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Abstract

A spatial database is a database that is optimized for storing and querying data that rep-
resents objects as points, lines or polygons. A spatial query is a mechanism for retrieving
objects stored in the database and consists of a specific question with certain parameters
in a map. In general, a spatial query is intended to retrieve the objects either as a set
of points of interests or a region for the answer. To get the answer, the query can be
processed in two different ways: point-to-point calculation or region-based calculation.
In point-to-point calculation, the query can be solved by choosing appropriate objects on
the map that can be used to answer the query. In region-based calculation, the query can
be solved by constructing the region that contains the correct objects that will answer the
query. Region-based calculation has one major advantage over point-to-point calculation:
this method does not need to check each object one-by-one; hence this method will not
suffer from performance degradation where there is a high number of objects.

A region-based calculation method that is commonly used to solve spatial queries is
the Voronoi diagram. This method divides the map into smaller spaces based on the
nearest distance to an object. A Voronoi diagram can mimic human visual intuition,
where humans can easily identify whether an object is located inside or outside a closed
shape. Even though a Voronoi diagram has been applied widely for various spatial query
types, this diagram has some problems, which are: (1) Most queries use a Voronoi diagram
only to prune the map to reduce the objects verification time, (2) The region to answer a
spatial query cannot be retrieved directly from a complete Voronoi diagram even though
the region for a spatial query is part of a Voronoi diagram. Each type of query needs a
specific method in order to generate the region.

Therefore this thesis will present a new variation of the Voronoi diagram named highest
order Voronoi diagram (HSVD) that can be used directly to identify the region for various
types of spatial queries. To show the flexibility of this structure, we applied it to commonly
known nearest neighbours and reverse nearest neighbours with their queries variations. We
also applied this structure to answer polychromatic queries and extend this method for
hierarchical queries. Our analysis shows that the HSVD structure is very flexible and can
adapt to various types of spatial queries without having to rebuild the current structure
to answer variations in the queries.
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Chapter 1

Introduction

1.1 Aims and Background

1.1.1 Aims

A spatial database is a database that is optimized for storing and querying data that rep-

resents objects as points, lines or polygons. A spatial query is a mechanism for retrieving

objects stored in the database and consists of a specific question with certain parameters

in a map. In general, a spatial query is intended to retrieve the objects either as a set

of points of interests or a region for the answer. To get the answer, the query can be

processed in two different ways: point-to-point calculation or region-based calculation.

In point-to-point calculation, the query is solved by choosing appropriate objects on the

map that can be used to answer the query. In region-based calculation, the query is solved

by constructing the region that contains the correct objects that will answer the query.

Region-based calculation has one major advantage over point-to-point calculation: this

method does not need to check each object one-by-one; hence this method will not suf-

fer from performance degradation where there is a high number of objects (Adhinugraha

et al., 2013).

A region-based calculation method that is commonly used to solve spatial queries is

the Voronoi Diagram. This method divides the map into smaller spaces based on the

nearest distance to an object. A Voronoi diagram can mimic human visual intuition,

where humans can easily identify whether an object is located inside or outside a closed

shape (Aurenhammer, 1991). Even though a Voronoi diagram has been applied widely

for various spatial query types, this diagram has some problems, which are: (1) Most

queries use a Voronoi diagram only to prune the map to reduce the objects verification

1



2 CHAPTER 1. INTRODUCTION

time (Xuan, Zhao, Taniar, Rahayu, Safar and Srinivasan, 2011; Yao et al., 2009; Tran

et al., 2009; Hu et al., 2010; Safar et al., 2009), (2) The region to answer a spatial query

cannot be retrieved directly from a complete Voronoi diagram even though the region for

a spatial query is part of a Voronoi diagram (Cheema et al., 2011; Adhinugraha et al.,

2013; Stanoi et al., 2001). Each type of query needs a specific method to generate the

region.

Therefore this thesis will present a new variation of the Voronoi diagram

named the Highest Order Voronoi Diagram that can be used directly to iden-

tify the region for various types of spatial queries.

1.1.2 Background

In spatial databases, a map is a limited area that contains features such as points of

interest, landmarks, or road networks. A common question that people pose when using

a map concerns finding the nearest object of interest. For example, assume that a person

is located in a certain area and looking for a restaurant as shown in Figure 1.1. The

query posed by this person could be “Where is the nearest restaurant from here?” In a

spatial information system, this problem is commonly known as k-Nearest Neighbour

(kNN) and can be solved by checking the distance from the person to all restaurants

and choose the shortest one as the answer, which is commonly known as point-to-point

calculation.

Figure 1.1: Finding Nearest Restaurant around Clayton Campus

Another spatial-based question or query that can be posed to the system is a question

asked by a restaurant owner regarding his customers. For example “Do I have customers

that consider my restaurant as their nearest restaurant?” To answer this query manually,
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Figure 1.2: Reverse Nearest Neighbour

a restaurant owner needs to identify and locate all the known customers on the map, and

compare the distance between the restaurant and each customer to the distance between

other restaurants and each of his customers. In other words, he needs to find whether

any customer is located closer to his restaurant than to another restaurant. To obtain an

answer to this type of query in a spatial information system, the server may perform a

kNN query using each customer as the query point and then finding the customers who

have his restaurant at the top of the list of the kNN result. This set of customers will

consider his restaurant as the closest restaurant from their location. This type of query is

called Reverse Nearest Neighbour (RNN).

To illustrate the idea of RNN, consider the example depicted in Figure 1.2. Assume

there are five restaurants represented as red triangles r1 to r5 and ten customers repre-

sented as blue dots c1 to c10. Assume a query is issued from restaurant r5. In order to

identify which customers consider restaurant r5 as their nearest restaurant, the server has

to perform a kNN query on each customer and obtain his/her first nearest restaurant. In

this example, there are three customers (c2, c3, c4) consider restaurant r5 as their nearest

restaurant, while other customers consider other restaurants as their nearest. Hence, the

result set for RNN query for restaurant r5 is the three customers. This is an example of

point-to-point calculation in RNN query.

Another approach that can be used is region-based calculation to reduce the ob-

jects verification phase, where the aim is to find the region where the objects which will

answer a particular query are located. This is done by estimating the smallest area that
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Figure 1.3: Reverse Nearest Neighbour with Region Pruning

contains the candidate objects with the region pruning approach followed by the ob-

jects verification phase, or directly by finding the right region with no objects verification

phase. Region pruning is a method in which the main objective is to remove as many un-

necessary objects as possible. The question “Who are the customers that consider r5 as

the nearest restaurant?” can be answered by using this logic. Customers who consider the

farthest restaurant from r5 as their nearest will not be considered as the answer for the

query. In this example, restaurant r2 is the farthest restaurant from r5. All customers

who have a shorter distance to r5 will be considered as the candidates while others will

not be considered at all. In this example, a straight line between r5 and r2 can be used to

determine the pruning region as shown in Figure 1.3. As the unnecessary area containing

unnecessary objects is pruned, the remaining candidates can be verified to find the answer

to the query. The process of finding the right objects from a set of candidates is called

the objects verification phase. This approach is not effective in reducing unnecessary

objects when there are numerous objects on the map.

While the point-to-point with region pruning approach seems adequate enough to

answer spatial queries, this approach still performs a point-to-point calculation in the

object verification phase. Hence this method is not very effective when the number of

objects is high. Instead of checking all objects or candidates, another method for obtaining

the answer for a query is by directly finding the region where the correct objects for a

particular query are located.
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(a) Original Map

(b) Region of all restaurants (c) Region of Fast Food Restaurants only

Figure 1.4: Melbourne SE Suburb

Figure 1.4a shows the population density in a South-Eastern suburb of Melbourne in

20111 that includes coloured blocks where each color represents average numbers of people

lives per hectares. The green color indicates the region with high population density,

whereas the red color indicates the region with low population density. To perform market

analysis, an analyst can consider the number of people lives per hectares as the number

of potential customers per hectares. However there is no information regarding the exact

location of each customer on the map, such as address or geo-coordinates; hence, it is not

possible to perform point-to-point approach in this situation. In other words, region-based

calculation is the better option to answer a spatial query in this case.

A region-based calculation method that is commonly used to solve spatial queries is the

Voronoi Diagram. This method divides the map into smaller regions based on nearest

distance to an object. A Voronoi diagram can mimic human visual intuition, whereby

1http://chartingtransport.com/2012/09/21/first-look-2011-density/
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humans can easily identity whether an object is located inside or outside a closed shape

(Aurenhammer, 1991).

In Figure 1.4b, a Voronoi diagram is used to divide the map into smaller spaces or

Voronoi cells. Each restaurant will have its own region, so all the customers that live

in a Voronoi cell will consider the restaurant in this region as their nearest restaurant.

Knowing this fact, a restaurant owner can analyze market size and compare this with

competitors’ market size. In other words, if the owner finds that the Voronoi cell where

his restaurant is located contains a large coverage of blocked green colour, he would have

a large number of potential customers.

In this example, region-based calculation has a great advantage compared to the point-

to-point approach, because the former approach does not need objects verification. To

answer a query from a restaurant owner “Which customers consider r2 as the nearest

restaurant?” all objects, in this case the customers, do not need to be checked. By using

region-based calculation, any customers located in a yellow region will consider restaurant

r2 as their nearest restaurant. From this example, one can see that region r2 has more

green color blocks compared to other regions. Hence, restaurant r2 has more potential

customers that consider this restaurant to be their nearest.

Another spatial query with region-based calculation is shown with this scenario. As-

sume that all restaurants with odd numbers in Figure 1.4b are fast food restaurants

r1, r3, r5. Consider that a fast food restaurant owner r1 wants to whether the region

where his restaurant is located will be considered by customers as their nearest fast food

restaurant, but he is not interested in knowing about other non-fast food restaurants as

he does not consider them as competitors. The query will be “Where is the region where

the customers will consider my fast food restaurant as the nearest?”. r1, r2, r3, r4, r5 are

considered as restaurants; however since restaurants r2 and r4 are not fast-food restau-

rants, their presence will be ignored and the region in the Voronoi Diagram in Figure 1.4b

will be invalid. Hence, a new Voronoi Diagram is needed to answer this query.

The new Voronoi Diagram which is constructed from three restaurants is shown in Fig-

ure 1.4c. Compared with the previous diagram, the region containing fast food restaurants

is bigger because the previous region of non-fast-food restaurants belongs to the nearest

fast-food restaurant. This example highlights the situation known as polychromatic
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spatial queries, a query that involves more than two objects. The objects involved in this

example are fast-food restaurants, non-fast-food restaurants, and customers.

Based on the above needs, this thesis undertakes the following research objectives:

1. It provides a new variation of a Voronoi diagram named highest order Voronoi

diagram that provides a detailed spatial distance sequence in each Voronoi cell.

2. It provides a generalisation framework to solve the variations of spatial queries by

using the regions approach.

3. It presents a framework with region-based approach to solve nearest neighbour

queries and their variations using a highest order Voronoi diagram.

4. It presents a retrieval index system for the highest order Voronoi diagram that can

support reverse nearest neighbour queries and their variations

5. It proposes a region-based polychromatic query processing that can support near-

est neighbour queries and reverse nearest neighbour queries. It also extends this

concept into hierarchical query processing for nearest neighbour and reverse nearest

neighbour queries. These queries will be answered by using the highest order Voronoi

diagram.

1.2 Problem Definitions and Motivations

In region-based calculation, the queries can be answered by obtaining the correct region.

The region is a part of the map where any objects located inside will be considered as the

answer. To accomplish the main research objectives above, it is important to understand

the problems in solving spatial queries by using region-based calculation

• Challenge 1: Limitation in Voronoi Diagram

A Voronoi diagram is a common region-based method to solve spatial databases

queries. The region obtained to solve a spatial query is part of the Voronoi diagram;

however, not all regions can be retrieved directly from a Voronoi diagram. When

k = 1, the region for kNN and RNN queries can be obtained directly from a Voronoi

cell of an ordinary (order-1) Voronoi diagram. However when k > 1, the region

cannot be retrieved directly from any higher order Voronoi diagram (Cheema et al.,
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2011). Therefore, the first challenge that needs to be solved is “how to design a

custom Voronoi diagram that can be used directly to solve different types

of spatial query”.

• Challenge 2: Requiring Specific Method for Specific Query

The region-based approach is an effective way of solving spatial queries in large

datasets since this approach will obtain the region that contains only the right ob-

jects for a given query. However, in the existing approaches, each region is uniquely

created for a specific query and the algorithm to create the region is designed specif-

ically to a particular query type. For example, the influence zone (Cheema et al.,

2011) creates a region of RNN query that can be used only for RNN query with

a single query point. This method cannot be used to solve an RNN query with

multiple query points or to find a kth sequence even though these queries fall within

the same query type. Therefore, the next challenge that needs to be solved in this

thesis is “how to broaden region-based approach to support various types

of spatial queries”

• Challenge 3: Creating Region on Demand

In region-based approach, a region for a particular query is created after the query

is submitted to the system. If the system receives more than one identical query, the

system has to recreate the same region repeatedly. Therefore, the next challenge that

needs to be addressed in this thesis is “how to design a region-based approach

that can minimize the multiple creations of the same region for identical

queries submitted to the system”.

• Challenge 4: Expensive Cost of Finding the Farthest Region

Unlike RNN query, Reverse Farthest Neighbour (RFN) query takes only those can-

didate objects that have the query point as the farthest neighbour. Hence, the

candidate objects must be checked against the query point and all of its competitors

(Tran et al., 2009; Agarwal et al., 1992; Supowit, 1990). Defining a reverse farthest

neighbour for a query point is challenging since the region can be constructed only

if all competitors have also been checked. Therefore, the next challenge is “how to

design an efficient region-based calculation approach to support reverse

farthest neighbour query”.
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• Challenge 5: Lack of support for answering Polychromatic Spatial Queries

Polychromatic spatial queries is a generalisation of spatial queries, where the object

types involved in the query might be more than two types. Current works in spa-

tial query processing focus only on monochromatic which is single object type and

bichromatic which is two object types. Although polychromatic queries can ap-

pear naturally in our daily lives, these types of queries have not attracted many

researchers. There is only one work in multiple objects query processing and their

method is specific only to nearest neighbour queries (Zhao et al., 2009). Therefore,

the last problem in this thesis is “how to design a region-based approach that

can address various type of polychromatic spatial queries”.

1.3 Contributions

To address aforementioned research challenges, this thesis introduces a new method in

the region-based approach to solve spatial queries. We propose a variant of the Voronoi

diagram named highest order Voronoi diagram that can be used to solve various spatial

query types. We focus the application of highest order Voronoi diagram on nearest neigh-

bour queries, farthest neighbour queries, reverse nearest neighbour queries and reverse

farthest neighbour queries. We also propose further application of highest order Voronoi

diagram for polychromatic spatial queries and extend this application into hierarchical

spatial queries.

1.3.1 Highest Order Voronoi Diagram

This thesis proposes a new variant of the Voronoi diagram along with its construction algo-

rithm to help solve various spatial queries, called highest order Voronoi diagram (HSVD).

Highest order Voronoi diagram is an extension of higher order Voronoi diagram (HOVD);

however our proposed diagram has wider possible applications.

Figure 1.5 shows an example of highest order Voronoi diagram with four generator

points p1, p2, p3, p4. Compared with HOVD or Ordered HOVD, a sequence in highest

order Voronoi diagram has more spatial information that can be used to solve more types

of spatial queries. This thesis also proposes an algorithm to construct a highest order

Voronoi diagram called the Fast Labelling and Interchange Position (FLIP) that can be
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Figure 1.5: Highest Order Voronoi Diagram

used to generate other Voronoi diagram variants, and is not limited to the highest order

Voronoi diagram.

1.3.2 Region-based Approach in Nearest Neighbour Query

We applied the region-based approach based on HSVD in some variation of nearest neigh-

bour and farthest neighbour queries. Unlike other nearest neighbour methods, this ap-

proach can also be used to identify kth object either in nearest neighbour queries or farthest

neighbour queries.

1.3.3 Region-based Approach in RNN Query

We applied the HSVD to various types of reverse nearest neighbour (RNN) queries, such

as variation in the number of query points and variation of k value. In the more general

form, RNN is expressed as RkNN where k represents the number of nearest facility points

from the users location which includes the query point as well. We also introduce RkthNN

query and Group RNN query.

Compared with existing region-based calculation methods, the highest order Voronoi

diagram can handle several variations in RNN queries, and at the same time avoiding the

repetitive region creation for identical queries.
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1.3.4 Region-based Calculation in RFN Query

We also applied the HSVD to reverse farthest neighbour (RFN) queries. Similar to the

previous application, the proposed method also can handle variations in RFN queries, such

as variation in number of query points and variation in the k values. For RFN variants,

we introduce RkthFN query and Group RFN query.

Compared with existing methods in RFN query, our proposed method can provide

a comprehensive region-based solution for a wider range of RFN queries, whereas other

methods still rely on the area pruning method that requires further verification to find the

correct object within the candidate set to solve RFN problem.

1.3.5 Polychromatic Spatial Queries

In this thesis, we propose a region-based polychromatic query processing, where the num-

ber of object types involved in the queries are more than two. This problem has not been

intensively studied by other researchers, even though the problems are very relevant in our

daily lives. Compared with other methods that can only cover nearest neighbour query

with area pruning, our proposed concept can have wider application of polychromatic

query, not only in nearest neighbour, but also in reverse nearest neighbour and reverse

farthest neighbour queries. We also extend the concept of polychromatic query further

to hierarchical spatial queries, where the queries are structured based on the hierarchical

structure of the objects. Our analysis shows that both polychromatic and hierarchical

spatial queries can be solved with region-based approach by using highest order Voronoi

diagram.

1.4 Thesis Structure

An overview of this thesis is illustrated in Figure 1.6. The thesis is structured as follows:

• All related state-of-the art works are discussed in Chapter 2.

• The main contributions are as follows:

– The main proposed method to address challenge 1 named highest order Voronoi

diagram (HSVD), is discussed in Chapter 3.
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Figure 1.6: Thesis Structure

– The first implementation of HSVD is in nearest neighbour to address queries

and their variations is presented in Chapter 4. A nearest neighbour framework

is proposed to address Challenge 2,3; and one of the variations of nearest

neighbour query, named farthest neighbours algorithm based on this framework,

is proposed in order to address Challenge 4 specifically.

– The second implementation of HSVD is in reverse nearest neighbour query pre-

sented in Chapter 5. A reverse nearest neighbours framework based on HSVD

is proposed in order to address Challenge 3,4 in a reverse nearest neigh-

bour environment. Another variation of reverse query named reverse farthest

neighbour algorithm based on this framework, is proposed in order to address

Challenge 4.
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– We propose region-based polychromatic and hierarchical query processing and

applied this problem in both nearest neighbour and reverse nearest neighbour

queries in Chapter 6 to answer challenge 5.

• Chapter 7 summarizes the discoveries, evaluation, outcomes and significant impacts

in general. In addition, the potential research arising from this research is discussed

in this chapter.



14 CHAPTER 1. INTRODUCTION



Chapter 2

Literature Review

2.1 Overview

This chapter reviews related works in some of the nearest neighbour variations in spa-

tial queries from two perspectives: the query processing perspective and the region-based

perspective. Various methods used for spatial query processing will be discussed in sec-

tion 2.2, where we will highlight some of the query types such as k-Nearest Neighbour,

k-Farthest Neighbour, Reverse Nearest Neighbour and Reverse Farthest Neighbour. Query

processing from the region-based perspective will be explained in section 2.3, where we

classify region-based approach into two categories based on the region created to solve the

queries which are Candidate Region and True Region . The limitation of these previous

researchers will be shown in section 2.4 and section 2.6 concludes the chapter. We explain

common spatial metrics (Euclidean distance and network distance) in spatial databases in

the next subsection.

2.1.1 Spatial Metrics

In a spatial database, the distance between two objects is determined by a certain met-

ric. Two common metrics are Euclidean distance and network distance. The Euclidean

distance can defined as the length of a direct and straight line from one object to an-

other. Let p1 and p2 be points in 2-dimensional space where the location of these objects

are p1(x(p1), y(p1)) and p2(x(p2), y(p2)). The Euclidean distance between p1 and p2 can be

expressed as follows:

15
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distE(p1, p2) =
√

(x(p1) − x(p2))2 + (y(p1) − y(p2))2 (2.1.1)

The network distance metric in spatial database refers to a predefined path that objects

are restricted to move on such as e.g roads. The network distance between two objects

can be defined as the cost of the shortest path between two objects. Spatial road networks

can be formally represented by a graph, in which each vertex is an object and each edge

is a road or link from one intersection to another. An object in a spatial road network

can be a road intersection, turn or object location. Each edge is assigned a weight that is

network distance.

(a) Euclidean and Network Distance (b) Road Network

Figure 2.1: Euclidean distance (dashed line) and network distance (solid line) between
Monash University and Springvale Train Station

Figure 2.1 shows the Euclidean distance and network distance from Monash University

in Clayton to Springvale Station. Figure 2.1a shows the shortest distance in Euclidean

space and shortest network distance between these objects. Assuming that we consider

only major road segments denoted by yellow lines, the complete road network can be seen

in Figure 2.1b. From this figure, it can be seen that there are two alternatives road that

can be used. The first one is o1 − n1 − n2 − n3 − o2 for 6km, whereas the other route

alternative is o1 − n4 − n3 − o2 for 5.5km. It is clear that the second alternative is the

shortest route between o1 and o2.

Network distance and Euclidean distance can also be used to calculate the area between

certain points, since area is two dimensional. When network distance is used to construct
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(a) Voronoi Diagram in
Network Distance

(b) Voronoi Diagram in
Euclidean Distance

Figure 2.2: Voronoi Diagram constructed with network distance and Euclidean distance

a Voronoi diagram, we call it a network Voronoi diagram (Okabe et al., 2008; Furuta T.,

2005). Figure 2.2 shows the differences between a network a Voronoi diagram and an

Euclidean Voronoi diagram generated by elementary schools (red polygon) in Sagamihara,

Japan (Okabe et al., 2008). The distance between two schools can be determined by more

than one alternative route; hence, the region of a school is the area where all possible

network distances consider this school as the nearest, as shown in Figure 2.2a. Meanwhile,

Figure 2.2b shows the Voronoi diagram with Euclidean distance, where the region for a

school is determined as the area where this school is the nearest regardless of the available

route.

Since in network distance we have to identify every possible alternative path which

will lead to higher complexity and calculation, in this thesis, we will utilize only Euclidean

distance in region-based calculation in solving spatial queries.

2.1.2 Monochromatic and Bichromatic Queries

In a spatial database, there are two types of queries based on the type of query point and

the objects to answer the query, named Monochromatic and Bichromatic query. Each

type needs a different method to solve it and has a different purpose as well.

A monochromatic query is a query where the object that issues the query and the

answers are the same. Monochromatic means that only a single object type is used in the

query. For example, assume that a commercial plane pilot is flying in a certain location

and needs to know other aeroplanes within a certain range by means of his radar to avoid
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the collision. The Monochromatic query can be seen in Figure 2.3, where the query point

for this is an aeroplane and the answer to this query is a set of aeroplanes. Since the

object that issues a query and the answer to this query are all aeroplanes, this query is

considered to be monochromatic.

Figure 2.3: Example of Monochromatic Query

A bichromatic query is a query where the object that issues the query is different from

the answers to this query. Bichromatic means there are two types of objects involved in

the query. For example, assume that the control tower of an airport needs to identify all

aeroplanes within a certain area of airspace. The object that issues a query is an airport

and the answer to this query is the aeroplanes. Since the object that issues the query is

different from the objects answering the query, this query is considered as bichromatic.

This query is illustrated in Figure 2.4.

Figure 2.4: Example of Bichromatic Query
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In this thesis, we discuss the application of monochromatic and bichromatic queries

where a region-based approach can be applied. The following section explains several

types of spatial queries and the various methods used to solve them.

2.2 Spatial Query Processing

This section will give an overview of spatial queries processing and also the state-of-

the-art methods, which cover the most well-known nearest neighbour queries, followed

by farthest neighbour queries. The reverse version of these queries which are reverse

nearest neighbours and reverse farthest neighbours will also be explained in this section.

In particular, we highlight the region-based methods that have been proposed for each

query type.

2.2.1 Nearest Neighbour Queries

A nearest neighbour (NN) query is a method of finding closest neighbours from a given

query point. The number of neighbours that can be found is indicated by k value. When

k > 1, NN is also known as kNN. The nearest neighbour concept is widely applied in many

disciplines including, but not limited to data mining, image processing, machine learning,

pattern recognition and spatial database. This thesis will focus on the application of the

nearest neighbour concept in spatial databases.

Figure 2.5: Example of 3NN query

Figure 2.5 shows an example of a kNN query from a query point q where k = 3. In this

example, the main objective is to find the three closest objects to the query point where
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the Euclidean distance is used as the metric. The Euclidean distance between an object

and the query point is indicated by the circle with q as the center. From this figure, o1 is

1stNN of q, o2 is 2ndNN of q and o3 is 3rdNN of q. Hence, three nearest objects to q are

o1, o2 and o3.

A common method used to solve a NN query is by using R-Tree indexing structure or

its variants, followed by various pruning methods based on the chosen index structures.

Some of the index structures used for kNN pruning are R-Tree (Roussopoulos et al., 1995;

Papadopoulos and Manolopoulos, 1997), SR-Tree (Katayama and Satoh, 1997) which is

the enhancement of R-Tree, PK-Tree (Wang et al., 2000) which is based on quadtree,

PK+Tree (Wang et al., 2005) which is also enhancement of PK-Tree. The basic NN

search by using R-tree is by pruning unnecessary candidates to shorten the processing

time. The result is the k objects nearest to the query point location.

Another method used to solve nearest neighbour queries is that of area pruning to re-

move unnecessary objects and concentrate the search process on the remaining candidates.

A Voronoi diagram can be used to limit the search area (Kolahdouzan and Shahabi, 2004;

Zhao et al., 2011; Xuan, Zhao, Taniar, Rahayu, Safar and Srinivasan, 2011; Xuan et al.,

2009; Furuta T., 2005; Safar, 2005), where instead of using an index to prune unnecessary

objects, they use a Voronoi diagram to prune the area. A Voronoi diagram consists of a

number of Voronoi cells. If a query object q is located in a Voronoi cell, the center of the

Voronoi cell is considered as the first nearest neighbour of q as shown in Figure 2.6.

Figure 2.6: Voronoi Diagram for kNN query. Object o1 has query point q in its cell.

A Voronoi diagram can also be used to solve k nearest neighbour problems by providing

the area for k nearest objects (Shamos and Hoey, 1975a; Lee, 1982; Sharifzadeh and

Shahabi, 2010). They use the generalization of a Voronoi diagram, called Voronoi diagram
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order k, where each cell has k nearest objects instead of 1. Figure 2.8 shows how to solve

a 3NN query with Voronoi diagram order-3. As we can see from this diagram, a query

point q issues a 3NN query. Since this query is located in a Voronoi cell where o1, o2, o3 are

the generator points, these points are also 3NN of q. When q′ issues the same query from

another location in the cell, the answer to this query will remain the same. Authors (Zhao

et al., 2009) discuss how to identify nearest neighbours objects from multiple object types

by either stacking multiple Voronoi diagrams for each object type, or using a Voronoi

diagram created from multiple object types. Since they use only the order-1 Voronoi

diagram, they have to use a specific expansion method to find k nearest objects around

the query points.

Figure 2.7: 3NN query with Voronoi diagram order-3

A Voronoi diagram also has a ”dual tessellation”, called the Delaunay triangulation

(Okabe et al., 2009). The authors in (Hu et al., 2010) use pre-computed Delaunay tri-

angulation to create a region which can be used for kNN query verification as seen in

Figure 2.8. While this method can directly verify the nearest neighbour for k = 1, this

method cannot be directly used when k > 1. Authors (Sharifzadeh and Shahabi, 2010)

apply and index to this diagram and solve more query types kNN, RNN and k-ANN.

Most of the recent works related to nearest neighbour problems are focused on ob-

taining the nearest objects with predefined k, and the methods vary using either index

structures or area. Both methods have the same aim: to prune as many unnecessary

objects as they can, and the answer to a nearest neighbour query can be retrieved using

post-processing methods. Only (Shamos and Hoey, 1975a; Lee, 1982) use the Voronoi

diagram order-k to identify the region of kNN.
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Figure 2.8: 3NN verification using Delaunay Triangulation

Nearest neighbour query is a common one related to mobility of the objects where the

purpose of this query is to find the object nearest to the query point (Xuan et al., 2009;

Xuan, Zhao, Taniar, Safar and Srinivasan, 2011) or nearest objects during the movement

of the query point (Xuan, Zhao, Taniar, Rahayu, Safar and Srinivasan, 2011; Zhao et al.,

2010, 2011, 2013) in a server based system, or in a peer-to-peer system (Nghiem and

Waluyo, 2011; Nghiem, Waluyo and Taniar, 2013; Nghiem, Green and Taniar, 2013)

2.2.2 Farthest Neighbour Queries

A farthest neighbour (FN) query is a method of finding the farthest object from a given

query point. The number of objects is indicated by a predefined k value. When k > 1,

FN is also known as kFN. Unlike kNN, kFN does not attract too many researchers and

implementations due to a higher computation cost.

Figure 2.9: Example of 3FN query
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Figure 2.9 shows an example of a kFN query from a query point q where k = 3. The

main objective of kFN query is to find the k objects farthest from query point. From this

figure, o11 is the 1st farthest object since there are no other objects outside the circle of

o11. Object o10 is 2ndFN of q since there is only one object outside the circle of o10, and

object o9 is 3rdFN of q. Hence, the three neighbours farthest from q are o11, o10, o9.

The authors in (Shamos and Hoey, 1975a) propose a farthest-point Voronoi diagram

to identify a farthest point problem as seen in Figure 2.10. By using this diagram, the

authors define a Voronoi cell as the farthest region and each region will have a unique

farthest point. No two regions will have the same farthest point. Let the diamond icons

be the customers and the black dots are the restaurants. The customer q issues a query

to find the farthest restaurant. Since q is located inside Region 7 and the farthest point

from Region 7 is p8, then the farthest restaurant from q is restaurant p8. A higher order

Voronoi diagram is also used by (Katoh and Iwano, 1992) to solve bichromatic k farthest

neighbour problems.

Figure 2.10: A Farthest-point Voronoi diagram

In the point-to-point approach, authors in (Supowit, 1990) use the multidimensional

divide-and-conquer method to define the farthest problems, in the presence of deletions.

Authors (Agarwal et al., 1991) use a randomized algorithm to solve bichromatic farthest

neighbour problems.

2.2.3 Reverse Nearest Neighbour Queries

Reverse nearest neighbour (RNN) concept was firstly proposed by Korn et al (Korn and

Muthukrishnan, 2000) where the idea is to find the objects that consider the query point
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as the nearest. The answer to RNN query can be obtained by pre-calculating kNN query

for each data object with predefined k value. The answer to the RNN query will be all

objects that have q as part of their k nearest neighbour. The method used to solve this

query can be seen in Figure 2.11. Consider red triangles {p1, p2, p3, p4, p5, p6} are set of

facility points and blue circle {o1...o10} are objects of interest. Let p5 be the query point

and predefined k = 1, R1NN(p5) can be referred as finding all objects of interest that

consider p5 as the nearest neighbour. By running kNN pre-calculation on each object, the

answer to this query will be all objects that have p5 as their kNN result. From this figure,

{o4, o5, o6} are the answer to this query

Figure 2.11: Pre-calculation in RNN query

However, conducting kNN pre-computation for all objects on every RNN query is not

an efficient approach. To avoid the need for pre-computation for all objects, some authors

use space pruning approach to remove objects that will not be the answer to the query.

However, these methods cannot eliminate all unwanted objects. Hence, the verification

step for the remaining objects called ‘candidates’ will be needed to obtain the answer to

the query. Authors (Stanoi et al., 2000) divide the space into six equal regions from a

query point q as shown in Figure 2.12. In this figure, assume that the query point is p5.

This method divides the space into six equal areas (S1..S6) where the query point p5 is

the center. In each area, the nearest object from p5 will be considered as the candidates.

o5 in S1, o4 in S4, o6 in S5 and O11 in S6, while there are no nearest objects in S2 or

S3. Meanwhile, non-candidate objects will be discarded and the verification process will
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be conducted only for candidate objects. Object o2 will not be considered as the answer

because this object has p4 as the nearest neighbour. Objects o4, o5, o6 are considered as

the answer to this query since these objects consider p5 as the nearest.

This query type can also be used with the indexing of structures approach. The index

is used to identify the objects’ distances and the query will be based on a predefined

distances index. Several indexing structures have been proposed, such as RdNN-Tree

(Yang and Lin, 2001), MRkNNCoP-Tree (Achtert et al., 2006b), IUR-Tree (Lu et al.,

2011), AMRkNN-Tree where the solution is based on approximation distances (Achtert

et al., 2007). Some authors also apply the indexing method to the Voronoi structure.

For example, such as (Yan et al., 2012) use a Voronoi cell index to answer RNN queries

relating to land surfaces, VoR-Tree index (Sharifzadeh and Shahabi, 2010) that can be

used for solving kNN, RkNN and k Aggregate NN (kANN) and VNR-Tree (Slimani et al.,

2011).

This type of query can also be solved using the approximation approach such as Boolean

Range Query (BRQ)(Singh et al., 2003), Monochromatic/Bichromatic Probabilistic Re-

verse Skyline (MPRS/BPRS)(Lian and Chen, 2008), MaxOverlap(Wong et al., 2009).

Author (Stanoi et al., 2001) propose approximation through Influence Sets, whereby an

initial region is created based on surrounding points and then the region is refined to

obtain the proper region. Authors in (Achtert et al., 2006a) use approximation of the

nearest-neighbour-distances in order to prune the search space. Authors in (Figueroa and

Paredes, 2009) use predefined permutation index to select some nearby objects from the

query point and then followed by approximation algorithm to refine the results.

Authors (Tao et al., 2004; Wu et al., 2008b) use the property of perpendicular bisectors

to prune the search space. Consider the example in Figure 2.13 where a bisector line

between pi and pj is shown as Bis(pi : pj) which divides the space into two half-spaces.

The half-space that contains pi is denoted as H(pi, pj) and the half-space that contains pj

is denoted as H(pj , pi). Any objects that are located in H(pi, pj) will consider pi as being

closer than pj . Assume that the query point q = p5 and k = 1, then any objects that

are located in the half-space of p5 will be considered as the candidates. In Figure 2.13,

all objects in the shaded area will be considered as the candidates, while in the white

area they can be pruned. After all non-candidate objects have been pruned, TPL method

uses R-tree to verify the candidates in unpruned space in order to obtain an answer to
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Figure 2.12: Six-regions pruning

the query (Tao et al., 2004). Meanwhile, instead of using bisector lines to directly prune

the area, FINCH uses a convex polygon that approximates the unpruned area (Wu et al.,

2008b). Meanwhile, pruning rule based on R-Tree is proposed by (Cheema et al., 2010)

to solve RkNN with uncertain datasets.

Figure 2.13: Half-space pruning in TPL and FINCH

Authors (Bohan and Xiaolin, 2009; Safar et al., 2009; Tran et al., 2010) use the prop-

erties of a Voronoi diagram to solve the RNN query. If a generator point in a Voronoi

diagram is considered as the query point, then the Voronoi cell for this generator point is

considered as the region of R1NN query and all objects in this region will be considered as
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the answer to R1NN query. When k > 1, the candidates can be searched from neighbour

cells around a Voronoi cell of query point.

Another method of finding a solution to RNN queries is by identifying the region for

RNN query where any objects located in this region will be considered as the answer for

the query. Although this method employs a half-space pruning technique, unlike previous

methods, a region-based calculation will not have candidates objects after the pruning is

finished. Authors (Cheema et al., 2011) proposed an Influence Zone, where this method

defines the region for RkNN queries. Authors (Adhinugraha et al., 2013) proposed a

Contact Zone to effectively identify prunable objects as shown in Figure 2.14.

Some authors have also proposed methods that deal with mobility in RNN queries. An

indexing system can be used to monitor the movement of the objects, such as TPR-tree

(Benetis et al., 2002, 2006) or P2PRdNN tree (Chen et al., 2006). In order to minimize

processing cost, the region pruning approach for mobility in an RNN query is proposed

by (Kang et al., 2007; Xia and Zhang, 2006; Emrich et al., 2010; Wu et al., 2008a).

However these methods requires an excessive objects refinement step, and author (Cheema,

Zhang, Lin, Zhang and Li, 2012) proposed a better solution by using safe region. Author

(Adhinugraha et al., 2014) applied Contact Zone to obtain the region for an RNN query

from a mobile device and initial region of Contact Zone is applied in a peer-to-peer system

(Nghiem, Maulana, Waluyo, Green and Taniar, 2013).

2.2.4 Reverse Farthest Neighbour Queries

Reverse farthest neighbour is a method used to find objects that consider the query point

q as the farthest neighbour. This method is based on the farthest point concept that has

been applied in k farthest neighbours problems (Shamos and Hoey, 1975a; Agarwal et al.,

1991; Katoh and Iwano, 1992). Unlike the RNN query types that has attracted so much

attention, the RFN query has not received much attention due to high computational

cost. In the RFN query, an object will be considered as the answer to the query if the

distance from this object to any other points pi is less than the distance to a query point

q. Figure 2.15 shows an example of RFN that can be solved by using either the point-

to-point approach or the region approach. In Figure 2.15a, let the query point q = p6.

An RFN query from p6 will find all objects oi that are the longest distance to p6. From

this figure, o1, o3, o4, o6, o7, o8, o9 are the objects that have the longest distance to point p6
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(a) Query point is set (b) p6 is eliminated by CZ from vt1

(c) p7, p8 are eliminated by CZ
from vt2, vt3

(d) RNN Region

Figure 2.14: Contact Zone for RNN Query

than to any other points. Hence, these objects are RFN of p6. Figure 2.15b shows how

RFN can be solved by using farthest-point Voronoi diagram (Okabe et al., 2009). From

this figure we can see that all objects for RFN(p6) are located in the same cell, and this

cell considers p6 as the farthest point.

(a) RFN with point-to-point (b) Farthest-Point Voronoi Diagram

Figure 2.15: Example of RFN

RFN queries are mentioned as the counterparts of RNN queries in (Kumar et al., 2008)

and referred to as reverse proximity problems. The authors use an approximation polygon
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to obtain the candidate objects to answer the query. Another approach is to use a Voronoi

diagram shown in Figure 2.16. Authors (Tran et al., 2009) use ordinary Voronoi diagram

with adjacent cells expansion to identify the objects as shown in Figure 2.16a. In this

method, an ordinary Voronoi diagram is used. They find the cell that contains query

point q and expand to the adjacent cells to find the candidates of RFN objects. Authors

in (Liu and Yuan, 2013) combine a Voronoi diagram with convex hull and use the VDRFN

algorithm to solve RFN instead of using a farthest neighbour Voronoi diagram.

(a) Voronoi Diagram expansion (b) Voronoi Diagram with Convex Hull

Figure 2.16: Voronoi Diagram for RFN query

Authors (Yao et al., 2009) use a farthest Voronoi diagram and convex hull properties

combined with an R-Tree based algorithm called CHFC to solve RFN queries. The

convex hull is used to verify whether a query point will have farthest objects or not, then

the objects are retrieved from the farthest-point cell in the farthest-point Voronoi diagram.

This method was revised by (Liu et al., 2010) who used convex hull and an external pivot

to construct a metrics index for storing the distances, known as PIV algorithm. This

method was further revised by (Liu et al., 2012) with PIV+ by implementing a safe area

to speed up RFN query processing.

2.2.5 Discussion

Current methods for solving spatial queries (nearest neighbour, farthest neighbour, reverse

nearest neighbour and reverse farthest neighbour) rely on a point to point approach where

the effort can be minimized by using an index or region pruning. Only a few methods

use the region approach where the answer to a query is the objects inside the region.
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Furthermore, most of the methods proposed are applicable only to a specific query type

with a specific condition; k, query point location, number of objects. Very few of the

methods can be used to solve more than one type of query. Overall, our work differs

from all of the previous research as it proposes a new Voronoi structure that can be used

to identify the exact region of kNN, kFN, RkNN and RkFN queries without the objects

verification phase. Furthermore, with the highest order Voronoi diagram we also extend

our solution to cover kth-order, group queries and also polychromatic spatial queries.

2.3 Region-based Approach for Spatial Query Processing

Region-based approach for spatial queries is a method used to retrieve the region where the

candidate objects which answer a specific spatial query are located. Candidates objects

are temporary objects before the exact objects have been found. When the region contains

all correct objects to answer the query, the region will be considered as a valid region, and

will be invalid otherwise. In region-based approach, some methods need a post-processing

step to verify the objects, while other methods do not. In order to perform the objects

verification phase, the region-based calculation methods are always used to generate a

valid region.

Figure 2.17 shows examples of regions to solve a query. Assume that a query point q

issues a query; blue objects are the objects to answer query {o6, o9, o10} and will be called

true objects, and orange objects are not the answer for query {o1, o2, o3, o4, o5, o7, o8}

and will be called false objects. Candidate objects are the set of objects that must

contain all true objects. The region indicated by the dashed line is an area within the

map that contains candidate objects. Figure 2.17a shows the valid region because this

region contains true objects, while Figure 2.17b shows an invalid region, because one of

the true objects, o6, is not located in this region. When there are only true objects in the

region, this region is called true region, while if the region contains candidate objects,

this region will be called candidate region. In order to answer a spatial query with

region-based approach, the method relies on candidate region or true region. Unlike true

region that does not need the object verification step, candidate region may contain false

objects in the answer, and therefore, further verification processes are needed.
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(a) Valid Region (b) Invalid Region

(c) True Region

Figure 2.17: Example of Regions

The spatial data for query processing, however, can be in raw data or data that has

been processed through some partitioning/indexing method. In the query processing, we

will not include the initial data treatment as part of query processing, but as a variation

of the data sources that can be used for spatial query processing. The whole process of

region-based spatial query processing can be seen in Figure 2.18.

In this section, we discuss the region-based approach in spatial query processing where

the regions created are a Candidate region or True region.

2.3.1 Query Processing with Candidate Region

In query processing using candidate region, the first step is to obtain the initial region

that contains candidate objects to start the object verification phase. This can be done

by reducing the size of the map, or using a partitioned map and performing the query

processing on particular cells. We divide the methods in this group into 3 subgroups,

which are: (1) space pruning method, (2) uniform space division method, (3) structured

space division method.
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Figure 2.18: Region-based Spatial Query Processing

Space Pruning

The space pruning method is a means of reducing space by using a query point position

related to other points around it. A common space pruning method is halfspace pruning

which uses a ‘perpendicular bisector line’ between two points and this line divides the

space into two equal sub-spaces. The space pruning method uses unpartitioned spatial

data. Assume that there are two points p1, p2 and the perpendicular line between these

points is Bis(p1 : p2). The distance from p1 to the bisector line is always equal to the

distance from p2 to the bisector line. Halfspace p1 of p2 denoted as H(p1, p2) is the region

where p1 is the nearest point, while halfspace p2 of p1 denoted as H(p2, p1) is the region

where p2 is the nearest point. The concept of halfspace can be seen in figure 2.19.

Figure 2.19: Halfspace Pruning
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The first halfspace pruning was proposed by (Stanoi et al., 2001) with Influence sets

approximation, and refined by (Tao et al., 2004) with the TPL algorithm. This approach

was then refined by (Wu et al., 2008b) with FINCH, intended to define an initial region

for further objects verification. Authors (Cheema et al., 2009) propose Lazy Update, a

region to monitor movement for RNN query. Authors (Kumar et al., 2008) create an

approximate initial NN region and then use halfspace pruning to refine the region.

Uniform Space Division

Uniform space division is a method that divides the space into several partitions of uniform

size, and the objects that can be used to answer the query will be searched within each

partition. The space can be considered as the spatial data source, or can be created

during the spatial query processing. There are two different types of uniform partitioning

methods: pie-slice partitioning and grid partitioning. Authors (Stanoi et al., 2000) divide

the space into six regions where the query point q is the center as can be seen in Figure 2.12,

and the objects verification will be performed on each region. Authors (Sharifzadeh and

Shahabi, 2009) propose the AVC-SW, an approximate algorithm to create a Voronoi cell,

where the space is divided into k sectors to create an approximate region for a Voronoi cell

as can be seen in Figure 2.20. Authors (Huang et al., 2007) propose an S-grid partition

for spatial network that can be used to solve kNN queries. Figure 2.21 shows the partition

of a road network into 2x2 cells and the index structure for the grid itself.

Figure 2.20: Example of AVC-SW with 6-sectors division
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Figure 2.21: Example of S-Grid

Structured Space Division

Structured space division is a method of space partitioning where the partition size is

not uniformly divided, but depends on the position of the objects on the map. The

structured partition can be defined as a spatial data source or it can be created during

spatial query processing. A commonly-used space division is the Voronoi diagram, a

space division method based on the position of the generator points (Okabe et al., 2009).

A Voronoi diagram can be used in the form of Ordinary Voronoi diagram to solve spatial

queries (Xuan, Zhao, Taniar, Rahayu, Safar and Srinivasan, 2011; Safar et al., 2009; Tran

et al., 2010, 2009; Kolahdouzan and Shahabi, 2004) or higher order Voronoi diagram (Yao

et al., 2009; Agarwal et al., 1992; Katoh and Iwano, 1992; Smid, 1995; Liu and Yuan,

2013). Ordinary Voronoi diagram is also known as order-1 Voronoi diagram. Since this

diagram only provides support for k = 1, further post processing methods are needed

to answer spatial query where k > 1. A common solution for k > 1 is by checking

neighbouring Voronoi cells around the cell where the query point is located (Xuan, Zhao,

Taniar, Rahayu, Safar and Srinivasan, 2011; Kolahdouzan and Shahabi, 2004; Zhao et al.,

2011). This diagram itself can be used either as a full Voronoi diagram or as a Voronoi

cell (Cheema et al., 2013; Yan et al., 2012; Zhang et al., 2003).



2.3. REGION-BASED APPROACH FOR SPATIAL QUERY PROCESSING 35

Figure 2.22: Example of Voronoi diagram with Delaunay Triangulation and Convex Hull

Some authors also combine the Voronoi diagram with indexing techniques to enhance

its performance (Sharifzadeh and Shahabi, 2010; Slimani et al., 2011; Demiryurek and

Shahabi, 2012). Meanwhile, another form of Voronoi diagram, called Delaunay triangula-

tion is also used to solve spatial queries. Delaunay triangulation shows nearest neighbours

for each generator point in a Voronoi diagram (Hu et al., 2010). Hence, it is closely related

to nearest neighbour queries. The outer path in Delaunay triangulation is called ‘Convex

Hull’, where this diagram shows farthest relationship for generator points. Hence, this

method is used to solve Farthest Neighbour queries (Liu et al., 2012; Liu and Yuan, 2013).

Figure 2.22 shows a Voronoi diagram from 11 generator points (shown in solid red lines)

along with Delaunay triangulation (shown in dashed red) and Convex Hull (shown in solid

gray lines).

2.3.2 Query Processing with True Region

True region is a region without false objects. Since there are no false objects in a true

region, this method does not need any objects verification phase. There are only a few

works that use this method. Authors (Cheema et al., 2011; Cheema, Zhang, Lin and

Zhang, 2012) use Influence zone to identify RkNN region. Author (Adhinugraha et al.,

2013) use Contact Zone to create the region of RNN where the region itself can be identified

as open region or closed region. This method then is adapted in mobile environment

(Adhinugraha et al., 2014). Authors (Nghiem, Maulana, Waluyo, Green and Taniar, 2013)

use initial region to create an RNN region in mobile peer-to-peer environment. Authors
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(Agnes et al.,2014) aggregate multiple RNN queries and propose a method to identify the

region of Group RNN queries.

2.3.3 Discussion

The current research on the region-based approach can be divided into two categories.

The first one uses region as a way to reduce unnecessary objects before the answer to

the query can be retrieved. The second one that use region to obtain the exact region

where the objects to answer the query are located in order to avoid the objects verification

phase. Our work is focused on answering queries by identifying the exact region for each

query. Our work will be based on partitioned data with a highest order Voronoi diagram

(HSVD), which creates partitions based on points located in the space, and distance order

information is added in each partition. Since each partition has information about distance

order to all objects, this information can be used to identify the true region from various

types of spatial queries. Hence, one structure of HSVD can be used to identify the true

region of various types of spatial queries with different k values, and eliminate the need of

objects verification step.

2.4 Limitations

2.4.1 Limitation of Existing Works in Spatial Queries

Based on related works in nearest neighbour, farthest neighbour, reverse nearest neighbour

and reverse farthest neighbour query processing, the existing techniques have seven main

limitations as follows:

• L1 : Relying on pruning, either with space pruning or index pruning, and post

processing techniques to filter the candidates.

• L2 : Pruning with Voronoi diagram requires a verification step, since Voronoi dia-

gram has limited distance information to a limited number of generator points.

• L3 : Region-based calculation method only apply in RNN query; however, the region

must be recreated for each query issued.

To address these issues, our proposed method is a region-based method where no

pruning or verification steps are needed to identify the query region. We use a HSVD that
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provides distance order information to all generator points for each cell to determine the

true region of a query.

2.4.2 Limitation of Existing Works in Region-based Approach

• L5 : Candidate regions need a further verification process to obtain the true objects.

• L6 : No Voronoi diagram that can be used to represent spatial queries where k > 1.

• L7 : Region pruning must be performed on each query processing.

In response to existing issues, we proposed a modified Voronoi diagram with k order

where each cell has a distance order to all generator points, enabling the Voronoi cell

to identify the objects to answer spatial query in any k without having to perform a

verification step. Moreover, the use of the Voronoi diagram is not limited to only one

query.

To the best of our knowledge, the study in this thesis is the first to use region-based

approach to solve four types of queries: k-Nearest Neighbour, k-Farthest Neighbour, Re-

verse Nearest Neighbour, and Reverse Farthest Neighbour with additional polychromatic

spatial query for each query type.

2.5 Chapter Summary

This chapter has provided common understanding and discussion about state-of-the-art

approaches regarding various spatial queries and region-based approaches to solve spatial

queries. Our research is focused on a region-based approach in spatial queries based on a

Voronoi diagram, where the aim is to obtain a region as the answer for these queries. The

main challenge is how to extract this region from a Voronoi diagram and how to modify a

Voronoi diagram so that it provides distance order information to all generator points in

each Voronoi cell.

The following chapters will discuss how to construct the highest order Voronoi diagram

and how to employ this diagram to solve various types of spatial queries.
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Chapter 3

Highest Order Voronoi Diagram

3.1 Overview

In this chapter, we will explain one of our contributions to answer Challenge 1 regarding

the limitations of the existing Voronoi diagram structure in solving spatial queries with

the region-based approach. We propose an extended variation of the Voronoi diagram

constructed through naive method that we call highest order Voronoi diagram (HSVD).

Section 3.3 will review the Voronoi diagram and construction categories, and will explain

the main purpose of HSVD. The definitions and properties of a generalized Voronoi dia-

gram will be discussed in section 3.4. The definition of HSVD will be explained in section

3.5, and the properties of HSVD will be given in section 3.6. Section 3.7 will describe the

construction method for HSVD with a FLIP algorithm. We will also describe the dual

tessellation of HSVD, called adjacency graphs and its properties in section 3.8. The dis-

cussion and summary of this chapter will be provided in sections 3.9 and 3.10 respectively.

3.2 Notations and Symbols

All notations that will be used in this thesis are listed in Table 3.1. In this thesis, we also

introduce several customs operators to be used in ordered tuples and sets as well as the

regions as listed in Table 3.2.

39
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Notation Definition
S A fixed axis-parallel rectangle in Euclidean space

S ⊆ R2

x an arbitrary set of points in Euclidean space
x ∩ S 6= ∅

P = {p1, p2, ..pm} Facility Points in S
P ⊆ S

m The number of Facility Points
2 ≤ m <∞

n Order for Voronoi Diagram
1 ≤ n ≤ m

D(n) Set of unordered pairs of distinct n elements of P
D(n)[i] An unordered pairs of distinct n elements

D(n)[i] ⊆ P, |D(n)[i]| ≤ |P |, |D(n)[i]| = n

T 〈n,i〉 Set of distinct ordered n-tuples (sequences) of D[i](n)

T 〈n,i〉[j] A distinct ordered of n-tuples
F Facility Points P that don’t belong to D(n)[i]

F = P −D(n)[i], |F | = m− n

Bis(pi : pj) Bisector line between pi and pj

H(pi, pj) Half-space of pi that is created by Bis(pi : pj)
R(pi) Voronoi cell where pi as the generator point
R(D(n)[i]) Voronoi cell order-k where pairs D(n)[i]

as the generator point
R(T 〈n,i〉[j]) Ordered Voronoi cell order-n where sequence T 〈n,i〉[j]

as the generator point
R(〈di, dj〉) Ordered Voronoi cell where di is the 1st-nearest generator

point and dj as the 2nd-nearest generator point
V n Voronoi Diagram order n created from P

V on Ordered Voronoi Diagram order n

V h Highest order Voronoi Diagram
C(n,m) Combination of n facility points from m facility points
P (n,m) Permutation of n facility points from m facility points

Table 3.1: List of Notations

Operator Definition Operator Type
t Merger of regions Region
u Overlap area of regions Region
v Subregion Region
� Predecessor elements of sequences sequences

Table 3.2: List of Operators

3.3 Overview of Voronoi Diagram

The Voronoi diagram is one of the most fundamental data structures in computational

geometry and has been widely applied in a variety of fields, either inside or outside com-

puter science, such as nearest neighbour queries, path planning, closest pairs problem,
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city planning and clustering. Given a number of points in the plane, the Voronoi diagram

divides the plane according to the nearest neighbour rule where each point has the region

of the plane closest to it. Voronoi diagram arises in natural situation where human intu-

ition is often guided by visual perception. Some reasons why the Voronoi diagram receive

so much attention have been given by (Aurenhammer, 1991). The regions in a Voronoi

diagram are called Voronoi cells. When a cell considers a point as the first nearest neigh-

bour, this Voronoi diagram is called an order-1 Voronoi diagram; when a cell considers

more than one point as k nearest neighbour, this diagram is called Higher Order Voronoi

diagram (Krussel and Schaudt, 1994; Fort and Sellars, 2009; Wang et al., 2011). Authors

(Okabe et al., 2009) divide Voronoi diagram construction into seven categories, which can

be summarized as follows

1. Naive Method

Naive method is the easiest to understand since it is a direct translation of the defini-

tion of Voronoi diagram (Rhynsburger, 1973). This method is not meant to generate

the Voronoi diagram itself, but to generate many samples of Voronoi polygons (Crain,

1978; Quine and Watson, 1984), but does not include explicit information about the

topological structure of the diagram.

2. Walking Method

Walking method is a method of constructing a Voronoi diagram, whereby Voronoi

vertices and Voronoi edges are constructed one by one in just the order in which

a traveller walks along the edges of the diagram. This method was described by

(Brassel and Reif, 1979) and (Cromley and Grogan, 1985). This method was revised

using the divide-and-conquer method.

3. Flip Method

In this method, an initial diagram is constructed first, and then it is modified step

by step until it converges to the Voronoi diagram. Authors (Sibson, 1978) showed

that, starting with any triangulation of convex hull, we can modify it into Delaunay

triangulation by flipping the diagonals of convex quadrilaterals according to the

local max-min angle criterion. This Flip method is slightly different from our FLIP

method. Our FLIP method is meant to obtain the distance order sequence on each

Voronoi polygons constructed with naive method.
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4. Incremental Method

This is a simple and powerful method, which build a Voronoi diagram beginning

with two or three generator points and modifies it by adding generators one by one.

It was introduced by (Green and Sibson, 1978). In the worst case scenario, the total

time complexity is O(n2); however, it can be decreased to O(n) by using buckets and

quartenary tree data structures (Iri et al., 1984). Randomization techniques are also

useful for decreasing the average time complexity (De Berg et al., 1995). A more

robust version of this method was proposed by (Sugihara and Iri, 1989, 1992).

5. Divide-and-Conquer Method

In this method, the set of generator points is recursively divided into smaller subsets

and the Voronoi diagrams for those subsets of generators are merged into the final

diagram. This was firstly proposed by (Shamos and Hoey, 1975b) and then written in

a simpler form of Delaunay triangulation terminology by (Lee and R. L. Drysdale,

1981). The robust version of this method was proposed by (Oishi and Sugihara,

1995)

6. Plane Sweep

The sixth method is the plane sweep method (Fortune, 1987) where a vertical line,

called a sweep line, is moved over the plane from left to right, and the Voronoi

diagram is constructed along this line.

7. Lift-up Method

This method utilizes the relationship between a two-dimensional Voronoi diagram

and a three-dimensional convex hull. Firstly, the generators in the plane are trans-

formed to certain points in three-dimensional space, then their convex hull is gen-

erated, and finally the convex hull is inversely transformed to the original plane

to obtain the Delaunay triangulation. Authors (Brown, 1979; Aurenhammer and

Edelsbrunner, 1984) used transformation from the plane to sphere, and (O’Rourke

et al., 1986; Edelsbrunner and Seidel, 1986) used a transformation from the plane

to a paraboloid of revolution. This method can be extended to any dimension, and

also can be used to construct a higher order Voronoi diagram (Agarwal et al., 1994;

Dwyer, 1991).
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In this thesis, the first aim is to be able to construct a structure consists of smaller

regions that have distance information to all available points on the map. This struc-

ture can be achieved through Naive method in Voronoi diagram construction. However,

naive method itself is lack of explicit information about the distance information in the

diagram. Therefore, in this thesis we introduce Fast Labelling and Interchange Posi-

tion (FLIP) method to obtain distance information information to all generator points

on the map, and use this information for further possible application.

3.4 Generalization of Voronoi Diagram

3.4.1 Definition of Voronoi Diagram

Let S be a fixed axis-parallel rectangle in Euclidean space S ⊆ R2, a set of facility points

P = {p1, p2, p3, .., pm} ⊆ S and m =| P |. Voronoi diagram can be defined as a method in

dividing space into a number of regions where each region will consider a facility point pi

as the nearest point. The nearest point is called the generator point (Okabe et al., 2009).

The regions in the Voronoi diagram are called V oronoi cells.

Definition 3.4.1. The region for a generator point pi or a Voronoi cell can be

defined as an intersection of all halfspace of pi with other generator points H(pi, pj).

Since there are no overlap for any cells, R(pi) uR(pj) = ∅

R(pi) = um[\i]
j=1 H(pi, pj) | i 6= j, (i, j) ≤ m (3.4.1)

Let x be an arbitrary point in S and {x}∩S 6= ∅, the Euclidean distance between x and

pi is given by d(x, pi). If pi is the nearest generator point from x, then d(x, pi) ≤ d(x, pj)

where i 6= j, 1 ≤ i, j ≤ m. Therefore, we can rewrite Voronoi cell definition as follow:

Definition 3.4.2. The Voronoi cell can also be defined as the region where any point

x located in a Voronoi cell R(pi) will consider pi as the nearest generator point.

R(pi) = {x| d(x, pi) ≤ d(x, pj), i 6= j, 1 ≤ i, j ≤ m} (3.4.2)
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Since each facility point has its own Voronoi cell, the union of all Voronoi cells will

construct the Voronoi diagram.

Definition 3.4.3. Voronoi cell R(pi) is an adjacent cell of R(pj) if these cells share the

same edge.

(a) Order 1 (b) Order 2

(c) Ordered Order 2

Figure 3.1: Voronoi Diagram from 5 points

Figure 3.1a is an example of a Voronoi diagram from five facility points. A Voronoi

cell R(p1) is an adjacent cell of Voronoi cells R(p3) and R(p2) since these cells share the

same region edge.

Definition 3.4.4. Voronoi diagram V can be defined as the union of all Voronoi cells.

V =
m⊔

i=1

R(pi) (3.4.3)

3.4.2 Definitions of Higher Order Voronoi Diagram

In a higher order Voronoi diagram, the number of generator points for one cell depends

on the order of the Voronoi diagram itself. An order-n Voronoi diagram is another form

of Voronoi diagram where each cell has n generator point; hence, each Voronoi cell has n-

nearest generator points. An order-n Voronoi diagram is also called Higher Order Voronoi

diagram (HOVD) (Agarwal et al., 1994).
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Definition 3.4.5. Let D(n) is a set of unordered pairs of distinct n elements of P .

D(n)[i] = {di1, di2, ..., din} is an unordered pairs from D(n) where D(n)[i] ⊆ P . The

maximum number of unordered pairs of distinct n elements is a combination

of n facility points from m facility points.

C(n,m) = m!
n!(m−n)!

Definition 3.4.6. Let F = {f1, f2, ..., fj} is all P s that do not belong to D(n) where

F = P −D(n), |F | = m − n. Region in Order-n HOVD R(D(n)[i]) can be considered

as a Voronoi cell where this cell has n generator points.

R(D(n)[i]) = (uj=(m−n)
j=1 H(di1, fj)) u .... u (uj=(m−n)

j=1 H(dn, fj)) (3.4.4)

(a) R(p1\p3) (b) R(p3\p1) (c) R(p1\p3) uR(p3\p1)

Figure 3.2: R(D(2){p1, p3})

Figure 3.2 explains the construction of an order-2 Voronoi cell from five facility points

P = {p1, p2, p3, p4, p5}. Assume that we have a Voronoi cell where p1, p3 as the nearest fa-

cility points D(2)[i] = {p1, p3}. All points that do not include in D(2)[i] is F = {p2, p4, p5}.

Figure 3.2a is the region of p1 that ignores p3 since p3 will share the region with p1.

R(p1\p3) = uj=3
j=1H(p1, fj). Figure 3.2b is the region of p3 that excludes p1. R(p3\p1) =

uj=3
j=1H(p1, fj). Voronoi cell of p1, p3 in 3.2c can be written as

R(D(2){p1, p3}) = R(p1\p3) uR(p1\p3)

The Euclidean distance from x to all points in set D(n)[i] is given by d(x, dil), 1 ≤

i ≤ C(n,m), n < m, 1 ≤ l ≤ n. Points dil in set D(n)[i] are the n-nearest points from x

compared to other points in set F , so d(x, dil) ≤ d(x − fj), 1 ≤ i ≤ C(n,m), 1 ≤ j ≤

(m − n), n < m, 1 ≤ l ≤ n. From this definition, the definition of a higher order Voronoi

cell can be defined as follows:
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Definition 3.4.7. The Voronoi cell in a Higher Order Voronoi diagram is the area

where any point x located in a Voronoi cell R(D(n)[i]) will consider points in set D(n)[i]

as the n-nearest generator points.

R(D(n)[i]) = {x| d(x, dil) ≤ d(x, fj), 1 ≤ i ≤ C(n,m),

1 ≤ j ≤ (m− n), n < m, 1 ≤ l ≤ n}
(3.4.5)

Figure 3.1b shows an order-2 Voronoi diagram from five facility points. Let P =

{p1, p2, p3, p4, p5} and n = 2. D(2) can be defined as a set of unordered pairs of two

distinct elements of P

D(2) =
{
{p1, p2}, {p1, p3}, {p1, p4}, {p1, p5}, ..., {p4, p5}

}

We can obtain unordered pairs of distinct n elements of P with the related F as can be

seen in Table 3.3.

D(2)[i] F

{p1, p2} {p3, p4, p5}
{p1, p3} {p2, p4, p5}
{p1, p4} {p2, p3, p5}
{p1, p5} {p2, p3, p4}
{p2, p3} {p1, p4, p5}
{p2, p4} {p1, p3, p5}
{p2, p5} {p1, p3, p4}
{p3, p4} {p1, p2, p5}
{p3, p5} {p1, p2, p4}
{p4, p5} {p1, p2, p3}

Table 3.3: Unordered pairs where k = 2

The first pairs D(2)[1] = {p1, p2}, and F = {p3, p4, p5}. According to definition 3.4.7,

A Voronoi cell for this unordered pair R(D(2)[1]) is as the region where any point x in

this cell will consider points p1, p2 as the nearest facility points, and will not consider any

points in F as part of 2-nearest facility point.

The number of possible pairs can be obtained from C(2, 5) = 5!
2!(5−2)! which are 10 set

combinations of unordered pairs of two distinct elements. However, not all combinations

constitute a Voronoi cell as described in Definition 3.4.6. A Voronoi cell can be constructed

if the region of each members in unordered pairs have overlap region with other members.

Figure 3.3 shows Voronoi cell from p1, p5 that never exist, since region R(p1\p5) and region

R(p5\p1) do not have any overlapping region. R(p1\p5) uR(p5\p1) = ∅.
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(a) R(p1\p5) (b) R(p5\p1) (c) R(p1\p5) uR(p5\p1)

Figure 3.3: Non existed Voronoi cell from p1, p5

From Definition 3.4.4, a Voronoi diagram is the union of all Voronoi cells. Since the

number of Voronoi cells depends on the number of possible combinations, a higher order

Voronoi diagram can be redefined as follows:

Definition 3.4.8. Higher order Voronoi diagram is the union of all combinations of

order-n Voronoi cell.

V n =
C(n,m)⊔

i=1

R(D(n)[i]) (3.4.6)

3.4.3 Definitions of Ordered Higher Order Voronoi Diagram

The other variation of HOVD with ordered generator points for each cell is the ordered

HOVD or ordered order-n Voronoi diagram (Okabe et al., 2009; Wang et al., 2011). In this

diagram, each cell has a set of generator points in a certain order. Figure 3.1 shows the

different structure of a Voronoi diagram from five facility points, In Figure 3.1a, each cell

considers only one facility point as the nearest generator point, in Figure 3.1b, each cell

has two facility points as the nearest generator points without considering the sequence.

In Figure 3.1c, each cell has two facility points as the nearest generator points, and the

distance order is represented by the label attached to each region. For example R(〈p1, p3〉)

means the region that considers p1 as the first nearest and p3 as the second nearest. In

this thesis, the distance order sequence is also called ‘sequence’.

Definition 3.4.9. Let D(n) is a set of unordered pairs of distinct n elements of P , T 〈n,i〉

is a set of distinct ordered(sequence) n-tuples of D(n)[i]. The maximum number of

possible n-tuples sequences that can be achieved from m facility points can be

defined as n-permutation of m.

P (n,m) = m!
(m−n)!
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For each D(n)[i], the number of possible ordered n-tuples can be defined as n!.

Definition 3.4.10. Let D(n) is a set of unordered pairs of distinct n elements of P , T 〈n,i〉

is a set of distinct ordered n-tuples of D(n)[i]. Voronoi cell R(T 〈n,i〉[y]) is constructed

from all intersections of halfspace in a certain order, and located inside R(D(n)[i]). This

Voronoi cell can be defined as

R(T 〈n,i〉[y]) =
(
H(ty1, ty2) u ... uH(ty1, tyn) u ... uH(ty(n−1), tyn)

)

uR(D(n))[i], 1 ≤ y ≤ n!, 1 ≤ i ≤ n, 1 ≤ n < m

(3.4.7)

Let x be an arbitrary point in S. The Euclidean distance from x to all points in

sequence T 〈n,i〉[y] is ordered by d(x, ty1) ≤ d(x, ty2) ≤ ... ≤ d(x, tyn), 1 ≤ n < m, 1 ≤ i ≤

C(n,m), 1 ≤ y ≤ n!.

Definition 3.4.11. Let F = {f1, f2, ..., fj} is all P s that do not belong to D(n) where

F = P − D(n). D(n)[i] is an unordered pair of distinct n elements of P , and T 〈n,i〉 is a

set of distinct ordered n-tuples of D(n)[i]. T 〈n,i〉[y] is an ordered distinct n-tuples. The

ordered order-n Voronoi cell R(T 〈n,i〉[y]) can be defined as the region where point x

in R(T 〈n,i〉[y]) considers tyz as its zth-nearest generator point.

R(T 〈n,i〉[y]) =
{

x|{d(x, tyz) ≤ d(x, fj)} ∧ {d(x, ty1) ≤ d(x, ty2) ≤ ... ≤ d(x, tyk)},

1 ≤ n < m, 1 ≤ z ≤ n, 1 ≤ j ≤ (m− n), 1 ≤ y ≤ n!, 1 ≤ i ≤ C(n,m)}
} (3.4.8)

(a) Order 3 (b) Ordered order-3

Figure 3.4: Ordered Order-3 Voronoi cell
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Figure 3.4a shows an order-3 Voronoi diagram from five facility points. To simplify, we

will focus only on pairs D(3)[i] = {p3, p4, p5} and F = {p1, p2}. The set of distinct ordered

3-tuples of D(3)[i] can be listed as.

T 〈3,i〉 =
{
〈p3, p4, p5〉, 〈p3, p5, p4〉, 〈p4, p3, p5〉,

〈p4, p5, p3〉, 〈p5, p4, p3〉, 〈p5, p3, p4〉
}

From the set above, we can have T 〈3,i〉[1] = 〈p3, p4, p5〉. Voronoi cell of R(T 〈3,i〉[1]) can be

defined as the region where any point x in this region will consider point p3 as the first

nearest generator point and point p4 as the second nearest generator point and p5 as the

third nearest generator point, as shown in figure 3.4b.

R(T 〈3,i〉[1]) =
(
H(p3, p4) uH(p3, p5) uH(p4, p5)

)
uR({p3, p4, p5})

The number of possible ordered 3-tuples that can be obtained from D(3)[i] is P (3, 3) =

3!
(3−3)! which is equal to 3!, therefore there are six possible sequences from D(3)[i]. However,

not all ordered tuples can be defined as an ordered order-3 Voronoi diagram. As in

Definition 3.4.10, a Voronoi cell can be created if there exists an overlapping region from

all members in a certain order. Hence, if there is no overlapping region from all members,

the ordered order-n Voronoi cell cannot be created.

From the previous definition, we can now have an ordered order-n Voronoi diagram as

the union of all ordered order-n Voronoi cell.

Definition 3.4.12. Ordered order-n Voronoi diagram is a HOVD where the gener-

ator points in each cell are sorted in a certain order. An ordered order-n Voronoi diagram

can be defined as the union of all ordered order-n Voronoi cell.

V on =
C(n,m)⊔

i=1

( n!⊔

y=1

R(T 〈n,i〉[y])
)

(3.4.9)

3.4.4 Properties of Voronoi Diagram

Based on the definition of a Voronoi diagram provided in the previous section, we will now

discuss some of their geometric properties (Okabe et al., 2009) that can be used to solve

spatial queries. These properties are derived from Voronoi diagram, HOVD and ordered

HOVD.

Property 3.4.1 (Overlapping property). There are no overlapping regions in Voronoi

diagram.
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A Voronoi diagram is constructed based on perpendicular bisector line. This line is

constructed from one pair of points, where the distance from one point to the bisector line

is equal with the distance from another point to the bisector line.

Property 3.4.2 (Nearest points property). The nearest facility points from pi create

Voronoi cell edges R(Pi).

From this property, it is clear that a Voronoi cell of pi is constructed by nearest

surrounding facility points, while all other facility points will not be considered as the

nearest.

Property 3.4.3 (Share edges property). Point pi is near point pj if R(pi) and R(pj)

share the same Voronoi edge.

Figure 3.4a shows a Voronoi diagram from five points. As we can see, the region R(p1)

is constructed from p2 and p1 because these are the nearest points according to property

3.4.2. From this figure, we can also see that p1 also creates the edge for R(p2) and R(p3),

hence p1, p2 share the same Voronoi edge as well as p1, p3.

Property 3.4.4 (Inside property). Let x be the arbitrary point in S. Point x is located

in region R(pi) if d(x, pi) < d(x, pj), i 6= j, 1 ≤ i, j ≤ m.

This property matches Definition 3.4.2 where if a point x is located in a Voronoi cell,

this point will consider the generator point pi as the nearest facility point compared to

the other facility points.

Property 3.4.5 (No region property). In a HOVD, region R(D(n)[i]) might be empty if

R(dij) uR(dil) = ∅, {dij , dil} ⊂ D(n)[i]

Definition 3.4.6 describes how a Voronoi cell in HOVD is created. Since R(D(n)[i])

must include all intersections of R(dij), a Voronoi cell R(D(n)[i]) cannot be created if the

regions of all members in D(n)[i] do not intersect with all other members.

From this property, we can also have the next property for the k nearest point:

Property 3.4.6 (Nearest points property). Let x be an arbitrary point in Euclidean space

and R(D(n)[i]) is a Voronoi cell of Order-n Voronoi from set D(n). Point x in R(D(n)[i])

will consider D(n)[i] as n-nearest generator points.
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Property 3.4.7 (Maximum n property). Maximum n in HOVD is (m− 1), which can be

stated as n < m.

The reason for this property is straightforward. From property 3.4.6, point x in

R(D(n)[i]) will consider D(n)[i] as n-nearest generator point. If n = m, then D(n)[i] = P .

Hence, an order-n Voronoi cell will be an order-m Voronoi cell, and R(P (m)) is the re-

gion where all points in P are m-nearest generator points, which is the Space S itself, so

R(P (m)) = S. Hence, n cannot be greater than m for HOVD.

Property 3.4.8 (Subregion property ). An ordered order-n Voronoi cell is subset of

order-n Voronoi cell.

R(T 〈n,i〉[y]) v R(D(n)[i]) (3.4.10)

This property can be simply explained from definition 3.4.10, where T 〈n,i〉 is a set of

distinct ordered n-tuples of D(n)[i], hence ordered T 〈n,i〉[y] is also part of pairs in D(n)[i].

Due to this circumstance, R(T 〈n,i〉[y]) is also a sub-region of R(D(n)[i]).

From this property, we can also obtain the next property.

Property 3.4.9 (Super region property). The union of an ordered order-n Voronoi cell

with the same members of generator points will construct a Voronoi cell of Order-n Voronoi

diagram.

R(D(n)[i]) =
n!⊔

y=1

R(T 〈n,i〉[y]), 1 ≤ i ≤ C(n,m), 1 ≤ n < m (3.4.11)

In an order-n Voronoi cell, the ordered list of generator points is not necessary as long

as these points are the n-nearest generator points. However, in an ordered order-n Voronoi

diagram, the ‘ordered’ is the main thing that must be considered.

In Figure 3.1c, the red line shows an order-2 Voronoi diagram and the dashed line

shows an ordered order-2 Voronoi diagram. R(p1, p3) in Figure 3.1b shows a Voronoi cell

where p1, p3 are 2-nearest generator points in this cell. In Figure 3.1c, this cell consists

two ordered subregions R(〈p1, p3〉) and R(〈p3, p1〉), where in R(〈p1, p3〉) point p1 is the

first nearest generator point and p3 is the second nearest generator point.

Property 3.4.10 (Sequence property). For x in R(T 〈n,i〉[y]) where

T 〈n,i〉[y] = 〈ty1, ty2, ..., tyn〉, the following rule applies: nthNN(x) = tyn,

because d(x, ty1) ≤ d(x, ty2) ≤ ... ≤ d(x, tyn)
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Based on this property, we can also derive the next property based on the ordering

sequence.

Property 3.4.11 (Prefix property). Let T 〈n,i〉[y] = 〈ty1, ty2, ..., tyn〉 is a sequence with n

members and T 〈(n−l),i〉[z] = 〈tz1, tz1, ..., tz(n−l)〉. T 〈(n−l),i〉[z] is prefix of sequence T 〈n,i〉[y]

if all tuples in T 〈(n−l),i〉[z] exist in T 〈n,i〉[y] in the same order.

T 〈(n−l),i〉[z] � T 〈n,i〉[y], if :

{T 〈(n−l),i〉[z] ∩ T 〈n,i〉[y] = T 〈(n−l),i〉[z]},

{(ty1 = tz1) ∧ (ty2 = tz2) ∧ ...(ty(n−l) = tz(n−l)), 1 ≤ y ≤ n!, 1 ≤ z ≤ (n− l)!, l < n}

(3.4.12)

This property shows that a sequence T 〈(n−l),i〉[z] can become a prefix of T 〈n,i〉[y] if

T 〈n,i〉[y] has more tuples than T 〈(n−l),i〉[z] and all tuples of T 〈(n−l),i〉[z] appear in the same

sequence in T 〈n,i〉[y]. From property 3.4.11 and property 3.4.9, we obtain the next property.

Property 3.4.12 (Ordered sub region property). The region of R(T 〈n,i〉[y]) is an ordered

subregion of R(T 〈(n−l),i〉[z]) if T 〈(n−l),i〉[z] is prefix of T 〈n,i〉[y].

R(T 〈n,i〉[y]) v R(T 〈(n−l),i〉[z]) if T 〈(n−l),i〉[z] � T 〈n,i〉[y] (3.4.13)

Figure 3.5 explains the sub-ordered region property where D = {p1, p2, p3, p4, p5}.

Figure 3.5a shows a Voronoi cell R(T 〈1,i〉) where T 〈1,i〉[y] = 〈p4〉 and p4 is the first nearest

generator point. Figure 3.5b shows a Voronoi cell R(T 〈2,i〉) = {< p4, p2 >,< p4, p3 >,<

p4, p5 >}. As we can see from this figure, Voronoi cell R(Do2) is located inside Voronoi cell

R(Do1). Figure 3.5c shows a Voronoi cell where k = 3. Assume Do3 =< p4, p2, p3 > and

Do2 =< p4, p2 >, then R(< p4, p2, p3 >) is located inside of Voronoi cell R(< p4, p2 >).

Since Do3 � Do2 then R(Do3) @ R(Do2). Hence, R(Don) @ R(Drt) if Drt � Don.

From this property, we can conclude the next property about the the relationship

between an ordered order-n Voronoi diagram and an ordered order-t Voronoi diagram,

where 0 < t ≤ n.

Property 3.4.13 (Sub Voronoi property). An Ordered order-t Voronoi diagram can be

constructed from an ordered order-n Voronoi diagram where 0 < t ≤ n.
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(a) n=1 (b) n=2

(c) n=3

Figure 3.5: Region of sequence of p4

Property 3.4.12 describes the sub-region of a Voronoi cell. Since each ordered order-

n Voronoi cell is also a sub-region of an ordered order-t Voronoi cell where 0 < t ≤ n,

the ordered order-n Voronoi diagram is a detailed version of an ordered order-t Voronoi

diagram.

An ordered order-n Voronoi diagram can show the order of the generator points in

every Voronoi cell. Hence, this diagram has the potential to be used to solve spatial

problems. However, there are several problems that make this diagram unsuitable for some

queries. The first one is the maximum number of order-n, where maximum n = m − 1.

From Property 3.4.7, it is not possible to create an order-m Voronoi diagram because

the order- m Voronoi cell of P is the whole space S. The second one, ordered order-n

Voronoi diagram can be identified from an order-n Voronoi diagram. Hence, an ordered

order-n Voronoi diagram cannot be achieved unless an order-n Voronoi diagram exists.

Pre computing order-n Voronoi diagram is not an option due to computation cost and n

cannot be predicted (Cheema et al., 2011). In the next section, we will discuss a HSVD

to overcome these problems.
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3.5 Definition of Highest Order Voronoi Diagram

A highest order Voronoi diagram (HSVD) is a new variation of a Voronoi diagram intended

to extend HOVD capability. HSVD consists of Voronoi cells with distance information to

all generator points. Let m be the number of facility points P , with each cell in HSVD

having unique m ordered generator points. It means that no cells have the same m ordered

generator points, and no generator points have the same order. In short, a highest order

Voronoi diagram is an ordered order-m Voronoi diagram. Based on our knowledge, there

are no variations of higher order Voronoi diagrams that have order-m.

(a) Order-3 VD

(b) HSVD

Figure 3.6: HOVD and HSVD

Figure 3.6 shows the differences between an order-3 Voronoi diagram and a highest

order Voronoi diagram from four facility points. Figure 3.6a shows an order-3 Voronoi

diagram from four facility points, where each cell has three generator points as the nearest
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facility points while Figure 3.6b shows a highest order Voronoi diagram from the same

facility points. Unlike HOVD, the generator points in each cell are sorted from the nearest

to the farthest. Label 〈p1, p4, p2, p3〉 means that any point x in this region will consider

p1 as the first nearest facility point, p4 as the second nearest facility point, p2 as the third

nearest facility point and p3 as the fourth facility point.

Definition 3.5.1. Let n = m, D(n) is a set of unordered pairs of distinct n elements of

P . Since there is only one combination of n elements of P ,D(n) = D(n)[1], and D(n) = S.

T 〈n,i〉 is a set of distinct ordered(sequence) n-tuples of D(n)[i], i = 1. The maximum

number of possible n-tuples sequences that can be achieved from m facility

points can be defined as n-permutation of m.

P (n,m) = m!
(m−n)!

since n = m

P (n, n) = n!
(n−n)! = n!

Definition 3.5.2. Let D(n) is a set of unordered pairs of distinct n elements of P , T 〈n,1〉

is a set of distinct ordered(sequence) n-tuples of D(n)[1]. A Voronoi cell R(T 〈n,i〉[y]) is

constructed from all intersections of halfspace in a certain order, and are located inside

R(D(n)[1]). This Voronoi cell can be defined as

R(T 〈n,1〉[y]) = H(ty1, ty2)u ...uH(ty1, tyn)u ...uH(ty(n−1), tyn), 1 ≤ y ≤ n!, n = m (3.5.1)

Definition 3.5.3. In Euclidean distance, the highest order Voronoi cell R(T 〈n,1〉)[y])

can also be defined as the region where for any point x in R(T 〈n,1〉)[y]), this point considers

tyz as its zth-nearest generator point.

R(T 〈n,1〉[y]) = {x|d(x, ty1) ≤ d(x, ty2) ≤ ... ≤ d(x, tyn), n = m, 1 ≤ y ≤ n!} (3.5.2)

We will explain this definition with an example from Figure 3.6, where there are four

facility points in the space S.

Figure 3.6b shows a highest order Voronoi diagram from 4 facility points. Let n = 4,

D(4) =
{
{p1, p2, p3, p4}

}
. There are no other combinations since C(4, 4) = n!

n!(n−n)! = 1.
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Hence, an order-4 Voronoi diagram is the same as its Voronoi cell, which is the whole

space S.

We can obtain 4! distinct ordered 4-tuples of D(4)[1] as follows

y T 〈4,1〉

1 〈p1, p2, p3, p4〉
2 〈p1, p2, p4, p3〉
3 〈p1, p3, p2, p4〉
... ...

{p4, p5} 〈p4, p3, p2, p1〉

Table 3.4: Distinct ordered 4-tuples of D(4)[1]

In a region R(T 〈4,1〉[y]), where T 〈4,1〉[y] = 〈ty1, ty2, ty3, ty4〉, a point x will consider tyj

as the jth nearest generator point. In region R(T 〈4,1〉[1]), generator point p1 is the first

nearest point and p4 is the 4th nearest point.

Since a Voronoi diagram is the union of all Voronoi cells, a highest order Voronoi

diagram can be defined as follows:

Definition 3.5.4. Highest order Voronoi diagram (HOVD) is the union of all

possible highest order Voronoi cells.

V h =
n!⊔

y=1

R(T 〈n,1〉[y]) (3.5.3)

Similar to the other Voronoi diagram, a highest order Voronoi diagram is also con-

structed from the union of all available highest order Voronoi cells.

3.6 Properties of Highest Order Voronoi Diagram

Since each cell in HSVD has distance order information to m generator points, a highest

order Voronoi diagram is also an ordered order-m Voronoi diagram, hence all properties

from HOVD will also apply on HSVD. Next, we present the properties that can only be

applied in HSVD:

Property 3.6.1 (m number property). The number of elements in each tuple is m. High-

est order Voronoi diagram can also be called ordered order-m Voronoi diagram.
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This property is explained in definition 3.5.2, where there are m-distinct tuples with

a specific order in each region. In the other words, each region has a unique generator

points sequence that indicates the nearest generator point to the farthest generator point.

Property 3.6.2 (Adjacent cells property). Each adjacent cell will always have one pair

of different elements tuples.

A Voronoi diagram is constructed by using a perpendicular bisector from all generator

points. The intersection of two bisector lines will become the vertex of a Voronoi cell, and

a Voronoi cell edge is a segment between two vertices in a perpendicular bisector. This

bisector itself is made from pi, pj where H(pi, pj) is the halfplane of pi and H(pj , pi) is

the halfplane of pj . Since a Voronoi cell is made up of segments of the bisector line, all

adjacent cells will share the same segment/edge. Assume cell Ra has adjacent cell Rb in

segment S(a,b), and S(a,b) is on the perpendicular bisector line Bis(pi, pj). If in cell Ra

d(pi, Ra) < d(pi, Rb), then pi is considered as the closer point in Ra rather than pj ; hence,

the ordered generator point will be pi, pj . However, in Rb, pj will be considered as the

nearest point since Ra and Rb share the same segment that is part of bisector Bis(pi, pj).

Hence, the ordered generator point in Rb will be pj , pi.

(a) Ordered order-2 (b) Highest Order Voronoi cell

Figure 3.7: Ordered Voronoi cell from 4 facility points

Figure 3.7 shows the ordered tuple from an ordered order-2 Voronoi diagram and

highest order Voronoi diagram. Figure 3.7b shows the different pairs from each Voronoi

cell. As we can see from this figure, Voronoi cell R(〈p2, p4, p3, p1〉) has three adjacent cells

which are:



58 CHAPTER 3. HIGHEST ORDER VORONOI DIAGRAM

1. Voronoi cell R(〈p2, p3, p4, p1〉) that shares an edge obtained from bisector line Bis(p3, p4);

hence, this adjacent Voronoi cells must swap the order of p3 and p4

2. R(〈p2, p4, p1, p3〉) that shares an edge obtained from bisector line Bis(p1, p3); hence,

this adjacent Voronoi cells must swap the order of p1 and p3

3. R(〈p4, p2, p3, p1〉) that shares an edge obtained from bisector line Bis(p2, p4); hence,

this adjacent Voronoi cells must swap the order of p2 and p4

From Figure 3.7a, we can see that there are no swapped pairs among adjacent Voronoi

cells in an ordered order-2 Voronoi diagram; hence, this property can be applied only in a

highest order Voronoi diagram.

Property 3.6.3 (All bisectors property). A highest order Voronoi diagram can be con-

structed by using all available perpendicular bisector lines.

In a highest order Voronoi diagram, all possible sequences of ordered n-tuples will be

created and each possible sequence will have its own cell. Voronoi cell is constructed from

the intersections of perpendicular lines. Since all possible Voronoi cells will be constructed,

all perpendicular bisector lines will be used.

3.7 Highest Order Voronoi Diagram Construction

This section will explain the method for highest order Voronoi diagram construction. Here

we concentrate mainly on the most basic method used for constructing a highest order

Voronoi diagram based on the definitions and properties that have been discussed in the

previous section. First, we define the data structures that will be used in this method;

second, we define the basic concept of construction; and last, we present the algorithm for

constructing this Voronoi diagram. The HSVD construction is based on the naive method

in order to generate Voronoi cells and this is followed by the FLIP method to add distance

information on each Voronoi cell.

3.7.1 Computational Preliminaries

As has been discussed in the previous section, let S be the space in a 2-dimensional axis S ⊆

R2, P = {p1, p2, ..., pm}, P ∈ S be the set of facility points, T 〈m,1〉[y] = 〈ty1, ty2, ..., tym〉 be
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the ordered distinct m-tuples, R(T 〈m,1〉[y]) be the ordered order-m Voronoi cell, and high-

est order Voronoi diagram will be written as V h =
{

R(T 〈m,1〉[1]), R(T 〈m,1〉[2]), ..., R(T 〈m,1〉[m!])
}

.

From the previous section, the construction of a highest order Voronoi diagram is a pro-

cedure for generating V h from Voronoi cells R(T 〈m,1〉[y]) according to Definition 3.5.4.

However, in this section, we will simplify the construction based on several properties that

have been discussed previously.

3.7.2 Data Structure

A Voronoi diagram is constructed from the union of Voronoi cells where each cell is a convex

polygon. Property 3.4.1 explains that each cell is unique and there are no overlapping cells

in a Voronoi diagram. Property 3.4.3 explains that each cell has other adjacent cells that

share the same edge. This means that this edge can be used to determine the neighbour

of a particular cell. Since each cell is constructed from m facility points with a specific

order and no cells have the same order, each cell can be identified by this order of m-

tuples(sequence) as in property 3.4.6.

The edge of a Voronoi cell is a segment in a perpendicular bisector line, where this

bisector line is constructed from two facility points pi and pj ; hence, the edge of a Voronoi

cell is basically constructed from facility points as well.

Since a Voronoi diagram is constructed from the union of all Voronoi cells, we have to

determine a Voronoi cell that complies with previous explanations. We store a Voronoi

cell as a representation of vectors (Okabe et al., 2009).

Structure Attributes Description
Voronoi Cell sequence Ordered m-tuples

edges List of segments
Segments start point Segment start point

end point Segment end point
bisec line Bisector line for segment

Bisector Line line formula Line equation of bisector
p1 Facility point 1
p2 Facility point 2

Facility Point name Facility point name
location Facility point coordinate

Table 3.5: Basic data structure for Voronoi cell
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Table 3.5 shows the basic data structure that will be used to define a Voronoi cell

and to construct Voronoi diagram. This data structure is mainly used for a highest order

Voronoi diagram, but it can also be applied for a higher order Voronoi diagram. This

diagram is built based on the definitions and properties of a Voronoi diagram, higher

order Voronoi diagram and highest order Voronoi diagram. Since we cannot use a region

as the basic structure for a Voronoi diagram, we will represent the cell as the set of edges,

where the edges are represented as a vector (Okabe et al., 2009; Berg et al., 2008).

3.7.3 Construction Concept

In this section, we will describe how to construct a Voronoi diagram without having to

identify each Voronoi cell one by one, since we will use all perpendicular bisectors.

Algorithm 1 is the main algorithm used to construct a highest order Voronoi diagram.

At the first step, this algorithm will create all possible perpendicular bisectors that can be

constructed. Assume that there are m facility points, since the bisector line is constructed

from two facility points; the number of possible bisector lines can be defined as

C(2,m) = m!
2!(m−2)!

The next step is to find all possible intersection points; this is followed by identifying all

available segments and using them to identify the regions that will be used for the Voronoi

cells. Since a cell is stored as a vector representation, we also represent segment as vector

as well.

Figure 3.8 shows how to identify the region. Firstly, the boundary is set as shown in

Figure 3.8a, and then all possible bisectors are created as in Figure 3.8b. The next step is

to choose a segment as the starting edge, in this case Seg(v13,v17) and then determine the

next segments. Figure 3.8c shows five possible segments, which are Seg(v17,v14), Seg(v17,16),

Seg(v17,v18), Seg(v17,v1), Seg(v17,12). As we can see, Seg(v17,v1) and Seg(v17,v16) cannot

be chosen because if we create a segment Seg(v13,v1) or Seg(v13,v16), these segments will

intersect with other segments, which are Seg(v17,v14) or Seg(v13,v12). Segment Seg(v17,v18)

cannot be chosen because it is located on the same bisector as segment Seg(v13,v17). Hence,

we can only choose segment Seg(v17,v14) or Seg(v17,v12) as the next segment. Assuming that

we choose Seg(v17,v14) as the next segment, the next step is to choose subsequent segments

from v14. Previous rules need to be applied when choosing the next segments. Finally,
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Algorithm 1: Highest Order VD Construction
Data: Set of points P , Limited area S
Result: Highest order Voronoi diagram V h
/* Create all possible bisector lines from P with naive method and

put in the list */
m← count(P )1

for i=1 to m do2

for j=i to m do3

BisList← getBisector(pi, pj)4

end5

end6

/* Edges of area S are also considered as bisector line */
BisList← S7

/* Identify all bisector intersections (vertices) on each bisector
line. */

for i=1 to count(BisList) do8

for j=i to count(BisList) do9

vertexpoint← getV ertex(BisList[i], BisList[j])10

BisList[i].addV ertex(vertexpoint)11

BisList[j].addV ertex(vertexpoint)12

end13

end14

/* Identify all available segments. A Segment is considered as 2
consecutive vertices at the same bisector line and stored as 2-way
vector */

for i=1 to count(BisList) do15

SegList← getSegment(BisList[i])16

end17

/* Identify all available cells. */
regCount← 118

for i=1 to count(SegList) do19

if !isUsed(SegList[i]) then20

while !isRegion(Region[regCount]) do21

currentSeg ← SegList[i]22

Region[regCount].addSegment(currentSeg)23

currentSeg.used ← true24

currentSeg ← getNext(currentSeg)25

end26

end27

regCount + +28

end29

/* Use FLIP to identify the sequence of each Voronoi cell */
for i=1 to count(Region) do30

FLIP (Region[i])31

end32

region R is defined as a circuit from v13 → v17 → v14 → v3 → s1 → v13 as shown in

Figure 3.8d.
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(a) Facility Points with boundary (b) All possible bisectors

(c) Segment Tracing (d) Recognized Region

Figure 3.8: Region Identification

The number of possible Voronoi cell in a highest order Voronoi diagram is m! as

mentioned in definition 3.5.1. After all regions have been identified, the next step is

identify the ordered m-tuples or sequence for each Voronoi cell. This step can be done

with the FLIP algorithm that will be discussed in the next section.

3.7.4 Fast Labeling and Interchange Position (FLIP) Algorithm

The FLIP method is used to identify the sequence in a highest order Voronoi cell. This

method uses a Voronoi cell as the reference by identifying the sequence in this cell with

kNN query, and moves to all adjacent cells. The FLIP method is based on property 3.6.2,

where each adjacent Voronoi cell will definitely have a swapped-pair order tuples. Hence,

if we can identify the sequence in a Voronoi cell, we will be able to identify all sequences

of Voronoi cells in a highest order Voronoi diagram.

This algorithm 2 is simply the first sequence on an unlabeled cell that applies kNN

query to it where k is the number of points P − 1 and the sequence is the result of this
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Algorithm 2: FLIP algorithm
Data: Region R without sequence
Result: Region R with sequence
k ← count(P )− 11

if first(R) then2

R.sequence← kNN(x);3

else4

R′ ← getAdjacent(R);5

while R′.sequence = NULL do6

R′ ← getAdjacent(R);7

end8

R.sequence← getSequence(R′, bisector(R,R′));9

end10

query. The first cell can be chosen from any cell. For the other cells, the sequence is based

on its adjacent cell’s sequence and the bisector lines as the shared edge between these cells.

This algorithm is illustrated in Figure 3.9

(a) First unlabeled cell

(b) expansion

Figure 3.9: FLIP algorithm preview
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Figure 3.9a shows when the first unlabeled cell is being processed. An arbitrary point

x inside any region is used and kNN query is issued from this point. Since there are

only four facility points, 4NN(x) = 〈p1, p2, p3, p4〉. The next cells are all adjacent cells

to the current cell. Figure 3.9b shows three adjacent cells, and the next cells that will be

processed are indicated by the arrow. The first adjacent cell will have 〈p1, p3, p2, p4〉 as the

sequence since they use bisector line Bis(p2, p3) for the shared edge. This method applies

to other adjacent cells as well. Hence, all adjacent cells have

〈p1, p2, p3, p4〉
Bis(p2,p3)
−−−−−−→ 〈p1, p3, p2, p4〉

〈p1, p2, p3, p4〉
Bis(p1,p2)
−−−−−−→ 〈p2, p1, p3, p4〉

〈p1, p2, p3, p4〉
Bis(p3,p4)
−−−−−−→ 〈p1, p2, p4, p3〉

This algorithm will be repeated until all cells have the sequence label, and highest

order Voronoi diagram has been constructed. If there are m facility points, there will be

at the most m! Voronoi cells that need to be processed. However, from our experiment,

the average number of Voronoi cells from a highest order Voronoi diagram is far below the

maximum number.

3.8 Adjacency Graph of Highest Order Voronoi Diagram

A Voronoi diagram has dual tessellation, called Delaunay triangulation, which shows the

neighbourhood generator points that construct the Voronoi diagram itself (Okabe et al.,

2009). However, this tessellation can only be used in an ordinary Voronoi diagram or

order-1 Voronoi diagram. Figure 3.10 shows a Voronoi diagram (red line) constructed

from five generator points and its Delaunay triangulation (dashed). As can be seen in

this figure, the Delaunay triangulation shows the cells adjacency graph. The nodes in

Delaunay triangulation represent the generator points for a Voronoi diagram, and the

edges represent the adjacency between cells in Voronoi diagram. For example, in this

Delaunay triangulation, generator point p1 is directly connected to p2 and p3, as we can

see in a Voronoi diagram, Voronoi cell p1 has cell p2 and cell p3 as its adjacent cells;

hence, Delaunay triangulation can also be considered as cells adjacency graph of a Voronoi

diagram. To the best of our knowledge, an only ordinary Voronoi diagram has a cells

adjacency graph, and no other higher order Voronoi diagrams have cells’ adjacency graph

representations.
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Figure 3.10: Ordinary Voronoi Diagram with Delaunay Triangulation

A highest order Voronoi diagram is a generalisation of a Voronoi diagram, where each

cell has a distance order sequence to all generator points. The structure of a cells adjacency

graph is useful to determine the neighbouring cells; therefore, in this section we present a

cells adjacency graph for a highest order Voronoi diagram.

Since not all cells have a generator point in highest order Voronoi diagram, we have

to generate another point that can represent a node in an adjacency graph. We use a

polygon centroid to represent nodes in a cells adjacency graph of HSVD, because the

HSVD cells are always in convex polygon, and the centroid of convex polygon is always

located inside the polygon. The edges of a cells adjacency graph will show the adjacency

between cells.

Definition 3.8.1. An adjacency graph of highest order Voronoi diagram (AG) is a closed

graph that consists of nodes that represent the Voronoi cells of an HSVD, where the edges

represent cells adjacency. A polygon centroid calculation is used to transform a cell into

a node.

If the set of HSVD cells is represented as C = {c1, c2, ..., ci}, the centroid that represents

a cell as ct(pi), AG can be represented as AG = {ct(p1), ct(p2), ..., ct(pi)}. The edge

between ct(p1) and ct(p2) will be represented as e(ct(p1), ct(p2)).

Figure 3.11 shows HSVD from five generator points with a corresponding cells adja-

cency graph. In this graph, the nodes represent cells in HSVD. However, since these cells

cannot be used directly in the graph, we use the cells’ centroid to be represented as nodes

in the graph, so the edges can show adjacency of cells.

In the next following subsection, we discuss the properties of the HSVD adjacency

graph and the algorithm used to construct this graph.
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Figure 3.11: HSVD with Cells Adjacency Graph

3.8.1 Adjacency Graph Properties

In this subsection, we discuss the properties of adjacency graph from HSVD structure.

Property 3.8.1. Adjacency graph is the dual graph of highest order Voronoi diagram

Property 3.8.2. The external edges in AG do not constitute the boundary of the convex

hull of AG.

Unlike Delaunay triangulation, the adjacency graph is created based only on the HSVD

structure to show adjacency cells in the HSVD structure itself. Therefore, an adjacency

graph does not follow the properties of Delaunay triangulation (Okabe et al., 2009). Unlike

Delaunay triangulation and the Voronoi diagram where the generator points determine the

edges of Voronoi cells and Delaunay triangulation edges, in an AG, a node is created from

the centroid of a particular cell without considering the influence of other nodes. Therefore,

the external edges in AG do not constitute the boundary of the convex hull.

Property 3.8.3. An adjacency graph cannot be reverse to an HSVD, however an HSVD

can be transformed into an AG.

Since AG is constructed from cells of HSVD without considering the generator points

and these cells are constructed from generator points, it is not possible to reconstruct the

HSVD structure from AG without considering the generator points. Hence, AG cannot

be used to reconstruct the HSVD structure.
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Property 3.8.4. Adjacency graph is a bidirectional graph

The adjacency graph is used to trace the adjacency cells in HSVD structure, which

means this graph could be plotted in any way. Therefore, the adjacency graph is con-

structed as a bidirectional graph.

3.8.2 Adjacency Graph Construction

An adjacency graph can be constructed if the highest order Voronoi diagram has been

created. This graph will represent the adjacency of each cell in the HSVD structure.

Since an AG is a direct representation of the HSVD structure and cannot be used without

the HSVD structure itself, the adjacency graph is created as an additional property of

HSVD structure and stored in HSVD structure as well.

Algorithm 3: Adjacency Graph algorithm
Data: V h : HSVD without Adjacency Graph
Result: V h :HSVD with Adjacency Graphs
for i = 1 to sizeOf (V h) do1

if (checkCentroid(V h[i]) = NULL) then2

V h[i].centroid← centroid(V h[i]);3

end4

Adj ← getAdjacent(V h[i]); /* get all adjacent cells from Vh[i] */5

for j = 1 to sizeOf (Adj) do6

if (checkCentroid(Adj[j]) = NULL) then7

V h[getIndex(Adj[j])].centroid← centroid(Adj[j];8

end9

if (checkEdge(edges(V h[i], V h[getIndex(Adj[j]) = NULL) then10

V h[i].adjEdges.add(edges(V h[i], V h[getIndex(Adj[j])].centroid);11

end12

end13

end14

Algorithm 3 shows the adjacency graph construction. This will involve a full read of

HSVD cells, where each cell will be processed one by one. The first step is to check if

the centroid has been created for a Voronoi cell (line 2). If it is empty, then the centroid

will be created; otherwise, the adjacent cells will be searched (line 5). The next step is to

create nodes to all adjacent cells. Each cell will create edges to all other adjacent nodes if

this not has not yet been done (line 10). By the end of this algorithm, each cell will have

edges to all adjacent cells.
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3.9 Analysis

The complexity of the naive method used to construct the HSVD depends on the number of

Voronoi cells that need to be constructed. For m generator points, the number of possible

cells that can be constructed is equal to the possible combination of distance sequences

of m generator points which is m! as stated in Definition 3.5.1. However, the number of

possible sequences is determined by the positions of the generator points themselves.

(a) 6 cells from 3 generator points (b) 4 Cells from 3 generator points

Figure 3.12: Number of Cells from 3 Generator points

Figure 3.12 shows all the possible Voronoi cells that can be constructed from three

generator points. Figure 3.12a shows six cells, which shows 3!, and Figure 3.12b shows

only four possible cells since all generator points are located co-linearly. Hence, m! regions

from m generator points are never likely to be achieved.

From Figure 3.12, the regions are constructed from bisector lines, where the bisector

lines are constructed from two generator points. The number of regions created from

l lines in the space has been defined by (Engel, 1998), where the maximum number of

regions pl created from l lines in 2-dimensional space can be defined as

rl = C(l, 0) + C(l, 1) + C(l, 2) (3.9.1)

In this equation, the author assumed that a vertex is created from two intersecting

lines. However, a vertex in a Voronoi diagram can be constructed from three bisector

lines as shown in Figure 3.14, where these three lines are generated from three generator

points. The number of regions in equation 3.9.1 will be reduced by one for each vertex

that generated from three lines. Figure 3.13 shows the number of regions from four lines,

where in figure 3.13a all vertices are constructed from two lines, and in Figure 3.13b, a

vertex is constructed from three lines, and the number of region is reduced by one. Hence,
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the number of Voronoi cells that can be created from l perpendicular bisector lines can be

written as

rlhsvd = C(l, 0) + C(l, 1) + C(l, 2)− C(m, 3) (3.9.2)

Since a perpendicular bisector line is created from two generator points, number of l

can be defined as l = m(m−1)
2 . Hence, equation 3.9.2 can be written with m as

rlhsvd =
3m4 − 10m3 + 21m2 − 14m + 24

24
(3.9.3)

(a) 2 lines vertex (b) 3 lines vertex

Figure 3.13: Number of regions related to number of lines on vertex

Figure 3.14: Vertex and Generator Points

Performance of HSVD depends on the number of cells created. Figure 3.15 shows

that from estimation, for m < 11 the number of regions created in HSVD is below m3.

However, we found that the number of regions < m3 where m < 14. From equation in

3.9.3, the number of regions generated from m generator points are at the maximum in m4

instead of m!. Hence, overall performance of HSVD at the maximum is on O(m4), where

m is the number of generator points.
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Figure 3.15: Number of cells in HSVD from simulation and estimation

Due to hardware limitation, we only conducted experiments with limited 17 points

that were uniformly distributed generated using Matlab R2013b 1. The system is built

on a Java platform and the data structures are stored in MySQL database. Figure 3.15

shows the number of regions generated in simulation and the estimated number of regions

from equation 3.9.2. As can be seen from this figure, the number of regions created in

simulation has the same trend as the estimated number of regions, and the number of

regions in simulation is always fewer than the estimated numbers of the regions.

(a) HSVD Query Time (b) Construction Time from
10 Points HSVD

Figure 3.16: HSVD Query Time

Figure 3.16 shows the result of our experiments in reconstructing Voronoi diagram

from HSVD. Figure 3.16a shows the query time to create m points Voronoi diagram from

m points HSVD, and as expected, the reconstructing time depends on the number of

available Voronoi cells created. Figure 3.16b shows the time taken to create a 10-points

1http://au.mathworks.com/products/matlab/
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(a) HSVD

(b) Ordinary VD

(c) Farthest Point VD

Figure 3.17: Voronoi Diagram constructed from 10 points HSVD

Voronoi diagram order-k and an ordered order-k Voronoi diagram. We also obtain the

result as expected, where the cost to reconstruct the diagrams depends on the number
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of HSVD Voronoi cells since the number of HSVD cells are constant. Hence, the time

required to create order-k Voronoi diagram and ordered order-k Voronoi diagram are also

constant.

Even though the construction cost is quite high compared to ordinary Voronoi diagram

that can be built in O(m)(Aggarwal et al., 1989; Sugihara and Iri, 1992) or higher order

Voronoi diagram that can be built in O(mk2 log m + mk log3 m) (Aurenhammer and

Schwarzkopf, 1991), HSVD structure has three advantages: (1) it only needs to be built

once, (2) it can be used directly for various purposes, (3) it can directly identify farthest

points and their regions. Figure 3.17 shows various order of Voronoi diagrams that can be

constructed from HSVD (3.17a) without having to reprocess the diagram. In this example,

order-1 Voronoi diagram is shown in figure 3.17b while farthest point Voronoi diagram is

shown in figure 3.17c. In the next chapters, we will discuss several HSVD applications in

spatial queries.

3.10 Chapter Summary

In this chapter, we present the extension of a Voronoi diagram, called highest order Voronoi

diagram (HSVD), where each Voronoi cell has distance order information to all generator

points. In this thesis, distance order refers as sequence. To obtain all possible Voronoi

cells, this diagram is constructed using the naive method followed by the FLIP algorithm

to get the distance information for all cells. Unlike a higher order Voronoi diagram, HSVD

has two main advantages: (1) order=m, where this order can be used to directly identify

farthest points and their regions, (2) it has all distance identification for each cell that

can be used for further applications that need region with distance information, such as

order-k Voronoi diagram construction or spatial queries. The performance of this diagram

depends on the number of Voronoi cells created where the number of cells can be estimated

at the maximum of m4. However, the cost to utilize the diagram to create any diagram

from existing m-points HSVD structure will remain constant for any k values.

Due to hardware limitation, we perform Voronoi construction with limited number

of generator points. In real life situation, such as in identifying the coverage of public

facilities to the surrounding residential areas, we might need to use more generator points.

For example, the council wants to know which residential area have a nearest primary
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school followed by a secondary school and a public library in a city. Assumed that the

public facilities are generator points in HSVD, In this example, we will have to handle

more generator points than in previous simulation. Therefore, we are still working to refine

the algorithms to handle more generator points while maintain the overall performance as

well.
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Chapter 4

Nearest Neighbour Queries with

HSVD

4.1 Overview

Nearest neighbour query is a common spatial query that has been widely used in various

contexts. Nearest neighbour query from a query point q seeks to find all k nearest objects

from q location. In this thesis, there are two different types of objects: facility points and

users. A facility point pi is an object that provides service, and a user oj is the object that

needs the service of facility points. We discussed various methods used to solve nearest

neighbour queries in Section 2.2.1 and region based approach in spatial query processing

in Section 2.3.

In literature, kNN queries can be solved by either the point-to-point or region-based

method. Point-to-point method (Wang et al., 2000; Roussopoulos et al., 1995; Nghiem,

Green and Taniar, 2013) can be used directly though the objects or by using indexing

techniques. When the number of objects increases, a region-based method through region

pruning or candidate region are proposed to minimize objects verification (Kolahdouzan

and Shahabi, 2004; Xuan, Zhao, Taniar, Rahayu, Safar and Srinivasan, 2011; Safar, 2005).

However, since the candidate region still need the object verification step, there are

at least two disadvantages: (1) the candidate region depends on the query parameter,

such as the location of a query point, objects and k value; hence, the region will always

change when any of these parameters changes; (2) the candidate region will have to be

recreated when the query is re-issued, even with the same parameters. These problems

75
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have been addressed in Challenges 3 and 4 where the region will always be created when

the same query is issued. To answer this challenge, we employ the HSVD structure to

answer nearest neighbour queries, where the HSVD structure is created from the set of

facility points.

In this chapter, we will apply the solution to two variations of nearest neighbour queries

from the sequence perspective. The first one is from nearest object to the farthest which

is commonly known as Nearest Neighbour queries, and the second one is from the farthest

to the nearest which is commonly known as Farthest Neighbour queries.

We proposed a generalisation framework to solve Nearest Neighbours problems and

Farthest Neighbours problems with HSVD, which involves two main steps, which are: (1)

identifying the Voronoi cell of a query point and (2) determining the answer based on the

sequence of each Voronoi cell. By using HSVD, we can generalize the Nearest Neighbours

and Farthest Neighbours problems as well as the variation of kth queries and also both

bichromatic and monochromatic query problems.

The overall contributions of this chapter are that we:

1. Introduce the region-based method for Nearest Neighbour queries with Highest Order

Voronoi diagram.

2. Propose a generic framework to solve Nearest Neighbours and Farthest Neighbours

problem in spatial queries.

3. Apply the framework to solve monochromatic, bichromatic, k and kth variations that

might appear in both nearest neighbour or farthest neighbour problems.

4.2 Queries Taxonomy, Notations and Definitions

4.2.1 Queries Taxonomy

We define the taxonomy of nearest neighbour queries with highest order Voronoi diagram

based on how the sequence is read to obtain the generator points needed to answer the

query. The taxonomy for nearest neighbour query is described as follow:

1. Nearest Neighbours Queries

(a) Monochromatic k Nearest Neighbours Queries

(b) Monochromatic kth Nearest Neighbours Queries



4.2. QUERIES TAXONOMY, NOTATIONS AND DEFINITIONS 77

(c) Bichromatic k Nearest Neighbours Queries

(d) Bichromatic kth Nearest Neighbours Queries

2. Farthest Neighbours Queries

(a) Monochromatic k Farthest Neighbours Queries

(b) Monochromatic kth Farthest Neighbours Queries

(c) Bichromatic k Farthest Neighbours Queries

(d) Bichromatic kth Farthest Neighbours Queries

In nearest neighbours queries, the sequence will be read in a forward (left to right)

manner because the sequence is ordered from the nearest to the farthest. However, in

farthest neighbour queries, the sequence will be read backward (right to left).

4.2.2 Notations

• P = {p1, p2, ..., pm} is a set of facility points, where these points are also generators

of an HSVD.

• V h(P ) is Highest Order Voronoi diagram from P .

• m is the number of facility points.

• O = {o1, o2, ..., oi} is set of objects.

• U = {u1, u2, ..., uj} is the set of users or non-generator points objects.

• q is a query point. In bichromatic q ∈ U , where in monochromatic q ∈ P

• seq = 〈p1, p2, ..., pm〉 is a sequence of facility points

• Rseq = R〈p1, p2, ..., pm〉 is a Voronoi cell where p1 is the nearest facility point followed

by p2, p3, ... until pm as the farthest.

• seq[j] is a facility point at position of j from a sequence. 0 ≤ j < (m− 1).

• k is the number of objects of interest which query node q wants to retrieve.

• first k-sequence is the first k numbers of generator points from a seq.

If seq = 〈p5, p4, p2, p3, p1〉, first 2-sequence is 〈p5, p4〉

• last k-sequence is the last k numbers of generator points from a seq.

If seq = 〈p5, p4, p2, p3, p1〉, last 2-sequence is 〈p1, p3〉

• kth-sequence is the kth nearest generator points from a seq.

If seq = 〈p5, p4, p2, p3, p1〉, 4th-sequence is p3
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4.2.3 Definitions

In the context of nearest neighbour queries, there are two variations to the way in which

the objects are retrieved, either from the nearest known as Nearest Neighbour queries or

from the farthest known as Farthest Neighbour queries. Let O = {o1, o2, ..., on} be the

set of objects, q is the query point and the Euclidean distance between query point and

an object of interest is defined as d(q, oi). A = {a1, a2, ..., ak} is the set of answer from

Nearest Neighbour queries where A ⊂ O. The nearest neighbour problems can be defined

formally as follow:

Definition 4.2.1. Nearest Neighbour (NN) query is a method of finding the nearest

object from query point q. NN(q) = {a|d(q, a) < d(q, oi), ∀oi ∈ O, oi 6= a}.

An example of a nearest neighbour problem can be seen in figure 4.1. Figure 4.1a

shows o2 as the nearest neighbour of q, since d(q, o2) < ∀d(q, oi), i 6= 2. The problem of

nearest neighbour is actually a special case of k Nearest Neighbour where k = 1. For

k > 1, the definition of nearest neighbour is:

(a) NN(q)=o2 (b) 3NN(q) = {o2, o6, o4}

Figure 4.1: Nearest Neighbour and k-Nearest Neighbours example

Definition 4.2.2. k Nearest Neighbours (kNN) query is a method of finding k nearest

objects from query point q position. Let A = {a1, .., ak} be the answer of kNN(q) where

A ⊂ O and A′ is the set of objects that are not the answer of the query, A′ = O −A.

kNN(q) = {A|d(q, ai) ≤ d(q, a′j), 1 ≤ i ≤ k, 1 ≤ j ≤ (n− k)}

Figure 4.1b shows an example of 3NN from q, where objects o2, o6, o4 are the answer

to this query.
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Definition 4.2.3. Farthest Neighbour (FN) query is the method of finding the farthest

object from query point q. FN(q) = {a|d(q, a) > d(q, oi), ∀oi ∈ O, oi 6= a}

Examples of Farthest Neighbours are shown in Figure 4.2. Figure 4.2a shows FN from

query point q, and the object that satisfy this query is o1, since d(q, o1) > ∀d(q, oi), i 6= 1.

The Farthest Neighbour problems can be generalized with k > 1 as follows

(a) FN(q)=o1 (b) 3FN(q) = {o1, o3, o5}

Figure 4.2: Farthest Neighbour and k-Farthest Neighbours example

Definition 4.2.4. k Farthest Neighbours (kFN) query is a method of finding k far-

thest objects from query point q position. Let A = {a1, .., ak} be the answer of kFN(q)

where A ⊆ O and A′ is the set of objects that are not the answer of query A′ = O −A.

kFN(q) = {A|d(q, ai) ≤ d(q, a′j), 1 ≤ i ≤ k, 1 ≤ j ≤ (n− k)}

Definition 4.2.5. kth Sequence Neighbour is the method used to find the kth objects

from a query point. This can be seen from either the shortest distance perspective known

as kth nearest neighbour (kthNN) problem or can also be seen as kth farthest neighbour

(kthFN) problem. Let n be the number of objects, kthNN query can be written as kthFN

query, where kthNN(q) = ((n + 1)− k)thFN(q)

Figure 4.3 shows seven objects on the map. Object o4 can be acknowledged as 3th

nearest object from query point q, or 5th farthest object from query point q.

Definition 4.2.6. Monochromatic Query problem is a condition where the query

point q has the same type as the object of interest. In this thesis, monochromatic refer

to the condition where query point q is a part of the facility points or generator points

of HSVD, and the answer to this query is all generator points that satisfy the condition.
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Figure 4.3: 3th NN(q) = 5thFN(q)

Hence, q ∈ P , MkNN(q) = A, where A ⊂ P and q /∈ A. Monochromatic query can

be found in either nearest neighbour query as monochromatic nearest neighbour (MNN)

queries or farthest neighbour query as monochromatic farthest neighbour (MFN) query.

Figure 4.5 shows a monochromatic query from p1, where p1 is also a generator point

and the answer to this query is also the generator point, which is p5.

Figure 4.4: M1NN(p1) = p5

Definition 4.2.7. Bichromatic Query problem is a condition where there are two

different types of objects and the query point q is different from the answers. The HSVD

structure is constructed from facility points P = {p1, p2, ..., pm}, where these facility points

are the generator points. In bichromatic query, the users are the non-generator points

U = {u1, u2, ...., uj}. The query is issued from non-generator points q ∈ U , and the

answer for this query is a set of generator points A ⊆ P . Bichromatic query can be

found in either nearest neighbour query as bichromatic nearest neighbour (BNN) query

or farthest neighbour query as bichromatic farthest neighbour (BFN) query.
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Figure 4.5 shows a BNN query from u4, where u4 is the user. The answer to this query

is the generator point p2. Since the object type from query point and the object of the

answers are different, this type of query is considered as a bichromatic nearest neighbour

query.

Figure 4.5: B1NN(u4) = p2

4.3 Generalization of Nearest Neighbours Framework

The nearest neighbour approach is the method of finding objects from a query point

position. Since this is the nearest approach, the process of finding the objects always

starts from the nearest object from the query point and extends further; hence the term

nearest neighbour. However, the objects can also be found from the farthest and come

closer to the query point, this variation is commonly known as farthest neighbour approach.

In this section, we divide nearest neighbours approach into two parts based on where the

searching starts, from the nearest to the farthest or from the farthest to the nearest.

In nearest neighbour, the number of objects that need to be retrieved must be prede-

fined before the query can be processed. The number of objects that need to be retrieved

is denoted by k value. The k value itself is one of two types, k and kth. When k value is

used, then the query is expected to retrieve k objects from the start. For example 2NN(q)

is expected to get two objects starting from the nearest, while 2FN(q) is expected to re-

trieve two objects starting from the farthest. When kth is used, the query is expected to

retrieve the object at the kth position, either from the nearest or the farthest. 2thNN(q)

is meant to obtain the object at 2nd position from the nearest, while 2thFN(q) is meant

to retrieve the object at 2nd position from the farthest.
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The type of objects that will be retrieved can be the same as or different from the query

point. When the object type between query point and the answer set are different, this

query is called bichromatic, while if the object type between query point and answer set

are the same, this query is called monochromatic. For example, if a vehicle as query point

issues a query to find the nearest petrol station, this query is a bichromatic query because

vehicle and petrol station are two different types of objects. However, if an aeroplane as

a query point issues a query to find other aeroplanes on its radar, this query is called a

monochromatic query.

Since a nearest neighbour query has so many variations and these variations can be

combined with each other to create more complex query problems, it is important to have

a generic framework to solve these problems. For example, if a vehicle needs to find exactly

the third nearest petrol station since the trip computer can estimate the remaining fuel

on its tank, we can consider this query as bichromatic 3thNN .

The framework to solve nearest neighbour is based on HSVD. We consider a server

that provides spatial data, and HSVD has been constructed on the objects. In the HSVD

structure, the facility points are considered as the generator points, and the HSVD struc-

ture will be constructed based on facility point locations. Hence, facility points are also

the generator points for the HSVD structure. Meanwhile, the users or the objects that will

need the service from facility points will be considered as non-generator points objects. In a

monochromatic query using the HSVD structure, the query will be issued from a generator

point and the answer will be a set of generator points, while in bichromatic query using

the HSVD structure, the query will be issued from non-generator points objects and the

answer will be a set of generator points.

Since the answer for both monochromatic and bichromatic queries are a set of generator

points and each Voronoi cell in HSVD has a sequence of generator points, the answer

to nearest neighbours queries can be obtained from this sequence. To obtain the right

sequence for a particular query, it is important to know the Voronoi cell where the query

point is located.

The nearest neighbour framework is a concept of generalisation nearest neighbour so-

lution by using the HSVD structure by considering the similar steps needed to solve the

query and the same type of result sets from both monochromatic and bichromatic queries.

Figure 4.6 shows the main process in this framework. There are two main steps in this
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framework: (1) Voronoi cell identification that contains query point and sequence retrieval

(shaded box) which can be applied to all queries variation, and (2) generator points re-

trieval through sequence parsing which is specific to each problem.

Figure 4.6: Nearest Neighbour Framework

To generalize the SequenceParsing() process between nearest and farthest problems

for both monochromatic and bichromatic queries, we apply the inverse() function that

inverts the sequence as shown in Figure 4.7 before choosing the right generator point in a

specific position.

Figure 4.7: function inverse(sequence) → sequence

The inverse function is fully described in algorithm 4. This algorithm accepts sequence

as the input, and will produce an inverted sequence as the output.

Algorithm 4: Inverse function
Data: seq
Result: iseq inverted sequence
ctr ← 1;1

for i = sizeOf (seq) down to 1 do2

iseq[ctr]← seq[i];3

ctr + +;4

end5

return iseq;6
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The inverse() function is used so that we still can use the same algorithm in nearest

neighbours to process farthest neighbours queries, since the main difference between these

algorithm is only how to read the distance sequence in each cell.

4.4 Nearest Neighbour Queries Processing

In nearest neighbour queries, the answer can be retrieved from the sequence of a Voronoi

cell where the query point is located in a left to right manner, since the left-most generator

point indicates the first nearest generator point from a Voronoi cell and the right-most gen-

erator point indicates the last nearest generator point from a Voronoi cell. In nearest neigh-

bour queries, there are four variations, which are (1) Monochromatic k Nearest Neighbours,

(2) Monochromatic kth Nearest Neighbour, (3) Bichromatic k Nearest Neighbour and (4)

Bichromatic kth Nearest Neighbour.

4.4.1 Monochromatic k Nearest Neighbours (MkNN)

In MkNN, both query point and the objects that need to be found are the same type.

In nearest neighbour using HSVD, we consider monochromatic as a condition where both

query point and the answers are generator points. In HSVD, each Voronoi cell has distance

sequence identification to all generator points. Hence, to identify the nearest point from

a generator point, we only need to find the Voronoi cell that contains the generator point.

However, since the generator point is considered as the first nearest generator point in this

cell, the first nearest point from this generator point will be the second nearest generator

point from this Voronoi cell as can be seen in Figure 4.8 and the maximum k value

that can be used from m generator points will be (m − 1). Hence, Monochromatic k-

Nearest Neighbours can be identified from the second nearest generator point until (k+1)th

generator points where 2 ≤ k < m.

Definition 3.4.11 in ordered higher order Voronoi diagram defines a sequence of gener-

ator points for each Voronoi cell, where the sequence indicates the ordering distance from

any location in the Voronoi cell. Since Property 3.6.1 states that HSVD is a special case

of an ordered HOVD, then Definition 3.4.11 is also applied in HSVD. Hence the sequence

in each Voronoi cell of HSVD can be used to indicate k nearest generator points in each

cell.
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Figure 4.8: Monochromatic First Nearest Neighbour

In MkNN, since the query point is also one of the generator points, the nearest gen-

erator point is the query point itself. Hence, the first nearest neighbour from this query

point starts with the second position in the sequence.

Algorithm 5: MkNN with HSVD algorithm
Data: k, q
Result: A = {a1, a2, ..., ak} list of k facility points that satisfy MkNN(q)
initialize(A);1

if (k < numOf(P)) then2

r ← getCell(q); /* Get a cell contains q */3

for i = 2 to k do4

A.add(getObject(r.seq[i])); /* Get list of generator points of r */5

end6

else7

exit;/* k is bigger than number of facility points */8

end9

Algorithm 5 explains the MkNN query processing using the HSVD structure. In this

algorithm, the main thing that has to be done is to find the Voronoi cell that contain query

point q (line 3). This algorithm assumes that query point q is part of the generator points;

hence, the Voronoi cell that contains q will always be found. The next step is to obtain

the first k-sequence in this Voronoi cell by skipping the first sequence (line 4, i start with

2 instead of 1). Each element of the sequence is represented as a generator point that will

be stored in answer list A. The algorithm will stop when all k generator points have been

retrieved.

Figure 4.9 shows an example of a MkNN query that can be solved using HSVD. Let

P = {p1, p2, p3, p4} be facility points that will construct HSVD V h(P ). Query point

q = p1, and this query point is located in Voronoi cell Rseq1, where seq1 = 〈p1, p2, p3, p4〉



86 CHAPTER 4. NEAREST NEIGHBOUR QUERIES WITH HSVD

is the sequence with a certain distance order. Obviously, p1 is the nearest generator point

in this Voronoi cell, so p1 cannot be considered as the nearest point from p1. Instead, the

first nearest point from p1 will be the second nearest generator point from this Voronoi

cell, which is p2. Hence, 3NN from p1 will be 〈p2, p3, p4〉.

Figure 4.9: M3NN(q)={p2, p3, p4}

4.4.2 Monochromatic kth Nearest Neighbour (MkthNN)

Monochromatic kth nearest neighbour query is similar with MkNN query where the query

point and the objects that need to be found are the generator points. The range of

acceptable value of k will remain the same, which is 2 ≤ k < m. Since the aim of this

query is to find a kth nearest object from the query point, only the object in this position

will be considered as the answer. Hence, the answer object for this query is a generator

point in (k + 1) position in the sequence.

Algorithm 6: Mkth NN with HSVD algorithm
Data: k, q
Result: A = {a}, facility point that satisfies MkthNN(q)
m← numOf(P )1

if (1 ≤ k ≤ (m− 1)) then2

r ← getCell(q);/* Get Voronoi cell contains q */3

A.add(getObject(r.seq[k + 1]));/* Get kth generator points from r */4

else5

exit;/* k is bigger than number of facility points */6

end7

Algorithm 6 explains the MkthNN algorithm with HSVD. This algorithm is also based

on the frameworks and is similar to algorithm 5. This algorithm starts by finding the right

Voronoi cell that contains query point q (line 3). Unlike algorithm 5 that retrieves all k
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nearest objects, this algorithm only retrieve the object in k + 1 position of the sequence

(line 4).

Figure 4.10 shows an example of MkthNN query. Assume that there are four generator

points P = {p1, p2, p3, p4}. The query point p1 is issued MkthNN query with k = 2. The

query point is identified in a Voronoi cell Rseq1 where seq1 = 〈p1, p2, p3, p4〉. Obviously, the

query point q is the nearest generator point in this cell. Hence, the first nearest neighbour

is the second nearest generator point, and M2thNN(q) will be the third nearest generator

point from the cell, which is p3. Therefore, M2thNN(q) = {p2}.

Figure 4.10: M2thNN(q)={p3}

4.4.3 Bichromatic k Nearest Neighbour (BkNN)

In bichromatic k nearest neighbour queries, the object that issues a query and the objects

that need to be found are different object types. In bichromatic queries with HSVD, the

structure of HSVD is constructed by facility points P = {p1, p2, ..., pm}; hence, the facility

points are also generator points of HSVD. Meanwhile, the users U = {u1, u2, ..., uj} who

need the service from facility points are called non-generator points and only users can

issue the queries q ∈ U .

In HSVD, each Voronoi cell has sequence identification to all generator points. Hence,

to identify the nearest point from a generator point, we only need to find the Voronoi

cell that contains the generator point. Unlike the monochromatic queries, in bichromatic

queries the query point is not a generator point. Hence, the first nearest generator point

can be identified from the first object in a Voronoi cell’s sequence as can be seen in Figure

4.11.

Since the first object in the sequence can be considered as the first nearest, the maxi-

mum value of k that can be accepted from m generator points is m. Hence, bichromatic
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Figure 4.11: Bichromatic First Nearest Neighbour

k nearest neighbour queries can be identified from the first generator point to the mth

generator point of a sequence of Voronoi cell where the query point is located, and the

value of k is valid only where 1 ≤ k ≤ m.

Let V h(P ), q ∈ U ∧ q /∈ P and Rseq is the Voronoi cell with certain sequence seq

that contains q. Bichromatic k Nearest Neighbours (BkNN(q)) can be identified as all

generator points in i-position on seq where 1 ≤ i ≤ k and 1 ≤ k ≤ m.

Algorithm 7: BkNN with HSVD algorithm
Data: k, q
Result: A = {a1, a2, ..., ak} list of k facility points that satisfy BkNN(q)
initialize(A);1

if (k ≤ numOf(P ))then2

r ← getCell(q); /* Get a Voronoi cell that contains q */3

for i = 1 to k do4

A.add(getObject(r.seq[i]));/* Get list of Generator points of r */5

end6

else7

exit;/* k is bigger than number of facility points */8

end9

Algorithm 7 explains the BkNN query processing using the HSVD structure. Similar

to the MkNN algorithm, the main thing that has to be done is to find the Voronoi cell

that contains query point q (line 3). This algorithm assumes that query point q is located

inside the map, so the Voronoi cell that contains q will always be found. The next step is

to obtain the k-sequence in this Voronoi cell (line 4) start from the first sequence. Each

element of the sequence is represented as a generator point that will be stored in answer

list A. Algorithm will stop when all k generator points have been retrieved.
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Figure 4.12 shows an example of a BkNN query that can be solved using HSVD. Let

P = {p1, p2, p3, p4} be facility points that will construct HSVD V h(P ). U = {u1, u2, ..., uj}

is the set of users and distributed randomly on the map. Query point q ∈ U , and this

query point is located in Voronoi cell Rseq1. Let seq1 = 〈p1, p2, p3, p4〉 is the sequence with

a certain distance order. In this Voronoi cell, the sequence indicates the ordered distance

from Voronoi cell to all generator points. Hence B3NN from q will be 〈p1, p2, p3〉.

Figure 4.12: B3NN(q)={p1, p2, p3}

4.4.4 Bichromatic kth Nearest Neighbour (BkthNN)

Bichromatic kth nearest neighbour query is similar to BkNN query, except that the aim

of this query is to find the generator point at the kth position from the nearest. Hence,

the answer object for this query is a generator point in kth position in the sequence.

Let V h(P ), q /∈ P and Rseq be the Voronoi cell with a certain sequence seq that

contains q. Bichromatic kth Nearest Neighbours (BkthNN(q)) can be identified as the

generator point in ith-position on seq where i = k and 1 ≤ k ≤ m.

Algorithm 8: Bkth NN with HSVD algorithm
Data: k, q
Result: A = {a}, facility point that satisfy BkthNN(q)
m← numOf(P )1

if (1 ≤ k ≤ m) then2

r ← getCell(q); /* Get Voronoi cell contains q */3

A.add(getObject(r.seq[k]));/* Get kth generator points from r */4

else5

exit;/* k is bigger than number of facility points */6

end7

Algorithm 8 works to comply with the nearest neighbours framework, where the first

thing to do is to find the Voronoi cell that contains query point q (line 3). This algorithm
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assumes that the query point is always located within the map range, so there is always a

Voronoi cell that has q in it. The next step is to obtain the generator point in kth position

(line 4) and the query has been solved.

Figure 4.13 shows a an example of BkthNN query. Assume that there are four generator

points P = {p1, p2, p3, p4}. The query point q issues BkthNN query with k = 2. The

query point is identified in a Voronoi cell Rseq1 where seq1 = 〈p1, p2, p3, p4〉. Since this

is a bichromatic query, the 2nd nearest neighbour will be the 2nd generator point in the

sequence seq1[2] which is p2. Therefore, B2thNN(q) = {p2}.

Figure 4.13: B2thNN(q)={p2}

4.5 Farthest Neighbour Queries Processing

In farthest neighbour queries, the answer can be retrieved from the sequence of a Voronoi

cell where the query point is located from the right to the left, since the right-most gener-

ator point indicates the first farthest generator point from a Voronoi cell and the left-most

generator point indicates the last farthest generator point from a Voronoi cell. We divide

farthest neighbour queries into four variations: (1) Monochromatic k Farthest Neighbours,

(2) Monochromatic kth Farthest Neighbour, (3) Bichromatic k Farthest Neighbours and

(4) Bichromatic kth Farthest Neighbour.

4.5.1 Monochromatic k Farthest Neighbours (MkFN)

Monochromatic k farthest neighbour query (MkFN) has similar characteristic with MkNN

where the object that issues the query and the objects retrieved to answer the query are

the same type, which is the generator points type, and 1 ≤ k < m. Unlike MkNN, the

objects to answer the query are retrieved from right to left. The first farthest neighbour
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is the generator point in mth position on the sequence, so the k farthest objects are k

objects from the farthest and continue to the object before farthest. Since the query point

in a monochromatic query is also one of the generator points, the value of k is 1 ≤ k < m.

Hence, MkFN can be identified from the farthest generator points to the (m + 1 − k)

generator points, where 1 ≤ k < m.

To simplify the process, inverse the sequence by using inverse() function, so that we

can construct the algorithm of MkFN using the MkNN algorithm. However, since this

algorithm scans the sequence from the back, the value of k is equal to m.

Algorithm 9: MkFN with HSVD algorithm
Data: k, q
Result: A = {a1, a2, ..., ak} list of k facility points that satisfy MkFN(q)
initialize(A);1

m← numOf(P )2

if (k < m) then3

r ← getCell(q); /* Get Voronoi cell contains q */4

r.seq ← inverse(r.seq);5

/* reverse the order of seq */
for i = 1 to k do6

A.add(getObject(r.seq[i]));/* Get list of Generator points of r */7

end8

else9

exit;/* k is bigger than number of facility points */10

end11

Algorithm 9 explains how MkFN works with HSVD in nearest neighbours framework.

The first step in answering this query is to find the right Voronoi cell that contains the

query point (line 3), followed by reversing the distance sequence with inverse() function

(line 5). The k farthest generator points are retrieved from the left to the right in the same

nearest neighbour manner since the sequence has been inverted (line 6-8). The algorithm

will end when all k generator points have been retrieved.

Figure 4.14 shows an example of an MkFN query that can be solved using HSVD.

Let P = {p1, p2, p3, p4} be facility points that will construct HSVD V h(P ). Query point

q = p1, and this query point is located in Voronoi cell Rseq1, where seq1 = 〈p1, p2, p3, p4〉 is

the sequence with a certain distance order. Obviously, p1 is the nearest generator point in

this Voronoi cell, so p1 cannot be considered as the part of the answer. The first farthest

neighbour from q will be the generator point on the last sequence, which is p4 and the
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Figure 4.14: M2FN(q)={p3, p2}

second farthest neighbour will be the generator point before the farthest generator point,

which is p3. Hence, M2FN from q will be {p4, p3}.

4.5.2 Monochromatic kth Farthest Neighbour (MkthFN)

Monochromatic kth farthest neighbour query is a variation of the MkFN query where

the answer to this query is a generator point located in kth order from the right on the

sequence of a Voronoi cell where the query point is located. Since it is a monochromatic

query, the value of k is in the range of 1 ≤ k < m.

Let HSVD of P is V h(P ),q ∈ P and Rseq is the Voronoi cell with certain sequence

seq that contains q. Monochromatic k Farthest Neighbours problem (MkthFN(q)) can

be identified as the generator points in ith-position on seq where i = (m + 1 − k) and

1 ≤ k < m.

Algorithm 10: Mkth FN with HSVD algorithm
Data: k, q
Result: A = {a}, facility point that satisfies MkthFN(q)
m← numOf(P )1

if (k≤ m)then2

r ← getCell(q); /* Get Voronoi cell contains q */3

r.seq ← inverse(r.seq);4

/* reverse the order of seq */
A.add(getObject(r.seq[k]));/* Get kth generator points from r */5

else6

exit;/* k is bigger than number of facility points */7

end8

Algorithm 10 shows the process of solving a MkthNN query by using the HSVD struc-

ture in nearest neighbour framework. As expected, this algorithm is very similar to the

MkthNN algorithm, except with additional inverse() function. The algorithm starts by
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determining the Voronoi cell that contains q (line 3) and followed by reversing the sequence

(line 4), and then retrieving the generator point at kth order from inverted sequence (line

5). The algorithm will stop after the generator point has been retrieved.

An example of MkthNN query can be seen in Figure 4.15. Let P = {p1, p2, p3, p4} be

facility points that will construct HSVD V h(P ). Query point q = p1, and this query point

is located in Voronoi cell Rseq1, where seq1 = 〈p1, p2, p3, p4〉 is the sequence with a certain

distance order and k = 2. Obviously, p1 is the nearest generator point in this Voronoi cell,

so p1 cannot be considered as the part of the answer. Similar to the MkFN query, the

first farthest neighbour from q will be the generator point in the last sequence. Therefore,

M2thNN from q will be {p3}.

Figure 4.15: M2thFN(q)={p3}

4.5.3 Bichromatic k Farthest Neighbour (BkFN)

Bichromatic k farthest neighbour query is similar similar to the BkNN query in that the

object type that issues the query is different from the object type that answers the query.

Like other bichromatic queries, the value of k is within the range of 1 ≤ k ≤ m. However,

unlike the BkNN query, the generator points are searched from the right-most generator

point in the sequence. Hence, the answer to a BkFN query is all generator points in the

sequence of a Voronoi cell where the query point is located, starting from mth position

until the(m + 1− k)th position.

Let V h(P ), q /∈ P and Rseq is the Voronoi cell with a certain sequence seq that

contains q. BkFN(q) can be identified as all generator points in i-position on seq where

m ≥ i ≥ (m + 1− k) and 1 ≤ k ≤ m.

The algorithm for BkFN with HSVD structure on nearest neighbour framework can

be described as follows.
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Algorithm 11: BkFN with HSVD algorithm
Data: k, q
Result: A = {a1, a2, ..., ak} list of k facility points that satisfy BkFN (q)
initialize(A);1

m← numOf(P )2

if (k ≤ m)then3

r ← getCell(q); /* Get Voronoi cell contains q */4

r.seq ← inverse(r.seq);5

/* reverse the order of seq */
for i = 1 to (k) do6

A.add(getObject(r.seq[i]));/* Get list of Generator points of r */7

end8

else9

exit;/* k is bigger than number of facility points */10

end11

Algorithm 11 shows the BkFN query processing with the HSVD structure on the

nearest neighbours framework which is very similar to the BkNN algorithm, except with

the additional inverse() function. The first step is to find the right Voronoi cell that

contains the query point q (line 4) followed by inversion of the sequence (line 5). After

that, the algorithm starts to retrieve the generator points from the first to the k previous

generator points (line 6-8) on the sequence. The algorithm will not stop until k generator

points have been retrieved. Since this is a bichromatic query, the value of k is valid in

1 ≤ k ≤ m.

Figure 4.16 shows an example of a BkFN query. Let P = {p1, p2, p3, p4} be facility

points that will construct the HSVD V h(P ). O = {o1, o2, ..., on} are non-generator point

objects and are distributed randomly on the map. Query point q is one of the non-

generator point objects q ∈ O. Assume that this query point is located in Voronoi cell

Rseq1, and seq1 = 〈p1, p2, p3, p4〉 is the sequence with certain distance order and k = 2.

In farthest neighbour queries, the first generator point is the last generator point in the

sequence seq; therefore, this query will retrieve two generator points from the right. With

this process, the answer for B2FN(q) will be 〈p4, p3〉.

4.5.4 Bichromatic kth Farthest Neighbour (BkthFN)

Bichromatic kth farthest neighbour query is a special case of a BkFN query where the

answer to this query is only a generator point in kth position from the sequence of a

Voronoi cell where the query point q is located. The kth position from the right can be
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Figure 4.16: B2FN(q)={p4, p3}

written as (m + 1 − k)th position, so the answer to this query is the generator point in

(m+1−k)th position in the sequence of the Voronoi cell where the query point q is located.

Let V h(P ), q /∈ P and Rseq be the Voronoi cell with a certain sequence seq that

contains q. A BkthFN(q) query can be identified as the generator points in ith-position on

seq where i = (m + 1− k) and 1 ≤ k ≤ m.

The algorithm based on the HSVD structure on the nearest neighbours framework to

answer BkthFN query is shown in algorithm 12.

Algorithm 12: Bkth FN with HSVD algorithm
Data: k, q
Result: A = {a}, facility point that satisfy BkthFN(q)
m← numOf(P )1

if (1 ≤ k ≤ m) then2

r ← getCell(q); /* Get Voronoi cell contains q */3

r.seq ← inverse(r.seq);4

/* reverse the order of seq */
A.add(getObject(r.seq[k])); /* Get kth generator points from r */5

else6

exit;/* k is bigger than number of facility points */7

end8

In Algorithm 12, region identification to determine the right Voronoi cell that contains

query point q has to be done in the first place to comply with nearest neighbour framework

(line 3) and is followed by sequence inversion (line 4). The next step is to find the generator

point at kth position on the sequence of a Voronoi cell that contains a query point (line

5). The algorithm will finish after the generator point has been retrieved.

Figure 4.17 shows an example of a BkthFN query. This example uses the same condition

as does the BkFN example. Let P = {p1, p2, p3, p4} be facility points that will construct

the HSVD V h(P ). O = {o1, o2, ..., on} are non-generator point objects and are distributed



96 CHAPTER 4. NEAREST NEIGHBOUR QUERIES WITH HSVD

Figure 4.17: B2thFN(q)={p3}

randomly on the map. Query point q is one of the non-generator point objects q ∈ O.

Assume that this query point is located in Voronoi cell Rseq1, and seq1 = 〈p1, p2, p3, p4〉 is

the sequence with a certain distance order and k = 2. To answer this query, the algorithm

has to retrieve the second generator point from the right in the sequence of a Voronoi cell

where the query point is located. Therefore, B2thFN(q) = {p3} .

4.6 Evaluation

We conducted our experiments on a pre-computed HSVD with ten generator points and

various numbers of non-generator points. This evaluation is meant to obtain the be-

haviour of the algorithm under certain conditions. We generate the generator points and

non-generator points randomly by using Matlab 2013b. The experiments are conducted

on Windows 8.1 with i7-3520M CPU@2.90GHz and 8GB RAM. We implemented the al-

gorithms on Java NetBeans IDE 7.3.1 with MySQL Server 4 as the database server. We

conducted four experiments to obtain: (1) the performance of monochromatic queries, (2)

the performance of bichromatic queries, and (3) the impact of number of non-generator

points in bichromatic queries, and (4) the impact of number of generator points in both

monochromatic and bichromatic queries. We run each type of query with the same k

for 10,000 times consecutively in order to obtain the best overall system behaviour under

repetitive query requests.

Figure 4.18 shows the cells that need to be read in order to obtain a cell that contains

query point q in processing monochromatic queries with different k value. As we can see

from this figure, the number of cells that need to be read for four variations of queries that

include variation of k, kth , farthest or nearest in monochromatic queries remain constant
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Figure 4.18: Voronoi cells that need to be read on monochromatic queries

for all values of k. This is because the Voronoi cells are stored without using any indexes

and the method for finding the correct cells is only the sequential search. Hence, the

cost of finding the right cells will remain similar (constant) for all monochromatic query

variations and for all values of k.

Figure 4.19: Voronoi cells that need to be read on bichromatic queries with 1000 non-
generator points

Figure 4.19 shows the number of cells that need to be read before the right cell that

contains query point q can be found in four types of bichromatic queries which are BkNN,

BkthNN, BkFN and BkthFN. The query point is chosen randomly from 1000 non-generator

points that are distributed randomly. From this graph, we can see that the number of

Voronoi cells that need to be processed remain similar and constant for all query types

and all values of k. Because no index is available, the cells need to be read sequentially.
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Figure 4.20: Voronoi cells that need to be read on Bichromatic queries with 1000 non-
generator points

In Figure 4.20, we investigate the effect of a number non-generator points, ranging from

200 to 1000 non-generator points, where the query point is chosen randomly from these

points. As we can see, the number of non-generator points in BNN and BFN does not

influence the system performance, since the number of Voronoi cells that need to be read

remains the same for all numbers of non-generator points.

Figure 4.21: Voronoi cells to be read with different Generator Points

Figure 4.21 shows the different numbers of Voronoi cells that need to be read from

different generator points. We evaluate the impact of the number of generator points on

overall system performance. This figure shows that the number of cells to be read increases

with the increment number of generator points, since the number of available Voronoi cells

in the HSVD depends on the number of generator points.
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From these experiments, we can conclude that the performance of nearest neighbour

queries with HSVD is always constant since the processing cost depends on the number

of Voronoi cells in HSVD which can be estimated using m4 on Chapter 3. Therefore,

nearest neighbour queries will have the same processing cost as that of other different

types (nearest or farthest), any different k value, and any different non-generator points

if using the same HSVD structure.

4.7 Chapter Summary

In this chapter, we presented nearest neighbour query processing with a region-based

approach. We proposed a generic nearest neighbour framework with HSVD, where this

framework can be applied to solve several variations of nearest neighbour queries: Monochro-

matic k Nearest Neighbours queries (MkNN), Monochromatic kth Nearest Neighbour

queries (MkthNN), Bichromatic k Nearest Neighbours queries (BkNN), Bichromatic kth

Nearest Neighbour queries (BkthNN), Monochromatic k Farthest Neighbours queries (MkFN),

Monochromatic kth Farthest Neighbours queries (MkthFN), Bichromatic k Farthest Neigh-

bours queries (BkFN) and Bichromatic kth Farthest Neighbour queries (BkthFN).

Our analysis shows that the performance of nearest neighbour framework with HSVD

will not be affected by the number of k, various numbers of non-generator points, query

types and repetitive queries if using the same predefined HSVD structure. However this

performance depends on the number of Voronoi cells generated from HSVD since no in-

dexes are applied to the HSVD structure.
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Chapter 5

Reverse Nearest Neighbour

Region with HSVD

5.1 Overview

Reverse nearest neighbour query (RNN) is another version of nearest neighbour query

introduced by (Stanoi et al., 2000) where the aim is to obtain all objects that consider the

query point as one of their nearest neighbours. We have discussed various methods for

solving reverse nearest neighbours queries in Section 2.2.3 and the region-based approach

in spatial query processing in Section 2.3.

In literature, RNN queries can be solved either by the point-to-point or the region-

based method. In the point-to-point method, each candidate checks whether the query

point q is one of its nearest neighbours (Katayama and Satoh, 1997; Wang et al., 2000,

2005). In region-based method, either of two approaches can be used. The first one is

by using the approximate region to prune unnecessary candidates (Wu et al., 2008b; Tran

et al., 2010). This method must be followed by an objects verification step to obtain the

correct objects for the query. The second approach is by using the true region method,

where the aim is to obtain the region where the correct objects are located (Cheema

et al., 2011; Nghiem, Maulana, Waluyo, Green and Taniar, 2013; Adhinugraha et al.,

2013). However, this method also has three major problems: (1) the regions from this

method can only be used for a specific query point and k value; hence, if the query point

issues other queries with different value of k, or another query point issues a query, the

region created from the previous query will become invalid, (2) the same region has to be

101



102 CHAPTER 5. REVERSE NEAREST NEIGHBOUR REGION WITH HSVD

recreated if the same query point issues the same query with the same k value, (3) none

of these methods can be used to identify reverse farthest regions.

In this chapter, we will apply HSVD properties to two variations of reverse queries,

which are RNN queries and RFN queries along with the variations of these queries. We

propose an index structure for cells retrieval called Cell Level Index (CLI) that can be

applied to both RNN and RFN queries. We also apply this method to other variations of

reverse queries, which are kth sequence and group reverse queries.

The overall contributions of this chapter are as follows:

1. The introduction of a region-based method for RNN and RFN queries with HSVD.

2. A proposed cells retrieval structure called Cell Level Index (CLI) to avoid un-

necessary cells retrieval during spatial query processing.

3. The application of a CLI structure on HSVD to solve both Reverse Nearest and

Reverse Farthest queries, as well as their variants in k,kth and group reverse queries.

5.2 Queries Taxonomy, Notations and Definitions

5.2.1 Queries Taxonomy

In the reverse queries, we define the taxonomy based on how the index is read in order to

obtain the influence region of a query point at certain k values. The taxonomy of reverse

queries is described as follows:

1. Reverse Nearest Neighbours Queries (RNN)

(a) Reverse k Nearest Neighbours Queries (RkNN)

(b) Reverse kth Nearest Neighbours Queries (RkthNN)

2. Reverse Farthest Neighbours Queries (RFN)

(a) Reverse k Farthest Neighbours Queries (RkFN)

(b) Reverse kth Farthest Neighbours Queries (RkthFN)

3. Group Reverse Queries

(a) Group Reverse Nearest Neighbours Queries (GRNN)

(b) Group Reverse Farthest Neighbours Queries (GRFN)

In RNN, the CLI index is read from the lowest to the highest to represent the nearest

region to the farthest, while in RFN, the CLI index is read from the highest to the lowest

to represent the farthest region to the nearest. However, in group reverse queries, the CLI
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index can be read only for the first query point, and the other query points will be used

to refine the region of the first query point.

5.2.2 Notations

• P = {p1, p2, ..., pm} is a set of facility points, where these points are also generators

of HSVD.

• V h(P ) is HSVD from P .

• m is the number of facility points. m = |P |.

• U = {u1, u2, ..., uj} is set of users that need the service from facility points P . in

HSVD structure, U is set of non-generator point objects.

• q is query point. In reverse query, q ∈ P

• Q = {q1, q2, ..., qk} is the set of query points in group reverse queries, where k = |Q|

and Q ⊆ P .

• seq = 〈p1, p2, ..., pm〉 is a sequence of facility points

• Rseq = R〈p1, p2, ..., pm〉 is a region/Voronoi cell where p1 is the nearest facility point

followed by p2, p3, ... until pm as the farthest.

• seq[j] is a facility point at position of j from a distance sequence. 0 ≤ j < (m− 1).

• k is the number of objects of interest which query node q wants to retrieve.

• first k-sequence is the first k numbers of generator points from a seq.

If seq = 〈p5, p4, p2, p3, p1〉, first 2-sequence is 〈p5, p4〉

• last k-sequence is the last k numbers of generator points from a seq.

If seq = 〈p5, p4, p2, p3, p1〉, last 2-sequence is 〈p1, p3〉

• kth-sequence is the kth nearest generator points from a seq.

If seq = 〈p5, p4, p2, p3, p1〉, 4th-sequence is p3

• p[k] indicates a generator point p at kth position on distance sequence.

• R(p[k]) refers to all Voronoi cells that have generator point p at kth position on the

distance sequence.

• 〈[∗, ]pi[, ∗]〉 refers to any generator points except pi on the sequence.

〈p3, ∗, ∗, ∗〉 is the Voronoi cells with 4 generator points that have p3 at the first

position on the sequence.

〈∗, ∗, p3, ∗〉 is the Voronoi cells with 4 generator points that have p3 at the third

position on the sequence.
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• C(Q, k) is the first k sequence combinations of set Q, where Q ∈ P and k = |Q|.

If Q = {p1, p2, p3} and k = 3, C(Q, k) = {〈p1, p2, p3, ...〉, 〈p1, p3, p2, ...〉,

〈p2, p1, p3, ...〉, 〈p2, p3, p1, ...〉, 〈p3, p1, p2, ...〉, 〈p3, p2, p1, ...〉}.

5.2.3 Definitions

In the context of reverse nearest neighbour queries, there are two variations to how the

objects are retrieved, either starting from the nearest, called reverse nearest neighbour

queries, or from the farthest, called reverse farthest neighbour queries. Assume that there

are two distinct sets of objects. Let P = {p1, p2, ..., pm} is a set of facility points and

U = {u1, u2, ..., uj} is a set of users that need the service from facility points. The reverse

nearest query is issued from a facility point to obtain a set of users that considers this

facility as the nearest, so that q ∈ P .

Definition 5.2.1. Reverse Nearest Neighbour (RNN) query is a method used to

find users in U that consider query point q as their nearest facility point.

RNN(q) = {u|q = NN(u), u ∈ U}

Figure 5.1: RNN(q)={u7, u8, u9}

Figure 5.1 shows an example of RNN query. Assume that the facility point p1 is

the query point. A reverse nearest neighbour query from p1 means finding all objects of

interest that consider the query point as the nearest. From this figure, only objects u7, u8

and u9 consider p1 as the nearest.

Definition 5.2.2. Reverse k Nearest Neighbour(RkNN) query is a method to find

users in U that consider the query point q as one of their k nearest facility points.
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RkNN(q) = {u|q ∈ kNN(u), u ∈ U, 1 ≤ k ≤ |P |}

e

Figure 5.2: R2NN(q)={u7, u8, u9, u10}

An example of RkNN can be seen on figure 5.2, where the query point is p1 and k = 2.

The aim of this query is to find all users u that consider p1 as one of their 2NN facility

points. Hence, all users that consider p1 as the first nearest or second nearest will be

considered as R2NN(p1).

Definition 5.2.3. Reverse kth Nearest Neighbour (RkthNN) query is the method

of finding users in U that consider the query point q as their kth nearest facility point.

RkthNN(q) = {u|q = kthNN(u), u ∈ U, 1 ≤ k ≤ |P |}

Reverse kth nearest neighbour is a specific form of RkNN query, where the aim is to

find the objects of interest that consider the query point as the kth nearest facility point.

An example of RkthNN can be seen in Figure 5.3, where the query point is p1 and

k = 2. This query is meant to find all users u that consider p1 as their 2nd nearest facility

point. In this figure, only user u10 considers p1 as its 2nd nearest facility point, hence

R2thNN(p1) = {u10}.

Definition 5.2.4. Group Reverse Nearest Neighbour (GRNN) query is the method

of finding users in U that consider k number of query points in set of Q as their k nearest

facility points.

GRNN(Q) = {u|Q = kNN(u), u ∈ U, k = |Q|}

Group reverse nearest neighbour query is a special modification of the RNN query,

where the query is issued from k number of query points in set Q = {q1, q2, ..., qk}. The
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Figure 5.3: R2thNN(q)={u10}

aim is to find all objects of interest that consider these query points as their k nearest

facility points. An example of this query can be seen in Figure 5.4. In this example, the

query is issued from p3, p4, p5, and the objective is to find all users u that consider these

query points as their kNN.

Figure 5.4: GRNN(Q)={u1, u3, u4, u11}

Definition 5.2.5. Reverse Farthest Neighbour (RFN) query is a method of finding

users in U that consider the query point q as their farthest facility point.

RFN(q) = {u|q = FN(u), u ∈ U}

An example of RFN query is given in Figure 5.5. Here, objects u6, u7, u8, u9 consider

query point p1 as the farthest facility point.

Definition 5.2.6. Reverse k Farthest Neighbour (RkFN) query is a generalization

of RFN query where the aim is to find users in U that consider query point q as one of

their k farthest facility points.

RkFN (q) = {u|q ∈ kFN(u), u ∈ U, 1 ≤ k ≤ |P |}
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Figure 5.5: RFN(q)={u6, u7, u8, u9}

Figure 5.6 shows the example of RkFN query. The query point is p3 and the value of

k = 2, so the aim of this query is to find all users that consider the query point p3 as one

of the two farthest facility points. From this example, we can see that users u6, u7, u8, u9

consider p3 as the farthest facility point and objects u5, u10, u12 consider p3 as the second

farthtest facility point. Hence, R2FN(p3) = {u5, u6, u7, u8, u9, u10, u12}.

Figure 5.6: R2FN(q)={u5, u6, u7, u8, u9, u10, u12}

Definition 5.2.7. Reverse kth Farthest Neighbour (RkthFN) query is the method

used to find users in U that consider query point q as their kth farthest facility point.

RkthFN(q) = {u|q = kthFN(u), u ∈ U, 1 ≤ k ≤ |P |}

Figure 5.7 gives an example of R2thFN(q), where the query point is p3. In this

example, all users that consider query point p3 as their second farthest facility point are

{u5, u10, u12}.

Definition 5.2.8. Group Reverse Farthest Neighbour(GRFN) query is the method

to find users in U that consider k numbers of query points in set of Q = {q1, q2, ..., qk} as

their k farthest facility points.
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Figure 5.7: R2thFN(q)={u5, u10, u12}

GRFN(Q) = {u|Q = kFN(u), u ∈ U, k = |Q|}

An example of GRFN is shown in Figure 5.8. In this example, the set of query point is

Q = {p1, p2} and since there are two query points, the value of k = 2. Hence, GRFN(Q)

is meant to find all users U that consider the set of query point in Q as their two farthest

facility points. Therefore, GRFN(Q)={u1, u3, u4, u11}.

Figure 5.8: GRFN(Q)={u1, u3, u4, u11}

5.3 Cell Level Index (CLI)

In this part, we introduce a new indexing structure for the HSVD structure called cell level

index (CLI). This structure has level identification for each generator point, and each

level will refer to all corresponding Voronoi cells. Each Voronoi cell will refer to non-

generator points objects, so when a Voronoi cell is loaded, all non-generator points objects

can be identified easily. To the best of our knowledge, there are no index structures that

can be used to point to the exact cells from a generator point of Voronoi diagram and

depends on its position (Level) in the sequence as well, hence CLI was proposed.
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Reverse nearest neighbours is a method of finding non-facility points objects that

consider the query point as their nearest facility point. The RNN queries can be solved

effectively by using a region-based approach (Cheema et al., 2011; Adhinugraha et al.,

2013) where the aim is to find the region that contains objects to answer the query instead

of checking each non-facility point one by one.

In solving reverse nearest problems using the HSVD structure, the facility points P

will be considered as the generator points and users U will be considered as non-generator

point objects, since the HSVD structure will be constructed based on P . A RNN query

using HSVD is meant to find the Voronoi cells that contains non-generator point objects

where these objects consider the query point as the nearest facility point.

Since each cell in HSVD has a unique sequence, which indicates the distance order of

facility points from a certain Voronoi cell, the RNN region can also be identified by using

the HSVD structure. However, in order to find appropriate cells for a particular RNN

query, all cells need to be read.

In Chapter 3, the number of Voronoi cells from m facility points can be estimated using

equation 3.9.3 at the maximum number of m4. Hence by using HSVD, the number of cells

that need to be read in order to process an RNN query for any value of k will be constant

at m4 cells. While this might be not an issue for higher values of k (i.e k > (m/2)) in

RkNN query, this will be a serious problem for lower k value or RkthNN query, when the

number of cells needed to solve the query is very low.

The Voronoi cells needed to answer RNN query depends on the position of the query

point in the sequence of a Voronoi cell. In this thesis, the position of query point in a

sequence will be referred as ‘Level’. For example, to obtain the region of R1NN(p1), we

have to obtain all cells that have p1 in level 1. To obtain the region of R2NN(p1), we have

to obtain all cells that have p1 in level 1 and 2, since R2NN(p1) means all non-facility

points objects that consider p1 as one of their two nearest facility points. We find that

level is the main part that needs to be considered in order to determine whether a Voronoi

cell can be chosen to answer an RNN query.

In this index structure, each generator point will have m level and each level of a

facility point will have c Voronoi cells, where 0 ≤ c < m4. A level of generator points

might not have any cells if there is no sequence with this generator point at a certain level;

hence, c can be 0. A Voronoi cell can be referred by m level of generator points, since a
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Figure 5.9: HSVD Index Structure

Voronoi cell in HSVD will always have a sequence from m generator points. Each cell may

contain several numbers of non-generator point objects, and each object can be referred

only from a single Voronoi cell, since no objects can appear in more than one Voronoi cell.

The complete structure of this index is shown in Figure 5.9.

For example, a Voronoi cell with sequence 〈p1, p2, p3, p4, p5〉 can be referred from gen-

erator point p1 in level 1, generator point p2 in level 2, generator point p3 in level 3,

generator point p4 in level 4 and generator point p5 in level 5. By using CLI with the
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HSVD structure, we can minimize the number of cells needed to be read in order to identify

the right Voronoi cell for RNN queries.

(a) V h(p1, p2, p3, p4)

(b) CLI structure of V h(p1, p2, p3, p4)

Figure 5.10: Highest Order Voronoi diagram and its corresponding CLI

Figure 5.10 shows an example of HSVD constructed from four generator points (Figure

5.10a) and its corresponding CLI structure (Figure 5.10b). The number of estimated

possible Voronoi cells in equation 3.9.3 from four generator points is 18 Voronoi cells,

while the number of real Voronoi cells in within boundary is 16. These cells are mapped
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to CLI structure and each generator point has 4 level cells because there are four generator

points. Each level of generator points might or might not have the Voronoi cells. Each

Voronoi cell will have a set of non-generator point objects in it, although we do not map

these objects in this structure. The complete structure is shown in Figure 5.10b.

5.4 Reverse Nearest Neighbour with CLI Structure

Reverse nearest neighbour queries can be answered using either the region-based approach

or point-to-point approach. The region-based approach has a significant advantage since it

does not require an objects verification step to filter the candidates. In this section, we will

describe the region-based approach used to solve RNN queries by using Cell-Level-Index

(CLI). There are two variations of queries: (1) RkNN queries and (2) RkthNN queries.

5.4.1 Reverse k Nearest Neighbour

In this thesis, Reverse k Nearest Neighbour queries require finding non-generator point

objects that consider a query point q as one of their k nearest generator point. These

objects can be identified in all Voronoi cells that have query point q as the first k position

in their sequences. In a CLI structure, all Voronoi cells that have the objects to answer

the query are located in level 1 to level k.

RkNN(q) =
level=k⊔

level=1

R(q[level]) (5.4.1)

Algorithm 13: RkNN on HSVD-based with CLI Structure
Data: k, q
Result: R = {r1, r2, ..., rn} list of Voronoi cells that satisfy RkNN (q)
initialize(R);1

m← numOf(P )2

if (k ≤ m)then3

for lv = 1 to k do4

for cl = 1 to sizeOf(q.lv.cells) do5

R.add(q.lv.cells[cl]);/* load all Cells */6

end7

end8

else9

exit;/* k is bigger than number of facility points */10

end11
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Algorithm 13 explains RkNN query processing using CLI. In RkNN queries, the ob-

jective is to obtain all Voronoi cells where the query point is located in level k or less

(line 4-8). For each level (lv), all Voronoi cells(cells) will be added to the result set (line

6). Since all non-generator point objects have been assigned to appropriate Voronoi cells,

these objects can be identified straight from the result set.

Figure 5.11: R2NN(p3) with CLI

Figure 5.11 shows how to identify the R2NN(p3) region from HSVD. The region of

this query consists of all Voronoi cells where generator point p3 is in level 2 or less. All

Voronoi cells with p3 in level 2 are denoted in 〈∗, p3, ∗, ∗, ∗〉 symbol, where ”∗” means any

generator point which is not p3. Meanwhile, all Voronoi cells with p3 in level 1 are denoted

in 〈p3, ∗, ∗, ∗, ∗〉. From equation 5.4.1, the region for R2NN(p3) can be written as

R2NN(p3) = R〈p3, ∗, ∗, ∗, ∗〉 tR〈∗, p3, ∗, ∗, ∗〉

Figure 5.12 shows 10 generator points and 1000 non-generator points objects distri-

bution that will be used for the simulation. The simulation is built in a Java Net Beans

environment. Figure 5.13 shows the R3NN(p51) region from the simulation.

5.4.2 Reverse kth Nearest Neighbour

Reverse kth nearest neighbours is the method of finding all non-generator point objects

that consider the query point as their kth nearest generator point. In an HSVD, these

objects are located in the region where the query point is the kth position in the distance

sequence. The RkthNN query can be formalized as
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Figure 5.12: Objects distribution from simulation

Figure 5.13: R3NN(p51) Region and Objects in it from simulation

RkthNN(q) = R(q[k])〉 (5.4.2)

Algorithm 14: RkthNN on HSVD-based with CLI Structure
Data: k, q
Result: R = {r1, r2, ..., rn} list of Voronoi cells that satisfy RkthNN (q)
initialize(R);1

lv ← k;2

m← numOf(P )3

if (k ≤ m)then4

for cl = 1 to sizeOf(q.lv.cells) do5

R.add(q.lv.cells[cl]);/* load all Cells */6

end7

else8

exit;/* k is bigger than number of facility points */9

end10
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Algorithm 14 shows how an RkthNN query is answered with HSVD. This algorithm is

very similar with RkNN algorithm, except the aim of this algorithm is to obtain only the

Voronoi cells where query point q is on level k (line 5-7). The algorithm will stop after

all Voronoi cells in this level have been loaded into the result set (R). All non-generator

point objects can be identified from this result set.

Figure 5.14: R2thNN(p3) with CLI

Figure 5.14 shows an example of an RkthNN query than can be solved by using

HSVD structure. Assume that the HSVD is constructed from five generator points

P = {p1, p2, p3, p4, p5}, the query point is q = p3 and k = 2. The R2thNN(p3) can

be defined as all Voronoi cells where p3 at level 2 in the sequence. From this figure, we

can identify the nine Voronoi cells needed to answer this query. Therefore, the region of

R2thNN(p3) can be written as

R2thNN(p3) =
⊔

R〈∗, p3, ∗, ∗, ∗〉.

Another example of RkthNN query processing by using the HSVD structure is shown

in Figure 5.15. This figure demonstrates the region and non-generator-point objects in it

from R3thNN(p121). Similar to simulation in Figure 5.13, the HSVD is constructed from

10 generator points and the number of existing non-generator points are 1000.

5.5 Reverse Farthest Neighbour with CLI Structure

Reverse farthest neighbour approach is the method used to find non-generator-point ob-

jects that consider a query point q as their farthest generator point. These objects can
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Figure 5.15: R3thNN(p121) Region and Objects in it from simulation

be identified in all Voronoi cells that have query point q at the last position in their se-

quences. In this section, we will describe the method used to identify the region as well

as non-generator-point objects in it for RkFN and RkthFN queries. We will solve these

problems with a CLI and HSVD structure.

5.5.1 Reverse k Farthest Neighbour

To answer RkFN queries based on the HSVD structure with CLI structure, all Voronoi

cells that have the objects to answer the query are located in level m to level m + 1− k.

RkNN(q) =
level=m⊔

level=m+1−k

R(q[level]) (5.5.1)

Algorithm 15: RkFN on HSVD-based with CLI Structure
Data: k, q
Result: R = {r1, r2, ..., rn} list of Voronoi cells that satisfy RkFN (q)
initialize(R);1

m← numOf(P )2

if (k ≤ m)then3

for lv = m down to (m+1-k) do4

for cl = 1 to sizeOf(q.lv.cells) do5

R.add(q.lv.cells[cl]);/* load all Cells */6

end7

end8

else9

exit;/* k is bigger than number of facility points */10

end11
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Algorithm 15 explains how to identify an RkFN region from the HSVD structure.

This algorithm works in a similar way to the algorithm for an RkNN query, except this

algorithm starts from the farthest level and moves towards the nearest (line 4) level of

query point. On each level, all corresponding Voronoi cells will be loaded. The algorithm

will stop once all Voronoi cells on each level have been loaded, and all non-generator-point

objects can be referred from the selected Voronoi cells.

Figure 5.16: R2FN(p5)

Figure 5.16 gives an example of an RkFN query. Assume that the HSVD is constructed

from five generator points P = {p1, p2, p3, p4, p5}, the query point q = p5 and k = 2.

R2FN(p5) is meant to find all Voronoi cells where p5 is between level 1 and level 2. The

region of this query is the shaded area. Therefore, the region of R2FN(p5) can be defined

as

R2FN(p5) = R〈∗, ∗, ∗, ∗, p5〉 tR〈∗, ∗, ∗, p5, ∗〉

Figure 5.17: R3FN(p121) Region and Objects in it from simulation
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Figure 5.17 is an example of an RkFN where the HSVD is generated from ten generator

points, k = 3 and q = p121. The number of non-generator-point objects is 1000 and these

objects are distributed uniformly on the map.

5.5.2 Reverse kth Farthest Neighbour

Reverse kth farthest neighbour query is the method of finding the non-generator-point

objects that consider the query point as their kth farthest generator point. These objects

can be identified in all Voronoi cells where the query point is at the last kth position on

the sequence. In the HSVD structure, the Voronoi cells can be identified where the query

point is on level kth from the last, or equivalent to level m + 1− k in RkthNN query.

RkthFN(q) = R(q[m+1−k]) (5.5.2)

Algorithm 16: RkthFN on HSVD-based with CLI Structure
Data: k, q
Result: R = {r1, r2, ..., rn} list of Voronoi cells that satisfy RkthFN (q)
initialize(R);1

m← numOf(P )2

lv ← m + 1− k;3

if (k ≤ m)then4

for cl = 1 to sizeOf(q.lv.cells) do5

R.add(q.lv.cells[cl]);/* load all Cells */6

end7

else8

exit;/* k is bigger than number of facility points */9

end10

Algorithm 16 shows the process of RkthFN query processing. This method chooses

the Voronoi cells that have query point q at the kth last level (line 3), and then loads all

Voronoi cells on this level (line 5-7). The non-generator-point objects can be identified

from the loaded Voronoi cells since the non-generator-point objects can be referred from

Voronoi cells in the CLI structure.

Figure 5.18 shows an example of this query R2thFN(p5). Assume that the predefined

HSVD structure is constructed from five generator points, and CLI is constructed from

HSVD. The region of R2thFN(p5) can be identified by choosing all the Voronoi cells where

query point p5 is located on level 4 in CLI structure. The cells that have generator point
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Figure 5.18: R2thFN(p5)

Figure 5.19: R3thFN(p131) Region and Objects in it from simulation

p5 at level 4 will have the sequence pattern as 〈∗, ∗, ∗, p5, ∗〉, and the region of this query

will be the union of all Voronoi cells with this pattern, as can be shown in the figure.

Another example of this query type is shown in Figure 5.19, where the HSVD structure

is constructed from ten generator points and there are 1000 users distributed randomly.

The query point is p131 and k = 3. The region of R3thFN(p131) is shaded yellow and the

dots represent non-generator-point objects that consider p131 as their 3th farthest facility

point.

5.6 Group Reverse Queries

Group reverse query is a reverse query that is issued from a set of query points. The main

aim of group reverse query is to find the region and non-generator-point objects in it that

consider the set of query points as their nearest generator points. Group reverse query

has recently attracted researchers’ attention and has great potential for use in further

applications (Zhu et al., 2014). We divide the group reverse queries into two categories:
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(1) group reverse nearest neighbour queries (GRNN) and (2) group reverse farthest neigh-

bour queries (GRFN). In group reverse queries, the value of k is equal to the number of

query points in Q. Let Q = {q1, q2, ..., qk}, then k = |Q|, since the region of group reverse

query is the region where all non-generator-point objects consider the set of query points

as their k nearest or farthest generator points.

5.6.1 Group Reverse Nearest Neighbour (GRNN)

Let P = {p1, p2, p3, ..., pm} is a set of generator points from highest order Voronoi diagram

V (P ). Group reverse nearest neighbour from a set of query point Q = {q1, q2, q3, ..., qk} ⊆

P is a method of finding the region where all non-generator-point objects U will consider

this set of query points as their k nearest generator points.

GRNN(Q) = {u | Q = kNN(u), u ∈ U, k = |Q|, Q ⊆ P} (5.6.1)

When a non-generator-point object u considers a query point q as the nearest generator

point, object u is part of RNN of q. When this object u also considers another generator

point p as the two nearest generator point so that 2NN(u) = {q, p}, this means that

object u is also the reverse nearest neighbours of {q, p}. Since there are two generator

points, the value of k depends on the number of generator points involved in this query.

Figure 5.20: 3NN(u) = {p2, p3, p4}

In answering GRNN query from a set of query points Q with HSVD, the set of query

points Q is a subset of all facility points P = {p1, p2, p3, ..., pm}, so Q ⊆ P . The highest

order Voronoi diagram V h(P ) is constructed from all facility points P , so that P is also
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a generator point and query points in Q are also generator points. Since all query points

have to be considered as the nearest generator points, the value of k will depend on the

number of query points, so k = |Q|. Hence, in region of GRNN query, each query point

will be one of k nearest generator point for any non-generator-point objects U in this

region as can be seen in figure 5.20.

In Group Reverse Nearest queries, the set query point Q = {q1, q2, q3, ..., qk} consists

of multiple query points, so in order to cover all the query points as k nearest generator

points, the region of GRNN query must be the subregion of any RkNN(qi), where

(GRNN(Q) v RkNN (q1))∧(GRNN(Q) v RkNN (q2))∧ ...∧(GRNN(Q) v RkNN (qk))

(5.6.2)

Since the region of GRNN(Q) is a subregion of all RkNN (qi), the region of GRNN(Q)

is constructed from the intersection of all regions RkNN (qi), where can be formulated as:

GRNN(Q) = RkNN(q1) uRkNN (q2) u ... uRkNN (qk) (5.6.3)

The process of identifying the region of GRNN(Q) in equation 5.6.3 with HSVD can

be simplified by performing RkNN(qi) for k times, and intersecting all RkNN regions.

An example of this method can be seen in Figure 5.21. In this example, assume that

the query point Q = {p2, p3, p4}. Since the region of GRNN(Q) is the intersection of

all R3NN(p), to obtain this region, we have to perform R3NN(p) three times (Figure

5.21a,5.21b,5.21c), and intersect all R3NN regions (Figure 5.21d).

In the region of GRNN(Q), all query points must be considered as the nearest generator

points, regardless of the distance sequence. Hence, the distance sequence of this region

can consist of any k combinations of k query points at the first left sequence. The k

combination of possible distance sequences from a set of query points Q will be C(Q, k)

as 〈q1, q2, ..., qk, [∗]〉, 〈q2, q1, ..., qk, [∗]〉, ..., 〈qk, q(k−1), ..., q1, [∗]〉

From this explanation, the region of GRNN(Q) can be expressed as

GRNN(Q) =
⊔

R〈C(Q, k)〉 (5.6.4)

To minimize the number of cells that need to be read in equation 5.6.3, we will

only search the possible cells in the first RkNN (qi) region, where qi ∈ Q, because
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(a) R3NN(p2) (b) R3NN(p3)

(c) R3NN(p4) (d) GRNN({p2, p3, p4})

Figure 5.21: GRNN(Q), Q = {p2, p3, p4}

GRNN(Q) ⊆ RkNN (qi). We will call this first region as candidate region, and then

followed by refinement to get all the cells that have a combination of Q on their first

k-sequences. This method is implemented using the following algorithm.

Algorithm 17 is arranged based on equation 5.6.4, where the GRNN region can be

identified by the union of all Voronoi cells that have any k combination of Q as the first-k

in their distance sequences. Since the GRNN region is also a subregion of any region

of RkNN(qi) as in equation 5.6.2, this algorithm starts by choosing a candidate region

RkNN(q1) (line 5, V ). The next step is to find cells that have any k-combinations as

k-first sequence (line 8-10) and choose these cells as the result set for this query. The

non-generator-point objects can be referred from the regions of GRNN(Q) itself.

This algorithm is illustrated in Figure 5.22. Let P = {p1, p2, p3, p4, p5}, Q =

{p2, p3, p4} and k = 3. The first step in finding the region of GRNN(Q) is by finding

the candidate region R3NN(p2) (green-shaded area). The next step is to apply a refine-

ment process by selecting all Voronoi cells that have any k-combinations of Q as their
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Algorithm 17: GRNN on HSVD-based with CLI Structure
Data: Q = {q1, q2, ..., qk}
Result: R = {r1, r2, ..., rn} list of Voronoi cells that satisfy GRNN(q)
initialize(R);1

m← numOf(P )2

k ← numof(Q)3

if (k ≤ m)then4

V ← RkNN (k,Q[1]);/* get RkNN region of first query point */5

for i = 1 to sizeOf(V) do6

/* Check all available Voronoi cells */
s← getSequence(V [i]);7

if subSet(Q,k,s) then8

/* if set of Q is in first-k of s */
R.add(V [i]);9

end10

end11

else12

exit;/* k is bigger than number of facility points */13

end14

Figure 5.22: GRNN(p2, p3, p4)

k-first sequences. Hence, the region of GRNN(Q) is shown as a red-shaded area and can

be formally written as

GRNN(p2, p3, p4) = R〈p2, p3, p4, ∗, ∗〉 tR〈p2, p4, p3, ∗, ∗〉 t R〈p3, p2, p4, ∗, ∗〉 t

R〈p3, p4, p2, ∗, ∗〉 tR〈p4, p2, p3, ∗, ∗〉 tR〈p4, p3, p2, ∗, ∗〉

Another example of a GRNN query is shown through our simulation, where the

HSVD is constructed from ten generator points and 1000 non-generator-point objects

are generated randomly as shown in Figure 5.23. In this figure, the query point set
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Q = {p51, p71, p90, p112} and the region of a GRNN query consists of all non-generator-

point objects that consider these query points as their four nearest generator points.

Figure 5.23: GRNN(p51, p71, p90, p112) Region and Objects in it from simulation

5.6.2 Group Reverse Farthest Neighbours (GRFN)

Let P = {p1, p2, p3, ..., pm} be a set of generator points from a highest order Voronoi

diagram V (P ). GRFN from a set of query point Q = {q1, q2, q3, ..., qk}, Q ⊆ P is a

method of finding the region where all non-generator points in U will consider this set of

query points as their k farthest generator points.

GRFN(Q) = {u | Q = kFN(u), k = |Q|, Q ⊆ P} (5.6.5)

Similar to the GRNN query, the value of k depends on the number of query points in Q,

since all of the query points must be considered as nearest generator points from objects

u. Figure 5.24 shows an example of the three farthest generator points from object u,

where object u is a non-generator-point object. In this example, generator point p3, p4, p5

are three farthest generator points from object u, and object u is also part of R3FN(p3),

part of R3FN(p4) and part of R3FN(p5).

The region of RkFN(q) contains non-generator-point objects that consider a query

point as their k farthest generator point. The region of GRFN(Q) contains non-generator-

point objects that consider other query points beside q1 as their k farthest generator points.

Hence, a region of GRFN(Q) must be a subregion of RkFN(qi), where
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(GRFN(Q) v RkFN (q1)) ∧ (GRFN(Q) v RkFN (q2)) ∧ ... ∧ (GRFN(Q) v RkFN (qk))

(5.6.6)

Figure 5.24: 3FN(o) = {p3, p4, p5}

Since the region of GRFN(Q) is a subregion of the entire region of RkFN(qi), the

region of GRNN(Q) can be constructed from intersection of region of RkFN(qi) that can

be expressed as:

GRFN(Q) = RkFN (q1) uRkFN (q2) u ... uRkFN (qk) (5.6.7)

In this method, the region of GRFN(Q) can be identified by performing RkFN(qi)

k-times and intersecting with all RkFN regions to obtain the GRFN(Q) region.

An example of the process used to identify the region of GRFN in equation 5.6.7

with HSVD can be seen in Figure 5.25. In this example, the HSVD is constructed

from P = {p1, p2, p3, p4, p5}. The set of query points Q = {p3, p4, p5} and k = 3.

The region of GRFN(Q) is defined as the intersection of all regions of R3FN , so that

GRFN(Q) = R3FN(p3) uR3FN(p4) uR3FN(p5).

In identifying the region of a GRFN query with HSVD, it is important to minimize the

number of cells that need to be read. The region of GRFN in equation 5.6.7 will involve

too many unnecessary cells, since each query point will perform a RkFN query and obtain

its own region before the final region can be obtained. Since the final GRFN(Q) region

is always a subregion of each region of RkFN(qi), the process of identifying GRFN region
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(a) R3FN(p3) (b) R3FN(p4)

(c) R3FN(p5) (d) GRFN({p3, p4, p5})

Figure 5.25: GRFN(Q), Q = {p3, p4, p5}

can be initially focused on a candidate region of RkFN(qi), and the refinement process

will be done within this region. An example of this process can be seen in Figure 5.26.

The initial step is shown in figure 5.26a, where an initial region is set from a RkNN query.

The next step is to refine and prune any unnecessary cells so that the region of GRFN(Q)

can be identified. At the end, the region of GRFN is the union of all Voronoi cells that

have combination Q as the last k-sequence (Figure 5.27), and can be expressed as

GRFN(Q) =
⊔

R inverse(〈C(Q, k)〉) (5.6.8)

From this equation, we can define an algorithm to identify the region of GRFN, based

on HSVD and CLI structure. This algorithm receives Q as the input, and produces the

region for GRFN(Q).

Algorithm 18 explains how to identify the region of GRFN by using the HSVD and

CLI structures. The first step is to identify the initial region that can be obtained from a

region of RkFN(q1) (line 5). The next step is to refine the region from line 5 so that only
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(a) Initial (b) Refinement

Figure 5.26: GRFN(Q), Q = {p3, p4, p5}

Figure 5.27: GRFN(p3, p4, p5)

those Voronoi cells that have Q in the last k sequences will be chosen (line 9-11). To get

the last k in the same manner as RkNN process, we apply inverseSequence() function to

reverse the sequences. The algorithm will stop after the initial region has been refined.

By using this algorithm, the region of GRFN(Q) in Figure 5.27 can be formulated as

GRFN(p3, p4, p5) = R〈∗, ∗, p3, p4, p5〉 tR〈∗, ∗, p3, p5, p4〉 t R〈∗, ∗, p4, p3, p5〉 t

R〈∗, ∗, p4, p5, p3〉 tR〈∗, ∗, p5, p3, p4〉 tR〈∗, ∗, p5, p4, p3〉

Another example of a GRFN query is shown through our simulation, where the

HSVD is constructed from ten generator points and 1000 non-generator-point objects

are generated randomly as shown in Figure 5.28. In this figure, the query point set

Q = {p71, p121, p137} and the region of a GRFN query consists of all non-generator-point

objects that consider these query points as their three farthest generator points.
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Algorithm 18: GRFN on HSVD-based with CLI Structure
Data: Q = {q1, q2, ..., qk}
Result: R = {r1, r2, ..., rn} list of Voronoi cells that satisfy GRFN(q)
initialize(R);1

m← numOf(P )2

k ← numof(Q)3

if (k ≤ m)then4

V ← RkFN (k,Q[1]);/* get RkFN region of first query point */5

for i = 1 to sizeOf(V) do6

/* Check all available Voronoi cells */
s← getSequence(V [i]);7

s← inverseSequence(s) /* Inverse the order of sequence */8

if subSet(Q,k,s) then9

/* if set of Q is in first k of s */
R.add(V [i]);10

end11

end12

else13

exit;/* k is bigger than number of facility points */14

end15

Figure 5.28: GRFN(p71, p121, p137) Regions and Objects in it from simulation

5.7 Discussion

Spatial reverse queries can be classified by the way objects are sorted according to the

distance, either from the nearest to the farthest or from the farthest to the nearest. Reverse

k nearest neighbour is the method of finding the regions and users in those regions that

consider a facility point as one of their k nearest facility points, and this method starts the

search process from the nearest to the farthest. Reverse k farthest neighbours on the other

hand, is the method of finding the regions and users in those regions that consider the
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facility point as one of their k farthest facility points, and this method starts the searching

process from the farthest to the nearest.

In this chapter, we utilize a highest order Voronoi diagram to solve spatial reverse

queries. This diagram has an important spatial feature: sequence information to all

generator points that can be used to solve both RkNN and RkFN queries. However, the

HSVD structure does not provide an efficient retrieval structure. Therefore, this diagram

must be used in a sequential manner to answer any reverse queries. To overcome this

problem, we propose an index structure for HSVD that provides an effective retrieval

structure for reverse queries called cell level index (CLI). This index is built to identify

cells that have a generator point at a certain level. This index can easily obtain the cells

needed for any k values in all reverse query variations including RNN, RFN, GRNN and

GRFN query processing.

Figure 5.29: Cells read for RkNN and RkFN with CLI

Figure 5.29 shows the number of cells read for RkNN and RkFN. In this figure, the

number of cells read is also the number of cells needed to answer the query since the CLI

index refers to the correct cells directly so that no unnecessary cells are read on the CLI

index.

Meanwhile, Figure 5.30 shows the number of cells that need to be read for an RkthNN

query and an RkthFN query by using the CLI structure. The number of cells represents

the number of cells needed to answer the query for a specific value of k, and no unnecessary

reading is performed.

From our experiments, it is clear that the CLI can perform better in identifying the

region of spatial reverse query since this structure can identify the cells for any generator

points on any level.
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Figure 5.30: Cells read for RkthNN and RkthFN with CLI

5.8 Chapter Summary

In this chapter, we show how to answer the reverse queries in spatial databases and their

variations using the HOVD structure. Since HSVD does not have a retrieval structure, in

this chapter we propose a retrieval index to avoid reading all cells called, cell level index

(CLI). We applied this index structure to solve common spatial reverse queries and their

variations, which are RkNN, RkFN, RkthNN, RkthFN, GRNN and GRFN queries.



Chapter 6

Polychromatic Spatial Queries

with HSVD

6.1 Overview

In spatial query processing, there are two common categories based on the number of

objects types involved in the query, named monochromatic and bichromatic queries. In a

monochromatic query, both query point and the result from the query use the same type

of object. In a bichromatic query, the object that issues the query is different from the

result sets. Both monochromatic and bichromatic queries have been intensively discussed

in Chapter 2, Chapter 4 and Chapter 5.

In this chapter, we will discuss a region-based polychromatic query processing,

where the number of object types involved in the spatial queries is greater than two.

Polychromatic query is very common in our daily lives, although this type of query has

not attracted substantial research (Zhao et al., 2009). The worst case for polychromatic

approach is when the number of object types involved in the query is the same as the

number of available objects.

Consider the following everyday example in nearest neighbours problems. Assume

that a student needs to find the nearest restaurant in the area of Monash University in

Clayton. However, he also needs to find nearby petrol station, as shown in Figure 6.1. In

this example, the student expects to obtain a list of the nearest restaurants and also the

nearest petrol stations around his current position so that he can determine which way he

should go.

131
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Figure 6.1: Polychromatic query with travel distance priority

Consider another example of polychromatic query in reverse nearest neighbours prob-

lems. Assume that there are several facility types related to educational facilities, which

are Primary School (PS), Public Library (PL), Hospital (H) and users (U). PS, PL and

H are all facility points which are needed by users U who lived in a particular residential

area. Examples polychromatic queries that can be issued are: “Which Primary Schools

and users consider a Public Library as the nearest library?”, “Which region/residential

area that consider Primary School ps, Public Library pl and Hospital h as their 3 nearest

facility points?”

Polychromatic queries can also be extended into hierarchical queries, where the facil-

ity points can be classified into classes/subclasses, and the query can be issued according

desired class/subclass. Consider another daily activity related to hierarchical queries. As-

sume that there are various types of restaurants in a suburb. The restaurants can be classi-

fied as “European” and “Asian” restaurants, where European restaurants can be classified

more specifically as ”Italian”,“French” and “Greek” restaurants, while Asian restaurants

can be classified more specifically as “Chinese”,“Indian”, and “Japanese” restaurants. A

customer is looking for five restaurants nearest to his current location. If the customer

does not specify a particular type of restaurant, the result of the query will be any five

restaurants close to his location. If he specifies five Asian restaurants, the result of the

query could be five Chinese, Indian or Japanese restaurants nearest to his current location.

Furthermore, the customer can also change the query to obtain a more specific result, such

as finding five Japanese restaurants around his current location. Hierarchical query is very

useful when a user needs to refine a query to obtain more specific results.
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There are many possible applications of polychromatic queries, not limited to a spatial

area. However, in this chapter we will limit our discussion to nearest neighbour queries

and reverse queries in spatial databases. In this chapter, we contribute to answering

polychromatic spatial queries in the following ways. We:

1. Define the taxonomy of a polychromatic query for spatial databases.

2. Propose methods for solving polychromatic queries by using HSVD.

3. Propose the hierarchical queries for the concept of polychromatic queries.

4. Propose methods to solve the hierarchical queries in polychromatic queries.

6.2 Queries Taxonomy, Notations and Definitions

6.2.1 Queries Taxonomy

In this chapter, we define the taxonomy of polychromatic queries based on how the gener-

ator point types are classified. In polychromatic queries, the facility types are not grouped

while in hierarchical queries, the facility types are grouped into certain groups, and each

group may form a larger group. The queries must be processed differently to accommodate

the needs of each type.

In polychromatic queries, query processing depends on the nature of the query itself. In

this chapter, the polychromatic nearest neighbour and polychromatic farthest neighbour

queries will be processed based on nearest neighbours framework, while polychromatic

reverse query processing will read all cells since the CLI index cannot be applied in this

situation.

The taxonomy of polychromatic queries is described as follows:

1. Polychromatic Queries

(a) Polychromatic Nearest Neighbours Queries

i. Polychromatic k Nearest Neighbours Queries

ii. Polychromatic all-k Nearest Neighbours Queries

(b) Polychromatic Farthest Neighbours Queries

i. Polychromatic k Farthest Neighbours Queries

ii. Polychromatic all-k Farthest Neighbours Queries

(c) Polychromatic Reverse Queries
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i. Polychromatic Reverse k Nearest Neighbours Queries

ii. Polychromatic Reverse k Farthest Neighbours Queries

2. Hierarchical Queries

(a) Hierarchical k Nearest Neighbours Queries

(b) Hierarchical k Farthest Neighbours Queries

(c) Hierarchical Reverse k Nearest Neighbours Queries

(d) Hierarchical Reverse k Farthest Neighbours Queries

In hierarchical queries, both hierarchical nearest neighbour and hierarchical farthest

neighbours will still apply the nearest neighbours framework. However, in hierarchical

RNN and hierarchical RFN, the CLI index cannot be used as well. Hence, all cells need

to be read in order to solve these problems.

6.2.2 Notations

• T = {t1, t2, ..., ti} is the list of available facility types.

• P (ti) = {pti
1 , pti

2 , ..., pti
x } is the set of facility points type ti.

• P =
⋃i

1 |P (ti)| is the set of available facility points.

• V h(P ) is Highest Order Voronoi diagram from P .

• m is the number of facility points. m =
∑i

1 |P (ti)|.

• U = {u1, u2, ..., uj} is set of users that need the service from facility points P .

• q is query point. q ∈ P or q ∈ U

• Tq = {Tq1, T q2, ..., T qy}, Tq ⊆ T be the set of facilities type query.

• A = {aTq1
1 , aTq1

2 , ...aTq1

k , aTq2
1 , aTq2

2 , ..., aTq2

k , ..., a
Tqy

1 , ..., a
Tqy

k }, aTqy ∈ P (ty) is the an-

swer for polychromatic query.

• seq = 〈p1, p2, ..., pm〉 is a distance sequence of facility points

• Rseq = R〈p1, p2, ..., pm〉 is a region/Voronoi cell where p1 is the nearest facility point

followed by p2, p3, ... until pm as the farthest.

• seq[j] is a facility point at position of j from a distance sequence. 0 ≤ j < (m− 1).

• k is the number of objects of interest which query node q wants to retrieve.

• first k-sequence is the first k numbers of generator points from a seq.

If seq = 〈p5, p4, p2, p3, p1〉, the first two sequence is 〈p5, p4〉

• last k-sequence is the last k numbers of generator points from a seq.

If seq = 〈p5, p4, p2, p3, p1〉, the last two sequence is 〈p1, p3〉
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6.2.3 Definitions

In the context of polychromatic spatial queries, the facility points are classified into several

different types, and the query is issued according to the expected types that need to be re-

trieved. Let T = {t1, t2, ..., ti} be the list of available facility types, P (ti) = {pti
1 , pti

2 , ..., pti
x }

be the set of facility points type ti. The number of available facility points from all sets

can be defined as m =
∑i

1 |P (ti)|. The users that need the service from all facility points

is U = {u1, u2, ..., uj}. In a polychromatic query, since a type of facility point can also

provide service to other types of facility points, the queries can be issued either from users

in U or facility points in P (ti).

The answer to a polychromatic query is the set of k facility points A from expected

facility types Tq. Let Tq = {Tq1, T q2, ..., T qy}, Tq ⊆ T be the set of expected facilities

type, and A = {aTq1
1 , aTq1

2 , ...aTq1

k , aTq2
1 , aTq2

2 , ..., aTq2

k , ..., a
Tqy

1 , ..., a
Tqy

k }, aTqy ∈ P (ty) . The

query in polychromatic queries can be issued either from a facility point or non-facility

point, q ∈ U or q ∈ P (ti), depending on the type of the queries, either Nearest Neighbours

queries or Reverse Nearest Neighbours queries. The following definitions explain the pos-

sible variations in polychromatic queries in this thesis. However, these variations may be

extended to support other purposes.

Definition 6.2.1. Polychromatic k Nearest Neighbours (PkNN(q, k, Tq)) query is

the method of finding k nearest facilities for a set of facility types Tq from a query point.

The query is issued from user q ∈ U .

Figure 6.2 shows an example of a polychromatic query from query point q. Assume

that there are three facility types, which are blue circle, green triangle and red diamond.

User q issues a query which intended to find the two nearest facility points from either

green triangle or red diamond types. This query is expected to retrieve 2 nearest facility

points from q, either from the green triangle type or the red diamond. In this example,

this query retrieved 1 red diamond and 1 green triangle.

Definition 6.2.2. Polychromatic all-k Nearest Neighbours (Pall-kNN(q, k, Tq))

query is the method used to find k nearest facilities for each facility type in Tq from query

point q where q ∈ U .

Figure 6.3 shows an example of Pall− kNN(q, 2, Tq) where the query is issued from a

user q to obtain k nearest facility points for each type. Assume that there are three facility
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Figure 6.2: PkNN(q, 2, Tq)

Figure 6.3: Pall − kNN(q, 2, Tq)

types, which are blue circle, red diamond and green triangle. This query is intended to

find two nearest red-diamond facility points and two nearest green-triangle facility points

around q, so a total of four facility points need to be retrieved.

In short, polychromatic kNN is a query that can be issued from either generator

points or non-generator points, and this query will consider a set of generator points as

the answer.

Definition 6.2.3. Polychromatic k Farthest Neighbours (PkFN(q, k, Tq)) query is

the method of finding k farthest facilities for a set of facility types Tq from a query point.

The query is issued by user q ∈ U .

Figure 6.5 shows an example of PkFN (q, 2, Tq). Assume that there are three types of

facility points which are blue circle, green triangle and red diamond. The query is issued
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Figure 6.4: PkFN (q, 2, Tq)

by a user q to find the two farthest facility points from either the red diamond type or

green triangle type. In this example, the query retrieves two red diamond facility points

as the two farthest facility points from q, and no green triangles are selected.

Definition 6.2.4. Polychromatic all-k Farthest Neighbours (Pall-kFN(q, k, Tq))

query is the method used to find k farthest facilities for each facility type in Tq from query

point q where q ∈ U .

Figure 6.5: P all − kFN(q, 2, Tq)
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Figure 6.5 shows an example of Pall − kFN(q, 2, Tq). Assume that there are three

types of facility points which are blue circle, green triangle and red diamond. The query

is issued by user q to find the two farthest facility points for each facility type. In this

example, this query is expected to retrieve two red diamond facility points and two green

triangle facility points.

Definition 6.2.5. Polychromatic Reverse k Nearest Neighbours (PRkNN(q, k, Tq))

is the method of finding the region and users in it that consider query point q as one of

their polychromatic k nearest neighbours PkNN(u, k, Tq). In this query, the query is

issued from a query point q where q ∈ P (Tqi]) and k ≥ |Tq|.

Figure 6.6: PRkNN (q, 2, Tq)

Figure 6.6 shows an example of a PRkNN query. In this example, assume that there

are three types of facility points which are blue circle (BC), green triangle (GT) and red

diamond (RD), and users are represented by purple crosses. A blue circle facility point q

issues a polychromatic reverse query to identify the users that consider the query point q

as their two nearest facility points compared with other blue circles or green triangles, but

ignores red diamonds. Hence, Tq = {BC,GT}. In this example, the query returns three

users that consider query points q as one of their PkNN(u, 2, Tq).

Definition 6.2.6. Polychromatic Reverse k Farthest Neighbours (PRkFN(q, k, Tq))

is the method of finding the region and users in it that consider query point q as one of

their polychromatic k farthest neighbours PkNN(u, k, Tq). In this query, the query is

issued from a query point q where q ∈ P (Tqi]) and k ≥ |Tq|.
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Figure 6.7: PRkFN (q, 2, Tq)

Figure 6.7 shows an example of a PRkFN query. In this example, assume that there

are three types of facility points which are blue circle (BC), green triangle (GT) and red

diamonds (RD), and users are represented by purple crosses. A blue circle issues a query

PRkFN (q, 2, Tq), Tq = {BC,RD)}. This query is intended to find all users that consider

this query point as one of their two nearest facility points either BC or RD, while GT is

excluded.

Definition 6.2.7. Hierarchical k Nearest Neighbours Query(HkNN(q, k, Tq)) is

a method to find k nearest facility points type Tq or all other subtypes of Tq, where the

query is issued from a user q ∈ U .

In this type of query, the types of facility points are constructed in a hierarchical

manner, so that a type can have a parent type and also sub-types, and the hierarchical

structure is not a balanced structure.

Figure 6.8 shows an example of hierarchical k nearest neighbour query. Let T1 is a

general type of facility points, where T1 has 2 more specific types, named T2 and T3. Blue

circles are all facility points type T2. Meanwhile facility type T3 has more specific types

named T4 and T5, where red diamonds are facility points type T4 and green triangles

are facility points type T5 as shown in Figure 6.8a. Figure 6.8b shows an example of

HkNN(q, 3, T3). Assume that the query is issued by user q ∈ U , and the query is

intended to find three nearest facility points type T3 from q. Since T3 is a parent for T4

and T5, this query will perform polychromatic kNN query for facility types T4 and T5.
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(a) Hierarchy of Facility Types (b) HkNN(q, 3, T3), q ∈ U

Figure 6.8: HkNN query example

Definition 6.2.8. Hierarchical k Farthest Neighbours Query(HkFN(q, k, Tq)) is

a method used to find k farthest facility points type Tq or all other subtypes of Tq, where

the query is issued from a user q ∈ U .

Figure 6.9: HkFN(q, 3, T3), q ∈ U

Figure 6.9 shows an example of a HkFN query. This query uses the hierarchical

structure as shown in Figure 6.8a. In this example, a user q ∈ U issues HkFN(q, 3, T3)

and this query is intended to find the three farthest facility points type T3 from q. Since

T3 is a parent for T4 and T5, this query will also perform polychromatic kFN query for

facility types T4 and T5.

Definition 6.2.9. Hierarchical Reverse k Nearest Neighbour Query(HRkNN(q, k, Tq))

is a method used find the region and users in it that consider query point q as one of their
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k nearest facility points of subtypes Tq. This query is issued from a facility point q of type

Tq.

Figure 6.10: HRkNN (q, 2, T3), q ∈ U

Figure 6.10 shows an example of HRkNN query. This query uses the same hierarchical

structure as that shown in Figure 6.8a. In this example, the query is issued from a red

diamond facility point, and this query is intended to find the users that consider query

point q as one of their two nearest T3 facility points. Since T3 = {RD,GT}, the query

will ignore BC as the competitors. Hence, only users that consider query point q as one

of their hierarchical 2NN of T3 will be considered.

Definition 6.2.10. Hierarchical Reverse k Farthest Neighbour Query(HRkFN(q, k, Tq))

is a method used to find the region and users in it that consider query point q as one of

their k farthest facility points of subtypes Tq. This query is issued from a facility point q

of type Tq.

Figure 6.11: HRkFN (q, 2, T3), q ∈ U
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Figure 6.10 shows an example of HRkFN query which uses the same hierarchical struc-

ture as that shown in Figure 6.8a. The query is issued from a red diamond query point q

and is intended to find all users that consider this query point as one of their two farthest

T3 facility points. From the hierarchical structure, this query will ignore any blue circle

facility points as the competitors.

6.3 Polychromatic Query Processing

In this section, we will discuss a region-based polychromatic query processing. A poly-

chromatic query is a type of query where the objects types retrieved from this query are

more than one. In polychromatic query, there are more than one facility types and the

query can be issued either from a facility point that provides service to other facility points

or from the user that needs service from facility points. In solving polychromatic queries

with an HSVD, these facility points are also generator points. Hence, the HSVD structure

is constructed with multiple types of facility points. In this section, we will cover several

variations of polychromatic queries which are :

1. Polychromatic Nearest Neighbours

(a) Polychromatic k Nearest Neigbours

(b) Polychromatic all-k Nearest Neigbours

2. Polychromatic Farthest Neighbours

(a) Polychromatic k Farthest Neigbours

(b) Polychromatic all-k Farthest Neigbours

3. Polychromatic Reverse Queries

(a) Polychromatic Reverse k Nearest Neigbours

(b) Polychromatic Reverse k Farthest Neigbours

The following subsection will discuss how to adapt HSVD to support polychromatic spatial

query. We will describe the data structures needed to support this type of query, and also

the algorithm to solve polychromatic spatial query based on HSVD.

6.3.1 Data Structure

In a polychromatic query, the facility points consist of multiple facility types, and a spatial

query will involve more than two facility types. Since the polychromatic query will be
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solved by using an HSVD, this diagram will be constructed from various types of generator

points. However, since all generator points will be used to construct the diagram, we will

treat all facility points as the same generator points. To distinguish this type of generator

point from the others, we add an attribute to each generator point to indicate the generator

point type.

Structure Attributes Description
Facility Point name Facility point name

location Facility point coordinate
fType Facility point type

Table 6.1: Polychromatic Facility Point Structure

Table 6.1 shows the basic data structure for a facility point where we add a facility type

as an additional attribute to the generator point to identify the facility type. However,

the HSVD structure and the method of HSVD construction will remain the same. All the

properties of the HSVD structure as mentioned in Chapter 3 will also remain the same.

To process polychromatic queries, only those facility points that have type in Tq

will proceed; all other types will be ignored. To simplify the process, we will use the

trim(seq, Tq) function to keep all facility points with type Tq and remove all other facility

points from the sequence. The illustration of this function is shown in Figure 6.12. In

trim() function, we also use function contains([list attr], attr) to check if an attribute

attr exists in the list of attribute [list attr]. The contains function will return True if attr

is listed in list attr. Otherwise, this function will return False and the attr will not be

taken. The detailed trim algorithm is shown in algorithm 19.

Figure 6.12: Function trim()

The Example

To demonstrate the polychromatic queries, in this section we will use the same HSVD

structure for all variations of polychromatic queries to simplify the explanations. The

HSVD structure is constructed from eight generator points from three facility types, which

are blue circle (BC), green triangle (GT), and red diamond (RD). The list of facility points

and their facility types are listed in Table 6.3. This example is shown in Figure 6.13.
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Algorithm 19: Trim function
Data: seq, Tq

Result: tseq trimmed sequence
initialize(tseq);1

for i = 1 to sizeOf (seq) do2

if contains(Tq, seq[i].fType) then3

tseq.add(seq[i]);4

end5

end6

return tseq;7

Figure 6.13: Polychromatic HSVD

Points (x,y) fType
p1 (x, y) RD
p2 (x, y) RD
p3 (x, y) GT
p4 (x, y) GT
p5 (x, y) GT
p6 (x, y) BC
p7 (x, y) BC
p8 (x, y) BC

Table 6.2: Polychromatic Facility Point Structure

In this example, we predefine the facility type queries Tq = {BC,GT}. The query will

be issued from a query point q, where the type of query point will be determined from the

type of query itself.
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6.3.2 Polychromatic k Nearest Neighbours (PkNN)

Polychromatic k nearest neighbour method is the method of finding k nearest facility point

type Tq, where Tq is the list of expected facility points. In this query, the nearest facility

points must have the type listed in Tq. This query is issued from a user q ∈ U .

Consider this daily activity as a demonstration of a polychromatic query. Assume that

a customer who just moved to a new suburb needs to go to a supermarket for his groceries.

There are many supermarket franchises in that suburb, although this customer wants to

consider only three supermarkets which are Coles1, Woolworths2 and Aldi3. This customer

needs to find the nearest supermarket from his home and does care which of these three

is the nearest supermarket. With polychromatic k nearest neighbour query, the customer

can assign these franchises as the expected types and the query will return the first nearest

supermarket from listed types as the result.

In the query processing, PkNN query uses the same algorithm as the kNN algorithm

with an additional step to identify the facility type in the sequence. The complete algo-

rithm for polychromatic k nearest neighbour query is as follows:

Algorithm 20: Polychromatic k-NN Query with HSVD
Data: k, q, Tq

Result: A = {a1, a2, ..., ak} list of k facility points that satisfy P kNN(q)
initialize(A);1

r ← getCell(q); /* Get Voronoi cell contains q */2

tseq ← trim(r.seq, Tq);/* trim the sequence based on Tq */3

if k > sizeOf (tseq) then4

k ← sizeOf (tseq);5

end6

for i = 1 to k do7

A.add(getObject(tseq[i]));8

end9

Algorithm 20 explains how to a solve PkNN query. This algorithm is based on al-

gorithm 7 for bichromatic kNN query with the HSVD structure. The algorithm starts

by identifying the cell that contains the query point q (line 3), followed by trimming the

sequence with Tq (line 4). If the value of k is bigger than the remaining generator points in

the sequence after the trimming process, all generator points will be taken as the answer

(line 5-7), otherwise the first k generator points will be taken (line 8-10).

1coles.com.au
2woolworths.com.au
3aldi.com.au
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Figure 6.14: PkNN(q, 2, Tq), Tq = {BC,GT}

Figure 6.14 shows an example of PkNN based on the HSVD structure. The query is

issued from a user q to find the two nearest facility points, either with type BC or GT .

The cell that contains the query point is indicated by the yellow polygon, and the sequence

in this cell is 〈p1, p9, p8, p5, p2, p3, p7, p4〉. Since RD /∈ Tq, all facility points type RD will

be ignored, and facility point p1 will not be considered as the first nearest facility point

from q. The answer to this query is indicated by the underlining in the sequence, where

the first nearest facility point for q will be p9 followed by p8, because these facility points

type are listed in Tq.

6.3.3 Polychromatic all-k Nearest Neighbours (Pall-kNN)

Polychromatic all-k nearest neighbour method is the method of finding the k nearest

facility point on each type in Tq, where Tq is the list of expected facility points. This

query is issued by a user q ∈ U .

The real application for this type of query can be demonstrated by the previous scenario

with the supermarket. Assume that this customer knows that each supermarket has its

own advantages because each supermarket will not attach the lowest prices to all of its

items. In order to obtain all cheapest prices for all the items needed, this customer needs

to find the first nearest supermarket for each type. This query will return the list of

nearest supermarket for each franchise as the result.
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In the query processing, a Pall-kNN query uses an algorithm similar to the PkNN

algorithm with the additional step of repeating kNN search for each facility type. The

algorithm of Pall-kNN is described as follows:

Algorithm 21: Polychromatic all-kNN Query with HSVD
Data: k, q, Tq

Result: A = {a1, a2, ..., ak} list of k facility points that satisfy P kNN(q)
initialize(A);1

r ← getCell(q); /* Get Voronoi cell contains q */2

for j = 1 to sizeOf (Tq) do3

count← 04

i← 15

while (count < k)and(i ≤ m) do6

if (Tq[j] = r.seq[i].fType) then7

/* if the facility type is part of Tq, p is taken */
A.add(getObject(r.seq[i]));8

count + +;9

end10

i + +;11

end12

end13

Algorithm 21 explains how to solve Pall-kNN query. This algorithm is based on algo-

rithm 20 for PkNN. The algorithm starts by identifying the cell that contains the query

point q (line 3). In Pall-kNN, the PkNN process (line 7-13) has to be repeated j times,

where j = |Tq| to get k facility points for each type (line 4). The algorithm will stop

when each facility type has retrieved k facility points, or no more facility points can be

processed in the distance sequence.

Figure 6.15: P all − kNN(q, 2, Tq), Tq = {BC,GT}
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Figure 6.15 shows an example of polychromatic all-k nearest neighbour query based

on the HSVD structure. The query is issued from a user q to find two nearest facility

points for all facility point types in Tq . The cell that contains the query point is indicated

by the yellow polygon, and the sequence in this cell is 〈p1, p9, p8, p5, p2, p3, p7, p4〉. Since

RD /∈ Tq, all facility points type RD will be ignored, and facility point p1 will not be

considered as the first nearest facility point from q. The answer to this query is indi-

cated by the underline in the sequence. In this example, the answer to this query will

be {p9, p8, p5, p3}, where{p9, p8} are two nearest facilities type BC and {p5, p3} are two

nearest facilities type GT.

6.3.4 Polychromatic k Farthest Neighbours (PkFN)

Polychromatic k farthest neighbour method is the method of finding k farthest facility

point type Tq, where Tq is the list of expected facility points. In this query, the farthest

facility points must have the type listed in Tq. This query is issued by user q ∈ U .

Consider the following example in our daily lives. Assume that a backpacker wants to

find the farthest local public transport stations in a state from his current location, so he

can enjoy local public transport as far as he can. However, he considers only buses or train

stations. In Victoria, the public transport fare depends on the zone instead of distance,

so for a tourist, it is best to embark on the longest journey instead of shorter ones. Since

this backpacker does not mind the type of public transport he uses, the query will return

either a train station or bus station as the farthest station in the state.

In the query processing, a PkFN query use the same algorithm as the BkFN algorithm

with the additional step of identifying the facility type in the sequence. The complete

algorithm for a PkFN query is as follows:

Algorithm 22 shows how to solve PkFN query. This algorithm is based on algorithm 20

for the PkNN query with an additional inversion process for the sequence. The algorithm

starts by identifying the cell that contains the query point q (line 3) and then trimming

(line 4) and inversion to facilitate the farthest process (line 5). If the value of k is greater

than the number of remaining generator points in the sequence, all remaining generator

points will be taken (line 6-8). Otherwise, only first k generator points from the inverted

sequence will be taken (line 9-11).
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Algorithm 22: Polychromatic k-FN Query with HSVD
Data: k, q, Tq

Result: A = {a1, a2, ..., ak} list of k facility points that satisfy P kNN(q)
initialize(A);1

r ← getCell(q); /* Get Voronoi cell contains q */2

tseq ← trim(r.seq, Tq);/* trim the sequence based on Tq */3

tseq ← inverse(tseq);/* invert the sequence */4

if k > sizeOf (tseq) then5

k ← sizeOf (tseq);6

end7

for i = 1 to k do8

A.add(getObject(tseq[i]));9

end10

Figure 6.16: PkFN (q, 2, Tq), Tq = {BC,GT}

Figure 6.16 shows an example of a PkFN query. We still use the same example as for

the previous type of query. Assume that the query is issued from a yellow polygon where

Tq = {BC,GT}. The query is intended to find the two farthest facility points either type

BC or GT . In this example, the query retrieves {p4, p7} as the two farthest facility points

from q.

6.3.5 Polychromatic all-k Farthest Neighbours(Pall-kFN)

Polychromatic all-k farthest neighbour method is the method of finding k farthest facility

points for each facility type in Tq, where Tq is the list of expected facility points. Similar

to the previous polychromatic queries, this query is issued from a user q ∈ U .

Consider the backpacker example in the PkFN case. Assume that the backpacker

wants to find the farthest local public transport stations for trains and also buses in a
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state from his current location. Unlike PkFN that will obtain only one farthest facility

from two expected facility types, this query will retrieve one facility for each facility type.

So, the backpacker can try two public modes of transport with different types.

In the query processing, a Pall-kFN query use the same algorithm as the PkFN algo-

rithm with an additional step to repeat the process j times, where j = |Tq|. The complete

algorithm for a Pall-kFN query is described in algorithm 23.

Algorithm 23: Polychromatic all-kFN Query with HSVD
Data: k, q, Tq

Result: A = {a1, a2, ..., ak} list of k facility points that satisfy P kNN(q)
initialize(A);1

r ← getCell(q); /* Get Voronoi cell contains q */2

r.seq ← inverse(r.seq);3

for j = 1 to sizeOf (Tq) do4

count← 05

i← 16

while (count < k)and(i ≤ m) do7

if (Tq[j] = r.seq[i].fType) then8

/* if the facility type is part of Tq, p is taken */
A.add(getObject(r.seq[i]));9

count + +;10

end11

i + +;12

end13

end14

Algorithm 23 explains how to solve a Pall-kFN query. This algorithm is based on

algorithm 22 for PkFN with an additional repetition for Tq. The algorithm starts by

identifying the cell that contains the query point q (line 3), followed by the inverse()

function (line 4). To obtain k facility points for each facility type, we have to repeat the

PkFN process (line 5). The PkFN is performed by applying contains() function to check

if the type of a generator point on the sequence matched with Tq (line 8-11). If contains()

function returns True, then this facility point is part of the answer. Ṫhe algorithm will

stop if k number of facility points have been retrieved.

Figure 6.17 shows an example of a Pall-kFN query. We still use the same example as

for the previous type of query. Assume that the query is issued from a yellow polygon

where Tq = {BC,GT}. The query is intended to find the two farthest facility points for

each type BC or GT . For the GT type, the query retrieves {p4, p3}, while for BC type,

the query retrieves {p7, p8}.
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Figure 6.17: Pall − kFN(q, 2, Tq), Tq = {BC,GT}

6.3.6 Polychromatic Reverse k Nearest Neighbours (PRkNN)

Polychromatic reverse k nearest neighbour method is the method of finding the region and

users in the region that consider the query point as their PkNN on type Tq. This query is

issued from a generator point, where the type of this generator point must be listed in Tq.

Consider the following example to illustrate PRkNN query in our daily lives. Assume

that a business owner opens a new Chinese restaurant in a particular suburb and he wants

to identify his potential customers as well as his competitors. Since his restaurant is a

Chinese restaurant, he will not consider all types of restaurants as his competitors. Instead,

he considers only other Chinese restaurants, Indian restaurants and Japanese restaurants

as his direct competitors. To identify his region as well as the potential customers, a

polychromatic reverse k nearest neighbour method is the best possible solution for this

problem.

The PRkNN cannot be solved by using the CLI index structure as described in Chapter

5 because the level of each generator point can be changed according to Tq. Hence, at the

moment, the PRkNN can only be solved by reading all available cells in HSVD.

Algorithm 24 explains the PRkNN query processing. Since there are no indexes or

retrieval structures that can be used to identify the correct cells to be taken, this algorithm

has to read all the cells to find the suitable cells for this query (line 2). Each cell needs

to be trimmed (line 4) and then inPosition(seq, q) function returns the position of the

query point in the sequence. If the position is less than or equal to k, then this cell is
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Algorithm 24: PRkNN with HSVD structure
Data: q, k, Tq

Result: R = {r1, r2, ..., rn} list of Voronoi cells that satisfy P RkNN (q, k, Tq)
initialize(R);1

for i = 1 to sizeOf(Vh) do2

r ← V h[i];/* get the cell */3

r.seq ← trim(r.seq, Tq);/* remove other generator points type except Tq4

*/
if (inPosition(r.seq, q) ≤ k) then5

/* if q is in position ≤ k on the trimmed sequence */
R.add(r); /* get this cell */6

end7

end8

taken as part of the reverse region. The algorithm will be stopped after all cells have been

examined.

Figure 6.18: PRkNN (q, 2, Tq), Tq = {BC,RD}

Figure 6.18 shows an example of a PRkNN query. This example uses the same case as

stated previously. In this example, the query is issued from a facility point q = p1. This

query is intended to find the region where the users will consider the query point as one

of their nearest neighbours by ignoring all GT type facility points because this type is not

listed in Tq. As we can see from this figure, p5 is included in the region. However, since

GT is ignored, all facility points with this type will not be considered as the competitors.
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6.3.7 Polychromatic Reverse k Farthest Neighbours (PRkFN)

Polychromatic reverse k farthest neighbour method is the method of finding the region

and users in the region that consider the query point as their PkFN on type Tq. This

query is issued from a generator point, where this generator point type must be listed in

Tq.

Consider the following example to illustrate PRkFN query in our daily lives. Assume

that the city council needs to identify the region for the location of a new landfill and

this location must be the farthest region from the residential points and city water supply

reservoir. The city identified the largest reservoir as the query point, while other reservoirs

and residential points are supported facility types. The query is intended to find the

farthest region from the main reservoir in the city that can be used for new landfill. This

query can be solved by using polychromatic reverse k farthest neighbour method.

Similar to PRkNN , a polychromatic reverse k farthest neighbour query cannot be

solved by using the CLI index structure as described in Chapter 5 because the level of

each generator point can be changed according to Tq. Hence, at the moment, the PRkFN

can be solved only by reading all available cells in HSVD.

Algorithm 25: PRkFN with HSVD structure
Data: q, k, Tq

Result: R = {r1, r2, ..., rn} list of Voronoi cells that satisfy P RkFN (q, k, Tq)
initialize(R);1

for i = 1 to sizeOf(Vh) do2

r ← V h[i];/* get the cell */3

r ← trim(r, Tq);/* remove other generator points type except Tq */4

r.seq ← inverse(r.seq);/* inverse the sequence */5

if (inPosition(r.seq, q) ≤ k) then6

/* if q is in position ≤ k on the trimmed sequence */
R.add(r); /* get this cell */7

end8

end9

Algorithm 25 explains the PRkFN query processing. Similar to the PRkNN query, this

algorithm performs in a sequential manner, where all cells of HSVD have to be read since

no indexes can be applied in this algorithm (line 2). Each cell needs to be trimmed (line

4) and inverted (line 5) to support farthest queries. Function inPosition(seq, q) will find

the position of query point q in the sequence seq. If the position is less than or equal to k,

then this cell will be considered as part of the answer; otherwise, the cell will be ignored.
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Figure 6.19: PRkFN (q, 2, Tq), Tq = {BC,RD}

Figure 6.19 shows an example of a PRkFN query, where the query point is q = p2,

k = 2 and Tq = {BC,RD}. This query will ignore all facility points of type GT . Hence,

in this example, the answer to this query is shown in the shaded area.

6.4 Hierarchical Query Processing

In this section, we will discuss another variation of the polychromatic query, called hier-

archical query. The hierarchical query is a type of query where the facility types involved

in the query exceed two, and these types are constructed in a hierarchical manner. To the

best of our knowledge, there are no current researches deal with this particular problem.

In this type of query, the facility points are considered as generator points in HSVD, where

in constructing the HSVD, we omit the facility types.

Hierarchical problem can appear in our daily lives. For example, assume that a cus-

tomer is looking for Chinese restaurants nearest to his current location, but he doesn’t

want to travel for farther than 2Km. Since he cannot find any Chinese restaurants within

his desired distance, he will accept any Asian restaurant as long as this restaurant is lo-

cated within a 2Km radius. There are so many countries in Asia and it is not possible to

find each type of restaurant one-by-one. Therefore, it would be convenient if he could just

issue a query for nearest Asian restaurants.
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In this section, we will cover some of the variations of hierarchical queries that can

be found in our daily lives which to the best of our knowledge, no-one has discussed

previously. The variations of hierarchical queries are:

1. Hierarchical k nearest neighbour queries

2. Hierarchical k farthest neighbour queries

3. Hierarchical reverse k nearest neighbour queries

4. Hierarchical reverse k farthest neighbour queries

The following subsection will discuss how to adapt the HSVD structure to different

kinds of hierarchical queries. We will discuss hierarchical queries processing in nearest

neighbour problems, farthest neighbours problems, reverse nearest neighbour problems

and reverse farthest neighbours problems.

6.4.1 Hierarchical Structure

To accommodate a hierarchical structure in an HSVD, we modify the generator point

structure to support hierarchical types. An additional attribute for the facility type is

added, similar to polychromatic problems. The hierarchical structure for each facility

point is stored by using a list of sequence types as shown in Table 6.3.

Structure Attributes Description
Facility Point name Facility point name

(x, y) Facility point coordinate
HType List of Facility point type

Table 6.3: Hierarchical Facility Point Structure

An example of data structure representation is shown in Figure 6.20. Figure 6.20a

shows the multiple types of facility points that are distributed in the map. The hierarchical

types are shown in Figure 6.20b. In this figure, we can see that T1 is the general type,

and all facility points will be included in this type. T2 is the subtype of T1, and only blue

circle facility points are considered in this type. Since T2 is subtype of T1, all blue points

facility points will have {T1, T2} as their types in hierarchical order. The new structure

is created to provide query by hierarchal type of objects, and provide direct pointer to

the objects based on a type, rather than performing point-to-point verification. With the

same concept, all the red diamond types are considered as {T1, T3, T4} types, while all
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green triangle types will be considered as {T1, T3, T5} types. The data structure for the

facility points in hierarchical order can be seen in Figure 6.20c.

(a) Facility Points (b) Hierarchical Types

(c) Hierarchical Data Structure

Figure 6.20: Example of Hierarchical representation

In hierarchical queries, the attribute to store the facility type is different from the

polychromatic queries, so we cannot use the trim() function in polychromatic. Therefore,

we use another trimming function for the hierarchical structure called htrim(sequence, Tq)

function. This function still has the same input, which is the sequence and Tq. However,

since the content of the facility types attribute is different, we have to make a small

adjustment to the function.

Figure 6.21: function htrim(sequence, Tq)→ sequence
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Algorithm 26: Hierarchical Trim (htrim) function
Data: seq, Tq

Result: hseq hierarchical trimmed sequence
initialize(hseq);1

for i = 1 to sizeOf (seq) do2

if contains(seq[i].HType, Tq) then3

hseq.add(seq[i]);4

end5

end6

return hseq;7

The hierarchical trimming function is shown in algorithm 26. We define the function

as htrim(sequence, Tq) → sequence. This function accepts the distance sequence of a

Voronoi cell and Tq, and removes all facility points that do not have type Tq in their

hierarchical types structure. The illustration of this function is presented in Figure 6.21. In

this function, we still use contains([list attr], attr) function to check whether an attribute

attr exists in the list of attribute [list attr]. In polychromatic queries, Tq consists of a list

of types, while in hierarchical queries, the facility type in each facility point consists of list

of types. Therefore, we have to swap the input for the contains() function in hierarchical

trimming.

The Example

To illustrate the hierarchical process for each query type, we will use the same example

from polychromatic queries in Figure 6.13 with an additional hierarchical structure as

shown in Figure 6.22. In this example, T1 is general type, hence if Tq = {T1}, the

hierarchical query will use all available facility points. The hierarchical order is stored in

each facility point. The HSVD is constructed from these facility points and the HSVD

structure will remain the same as the HSVD structure for polychromatic queries.

6.4.2 Hierarchical k Nearest Neighbours (HkNN)

Hierarchical k nearest neighbour method is a method of finding k nearest facility points

type Tq and all of its subtypes. The query is issued by a user q ∈ U . HkNN query is very

similar to PkNN query, except that the type is constructed in hierarchical order, and a

specific retrieval method is needed to obtain the answer.
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Figure 6.22: The example of Hierarchical Structure

HkNN queries are common in our daily activities. However, to the best of our knowl-

edge, this problem has not been solved recently. Assume that a customer is going to find

a restaurant during a holiday, and he would prefer a fast food restaurant, and he chooses

McDonald’s. However, he cannot find any restaurants within a certain range. He knows

that there are many different franchises of fast food restaurants, and it will be very time

consuming if he has to perform the same query for each different franchise. Since all of

these franchises are classified as fast food restaurants, it would be easier if he could query

any nearest fast food restaurants and all of its subcategories, without considering any

other types of restaurants. In this example, the problem can be easily solved by using

HkNN query.

The HkNN query is very similar to PkNN query. The main difference is how to

determine whether a facility point in a sequence must be considered or must be ignored.

In HkNN query, we use htrim() function to remove all facility points that do not belong

to type Tq

Algorithm 27 explains the HkNN query processing. This algorithm is very similar to

PkNN, and the main difference is only in the trimming function. The first step is to obtain

the cell that contains the query point (line 2), and then followed by hierarchical trimming

(line 3). If the remaining facility point is less than the value of k, the value of k will be

set to the number of remaining facility points (line 4-6). The algorithm will stop after k

nearest facility points type Tq have been retrieved (line 7-9).



6.4. HIERARCHICAL QUERY PROCESSING 159

Algorithm 27: Hierarchical k-NN Query with HSVD
Data: k, q, Tq

Result: A = {a1, a2, ..., ak} list of k facility points that satisfy P kNN(q)
initialize(A);1

r ← getCell(q); /* Get Voronoi cell contains q */2

r.seq ← htrim(r.seq, Tq); /* trim the sequence */3

if (k > sizeOf (r.seq)) then4

k ← sizeOf (r.seq);5

end6

for i = 1 to k do7

A.add(getObject(r.seq[i]));8

end9

Figure 6.23: H kNN(q, 2, Tq), Tq = T3

Figure 6.23 demonstrates the HkNN query using predefined example in subsection 6.3.1

with an additional hierarchical structure in subsection 6.4.1. In this example, assume that

a user issues a query H kNN(q, 2, T3), where this query is intended to find all facility

points that have facility type T3 or any other subtypes of T3. Therefore, all facility point

types T4 and T5 will be taken, since these types are subtype of T3. All facility points

type T2 will be ignored, since T2 is not a subtype of T3. In this example, the answer to

this query in nearest neighbours order is {p5, p1}.

6.4.3 Hierarchical k Farthest Neighbours (HkFN)

Hierarchical k farthest neighbour method is a method of finding k farthest facility points

type Tq and all of its subtypes. The query is issued by a user q ∈ U . A hierarchical

k farthest neighbour query is very similar to polychromatic k farthest neighbour query,

except that the type is constructed in hierarchical order, and a specific retrieval method

is needed to obtain the answer.
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The main difference between HkFN query and PkFN query is how to determine whether

a facility point in a sequence must be considered or must be ignored. In this query, we

use the htrim() function to remove all facility points that do not belong to type Tq. To

support the farthest query, we also have to inverse the sequence so that we can process

the sequence in reverse order.

Algorithm 28: Hierarchical k-FN Query with HSVD
Data: k, q, Tq

Result: A = {a1, a2, ..., ak} list of k facility points that satisfy P kNN(q)
initialize(A);1

m← P /* get number of facility points */2

r ← getCell(q); /* Get Voronoi cell contains q */3

r.seq ← htrim(r.seq, Tq); /* trim the sequence */4

r.seq ← inverse(r.seq);/* inverse the sequence */5

if (k > sizeOf (r.seq)) then6

k ← sizeOf (r.seq);7

end8

for i = 1 to k do9

A.add(getObject(r.seq[i]));10

end11

Algorithm 28 explains the HkFN query processing. Similar to PkFN query processing,

this algorithm begins by finding the cell that contains the query point (line 3). The next

step is to perform hierarchical trimming function to remove all facility points that do not

belong to type Tq (line 4), followed by reversing the sequence to support the farthest query

(line 5). If the remaining facility points are less than k, the value of k will be set to the

remaining number of facility points (line 6-8). The algorithm will stop after k farthest

facility points have been retrieved (line 9-11).

Figure 6.24: H kFN(q, 2, Tq), Tq = T3
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Figure 6.24 shows an example of HkFN query. We use predefined example in subsec-

tion 6.3.1 with an additional hierarchical structure in subsection 6.4.1. In this example,

assumed the same user issues a query H kFN(q, 2, T3), where this query is intended to

find any k farthest facility points that have facility type T3 or any other subtypes of T3.

Therefore, all facility points type T4 and T5 will be taken, since these types are subtypes

of T3. All facility points type T2 will be ignored, since T2 is not a subtype of T3. In this

example, the answer to this query in farthest neighbours order are {p3, p2}.

6.4.4 Hierarchical Reverse k Nearest Neighbours (HRkNN)

Hierarchical structure can also be applied in RNN queries, called hierarchical reverse k

nearest neighbour queries. This type of query is intended to find the region and users in

it that consider the query point is one of their HkNN on type Tq.

Consider the following commonplace application. Assume that an owner of a McDon-

ald’s franchise would like to know the region of his nearest potential customers, influenced

by other McDonald’s, KFC, Red Roaster, and all other restaurants. Since he considers

only other fast food restaurants as his direct competitors, he will ignore all other types of

restaurants. The expected region for this query should be influenced only by other fast

food restaurants, and the potential customers in this region will consider his restaurant

as the nearest fast food restaurant, compared with other fast food restaurants.

The method used to solve HRkNN query is very similar to PRkNN query, except for

the trimming process. The applied trimming process, htirm() function, is based on the

hierarchical structure of each facility point, where this function is made to remove all

facility points from the sequence if these facility points do not belong to type Tq.

Algorithm 29: HRkNN with HSVD structure
Data: q, k, Tq

Result: R = {r1, r2, ..., rn} list of Voronoi cells that satisfy H RkNN (q, k, Tq)
initialize(R);1

for i = 1 to sizeOf(Vh) do2

r ← V h[i];/* get the cell */3

r.seq ← htrim(r.seq, Tq);/* trim the sequence */4

if (inPosition(r.seq, q) ≤ k) then5

/* if q is in position ≤ k on the trimmed sequence */
R.add(r); /* get this cell */6

end7

end8
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Algorithm 29 shows the process of HRkNN query processing. Similar to the PRkNN

method, no retrieval structure is applied in this query, so all cells have to be read in

order to answer the query (line 2). The first step in checking the cell is to perform the

hierarchical trimming function on each cell (line 4) to remove all facility points that do

not belong to type Tq. The inPosition() function is used to determine whether the query

point position is less than or equal to k. If the position of q is less than or equal to k, this

cell will be considered as part of the answer. The algorithm will stop if all cells have been

processed, and non-generator-point types U can be retrieved from selected cells.

Figure 6.25: HRkNN (p1, 2, Tq), Tq = T3

Figure 6.25 shows an example of HkNN query. This example uses the same example as

for the previous query type as shown in Figure 6.13 . The HSVD structure is constructed

by all eight facility points, which all have hierarchical types. The query is issued from

p1, and is intended to obtain the region and all users in the region that consider the

query point as part of their hierarchical two nearest facility points under T3 type. From

the hierarchical structure, T3 has subtype T4 and T5. Therefore the regions will be
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influenced only by facility points type T4 and T5. The region for this query is the shaded

area in this example.

6.4.5 Hierarchical Reverse k Farthest Neighbours (HRkFN)

Hierarchical reverse k farthest neighbour method is aimed at finding the region and users

in it that consider the query point is one of their HkFN on type Tq. The method used

to solve HRkFN query is very similar to PRkFN query, except for the trimming process.

The applied trimming process, htirm() function, is based on a hierarchical structure for

each facility point. This function is made to remove all facility points from the sequence

if these facility points do not belong to type Tq.

Algorithm 30: HRkFN with HSVD structure
Data: q, k, Tq

Result: R = {r1, r2, ..., rn} list of Voronoi cells that satisfy H RkFN (q, k, Tq)
initialize(R);1

for i = 1 to sizeOf(Vh) do2

r ← V h[i];/* get the cell */3

r.seq ← htrim(r.seq, Tq);/* trim the sequence */4

r.seq ← inverse(r.seq);/* inverse the sequence */5

if (inPosition(r.seq, q) ≤ k) then6

/* if q is in position ≤ k on the trimmed sequence */
R.add(r); /* get this cell */7

end8

end9

Algorithm 30 shows the method used to solve HRkFN query. Similar to PRkFN query,

no retrieval structure can be used to improve the retrieval process. Therefore, the retrieval

can be done only by reading all available cells (line 2). The hierarchical trimming function

is applied to each cell to remove all facility points that do not belong to type Tq (line

4), followed by sequence inversion to support farthest query (line 5). The next step is to

determine the position of the query point on the remaining sequences. If the position is

less than or equal than k, then the cell will be added to the result set. Otherwise the cells

will be ignored. The algorithm will stop once all cells have been processed.

Figure 6.26 shows an example of HRkFN query. In this example, the HSVD structure

is constructed from eight facility points from different facility types in hierarchical order.

The facility point p5 issues a query HRkNN (p5, 1, T3) to obtain the region and users in

the region that consider p5 as their farthest facility point in type T3.
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Figure 6.26: HRkFN (p5, 1, Tq), Tq = T3

6.5 Discussion

In this chapter, we propose region-based polychromatic and hierarchical spatial queries

processing. Polychromatic query processing is the method to apply to more than two types

of facility points in the spatial query. To the best of our knowledge, only authors (Zhao

et al., 2009) that use more than one type of facility points in nearest neighbour queries.

They used a multi-layered of Voronoi diagram, where each facility type has its own Voronoi

diagram. The answer to nearest neighbours queries can be obtained by overlaying all

Voronoi diagrams. This method relies on order-1 Voronoi diagram, and to find the answer

of multiple-object-types nearest neighbour queries, this method firstly will find the cells

that contain this query point from all Voronoi diagrams, and the generator points for these

cells are considered as the answer for k = 1. To get the answer for k > 1, this method

will perform cell expansion to find the k objects by doing point-to-point calculation in

each cell for each type. The cost for this method depends on the number of types and the

number of objects. Therefore the processing time is increasing sharply with the increasing

object types, and this method only effective for k = 1.

In our method, polychromatic query is done by using predefined HSVD, therefore the

query cost will remain constant for any number of object types and any number of k,



6.6. CHAPTER SUMMARY 165

where the main cost is to find the right cell that contains query point. for any number

of object types and any number of k, where the main cost is to find the right cell that

contains query point.

We distinguish the performance analysis of the queries based on the cost estimation

to answer the queries. The classifications are:

1. k Nearest/Farthest Neighbours

In this type of query, the performance of these queries for both polychromatic and

hierarchical queries depends on the number of cells available in HSVD. Similar to

the kNN/kFN query in Chapter 4, the main cost is to find the cell that contains the

query point. Since the HSVD structure remains static, the cost of answering either

polychromatic or hierarchical queries will remain constant for any value of k.

2. all-k Nearest/Farthest Neighbours

In this type of query, the number of cells that need to be read in order to identify

the cell that contains query point will be the same as k nearest/farthest neighbour

queries. If the number of types listed in Tq is j, the sequence has to be read j times

before the answer can be obtained. However, this extra efforts do not affect the

entire cost, since this process does not need extra access to the cells. Therefore the

cost to process this query will be similar to that of kNN/kFN queries.

3. Reverse k Nearest/Farthest Neighbours

Unlike an RkNN/RkFN query, in both polychromatic and hierarchical queries, there

is no retrieval structure that can be used to improve retrieval performance, such as

the CLI index used in RkNN/RkFN query in Chapter 5. Therefore, to process poly-

chromatic and hierarchical reverse queries, all available cells in HSVD have to be read

and processed, which makes the processing performance lower than RkNN/RkFN

with a CLI structure.

6.6 Chapter Summary

In this chapter, we propose region-based polychromatic query processing, and the first in

proposing the hierarchical spatial queries. Polychromatic and hierarchical queries are very

closely related to our daily activities, although have not attracted much attention from re-

searchers. In this chapter, we formulate the queries definitions, structures and processes, as
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well as the generalisation for the queries. We classify the polychromatic queries as: poly-

chromatic k nearest neighbour queries (PkNN), polychromatic all-k nearest neighbour

queries (Pall−kNN), polychromatic k farthest neighbour queries (PkFN ), polychromatic

all-k farhest neighbours queries (Pall − kFN), polychromatic reverse k nearest neigh-

bour queries (PRkNN ), polychromatic reverse k farthest neighbour queries (PRkFN ),

hiearchical k nearest neighbour queries (HkNN), hiearchical k farthest neighbour queries

(HkFN), hiearchical reverse k nearest neighbour queries (HRkNN), and hiearchical reverse

k farthest neighbour queries (HkFN).



Chapter 7

Conclusion and Future Works

7.1 Conclusions

Region-based query processing with true region in a spatial database focuses in finding a

region that contains the correct objects for the query. The proposed region-based query

processing method in this thesis removes the need to perform point-to-point calculation

and verification step that usually occurs in spatial query processing through candidate

regions. Furthermore, the proposed method also avoids the region reconstruction cost for

any identical queries that are submitted to the server. This thesis started by presenting a

region partitioning concept called highest order Voronoi diagram (HSVD) that can

be used to identify the true region of various spatial queries and at the same time, avoiding

point-to-point and verification phase, and avoiding region recreation for any identical

queries submitted to the server. This diagram addresses the challenge of repetitive region

reconstructions by providing a set of partitioned regions with distance order information

that can be used to answer several spatial queries types. The proposed diagram also

addresses the challenges of diverse methods in spatial query processing by introducing a

nearest neighbours framework to generalize the nearest neighbours query processing,

and also a cell level index (CLI) to generalize the reverse nearest neighbours query

processing. The framework and index are not only capable in generalizing the query

processing, but also simplify the farthest query processing for both nearest neighbours

queries and reverse nearest neighbours queries. Furthermore, in reverse nearest neighbours

queries, the regions do not need to be recreated for any queries with different parameters.

This thesis also extended the well-known spatial queries into new level of spatial queries,
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which are polychromatic and hierarchical spatial queries. The overview of this thesis

is illustrated in Figure 7.1.

Figure 7.1: Thesis Overview
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7.1.1 Highest Order Voronoi Diagram

This thesis proposes a variation of a Voronoi diagram called highest order Voronoi

diagram (HSVD) that can be used as a model for solving various spatial queries with a

region-based approach as well as its dual tessellation, the adjacency graph (Chapter 3).

A highest order Voronoi diagram is the generalization of Voronoi diagram where this

diagram is capable of constructing an order-1 to order-m Voronoi diagram by merging

the cells that have the same distance sequences order. The novel structure of this model

focuses on region partitioning with detailed distance order (sequence) in each cell, where

the sequences can be used to identify the distance order of all generator points. Unlike

an ordinary Voronoi diagram, this diagram can be used to solve the spatial queries where

k > 1 without any further verification phase. In spatial query processing, HSVD is

considered as a predefined structure that will be used for spatial query processing. We

present the definition and properties of highest order Voronoi diagram that will be useful

in spatial query processing, as well as the properties of an ordinary Voronoi diagram and

higher order Voronoi diagram. In constructing the highest order Voronoi diagram, we

propose the FLIP method to efficiently identify the distance sequence on each Voronoi

cell. The highest order Voronoi diagram has m4 storage cost at the maximum, where m is

the number of generator points. However, our evaluation shows that the average storage

cost is less than m4/8.

7.1.2 Nearest Neighbours Query Processing

In nearest neighbours query processing, this thesis proposes a nearest neighbours frame-

work, a generalization to process nearest neighbours query and its variation by using

a highest order Voronoi diagram (Chapter 4). This framework utilises the sequence

generated by the FLIP algorithm to answer any type of nearest neighbour queries The

generalization of nearest neighbours query processing consists of 2 main steps, which are

(1) locate the cell contains the query point and (2) read the distance sequence. Further-

more, the use of the framework allows the same method applied to the nearest neighbour

query be used in answering the farthest neighbour with minimum modification. The only

modification is on the function used to read the sequence. Farthest neighbour query reads

the sequence in the reverse order of that performed in the nearest neighbour. Hence, the
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proposed nearest neighbours framework is applicable to solve monochromatic and bichro-

matic nearest neighbours and farthest neighbours queries. In addition, our evaluations

show the proposed HSVD structure in nearest neighbours keeps the cost of processing

nearest neighbours or farthest neighbours constant on any value of k.

7.1.3 Reverse Nearest Neighbours Query Processing

In reverse nearest neighbours query processing, this thesis proposes an index structure

called cell level index (CLI) (Chapter 5). This index structure is used to identify the

right cells for a generator point at a certain k value for reverse nearest neighbour cells. The

idea of using the index is to (1) avoid region recreation for queries; (2) simplify the reverse

farthest query processing; and (3) identify the kth region for both reverse nearest and

reverse farthest neighbours. Furthermore, Chapter 5 also shows that the index structure

will minimize the effort in processing the group reverse nearest neighbours and group

reverse farthest neighbours. The maximum storage cost for this index is m3, where m is

the number of generator points for HSVD.

7.1.4 Polychromatic Query Processing

A polychromatic query is a new type of spatial query where the number of object types

needs to be retrieved are more than two. Polychromatic queries occur naturally in our

daily lives. However, this type of query has not attracted researchers attention. This thesis

proposed a modified HSVD structure that can support polychromatic queries (Chapter

6). The proposed new polychromatic queries are: polychromatic k nearest neighbour

queries, polychromatic all-k nearest neighbour queries, polychromatic k farthest neigh-

bour queries, polychromatic all-k farthest neighbour queries, polychromatic group reverse

nearest neighbour queries, and polychromatic group reverse farthest neighbour queries.

Furthermore, we also extend the polychromatic queries to hierarchical queries, where

the facility types are classified into certain hierarchical structures, and the queries are

issued based on the hierarchical structure (Chapter 6). In this query type, we proposed

new hierarchical queries, which are: hierarchical k nearest neighbour queries, hierarchical k

farthest neighbour queries, hierarchical reverse k nearest neighbour queries and hierarchical

reverse k farthest neighbour queries.
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7.2 Future Works

Several promising directions for future research works are presented in this thesis. These

range from direct extensions of the research to implementing the ideas in other applica-

tions.

In computational geometry, the highest order Voronoi diagram and adjacency graph

are the new variants of the Voronoi diagram. This model can be further improved by

reducing both construction and storage cost.

In nearest neighbours query processing, further improvement can be made by reducing

the cost of finding the cells that contain the query point. Furthermore, the nearest neigh-

bours framework can also be extended to support more queries, such as group k nearest

neighbours query, and mobility support.

For reverse nearest neighbours queries, several research directions can be explored.

First, to find an index structure with less storage cost. Second, to extend the support for

more query types that involve region analysis.

Processing reverse polychromatic queries in polychromatic queries is still a challenge.

The CLI index does not give performance advantage over the brute force method as the

query process needs to read all cells in the HSVD to answer the query. Therefore, another

index structure that can support both polychromatic and hierarchical queries will be a

major improvement in polychromatic spatial query processing.
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