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Abstract

A recent objective in medical bionics research is to develop visual prostheses -

devices that could potentially restore the sight of blind individuals. The Monash

Vision Group is currently working towards implementing a fully autonomous direct-

to-brain vision implant called the Gennaris. Although research in this field is pro-

gressing quickly, initial implementations of these devices will be quite naive, offering

very basic levels of vision. The vision is anticipated to be binary - that is with black

and white pixels - and a low resolution of several hundred pixels. Improving this

dramatically is currently improbable, as it would require significant advancement in

electrode stimulation technology and substantial research into the complexities of

the visual cortex.

This PhD project aims to contribute to the development of the Gennaris and

other bionic vision devices, in the hope of improving the quality of life for future

patients. More specifically, the key goals of this work have been to develop a portable

real time visual prosthesis simulator that is suitably representative of anticipated

vision expected of the Gennaris; to investigate the potential capabilities of future

patients under this limited vision, and possible image processing techniques that can

be used to improve their performance; and to investigate the feasibility of integrating

3D depth sensing and advanced functionality that could aid navigation. An emphasis

of this work has been high framerate, low latency and real time operation.

An immersive real time simulator system, based on a Field Programmable Gate

Array architecture, has been developed called the Hatpack Simulator. This system

improves upon limitations of platforms in existing research. The Hatpack is portable,

weighing only 3 kilograms, operates at 60 frames per second with a constant low

latency of 17 ms, and is low in power consumption, able to last up to 4 hours on a

full charge. Five psychophysics trials have been carried out in order to evaluate the

effectiveness of various 2D image processing functions implemented, and the ability

x



of users to complete simple tasks that resemble everyday activities. Results of the

psychophysics experiments show that the reduction in user capabilities due to binary

and low resolution degrading of vision is significant. This motivates the use of 3D

sensing to assist with image representations for bionic vision.

The integration of a second generation Microsoft Kinect depth sensor has been

investigated and a new hardware plane fitting algorithm based on least squares has

been achieved. An implementation of this has been applied to the detection and

highlighting of tables and free floor space in a real time end-to-end system running

at 60 frames per second.
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Chapter 1

Introduction

Blindness is the condition of poor visual perception, the inability to see light. As

defined by the World Health Organisation (WHO), blindness is vision of less than

20/500 or a visual field of less than 10 degrees [72]. The three leading causes of

blindness are Cataract - the progressive increase of opacity of the lens in the eye;

Glaucoma - the increase of pressure within the eyeball, which causes loss of vision;

and Age-Related Macular Degeneration (AMD) - the deterioration of the Macula,

the light-sensitive tissue that lines the back of the eye [91]. Worldwide, there are

currently about 39 million people who are blind [117]. Since vision is the primary

sense in humans, blindness is a major disadvantage to a person’s life. Simple every-

day tasks, such as walking around the house, having a shower, eating, sending an

email, or making a phone call, all become much harder (or near impossible) to per-

form and can often lead to dangerous consequences. Many years of accustomisation

are likely to follow the loss of sight. Fortunately, various treatments and visual aids

have been developed to alleviate some of the problems faced by blind individuals.

Although there are many available and commonly used aids for the blind, such as

walking canes [90], trained guide dogs [86], braille [18] and other tactile and auditory

systems [113], there are still many things that just cannot be done without at least

some sort of visual light perception. The Monash Bionic Eye Project is a revolution-

ary new research project, funded by the Australian Research Council (ARC), that

aims to provide a solution to this problem. The project is being undertaken by a

multidisciplinary team known as the Monash Vision Group. The solution proposed

is a prosthetic implant (visual prosthesis) that would restore sight through electrical

stimulation of the primary visual cortex in the brain.

The Monash Vision Group (MVG) was established in 2010, and comprises of

Monash University researchers from departments of Engineering, Physiology, Com-

puter Science and Mathematics, as well as clinical and industry partners. The
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MVG’s proposed device has been named Gennaris, and will consist of a brain im-

plant made up of a number of tiles. The tiles will be powered and controlled wire-

lessly utilising in total, several hundred stimulating electrodes. The first in-human

clinical trial is expected by the end of 2016.

Research into the development of visual prostheses has been carried out since

the late 1960s with the seminal work of Brindley and Lewin [19], Dobelle et al. [37],

and Bak et al. [11]. These studies confirmed that electrical stimulation of parts of

the brain can evoke bright spots of light known as phosphenes in a patient’s visual

field, and can in fact restore sight. Subsequent studies by Humayun et al. [56]

and Veraart et al. [114] have also shown that similar results can be achieved via

electrical stimulation of the retina, and the optic nerve as well. The results of these

early studies have provided a basis for widespread research into the development of

a functional vision implant, that could potentially allow blind people to see again.

Currently, there are many research groups working towards developing such devices

with various different approaches, including retinal implants [1, 49, 54, 57, 59, 73,

82, 103, 105], optic nerve implants [80, 93, 115], and implants on the primary visual

cortex of the brain [32, 43, 48, 70, 81, 96].

Despite substantial research in the field over the past 50 years, the level of

achievable vision of implants will be limited at least initially in terms of spatial and

temporal resolution. In addition to this, the ability to control the intensity of visual

perceptions will also be quite limited as suggested by [37]. Therefore, there is a

need to exploit available sensor data in order to best represent the scene viewed by

the patient with a limited number of ‘pixels’. In order to do this however, simula-

tion platforms called bionic vision simulators are required and innovative processing

algorithms need to be developed.

Bionic vision simulators provide normally sighted individuals the ability to view

the environment in a form that mimics the low vision of a visual prosthesis. A typical

simulator comprises a camera to capture the scene, processing hardware to convert

the camera frames into a low resolution form, and a display device to convey the

information to the user. A number of simulator systems and processing techniques

have been implemented and tested over the past 10-15 years [24, 27, 34, 46, 51].

However, many of these make use of image processing libraries implemented on a

computer, and may have significant limitations: such as large size and power con-

sumption; inability to be worn or moved around easily; simplified representations of

visual perceptions; frame rate or latency issues. Advancements in high density Field

Programmable Gate Array (FPGA) technology may provide alternative solutions to

these problems.

FPGAs are integrated circuits that are designed to be reconfigured by the end-

user in practice. They contain large arrays of reconfigurable logic, memory and

2



interconnect circuitry that allow the development of complicated application specific

circuits. The reconfigurability of FPGAs allows much flexibility in designs. Complex

logic functions can be implemented many times in a single device and performed

simultaneously. This high level of parallelism often allows for significant speed-up

of performance compared to serial implementations on a CPU. This is especially

useful when implementing image processing algorithms [9] which usually involve

many identical and independent operations that could be performed simultaneously.

It is often possible to achieve the same functionality on an FPGA as on a CPU

based system with much less hardware, as a result the power consumption of the

FPGA design will be significantly lower. FPGAs also offer the ability to export a

design to an Application Specific Integrated Circuit (ASIC), for even more speed

and reduction in power consumption.

The progression of computer microprocessor technology in recent years has meant

that more processing power is able to be achieved with less hardware and reduced

power consumption. As a result, recently developed simulator systems have man-

aged to address some of the limitations mentioned earlier through the use of high

performance laptop computers. This has allowed for lightweight implementations

that can be worn and achieve sufficient real time performance. One common limita-

tion is still quite prevalent though - the assumption and use of purely visual sensing

(with only a single camera). This may be a valid assumption as early bionic eye

systems will only use a single camera as the sole input to the system. However, the

addition of 3D sensing, such as Microsoft Kinect v2 sensor, as well as other non-

visual sensing has the potential to provide a much richer collection of data. This

would allow a variety of advanced functions such as object detection, path detection,

plane tracking, skeleton tracking, mapping and localisation to be implemented and

explored in an attempt to complement the low-level functionality of a bionic eye

implant. This thesis will show that it is both desirable and that there is potential

to enhance the poor phosphene images of a bionic eye with the use of 3D depth

sensing.

Through the development of a fast hardware-based real time bionic vision sim-

ulator, the implementation of various processing functions, the evaluation of the

system through psychophysics testing, and the integration of 3D sensing and plane

detection, the research completed as part of this thesis aims to provide better quality

of life for bionic vision patients.
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1.1. MOTIVATIONS, GOALS AND CHALLENGES

1.1 Motivations, Goals and Challenges

Visual prostheses require the implantation of electrodes into some part of the visual

pathway. Electrical current is injected via these electrodes to induce a visual re-

sponse, usually a spot of light referred to as a phosphene. The retina in the back of

eye and the visual cortex of the brain are the two most common targets of research

groups that are currently working on prosthetic vision implants. The surface area

available for device implantation in these locations is very limited, with the central

part of the retina (fovea) having on average an area of 1 mm2 and the equivalent

region in the visual cortex on average an area of 500 mm2 [70]. This means that

electrodes would need to be very small and densely packed in order for a bionic

vision device to achieve ‘high resolution’. It has been shown however, that it is not

the size of an electrode that limits the spatial resolution, rather how closely the

electrodes can be spaced before the effects of a particular electrode are no longer

distinguishable or interfere with another [14]. It is unlikely that the number of

achievable foveal stimulation points will surpass several hundred within the near fu-

ture. Although there have been reports of the elicitation of coloured phosphenes in

some stimulation studies [11, 37, 54, 96], the control of colour has yet to have been

achieved. Limited control of phosphene intensity or brightness has been reported

by various groups [11, 19, 37, 96] however the number of achievable distinguishable

levels has not been consistent. The phenomena of depth perception is part of a

higher level of brain function [8] and is unlikely to be achieved through electrode

stimulation of the retina or visual cortex. Given all of these research findings, it is

anticipated that early implants will be:

• Highly limited in spatial and temporal resolution

• Restricted to phosphenes of uncontrolled colour

• Have limited control of intensity

• Unable to provide any information about depth

The Monash Vision Group has chosen the visual cortex approach for their pros-

thesis [70]. The visual cortex provides a number of benefits over other parts of the

visual pathway. The surface area is a lot larger, therefore more electrodes can be

implanted giving higher effective resolution. The visual cortex is further along the

visual pathway and so does not require any of the preceding sections such as the

retina or the optic nerve to be active. This means that a cortical prosthesis could

provide a potential cure for up to 80% of people with blindness. An implant on

the brain will not have to withstand as much movement as one in the eye. There

are also caveats associated with cortical implants. As the implant is required to
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penetrate the surface of the brain, it is arguably more invasive than other methods.

The size of the visual cortex can vary greatly for different people. Implants on the

cortex will be subject to the effects of visuotopic mapping, a non-linear warping of

visual elicitations, which is described in detail in Chapter 2.

A typical bionic vision system will make use of a digital camera to provide input

to the stimulating implant. These days even the most basic digital camera is capable

of capturing images at resolutions exceeding hundreds of thousands of pixels. This

is in stark contrast to the expected capabilities of preliminary vision implants with

several hundred electrodes. Suitable processing techniques are needed in order to

most effectively convey the high level of information in the camera image at the very

low resolution of the implant. Evaluation of such processing implementations would

ideally be carried out through psychophysical testing of actual implanted patients.

However, this is impractical with the current progress of research in the field. As

an alternative, many research groups have turned to the use of simulated prosthetic

vision for the purposes of design, testing and evaluation of potential vision processing

functions. Many studies have been done in the field of simulated prosthetic vision.

Most involve the use of some sort of computer simulation of expected prosthetic

vision. As mentioned earlier though limitations exist in the systems and there is a

need to solve these issues in order to better simulate prosthetic vision and explore

a wider range of situations.

The goals of this work stem from the goals of the Monash Bionic Eye Project.

As such, the main aim of this work has been to contribute the development of the

Gennaris device, and potentially improve the quality of life for future patients. The

work however can be used to guide the development of other devices as well and

provide options for implementation in future revisions of these devices. The more

specific goals of this work can broken down into the following three sections.

Development of a Real Time Simulation Platform

A simulator needed to be developed that would simulate the anticipated level of

vision that the Monash Bionic Eye device would provide. In order to handle the

expectations of the general public, the simulator needed to be suitably representa-

tive of the first in human device characteristics. It would need to provide a suitable

platform for the implementation, testing and evaluation of potential image process-

ing functions. Finally, the system should improve upon the systems developed and

used by other research groups.
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Psychophysics

A key goal of this work was to use the simulator system to carry out psychophysics

tests to evaluate the implemented functions and potential capabilities of bionic vision

patients. This would guide the development of further revisions of the implant and

other implants, as well as provide a basis for more formal clinical trials and larger

scale testing that could be carried out.

Advanced Sensing

A subsequent but important goal for this work is the exploration of more sophisti-

cated sensing technology and more advanced functionality that could aid a user in

navigation. This would allow for better use of the variety of information available

in a scene.

1.2 Thesis Contributions

The work completed as part of this thesis has resulted in three main contributions

which span the fields of bionic vision, simulated prosthetic vision, psychophysics,

real time hardware based image processing and computer vision, and 3D sensing.

The work has been presented in a number of publications including three conference

papers, a book chapter and has been included in a submitted journal paper. The

following outlines the contributions of this work and publications arising from each.

Hatpack Simulation System

A simulation and psychophysical test platform has been developed. The system

builds upon the shortcomings of simulators in other published works at the time.

It is wearable and portable, operates in real time at camera framerate with low

latency, and is fully implemented in hardware using an FPGA development board.

The Hatpack incorporates the Monopole model, which mimics the effect of visuo-

topic mapping. Various image processing functions have been implemented into the

system, based on the expectations of the Monash Bionic Eye device at the time.

The work involving the development of the Hatpack System and the implemented

functions was published in the following peer reviewed conference paper.

• H. Josh, B. Yong, L. Kleeman. A Real-time FPGA-based Vision System for

a Bionic Eye. In Proceedings of Australasian Conference on Robotics and

Automation (ACRA), Melbourne, Australia, 2011.
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Psychophysics Experiments with Hatpack

Five different psychophysics experiments have been carried out using the Hatpack

with normally sighted individuals. The experiments tested the abilities of partic-

ipants to complete everyday tasks such as navigation, object manipulation, shape

discrimination and contrast discrimination under the simulated low vision restric-

tions of a bionic eye. The tests also allowed for the comparison and evaluation of

various processing functions that have been implemented.

The results of the psychophysics experiments have been published in the papers

listed below. The first paper is a peer reviewed conference paper and it won the

prize of Best Student Paper. The second is a revised edition of this paper which

was published as a book chapter. The final is a peer reviewed conference paper

containing results of the fourth experiment.

• H. Josh, B. Yong, L. Kleeman. Mobile, Real-Time Simulator for a Cortical Vi-

sual Prosthesis. In Proceedings of the International Conference on Biomedical

Electronics and Devices, Villamoura, Portugal, 2012.

• H. Josh, B. Yong, L. Kleeman. A Real-Time and Portable Bionic Eye Simula-

tor. In Biomedical Engineering Systems and Technologies (pp. 51-67), 2013.

• H. Josh, C. Mann, L. Kleeman, D. Lui. Psychophysics Testing of Bionic Vision

Image Processing Algorithms Using an FPGA Hatpack. In Proceedings of

the IEEE International Conference on Image Processing (ICIP), Melbourne,

Australia, 2013.

Hardware Plane Fitting Implementation and Applications

A plane fitting algorithm has been developed, based on the least squares method.

The algorithm has been reduced to a form containing simple arithmetic and im-

plemented on an FPGA as part of a real time system. This system incorporates

3D sensing via a depth sensor and applies the plane fitting implementation to the

detection of floor and tabletop planes. An error analysis of the sensor and plane

fitting algorithm has been performed to specify logic precision and thresholds for

the system.

This work and the results gained have been included in the following journal paper

that has been recently submitted.

• H. Josh, L. Kleeman. A Novel Hardware Plane Fitting Implementation and

Applications for Bionic Vision. Submitted to Machine Vision and Applica-

tions, 2015.
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Declaration of Collaborative Contributions

Since the work in this thesis is part of a highly collaborative team-based project, it is

only natural that there has been some work completed with the help of colleagues.

The following is a list of contributions made by others to specific sections of the

research.

• Benedict Yong – helped with the physical construction of the initial Hatpack

system. He also contributed to the visuotopic mapping implementation and

the conduction of tests and analysis of results for the first two conference

papers.

• Dr. Dennis Lui – helped with the conduction of the psychophysics testing

for the third conference paper.

• Dr. Collette Mann – helped with the conduction of the testing and analysis

of results for the fourth and fifth psychophysics experiments.

• Associate Professor Lindsay Kleeman – as supervisor provided various

supportive input throughout the course of this work and designed the hardware

implementation of the Otsu’s thresholding method that is outlined briefly in

Chapter 2.

1.3 Organisation of Thesis

Chapter 2: The Hatpack Simulator

The introduction of this chapter reviews briefly the history of visual prosthesis re-

search. An overview of the Monash Bionic Eye is given since the work presented in

this thesis is part of this project and has been based on the proposed architecture

of this device. The main content of this chapter involves a detailed overview of

the components and physical construction of a real time simulator system that has

been developed as part of this work - the Hatpack Simulator. It also covers the

various functions and algorithms developed and how they have been implemented

in hardware. This chapter also includes a detailed discussion of the phenomenon of

visuotopic mapping which is important to consider given the cortical nature of the

Monash Bionic Eye implant.

Chapter 3: Psychophysics Testing with Hatpack Simulator

Five different experiments have been carried out with the Hatpack system in the

form of psychophysics tests using normally sighted participants. The tests comprise
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a navigational task, an object manipulation task, a dynamic scene interaction task,

a shape and contrast discrimination task and a sock sorting task. This chapter gives

a detailed description of the experiments, the experimental setup and the results

obtained. An analysis of the results and how they guided subsequent research is

also presented.

Chapter 4: Least Squares Plane Fitting and Depth Sensor

Error Characterisation

Results and observations of the Hatpack work indicated a need for advanced sens-

ing approaches. Extension of this work into the 3D sensing domain prompted the

application of plane fitting to object detection. This chapter covers in detail the

development of a simplified least squares plane fitting algorithm that is suitable for

implementation in hardware on an FPGA system. An analysis of sensor error and

error propagation is covered in order to specify the appropriate logic precision and

thresholds required for the hardware implementations that are covered in Chapter

5.

Chapter 5: Hardware Implementation of Plane Fitting and

Applications to Bionic Vision

Chapter 5 gives a detailed explanation of the hardware implementation of the plane

fitting algorithm developed in Chapter 4. The integration and performance testing

of a real time end-to-end system is covered. The application of the plane fitting

implementation to bionic vision related problems such as free floor space detection

and simple object recognition is also presented.

Appendices

Appendix A provides detailed derivations for the error model equations (4.38) to

(4.41) that have been discussed in Chapter 4.

Appendix B provides a list of web links to example video footage of the Hatpack

simulator and a video of the visual results of the end-to-end system from Chapter

5. The videos in this Appendix are also made available on the CD-ROM that is

attached to this thesis.
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Chapter 2

Hatpack Simulator System

The research field of visual prosthetics has become increasingly active in recent years,

with a number of research groups around the world currently working towards the

development of an implant that could restore some level of vision to blind individuals

- a bionic eye. Bionic vision devices will allow patients to see spots of light that

will be brought about through the electrical stimulation of some part of the human

visual pathway, most commonly either the retina in the eye or the visual cortex of the

brain. The Monash Vision Group is currently working on a device based on cortical

stimulation, and human trials are planned in 2016. Early implants will be limited,

both in spatial and temporal resolution. To most effectively convey information

to a patient given these restrictions, innovative image processing techniques and

exploitation of sensor data are required. Most research groups in this field are

still in the preclinical or clinical trial stages though, and so a need has arisen for

simulation platforms that would allow early development and testing of potential

functions and capabilities of users.

In this chapter the development of a real time simulation and psychophysical test

platform is presented. The simulator has been designed in line with the development

of the Monash Vision Group’s Gennaris device and seeks to address the limitations

of other simulators in literature. The development of this system has been based

loosely on a simplified version that was completed as a Bachelor of Engineering final

year project at Monash University, in conjunction with Benedict Yong. A complete

redesign of the system achieved in that work was needed for the work of this thesis.

The whole physical structure was redesigned including the use of different camera,

FPGA and display hardware, and a new mapping and sampling technique has been

employed in place of a simple square lattice grid used in the final year project. The

functions implemented in this work are all newly developed, however basic versions

of luminance thresholding, and Gaussian phosphene modelling were implemented

in the undergraduate work and have been improved for this work. Finally the

overall performance achieved is significantly higher and the simulator itself is much
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more sturdy and comfortable. Part of the work presented in this chapter has been

completed in collaboration with Benedict Yong who was employed as a research

assistant for the Monash Vision Group at the time. He contributed to the physical

construction and layout of the Hatpack and also helped with the visuotopic mapping

work.

2.1 Introduction

Early experiments by Foerster [45] in 1929 showed that electrical stimulation of the

visual cortex of the brain can cause the sensation of light. The sensation experienced

by his patient was a spot of light that was directly in front and motionless. This is one

the first documentations of visual percepts being elicited by electrical stimulation of

the brain and similar results were shown by Krause and Schum in 1931 [63], Penfield

et al. in 1952 and 1954 [84, 85], and Button and Putnam in 1962 [22]. Encouraged

by this seminal work, Brindley and Lewin conducted their own study in 1968 [19],

that has become widely regarded as the beginning of visual prosthesis research.

Their work involved the implantation of a prototype vision prosthesis, comprising

non-penetrating electrodes onto the surface of a blind woman’s brain. They found

that sending a uniform train of electrical pulses through the electrodes, elicited small

bright spots of white light (“phosphenes”) in the visual field of the patient. The

most common types of phosphenes were described by the patient as “like a star in

the sky” or “the size of a grain of sago at arm’s length” [19]. Phosphenes were

found to be gaze-contingent, meaning that during voluntary eye movements, the

phosphenes would move along with the eyes. Supporting results were later found by

Dobelle et al. in 1974 and 1976 [37, 38]. In 1990 Bak et al. investigated the use of

intracortical penetrating electrodes and found that stimulation thresholds were 10-

100 times lower than those used in the work of Brindley and Lewin, or Dobelle [11].

It was also found that spacing of electrodes could be reduced to 700 µm and that

phosphenes evoked from microstimulation were much more stable and predictable.

Further work completed by Humayun et al. and Veraart et al. [56, 114] showed that

stimulation of the visual cortex was not the only way to elicit phosphenes, and that

stimulating the retina or the optic nerve would also give the same effect. In fact it

was found that electrical stimulation of any part of the human visual pathway would

result in phosphene elicitation. These early studies provided a basis for widespread

research into the development of functional visual prostheses.

A visual prosthesis, also often referred to as a ‘bionic eye’, is an implantable

biomedical device that aims to restore vision to the blind. The core component

of these devices is an array of electrodes, driven by specialised electronics. The

electrodes inject electrical current into a particular section of the patient’s visual
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pathway in order to generate an ‘image’ in the visual field. The term visual path-

way refers to the path that signals take from the retina in the eye where they are

generated, to the primary visual cortex at the back of the brain. Light that is inci-

dent on photoreceptors in the retina, a layer of cells at the back of the eye, results

in the generation of signals. These signals are passed through the optic nerve and

Lateral Geniculate Nucleus (LGN) before arriving at the primary visual cortex (V1),

which is at the back of the brain. From V1, signals diverge to subsequent levels of

visual cortex where higher level processing takes place. In a blind individual, parts

of the visual pathway may not function. Therefore, visual signals do not reach the

visual cortex. A successful prosthesis would bypass these inoperative sections in

order to deliver signals to V1.

In 2009, the Australian Research Council (ARC) funded a new collaborative

research initiative to develop a functional visual prosthesis. Two proposals were

accepted for this initiative, one of which was by a Monash University led team of

researchers, now known as the Monash Vision Group (MVG) [77]. Established in

2010, the MVG comprises Monash University researchers from the fields of Engineer-

ing, Physiology, Computer Science and Mathematics, as well as clinical and industry

partners such as Grey Innovation, MiniFab and the Alfred Hospital in Melbourne.

The group aims to develop a prosthetic vision device centred on a cortical implant,

making use of several hundred electrodes. The device, named ‘Gennaris’ [70], is in

the pre-clinical stage and human trials are expected within a year. MVG’s vision sys-

tem design includes a miniature digital video camera, which will be worn by the user

on a custom designed headgear. The high-resolution images captured by the camera

are processed by a small vision processor unit, about the size, shape and processing

power of a modern smart-phone (see Figure 2.1). The most useful information from

the camera images will be extracted and converted to a lower resolution form suit-

able for transmission to the brain. These signals are then transmitted via wireless

interface to a number of stimulation tiles that have been surgically implanted in the

primary visual cortex of the brain. Each tile comprises 43 microelectrodes, electrode

driver circuitry and a wireless receiver coil. For the first-in-human trial, up to 11

tiles may be implanted, allowing the elicitation of up to 473 phosphenes [78].

As research grows in this new area of bionics, there is a great need for simulation

or visualisation of the possible results of such an implant. Bionic eye simulators serve

as good platforms for researchers to investigate the effectiveness of implemented

algorithms, tune parameters, and realise the importance of certain parameters prior

to actual clinical trials. The simulators would be used most in psychophysical trials

trials involving normally sighted individuals attempting to complete tasks with the

limited vision provided by a simulator. However, the simulators would also be of

use to the general public for educational purposes and to handle the expectations of
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Figure 2.1: System overview of the Gennaris vision device. Image courtesy of
Monash Vision Group. Used with permission.

families and friends of potential patients. Input to the system is in the form of an

image or image stream. This image data goes through processing that transforms it

into a representation, that attempts to mimic the elicitation of phosphenes through

electrode stimulation. The processed image data is then stored and/or displayed on

a screen for viewing by the user.

A number of visual prosthesis simulators have been developed prior to the be-

ginning of this work. The earliest of which was used in the work of Cha et al.

from the University of Utah [24–26]. Their simulator was made up of a small video

camera and miniature monochrome CRT monitor that was mounted in a pair of

ski goggles, powered by a battery belt worn by the user. A number of perforated

masks were used in front of the screens to give the effect of phosphenated vision. Re-

searchers from John Hopkins University School of Medicine used digital PC video

cameras, head mounted displays and desktop computers for their own simulation

studies [34, 35, 51, 111]. Variations of components were used for each of the stud-

ies, however the underlying system involved a camera to capture images or video,

a computer that would process the camera input into a low resolution form and a

display device to present it to the user. Only one of these systems was portable via

use of a laptop computer in a backpack [33, 34]. Similar and more recent work by

other research groups can be found in [27, 42, 46, 101, 112, 120].

Despite the number of simulators that have been used in prior work, there are

some significant limitations that arise in their implementations. The majority of
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these simulators perform their image processing on a computer using image process-

ing libraries, and so are often limited to use within an area close to a stationary

computer. Depending on the complexity of processing and the available processing

power of the equipment in use, these systems may suffer from latency and frame

rate issues. Simulations for visual prostheses have often been generalised and as a

result visuotopic mapping has been overlooked or simplified models have been used.

Visuotopic mapping is the mapping of electrode placement on the visual cortex to

elicitation of phosphenes in the visual field and is an important consideration for

cortical implants. A number of challenges stand in the way of producing a simulator

system that could provide a solution to these limitations. Developing a system that

is very portable requires lighter hardware that is able to be powered from a battery.

Usually this would come at the cost of reduced computing performance. This how-

ever, would hinder the ability to achieve a high framerate and low latency operation

which is another limitation that needs solving. This work takes an alternative to

conventional computer-based processing. The solution adopted here is to use a Field

Programmable Gate Array (FPGA). The simulator used in the work by Srivastava

et al. [101] makes use of FPGA technology and this simulator is the closest im-

plementation to that of the work presented in this chapter. Their simulator uses

a digital camera to capture images, an FPGA development board to implement an

image processing filter that incorporates an expected cortical phosphene mapping,

and computer to incorporate eye-tracking data and display the final output. The

main limitation of this system however, is the fact that it is a large, fixed system. It

is not wearable, cannot be moved around easily, and the use of a computer means

that power consumption will be relatively higher. As will be discussed later in this

chapter, these limitations are not present in the Hatpack simulator system. Earlier

work by Srivastava et al. [102] involving a prototype bionic vision stimulation device

achieved a more compact FPGA based system incorporating visuotopic mapping.

However this work did not have as much image processing functionality as the sim-

ulator in their later work and was used for actual electrode stimulation studies with

non human primates as opposed to simulations for psychophysical studies.

Field Programmable Gate Array (FPGA) systems are an alternative architec-

ture that have gained popularity with image processing applications in recent years

[9]. An FPGA is an integrated circuit that can be reconfigured after it is manu-

factured. In fact it is designed to be configured and reconfigured by a customer or

designer while in use out in the field. FPGAs are usually made up of a vast array

of programmable logic blocks, reconfigurable routing channels and I/O pads. The

logic blocks comprise a number of smaller elements called logic cells which can be

configured to perform a number of different combinational logic functions or act as
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simple logic gates (AND, OR, XOR, etc.). Logic blocks typically also contain stor-

age or memory elements such as flip-flops. Multiple logic blocks can be connected

together via routing channels which are reconfigurable interconnects. The channels

can connect to I/O pads in order to interface on-chip logic implementations with

external devices and communication buses. FPGAs often also contain hard or non-

configurable logic blocks for specific functions such as multiplier logic, digital signal

processing functions, communication interfaces and many more.

The reconfigurability of FPGAs allows for a lot of flexibility in designs. Further-

more, parallelism of operations can be exploited since complex logic functions can

be implemented many multiples of times in a single device and performed simulta-

neously. This is especially advantageous for image processing and computer vision

applications which involve performing identical operations on a large number of in-

dependent data points. Since FPGA designs are able to be tailored to the specific

task at hand, implementations can often be run at much lower clock speeds and

with much less hardware than the equivalent computer based implementation. This

in turn has favourable implications for power consumption. There are a number

of challenges presented with FPGA design however. There is a limited amount of

logic, memory and routing resources available on an FPGA device, and this needs

to be carefully managed by the designer, while still satisfying timing constraints and

requirements. Since there are often multiple ways to solve a task with an FPGA

design, finding the method that provides best performance can sometimes be diffi-

cult and result in a longer development cycle. Furthermore, as designs utilise higher

percentages of available resources, the job of the compiler becomes much harder and

therefore compilation times can increase to many hours.

In the sections that follow, the development of a simulator system based on

FPGA technology is presented.

2.2 System Overview

In order to develop a bionic eye simulator, a base system has been constructed to

provide a solid platform for the implementation of various functions that attempt to

mimic the level of vision provided by a cortical visual prosthesis. The system needs

to be wearable, mobile, and operate in real time.

It was decided that an FPGA-based architecture will be used. This is due to the

possibility of highly parallel implementations offering very low latency functionality,

ability to connect multiple sensors and peripherals, low power consumption, and

small form factor for maximum mobility. An Altera DE2-115 FPGA development

board from Terasic has been chosen (shown in Figure 2.2). This board is ideal for

our implementation as it is relatively inexpensive, has a low power Altera Cyclone
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Figure 2.2: DE2-115 FPGA development board

Figure 2.3: Sparkfun Electronics CM-26N/P CMOS camera

IV FPGA chip with a sufficiently large number of available logic elements and on-

chip memory, and many external peripherals and I/O pins that allow for connection

to devices such as cameras and displays.

Visual input to the system is provided by a video camera. A suitable camera

would have low power consumption, be relatively inexpensive and offer a moderate

to high spatial resolution. The chosen camera is a Sparkfun Electronics CM-26N/P

CMOS camera (Figure 2.3). This camera has a capture resolution of 640 by 480

pixels, frame rate of 59.94Hz, a viewing angle of 70◦, is small in size, and has a

simple 3-wire data/power connection.

For output of the processed video stream, an immersive form is required in

order to give the best simulation. It was decided that a suitable device would be a

head-mounted display (HMD) also commonly referred to as virtual reality goggles.

These goggles need to be of comparable resolution to the video camera input, have

an interface compatible with the FPGA board, and be lightweight, low cost, and

comfortable to wear. A pair of Vuzix iWear VR920 (Figure 2.4) goggles has been

chosen as a suitable solution. These goggles are USB powered and take a VGA
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Figure 2.4: Vuzix iWear VR920 virtual reality goggles

Figure 2.5: Terasic IR remote control

signal as input, meaning they can be connected directly to the VGA output of the

FPGA board.

Since there would most likely be a wide range of functions implemented each

with its own various parameters, there needs to be a convenient way of control-

ling/adjusting the system. This control was preferably to be wireless, easily acces-

sible and simple enough for user control. The DE2-115 board has an IR Receiver

module and comes with an IR remote control (Figure 2.5) which proved more than

adequate for this purpose.

After all the major components of the system were sorted out, a neat, comfortable

wearable package needed to be produced. This industrial design/layout work was

aided by Nicola Andrews from Grey Innovation. It was proposed that the bulk of

the components (processing hardware and 12V lithium ion battery power supply)

be mounted within a protective casing that would in turn be placed in some sort of

backpack. Cables would then need to run from the components in the backpack to
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the camera and HMD which would be worn by the user. With a focus on comfort and

neatness, a slim-fit neoprene laptop bag was chosen to contain a hard plastic laptop

casing that would house the components. Port connectors have been embedded into

the side of the laptop casing so that power and data cables could connect externally

to the camera and goggles, and that an IR Receiver extension cable could be used.

Initially, the video camera module was fastened to the HMD which was then

worn by the user. However, it was soon realised that this set-up was neither stable

nor comfortable on the user’s head. It was also found that a lot of ambient light was

leaking through as the goggles did not fully immerse the users’ sight. The solution

to this problem was to mount the HMD within the frame of a ski mask and to make

the lens of the ski mask opaque. The camera would then be mounted on the front

of the HMD/Mask combination. This setup proved to be stable and comfortable.

Figure 2.6 shows the system and its main components.

2.3 System Implementation

The Hatpack system is implemented using Verilog hardware description language.

Figure 2.7 shows a block diagram of the complete implementation of the system.

Each block in the diagram represents one or more Verilog modules within the sys-

tem. Image data is received from the camera as an NTSC analogue signal. This is

converted to a YUV 4:2:2 signal and stored in an SDRAM provided on the FPGA

development board. The stored data is retrieved from the SDRAM and converted

to RGB data which is passed to the processing modules, that have been created

as part of this thesis, one pixel at a time. After leaving the processing modules,

the data is passed to the VGA controller which handles the signalling for the VGA

output port. The IR Receiver block interprets the remote control signals from the

IR receiver sensor and generates a function code which is sent to a control logic

block that interfaces with all the processing modules in order to toggle modes or

configure parameters. In Figure 2.7, the green blocks have been developed as part

of this work, other blocks refer to reference designs provided as part of the DE2-115

FPGA development board package.

2.3.1 Visuotopic Mapping

Early physiological research [97, 116] showed that ‘points’ in the visual field corre-

spond to specific locations on the visual cortex, inferring a ‘map’ or transfer function

between visual field points and the visual cortex. Furthermore, that map is mostly

continuous in that neighbouring points in the visual field correspond with neigh-

bouring points on the visual cortex. The map or transfer function which describes
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Figure 2.6: Hatpack System
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Figure 2.7: Block diagram of Hatpack implementation

the translation of points between the visual cortex to its corresponding points on

the visual field is known as the visuotopic map. Due to the physiological non-linear

properties of the visual cortex, the visuotopic map is also non-linear and ‘distorted’.

In humans, the phenomenon known as cortical magnification describes how a small

region at the centre of the visual field, known as the fovea, corresponds with a much

larger area of the visual cortex [40, 55]. Early work by Schwartz [97] indicated an

approximation to the mapping by a ‘log-polar’ representation, where linear points on

the visual cortex correspond to eccentrically logarithmic and angularly linear points

in the visual field. The foveal region is represented this way as a dense packing of

points in the centre of the visual field which corresponds to a disproportionately

larger region on the visual cortex. Also important to note is that the visual cortex is

spread over both halves of the brain with the left visual cortex corresponding with

the right visual hemifield and vice versa, due to cross-over of the optic nerves [13].
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Mathematical models that came from this include the Monopole model (defined

from the ‘log-polar’ observations) [88, 94, 97], the Wedge-Dipole model (adds a

second parameter to Monopole model to account for curvature in the periphery

region of the visual cortex) [12, 88] and more recently the Double-Sech model (adds

a shear function to the Wedge-Dipole model to account for changing local isotrophy

as well as increasing accuracy of mapping at higher levels of visual cortex V2, V3)

[94, 95].

At the time of development of the Hatpack system, the Gennaris design was still

in early stages and not much was confirmed about the arrangement of electrodes, or

where they would be placed on the brain. The implant was anticipated to consist of

a linear array of electrodes, the resulting phosphene pattern would not be linear but

rather follow this log-polar mapping. It would be useful and more accurate to model

the output visualisation based on a mathematical model of the visuotopic mapping.

Since the implant is expected to be placed in the primary visual cortex V1, and

closer to the foveal side of the visual cortex, the Monopole model was chosen to

model the output visualisation as it was mathematically simpler and still provides

reasonable accuracy.

The Monopole equation (2.1) describes the left visual cortex w as a complex

function of the right visual hemifield Zw. C is the set of complex numbers, and k is

a dilation factor constant.

w = k log(Zw + a) ∈ C (2.1)

Visual field Zw can be represented as a complex exponential where r represents the

eccentricity and θ represents polar angle.

Zw = reiθ ∈ C (2.2)

Rearranging the Monopole equation, describes visual field Zw as a function of the

visual cortex w.

Zw = e(
w
k ) − a ∈ C (2.3)

The electrode array of the implant was assumed to be a linear array placed on

the visual cortex closer to the foveal region. The visuotopic map was created using

MATLAB and ported over to the FPGA for use as a large lookup table. Approximate

values have been used for the Monopole equation parameters, which are reasonably

consistent with the various values used in the literature: k = 15, a = 0.7 [42, 88, 95].

The exact dimensions and intended locations of the implant were still not known

at the time, and so the eccentricity and polar angle were limited to an 18 by 18

linear array on the visual cortex that cover the following values on: r = [10, 40],
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Figure 2.8: Resultant visual field of implemented visuotopic map

θ = [−0.8(π
2
), 0.8(π

2
)]. This only represents the left visual cortex, corresponding

with the right visual hemifield. The 18 by 18 array was duplicated for the right

visual cortex, creating another array on the left visual hemifield. This produces a

total electrode count of 648. These assumptions were taken to make better use of

the limited screen resolution of the head-mounted display while remaining realistic

to the ‘log-polar’ mapping of the visual cortex. However, new maps can be simply

regenerated on MATLAB to accommodate any changes to this and implemented

into the system, as has been done for the revised mapping covered in Section 2.4.1.

The resultant visual field of the implemented map, with all possible phosphenes, is

shown in Figure 2.8.

As mentioned earlier, the implementation of the described mapping involves

the use of a number of lookup tables (LUTs) and innovative sequential logic that

utilises the information provided by these lookup tables. In order to transform the

input frame data into the low resolution visuotopically mapped frame, the incoming

frame pixels need to be sampled, averaged and stored, ready for display during

the next output frame. Figure 2.9 shows a block diagram layout of the mapping

implementation (excluding intensity transformations, Gaussian profile phosphene

modelling, and dead electrode simulation).

The most resource-expensive part of this implementation (and of the whole Hat-

pack system) is the v-map lookup table. This LUT stores a 10-bit number for each

of its 230400 elements. Each of these elements corresponds to one pixel within the
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Figure 2.9: Mapping implementation (excluding intensity transformations, Gaussian
phosphene modelling and dead electrode simulation)

center 480 by 480 square of pixels in the input frame. The numbers stored in the ele-

ments correspond to the index numbers of phosphene that a particular pixel belongs

to, ranging from phosphene 1 to phosphene 648. A value of zero is given to elements

that correspond to background pixels (pixels that do not belong to a phosphene

and will appear black in the output frame). MATLAB scripts have been written

and used to generate the arrangement of phosphenes and subsequently produce a

memory initialisation file for the v-map lookup table. This innovative method of

defining the mapping can be extended to almost any low resolution mapping with a

simple redefinition of the LUT using MATLAB. This implementation could ideally

be utilised by a system that requires low latency vision mapping.

With the knowledge of the phosphene number of the current pixel, sampling is

made possible. The sampling method that is employed in the Hatpack system is an
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averaging sampler. For each phosphene, the values of all of its pixels are summed

in a storage register that corresponds to that phosphene. After all phosphenes have

been sampled in this way, the stored sums are averaged. Since division logic is quite

expensive in hardware, a multiply and shift implementation is used to approximate

the divide. This involves predefining a fraction that has a divisor which is a power

of base 2. The numerator of the fraction will be the rounded result of dividing the

number of pixels by the base 2 power. Averaging is then achieved by multiplying

the stored sum by the numerator and bit shifting to the left by an amount equal

to the power of the divisor. Since not all phosphenes are the same size, a lookup

table is required to store the multiplier and divisor amounts for each phosphene.

The implementation takes advantage of the fact that phosphenes within the same

ring are all the same size. This allows for a cheaper implementation, albeit with two

separate LUTs (ring number and averaging multiplier). It has also been chosen to

use the same divisor for all phosphenes to further simplify the implementation.

After averaging the sampled phosphene pixels, the result is stored in one of 648

10-bit storage registers. Each register corresponds to one phosphene and its contents

will be accessed and displayed in the next output frame.

Display pixel data is provided by simply retrieving the value stored in the register

that corresponds to the current pixel’s phosphene number (provided by the v-map

LUT). As discussed in later sections, a slightly more complex method is required

when implementing Gaussian phosphene modelling, intensity transformations, and

dead electrode simulation. The display pixel data is passed on to a subsequent VGA

controller module which handles the interface to the physical VGA port.

2.3.2 Averaging Sampler

Figure 2.10 outlines the averaging sampler implementation. After NTSC decoding,

the image stream from the camera is made available one pixel at a time in a se-

quential fashion. As each pixel arrives at the sampling section of the system, its

X and Y pixel count values are compared against the mapping lookup table. This

lookup table stores the corresponding phosphene index number for each pixel within

the central 480 by 480 window of the full camera view. Pixels not belonging to a

phosphene are assigned number zero. Once the phosphene index number is deter-

mined, the pixel is sampled by adding to a storage register that corresponds to that

particular phosphene index number. This process repeats until all pixels have been

sampled. Finally, an average is performed on all of the storage registers according

to the number of pixels that are within each phosphene, and the results are stored

in a separate set of storage registers.

24



2.3. SYSTEM IMPLEMENTATION

Figure 2.10: Averaging sampler implementation

2.3.3 Luminance Thresholding

Various studies [19, 37, 96] have shown that limited modulation of phosphene bright-

ness is possible using a number of different techniques. However, there is some am-

biguity in the possible number of distinguishable brightness levels achievable. The

Hatpack system takes an optimistic approach at simulation of this property, having

the option to display at 2, 4 or 8 levels of intensity or greyscale. This is achieved

by using static thresholds to categorise the averaged samples of pixels (described in

Section 2.3.2) into one of 2, 4 or 8 bands of intensity.

Since 10-bit storage registers are used for pixels, the full greyscale intensity range

is 0 to 1023. Static threshold values have been defined by dividing this range evenly

in order to create bands of intensity for 2, 4 and 8 level modes. Results of 2 and

4-level thresholding are shown in Figure 2.11. It is often difficult to perceive the

results of the system in a static image form, therefore it is highly encouraged to view

the videos listed in Appendix B and here is a link.

To avoid high frequency oscillation between intensity bands, a hysteresis feature

was included. Two threshold values are used to define changes between intensity

bands, instead of one value. When a phosphene’s intensity is between the two

thresholds, no change occurs. Figure 2.12 shows how hysteresis reduces the oscilla-

tion problem.

2.3.4 Dynamic Threshold Selection

It became apparent, through general use of the system, that variations of lighting in

the environment resulted in poor scene conversion and representation. This was due

to the use of fixed intensity values for greyscale thresholding. Although the Hatpack

camera employs a built-in automatic gain controller, it is sometimes not enough to

compensate for such lighting variations. A number of dynamic threshold selection

functions have been developed in order to provide a possible solution.

Manual Threshold Selection

An initial solution to this problem was to allow the user to adjust thresholds via the

remote control. The process of readjusting thresholds while wearing the Hatpack
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Figure 2.11: Thresholding: full resolution image (top), 4-level image (middle), bi-
nary image (bottom)
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Figure 2.12: Binary thresholding with hysteresis

proved rather tedious however, with users often finding it difficult to correctly locate

the IR receiver. It was also observed that users seemed to move back and forth

between a range of thresholds in order to obtain a better understanding of a scene.

Therefore a simpler interface is required that allowed for users to quickly change

between thresholds. The solution chosen is to integrate a potentiometer control dial.

The dial was mounted within a small plastic jiffy box and connected to the Hatpack

sytem via heatshrinked cabling (see Figure 2.13). The potentiometer position was

monitored using a digital I/O pin by measuring the time it took for a capacitor to

discharge, which varies with the potentiometer resistance.

Threshold Ramping

A common approach that was found to be used with the manual control dial was

to cycle back and forth through the whole range of thresholds. This seemed to al-

low momentary recognition of salient information in the scene at a variety different

thresholds that could be investigate further by the user as needed. In an attempt to

automate this process, a ramping function has been developed. The function makes

use of a histogram in order set upper and lower threshold bounds to move between.

This is done in real time and is dependent on current frame pixel data. After the

bounds have been established, the threshold values are then incremented or decre-

mented at set time intervals and following either a saw-tooth or triangular ramping

pattern. The preferred pattern can be chosen by the user and the time interval can

be adjusted so that a faster or slower ramp can be achieved. Although effective in
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Figure 2.13: Manual threshold selection control dial

certain situations, this function was also found to induce nausea occasionally and

so was excluded from further use and evaluation in testing.

Histogram Assisted Binary Threshold Selection

This function uses statistical information such as the range and spread of pixel data

within a frame to automatically choose thresholds for the user. It is achieved through

the generation of a histogram containing pixel intensity data. Since frame data in

the system is only available one pixel at a time, implementation of a histogram is

performed sequentially over the period of a single frame.

Storage registers are used as histogram ‘bins’. There are 20 bins, each of which

store an 18-bit count of the pixels that fall within the bin’s allocated intensity range.

The intensity range of pixels in the system is 0 to 1023, therefore each histogram bin

has its own allocated intensity range of 51 levels, apart from the final bin which has

a range of 55 levels. Only pixels within the center 480 by 480 square of a frame are

used to make up the histogram. For each of these pixels, the value in the appropriate

bin storage register is incremented. In hindsight, if the number of bins used was a

power of 2, a simpler logic implementation for filling the histogram bins could have

been achieved.

Once the histogram is constructed the bin with the maximum count is determined

through the use of a conditional logic block. After this bin is found, an iterative

approach is used to perform a discrete integral of the surrounding bins. Adjacent

bin values are added one at a time and alternating from left to right of the bin with

the maximum count. This method is performed over the remaining clock cycles in
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Figure 2.14: Phoshpene modelling: without Gaussian function (left), with Gaussian
function (right)

the frame until a predefined threshold of 60% is reached. This threshold was found

to work best in practical use of the system. At this point the bins with the highest

(H) and lowest (L) valued intensity ranges in the integral are known. An average

of the two ranges (H+L
2

) is used to define the binary threshold.

2.3.5 Gaussian Phosphene Modelling

Stimulation of each electrode on the implant will produce a phenomenon in the

patient’s visual field known as a phosphene, whose appearance is somewhat similar to

a bright spot of light [19]. Rather than simply using square pixels that perfectly line

up with each other, it would be ideal to model the output visualisation based on what

phosphenes would approximately look like. In the literature, one common approach

is to model the phosphene using a 2D Gaussian mask [30]. The 2D Gaussian function

is based on the standard distribution curve, except in two dimensions instead of one.

This creates the appearance of a round ‘spot’ where the centre of the spot has the

highest intensity value with the intensity values decreasing radially towards the

outside edge of the spot, following the standard distribution curve. A comparison

between a phosphene with and without the Gaussian function applied is shown in

Figure 2.14.

In order to implement this method on FPGA, the intensity of each pixel within a

phosphene needs to be weighted according to its Euclidian distance from the center

of the phosphene. A set of discrete weightings that follow a Gaussian curve was

generated for each different size of phosphene. A number of lookup tables have been

generated using MATLAB scripts. Figure 2.15 outlines the use of these tables in

the implementation. In order to get the Euclidian distance of a particular pixel,

the coordinates of the phosphene’s centre are required. The two LUTs (cent pix X

and cent pix Y) achieve this, given that the phosphene number of the current pixel

is available. The euc dist LUT then provides a Euclidian distance value given the

center pixel and current pixel coordinates. Taking as inputs the Euclidian distance

and current ring number, the Gaussian weights LUT then provides the weightings.
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Figure 2.15: Gaussian phoshpene modelling implementation

To simplify the logic, a similar multiply and shift method was used for applying the

weightings to pixels. This method is carried out in the sequential logic block on

pixels that are to be output for display.

2.3.6 Dead Electrode Simulation

It is very likely that after implantation of a visual prosthesis there could be elec-

trodes that do not function or are not able to elicit phosphenes in the patient’s

visual field. To simulate this the Hatpack has an implementation of a dead elec-

trode or phosphene dropout feature. A simple lookup table is used to implement

this feature. Using MATLAB, 3 pairs of 648 normally distributed random binary

numbers have been generated to simulate 10%, 25%, and 50% of electrode failure.

A MATLAB script was used to create a Verilog lookup table module (rand masks)

that would provide these random binary values as output. Taking as input the cur-

rent phosphene number and selected dropout mode, the rand masks LUT provides

to the sequential logic block a binary value that would enable (binary 1) or disable
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(binary 0) the current phosphene from being displayed. Disabled phosphenes have

a stored intensity of zero.

2.3.7 Edge Detection

Extracting edge information from an image can often be a useful way to show salient

information in a scene. When used as the input to a visual prosthesis simulator,

the edge result represents the main structural information, which in an uncluttered

environment, can be a bit more intuitive to the user. A study done by Dowling et al.

[39] compared the Sobel and Canny edge detection methods [23, 65] with a visual

prosthesis simulator in order to determine which would give more useful mobility

information. The results showed no significant difference between the two methods,

and concluded that the Sobel operator was more suited for a visual prosthesis system

due to its low computational cost. Guided by these results it has been chosen

to implement Sobel edge detection. In order to implement Sobel edge detection

simultaneous access of a 3 by 3 window of pixels is required. In the Hatpack system

this meant that pixels needed to be buffered in a shift register. A 1920 by 10-bit

shift register was used. This shift register buffers exactly three lines of pixels and

has three taps or access points to the end pixels in each line. These end pixels are

shifted into two consecutive sets of 10-bit registers, thus creating access to a 3 by

3 window of pixels from a frame. Similar implementations of this ‘sliding window’

function can be found in the works of Bailey [9] and Lim et al. [69] At each clock

cycle a new pixel is inserted into the shift register, and the three pixels at the taps

are shifted through the sets of 10-bit registers. Performing this method is equivalent

to shifting the 3 by 3 window over every possible location in the frame in a sequential

fashion. A discrete convolution of the Sobel edge operators is performed with the

9 available pixels (3 from taps and 6 from 10-bit registers) at each clock cycle and

the result is stored in a temporary register. This value is then checked against a

threshold in order to set the output edge image pixel values.

2.3.8 Infra-Red Remote Control

All functions within the Hatpack system implementation can be controlled by an

infra-red remote control. Signals from the remote control are interpreted by the IR

Receiver module and a unique code is generated as output. This code is used as

input to the IR control combinational logic block. The logic is implemented as a

large Verilog case statement that toggles or modifies a variety of control registers.

These control registers are forwarded to all of the modules and sub-modules that

they control. In each of these modules there are subsequent combinational and
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sequential logic conditional statements that alter the modules outputs according to

these control signals.

2.3.9 Frame Rate Reduction

The ability of a person to detect motion is very important when it comes to mobility

exercises in low resolution vision. A key factor that would limit one’s ability to detect

motion in the immediate environment is the lack of temporal resolution. Studies

have shown that achievable stimulation rates of a visual prosthesis could be as low

as four frames per second [38]. In order to simulate this temporal resolution and

investigate the possible implications it may have on a patient’s ability to move

around, a frame rate reduction function has been implemented. The output frame

rate of the Hatpack system can be changed in real time. The Hatpack has 8 different

discrete frame rates available for selection (1, 2, 4, 8, 10, 15, 30 and 60 frames per

second). Variable frame rate is achieved by holding the stored frame output data

for the specific period of the chosen frame rate.

2.4 Extensions

2.4.1 Revised Mapping Implementation

Prior to starting the development of the Hatpack the specifications of the Gennaris

device had not been fully defined. The number of electrodes to be used, and the

orientation and location of implantation on the brain was approximate. Subsequent

progression of the project provided more detailed specifications of the first-in-human

device. In order to maintain a realistic simulation of the expected level of vision of

the Gennaris, the Hatpack mapping needed to be updated following the new advice

regarding the first-in-human device. The implementation of the visuotopic mapping

function (see Section 2.3.1) made this a simple task as all that was required was a

redefinition of the lookup tables used.

The mapping arrangement used to update the lookup tables was created by Dr.

Wai Ho Li, who was a chief investigator on the project at the time. He developed

MATLAB scripts, similar to the ones that were used in Section 2.3.1 of this work,

to generate phosphene patterns that are more closely representative of the Gennaris

given the new specifications. According to the Monash Vision Group, the first-in-

human trial will involve the implantation of up to 11 tiles, each with 43 electodes,

onto one side of the brain [78] similar to mock implantation image on the left of

Figure 2.16. The outputs of Wai Ho’s work have been used in conjunction with the

scripts developed in the work of this thesis to update the Hatpack phosphene pattern

and achieve the result shown in the bottom image of Figure 2.16. The revision of
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Figure 2.16: Revised mapping phosphene pattern. Placement of tiles on the left
hemisphere of the brain (top image) will produce phosphenes in the right hemisphere
of the visual field (bottom image).
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the mapping was completed after the fourth psychophysics experiment and used as

part of the fifth psychophysics experiment (see Chapter 3).

2.4.2 Otsu’s Thresholding

Psychophysical testing with the Hatpack has highlighted the importance of selecting

the most appropriate luminance threshold for an image (see Chapter 3). While the

histogram-assisted automatic threshold selection mode developed for the Hatpack

works well, there are some circumstances that will cause it to perform in a less

than optimal way. An image with a multi-modal intensity distribution for exam-

ple, will result in a threshold that is skewed towards whichever histogram maxima

is of greater magnitude. In order to improve the implementation of the Hatpack

automatic thresholding mode, alternative methods have been investigated for im-

plementation.

A well known method used in computer vision and image processing is Otsu’s

thresholding method [83]. This method is based on the assumption that the images

have bimodal histograms made up of two classes - ‘foreground’ and ‘background’

pixels. Given this assumption, an optimal threshold is calculated to separate the two

classes by maximising the inter-class variance. A hardware implementation of the

Otsu method was developed by Associate Professor Lindsay Kleeman. The code he

developed was used (with permission) to replace the original automatic thresholding

mode implemented in the Hatpack. As with the revised mapping implementation

this replacement was completed after the fourth psychophysics experiment and used

as part of the fifth psychophysics experiment (see Chapter 3).

2.5 Results and Discussion

Tables 2.1,2.2 and 2.3 show the logic and memory utilisation of the processing mod-

ules created for the Hatpack system. It was found that the total system logic element

utilisation was rather minimal, using just 18% of the FPGA’s logic resources. On

the other hand the on-chip memory usage was rather high at 70%. This was as

expected as the main LUT used for the visuotopic mapping implementation was

large. It can be seen in the table that the histogram module uses almost half of the

total logic utilisation of the system. This is because of the conditional logic that is

used to determine the bin with the highest count. Using a smaller number of bins,

or implementing an iterative approach would possibly decrease the logic utilisation

for this module substantially, however both of these alternatives have drawbacks in

terms of accuracy and latency.
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Table 2.1: Logic utilisation of Hatpack modules

Module Logic Cells (% of FPGA logic cells)

Whole system 20,061 / 114,480 (17.5 %)
Edge detection 314 / 114,480 ( 0.3 % )
Mapping and main functions 4738 / 114,480 (4 %)
Histogram 8258 / 114,480 (7 %)

Table 2.2: Logic register utilisation of Hatpack modules

Module Logic Registers (% of FPGA logic registers)

Whole system 6236 (6 %)
Edge detection 146 (0.1 %)
Mapping and main functions 1224 (1 %)
Histogram 812 (0.7 %)

Figures 2.17,2.18,2.19 and 2.20 show some of the visual results of the each of the

modes implemented in the system. It is worth noting that the results look much

more intuitive when wearing the system. The system was also found to be more

useful when viewing a non-static scene or when the camera sensor was being moved

around (via head movements that are registered to the viewpoint by the user’s ego

motion sensors). This can be said to be due to the ability of the viewer to build up a

mental model of the scene as more slightly differing temporal information is provided

to them. Refer to the first video listed in Appendix B for a better indication of the

system’s operation.

The latency of the system (with no frame rate limitations enabled) is roughly

one frame or about 17 ms. The majority of this latency is accrued by the mapping

implementation which waits until the end of a frame to update the display storage

registers. Updating these registers earlier would result in a ‘tearing’ effect in the

output frame, as half the frame data would not be completely synchronised.

Prolonged testing of the system showed that battery life was roughly 4 hours

from full charge. Preliminary testing hinted that certain tasks benefited from 4-level

thresholding as opposed to binary (2-level), and that a frame rate of 4 frames per

second was the lowest at which users could adequately navigate through a cluttered

Table 2.3: On-chip memory utilisation of Hatpack modules

Module Memory bits (% of on-chip memory)

Whole system 2,774,535 (70 %)
Edge detection 19,140 (0.5 %)
Mapping and main functions 2,663,571 (66 %)
Histogram 0 (0 %)
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Figure 2.17: Visuotopic mapping (without greycale conversion and luminance
thresholding)

environment. Edge detection proved useful in identifying objects in a non-cluttered,

low-contrast environment.

2.5.1 System Limitations

In an actual cortical visual prosthesis, static electrode placement on the visual cor-

tex means that the patient would not be able to scan over sections of the elicited

phosphene pattern with movements of their eyes. In other words, phosphenes are

locked to the gaze of the patient unlike the Hatpack system where the user is able

to focus on different parts of the displayed pattern with eye movements. Simulating
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Figure 2.18: Luminance thresholding: full resolution image (top), 4-level (middle),
binary (bottom)
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Figure 2.19: Edge detection: full resolution, extracted edges, output without edge
detection, output with edge detection

this attribute would require an active eye-tracker and movement of the phosphene

pattern along with the eyes.

Electrode placement within the visual cortex will also be significantly varied from

patient to patient and will need to be placed carefully to avoid blood vessels in the

brain. This will mean that the pattern of phosphenes will not appear as neat and

‘mathematically’ located as is the case with the Hatpack.

2.6 Summary and Conclusions

This chapter has presented the development and implementation of the Hatpack

simulator system - a wearable and portable, real time simulation system and psy-

chophysical test platform for a cortically based bionic vision implant. The Hatpack

has been made to represent, as closely as possible, the anticipated vision to be

provided by the Monash Vision Group’s Gennaris vision implant. It makes use of

current neurophysiological models of visuotopy and overcomes some of the most

common limitations of existing simulators, such as lack of portability and frame

rate and latency issues. This has been achieved through an FPGA implementation.
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Figure 2.20: Dead electrode simulation: 0% (top), 10% (middle), 50% (bottom)
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The Hatpack operates at 60 frames per second and with a constant latency of only

17 ms. It is lightweight, weighing only 3 kilograms, and low in power consumption,

able to last up to 4 hours on a full charge. In addition to an implementation of the

visuotopic mapping Monopole model through an innovative lookup table feature, the

Hatpack also simulates variable electrode stimulation intensity through luminance

thresholding, a 2D Gaussian model of the look of a phosphene, and the possibility of

failed electrodes. Edge detection and a number of automatic thresholding functions

have also been implemented.

A vision implant will produce phosphenes that are ‘gaze-contingent’. This means

that they will remain in the same sections of the visual field regardless of eye move-

ments. The Hatpack currently does not simulate this phenomena. While feedback

from Hatpack use has suggested that scanning of the phosphene pattern does not

seem to help, this would need further investigation and may prove useful as future

work for the Hatpack. However, while the use of eye-tracking devices and real time

movement of the phosphene pattern could potentially be used match the user’s focus

point, gaze-contingency may still not be realistically achievable. This is due to the

relatively high frequency of micro-saccades of the eye, and the latency of detecting

the eye position and adjusting the image frame accordingly. If the latency from the

movement of the eye to the movement of the image on the display is not less than

the combined eye detection and image display times, then true gaze-contingency

may not be practically realisable.

The Hatpack can be used to develop, test and evaluate new image process-

ing functions and features as candidates for implementation in an end-user device.

Evaluation would be done through the conduction of psychophysics experiments. A

number of these experiments have been carried out with the Hatpack, the details of

which are in the following chapter.
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Chapter 3

Psychophysics Testing with

Hatpack

The development of the Hatpack simulator descibed in the previous chapter has

enabled the visualisation of a cortical bionic vision implant. More specifically, it

simulates the level and characteristics of vision anticipated for the Monash Bionic

Eye device - the Gennaris. It incorporates visuotopic mapping, which has been based

on neurophysiological studies of the visual cortex. Also implemented are a number

of vision processing functions that aid in the representation of scene information to

the user at the highly limited resolution. The Hatpack provides a suitable platform

for the testing of potential image processing functions and the evaluation of the

abilities of users to complete certain tasks while restricted to the level of vision of

a bionic eye implant. Psychophysical experiments can be performed on normally

sighted individuals in order to test and evaluate implemented functions and user

capabilities in real world situations, guiding the development of the Gennaris and

other visual prosthesis devices.

This chapter details the design and conduction of five different psychophysics

tests that have been completed through the course of this work. Each of the tests

has involved the use of the Hatpack with a number of normally sighted volunteers

attempting to complete tasks that resemble everyday activities. The development

and evaluation of a simulator such as the Hatpack is not a linear process, and is

often guided by user feedback. The psychophysics testing has provided much of

this feedback and as a result the functionality and visual representation provided to

participants has evolved throughout the different tests carried out. This is discussed

in the relevant sections of this chapter. The contributions to this work by others is

detailed in the relevant sections.
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3.1 Introduction

Psychophysics has been defined by Bruce et al. as “the analysis of perceptual pro-

cesses by studying the effect on a subject’s experience or behaviour of systematically

varying the properties of a stimulus along one or more physical dimensions” [20].

The term “psychophysics” was first coined by Gustav Fechner in 1860 [41] and

more simply refers to quantitative investigation of the affects of physical stimuli on

sensations and perceptions. Usually, the aim of a psychophysics experiment is to

determine whether a subject can detect and identify a stimulus and differentiate be-

tween it and another stimulus, and possibly describe the sensations or perceptions

experienced. Experimental stimuli are ideally objectively measurable and applied

to one or more sensory domains (vision, hearing, touch, taste, smell) with varying

thresholds.

In the field of bionic vision, psychophysics has been used mainly to assess the

ability of patients to complete simple visual tasks that would be required in every-

day use. As it has proved impractical to perform these tests on actual implanted

patients, many research groups have developed simulators that can be used with

normally sighted individuals. Performing psychophysics testing using simulators

with normally sighted individuals allows for a quicker and easier development and

test cycle. It can be done on a larger scale and in a safely controlled manner. Much

work has been done with simulator systems and psychophysics, so much so that it

has become a research field of its own called simulated prosthetic vision (SPV).

The SPV psychophysics work that has been completed prior to the beginning of

the work presented in this thesis has predominantly come from four main research

groups. The pioneering group was that of Cha, Horch and Normann from the Uni-

versity of Utah. Three separate studies were conducted by them in the early 1990s

with the use of a simulator comprising a small video camera, miniature monochrome

CRT monitor and a number perforated masks to give the effect of phosphenated vi-

sion. The first study aimed to investigate the relationship between visual acuity

and the number of pixels and their spacing within a phosphene image. The acuity

tests involved the presentation of the letter “E” on a computer screen at various

sizes and orientations. The study concluded that 625 phosphenes presented within

a visual field of 1.7◦ would be enough to provide a visual acuity of 20/30 [24]. The

second study looked at the ability of users to read large text and the speeds they

could achieve with the low vision of the simulator. The results showed that a 25

by 25 array of pixels projected on a foveal visual field of 1.7◦ is sufficient to provide

reading rates near 170 words per minute for scrolling text and 100 words per minute

for fixed text [26]. The final study completed by the group investigated mobility

performance. Participants were required to walk through a maze of obstacles, while
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wearing the simulator, and walking speed and number of body contacts with ob-

stacles was used as a performance metric. The findings indicated that a 25 by 25

array of pixels distributed within the foveal visual area could provide useful visually

guided mobility in environments requiring a high degree of pattern recognition [25].

First to follow the seminal work of the Utah group were researchers from John

Hopkins University School of Medicine, led by Gislin Dagnelie. A very extensive

amount of work was completed by this group in this field from 2000 up until

2009. Work by the group mainly involved the investigation of the effects of varying

phosphene grid parameters such as grid size, dot size, gap width, dropout rate and

greyscale resolution on the users ability to complete certain tasks. Visual acuity,

object recognition and reading tasks were looked at by Hayes et al. in [51]. This

study concluded that the 16 by 16 array gave the highest performance for identi-

fying shapes; that volunteers developed methods to overcome the visual limitations

of the system; scanning was used on the tumbling E and reading tasks in order to

enhance visual acuity; tactile information was used by most volunteers on the candy

pour to improve accuracy; and that with systematic training patients may improve

the utility of retinal prosthetic devices. Thompson et al. conducted tests requiring

the recognition of faces [111], concluding that gradually swifter and more accurate

facial recognition can be achieved when pixelised dot images are scanned over con-

volved facial images by using a mouse-pointing device. Dagnelie et al. investigated

visual inspection and eye-hand coordination tasks [35], adequate reading tasks [33],

and mobility tasks in both real and virtual environments [34]. The results of these

studies suggested: that a 16 by 16 electrode array should allow paragraph reading;

that simple visual inspection and eye-hand coordination tasks can be learned under

pixelised conditions with very low resolution; that a retinal implant with as few

as 60 electrodes may provide independent wayfinding abilities to the adventitiously

blind however substantial practice and learning would be required. Later work from

the group, carried out by Srivastava et al. focused on the simulation of a corti-

cal prosthesis, and conducted similar visual inspection, eye-hand coordination and

way finding tests as prior work [101]. This study concluded that the crude and lim-

ited information provided by the cortical visual prosthesis device under development

could potentially help blind subjects to learn and get some assistance for conducting

simple tasks in daily life.

Researchers from the Ophthalmology Clinic, Geneva University Hospitals con-

ducted a number of detailed studies that investigated user performance of reading

activities and the learning effects associated. Sommerhalder et al. showed that 300

electrodes would be needed for restoration of some reading ability [99], and about

600 for useful reading performance of full-page text [100]. Fornos et al. followed this

work by investigating a real time pixelisation strategy [47] and the ability of users
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to complete simple pointing and manipulation tasks [46]. Fornos et al. concluded

in these studies: that the spatial and temporal characteristics of image pixelisation

play a role in artificial vision simulations; that four to five hundred contacts covering

a 2 by 3 mm2 retinal area is necessary to transmit sufficient visual information for

full-page text reading.

The fourth research group was from the University of New South Wales in Aus-

tralia. This group investigated the effects of filtering schemes and cutoff frequencies

[29], visual tracking performance [50], and performance differences between a rect-

angular and hexagonal grid sampling and representation [27, 28]. These studies

concluded: that clinically significant improvement can be achieved by adopting an

optimised configuration of filter aperture; that a small improvement in simulated

prosthetic visuo-motor function was achieved through implementation of an image

analysis scheme involving overlapping Gaussian kernels; that implanted electrodes

arranged in to form a hexagonal mosaic as opposed to existing rectangular arrange-

ments will benefit the acuity a device can provide for an implantee; that acuity

depends strongly on the way images were analysed prior to phosphene representa-

tion.

The work carried out by all of these groups has shown that psychophysics using

simulated prosthetic vision is a viable way to investigate the potential capabilities

of bionic vision users. It may also prove an ideal way to tune image processing

functions and guide the development of vision devices although the absence of any

correlation of this work to actual implants mean the simulated approach is yet to be

fully validated in practice. The Hatpack system has been used in a similar way to

explore potential of the level of vision and implemented functions of the Gennaris

device.

The work in this chapter is not a formal set of clinical trials, and was a subsidiary

goal that eventuated from the development of the Hatpack. The testing has been

used to assess the functionality of the Hatpack system and improve the implemen-

tations that may someday be implemented in the Gennaris device. The experiments

presented have been based loosely on the types of testing that has been done in

other existing work that has been reviewed above. Since these tests involved human

participants, ethics approval was required and acquired through Monash University

Human Research Ethics Committee (MUHREC) with the following ethics approval

project number: (CF12/0085 - 2012000030).
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3.2 Experiment 1: Maze Test (Obstacle Avoid-

ance)

Mobility and orientation is very important for navigation through everyday envi-

ronments. Navigation or obstacle avoidance tests have been used by a number of

research groups during their simulated prosthetic vision studies. These experiments

usually involve a controlled space with a number of obstacles that the participant

has to try and make their way through with minimal collisions. Examples of such

work are in [25, 34, 101].

Since a key goal of this thesis is to potentially improve the navigational ability

of bionic vision users, the first experiment that has been conducted is an obstacle

avoidance task - the Maze Test. This test was designed and conducted in collabora-

tion with Benedict Yong who was a research assistant for the Monash Vision Group

at the time.

3.2.1 Experimental Setup

Seven test subjects were recruited for this experiment (6 male, 1 female). The maze

test involved subjects walking through a indoor course scattered with obstacles. The

obstacles were placed in one of 5 different arrangements that had been previously

defined using a pseudo-random method of obstacle placement that would minimise

as much as possible the ability to learn the environment. Care was taken to avoid

creating arrangements that would allow for a significantly more difficult or simpler

path to the end of the maze. Figure 3.1 shows the test area with one of the predefined

obstacle arrangements. The obstacles were large cardboard boxes and office chairs

with wheels. The 5 different configurations were divided up, one for each mode that

was tested and kept consistent between subjects. Subjects were not allowed to see

the obstacle layout before each test. The starting point was around the corner from

the main rectangular maze area (see Figure 3.1), and the end point was at a table at

the far end wall of the maze. Placed on the table was a small black box. When the

subject successfully located and picked up the box, the test ended. Video footage

of an example of this test can be found in Appendix B and here is a link.

For the test, both time to completion and number of collisions were recorded

for all subjects. Subjects were allowed to touch the obstacles in the maze, so only

unintentional collisions were counted. The 5 modes tested were a control mode

similar to a normally sighted person (full resolution, full colour), and four non-

control modes including 4-level luminance thresholding (full frame rate), binary

thresholding (full frame rate) and reduced frame rate at 15 Hz and 4 Hz (both

with 4-level thresholding). Subjects were given 2 minutes accommodation time just
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3.2. EXPERIMENT 1: MAZE TEST (OBSTACLE AVOIDANCE)

Figure 3.1: Layout of the maze test

before the test for each mode where they could adjust to using the system around

a cardboard box and two chairs placed away from the actual maze area. Subjects

were also given a minimum of 5 minutes break in between each test.

3.2.2 Results

The statistical method of two-sample T-test has been used to analyse the results.

This method is a hypothesis test for determining whether the means of two popula-

tions differ on some outcome significantly. The data are collected from two random

samples of independent observations [61]. The top graph in Figure 3.2 details the

time to completion (in seconds) for each mode, averaged over the 7 subjects. The

order of the modes from left to right in the graphs reflects the order that the subjects

were tested in. The error bars show the standard error of 2 standard deviations away

from the mean. 2-way, paired T-Tests were conducted between the control time and

each of the non-control modes, as well as between the 4-level thresholding full frame

rate mode and the other 3 modes (binary and both reduced frame rates). T-Tests

will result in a ‘T-value’ that can be used for significance testing. In order to de-

termine whether there is statistical significance, the T-value is compared against a

standard table of t-values to determine a ‘p-value’. The p-value is the probability of

obtaining a T-value. If the p-value falls below a specific threshold, then the result is
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3.2. EXPERIMENT 1: MAZE TEST (OBSTACLE AVOIDANCE)

Figure 3.2: Graphs of time to completion and number of collisions for each mode
for the maze test

said to be significant. A threshold of 0.05 relates to a 95% confidence interval, which

is roughly two standard deviations from the mean, and is a common threshold used

for significance testing [6]. The times taken for all the non-control modes were found

to significantly higher (p < 0.05 for all) than the time for the control. The binary

and reduced frame rate modes were slightly longer than the 4-level thresholding full

frame rate mode, but all the non-control modes were within the statistical margin

of error (p > 0.05 for all). The bottom graph in Figure 3.2 details the number of

collisions for each mode, averaged over the 7 subjects. The error bars show the stan-

dard error for a 95% confidence interval. The average number of collisions was very

low, due to a few of the subjects not colliding with anything in any of the modes,

but the binary thresholding and reduced frame rate modes had more collisions on

average than the 4-level thresholding full frame rate.

3.2.3 Discussion

The Maze Test results show that subjects take much longer to finish the test in any

of the non-control modes compared to the control, and that although the binary

and reduced frame rate modes took slightly longer to complete than the 4-level full

frame rate mode, the difference was not statistically significant. This trend is also
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shown in the average number of collisions, but the standard error is too large to allow

firm conclusions. From observations made while building and testing the system,

reduction in greyscale intensity resolution and frame rate does increase the difficulty

of most general tasks including navigational and obstacle avoidance tasks. Possible

reasons for this not being made clear in this particular test’s results are that the

maze area was fairly small and straightforward so the task could be completed in a

relatively short amount of time, and the number of test subjects was low, presenting

a relatively large error. Also, the obstacles used in this test were large and obvious

and so subjects may not have benefited a lot from an increased greyscale resolution

and frame rate. Another problem could be the order of the modes in which the

subjects were tested was made consistent and that the ‘harder’ modes were tested

later. A learning effect just from repeated testing, even with the changing obstacle

placement and accommodation time between tests, could cause a decrease in times

for the later tested ‘harder’ modes and hence reduce differences between them and

the earlier test ‘easier’ modes.

3.3 Experiment 2: Chessboard Test (Object Ma-

nipulation)

Interaction and manipulation of objects is a very common activity throughout every-

day life. For normally sighted individuals such tasks usually involve the coordination

of sight and touch sensory information with movement of an arm or leg. Without

vision, blind individuals lose half of the available feedback, making object interac-

tion much more difficult and inaccurate. The use of a visual prosthesis could restore

some level of this visual servoing ability, and so a number of eye-hand coordination

experiments have been carried out by research groups [34, 46, 101].

The second experiment that we have conducted is an object manipulation task

involving the placement of chess pieces on a chessboard. This test was designed and

conducted in collaboration with Benedict Yong.

3.3.1 Experimental Setup

The same 7 test subjects (6 male, 1 female) recruited for the Maze Test have been

used as participants in this experiment. The task required subjects to sit down at

a table with a chessboard in front of them and 16 chess pieces (8 black, 8 white)

placed in a random pile to the left of the chessboard. The objective was for the

subjects to sort and place any black coloured pieces on any white square in the

bottom half of the chessboard, and the white pieces on black squares in the top
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Figure 3.3: Example of completed chessboard test

half of the chessboard. Video footage of an example of this test can be found in

Appendix B and here is a link.

For the test, both time to completion and number of mistakes were recorded for

all subjects. For a piece to be considered as correctly placed, at least half of it had

to be over the correct square. Another aspect to this experiment was to test for

learning effects that come from repeated usage of the system. As such, the modes

were tested in the order, from left to right, shown in the graphs of Figure 3.4 (all at

full frame rate). A control mode was tested first (full resolution, full colour). This

was followed by the non-control modes which were repeated in the order: binary

luminance thresholding, 4-level thresholding, binary, 4-level, binary, and 4-level.

Before the testing, subjects were asked to attempt the task without wearing the

system in order to familiarise themselves with the task itself. The testing was

conducted in a single session, with a minimum 1 minute break in between each test.

3.3.2 Results

The top graph in Figure 3.4 details time to completion (in seconds) for each mode,

averaged over the 7 subjects. The order from left to right of the modes reflects

the order the subjects were tested in, and how the non-control modes were tested

repeatedly 3 times to examine learning effects. The error bars show the standard

error. 2-way, paired T-Tests were conducted between the control time and each of

the non-control modes, as well as between the binary and 4-level thresholding for

each pair of repeated tests (eg. 1st binary with 1st 4-level). The times taken for

all non-control modes were significantly longer than the control mode (p < 0.05 for
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Figure 3.4: Graphs of time to completion and number of mistakes for the Chessboard
Test

all). The times taken for the binary modes were significantly longer than the 4-level

thresholding for the same repeated number of trial (p < 0.05 for the 1st and 2nd

pairs of tests, p=0.063 for the 3rd pair). The times for all modes decreases with

increasing number of repeated tests. The bottom graph in Figure 3.4 details the

number of mistakes for each mode, averaged over the 7 subjects. The error bars

show the standard error. The average number of mistakes was quite low due to

some subjects not making any mistakes. The trend however clearly looks similar

to the Chessboard Time graph with decreasing number of mistakes with repeated

trials.

3.3.3 Discussion

For the Chessboard Test, the results demonstrate that the binary modes were sig-

nificantly longer than the 4-level thresholding modes for each repeated test. The

results also show that there is a clear downwards trend with increasing number of

tests for both modes. The average number of mistakes also shows these trends, and

that the binary has more mistakes than the 4-level and that both modes decrease

over repeated testing, however the standard error is very large. The reason the tests

were completed much faster on 4-level compared to binary is likely because this test
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is based primarily on contrast discrimination and the extra levels of grey available

on the 4-level allow the subjects to be able to tell the difference between the dark

and light chess pieces and chessboard as well as the grey table more rapidly. This

shows that different tasks may benefit differently from various modes. A significant

learning effect was evident as times and mistakes would decrease with repeated test-

ing, probably leading to an eventual plateau point where times do not get much

faster. It is apparent that as people keep repeating a task they are unfamiliar with,

they will improve at it. This is quite likely to be the case with a visual prosthesis

simulator, or even a patient with a visual prosthesis implant itself.

3.4 Experiment 3: Ball Interception Test (Motion

and Interaction)

In the previous two experiments, the scene was void of other people and all objects

were stationary when not moved by the participant. In a typical real life setting

however, there are often other people around and they will be moving of their own

free will. Given that stimulation studies have shown that distinguishable frame rates

of early vision implants could be as low as four frames per second [38], it is useful to

investigate how well a bionic vision user would be able to interact with a dynamic

environment under these conditions.

The third experiment that has been conducted involves participants interacting

with rolling balls while using the Hatpack with limited frame rates. This test was

designed and conducted in collaboration with Benedict Yong.

3.4.1 Experimental Setup

Once again, the same 7 test subjects (6 male, 1 female) were used. The Ball In-

terception Test required subjects to sit down at a modified table tennis table. The

table had a horizontally sliding ‘paddle’ mounted on the participant’s end and at the

opposite end 4 fixed half-pipe ramps that balls could be rolled down (see Figure 3.5).

The ramps were all the same length, had the same elevation angle, and had a ‘fast’

and ‘slow’ roll point for the balls. The ramps were partially covered by a cardboard

screen so that the participant could not see which ramp the ball was rolling down

until it reached the bottom. The objective was for the subjects to use the sliding

paddle to block/intercept/stop the balls (similar to the video game ‘Pong’ or to ‘Air

Hockey’ in an arcade).

The number of successfully intercepted balls was recorded for all subjects. To be

considered as a successful interception, the ball was not allowed to hit the rail that

the paddle was sliding along. In cases where there was ambiguity in the outcome (ie.
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Figure 3.5: Ball interception test

balls getting stuck under paddle or between the paddle and side block), a note was

made and that particular roll was repeated at the end of the trial. For each mode, 60

rolls were completed. A predefined randomised roll sequence was used that ensured

each of the 4 ramps was used equally and also that there was an equal number of

‘fast’ and ‘slow’ rolls. The aim of this test was to observe the effects of lowered

frame rates, and so the modes tested were: a control (full resolution, colour and

framerate) and 4-level luminance thresholding at 4 Hz, 10 Hz, and 60 Hz. Subjects

were given 5 minutes to familiarise themselves with the task before beginning the

trials. The testing was conducted in a single session, with a minimum 1 minute

break in between each mode tested.

3.4.2 Results

The graph shown in Figure 3.6 details the number of successfully intercepted balls

for each mode, averaged over the 7 subjects. Once again, the order of the modes

reflects the order the subjects were tested in, and the error bars show standard

error. 2-way, paired T-Tests were conducted between the control mode and each of

the non-control modes, as well as between the relative non-control modes (4 Hz vs

10 Hz, 10 Hz vs 60 Hz). The number of intercepted balls for each of the non-control

modes was significantly shorter than the control mode (p < 0.05 for all). There was

also a significant difference between the non-control modes themselves (p < 0.05 for
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Figure 3.6: Graph of number of intercepted balls for Ball Interception Test

both 4 Hz vs 10 Hz, and 10 Hz vs 60 Hz). The graph shows an upward trend in

intercepted balls as the frame rate is increased, however it is possible that this is

partly attributed to learning.

3.4.3 Discussion

The Ball Interception Test results show an upward trend in successfully intercepted

balls as the frame rate is increased. This was as expected, as a lower frame rate

would give a user less time to react and would not allow for smooth tracking of the

ball’s movement. The differences between the control mode and non-control modes,

as well as between the consecutive control modes themselves all showed significant

differences in results. It was noticed however, that a considerable number of ‘misses’

that occurred in the tests were due to misjudgement of where the user thought they

had actually moved the paddle to (the paddle would be offset from the balls final

location by only a small margin). This is clearly to do with the ability of the

participant to coordinate themselves with the paddle placement without actually

looking at it. It was not possible to view both the paddle and the rolling ball at

the same time, except when the ball reached very close to the paddle, and so the

participants had to learn the relative position of the paddle through trial and error.

Although, some time was allowed to ‘calibrate’ with a simple hand-eye coordination

task before each test, the subject’s still seemed to have some trouble.

3.5 Experiment 4: Shape Identification

From the observations made during the first three experiments, as well as general

use of the Hatpack, it became evident that the selection of luminance thresholds
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Figure 3.7: Shape test setup

can have a significant impact on the presented phosphene image. In order to mit-

igate the adverse effects of poor lighting and minimal scene contrast, manual and

automatic luminance thresholding modes were added to the Hatpack system (See

Section 2.3.4). Initial testing of these modes hinted at differing user preference and

perceived intuitiveness.

The fourth experiment carried out involved a set of tests to establish which

luminance threshold selection method would be most pragmatic and useful for im-

plementation in the end-user implantation device. The design of these tests and the

statistical analysis of the results have been completed by Dr. Collette Mann. Dr.

Dennis Lui assisted during conduction of the testing.

3.5.1 Experimental Setup

Recruited for this experiment, were 18 participants, all of whom were either Monash

University staff or students (8 male, 10 female). The set of tests required partic-

ipants to sit in front of an e-ink display and attempt to identify displayed shapes

which varied in shade, while wearing the Hatpack set to one of the three luminance

thresholding modes: Static, Automatic or Manual. The test setup is shown in Figure

3.7. The reflective illumination properties of the e-ink display meant that lighting

could be carefully controlled and kept consistent throughout all trials.

Participants were initially given the Hatpack and allowed 5-10 minutes accom-

modation time for use of the three modes. Participants indicated the order they

felt was the easiest mode to the hardest mode, by identifying shapes on an e-ink

display screen. The shapes used for the accommodation time were different to the
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Figure 3.8: Shape test shapes and shades

shapes used in the actual testing. Once the order of the threshold selection modes

was decided, participants were instructed that there were eight possible shapes to

identify, different to the test shapes they had just viewed, in four monochromatic

shades (black; 35%, 15% and 5% grey). They were also told the identity of the

eight shapes, but they were not shown the shapes prior to testing. The eight shapes

(Figure 3.8) included: a triangle with pointed corners or rounded corners, a rectan-

gle with pointed or rounded corners, a love heart, a left-facing or right-facing arrow

and an oval. Shapes were presented one at a time in a pre-randomised order with

the possibility of each shape being presented multiple times in any given trial to

remove the possibility of guesswork. Tests were completed in blocks of 32 shapes

for each mode, with a total of 96 trials and 1-2 minutes rest between each block.

Each test of 96 trials contained an equal number of the four possible shades, i.e.

each shade 24 times. Participants were instructed to say “pass” if they could not

identify the shape. This answer was classified as a ‘no response’. The participant’s

timed response was then recorded following each trial.

3.5.2 Results

The statistical analysis of the results of this experiment has been completed by

Dr. Collette Mann, using IBM SPSS Statistics version 20. Two sets of data were

analysed; Response Accuracy as a function of Mode, and Response Accuracy as a

function of Shade Dimension. Response Time was not analysed as the stop time was

arbitrary, dependent on the participant. General Linear Model was used for both

analyses controlling for age, gender and total number of no responses (TotalNR).

Response Accuracy (threshold mode)

The statistical method of one-way analysis of variance (ANOVA) was used to analyse

the results. This method involves the division of variation in a set of observations
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Figure 3.9: Graph of response accuracy as a function of threshold mode for shape
test

into distinct components, in order to determine whether there are any significant

differences between the means of three or more independent groups [36]. A one-way

repeated measures ANOVA was conducted to determine if there were significant

differences between the three luminance threshold selection modes (Manual, Static

and Automatic) for participants accurately identifying eight distinctive shapes. Age,

gender and TotalNR were included as covariates. A test of within-subjects showed

no main effect for accuracy (p=0.932) or any interaction effects between accuracy

and amount of no responses, i.e. TotalNR (p=0.062, Greenhouse-Geisser corrected)

although this was trending; accuracy and age (p=0.869); or accuracy and gender

(p=0.832). There was a main between-subject effect for TotalNR (p<0.001) demon-

strating that some participants found identifying the shapes significantly more dif-

ficult than others resulting in more “pass” responses for these subjects. There were

also main between-subject effects for age (p=0.024) and gender (p=0.015) with

younger subjects performing better than the older participants; and males more

correctly identifying the shapes than females. Pairwise comparisons between the

three modes showed that the Static mode was significantly harder for participants

to correctly identify shapes between both the Manual (p<0.001) and Automatic

(p=0.003) modes as shown in Figure 3.9. However, there were no significant differ-

ences between the Manual and Automatic modes (p=0.502).

Response Accuracy (shade dimension)

A one-way repeated measures ANOVA was conducted to determine if there were

significant differences in accuracy detecting the four shade dimensions (black; 35%,
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3.5. EXPERIMENT 4: SHAPE IDENTIFICATION

Figure 3.10: Graph of response accuracy as a function of shade dimension for shape
test

15% and 5% grey). Age, gender and TotalNR were included as covariates. A within-

subjects test showed there was a significant main effect of accuracy (p=0.028) indi-

cating that participants could correctly identify shapes for some shades, but it was

more difficult for others. Pairwise comparisons showed that participants found the

5% shade of grey significantly harder to identify shapes than the other shade dimen-

sions (p<0.001 for all shades) as illustrated in Figure 3.10. There were no significant

differences between the other three shades. Main effects for between-subjects tests

remained the same. As with the threshold mode, there were no interactions be-

tween accuracy and age (p=0.647) or accuracy and gender (p=0.419). However,

there was an interaction between accuracy and TotalNR (p=0.001), demonstrating

that the number of “pass” responses was very dependent on the shade dimension,

in particular the 5% grey shade.

3.5.3 Discussion

As is evident in the results, both the Manual and Automatic modes showed sig-

nificantly better performance than the Static mode in terms of response accuracy.

However, when ‘no responses’ were removed in the statistical analysis, the Static

mode was not significantly different to the other two modes. This indicates that

were no incorrect responses in this mode, and participants either answered correctly

or could not identify the shapes at all, and therefore chose to ‘pass’. There was also

no statistically significant difference between the Manual and Automatic modes,

suggesting that more and varied tests would be required, such as involving mobil-

ity and/or manipulation, in order to conclude that one mode performs significantly

better than others. The test comparing shade dimensions was more conclusive with
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shape identification significantly worse when the shade was set to 5% grey indicating

that in all modes, participants either incorrectly, or could not, recognise the shapes.

3.6 Experiment 5: Sock Sorting

Following progression of the Gennaris device development, the expectations of the

first in human trial had changed. A more likely indication of the number of elec-

trodes to be implanted and their ideal arrangement on the brain was made known.

As a result the Hatpack visuotopic mapping was modified soon after conducting the

Shape Identification experiment (See Section 2.4.1). Furthermore, the implemented

automatic thresholding mode was updated with an implementation of the Otsu’s

thresholding method (See Section 2.4.2). Results from the fourth experiment indi-

cated that a more interactive test maybe required to conclude the type of luminance

thresholding mode that performs significantly better than others.

To evaluate user performance with the updated mapping and automatic thresh-

olding mode a fifth eye-hand and manipulation experiment was conducted, involving

the sorting of socks of varying shades. The design of this experiment and the sta-

tistical analysis of the results have been completed by Dr. Collette Mann.

3.6.1 Experimental Setup

There were 14 participants recruited for this experiment, with an equal number of

male and females. The test required participants to sit in front of a table while

wearing the Hatpack, and attempt to sort a jumbled pile of 36 socks according to

shade (black, white or grey). During the testing the Hatpack was set to one of four

different mode combinations, with either manual or automatic thresholding and at

a dropout rate of either 0% or 50%. The test setup is shown in Figure 3.11.

Participants were given 5-10 minutes of accommodation time prior to beginning

the test. In this time they were provided with only one of each shade of sock. They

were encouraged to try and establish their own method of shade discrimination, and

were allowed to switch between manual and automatic thresholding modes freely

upon request. Following the accomodation time, the Hatpack display was turned

off and all 36 socks were placed in a jumbled pile on the table towards the left of

the participant. The participant had their hand guided by one of the testers to the

location of the pile. They were instructed that only two socks could be picked up

from the pile at a time. At least one sock needed to be sorted before the participant

was allowed to pick up another, alternatively they could replace a sock to the pile

and pick up another. When the subject was ready, the Hatpack display was turned

on and the test would begin. Placement of the socks into the three separate piles
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Figure 3.11: Sock test setup

was completed by the tester, after being handed the sock by the participant with

a verbal indication of what they thought the shade was. Participants were given a

verbal warning from the tester when only two socks were left on the table. There

were four different combinations of two test conditions (threshold mode and dropout

percentage). The order that the participant would be tested was chosen from a list

of 16 possibilities, and so none of the participants were tested in the same order.

A total of 144 trials were completed by each subject, i.e. 36 socks sorted 4 times.

Participants were allowed to take a rest at any point during the experiment, but not

during a test that had already begun.

3.6.2 Results

The statistical analysis of the results of this experiment has been completed by

Dr. Collette Mann, using IBM SPSS Statistics version 20. Three sets of data were

analysed; Response Accuracy as a function of Sock Shade, Response Accuracy as a

function of Luminance Threshold Mode for both Dropout conditions, and Response

Time as a function of Dropout for both Thresholding conditions. General Linear

Model was used for all three analyses.
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Figure 3.12: Graph of response accuracy as a function of sock shade for sock test

Response Accuracy (Sock Shade)

A one-way repeated measures analysis of variance (ANOVA) was conducted to deter-

mine if there were significant differences between the three sock shades (black, white,

grey) for participants accurately sorting socks. A test of within-subjects showed a

main effect for accuracy (p<0.001) but no interactions between threshold mode and

dropout. Pairwise comparisons showed that grey socks were significantly harder to

identify than black or white, this is shown in Figure 3.12 (p<0.001). There were no

significant differences in identifying black from white socks however (p=0.432).

Response Accuracy (Luminance Threshold Mode)

A one-way ANOVA was conducted to determine if there were significant differences

between the two thresholding modes (manual and automatic) for participants ac-

curately sorting socks. Figure 3.13 shows the results for accuracy as a function

of luminance threshold mode for each of the dropout rates. Pairwise comparisons

showed no significant difference between Automatic and Manual thresholding modes

(p>0.05). Dropout rate did not affect performance in Automatic mode (p=0.208).

Dropout rate was significantly different in Manual mode with 50% dropout rate

more difficult than no dropout in Manual mode (p=0.04).

Response Time (Dropout Mode)

A one-way ANOVA was conducted to determine if there were significant differences

between the two dropout rates (0% and 50%) for participants accurately sorting

socks. Figure 3.14 shows the results for response time as a function of dropout rate

for each of the threshold modes. Pairwise comparisons showed that with both modes
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Figure 3.13: Graph of response accuracy as a function of threshold mode for sock
test

Figure 3.14: Graph of response time as a function of dropout rate for sock test

at 50% dropout rate, correct identification was significantly quicker in Automatic

than Manual (p=0.006).

3.6.3 Discussion

Grey socks were significantly harder to identify than the other two shades. This was

expected as the phosphenes were presented in binary intensity form and depending

on the threshold, the grey socks would show up as either intensity. From observations

during the testing, some participants were able to recognise this peculiarity and use

it to distinguish the difference. The strategy that appeared to work most well

involved putting the sock down on the table on its own and scanning over it slowly.

Since the colour of the cloth on the top of the table was of a similar intensity

to the grey sock, a grey sock would often be indistinguishable from the tablecloth
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regardless of the threshold used. White and black socks however would contrast with

the table cloth and adjusting the threshold or allowing the automatic thresholding

to readjust would usually allow the determination of the sock being either black or

white. Another method employed by participants was to hold the socks in the air and

try to determine its shade with contrast to the white wall or black curtain that was in

view. This seemed less effective as grey socks would appear changed in appearance

depending on threshold. However, one user was able to notice a ‘shimmering’ effect

when viewing a grey sock and was able to consistently distinguish the shades with

this method rather quickly. It is likely that if subjects were informed of the most

suitable methods, they may have performed better. There was no difference between

automatic and manual modes for accuracy. This was unexpected as it was thought

that the manual mode would provide more accuracy. The 50% dropout rate did

worsen accuracy significantly, but only for the manual mode. For the automatic

mode it had the opposite effect, improving accuracy, however this was not significant.

Methods used for distinguishing sock shades could be the cause of this. For response

time, the automatic mode showed a significant improvement over manual for 50%

dropout. This was expected due to the time it takes to adjust the threshold by

hand and loss of the use of that hand during the process. While there was not

a significant difference for the 0% dropout rate, it seemed to be trending in the

same way. Overall, manual mode seems to be less beneficial, however this cannot be

confirmed from the results of this experiment. User preference seemed to be towards

the automatic in this experiment, which is the opposite of the fourth experiment.

Effectiveness of either mode could be dependent on circumstances.

3.7 Summary and Conclusions

This chapter has presented five different psychophysics experiments that have been

carried out using the Hatpack system. The testing investigated the abilities of

normally sighted individuals to complete a range of different tasks that resembled

everyday activities, while limited by the low vision expected of a visual prosthesis.

The first of the experiments involved a mobility and orientation task requiring

navigation through a maze of obstacles. The results of this test suggested that

reduction in greyscale intensity resolution and frame rate increases the difficulty of

navigational and obstacle avoidance tasks. However this was not a significant result,

possibly due to the small size of the maze and obstacles being ‘too obvious’. There

was a significant difference between the control mode and all other modes though,

with the time taken for participants to complete the maze being more than double.

This shows that there is much room for improvement. A learning effect could have

also attributed to similar performance during the ‘harder’ modes.
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The second experiment was a contrast discrimination and object manipulation

task requiring the placement of chess pieces on a chessboard. The results of this test

showed that the binary luminance thresholding modes caused a significant increase

in the time required to complete the task. This shows the importance of having

the ability to present multiple phosphene intensity levels. A considerable learning

effect was observed over repeated testing. This indicates that bionic vision users

may need significant practice and training once implanted as everyday tasks may

need familiarisation with the newly provided visual input.

The third experiment investigated the limitations of low frame rate on interaction

with a dynamic environment. The test involved participants attempting to intercept

rolling balls. Significant increases in performance were observed as the frame rate

was increased. This highlights the need for achieving higher stimulation framerates

in vision prostheses. Also observed was a mismatch between the subjects’ arm

location and the perceived location of the ball. This may mean that new prosthesis

patients will require training and practice to ‘calibrate’ themselves with the visual

input.

The fourth experiment was a contrast and object discrimination task requiring

the user to identify shapes of different shades. The results showed that the static

luminance thresholding mode was significantly worse than manual or automatic.

This highlights the need for the ability to change thresholds during use of a bionic

vision device. There was no significant difference shown between the other two

modes though, and so neither could be concluded as better. More and varied testing

involving physical interaction with the environment may allow for that conclusion.

The fifth experiment was another contrast discrimination task, but involved in-

teraction with the environment. Participants were required to sort socks of different

shade. The results showed that grey socks were significantly harder to identify than

the other two shades. This is a further indication of the need for multiple phosphene

intensity levels in a prosthesis. However the results of this test show that if a device

was limited to just two levels, there are ways to allow such abilities through the ex-

ploitation of the thresholding functionality. Standardised methods and training may

be required though to allow for this. Manual mode was indicated as less beneficial

in this test, but this is likely to be dependent on the circumstances of the situation

and environment.

The completion of these experiments have highlighted the need for more greyscale

intensity resolution, higher framerate, more advanced thresholding implementations,

and post-operative training so that patients can get the most out of their implant.

While the margin of errors observed in comparisons of the modes in these tests were

mostly too large to allow firm conclusions to be made, a statistically significant

difference was consistently observed between control modes and non-control modes.
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This shows that completing tasks under limited vision anticipated of a visual pros-

thesis is significantly harder and that there is a need for further research into ways

of reducing the complexity of such tasks in order to provide better quality of life for

patients. Different approaches are likely to be needed in order to achieve this and

close the gap between the abilities of normally sighted individuals and those with

the low vision of a bionic eye. Observations made over the course of this work and

modification of the Hatpack system has highlighted the limitations of purely visual

sensing. Poor lighting conditions resulted in poor representations of the scene due to

low contrast. On the other hand, suitably lit environments that were very cluttered

or consisted of high contrast patterns often resulted in a confusing representation

at low resolution. If for example the area used for the first experiment were to

consist of carpet that had highly contrasting squares on it, it is very likely that

the participant would be unable to differentiate between the carpet and obstacles,

especially since there is no ability to convey depth information. This has motivated

an investigation into the use of alternate sensing technology, which could possibly

provide solutions to such issues. An investigation into advanced sensing integration

and implementation of more advanced processing techniques has been completed

and is presented in the chapters that follow.
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Chapter 4

Least Squares Plane Fitting and

Depth Sensor Error

Characterisation

The results of the psychophysics tests outlined in Chapter 3 indicate that the navi-

gational abilities with 2D visual sensing alone may not be sufficient in some environ-

ments. Poor lighting conditions, cluttered environments, and undesired peripheral

content can quite easily affect a 2D camera image, resulting in a confusing bionic

vision representation. The 3D domain allows exploitation of structural information

in a scene, avoiding many of these issues and allowing a clearer environmental rep-

resentation. Depth sensors, such as the Microsoft Kinect v2, provide a low cost

entry point into the 3D sensing domain. These sensors provide information about

the distance to objects in the sensed environment in the form of dense point cloud

data. This data has the necessary accuracy, resolution and range to allow for the

implementation of more sophisticated vision processing. For example highlighting

pixels in a bionic eye corresponding to a floor plane is an effective aid for blind

navigation in cluttered environments.

This chapter presents the development of a plane fitting algorithm that is suitable

for implementation on an FPGA platform with depth data input provided by a

Kinect v2 sensor. Also presented is an analysis and characterisation of sensor error

and the propagation of that error to the fitting of planes. The content of this

chapter provides the necessary foundations for the hardware implementation and

applications that are discussed in the chapter that follows.
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4.1 Introduction

Quick and effective navigation through an environment is often reliant on the knowl-

edge of surfaces and objects within it and the available free space to move among

them. For a normally sighted person, this knowledge is typically gained through

vision. Upon view of a new scene, a normally sighted person can almost immedi-

ately identify the locations of various paths and obstacles and build a map within

their minds. They can then traverse this map as they see fit. For blind individuals

this is not the case and they must rely on other senses to build up this map. This

is usually a more lengthy and possibly dangerous task and a dynamic environment

can prove even more difficult.

The advent of visual prosthesis devices could allow blind individuals to regain

this visual mapping ability. Unfortunately the naivety of early prostheses may mean

that identification of objects and surfaces is difficult. Furthermore, first generation

prostheses provide no perception of the depth of objects in view. Therefore detection

of surfaces and objects in the scene through other means could assist the user in

navigation. The detection of planes and planar objects is one way to achieve this.

Planes are prolific in everyday environments. Floors, walls, doors, windows, stairs,

tables, chairs, bookshelves, electronic screens are but a few examples of the types of

planar surfaces and objects that one would come across in a typical day. Detecting

planes using 2D sensing however is not feasible, and so an extension into the 3D

domain is required.

Other work has explored the use of Microsoft Kinect depth sensors [67, 68, 71,

106, 108]. This sensor has a compact design, low cost, considerably less power con-

sumption than industrial 3D sensing systems, and has a vast open source software

support network. The second version Kinect offers higher depth image resolution

(512 by 424 pixels), more accurate time-of-flight depth sensing and increased stan-

dard operating range (0.5 m to 4.5 m), making it a suitable choice for 3D plane

fitting. In order to integrate 3D sensing in a bionic eye system, two main problems

need to be solved. Firstly, there is currently no support for direct connection of

Kinect sensors to FPGA development boards. Secondly, a solely software based im-

plementation would preclude the aims of low latency, high frame rate operation. A

unified computer-FPGA architecture can achieve these goals. This will be discussed

further in Chapter 5.

The application of plane detection to object recognition and navigational tasks

is likely to prove very useful for a bionic vision user. Some good examples of such

applications are the plane based staircase detection work completed by [108] and the

low contrast hazard avoidance work by [75] which involves the detection of ground

planes. The plane detection implementations presented in these works incorporate
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variations of RANSAC, an iterative method that estimates parameters of a mathe-

matical model from a set of observed data containing outliers [44]. This algorithm is

unsuitable for the purposes of this work due to the processing time. Instead, a least

squares plane fitting method [92] has been investigated for implementation. The

implementation involves fitting planes to localised patches around points in depth

data. This plane fitting method is highly parallelisable and able to be reduced to a

form involving integer additions, multiplications and a few divide operations.

In this chapter the groundwork for the implementation of real time hardware-

based plane fitting is presented. An algorithm is developed based on the least

squares method of plane fitting. The sensor error of a Kinect v2 is analysed, and

error models for the various plane fitting parameters are derived in order to specify

logic precision requirements, statistical testing of the validity of a plane fit, and

achievable plane fitting angle resolution.

4.2 Least Squares Plane Fitting of Depth Image

Data

Given a set of depth image points {ui, vi, zi}(where i = 1, . . . ,m), it is possible to

find a plane of the form z = Au+Bv+C where u and v are image coordinates and

z is the depth coordinate measured at that image location (see Figure 4.1). With a

depth sensor such as the Kinect v2 there is a unique z for each (u, v), therefore the

plane z can be expressed as a function of u and v.

z = Au+Bv + C (4.1)

As mentioned in the chapter introduction, the least squares algorithm is based on

the minimisation of the residuals of the points from the proposed curve or surface,

a plane in this case. The sum of the squared errors between zi and the plane values

(Aui +Bvi + C) is minimised using the following error function:

E(A,B,C) =
m∑
i=1

(zi − (Aui +Bvi + C))2 (4.2)

The error function in Equation (4.2) is quadratic in A, B, C therefore there will be

only one minimum. This enables the global minimum to be determined analytically.

The minimum of this error function will occur when the gradient, with respect to

[A B C]T , is equal to zero (ie. ∇E = [0, 0, 0]):
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 0

0

0

 = ∇E = −2
m∑
i=1

(zi − (Aui +Bvi + C))

 ui

vi

1


 (4.3)

To allow for the solution of A,B,C, Equation (4.3) can be rewritten as the following

system of linear equations:
∑m

i=1 u
2
i

∑m
i=1 uivi

∑m
i=1 ui∑m

i=1 uivi
∑m

i=1 v
2
i

∑m
i=1 vi∑m

i=1 ui
∑m

i=1 vi
∑m

i=1 1


 A

B

C

 =


∑m

i=1 uizi∑m
i=1 vizi∑m
i=1 zi

 (4.4)

By choosing (ui, vi), . . . , (um, vm) to be integer coordinates inside a square mask

centred at (0,0) then
∑
ui =

∑
vi =

∑
uivi = 0 and Equation (4.4) simplifies to:

∑m
i=1 u

2
i 0 0

0
∑m

i=1 v
2
i 0

0 0
∑m

i=1 1


 A

B

C

 =


∑m

i=1 uizi∑m
i=1 vizi∑m
i=1 zi

 (4.5)

The first matrix in Equation (4.5) is a diagonal matrix and so its inverse is also a

diagonal. The solution of the equation becomes:
A

B

C


=


1∑m

i=1 u
2
i

0 0

0 1∑m
i=1 v

2
i

0

0 0 1∑m
i=1 1





∑m
i=1 uizi∑m
i=1 vizi∑m
i=1 zi


(4.6)

Finally, A, B and C can be expressed as follows:

A =
∑m

i=1 uizi∑m
i=1 u

2
i

B =
∑m

i=1 vizi∑m
i=1 v

2
i

C =
∑m

i=1 zi
n (4.7)

4.2.1 Sparsely Sampled 11 by 11 Patch Implementation

The implementation developed fits planes to a patch of pixels surrounding a partic-

ular data point. This process is carried out for all points in the depth image frame.

A patch size of (2k + 1) by (2k + 1) depth pixels is used. Only 9 sparse points are

utilised from this patch for the plane fit. The reason for this is that when using a

small patch size, such as 3 by 3 (k = 1), fitted planes can very easily be influenced by

noise. This is due to the short base line used to estimate a plane normal. Conversely,

while using a larger patch size may mitigate these effects, the implementation of the

least squares operations in hardware becomes much more expensive due to the larger

number of points. A suitable compromise is reached by choosing an 11 by 11 patch
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size (k = 5) and sampling a subset of those points with sufficient redundancy to

provide a robust plane fit. In Section 4.3.4 it is shown that this patch size results

in small angle errors in fitted plane normals. The patch for k = 5 is shown below.

z(1,1) · · · z(1,6) · · · z(1,11)
...

. . .
...

...

z(6,1) · · · z(6,6) · · · z(6,11)
...

...
. . .

...

z(11,1) · · · z(11,6) · · · z(11,11)


(4.8)

The sparsely sampled 3 by 3 matrix is constructed using the 9 patch points as

follows: 
z1 z2 z3

z4 z5 z6

z7 z8 z9

 =


z(1,1) z(1,6) z(1,11)

z(6,1) z(6,6) z(6,11)

z(11,1) z(11,6) z(11,11)

 (4.9)

Assuming a patch centred at (0,0), the corresponding u and v indices are:

u indices :

 −k 0 k

−k 0 k

−k 0 k



v indices :

 −k −k −k0 0 0

k k k



where k =
patch length− 1

2
= 5

(4.10)

The 9 points are evenly spaced and share the same centre as the patch, therefore

the equations of (4.7) are still applicable. It is also possible to further simplify the

A and B equations. The following are the revised equations for A, B and C (where

rows and columns are with respect to the sparsely sampled 3 by 3 matrix from (4.9),

and n = 9).
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Figure 4.1: Relationship between depth image coordinates (u, v, z) and world coor-
dinates (x, y, z)

A =

∑m
i=1 uizi∑m
i=1 u

2
i

=
(
∑

(column 3)−
∑

(column 1))

6k

B =

∑m
i=1 vizi∑m
i=1 v

2
i

=
(
∑

(row 3)−
∑

(row 1))

6k

C =

∑m
i=1 zi
n

=

∑9
i=1 zi
9

(4.11)

A further advantage of this approach is that since the denominator is constant,

division can be replaced by a multiplication by the pre-calculated inverse, which is

preferable as multiplication is more efficient than division.

4.2.2 Transformation to World Coordinates

Input depth data points will be provided by a Microsoft Kinect v2 sensor. The

coordinate frame units of this data has the u and v axes expressed in pixel integers

and the z axis range values in millimetres. For consistency these are transformed

to a world coordinate frame. Figure 4.1 shows x, y, z in the world coordinates in

millimetres and u and v are the pixel integer index values of the depth image plane

at focal point of F from the depth sensor. A pinhole camera model can be used
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Figure 4.2: Relationship between field of view, image height and width, and focal
values of the Kinect v2 sensor
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to calculate the focal point. Given that the field of view of the Kinect v2 sensor

is specified to be 70◦ and 60◦ (horizontal and vertical axes respectively) with pixel

width and height w = 512 and h = 424, the value of F can be found as follows (refer

to Figure 4.2):

For the horizontal axis : Fu =
w

2tan
(
70
2

) = 365.6 pixels

For the vertical axis : Fv =
h

2tan
(
60
2

) = 367.2 pixels
(4.12)

The u and v axes focal values Fu and Fv in Equation 4.12 are different. Ideally these

values should be equal for square pixels. To allow for rounding errors in the nominal

70◦ and 60◦ field of view values, an average of the u and v axes focal values is used.

F =
Fu + Fv

2
≈ 366 pixels (4.13)

The principle of similar triangles can be used to find the following scaling factors

that relate u and v to x and y.

u =
F

z
x v =

F

z
y (4.14)

A plane can be fitted to an image patch centred around some point (uc, vc) using

the equations from (4.11). The relative patch pixel coordinates are:

up = u− uc vp = v − vc (4.15)

Where u and v are the pixel image coordinates. The fitted plane equation is then:

z = A(u− uc) +B(v − vc) + C (4.16)

Substituting the equations from (4.14) gives the following equation, which is now

expressed in terms of the world coordinates x, y and z.

z =

(
AF

z

)
x+

(
BF

z

)
y + C − ucA− vcB (4.17)
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4.2.3 Plane Normal Vector

A normal vector can be used to characterise the orientation and distance of a fitted

plane from the origin. Rearranging Equation (4.17) to the form f(x, y, z) = 0, gives:

z.(z + Auc +Bvc − C)− AFx−BFy = 0 (4.18)

A normal vector to the surface defined by f(x, y, z) = 0 can be represented by the

gradient ∇f(x, y, z).

N = ∇f(x, y, z) =


∂F
∂x

∂F
∂y

∂F
∂z

 =


α

β

γ

 (4.19)

∇f(x, y, z) = −AF î−BF ĵ + (2z + Auc +Bvc − C)k̂ (4.20)

Where î, ĵ, k̂ are unit vectors along the x, y and z axes. Evaluating ∇f(x, y, z) at

z = C (the best fit value of the patch centred at (uc, vc)) gives:

∇f(x, y, z) = −AF î−BF ĵ + (C + Auc +Bvc)k̂ (4.21)

Therefore at z = C, the normal vector [ α β γ ]T of the fitted plane will be:

N = ∇f(x, y, z) =

 α

β

γ

 =

 −AF
−BF

(C + Auc +Bvc)

 (4.22)

Finally, the equation of a plane at z = C with normal vector N can be expressed as

follows, where κ is some constant:

αx+ βy + γz = κ (4.23)

Through substitution of (4.14) and (4.22) into (4.23), the value of κ can be written

as follows:

κ = (−AF )

(
Cuc
F

)
+ (−BF )

(
Cvc
F

)
+ (C2 + ACuc +BCvc)

= C2

(4.24)
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There are now equations defined for all of the plane parameters α, β, γ and κ. In

order to use these plane parameters to detect planes of specific orientation and offset

from the origin, the parameters need to be normalised. The geometric method of

normalisation would require a square root function, a sum of squared plane param-

eter values and a division, which is expensive to implement in hardware. Instead

it has been chosen to normalise the plane parameters by dividing by the sum of

absolute values of α, β and γ referred to as the L1 norm (4.25). While this approach

may give significant errors in normalisation, this is not important to the result of

this work because a planar region would all have the same normalisation error, and

would have the same calculated equation.

λ = |α|+ |β|+ |γ| (4.25)

The normalised plane parameters are:


αn

βn

γn

κn

 =
1

λ


α

β

γ

κ

 =

[
1

|α|+ |β|+ |γ|

]
−AF
−BF

(C + Auc +Bvc)

C2

 (4.26)

4.3 Error Characterisation of Depth Sensor

The hardware implementation of the plane fitting algorithm (see Chapter 5) makes

use of fixed point arithmetic for simpler, faster logic compared to floating point.

Fixed point and floating point operations (multiplies and divides) can produce re-

sults with more bits than the operands, therefore information loss is a possibility.

An appropriate level of logic precision has to be defined in order for the solution

to provide satisfactory results. Since the input to the algorithm is in integer form,

this means defining an appropriate number of fractional bits for any further opera-

tions. An analysis and characterisation of the sensor errors is useful for optimising

the number of fractional bits required. Futhermore, by modelling the error in the

plane fit parameters, suitable thresholds can be defined for the rejection of non-plane

patches as well as the acceptable difference thresholds when matching parameters

for the detection applications that are discussed in Chapter 5. The following section

outlines the analysis and characterisation of the sensor data and the plane fitting

errors.
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4.3.1 Depth Value (Range) Error

The depth value error of a Kinect v1 sensor was analysed by Khoshelham and

Elberink via the use of the RANSAC algorithm to fit planes to depth data of a

door at varying distances [60]. Pinto et al. have used the same method to compare

the depth value error of three sensors, one of which being a Kinect v2 [87]. In a

similar manner, the depth value error of the Kinect v2 sensor has been analysed

in this work, albeit using a least squares method for plane fitting. Note that the

method used is a best-case analysis of the sensor error as the plane used is facing

directly towards the sensor and data points are sampled centrally within the image.

Furthermore the plane used was a white surface and so reflectance of IR light was

optimal.

Depth images have been captured of a scene with a large, flat planar surface

(a whiteboard) in view. The deviations of the whiteboard from a perfect plane

have been characterised using a metre-long steel straight edge (see Figure 4.3). By

moving and rotating the straight edge at different angles on the whiteboard the

deviations from a plane are estimated to be less than 1 millimetre. Kinect v2 depth

images were captured at intervals of 0.25 m from distances ranging from 0.75 m to

7.75 m from the planar surface. In MATLAB dense plane fitting was performed

on regions of each image that made up the whiteboard to produce a ground truth

for the measured data. Difference error values were calculated using this ground

truth. The sample autocorrelation function was computed for the residual errors of

a row and column of the whiteboard plane measured at about 3 metres and plotted

with 95% confidence intervals (see Figures 4.4 and 4.5). It can be seen in both

figures that there is strong correlation in neighbouring residuals up to two pixels

away. However, at a lag of 5 pixels there is little correlation. So for a selection of

k = 5, patch depth values are statistically independent. The sample autocorrelation

function was also computed for various distances from 0.75 m to 7.75 m to confirm

for a lag of 5 pixels there is no dependency on range. In the first graph of Figure

4.6 a parabolic fit to the standard deviation of errors with distance from the sensor

is shown. The quadratic error fit also applies to data from a 30◦ inclined plane as

shown in the second graph of Figure 4.6. The results gained are quite similar and

support the work of Pinto et al. [87].

4.3.2 Resultant Error Models for Plane Fitting Implemen-

tation

Having found the mean and standard deviation of depth value error, models for

the errors in the parameters of the plane fitting algorithm can be developed. The

following outlines briefly the derivation of error models for the algorithm previously
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Figure 4.3: Collection of statistical data for range error analysis

presented. A more detailed derivation of equations (4.38) to (4.41) in this chapter

are provided in Appendix A.

As shown previously in Section 4.2, for a plane with the form z = Au+Bv+C,

the parameters A, B, and C can be found using the following simplified equations

from (4.7).

A =
∑m

i=1 uizi∑m
i=1 u

2
i

B =
∑m

i=1 vizi∑m
i=1 v

2
i

C =
∑m

i=1 zi
n (4.27)

The z values are assumed to be mutually independent normal random variables and

so the variance and standard deviation of the above parameters can be found as

follows. A, B and C can be represented as a linear combinations of zi:

A =
1∑m
i=1 u

2
i

(
m∑
i=1

uizi

)

B =
1∑m
i=1 v

2
i

(
m∑
i=1

vizi

)

C =
1

n

m∑
i=1

zi

(4.28)

Therefore, assuming zi = (ztrue + ei), where ei ∼ N(0, σz) , all estimates of A, B,

and C will have zero mean errors and variances as follows:
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Figure 4.4: Autocorrelation function plot for a row of the whiteboard at a distance
of about 3 metres

Figure 4.5: Autocorrelation function plot for a column of the whiteboard at a dis-
tance of about 3 metres
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Figure 4.6: The graphs show the measured standard deviations of difference errors
with respect to range for the whiteboard facing towards the sensor plane (top graph)
and rotated 30◦ upwards from the sensor plane.

σ2
A =

[
1∑m
i=1 u

2
i

]2( m∑
i=1

u2iσ
2
i

)
=

σ2
z∑m

i=1 u
2
i

σ2
B =

[
1∑m
i=1 v

2
i

]2( m∑
i=1

v2i σ
2
i

)
=

σ2
z∑m

i=1 v
2
i

σ2
C =

1

n2

m∑
i=1

σ2
i =

σ2
z

n

and standard deviations σA, σB and σC

(4.29)

From Equation (4.10) the standard deviations of A and B can be expressed in terms

of k as follows:
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σA =
σz

k
√

6

σB =
σz

k
√

6

σC =
σz
3

(4.30)

From Equation (4.30) it is apparent that the standard deviation of errors scales

inversely with patch size. Therefore larger patch sizes reduce errors. From Equation

(4.22) it can be seen that α and β are scaled versions of A and B and so the variances

follow as scaled versions of Equation (4.29):

σ2
α = V ar[−AF ] = F 2 σ2

z∑m
i=1 u

2
i

= F 2 σ
2
z

6k2

σ2
β = V ar[−BF ] = F 2 σ2

z∑m
i=1 v

2
i

= F 2 σ
2
z

6k2

and standard deviations σα and σβ

(4.31)

To find the variance of γ the expression in Equation (4.22) needs to be expanded as

follows, so that all correlated terms are grouped.

γ = C + Auc +Bvc

=

∑m
i=1 zi
n

+ uc

∑
(column3)−

∑
(column1)

30

+ vc

∑
(row3)−

∑
(row1)

30

= z1(
1

9
+
uc
30
− vc

30
) + z2(

1

9
− vc

30
) + z3(

1

9
+
uc
30
− vc

30
)

+ z4(
1

9
− uc

30
) + z5(

1

9
) + z6(

1

9
+
uc
30

)

+ z7(
1

9
− uc

30
+
vc
30

) + z8(
1

9
+
vc
30

)

+ z9(
1

9
− uc

30
+
vc
30

)

(4.32)

By choosing the worst case values for uc and vc of 256 and 212 respectively, then

the variance can be expressed as follows:
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σ2
γ = σ2

z(
−697

45
)2 + σ2

z(
−313

45
)2 + σ2

z(
71

45
)2

+ σ2
z(
−379

45
)2 + σ2

z(
1

9
)2 + σ2

z(
389

45
)2

+ σ2
z(
−61

45
)2 + σ2

z(
323

45
)2 + σ2

z(
707

45
)2

= σ2
z(

33149

45
)

≈ (27.14σz)
2

(4.33)

For the variance of κ, the following approximation can be used:

For some f = aXb

σ2
f ≈ (abXb−1σX)2 = (

fbσX
X

)2
(4.34)

Giving the following variance for κ:

σ2
κ ≈ (2CσC)2 = (

2Cσz
3

)2 (4.35)

From equations (4.31,4.33,4.35) standard deviations for the four plane parameters

α, β, γ and κ can be defined:

σα = F
σz

k
√

6

σβ = F
σz

k
√

6

σγ = σz

√
33149

45
≈ 27.14σz

σκ ≈
2Cσz

3

(4.36)

To find the variances of the normalised plane parameters αn, βn, γn and κn, the

following approximation can be used:

For some f =
X

Y

σ2
f ≈ f 2

[(σX
X

)2
+
(σY
Y

)2
− 2

σXY
XY

] (4.37)

80



4.3. ERROR CHARACTERISATION OF DEPTH SENSOR

Firstly, standard deviation equations for λ need to be defined. From equation (4.25),

it is known that λ = |α|+|β|+|γ|. Therefore there are 8 different cases for evaluating

variance, as each of α, β, γ could have a positive or negative result. It can be shown

however, that there are only 4 unique cases, and furthermore only the best and

worst case variances are of interest (See Appendix A). This leaves the two following

cases for λ:

λ1 = (α) + (β) + (γ) = −FA− FB + (C + Auc +Bvc)

λ2 = (α) + (β) + (−γ) = −FA− FB − (C + Auc +Bvc)

(4.38)

Using a similar method as was done for σ2
γ in equations (4.32 and 4.33), the following

variance equations for the two cases of λ can be found:

σ2
λ1

=
σ2
z53749

225
≈ (15.456σz)

2

σ2
λ2

=
σ2
z1081477

225
≈ (69.329σz)

2

(4.39)

There is also need to find the covariances of each of the plane parameters α, β, γ and

κ with the scaling factor λ. This can be done through the products of each, removing

the non-correlated cross-terms (See Appendix A). The following covariances can be

defined:

For best case of σλ1 = 15.456σz,

σαλ1 =
1342σ2

z

5
≈ 16.382σ2

z

σβλ1 =
9394σ2

z

25
≈ 19.382σ2

z

σγλ1 = −91187σ2
z

225
≈ −20.132σ2

z

σκλ1 =
σ3
z

81

(4.40a)
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For worst case of σλ2 = 69.329σz,

σαλ2 =
37942σ2

z

25
≈ 38.962σ2

z

σβλ2 =
35258σ2

z

25
≈ 37.552σ2

z

σγλ2 = −422677σ2
z

225
≈ −43.342σ2

z

σκλ2 = −σ
3
z

81

(4.40b)

Substituting equations (4.36, 4.39 and 4.40) into equation (4.37) gives the following

equations for the variances of the normalised plane parameters αn, βn, γn and κn:

For best case of σλ1 = 15.456σz,

σ2
αn
≈ σ2

z

(
α

λ1

)2 [
29.882

α2
+

15.462

λ21
− 23.172

αλ1

]
σ2
βn ≈ σ2

z

(
β

λ1

)2 [
29.882

β2
+

15.462

λ21
− 27.412

βλ1

]
σ2
γn ≈ σ2

z

(
γ

λ1

)2 [
27.142

γ2
+

15.462

λ21
+

28.472

γλ1

]
σ2
κn ≈ σ2

z

(
κ

λ1

)2 [
(0.66C)2

κ2
+

15.462

λ21
− 0.024σz

κλ1

]
(4.41a)

For worst case of σλ2 = 69.329σz,

σ2
αn
≈ σ2

z

(
α

λ2

)2 [
29.882

α2
+

69.332

λ22
− 55.092

αλ2

]
σ2
βn ≈ σ2

z

(
β

λ2

)2 [
29.882

β2
+

69.332

λ22
− 53.112

βλ2

]
σ2
γn ≈ σ2

z

(
γ

λ2

)2 [
27.142

γ2
+

69.332

λ22
+

61.32

γλ2

]
σ2
κn ≈ σ2

z

(
κ

λ2

)2 [
(0.66C)2

κ2
+

69.332

λ22
+

0.024σz
κλ2

]
(4.41b)

4.3.3 Fractional Bit Precision

From the error models for A, B, C, the required fractional bits for the hardware

implementation can be determined. As can be seen in the graphs from Figure 4.6,

the standard deviation of errors varies with range and incident angle. However, it

is the best case range error that will define the logic precision requirements as the

noise margins will always be above this value. From the upper graph, the best case

value is σz = 1.5 mm. Given that k = 5 and n = 9, a substitution can be made into

Equations (4.29 and 4.30) to get:
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σA =
σz

k
√

6
= 0.122 mm/pixel

σB =
σz

k
√

6
= 0.122 mm/pixel

σC =
σz√
n

= 0.5 mm

(4.42)

Therefore the noise standard deviation will always be above 0.122 and a fractional

bit precision of 8 bits for parameters A and B has been chosen. This is more

than is required to give an unbiased representation and allows a safety margin for

improvement in precision.

4.3.4 Selecting Patch Size

The patch size is (2k + 1) by (2k + 1) and is selected to give sufficient angular

resolution for plane normals. A small value of k = 1 results in poor discrimination

of planes and their normal vectors. A simple case of a plane with normal in the

z direction is sufficient to inform the choice of k. Suppose we have a patch at

uc = vc = 0 measuring the plane. For the case of a plane with normal vector

(0, 0, 1), λ = C and equation (4.26) becomes:



αn

βn

γn

κn


=



α
C

β
C

γ
C

κ
C


=



−AF
C

−BF
C

1

C



αnx+ βny + γnz = C

(4.43)

For the small values of αn due solely to measurement errors, the standard deviation

σαn can be approximated by applying equations (4.36 and 4.37) with X ≈ 0:

σαn ≈
σα
C

=
F

k
√

6
× σz
C

(4.44)

For a range of 4 metres, C = 4000 mm, σz ≈ 4 mm (see Figure 4.6), F = 366

pixels, and σαn represents the angle error, in radians, of the plane normal to the z

axis projected on the x-z plane:
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σαn =
366

k
√

6
× 4

4000
≈ 0.15

k
(4.45)

Using k = 5 results in σαn of 0.03 radians or 1.7◦. σβn is similar. This represents a

reasonable compromise between good angular resolution of planes and the benefits

of a small patch size for applications in bionic vision.

4.3.5 Threshold for Rejecting Non-Planes

Given the plane equation z = Aup + Bvp + C, the difference between a measured

patch depth value zi and the value calculated using the fitted plane parameters A,

B, and C, diffi has an expected value of 0.

diffi = zi − (Aup +Bvp + C) (4.46)

Since there are 9 points in the patch, there are 9 different cases for the variance

σ2
diff (i = 1, 2, . . . , 9) (up = −5, 0, 5) (vp = −5, 0, 5). However, it can be shown that

there are only 3 unique solutions.

For z1, z3, z7, z9 : σ2
diff =

5σ2
z

9

For z2, z4, z6, z8 : σ2
diff =

13σ2
z

18

For z5 : σ2
diff =

8σ2
z

9

(4.47)

The worst case variance can be used to set a threshold of two standard deviations

to cover 95% of the distribution. So for a particular point to accepted as part of a

plane:

|zi − (Aup +Bvp + C)| ≤ T = 2σdiff =
2σz
√

8

3
(4.48)

4.3.6 Depth Dependency of Errors in Normalised Plane Pa-

rameters

The thresholds for matching of normalised plane parameters could use the standard

deviation equations from (4.41) and set error limits of two standard deviations to

cover 95% of the distribution. These would need to be recalculated for every pixel in

each patch since there is a dependency on the plane parameters and depth. In this
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section it is shown that αn, βn and γn linearly increase with depth for a plane with

the same normal vector, measured from the same patch centre in the depth camera

image. This provides insight for empirically selecting a simpler fixed threshold in the

hardware implementation based on a depth and suitable maximum plane orientation.

Suppose there is a plane with a unit vector normal of [a b c]T (ie. a2+b2+c2 = 1),

with equation as follows:

ax+ by + cz = d (4.49)

Where d is the minimum distance of the plane to the origin. This plane can be

expressed in image depth coordinates u, v, z by substituting equation (4.14) into

equation (4.49):

a
uz

F
+ b

vz

F
+ cz = d (4.50)

From equation (4.15) it is known that u = uc + up and v = vc + vp, where (uc, vc)

is the patch centre and (up, vp) are local patch coordinates. Therefore the following

can be defined:

G(up, vp, z) = aup + bvp + (cF + auc + bvc)−
dF

z
= 0 (4.51)

The tangential plane centred on (uc, vc) is given by ∇G:

∂G

∂up
= a

∂G

∂vp
= b

∂G

∂z
=
dF

z2
=
dF

C2
z

where Cz = z at (uc, vc)

(4.52)

This gives the patch plane equation:

aup + bvp +
dF

C2
z

z = D (4.53)
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The constant D can be found from up = vp = 0 and z = Cz to be dF
Cz

. Therefore the

plane equation is aup + bvp + dF
C2

z
z = dF

Cz
. Re-arranging gives:

z =
(
− a

dF
C2
z

)
up +

(
− b

dF
C2
z

)
vp + Cz (4.54)

So from the previous notation of A, B, C, α, β and comparing with (4.54):

A = −aC
2
z

dF
and α = −AF =

aC2
z

d

B = −bC
2
z

dF
and β = −BF =

bC2
z

d

C = Cz

(4.55)

Suppose now there is a plane observed at varying depths but with the same normal

vector and the same (uc, vc). The value of d can be found as a function of Cz from

equation (4.50) with z = Cz, u = uc and v = vc:

d = a
ucCz
F

+ b
vcCz
F

+ cCz

=
Cz
F

[auc + bvc + cF ]

(4.56)

Substituting this into equation (4.55) gives the following:

α =
aC2

z

d
=

aFCz
auc + bvc + cF

= kαCz

β =
bC2

z

d
=

bFCz
auc + bvc + cF

= kβCz

γ = Cz + Auc +Bvc = Cz(1−
kαuc
F
− kβvc

F
) = kγCz

(4.57)

Where kα, kβ and kγ are constants for the given plane normal and patch centre. So

for the same planes with the same normal vector and observed from the same patch

centre α = kαCz, β = kβCz, γ = kγCz, and λ can be defined as follows:
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λ = |α|+ |β|+ |γ|

= [|kα|+ |kβ|+ |kγ|]Cz
= kλCz

(4.58)

Hence,

αn =
α

λ
=
kα
kλ

βn =
β

λ
=
kβ
kλ

γn =
γ

λ
=
kγ
kλ

(4.59)

Where all k′s are independent of the depth Cz. Note that α, β, γ, λ all scale linearly

with depth Cz. Applying this to σαn , σβn and σγn from equation (4.41) gives:

σαn = σz

∣∣∣α
λ

∣∣∣√29.882

α2
+

69.332

λ2
− 55.092

αλ

=
σz
Cz

√
1

k2λ
29.882 +

k2α
k4λ

69.332 − kα
k3λ

55.092

σβn = σz

∣∣∣∣βλ
∣∣∣∣
√

29.882

β2
+

69.332

λ2
− 53.112

βλ

=
σz
Cz

√
1

k2λ
29.882 +

k2β
k4λ

69.332 − kβ
k3λ

53.112

σγn = σz

∣∣∣γ
λ

∣∣∣√27.142

γ2
+

69.332

λ2
+

61.32

γλ

=
σz
Cz

√
1

k2λ
27.142 +

k2γ
k4λ

69.332 +
kγ
k3λ

61.32

(4.60)

Note that in Figure 4.6, the standard deviation of depth measurements, σz, is a

quadratic function of z (or Cz in equation (4.60)) and so σz scales with C2
z and σαn ,

σβn and σγn then scale with Cz. For σκn it can be shown from equation (4.41) to

scale with C2.5
z as follows:
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σκn = σz

∣∣∣κ
λ

∣∣∣√(0.66C)2

κ2
+

69.332

λ2
+

0.024σz
κλ

= σz

√
1

k2λ
0.62 +

1

k4λ
69.332 +

σz
k3λCz

0.024

(4.61)

Since σz scales with C2
z , the following is obtained:

σκn = C2
z

√
1

k2λ
0.62 +

1

k4λ
69.332 +

0.024

k3λ
Cz (4.62)

Assuming that the first two terms in the square root are negligible in comparison

to the third, it can then be shown:

σκn ≈ C2
z

√
0.024

k3λ
Cz

= C2.5
z

√
0.024

k3λ

(4.63)

4.4 Summary and Conclusions

This chapter has presented the derivation of a new hardware plane fitting algorithm

as well as an analysis of the depth sensor error and propagation of those errors to

the normalised plane parameters.

The plane fitting algorithm is based on least squares and lends itself well to an

FPGA implementation. By using a patch-based approach and making assumptions

about the centring of the patch coordinates, the least squares plane fitting method

has been simplified to a number of simple addition and multiplication operations

and a few fixed value division operations. This is beneficial for the hardware imple-

mentation as it results in a simpler logic implementation that can be run at a high

clock frequency.

A transformation of the fitted plane equation to a world coordinate system has

been outlined. This transformation achieves consistency in the coordinate system

and facilitated the derivation of equations for the plane normal vector parameters

α, β and γ from Section 4.2.3. Subsequently normalised plane parameter equations

have been derived. These equations allow for the detection of planes of specific

orientation and offset from the origin.
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The depth sensor error standard deviation has been found to have a parabolic

trend increasing with distance. The results agree with existing literature and show

a minimum error of 1.5 mm (at 1.5 m depth) and a maximum error of 15 mm (at

7.75 m depth). Based on this range error model, the propagation of error throughout

the plane fitting algorithms has been analysed and resultant error models for plane

parameters have been defined. Using the error models derived for the A, B and C

parameters, the fractional bit precision of the hardware implementation has been

defined as 8 fractional bits. In a similar manner, the distance dependency of errors

for rejecting non-planes and matching the normalised plane parameters have been

established in Sections 4.3.5 and 4.3.6 respectively.

The error analysis in this chapter can be said to have followed a best-case ap-

proach, as some contributing factors to error have been ignored. As will be shown in

the following chapter, the attenuation of IR illumination results in high noise levels

towards the edges of the depth image. The range error analysis in this chapter has

not involved peripheral parts of the depth image. Lens distortion and error due

to attenuation reflected IR light have also been ignored. To provide more accurate

models of sensor errors, these factors would need to be taken into account, and this

is a possible avenue for future work.

An autocorrelation analysis has been performed and shown that there is signifi-

cant correlation of residuals for up to two pixels away. This means that neighbouring

pixels cannot be assumed independent. In the case of the error analysis and mod-

elling performed in this work, sampled patch pixels were evenly spaced at a distance

of 5 pixels and so can be assumed independent. The patch size and sample spacing

is determined by the selection of k. In Section 4.3.4 the selection of k = 5 is justified

through the analysis of the angular error of the plane normal, which was found to

have a standard deviation of 0.03 radians or 1.7◦ (at 4 m depth).

The work presented in this chapter provides the basis for the hardware imple-

mentation of plane fitting that will be discussed in the next chapter.

89



Chapter 5

Hardware Implementation of

Plane Fitting and Applications to

Bionic Vision

In the previous chapter, the development of a least squares plane fitting algorithm

was presented. A patch based approach has been used in order to allow a fast

FPGA implementation to be tractable. A real time implementation of this algorithm

applied to detection of objects in a scene is anticipated to be a useful navigational

aid for blind individuals.

This chapter investigates the feasibility of integrating 3D depth sensing into

bionic vision systems as well as the application of plane fitting of this data to object

detection as a form of navigational aid. A hardware design based on the algorithm

developed in Chapter 4 is implemented and used for floor and tabletop plane detec-

tion in a real time end-to-end system.

5.1 Introduction

In the fields of robotics and computer vision, sensing of three dimensional environ-

ments and objects is necessary for many different applications. This can be achieved

through the use of a variety of different sensing technologies, including stereo-vision,

laser scanners, and triangulation-based systems. Recent advances in real time depth

sensing however, such as the Kinect v1 and Kinect v2 [76], have facilitated such ap-

plications at a low cost while maintaining sufficient sensing accuracy and resolution.

Many applications in 3D perception and recognition have been investigated using

these devices in recent years [21, 52, 64, 104].

With increasing interest in visual prosthesis development, some researchers have

investigated the potential use of 3D sensing for bionic vision purposes [67, 68, 71,
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75, 106, 108]. A fundamental building block for many 3D applications is recognising

and characterising planes in depth frames [53, 79, 89, 98, 107], and applications of

this have been used in some work to complement the low spatial resolution of a vi-

sion implant and aid the user in navigational tasks [75, 108]. These implementations

usually involve complex computations and real time operation in a portable form

has been facilitated by high performance laptop computers. In order to incorpo-

rate such functionality into an end-user bionic vision device, comparable processing

power would be required, and this is not likely to be feasible with current computer

technology given the limitations of size and weight of planned prosthesis systems.

A possible alternative solution is the use of Field Programmable Gate Array

(FPGA) technology. FPGAs offer a high level of parallelism, which often allows for

significant speed-up of performance in comparison to CPU implementations, with

a fraction of the operating clock speed and required hardware. This is especially

useful when implementing image processing algorithms [9, 10, 62] that involve iden-

tical and independent operations. FPGAs are flexibile in terms of architecture and

can be exported to an Application Specific Integrated Circuit (ASIC). This would

allow for even more speed and reduction in power consumption. An ASIC could

be integrated into an end-user device without significantly affecting physical size or

power consumption.

Implementations of least squares algorithms on FPGA hardware exist in lit-

erature, such as the work of Yang et al. [119]. This work however implements

an iterative approach to solving linear equations via the Cholesky decomposition

method, and cannot directly be applied to plane fitting as is achieved in the work

of this chapter. To the best of knowledge of the author, there have been no FPGA

implementations of the specific case of fitting planes to 3D depth data in real time

via a least squares method. A hardware implementation of the HK segmentation

method developed by Besl and Jain [16], was developed by Tellioglu [109] in order

to classify curvatures within 3D point cloud data. The method involved the calcula-

tion of the mean (H) and Gaussian (K) curvature of a 128 by 128 set of point cloud

data in order to classify it as part of one of 8 different types of curved surfaces.

In this work, the detection of planar surfaces is possible (when H and K are zero),

however fitting of the data to an actual plane equation is not performed and so the

segmentation of specific planes within the scene is not possible. There have been

a number of FPGA-based image processing and computer vision implementations

[10, 15, 31, 58, 62, 69] however the use of depth or 3D data is quite uncommon in the

field, limited mainly to biomedical imaging applications [66]. This is possibly due

to a lack of support for direct integration of 3D sensors such as the Kinect v2 with

FPGA hardware. Recent advances in FPGA technology however, have enabled very

high speed communication with external devices such as computers. PCI express
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for example, has become a very popular inclusion in current high-end FPGA devel-

opment boards [17, 110, 118]. This could provide a possible way to bridge the gap

between a 3D sensor and an FPGA, and would be quite interesting to investigate.

The real time processing of depth data using an FPGA system is investigated in

this chapter through simulation and implementation of the plane fitting algorithm

covered in Chapter 4. It is shown to be achievable and that plane fitting in particular

is a good fit for a hardware solution.

5.2 Hardware Solution

The plane fitting algorithm developed in Chapter 4 has been implemented using

the Verilog Hardware Description Language. The hardware solution exploits the

parallelism of operations in the algorithm. In order to do this, all of the depth pixels

within the patch that is currently being processed are made available simultaneously.

Since depth data is supplied in a consecutive stream, this is achieved through the

use of a sliding window implementation as outlined in Figure 5.1. Incoming depth

pixel data is buffered in First In First Out (FIFO) row buffers using Altera’s RAM-

based Shift Register Megacore [2]. The FIFO is able to be tapped at various points,

allowing the patch data to be made available. The tapped data is stored into a

series of individual logic-based shift registers. This creates a sliding window effect,

making available on each clock cycle a new 11 by 11 patch of data, the centre of

which is offset one pixel horizontally from the last patch. Since only 9 evenly spaced

points are required from the patch, the number of logic-based shift registers can be

reduced to just 3 rows (indicated by the bold blocks in Figure 5.1).

As the patch pixel data is made available, it is sent to a pipelined processing block

that performs the plane fitting algorithm in a number of smaller steps or pipeline

stages. This pipelined architecture allows for a higher achievable clock frequency,

throughput and framerate, while maintaining a latency, with respect to the top left

of the patch, of 10 rows of the depth image. An overview of the various pipeline

stages is given in Figure 5.2. At the end of all the pipeline stages, the normalised

plane parameters αn, βn, γn and κn are made available for later processing (see

Section 5.4). A binary ‘Pval’ signal is also made available at the end of the pipeline.

This signal is a valid bit resulting from the recalculation of plane values for the

current patch according to the A, B and C parameters achieved. If the difference

between actual depth values and the calculated plane values falls outside of some

threshold (that can be set according to Chapter 4 Section 4.3.5 Equation (4.48)),

then the current patch would be not be considered a valid plane (Pval bit would be

‘0’). The current implementation uses a constant threshold based on a maximum

range as discussed in Section 5.4 below.
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Figure 5.1: Block diagram of sliding window implementation. Depth pixels are
input to the FIFO on every clock cycle. The tapped outputs of the Megacore are
simultaneously shifted into logic-based shift registers on each clock cycle creating a
sliding window effect.
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Two depth pixels are delivered to the system per clock cycle from tightly coupled

on-chip memory. A second copy of the plane fitting block from Figure 5.2 is then

instantiated to double the processing rate of the implementation. The blocks work

in parallel, as indicated in the diagram in Figure 5.3, and output the normalised

plane parameters for two consecutive patches per clock cycle. Note that to achieve

both processing and output of two patches per clock cycle, the sliding window im-

plementation shown in Figure 5.1 is modified to receive 32 bits (2 pixels) per clock,

and six 32-bit logic-based shift registers would be used in place of the eleven 16-bit

shift registers in the diagram. The location of the window in the bottom of Figure

5.1 would also shift by two positions after each clock cycle.

5.3 System Implementation

In order to demonstrate a real time implementation of the plane fitting module from

Section 5.2, an end-to-end system has been developed. This system needed to be

able to interface with the Kinect v2 sensor, which provides the depth data input, as

well as some form of display device for providing visual output of the results. Since

there is currently no support for connection of Kinect v2 depth sensors to FPGA

development boards, a hybrid hardware-software architecture has been developed. A

suitable platform for this architecture incorporates an FPGA chip with a substantial

amount of high speed logic and on-chip memory, and a high speed communication

channel for interfacing with a computer, which in turn would interface with the

Kinect v2 sensor and a display monitor. The Terasic TR4 FPGA development

board [110] (Figure 5.4) has been chosen for the system. The TR4 is equipped with

a Stratix IV FPGA chip [4] that has 228,000 logic elements, 17,133 kilobits of on-chip

memory, support for DDR3 off-chip memory, and two PCI express communication

ports.

An overview of the end-to-end system is given in Figure 5.5. Depth frames are

captured by the Kinect v2 sensor and sent down to the host computer via USB 3.0

interface at a resolution of 512 by 424 by 16 bits and a framerate of 30 frames per

second. The frames are buffered by the host computer and sent down individually

to the memory on the FPGA board via PCI express link for processing. Upon

completion of processing a frame, the FPGA signals the computer and the data is

transferred from the FPGA memory back up to the host computer, where it can be

displayed on the monitor.

The implementation of the hardware portion of the system is shown in a detailed

block diagram in Figure 5.6. Frame data transferred from the host computer is

stored directly into FPGA on-chip dual-port memory. Also stored in that memory

are various control and threshold values. The second interface port of the memory
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Figure 5.2: Block diagram of plane fitting pipeline implementation. Each stage of
the pipeline is made up of combinational logic (blue blocks), the results of which
are buffered by the pipeline registers (orange) on every clock cycle. This allows for
multiple patches of data to be operated on simultaneously at various stages of the
plane fitting algorithm.
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Figure 5.3: Dual patch processing implementation. The use of two copies of the
plane fitting pipeline allows the processing of two patches per clock cycle.

Figure 5.4: The TR4 FPGA development board

is connected to a custom Altera Qsys component that has been developed as part of

this work. This component instantiates the plane fitting module explained in Section

5.2, and implements a state machine that provides a controlled interface to the frame

data stored in memory. The Qsys system integration tool facilitates the connection

of the various parts of the system via standardised communication protocols. It also

allows the instantiation of IP cores. IP cores provided by Altera have been used in

this system for the PCI express interface, the dual-port on-chip memory controller,

and the variable division blocks. The state machine in the plane fitting module polls

a control byte stored in memory. When the host computer completes a transfer of

a frame to the FPGA memory, it signals to the custom component by setting this

control flag. When the flag is set, the component begins reading frame data into the

plane fitting module and writing the processed data back into a separate section of

the on-chip memory. When the frame has been completely processed, the custom
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Figure 5.5: High level end-to-end system overview

Figure 5.6: Block diagram of hardware section of end-to-end system

component resets the control flag, to indicate to the host computer that it can read

the data in the processed section of memory.

5.4 Applications

Although more general, this plane fitting system has been developed for bionic vision

patients, and applications are predominantly navigational aids. Through the detec-

tion and segmentation of objects, paths, doorways, obstacles and/or free space, the

effort required by a bionic vision user to navigate through everyday environments

may be reduced. As a proof of concept, two different examples of detection applica-

tions have been implemented in this system: ground plane detection and table top

detection.
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By making the assumption that the Kinect v2 sensor is at a fixed height and

fixed y axis orientation (camera roll) when moving through the environment, the

implementation of both detection applications can be reduced to relatively simple

comparison logic in hardware. More sophisticated applications could compensate

for orientation changes with inertial sensors. The normalised plane parameters cal-

culated by the plane fitting module are compared to expected values that relate to

either a ground plane or table top. If the differences fall within a specified threshold,

then the current pixel is flagged as part of the type of plane that is attempting to be

detected. Ideally this threshold would be calculated separately for each pixel and

patch using the equations from Chapter 4 Section 4.3.2 Equation (4.41). However in

these results it was found suitable to determine the thresholds empirically, avoiding

unnecessary logic usage. Furthermore, it is not critical that a fixed 95% of the planes

be matched as long as enough matches create a discernible pattern for a blind user

given the low resolution of the vision implant. The expected plane parameter values

can either be predefined and hard coded into the logic, or sampled from a particular

region in the frame of data in real time upon a button press. Visual results for these

two applications are shown in Section 5.5.

5.5 Results and Performance

The results of this work can be broken down into 3 main parts: simulation, end-to-

end system integration and real time performance with applications. The following

subsections outline the testing methods used and results gained for each.

5.5.1 Simulation

Initial development and testing of the plane fitting algorithm explained in Chapter

4 was completed using the MATLAB 2013a software package [74]. Actual Kinect

v2 depth image data was used as input, and the implementation made use of sim-

ple fixed point arithmetic and bitwise logic operations that mimics the hardware

solution. The hardware implementation was then completed using Verilog HDL in

a testbench environment using Altera’s Quartus 13.1 (service pack 2) software [3].

Finally, the implementation was verified using Mentor Graphics’s ModelSim (Altera

Edition) simulation software package [5].

A block diagram of the testbench setup is shown in Figure 5.7. The testbench

simulation provided the Design Under Test (DUT) with the same input data as was

used in MATLAB and verified the outputs with the MATLAB generated output

data. The ModelSim simulation output matched the MATLAB output correctly.

Tables 5.1 and 5.2 show logic resource usage and maximum clock rate characteristics
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Figure 5.7: Block diagram of testbench

Table 5.1: Resource usage for plane fitting module

Resource Usage

Logic elements 33,027 / 182,400 (18%)
Memory bits 92,638 / 14,625,792 ( <1 % )
18-bit multiplier blocks 64 / 1,288 (5%)

estimated by the Quartus compilation for the plane fitting module (using a Stratix

IV EP4SGX230KF40C2 FPGA chip).

As can be seen in Table 5.1, a low proportion (<18%) of logic resources was

needed. The majority of this logic is attributed to the divider blocks however,

with only about 2000 logic elements used for the other parts of the implementation

(≈ 1%). On-chip memory and multiplier block usage for the plane fitting module is

also quite small (<1% and 5% respectively). The compilation timing analysis (Table

5.2) estimated a maximum operating frequency of 54.11 MHz, which can be related

to a maximum theoretical frame rate of 480 FPS (assuming data input/output rate

of two 16-bit pixels per clock cycle). Given that the Kinect v2 sensor captures

depth frames at a maximum frame rate of 30 FPS, the frequency required to run

the module at frame rate is only 3.4 MHz. Power consumption of integrated circuits

are proportional to the clock frequencies they operate at. Running at this lower

clock rate of 3.4 MHz would therefore mean that there would be significantly less

power usage in comparison to an implementation on a GPU-based system, which

may be run at clock frequencies in the order of 1 GHz.
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Table 5.2: Timing analysis

Property Value

Maximum operating frequency 54.11 MHz
Theoretical max. frame rate 480 FPS

5.5.2 End-to-End System Integration

As described in Section 5.3, practical real time implementation of the plane fitting

implementation requires an end-to-end system. Along with plane fitting, this sys-

tem has number of peripheral tasks such as various communication and memory

interfaces, as well as management and display of data, each with processing time

and latencies. So while the simulation results of Section 5.5.1 report a maximum

theoretical frame rate of 480 frames per second (FPS), the actual achievable frame

rate is lower.

There are two main bottlenecks that limit the maximum achievable framerate.

The first occurs at the memory interface between the custom component and the

on-chip memory. Read and write transfers take 2 clock cycles each to complete,

and cannot be performed simultaneously. Therefore the plane fitting module would

process a frame of data in 8.7 ms, dropping the theoretical maximum frame rate by

a factor of about 4 to 115 FPS. The second major bottleneck involves preparing,

transferring, and displaying of frame of data carried out by the host computer. The

latency of transferring a frame of data over the PCI express link was measured to

be 2.4 ms for both downstream and upstream transfers. Buffering and display of

the frame data had a measured processing time of 3.5 ms. Therefore the overall

software processing time is 8.3 ms. Taking into account the processing time of the

hardware modules, the maximum achievable framerate is 60 FPS. This however

ignores operating system scheduling delays that cause the performance to be lower.

The following section (5.5.3) covers the real time operating performance for the

complete system, and display results.

5.5.3 Real Time Performance and Visual Results

Since the Kinect v2 sensor provides depth frames at 30 FPS, the system’s real time

performance has been tested with pre-captured streams of data. For the tests, 450

frames were first loaded into the computer memory from captured files on the hard

drive. The frames were then sent one by one down to the FPGA for plane fitting

and ground or table top detection. The results were read back and displayed. This

process was repeated for all 450 frames and the total processing time was used to find

the average framerate of operation. The average framerate achieved was 60 FPS, as
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estimated in the previous section. This surpasses the Kinect v2 sensing rate by a

factor of two.

Visual results of the ground plane and table top detection are given in Figure 5.8.

A sample of 6 frames out of the 450 processed frames are shown. The left column

contains unprocessed depth artificially-coloured frames, and the middle and right

columns show the results of the ground plane and table top detection applications

respectively. A video of the same can be found in Appendix B and here is a link.

Note that the video runs at a lower framerate than what is actually achieved during

real time operation. In the results, white pixels correspond to correctly detected

plane pixels that are part of either the ground or a table top of a set height. The

thresholds on αn, βn, γn were set to 0.05 and the threshold on κn was set to 120 mm.

Due to the falloff of IR illumination, the peripheral sections of the depth image can

be quite noisy and cause errors in detection. This is evident in the ground plane

detection results of Figure 5.8.

5.6 Discussion

From the Verilog simulation results it can be seen that the maximum processing

framerate that can be achieved by the hardware plane fitting module is 480 FPS.

While this is well above the required rate to keep up with the delivery of frames

from the Kinect v2 (30 FPS), there are some assumptions made in order to achieve

this rate in a real time system. These assumptions are that the input data can

be delivered at a rate of two 16-bit pixels per clock cycle, and that the output

data can be simultaneously consumed at the same rate. Given adequate FPGA

resources, these assumptions can be improved in order to increase the throughput

and effectively increase the framerate. If the assumption was to be made that

the input and output data rates are four pixels per clock for example, and the

buffering and number of plane fitting pipelines increased accordingly, the maximum

framerate (at the same clock frequency) would be doubled to 960 FPS. Similarly, for

higher input/output data rates such as 8 or 16 pixels per clock cycle, the maximum

framerates would increase to 1920 FPS and 3840 FPS respectively, limited only by

logic resources. Since only 18% of logic elements have been utilised this is feasible.

It is important to note though, that increasing the number of patches that need to

be processed in parallel will make the sliding window implementation more complex,

therefore logic and routing resources required may increase quickly.

The maximum achievable framerate is limited by the highest processing and/or

latency times and the memory bandwidth of the various stages within the imple-

mentation. There are two main bottlenecks within this system’s particular imple-

mentation. The first is the interface between data stored in memory and the plane
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Figure 5.8: Visual results of the floor and table top detection applications are shown
above. The artificially-coloured depth frames (left column) were used as input. The
middle and right columns are the output results for floor and table top detection
respectively. The white pixels highlight the correctly detected planes. Detection
errors are noticeable around the edges of the frames. This is due to the falloff of
Kinect v2 IR illumination.
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fitting module. Data is able to be read and written from the memory in blocks

of 32 bits. However, read and write transactions each have 1 clock cycle latency.

Furthermore, read and write operations cannot occur simultaneously unlike the sim-

ulation results. This is because the second interface port of the on-chip memory is

connected to the PCI express communication port for data polling purposes. This

causes a reduction in performance of 4 times to a framerate of 115 FPS, hence any

throughput improvements that could have been made to the plane fitting module

would have no overall benefit. A possible improvement to this bottleneck could be

to investigate the use of separated memory blocks for the unprocessed and processed

data. This would mean separate interface buses and simultaneous reads and writes.

This could improve throughput by a factor of 2.

The second bottleneck in the system is computer software processing time and

data transfer overheads. As was stated in Section 5.5.2 of the results, the total

software time was measured to be 8.3 ms. This means that even if the hardware

solution process and latency time is negligible, the maximum framerate achievable

is 120 FPS.

As can be seen in Figure 5.8 of the results, the ground plane and table top

detection applications are successful. Real time testing of the whole system has been

able to achieve a maximum framerate of 60 FPS. While this is half of the theoretical

maximum framerates that have been estimated in the previous discussion, it still

surpasses the framerate of the Kinect v2 sensor by a factor of 2.

The visual results have alluded to the fact that the level of noise in the depth data

increases significantly towards the peripheral edges of the image. This is likely to

be due to the attenuation of IR illumination and the reflected IR light from surfaces

in the scene. Lens distortion could also be a contributing factor. As mentioned in

the previous chapter, a best-case approach has been taken for the analysis of depth

sensor error and so the error models developed would likely be unsuitable for data

far from the centre of the depth image. A more detailed analysis of the error would

be necessary to account for the effects of IR attenuation and lens distortion and this

could be done for future work.

The error models for the normalised plane parameters developed in Chapter 4

have not been used in the implementation of applications in this chapter. For the

specific case of highlighting floor or tabletop planes for a bionic vision system, it is

has been found unnecessary due to the low resolution output of an end-user device.

Instead the thresholds used have been determined empirically. This has been based

on a maximum range and has been kept constant for all depth data points. This

is sufficient to provide a suitably representative image of the detected planes. It

also avoids unnecessary logic implementation that would be required to calculate a

threshold for every pixel of the image. The variability of plane parameters becomes
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much more critical for tasks such as plane tracking and in these cases the error

model equations will need to be used. A hardware implementation of the developed

error models could be investigated for future work.

Other future work could include more advanced applications and functionality.

Inertial sensing and/or tracking of planes in the environment could be incorporated.

This would allow for the compensation of changes to camera position and orientation,

as would be quite likely in practical use of a bionic vision system. Navigational cues

could be displayed on screen to help users in everyday tasks. More advanced object

and surface detection could be implemented to identify to the user things such as

chairs, doorways, bins, stairs, paths, etc.

5.7 Summary and Conclusions

Presented in this chapter has been the design and implementation of the plane fitting

algorithm from Chapter 4 on FPGA hardware. The hardware implementation has

been developed using Verilog and simulated to achieve a maximum framerate of

480 FPS. To facilitate a real time implementation on actual hardware, a hybrid

hardware-software end-to-end system has been implemented. This system integrates

the hardware plane fitting module with depth data from a Microsoft Kinect v2 sensor

through a PC and high speed PCI express communication bus.

The plane fitting implementation has been applied to two different bionic vision

detection applications - ground plane and tabletop detection, and the whole system

is able to run in real time at 60 FPS. The two detection applications provide a proof

of concept of the feasibility of integrating a depth sensor with a bionic vision device

in order to aid a user in navigational tasks. Extensions to these applications could

be in the form of detection of more complicated objects and inclusion of inertial

sensing and tracking of planes for egomotion measurement.

Although the system is capable of operating at twice the rate that frames can

be provided from the Kinect v2 sensor, a number of bottlenecks were observed that

prevent the system reaching framerates nearer to that of the simulation results.

These are mainly due to memory interfaces and data transfer latencies. While

possible solutions have been discussed, their realisation may not provide any further

benefit in bionic vision applications as it is unlikely prostheses will require framerates

exceeding 30 frames per second. The work presented in this chapter also has uses in

the fields of robotics and computer vision however, and investigation into maximising

real time performance would be attractive in these cases, although outside the scope

of this thesis. Another limitation of the system is that the use of a host computer

to interface with the Kinect sensor potentially hinders portability if it were to be

incorporated into a bionic vision system. This could be solved via development of
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a USB driver to connect directly to the Kinect from the FPGA, and could be an

avenue for future work.

The work of this chapter has shown the potential benefit of real time plane fitting

of depth sensing for improving bionic vision systems.
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Chapter 6

Summary and Future Work

Research into the development of bionic vision devices has been progressing quickly

in recent years, with research groups around the world working towards commer-

cial products. However, very limited spatial and temporal resolution is expected

of early implants. Due to the electrical interaction properties that exist between

neighbouring stimulating electrodes in brain tissue, it is currently only feasible for

implants to use a maximum of several hundred electrodes within the foveal area.

This results in the same number of elicited visual points. Furthermore, the achiev-

able framerate is likely to be as low as four frames per second and the control of

phosphene intensity could be as coarse as two levels. This thesis has investigated

the capabilities of users under the anticipated level of vision of the Monash Vision

Group’s Gennaris device and has explored options for potentially improving future

patients’ performance in everyday tasks such as navigation, pattern recognition and

object manipulation. The key achievements and findings of the work presented in

this thesis can be summarised as follows.

6.1 Summary of Key Achievements and Findings

Hatpack Simulator

In the work presented in Chapter 2, a portable real time simulator called the Hatpack

has been developed based on a Field Programmable Gate Array (FPGA) architec-

ture. The system takes into account current neurophysiological models of visuotopy,

with an implementation of the Monopole model to mimic the non-linear mapping of

points on the visual cortex to points in the visual field. The Hatpack is lightweight,

immersive and completely mobile allowing it to be used for untethered testing away

from a lab bench or office desktop. The exploitation of parallel operations on the
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FPGA allows the Hatpack to operate at 60 frames per second with a constant la-

tency of only 17 ms. Its power consumption is low enough for it to last 4 hours on

a full charge.

In addition to the visuotopic mapping implementation, the Hatpack also simu-

lates other characteristics expected of a vision implant including: limited control of

phosphene intensity via luminance thresholding; the appearance of a phosphene by

using a 2D Gaussian mask implementation; the possibility of failed electrodes; low

temporal resolution via framerate reduction; and the ability to control the system

and change modes and thresholds in real time via an IR remote control interface and

manual threshold control dial. A number of different automatic threshold selection

methods as well as an edge detection mode have also been implemented.

The Hatpack has been tested extensively, having been used for five different sets

of psychophysical tests over the period of a few years. In this time there have been

no major issues with its operation, thus proving its robustness and suitability for use

as a psychophysical testing tool. Furthermore, there were no significant complaints

regarding comfort of the head gear following the integration of the head mounted

display into the ski goggles.

Psychophysics Testing

Five different psychophysics tests have been conducted as part of the work presented

in Chapter 3. These involved the use of the Hatpack with normally sighted individ-

uals, and the completion of tasks that resemble everyday activities. The first test

was a navigational task requiring users to try and make their way through a maze

of obstacles. The second test was an eye-hand coordination and contrast discrimi-

nation problem requiring interaction and placement of chess pieces on a chessboard.

The third experiment required participants to attempt to stop rolling balls at vary-

ing framerates. In the fourth experiment participants were presented with different

shapes of varying shades on an e-ink display and were required to identify the shape.

The final experiment required participants to try and sort socks of different shades.

It was found that users were able to complete all of the tasks successfully albeit

with varying proficiencies. However, the results have shown that it is significantly

more difficult to complete the tasks under the simulated phosphene vision than when

in a control mode that was similar to normal sight. This has shown that there is

still much room for improvement to allow bionic vision users to complete such tasks

with similar proficiency as a normally sighted person. Other observations from the

results included the need for multiple levels of greyscale intensity, higher framerate,

more advanced thresholding implementations, and post-operative training so that

patients can get the most out of their implant.
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General use of the Hatpack and the conduction of the psychophysics testing has

revealed the adverse effects of poor lighting and cluttered environments on the ability

of the system to provide a clear representation of the scene. This has prompted the

need for an alternate sensing approach and has motivated the investigation into the

feasibility of integrating a 3D depth sensor and advanced processing techniques into

a bionic vision system.

Plane Fitting and Sensor Error Analysis

Presented in Chapter 4 is the development of a new plane fitting algorithm based

on the least squares method. This algorithm employs a patch based approach and

has been tailored for a suitable implementation on FPGA hardware. The opera-

tions required to calculate the fitted plane parameters have been reduced to a form

involving a number of simple addition and multiplication operations and a few fixed

value divisions. This allows for a simpler logic implementation that could be run at

higher clock frequencies.

The potential variability of depth sensor data has been investigated via the analy-

sis of errors in a Microsoft Kinect v2 sensor which was also presented in this chapter.

This analysis allows for the specification of logic precision requirements, statistical

testing of the validity of a plane fit, and achievable plane fitting angle resolution. A

best-case range error model was obtained through statistical analysis of depth frames

and found to have a parabolic trend increasing with distance. Using this model the

propagation of errors to the plane fitting parameters has been investigated and gen-

eral models for the errors in the plane fit parameters have been derived. From these

models acceptable difference thresholds when matching parameters for the floor and

tabletop detection applications can be obtained.

Real Time Hardware Implementation of Plane Fitting and

Bionic Vision Applications

Chapter 5 details a real time implementation of the hardware plane fitting algorithm

developed as part of Chapter 4 in a hybrid hardware-software end-to-end system.

The plane fitting solution has been developed using Verilog and first simulated in a

testbench environment. The simulation reported a maximum theoretical framerate

of 480 frames per second. The logic usage of the FPGA was found to be only 18%

however, meaning that it may be feasible to scale up the implementation to achieve

theoretical framerates of up to 3840 frames per second. This is assuming a data rate

of 16 pixels per clock.

Following simulation, an end-to-end system was put together in order to imple-

ment this module in real time on an FPGA. This system integrated a Kinect v2
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sensor with a TR4 FPGA board via a computer and high speed PCI express com-

munication bus. Plane fitting was applied to the detection and highlighting of tables

and free floor space in the system and a framerate of 60 frames per second has been

achieved.

6.2 Future Work

The work of this thesis is by no means complete and in fact the results of this

work have quite possibly opened up new avenues for investigation. A number of

limitations of this work exist and these provide the most obvious paths for future

work. However, the systems and functionality developed as part of this thesis could

be applied for other purposes and are likely to have use in other fields of research

as well. Possible future work that could be done to improve upon this project and

potential areas of application outside the field of medical bionics are outlined as

follows.

Improvements to the Hatpack

The phosphenes that will be evoked in a cortical prosthesis will be gaze-contingent.

This means that they will remain in the same location in the visual field regard-

less of movements of the eyeball. This property has not been implemented in the

Hatpack and could be part of future work for the system. Wearers of the Hatpack

have alluded to possibility of the lack of gaze-contingency not making a difference,

however this can only be confirmed through testing and comparison of the two cases.

Furthermore, the revised mapping of the Hatpack involves phosphenes that are dis-

played in only one of the two visual hemispheres and this seems to force users to

scan over the phosphenes more as there is a natural tendency for looking towards

the centre of a pattern displayed on the screen.

More image processing and computer vision algorithms could be investigated for

implementation as part of the Hatpack features. The implementation of face detec-

tion for example would be useful to indicate to a user if there is someone within

the immediate environment that is looking towards them. Recognition of the faces

could also allow the user distinguish who they are looking at. This information

could be conveyed to the user through an auditory form through the integration

of audio output. Other functions could include various object and shape detection

implementations which could possibly be presented to the user in the form of sim-

plified icons or letters. These could be quite useful for navigational purposes, via

the highlighting of known landmarks, pathways, doorways, street signs, etc.
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More Hatpack Psychophysics Testing

The psychophysics experiments that have been completed as part of this work are

not a formalised set of clinical trials. They are somewhat simplistic and possible

future work could be to conduct larger scale tests that are more difficult, have a

wider range of tasks and more exhaustively test the functions that are implemented

on the Hatpack system.

The tests conducted as part of this thesis have all been indoors. It would be

quite interesting to see how a participant would perform in an outdoor setting. A

possible task could be for a participant to try and navigate from the inside of an

office building to a nearby bus stop or car park. This would also test the ability

of the Hatpack system and its functions to deal with the high dynamic range of

lighting between the two.

It would also be quite interesting to further investigate learning effects. Long-

term testing involving many hours of continuous Hatpack use could be a possible

option. This could be repeated over a number of weeks or even months in order to

determine the point of diminishing return in terms of learning.

Extensions to 3D Sensing and Applications

The implementation of the 3D end-to-end system of Chapter 5 is a proof of concept

system and quite general. The inclusion of inertial sensing could be part of future

work to allow for the compensation of changes to camera position and orientation.

This would be quite likely in practical use of a bionic vision system. Navigational

cues could be displayed on screen to help users in everyday tasks. More advanced

object and surface detection could be implemented to identify to the user things

such as chairs, doorways, bins, stairs, paths, and other objects and landmarks that

would be useful to users.

Advancements in FPGA technology have meant that many FPGAs are now

equipped with hard wired implementations of powerful ARM processor cores inte-

grated into the microchip. These system-on-chip devices could provide a simpler

way to interface a depth sensor with the FPGA as the need for a computer may

no longer be necessary. This could also mean that a portable version of the system

could be developed similar to the Hatpack.

The floor space and tabletop detection applications implemented have used

thresholds that have been determined empirically based on a maximum range. Ide-

ally these would need to be calculated for each pixel in a patch using the error

models developed in Chapter 4. However these models are quite general and for the

specific case of highlighting planes for bionic visions applications it is not necessary
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to be as accurate given the low resolution, so long as a suitable representative im-

age can be achieved. For more critical applications such as the tracking of planes,

the variability of the normalised plane parameters becomes important for accuracy

and so the use of the models developed would be necessary. An investigation into

a hardware implementation of these error model equations could be completed for

future work.

The error analysis performed in Chapter 4 was completed using a best-case

approach. The effects of attenuation of IR illumination and reflection, and lens

distortion have been ignored. From the results of the applications in Chapter 5

it is evident that the noise level of depth data increases significantly towards the

peripheral edges of the depth frames. This means that the developed error model

equations would not be suitable for the outer parts of the image. A more detailed

analysis of error would be useful for properly defining the variability of depth sensor

data.

Psychophysics trials would be another area for future work. This could be done in

a similar way the experiments carried out with the Hatpack system. Low resolution

mapping would need to incorporated and the mapping implementation within the

Hatpack could be used for this. With first in-human trials approaching however, the

possibility of conducting testing with actual implanted patients is a likely option.

Due to the modular implementation of the Gennaris device, alternative hardware

for sensing and processing can be investigated without the need for further surgery

or modification to the stimulating tiles implanted within the patient’s brain.

Use in Other Fields of Research

The fields of Robotics and Computer Vision could find use in the work completed in

this thesis. The low resolution mapping implementation used in the Hatpack along

with some of the processing functions could be used for robotic systems that are

limited to low resolution sensing. Likewise, plane fitting is a fundamental building

block of many 3D robotics and computer vision applications and the ability to

achieve the level of real time performance observed in this work could prove very

useful in these fields.

The hybrid computer-FPGA architecture used for the end-to-end system allows

for the potential of integrating a number of different sensors simultaneously. The

fusion of inertial and GPS sensors into the system could allow for the implementation

of Simultaneous Localisation and Mapping [7] functionality. This has been widely

researched in the field of robotics and could prove a useful addition for a bionic

vision system.
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6.3 Concluding Remarks

The development of the Hatpack has provided a robust and flexible real time system

that is suitable for use as a psychophysical test platform. By closely representing

the anticipated level of the Gennaris, it also provides a useful visual tool that can

be used handle the expectations of the general public and family and friends of

future patients. The experiments carried out with the Hatpack have shown not

surprisingly that it is significantly harder to complete tasks that resemble everyday

activities under the limited resolution of a bionic vision device. This has motivated

an investigation into the possibility of integrating alternate sensing approaches to

potentially close the gap between the abilities of normally sighted and blind indi-

viduals. The development of the real time end-to-end system has shown that it is

in fact feasible to incorporate 3D depth sensing into a bionic vision device. Further-

more, the application of planefitting to free floor space and tabletop detection was

achieved at a framerate of 60 frames per second.

The Hatpack system has influenced the development of the Gennaris and given

confidence that useful outcomes will be obtained with the resolution and framerate

that is anticipated of initial implementations. It has also provided good publicity and

convinced and inspired sponsors to invest in the future of the project. Hopefully the

results of this work, in particular the integration of 3D sensing, will be incorporated

into future revisions of the Gennaris and other vision implants in order to improve

the quality of life of future patients and allow them to regain abilities that were lost

with their sight.
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Appendix A

Derivations of Equations (4.38) to

(4.41)

A.1 Variance of the Scaling Factor

From Equation (4.25), the scaling factor is shown to be λ = |α| + |β| + |γ|. There

are 8 different cases, since α, β, γ can all have either positive or negative results.

So λ can be one of the following:

λ1 = (α) + (β) + (γ) = −FA− FB + (C + Auc +Bvc)

λ2 = (α) + (β) + (−γ) = −FA− FB − (C + Auc +Bvc)

λ3 = (α) + (−β) + (γ) = −FA+ FB + (C + Auc +Bvc)

λ4 = (α) + (−β) + (−γ) = −FA+ FB − (C + Auc +Bvc)

λ5 = (−α) + (β) + (γ) = FA− FB + (C + Auc +Bvc)

λ6 = (−α) + (β) + (−γ) = FA− FB − (C + Auc +Bvc)

λ7 = (−α) + (−β) + (γ) = FA+ FB + (C + Auc +Bvc)

λ8 = (−α) + (−β) + (−γ) = FA+ FB − (C + Auc +Bvc)

(A.1)
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In order to find variance equations for the 8 cases listed above, they need to be first

represented in terms of the individual patch elements z1 to z9, then expanded and

grouped according to correlated terms. This working is shown as follows for λ1:

λ1 = (α) + (β) + (γ)

= −FA− FB + (C + Auc +Bvc)

= −F
∑
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∑
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(A.2)

Substituting in the values of F = 366, uc = 256 and vc = 212 gives:

λ1 = z1(
401

45
) + z2(

236

45
) + z3(

71

45
) + z4(

34

9
) + z5(

1

9
) + z6(

−32

9
) + z7(

−61

45
)

+ z8(
−226

45
) + z9(

−391

45
)

(A.3)

Similarly, the remaining cases of λ are:
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λ3 = z1(
−697

45
) + z2(

−862

45
) + z3(

−1027

45
) + z4(

34

9
) + z5(

1

9
) + z6(

−32

9
) + z7(

1037

45
)

+ z8(
872

45
) + z9(

707

45
)

(A.5)

λ4 = z1(
697

45
) + z2(

−236

45
) + z3(

−1169

45
) + z4(

928

45
) + z5(

−1

9
) + z6(

−938

45
) + z7(

1159

45
)

+ z8(
226

45
) + z9(

−707

45
)

(A.6)

λ5 = z1(
−697

45
) + z2(

236

45
) + z3(

1169

45
) + z4(

−928

45
) + z5(

1

9
) + z6(

938

45
) + z7(

−1159

45
)

+ z8(
−226

45
) + z9(

707

45
)

(A.7)

λ6 = z1(
697

45
) + z2(

862

45
) + z3(

1027

45
) + z4(

−34

9
) + z5(

−1

9
) + z6(

32

9
) + z7(

−1037

45
)

+ z8(
−872

45
) + z9(

−707

45
)

(A.8)

λ7 = z1(
−359

9
) + z2(

−862

45
) + z3(

71

45
) + z4(

−928

45
) + z5(

1

9
) + z6(

938

45
) + z7(

−61

45
)

+ z8(
872

45
) + z9(

361

9
)

(A.9)

115



A.1. VARIANCE OF THE SCALING FACTOR
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Given these equations, the following variances have been found:
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−236

45
)2 + σ2

z(
−71

45
)2 + σ2

z(
−34

9
)2 + σ2

z(
−1

9
)2 + σ2

z(
32

9
)2

+ σ2
z(

61

45
)2 + σ2

z(
226

45
)2 + σ2

z(
391

45
)2

= σ2
z

53749

225
≈ (15.456σz)

2

(A.18)
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It can be seen that there are only 4 unique cases. Furthermore, only the best and

worst case variances are of interest. This leaves the following two variances that

have been shown in Equation (4.39) of Chapter 4:

σ2
λ1

=
σ2
z53749

225
≈ (15.456σz)

2

σ2
λ2

=
σ2
z1081477

225
≈ (69.329σz)

2

(A.19)

A.2 Covariances of Plane Parameters with the

Scaling Factor

The covariances of each of the plane parameters α, β, γ, and κ with the scaling

factor λ are required for the approximation that will be used to find the variance

of the normalised plane parameters. These covariances can be found by working

out the product of each of the pairs of variables, and removing the non-correlated

cross-terms. The derivation of the covariance of α with the best and worst case λ

values is outlined in detail as an example. The products of the two pairs are:

αλ1 =
[61

5
(z1 − z3 + z4 − z6 + z7 − z9)

]
×
[
z1(

401

45
) + z2(

236

45
) + z3(

71

45
) + z4(

34

9
) + z5(

1

9
)

− z6(
32

9
)− z7(

61

45
)− z8(

226

45
)− z9(

391

45
)
]

= (
14396z1z2

225
)− (

1342z1z3
15

) + (
34831z1z4

225
)− (

14396z2z3
225

) + (
61z1z5

45
) + (

14396z2z4
225

)

− (
11407z1z6

75
)− (

671z3z4
25

) + (
4148z1z7

45
)− (

14396z2z6
225

)− (
61z3z5

45
)− (

13786z1z8
225

)

+ (
14396z2z7

225
) + (

5429z3z6
225

) + (
61z4z5

45
)− (

5368z1z9
25

) + (
2684z3z7

75
)− (

1342z4z6
15

)

− (
14396z2z9

225
) + (

13786z3z8
225

) + (
6649z4z7

225
)− (

61z5z6
45

) + (
3904z3z9

45
)− (

13786z4z8
225

)

+ (
61z5z7

45
)− (

11407z4z9
75

)− (
671z6z7

25
)− (

61z5z9
45

) + (
13786z6z8

225
) + (

33611z6z9
225

)

− (
13786z7z8

225
)− (

1342z7z9
15

) + (
13786z8z9

225
) + (

24461z21
225

)− (
4331z23

225
) + (

2074z24
45

)

+ (
1952z26

45
)− (

3721z27
225

) + (
23851z29

225
)

(A.20)
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αλ2 =
[61

5
(z1 − z3 + z4 − z6 + z7 − z9)

]
×
[
z1(

359

9
) + z2(

862

45
)− z3(

71

45
) + z4(

928

45
)− z5(

1

9
)

− z6(
938

45
) + z7(

61

45
)− z8(

872

45
)− z9(

361

9
)
]

= (
52582z1z2

225
)− (

37942z1z3
75

) + (
166103z1z4

225
)− (

52582z2z3
225

)− (
61z1z5

45
) + (

52582z2z4
225

)

− (
55571z1z6

75
)− (

6771z3z4
25

) + (
113216z1z7

225
)− (

52582z2z6
225

) + (
61z3z5

45
)− (

53192z1z8
225

)

+ (
52582z2z7

225
) + (

61549z3z6
225

)− (
61z4z5

45
)− (

22021z1z9
45

)− (
2684z3z7

75
)− (

37942z4z6
75

)

− (
52582z2z9

225
) + (

53192z3z8
225

) + (
60329z4z7

225
) + (

61z5z6
45

) + (
114436z3z9

225
)− (

53192z4z8
225

)

− (
61z5z7

45
)− (

55571z4z9
75

)− (
6771z6z7

25
) + (

61z5z9
45

) + (
53192z6z8

225
) + (

167323z6z9
225

)

− (
53192z7z8

225
)− (

37942z7z9
75

) + (
53192z8z9

225
) + (

21899z21
45

) + (
4331z23

225
) + (

56608z24
225

)

+ (
57218z26

225
) + (

3721z27
225

) + (
22021z29

45
)

(A.21)

The covariances of these two equations will only involve the components that have

correlated cross-terms and can be expressed as:

σαλ1 = (
24461σ2

z

225
)− (

4331σ2
z

225
) + (

2074σ2
z

45
) + (

1952σ2
z

45
)− (

3721σ2
z

225
) + (

23851σ2
z

225
)

= σ2
z(

1342

5
)

≈ (16.38σz)
2

(A.22)

σαλ2 = (
21899σ2

z

45
) + (

4331σ2
z

225
) + (

56608σ2
z

225
) + (

57218σ2
z

225
) + (

3721σ2
z

225
) + (

22021σ2
z

45
)

= σ2
z(

37942

25
)

≈ (38.96σz)
2

(A.23)
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In a similar manner the products and covariances of the other plane parameters

(β,γ and κ) with the scaling factor λ have been calculated and are as follows (note

that the uncorrelated cross-terms have been excluded from the expressions for the

products for convenience):

βλ1 =
[61

5
(z1 + z2 + z3 − z7 − z8 − z9)

]
×
[
z1(

401

45
) + z2(

236

45
) + z3(

71

45
) + z4(

34

9
) + z5(

1

9
)− z6(

32

9
)− z7(

61

45
)

− z8(
226

45
)− z9(

391

45
)
]

= . . .+ (
24461z21

225
) + (

14396z22
225

) + (
4331z23

225
) + (

3721z27
225

) + (
13786z28

225
) + (

23851z29
225

)

(A.24)

βλ2 =
[61

5
(z1 + z2 + z3 − z7 − z8 − z9)

]
×
[
z1(

359

9
) + z2(

862

45
)− z3(

71

45
) + z4(

928

45
)− z5(

1

9
)− z6(

938

45
) + z7(

61

45
)

− z8(
872

45
)− z9(

361

9
)
]

= . . .+ (
21899z21

45
) + (

52582z22
225

)− (
4331z23

225
)− (

3721z27
225

) + (
53192z28

225
) + (

22021z29
45

)

(A.25)

σβλ1 = (
24461σ2

z

225
) + (

14396σ2
z

225
) + (

4331σ2
z

225
) + (

3721σ2
z

225
) + (

13786σ2
z

225
) + (

23851σ2
z

225
)

= σ2
z(

9394

25
)

≈ (19.38σz)
2

(A.26)
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σβλ2 = (
21899σ2

z

45
) + (

52582σ2
z

225
)− (

4331σ2
z

225
)− (

3721σ2
z

225
) + (

53192σ2
z

225
) + (

22021σ2
z

45
)

= σ2
z(

35258

25
)

≈ (37.55σz)
2

(A.27)

γλ1 =
[
z1(
−697

45
) + z2(

−313

45
) + z3(

71

45
) + z4(

−379

45
) + z5(

1

9
) + z6(

389

45
) + z7(

−61

45
)

+ z8(
323

45
) + z9(

707

45
)
]
×
[
z1(

401

45
) + z2(

236

45
) + z3(

71

45
) + z4(

34

9
) + z5(

1

9
)

− z6(
32

9
)− z7(

61

45
)− z8(

226

45
)− z9(

391

45
)
]

= . . .− (
279497z21

2025
)− (

73868z22
2025

) + (
5041z23
2025

)− (
12448z24

405
) + (

z25
81

)− (
12448z26

405
)

+ (
3721z27
2025

)− (
72998z28

2025
)− (

276437z29
2025

)

(A.28)

γλ2 =
[
z1(
−697

45
) + z2(

−313

45
) + z3(

71

45
) + z4(

−379

45
) + z5(

1

9
) + z6(

389

45
) + z7(

−61

45
)

+ z8(
323

45
) + z9(

707

45
)
]
×
[
z1(

359

9
) + z2(

862

45
)− z3(

71

45
) + z4(

928

45
)− z5(

1

9
)

− z6(
938

45
) + z7(

61

45
)− z8(

872

45
)− z9(

361

9
)
]

= . . .− (
250223z21

405
)− (

269806z22
2025

)− (
5041z23
2025

)− (
351712z24

2025
)− (

z25
81

)− (
364882z26

2025
)

− (
3721z27
2025

)− (
281656z28

2025
)− (

255227z29
405

)

(A.29)
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σγλ1 = (
279497σ2

z

2025
)− (

73868σ2
z

2025
) + (

5041σ2
z

2025
)− (

12448σ2
z

405
) + (

σ2
z

81
)− (

12448σ2
z

405
)

+ (
3721σ2

z

2025
)− (

72998σ2
z

2025
)− (

276437σ2
z

2025
)

= σ2
z(

91187

225
)

≈ −(20.13σz)
2

(A.30)

σγλ2 = (
250223σ2

z

405
)− (

269806σ2
z

2025
)− (

5041σ2
z

2025
)− (

351712σ2
z

2025
)− (

σ2
z

81
)− (

364882σ2
z

2025
)

− (
3721σ2

z

2025
)− (

281656σ2
z

2025
)− (

255227σ2
z

405
)

= σ2
z(
−422677

225
)

≈ −(43.34σz)
2

(A.31)

κλ1 =
[1
9

(z1 + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9)
]2

×
[
z1(

401

45
) + z2(

236

45
) + z3(

71

45
) + z4(

34

9
) + z5(

1

9
)− z6(

32

9
)− z7(

61

45
)

− z8(
226

45
)− z9(

391

45
)
]

= . . .+ (
401z31
3645

) + (
236z32
3645

) + (
71z33
3645

) + (
34z34
729

) + (
z35

729
)− (

32z36
729

)

− (
61z37
3645

)− (
226z38
3645

)− (
391z39
3645

)

(A.32)
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κλ2 =
[1
9

(z1 + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9)
]2

×
[
z1(

359

9
) + z2(

862

45
)− z3(

71

45
) + z4(

928

45
)− z5(

1

9
)− z6(

938

45
) + z7(

61

45
)

− z8(
872

45
)− z9(

361

9
)
]

= . . .+ (
359z21
729

) + (
862z22
3645

)− (
71z23
3645

) + (
928z24
3645

)− (
z25

729
)− (

938z26
3645

)

+ (
61z27
3645

)− (
872z28
3645

)− (
361z29
729

)

(A.33)

σκλ1 = (
401σ3

z

3645
) + (

236σ3
z

3645
) + (

71σ3
z

3645
) + (

34σ3
z

729
) + (

σ3
z

729
)− (

32σ3
z

729
)

− (
61σ3

z

3645
)− (

226σ3
z

3645
)− (

391σ3
z

3645
)

=
σ3
z

81

≈ 0.012σ3
z

(A.34)

σκλ2 = (
359σ3

z

729
) + (

862σ3
z

3645
)− (

71σ3
z

3645
) + (

928σ3
z

3645
)− (

σ3
z

729
)− (

938σ3
z

3645
)

+ (
61σ3

z

3645
)− (

872σ3
z

3645
)− (

361σ3
z

729
)

= −σ
3
z

81

≈ −0.012σ3
z

(A.35)

The equations for all the covariances of Equation (4.40) from Chapter 4 have been

derived and are summarised as follows:
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For best case of σλ1 = 15.456σz,

σαλ1 =
1342σ2

z

5
≈ 16.382σ2

z

σβλ1 =
9394σ2

z

25
≈ 19.382σ2

z

σγλ1 = −91187σ2
z

225
≈ −20.132σ2

z

σκλ1 =
σ3
z

81

For worst case of σλ2 = 69.329σz,

σαλ2 =
37942σ2

z

25
≈ 38.962σ2

z

σβλ2 =
35258σ2

z

25
≈ 37.552σ2

z

σγλ2 = −422677σ2
z

225
≈ −43.342σ2

z

σκλ2 = −σ
3
z

81

(A.36)

A.3 Standard Deviations of Normalised Plane Pa-

rameters

It is now possible to use the approximation in Equation (4.37) of Chapter 4 (restated

below) to find the variances of the normalised plane parameters αn, βn, γn and κn.

For some f =
X

Y

σ2
f ≈ f 2

[(σX
X

)2
+
(σY
Y

)2
− 2

σXY
XY

] (A.37)

The standard deviations of α, β, γ and κ from Equation (4.36) of Chapter 4 are as

follows:
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σα ≈ 29.88σz

σβ ≈ 29.88σz

σγ ≈ 27.14σz

σκ ≈ 0.66Cσz

(A.38)

Variance and Standard Deviation of αn

For αn, the variance using the best-case λ1 is given by:

σ2
αn
≈
(
α

λ1

)2
[(σα

α

)2
+

(
σλ1
λ1

)2

− 2
σαλ1
αλ1

]

=

(
α

λ1

)2
[(

29.88σz
α

)2

+

(
15.46σz
λ1

)2

− 2
(16.38σz)

2

αλ1

]

= σ2
z

(
α

λ1

)2 [
29.882

α2
+

15.462

λ21
− 23.172

αλ1

]
(A.39)

The standard deviation would then be:

σαn = σz

∣∣∣∣ αλ1
∣∣∣∣
√

29.882

α2
+

15.462

λ21
− 23.172

αλ1
(A.40)

Similarly for the worst-case λ2, the variance and standard deviation of αn is given

by:

σ2
αn
≈
(
α

λ2

)2
[(σα

α

)2
+

(
σλ2
λ2

)2

− 2
σαλ2
αλ2

]

=

(
α

λ2

)2
[(

29.88σz
α

)2

+

(
69.33σz
λ2

)2

− 2
(38.96σz)

2

αλ2

]

= σ2
z

(
α

λ2

)2 [
29.882

α2
+

69.332

λ22
− 55.092

αλ2

]
(A.41)

σαn = σz

∣∣∣∣ αλ2
∣∣∣∣
√

29.882

α2
+

69.332

λ22
− 55.092

αλ2
(A.42)
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Variance and Standard Deviation of βn

For βn, the variance using the best-case λ1 is given by:

σ2
βn ≈

(
β

λ1

)2
[(

σβ
β

)2

+

(
σλ1
λ1

)2

− 2
σβλ1
βλ1

]

=

(
β

λ1

)2
[(

29.88σz
β

)2

+

(
15.46σz
λ1

)2

− 2
(19.38σz)

2

βλ1

]

= σ2
z

(
β

λ1

)2 [
29.882

β2
+

15.462

λ21
− 27.412

βλ1

]
(A.43)

The standard deviation would then be:

σβn = σz

∣∣∣∣ βλ1
∣∣∣∣
√

29.882

β2
+

15.462

λ21
− 27.412

βλ1
(A.44)

Similarly for the worst-case λ2, the variance and standard deviation of βn is given

by:

σ2
βn ≈

(
β

λ2

)2
[(

σβ
β

)2

+

(
σλ2
λ2

)2

− 2
σβλ2
βλ2

]

=

(
β

λ2

)2
[(

29.88σz
β

)2

+

(
69.33σz
λ2

)2

− 2
(37.55σz)

2

βλ2

]

= σ2
z

(
β

λ2

)2 [
29.882

β2
+

69.332

λ22
− 53.112

βλ2

]
(A.45)

σβn = σz

∣∣∣∣ βλ2
∣∣∣∣
√

29.882

β2
+

69.332

λ22
− 53.112

βλ2
(A.46)

Variance and Standard Deviation of γn

For γn, the variance using the best-case λ1 is given by:
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σ2
γn ≈

(
γ

λ1

)2
[(

σγ
γ

)2

+

(
σλ1
λ1

)2

− 2
σγλ1
γλ1

]

=

(
γ

λ1

)2
[(

27.14σz
γ

)2

+

(
15.46σz
λ1

)2

− 2
−(20.13σz)

2

γλ1

]

= σ2
z

(
γ

λ1

)2 [
27.142

γ2
+

15.462

λ21
+

28.472

γλ1

]
(A.47)

The standard deviation would then be:

σγn = σz

∣∣∣∣ γλ1
∣∣∣∣
√

27.142

γ2
+

15.462

λ21
+

28.472

γλ1
(A.48)

Similarly for the worst-case λ2, the variance and standard deviation of γn is given

by:

σ2
γn ≈

(
γ

λ2

)2
[(

σγ
γ

)2

+

(
σλ2
λ2

)2

− 2
σγλ2
γλ2

]

=

(
γ

λ2

)2
[(

27.14σz
γ

)2

+

(
69.33σz
λ2

)2

− 2
−(43.34σz)

2

γλ2

]

= σ2
z

(
γ

λ2

)2 [
27.142

γ2
+

69.332

λ22
+

61.32

γλ2

]
(A.49)

σγn = σz

∣∣∣∣ γλ2
∣∣∣∣
√

27.142

γ2
+

69.332

λ22
+

61.32

γλ2
(A.50)

Variance and Standard Deviation of κn

For κn, the variance using the best-case λ1 is given by:
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σ2
κn ≈

(
κ

λ1

)2
[(σκ

κ

)2
+

(
σλ1
λ1

)2

− 2
σκλ1
κλ1

]

=

(
κ

λ1

)2
[(

(0.66C)σz
κ

)2

+

(
15.46σz
λ1

)2

− 2
(0.0012σz)

3

κλ1

]

= σ2
z

(
κ

λ1

)2 [
(0.66C)2

κ2
+

15.462

λ21
− 0.024σz

κλ1

]
(A.51)

The standard deviation would then be:

σκn = σz

∣∣∣∣ κλ1
∣∣∣∣
√

(0.66C)2

κ2
+

15.462

λ21
− 0.024σz

κλ1
(A.52)

Similarly for the worst-case λ2, the variance and standard deviation of κn is given

by:

σ2
κn ≈

(
κ

λ2

)2
[(σκ

κ

)2
+

(
σλ2
λ2

)2

− 2
σκλ2
κλ2

]

=

(
κ

λ2

)2
[(

(0.66C)σz
κ
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− 2
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z

(
κ
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]
(A.53)

σκn = σz

∣∣∣∣ κλ2
∣∣∣∣
√

(0.66C)2

κ2
+

69.332

λ22
+

0.024σz
κλ2

(A.54)

The variances and standard deviations of all the normalised plane parameters have

been derived. A summary of the variances is given below.

128



A.3. STANDARD DEVIATIONS OF NORMALISED PLANE PARAMETERS

For best case of σλ1 = 15.456σz,

σ2
αn
≈ σ2

z

(
α
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(A.55a)

For worst case of σλ2 = 69.329σz,
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αn
≈ σ2
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(A.55b)
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Appendix B

Video Footage

The following is a list of web links to video footage of the Hatpack Simulator and

visual results of the end-to-end system of Chapter 5. These videos are also supplied

on the CD-ROM disk attached to this thesis.

Hatpack Simulator Example Footage

https://www.youtube.com/watch?v=oAxaNloHVHg

Psychophysics Maze Test Example Footage

https://www.youtube.com/watch?v=2byh1qQfWGQ

Psychophysics Chessboard Test Example Footage

https://www.youtube.com/watch?v=gIVrnsk04LA

Ground Plane and Tabletop Detection Results of Hardware

Plane Fitting End-to-end System

https://www.youtube.com/watch?v=CtDp8-Cqi4I
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