives a

relative measure of the strength of the discontinuity. This allows shocks and discontinuities to

be robustly detected in both the weak and strong field regimes. It naturally produces values

of ↵B in the desired range and of the appropriate size for the discontinuity encountered, with

regions away from shocks having negligible ↵B values.

The numerical dissipation of the magnetic field in regions away from shocks should scale

quadratically with resolution when using this switch. Consider a magnetic field which has a

linear gradient, that is rB is constant and resolution independent. It is clear then that the

switch is proportional to the resolution length, that is, for example, ↵B will decrease by half

when the resolution is doubled (h is halved). Since artificial resistivity itself scales linearly

with resolution, as is evident from Equation 2.95, it is clear that using Equation 4.1 will yield

artificial resistivity that scales quadratically.

The switch produces the same ↵B values for multiplicative increases in magnetic field

strength, important for dynamo-type problems where the magnetic field grows in strength.

This represents a significant advantage over the PM05 switch. Additive increases to the mag-

netic field, however, will yield di↵erent values of ↵B, and using this switch in relativistic contexts
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would require further consideration.

An obvious issue is what happens when |B| ! 0. This situation occurs in current sheets or

null points where the magnetic field undergoes a reversal in direction. In these cases, ↵B ! 1,

which is the correct behaviour for current sheets since they represent a discontinuity in the

magnetic field, but is not so for null points. Dividing by zero can be avoided by adding a small

parameter ✏ to |B|.

4.1.1 Implementation

Each component of the gradient matrix is estimated using a standard SPH first derivative

operator (e.g., Equation 2.58),

rB
a

⌘ @Bi

a

@xj
a

= � 1

⌦
a

⇢
a

X

b

m
b

(Bi

a

�Bi

b

)rj

a

W
ab

(h
a

). (4.2)

This operator yields an estimate which is exact for constant functions. We also investigated

using an operator that is exact for linear functions, which may be obtained by performing a

Taylor series expansion about r
a

and solving a matrix inversion of the second error term (see

Section 2.2.3). However, no di↵erence was found for any of the tests shown in this thesis,

suggesting that this is unnecessary.

The norm of rB is calculated using the 2-norm,

|rB| ⌘
vuut
X

i

X

j

����
@Bi

a

@xj
a

����
2

. (4.3)

Several choices for computing this norm were investigated, such as the 1-norm, but no significant

di↵erences were found.

We investigated using the curl of the magnetic field as the shock indicator. While tests

found it to be just as e↵ective at detecting isolated shocks, we found that it did not measure

discontinuities as well as the full gradient in complicated shock interactions. The full gradient

has further advantage in that the trace of the matrix produces the divergence of the field,

meaning that dissipation will be applied if large divergence errors are present.

Finally, a Cullen and Dehnen (2010)-like approach was also investigated, whereby a time-

dependent decay term for ↵B was added, similar to that in other artificial viscosity switches

(Section 2.2.11.1) and the PM05 switch. In this case, ↵B was set using Equation 4.1 whenever

this exceeded the current value, otherwise the existing value was retained and subsequently

reduced on the next integration timestep using the decay term. The aim was to let ↵B smoothly

decay after a shock had passed to improve representation of the post-shock field. We found

that using Equation 4.1 alone already gives a smooth distribution in ↵B about the centre of the

shock, indicating that a decay term is not necessary for resistivity.
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4.1.2 Choice of signal velocity

Similar to Price (2012) we take the signal velocity to be an average of the wave speeds between

the two particles

vBsig = 0.5(vmhd,a + vmhd,b), (4.4)

where vmhd is an appropriate MHD wave speed. The ��v
ab

· r̂
ab

term used in the viscosity

signal velocity, which corrects for the relative velocity of the particles and prevents particle

interpenetration, is not included. We find that for resistivity it is unnecessary and causes

excessive dissipation. It may be noted that use of the averaged Alfvén speed for a signal

velocity by Price (2012) also excluded this term.

Unlike Price (2012), we find that the best choice is to use the fast MHD wave speed, as in

the original Price and Monaghan (2004a) formulation, such that

v2mhd =
1

2

�
c2s,a + v2A,a

�
+

1

2

q
(c2s,a + v2A,a

)2 � 4c2s,av
2
A,a

(B̂
a

· r̂
ab

), (4.5)

which is a composition of the sound speed, cs, and the Alfvén speed, vA = B/
p
µ0⇢. See

Section 2.1.4 for more information on MHD waves. If cs � vA, we find that Price (2012)’s

suggestion to use the Alfvén speed in the applied resistivity is insu�cient to capture fast wave

shocks (see Section 4.2.6). When vA & cs, the Alfvén speed and the fast wave speed will di↵er

by less than a factor of 2.

4.1.3 Switches using a second derivative

In principle, a switch constructed using a higher derivative should provide a more reliable

measure of the presence of a discontinuity in the magnetic field. One suggestion by Walter

Dehnen (priv. commun.) is to use ↵B = h|r2B|/|rB|. Another option could be ↵B =

h2|r2B|/|B|, which would scale quadratically with resolution.

The main di�culty in implementing higher derivative switches is calculating the second

derivative in a way which is su�ciently free of noise from particle disorder. We investigated

calculating r2B using the Brookshaw (1985) form, that is,

r2B
a

=
2

⌦
a

⇢
a

X

b

m
b

(B
a

�B
b

)
F
ab

(h
a

)

|r
ab

| , (4.6)

where rW
ab

⌘ r̂
ab

F
ab

, and also by taking two first derivatives as in Equation 4.2, which, by

taking two successive first derivatives, should lead to a more smooth estimate of the second

derivative. However, both of these simple estimates are significantly noisy when the particles

are disordered, leading to high ↵B and excessive dissipation. The M6 quintic spline kernel was

used in an attempt to reduce this noise, both by yielding a more regular particle distribution

and a more accurate derivative estimate, but did not change the results.

Therefore, a switch utilising the second derivative must use a higher order estimate in order
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to reduce noise from particle disorder, a conclusion similarly reached by Cullen and Dehnen

(2010) and Read and Hayfield (2012). The most straightforward approach is to use two exact

linear first derivatives which removes the O(h) error term by taking a Taylor series expansion

about r
a

and performing a matrix inversion of the second error term. Specifically, after first

calculating rB in such a manner, we compute

���
@rB↵�

a

@x�
=
X

b

m
b

h
(rB)↵�

b

� (rB)↵�
a

i
r�W

ab

(4.7)

to obtain r2B, where ��� =
P

b

m
b

(r
b

� r
a

)�r�W
ab

is the 3⇥ 3 matrix that must be inverted

(see Equations 2.59 and 2.60). This significantly improves the quality of the second derivative

estimate, but requires two loops over the particles prior to the main loop where the resistivity

term is calculated, meaning that it makes the overall SPMHD scheme ⇠ 1.5⇥ more expensive.

This is a hefty price to pay for a switch that only marginally improves over Equation 4.1. The

second derivative evaluation proposed by Read and Hayfield (2012) is even more expensive,

requiring a 10⇥ 10 matrix inversion, and a minimum of 400 neighbours under the kernel.

Our overall conclusion is to prefer the simple switch of Equation 4.1 for general use. It

performs robustly and e↵ectively (see Section 4.2), yet is simple to implement and cost-e↵ective.

4.2 Numerical Tests

Our choice of tests are designed to study the ability of the switch to i) properly capture and

model shock phenomena, and ii) suppress dissipation in areas away from shocks. We have

used three shocktube tests to study the former, using tests introduced by Dai and Woodward

(1994) and Brio and Wu (1988) (corresponding to tests 1B, 2A, and 5A in Ryu and Jones

(1995) (hereafter RJ95) whose naming convention we adopt). These tests contain fast and slow

shocks, fast and slow rarefactions, rotational discontinuities, and compound shock structures

and are chosen to test the switch’s ability to model all these separate shock types. We then

compare the new switch to the PM05 switch for three separate test problems: Propagation of

a circularly polarised Alfvén wave, the Orszag-Tang vortex, and Mach 10 shocks in a fluid with

an extremely weak field. The last test is of particular interest because, as will be shown, the

PM05 switch fails to recognise shocks in this weak field regime causing unphysical behaviour.

All our tests employ the constrained divergence cleaning algorithm of Chapter 3. The tests

presented here serve to further validate this scheme.

4.2.1 Shocktube 1B

The first shocktube is a 2D test from Dai and Woodward (1994) which creates fast and slow

shocks travelling in the -x direction, fast and slow rarefactions travelling in the +x direction,

with a contact discontinuity in the centre. The initial state for x < 0 (the ‘left state’) is (⇢, P ,
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Figure 4.1: Shocktube test 1B from RJ95 performed in 2D with left state (⇢, P , v
x

, v
y

, B
y

) =
(1, 1, 0, 0, 5/

p
4⇡) and right state (⇢, P, v

x

, v
y

, B
y

) = (0.1, 10, 0, 0, 2/
p
4⇡) with B

x

= 3/
p
4⇡

at t = 0.03. Black circles are the particles and the red line is the solution from RJ95.

v
x

, v
y

, B
y

) = (1, 1, 0, 0, 5/
p
4⇡), while for x > 0 (the ‘right state’) is (⇢, P, v

x

, v
y

, B
y

) = (0.1,

10, 0, 0, 2/
p
4⇡) with B

x

= 3/
p
4⇡ and � = 5/3.

For this particular test, the initial density profile was used to calculate the initial thermal

energy so that it forms a smooth transition between the two states. This mitigates the presence

of artificial pressure spikes in the initial conditions due to the high density contrast (10:1), seen

also by Hubber et al. (2013) in their studies of Kelvin-Helmholtz instabilities.

The shocktube has been simulated with 800⇥26 particles for the left state and 260⇥8

particles for the right state arranged on a triangular lattice. Artificial viscosity has been applied

with a constant ↵ = 1, as has been for subsequent shocktube tests. Results at t = 0.03 are

shown in Figure 4.1 and may be compared with the RJ95 solution for the fast and slow shock

and rarefactions (red line). The L1 error in the B
y

profile is 8.911 ⇥ 10�3. This compares to

9.547⇥ 10�3 if the shocktube is run using the PM05 switch.

For this shocktube test, it is worth noting that no di�culties were found with our divergence

cleaning algorithm. Recently, Stasyszyn et al. (2013) published a di↵erent implementation

and found that for this test it resulted in significant errors unless the cleaning was artificially

limited. Their method is equivalent to using the PM05 implementation (that is, di↵erence

operators for both r · B and r ), but with an artificial limiter that restricts corrections to

the magnetic field to remain less than local changes due to the induction equation. As we

have demonstrated in Sections 3.4.2–3.4.3, the PM05 implementation is numerically unstable

and causes amplification of divergence error at sharp density contrasts. For the sharp 10 : 1

density ratio in this shocktube, the artificial limiter used by Stasyszyn et al. (2013) inhibits the

instability from corrupting the magnetic field at the interface. Our method instead inherently
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fixes the numerical stability, without the need for artificial limiters, by formulating the cleaning

equations so that they manifestly conserve energy (see Chapter 3).

4.2.2 Shocktube 2A

This 3D problem originally introduced by Dai and Woodward (1994) has three dimensional

velocity and magnetic fields generating two fast and slow shocks travelling in both directions,

two rotational discontinuities, and a contact discontinuity in the centre. It has left state (⇢, P ,

v
x

, v
y

, v
z

, B
y

) = (1.08, 0.95, 1.2, 0.01, 0.5, 3.6/
p
4⇡) and right state (⇢, P, v

x

, v
y

, v
z

, B
y

) =

(1, 1, 0, 0, 0, 4/
p
4⇡) with B

x

= B
z

= 2/
p
4⇡ and � = 5/3.

To fully capture the 3D velocity and magnetic fields, the test has been simulated in 3D with

800⇥12⇥12 particles on the left state and 500⇥12⇥12 particles on the right state arranged on

close-packed triangular lattices. Results at t = 0.2 are presented in Figure 4.2 with all shock

features, with the red line giving the solution from RJ95. No post-shock noise in the magnetic

field is evident, indicating that the applied artificial resistivity is su�cient. The L1 error in the

B
y

profile is 3.086 ⇥ 10�3, compared to 3.358 ⇥ 10�3 if the PM05 switch is used instead, and

for the B
z

profile is 5.33⇥ 10�3 for our new switch and 6.203⇥ 10�3 for the PM05 switch.

4.2.3 Shocktube 5A

The final shocktube originates from Brio and Wu (1988). It is another 2D shocktube, however

it is of particular interest as it contains a compound shock/rarefaction structure. It has the

same initial density and pressure profile as the standard Sod shocktube (Sod, 1978), but with

the addition of a magnetic field. The left state is (⇢, P , v
x

, v
y

, B
y

) = (1, 1, 0, 0, 1) and right

state (⇢, P, v
x

, v
y

, B
y

) = (0.125, 0.1, 0, 0, -1) with B
x

= 0.75. Here we use � = 5/3 instead of

2 to follow the results of RJ95.

The shock has been simulated with 800⇥30 particles for the right state and 300⇥10 particles

for the right state. Results at t = 0.1 are presented in Figure 4.3. For this test, the Riemann

solution of RJ95 does not contain the slow compound structure, so instead we compare our

results against those from the Athena code (Stone et al., 2008) using 104 grid cells. As

previously, no post-shock noise in the magnetic field is found. The L1 error profile for B
y

is

4.231⇥ 10�3 when using our new switch, compared to 6.259⇥ 10�3 if the PM05 switch is used.

4.2.4 Polarised Alfvén Wave

We now examine the ability of the switch to reduce dissipation when no shocks are present. The

test problem used is a circularly polarised Alfvén wave travelling in a 2D periodic box, following

Tóth (2000). This is an exact solution to the ideal MHD equations, so the wave should return

to its original state after each crossing. There are no discontinuities in the magnetic field in

this test, but gradients in the magnetic field may cause the ↵B switch to activate.
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Figure 4.2: Shocktube test 2A from RJ95 performed in 3D with left state
(⇢, P , v

x

, v
y

, v
z

, B
y

) = (1.08, 0.95, 1.2, 0.01, 0.5, 3.6/
p
4⇡) and right state

(⇢, P, v
x

, v
y

, v
z

, B
y

) = (1, 1, 0, 0, 0, 4/
p
4⇡) with B

x

= B
z

= 2/
p
4⇡ at

t = 0.2. Black circles are the particles and the red line is the solution from
RJ95.
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y
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) = (0.125, 0.1, 0, 0, -1) with B
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= 0.75 at t = 0.1.
Black circles are the particles and the red line is the solution obtained with the Athena code
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The simulation is set up using 1682 particles arranged on a triangular lattice in a periodic

domain of lengths [x, y] = [1/ cos(!), 1/ sin(!)] using ! = ⇡/6 which sets the direction of wave

motion. The initial density and pressure are ⇢ = 1 and P = 0.1 with � = 5/3. The velocity

and magnetic fields parallel and perpendicular to the wave are [vk, v?] = [0, 0.1 sin(2⇡x
⇠

)],

and [Bk, B?] = [1, 0.1 sin(2⇡x
⇠

)] where x
⇠

= x cos(!) + y sin(!). Velocity and magnetic field

components oriented out of the plane are v
z

= B
z

= 0.1 cos(2⇡x
⇠

). Artificial viscosity is not

applied in this test in order to minimise dissipation of energy in the system.

The value of ↵B produced using the new switch can be calculated from the initial conditions,

which give |rB| = 0.2⇡ and |B| = 1. Thus, for a smoothing length h = 1.2�x where �x is the

particle spacing, the new switch gives ↵B ⇠ 0.02 at this resolution. By contrast, the simulations

using the PM05 switch produce maximum ↵B values approximately 10⇥ higher (0.22 vs 0.02),

meaning that in this case the PM05 switch is an order of magnitude more dissipative at t = 0.

After 6 periods, the amplitude of the wave has decayed by over 40% using the PM05

compared to only ⇠ 10% for the new switch. Although the maximum ↵B is 10⇥ higher with the

PM05 switch than the new switch, this is not reflected in the wave amplitude after 6 periods

because |rB| and the source term in the PM05 switch (Equation 2.106) are reduced as the

wave is damped. The rate of this reduction di↵ers between the two switches since the PM05

switch damps the wave more heavily.
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Figure 4.4: Results of the polarised Alfvén wave propagation test in 2D, with the exact solution
in black, and at t = 2, 4, 6 corresponding to 2, 4, and 6 periods. On the left, the PM05 switch
has been used whereas on the right the new resistivity switch has been used. The maximum
↵B values are 10⇥ higher for the PM05 switch than the new switch, and after 6 periods the
amplitude of the wave has decayed over 40% for the PM05 switch compared to only 10% for
the new switch.

4.2.5 Orszag-Tang vortex

The Orszag-Tang vortex (Orszag and Tang, 1979) is a widely used test for many astrophysical

MHD codes (e.g., Fromang et al., 2006; Stone et al., 2008; Dolag and Stasyszyn, 2009). The

problem has an initial vortex structure creating several classes of interacting shock waves which

evolve into turbulence, with the initial conditions as given in Section 3.4.5.

The test has been simulated using 5122, 10242, and 20482 particles initially arranged on a

square lattice. The initial conditions are set up by first creating the particles in one quadrant

of the domain, then mirroring the configuration to the other quadrants with appropriate sign

changes in the velocity and magnetic fields as needed. This removes the slight discrepancies

from floating point arithmetic, retaining exact symmetry in the initial conditions. The Morris

and Monaghan (1997) switch for artificial viscosity has been used.

Results are presented at t = 1 in Figure 4.5 which shows renderings of the density, magnetic

pressure, and ↵B in the domain for 10242 particles. The new switch is e↵ective at activating

resistivity along the shock lines, yet keeps ↵B minimal between shocks. By contrast, the PM05

switch results in broad regions with ↵B ⇡ 1 near shocks and a mean ↵B twice as high (⇠ 0.2

to ⇠ 0.1). This leads to a smoothing away of subtle magnetic features, particularly noticeable

around the central magnetic feature, and in some of the low density regions which are less

sharply defined.



Chapter 4. A switch to reduce resistivity 84

 Pmag 

Figure 4.5: The density, magnetic pressure, and ↵B (left to right panels) of the Orszag-Tang
vortex at t = 1 for the old (top row) and new (bottom row) resistivity switches. The new switch
e↵ectively traces the shock lines, with little or no dissipation between shocks. The low density
regions are more sharply defined using the new switch due to the decreased dissipation of the
magnetic field structure.
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Figure 4.6: Evolution of the magnetic energy for the Orszag-Tang vortex using the PM05 resis-
tivity switch (black, solid lines) and the new resistivity switch (red, dashed lines) at resolutions
of 5122, 10242, and 20482 particles. The new switch is much less dissipative than the PM05
switch, producing an e↵ect similar to increasing the resolution.

Figure 4.6 shows the evolution of the magnetic energy as a function of time for 5122, 10242,

and 20482 particles. This shows that the magnetic energy is dissipated less at higher resolution.

Using the new artificial resistivity switch also leads to a lower dissipation rate compared to the

PM05 switch, producing an e↵ect equivalent to running the test at higher resolution.

4.2.6 Mach 10 MHD turbulence

Our final test is of supersonic magnetised turbulence which is representative of conditions in

molecular clouds (see reviews by Evans, 1999; Elmegreen and Scalo, 2004; McKee and Os-

triker, 2007). A stochastic, solenoidal driving force is applied, generating turbulence with a

root-mean-square Mach number of 10. It has an initially weak magnetic field, with the kinetic

energy approximately 10 orders of magnitude larger than magnetic energy, which grows through

dynamo amplification by the conversion of kinetic to magnetic energy (see review by Branden-

burg and Subramanian, 2005). Our simulations follow the SPH Mach 10 turbulence study of

Price and Federrath (2010a), but in the MHD case of turbulent dynamo amplification studied

by Federrath et al. (2011). See Chapter 5 for further simulation details and for a comparison

of SPMHD with grid-based methods on turbulent small-scale dynamo amplification.

The simulation is set up at a resolution of 1283 particles. The initial density is ⇢ = 1 with

an isothermal equation of state using a speed of sound of cs = 1. The gas is initially at rest,

and has a uniform magnetic field B
z

=
p
2 ⇥ 10�5 such that the initial plasma � = 1010. The

Morris and Monaghan (1997) switch for artificial viscosity has been used.

To drive the turbulence, an acceleration based on an Ornstein-Uhlenbeck process is used

(Eswaran and Pope, 1988; Federrath et al., 2010), which is a stochastic process with a fi-

nite autocorrelation timescale that drives motion at low wave numbers. The driving force is

constructed in Fourier space, allowing it to be decomposed into solenoidal and compressive
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Fixed ↵B = 1 PM05 switch New switch

t=0.1

t=0.1

Figure 4.7: The column integrated x & z (top, bottom) magnetic field components using fixed
↵B = 1 (left), the PM05 switch (centre), and the new switch (right) after two turbulent turnover
times (i.e., the regime of fully developed turbulence). The magnetic field structure using the
previous switch is dominated by unphysical noise due to the shocks failing to be captured
(centre), whereas the new switch is able to capture the shocks and the magnetic field retains
its physical structure (right).

components and for this case we only use the solenoidal component.

The column integrated x & z components of the magnetic field are shown in Figure 4.7

at t = 2 turbulent turnover times. The PM05 switch fails to raise ↵B to appreciable levels

(↵B ⇠ 10�5), and as demonstrated in Figure 4.7, the shocks in the magnetic field fail to be

captured. This leads to break-up of the shocks, causing unphysical magnetic field growth until

such a time as the field is strong enough to activate the switch. By contrast, the new switch is

invariant to field strength meaning that it turns on resistivity in the shocked regions and the

shocks are captured.

We also found for this simulation that using the averaged Alfvén speed as the signal velocity

for resistivity produces the same behaviour (shocks breaking apart). In this instance, it is due

to the large disparity between the Alfvén and sound speed meaning that the applied resistivity

is too weak to capture the strong shocks properly. With the fast MHD wave speed in the signal

velocity (Equation 4.5), the shocks are captured correctly.
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4.3 Generalisation to other dissipation terms

In this section, we extend the design concept of the new artificial resistivity switch to the

artificial viscosity and thermal conductivity dissipation terms, constructing new switches based

on the general idea of a normalised shock indicator (see also Tricco and Price, 2013a).

4.3.1 New artificial viscosity switch

For the new artificial viscosity switch, we continue to use �r · v as the shock indicator as in

the Morris and Monaghan (1997) approach. It would be unwise to use |v| for the normalisation

as this would break Galilean invariance. Instead, the fast MHD wave speed is used (or sound

speed in pure hydrodynamics), relating the quantity to the Mach number.

It is also important that artificial viscosity is applied to the wake of the shock to reduce

post-shock oscillations of the particles (as discussed in Section 2.2.10.1). Therefore, ↵ is reduced

over time using an integrated decay term like in the Morris and Monaghan (1997), Cullen and

Dehnen (2010), and Read and Hayfield (2012) approaches.

The resulting switch is therefore to set

↵
a

= �h
a

r · v
a

vmhd
(4.8)

when greater than the current value of ↵
a

, otherwise ↵
a

is reduced on the next time step

according to
d↵

a

dt
= �↵a

⌧
, (4.9)

where ⌧ = h/�
v

vmhd has the same meaning as in the Morris and Monaghan (1997) switch

(Equation 2.99). By following the considerations outlined above, this viscosity switch is quite

similar in principle to the switch of Cullen and Dehnen (2010), albeit with a simpler version

for Equation 4.8.

4.3.2 New thermal conductivity switch

A switch for thermal conductivity can be constructed by analogy to Equation 4.1. The gradient

of thermal energy is chosen to detect discontinuities, setting

↵
u,a

=
h
a

|ru
a

|
|u

a

| . (4.10)

As with artificial resistivity, it is expected that thermal conductivity only needs to be applied

at the location of the discontinuity since there is no worry of oscillations in particle motion.

Therefore, no time-integrated decay term is used.
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Figure 4.8: Sod shocktube results at t = 0.2 using the new viscosity switch described in Sec-
tion 4.3.1. The black circle are values from the particles with the red line the Riemann solution.

4.3.3 Tests of artificial viscosity and thermal conductivity switches

The e�cacy of the new artificial viscosity and thermal conductivity switches are examined using

a standard Sod shocktube test, and a setup producing Kelvin-Helmholtz instabilities.

4.3.3.1 Viscosity: Sod shocktube

The Sod shocktube (Sod, 1978) has become a canonical test for hydrodynamic shocks. It

consists of a fluid with a discontinuity in the density and pressure that sends a shock wave

into the low density medium and a rarefaction into the high density medium, with a contact

discontinuity in the centre. Artificial viscosity is required in this test in order to treat the shock

wave.

The simulation has left state (x < 0) ⇢ = 1 and P = 1 in contact with a fluid of ⇢ = 0.125 and

P = 0.1 (x > 0) with � = 5/3. Both states have zero initial motion. The shocktube is simulated

in 1D using 1000 and 125 particles for the two states, respectively. Thermal conductivity is

used with fixed ↵
u

= 1, using the Price (2008) switch (see Section 2.2.11.3).

Results at t = 0.2 are presented in Figure 4.8 along with the solution calculated from

a Riemann solver. The SPH solution agrees well with the Riemann solution, though there

are small post-shock oscillations in the velocity field, which may also be noticed when using

the Morris and Monaghan (1997) switch (see also Cullen and Dehnen 2010). These can be

reduced by adjusting the decay timescale for ↵AV. The contact discontinuity is spread over

⇠ 12 particles, but this is not related to the artificial viscosity scheme.
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4.3.3.2 Thermal conductivity: Kelvin-Helmholtz instability

Kelvin-Helmholtz instabilities have been studied many times with SPH (e.g., Agertz et al., 2007;

Price, 2008; Valcke et al., 2010; McNally et al., 2012; Hubber et al., 2013). The instability occurs

when there is a velocity shear in a fluid, causing turbulence to form along the interface. An

important aspect to simulating this correctly in SPH is application of thermal conductivity

to treat thermal energy discontinuities across the interface. If ignored, spurious pressure is

generated preventing the fluid from mixing properly. We use this test to investigate the ability

of the new thermal conductivity switch to allow mixing of the fluids across the interface, and

produce the “curls” which are emblematic of Kelvin-Helmholtz instabilities.

The test performed here follows the initial set up of Price (2008). The fluid contains two

regions in a 2:1 density contrast. The domain is x, y = [�0.5, 0.5] and periodic boundary

conditions are used creating two interfaces along which Kelvin-Helmholtz instabilities form.

The initial density profile is

⇢ =

8
<

:
2 |y| < 0.25,

1 |y| > 0.25.
(4.11)

The two regions are in pressure equilibrium with uniform P = 2.5 with � = 5/3. The x-velocity

is �0.5 for the ⇢ = 2 region, and 0.5 for the ⇢ = 1 region. The y-velocity is zero, however the

n = 4 instability is seeded with a perturbation across the interfaces by

v
y

=

8
<

:
A sin[�2⇡(x+ 0.5)/�] +0.225 < y < +0.275,

A sin[2⇡(x+ 0.5)/�] �0.225 < y < �0.275,
(4.12)

where A = 0.025 and � = 1/6.

The characteristic growth timescale of the instability depends on the densities of both fluids

and the relative velocity shear. For an incompressible fluid, the timescale is (Chandrasekhar,

1961)

⌧KH =
�(⇢1 + ⇢2)

(⇢1⇢2)1/2|v1 � v2|
, (4.13)

where ⇢1 and v1 are the density and velocity of one fluid, with ⇢2 and v2 the density and velocity

of the other. For this calculation, the Kelvin-Helmholtz growth timescale is ⌧KH ⇡ 0.35.

The particles are initially arranged on triangular lattices. A total of 454184 particles are

used, with a particle spacing of � = 1/512 in the low density region and � = 1/724 in the high

density region. The Morris and Monaghan (1997) switch (Equation 2.99) is used for artificial

viscosity. The initial thermal energy is calculated using the density of the particles so that the

pressure is constant across the interfaces. The quintic spline has been used.

The calculations were run using four di↵erent thermal conductivity switches: two based

on pressure discontinuities and two on the relative velocity between particles (as motivated by

methods such as Wadsley et al. 2008; Shen et al. 2010; Valdarnini 2012; Read and Hayfield

2012). The four thermal conductivity switches tested are: the normalised thermal gradient
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switch developed in Section 4.3.2; the divergence of the velocity, vusig = |v
ab

· r̂
ab

|, as used by

Valdarnini (2012); the curl of the velocity, vusig = |v
ab

⇥ r̂
ab

|, which should perform better at

detecting shear motions; and the approach of Price (2008) to set vusig =
p|P

a

� P
b

|/⇢
ab

. A

calculation was performed with no thermal conductivity to act as a reference.

Figure 4.9 shows the results of the calculations at ⌧KH = 2, 4, 6, 8. The results without

thermal conductivity demonstrate its necessity. The spurious pressure across the interface

cause globs of the high density fluid to stretch and break o↵ without mixing and the instability

fails to correctly develop. All results using thermal conductivity are qualitatively similar —

six small curls are formed along either interface, which coalesce to form two large curls. The

interior structure of the large curls di↵er between the cases, which is to be expected due to

the non-linearity of the problem. This initial configuration is known to be unstable at all

wavelengths (Chandrasekhar, 1961), thus while the � = 1/6 wavelength is seeded and most

prominent, secondary instabilities at other wavelengths will occur.

We find that the Price (2008) switch leads to the most symmetrical result. The new thermal

gradient switch is e↵ective at promoting mixing along the interface, though the curls at ⌧KH = 8

are all of di↵erent sizes. The |v
ab

· r̂
ab

| is similar in that the curls are dissimilar in shape. In

contrast, the |v
ab

⇥r̂
ab

| has curls which are more uniform and like that of the Price (2008) switch

case. We conclude that using a switch based on the thermal gradient is e↵ective at promoting

mixing, but performing further tests, particularly ones that have quantitative convergence,

would be desirable. Our results do suggest, though, that a switch based on the curl of the

velocity field performs better than one based on the divergence of the velocity.

4.4 Summary

We have developed a switch to dynamically regulate the amount of artificial resistivity applied

to the magnetic field in smoothed particle magnetohydrodynamics simulations (see also Tricco

and Price, 2013b). Since the purpose of artificial resistivity is to model magnetic shocks and

discontinuities, the key is to minimise spurious dissipation in smooth parts of the field. Our

switch accomplishes this by setting the artificial resistivity parameter ↵B equal to the dimen-

sionless quantity h|rB|/|B|. This yields a simple, powerful and robust method for reducing

magnetic dissipation away from shocks with no loss in shock-capturing ability. Importantly, it

responds appropriately at all magnetic field strengths, a particular improvement over the PM05

switch which was found to inadequately capture shocks in weak fields.

Alternative switches using the second derivative of the magnetic field were also investigated,

in particular h|r2B|/|rB| and h2|r2B|/|B|. The key requirement to their success is a high

order estimate of the second derivative, otherwise noise from particle disorder overwhelms

the derivative estimate and causes excessive dissipation. Obtaining this higher order estimate,

however, adds significant computational expense. In general, we recommend our first derivative

switch for normal use since it is simple, yet performs robustly and e↵ectively.
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Figure 4.9: Results of the Kelvin-Helmholtz instability test using no thermal conductivity (first
row), then thermal conductivity with the following switches: ↵

u

= h|ru|/|u| (second row),
vusig = |v

ab

· r̂
ab

| (third row), vusig = |v
ab

⇥ r̂
ab

| (fourth row), and vusig =
p|P

a

� P
b

|/⇢
ab

(fifth
row). Times are shown for ⌧KH = 2, 4, 6, 8 (left to right). Instabilities form along the 2:1 density
contrast interfaces due to a velocity shear. Without thermal conductivity, the discontinuity in
thermal energy is untreated, leading to a spurious pressure that prevents mixing of the two
regions. All conductivity switches allow the instability to form.
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Three shocktube tests (Sections 4.2.1, 4.2.2, and 4.2.3) were used to establish that the switch

correctly models a range of shock phenomena, including fast and slow shocks, fast and slow

rarefactions, rotational discontinuities, and compound shock structures. The L1 error of the

magnetic field profiles for all tests was lower when using this new switch compared to using the

PM05 switch. These tests also demonstrated that the our new divergence cleaning algorithm

is stable and robust in shocktube problems, in contrast to the version proposed by Stasyszyn

et al. (2013).

In Section 4.2.4, the propagation of a travelling Alfvén wave was used to gauge the switch’s

ability to reduce unwanted dissipation in situations not involving discontinuities, and was found

to result in maximum ↵B values 10⇥ smaller than the PM05 switch (⇠ 0.02 compared to⇠ 0.22).

After 6 periods, the amplitude of the wave using the PM05 switch was four times lower than

using the new switch.

The Orszag-Tang vortex was used in Section 4.2.5 to examine the performance of the new

switch when there are multiple interacting shocks, producing regions of ↵B ⇠ 1 that closely

traced the shock lines. The new switch was found to decrease the spurious dissipation in

smooth regions compared to the PM05 switch, leading to the subtle magnetic features being

more sharply defined, equivalent to running the test at higher resolution.

Finally, in Section 4.2.6, a simulation of Mach 10 MHD turbulence was used to demonstrate

the switch’s ability to capture magnetic shocks when a weak magnetic field is combined with

strong hydrodynamic shocks. The PM05 switch was found to fail for the low field strengths

present in this problem, causing the magnetic field to be dominated by unphysical noise. With

the new switch the magnetic shocks remain coherent.

We found that it is very important to use the fast MHD wave speed as the characteristic

signal velocity for artificial resistivity. Using the Alfvén speed as the characteristic signal

velocity, as proposed by Price (2012), was found to inadequately capture fast MHD shocks in

the highly super-Alfvénic regime, leading to unphysical e↵ects (Figure 4.7).

In Section 4.3, the design concept of the switch was generalised for use with artificial viscosity

and thermal conductivity (see also Tricco and Price, 2013a). The new artificial viscosity switch

needed an integrated decay term to treat post-shock oscillations of particle motion, yielding

a switch similar to that of Cullen and Dehnen (2010). Performance on a Sod shocktube was

in agreement with the Riemann solution. The thermal conductivity switch was tested with a

simulation of the Kelvin-Helmholtz instability. It was able to mitigate the spurious pressure

force across the interface, forming the characteristic billowing curls, however had noticeable

asymmetries. Results were compared against other thermal conductivity switches: the Price

(2008) pressure di↵erence formulation, and the divergence and curl of the velocity field. We

found that the Price (2008) and the velocity curl switches performed best for this problem, in

that they had the most mixing and retained the symmetry of the problem.

Our new switch is widely applicable to astrophysical SPMHD simulations, in particular for

simulations involving weak fields such as in galaxy and cosmological simulations, and also for
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dynamo processes. In every case we tested, it produced lower magnetic dissipation than the

PM05 switch, making it possible to achieve higher magnetic Reynolds numbers in simulations

of the interstellar and intergalactic medium. The new switch thus supercedes the PM05 in

every respect.



Declaration for Chapter 5

Declaration by Candidate

In the case of Chapter 5, the nature and extent of my contribution to the work was the following:

Nature of Contribution Extent of

Contribution (%)

First author of 2014, “A comparison between grid and particle

methods on small-scale dynamo amplification of magnetic fields in

supersonic turbulence”, Submitted to ApJ.

90

The following co-authors contributed to the work:

Name Nature of Contribution Extent of

Contribution (%)

for student

co-authors

Daniel Price Second author, PhD supervisor

Christoph

Federrath

Third author, performed grid based calculations

The undersigned hereby certify that the above declaration reflects the nature and extent of the

candidate’s and co-author’s contributions to this work.

94



Chapter 5

Turbulent dynamo amplification of

magnetic fields

Supersonic turbulence regulates star formation (Mac Low and Klessen, 2004; McKee and Os-

triker, 2007), producing the dense filaments that permeate molecular clouds along which dense

cores and protostars form (e.g., Larson, 1981; Hartmann, 2002; Elmegreen and Scalo, 2004;

Hatchell et al., 2005; André et al., 2010; Peretto et al., 2012). That the turbulence is magne-

tised cannot be ignored. Magnetic fields are no longer thought to prevent gravitational collapse

altogether, but may still determine the rate and e�ciency of star formation, even with weak

magnetic fields i.e., super-Alfvénic turbulence (Nakamura and Li, 2008; Lunttila et al., 2009;

Price and Bate, 2008, 2009; Padoan and Nordlund, 2011; Federrath and Klessen, 2012).

Magnetic fields grow in a turbulent environment by the conversion of kinetic energy into

magnetic energy. This type of dynamo is small-scale, operating near the dissipation scale. It is

there that the smallest motions can e�ciently grow the magnetic field through rapid winding

and twisting of the magnetic field lines, with the magnetic field as a whole growing exponen-

tially through a reverse cascade from small to large scales (see review by Brandenburg and

Subramanian, 2005). The magnetic field will saturate first on small scales due to the back-

reaction of the Lorentz force on the turbulent flow, after which it enters a linear or quadratic

growth phase, until the field finally reaches saturation on all scales (Cho et al., 2009; Schleicher

et al., 2013). The growth rate is determined by the physical viscosity and magnetic resistiv-

ity of the plasma, which can be expressed as dimensionless numbers: the kinematic Reynolds

number (Re), the magnetic Reynolds number (Rm), and the ratio of the two, the ‘magnetic

Prandtl number’, Pm = Rm/Re (Schekochihin et al., 2004a; Brandenburg and Subramanian,

2005; Schober et al., 2012a,b; Bovino et al., 2013). Using a large set of numerical simulations,

Federrath et al. (2011) found that the dynamo growth rate also depends sensitively on the com-

pressibility of the plasma, parameterised by the turbulent Mach number, and is more e�cient

for turbulence driven by solenoidal (rotational) flows rather than compression.

These processes involve highly non-linear dynamics and complex behaviours, making ana-

95
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lytic study di�cult (with notable exceptions; Sridhar and Goldreich 1994; Goldreich and Sridhar

1995). Furthermore, observations of magnetic fields in molecular clouds are time consuming

and only yield field directions in the plane of the sky and magnitudes along the line of sight

(e.g., Crutcher, 1999; Bourke et al., 2001; Heiles and Troland, 2005; Troland and Crutcher,

2008). Numerical simulations complement analytics and observations. It is therefore important

to compare results from di↵erent codes and to establish the conditions under which those results

are representative of the physical processes involved.

There have been several major code comparison projects related to supersonic turbulence.

Tasker et al. (2008) compared two grid codes (Enzo, Flash) and two particle-based codes

(Gadget2, Hydra) on simple test problems involving strong hydrodynamic shocks, finding

comparable results when the number of particles were roughly equal to the number of grid

cells. Kitsionas et al. (2009) studied decaying, supersonic, hydrodynamic (non-magnetised)

turbulence, comparing four grid codes (Enzo, Flash, TVD, Zeus) and three particle codes

(Gadget, Phantom, Vine). They found similar velocity power spectra and density proba-

bility distribution functions (PDF) when the number of resolution elements was comparable,

though the particle codes were found to be more dissipative. Kritsuk et al. (2011) compared

decaying, supersonic turbulence with magnetohydrodynamics (MHD) using nine di↵erent grid

codes: Enzo, Flash, KT-MHD, LL-MHD, Pluto, PPML, Ramses, Stagger, and Zeus.

They found that all methods produced physically consistent results, with the quality of re-

sults improved with higher-order numerical solvers, and by exactly rather than approximately

maintaining the divergence-free constraint on the magnetic field.

A key shortcoming of both the Kitsionas et al. (2009) and Kritsuk et al. (2011) comparisons

was that they studied decaying turbulence. Interpolating the initial conditions obtained by

driving the turbulence in one code introduced discrepancies between codes before the numer-

ical experiments even started. Those discrepancies in the initial conditions were most severe

between grid and particle methods, but also for di↵erent grid discretisations (e.g. staggered vs.

unstaggered meshes), and is problematic in the MHD case since one must enforce r · B = 0.

Furthermore, it is di�cult to obtain a statistically significant sample of simulation snapshots in

the absence of a statistical steady-state, given that supersonic turbulence decays within a few

crossing times. This limitation means that intermittent, intrinsic fluctuations of the turbulence

largely exceeded systematic di↵erences in the numerical schemes, which we want to quantify.

Price and Federrath (2010a) (hereafter PF10) addressed these issues in a hydrodynamic

comparison by using driven instead of decaying turbulence, enabling the calculations to start

from a well-defined initial state and allowing time-averaged statistical comparisons. They com-

pared two codes: the grid code, Flash, and the smoothed particle hydrodynamics (SPH) code,

Phantom, taken as broadly representative of the two classes of hydrodynamical methods used

in astrophysics: grid-based versus particle-based. Both codes used exactly the same turbulence

driving routine and sequence to prevent any bias from di↵erent implementation of driving or

from di↵erent initial conditions: both codes start with a gas of uniform density at rest. They
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found similar resolution requirements to previous studies, but that grid-based methods were

better at resolving volumetric statistics at a given resolution, while SPH better sampled density-

weighted quantities. However, this comparison was limited to hydrodynamic turbulence.

Phantom was initially entered for the Kritsuk et al. (2011) comparison, but was with-

drawn1 because, at the time, the best approach to maintaining r ·B = 0 in smoothed particle

magnetohydrodynamics (SPMHD) used the Euler potentials, B = r↵ ⇥r� (Price and Bate,

2007; Rosswog and Price, 2007). This formulation was incompatible with the initial condi-

tions used in the comparison (see discussion in Rosswog and Price 2007) and excludes dynamo

processes by construction because the Euler potentials method cannot represent and follow

wound-up magnetic field structures (Price and Bate, 2008; Brandenburg, 2010; Price, 2012).

Results evolving the magnetic field directly were poor (no r · B control). These di�culties

have now been resolved. In Chapter 3, we developed a new constrained hyperbolic divergence

cleaning method for SPMHD that maintains r ·B = 0 to su�cient accuracy for a wide range

of problems, without the topological restrictions associated with the Euler potentials. In par-

ticular, this has enabled successful simulations of jets and outflows during protostar formation

(Price et al., 2012; Bate et al., 2014b) which involve winding up of magnetic fields. In Chap-

ter 4, we have further improved the magnetic shock-capturing algorithm, particularly when

dealing with weak magnetic fields. Hence, it is now possible to simulate magnetic dynamos

with SPMHD.

This chapter presents a comparison between Flash and Phantom on the direct numerical

simulation of small-scale dynamo amplification of a weak magnetic field from driven, supersonic

turbulence. We investigate the dependence of the growth rate on the numerical resolution, a

measure of the numerical dissipation properties of each code. We also study the statistical

properties of super-Alfvénic turbulence after the magnetic field has saturated. The comparison

is otherwise identical to PF10, using the same driving routine and Mach number, so that any

di↵erences are from the MHD implementations only. In order to capture the growth of the

magnetic field and obtain time-averaged statistics after it has saturated, the calculations are

evolved for one hundred crossing times, in contrast to only ten in PF10. This is another motiva-

tion for performing driven turbulence calculations, rather than revisit the decaying turbulence

simulations of the Kritsuk et al. (2011) comparison. Such simulations can only be evolved for

a few turbulent crossing times before the turbulence decays.

In Section 5.1, we describe the equations to be solved, the initial state, and the driving

routine. Section 5.2 introduces the numerical details of Flash and Phantom. Results of

the simulations are analysed in Section 5.3, focusing on the transient phase during which the

turbulence is formed (Section 5.3.1), the growth of magnetic energy from the turbulent dynamo

(Section 5.3.2), and after the magnetic energy reaches its saturation value (Section 5.3.3). A

summary of our results is presented in Section 5.4.

1Phantom was entered for the hydrodynamic comparison, the results of which were not analysed or used in

the published paper.
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5.1 Comparison details

The aim is to compare grid and particle methods on the growth and saturation behaviour of

a magnetic field that is amplified by a turbulent dynamo. We solve the ideal MHD equations

(Section 2.1.3). The continuum equations have zero viscous and resistive dissipation (hence

ideal). Since the growth rate of the small-scale dynamo is set by the dissipation of the system,

it may seem strange to perform a comparison using the ideal MHD equations. However, it is

common to use the ideal MHD equations for astrophysical simulations, and some amount of

dissipation is inevitably introduced when solving these equations numerically. In grid-based

methods, numerical dissipation is introduced by the discretisation of the advection term in the

material derivative. By contrast, in Lagrangian particle-based methods the material derivative

is computed exactly. The shock-capturing scheme is the other source of numerical dissipa-

tion. Modern grid-based methods use Riemann solvers which introduce a numerical dissipation

related to the accuracy of the shock reconstruction. The approach in particle methods is to

explicitly add viscous and resistive terms in order to capture shocks, using switches to tune the

dissipation to the relevant discontinuity. Since the small-scale turbulent dynamo is sensitive to

both viscous and resistive dissipation, and the ratio of these two (Pm = ⌫/⌘), it can be used

to quantify and compare the numerical dissipation between codes.

The initial state is simple so that both codes start from the same initial conditions. The

system is initialised with a uniform density field, ⇢0 = 1, and zero velocity field. The system

is contained in a periodic box of length L = 1. An isothermal equation of state, P = c2s⇢, is

used to calculate the pressure with sound speed cs = 1. The magnetic field is set to
p
2⇥ 10�5

in the z - direction. With µ0 = 1, this yields an initial plasma beta, the ratio of thermal to

magnetic pressure, of � = P/Pmag = 1010.

As in PF10, supersonic turbulence is initiated and sustained at a root mean square (rms)

Mach number of M = 10 by an imposed driving force generated from an Ornstein-Uhlenbeck

process (Eswaran and Pope, 1988; Schmidt et al., 2009; Federrath et al., 2010). This is a

stochastic process with a finite autocorrelation timescale. By using this approach, the driving

force can be decomposed in Fourier space into longitudinal and solenoidal modes. For this

comparison, only the solenoidal component of the force is used, and therefore the turbulence

is driven primarily by vorticity rather than compression (see Federrath et al. 2011; Federrath

2013 for a study on the e↵ect of di↵erent driving). However, 1/3 of the kinetic energy will still

be contained in compressive modes due to the high Mach number of the turbulence (Pan and

Scannapieco, 2010; Federrath et al., 2010).

Consistency of the driving pattern between codes is achieved by pre-generating the time-

sequence of the Ornstein-Uhlenbeck modes, with both codes reading the pattern from file. The

driving is at large scales, with a parabolic weighting of modes between kmin = 1 and kmax = 3,

with smaller structures forming through turbulent cascade. The autocorrelation timescale is

1tc, with tc as defined in Equation 5.1. The input parameters used to generate the pattern file

are specified in Table 5.1. The stirring energy is used to obtain the variance of the Ornstein-
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Table 5.1: Stirring Routine Input Parameters.

Parameter Value
spectral form 1 (Parabola)
solenoidal weight 1
stirring energy 8.0
autocorrelation time 0.05
minimum wavenumber 6.28
maximum wavenumber 18.90
original random seed 1

Uhlenbeck process, corresponding to the autocorrelation time and energy input rate.

The relevant physical timescale is the turbulent crossing time, which we define according to

tc ⌘ L

2Mcs
, (5.1)

corresponding to tc = 0.05 in code units. The turbulence is simulated for 100 crossing times,

covering the full growth phase of the dynamo up until the magnetic energy reaches its saturation

level, with at least half of the total time spent in the saturation phase. The set of simulations

use 1283, 2563, and 5123 resolution elements (grid points and particles, respectively).

5.2 Numerical codes and methods

We compare the codes Flash and Phantom. Both solve the ideal MHD equations but with

fundamentally di↵erent numerical approaches: Flash discretises all fluid variables into fixed

grid points, whereas Phantom discretises the mass of the fluid into a set of Lagrangian par-

ticles that move with the fluid velocity. We take these two codes to be representative of the

general class of Eulerian, grid-based methods (Flash) and Lagrangian, particle-based methods

(Phantom).

5.2.1 Flash

Flash is a grid-based code using a finite volume scheme for solving the MHD equations (Fryxell

et al., 2000; Dubey et al., 2008). Although Flash can be used with adaptive mesh refinement

(AMR, Berger and Colella, 1989), our simulations employ a fixed and uniform cartesian grid for

simplicity. We here use Flash with the HLL3R approximate Riemann solver for ideal MHD,

based on a MUSCL-Hancock scheme (Waagan et al., 2011). This is a predictor-corrector scheme

and is second-order accurate in both space and time. Waagan et al. (2011) further show that

this MHD scheme maintains r ·B ⇠ 0 to within negligible errors, by using divergence cleaning

in the form of the parabolic cleaning method of Marder (1987) (see also Dedner et al., 2002).

The MHD solver is particularly e�cient and robust, because it uses a relaxation technique that

guarantees positive density and gas pressure and thus avoids unphysical states, by construction.
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Figure 5.1: Growth and saturation of the magnetic energy for Flash and Phantom at reso-
lutions of 1283, 2563, and 5123. The top lines are the kinetic energy for the six calculations.
Flash has similar growth rates across the resolutions simulated, while Phantom exhibits
faster growth rates with increasing resolution. This resolution dependence is a consequence of
the artificial dissipation terms. Both codes saturate the magnetic energy at similar levels.
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5.2.2 Phantom

Phantom is a smoothed particle magnetohydrodynamics (SPMHD) code. The MHD equations

(Equations 2.22–2.24) are implemented as described in Price and Monaghan (2004a,b, 2005) and

Price (2012), using Børve et al. (2001)’s method of subtracting B(r ·B) from the momentum

equation to keep the magnetic tensional force stable. This implementation of momentum and

induction equations resolves issues related to non-zero r ·B in a manner that is equivalent to

the Powell 8-wave approach (Powell, 1994; Powell et al., 1999).

The divergence of the magnetic field is kept close to zero by using the constrained hyper-

bolic divergence cleaning method developed in Chapter 3, which is an SPMHD adaptation and

improvement of the cleaning algorithm by Dedner et al. (2002). The cleaning wave speed is set

to the local fast MHD wave speed. During the course of this work, it was found that if the wave

speed included the term involving the relative velocity of particles (as in the artificial viscos-

ity), then the individual timestepping scheme could introduce significant errors to the magnetic

field. This occurred when particles were interacting on timestep bins that were spaced too far

apart. Using a timestep limiter (i.e., Saitoh and Makino, 2009) can prevent these errors, but

for these calculations we instead chose the simpler solution of just reducing the cleaning speed

by excluding the relative velocity.

Shocks are captured by adding an artificial viscosity, as described by Price and Monaghan

(2004a, 2005) and based on the Monaghan (1997) formulation. It is important that the signal

velocity, defining the characteristic speed of information propagation, include a term involving

the relative motion of particles to prevent particle interpenetration, and it was found by Price

and Federrath (2010a) that for Mach 10 shocks, it was necessary to increase this by setting the

dimensionless constant �AV = 4 (as opposed to the common �AV = 2). We use the Morris and

Monaghan (1997) switch to reduce dissipation away from shocks.

Discontinuities in the magnetic field are treated with an artificial resistivity. Phantom uses

the new switch developed in Chapter 4 to reduce dissipation of the magnetic field away from

discontinuities. This switch solves problems with the switch proposed by Price and Monaghan

(2005), namely that it is able to capture shocks when the sound speed is significantly higher than

the Alfvén speed (i.e., in the super-Alfvénic regime when the magnetic field is very weak). This

is done by using the dimensionless quantity h|rB|/|B|, which measures the relative strength

of the discontinuity in the magnetic field.

The smoothing length (resolution length), h, of each particle is calculated in the usual

manner by iteration of the density summation with h = 1.2(m/⇢)1/3 using a Newton-Raphson

solver (Section 2.2.2). This means that the numerical resolution scales with the density. For

these set of simulations, the resolution increases by 4–8⇥ in the highest density regions, with a

decrease in resolution of about 2⇥ in the lowest density regions. Timesteps are set individual to

each particle in a scheme that is block hierarchical in powers of two, with each particle setting

its timestep based on its local Courant condition. Second order leapfrog time integration is

used (Section 2.2.12).



Chapter 5. Turbulent dynamo amplification of magnetic fields 102

5.2.3 Computational cost

The Flash calculations used 90, 1600, and 40 000 cpu-hours for the 1283, 2563, and 5123

simulations. The Phantom calculations used 2700 and 44 000 cpu-hours for the 1283 and

2563 simulations, with the 5123 calculation using 125 000 cpu-hours for t = 0 ! 20. It is

expected that each factor of 2 increase in resolution should increase the computational expense

by 16⇥, since there are 8⇥ more resolution elements and the Courant condition should reduce

the timestep by half, and both codes exhibit a scaling behaviour that is close to this. For

Phantom, the particles are spread over ⇠ 6, 7, and 8 individual timestep bins for the 1283,

2563, and 5123 resolution calculations, respectively. Approximately 35% of the computational

expense in the Phantom calculations is spent on neighbour finding. The driving routine adds

negligible computational expense (⇠ 2% of overall cpu-hours). As in PF10, we find that the

2563 Phantom calculation takes approximately an equivalent amount of computational time

as the 5123 Flash calculation.

5.2.4 Analysis methods

5.2.4.1 Power spectra

Power spectra are calculated using the same analysis tool for both codes to ensure that results

are comparable. The Flash data is directly analysed with this tool, while the power spectrum

of Phantom data is obtained by interpolating the particles to a grid of double the particle

resolution (i.e., 2563 particles are interpolated to 5123 grid points). A higher resolution grid

is chosen in order to represent the energy contained in the highest density structures, which

are up to 4–8⇥ higher than the initial resolution. Appendix B investigates the e↵ect of the

resolution of the interpolated grid, in addition to the di↵erence between mass and volume

weighted interpolation. We found that the magnetic field was satisfactorily represented by a

grid which has twice the resolution of the particle calculation.

5.2.4.2 Probability distribution functions

Computing a volume-weighted PDF from grid methods simply involves binning the cells ac-

cording to the value of the quantity and normalising such that the integral under the PDF is

unity. For SPH this is more complicated since the resolution is tied to the mass rather than

the volume. PF10 computed the PDF directly from the SPH particles by weighting the con-

tribution of each particle, i, by the volume element m
i

/⇢
i

. Price et al. (2011) later found that

this was inaccurate at high Mach number because
P

i

m
i

/⇢
i

has no requirement that it equals

the total volume. Instead, one should interpolate to a fixed volume using the SPH kernel W ,

since m
i

/⇢
i

is only meaningful when multiplied by the kernel (since SPH is derived assuming
P

i

m
i

/⇢
i

W (r� r
i

, h) = 1). However, interpolation to a fixed grid (e.g. Kitsionas et al., 2009)

is also problematic since the resolution in our simulations is 4–8⇥ higher in the densest regions

compared to a fixed grid with the same number of resolution elements. Hence, sampling the
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Figure 5.2: Slices of ⇢ and |B| in the z = 0.5 mid-plane at t/tc = 1 during the transient phase.
The results from Flash (top row) and Phantom (bottom row) are shown for resolutions of
1283, 2563, and 5123 (left to right). As the resolution is increased, the shock lines become more
well defined. The regions with highest magnetic field strength are in the dense shocks.

high density tail of the SPH calculation would require a commensurably high resolution grid.

We follow Price et al. (2011) in using an adaptive mesh to compute the PDF from the SPH

particles, where the mesh is refined until the cell size is smaller than the smoothing length. The

SPH PDF is then computed and normalised directly from this adaptive mesh.

5.3 Results

Since this comparison uses the same codes, initial conditions, and turbulent driving routine

as the hydrodynamic turbulence comparison of PF10, our analysis focuses on the magnetic

properties of the turbulence. Hence, analyses performed by PF10 have only been repeated

where the addition of magnetic fields would be expected to alter the result (i.e., for the density

PDF).

A focus of our analysis is the e↵ect of numerical resolution on the dynamo. Since we assume

ideal MHD, the kinetic and magnetic Reynolds numbers vary with resolution. This a↵ects

the growth rate and saturation level of magnetic energy, enabling us to contrast the scaling

behaviour of the two methods.

The evolution of the magnetic field in the simulations may be divided into three di↵erent

phases — transient growth, exponential growth, and saturation. These phases can be seen in

Figure 5.1 which shows the magnetic and kinetic energy as a function of time for the calculations

from both Phantom and Flash using 1283, 2563 and 5123 resolution elements (see legend).

We analyse each of these phases in detail below.
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Table 5.2: Slope of Magnetic Energy Growth and Saturated Energy Values

Calculation E
m

growth rate hEkisat hEmisat
Flash 1283 0.30 51.11 ± 5.51 1.20 ± 0.31
Flash 2563 0.32 51.19 ± 4.81 1.46 ± 0.20
Flash 5123 0.32 52.17 ± 5.15 2.36 ± 1.02

Phantom 1283 0.20 50.30 ± 4.80 1.52 ± 0.48
Phantom 2563 0.34 51.17 ± 5.34 2.31 ± 0.47
Phantom 5123 0.71 50.65 ± 4.20 2.62 ± 0.19

5.3.1 Initial transient growth; t/tc . 2

The simulations begin with a brief transient phase while turbulence is generated by the driving

routine. Slices of ⇢ and |B| at z = 0.5 for t/tc = 1 are shown in Figure 5.2, shortly after the

large shocks created by the driving routine have begun to interact. Magnetic fields are strongest

where the density is highest, due to compression of the magnetic field in the shocks. Conversely,

the low density regions exhibit relatively weaker magnetic fields.

Approximately half a crossing time is required for the kinetic energy to saturate (see Fig-

ure 5.1), though it takes another turbulent crossing time before the turbulence is fully developed.

The magnetic energy is amplified by two orders of magnitude during this phase (Figure 5.1).

This occurs in two steps: The first (t/tc . 1) is a sharp rise in magnetic energy caused by

the formation of large-scale shocks (Figure 5.2). The second occurs during the generation of

small-scale structure in the density and magnetic fields caused by the interaction of the shocks.

During the second step, from t/tc ⇡ 1–2, the magnetic energy increases exponentially similar

to the growth phase (Section 5.3.2), but at a rate higher by a factor of 2–3.

The initial transient growth of the magnetic field is resolution dependent, with higher resolu-

tions yielding higher magnetic energy. For example, the magnetic energy in the 5123 Phantom

calculation increases by an additional 3–4 orders of magnitude compared to the other calcula-

tions. We have investigated whether this is a numerical artefact of the timestepping by re-doing

the initial phase with a reduction in the Courant factor, and also by using global timesteps in-

stead of individual timesteps. These did not alter our results. Additionally, we have checked if

this growth is driven by spurious generation of divergence of the magnetic field by both turning

o↵ the hyperbolic divergence cleaning, and conversely by increasing the hyperbolic cleaning

wave speed by a factor of 10 (10⇥ over-cleaning, see Section 3.5). These showed the same

fast transient magnetic field growth, so this is not caused by a high r ·B. Hence, the growth

of magnetic energy in the Phantom simulations appears to be physical, originating from the

explicitly added dissipation terms rather than occurring due to numerical error or instability.

5.3.2 Growth phase; 2 . t/tc . 10–40

Once the hydrodynamic turbulence is fully developed, the magnetic field is exponentially am-

plified at a steady rate via the small-scale dynamo. During this phase the magnetic energy is



Chapter 5. Turbulent dynamo amplification of magnetic fields 105

Flash

   

Phantom

   

Figure 5.3: z-column integrated ⇢ and |B|, defined < B >=
R |B|dz/ R dz, for Flash (top)

and Phantom (bottom) at resolutions of 2563 for t/tc = 2, 4, 6, 8. The density field has
similar structure in both codes at early times, but diverge at late times due to the non-linear
behaviour of the turbulence. The magnetic field is strongest in the densest regions, while the
mean magnetic field strength also increases with time.
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amplified by approximately 8 orders of magnitude until it reaches its saturation level, occurring

when the conversion of kinetic to magnetic energy is balanced by the dissipation of magnetic

energy and the back-reaction by the Lorentz force resists further winding of the field. The

reservoir of kinetic energy is maintained by continual driving of large-scale motions via the

driving routine. The magnetic energy saturates at t/tc ⇠ 30 for all three Flash calculations,

but the time of saturation in the Phantom calculations varies from t/tc = 12 to t/tc = 45

depending on the resolution. In all cases, the saturation occurs when vA ⇠ cs.

5.3.2.1 Correlation with the density field

Figure 5.3 shows a time sequence of column density and column integrated |B| from t/tc = 2–8,

comparing Flash (top figure) and Phantom (bottom figure) calculations at 2563 since the

growth rates are similar at this resolution (c.f. Figure 5.1 and Table 5.2). Both codes show

similar patterns in column density and magnetic field for the first few crossing times (left two

columns), but eventually the patterns diverge due to the chaotic nature of turbulence (right two

columns; this was also found in PF10). Nevertheless, there exists a definite correlation between

the density and the magnetic field when compared at a fixed time for each code individually.

The mean magnetic field strength can be seen to increase with time in both the low and high

density regions.

5.3.2.2 Magnetic energy growth rates

Table 5.2 compares the slope of a line fitted to the magnetic energy for each of the six calcu-

lations during the growth phase (defined between t/tc = 3 and the onset of the slow growth

phase).

Analytic studies of the small-scale dynamo have shown that for Pm ⌧ 1, the growth rate

scales with Rm1/2, while for Pm � 1, it scales with Re1/2 (Bovino et al., 2013). Theoretical

predictions of the growth rate for Pm ⇠ 1, which is the Prandtl number regime for numerical

codes in the absence of explicit dissipation terms, are more uncertain. Federrath et al. (2011)

measured the e↵ective Prandtl number in Flash through comparison with calculations with

physical dissipation terms, finding that Pm ⇠ 2. This is in agreement with similar experiments

by Lesa↵re and Balbus (2007). For Phantom, the e↵ective Prandtl number can be estimated

analytically from the artificial dissipation terms, for which we find that Pm ⇠ 1 for these

calculations (see Appendix C for further discussion).

To investigate the growth rate dependence on resolution for Phantom, we performed a se-

ries of calculations where the dimensionless parameters ↵ and ↵B in the artificial viscosity and

resistivity terms were fixed to di↵erent values. We found that the growth rate depended sensi-

tively on the amount of artificial dissipation applied, producing an e↵ect equivalent to changing

the resolution (left panel of Figure 5.4). Since the dissipation in Phantom is proportional to

resolution, we conclude that the growth rates obtained in our comparison are consistent with

the expected resolution scaling of the artificial dissipation terms. Interestingly, the growth rate
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Figure 5.4: Left panel: A 1283 Phantom calculation where the artificial viscosity and resistivity
parameters are systematically increased (no switches are used). With increasing dissipation, the
growth rate decreases, producing the same behaviour as changing the resolution. Right panel:
Comparing 1283 Phantom calculations where the viscous and resistive dissipation parameters
scale equally (↵ = ↵B set to 1 and 10) to calculations where one is scaled independent of the
other (↵ = 1, ↵B = 10 and ↵ = 10, ↵B = 1). The growth rate appears to depend upon both
Reynolds numbers — specifically, being set by whichever is higher.

only changed when both dissipation parameters were varied. Changing only one left the growth

rate largely unchanged (right panel of Figure 5.4), suggesting that the growth depends upon the

higher of Re and Rm. A worthwhile follow-up would be to compare growth rates with physical

dissipation terms that are resolution independent.

Given that the growth rates in the 2563 calculations are comparable (see Table 5.2 and

Figure 5.1), we perform quantitative analysis of our results during the growth phase using the

2563 resolution calculations. This allows for direct comparison of results.

5.3.2.3 Magnetic energy power spectra

That the total magnetic field is growing in strength — and not just in isolated regions — may be

quantified by examining the power spectra of the magnetic energy, P(B). The magnetic energy

spectra during the growth phase for the six calculations is shown in Figure 5.5. The magnetic

energy can be seen to grow uniformly at all spatial scales in all six calculations (indicated by

the translation of the power spectrum along the y-axis in the plots with minimal change in

the shape), behaviour consistent with the small-scale dynamo (Brandenburg and Subramanian,

2005). All of the spectra have the same general shape, with a decrease in spectral energy

at and above the driving scale (k  3) and a more-or-less flat spectrum (P(B) ⇡ constant)

between 3 < k < 10 for the 1283 calculations, extending to k ⇠ 20 and k ⇠ 40 for the 2563 and

5123 calculations. The dissipation range in the Phantom results extends further to smaller

scales than the Flash results for a particular resolution. The maximum in the magnetic energy

spectrum in both codes occurs at high wavenumbers, as expected for small-scale dynamos (Cho

and Vishniac, 2000; Brandenburg et al., 2012), occurring around the high k end of the ‘relatively’
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Figure 5.5: Spectra of the magnetic energy during the growth phase for Flash (left) and
Phantom (right) for resolutions of 1283, 2563, and 5123 (top to bottom). Each spectral line
is sampled at intervals of 5t/tc up to t/tc = 50, except for the 5123 Phantom run which is
sampled every t/tc (from t/tc = 2–12). The magnetic field grows equally at all spatial scales
for all calculations.
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Figure 5.6: Spectra of the magnetic energy at the k = 5, 40, and 100 bands as a function of time
for the 2563 resolution calculations of Flash (black lines) and Phantom (red dashed lines).
The growth rate at these di↵erent wavenumbers is nearly identical. The saturation level is the
same between the two codes for k = 40 and 100, with Phantom containing ⇠2 times as much
energy in the large-scale k = 5 band.

flat region of the spectra.

Figure 5.6 shows a cross section of the power spectrum evolution at k = 5, 40, and 100 for

the 2563 calculations. These scales were chosen to represent the large, medium, and small-scale

structure. This shows that the magnetic field grows in the same manner at all scales in both

codes.

5.3.2.4 Approach to saturation

Figure 5.5 shows that the magnetic energy saturates first at small scales. This is characteristic

of the small-scale dynamo since this is where magnetic energy is being generated (Cho et al.,

2009). It is expected that the magnetic energy will grow linearly at this stage, though for

Burgers turbulence, which is closer to the regime our simulations are in, it is expected that

the magnetic energy growth will be closer to quadratic (Schleicher et al., 2013). This slow

growth phase lasts until the reverse cascade of magnetic energy saturates all spatial scales.

This turnover in magnetic energy growth may be clearly seen in the 1283 and 5123 Phantom

growth curves in Figure 5.1. It is also evident from Figure 5.6 that the magnetic field enters

the slow growth phase first at high wavenumbers.

5.3.2.5 PDFs of B2

Figure 5.7 shows the time evolution of the PDF of B2 for the 2563 calculations. The instanta-

neous PDFs are shown from t/tc = 4–28 at intervals of �t = 4, with the time-averaged PDF

during the saturation phase given by the red line. The shape of the PDF remains mostly log-
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Figure 5.7: PDF of log(B2) during the growth phase, with the red line time averaged during
the saturation phase. The top panel shows the Flash calculation, with the bottom panel
the Phantom calculation. The PDF has a log-normal distribution during the growth phase,
maintaining its width while the peak smoothly translates to higher magnetic field strengths.
During the saturation phase, the PDFs of both codes have the similar peaks and high-end tails,
with Flash exhibiting a slightly extended low-end tail.
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Figure 5.8: PDF of log(B2) during the growth phase, with the red line time averaged during
the saturation phase. This is equivalent to Figure 5.7 but on a linearly scaled plot. In the
saturation phase, the distribution is skewed with smaller deviation of magnetic field strengths.
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normal during the growth phase. As the dynamo amplifies the magnetic field, the PDF main-

tains its width and shape, with the peak simply translating to higher magnetic field strengths

(see also Schekochihin et al., 2004b). In other words, the PDF does not become distorted during

the exponential growth phase but only during the slow growth phase as it approaches satura-

tion (see below). This may also be seen in Figure 5.8 which shows the PDF of B2 on a linear

scale. Figure 5.7 additionally shows that Flash is able to sample lower magnetic field strengths

compared to Phantom, which was noted by PF10 in the density PDFs and was attributed to

the better weighting of resolution elements towards low density regions in the grid code.

The approach to saturation changes the shape of the PDF of B2. It follows a log-normal

distribution during the exponential growth phase, but once the dynamo enters the slow growth

regime, it is no longer able to amplify the magnetic field on small-scales. Thus, the high-end tail

of the distribution remains anchored, and is “squeezed” as the peak and low-end tail continue

increasing. This produces a lop-sided distribution (Schekochihin et al., 2004b). Both codes

show this behaviour as the magnetic field saturates.

5.3.3 Saturation phase; 15 . t/tc . 100

The magnetic energy plateaus once the injection of energy balances its dissipation. While the

magnetic field topology changes due to the turbulence during this phase, the magnetic energy

remains in a statistical steady state.

5.3.3.1 Magnetic energy saturation level

The mean magnetic energy in the saturation phase is approximately 2–4% of the mean kinetic

energy (Table 5.2). The mean magnetic energy shows a trend of increasing with resolution,

with the 5123 calculations twice as high as the corresponding calculations at 1283 (for both

Flash and Phantom), though remains within the standard deviation. We note that the

5123 Phantom calculation is averaged over a shorter time (⇠7tc compared to 50–70tc), which

is reflected by its smaller standard deviation. The 5123 Flash calculation shows a long-term

variation, with a 50% increase in mean energy above 80tc. This is reflected in the wider standard

deviation in this calculation (⇠1.0 compared to 0.2–0.3 in the 1283 and 2563 calculations).

Overall, while the statistical ranges of mean energy overlap between resolutions, it does appear

that Phantom yields higher mean magnetic energy during the saturation phase than Flash

at comparable resolution.

The mean magnetic energy in both codes increases with resolution. Given that the Prandtl

number in Flash does not scale with resolution (Section 5.3.2), this suggests that the saturation

level of the magnetic energy does not depend exclusively on the Prandtl number (Federrath

et al., 2014). Instead, our results suggest that it depends on either the kinetic or magnetic

Reynolds numbers.

To investigate this further, we performed a set of Phantom simulations, keeping the same

artificial viscosity parameters but turning o↵ the artificial resistivity switch developed in Chap-
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Figure 5.9: Time evolution of the rms Alfvén speed and Alfvénic Mach number. For all cal-
culations, the time averaged rms Alfvén speed in the saturation phase is vA ⇠ 2cs. The rms
Alfvénic Mach numbers is MA ⇠ 20. This di↵ers noticeably from the rms Alfvén speed divided
by the rms velocity (⇠5).

ter 4 (i.e., using a constant artificial resistivity parameter, ↵B = 1), thereby increasing the

amount of resistive dissipation. This reduced the mean magnetic energy in the saturation

phase at all three resolutions (1283: 1.52 to 1.01, 2563: 2.31 to 1.32, 5123: 2.62 to 1.40).

This, along with the Flash results, suggests that the magnetic Reynolds number is primarily

responsible for determining the saturation level of the magnetic field.

5.3.3.2 Alfvénic Mach number

Figure 5.9 shows the time evolution of the rms Alfvén speed, vA, and rms Alfvénic Mach

number. The rms Alfvén speed in the saturation phase is approximately twice the sound speed.

In other words, the turbulence remains super-Alfvénic even once the magnetic field has reached

saturation. It is worth noting that the rms MA in Figure 5.9 is calculated by taking the rms

of the local MA as calculated per grid cell or particle. In the saturation phase, calculating the

rms in this manner yields MA ⇠ 20, which is di↵erent (by a factor of 4) to that calculated by

dividing the rms velocity (10) by the rms vA (yielding ⇠5).

5.3.3.3 Power spectra

Figure 5.10 shows the time-averaged spectra of the magnetic energy from all six calculations

in the saturation phase, with the shaded regions showing one standard deviation of the time-

average. In each case 50 spectra have been averaged over a minimum of 50tc. The spectra of

Flash and Phantom can be seen to be similar in shape, except that the Phantom calculations

contain approximately twice as much magnetic energy in large-scale structure (k < 10). This

is consistent with the higher mean magnetic energy in the Phantom calculations in Table 5.2,
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Figure 5.10: Time averaged spectra of the magnetic energy in the saturation phase for Flash
(solid lines) and Phantom (dashed lines) at resolutions of 1283 (blue), 2563 (red), and 5123

(black). Shaded regions represent the standard deviation. The Phantom calculations system-
atically contain more magnetic energy (approximately 2⇥) in large-scale structure (k < 10)
compared to Flash, and have an extended tail at high k due to the adaptive resolution.

indicating that this energy is stored in the largest scales of the field.

The peak of the magnetic energy spectra for both codes is at k ⇠ 3–4, occurring just

above the driving scale. As the resolution is increased, both codes extend the spectra further

towards small scales. The Flash power spectra drop sharply at the Nyquist frequency, while

the Phantom power spectra reaches higher wavenumbers than Flash for the same number

of resolution elements. While, in SPH, the smoothing kernel will distribute power to higher

wavenumbers, the Phantom calculations have adaptive resolution that reach 4–8⇥ that of the

Flash calculation in the densest regions. For that reason, the Phantom power spectra has

been analysed on a grid that is twice the resolution of the Flash grid (see Appendix B for why

this resolution was chosen), and it is expected that these power spectra correspond to resolved

structures.

Figure 5.11 compares the magnetic spectra to the kinetic energy spectra. It is characteristic

for the small-scale dynamo for the peak in the magnetic energy spectrum to be at a wavenumber

just above the peak in the kinetic energy spectrum (Cho and Vishniac, 2000; Brandenburg et al.,

2012). This is clearly seen in Figure 5.11. The sharp peak at k = 2 in the kinetic energy spectra

is due to the driving force, and at all resolutions the peak of the magnetic energy spectra occurs

just above this scale (k ⇠ 3–4).

The relative amount of energy in the magnetic field increases with resolution in both codes.

For Phantom, the magnetic energy exceeds the kinetic energy at high k at all three resolutions.

For Flash, the magnetic energy spectra approaches the kinetic energy spectra with increasing

resolution, overtaking it only in the 5123 calculation. Haugen et al. (2004) found that the mag-

netic energy spectra overtook the kinetic energy spectra at high k in their Pm = 1 simulations,

consistent with the Phantom results, though we note that the exact nature of this behaviour

will certainly depend upon the magnetic Prandtl number.
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Figure 5.11: Time averaged kinetic and magnetic spectra in the saturated phase for Flash
(black lines) and Phantom (red lines). As the resolution is increased, the magnetic energy
spectra begins to overtake the kinetic energy spectra at high k as found by Haugen et al. (2004).
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5.3.3.4 PDFs of B2

The red line in Figure 5.7 shows the time-averaged PDF of B2 during the saturation phase, with

the shaded region representing the standard deviation of the time-averaging. The distributions

for Flash and Phantom peak at similar magnetic field strengths, agreeing to within 10% on

the maximum of the peak, with similar ranges on the high-end tail of the distribution. The

maximum magnetic field achievable agrees to within 10%. Similar to the growth phase, the

low-end tail extends further for Flash, and has a larger standard deviation. From the linearly

scaled plots of Figure 5.8, it is seen that the probability of being at the mean magnetic field

strength increases by ⇠20% once the magnetic field has saturated, corresponding to a reduced

variance in the distribution of magnetic field strengths. This occurs due to the saturation of

the strongest magnetic fields (Schekochihin et al., 2004b).

5.3.3.5 Density PDFs

Figure 5.12 compares the PDFs of the density contrast, s ⌘ ln(⇢/⇢0) (for a motivation of this

choice of variable, see Vazquez-Semadeni 1994; Federrath et al. 2008), during the growth phase,

while the magnetic field is dynamically weak, to the saturation phase when the magnetic field

is at its strongest. The PDFs in the growth phase were time-averaged during the first half of

the growth phase while Em < 10�4 (excluding the initial transient growth). This allows for

statistical averaging of a number of crossing times while the magnetic field is still dynamically

weak. The PDFs in the saturation phase were averaged over at least 50tc. The standard

deviation from the time averaging is shown for the highest resolution calculations by the shaded

regions (black for Flash, red for Phantom).

It has been noted many times that, for supersonic turbulence, the PDF of s follows a log-

normal distribution (e.g., Vazquez-Semadeni, 1994; Padoan et al., 1997; Passot and Vázquez-

Semadeni, 1998; Nordlund and Padoan, 1999; Klessen, 2000; Lemaster and Stone, 2008; Fed-

errath et al., 2008, 2010; Price and Federrath, 2010a; Federrath and Klessen, 2013). This is

a consequence of the density at a location being perturbed randomly and independently over

time. According to the central limit theorem, the PDF will converge to a log-normal distri-

bution (Papoulis, 1984; Vazquez-Semadeni, 1994). Other processes may a↵ect the shape of

the PDF. Self-gravity has been demonstrated to add power-law tails at high densities (e.g.,

Klessen, 2000; Li et al., 2003; Federrath and Klessen, 2012), magnetic fields can narrow the

width of the distribution e↵ectively decreasing the compressibility of the gas (Collins et al.,

2012; Molina et al., 2012; Federrath and Klessen, 2013), non-isothermal equations of state can

introduce power-law tails at high and low densities (Passot and Vázquez-Semadeni, 1998; Li

et al., 2003), and di↵erent forcing mechanisms (compressive vs solenoidal) influence the shape

of the distribution (Federrath et al., 2008, 2010).

Both codes show PDFs close to a log-normal distribution in both the growth and saturation

phases. As expected, Flash can be seen to sample a lower range of densities, while Phantom

samples a higher range. This behaviour is similar to that found by PF10, and occurs because
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Figure 5.12: Time averaged density PDFs during the growth phase (top panel, for t/tc = 2–10)
and during the saturation phase (bottom panel, for t/tc = 30–100, only t � 50 for the 1283

Phantom calculation). The peaks and high end tail of the PDF are similar for both cases, but
the low density tail is less extended when the magnetic field has reached saturation.
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Figure 5.13: Time averaged density PDFs during the growth phase (top panel, for t/tc = 2–20)
and during the saturation phase (bottom panel, for t/tc = 30–100, only t/tc � 50 for the 1283

Phantom calculation). This is equivalent to Figure 5.12 but on a linearly scaled plot. The
peaks and high end tail of the PDF are similar for both cases, but the low density tail is less
extended when the magnetic field has reached saturation.

Phantom uses adaptive resolution based on the density. The stronger magnetic field in the

saturation phase reduces the low-end tail of the distribution, making it more log-normally

distributed, consistent with previous findings (Kowal et al., 2007; Lemaster and Stone, 2008;

Price et al., 2011; Molina et al., 2012; Federrath and Klessen, 2013). The peak and high-end

tail of the distribution remain quite similar during both the growth and saturation phases.

Figure 5.13 shows the PDFs of s on a linear scale. As before, the extended low-end tail for

Flash is visible, but from this it is also clear that the mean of the distribution is higher for

Phantom. This was also noted by PF10.

5.4 Conclusions

We have performed a comparison between grid-based (Flash) and particle-based (Phantom)

MHD methods on the small-scale dynamo amplification of magnetic fields. The calculations
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used supersonic turbulence driven at rms Mach 10 in an isothermal fluid contained in a periodic

box. The initial magnetic field was uniform and had an energy 12 orders of magnitude smaller

than the mean kinetic energy.

Our conclusions are as follows:

i) Both codes exhibited similar qualitative behaviour. The initially weak magnetic field

was exponentially amplified at a steady rate over a period of tens of turbulent crossing times,

saturating when the magnetic energy was 2–4% of the kinetic energy.

ii) The growth rate of magnetic energy in the Flash calculations varies only slightly with

resolution (5–10%), while the Phantom calculations are sensitive to resolution (nearly doubling

with each factor of two increase in resolution). This is due to the resolution scaling of the

artificial dissipation terms.

iii) For Pm ⇠ 1, the saturation level of magnetic energy appears to primarily depend on the

magnetic Reynolds number, with little variation as the magnetic Prandtl number varies.

iv) Although Phantom is more computationally expensive, with the 2563 Phantom calcu-

lation taking as many cpu-hours as the 5123 Flash calculation, our results indicate the mean

magnetic energy at saturation is comparable to Flash calculations at higher resolution.

v) Both codes show magnetic energy spectra at saturation that is relatively flat at large-

scale, peaking around k ⇠ 3–5.

vi) During the growth phase, both codes produce a log-normal PDF of B2 which linearly

translates to higher magnetic field strengths over time.

vii) During the saturation phase, the PDF of B2 in both codes becomes skewed, sampling

a smaller range of magnetic field strengths.

This comparison has shown that SPMHD is capable of simulating the small-scale dynamo

amplification of magnetic fields. We have performed this comparison using the ideal MHD

equations, as many astrophysical simulations are performed under the assumption of ideal

MHD. The most pressing follow-up to this work would be to perform a comparison using fixed

physical dissipation terms in order to obtain agreement on the physical scaling of the growth

rates.
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Conclusion

In this thesis, methods have been developed to improve the representation of magnetic fields

in smoothed particle magnetohydrodynamics (SPMHD). The ideal MHD equations can be

straightforwardly added to SPH with naive simplicity, however the resulting algorithm has

numerical di�culties in simulating real astrophysical applications. The di�culty stems from the

divergence-free constraint of the magnetic field. Maxwell’s equations cleanly stater·B = 0, but

the induction equation, which describes the evolution of a magnetic field, does not manifestly

enforce this.

6.1 Summary

6.1.1 Chapter 2 — Smoothed particle magnetohydrodynamics

Chapter 2 provided an overview of SPMHD. Insight into the numerical challenges surrounding

r ·B was obtained by deriving the ideal MHD equations in the continuum limit from the Euler

fluid equations, Maxwell’s equations, and the Lorentz force law. Developing the discretisation

of these equations into SPMHD started with the density estimate and variable smoothing length

formulation. Using basic interpolation theory, the discretised version of the induction, energy,

and momentum equations were obtained. Through understanding of the continuum equations,

the instability present in the momentum equations was understood as arising from the inclusion

of a term proportional to r ·B. Strategies to address this instability were presented. Methods

for capturing shocks and discontinuities were also discussed.

6.1.2 Chapter 3 — Constrained hyperbolic divergence cleaning

In Chapter 3, we developed a constrained implementation of mixed hyperbolic/parabolic diver-

gence cleaning based on the Dedner et al. (2002) method (see also Tricco and Price, 2012a).

The premise is to couple a scalar field,  , to the magnetic field via a set of hyperbolic equations.

These are used to propagate divergence through the magnetic field as a series of waves, with

a parabolic di↵usion term removing divergence error from the magnetic field. The hyperbolic

119
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waves make the parabolic di↵usion more e↵ective, as it increases the volume on which it can

act.

In developing the numerical implementation of the cleaning system, it was useful to consider

the physical picture of how it operates. Energy is transferred from the magnetic field into the

 field, then transported to a di↵erent location in a wavelike manner. It is key that energy

be conserved in this process, otherwise, the waves might contain more energy than they did

initially, leading to an increase in divergence error. This behaviour was indeed found by Price

and Monaghan (2005) in their implementation. One circumstance where this may occur is at

sharp density contrasts, where it can lead to a catastrophic increase in energy (see shocktube

test 1B in Stasyszyn et al. 2013; also Section 3.4.2). Stasyszyn et al. (2013) used an artificial

limiter to restrict the cleaning scheme in an attempt to reduce the severity of this error, but this

does not address the fundamental issue of spurious energy production and reduces the overall

e↵ectiveness of the scheme.

Our method is ‘constrained’ in that it manifestly conserves the energy in the hyperbolic

system of equations, inherently preventing spurious increases in the divergence of the magnetic

field (consider again shocktube test 1B using our method in Section 4.2.1 and in Tricco and

Price, 2013b). This was accomplished by defining the energy content of the  field, then

including it in the system Lagrangian. This allowed the discretised version of the hyperbolic

equations to be obtained in the same manner as the SPMHD equations of motion — yielding

versions which are guaranteed to conserve energy and to always decrease divergence error. This

implementation was found to significantly increase the stability and robustness of the method,

in particular solving issues with sharp density contrasts and free boundaries. This divergence

cleaning scheme was found to yield an order of magnitude reduction of average divergence error

on most test problems and astrophysical applications, and was responsible for the successful

simulation of jets during the first hydrostatic core phase of star formation (Price et al. 2012,

see also Tricco et al. 2013b; Bate et al. 2014a), and outflows during stellar core formation (Bate

et al. 2014b, see also Price et al. 2013).

Enhancing the e↵ectiveness of the divergence cleaning method was tested in two ways. One,

by explicitly increasing the hyperbolic wave speed, with a corresponding reduction in timestep

(over-cleaning). Two, by iterating the cleaning equations in-between timesteps (sub-cycling).

We found that both approaches yield similar reductions in divergence error for the same number

of steps (i.e., a factor of 10 increase in wave speed yields results similar to 10 iterations of sub-

cycling the cleaning equations). Using sub-cycling, the divergence of the magnetic field may be

set arbitrarily low provided a su�cient number of iterations are taken.

A formulation of the constrained hyperbolic divergence cleaning method was developed for

the velocity field, for use in weakly compressible SPH simulations (see also Tricco and Price,

2012b). The aim is to improve the representation of incompressibility. Tests on an oscillating

water drop reduced the magnitude of density variations by half, with negligible kinetic energy

dissipation.
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6.1.3 Chapter 4 — A switch to reduce resistivity

In Chapter 4, a new switch was developed and tested that dynamically regulates the amount

of artificial resistivity applied to the magnetic field (see also Tricco and Price, 2013b). The

motivation for a new switch arose during the course of a comparison of supersonic magnetised

turbulence (Chapter 5). It was discovered that the PM05 switch completely failed to work

for highly super-Alfvénic shocks. Therefore, a new switch was required which could detect

discontinuities in the magnetic field regardless of the magnetic field strength. The new switch

accomplished this by measuring the gradient of the magnetic field at the resolution scale nor-

malised by the magnitude of the magnetic field. This measures the relative size of the jump in

magnetic field strength, allowing it to detect discontinuities regardless of the absolute magnetic

field strength.

This switch not only solved problems in detecting shocks in very weak magnetic fields, but

was found to out-perform the PM05 switch in every respect. It reduced the L1 error by 7–45%

in a number of shocktube tests (containing a variety of magnetic shock types) compared to the

PM05 switch. It resulted in lower magnetic energy dissipation in simulations of a circularly

polarised Alfvén wave and the Orszag-Tang vortex problem. We concluded that it should be

adopted for general use in SPMHD simulations.

The concept of the switch — using a normalised shock indicator — was used to construct

switches for artificial viscosity and thermal conductivity (see also Tricco and Price, 2013a). The

new artificial viscosity switch required a slow decay of ↵ in order to treat post-shock oscillations,

and was found to reproduce correct shock profiles in the Sod shocktube test.

6.1.4 Chapter 5 — Turbulent dynamo amplification of magnetic fields

In Chapter 5, we compared SPMHD (using the code Phantom) with grid-based methods

(Flash) on the simulation of the turbulent small-scale dynamo amplification of a magnetic

field (see also Tricco et al. 2014, and some early work which appeared in Tricco et al. 2013a,b).

The turbulent motions on the smallest length scale e�ciently twist and wind the magnetic

field, imparting kinetic energy from the motion of the fluid into magnetic energy. The magnetic

field as a whole grows through a reverse cascade, with energy being transported from small

into large scales. This dynamo is an example of a fast dynamo, in that it leads to exponential

amplification of the magnetic field. Since the dynamo operates near the smallest scales in the

system, its growth rate is set by the combination of kinetic and resistive dissipation (kinetic and

magnetic Reynolds numbers, and the ratio of the two, the magnetic Prandtl number). Once

the magnetic field saturates on small scales, it enters a linear or quadratic growth phase as the

reverse cascade continues to amplify large scales. The magnetic field fully saturates once the

conversion of kinetic energy to magnetic energy is balanced by the dissipation of energy.

The simulations used supersonic turbulence to drive the dynamo. The conditions were

representative of the interior of molecular clouds — the gas was isothermal, and had root mean

square velocity of Mach 10. The turbulence was sustained through a stochastic driving force,
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with the pattern pre-generated so that both codes followed the same pattern as closely as

possible. The initial conditions — uniform density, zero velocity, and a uniform magnetic field

— were simple for the same reason. The simulations used a box of unit length with periodic

boundary conditions, and were performed at three resolutions: 1283, 2563, and 5123.

Both methods had similar qualitative behaviour, with the magnetic energy being steadily

amplified at an exponential rate until saturation. The saturation level of the mean magnetic

energy was consistent at around 2–4% of the mean kinetic energy, increasing with higher mag-

netic Reynolds numbers (i.e., higher resolution), though the saturation energy in the Phantom

calculations was approximately equal to the Flash calculations at double the resolution.

The spectra of the magnetic energy had similar shape between the two methods, showing

a relatively flat spectrum at low wavenumbers (k < 10). In all calculations, the dynamo

saturated the magnetic energy at smallest scales first. This marked the onset of the linear

growth phase, during which the reverse cascade of magnetic energy slowly saturated the large

scales. The saturated level of magnetic energy was similar at medium and small scales between

the methods, though with the Phantom calculations containing twice as much magnetic energy

at large scales (k < 10) compared to Flash.

The rate of magnetic energy amplification di↵ered between the two methods. For Flash,

similar growth rates were obtained for the three resolutions simulated (within 5–10% di↵erence).

However, Phantom showed a stronger resolution dependence, with the growth rate nearly

doubling with each factor of two increase in resolution. This e↵ect was determined to be

caused by the artificial viscosity and resistivity. Changing the dimensionless parameters in the

dissipation terms (↵ and ↵B) lead to the same e↵ect as changing the resolution.

The probability distribution function (PDF) of magnetic field strengths was log-normal dur-

ing the amplification phase. Its width remained constant, with the mean smoothly translating

to higher field strengths over time. As the magnetic field approached saturation, the dynamo

was unable to continue amplifying the strongest regions of the fields and the high-end tail of

the distribution anchored in place. However, the low-end tail continued to increase, leading

to a skewed distribution as the high-end tail became ‘squeezed’. Both methods exhibited this

behaviour, agreeing to within 10% on the width and peak of the distributions, and on the

location of the ‘anchor’ point of the high-end tail.

6.2 Future work

The direct extension to this thesis would be to continue developing the algorithms of SPMHD.

The need for continued development will be best determined through application of the current

methods to astrophysical problems. While the methods developed here have given a path for-

ward on many problems, stress testing them through application will illuminate any weaknesses

that need be addressed.

There are several aspects of the method that could be thought about further. The tensile
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instability in the equations of motion is understood as arising from the term proportional to

r ·B in the continuum equations. Subtracting this term solves the instability, and is attractive

for its simplicity and physical motivation, though creates equations of motions which do not

conserve momentum. It is not clear how to improve upon this aside from employing better

methods to uphold the divergence-free constraint on the magnetic field.

In addition, the shock capturing methods used in SPMHD are rather crude in comparison

to grid-based methods. As such, the numerical dissipation in SPMHD is typically higher than

‘standard’ grid-based methods. One issue is that artificial resistivity uses the fast MHD wave

speed for the capture of all shock types, introducing a level of dissipation in excess of what is

required for pure Alfvén waves. Iwasaki and Inutsuka (2011) developed a Godunov style shock

solver for SPMHD that yields lower dissipation, and it would be interesting to investigate such

approaches further.

The resolution of the magnetic field is tied to the mass. This is typically not a problem,

as for the majority of astrophysical systems the regions of high mass are the most relevant.

However consider the case of a neutron star. The magnetic field outside the neutron star is

important, yet the density contrast at the surface is so large that the resolution of the magnetic

field outside will be essentially absent if using equal mass particles. Also, consider the case

of an accretion disc. SPH can simulate free boundaries easily, however, if the magnetic field

is vertically aligned, then the field lines on the top and bottom boundaries of the disc are

unphysically cut.

The immediate research plans for the future are for the following investigations:

6.2.1 Exactly upholding r ·B = 0

The first is to find a suitable method to exactly maintain the divergence-free constraint of the

magnetic field. The constrained hyperbolic divergence cleaning method only approximately

upholds the divergence-free constraint, and it would be better to exactly maintain it. The

Euler potentials and vector potential approaches have been already investigated as possible

solutions, but neither are tenable in practice, and it is not clear how to adapt constrained

transport to a particle method. Revisiting projection methods o↵er the best hope. PM05 have

already developed scalar and vector projection methods, and testing these further would be of

considerable interest. The di�culty is the computational cost involved, which only becomes

trickier when dealing with individual timesteps.

6.2.2 Magneto-rotational instability

The second research plan is to investigate SPMHD’s ability to simulate the magneto-rotational

instability (MRI). A significant amount of work has been performed with grid-based methods

on local simulations of accretion discs using the shearing box approximation. However, this has

been shown to be deficient in capturing the global physics of accretion discs (e.g., Fromang and

Papaloizou, 2007; King et al., 2007; Parkin and Bicknell, 2013). Due to its excellent angular
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Figure 6.1: Snapshots of B
�

at t = 1, 20, and 25⌦ for the 5122 2D shearing box MRI test.
Random small motions in the velocity lead to perturbations in the magnetic field (t = 1⌦).
These coalesce to form large structures (t = 20⌦), which lead to the generation of turbulence
(t = 25⌦). Renderings are not all on the same scale.

momentum conservation and ability to simulate complex geometries and free boundaries, SPH

is quite natural for simulating global accretion discs. Demonstrating that SPMHD can simulate

the MRI would open a wide range of physical problems for future study.

Preliminary work has been performed on simulating the MRI in SPMHD. Vanaverbeke et al.

(2014) used simulations of the MRI to test their SPMHD code, finding their results to have

qualitative agreement with the grid-based simulations of Guan and Gammie (2008). In the

following, we describe the results of simulations of the MRI in 2D shearing boxes. The initial

density is uniform ⇢ = 1. The equation of state is isothermal. The initial magnetic field is a sine

wave in the z-direction, with amplitude defined to have plasma beta � = 1348 (B
z

⇡ 0.0358).

Random perturbations are introduced to the velocity field on the scale of 0.01 cs. We note

that these simulations use the quintic spline kernel in order to adequately resolve these small

perturbations. These conditions mimic the fiducial model of Guan and Gammie (2008) and

model S1 of Hawley and Balbus (1992). We perform the simulations for 100 orbital periods

(t = 100⌦ where ⌦ is the orbital frequency) at resolutions of 642, 1282, 2562, and 5122. Since the

flow is subsonic, we used the averaged Alfvén speed in the artificial resistivity signal velocity,

rather than the fast MHD wave speed. We found that at low resolutions, the dissipation

from using the fast MHD wave speed can prevent the instability from activating. Similarly,

Vanaverbeke et al. (2014) comment that they use only the r · B source term when using the

PM05 switch in order to avoid excessive dissipation.

Snapshots of the � component of the magnetic field at t = 1, 20, and 25⌦ are presented

in Figure 6.1. The correct qualitative behaviour is obtained: random motions in the initial

conditions induce small perturbations in the magnetic field, which coalesce leading to turbulent

motion. The magnetic energy as a function of time is given by Figure 6.2. The MRI leads

to an exponential increase in magnetic energy which decays once turbulence has formed. The

location of the peak is in agreement with Guan and Gammie (2008). It occurs later for higher

resolutions because the energy contained in the perturbations is at smaller scales, requiring more
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Figure 6.2: The evolution of magnetic energy for the 2D shearing box test. After several orbits,
the stretching of the magnetic field lines triggers the MRI leading to exponential growth of
magnetic energy.

time for the perturbations to coalesce into large structures. The maximum magnetic energy

achieved increases with resolution due to the reduction in numerical dissipation. Notably, the

decay in magnetic energy is more rapid than in the grid-based results. This is due to the

level of magnetic energy dissipation. The switch developed in Chapter 4 will activate when

the field undergoes reversals in direction (B ! 0), which is the correct behaviour at current

sheets, but adds an unnecessary level of dissipation for this problem. We have performed a 642

resolution calculation with no artificial resistivity applied, the results of which are included in

Figure 6.2. The maximum energy level achieved is over an order of magnitude higher than the

same resolution with artificial resistivity, with only a slow decay in magnetic energy after. This

preliminary work shows promise that SPMHD can activate the MRI, though further work is

needed.

6.3 Conclusion

The methods developed in this thesis have significantly advanced SPMHD as a numerical

method capable of performing astrophysical MHD simulation. The proof is in the pudding:

they have already lead to published work on the role of magnetic fields in the formation of

protostars (Price et al., 2012; Bate et al., 2014b). To quote Price and Monaghan (2005),

Our results suggest that the method is ripe for application to problems of current

theoretical interest, such as that of star formation.
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Artificial  -dissipation term

Although the hyperbolic divergence cleaning method developed in Chapter 3 already includes

a damping term to reduce  , we have investigated the addition of a new dissipation term,

analogous to artificial resistivity or viscosity, of the form
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. This dissipation term is mainly designed to capture discontinuities in

the  field, motivated by our neglect of the surface integral term in Equation 3.9. The term

is essentially an SPH expression for a di↵usion term of the form ⌘
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which in comparison to the damping term, acts more strongly to smooth relative di↵erences

in  . This artificial  -dissipation can be used in conjunction with the damping term, however

since both the damping and di↵usion terms dissipate  , it is important that values of ↵
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dimensional tests that propagation of divergence waves were damped too severely with ↵
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This can be shown to be negative definite by splitting the RHS into two halves, performing a

change of summation indices on the second half, then rejoining to obtain
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which, since F
ab

is negative for positive kernels, gives a negative definite contribution to the

total energy (and conversely would give a positive definite heat contribution).

Inclusion of the dissipation term was tried with all test cases presented in Section 3.4.
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Figure A.1: Average and maximum divergence error when including the new, artificial  dis-
sipation term in the Orszag-Tang vortex test. Values of ↵

 

and �
 

are chosen so that the
combination is close to critical damping, however no benefit is noted over use of the regular
damping term.

Similar reductions in the divergence error were obtained, however no results were improved

beyond that of using the damping alone (Fig. A.1).



Appendix B

Interpolating particle data to a grid

The power spectra of kinetic and magnetic energy of the Phantom calculations (Chapter 5)

are computed by interpolating the particle data to a grid using an SPH kernel weighted summa-

tion over neighbouring particles. We have investigated whether using mass weighted or volume

weighted interpolation changes the results. Furthermore, we have tested grids of varying reso-

lution to find the optimal grid resolution to properly represent the magnetic field.

The volume weighted interpolation of a quantity A (in this case, the magnetic field B) may

be computed according to

B(r) =

P
b

m
b

⇢
b

B
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W (|r� r
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The denominator is the normalisation condition. A mass weighted interpolation may be com-

puted as
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Figure B.1 shows the kinetic and magnetic energy spectra for the 1283 Phantom calculation

computed from a grid using volume weighted and mass weighted interpolations, respectively.

The spectra between the two interpolation methods are nearly indistinguishable, di↵ering from

each other by less than 1% at all k and deviating only near the resolution scale. We conclude

that either approach is acceptable, and for the spectra generated in Chapter 5, we have used

the mass weighted interpolation.

The smoothing length in the calculations in Chapter 5 can decrease by up to 8⇥ in the

highest density regions, therefore we have tested the e↵ect of di↵erent grid resolutions on the

magnetic spectra. Figure B.2 shows magnetic energy spectra from a 1283 particle Phantom

calculation interpolated to grids with resolutions of 1283 to 10243. Our results show that the

large-scale structure (k < 50) is nearly identical at all grid resolutions, with the spectra di↵ering

on the order of 0.1% at each k-band. The only di↵erence is that the spectra extends to higher

k as the resolution is increased. We find that the magnetic energy contained on the 1283 grid
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Figure B.1: Time averaged kinetic and magnetic spectra of the 2563 particle Phantom cal-
culation interpolated to a grid using mass weighted and volume weighted interpolation. Both
approaches yield the same result.
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Figure B.2: Conversion of a 1283 particle Phantom snapshot to grids of resolutions from 1283

to 10243 grid points. Each resolution agrees well on the large-scale structure, but captures more
of the small-scale structure as the resolution is increased. We find that the 2563 su�ciently
the total magnetic energy, therefore choose grids with double the number the grid points as
particles for our analysis.
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di↵ers by 1% of the energy contained on the particles, while the 2563 grid resolution di↵ers

by only 0.1%. Higher resolutions only minimally change the energy content of the magnetic

field. Our conclusion is that a grid with double the resolution of the Phantom calculation is

su�cient for computing the magnetic energy spectra accurately.



Appendix C

E↵ective magnetic Prandtl numbers

in grid and particle methods

C.1 Prandtl numbers in Eulerian schemes

The primary source of numerical dissipation in Eulerian schemes is from the discretisation

of advection terms. Consider a simple example of the contents of one grid cell advecting

into an adjacent grid cell. If only a partial amount is transferred into the adjacent cell, then

the contents must be reconstructed from the flux across the boundary. This approximation

introduces di↵usion due to its truncation error (e.g., Robertson et al., 2010). The di↵usion

term in the first-order upwind scheme of Courant et al. (1952), for example, scales according to

/ v�x(1� |C|), where C = v�t/�x is the Courant number. Higher order methods will change

the scaling of the di↵usion, but in all schemes it depends upon the resolution, time step size,

and fluid velocity.

Quantifying the e↵ective numerical dissipation may be done by comparing simulations

against analytic solutions. Lesa↵re and Balbus (2007) compared the analytic solution of a

linear mode of the magneto-rotational instability (MRI) to shearing box simulations in order to

calibrate their version of Zeus3D. They varied the size of the time step and investigated resolu-

tions from 323 to 1283, determining that the total numerical dissipation (viscous and resistive)

scaled linearly with time and quadratically with resolution. They found the magnetic Prandtl

number to be approximately 2 (though in the context of this comparison, these simulations

are for subsonic flows). In a similar manner, Fromang et al. (2007) performed simulations of

the MRI with and without physical viscous and resistive dissipation terms. They found that

the results of their ideal MHD simulations (dissipation is purely numerical) corresponded to

Pm ⇡ 2, though cautioned that this depends upon the nature of the flow.

The e↵ective Prandtl number for the version of Flash used in Chapter 5 was calibrated

by Federrath et al. (2011). Using simulations of the small-scale dynamo amplification of a

magnetic field, they compared results from ideal MHD simulations to simulations employing a
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fixed dissipation (at varying resolution). They found that Pm ⇡ 2 for flows of Mach numbers

0.4 and 2. Thus, it is expected that the Flash calculations in our comparison will have a

similar Prandtl number.

C.2 Prandtl numbers in smoothed particle magnetohydrody-

namics

In SPMHD, the equations of motion are derived from the discretised Lagrangian (Price and

Monaghan, 2004b; Price, 2012). Advection is computed exactly. Hence, the only sources of

numerical dissipation are from the explicit sources of artificial viscosity and resistivity, which

can be used to estimate the Reynolds and Prandtl numbers.

Artificial viscosity and resistivity in SPMHD are discretisations of physical dissipation terms,

but with di↵usion parameters that depend on resolution. Artymowicz and Lubow (1994) and

Murray (1996) analytically derived the amount of corresponding physical dissipation from the

Monaghan and Gingold (1983) form of artificial viscosity (see also Monaghan 2005; Lodato

and Price 2010). The artificial viscosity acts as both a shear and bulk viscosity. In these

calculations, we use the Monaghan (1997) form of artificial viscosity, which is similar except for

the absence of a factor h/|r
ab

|. Meru and Bate (2012) calculated the amount of viscosity this

adds in the continuum limit, and have shown that for the Monaghan (1997) form of viscosity,

it is approximately 18% stronger for the ↵ term. Using this approach, they also derived the

coe�cients for the �AV term in the signal velocity. Hence, the shear viscosity in the simulations

in Chapter 5 corresponds to

⌫AV =
62

525
↵vsigh+

9

35⇡
�AV|r · v|h2. (C.1)

where

vsig =
q

c2s + v2A. (C.2)

The bulk viscosity will be 5/3⇥ this value (Lodato and Price, 2010).

We note that these coe�cients are twice the values quoted by Meru and Bate (2012). Their

work is derived in the context of a Keplerian accretion disc, in which they safely assume that

half the particles inside a particle volume are approaching while the other half are receding.

It is standard in SPH to apply artificial viscosity only to approaching particles. In this paper,

we calculate Reynolds numbers for particles where r · v < 0, and use the full value of the

coe�cient as it is expected that inside a shock, nearly all particles will be approaching. The

bulk viscosity will be important for supersonic flows, which will a↵ect the Reynolds number.

In order to compare Reynolds numbers with Flash, we compute the Reynolds numbers using

only the shear viscosity. Including this term in the estimate of the Reynolds number would

lead to larger Pm values.

The corresponding physical dissipation from the artificial resistivity can be calculated in
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Figure C.1: The kinetic and magnetic Reynolds numbers (left plots) and Prandtl numbers
(right plots) for Phantom. The top row shows the averaged numbers for particles which have
r · v < 0, while the bottom row is averaged for regions where ⇢ > 10⇢0. The higher density
regions have approximately double the kinetic and magnetic Reynolds numbers. The drop in
Reynolds and Prandtl numbers over time is due to the fast MHD wave speed increasing in the
signal velocity of the artificial dissipation terms. The Prandtl numbers are about unity, though
decrease with resolution.

a similar manner (Section 2.2.10.2). Artificial resistivity corresponds to a physical resistivity

given by

⌘AR =
1

2
↵Bvsigh. (C.3)

We note, as concluded in Chapter 4, that the �AV term in the artificial viscosity is not required

for artificial resistivity. It is added to artificial viscosity to prevent particle interpenetration in

high Mach number shocks, and otherwise leads to unnecessary dissipation if added to artificial

resistivity.

Since the dissipation terms use the local signal velocity, and our simulations use switches

to dynamically adjust the values of ↵ and ↵B for each particle, ⌫AV and ⌘AR are calculated per

particle. In Figure C.1, we show the average kinetic Reynolds, magnetic Reynolds, and magnetic

Prandtl numbers on the particles for our simulations. We find that the mean Prandtl number

in these set of SPMHD calculations is approximately unity. The Prandtl number decreases

with resolution, a consequence of the quadratic scaling of the �AV term, which is present in

the artificial viscosity but not artificial resistivity. The Prandtl number also decreases with

time. This results from the signal velocity scaling behaviour, as the dissipation from the ↵
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term increases as the magnetic field is amplified (vA increasing). The �AV term is una↵ected

by this. For high-density regions (⇢ > 10), we note that the Reynolds numbers are increased

by approximately a factor of 2, directly corresponding to the reduction in h.
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2011, ‘Galactic ménage à trois: simulating magnetic fields in colliding galaxies’. MNRAS
415, 3189–3218.

Kotarba, H., H. Lesch, K. Dolag, T. Naab, P. H. Johansson, and F. A. Stasyszyn: 2009,
‘Magnetic field structure due to the global velocity field in spiral galaxies’. MNRAS 397,
733–747.

Kowal, G., A. Lazarian, and A. Beresnyak: 2007, ‘Density Fluctuations in MHD Turbulence:
Spectra, Intermittency, and Topology’. ApJ 658, 423–445.
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