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Abstract

This thesis focuses on improving the quality of mapping and modelling ap-
proaches using low-cost depth sensors and machine learning. We focus on
optimisation and machine learning approaches, and how these can be ef-
fectively combined to maximise the quality of sensor data. The goal is to
enable a robot equipped with a monocular or depth sensor to more effectively
interact with the world.

Using low-cost sensors, means the data produced can be noisy and imperfect.
These imperfections can lead to significantly compromised performance in a
mapping scenario. To accommodate this, the initial work performed was a
novel approach to camera calibration, that is based on the desirable unsu-
pervised mapping based calibration. This allowed the sensor to be calibrated
using far fewer parameters than previous approaches, while generating im-
proved calibration performance and requiring less intervention than some
previous approaches.

Dense mapping approaches have a number of challenges, particularly re-
localisation, the process of recovering the relative camera location after
tracking is lost. To combat this, the idea was to compute a discrimina-
tive view-point invariant surface feature, namely surface curvature. A novel
real-time approach to surface curvature estimation was developed for this
thesis and demonstrated improved performance and speed of computation.
Previous approaches generally fail to cope with the noisy nature of the data
produced by low-cost depth sensors, or have computational requirements
too demanding for real-time robotics applications. This work was extended
to incorporate relative pose alignments into a novel joint optimisation func-
tion that produces both improved surface curvature estimates, and much
better relative pose estimates. The joint nature of this approach provides a
positive feedback loop that successively improves the performance on both
tasks. The curvature values produced using the initial approach were also
used to generate data for a novel machine learning approach to curvature
estimation using colour.



As low-cost depth sensors have been found to have several failure cases, and
suffer drawbacks in terms of noise and accuracy, we attempt to create a low-
cost depth sensor from a standard colour camera. We use machine learning
to predict a plausible depth image for any colour image, using purely visual
clues in the data. This approach is shown to be improved by using mul-
tiple related loss functions, and even extended to incorporate relative pose
alignments in a joint machine learning and classical optimisation approach.
These novel network implementations resulted in state-of-the-art depth es-
timations. As a proof of concept, a machine learning depth estimation
approach was developed which returns real-time depth estimates on low-
power hardware. This work focuses on improving reliability through novel
network knowledge transference techniques, and a real-time implementation
that could be used to immediately improve a standard mapping approach.
These works map a path towards low-cost depth sensor replacement and
improvement, via machine learning.

The contributions of the thesis are presented, rigorously tested, and dis-
cussed using synthetic and real-world experiments.
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Introduction

The goal of the research conducted in this thesis was primarily to advance the field of
tracking and mapping. In an effort to achieve this, several works were produced that
attempt to improve the quality of surface feature estimation, and the ability to extract
relevant information from colour and depth imagery. The use of low-cost depth sensors
(particularly the Kinect) motivated a great deal of the research presented in this thesis.

A novel calibration approach was proposed to improve the quality of the output data
from the low-cost depth sensor, increasing the sensors usability for the robotics com-
munity (Chapter 4). A real-time approach to estimating surface curvature (Chapter 5),
that subsequently was used to improve mapping accuracy (Chapter 6) was produced.
This allowed a more general approach to surface alignment, and has the potential to
operate in a high-accuracy mapping system in the future.

The massive resurgence in popularity of machine learning also motivated the back half
of this research. Several novel approaches to depth estimation were produced (Chapters
7-9), in an effort to potentially complement the ability of the low-cost depth sensor in
real robotic systems. This research moved from state-of-the-art (Chapter 8) to real-time
(Chapter 9) in an effort to provide a real-time system that could be used in cooperation
with a low-cost depth sensor and potentially improve the ability of a real-time mapping
system.

As mentioned above, in this thesis several novel approaches are presented, relating to
dense geometric data processing. In order to provide context to these contributions,
some of the motivations and choices for this work are introduced in this section. The
intention of Chapter 2, is to provide context to understand where this research fits in
the current literature. Chapter 3 is intended to provide a sufficient level of background
information to understand the subsequent theory and results. Chapters 4-9 provide a
detailed description of the results and theory of several submissions that were completed
during this thesis. Finally Chapter 10 provides a summary of what has been achieved,
as well as some possible useful future directions this research should/could be taken.
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1 INTRODUCTION

1.1 Simultaneous Localisation and Mapping (SLAM)

Simultaneous localisation and mapping is a method of generating human and machine
usable maps, that attempts to solve the chicken and egg problem of acquiring a map of
a scene, and navigating a new environment. The key insight introduced in the seminal
paper [1], was to simultaneously build a current best guess of a map of the environment
while localising against the map being generated. This allows a robot to generate maps
faster and potentially more accurately, and is still considered an extremely useful task
in robotics, that remains unsolved.

This section is intended as a general overview of some popular techniques as a back-
ground to motivate the work contained in this thesis, please see Section 2.2.2 for a more
detailed discussion. In this thesis our contribution was to demonstrate an implemen-
tation that improves the accuracy of relative pose alignment. Although SLAM isn’t
directly targeted in this thesis, several of the chapters provide improved techniques that
can be generally applied to SLAM systems. In Chapter 5, I attempt to tackle the issue
of producing good initial alignments for a dense alignment approach. In Chapter 6, we
provide an improved alignment strategy using a more general surface representation. In
Chapter 8, we attempt to get a machine to estimate the alignment between frames using
ideas borrowed from previous SLAM approaches. Finally in Chapter 9, we demonstrate
an approach that improves the performance of a standard SLAM algorithm without
using any additional information accept that encoded in a network, and demonstrate
a path towards machine learning and SLAM integration. This section is intended to
provide a context for the motivation of these works, and to demonstrate the variation
in current approaches.

1.1.1 Sparse Feature Based

Monocular (or mono) SLAM is a technique for performing SLAM that only relies on
a single camera moving through a scene. The most common approach to solving this
problem is to match structures in the scene visible in multiple overlapping views, and
computing the transformations that would be required to generate the observed changes
between views. A common choice of matching structure is image features such as
the popular Scale-Invariant Feature Transform (SIFT) feature [2] or the more recent
machine learned Oriented Rotated Binary Robust Independent Elementary Features
(ORB) [3] [4]. These methods are fairly similar in their approach, they wish to take and
image patch around a point and compress that patch into a fixed size vector of values
that is highly repeatable across multiple viewpoints of the same point. A image feature
allows points to be aligned across different views, and correspondences to be formed. As
these points are real points in the world, they must respect geometric constraints and
this can be used to triangulate their 3D position, allowing the construction of maps.
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Another consideration in earlier systems [5] was computational, we may only want to
match a small number of points so the approach will remain real-time. In order to cut
down the number of structures to convert to features salient points in the image are
chosen as the best candidates for features extraction. A very popular choice is to extract
features only at the corners of images, a popular choice of corner detector is Features
from Accelerated Segment Test (FAST) corner extractor [6]. Rosten et al. shows that
these points are extremely quick to compute and provide highly discriminative image
patches across multiple viewpoints. The approach in [7] uses FAST corners and ORB-
features as part of their state-of-the-art tracking pipeline ORB-SLAM2. This off-the-
shelf system had proven to be incredibly useful for the SLAM community and features
several times in this thesis.

1.1.2 Semi-Dense Featureless Monocular

As computational speed has increased, more recent approaches attempt to use more
information as part of the optimisation [8, 9, 10, 11], in an effort to both increase
robustness and accuracy. These approaches have been labelled semi-dense monocu-
lar methods, as they operate densely on image edge pixels (which are semi-dense as a
proportional to the image), and minimise an alignment based on minimising the pho-
tometric edge pixel re-projection error. Forster et al. demonstrated in [9] that by only
using the edges this method reduces the overall runtime of the algorithm while keeping
the most salient information for the tracking algorithm. Engel et al. extended this idea
in [11] to model the lighting of the scene and relative brightness of pixels across the
lens of a camera in order to improve the overall accuracy, due to the previous methods
sensitivity to lighting changes. Additionally they use the Schurr-complement trick (see
Section 3.5.6) to improve the speed of the algorithm by marginalising parameters that
contribute minimally to the optimisation at each time-step. One key take-away from
the work in [11] is that it emphasises the importance of modelling the sensor accurately
to the task of the localisation and mapping. This suggests the importance of accurate
sensor calibration, which is explored in Chapter 4. This also suggests that joint optimi-
sation approaches can be used to more effectively solve problems jointly by using more
of the available information.

1.1.3 Dense Depth Based

Since the introduction of GPU targeted parallel computing libraries such as Khronos’
OpenCL and Nvidia’s CUDA, the use of General Purpose GPU (GPGPU) programming
has become common in robotics. GPU’s are in general slower in serial clock-rate but
contain many parallel processing units, which can be used to speed up computations
that are parallelisable. This is true of many optimisation and computer vision problems,
including surface alignments. As was shown in Section 1.1.2 using more data, even noisy
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Figure 1.1: Demonstrates the alignment of multiple overlapping point clouds from a Kinect
style depth sensor. Note the slight curve in the walls in the top-down view (top-right) caused
by using an uncalibrated sensor to generate the point clouds. This alignment is performed using
a dense implementation of point-to-plane ICP which is discussed in Section 3.7

data, can be used to improve the accuracy of a tracking system given a robust approach
to modelling the noise. However it has traditionally been challenging to maintain real-
time performance as the amount of data increases, as CPU’s haven’t increasing in speed
sufficiently to allow this. Using GPGPU programming mitigates this issue and enables
dense approaches to run in real-time on low-cost consumer hardware. One of the most
popular techniques for point-cloud alignment (also surface/scan matching) is the ICP
algorithm [12]. As ICP is used several times in this thesis as a fundamental part of
some algorithms, we provide a more detailed introduction in Section 3.7, and a short
one below. Figure 1.1 shows the result of aligning multiple overlapping point-clouds
from a low-cost depth sensor using point-to-plane ICP, and already indicates the issue of
alignment using uncalibrated data, where the model contains a slight curve (top-right)
in the back wall. This does however demonstrate the impressive accuracy possible from
the sensors.

1.1.4 Iterative Closest Point (ICP)

The goal of Iterative Closest Point (ICP) is to align multiple overlapping depth scans
accurately and efficiently. The idea behind this algorithm is to iteratively reduce the dis-
tance between corresponding/closest points in multiple overlapping point-clouds. This
is a popular dense depth based approach to surface alignment [13, 14, 15, 16, 17, 18],
and was used in several works of this thesis including the works of Chapters 4 and 7.
As improved modelling was a key goal of this thesis, and dense real-time surface align-
ment was the most accurate approach to alignment [17], reducing the issues with this
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method was a key motivation of the initial research. One of the main issues with ICP
is the wide-baseline alignment issue. This is caused by the non-convexity of the error
function defined for ICP, which allows for many local minima, resulting in sub-optimal
relative pose alignments given poor initial conditions. A more detailed discussion of
this problem can be found in Section 3.7.

1.2 Low-Cost Depth Sensors

The introduction of low-cost depth sensors has had a significant effect on the fields
of robotics and computer vision research. Although depth sensors have existed for
many years [19, 20], they had primarily been used for offline modelling. Advances
in the technology improved accuracy and reduced capture time, but used expensive
bulky specialised hardware [21]. The release of the Microsoft Kinect provided a low-
cost all in one sensor, that operated at frame rate with an accuracy comparable to
previous approaches [22]. This provided a method of collected registered depth and
colour images, in real-time without requiring externally calibrated custom projection
systems. This led to the introduction of other new low-cost depth sensors that also took
different approaches but each produced the same result, a real-time depth/colour pair.

Devices that produce depth use a variety of approaches, the two broad categories would
be stereo and timing approaches. The stereo approaches (of which Kinect falls into)
use a standard geometric approach to estimating depth in the image, effectively densely
triangulating points across a stereo pair. The timing based approaches, effectively work
the same way a radar works, measuring the amount of time it takes for a light wave to
leave and return to a camera and using the speed of light as a constant. For a more
detailed explanation of both approaches please refer to Section 3.3.

The Kinect and other similar sensors were also enabled by the introduction of low-cost
powerful Application Specific Integrated Circuits (ASICs). This shift towards ASICs
has been increasing in recent years [23], as they provide a low-cost, low-power solution.
This has become an industry standard, moving away from the more general hardware
being applied to a variety of common problems, such as encryption, video encoding,
pattern matching and signal processing.

Although these low-cost structured-light depth sensors (such as the Microsoft Kinect)
have proved to be extremely popular in robotics and vision, particularly in a mapping
context [14, 15, 16, 18, 17], the sensor’s accuracy is known to contain structured errors.
As part of this research and in an effort to make this sensor more usable, a novel para-
metric calibration approach was developed that can be used to quickly and effectively
calibrate the majority of the structural sensor noise. This approach is described and
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evaluated in Chapter 4.

1.3 Surface Curvature Estimation from Low-cost Depth Sensor Data

Figure 1.2: Top Left: shows the original colour image, Top Right: shows the manually
labelled ground truth curvature value, Bottom Left: shows the result of estimating curvature
using a single frame [24], Bottom Right: shows the result from [25], using the joint-full multi-
frame optimisation. A key is included to indicate how the values of the principal curvatures
(κ1, κ2) relate to the mapped colours, in the bottom corner of each image.

This section is intended to provide a background for the work in Chapters 5 and 6.

In order to solve the wide-baseline problem of ICP we aimed for a geometric solution.
Some previous approaches tackled this issue through the use of feature alignment using
photometric based features, such as SIFT [2] and ORB [3]. This is certainly a good
approach, but fails when the scene texture is low and a lack of robust photometric
features are computed. In order to provide a simple, geometry inspired feature, that is
the basis of many geometry based features we focused on surface curvature estimation.
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Surface curvature is a measure of the rate of change of the surface normal direction as
you move along the surface. More specifically the principle curvature, we denote this
by κ1 and κ2, which are the maximal and minimal changes at even given point. We
denote the direction of the maximal and minimal curvature by the principle curvature
directions κ̄1 and κ̄2. Although perhaps not completely intuitive, these maximal and
minimal curvature directions are always orthogonal to one another. In this thesis a
quadric surface approximation was used to fit a local surface and extract the curvature
directly from the fitted quadric in a process described in Chapter 5.

1.3.1 Real-time Surface Curvature

The computation of surface curvature is challenging, particularly in the case of data
extracted from low-cost depth sensors. As discussed previously, the data is noisy and we
are trying to estimate a second-order derivative. This ends up quadratically amplifying
the noise term, and potentially lowering the signal to noise ratio (SNR) to the point
where the estimate becomes unreliable. The typical approach to combating noise is
to use more data, which leads to increased computation but more reliable estimates.
However computation time is important in a robotics context that requires real-time
performance, and in this case we are attempting to use the surface curvature to align
overlapping frames in a mapping system, which is certainly a real-time target.

In order to combat these opposing constraints we explored a relatively recently broad-
ened technology at the time, namely General Purpose Graphics Processing Unit (GPGPU)
programming. GPU programming has existed for many years, but only recently had
the manufacturers begun supporting libraries that allowed direct interaction with GPUs
for general computation. This is a paradigm shift in programming from an essentially
serial processing model on the CPU to a parallel processing strategy on the GPU. The
details of this paradigm are explored in Section 3.9. As this method of programming
was a key enabler for large portions of this thesis, I provide its own separate description.
The resulting real-time curvature computation system is detailed in Chapter 5.

1.3.2 Surface Curvature for Improved Surface Alignment

One of the most common situations a wide-baseline alignment is required is during re-
localisation, which is required when tracking fails and the system becomes lost relative
to the current map being built. An additional scenario when a potentially wide-baseline
alignment occurs, is during a loop-closure event. This happens when the camera moves
back position such that the system views as part of the map that it has previously seen
before. Given an ideal mapping the current position will match up perfecting to the cur-
rent map, but given the system accumulates error in pose estimates along any trajectory
it can be expected that some misalignment will be present which requires compensa-
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tion. This detection can be performed using regions of smooth unique curvature (as
shown in Section 5.6), or other photometric feature based approaches. However we can
also try to reduce the initial alignment error by improving the relative pose alignments
along trajectories to the point where more complex approaches, that compensate for
this misalignment are not required.

In this thesis a method of reducing drift is proposed, as an extension of the previous real-
time curvature estimation system. This method uses a point-to-surface implementation
of ICP (as described in Section 3.7) that used quadrics as the surface representation.
This improved the alignment quality of relative poses and massively reduced the drift
caused by accumulation error, which could potentially allow loop-closures to be detected
simply, reducing the need for wide-baseline alignment approaches. This approach leads
to reduced alignment error over previous approaches, even those that are considered
to be state of the art. The details of our approach are in Chapter 6. Additionally, an
example of the improvement to surface curvature estimation is shown in Figure 1.2.

1.4 Machine Learning Using Convolutional Neural Networks (CNNs)

This section is intended to provide a brief introduction into machine learning, with a
focus on robotic applications and in particular applications that relate to estimating
geometric quantities from colour images. We provide a more in-depth exploration of
machine learning approaches for robotics applications in Chapter 2, in this section we
primarily focus on CNNs as they were the machine learning approach chosen in this
research. The contents of this section relate primarily to the Chapters 7,8 and 9.

nucleus

axon

activation

propagated
activation

Figure 1.3: Highly simplified structure of three neurons forming a section of a neural network.
We also loosely demonstrate the process of activation and how this can subsequently activate
some neurons while terminating on others.
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1.4.1 Neural Networks

The rationale behind neural networks is to attempt to approximate the function that
neurons serve in a brain, in an efficient manner. Neuron’s are the building blocks of
brains, they are cells with a nucleus and axons that branch out, electrically connecting
them to the nucleus of many other cells. This forms a network of neurons, where
many interconnections exist between neurons and complex pathways are able to form.
The neuron has the ability to send a signal along the axon, to the connected neurons,
if the signal is sufficient or of a particular nature this can cause a connected neuron
to activate. We show a highly simplified example of this in Figure 1.3. In practice
this very simple structure exhibits emergent behaviour, in that the complex routing
and activation of particular neurons causes processes to perform in a brain, which
ultimately performs thoughts and recognition in minds, a highly complex behaviour.
The connections that produce the desired outcome and are used frequently strengthen
and potentially more efficient paths are formed, which is potentially how brains can
learn new things. Emergent behaviour is very common in nature, but takes millions of
years of evolution by natural selection to take place. We attempt to approximate this
functionality using the idea of the network combined with back-propagation of gradients
through that network to optimise for a desired outcome.
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Figure 1.4: A simple example of a 1D convolution on some data, using 3; 1×3 filters. Left:
shows the first step as part of the convolution computation, computing the output for O1.
Centre: shows the same three filters are used for the entire input data. Right: the resulting
layer given the convolution performed on the input data. This effectively increases the channel
count of the resulting data, now the 1-dimensional data has become 3-dimensional through the
convolution, as each convolutional filter acts independently, generating its own channel shown
using the colour coding. Also note the reduction in the number of elements by 2, because the
convolution was performed without padding the data.

1.4.2 Convolutional Neural Networks (CNNs)

In recent years the field of machine learning has been dominated by the use of Convolu-
tional Neural Networks (CNNs) which have proven to be some of the most flexible and
powerful methods of solving any problem in machine learning [26, 27, 28, 29, 30, 31, 32,
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33]. CNNs work by performing layers of subsequent convolutions on input data using
so-called filters. These convolutions form activations, which are then convolved upon
to form a network. Some activations will be terminated in the same way as they are for
neurons, as the convolutions will result in a insufficient activation level to propagate a
signal. In practice this termination is implemented using a rectified-unit operation, for
example the Rectified Linear Unit (ReLU) which zeros all negative valued activations.
The rationale behind using rectified-units is related to the way in which a CNN learns
through back-propagation of loss gradients. This is explained in greater detail in Section
3.10.

A typical application of convolutional neural networks is to the task of semantic seg-
mentation, a simplified illustration of which is shown in Figure 1.5. This demonstrates
that a set of successive convolutions can encode simple spatial information and combine
it to form more informed features. These information rich features can then be used as
a basis for classifying individual pixels with a particularly label. This example is vastly
over-simplified but illustrates the basic principles behind such a network.

Conv 1
Conv 2 Conv 3

Conv 4Activations 1
Activations 2 Activations 3

Labels

Input

Activations 1

Activations 2

Wall

Floor

Box

Table...

Legend

Figure 1.5: A very basic Convolutional Neural Network (CNN), where the dashed box indi-
cates the what section of the previous layer was convolved on to generate the coloured activation
block. To illustrate what the filters may learn during training we expand a few activation chan-
nels (chans, chant, chanu). Chans responds to vertical edges, while chant responds to horizon-
tal egdes, which could be the initial sorts of image features that are encoded. Subsequent layers
encode more complex information, where chanu seems to respond to the presence of both ver-
tical and horizontal edges. This demonstrates how subsequent convolutions can perform more
complex tasks then individual layers, by successively building upon the previous layers.
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CNN

Input

Ground Truth Predicted

Depth

Normals

Surface Curvature

Figure 1.6: An example of the output of a geometric estimation network, given the input of
a colour image. This clearly demonstrates how convincing the depths, normals and curvature
are for such a network.

1.4.3 Extracting Geometry from Colour

Inspired by the works of semantic segmentation and enabled by the vast amounts of
ground truth data low-cost depth sensors can produce, some researchers turned their
attention towards the task of estimating geometric quantities from a single view. This
manifested itself in works that estimated depth[34] and normals[35] given only colour
information as input, and produced very plausible depths. The original network ar-
chitectures were similar to those used for a very different task, that of semantic image
labelling. This is essentially training a network to assign 1 or more plain text labels
to an image [36, 32], and is the field that has led to massive improvements in image
search technology. In fact the neural networks now outperform humans at this task [37].
Although the original depth estimation networks were based on architectures adapted
to perform recognition and in fact initialised with weights from these networks the re-
sulting estimations were still convincing. This does indicate a plausible relationship
between the features required to estimate an image label and those required to estimate
a depth.
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They also demonstrated that getting a network to estimate related but different tasks,
forces it to devote energy into improving the underlying features it uses to represent
quantities [35, 38, 39]. More concretely if a network is attempting to estimate depth
vs depth and normals in the same network without increasing model capacity, the
network will have to learn features that encode information relating to both. Somewhat
surprisingly this compromise, instead of hurting the networks performance actually
seems to improve it.

Extending upon these previous approaches we constructed an depth estimation approach
and used the curvature and normal data generated by the system described in Chapter
5, to generate further training data from NYUv2 dataset [40]. The system was then
trained to estimate all three quantities in parallel. An example output of such a system
is shown in Figure 1.6. The details of our approach are in Chapter 7. We too found
that estimating related quantities with a common framework was able to consistently
improve our networks performance on all tasks.

1.4.4 Choosing the Correct Objective Functions

As has been shown in the previous section CNNs benefit from being given related quan-
tities to estimate. In addition to this having a set of loss functions that attempt to
balance the various goals of a network also has a positive effect on the overall per-
formance [35]. For example in estimating depths, it is clear we want to minimise the
difference between the estimated depths and the ground truth depths. However we may
also want adjacent estimated depths to be similar during inference, and so may want
to enforce this with an additional loss function during training. This will result in a
balance between these goals, where the network will essentially preference minimising
which ever has the higher loss during training. This can result in better overall depths
if the errors are properly balanced. Additionally we may want to use additional loss
functions when it comes to estimating a quantity with sparse ground truth but a weak
extrinsic constraint.

An example of this is for stereo imagery datasets like KITTI [41], where the ground truth
data comes in the form of highly sparse LIDAR data, but the dataset was captured in
stereo. One approach may be to use a method that computes accurate depth estimates
given stereo imagery, but this would potentially bake-in any failure cases of the stereo
approach into the networks prediction. The preferred method is to take a so-called
semi-supervised approach [42, 43, 44], and use left-right photometric consistency to
improve depth estimation quality, even when we only have a single image available
during inference. Photometric consistency is the constraint that the same thing in two
different photos should look basically the same. Further generalising this, instead of
fixing the relative pose to be a known transformation, namely the left or right relative
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shift of the camera between a stereo pair, one could estimate the general transformation
between adjacent frames in a sequential dataset. This would provide the same additional
constraints as the left-right consistency in terms of the photometric consistency, but now
it can be applied more generally to any sequential dataset which was done in [45] and
[46].

Expanding and improving upon these previous approaches we introduce further error
functions. Additionally, inspired by the works like [47] we design a network that esti-
mates quantities CNNs in general are better suited for, as opposed to trying to force
it to estimate something that is highly abstract like estimating relative pose given two
input images based solely on the pixel values. It is known for example that neural net-
works are able to produce state of the art optical flow estimates. Optical flow is a vector
valued quantity that describes the motion of any pixel from one frame to another. This
quantity is highly related to the relative distance of the point from the camera, as well
as the nature of the camera motion between frames. Acknowledging that a CNN is good
at estimating quantities such as metric depth, and optical flow, we were able to build
an iterative pose estimation from the estimated values, and outperform networks that
attempt to get the network to estimate the pose directly. We also used the estimated
pose to enforce photometric consistency across general transformations, and improve
our overall depth estimates. This highlights two things about the nature of CNNs, the
first is that the design of loss/objective functions is incredible important and can largely
determine the resulting performance of your approach, and secondly its important to
consider the nature of CNNs when designing your system to ensure the tasks you are
attempting to solve align with the strengths of the network.

1.4.5 Towards Real-time Performance

Recently the desire for real-time performance has lead to many innovations in machine
learning approaches. Many of these focus on approximating the structure of larger ac-
curate approaches using mathematically similar formulations that sacrifice performance
for speed. A popular example was mobilenets [48], where they were able to achieve
real-time performance for semantic labelling of images on a mobile device. To achieve
this they use depth-wise separable convolutions, which attempt to emulate the perfor-
mance of a regular convolution, by separating it into two stages. They take a set of
j×j filters equal to the number of input channels, and convolve across the input, with
each filter acting only one channel. This reduces the computational cost massively but
now complex features can not form across channels. To address this they convolve
the resulting activations from the previous step, with a number of 1 × 1 ×M filters
equal to the output channel count, where M is the number of input channels. This is
mathematically comparable to traditional convolutions and the results indicate similar
performance to existing networks but with large gains in speed.
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Figure 1.7: A representation of the possible manifold embedding generated by a set of net-
works, including the networks that are being trained to emulate the performance of a deeper
network. The imagined possible embedding space positions for input images are shown in the
networks respective colour, the size largely indicates the model capacity and how that might
relate to embedding. The distance from the deep network attempts to express how similar the
resulting embeddings appear to be. This is purely intended to be illustrative of the rationale
behind the resulting outcomes.

Inspired by the work [49] we aimed to generate a real-time depth network on a mo-
bile platform using knowledge distillation or model compression. What Hinton et al.
demonstrated in their approach, was that a larger more accurate network can be used as
a teacher to a weaker faster network, and improve its overall performance beyond what
a traditional training approach to achieve. They show this for the problem of classifica-
tion, training a network to emulate the average probability distribution of a ensemble
of strong networks. This provides a stronger training signal to the network and overall
produces a better classification than training on the ground-truth data alone. This is
similar to the adding a additional related loss functions that provide the network with
more information about what it needs to express. Extending this approach to depth
estimation is less straight forward, as its no longer a classification problem the network
doesn’t output a probability distribution. It does however generate an embedding at
every layer, in terms of the activations generated by the network. Taking the final layer
to be a pseudo-classification layer, we attempted to get a smaller network to emulate
the input of a larger state-of-the-art approach to this last layer.

We took two approaches to emulating the input to the last layer of the network, trans-
plantation and supervision, both generating a networks that outperform randomly ini-
tialised networks. Transplantation simply takes the final layer of state-of-the-art net-
work and transplants it on to the end of the fast network, the weights are fixed and the
remainder of the network is trained, meaning the knowledge of is simply transplanted
into the faster network. Supervision was based on trying to minimise the difference be-
tween the activations of the large network and the small fast network, this can be com-
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bined with a transplantation of the final layer. Interestingly this approach to knowledge
distillation produced some possibly counter intuitive results, including the transplanted
network consistently performing the strongest of all tested approaches.

The Figure 1.7, attempts to demonstrate the relationship between the training method-
ology and the resulting embedding. This is also intended to demonstrate that the
model capacity is largely what determines the resulting size of the embedding, not size
of possible outputs, which is a much larger. This was despite the supervised approach
generating activations more similar to the state-of-the-art network, indicating the topol-
ogy of the manifold is less convex than desirable. These results highlight the need to
further investigate the relationship to model-capacity and this method of knowledge
distillation. In addition to interesting results of the process we also demonstrate the
practical application of this approach to an existing SLAM system [50], and demon-
strate a qualitative and quantitative improvement over using purely monocular date,
by introducing our estimated depths. This approach is discussed in detail in Chapter 9.
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1.5 Publications

• A Compact Parametric Solution to Depth Sensor Calibration, Andrew Spek &
Tom Drummond In British Machine Vision Conference (BMVC), September
2017
• A Fast Method For Computing Principal Curvatures From Range Images, An-
drew Spek & Tom Drummond In Australasian Conference on Robots and
Automation(ACRA), November 2015
• Joint Pose and Principal Curvature Refinement Using Quadrics, Andrew Spek
& Tom Drummond In International Conference on Robotics and Automa-
tion(ICRA), June 2017
• Joint Prediction of Depths, Normals and Surface Curvature from RGB Images

using CNNs, Thanuja Dharmasiri*, Andrew Spek* & Tom Drummond
In International Conference on Intelligent Robots and Systems (IROS), September
2017
• ENG: End-to-end Neural Geometry for Robust Depth and Pose Estimation using

CNNs, Thanuja Dharmasiri*, Andrew Spek* & Tom Drummond Under
review: European Conference on Computer Vision (ECCV), September 2018
• CReaM: Condensed Real-time Models for Depth Prediction using CNNs,Andrew
Spek*, Thanuja Dharmasiri* & Tom Drummond Under review: Interna-
tional Conference on Intelligent Robots and Systems (IROS), October 2018

* Indicates equal contribution from those authors.
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1.6 Software and Hardware Libraries

1.6.1 Software

Computer Vision Library (libCVD) - libCVD is a very portable and high perfor-
mance C++ library for computer vision, image, and video processing. - https:
//www.edwardrosten.com/cvd/index.html

Tom’s Object Oriented Numerics (TooN) - TooN is a C++ numerics library which
is designed to operate efficiently on large numbers of small matrices, and provides
easy access to a number of algorithms including matrix decompositions and opti-
mizations. - https://www.edwardrosten.com/cvd/toon.html

CUDA - CUDA is a parallel computing platform and programming model developed
by NVIDIA for general computing on graphical processing units (GPUs). - https:
//developer.nvidia.com/cuda-toolkit-archive

Tensorflow - TensorFlow is an open source software library for high performance nu-
merical computation. - https://www.tensorflow.org/

JetPack - NVIDIA JetPack SDK is the most comprehensive solution for building AI
applications. - https://developer.nvidia.com/embedded/jetpack

TensorRT - NVIDIA TensorRT is a high-performance deep learning inference opti-
mizer and runtime that delivers low latency and high-throughput for deep learning
inference applications. - https://developer.nvidia.com/tensorrt

ORB-SLAM2 - Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with
Loop Detection and Relocalization Capabilities [50, 7] - https://github.com/
raulmur/ORB_SLAM2

Pangolin - Pangolin is a lightweight portable rapid development library for managing
OpenGL display / interaction and abstracting video input. - https://github.
com/stevenlovegrove/Pangolin

1.6.2 Hardware

Jetson TX2 - Jetson TX2 is the fastest, most power-efficient embedded AI computing
device. - https://developer.nvidia.com/embedded/buy/jetson-tx2
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2

Related Work

This chapter provides a review of previous work, in order to provide a context for the
research presented in this thesis.

2.1 Low-cost Depth Sensors

2.1.1 Sensor Types

A large portion of this thesis relies on the use of low-cost depth sensors in particular the
Microsoft Kinect, and as such the context of challenges and opportunities afforded to
the user of these sensors is provided here. Additionally information on various varieties
of depth sensor is provided to emphasise the wider applicability of the work performed
in this thesis. As indicated in the subsequent sections, these sensors are very widely
used in robotics [51, 21, 52, 53, 54, 55], computer vision [14, 17, 16, 18] and machine
learning [40, 34, 35].

2.1.1.1 Stereo Camera Systems

Stereo matching has been used in computer vision for decades [56], with the initial
efforts devoted towards automated matching in aerial photography. Stereo algorithms
function by estimating dense correspondences between frames that are separated by
a known transformation, in most cases a simple horizontal or vertical translation, to
simiplify the matching procedure. Matching is generally performed using patch based
correlations[56, 57, 58], but more complex approaches have also been developed [59, 60].
In [59], Hirschmuller presents an approach that has become the quasi-standard [61],
where correspondences are estimated based on mutual information and an approxima-
tion of a global smoothness function. In [60], Tola et al. present a dense feature based
approach that attempts to improve the parallelism of a feature based approach, exploit-
ing the overlap between points in the computation and separating convolutions across
precomputed orientation maps, allowing for a future fast parallel implementation.
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As computer speeds have increased the ability to perform stereo matching has as well.
This has resulted in real-time practically sized stereo vision systems [61, 62], but in
general have historically required special hardware including high performance Field
Programmable Gate Arrays (FPGAs) and accompanying CPUs making them expen-
sive and specialised. The introduction of low-cost cost ASICs [63, 23] has increased
the performance of these approaches. However, these ASIC solutions have become un-
available publicly and commercialised. As stereo approaches are passive they don’t
require active interaction with the environment to generate a depth. This also means
their range and resolution is only limited by the sensor size, and the camera separation.
As a consequence of this passive nature, stereo systems find low-texture surfaces very
challenging [64], resulting in sub-optimal depth estimation.

At the time this research was conducted, stereo systems were readily available in
robotics, but in general were expensive and required external computation and spe-
cial interfaces to operate, making them a less attractive option. Since then real-time
stereo devices have become more available [65, 66]. However, these systems are in gen-
eral more costly or require addition hardware to perform some of the processing via
GPUs.

2.1.1.2 Time-of-Flight (ToF)

Time of Flight (ToF) sensors are a popular choice in robotics [67, 68, 69, 70, 71, 72,
73, 74]. As described in [64], this is because of a number of favourable properties of
this devices. It requires no extrinsic calibration (single sensor), it can generate reliable
depth measurements without requiring a complex correspondence measurement, and
can function in low-texture environments comfortably at relatively high frame-rates
(>30fps). However, these devices also exhibit less favourable traits that are unique
to these sorts of sensors, including a noise that is proportional to the reflectivity of a
surface, integration along edges creating floating points that don’t exist, an effective
depth resolution and unambiguous range that are inversely proportional [64] (in some
sensor types), and in general a lower output image resolution.

Many approaches have been made to address these issues, as well as new methods of
actually computing depth [72, 71, 73]. In [72], Niclass et al. present an alternative
approach to estimating the depth that is effectively a higher resolution lidar scanner.
The device presented has such a high time resolution it can effectively count the number
of individual photons that hit the sensors. This allows for the device to highly accurately
measure the depth to very large distances with a very high degree of accuracy. This
sensor was improved upon in [71], increasing the frame-rate and reducing the cost by
replacing the externally required FPGA (used for the DSP required to reconstruct the
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depth), with a System on Chip (SoC) all-in-one solution. The system produced is
still relatively bulky, specialised, and contains a number of mechanical elements that
decrease the overall expected reliability while increasing the cost. Additionally, these
devices still exhibiting some of the classic drawbacks of ToF sensors, such as the object
boundary ambiguity [75], and relatively low-resolution. Finally, neither device provides
a registered colour value which is provided by other low-cost depth sensors.

An alternative to modifying the design of the sensor is presented in [69], where Zhu et
al. globally fuse the resulting depths from a stereo and ToF system in order to produce
registered depth and colour images with a higher accuracy than either approach alone.
This demonstrates a promising approach to resolving some of the flaws that exist in
the ToF approach to depth estimation by treating stereo as a complementary approach.
They expand upon the previous work in [70] to provide an in depth analysis of the global
fusion function they use, which is used to estimate a per-pixel confidence estimate they
use to guide the fusion of the data from the two sensor types. However, the system
produced is highly customised and adds a significant bulk in hardware, as it includes
both a stereo pair of cameras and a ToF sensor. The reliability estimate is something
that could be significantly useful in broad sense for ToF and stereo devices in general
to be able to exclude low-confidence points, but is not widely available on many current
commodity ToF sensors such as the Kinect 2.

2.1.1.3 Structured Light

Structured-light sensors work on the same principal as stereo camera systems, points
are corresponded very quickly between two views. The difference is one of the views
is projected onto the scene and the other view triangulates depth values by corre-
sponding to known points in the projected image, providing a stronger link between
correspondences and making matching more reliable. Structured light and ToF sensors
are considered active sensors, as they project a signal onto the world in order to detect
depth, which means both are greatly effected by environmental conditions [76], such as
ambient lighting.

Many early approaches to depth estimation using a structured light approach relied a
early digital projectors [20, 21] or custom laser systems [77]. Scharstein et al. present an
approach that uses a projector based approach, that is considered to be so accurate as to
provide a ground-truth image approximation to be used to evaluate the performance of
competing stereo approaches. A fixed projector is used to project a series of gray-codes,
which are like alternating bars that lead to extremely accurate binary line identification
in the image. Projecting a series of these at alternative angles and positions can be
used to very accurately correspond points across multiple views. However, this approach
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cannot provide registered colour information at the same time, and performs very slowly.
Weise et al. proposes a near real-time approach in [21], which works on the same
principal but also incorporates a closed form motion compensation function that allows
it to capture moving objects and produce reliable reconstructions. These early works
produced highly accurate depth estimation, but require expensive specialised hardware,
complex calibration procedures, custom software to compute the desired depth, and still
don’t produce colour imagery.

The introduction of the structured light based low-cost depth sensor, the Microsoft
Kinect, created a significant stir in the robotics and vision community. This sensor
used compact mini-projector, that projected a fixed pseudo-random grid pattern onto
a scene. The device was soon made accessible by the open-source community [78], and
subsequently support to developers was made official. The device provides registered
colour and depth imagery, at 30Hz through the use of a custom ASIC that is used to
match regions of the projected pattern. The device still has a number of issues [76]
(including structured error which requires intrinsic calibration), but has the attractive
property that it reports depth conservatively, removing points that don’t match with a
high confidence. This means the data that is produced is very reliable, and comparable
in usefulness to approaches that directly estimate confidence [58].

2.1.2 Calibration Approaches

In order to combat some of the intrinsic problems present in each of the sensor types,
many calibration methods have been developed. The approaches presented here are
primarily applicable to the active sensor types such as ToF and structured light. Cali-
bration of a stereo pair is approached slightly differently, where each camera should be
calibrated separately for the intrinsic parameters (see Section 3.2) and then calibrating
for the extrinsic parameters between the cameras (baseline, rotation, etc...).

2.1.2.1 Supervised and Semi-supervised

An early example of planar calibration is shown in [79]. Herrera et al. present a
method for improving the depth to colour registration provided by the manufacturer of
the Kinect and then attempt to improve the depth estimates. They use a joint checker-
board approach to register depth and colour images, then using the checker-board on
a planar surface, they optimise for a solution that corrects depth to the plane. In
[80], Raposo et al. provide an extension to [79] and improve the performance of the
calibration in terms of the number of required frames and speed of calibration. Both
methods show improved accuracy but both require the additional step of calibrating
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the colour to the depth camera. In [81], Jin et al. simplify this supervised calibration
method by having the user identify cuboids in the scene and iteratively optimise an
error function over the planar regions in the selected cuboids. One of the drawbacks
of these methods is an emphasis on supervision, and external ground truth estimates
which take additional time and/or require accurate measurements to be made by the
user in order to function.

A similar planar approach used in [82] where Di Cicco et al. present a calibration
approach that uses machine learning. An Artificial Neural Network (ANN) is used to
calibrate the sensor, removing the need for any specific knowledge or sensor modelling.
They also describe a method for collecting large planar surfaces for calibration that
eliminates non-planar data from collected datasets. This method greatly underestimates
the difficultly of capturing a planar surface from more than 6 meters away which limits
the effective range of the calibration.

2.1.2.2 Mapping Based

One of the most successful unsupervised calibration method for the Kinect was [83].
Teichman et al. use an approach which relies on building a globally consistent SLAM
model of a scene prior to calibration. They attempt to ensure the model quality and pose
accuracy by rejecting depth values greater than 2 meters when optimising the model.
This is because they require very accurate initial pose estimates. Using the pre-built
SLAM model they then attempt to minimise the error between the projected depth and
the model using a maximum likelihood across all corresponding depths patches. The
correction is a linear function applied to depth calculated for all 8x6 image patches for
discrete depths and interpolated between adjacent patches. The process of modelling-
calibration process can be repeated, but reportedly this is largely not required for a
good calibration.

Zhou and Koltun took a similar approach to calibration in [84], but instead of requiring
the user to manually cycle the modelling and calibration steps, it automatically recom-
putes a more accurate SLAM model by using the corrected depth images in their model
generation stage after each iteration. Again they use a set of patch centred linear scaling
factors for discrete depths, however they use tri-linear interpolation between patches of
a particular depth and between specific depths. Both [83] and [84] use a patch based
approach to save computational time and memory usage for the resulting calibration
model, and avoid over-fitting the data as the devices used produce high frequency noise.
Both methods are reportedly overnight computational processes on modern hardware.
However, both methods can suffer from over fitting to the noise due to the extremely
high model capacity using thousands of parameters.
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2.2 Depth in Robotics

As referenced above low-cost depth sensors have proven to be extremely useful in a
robotics and vision context. This section provides a context for the motivation in using
low-cost depth sensors in this work, including the importance of geometric based features
(Section 2.2.1) to many applications such as SLAM (Section 2.2.2), scene segmentation
(Section 2.2.3), and machine learning (Section 2.3).

2.2.1 Geometric Feature Estimation

In the context of this thesis geometric feature estimation is considered to be deriving
features from depth information alone. This includes geometry properties such as nor-
mals and surface curvature, but also includes hand-crafted point features. In this thesis
research primarily focused on the former of these two feature types, and improving a
system’s ability to estimate them. The goal of computing these features in this thesis
is for the task of mapping alignment and to a lesser extent segmentation.

2.2.1.1 Normals from Depth

The normal is the direction that is perpendicular to the surface at any point. Normals
and planes are tightly coupled, a tangent plane to a point on a surface and the point can
be used to define the equation of a plane, which can be used to quickly check if other
points lie on that plane. A common robotics application for normals is plane fitting,
which is helpful in navigation and scene segmentation for a robot. Normal estimation is
important for computer graphics [85, 86, 87] and robotics [53, 54, 88]. For the computer
graphics and vision communities normals are crucial to many standard lighting models
[89], additionally a normal of a point can be used to define whether that point is expected
to be visible or not given a change in viewpoint. An early example of a variety of normal
estimation approaches is in [85], where Yagel et al. provide methods for computing so-
called discrete normals from point based surfaces in a graphics context. This work using
small neighbourhoods around points in the world space, or pixel space to compute an
estimate for the normal through differentiation of the surface. The surface derivative is
effectively equivalent to the surface normal, but these approaches are somewhat more
susceptible to the noise in the depth information, which can lead to poor estimates of
the normals.

In [87], Amenta et al. introduce a method for computing normals based on a Voronoi-
based filtering approach in point fitting, initially taking the surface normal to be the
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vector that connects this point to the furthest Voronoi vertex in Voronoi diagram sur-
rounding that point. Using this as a basis for redefining a new Voronoi diagram, and
subsequent Delauney triangulation of the surface. Dey et al. extend this idea in [86], to
use a Voronoi based method in an effort to handle noisy point-clouds which are more
common in real-world applications. The normal is first estimated as with [87] then
refined using a least squares approach, which results in normals that are fairly robust to
noise in the points. This approach requires multiple steps, and could result in increased
compute times.

2.2.1.2 Curvature from Depth

As surface curvature is such a fundamental surface quantity, there exists a significant
body of research concerning it’s computation [19, 90, 91, 92]. Many of these methods
are computed using dense point cloud data [19] and high quality meshes [93, 91, 92,
94] allowing high quality estimates of curvature to be made using a relatively small
amount of the data, due to the high inlier rates. In [19] Besl introduces the concept
of local surface fitting in order to compute curvature. Besl et al examines fitting range
image data densely using least-squares regression to fit to quadratic, cubic and quartic
surface parametrizations. Surface fitting has been a popular choice for surface curvature
estimation [95, 96], in particular quadric surface fitting which has been shown to be
effective for curvature based segmentation [97]. Douros et al. present a work [98] that
attempts to fit local surface patches to point cloud data directly. However, in their work
they use a least squares approximation to produce a closed form solution. Although this
approach can deal with noise in the input, it doesn’t fully account for outliers resulting
in potentially erroneous curvature estimates.

Curvature estimation from quadric surface fitting is based on fitting an implicit quadric
surface around a central point. Curvature is then estimated from calculated surface
gradient estimations of this fitted surface. In order to estimate surface curvature some
methods [55, 99] also employ a technique that requires the estimation of second order
partial surface derivatives about the point. This creates an estimate highly susceptible
to noise in the point cloud, as the estimate of the second derivative will be quadratically
effected by the noise, if estimated directly. For a sensor like the Microsoft Kinect with
quite a noisy local signal [76], this can prove to be quite problematic.

Many common methods employ techniques that require high quality surface meshes or
point clouds to estimate normals and curvature fast and accurately. In [94] Rusinkiwicz
et al. use a patch of connected vertices taken around each vertex in a triangular mesh
to estimate curvature. The patch used is made of a 1-ring selection of triangles that
share a vertex with that point. Using this small neighbourhood of triangles, normals are
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estimated for each vertex and their relative weight is computed based on the proportion
of the area of the surface that lies closest to the vertex. Using this 1-ring of normals all
pair-wise normal differences are calculated and the curvature of the surface is estimated
from the weighted sum of these normal differences. This method is roughly equivalent
to a discrete differentiation of the surface normal field and gives a reportedly reliable
estimate of the principal surface curvatures across the mesh. However as the patches
used in this 1-ring method only uses direct neighbours to the center vertex it is heavily
sensitive to noise in the surface. This method was extended in [92], where Griffin et
al. used a GPU implementation to make it run in realtime (30fps) for mesh models
of the order a million vertices. However this requires a pre-processing step to sort the
vertices via an iso-surface extraction which takes on the order of hundreds of ms (using
NVIDIA GTX480) for models of that size. This approach is also more geared towards
vertex-based models, as opposed to point cloud data.

There also exist other open-source methods for computing curvature [99], namely the
method developed for the open-source Point Cloud Library (PCL) by Rusu et al. This
library provides an estimate for surface curvature in a point-cloud and can be applied
generically to any point-cloud. The original method employs a KD-tree which allows
a metric based surface patch which is proportional to the density of the point cloud,
making it suitable for noisy point clouds. They also created a GPU method which
operates in real-time and operates in view-space (as our method does), with both com-
puting an estimate for principal curvature values given an input point cloud. However
both methods compute curvature via an robust double differentiation using PCA of the
surface differences and then normal differences, which should be able to cope with a
small amount of noise in the data, but again struggle with outliers. This double differ-
entiation substantially amplifies the noise and outliers in the point cloud data and is
therefore unsuitable for quite noisy devices such as the Microsoft Kinect.

2.2.1.3 Features from Geometry

Geometry based features generally use a few common approaches that are borrowed from
the earlier photometric feature work, such as being patch based, using pair-wise point
comparisons to form histograms [100, 101] and even using gradient information (in this
case surface gradient/curvature) [102]. Almost all the approaches that demonstrated
robustness in a photometric case have been translated to function on geometric data
and seem to demonstrate that the features used seem to be salient in both domains
(photometric and geometric). A few notable examples of geometry features include
Point Feature Histograms, Spin Images, SIFT3D and NARF. A general geometric fea-
ture is surface curvature, which is not completely discriminative for a point on its own,
but has proven to be effective when summarised across a neighbourhood around a point
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[53, 54, 103] and generally forms the basis of most computed features indirectly.

Rusu et al. first demonstrates the Point Feature Histogram (PFH) in [100] as a method
for providing a generic surface feature that is based solely on the relative orientation of
normals in an N-neighbour area around a key-point. This is a method that essentially
uses surface curvature of a small neighbourhood around a point to provide a sampled
descriptor. The PFH actually gives a histogram based on the similarity in the per-point
normals for a small neighbourhood (fixed on the number of neighbours) of points around
each point. The basic technique transforms the points and normals into a frame/basis
formed around the central point and the angle between the axes of the frame and the
distance between the point is used to construct the histogram. Rusu et al. expanded on
this work in [101] to produce Fast Point Feature Histograms (FPFH) which differ mainly
in computation efficiency but they also remove the distance between the points in the
calculation of the histogram, as they found it to be unhelpful. A practical application of
similar work can be found in [103], where Drost et al. define surface features of a point
cloud based on normal differences. These features are defined for entire objects and a
look up table is created to store each object required for recognition. Using this principal
they need to sample a selection of points in order to match to the desired image using
these correspondences. These sort of geometric features have proven popular in certain
situations, but fail to extend well to large scale applications due to the incomplete
nature of the data they use.

In his thesis [104], Johnson analyses the feature known as Spin Images. Spin Images
are defined useful for 3D point cloud data. Spin Image use a region of points around
the point of interest in the point cloud. Using these points a dominant direction of
the points on the region is defined, which takes into account the relative position of all
points in the region. Using this central point a sampling plane is aligned to the dominant
direction and then rotated about the central point sampling the location of points that
intersect the sampling plane. These points are binned based on the cylindrical rotation
and radial coordinates giving a descriptor for that central point that uses the sampled
point density as its defining characteristic. These features again have issues in the case
of missing data, this is particularly true when self occlusions occur, the features really
need to be computed from more complete models, but this in some sense would defeat
their purpose if one wished to use them for wide-baseline alignment, as you want to
align incomplete images to the current model.

SIFT3D is very similar in principle to SIFT but requires 3-Dimensional data which are
all spatial for MRI and CT scans [105, 106] or two spatial and one temporal dimension
such as in [102, 107]. The 3D data component makes it almost the same as the original
SIFT but the histograms are now segmenting over cubic regions instead of squares and
the dominant gradient direction is determined in terms of 3D dimensions, as are the
image gradients. This has shown to be very effective for aligning medical imaging data
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achieving high accuracy scan matching [105], and has been shown to even be effective at
object recognition for security purposes [106]. The temporal version of SIFT3D is shown
in [102] which uses the same SIFT3D descriptor but instead of using the third spatial
dimension, the third dimension is now time. Scovanner et al. have shown this is quite
effective at determining actions performed in video sequences. Although this provides
reasonable results in matching and object recognition [106], the data requirements are
3D which are not available when using a low-cost depth sensor. Additionally, this thesis
is not concerned with temporally based action recognition.

The Normally Aligned Radial Feature (NARF) descriptor proposed by Steder et al.
in [108] uses stable surface points at boundary locations to form features based on
changes in a patch. These stable points are defined as those that have normals in
a neighbourhood around it that can be accurately estimated. This is not generally
true of points on physical edges in a depth scan as these are some of the least stable
points due to the inaccuracies in the device that performs the scan. The descriptor is
formed by applying a fan shape to a point aligned to its normal giving a descriptor
based on how much points vary along each line in the fan shape. This is then rotated
to align the descriptor with the dominant fan line. This descriptor essentially tries
to find regions of stable surface curvature in order to ensure its robustness. This is
based on the idea that the least reliably points to compute a descriptor for are those
that occur on object boundaries. This is because these are the exact locations depth
sensors find most challenging, meaning a fast method of computing surface curvature
to allow stable regions to be computed more quickly could be highly beneficial to this
approach. However, potentially region level segmentation could also be sufficient, given
the viewpoint dependence inherent in many of the geometric features when applied to
low-cost depth sensor data.

2.2.2 Localisation and Mapping

Localisation has been a significant problem in the robotics and computer vision com-
munity for a number of decades now. The term localisation is used in computer vi-
sion and robotics to mean one of two things, finding the location of objects in the
world relative to you and finding your location relative to the world (ego-motion). The
method of localisation can vary greatly, but one major distinction can be made be-
tween sparse [1, 50, 7, 109, 110, 111], semi-dense [10, 11, 112] and dense techniques
[14, 15, 16, 17, 18, 113, 114, 13, 25]. Mapping is the process of generating or creating
a map of the world that could be used to accurately navigate that world. The map
produced is generally constructed from points, lines, primitives, feature point locations,
or a combination of these.

Localisation and Mapping have a chicken and egg relationship, where good mapping
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requires a way to accurately localise, and good localisation requires an accurate map.
One of the initial efforts to combine these tasks and solve them simultaneously was
in [1]. In this work by Durrant-Whyte et al. localisation is performed based on the
location of feature points in a 2D sonar map of the environment, this was also the first
use of the term Simultaneous Localisation and Mapping (SLAM). In the two-part follow
on papers [109] and [110], Durrant-Whyte and Bailey give a detailed introduction to
the basic principals behind SLAM. This includes using landmarks to build a map of
the environment, using the landmarks to form correspondences across map views to
align multiple scans for map building and also localisation. In [110] the focus of the
paper is on the extensions to the framework, such as performing the expensive global
map update infrequently while introducing a local sub-map that can be updated very
quickly but provide accurate location information. Bailey et al. show loop-closure via
bundle-adjustment can be performed very efficiently on a sparse matrix, establishing the
idea that a sparse matrix representation of your map will result in a large improvement
in speed. This also indicates that combining information from multiple views allows
a global optimisation that’s more accurate, due to the redistribution and subsequent
reduction the system errors.

2.2.2.1 Feature-based Approaches to Mapping

This thesis focuses on photometric and geometric tracking including sparse and dense
techniques. This section is included to provide a context for SLAM approaches in
general. In this thesis we also move in the direction of machine learning for navigation
using some off-the-shelf SLAM approaches [50, 7] in the evaluations, as these approaches
are also entirely photometric. Photometric based tracking refers to methods that use
the colour or luminance values of an image to compute relative alignment information.
Many methods that use this form of tracking have been formulated including the use
of gradient based intensity features [2, 115], textural based and trained descriptors
[116, 3, 117].

Scale Invariant Feature Transform (SIFT) features [2] are still one of the most powerful
photometric based features in terms of descriptive ability, and are used [118] for this
reason. In David Lowe’s original 1999 publication he outlines the original SIFT de-
scriptor and an implementation of feature matching using his new formulation. A SIFT
feature is an aligned histogram patch of the image gradients for each feature point.
The SIFT feature is first aligned to the direction of the dominant intensity-based patch
gradient, providing some invariance to rotation in the viewpoint as the camera moves.
The feature vector is the result of binning the gradients over the patch giving a 128
dimensional vector. It’s key drawback is it’s computation time, which is comparatively
high compared to more recent approaches [3, 60, 117]. This led to the introduction of
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Speeded Up Robust Features (SURF) [115]. SURF developed by Bay et al. is essen-
tially an approximation of a SIFT descriptor, but replaces gradient calculations with
fast Haar Wavelet filter convolutions. This shows an improvement in speed with only
a minor sacrifice in robustness. However, the computational savings are probably not
sufficient to justify the loss in view-point invariance and thus re-localisation ability.

Rublee et al. propose the Oriented FAST and Rotated BRIEF (ORB) descriptor in [3].
The ORB descriptor relies on a machine learning approach for defining features and
has shown significant improvements in speed with little sacrifice in matching robustness
across many datasets. Rublee et al. have used a point feature pair-wise comparison
strategy for defining a feature, using a rotated BRIEF kernel that is aligned to the
direction of the intensity centroid. The Binary Robust Independent Elementary Feature
(BRIEF) [4] fixed length binary feature vector and is produced by performing pair-wise
intensity tests that are optimised to give the most information for each question. This
is computed based on choosing the question that would most evenly separate features
in the training dataset.

Recent successful SLAM solutions [50, 7] have shown that ORB features are well suited
to a wide variety of contexts, with evaluation across a number of varied datasets and
even performance that rivals dense and semi-dense approaches. More recent approaches
to producing learnt descriptors use machine learning throughout the extraction pipeline
[117]. Yi et al. produce Learned Invariant Feature Transform (LIFT), which is an
approach that attempts to learn how the patch around a key-point should be cropped,
rotated and transformed into a discriminative feature space, by ensuring the distance
between the same patch from different viewpoints is small in feature-space. Something
that almost all these approaches do is to assume that the patches around a point lie
on a locally visually planar region. This is largely not true in practice, as the features
are in general extracted from corners (using FAST [116] of some similar method) which
produces large numbers of corners on object boundaries. Extracting patches from these
regions is significantly viewpoint dependent, as background pixels in a patch will include
data from objects that the point is currently occluding. This can make re-localisation
given a wide-baseline change more challenging.

2.2.2.2 Using Geometry Approaches to Mapping

Geometry based mapping and localisation uses the geometric information in the in-
put data to compute the information required for mapping and localisation. This
geometric information is in general related to relationships between points, lines and
planes/normals. There are two primary ways in which the geometry information is used,
patch-based geometry features and direct surface matching. The appropriate method
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of matching can depend on the way in which the data is collected, and its format. For
example laser scanning techniques are able to provide high resolution point-clouds of a
scanned area, while in the case of Computed Topography (CT) scans the information is
a 3D intensity image. These two different forms of 3D data have different characteristics
and thus in general a different strategy of mapping and tracking should be beneficial.

An extremely popular technique for aligning overlapping depth scans is the so-called
Iterative Closest Point (ICP) algorithm. The original implementation of ICP was pro-
posed simultaneously by [12] and [119] approximates a relationship between points in
scans and iteratively repositions them to minimise error across the system. Chen et al.
and Besl et al. both introduced ICP independently but Besl at al. proposed the name
that stuck and formed the initial point-point, point-line and point-plane error minimi-
sation strategies. Since the original paper ICP has become one of the most popular
choices [120, 121, 122, 113, 114, 123, 124, 125, 126, 127, 13, 128, 129, 18, 14, 17, 16] for
scan matching due to its high level of precision and the simplicity of the implementation.

The original implementation was exhaustive and offline, as was the acquisition of dense
point clouds, although later modifications were made to speed up the original algorithm
[120, 121], allowing for real-time ICP at frame rates of 30-50fps. Rusinkiewicz et al.
showed that the sampling method used could be important depending on the choice
of scene. Where largely planar scenes contain very little salient information for scan
matching, hence sampling the points with the greatest amount of variation are going to
give you the best chance of converging on the global minimum. They also showed that
the project and walk strategy gives some of the best results in convergence rate and is
also one of the quickest methods to compute correspondences. Rusinkiewicz et al. also
showed that outlier rejection was important for improving convergence radius but had
little effect on the rate of convergence.

The introduction of the low-cost depth sensor has changed the landscape for the robotics
and SLAM communities as it has made the collection of real-time accurate depth scans
much easier. As such many current systems [129, 122, 125, 126, 13, 14, 128] have
been enabled by this new sensor. One such system [122] utilized the format of the data
returned by the original Kinect sensor. The disparity information returned by the Kinect
is proportional to the inverse depth according to the relationship q(dij) = k1dij+k2. Lui
et al. showed that by performing ICP directly over inverse depth coordinates the error
becomes isotropic instead of increasing with distance, and it also avoids the unnecessary
conversion to Euclidean space. This demonstrates a case when consideration of the
nature of the error in the input data, aids in modelling and compensating for that
error.

One successful low-cost depth sensor based system, Kinect-fusion introduced in [14] uses
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a dense multi-scale ICP approach to track the live camera to the currently produced
model/map of the environment. One contribution of this paper was the novel model
representation, that used a volumetric Truncated Signed Distance Function (TSDF) to
robustly handle free space in a voxel representation and dynamic elements as the TSDF
is constantly updated per-voxel. Newcombe et al. combine this with the added accuracy
of the dense ICP approach demonstrating that the error accumulation can be avoided
to a large degree without explicitly compensating for it. Error accumulation is most
noticeable when tracking or mapping frame to frame over a long series of frames, as the
errors between each frame accumulate to cause the global consistency of your model to
drop and lead to poor mapping and tracking quality. This is especially apparent for
uncalibrated sensors, and less accurate approaches to alignment.

In SLAM++ [129], Salas-Moreno et al. expand upon the works [103, 14], using the idea
of tracking from a model to reduce the accumulated error. In this work, objects that are
expected to appear in a scene perhaps multiple times are loaded as models and detected
during runtime using the method developed in [103]. Then a high quality model can be
swapped into the scene in the place of the object to improve the quality of the tracking
by including more prior information about the shape. The tracking is then performed
keyframe-to-keyframe and keyframe-to-object, allowing for greater connectivity in the
graph. Further to this the objects/models are used to more quickly detect loop-closures
to trigger bundle-adjustment to run across the current graph/map. Additionally a
ground plane constraint is used to reduce the degrees of freedom in which the object
can be moved creating improved matches. This system has shown impressive real-time
performance, however it requires accurate models to be scanned in and provided to the
system, and a lengthy training step is performed to allow for recognition of the object at
runtime. Additionally, the constraints imposed by using a ground plane approximation
are not valid in many scenarios, particularly outdoor, or uneven environments or even
potentially multi-level buildings.

An interesting and powerful extension to the choice of distance metric was proposed by
Gelfand et al. in [130]. The authors recognised that the distance metrics, point-to-point
and point-to-plane, and the subsequent optimisation methods were using a first order
approximation of the surfaces. They show that this can lead to suboptimal solutions
even when using advanced optimisation strategies. As a way to improve upon this
Gelfand et al. propose an alternative quadratic (second-order) surface approximation
for the distance metric, by fitting a local quadric to neighbourhoods of points and
optimising a pose that minimising a point-to-quadric residual function. However, this
work requires significantly more computation time, and the computation of the quadrics
is fixed for a scan, indicating a poor initial quadric estimate may significantly effect
performance. Additionally, this was only applied to synthetically generated models,
which is significantly different to the data produced by low-cost depth sensors.
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2.2.2.3 Combining Depth and Colour for Alignment

Using the combination of both photometric and geometric information is beneficial to
trackers, as they are able to form a more complete and accurate joint solution. The
rise in fused systems [125, 131, 127, 132, 126, 125, 17, 133] can largely be linked to
the introduction of the low-cost RGB-D sensor, which provides synchronised depth
and colour frames. These approaches taken can be divided into those that attempt to
introduce a production line for the colour and depth, where the information from each
is processed sequentially and what’s learned is passed along to the next stage, and those
that attempt to optimise directly on all the data simultaneously.

An initial approach by Henry et al. in [125], was to first use a feature based approach
on the colour information such as extracting SIFT or SURF features and then com-
puting an initial alignment. This is then generally followed by a more accurate ICP
calculation using the depth data. This has the benefit of overcoming the limitations
of ICP which can not handle wide baselines, which feature based approaches are quite
good at. Additionally this may be simpler to implement than a totally new system, as
both of SIFT and ICP are quite mature. As well this can be made quite light weight
as it is computed sparsely and on the CPU.

In [113, 114] Meilland et al. show modelling with a wider baseline using a custom
spherical stereo depth image. They employ a novel saliency map to quickly determine
the points that provide the most information for mapping, by examining the effect on
the total error by adjusting each motion parameter individually and choosing those
points that resulted in the largest change, corresponding to the largest reduction in
global error. Another contribution was their implementation of a novel spherical depth
map loop-closure strategy.

A more recent approach [127, 132, 133, 126, 17] is to attempt to directly minimise
the error in the depth and photometric data. This requires the use of all data points
(dense solutions) in the optimisation to provide the most accurate solutions. ICP can
be a rather expensive operation to compute densely, and when combined with a dense
optimisation over colour this would be pushing it outside real-time on a CPU and
has led a significant number of researchers to move to GPU implementations. This is
the case certainly for [132], where the system uses a bi-jective optimisation strategy,
that simultaneously minimises projected depth and photometric error to a reference
frame. This process needs to be performed on a GPU to ensure real-time performance.
This method is essentially the same for [126], which uses the idea of matching to the
model to avoid drift. The contribution from Henry et al. was to use the novel Patch-
Volumes. Which can be used to represent large sections of data (possibly objects)
based on segmentation results and bringing them in and out of memory, allowing for
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a more extensible system than that in [14]. Whelan et al. extend further upon these
previous approaches in [17], where they propose an approach to modelling that focuses
on resulting models reconstruction accuracy by continuously making incremental model
updates through small model deformations to local regions. This approach again fuses
the information from depth and colour to improve tracking and modelling accuracy.
Each of these approaches can be improved with a better calibration than provided by
the factory. Instead these approaches compensate for minor structured error in the
sensor by in general adapting the model, or removing points from consideration, which
could be used more effectively.

2.2.3 Scene Segmentation

Scene segmentation is the process of background/foreground separation, where objects
or instances are segmentated from the background. As is the case for localisation and
mapping, there exist many photometric and geometric approaches, and naturally com-
bined photometric/geometric approaches to improve segmentation. Scene segmentation
is useful in computer vision and robotics [100, 54, 134] with accurate, robust segmenta-
tion being the basis of many other computer vision technologies in including mapping,
semantic labelling and object tracking. One common aspect is that combining further
sources of geometric and photometric information can increase an approaches segmen-
tation performance. Although scene segmentation is not a primary goal of this thesis,
many of the approaches in machine learning that focus on scene segmentation have
used/created important architectural frameworks that are applicable to later of half of
the thesis. Additionally, as surface curvature, and normals are geometric features that
are able to improve segmentation quality, we provide a discussion of some of the most
relevant techniques.

2.2.3.1 Colour Based Segmentation

Photometric based segmentation uses the colour data in order to segment the scene,
this can be using just the intensity of the image or by incorporating colour information
to improve the distinguishing power of the the segmentation algorithm. Segmentation
methods vary significantly on a case-by-case basis, where the direction of the field
seems to moving towards complex models of the pixel relationships, including complex
energy minimisation strategies [135, 136] to the use of super-pixel tree structures [137].
Segmentation by photometric data or 2D segmentation is a long established field and
some of the best performing segmentation algorithms perform almost as well as humans
[138].
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In [135], Gould et al. use a segmentation function that relies on global refinement
of a function that minimizes over the horizon location, region, boundary, object, and
context. The region term attempts to weight the region that most represents the pixel,
and penalizes misclassification. The boundary term penalises adjacent regions with
similar appearance or lack of boundary contrast, which helps merge similar regions.
This scores the likelihood of a group of given region classifications being part of an
object (regions form objects e.g. cups, bowls, chairs). The context term relates the
object classification and the local background. In their implementation they consider the
background as a single object, hence the context term is related only to one other object
making computational growth linear instead of quadratic as is the case with taking the
relationship to all other objects pair-wise. This method showed promising performance
in terms of segmentation accuracy, but the computation is still very expensive and
perhaps not yet possible in real-time, with a reported computation time of a few minutes.

A significant shift in the field of robotics and computer vision has been towards using
machine learning techniques for problems like this. Early machine learning segmenta-
tion approaches such as [137], use convolutional neural networks (CNNs) to produce a
segmentation. The system presented in [137] uses a similarly advanced segmentation
strategy to perform a pixel-wise segmentation of the scene. Farabet et al. initially
over-segment the scene, giving vastly more segments than objects, then a trained CNN
classifier is run on each of the of segments to join the segments into super-pixels. Fol-
lowing this initial step the super-pixels are used to form a conditional random field
(CRF), in which the joint-probabilities at the scene level are modelled between super-
pixels. This is finally used to form a hierarchical segmentation of the scene for analysis
purposes. They show this allows a more flexible segmentation representation and also
allows for the training of a more general classifier which is the purpose of the work they
conducted. The resultant segmentations were highly accurate, but this is largely due
to the use of a trained classifier in determining different scene types. A more recent
system presented by Prisacariu et al. in [136] uses no explicit per frame segmentation
of the scene to allow for execution, instead performing a very simple colour based his-
togram segmentation of foreground and background. This is an example of where a
simple method is perhaps all that’s required as the application is real-time and as such
one would expect to be able to improve your estimate in subsequent frames, and allows
you to ignor the problems that are explicitly handled by single frame solutions such as
those in [135, 137].

More recent approaches [34, 138, 139] use largely entirely CNN based approaches, al-
lowing the machine to learn the useful aspects of segmentation and design architectural
components as well as complementary loss functions to aid in network performance. In
[34], Eigen et al. presents an approach for segmentation based on the popular VGG
architecture [27], that includes complementary loss functions, that requires the network
to optimise for not only segmentations but also depth and normals. This is shown
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to improve the overall network performance, as well as the inclusion of auxiliary loss
terms, which attempt to force the network to generate a low-resolution result from an
earlier layer of the network, effectively forcing the network to encode the information
earlier in the network. In [138], Badrinarayanan et al., demonstrate a state of the art
approach, that again uses a similar architecture to VGG but in this case, the network
is used to encode and then a flipped version is placed on the end as a decoder. This en-
coder/decoder model has become popular in segmentation [138, 139] and dense labelling
tasks. This approach uses un-pooling with a learnable convolution on the unpooling
layer, which they claim improves performance. Another technique that has become very
common is the notion of using skip-layers [140], that effectively reintroduce lower level
feature maps back into the current network layer, effectively allowing this layer to ‘skip’
to a later section of the network. This has the effect of reintroducing high frequency
information that can be lost in the encoding stage, allowing for sharper segmentations.
These original architectures designed for segmentation, have since been found to be
incredibly strong performers in geometric quantity estimation [141].

2.2.3.2 Geometry Based Segmentations

Geometry based segmentation uses the geometry information to segment the scene
into its elements. Typical approaches include using physical edges (regions of strong
curvature) to separate elements combined with an estimate of large geometric features
in the scene such as planes [53, 40] or using local geometric information between points
in a neighbourhood to determine their local similarity [100, 101].

An example of a simple geometric segmentation is the classic planar technique, which
is found in multiple works such as [53, 40]. In the work by Rusu et al. the initial scene
segmentation is based on a simple planar based segmentation, where they show this
method of segmentation on a point cloud is very effective at retrieving a good initial
estimate of where the object in the scene might be located. The method uses a simple
RANSAC based approach to find the possible places in the scene, and any points not
lying on one of the planes found is said to be an object and points in these regions are
segmented for examination. Another example of such a system can be found in [40],
where Silberman et al. produced a system that not only segments the scene into major
surfaces and objects it also attempts to determine support relationships. This method
showed that planar based segmentation is useful for separating objects from planar
surfaces, but showed that is couldn’t be heavily relied upon for accurate segmentation,
ultimately showing they required colour information in order to improve segmentations.
In the vast majority of situations this method is appropriate for finding objects that you
wish to segment in the scene but was shown to be vastly improved upon by including a
colour information in the segmentation method.
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Rusu et al. demonstrated that the method presented in [101] can be extended to segment
the scene and was shown to be viable but perhaps expensive in real-time in [53, 54]. This
extension of their previous work showed that simpler geometric approaches are able to
give good segmentations based on simple planar heuristics, that objects probably lie on
planes, and that planes form surfaces and/or larger objects. These are regions of low
surface curvature and demonstrated the importance of measuring surface curvature to
segmentation and object manipulation in a robotics context.

2.2.3.3 Combining Depth and Colour Information

For the case of tracking and mapping fusion based methods that incorporate depth and
colour information have been found to improve performance significantly over using
them alone. Not surprisingly this has also been found for segmentation where improve-
ments have been made clear in many recent works [142, 143].

Kim et al. use a state-of-the-art segmentation algorithm in [143] based on colour,
demonstrating its use in a larger system. They first use a sliding window approach to
estimate possible bounding boxes for segmentation candidates, these are used by the
system to produce a list of K candidate segmentations with the use of a constrained
parametric min-cut algorithm [144] which is a trained classifier of pixel segments, that
uses the contour and colour information for training. This segmentation method pro-
vides a number of hypotheses for the true segmentation, which they use as a basis
for their strategy. They demonstrate impressive segmentation performance using the
depth information to give a final segmentation that will hopefully incorporate all the
information available.

Another implementation that attempts to use as much of the information available can
be found in [142]. Mishra at al. use colour and depth information to form a probabilistic
boundary edge map. In their first step they use a series of convolutional masks which
compute the edges at discrete angles as an initial estimate of object boundaries. From
this they examine the 3D points on either side of the edge, estimating the plane and the
nature of the plane intersection is used to determine whether the pixel is a boundary edge
or an internal edge. This is largely based on a threshold of the probability function.
The resulting probabilistic border map is then used with a fixation based minimum
contour fit and the object boundary is extracted. This implementation only relies on
valid depth estimates as the seed points to the segmentation method. Additionally
duplicate edges are found and eliminated. One issue in this implementation is how they
deal with object boundaries that perhaps might be interpreted as internal edges, this
could result in the redundant calculation of the same edge in multiple objects, so this
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case is explicitly handled by only dealing with edges for exactly one object in terms of
classifying borders as inside on outside.

Again these previous works have largely been superseded by machine learning ap-
proaches [40, 145, 146]. All these approaches use different CNN architectures to perform
segmentation based on colour and depth information. One interesting aspect of these
approaches is the same architectures can perform significantly differently depending on
how the information is presented to the network [146]. A common approach is to con-
vert the depth to a three channel input HHA, which many pre-trained networks expect.
HHA stands for Horizontal disparity, Height above ground and Angle with gravity. In
[147], Holder et al. investigates the contribution of each input and concludes that the
addition of depth information provides little improvement to performance, in general it
also complicates the approach as most common architectures do not expect more than
3-channel inputs for image based machine learning.

2.3 Machine-Learning

Machine learning has become an essential element of many computer vision applica-
tions, including semantic labelling [148, 149, 150, 151, 134], scene/image understanding
[152, 153, 149, 154, 36, 27, 29, 155], human robot interaction [156] and geometric feature
extraction [34, 35, 157, 158, 159, 160]. It is the process of teaching a machine to solve
a problem by providing it with input data it will have available during operation and
the expected output of the machine, and attempting to get the computer to converge
upon the solution to the problem without any interference by a programmer. Common
machine learning approaches have often borrowed from the ideas about human intelli-
gence, in particular attempting to approximate the function of the human brain or its
individual elements. Some historically popular algorithms are restricted boltzman ma-
chines and decision trees/forests, non-linear SVMs, de-noising auto-encoders and neural
networks. In recent years computers have become more powerful and high-performance
computational libraries have been made widely available [161], largely narrowing the
focus of machine learning to Convolutional Neural Networks (CNNs). In this section
the applicability of registered RGB-D data to the task of machine learning is discussed.
As suggested previous sections combining multiple sources of information provides im-
proved performance on a variety of tasks.

In solving the classification problem, all learning algorithms essentially do the same
thing in a mathematical sense, each takes the high-dimensional space in which the
input data exists (pixel values for images for example), encode this information in
some n-dimensional embedding, and attempt to group the data by separating the data
with n-dimensional hyper-planes [162, 163]. Linear Support Vector Machines (SVMs)
were a very popular choice in the computer vision community for semantic labelling
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[162, 100, 164, 163, 165, 143, 166, 167, 54, 150, 168, 154, 153, 149, 135]. This is most
likely due to their ease of implementation and their ability to handle n-dimensional data
very simply [162]. This allows one to train an SVM with very large input vectors. In
general these input vectors take the form of feature values that are computed over the
raw input data, as SVMs are expected fixed dimensional input data. However, SVMs
are considered rather limited, as they are primarily for classifying data, and generally
don’t work well on highly non-linear problems.

Some early approaches to machine learning begun by preconditioning the input data
between dimensional spaces [100, 164, 100, 167], sometimes as a method of making
all the input data a consistent dimensionality, other-times as a way to apply a linear
learning algorithm for a non-linear problem by transforming the non-linear data to
a linear feature space which can be learnt. This transformation can be desirable in
a segmentation context, if the original data contains insufficient dimensionality to be
separated easily. A simple example of this would be transforming from pixel space into
feature space by taking a local descriptor around a feature. However, this reduction
in dimensionality of the data can lead the machine learning approach to not see some
part of the data that is removed in the conversion to a feature. The choice to use
the reduced dimensionality data was originally made in order save computational time,
and previously hand-crafted features were seen as containing the majority of salient
information. Advances in parallel computing [161] have increased the utility of Graphics
Processing Units (GPU) have made them the compute method of choice for almost all
machine learning. This has largely moved the field away from this approach, as its
impossible to know what information is important prior to training, so using everything
available and allowing the machine to learn saliency is ideal.

Datasets [51, 153, 169, 170, 40] are a significant contribution to the computer vision
and machine learning community as it allows for standardisation across testing results.
Additionally a good dataset is difficult and time-consuming to obtain, things like ground
truth segmentation and labels or accurate camera poses are generally challenging to
obtain and require expensive hand labelling or external equipment. Sturm et al. provide
one of the original RGB-D datasets [51], which provides a set of Kinect captured scenes
with ground-truth pose information, allowing for a new SLAM benchmark to be defined.
Silberman et al. present a popular dataset NYUv2 [40] to complement NYU’s original
segmentation dataset [170]. This dataset has been used by many other systems [165, 34,
35, 171, 172, 159] and was the largest such dataset until recently. Lai et al. produced
an object focused RGB-D dataset [153], which consists of three hundred small objects
arranged into fifty-one different categories, and taken at a set number of angles. The
purpose of this dataset was for learning scene labels for objects for semantic labelling
purposes. Xiao et al. present SUN3D [169], a dataset which provides labelled data
for much larger scenes than for NYUv2. In their implementation they design a user
input system that requires only minimal intervention to label a large number of frames.
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With the system using a novel-generalised bundle adjustment to transform the 3D
points selected by the user as the outline of the object. This allows for all subsequent
frames to be given an estimated label using the correspondences, and then these can
be quickly refined by the user. These datasets have varying applications but can be
useful for standardised comparisons across multiple systems and each of them has been
made possible largely due to the ease at which data can be captured with the Kinect.
Recently these datasets have been used extensively as source of information for training
machine learning approaches. They are now being used as the basis for learning tasks
such as predicted depth from single colour image [34, 35, 159], without requiring any
multi-view geometry computations.

2.3.0.4 Supervised vs Unsupervised Learning

Supervised Learning is based around providing the learning algorithm with a large
amount of labelled data and using the difference between output and the ground truth
(refereed to as estimation error) to adjust the internal parameters of the system in an
effort to reduce the error. This method of machine learning in general will require a
large amount of labelled data [152]. A key unresolved issue of supervised approaches
is where does all the labelled data come from? This is becoming less of a problem as
data collection and sharing becomes easier however, the accuracy of the labels provided
can also vary greatly, making it challenging to build accurate models. Unsupervised
learning is perhaps a bit of a misnomer, and should probably be referred to as semi-
supervised learning in almost all cases. It is a method of machine learning that doesn’t
use explicit labelled data in the error function. One approach to this method is to
provide a very large number of positive examples to the network, for example images of
a single classification label, say cats. Instead of training the model to distinguish a direct
labelling the system may be trained to learn features that separate the embeddings of
feature vectors. This is really semi-supervised as the learner is being provided with the
examples that have a common label.

2.3.0.5 Semantic Representations

The effectiveness of unsupervised learning was demonstrated by Hinton et al. in [173],
where they used an adaption of Boltzmann Machines known as Restricted Boltzmann
Machines (RBMs) to learn the features required to represent hand written digits. The
implementation by Hinton et al. even allows one to view "what the machine is thinking",
as it can represent what it currently predicts the digit might look like. The machine is
trained based on observing the correlation between the input and hidden layer outputs,
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and then adjusting the weights based on the assumption that all the weights are linked.
This work was expanded upon in [174] where Lee et al. demonstrated the method was
extensible to more complex image processing problems such as face recognition, with
a high level of effectiveness. They also visualise the learnt information, at each level
demonstrating that the features learnt are very similar to those that we train them
with, edges and image gradients for example. The machine is trained by applying filters
at each level across each of the sample images. The lowest level learns directed edge
filters, while the convolutional and pooling layers demonstrate that the edges are then
combined into arrangements that look like rough representations of different objects
in the training data. This process of combining simple features into more complex
ones through successive layers of convolutions in the basis of CNNs. They believe this
demonstrates that the human mind may function in a similar way in its recognition and
perhaps even learning algorithm, at least in a forward pass sense.

Expanding upon the findings in [174] Coates et al. instead use K-means clustering
[175] which they demonstrate in [176] has basically equivalent effectiveness as other
learning methods given enough data. Using this principal they train the classifier on a
very large unlabelled dataset collected to examine the results. What they find is the
classifier learns the same edge type filters, and that the higher level features correspond
to common objects such as people and cats as you would expect. This method has the
advantage of being very easy to implement, but takes a very long time to learn.

Rusu et al. present an example of supervised machine learning in [100]. They introduce
the Point Feature Histogram (PFH), a method for loosely classifying any point in a
point cloud into generic geometrical classification such as planar, spherical, etc... using
only the normal information in a local patch. This is formed in an initial training phase
where they explore which learning methods were most appropriate, including K-nearest
neighbours (KNN) and SVM, ultimately deciding on using the SVM. They then use
this per-point classification to train an additional SVM for object recognition using the
histograms of point-classifications of labelled regions, using a techniques borrowed from
[162]. They extended this initial work to create the Fast Point Feature Histograms
(FPFH) [101] which are largely the same as PFH’s differing in the fact that they no
longer consider distance between sample points in the descriptor as they found the
information to be of little value to the discriminative power. Rusu et al. extend upon
the idea of the PFH in [54] to create a Global-FPFH (GFPFH) which is again a general
measure of the local similarity of the point-wise classifications, forming a histogram of
the pair-wise point classifications in a region. The region selection is based upon an
efficient oct-tree segmentation of the points that have been labelled. This is again used
to train a linear SVM which has shown to give very good classifications, and enabled
their system to work out complex object affordances (where a cup can be grabbed from).
Having accurate depth information actually gives more information than humans have,
hence its not surprising that systems are now able to surpass human ability to segment
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scenes. However, these approaches are heavily reliant on the quality of the data, and
are not truly view-point invariant, as the data may contain holes or occlusions.

In [149] Lai et al. employ a sliding window approach to segmentation and labelling.
Instead of learning from a full scene model they use scene views to train the detector,
based on the view in frames of the training data. By first oversegmenting the data then
classifying on the over segmented data, this approach will make the classification and
detection process more symmetric resulting in better performance, and simpler compu-
tation. They use a HOG descriptor to represent the features for matching, filling in
any missing data and removing noise with a median filter. Using a Markov Random
Field (MRF) over the descriptors they produce an effective classifier. Expanding upon
this work [165] take a similar approach to form descriptors, but instead use a cuboid
to provide a bound for the object, and using this cuboid as input to the feature vector
to improve matching. In [177], Russell et al. use a variant of MRFs known as Condi-
tional Random Field (CRF) which further improved classification accuracy. A CRF was
shown to be replaceable by a separately trainable Recurrent Neural Networks (RNN)
that acts as a surrogate CRF in [178], and show again improved performance. More
recent segmentation networks remove the CRF altogether, instead opting to encode the
data in successively concatenating layer activations, where higher spatial information
activations are constantly reintroduced to the filters through concatenation. These neu-
ral networks have been called DenseNets, and were first introduced in [155] for semantic
labelling. This architecture has been incorporated as a decoder in some of the strongest
architectures in many dense estimation tasks including depth estimation [141, 171].

2.4 Depth without a Low-cost Depth Sensor

The use of low-cost depth sensors for robotics has proven to be extremely useful, but
sometimes its not possible to use a special sensor like a low-cost depth sensor. As
mentioned in Section 2.1 there are many modes of operation that are unsuitable, for
example outdoor scenes for many active sensors due to ambient lighting. Many compet-
ing approaches have made significant steps to possibly replacing or removing the need
for a depth sensor, demonstrating that knowledge of geometry and camera motion is all
that’s required to robustly estimate depths from an monocular camera. More recently,
impressive strides have been made in estimating accurate metric depths from colour
images alone [35] demonstrating that the colour image may contain enough information
on its own. In this thesis we demonstrate the value of higher order geometric features to
the process of estimating depths, such as curvature, normals, optical flow, and relative
pose.
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2.4.1 Semi-Dense Depth Estimation

Semi-dense depth estimation is related directly to semi-dense monocular tracking ap-
proaches [179, 10, 11]. I separate these approaches from the feature based approaches
[111, 50, 7], purely because they don’t use explicit photometric features in the localisa-
tion. Instead these approaches all optimise based on photometric error minimisation.
In [179], Engel et al. propose a system that maintains a dense estimate of depth for all
points in a frame with sufficient image gradient for tracking. This has the dual effect
of reducing the amount of computation to be much more manageable as a CPU im-
plementation, but also robustifies the solution as these points have increased saliency.
These estimates of depth are propagated through time, and subsequently refined upon
increasing tracking and modelling accuracy. Engel et al. extend this approach in [10],
to optimise for not only relative pose but over the group of scaled pose transformations,
allowing the direct optimisation of scale and the reduction in error due to scale-drift.
They extend this work again in [11], including a detailed model of camera intrinsics
and extrinsics in the optimisation, resulting in further improvements to accuracy. This
logical progression of incorporating more and more information into an optimisation,
while eliminating ambiguous data points with low signal-to-noise ratio, is demonstrated
to improve performance.

2.4.2 Dense Depth Esimation

Dense depth estimation using a single monocular camera, in general relies on stereo
triangulation techniques [180, 181, 60, 15, 8]. This requires the motion of a camera be
tracked across a sequence of frames using correspondences between frames. By esti-
mating a sufficient number of correct correspondences across multiple views, a relative
pose between frames can be computed. This is done using the geometric properties of a
transformation, allowing an estimate for the depth to be triangulated (see Section 3.3).
Strecha et al. present an approach that uses a stereo pair of cameras and the motion
between two frames to optimise for an improved dense depth estimate. They extend
this work in [181] to work for an arbitrary set of captured images, that need not be
stereo pairs, and treat the depth estimation problem as an expectation maximisation
(EM) problem over all views. These approaches both produce dense depths, but require
multiple view of the same scene and offline processing due to their complexity.

The feature matching method proposed in [60], provides a potentially real-time approach
to stereo depth estimation. The method uses the DAISY descriptor to compute dense
feature matches across a set of overlapping view-points. Tola et al. demonstrate their
approach is more discriminative across wide-baselines and more simply calculable. This
is potentially real-time only because they only demonstrate that the proposed method is
highly parallelisable but leave it as future work. This approach could be made real-time
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and a dense depth estimate computed for each frame, due to the parallel nature of the
convolutions integral to the computation of the feature. They do extend this work in
[182], to estimate dense point clouds for large datasets and show impressive multiple
core CPU performance.

Real-time dense monocular depth estimators [15, 8] use similar approaches to estimate
depth, relying on photometric consistency across frames to densely triangulate points.
In [15], Newcombe et al. use a novel cost volume implementation to estimate depth
while tracking to the current estimate of the volume. Although this may appear to
be more challenging, to try track in real-time to an incomplete model, this approach
actually produces a much more robust solution. The initial depth estimate is poor,
but a strong estimate for the initial relative alignment (given by the approach in [183])
allows the refinement of these depths. This approach uses a primal-dual approach, to
provide an upper-bound to an error function that is used to triangulate points across the
epipolar lines, in order to significantly increase the search speed without compromising
on accuracy. This allows for a real-time dense depth estimation to be made using
a GPU implementation, which can be extremely reliably tracked against in varying
lighting and focus conditions. Pizzoli et al. present a similar approach in [8], where the
cost-volume is replaced by a Bayesian depth estimation, using planar region estimates to
perform depth filling. The proposed solution is also implemented on the GPU, and runs
in real-time. Both approaches are real-time but ultimately require a massive amount
of information to compute, requiring multiple seconds of videos, with literally 100’s
of overlapping images. A good estimate for depth can be made with as little as two
images using geometric constraints, but can an estimate be performed using only a
single image?

2.4.3 Machine-Learning Approaches

Using the information and architectures learned from tasks like pose detection [184,
185], image classification [26, 37], semantic segmentation [146], can a CNN be trained
to estimate depth given a single frame? The intuitive answer should be yes, as an
individual with one eye open can perceive depth to a limited extent [186], meaning
there is information that can be learned to provide clues about depth. In a robotic
context, going from data to information as efficiently as possible is vital, and predicting
quantities from a single image is a step in the right direction. Predicting depth from
a single RGB image using learning based approaches has been explored even prior to
the resurgence of CNNs. In [187], Saxena et al. employed a Markov Random Field
(MRF) to combine global and local image features. Eigen et al. introduced a common
CNN architecture [35] capable of predicting depth maps for both indoor and outdoor
environments. This concept was later extended to a multi-stage coarse to fine network
in [34].
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Advances in depth estimation have been made by combining graphical models with
CNNs [157] to further improve the accuracy of depth maps, through the use of related
geometric tasks [159] and by making architectural improvements specifically designed
for depth prediction [158]. Kendall et al. demonstrated that predicting depths and
uncertainties improve the overall accuracy in [141]. This indicates training a network
to estimate the how certain it’s estimates are, not only improves it’s performance but
supplies meaningful data that can be useful for traditional optimisations. While previ-
ous approaches have demonstrated impressive results in single image depth estimation,
explicit notion of geometry was not used during any stage of the pipeline.

Using explicit geometry constraints has been shown multi-view stereo problems to pro-
vide high quality depth estimates [15, 8]. One of the earliest works to predict depth
using geometry in an unsupervised fashion, Garg et al. used the photometric constraints
between a stereo image pair, where the target image was synthesized using the predicted
disparity and the known baseline[42], in a fashion similar to [133]. Left-right consistency
was also explicitly enforced in the unsupervised framework of Goddard et al. [43] as
well as in the semi-supervised framework of Kuznietsov et al. [44], which was found to
be beneficial during training, particularly on sparse ground truth datasets[41]. These
approaches all rely on stereo constraints to be known at training time to allow for the
additional loss functions. To have a known relationship between pairs of images can be
challenging, and many datasets were not captured with known poses. Increasing train-
ing data is known to improve performance, and produce more general solutions. Can
more a general training regime be developed to allow the use of more generic training
data for depth estimation?

Zhou et al. address the issue of general training data in [46], where they train a neural
network in an unsupervised to jointly estimate a pose transformation between frames
and single image disparity. As opposed to assuming a fixed relationship between frames
[42, 43], they allow for a general transformation and again minimise photometric error
based on the geometric constraints. Similarly in [45], Ummenhofer et al. produce an
approach that also attempts to solve for general transformations in a network boot-
strap approach. They alternate between estimating flow and depth, to compute a pose
and using the pose to generate a flow that can transform the depth and compute a
measure of photometric consistency. In contrast to [46], this approach is optimised in
an almost fully supervised fashion, with ground truth depth, flow and pose used in
training. Both of these approaches also predict a single confidence map which is able
to improve their results, again demonstrating the importance of uncertainty in machine
learning solutions. They are essentially a proof of concept, as neither approach achieves
state-of-the-art performance in the tasks, but both illustrate that an approach that
used pose information can be used to improve the performance of a depth estimation
network. Using pose, forces the network to learn more robust image features that allow
the network to fulfil the subsequent implied geometric constraints.
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2.4.4 Towards Real-time

Although these single image depth estimation networks can produce extremely impres-
sive results [171], they are in general not able to run in real-time without large high
powered hardware. As robotics is a field that requires light-weight, low-cost solutions to
move forward, this is less than ideal. Light-weight high quality real-time approaches are
highly desirable in many applications such as unmanned aerial vehicles and self-driving
electric vehicles. A significant push has been made to create networks that run in real-
time [48, 188, 189]. Due to the attractive qualities such as low power consumption and
high mobility, researchers have been keen to examine the possibility of building smaller
architectures.

In [48], Howard et al. present an method that is targeted at mobile devices, MobileNets.
Their approach significantly reduces computation time through the use of separable con-
volutions, which separate large convolutions into multiple passes, the first pass sets the
change in channel count and the second pass attempts to capture cross-channel fea-
tures. Zhao et al. present an approach ICnet [188], which computes convolutions at
multiple scales in parallel to reduce the time required for inference. The auxiliary losses
force the network to learn features earlier in the feature embedding, allowing a shorter
network and improved performance. In [190], Paszke et al. present a method that
uses asymmetric and dilated convolutions to reduce the overall computation without
sacrificing much in terms of performance. Dilated convolutions are particularly helpful
in this case, as they allow a large increase in the networks receptive field, while main-
taining relatively constant computational cost. Deng et al. refine this idea further in
ERFnet [189], further reducing the model size and computational cost, without reduc-
ing performance a great deal. In this work, they target a particular frame-rate on a
particular hardware platform, in this case 15fps on an NVIDIA TX1. In essence, all
these approaches show with a good choice of architecture, computational time can be
gained with small sacrifices in performance. Additionally even when these approaches
are allowed to grow, and take a large amount of extra computation, they still fail to
outperform the state-of-the-art approaches.

The machine learning community has also investigated the problem of model compres-
sion or emulating the performance of a larger network. Hinton et al. in [49] introduced
a concept called distillation which aimed to replicate the class probabilities of a larger
model using a smaller model. In the case of depth estimation, this is a regression prob-
lem not a classification problem, training a smaller network to replicate the prediction
layer of a larger model becomes difficult with no notion of class probability. Could
a network be trained to mimic the latent space or the embedding of the penultimate
layer of the larger model in an unsupervised manner? Similar to [49] Bucila et al. [191]
showed that it is possible to replicate the performance of an ensemble of classifiers using
a single model. Their method relied on generating synthetic data using an ensemble
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of networks and training the smaller network on this synthetic data. Finally, Han et
al. demonstrated model weight compression through the use of quantization and Huff-
man coding in [192] for image classification. The approach in [192] demonstrates that
networks certainly contain redundancy which can be removed without compromising
performance. Using each of these still has the effect of largely capping the possible
network performance to the ability of the large networks, or ensemble of networks, but
shows that more information can be conveyed to the small fast networks in a number
of ways and this improves their performance significantly over standard regression.
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Fundamentals

3.1 Points, Vectors, Matrices, and Tensors

This section provides a short note on notation used throughout this thesis, as well as
some important basics of matrix, discrete and continuous operations.

3.1.1 Points

A point pi can be N -dimensional, is represented using the notation

pi =
(
x1 x2 · · · xN

)T
, (3.1)

where a lower-case is used to indicate a point, or a value (which is a 1D point).

3.1.2 Vectors

a vector is a set of values, points or vectors of length N given by

γ̄ = [γ0, · · · , γN ]T , (3.2)

where the ¯ notation is used to indicate a variable is a vector.

3.1.3 Matrices and Tensors

A matrix is a set of values stored in a N ×M , 2-dimensional grid as follows

A =


a00 a01 · · · a0M

a10 a11 a1M
...

. . .
...

aN0 aN1 · · · aNM

 , (3.3)

where we use both a capital and bold to indicate a matrix. Tensors are a generalisation
of a matrix to N-dimensions in this thesis (although they are truly interchangeable
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terms). For three dimensions, a tensor of size N ×M × L could look like the following

, (3.4)

where multi-dimensional tensors are represented with bold, capital and the ¯ notation.

3.1.4 Matrix Transpose

The matrix transpose for a 2× 2 matrix B is given by

B =

[
a b
c d

]
, BT =

[
a c
b d

]
, (3.5)

where T is used to indicate the transpose operation.

3.1.5 Matrix Inverse

The inverse of a matrix is defined by the following matrix equation

AB = BA = AA−1 = I (3.6)

where in B = A−1 is the inverse of A, and A,B, I ∈ RN×N is only defined for square
matrices of size N . Only square matrices are invertible, and only if their determinant
det(A) 6= 0. For a matrix A ∈ R2×2

A =

[
a b
c d

]
(3.7)

the determinant is given by

det(A) =

∣∣∣∣ a b
c d

∣∣∣∣ = 1 ∗ a ∗ det(d) +−1 ∗ b ∗ det(c) = ad− bc. (3.8)

This pattern extends for larger matrices, for a matrix A ∈ R3×3

A3×3 =

 a b c
d e f
g h i

 (3.9)
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the determinant is given by

det(A3×3) = 1 ∗ a ∗
∣∣∣∣ e f
h i

∣∣∣∣+−1 ∗ b ∗
∣∣∣∣ d f
g i

∣∣∣∣+ 1 ∗ c ∗
∣∣∣∣ d e
g h

∣∣∣∣
= (aei− afh)− (bdi− bfg) + (cdh− ceg)

(3.10)

The inverse of a 2×2 matrix is given by

A−1 =
1

det(A)

[
d −b
−c a

]
. (3.11)

The general inverse of an N×N matrix is given by

A−1 =
1

det(A)
adj(A) (3.12)

where adj(A) is the adjunct matrix of A. The adjunct of a matrix is given by the
transpose of the co-factor matrix C. The co-factor matrix of A3×3 is given by

C =



+

∣∣∣∣ e f
h i

∣∣∣∣ − ∣∣∣∣ d f
g i

∣∣∣∣ +

∣∣∣∣ d e
g h

∣∣∣∣
−
∣∣∣∣ b c
h i

∣∣∣∣ +

∣∣∣∣ a c
g i

∣∣∣∣ − ∣∣∣∣ a b
g h

∣∣∣∣
+

∣∣∣∣ b c
e f

∣∣∣∣ − ∣∣∣∣ a c
d f

∣∣∣∣ +

∣∣∣∣ a b
d e

∣∣∣∣


(3.13)

Therefore the adjunct of A is given by

adj(A) = CT . (3.14)

3.1.6 Matrix Decomposition

Matrix decomposition is used frequently in order to transform a matrix into a form that
is easier to work with in some way, often allowing one to avoid explicitly calculating an
inverse matrix. Their are many decompositions, the most relevant to this thesis in the
Cholesky decomposition. Cholesky decomposition is only applicable to matrices that
are symmetric positive-definite, it decomposes a matrix A as

A = LDLT =

 1 0 0
L21 1 0
L31 L32 1

 D1 0 0
0 D2 0
0 0 D3

 1 L21 L31

0 1 L32

0 0 1


=

 D1 L21D1 L31D1

L21D1 L2
21D1 +D2 L31L21D1 + L32D2

L31D1 L31L21D1 + L32D2 L2
31D1 + L2

32D2 +D3

 (3.15)

50



3 FUNDAMENTALS

where L is a lower triangular matrix, and D is a diagonal matrix. The elements can be
computed iteratively using the following equations

Lij =
1

Dj

(
Aij

j−1∑
k=1

LikLjkDk

)
for i > j,

Dj = Ajj −
j−1∑
k=1

L2
jkDk.

(3.16)

3.1.7 Convolution

t

t

t

Figure 3.1: Demonstrates the convolution of two functions f and g, and shows the original
function f in an overlay to indicate the relationship. The flip in the convolved funtion g is also
performed, before the integration.

Convolution is a linear operation between two discrete or continuous signals denoted
by the ∗ operator. The operation is the integral product of two functions, after one has
been flipped and shifted, defined by the following equation

f(t) ∗ g(t) =

∫ ∞
−∞

(f(τ)g(t− τ))dτ (3.17)

where f and g are continuous functions of t, and in this case g is the function that is
flipped and shifted. This is demonstrated visually in Figure 3.1, where the convolutional
signal f ∗ g(t) essentially displays the derivative of the input signal f(t), demonstrating
on of the uses of convolution. Figure 3.1 is shown with two 1-dimensional signals,
but convolution is possible between signals of equivalent dimension. An example of
convolution with a 2D discrete signal is shown in Figure 3.2, which shows a gray-scale
mapping of the vaules. The resulting convolutional signal highlights the presence of
edges in the 2D signal.
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Figure 3.2: Demonstrates a discrete 2D convolution over a fixed domain and range, this shows
that in the case of discrete convolutions. In this case we treat the borders to be undefined and
thus the resulting convolved signal is (N − 1) smaller in both height and width, where N is the
size of the filter/convolutional signal g(u, v). The resulting convolution for the top-left square
is shown explicitly, and again the filtering signal g is flipped before performing the convolution.

3.2 Camera Models and Image Projection

This section is included to give the reader a brief background in camera projection,
and correction techniques. For a more detailed explanation of all the concepts in this
section, we would refer the reader to [193], this section is intended to act as a guide to
the notation used through out this thesis.

3.2.1 Pinhole-Camera

The simplest camera model is pin-hole, which can be thought of as an ideal camera.
Additionally this formulation makes it easy to illustrate image and camera coordinates.
This can be done with an example shown in Figure 3.3, which shows the projection of
a simple cube onto the image plane. As the light passes through the pin-hole it will
invert the light and thus the image as it projects onto the image plane. In this thesis
the diagrams show the virtual image behind the camera, it is also equivalent to show
the un-inverted image in front of the camera, but both formulations can be considered
equivalent. Note the origin of the camera

Corigin =

 x
y
z

 =

 0
0
0

 (3.18)

is at the position of pin-hole, while the origin of the image

Iorigin =

(
X
Y

)
=

(
0
0

)
(3.19)
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Figure 3.3: Top: A diagram of a pin-hole camera projecting the image of a cube onto the
image plane. Bottom: Two diagrams showing the projection of a single ray to the image, along
the xz-axis and yz-axis.

is at the top-left of the image (inverted). The bottom half of Figure 3.3 shows the
projection of a single ray onto the xz and yz axis. Using the principal of similar triangles
its simple to show the relationship between the world and the image coordinates given
by

X −Xc

f
=
x

z

Y − Yc
f

=
y

z
(3.20)

where (Xc, Yc)
T marks the centre of the image in pixel coordinates.

3.2.2 Homogeneous Coordinates

A more convenient way to represent coordinates is in a homogeneous fashion. This
allows multiple benefits including a simpler expression for linear equations involving
the coordinates, and also allows an easy way to express points at infinity using finite
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coordinates. Homogeneous coordinates take the form λu
λv
λ

 = λ

 u
v
1

 (3.21)

for image coordinates, and 
λx
λy
λz
λ

 = λ


x
y
z
1

 (3.22)

in Cartesian coordinates in R3, where λ in this case is some constant.

3.2.3 Camera / Projection via Matrices

Using the homogeneous coordinates we can express the projection of the camera to
image coordinates as

K︷ ︸︸ ︷ fu 0 Xc

0 fv Yc
0 0 1


pn︷ ︸︸ ︷ x/z
y/z
1

 = Kpn =

 X
Y
1

 (3.23)

where pn =
(
x/z y/z 1

)T
=
(
u v 1

)T are known as normalised camera coordi-
nates, which is equivalent to projecting to an image plane with a focal length equal to 1.
In this thesis the matrix K is also called the camera matrix. In order to project from im-
age (X,Y ) to normalised-camera coordinates (u, v) to homogeneous world-coordinates
the following inverse operation is performed

zK−1

 X
Y
1

 =

 x
y
z

 (3.24)

which is sometimes referred to as an un-projection.

3.2.4 Lens Distortion

The pin-hole camera is one of the first types of imaging devices created for photography.
One of its key issues is caused by using a point light source as the focus mechanism,
which filters out most of the input light and makes imaging more challenging. Cameras
today almost exclusively use lenses to focus the incoming light in a similar fashion.
This method also has issues, but they can be more subtle. The two most significant
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Moustache DistortionPincushion Distortion Barrel Distortion

Figure 3.4: Demonstrates three common types of lens distortion, that need to be compensated
for in a standard camera.

effects on accurate imaging are radial and tangential distortion, which are types of lens
distortion, caused by imperfections in the lens or the geometry of the design.

Figure 3.4 shows three common types of distortion found in lens. All three distortions
result from uneven magnification of the scene across the lens. With pincushion the
image is magnified more as is moves away from the image centre. Barrel distortion
magnifies the image the most in the centre and this results in a fish-eye type image, and
is often present in wide-angle lenses. Moustache distortion is a combination of above
distortions, this is more barrel distortion in the centre of the image, gradually becoming
pincushion as you move away from the image centre. This results in straight lines at
the top of the image resembling a handle-bar moustache.

The distortion model we use is

u0 =

Radial︷ ︸︸ ︷
u(1 + k1r

2 + k2r
4 + . . . ) +

Tangential︷ ︸︸ ︷
(t1(r2 + 2u2) + 2t2uv)(1 + t3r

2 + t4r
4 + . . . )

v0 = v(1 + k1r
2 + k2r

4 + . . . ) + (2t1uv + t2(r2 + 2v2))(1 + t3r
2 + t4r

4 + . . . )

(3.25)

where k2, k2 are the radial distortion paramters, t1, t2, t3 and t4 are the tangential dis-
tortion parameters, u, v are the normalised camera coordinates, r2 = u2 + v2 is the
squared the radial distance of the normalised camera coordinate, and u0, v0 are the cor-
rected image coordinates. The corrected image coordinates are the image coordinates
you would expect if the camera followed the ideal pinhole model.
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3.2.4.1 Radial

There are multiple methods of modelling radial distortion, this thesis focuses on Brown’s
method [194]. This approach uses the radial distance (r) from the centre of the camera
to model the distortion shown in Equation 3.25. In general the first two calibration
parameters of the correction function (k1, k2) are the most significant. This is because
the higher order parameters can be unstable and in general contribute minimally to
correcting the image.

3.2.4.2 Tangential

The tangential component of standard camera correction is in general less significant
than the radial component, this can be seen in the formulation in Equation 3.25 where
the polynomial terms are higher order.

3.3 Depth Camera Variants

This section is intended to explain some of the popular available options in low-cost
depth cameras and effectively justify the choice of sensor used in this research.

3.3.1 Time-of-flight (ToF)

3.3.1.1 Operation

Time-of-Flight (ToF) sensors can operate a number of ways. The principle behind
its operation is to estimate the time it takes for a beam of light to leave the origin
(somewhere near the camera) and return to the camera. Using the known speed of light
as a constant, the device directly translates this information into a distance. A ToF
flight camera such as the Microsoft Kinect V2 does this by using a ranged gate imager.
This works by broadcasting a modulated IR signal out from a point very close to the
camera’s origin, and having the gates of the image sensor open and close in unison
with the transmitted signal. By measuring the integrated returned signal (as shown
in Figure 3.5) at each gate, an estimate from the depth using the ratio of the received
signal during the two time periods. This allows the sensor to compensate somewhat for
ambient light pollution as this will effect both periods evenly, and also signal absorption
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for the same reason. To resolve distance ambiguities created by this process the gating
can be performed at several frequencies to a specified depth resolution.

IR Received
(Gate 2)

s2 s2 s2 s2

IR sent

Time

OPENCLOSEDOPENCLOSED OPENCLOSED OPENCLOSED CLOSEDGate 1 State
(Image Sensor)

IR Received
(Gate 1)

s1 s1 s1 s1

Gate 2 State
(Image Sensor)

OPENCLOSEDOPENCLOSED OPENCLOSED OPENCLOSEDOPEN

Figure 3.5: Demonstration of the basic operation of a Time-of-Flight (ToF) sensor similar to
that used in Microsoft Kinect V2. Top: The modulated Infra-red (IR) signal that is broadcast
onto the scene, 2nd and 3rd row: The state of the gates in the sensor chip, each pixel has two
gates that open and close 180 degrees out of phase with each other. 4th and 5th row: The
integrated returned signal for the respective gates. The values S1 and S2 indicate the integrated
area while the signal is broadcast, and while it isn’t respectively.

3.3.1.2 Sensor Issues

This design can be made highly accurate and recent advances have made them cheap to
produce at higher resolutions and frame rates, 512x424 pixels at 30 frames per second
in the case of the Microsoft Kinect c©(version 2). However, this sensor and other ToF
sensors suffer from several issues [75] that make it a less desirable choice in many
robotics and mapping applications. The first notable issue is the multi-path problem,
which results in the sensor believing points are closer than they actually are. This
is demonstrated in Figure 3.6, the multi-path error makes all points in the corner of
a reflective surface (including brushed aluminium) appear much closer to the camera,
and makes these corners bulge towards the camera. The main issue with this type of
error is its hard to detect that its even an error. What this means is, the sensor doesn’t
know when it’s data is wrong.

Another known issue is the floating pixel problem (waterfall effect), which means the
sensor naturally smoothes the depth boundaries of objects, smoothly connecting every-
thing into a smooth surface from the viewpoint of the camera, demonstrated in Figure
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Figure 3.6: Left: An example of the multi-path problem, as a ToF sensor faces a corner it
receives multiple signals back to the sensor, causing the point to appear closer. Right: An
example of the floating pixel problem, where the sensor naturally integrates smoothly along
object edges creating floating points between the surface and the background.

3.6. This is again a result of the integration of the sensor readings at object boundaries.
This results in objects being smoothly connected to the table they are sitting on for
example. A related issue to the multi-path problem is floating pixels, where some points
appear to float in mid-air as a result of integrating stray reflections. Lastly, another
serious issue is the light absorbency of some surfaces, which cause less return signal and
result in these surfaces appearing further away. Again this is extremely difficult to de-
tect as the points are uniformly moved further away and the surfaces that absorb light
do so linearly proportionally to the incident angle, which means changing the viewpoint
doesn’t help. The key issue is that the sensor reports incorrect values in the situations
described above. If it were to simply fail to return any values this would be much more
desirable, as it avoids incorporating large amounts of error into any solution that use
this sensor. A good summary of these issues found in this sensor type can be found in
[64] and [75].

3.3.2 Stereo

We include a description of stereo imaging as a motivation/inspiration for the structured-
light type sensors, as we do not use stereo colour cameras in this thesis. A familiar reader
should move quickly (or skip) through this section.
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Figure 3.7: Left: The basic setup of a stereo camera rig, with the disparity (d), depth (z),
focal length (f) and physical baseline (b) marked. Right: Demonstrates that following that for
a stereo camera it’s epipolar lines are horizontal, and the disparity corresponds to the horizontal
shift of a particular pixel in image space.

3.3.2.1 Operation

Figure 3.7 above demonstrates the behaviour and operation of a stereo-rig. Generally
stereo cameras are set up horizontally aligned, this means that in an ideal case the
rows of the left image will be aligned with the rows of the right image. The distance
between matching (corresponding) points given in the left and right images is known as
the disparity (d). This relates inversely to the depth via the following relationship

d

f
=
b

z
=⇒ z =

bf

d
(3.26)

which is a result of applying similar triangles.This implies the epipolar lines, which are
lines that point in the direction of another camera given two cameras are viewing the
same scene, all point horizontally. These epipolar lines, turn out to be the only lines
required to search along for matching (corresponding) points in two images. In practice
a stereo algorithm will match individual pixels by taking a small patch/window around
each pixel and trying to find a matching patch in the other image, usually using the
sum of differences (SAD) [195], or normalised cross correlation (NCC) [196] along the
epipolar lines. More recent semi-global approaches [59] produce more accurate estimates
for correspondences and have been shown to be real-time using GPUs [61] but remain
computationally expensive.
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3.3.2.2 Issues

Stereo requires robust and sometimes expensive matching methods to generate the dis-
parity values accurately. This expense is becoming less of an issue as compute resource
and power improves.

Scene texture is genuinely the most serious issue with a stereo camera, as it is a passive
sensor, the correspondence estimates rely on a sufficiently textured set of images to
generate a depth. This means regions of low texture will generally give inaccurate
depths. In an effort to compensate for this, many stereo estimation rigs provide an
estimate of confidence as well as the depth of each point. Given the cameras in a
standard stereo rig are horizontally aligned any low-texture regions that align with the
camera horizontally (table edges for example) will be difficult to correspond to get a
disparity and thus depth will be extremely challenging to compute. Additionally the
colour and exposure between identical cameras can still be different enough to make
matching challenging.

3.3.3 Structured-Light

Camera
 

Projector

b

surface

Scene Pattern 1

Pattern 2 Pattern 3

Figure 3.8: Left: The basic setup of a structured light 3D sensor. Right: Demonstrates how
the projected pattern will predictably deform based on the surface geometry which is visible to
the calibrated camera. The pattern cycle will be repeated horizontally as well to resolve some
possible ambiguities.

Structured-light 3D scanners use a series of known projections on to a surface and one
or more cameras to produce a high quality 3D model. Original implementations of this
approach would use large expensive projectors and would project a series of patterns
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(shown in Figure 3.8) that would allow very accurate reconstructions [20] , but this
approach is generally slow and expensive and requires a complex calibration procedure
to ensure correct operation. More recently (since late 2000s) a variation of this approach
is used in low-cost depth sensors and has been used in the Microsoft KinectTM. This
type of sensor is very compact and cheap to manufacture making a perfect choice for
robotics applications. Due to the reduction in cost and power consumption of hardware
capable of high-speed pattern matching, these types of sensors are a very affordable and
accurate choice for indoor use. Additionally as these are active style sensors the Signal-
to-Noise Ratio (SNR) is much higher than for a passive stereo camera configuration in
general. This has become the sensor of choice in indoor robotics we will focus most of
our discussion on this form of structured-light device.

3.3.3.1 Operation

Figure 3.9: Left: The dot pattern under IR light of a flat surface, the white square is enlarged
and shown on the top row. Right: The same IR dot pattern but with an object in front of the
surface, and again the white square is enlarged on the top-row. The top row shows the matching
patterns in the red and green, highlighted against the dots of the pattern and demonstrates
the change in disparity caused by the object. Also of interest is the dark section on the far left
of each image in the bottom row, which shows the limit of overlap between the projection and
camera.

The original structured-light 3D scanners work by projecting a series of patterns onto a
surface, namely alternating evenly spaces vertical black and white stripes as shown in
Figure 3.8. The surface distorts the stripes based on its geometry and given the known
angle and separation between the camera(s) and projector a depth can be estimated
for each region of an image. By projecting a series of different thickness bands more
accurate estimates can be made. This made traditional structured-light 3D sensors
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very accurate [20, 21], but also more expensive. Low-cost depth sensors, like the Kinect,
produce dense estimates of depth using a similar method to the original structured-light
scanners. However, they project a fixed pseudo-random infra-red (IR) dot pattern onto
the scene and capture the resulting projection using an IR camera as shown in Figure
3.9.

IR
Camera

IR 
Projector

b

recognised
patch

Reference Sensor Depths Live Sensor Depths

surface

ulive
f

IR
Camera

IR 
Projector

b
f

image
plane

pseudo-random
projected 
pattern

distinct patch

reference
distance

(zref)

uref uref dlive

live
distance

(zlive)

Figure 3.10: Left: A pseudo-random gird pattern is projected and its appearance is known
at a reference distance, meaning reference image coordinates (uref ) are stored for each pseudo-
random pattern Right: These patterns will predictably vary in disparity based on the distance
from the device to a live surface, the recorded image coordinates (ulive) can be compared to
the reference coordinates to compute a depth.

The process used by the Kinect is summarised in Figure 3.10. A pseudo-random pattern
is projected for a reference distance originally and the reference image coordinate (uref )
is computed for a patch around every point. We refer only to the u coordinate because
the transformation between the camera and projector is assumed to be axis aligned,
along the u-axis. These reference image coordinates are stored and during runtime the
live image coordinate (ulive) of every point is estimated. As the projector and camera
pair respect the previously mentioned stereo image constraints, the depth (zlive) can be
estimated using the equation

zlive =
bf

d′
(3.27)

where b is the known baseline between the camera and projector, f is the focal length
of the camera and d′ is the actual disparity. The actual disparity is computed using the
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reference image coordinate (uref ) and the current image coordinate (ulive) using

dlive = uref − ulive

dref =
bf

zref
= uref

d′ = dref + dlive

(3.28)

Figure 3.11: Plane deviation for light-coding device, clearly shows the vertical banding that
occurs with this type of sensor

This reference image approach is chosen as it avoids many possible issues with a pro-
jector camera set up, including much of the issues related to distortion in projecting
patterns. However it does create a number of possible issues discussed in Section 3.3.3.3.

3.3.3.2 Use in Robotics

A key motivation for choosing this sensor type has been its extensive use in robotics
applications [14, 40, 34, 7]. This has shown the sensor has a wide range of applicability
in robotics. One of the main uses is in mapping for robotics, and due to the volume
of data this device is able to generate accurate dense 3D models of novel scenes in
real-time [14], which can be used for a wide array of applications including augmented
and virtual reality. Perhaps more applicably these 3D models can be used for accurate
robotic navigation, where previous approaches used a single line-scan laser range finder
which was expensive and specialised, where as a robot equipped with this a structured
light depth sensor is provided with a dense depth map and can navigate much more
robustly [13, 17]. Another application of these sensors to robotics has been in object
detection and grasp affordance estimation. This has been shown to be more accurate
and robust then a monocular only sensor [197].
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3.3.3.3 Issues

As this type of sensor uses standard cameras, they suffer from lens-distortion (as dis-
cussed in Section 3.2) in both colour and depth separately. It is this issue that is pri-
marily addressed in Chapter 4. In addition to the lens distortion the device also suffers
from large vertical bands of discontinuous depth steps that appear on all depth images,
which change unpredictably. An illustration of this is shown in Figure 3.11. This final
type of error is difficult to calibrate for, as the bands change seemingly randomly over
time, which doesn’t seem to be dependent on the environment its imaging. A significant
limitation of the device is it’s restriction to indoor use only. This is because ambient IR
will prevent the patterns the projector shines from being discernible by the IR camera.
Another possible consideration is the method the sensor uses to report depths, where
the values are encoded into an 11 bit inverse depth value (proportional to disparity).
This means that the closer depth values will be represented at a much higher resolution
than far depths. As an illustration of this issue lets imagine the depths are calculated
using the following formula

d =
c

b+ v
(3.29)

where c and b are some constants that allow us to tune the valid range of depths and v
is the value the sensor calculates, lets assume that instead of being 11 bits v is 8 bits.
Say we want to represent 0.5m to 5m with our sensor, that is d ∈ [0.5, 5]. So when
v = 0 d = 5 and when v = 255 d = 0.5, then roughly b = 28 and c = 142. Now imagine
that we have a value of v that might vary by ±1, if the value of v = 4 this translates to
a variation in distance of approximately ±0.15m while if v = 245 then the variation in
distance will be approximately ±0.002m nearly 100 times smaller. This demonstrates
that far distance values predicted by the sensor should be trusted much less.

3.4 Review of Calculus

3.4.1 Multi-Variate Differentiation

Often functions are the product of multiple independent variables. In order to approx-
imate how these functions change we use partial derivatives, where we compute the
derivative of a function with respect to all other parameters assuming all other values
remain constant. As an example lets assume the following

u(x, y) = 3y + (x+ 1)2 , v(x, y) = 7x2 + y (3.30)

and we know that x and y are both functions of s and t as follows

x(s, t) = s+ t , y(s, t) = 2st. (3.31)
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Then the function u can be differentiated with respect to the variables s and t via the
chain rule as follows

∂

∂s
(u(x, y)) =

∂u

∂x

∂x

∂s
+
∂u

∂y

∂y

∂s

= 2 · (x+ 1) · 1 + 3 · 2t
= 2(s+ t+ 1) + 6t

= 2s+ 2 + 8t

(3.32)

where ∂
∂s indicates the partial derivative with respect to s. Which is exactly what you

get if you were to first substitute x = s+ t and y = 2st into the original Equation 3.30.

3.4.1.1 Matrices

The same logic can be applied to equations involving matrices only we need to be careful
to respect ordering, as matrices often don’t commute (AB 6= BA). As an example,
lets say we have two N × N matrices A(ā) and B(ā) which are functions of some
vector ā = [a0, a1, . . . an] of size n, and a point p0 = (p0, p1, . . . , pN ). Given the matrix
equation

r0 = ATBAp0. (3.33)

The derivative of r0 with respect to the parameter ai is given by

∂r0

∂ai
=
∂AT

∂ai
BAp0 + AT ∂B

∂ai
Ap0 + ATB

∂A

∂ai
p0, (3.34)

where the derivative of a matrix with respect to a dependent variable is element-wise
as such

∂A

∂ai
=


∂A11
∂ai

∂A12
∂ai

. . . ∂A1N
∂ai

∂A21
∂ai

∂A12
∂ai

. . . ∂A2N
∂ai

...
...

. . .
...

∂AN1
∂ai

∂AN2
∂ai

. . . ∂ANN
∂ai

 . (3.35)

3.4.2 Vector/Scalar Fields and The Jacobian Matrix (J)

A vector field is a field in which all points in the field have a corresponding vector.
A simple example of a vector field, would be a normal map, where all surfaces in an
environment have a corresponding normal vector (vector pointing orthogonal to the
surface). Given a vector valued function f : RN 7→ RM , which takes an input vector
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ā ∈ RN and produces an output vector f(ā) ∈ RM . Then we can define the derivative
of the vector function f at ā as

J =


∂f1
∂a1

. . . ∂f1
∂aN

...
. . .

...
∂fM
∂a1

. . . ∂fM
∂aN

 , (3.36)

where J is known as the Jacobian matrix. This is often used in linear algebra for
example, say we have the following matrix equation

e = Ab, (3.37)

where e and b are points such that a, e ∈ RN , and A(ā) is an M × N matrix and
ā = [a1, . . . aJ ]. If we wish to describe the motion of the point e with respect to the
parameters that describe the matrix A, this is described by the Jacobian,

J =
∂e

∂ā
=


∂e1
∂a1

∂e1
∂a2

. . . ∂e1
∂aJ

∂e2
∂a1

∂e2
∂a2

. . . ∂e1
∂aJ

...
...

. . .
...

∂eN
∂a1

∂eN
∂a2

. . . ∂eN
∂aJ

 , (3.38)

this also leads to the following relationship

∆e = J∆ā, (3.39)

where ∆ denotes an infinitesimal change. So the Jacobian, which is a first order ap-
proximation of the derivative at the point e, gives an approximation of how the point e
would change given an infinitesimal update to the parameters ā.

3.4.3 The Hessian Matrix (H) and Approximate Hessian (JTJ)

The Hessian matrix (H) is closely related to the Jacobian matrix (J), but instead of
enumerating the first partial derivatives the Hessian is the second order partial deriva-
tives. As a simple example suppose we have the same function f from Section 3.4.2,
where f : RN 7→ RM with an input vector ā ∈ RN . Then the Hessian matrix H is
a 3-dimensional tensor such that H ∈ RN×N×M , where the Hessian of the ith output
dimension would be

Hi =


∂2fi
∂2a1

∂2fi
∂a1∂a2

. . . ∂2fi
∂a1∂aN

∂2fi
∂a2∂a1

∂2fi
∂2a2

. . . ∂2fi
∂a2∂aN

...
...

. . .
...

∂2fi
∂aN∂a1

∂2fi
∂aN∂a2

. . . ∂2i1
∂2aN

 . (3.40)
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This matrix is somewhat expensive to compute, and requires the calculation of all
partial second-order derivatives, and is useful in optimisation which is shown in Section
3.5.4.2. Often in order to avoid estimating such a large expensive matrix, a first order
approximate for the Hessian is used. We can re-express the elements of the Hessian as

Hi,j,k =
∂2fk
∂ai∂aj

= (JTk Jk)ij + g =
∂fk
∂ai
· ∂fk
∂aj

+ g, (3.41)

where g is the difference between the two values expressed by the second order terms
of the derivative. For small values of g, which is important to optimisation, this means
we can approximate the Hessian by

Hi,j,k ≈ (JTk Jk)ij, (3.42)

where this is true whenever the second-order terms contribute negligibly to the function.
This leads to JTJ often being referred to as the approximate Hessian matrix, particularly
in an optimisation setting.

3.4.4 Taylor Series Approximations

The Taylor series provides the approximation of a function (f) around a point (x0)
given by:

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 +

f ′′′(x0)

3!
(x− x0)3 + · · ·

≈
∞∑
n=0

f (n)(x0)

n!
(x− x0)n,

(3.43)

where the superscript ′ implies the derivative of the function. This approximation also
assumes f to be infinitely differentiable around x0. For a polynomial the Taylor series
is simply the polynomial itself. The Taylor series is often used to a significantly reduced
order, as it provides a very accurate estimate of the function about a point, that is
in general trivially differentiable. This is particularly useful for iterative optimisation
approaches such as non-linear least-squares (Section 3.5.3). In many cases the approx-
imation will diverge when the function is evaluated at a value of x far from x0. Figure
3.12 demonstrates this quite clearly for a simple function (ex), and contrasts to the
third order Taylor series approximation.

3.4.5 Quadrics

Quadrics are the 4-dimensional equivalent of a conic, where a conic can be used to
express any second-order 2D slice of a 3D cone, a general quadric can be used to
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Figure 3.12: Demonstrates the amount to which the Taylor series can differ as the evaluation
moves away from the centre point x0, in this case the function f(x) = ex and is evaluated
around x0 = 0.

Hyperbola Parabola
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Figure 3.13: Shows the relationship between the different intersections of the cone and the
resulting 2D shapes that can be made using conics. This shows the mathematically definition
of a cone, which should be considered to extend infinitely far in all directions.

express any second-order 3D slice of a 4D surface. In order to guide this explanation
we will first provide the background for conics, and extend to quadrics.

A general conic can be defined by the following matrix equation

pTi Cpi =
[
x y 1

]  a b/2 d/2
b/2 c e/2
d/2 e/2 f

 x
y
1

 = 0, (3.44)

where pi ∈ R2 is a homogeneous coordinate, and C ∈ R3×3 is a symmetric matrix that
defines the conic. The set of points X̄ where pi ∈ X̄, that satisfy this equation define the
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intersection, and thus the resulting 2D dimensional line(s). Examples of some possible
conics are shown in Figure 3.13. To make it clear how this relates to the equation we’ll
go through an example for a parabola, and show the subset of R3×3 that can create
parabolic intersections. If we expand out Equation 3.44 we get

ax2 + bxy + cy2 + dx+ ey + f = 0, (3.45)

which defines the equation of any second-order line in R2, if we focus on just defining a
parabola, we can set b = c = 0 and e = −1, which gives the following equation

y = ax2 + dx+ f, (3.46)

which is the general form of a parabola, inserting this back into the conic matrix C
gives: [

x y 1
]  a 0 d/2

0 0 −1/2
d/2 −1/2 f

 x
y
1

 = 0, (3.47)

which defines all 2D parabolas. We can now extend this logic to second-order shapes
in R3 and define quadrics with the following matrix equation

x̄TQx̄ =
[
x y z 1

] 
a b/2 d/2 g/2
b/2 c e/2 h/2
d/2 e/2 f i/2
g/2 h/2 i/2 j



x
y
z
1

 = 0, (3.48)

where again x̄ ∈ R3 is a homogeneous coordinate, and the matrix Q ∈ R4×4 is again
symmetric. As with conics, we can expand the Equation 3.48 to

ax2 + cy2 + fz2 + bxy + dxz + eyz + gx+ hy + iz + j = 0. (3.49)

We show some examples of the possible respresentable shapes using quadrics in Figure
3.14. Again we can take a concrete example to illustrate how the matrix Equation
3.48 relates to the generated shapes, by expressing a sphere centered at the origin
(
[

0 0 0 1
]T ) using a quadric. Taking Equation 3.49 as a starting point we can

now give values to some of the parameters, we can set b = d = e = g = h = i = 0,
a = c = f = 1 and j = −r2, where r is the radius of the sphere. The equation becomes

x2 + y2 + z2 = r2 (3.50)

and the corresponding quadric is:

x̄TQx̄ =
[
x y z 1

] 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −r2



x
y
z
1

 = 0. (3.51)
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Hyperbola

Plane

Sphere

Saddle

Parabola

Figure 3.14: Several examples of second-order shapes that can be represented by using qua-
drics.

This shows that a sphere centered at the origin only requires a single parameter to
be fully described, which is the radius. This method of representing shapes using
quadrics, is commonly used to describe local surface regions and can even be used
to describe entire objects, such as balls, cylinders and planar regions. Additionally
we can restrict the number of non-zero parameters we allow to reduce the number of
shapes representable by the quadric, this is applicable in a situation where you may
wish to represent a small local region of a larger surface, as many surfaces can be
approximated over small neighbourhoods accurately with a reduced parameterisation.
An example might be to represent local regions using planes, which is in general a close
approximation of any surface given the appropriate bounds.

3.5 Optimization Techniques

In this section we provide a sufficiently detailed description of the robust optimisation
techniques used throughout this thesis. For a more detailed description of least-squares,
weighted least-squares and iterative re-weighted least-squares please see [193, 198, 199,
200]

3.5.1 Gaussian Elimination

Gaussian elimination is step in an approach that solves a set of linear-equations, where
the number of equations is sufficient to solve for the number of variables. This is the
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first step that rearranges the equations into a form that can be algorithmically solved
using back-substitution (Section 3.5.2). Given a set of linear equations

x+ y + z = 3

2x+ 3y + 7z = 0

x+ 3y − 2z = 17

. (3.52)

These can be expressed by the augmented matrix 1 1 1 3
2 3 7 0
1 3 −2 17

 ← r1

← r2

← r3

, (3.53)

where row-operations can be performed to convert this augmented matrix into some-
thing called row-echelon form. The goal is to form a diagonal matrix on the left-hand
side, which can be done by performing the following row operations

r′2 = r2 − 2 ∗ r1

r′3 = r3 − r1

r”3 = r′3 − 2 ∗ r′2

, (3.54)

which results in the following augmented matrix 1 1 1 3
0 1 5 −6
0 0 −13 26

 , (3.55)

The system of equations has become

x+ y + z = 3

y + 5z = −6

−13z = 26

, (3.56)

which is simply solvable through back-substitution as shown in Section 3.5.2.

3.5.2 Back-Substitution

Back-substitution is the process of solving a set of equations from a matrix. It can
be greatly simplified by transforming the set of equations into a matrix in row-echelon
form. Row-echelon form is primarily for human readability, the important aspect is the
diagonal matrix on the left-hand side, which allows a solution to be calculated. As an

71



3 FUNDAMENTALS

example, using the system defined in Equation 3.56, we can solve for x, y and z by first
solving for z using

−13z = −26

z =
26

−13
= −2

, (3.57)

now we can solve for y given the solution for z using

y + 5z = y + 5(−2) = −6

y = −6 + 10 = 4,
(3.58)

now we can finally solve for x given y and z using

x+ y + z = x+ (4) + (−2) = 3

y = 4− 2 = 1,
(3.59)

hence x = 1, y = 4 and z = −2. If we were to define the diagonal matrix U as

U =

 1 1 1
0 1 5
0 0 −13

 =

 u11 u12 u13

u21 u22 u23

u31 u32 u33

 , (3.60)

the vector x̄ as

x̄ =

 x
y
z

 =

 x1

x2

x3

 , (3.61)

and the solution vector ȳ as

ȳ =

 3
−6
26

 =

 y1

y2

y3

 . (3.62)

The matrix equation Ux̄ = ȳ can now be solved algorithmically in terms of the un-
knowns in x̄ using

xn = yn/unn

xi =

yi − n∑
j=i+1

(uijxj)

 /uii.
(3.63)

The above equation gives an iterative solution to the values of x̄. This technique is also
relevant to matrices that have been decomposed, using the Cholesky decomposition
technique (Section 3.1.6) for example.
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3.5.3 Least-Squares

Least-squares is a technique for fitting a model to data. This section provides a back-
ground into the basic concepts and extends up to the more complex formulations used
in this thesis, while providing a motivation for some of the choices one might make using
this technique.
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Figure 3.15: Left: A simple example of least-squares to line-fitting, in this case the samples
(yi) are normally distributed around the y = x line. Additionally the residuals (ri) are shown
for several points. This corresponds to an Identity covariance matrix (discussed below). Right:
A more complex example where the covariance matrix is no longer the identity, and the sample
points (yi) clearly vary proportionally to the independent variable x. This shows a case where
weighted least-squares provides a better estimate (f∗(x)wls) of the true relationship between
the data.

3.5.3.1 Ordinary Least-Squares (OLS)

Ordinary Least-Squares (OLS) can be defined as the process of minimising the sum of
the squared residuals. Given a function f that models a set of data points X̄, where
(xi, yi) ∈ X̄ are data point pairs, we get the residual ri from the following equation

ri = yi − f(xi, γ̄), (3.64)

where γ̄ are the estimated model parameters of the function f , xi is the independent
variable and yi is the dependent variable. For least-squares optimisation we want to
know the model parameters γ that minimise the sum of the squared residuals, described
by the equation

arg min
γi∈γ̄

(
N∑
i=0

r2
i

)
= arg min

γi∈γ̄

(
N∑
i=0

(yi − f(xi, γ))2

)
. (3.65)
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A number of formulations exist for solving the least-squares problem, in this thesis we
predominantly use the Gauss-Newton and Levenburg-Marquadt approaches. A short
explanation of the background leading to these approaches, as well as the approaches
themselves is provided here to aid the reader in understanding the motivation behind
these choices.

Linear Least-Squares applies to the linear form of least-squares, where the function that
is being fit to the data is assumed to be a linear combination of the parameter vector.
This problem can be parameterised by the following linear equation

Aγ̄ = ȳ, (3.66)

where

A =

 a00 · · · a0m
...

. . .
...

an0 · · · anm

 , γ̄ =

 γ0
...
γm

 ,and ȳ =

 y0
...
yn

 , (3.67)

represent a general set of linear equations. In this case an objective function (R) can be
defined, which is the least-squares objective function, in terms of the model parameters
(γ̄)

R(γ̄) = ‖ȳ −Aγ̄‖2 . (3.68)

This function will be minimum as the gradient approaches zero. We can first expand
this equation to

R(γ) = ‖ȳ −Aγ̄‖2 = (ȳ −Aγ̄)T (ȳ −Aγ̄)

= ȳT ȳ − ȳTAγ̄ − γ̄TAT ȳ + γ̄TATAγ̄

= ȳT ȳ − 2γ̄TAT ȳ + γ̄TATAγ̄
(
given: ȳTAγ̄ = γ̄TAT ȳ

)
.

(3.69)

Now differentiating this with respect to γ̄ and setting to zero (where the residual function
will be minimised) gives

0 = −2AT ȳ + γ̄TATA + ATAγ̄

= −AT ȳ + ATAγ̄
(
given: γ̄TATA = ATAγ̄

)
.

(3.70)

A simple rearrangement will allow solving for the model parameters directly

(ATA)−1AT ȳ = γ̄, (3.71)

which is the general solution to linear-least squares.

Non-Linear Least-Squares is applied when the relationship between the dependent and
independent variable is known to be non-linear, i.e. not able to be expressed as a
combination of linear functions. This form of least-squares often has no closed-form
solution, and as such a numerical approximation is often substituted and an iterative
update to the approximate solution is applied. There are several approaches to solving
this type of problem and we detail a few in the following sections.
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Figure 3.16: Demonstrates the characteristic zig-zagging that results from always moving in
the direction of the steepest gradient, in order to minimise the objective function.

3.5.4 Iterative Optimisation Approaches

3.5.4.1 Gradient Descent

Gradient descent can be used to solve a set of equations of the form given by linear and
non-linear least-squares. This is an iterative approach that attempts to minimise the
objective function given by 3.68, we do this by moving in the direction of the negative
gradient such that

γ̄i+1 = γ̄i − αi∂R(γ̄i)

∂γ̄
, (3.72)

where αi provides an iterative reduction in step size to improve convergence. This
method is guaranteed to converge on a convex objective function (bowl-shaped) if the
initial conditions are in the neighbourhood of the solution. However as shown in Figure
3.16 it can take a large number of iterations due to its formulation.

3.5.4.2 Newton Method

Newton’s method is a efficient approach to gradient descent. Take the least-squares
residual function (R) and assume that this function is convex in the neighbourhood
of the true solution (γ̄∗). If we take the gradient of the function around the solution
(∇R(γ̄∗)) should be zero, we can now approximate this function using the first-order
Taylor series expansion about the current estimate of the model parameters γ̄i

∇R(γ̄∗) ≈ ∇R(γ̄i) +
∂∇R(γ̄i)

∂γ̄
(γ̄∗ − γ̄i), (3.73)
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where
∂∇R(γ̄n)

∂γ̄
= H (3.74)

is known as the Hessian matrix for a vector field. Noting that ∇R(γ̄∗) = 0, this gives
the following recursive update condition for the model parameters γ̄

γ̄i+1 = γ̄i + H−1∇R(γ̄i). (3.75)

This update implies a quadratic convergence rate in the neighbourhood of the solution,
but it doesn’t guarantee convergence, if the initial conditions are poor this method may
diverge. In general this will converge much faster than gradient descent, but at an
increased computational cost. Additionally and most crucially for a vector field, as is
the nature of the optimisations in this thesis, the calculation of the Hessian matrix can
quickly become intractable (H is a 3-dimensional tensor of all second-order derivative
pairs for each data-point pair).

Newton Method

Second-Order Model Approximate

Step 1 Step 2

Step 3 Step 4

LOW

HIGH

O
b
jective Function

Figure 3.17: Demonstrates the motion of each step to the currently approximate minimum
given a second order approximation, this results in faster convergence than gradient descent as
the motion

3.5.4.3 Gauss-Newton Method

This is an efficient approximation of Newton’s method, without losing much of the
robustness but significantly reducing the average computation cost. Gauss-Newton is
applied in a similar manner to linear least-squares but now we attempt to solve for an
update to the parameters (∆γ̄) as is the case for Newton’s method. We want to make
an update to γ̄ that reduces the sum of the squared residuals (ri). We can define the
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model parameters iteratively γ̄ as

γ̄j+1 = γ̄j + ∆γ̄j , (3.76)

where the γ̄j gives the model parameters at iteration j. If we now take the first-order
Taylor series expansion about the current model parameters γ̄i

f(xi, γ̄) ≈ f j(xi, γ̄) +
∂f(xi, γ̄)

∂γ̄
(γ̄ − γ̄j)

≈ f j(xi, γ̄) + J̄T (γ̄ − γ̄i),
(3.77)

where J̄ is the Jacobian, which is the vector of first order partial derivatives of the
function f w.r.t. the model parameter vector γ̄. Taking the formulation for the update
given in Equation 3.76, and given that the data point values yi = f(xi, γ̄), we can now
express the residuals as

ri = yi − f j(xi, γ̄) + J̄T∆γ̄. (3.78)

Given we want to minimise the function R given by Equation 3.65, substituting for this
new approximation gives

R(γ) =
N∑
i

∥∥∆yi + J̄T∆γ̄
∥∥2
. (3.79)

Again we can make the assumption that this function is convex in the neighbourhood
of the true solution, the current estimate is within this well of convergence, and the
function f is twice differentiable. In which case the minimum to the residual function
will be when the gradient of R is zero. Differentiating this with respect to ∆γ̄ and
setting to zero gives

0 = −2
N∑
i=0

Ji
(
∆yi − JT∆γ̄

)
, (3.80)

where J is the matrix of each Jacobian vector for every data point i. This can be shown
to be equal to the following iterative formulation

∆γ̄ =
(
JTJ

)−1
JT∆ȳ, (3.81)

where ∆ȳ is the vector of residuals from each data point. This formulation is remarkably
similar to that of Newton’s method in Equation 3.75. In fact Gauss-Newton approxi-
mates the Hessian H as JTJ and the gradient descent vector ∇R(γ̄i) as JT∆ȳ. This
approximation assumes the second derivative of the Taylor series contributes minimally
to the approximation, and in general is a valid assumption in the neighbourhood of the
solution.

As with Newton’s method, this approach is still vulnerable to starting outside the
convergence well. A strong aspect of this approach is that it computes a much cheaper
approximation of the Hessian matrix, which makes the practical implementation of this
approach much simpler. However, as it is given here, no attempt is made to combat
outliers in the data and as such can result in sub-optimal solutions.
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3.5.4.4 Outlier rejection

A simple approach to combating outliers is to remove them from the modelled data.
This can be done by estimating all the residuals, sorting them and only taking the first
m values to use in the optimisation method, algebraically this looks like

m∑
0

‖ri‖2 = β0, (3.82)

where β0 is the sum of the first m residuals. This function has no closed-form solution,
nor does it have any guarantees of convergence. Additionally in some circumstances
it can prove to be quite unstable, as points move in and out of consideration. A
more reliable choice is to use an maximum-likelihood estimator (M-estimator), where
an objective function is provided that allows for outliers to be weighted appropriately.
Using an M-estimator effectively will remove some points from consideration in a stable
manner (Section 3.5.5.1).

3.5.4.5 Weighted Least-Squares (WLS)

Weighted Least-Squares (WLS) is an extension of ordinary least squares, where now
the covariance matrix of the residuals with respect to each point is no longer assumed
to be identity as we have effectively done so far, but still assumed to be diagonal
for convenience. That is to say the error of each point is no-longer considered to be
independent of the function, but still considered independent of each other. An example
of the improved performance of this approach is shown in Figure 3.15, where weighting is
able to reduce the influence of the outliers and the final model provides a more accurate
fit to the data.

Weighting each data point is actually quite simple. Take the Gauss-Newton approach,
it can be generalised by applying a weighting to each residual, using a diagonal weight
matrix W

∆γ̄ =
(
JTWJ

)−1
JTW∆ȳ (3.83)

where

W =


w0 0 · · · 0

0
. . .

...
...

. . .
...

0 · · · · · · wN

 . (3.84)

In general the weights wi are a function of the residual ri, which modifies the optimi-
sation function based on the choice of weighting function. There are many choices for
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weighting function, but in general a M-estimator function is used as discussed in Section
3.5.5.1.

3.5.4.6 Levenburg-Marquadt

This is a further improvement to the weighted least-squares formulation of the Gauss-
Newton approach. We now extend the solution to Gauss-Newton from Equation 3.81,
once more

∆γ̄ =
(
JTWJ + λI

)−1
JTW∆ȳ, (3.85)

where λ is a parameter that increases as the system iterates in general. Another ap-
proach is to vary λ based on whether the weighted residual function reduces from one
iteration to the next, increasing its value if the function would increase given the pre-
dicted update, until either the function reduces or λ reaches a pre-decided maximum
value. The rational behind this is that as the value of λI becomes much larger than
JTWJ, then the update approaches a small step in the direction of the gradient, which
is in general a stable motion. In this way Levenburg-Marquadt attempts to balance the
benefit of the fast convergence given by the Gauss-Newton approach with the inher-
ent stability of gradient descent. However, this method still provides no guarantees on
convergence, outside the neighbourhood of the solution.

3.5.5 Robust Optimisation

3.5.5.1 Maximum Likelihood Estimators (M-Estimators)

There exist a wide array of choices of weighting function, for weighted least-squares
optimisation approaches. A popular technique is to use an M-estimator, in this section
we describe a list of some of the most commonly used approaches. A very informative
summary of this weighting methodology can be found in [201].

As discussed previously, taking the straight least-squares error for a function (Equation
3.65) can result in sub-optimal solutions in the presence of outliers. To combat this
sensitivity, we replace the residual function with the function ρ(ri), and we now attempt
to minimise the new function

arg min
γ̄

(
N∑
i=0

ρ(ri(γ̄))

)
, (3.86)
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Method w(ri) ψ(ri) ρ(ri)

L2
1 ri r2

i /2

L1
1/|ri| sgn(ri) |ri|

"Fair" 1/(1 + (|ri|/f)) ri/(1 + (|ri|/f)) f |ri|+ f2 ln |1 + (|ri| /f)|

Cauchy 1/
(

1 + (ri/c)
2
)

ri/
(
1 + (ri/c)

2
)

c2

2 ln
∣∣∣1 +

(
ri
c

)2∣∣∣

Tukey
{

if |ri| ≤ t
if |ri| > t

{
(t2/6)(1− (1− (ri/t)

2)3)
t2/6

{
ri(1− (ri/t)

2)2

0

{
(1− (ri/t)

2)2

0

Huber
{

if |ri| ≤ h
if |ri| > h

{
r2
i /2
h(|ri| − h/2)

{
ri
hsgn(ri)

{
1
h/ |ri|

Table 3.1: Gives a summary of commonly used M-estimator functions, including the weighting
(w), influence (ψ) and objective function (ρ). Each of the functions has a graphical representa-
tion, to further illustrate the relationship to the error. The choice of the constants is importantly
to ensure good operations, in practice f = 1.3998, c = 2.3849, t = 4.6851 and, h = 1.345 are
used as tuning constants for their respective ρ-function.

where ρ is a positive-definite function with a unique minimum at zero (in the neigh-
bourhood of the solution) and should increase slower than a square function away from
the minimum. As with standard least-squares we can solve this function iteratively.
The first step is to solve for the minimum to Equation 3.86, by finding the value of the
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parameter vector γ̄ when the gradient is zero like so

N∑
i=0

ψ(ri)
∂ri
∂γ̄

=
N∑
0

∂ρ(ri)

∂ri

∂ri
∂γ̄

= 0, (3.87)

where ψ(ri) is the so-called influence function and is equivalent to ∂ρ(ri)
∂ri

. Now we can
define a weighting function w in terms of the influence function ψ,

w(x) =
ψ(x)

x
(3.88)

which can be substituted back into Equation 3.87

N∑
i=0

w(ri)ri
∂ri
∂γ̄

= 0. (3.89)

This is the same set of optimisation equations we would get if we attempted to minimise
the iterative weighted least-squares equation

arg min
γ̄

(
N∑
i=0

w
(
rj−1
i

)(
rji

)2
)
, (3.90)

where rji is the ith error at iteration j. We include a number of weighting functions and
their respective influence and ρ functions in Table 3.1. This table indicates the effect of
outliers using different weighting functions, for example using the standard least-squares
(L2) highlights it’s vulnerability to outliers. We can see that with a weighting function
of 1 the influence of each error (ψ(ri)) is proportional to the residual ri, which means
outliers assert a greater influence on the optimisation which is undesirable.

This can be solved using the Gauss-Newton or Levenburg-Marquadt as shown previ-
ously, using a diagonal weight matrix W. The ρ-function is now what is being minimised
and as such is the modified objective function. There is a small abuse of notation above,
as γ̄ = [γ1, γ2, · · · , γm]T is a parameter vector, and as such each derivative would have
to be evaluated separately for the above expressions.

3.5.6 Schurr-Complement Trick

The Schur complement trick applies to matrix equations of the form:[
A B
C D

] [
ā
b̄

]
=

[
x̄
ȳ

]
(3.91)
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It is an alternative method of computing the solution to this system of equations for
the vectors a, b that uses a simple rearrangement of the matrix to compute it’s inverse.
The solution to this rearrangement is given by[

A B
C D

]−1

=

[ (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−D−1C
(
A−BD−1C

)−1
D−1 + D−1C

(
A−BD−1C

)−1
BD−1

]
.

(3.92)
At first this may seem like it makes things more complicated, but for certain types of
matrices this can be used to greatly simplify the computation. Note that there are only
two inverses to compute in this formulation, D−1 and

(
A−BD−1C

)−1.

3.5.6.1 Block-Diagonal Matrices

For a block-diagonal (N ×N) matrix Λ of the form:

Λ =


D0 0 · · · 0

0 D1
. . .

...
...

. . . . . . 0
0 · · · 0 DN

 , (3.93)

where each Di is a square matrix of the same size, the inverse is trivial to compute and
is given by

Λ−1 =


D0
−1 0 · · · 0

0 D1
−1 . . .

...
...

. . . . . . 0
0 · · · 0 DN

−1

 . (3.94)

3.5.6.2 Symmetric Matrices

If the matrix is symmetric of the form:[
A B
BT C

]
, (3.95)

the inverse can be simplified to[
A B
BT C

]−1

=

[
G −G−1H

−HTG−1 C−1 + HTGH

]
, (3.96)
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where G = A−BC−1BT and H = BC−1. Again we have only two inverses to calculate,
G−1 and C−1. This gives the solution for ā and b̄ as

ā = G−1(x̄−Hȳ) and

b̄ = C−1ȳ −HT ā.
(3.97)

3.5.6.3 Use in Optimisation

In optimising least-squares problems using the Gauss-Newton approach we require the
inverse of the approximate Hessian Matrix (

(
JTJ

)−1) which is guaranteed to be a
symmetric matrix. For many optimisation problems this matrix takes the form

JTJ =


A · · · B · · ·
... C0 0 0

BT 0
. . . 0

... 0 0 CN

 , (3.98)

where C ∈ RM×M block-diagonal matrix and A ∈ RL×L is a dense symmetric matrix,
where L�M . Since C is symmetric it’s inverse is trivial to calculate and as shown in
Equation 3.94 it is separable. This means G and H can be computed in parallel. More
explicitly, given C is block diagonal, made of a N K ×K matrices, we can also express
B as a set of N L×K matrices as

B =
[

B0 · · · BN

]
, (3.99)

then BC−1 is given by

BC−1 =
[

B0C
−1
0 · · · BNC−1

N

]
(3.100)

and BC−1BT is therefore

BC−1BT =

N∑
i=0

BiC
−1
i BT

i , (3.101)

where BC−1BT ∈ RL×L, making this type of problem highly suitable to parallel pro-
gramming, as all these results can be computed separately and sum reduced. This is
also true for Hȳ, which is also separable.
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3.6 Transformation Matrices

Transformation matrices are used extensively throughout the work presented in this
thesis. A transformation in this case is considered to be a matrix that represents the
motion of a point or basis in N-dimensional space. We provide a brief background on
groups and Lie-groups in particular to describe their general usage and properties here.
For a more detailed explanation of concepts please consult [193], which provides an
in-depth analysis of the concepts presented here.

3.6.1 Groups

A group in mathematics is a set of elements under an operation, that when applied
to combine any two elements in the set into a third element, the resulting value will
and the original values will satisfy the four requirements for a group, namely closure,
associativity, identity and invertibility.

closure : ∀a, b ∈ S, a ◦ b = c | c ∈ S
associativity : ∀a, b, c ∈ S, (a ◦ b) ◦ c = a ◦ (b ◦ c)

identity : ∀a ∈ S, ∃I | a ◦ I = I ◦ a = a
invertibility : ∀a ∈ S, ∃b | a ◦ b = b ◦ a = I

Table 3.2: The fours axioms that govern whether a set should be considered a group.

These definitions are summarised in table 3.2 above. Closure means that for all a and
b in the set S under the operation ◦, the result c will also be in the set S. Associativity
means for all a, b and c in the set S, the operation holds associatively, meaning the
order doesn’t matter. Identity refers the requirement of the set that there be an I in S,
such that when applied to any element under the operation ◦, it remains unchanged,
that is I is the identity of the set. Invertibility requires that for all elements a in S,
there must exist an element b that is the inverse of a (b = a−1) and as such under the
operation ◦ will equal the identity I.

A simple and common case of a group would be Z (set of all integers) under the
operation addition. It is trivial to see that it meets all the requirements for a group,
but we illustrate for completeness:

closure : 1 + (−2) = −1 | −2,−1, 1 ∈ Z
associativity : (1 + 2) + 3 = 1 + (2 + 3)

identity : 7 + 0 = 7 : I = 0
invertibility : 6 + (−6) = 0 = I
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3.6.2 Matrix Exponentiation

A matrix exponential is the matrix version of an ordinary exponential and is defined by
the following power series

eA = I + A +
1

2
A2 +

1

6
A3 + · · · =

∞∑
k=0

1

k!
Ak, (3.102)

where A is a square N × N matrix. This is well defined for all values of A, both real
and complex. This definition of matrix exponentials leads to the following properties:

e0 = I eYAY−1
= YeAY−1

eA
T

= (eA)T eaAebA = e(a+b)A

eA
∗

= (eA)∗ eAe−A = I

0 is an N×N zero matrix, AT denotes the transpose of A and A∗ denotes the conjugate
transpose of A, which is relevant to complex matrices. The matrix Y is assumed to be
invertible and the same size as A. The final property (eAe−A = I) also requires that
A be invertible. These properties also imply that if A is symmetric then eA is also
symmetric. Additionally matrix exponentiation allows the mapping from one group
to another, this is important as it implies that the exponential of a group forms an
isometric mapping to another group.

3.6.3 Lie Groups, Lie Algebras and The Tangent Space

This section is intended to explain the background of how we have expressed transfor-
mations (rotations and translations) of points, cameras and frames in this thesis.

3.6.3.1 Lie Groups and Lie Algebras

A Lie group is a group G such that the elements form a smooth differentiable manifold
over the range of the group. The elements of this group can be used to represent linear
transformations. As with groups these qualities are defined under some operation, in
this case we consider groups of matrices under multiplication. A key motivation for
using Lie-groups is the ability to map smoothly any point in a complex group, to a
local linearized version of the group called the Lie-algebra g, which is valid in the
neighbourhood of identity of the group. That is using a Lie bracket a Lie algebra can
be formed that is equivalent to the tangent space about the identity. The Lie bracket
is defined by

[A,B] = AB−BA where A ∈ g,B ∈ g, [A,B] ∈ g. (3.103)
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In the case of commutative matrices clearly [A,B] = 0, but for non-commutative ma-
trices the bracket measures the degree to which the matrices violate the commutivity
law.

This thesis only considers a subset of Lie-groups, that are useful in geometry. They are

• Special Orthogonal Group 3 (SO(3)) - Represents all magnitude preserving rota-
tion’s possible in linear algebra
• Special Euclidean Group 3 (SE(3)) - All transformation between R3 coordinate

frames that preserve distances, and relationships between points

In both cases the 3 refers to the fact that these groups operate in R3. These groups
and their respective Lie algebras (so3 and se3) form the basic transformations used for
many sections of this thesis. The matrix exponential of an element in the group’s Lie
algebra takes it to back of the original group, and a matrix logarithm takes it back to
its Lie algebra. The elements of the Lie algebras (so3 and se3) can be expressed by a
sum of the products of infinitesimal generator matrices, which is explained below.

3.6.4 Special Orthogonal Groups (SO(N))

A set of Lie-groups known as the special orthogonal groups, can be represented in
linear algebra as a set of matrices. For the purpose of this thesis, these groups can
be considered to be purely rotation matrices. That is a group in SO(N) will rotate
points in RN about the origin. The matrices that form this set of groups must be
ortho-normal, that is the matrix must have unit magnitude columns and each column
must be orthogonal to all others. They have also satisfy the condition ATA = I, that
the transpose of a matrix in SO(N) is its inverse. Which implies they must also be
skew-symmetric, which means this also applies to the rows of the matrix.

3.6.4.1 Rotation in Two Dimensions (SO(2))

This is the most basic of the special orthogonal groups. This group takes the form

R(θ) =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
, (3.104)

where θ defines the magnitude of the rotation. This can be thought of as rotating about
a third orthogonal dimension (z) as shown in Figure 3.18 below.
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x

y
z

Figure 3.18: Left: the rotation of a point (pi) by a SO(2) matrix (R2D). Right: Demon-
strates that a rotation can actually be thought of as occurring about a separate orthogonal
dimension (z in this case).

The Lie group SO(2) has a Lie algebra so2 defined by the infinitesimal generator ma-
trices that form a basis of all 2D transformations. This is the basis of the tangent space
of SO2, which can be shown to be given by the derivative of the rotation with respect
to θ at the point θ = 0

G =
∂R(θ)

∂θ θ=0
=

[
−sin(θ) −cos(θ)
cos(θ) −sin(θ)

]
=

[
0 −1
1 0

]
, (3.105)

where G is the basis of so2. We can now show that eso2 7→ SO(2) is true for points close
to the identity, by taking the exponential of the generator G multiplied by a constant
α,

eαG = I + αG +
1

2
(αG)2 +

1

6
(αG)3 + · · ·

=

[
−sin(α) −cos(α)
cos(α) −sin(α)

]
,

(3.106)

which is the original rotation matrix expressed in terms of a rotation by α radians.

3.6.4.2 Rotation in Three Dimensions (SO(3))

The Lie group SO(3) defines all 3×3 matrices that respect the orthogonality condition

ATA = I, (3.107)

where A ∈ SO(3). As mentioned previously we can define the tangent space for SO(3)
as so3 where the elements of this tangent space (Lie algebra) can thought of as the set
of infinitesimal generator rotations about a direction vector. A simple approach to find
these generators is to take the derivative of the rotation matrices around each of the
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directions (x, y, z), this commonly used basis for so3 is given by the following generator
matrices

G0 =

 0 0 0
0 0 −1
0 1 0

 ,G1 =

 0 0 1
0 0 0
−1 0 0

 ,G2 =

 0 −1 0
1 0 0
0 0 0

 . (3.108)

This can be related to SO(3) through a matrix exponentiation as follows,

R(γ̄) = e
∑2
i=0 γiGi , (3.109)

where γ̄ = [γx, γy, γz]
T is a vector of rotations in radians about the x, y and z axis

respectively.

3.6.5 Special Euclidean Groups (SE(N))

The special Euclidean groups extend the special orthogonal groups to allow any rigid
transformation of a coordinate, vector or shape. The most relevant Lie group to this
thesis is SE(3), which similarly has a tangent space se3.

3.6.5.1 General 6DOF Transformations (SE(3))

Figure 3.19: Demonstrates the transformation between coordinate frames using SE(3) trans-
formation matrices T. The top transformations are relative and show the transformation be-
tween cameras ci and cj as T←−

ij
. The transformations coming from the origin (wo) are absolute

and show the transformation from the origin to a common frame. In practice the world origin
will be chosen to be the position of the first camera.
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This is the set of rigid transformation matrices for coordinates and frames in R3. We
give an example set of transformations in Figure 3.19 above. This is perhaps the most
convenient and common method of expressing transformations in geometry. As with
SO(3), SE(3) has an easily expressible tangent space. However SE(3) doesn’t require
that ATA = I, in fact in general this is not satisfied except for the elements of SE(3)
that are pure rotations. The matrices of SE(3) can be expressed as

T =


tx

R(γx, γy, γz) ty
tz

0 0 0 1

 , (3.110)

where R ∈ SO(3) is a rotation matrix and t̄ = [tx, ty, tz]
T is a translation vector.

This means that the entirety of SO(3) is contained in SE(3). This set of matrices can
naturally be expressed using a set of infinitesimal generator matrices again, where a
common choice of generators is

G0 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,G1 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,G2 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0



G3 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ,G4 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 ,G5 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


(3.111)

where the generators can be used to generate the group using matrix exponentiation

T(γ̄) = e
∑5
i=0 γiGi . (3.112)

In this case γ̄ = [tx, ty, tz, θx, θy, θz]
T is a vector of transformation parameters expressing

translation (ti) and rotation (θi) about the i axis. These express the 6 Degrees of
Freedom (6DoF) that are possible for any rigid transformation.

3.6.6 Differentiating Transformation Matrices

As shown previously we can express any rigid transformation as a matrix exponential,
using its tangent space. Assuming the resulting transformation is small, we can say this
approximation is valid in the vicinity of the identity. This means our derivative can be
approximated from the matrix exponential

∂

∂γi
e
∑5
i=0 γiGi = Gie

∑5
i=0 γiGi = GiT0 (3.113)

where T0 ∈ SE(3) is the current approximation of the transformation matrix. This
means our gradients are very simple to calculate in terms of the motion parameters (γi)
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3.7 Iterative Closest Point (ICP)

We include this section as it is an integral part of each of at least 2 pieces of work
presented in this thesis (see Chapters 4 and 6), making it important that the reader un-
derstand the basis behind the algorithm to fully appreciate the goals and contributions
contained in those works.

Image plane - I1 Image plane -I
2 

C1 C2

p3

p1

p2

Point Cloud - Point Cloud -
Aligned Pointclouds

Figure 3.20: Shows the alignment of two over-lapping point clouds P and Q. Also demon-
strates how points in the world can be used to relate multiple cameras, by respecting the
geometry of the scene. Best viewed in colour.

The goal of Iterative Closest Point (ICP) is to align multiple overlapping depth scans
accurately and efficiently. The idea behind this algorithm is to iteratively reduce the dis-
tance between corresponding/closest points in multiple overlapping point-clouds. The
steps in ICP can be summarised as in [120], as the following:

1. Selection of the points pi and qi from surfaces P and Q
2. Correspondence estimation for all points pi ∈ P
3. Weighting the estimated correspondences
4. Outlier removal of the invalid points from the correspondence set
5. Choosing an error metric
6. Minimising the chosen error metric
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3.7.1 Selection

There are many approaches to point selection, and this choice was particular relevant
when limited compute resources are available.

3.7.1.1 RANdom SAmpling Consensus (RANSAC)

RANSAC is a very popular strategy for selection [202]. The basic principle of RANSAC
is to choose a random selection of n points, from the full set of N points, and compute
an update to the system, in the case of ICP it would be a transformation. Using this
estimated transformation, a consensus score is calculated that measures the number of
inliers, or points that agree with the proposed transformation. This is repeated for L
iterations, or until a predefined consensus score is reached. The choice of L is given by

L =
log(0.01)

log(1− ωn)
, (3.114)

where ω is the fraction of inliers in the set. This choice gives you a 99% chance of
selecting at least 1 set of points with all inliers. The value n is usually kept small to
keep L small as well, reducing the overall work. The minimum choice of n in the case
of ICP is 3, as this is enough to fully constrain a 6DOF transformation (provided that
are not all co-planar or form a straight line). In general its better to choose more than
the minimum and use a least-squares approach as it is more robust to noise in the inlier
set.

3.7.1.2 Dense Sampling

Since the introduction of parallel or GPGPU computing the constraints on the number of
points considered have been loosened dramatically. Now a valid strategy is to use every
point in the optimisation. The inlier rates are now particularly relevant to weighting
and outlier removal. In this thesis we focus on dense selection techniques and parallel
processing. In general robust dense optimisation results in a more accurate and solution
[14, 14, 17], than statistical sampling.

3.7.2 Correspondence Estimation

The most relevant method of correspondence estimation to this thesis is to project, and
is primarily because of the form of data used. The range scans produced by low cost
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NEAR

FAR

Project Project-and-walk Project-and-scan

D
istance from

 points

p1

q1
K-1Eq1

Figure 3.21: Demonstrates the standard approach to projected the transformed point on the
image plane of the other depth scan. We show three approaches to matching correspondences
between cameras, based on a standard camera. The colour of the image is intended to show
the distance to the transformed coordinates. Project: the correspondence is simply the closest
image coordinate the transformed point (qi) projects to. Project-and-walk: after projecting
the point a "greedy" search can be performed in image space to find the closest point according
to some error metric. Project-and-scan: after projecting the point a fixed size patch is
searched for the closest point.

depth scans, can be used to efficiently produce organised point clouds, which can be
searched more efficiently in screen space, that is in the original image coordinate space.
This also means its convenient to represent the transformations in terms of the camera
centres, as opposed to model centres, or the first moment for example.

Several different approaches to matching correspondences between cameras are shown
in Figure 3.21. The several methods each have different advantages and disadvantages.
Straight projection takes the transformed coordinate to image space in the other cam-
era and takes the closest point. This is the fastest method, but the least robust to large
viewpoint changes. Project-and-walk projects to the other camera and searches for
the closest point, generally in a greedy fashion. Beginning at the current closet point and
taking the neighbouring point that reduces the distance the greatest amount, repeating
until no neighbouring points are closer and taking that as the correspondence. This is a
good strategy to balance the additional computational cost of searching to increase the
convergence radius, but can result in a sub-optimal choice which as a weakness of the
greedy algorithm. Project-and-scan projects to the other camera and searches a fixed
radius around the projected image coordinate taking the closest as the correspondence.
This has a fixed complexity and increases the convergence radius, but with a reduced
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risk of being trapped in a local minima.

3.7.3 Weighting & Outlier Removal

As mentioned in Section 3.7.1.2, the weighting of points using dense selection is essen-
tial for the overall robustness of the system. The choice of M-estimator can be made
experimentally, in this thesis a common choice for weighting function was the Cauchy
function due to its computational simplicity and relatively good performance,

wi =
1

1 + (ε2i /c
2)
, (3.115)

where c is a constant chosen either a priori or computed over a number of trials to match
the expected error of the system. A more detailed description of robust weighting and
M-estimators can be found in Section 3.5.5.1.

3.7.4 Error Metric

As the name suggests ICP is attempting to align the points that are closest, in an
iterative fashion. The question therefore becomes, what does closest mean? There are
several popular variants of ICP, including Point-to-Point, Point-to-Plane and Point-to-
Surface. The names of the variants indicate the distance metric used in the optimisation,
an example of each is shown in Figure 3.22. This demonstrates the relationship between
the error metric and points of the surface. These distance metrics are used to define
the closest points, and as such correspondences.

Figure 3.22: Point-to-Point computes correspondences based on the point to point Eu-
clidean distance, with closest points connected. Point-to-Plane error is measured w.r.t. a
locally fit plane (grey dashed lines) for each target point (red), the black lines show the dis-
tance to the closest plane for each point. Point-to-Surface is a generalisation of Point-to-Plane
where the surface representation is extended beyond planes. All diagrams are shown in 2D,
making the planes technically lines, but this diagram is intended to be purely illustrative.
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The error metrics can be computed using the following

dpt−pt(pi, qi) = ||qi − pi||2 (3.116)
dpt−pl(pi, qi) = ||n̂(pi) · (qi − pi)||2 (3.117)
dpt−S(pi, qi) = ||Sp(qi) · (qi − Sp(pi))||2 (3.118)

where dX(p, q) is the distance between points p̄, q̄ defined by the metric X, n̂(pi) is
the unit normal at the point pi of the surface P , Sp(p) is the point on the surface
approximation in the neighbourhood of pi closest to qi, and Sp(qi) is the closest point
of the surface Sp that the point qi. The point-to-plane metric is the most popular
approach in real-time ICP based tracking approaches [14, 14, 17], and is the variant
used to perform camera calibration in Chapter 4 of this thesis. The point-to-surface
metric is dependent on surface representation and as such is a more nebulous definition.
In Chapter 6, we present a variant of this based on extension of the work in Chapter
5. This work performs a point-to-surface alignment while jointly optimising to improve
the quality of the surface representation.

3.7.5 Error Minimisation

In mathematical terms ICP is trying to compute the pose alignment that minimises the
sum of the distances between all points given by the following error function

ε(γ̄) =

N∑
i

d(pi,E(γ̄)qi), (3.119)

where pi, qi ∈ R3 are points in surface P and Q respectively, E(γ̄) is the transformation
required to move the points surface Q, towards P, γ̄ = {θx, θy, θz, tx, ty, tz} is the set of
motion parameters that describe the 6 degrees of freedom (6DOF) required to align the
surfaces, and d is a chosen distance metric. As described in Section 3.5 we can optimise
for the relative pose alignment using a number of standard techniques. This requires
the differentiation of the loss function with respect to the motion parameters, and this
is described in Section 3.6.

3.7.6 Wide Baseline Problem

The ICP algorithm is very powerful and can provide very accurate surface-to-surface
alignments in a short time. However, some aspects of the alignment problem can cause
it to fail. The so-called wide baseline problem is a key issue for ICP, which is caused
when attempting to align two scans that have a poor initial alignment, possible due to
a reduced surface overlap or challenging initial conditions. An example of this is shown
in Figure 3.23, where the scene contains sufficiently unique geometry to align well, but
the algorithm can not converge by merely searching for the closest point and iterating.
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The final alignment produced, which is shown, is a local minimum which is also caused
by the robust weighting function that penalises distant points and causes the alignment
to become stuck in this way.

P1P2

Figure 3.23: Top: Shows the coloured point cloud for two different views of the same scene
and the rough transformation between the frames (T←−

12
), lines in green show correspondences

between the two clouds for clarity. Bottom: Shows an attempt to align the point-clouds
using the initial assumption of an identity transformation, and shows that the algorithm simply
cannot cope with this relatively simple transformation and fails to converge.

Insufficient overlap and a bad initial alignment can easily lead to a sub-optimal solution.
This problem is difficult to solve using a purely iterative approach as this simply tries to
move the solution in a way that reduces the current error, and geometric alignment is
prone to multiple local minima. One approach to solve this, is to use associated colour
information to initially provide an estimated alignment and then iterate from there,
using a feature based approach. This approach is very effective in highly textured
images, and point clouds that actually have associated colour, but can be made difficult
when there are repeating or low textured regions such as walls or furniture. This
approach is also contingent on lighting, which the geometric alignment is not. Another
common approach is to find unique geometric features, such as large planar regions,
or feature vectors that examine the changes in a neighbourhood of a point. Extracting
geometric feature vectors can be a quite effective way to identify correspondences across
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point-clouds. Many of these features use a combination of normal and local surface
curvature information, which means accurate estimates of surface normals and surface
curvature (Section 3.8) can be used to improve geometric based alignment approaches
[203]. One of the contributions of this thesis is to improve the accuracy of the surface
curvature and surface normal estimates as well as the relative alignment of surfaces
using quadrics (see Chapters 5 and 6).

3.8 Surface Curvature

Surface curvature is a measure of the rate of change of a surface if you were to walk along
it. Principal surface curvature measures the rate of change in the principal directions
(κ̄1 and κ̄2), which are aligned to the direction maximum and minimum curvature
respectively. Since curvature can be negative or positive the direction of minimum
curvature could have a higher magnitude than the maximum. This is demonstrated in
Figure 3.24, for the case of the inverted cylinder, where the maximum curvature is zero
but the minimum is negative.

cylinder inverted cylinder sphere plane

Figure 3.24: Examples of principal curvature directions for basic shapes. Cylinder: has
the principal curvature direction κ̄1 aligned with the direction of greatest positive curvature.
Inverted Cylinder: An inverse cylinder, has the principal curvature direction κ̄1 aligned with
the zero-curvature direction, as this is the most positive. Sphere/Plane: the alignment of the
principal curvature directions is arbitrary, as all directions have the same curvature for a sphere
or plane.

3.8.1 Relation to the Second Fundamental Form (II)

The curvature of a two dimensional surface embedded in three dimensions is defined
by the rate at which a unit surface normal changes with respect to motion across the
surface. For a twice differentiable surface M , let û and v̂ be orthogonal unit vectors in
the tangent plane to the surface at a point p ∈ R3. The surface normal is then given
by n̂ = û ∧ v̂. û, v̂ and n̂ form an orthonormal basis about p. The surface in the
neighbourhood of p can then be defined as

p = xû+ yv̂ + zn̂,
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where z = z(x, y), shown in Figure 3.25. The surface normal can then also be defined
in the neighbourhood of p as n̂(x, y).

Figure 3.25: The surface M in terms of its basis vectors û and v̂.

The curvature of the surface can now be defined in terms of the second fundamental
form II. This is a symmetric two-form matrix which can be represented by a 2 × 2
matrix in the surface coordinate frame defined by our original basis vectors û and v̂ as

II =
[
du dv

] [ A B
B C

] [
du
dv

]
, (3.120)

where A, B and C can be defined in terms of derivatives of the surface normal given by

A = −∂n̂(x, y)

∂x
· û ,

B = −∂n̂(x, y)

∂x
· v̂ = −∂n̂(x, y)

∂y
· û, and

C = −∂n̂(x, y)

∂y
· v̂.

This is the usual method used to compute the curvature. However A, B and C can be
equivalently defined as

A =
∂2z(x, y)

∂x2
, B =

∂2z(x, y)

∂x∂y
, and , C =

∂2z(x, y)

∂y2
(3.121)

Using this definition, it is easy to construct a parabolic surface that has this curvature
at the origin as

z =
A

2
x2 +Bxy +

C

2
y2. (3.122)

Computing the Eigenvalues of the second fundamental form II from Equation 3.120
gives the principal curvature values κ1 and κ2. Diagonalising this matrix with a rotation
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is equivalent to aligning the surface to the principal directions (κ̄1 and κ̄2), which is
given by

II =
[
du′ dv′

] [ κ1 0
0 κ2

] [
du′

dv′

]
. (3.123)

3.9 General Purpose Graphics Processing Unit (GPGPU) Programming

This is intended as a brief overview of GPU programming, as the real-time aspect was
an important contribution to the work in Chapter 5, and was made possible by this
programming paradigm. Additionally this programming paradigm was also applied to
the work of Chapter 6 in order to greatly accelerate the performance. Chapters 7, 8
and 9 all heavily rely on GPGPU programming in their underlying machine learning
libraries, as GPGPU programming has largely also been the enabler for the current
explosion in machine learning. In particular Chapter 9 uses an accelerated inference
approach developed by NVIDIA, in order to run in real-time.

The wide spread adoption of GPGPU programming has been led by two main fac-
tors, the development of software frameworks such as Khronos’ OpenCL and NVIDIA’s
CUDA, to allow easy interaction with GPU hardware, and the massive increase in par-
allel performance in recent GPUs from both NVIDIA and AMD. This has led to more
than just massive gains in speed allowing the use of dense approaches in real-time, it has
largely enabled the massive popularity of machine learning as parallel GPU program-
ming is the cornerstone of convolutional neural networks (see Section 1.4). We include
this chapter as a background for understanding software design considerations based on
the hardware characteristics of GPUs and as a brief explanation of their operation. The
majority of this Section will apply to all GPGPU software frameworks, but the majority
of the work from this thesis was implemented using CUDA, and so the discussion of this
thesis will be limited to NVIDIA’s CUDA. As this thesisis not purely focused on CUDA
programming adn optimisation, this is beyond the scope, for a more detailed discussion
of the CUDA fundamentals and GPGPU programming in general please refer to [204].

3.9.1 Serial vs Parallel Programming

The main difference between developing for the CPU and GPU is the programming
paradigm, on a CPU there is extremely limited parallel resources and so the fastest
approach is in general to process things serially, while on a GPU the amount of paral-
lelism is high but the individual workers are generally slower making parallel processing
essential on a GPU to maintain a high throughput. An example of the difference in
paradigms is illustrated in Figure 3.26, where this provides the simple case of a sum
reduce.
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Figure 3.26: Left: The serial computation has to make a running total of the numbers to
add them up Right: The parallel computation uses additional hardware in order to compute
the sum in parallel, which allows it to do the same amount of work in less time.

1 __global__ void add ( f l o a t ∗∗ array_in , f l o a t ∗∗ array_out , const i n t
ha l f_length )

2 {
3 // compute the a unique index in to the array
4 // threadIdx , b lockIdx and blockDim are populated by the SM during the

c a l l
5 i n t idx = threadIdx . x + blockIdx . x∗blockDim . x ;
6

7 // b a i l e a r l y i f index exceeds l ength
8 i f ( idx >= hal f_length ) re turn ;
9

10 // perform one−l e v e l o f add i t i on
11 array_out [ idx ] = array_in [ idx ] + array_in [ idx + hal f_length ] ;
12 }
13

14 f l o a t addGPU( f l o a t ∗∗ array1 , f l o a t ∗∗ array2 , i n t f u l l_ l eng th )
15 {
16 dim3 b lo ckS i z e (N, 1 , 1 ) ; // s p e c i f y b lock s i z e − g en e r a l l y based on the

number o f CUDA cor e s
17 i n t M = ( fu l l_ l eng th /(2∗N) ) + 1 ; // need enough b locks to cover h a l f o f

the o r i g i n a l l ength
18 dim3 g r i dS i z e (M, 1 , 1 ) ;
19

20 i n t i t = 0 ;
21 f o r ( i n t l = fu l l_ l eng th /2 ; l > 1 ; l /= 2) {
22 i f ( ( i t %2) == 0)
23 add<<<gr idS i z e , b lockS ize >>>(array1 , array2 , l ) ;
24 e l s e
25 add<<<gr idS i z e , b lockS ize >>>(array2 , array1 , l ) ;
26 ++i t ;
27 }
28 i f ( ( i t % 2) == 0) return array1 [ 0 ] ;
29 e l s e re turn array2 [ 0 ] ;
30 }

Listing 3.1: Naive code example of computing GPU sum
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It’s easy to see the amount of actual work done is the same for both approaches, but
the number of clock-cycles required is much lower for the GPU. In an ideal case the
relationship is roughly log(N) vs N for the GPU and CPU respectively, in terms of time
complexity, which provides a significant speed-up. In practice this will not hold, as the
amount of hardware is limited in size on the GPU, but in general this sort of ratio is
applicable when thinking about the relative speed-ups. In order to execute instructions
in parallel, they are broken down into individual functions called kernels. In general
they compute a small amount of work, for example the kernel to add a set of numbers
in shown the following code snip-it Listing 3.1.

This demonstrates a naive summing based on the parallel computation, which is shown
in Figure 3.26 - Right. In practice there are a number of optimisations that would be
used, in particular cross-thread communication and shared memory [204].
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Figure 3.27: Left: The execution breakdown as it is issued to the GPU, threads are divided
into warps, which are grouped into thread blocks, and these are arranged in an execution
grid, which in this case is 2-dimensional. Both thread-blocks and grids can be specified up
to 3 dimensions, and this arrangement is specified during the kernel call by the issuer. The
arrangement of thread-blocks and the grid, can have a significant effect on execution time,
given the way in this the threads may access memory. Centre: Shows the relative memory
accessibility of the execution blocks to memory levels, a warp can only interact with register
memory within the warp, a thread-block can interact through shared memory across warps,
and any thread can interact across global memory which is globally accessible. There is also a
limited amount of constant memory, which is globally accessible, but only for read-access.

3.9.2 Streaming Multi-processors and Thread Blocks

The GPU contains units known as Streaming Multi-Processors (SMs) which perform the
work. The SMs are enlisted by the GPU to execute the work, and attempt to organise
the work in the most efficient way possible. The work is organised into thread-blocks,
which are organised into sets of warps, which in general contain 32 threads each. Warps
can be efficiently executed in parallel as long as they maintain the same execution path
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across all threads in the warp. That is they execute the same instructions in the same
order, otherwise in order to maintain synchronisation across a warp the SM will hold
all other threads until they reach a common point of execution in a particularly kernel
before resuming execution in parallel. We show the general layout of the execution as
it is passed to the GPU in Figure 3.27, this would be for the following execution of a
generic kernel.

3.9.3 Memory and Coherency

The memory layout on the GPU is critical [205] when considering the performance of
an approach programmed using GPGPU programming. A rough outline of the trade-off
between speed of access to memory type and accessibility is shown in Figure 3.27-Right.
There is roughly an order of magnitude (×10) speed-up moving between the memory
types, with register memory roughly 100 times faster than global memory. Constant
memory is a bit more complicated, it can be nearly as fast as register memory when
reads are broadcast to multiple threads simultaneously, that is when entire thread blocks
read the same constant memory value at the same time. The system can broadcast the
value to all threads simultaneously. Outside of this approach constant memory can be
as slow as global if random accesses are made.

R1 G1 B1 R2 G2 B2 R3 G3 B3 RN GN BN
...

R1 G1 B1R2 G2 B2R3 G3 B3RN GN BN
... ... ...

Interleaved RGB image data

Coalesced RGB image data

Figure 3.28: Top: The typical data arrangement of a colour image, with red, green and blue
values interleaved. Bottom: The arrangement preferred by a GPU, where the memory access
can be coalesced, by accessing all the read pixels, then all the green and finally all the blue.

An additional important consideration in memory access is random access in shared or
global memory, which is in general very slow. The preferred method of accessing any
memory is through memory coalesced calls. This is where threads in the same block will
access adjacently located (coalesced) memory locations. An example is shown in Figure
3.28, where we read from the data in a colour image. Although in practice the data for
red, green and blue is interleaved, as we will in general access these values sequentially
on a CPU, on a GPU we will in general access the red on all threads followed by
the blue followed by the green. This leads to a situation where the system will have
trouble caching the data effectively, and can massively slow down read performance
as it will increase the cache miss-rate, which is a measure of the rate at which un-
cached (random) data is accessed. This is all because we must keep in mind that the
warps execute instructions in parallel, so to read a single colour value (i.e. RGB) the
warp must sequentially read in the constituent colours, we want the instructions in a
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warp to access adjacent memory locations to improve performance, so we put all the
reads together, then all the greens and then all the blues. Coalesced memory access
is important on the CPU as well, and one can get large speed-ups by changing access
patterns or altering the structure of the input data, this is particularly true for matrix
multiplication operations.

3.9.4 Application to Robotics

GPGPU programming has been applied with great success to many dense approaches
in robotics and vision [14, 17, 92, 24]. In particular we use this technology to enable the
computation of dense surface curvature estimation on noisy point cloud data, detailed in
Chapter 5. In addition this paradigm shift and subsequent massive increase in available
compute throughput has directly led to the explosion of machine learning in the robotics
community through libraries like Caffe [28] and Tensorflow [206], which makes it the
enabler of the latter three chapters of this thesis.

3.10 Convolutional Neural Networks (CNNs)

In this section we provide a description of some of commonly used operations performed
inside a CNN, as well as some of the principles of operation.

ConvolutionPooling De-convolutionInput ClassifierFully-Connected

low-level
features

mid-level
features

high-level
features

Labels

Wall
Floor
Box
Table...

Input

Figure 3.29: A relatively basic CNN (by current standards) with many of the components
that appear in some of the systems used inside this thesis. Additionally the concept of features
becoming more complex as the network becomes deeper is shown, with simple edge detectors
building to detect complex shapes. The features shown are not extracted from the input image,
these are a representation of strong responses that would be generated by particular filters at
that stage of the network. This is purely intended to be illustrative.
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3.10.1 Activations and Weights

Convolutional Neural Networks (CNNs) perform successive layers of convolutions in
order to perform machine learning tasks. The convolutions are performed using filters
that are formed from the weights of the network, which result in successive levels of ac-
tivations. The activations, gradients and weights are stored in constructs called tensors
inside the network. In a trained CNN the successive convolutional layers use the acti-
vations as intermediate storage for responses to input features of increasing complexity.
An example of a basic CNN is shown in Figure 3.29, which is a classification network
that uses a number of common CNN operations. This is intended to predominantly
demonstrate the increasing complexity of features that generate strong activations as
one moves deeper into the network. Note, the features are not the activations but are
expressed through the weights, which produce strong activations to successively more
complex features moving deeper into the network. The weights of a network are the
trainable parameters, while the activations store the intermediate results moving from
layer to layer. The model capacity of a network is essentially given by the number of
weights. The amount of computation performed by the network is in general correlated
to the overall model capacity.

3.10.2 Convolutional, Pooling and Fully-Connected Layers

In Figure 3.30, several example layers are shown, including convolution, pooling (max
in this case) and fully-connected layers. These are all shown for a 1-dimensional input
signal, but extend to any dimension. A very good explanation of convolution and
transposed convolution can be found in [207]. A very good explanation of pooling
and un-pooling can be found in [208]. Fully-connected layers are essentially a large
convolutional layer, but have a unique enough purpose to justify a separate distinction.

3.10.2.1 Convolutions and De-convolutions (Transposed)

Convolutional layers simply perform convolutions on input tensor, the number of filters
will determine the number of output channels and the size of the filters will determine
the final dimensions of the output tensor. For example the convolution in Figure 3.30
has a single 1× 3 filter, which means the output will lose 2 elements due to the length
of the filter and will also be 1-dimensional. As the input signal is 1D. The filters can
also only be 1D, by adding more 1D filters the network can increase the channel count.
This is how a network is able to build successively more complex features and extract
a number of features from a given input layer. Adding to the channel count allows
the network to encode more complex features but increases the complexity of training.
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Figure 3.30: Top-Left: Example of convolution on a 1D input. Top-Middle: Example
pooling operation with a stride of 2, meaning the output size will be halved as indicated. Top-
Right: Fully-connected layer with a single channel output, this connects to all previous layers
with an individual weight per connection. To increase the number of values in the output, one
can simple increase the number of fully-connected filters, the current diagram has a single filter,
with M filters the output with have M channels. Bottom-Left: An example of a transposed
convolution (also commonly referred to as deconvolution) for a 1D input. Bottom-Right: An
example of average un-pooling for a 1D input, which essentially interleaves the input data with
zeros to create the output. Both un-pooling and de-convolution are examples of methods to
upsample/increase the resolution.

The weights inside each of the convolutional filters are the trainable parameters of the
network, and they are optimised to move the network towards the objective function.

Transposed convolutional (also commonly known as de-convolutional) layers are essen-
tially performing the opposite of a convolutional layer. This is the equivalent of how a
convolutional layer is back-propagated. As shown in Figure 3.30 for a 1D input exam-
ple, the transposed convolution works by multiplying the filter values by the input value
and adding the result to the output. This is a 1× 3 filter with a stride of 2, where the
stride applies to the movement of the filter across the output, and moves a constant unit
stride across the input. Overlapping values in the output are simply summed. As the
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filter is also made up of learnable weights which are trained during back-propagation,
this approach is a way of learning an up-sampling as it increases the output resolution.
Again this channel count will vary based on the number of the filters used.

3.10.2.2 Pooling and Un-pooling

Pooling layers/operations in general perform a comparison or simple combination op-
eration. In the case of Figure 3.30, the pooling is a max type, which means only the
maximum input tensor is passed through the pooling layer. Pooling can also be over the
minimum, average, modal, or any operation that reduces a set of values to a single result
without the need for any trainable parameters. The filter is of size 2, with a stride of 2,
where the stride dictates the step length the filter takes across the input tensor. With
a stride of 1 it will move to the next value, comparing the same value twice, while with
a stride of 2 the filter will move to the next pair of values. This means the maximum
values only get propagated as most once, it also reduces the tensor size by half. This is
a standard approach for distilling information and attempting to reduce the subsequent
computational load on the latter layers of the network, as from this point on it will have
half the data to deal with. That is pooling-layers pool the data from the input tensor.

Un-pooling is again essentially the operation of pooling, as shown in Figure 3.30. This
is another method of upsampling and like pooling is not generally treated as a learnable
operation making it very quick. The very basic approach shown, is average un-pooling,
this simply assumes the input value is the average, it then passes this value through and
pads with a zero, doubling the resolution. If this were in 2D, the padding occurs across
each dimension, and so one value would pass through and 3 zeros. Another approach is
to pass the value twice, or pass the value and instead of a zero interpolate between the
adjacent value (this is bilinear up-sampling). All approaches result in an up-sampled
output of double resolution. In the case of max-pooling un-pooling can be important
to an up-sample step that may be present in a decoder network, as the system needs to
keep track of which path it took in terms of the max, so it knows where to position of
the un-pooled value.

3.10.2.3 Fully-connected

Fully-connected layers are connected to all values of the input tensor with an individual
weight per connection. This means increases the receptive field of this layer to the en-
tire input size, meaning this layer has the potential to encapsulate information from the
entire input, which can be incredibly for classification tasks as it provides the network
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with the most possible context. However the operation is only linear, and as such to
be useful to input tensor must contain a large amount of high-level feature information.
In Figure 3.30 we show a fully-connected layer with a single output channel, in prac-
tice the fully-connected layer in a classifier will contain perhaps a number of channels
equivalent to the number of classes it is trying to predict against. This can become
a very expensive operation, as the input layers can be quite large the and number of
classes being predicted quite high, and there needs to be a weight between every input
and every output. This often leads to fully-connected layers accounting for significant
portions of the networks overall model capacity, which isn’t particularly desirable as it is
still just a single linear operation. This makes pooling type operations essential in order
to constrain the overall computation of the network. All weights in the fully-connected
filters are also trainable.

3.10.3 Rectifiers and Drop-out

Rectifiers and drop-out have similar purposes, and have the same biologically inspired
basis, that some signals inside a neural network should fail to propagate. A common
unit for rectification is the Rectified-Linear-Unit, these block all input signals less than
zero and can be expressed as

f(x) = max(0, x) (3.124)

where x is the input activation, and would be performed element wise on the tensor
input to the ReLU layer. This is very efficient to compute (a single comparison) and
has a number of other desirable traits and will reduce the number of propagating sig-
nals randomly in a randomly initialised network. An another popular alternative is
leaky ReLUs, which instead of blocking all signals less than zero, simply reduce their
influence massively, reducing them by a factor of 100 typically. Another rectifier is the
parametric ReLU, which makes this reduction using a trainable parameter, adding to
the computational expense. This allows negative values to always generate a training
signal, but maintains most of the benefits. A key motivation in using ReLU functions is
to mitigate the vanishing and exploding gradient problem [209] (see Section 3.10.4.2).
The previous alternative for activation was to use a sigmoid or hyperbolic-tan function,
which would result in gradients exponentially decreasing during back-propagation, by
using a ReLU it prevents this as the gradients remain linearly proportional.

Drop-out is another method for cutting some of the propagated activations, but instead
of being based on the input activation level, its a random decision to propagate a
certain percentage of the time. The main motivation behind drop-out is to reduce the
systems capacity to overfit to the training data, which is highly undesirable, see Section
3.10.4.3. It prevents this from happening by essentially forcing the network to make
predictions while being denied a significant proportion of the data, forcing the network
to generalise. This is a method of network regularisation. Drop-out is particularly
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helpful for networks that contain fully-connected layers [35], but in fully-convolutional
networks it has largely been supplanted by the use of batch-normalisation (see Section
3.10.5).

3.10.4 Training Through Back-propagation

Forward-Propagation

w1

w2

O1

I2

I1 +

+
=I1  w1+I2  w2

Backward-Propagation

(cost function)

Figure 3.31: Left: forward propagation on a section of a neural network, input activation
(Ii) are propagated through the network by multiplication with trainable weights (wi) Right:
back-propagation propagates derivatives back through the network to the respective weights
through the application of the chain-rule (see Section 3.4.1).

The method of training a CNN, is to treat the machine learning problem as an opti-
misation problem. The simplest method for training is to use a basic gradient descent
(or stochastic gradient descent) approach, where it takes small steps in a direction that
minimises the cost function. The cost function(s) of a network is essentially what the
network is trying to minimise, in the case of a depth estimation the loss could be the
difference between the network prediction and the ground truth depth. To optimise
through gradient descent (as described in Section 3.5.4) the network simply needs to
optimise the trainable parameters with respect to the loss function, by moving the
trainable parameters in the direction that minimises loss. This requires we compute
the gradient of each parameter with respect to the loss function, for a neural network
with millions of parameters this seems intractable, but as shown in Figure 3.31 the
computation of the gradients can be calculated through back-propagation of the chain
rule as described in Section 3.4.1.

3.10.4.1 Momentum, Learning Rate and Weight-decay

The choice of momentum [210] and learning-rate in a network is incredibly significant
to the overall performance. We can, by way of example understand their significance
to training, firstly consider a simple network that is trained using gradient descent, in
general during gradient descent the step we take is simply towards the direction that
the gradients predict will minimise the cost the most. The learning rate is a multiplier
that we would put on this step, moving approximately that proportion of what the

107



3 FUNDAMENTALS

Ideal Space Typical Space

Figure 3.32: Left: theoretical ideal optimisation space, where its entirely convex and moving
in the direction of the loss gradient takes the solution to a global minimum Right: a more
realistic interpretation of the optimisation space where there are many local minimas and the
direction is highly dependent on the current state of the system shown with red circles, the
arrow shows the direction the state will move in order to reduce the cost.

gradient predicts will take the cost to zero. The reason we only want to move a small
step is, the network back-propagates gradients both traversing the entire set of input
data, making a technically stochastic approach. This makes it much more desirable to
take very tiny steps, particularly given the nature of the loss function. A higher learning
rate will move faster along the objective space which would result in faster convergence
in the case of a highly convex objective space. However, this is very unlikely due to the
complexity of the system resulting a large number of local minima, with a learning rate
that is too high it can even prevent convergence altogether.

In practice learning rates are reduced gradually during training, and the hope is that the
network get stuck in a highly optimal local minima, which is visualised in Figure 3.32.
Momentum is an acknowledgement that the optimisation space of a neural network is
highly non-convex and unstable, and that in general it may be better to integrate over
the previous steps taken by the network and move in a direction that biases towards the
direction the network has been moving previously. This has the benefit of potentially
increasing the convergent rate, but also reduces the overall chance that the network
will get stuck in a local minima. Both the momentum and learning-rate are in general
externally set values between 0 and 1. Another common form of regularisation is weight
decay [211], which is commonly implemented by attempting to minimise the L2 norm
of the summed total of the weights in the network. The goal of this is to reduce large
uneven weight distributions through-out a network, thus making the network more
stable. This is typically given a very low priority by the network compared to the main
loss function, by multiplying the weight loss term by a very small fraction of 1.0.
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3.10.4.2 Vanishing and Exploding Gradient Problems

These are two problems that were present in the initial stages of neural networks. The
vanishing gradient problem was related to the choice of sigmoid and hyperbolic-tan
rectifier layers which would result in the gradients exponentially decreasing as they
were back-propagated through the network, resulting in practical maximum depths,
and slow training of the initial layers of the network. The exploding gradient problem
is the exact opposite issue where possible initially large gradients are propagated back
through the network causing unstable behaviour, this is generally caused by unfortunate
random initialisation combined with an excessively high learning-rate. The obvious fix
is to use lower learning rates, and also the choice of ReLU layers over sigmoid and
hyperbolic-tan functions improves stability in this regard.

Another break-through in machine learning was to train the network to learn residual
functions [29], which makes the network more mathematically stable and largely pre-
vents gradient problems from arising. Residual layer networks attempt to force layers
to try and learn the most information that it is currently unable to represent, they
do this be creating groups of layers often called blocks, that will perform a series of
convolution and ReLU operations followed by an addition of the original input tensor
onto the output tensor. In this way the block attempts to force the network to learn
important new features it can introduce to the original tensor, as the original signal is
still present in the output.

3.10.4.3 Over-fitting

Model over-fitting is a highly undesirable state for a neural network, it means that the
network has learned to fit very specific traits of the training data rather than actually
learning general trends from the training data. This will cause the network to perform
very well during training, but far less optimally than possible during deployment on
unseen data [212, 213]. Over-fitting is common in situations where ground truth data
is scarce and so the network has insufficient training data, especially when the model
capacity is high. A typical method for determining a network has over-fit is to use
separate training and validation data, training data is used for back-propagation while
the validation purely for forward-propagation (also known as inference), the training and
validation cost can be evaluated separately and if the validation loss begins to increase
while the training loss continues to reduce this is a good indication of over-fitting.

As mentioned previously a good method of reducing over-fitting is to use drop-out [33],
which will randomly terminate activation during any given forward pass, forcing the
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Figure 3.33: Left: Desired performance of a CNN on training and validation loss curves,
as the training loss continues to reduce so does the validation loss. Right: Shows signs of a
CNN over-fitting to the training data, the validation loss begins to diverge and then increase,
indicating the network has overfit to the training data.

network to learn more general features to continue to minimise the cost function as
training data will always be missing. Drop-out is an aggressive form of adding noise to
training data, which is more generally what is done to reduce over-fitting, drop-out adds
essentially 100% noise to some percentage of the activations. Another common approach
in fully-convolutional networks (networks that contain no fully-connected layers) is the
use of batch normalisation described in Section 3.10.5.

3.10.5 Batches and Normalisation

Batches are used in CNNs to reduce training time and improve stability, by reducing the
number of update steps perform per input. To generate a batch inputs are grouped into
input tensors, for example several images are stacked into a batch. The batch is then
passed through the network simultaneously in a single forward pass which generates
gradients for back-propagation. This means the weights will be fixed for the entire
forward pass for a batch, the gradients will then move the state in an average direction
of the batch during the update.

Batch normalisation is the process of normalising across a so-called mini-batch in order
to improve network training speed and gradient stability. It was first proposed by Ioffe
and Szegedy in [214], the first step is to normalise the values across a mini-batch to have
a mean of 0 and a variance of 1, which has shown to increase the rate of convergence and
stability in neural networks [215]. This can be expressed as performing the following
transformation

x̂ =
x̄− µ̄B
σ̄2
B

, (3.125)

where x̄ is an input tensor, x̂ is a normalised output tensor, and µ̄B and σ̄2
B are the mean

and variance of the input batch. This has the effect of potentially changing what the
activations represent and may hurt performance when the tensor is intended to be passed
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to a sigmoid activation function, to address this they add two trainable parameters that
allow the layer to retain the ability to perform an identity transformation. This takes
the following form

ȳ = x̂T γ̄ + β̄, (3.126)

where γ̄ and β̄ represent a trainable scale and offset tensor respectively. This optional
and only required in the very specific circumstances that normalising the tensor would
effectively make the following layer redundant or ineffectual. During training the batch
normalisation layer will also keep track of a global mean and variance, that it can
use during inference only situations. In this form each of the elements of the layer is
differentiable, and so back-propagation is simple and the trainable parameters can be
optimised. Batch normalisation has become standard practice and stabilises network
training and further allows the depth of networks to increase.
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Low-Cost Depth Camera Calibration

In this chapter we present a method for calibration of low-cost depth sensors such as
the Microsoft Kinect. We show our method is effective at correcting the structured
sensor error using a simple compact parametric solution, that uses only a small fraction
of the number of parameters used in many existing approaches. We have released this
calibration method as an open-source implementation, with limited external library
dependencies, in an attempt to make it more widely used. The material and results
presented in this chapter are largely drawn from the paper [216].

4.1 Motivation

The introduction of low-cost structured-light depth sensors (such as the Microsoft
Kinect) and time-of-flight (ToF) such as the Microsoft Kinect v2 has made the col-
lection of accurate real-time depth scans trivial. As described in Section 3.3 This has
led to the wide-spread adoption of both sensor types in a range of robotics and com-
puter vision applications, including These sensors provide a registered stream of colour
and depth images at 30Hz, allowing fast and accurate modelling of complex indoor
scenes [13, 14]. While some previous methods calibrate for time-of-flight (ToF) sensors
[217, 218], which have interesting but different noise characteristics, the focus of this
paper is on the variety of depth sensors known as light coding depth sensors. This type
of depth sensor projects a known pseudo random infra-red grid pattern onto the envi-
ronment, then detects it using an infra-red camera. Using the known displacement of
the camera and projector, and finding corresponding patches in the projected pattern
allows the device to estimate a dense depth image. A more detailed explanation of this
process can be found in [219]. Although these sensors have proven useful for modelling
and tracking they have been shown to contain significant calibration errors [219, 76]
(Figure 4.9).

Previous approaches have been used to correct the error present in these types of sen-
sors [79, 82, 80, 84] with varying degrees of success. The approaches seem to fall
into two main categories, planar and SLAM based calibration. The former approach
uses a known planar surface and attempts to correct the reported depth to align more
accurately to a fitted plane. While the SLAM/model based approaches attempt to ac-
curately model a complex scene and correct the depth such that the model produced
will minimise some global error function across all depth images.
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4.2 Contributions

In this paper we present a compact polynomial (tens of parameters) method of depth
sensor calibration using an unsupervised SLAM based approach. We provide an open-
source implementation that uses few external libraries and provides a simple and reliable
method of depth sensor calibration using a relatively small number of keyframes (10-15).
The advantages of the presented calibration method are:

• It is highly compact, requiring a greatly reduced number of parameters than
existing methods (see Section 4.4).
• It requires minimal supervision from the user (see Section 4.7).
• It provides noticeably improved depth estimates for a range of depth values (see

Section 4.8).
• It outperforms previous approaches qualitatively and quantitatively (see Section

4.8.3)

4.3 Related Work

The most popular methods of depth sensor calibration seem to break into two main
categories planar based approaches including [79, 80, 81, 82] and SLAM/mapping based
approaches including [83, 84]. The planar methods attempt to calibrate the sensor in a
more traditional way, by placing known scene elements in front of the scene at potentially
known locations, and attempting to correct the signal to match the known features of
the scene elements. SLAM or mapping based approaches try to remove the requirement
for known scene elements as part of the calibration method. These approaches attempt
to minimise modelling error across a scene by optimising a depth correction and re-
solving for the relative alignments. This method of calibration is highly desirable as it
requires no special objects and can even be performed on sensor data from datasets,
where the initial sensor is not available but the dataset remains uncalibrated [40].

The method presented in this chapter falls into the latter category, but we attempt to
use much fewer parameters to reduce the models chances of over-fitting. Additionally we
perform our optimisation jointly over the pose alignment and correction function, while
previous approaches treat this process as a multi-stage approach, fixing poses while
optimising with correction functions, or vice versa. Additionally our approach includes
the radial distortion parameters as part of the correction, allowing greater flexibility in
correction, not present in previous modelling based approaches.
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4.4 Correction Function

In order to calibrate low-cost depth sensors we propose a polynomial correction function,
which can be used to jointly approximate the geometric and lens distortion present in
projective type low-cost depth sensors. We express the calibration as both a radial
distortion factor r(u′, v′), and a multiplicative depth correction factor c = C(ru′, rv′, d).
The corrected points p are computed from the normalised camera coordinates u, v and
the sensed depth d as

pi(k) = proj(u′, v′, c) =


x
y
z
1

 =


cdru′

cdrv′

cd
1

 , (4.1)

where proj(u′, v′, c) is the projection of the radially corrected parameters for used in
the geometric correction function and d = di(u

′, v′) is the depth at u′, v′ in depth scan
i. The normalised camera coordinates u′, v′ are computed using:

u′ =
X − u0

fx
, v′ =

Y − v0

fy
, (4.2)

where u0 and v0 are the coordinates of the principal point, fx and fy are the focal
lengths in the horizontal and vertical dimensions respectively, and X and Y are pixel
coordinates. The radial distortion correction is given by

r(u′, v′) = 1 + β0(u′2 + v′2) + β1(u′2 + v′2)2, (4.3)

which as shown is only defined for the first two radial distortion parameters. This allow
the computation of the corrected normalised camera coordinates (u, v) via the following
relationship

u = ru′ and v = rv′. (4.4)

These corrected normalised camera coordinates are then passed to the depth correction
function C(u, v, d) = c, which is calculated as

co = Co(u, v, d) =1 + α0u+ α1v + α2uv + · · ·+
d(αnu+ αn+1v + αn+2uv + . . . ),

(4.5)

which enumerates the initial terms of the radial (α0, α1, ...α) and depth (αn, αn+1, ...)
geometric correction coefficients, and u, v are the radially corrected normalised camera
coordinates. We continue this pattern of enumerating all possible polynomial combina-
tions (u, v, uv, u2, v2, ..., du, dv, duv, ...) with a separate coefficient αi for each up to the
desired order given by o. In the case of the fifth-order polynomial the full calibration
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function is

c5 =C5(u, v, d) = 1

α0u+ α1v+

α2u
2 + α3uv + α4v

2+

α5u
3 + α6u

2v + α7uv
2 + α8v

3+

α9u
4 + α10u

3v + α11u
2v2 + α12uv

3 + α13v
4+

α14u
5 + α15u

4v + α16u
3v2 + α17u

2v3 + α18uv
4 + α19v

5+

d(α20u+ α21v+

α22u
2 + α23uv + α24v

2+

α25u
3 + α26u

2v + α27uv
2 + α28v

3+

α29u
4 + α30u

3v + α31u
2v2 + α32uv

3 + α33v
4+

α34u
5 + α35u

4v + α36u
3v2 + α37u

2v3 + α38uv
4 + α39v

5),

(4.6)

which clearly demonstrates how the number of terms increases approximately quadrat-
ically with respect to the order of the polynomial model. Experimentally a 7th-order
correction function was found to produce the best results for calibration, which has 70
parameters in total.

4.5 Frame-to-frame Alignment

The basis of any modelling based alignment approach is frame-to-frame alignment, and
this is required to produce the initial alignment estimates used in the larger optimisation
including the calibration parameters. As described in Section 3.7, we can align pairs of
point-clouds using ICP. One of the most commonly used approaches is point-to-plane
ICP [12, 120, 13, 15, 17]. This iteratively optimises a relative pose alignment that
attempts to minimise the point-to-plane distance between correspondences given by the
following residual function

ri = n̂i · (pi −E(γ̄j)qi), (4.7)

where pi, qi ∈ R3 are corresponding points in point-clouds P1 and P2 respectively, and E
is the estimated transformation from P2 to P1 given by the motion parameters γjinse3.
This forms the following cost function

εftf =
N∑
i=0

r2
i , (4.8)

where N is the number of corresponding point in both P1 and P2. This function can be
optimised in terms of the transformation parameters using a Gauss-Newton approach
as described in Section 3.5. This requires the differentiation of the cost function with
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respect to the motion parameters. The transformation is expressed as a matrix expo-
nential as described in Section 3.6.2, which is simpler to differentiate. The derivative of
the cost function with respect to the motion parameters can be expressed as

∂ri

∂γkj
= −n̂i ·

(
∂E

∂γkj
qi

)
= −n̂i · (GkE0qi), (4.9)

where γkj is the kth motion parameter and E0 is the current transformation estimate.
Evaluating this gives the following Jacobian matrix in terms of the motion parameters

Ji =
[
−n̂ix −n̂iy −n̂iz n̂izyi − n̂iyzi n̂ixzi − n̂izxi n̂iyixi − n̂ixyi

]
=
[
−n̂i −n̂i ∧ q′i

] (4.10)

where E0qi = q′i =
(
xi yi zi 1

)T is the estimated transformed coordinates, n̂ix is
the x-component of the ith unit normal n̂i and ∧ is used to represent the cross-product
operator. We can concatenate these Jacobian matrices to form a single large matrix

Jftf =
[

JT1 JT2 . . . JTN
]T
. (4.11)

This can also be done for the residuals to form a single residual vector

r̄ftf =
[
r1 r2 . . . rN

]T
. (4.12)

Now the update to the pose ∆β̄ftf can be calculated using

∆β̄ftf = (JTftfWJftf )−1JftfWr̄ftf , (4.13)

where W is a diagonal weighting matrix that where the weights are given by the fol-
lowing function

wi =
c2

c+r2
i

, (4.14)

where c is a constant based chosen to match the typical computed error. This is used
to form the initial alignment estimates, which is are required in order to begin the
optimisation, as the cost function becomes highly non-convex moving away from the
true solution. The updated pose is given by a simple matrix exponential equation, as
shown in [220]

Et+1 = e
∑1
k=1 γkGkEt (4.15)

where Et is the pose at time t.

4.6 Joint Multi-frame Alignment and Calibration

We define a residual function r̂(i, j, k) for each frame pair (i, j) in the input data, for
every correspondence between frame pairs k as

r′ijk = Rin̂k · (Eipki −Ejpkj), (4.16)
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where i 6= j and Ei = E(γ̄i) is the transformation described by the motion parameters
γ̄i that would take the projection pi (as described in Equation 4.1) of the ith point-cloud
(Pi) to a common world coordinate frame. In this form, Equation 4.16 gives the residual
in terms of absolute poses instead of a single relative pose as in Equation 4.7. Points
pi ∈ Pi and pj ∈ Pj are calibrated corresponding points computed from the depth
images di and dj respectively, which have been corrected using the current estimated
correction function (Equation 4.1). Correspondences are estimated using a project-and-
scan strategy as described in Section 3.7.2. All correspondences are estimated on points
after the current calibration estimate is applied. This defines a cost function for point-
cloud pairs in terms of the absolute pose estimates (Γ̄), and the geometric(ᾱ) and radial
distortion(β̄) parameters

ε(Γ̄, ᾱ, β̄) =
N̂∑
i=1

N̂∑
j=1

N∑
k=1

(r̂(i, j, k))2 , (4.17)

where i 6= j, N̂ is the number of depth images used in the joint optimisation, N is the
number of correspondences in the point-cloud pair, and Γ̄ = {γ̄1, γ̄2, ..., γ̄N̂} are pose
parameters for every point-cloud.

Again a standard Gauss-Newton approach was used to minimise error across this func-
tion with respect to all motion and calibration parameters jointly. This requires the
differentiation of the error function given by

∂r′ijk
∂c̄

=

(
∂Ri

∂c̄

)
n̂ki · (Eipki −Ejpkj)

+ (Rin̂ki) ·
(
∂Ei

∂c̄
pki + Ei

∂pki
∂c̄
− ∂Ej

∂ĉ
pkj + Ej

∂pkj
∂c̄

)
,

(4.18)

where c̄ ∈ {Γ̄, ᾱ, β̄} is a generic parameter vector, that can be used to represent the
separate motion parameters (γ̄i) for each frame and the joint calibration parameters
(ᾱ and β̄) for simplicity. To more simply in clarify Equation 4.18 the calculation for a
single point-cloud pair is examined and separate Jacobian calculations performed.

4.6.1 Pose Jacobians

Each point-cloud pair Pi and Pj has two sets of motion parameters γ̄i and γ̄j correspond-
ing to their respective absolute pose, and a joint/shared set of calibration parameters
ᾱ and β̄) as they were captured using the same sensor. The derivative with respect to
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a the set of motion parameters γ̄i is given by

∂r′ijk
∂γli

=

(
∂Ri

∂γli
n̂i

)
· (Eipki −Ejpkj)

+ (Rin̂ki) ·
(
∂Ei

∂γli
pi + Ei

∂pki
∂γli

− ∂Ej

∂γli
pkj + Ej

∂pkj
∂γli

)
= (G′kiR

0
i n̂ki) · (E0

i pki −E0
jpkj) + R0

i n̂ki ·
(
GliE

0
i pki + E0

i0− 0pkj + Ej0
)

= (G′liR
0
i n̂ki) · (E0

i pki −E0
jpkj) + R0

i n̂ki · (GliE
0
i pki),

(4.19)

where γli is the lth motion parameter of the motion parameter vector γ̄, G′li is the lth

generator of the SO(3) matrix Ri, Gli is the lth generator of the SE(3) matrix Ei, R0
i

and E0
i are the current ith estimated rotation and full transformation respectively, 0 is

used to represent a zero matrix, and · represents the dot-product operator. To simplify
the this slightly we can perform the following substitutions

n̂′ki = R0
i n̂ki , p

′
ki = E0

i pki and p
′
kj = E0

jpkj . (4.20)

This simplifies Equation 4.19 to

∂r′ijk
∂γli

= (G′lin̂
′
i) · (p′ki − p′kj) + n̂′i · (Glip

′
ki). (4.21)

In this formulation we assume

n̂′ki =


n′kix
n′kiy
n′kiz

0

 and p′i =


p′kix
p′kiy
p′kiz

1

 (4.22)

are homogeneous. Also the generators are closely related in this case G′li = Gli for
l = {θx, θy, θz} and G′li = 0 for l = {tx, ty, tz} as there is no relationship to translation
for the rotation matrix. The resulting Jacobian for γ̄i is

Jγ̄ki =
[
n̂′ki n̂′ki ∧ p′kj

]
. (4.23)

Repeating this process for the other set of motion parameters γ̄j gives

∂r′ijk
∂γlj

= −n̂′ki · (Glp
′
kj), (4.24)

which is essentially the same as Equation 4.9 hence the Jacobian will be the negative
of Equation 4.23

Jγ̄kj = −Jγ̄ki =
[
−n̂′ki −(n̂′ki ∧ p′kj)

]
. (4.25)

This is obvious logically too, if moving Pi towards Pj decreases the residual, moving Pj
in the opposite direction back towards Pi will have the same predicted effect and should
increase the speed of convergence. This does mean that the poses of the point-clouds
are free to drift, but this can be constrained by consistently moving all point-clouds
back so a particular point-cloud is centred at the origin.
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4.6.2 Depth Correction Jacobians

Returning to Equation 4.18, the derivative with respect to the depth correction param-
eters αl ∈ ᾱ can be computed as

∂r′ijk
∂αl

=

(
∂Ri

∂αl
n̂ki

)
· (p′ki − p′kj) + n̂′ki ·

(
∂Ei

∂αl
pki + Ei

∂pki
∂αl
− ∂Ej

∂αl
pkj + Ej

∂pkj
∂αl

)
= (0n̂ki) · (p′ki − p′kj) + R0

i n̂ki ·
(

0pki + E0
i

∂pki
∂αl
− 0pkj −E0

j

∂pj
∂αl

)
= n̂′ki · (E0

i

∂pki
∂αl
−E0

j

∂pkj
∂αl

).

(4.26)

The derivative ∂pki
∂αl

can be computed using the chain-rule given the relationship defined
in Equation 4.1

∂pki
∂αl

=
∂pki
∂cki

∂cki
∂αl

=


dkirkiuki
dkirkivki
dki
0

 ∂ci
∂αl

=


p̃kix
p̃kiy
p̃kiz

0

 ∂cki
∂αl

, (4.27)

where p̃ are the uncorrected point-cloud coordinates, and the derivative ∂cki
∂αl

is depen-
dent on the degree of the selected corrective polynomial. Given a 2nd order correction
function it is given by

∂cki
∂ᾱ

=
[
uki vki u2

ki ukivki v2
ki diuki dkivki dkiu

2
ki dkiukivki dkiv

2
ki

]
.

(4.28)
The resulting correction function Jacobian Jᾱk is given by

Jᾱk = n̂′ki ·

E0
i


p̃kix
p̃kiy
p̃kiz

0

 ∂cki
∂ᾱ
−E0

j


p̃kjx
p̃kjy
p̃kjz

0

 ∂ckj
∂ᾱ

 , (4.29)

which can be simplified to

Jᾱk = (n̂′ki · (p̃′ki
∂cki
∂ᾱ
− p̃′kj

∂ckj
∂ᾱ

)), (4.30)

where p̃′ki and p̃
′
kj are kth the rotated uncorrected coordinates from Pi and Pj respec-

tively.
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4.6.3 Radial Distortion Correction Jacobian

Similar to Equation 4.26 the derivative of the residual function with respect to a radial
distortion βl ∈ β̄ is given by

n̂′ki · (E0
i

∂pki
∂βl
−E0

j

∂pkj
∂βl

). (4.31)

The derivative ∂pki
∂βl

can once again be calculated using the chain-rule

∂pki
∂βl

=
∂pki
∂rki

∂rki
∂βl

=


ckidkiuki
ckidkivki

0
0

[ u2
ki + v2

ki (u2
ki + v2

ki)
2
]
. (4.32)

The Jacobian with respect to the radial distortion Jβ̄ parameters is therefore given by

Jβ̄k = n̂′ki ·

E0
i


ckidkiuki
ckidkivki

0
0

−E0
j


ckjdkjukj
ckjdkjvkj

0
0


[ u2

kj + v2
kj (u2

kj + v2
kj)

2
]
.

(4.33)

4.6.4 Full Calibration Jacobian Matrix

In order to solve jointly for the absolute pose, depth correction and radial distortion
parameters a joint Jacobian matrix is formed. This is formed by concatenating a number
of sparse Jacobian matrices given by

Jijk =
[

Jαk Jβk Jγk0 Jγk1 . . . JγkN
]
, (4.34)

where only two Jγki matrices will be non-zero, given the residual is expressed in terms
of two sets of pose parameters γ̄i. These Jacobians are also concatenated to form the
full joint calibration Jacobian

J =
[

J000 J001 . . . J00N J010 . . . JN̂N̂N
]T
. (4.35)

The residuals are also concatenated to form a residual vector

r̄ =
[
r000 r001 . . . r00N r010 . . . rN̂N̂N

]T
. (4.36)

This is a slight abuse of notation as N̂ , which is the number of correspondences, will vary
for each point-cloud pair (i, j). However this allows the application of a Gauss-Newton
optimisation, to solve for all parameters jointly given by

∆ζ̄ = (JTWJ)−1JWr̄, (4.37)

where ∆ζ̄ is an update vector that is applied to all parameters, and W is a diagonal
weight matrix the same as the one described by Equation 4.14. This process is further
demonstrated in Figure 4.1.
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wo

- Correspondence List

- Point-Cloud

- Absolute pose

- No Correspondences

Correspondence Map

Figure 4.1: Demonstrates the relationship between the absolute poses Ei, correspondences Cij

and the resulting Jacobian J for a calibration with 3 images. The red correspondences indicate
these two point-clouds contain no overlapping information, which results in empty/zero entries
in the resulting Jacobian J. This also illustrates the fact that correspondences are estimates
from Pi to Pj and vice versa, this is related asymmetry of the of the point-cloud resolution,
some point-clouds will have a much higher resolution on certain areas meaning more accurate
correspondences can be estimated in one direction.

4.7 System Implementation Details

In this section the system implementation is outlined including directions for increasing
the chances of a strong resulting calibration.

4.7.1 Calibration Optimisation

As described in Section 4.6 we use a Gauss-Newton optimisation to jointly solve for an
absolute pose per point-cloud and a common depth/camera calibration for the depth
sensor. As the residual function is defined pair-wise, for each frame pair i, j correspon-
dences are compute Cij by using a relative pose estimate Eij . The points in Pj are
projected into the frame of Pi and project-and-scan search strategy used to find the
closest point, which is assigned as the correspondence. Each set of correspondence Cij

is used to compute the full Jacobian (see Section 4.6) as shown in Figure 4.1. This
is used in a Gauss-Newton solver to compute an update jointly for all poses and the
common calibration, and iterated until convergence (update is lower than a specified
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threshold).

The example shown in Figure 4.1 is intended to be illustrative for three views of a
scene. In the example not all point-clouds are overlapping, that is some views share no
correspondences, this results in some sparsity in J where this joint information is not
present for in C02 and C20. The ideal calibration scene will have a nearly dense matrix as
this would provide the most mutual information. Figure 4.2, shows some characteristics
that should be present in a set of frames that will be used for calibration. This is
elaborated upon further in the following section.

di

d
j

Varying angle of 
overlapping views

Capture corners towards 
the center of other views

di

dj

Varying distance for 
overlapping views

d
i

dj

di

dj

Include wide-baselines for 
overlapping views

Include strong geometry 
features in scenes

d j

dj

dj

Figure 4.2: Three examples of desirable relationships between the frames to be used for
calibration by this system. All contain significant overlap in addition to rotation, translation
or varying the distance to a surface. Both the rotation and translation help to constrain the
calibration function, while the varying of distance helps to improve the overall performance
over a range of distances.

4.7.2 Maximising Calibration Performance

A good scene for calibration should have large visible planes in multiple overlapping
frames as these are the most stable source of depth correction. If the scene contains
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little or no geometric features ICP will fail to produce good alignments and calibration
will fail. Choosing frames is an important point for the user to consider when calibrating,
as such a short guide to some desirable properties is shown in Figure 4.2. Varying the
angle between frames helps to constrain the overall calibration function by removing
a degree of freedom that would be introduced if all frames were for example fronto-
parallel. In this situation the calibration function would be free to bend the depths
orthogonal to the capture orientation without penalising the residual error, which is
highly undesirable. Including overlapping frames with the corners of some depth frame
centres, attempts to more effectively constrain the edges by balancing the sections of
the overlapping frames jointly. Using varying depths for the same points, improves
the performance of the calibration over a range of depths. Another subtle point that
may affect the stability of our system is the quality of the normal estimates which are
effected by sensor noise. To improve stability of our normal estimates we use the method
described in Chapter 5 for surface normal estimation.

4.7.3 System overview

The diagram in Figure 4.3 shows a broad overview of the underlying architecture of
our calibration system. Our system requires a global pose estimate for each frame as
an initial input to the system which is computed as described in Section 4.5. This is
provided as is a part of the final system.

The calibration process as shown in Figure 4.3 can be broken down into the following
steps:

1. The captured frames are combined into frame pairs.
2. Correspondences are estimated for all frame pairs, given the current calibration

and absolute pose estimates.
3. The frame pairs, along with their correspondences are divided evenly amongst

available threads.
4. A Jacobian J for each pair is used to update a local estimate of the approximate

weighted Hessian matrix JTWJ for each thread in parallel, as these calculations
are separable.

5. The resulting approximate weighted Hessian (JTWJ) from each thread is com-
bined into a Joint Hessian matrix.

6. Cholesky decomposition (See Section 3.1.6) is used to calculate an update vector
ζ̄

7. The computed update ζ̄ is applied to all parameters.
8. The corrected coordinates and surface normals are recomputed using the updated

correction model.
9. Step 2-8 are repeated until convergence (|ζ̄| < σ)
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Figure 4.3: The underlying structure of our calibration system, demonstrating the calculation
of independent Jacobians across threads which are combined into a Joint Jacobian that contains
all jointly available information.

4.8 Calibration Performance Evaluation

Planar Surface

Test
TrajectorySensor

Average
Distance

Planar Surface

Sensor

Real-world Setup

Figure 4.4: Left: Planar test setup used to evaluate the performance of the calibration
approaches. Right: a photo of the real-world test set-up, the sensor is highlighted using a
dashed white square, in this case a Kinect V1. The planar surface used was a large flat wall
which limited the evaluation distance until the field of view of the camera began to encapsulate
more than the wall.

Due to the difficulty of collecting ground truth datasets we use the method of quanti-
tative evaluation proposed in [83] for our calibration method. We use each device to
record a test dataset of a flat section of a wall (as shown in Figure 4.4) and measure
how well the resulting corrected depth images fit to a plane. This provides a measure
of how well the uncalibrated data can be corrected at a range of depths. The results of
this experiment for two devices is shown in Figure 4.5 and demonstrates the significant

124



4 DEPTH CAMERA CALIBRATION

improvement our approach provides over the uncalibrated depth produced by the sensor
(particularly for the Kinect V1). We demonstrate a consistent near 50% improvement
for our highest order calibration at each depth range.

4.8.1 Choosing the Degree of the Polynomial

Figure 4.5: The RMS error from fitting a planar surface to corrected data, for Kinect V1(Left)
and an Asus Xtion(Right). This demonstrates the gain in accuracy for higher order polynomials
reduces as you increase the degree of the polynomial for our calibration method.

In order to choose the degree of polynomial used by our method we calibrated each
device separately with each degree polynomial up to 7th order and examined the im-
provement on the planar test described in Section 4.8 above. The results of this are
shown in Figure 4.5 and demonstrate that increasing the degree of the polynomial above
6th order provides little improvement. Ideally we would like to use the smallest degree
polynomial required to give a good calibration as this will reduce computational time,
and that appears to be 6th or 7th. Additionally using higher order polynomials can
lead to unstable calibrations for areas with less information and larger gradients such
as corners.

4.8.2 Visualising Calibration Function

In order to examine how well our calibration function fits the data, we inspect it at
various depth values and compare against the uncalibrated error at that same approxi-
mate depth from the planar test set. We show the result of this for a depth of 2 meters
in Figure 4.6. The correction function fits the data very well, and the calibrated image
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Figure 4.6: Column-wise we have the following data for two different calibrated sensors,
Left: Planar error for the uncalibrated data. Middle: Correction function at the same depth.
Right: Calibrated depth data. A key is shown to indicate the error at each point in mm.

shows a large reduction in the systematic sensor error, showing this order of the model
is appropriate to significantly reduce the structural error. However the data still retains
the original high-frequency noise, which varies greatly over time and can be reduced
using tradition filtering approaches.

4.8.3 Comparative Performance

We compare the performance of our system against [218] and [83] using the same test
described in Section 4.8. We also show a number of qualitative comparisons on real-
world data, to demonstrate the comparable performance of our approach. However our
approach which is also CPU side only takes minutes, while CLAMS takes many hours.
The approach in [218] requires a more specific set of images be collected, including
known checker-boards in each image, and each part of the frame must be covered to
ensure a successful calibration. Once this dataset is collected this approach does take
minutes, given the relatively low amount of data used in the computation. The results
are shown in Figure 4.7, and demonstrate our approaches competitive performance
against CLAMS([83]) and our improvement upon MIP([218]). For this test we calibrated
MIP([218]) using 80 images of checker boards captured at the range of depths and image
locations as described in the calibration manual. For the comparison to CLAMS([83]) we
calibrated the kinect using 5 minutes of footage, then retrained with a further 5 minutes
of footage (10 minutes in total), this final calibration was used in the comparison.
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Figure 4.7: Quantitative and qualitative comparisons of our calibration result against the
approach from [83] and [218]. Top-Left: Results for the same planar test, comparing several
approaches each approach. Top-Right: Scenes used as qualitative examples for calibration
performance. A is the planar scene used for planar evaluation, B is the corner of a room that
contains a prominent right-angle. Bottom: Qualitative comparisons of the approach presented
in this chapter (Ours) against the approach presented in [83] (CLAMS).
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4.8.4 Calibrated Dataset

To further demonstrate the requirement for calibration, we evaluate the accuracy of
estimating a known trajectory using set of the uncalibrated and calibrated depth images.
We collected a straight line on-rails dataset using the same Kinect used for calibration
(the set up is shown in Figure 4.8). We optimise the global poses jointly for this dataset
before and after calibration using a joint point-to-plane ICP approach. We show the
RMS error in pose rotation in Figure 4.8. The uncalibrated sensor data causes significant
pose drift and is visibly reduced after correction using our approach, with approximately
a 50% reduction in drift.
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Figure 4.8: Top-Left: The on-rails Kinect set up, with an arrow showing the direction of
motion. Top-Right: A frame from the dataset. Bottom-left: Shows the uncalibrated and
calibrated trajectories and approximate ground truth. Bottom-Right: Rotational error in
pose RMS(radians)
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2x
2x
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Figure 4.9: Top: Several frames from the dataset used to generate the model below. Bottom-
Left: Model generated using uncalibrated data. Bottom-Right: Model generated using our
calibrated depth data. The black lines indicate the approximate true position of the room corner
and walls, with the scale of the room shown for each model. We include an enlarged section
of the corner of each model to demonstrate significant reduction in error using our calibration
method.

4.8.5 Improvement to Modelling

Finally we present a qualitative improvement in scene modelling in Figure 4.9. We
observe a clear improvement over the original model, after our calibration system has
been used to correct the depth sequence. This is most visible in the curved wall, which
demonstrates the affect of structured sensor noise on model drift and modelling accuracy.
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4.9 Conclusions and Future Work

The method of calibration presented in this chapter is a simple and robust approach to
low-cost depth sensor calibration. It uses fewer parameters and images than previous
similar approaches to produce a robust calibration. Although the quality of the calibra-
tion is in general sufficient, there are some unresolved issues. The method is potentially
unstable at corner image locations as the calibration relies on a high-order polynomial
correction function. A possible remedy to this could be to substitute the polynomial
for a more stable but easily differentiable function such as a discrete cosine transform
or similar. This could allow a similar number of parameters without introducing the
problem of exploding gradients as the normalised camera coordinates increase.

4.10 Code

The source code for the work presented in this chapter was written entirely in C++ and
is available at the following repository: https://github.com/aspek1/RGBDCalibration
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5

Real-time Principal Curvature Estimation Using
Quadrics

This chapter we present a real-time method for dense surface curvature estimation from
range data. This is important for a number of tasks in computer vision and robotics,
including object segmentation, object recognition and robotic grasping estimation. The
approach presented is robust to noise and acts densely across the input depth im-
age, computing accurate metric principal curvature values using GPGPU programming
via CUDA. We compare to existing readily available solutions and show comparably
favourable performance due to their tendency to amplify noise in the data. Our ap-
proach iteratively fits parabolic quadric surface patches to the data, including robust
techniques applicable to the highly noisy sensor data. The material and methods pre-
sented is largely drawn from the paper [221].

Figure 5.1: The results of curvature estimation using this approach for a real (top) and syn-
thetic scene (bottom) Left: Colour image of the scene. Middle: Ground-truth curvature values,
coloured using the indicated key. Right: Computed curvature values using this approach.
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5 SURFACE CURVATURE FROM QUADRICS

5.1 Motivation and Related Work

As discussed in Sections 1.3 and 3.8 surface curvature is a robust geometric feature that
is viewpoint invariant. This makes it useful for various computer vision and robotics
applications [203, 93, 92, 98]. In this thesis surface curvature refers the principle cur-
vatures as opposed to Gaussian or mean curvatures. The principal curvatures are the
maximal and minimal rates at which the surface normal angle changes at any given
point on a surface. This is computable from any 3D surface representation, including
meshes, point clouds or and most relevant to this thesis, depth scans from low-cost depth
sensors. Surface curvature has been used in computer graphics for applications such as
model de-noising and surface alignment [203]. Surface curvature has also been used
extensively in robotics for scene/object segmentation [19, 97, 222]. Since the surface
curvature is viewpoint invariant it will be the same regardless of the view you observe
the surface from, making it ideal for such applications, as well as a basis for geometric
feature computation [101, 99].

Existing approaches (at the time this research) that targeted real-time performance
compute surface curvature assuming the data used will be of relatively high quality
[90, 93, 92] [94], and simple differentiate the surface twice [90], or use very small neigh-
bourhoods with fast approximations[120]. These methods of computing surface cur-
vature are highly susceptible to noise. This led some to either smooth the surface
representation [166] or using more robust statistical techniques such as re-weighted
least-squares [19] in order to improve the resulting curvature estimates.

Low-cost depth sensors (such as the Microsoft Kinect and ASUS XTion) have provided a
fast method of collecting relatively high resolution dense range images at frame rate for
a consumer market. Their operation as well as other variants are described in detail in
Section 3.3. Khoshelham et al. demonstrated in [76] the data produced by structured-
light type sensors is noisy, making it challenging to measure surface curvature accurately
using these low-noise methodologies. The approach presented is applicable to all depth
sensor types, but will be effected differently by the characteristic noise of the different
devices types.

The reason these previous approaches have used very small neighbourhoods is it can
be very expensive computationally to accommodate high noise levels in real-time. In
order to overcome the computational limitations a General Purpose GPU (GPGPU)
programming approach was used. This utilises the large throughput of the GPUs that
have been built for graphics applications to perform large numbers of computations in
parallel. Lee et al. demonstrated in [222] that this enables real-time segmentation and
curvature estimation of large scale point clouds. However to enable the real-time section
they perform an initial preprocessing step to the data, which is not real-time and must
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be computed for every point-cloud. The method presented in this thesis in requires no
additional expensive computations to run in real-time.

Point Cloud Library (PCL) is a widely used open-source library for processing most
forms of model data including point clouds and meshes, presented by Rusu et al. in
[99]. PCL provides multiple methods of computing an estimated curvature value directly
from point cloud data, with CPU and GPU implementations. However the estimated
metric curvature value is estimated based on a PCA of the change in surface normals
(which are also estimated using a PCA of surface changes), and although this is a
smoothing method, it can still be greatly effected by surface noise especially when taken
to second order. This effectively equates to twice-differentiating the surface, and results
in the incorporation of outliers, and points that don’t fit the surface greatly effecting
the final estimate. To improve the quality of the estimates therefore requires additional
computation to separately remove these points from consideration or a smoothing of the
original data, which increases the computation beyond real-time. Additionally many
of the quantities labelled surface curvature are actually the surface variation described
by Pauly et al. in [223] which is a quantity that is proportional to the mean absolute
curvature but non-metric.

5.2 Contributions

The key contribution of this work was a real-time GPU based algorithm for estimating
metric curvature values from range images via an iterative quadric surface patch fitting.
This method provides several benefits:

• It provides more accurate metric estimates of real-world curvature values than
existing methods demonstrated in section 5.5.2.
• It provides smoother and more accurate surface normal estimates compared to

surface differentiation by PCA shown in section 5.5.5
• The method is fast and easily able to run at frame-rate as shown in section 5.5.6
• The metric curvature estimates produced by our system can be used to accurately

estimate object correspondences across multiple viewpoints as shown in section
5.5.7
• It works well with noisy point cloud data, such as that produced by low-cost

RGB-D sensors (like the Microsoft Kinect and ASUS XTion).

5.3 Surface Curvature Using Quadrics

This section describes goes through the specific theory used to create the formulation
used in the robust optimisation for surface curvature.
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5.3.1 Ordered Point-clouds

A conversion of depth-images to ordered point-clouds is required in order to calculate
surface curvature. In this case the point-cloud will be ordered row-wise, or raster-scan
image order. We use the standard Camera inverse projection as described in Section 3.2,
additionally the depth correction from the calibration described in Chapter 4 is applied.
This creates a set of homogeneous coordinates in the frame of the depth sensor.

5.3.2 Second Fundamental Form (II)

As described in Section 3.8, surface curvature can be estimated through something
known as the second fundamental form II. To reiterate, any local region around a point
p on a twice-differentiable surface M can be defined by the equation

0 = xû+ yv̂ + zn̂+ p, (5.1)

where x and y are independent variables, û and v̂ are orthogonal unit vectors that are
tangent to the surface at point p, n̂ is the unit-normal vector that is perpendicular to
the surface at point p and z = z(x, y) is a function of the independent variables x and
y. This allows us to define the second fundamental form of the surface

II =
[
du dv

] [ A B
B C

] [
du
dv

]
, (5.2)

where

A =
∂2z(x, y)

∂x2
, B =

∂2z(x, y)

∂x∂y
, C =

∂2z(x, y)

∂y2
. (5.3)

This allows the surface to be redefined in terms of a parabolic surface approximation
that passes through ((x, y, z) = (0, 0, 0)) as

z =
A

2
x2 +Bxy +

C

2
y2, (5.4)

which is equivalent to the Taylor series expansion to second-order (Section 3.4.4). Ad-
ditionally second fundamental form is rotated, such that the vector basis aligns to the
principal curvature directions the principal surface curvatures can be extracted directly.
This alignment is equivalent to performing the Eigen value decomposition on the matrix
as shown

II′ =
[
du′ dv′

] [ κ1 0
0 κ2

] [
du′

dv′

]
, (5.5)

where the vectors û′ and v̂′ of this surface will be aligned to two the principal curvature
directions, and the principal curvature values will be given exactly by the matrix.
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Figure 5.2: Demonstrates the relationship between the quadric coefficients and the effect that
has on the resulting quadric surface.

5.3.3 Quadrics

As described in Section 3.4.5, quadrics can be used to represent any second-order sur-
face, and as shown in the previous Section (5.3.2) local surface about a point can be
approximated by represented by a parabolic (second-order) surface approximation given
by Equation 5.4. This surface approximation can therefore be made using a quadric
given by

pTQp =
(
x y z 1

)

A B

2 0 0
B
2 C 0 0

0 0 0 −1
2

0 0 −1
2 0



x
y
z
1

 = 0. (5.6)

This formulation limits the quadric to fit to a surface that passes through the origin of
the basis, as shown in Figure 5.2. This also demonstrates the effect changing the values
of parameters A,B and C has on the resulting quadric surfaces shape.

5.3.4 Creating a Local Coordinate Frame

In order to compute a dense estimate of surface curvature for an ordered point cloud,
we take a neighbourhood of points around every valid point in the ordered point-cloud.
The neighbourhood (N̄(p)) is chosen around any given point p, based on sparse selection
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filter. This was selected based on an evaluation of performance and speed discussed in
Section 5.5.6. To improve the stability of the overall optimisation, the points in the
selected neighbourhood are all shifted to be centred around the centre point po given
by

p′i = pi − po (5.7)

where pi ∈ N̄(po). This is essentially mean-shifting the data and improves many condi-
tions for the optimisation.

In order to define a basis around this point a dense surface normal estimation is required
for each point. The normal estimate is computed using a smaller 7× 7 neighbourhood
N̄ ′(po) of points centred around po =

(
xi yi zi 1

)T . This is performed using a
simple surface approximation of zi as a linear function of xi and yi using regression.
The mean values µx, µy and µz are computed for the patch and then the matrix

M =

[ ∑
i(xi − µx)2

∑
i(xi − µx)(yi − µy)∑

i(xi − µx)(yi − µy)
∑

i(yi − µy)2

]
and the vector

v̄ =

[ ∑
i(xi − µx)(zi − µz)∑
i(yi − µy)(zi − µz)

]
.

Setting
[
a b

]T
= M−1v̄ then gives the surface normal as

n̂ =
1√

1 + a2 + b2

 −a−b
1

 (5.8)

and this can be cheaply computed from a 2 × 2 inverse matrix equation. The surface
normals are computed densely using a CUDA implementation, and the time taken for
this aspect is relatively negligible. The normal allows the computation of an orthogonal
basis for the local coordinate frame around each point. The Gram-Schmidt process [224]
is used to form an orthogonal basis around every point using the unit normal vector n̂
as the z-axis.

5.3.5 Allowing For Further Degrees of Freedom

In it’s current form the quadric only has 3 degrees of freedom (3DOF), which technically
sufficient to represent any surface approximation, but has some limitations. One key-
limitation is the origin of the basis is a fixed-point, all quadric formulations must pass
through it. This implies the quadric approximation around po must pass through po,
but in almost all cases there will be some random noise in the selected points position.
Additionally the local frame defines around each point is considered to be aligned to
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the tangent plane, but the normal computation may be effected by noise or errors. In
an effort to combat these issues an intermediate transformation matrix is introduced

E(θx, θy, tz) =


. . . 0

R(θx, θy) 0
. . . tz

0 0 0 1

 , (5.9)

where E has 3 further degrees of freedom. This transformation is incorporated into the
quadric equation from Equation 5.6 as follows

p′Ti ETQEp′i = 0. (5.10)

This allows the basis to rotate around the central point po as well as move off it to bit fit
the surface quadric. These additional degrees for freedom are illustrated in Figure 5.3,
which effectively demonstrates how the translation tz can be altered to allow the surface
to move away from the central point po as well as how the rotation allows the surface
to rotate but only to a limited degree. Including the rotation parameter θz would allow
the frame to turn around the normal axis, which is redundant as this can be expressed
through the quadrics parameters (A,B and C) as shown in Figure 5.2.

xy

z

Figure 5.3: Demonstrates the relationship between the translation (tz) and rotation (θx, θy)
coefficients and the effect that has on the resulting quadric surface. Left: the translation tz
allows the surface to move allow from the centre point po. Right: the rotation parameters
rotate the surface in order to better align the frame to the points in the neighbourhood N̄(po),
which additionally compensates for a poor normal estimate.

5.3.6 Iterative Surface Fitting

Given the quadric relationship defined in Equation 5.10, this implies the following error
function

εi = p′Ti ETQEp′i, (5.11)

where εi in this case is the algebraic distance to the quadric surface as shown in Figure
5.4. This allows the definition of the following residual

rk =

|N̂(po)|∑
k=0

|εi(pi)|2, (5.12)
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Figure 5.4: A geometric interpretation of the quadric surface Q, and the individual errors εi.

which is defined for the size of the neighbourhood (|N̂(po)|) around the centre point
po. Once again this can be minimised using a standard Gauss-Newton approach as
described in Section 3.5, which requires the derivative of Equation 5.11 with respect to
the motion and quadric parameters ηj ∈ η̄. This derivative can defined as

∂εi
∂ηj

= p′Ti
∂E

∂ηj

T

QEp′i + p′Ti ET ∂Q

∂ηj
Ep′i + p′Ti ETQ

∂E

∂ηj
p′i (5.13)

via the chain rule (see Section 3.4.1), where ηj ∈ {A,B,C, θx, θy, tz}. The derivative of
the points p′i is omitted, as it is unrelated to the parameters. This can be separately
differentiated by the motion related parameters {θx, θy, tz} and the quadric parameters
{A,B,C}. The derivatives of the residual with respect to the quadric parameters are
given by

∂εi
∂A

= qTi


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 qi = q2
xi,

∂εi
∂B

= qTi


0 1/2 0 0

1/2 0 0 0
0 0 0 0
0 0 0 0

 qi = qxiqyi,

∂εi
∂C

= qTi


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 qi = q2
yi,

(5.14)

where qi = E0p
′
i is the currently estimate of the point in the neighbourhood given

the current transformation estimate E0. The derivatives with respect to the motion
parameters can again be computed by using the matrix exponential representation of
the transformation E described in Section 3.6. Allowing the derivatives to be represented
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as

∂εi
∂θx

= qTi


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

Q0qi + qTi Q0


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 qi

=
(

0 −qzi qyi 0
)
q′i + q

′T
i


0
−qzi
qyi
0

 = 2(q′ziqyi − qziq′yi)

∂εi
∂θy

= qTi


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

Q0qi + qTi Q0


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 qi

=
(
qzi 0 −qxi 0

)
q′i + q

′T
i


qzi
0
−qxi

0

 = 2(q′xiqzi − qxiq′zi)

∂εi
∂θx

= qTi


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

Q0qi + qTi Q0


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 qi

=
(

0 0 1 0
)
q′i + q

′T
i


0
0
1
0

 = 2q′zi,

(5.15)

where q′i = Q0qi is the current quadric estimate multiplied by the transformed coordi-
nate. This gives the following Jacobian matrix

Jηj =



q2
xi

qxiqyi
q2
yi

2(q′ziqyi − qziq′yi)
2(q′xiqzi − qxiq′zi)

2q′zi



T

. (5.16)

In order to combat the noise we include a weighting for each point given by

wi(εi) = f(pi)
k2

k2 + ε2i
, (5.17)

where k is a constant that is proportional to the mean error across previous runs, and
f(pi) is a rejection filter function. The function f is applied to points, in order to reduce
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the influence of distant outliers, and is given by

f(pi) =

{
0 if |pi − po| > ι

1, otherwise
(5.18)

where ι is a fixed maximum allowed distance from the central point. In practice a value
of ι = 100mm was found to be suitable. As in Section 3.5 the weighting function is
used to form the diagonal weight matrix W , the Jacobian matrices are concatenated
to form a single matrix, and the residuals are concatenated to form a single residual
vector. The update to the motion and quadric parameters is then computed using

∆η̄k = (JTWJ)−1JTWε̄, (5.19)

where the subscript k denotes the kth point in the depth image, meaning a quadric
per-point is defined and iterated for separately. The update to A,B and C is purely
additive, that is

At+1 = At + ηA , Bt+1 = Bt + ηB , Ct+1 = Ct + ηC , (5.20)

while the update to the transformation parameters is applied via a left-multiplication
of a matrix exponential as follows

Et+1 = eηθxGθxeηθyGθy eηtzGtzEt. (5.21)

5.3.7 Extracting Principal Curvature Values

Once the quadric estimate (Q) has been computed the principal curvatures κ1 and κ2

can be directly obtained using a 2×2 Eigen-value decomposition of the upper-left most
sub-matrix of Q. The principal curvature values can be computed as

κ1 =
A+ C

2
+

√
A+ C

2
−AC +

(
B

2

)2

,

κ2 =
A+ C

2
−

√
A+ C

2
−AC +

(
B

2

)2

.

(5.22)

5.4 System Summary

The following details the steps performed by our system in computing dense principal
curvature estimates using quadric surface fitting.

140



5 SURFACE CURVATURE FROM QUADRICS

• Point clouds are created from depth images using the inverse projection as de-
scribed in Section 3.2.
• Surface normals are computed densely for all points using a CUDA implementation

of the method described in Section 5.3.4.
• A quadric surface defined in Section 5.3.3 is iteratively fit to an image aligned

37× 37 sparse neighbourhood around each point, using a CUDA implementation.
• Principal curvatures are extracted using the method described in Section 5.3.7.
• The initially computed surface normals are refined using the more accurate ori-

ented quadric tangent plane surface alignment.

5.5 System Evaluation

In this section a detailed evaluation of the resulting system is performed, including
relevant comparisons to previous approaches.

5.5.1 Ground Truth Curvature Dataset

To evaluate the accuracy of the presented metric curvature estimation method a dataset
of ground-truth curvature values was created. The dataset includes both synthetic and
manually labelled ground truth images captured using a single low-cost RGB-D sensor to
test and compare the robustness of our methodology. The dataset consists of cylinders,
spheres and planar surfaces in order to provide an accurate estimate, with out the need
for more complex approaches.

Planar

Tissue

Spheres

Stress BallB
BallA

Cylinders

Badminton

Money
ChocB ChocA

Figure 5.5: All objects that appear in the datasets used for real-world evaluation with mea-
sured principal curvature values.

The shapes used are pictured in Figure 5.5 and defined in Table 5.1 including their
measured principal curvature values. Points without depth measurements and those
strong edges and corners in the real-world data was been removed, as they have no
corresponding ground truth curvature value. In theory corners and edges are non-
differentiable and contain regions of infinite curvature, but in reality this doesn’t exist,
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but at the resolution of the sensor this can-not be expressed adequately. An example of
the scenes used in the ground-truth datasets is shown in Figure 5.6, which demonstrates
the cluttered scenes used in the evaluation of curvature on the objects and scenes with
individual objects focused on evaluating the reliability of this approach against distance.

5.5.2 Measuring System Accuracy

We evaluate our method against several other implementations, including the least-
squares method (Douros) used in [98], weighted least-squares(Besl) from [19] and the
method used in Point Cloud Library (PCL) compared to our proposed method (Ours),
to demonstrate the relative improvement of our approach despite its real-time per-
formance. In order to demonstrate a quantitative improvement the approaches are
evaluated based on the RMS curvature error defined by

εRMS =

√√√√ 1

M

M∑
i=0

|(κ1 − κ∗1)2 + (κ2 − κ∗2)2|, (5.23)

where κ∗i and κi are the ground truth and estimated ith principal curvature values
respectively, and M is the number of points of curvature in the object that is being
evaluated. A list of the resulting expected and evaluated curvatures for each object
across all datasets is summarises in Table 5.1. This highlights an issue with this ap-
proach for spherical objects in real-world scenes, as the approach presented will always
align the surface such that the curvature aligns in the maximal directions. This means
it will tend to align the data in such as way as to minimise the second principal cur-
vature, making it likely to underestimate κ2 in practice, which is reflected in the table.
However the value κ1 is consistently well estimated in our configuration.

The results of the evaluation across the real-world dataset items are summarised in
Figure 5.7, while the synthetic objects are pictured and the respective approaches eval-
uated in Figure 5.8. This shows an improvement using our approach in almost all cases.
The results of [19] are most similarly to Ours, but note this is a more complex fitting
strategy and has no real-time approach available. All methods except PCL use the same
sparsely sampled patch of 37×37 values in view space. The curvature was estimated for
PCL using a KD-tree search neighbourhood radius of 20mm for real-world and 10mm
for synthetic. The choice to use the 20mm radius was made based as it produced the
best performance on the dataset. In addition, this size radius corresponds to a patch
roughly the same size as the patch used in the other approaches
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5 SURFACE CURVATURE FROM QUADRICS

Depth GT CurvatureColour

Figure 5.6: Some examples of scenes used in the ground-truth curvature dataset, including
the depth and curvature values. This uses the same colour mapping defined in Figure 5.1, where
grey is used to represent missing/omitted data.
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Expected Ours Error
κ2 κ1 κ2 κ1 RMS σ

Real-World Objects

Badminton 0 0.029 -9.9e-4 0.023 1.2e-2 8.8e-3

Money 0 0.016 -1.4e-4 0.015 5.5e-3 5.9e-3

ChocB 0 0.019 3.5e-4 0.0172 4.8e-3 3.6e-3

ChocA 0 0.026 -2.3e-4 0.022 9.1e-3 7.4e-3

BallA 0.015 0.015 0.009 0.015 0.01 6.3e-3

Stress 0.032 0.032 0.018 0.029 0.016 0.013

BallB 0.030 0.030 0.015 0.029 0.02 0.013

Synthetic Objects

Cylinder(9cm) 0.0111 0 0.0111 -1.8e-6 1.2e-4 5.8e-5

Sphere(10cm) 0.010 0.010 0.010 0.010 3.7e-5 1.4e-4

Torus(10cm,3cm) - - - - 6.3e-4 8.3e-4

Table 5.1: Expected ground truth principal curvature values and those computed by our
system averaged across all instances in each dataset. Computed from real-world objects shown
in figure 5.5 and synthetic objects shown in figure 5.8.

5.5.3 Evaluating View-Point Invariance

As the approach presented uses a fixed size patch for estimation which may create
concerns about consistency over distance and view-point changes of the camera. The
results in Figures 5.7 and 5.8 indicate the improved ability of the approach to handle
changes in view-point against previous approaches, as these are common in the ground-
truth dataset. In order to measure the consistency of the system over large changes in
distance we created two datasets from real-world objects, shown in Figure 5.6 in the
last two rows. These datasets consist of a fixed camera and an object moving a fixed
distance away from the camera between frames. The RMS curvature error is evaluated
for each discrete distance and the results summarised in Figure 5.9. The performance
of the proposed approach is consistently stronger and more consistent than previous
approaches indicating the proposed approach is capable of accurately estimating depth
at different distances. This motion has a doubling effect on the noise, as less pixels
are used to represent the object reducing the robustness of fitting and the level of
quantisation noise in the depth camera will increase as described in Section 3.3.3.3.

5.5.4 Evaluating the Effect of Noise

Robustness to noise was evaluated for each approach by successively increasing surface
noise on a synthetically generated sphere while estimating its principal curvature values.
The result of this test is shown in Figure 5.10 (Left). Due to the aggressive way the
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Figure 5.7: RMS error in mm and corresponding standard deviation in estimating principal
curvature on real-world data of each object in the dataset for several methods. Least squares
(Douros), re-weighted least squares (Besl), Point Cloud Library, and our iterative method
(Ours).

noise was added all methods are effected by the added noise. While the quadric based
methods provide considerably better estimates for the curvature at each noise level,
with PCL consistently underestimating the principal curvatures. Again our method
out performs the others in terms of robustness to noise.

5.5.5 Refined Normal Estimatation

A qualitative comparison of normal estimations is shown in Figure 5.11. Part of our
computation requires the alignment of the quadric surface to fit the points and this is
achieved by rotating the surface and altering its curvature. The rotation applied to the

145



5 SURFACE CURVATURE FROM QUADRICS

Torus (100mm, 30mm)

←0.018615

18.0

18.5

0.0

3.0

3.5

R
M

S 
er

ro
r 

(m
m

)

Douros Besl PCL Ours

2.5

2.0

1.0

1.5

0.5

0.0186

90.0

90.5

0.0

3.0

3.5

R
M

S 
er

ro
r 

(m
m

)
Douros Besl PCL Ours

2.5

2.0

1.0

1.5

0.5

Cylinder (90mm)

0.0

3.0

3.5

R
M

S 
er

ro
r 

(m
m

)

Douros Besl PCL Ours

2.5

2.0

1.0

1.5

0.5

118.5

119.0

Sphere (100mm)

0.0119

0.0091

Synthetic Objects

Torus
(100mm, 30mm)

30mm

100mm

Sphere
(100mm)

100mm

Cylinder
(90mm)

90mm

Figure 5.8: RMS error in estimating principal curvature on synthetic objects across a number
of synthetically generated viewpoints, comparing each of the evaluated approaches.

quadric surface during the fitting stage can give a more accurate indication of the true
direction of the surface normal than the original estimate. Figure 5.11 demonstrates
this improvement where A shows a comparison to the normals computed by the PCL
library and B shows the refined normals produced by our method.

A quantitative comparison of the normal estimation robustness was also performed on
a synthetically generated sphere, where the known normals were compared for mean
absolute error in theta (angle between the normals). The result is shown in Figure 5.10
Right. This demonstrates that our system is able to produce smoother and more accu-
rate estimates of normals, than surface differentiation via principal component analysis
alone.
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Figure 5.9: RMS error in estimating principal curvature on two real-world scenes where the
object of interest was incrementally positioned further and further from the device to investigate
how consistent the principal curvature measurements are for the several methods compared.
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Figure 5.10: Left: RMS error comparision for several methods in estimating principal curva-
ture on a synthetically generated sphere (100mm radius) with increasing random noise added.
Right: RMS angular error for our method’s normal alignment on the same synthetically gen-
erated sphere (100mm radius) with noise added, compared against using the standard PCA
approach in PCL. The noise is Gaussian distributed white noise with a standard deviation in
mm given by σ.

5.5.6 What’s the Right Size Patch?

The patch-size is very important to the performance of this approach, given it effec-
tively dictates the systems maximum resolution. This is the systems maximum possible
curvature value, which is the minimum radius of a sphere or cylinder that can be accu-
rately resolved. The larger the patch size the larger the minimum radius, but the more
points the patch can use and thus overcome noisy data. This relationship is demon-
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Figure 5.11: Qualitative comparison of normal estimation from real-world data. A: Normals
estimated using PCA of points differences in a sphere of radius 10mm. B: Refined normal
estimates from the quadric surface patch calculated in our method. Note that the boundaries
still remain sharp even with the added smoothness of the normals.

Densely Sampled Circular Sampled Sparse Sampled

Sampling in Screen-Space

x4

radius

Figure 5.12: Top: three sampling strategies that were each tried. Dense samples all points
in square patch, Circular removes the further away corner points, as they have less influence on
the final result anyway, and Sparse removes every second point to reduce the computation time
further while considering a significantly large neighbourhood. Bottom: demonstrates how a
patch is sampled from the data, this is actual-size in terms of an 37×37 patch but the sampling
pattern is purely illustrative in this case.

strates in Figure 5.13b. The neighbourhood that is used has been described as sparse in
this chapter, this is demonstrated in Figure 5.12. A sparsely sampled patch is a sparse
circular patch. The radius is chosen based on a trade-off between accuracy, resolution

148



5 SURFACE CURVATURE FROM QUADRICS
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Figure 5.13: 5.13a Timing performance of curvature estimation for our iterative method
averaged over several runs at each scale for each patch size.

and time to compute. Figure 5.13b shows that a minimum in the RMS error is between
a radius of 16-22, and indicates real-time performance continues up to the top-end of
this radius. However to maximise the system’s ability to resolve smaller objects the
smallest radius possible should be chosen, as such 18 became the obvious choice.

All tests were performed using a single NVIDIA K40c GPU. Figure 5.13a, demonstrates
that the system operates comfortably at frame rate (50-60Hz) for the chosen patch size
37 × 37. However, it should be noted that with more accurate data an even smaller
patch size would be advisable, allowing for even faster computation times.

5.5.7 Curvature-based Correspondence Estimates

The consistency of this approaches principal curvature estimation was compared to
PCL’s using point correspondence estimates on real-world data over different view-
points. A CPU PCL implementation, using a K-D tree, with search neighbourhood
radius of 20mm was used in all tests. The proposed approach was evaluated with a
patch size of 37× 37 with Sparse sampling for all comparisons.

The test was conducted as follows:

• A random sample point is selected inside each object for every frame in a dataset.
• The closest 400 curvature values to every sample point are computed for each

image in the series.
• Each of the closest values will belong to an object in the dataset, part of the table

plane or fall on an unclassified region (Background).
• The number of values for each object forms a histogram for each object which

shows how consistently each test point matches across multiple views. The ideal
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2 4 8

12 18 24

32 40 50

Ground-truthDepthRGB

Figure 5.14: Qualitative comparison of the choice of patch size against the quality of the
principal curvature estimation. The numbers in the bottom-right of each image indicate the
sparse-sampled patch radius used. This demonstrates the reduction in resolution as the es-
timated quadrics become smoother. Between 18-24 strikes a good balance between accuracy
and resolution, 18 is quicker to compute and offers the highest resolution and so is the obvious
choice.

case is all points belong to the sample point object.

The confusion matrices in Figures 5.15 and 5.16 demonstrate the result of this testing
for our method and PCL. These confusion matrices indicate the percentage for each ob-
ject each of the selected objects matched to. The results in Figure 5.15 clearly indicate
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Figure 5.16: PCL

Figure 5.17: The confusion matrix for Ours (Left) and PCL (Right), demonstrating a
sensitivity to noise and lack of discriminative power in PCL’s approach with many of the points
matching outside the desired regions, while Our method can be used to locate corresponding
regions of known or similar curvature across multiple views.

that our system is able to consistently estimate the curvature across different viewpoints
and images. This makes it a viable method for estimating corresponding points across
a wide-baseline. The results of this test also indicates that smaller objects with high
curvature are the most difficult (such as the stress ball) to distinguish for our system
and objects with similar curvature profiles will also be more easily confused (such as
chocA and badminton). The results for PCL in table 5.16 indicate the relatively poor
consistency of their curvature estimation. PCL consistently estimates correspondences
to be outside of classified objects (Background). The results of this experiment demon-
strates our system could be used to aid object detection or recognition by drastically
reducing the size of the search space for correspondence estimation.

5.6 Wide baseline Alignment Through Surface Curvature

The wide baseline alignment problem is an issue that effects systems that use ICP as
their underlying alignment method. As described in Section 3.7.6, this occurs when the
initial estimate for the aligned surface is outside the narrow convergence well, resulting
in a sub-optimal alignment. This situation occurs frequently in practice, as a sensor will
often lose track relative to the model and have to relocalise from an unknown position.

As possible solution to this issue a curvature region based alignment strategy was in-
vestigated. A simple system was created with the ability to act as a wide-baseline
initialiser for the Iterative Closest Point (ICP). This system estimates the wide-baseline
transformation using curvature patch correspondences and a rigid body transforma-
tion to initialise the ICP computation. We compare this with the performance or ICP
without the curvature based transformation initialisation.

151



5 SURFACE CURVATURE FROM QUADRICS

The system runs as follows:

• Several sample points were randomly selected in reference frame, and used to form
suitably sized patches of similar curvature using connected-components.
• Using the curvature values of the randomly selected patches, corresponding patches

of similar curvature are found in a target frame.
• Using the patches Cartesian coordinates, moments are extracted to compute the

size and center of the patch.
• xyz-centroids for frame pairs are computed using the point cloud for each respec-

tive frame.
• Using the corresponding patches a rigid-body transformation is computed using

three or more of the corresponding patches.
• The rigid body transformation is used to initialise and an ICP-tracker similar to

[18] is used to refine the estimated pose.

motion

motion

Figure 5.18: Left: translation only dataset frame. Right: rotation only dataset frame.
Points beyond a distance of 1.5m are filtered out of the final point-clouds, as the rotation only
dataset rotates the table, and the background remains stationary. The motion of the dataset
is indicated in both frames.

The system was tested on two separate toy datasets pictured in Figure 5.18. These
datasets experience an isolated motion, translation (Figure 5.18 Left) or rotation (Fig-
ure 5.18 Right), to examine the individual effects on the alignment. The resulting
contribution of the curvature based alignment is shown in Figure 5.19. In both cases
the ICP initialised from identity diverges while the curvature based alignment is able
to significantly increase the baseline.

While this validates the basic concept, there is a significant note of caution attached
as these are only toy datasets. The datasets used contained large smooth regions with
objects neatly separated, and this approach is unlikely to be quite as successful in
more realistic scenarios with such a simple approach. The intent of this test was to
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Figure 5.19: Compares the performance of ICP, with and without an initialisation from
curvature correspondences for two scenes. Left: demonstrates the performance on a scene
observed by a translating camera. Right: demonstrates the performance on a rotating scene.
Both show where the identity initialised test loses track, beyond this point no pose errors are
meaningful and are not shown.

demonstrate a feasible example of this work applied to wide baseline estimation.

5.7 Conclusions and Future Work

The method presented in this chapter provides a highly robust real-time solution for
surface curvature computation from low-cost depth data. The method provides an
improved approach to surface curvature estimation in a compact formulation. The
curvature values are shown to have a limited ability to solve the wide-baseline issue
in dense mapping approaches. This is a purely illustrative solution in this chapter but
could be extended in robustness and a more general approach taken to represent objects
using one or more quadrics. As the approach used in this chapter is only intended to be
locally correct, a more general quadric would be required for this object representation
that is able to represent object level entities.

5.8 Code and Datasets

The code of this project was done in CUDA c©/C++ and is available, along with the
associated ground truth datasets at the following repository https://github.com/
aspek1/QuadricCurvature.
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6

Joint Curvature and Pose Optimisation Using Qua-
drics

This chapter describes the extension of the work in the previous chapter (Chapter 5)
on curvature computation from quadrics to include relative pose estimation as part of
the optimisation function. The approach presented here jointly solves for both relative
pose and an improved estimate of principal curvatures using joint quadric refinement.
This is a novel extension of the quadric surface alignment approach, and given previous
approaches has already shown the advantages of using quadrics for surface alignment
accuracy it seemed an attractive option. We present two implementations to solve this
problem, one that uses multiple-frames and jointly solves for all poses and the quadric
alignment simultaneously which used a multi-threaded CPU implementation, and a
second approach that runs has near real-time (≈ 5 − 10fps) performance on pairs of
frames.

6.1 Motivation

Surface curvature is a geometric feature that has been shown to be useful for modelling
[97, 94, 203], robotic control [55, 225] and segmentation [222]. Surface curvature is a
measure of the rate at which the surface normal angle changes while travelling along the
surface. This makes curvature a second order derivative, and therefore highly sensitive
to noise in the surface. The principal curvatures represent the direction of maximal
and minimal curvature at any point. The introduction of low-cost depth sensors, such
as the Microsoft Kinect, provided an easy way to collect real-time depth information
cheaply. However, the noise present in this sensor [76] has made it challenging to
compute accurate curvature values directly [24] due to its high noise sensitivity.

Using quadrics has been shown to improve the robustness of curvature computations [19,
98] and advances in GPGPU programming has allowed for real-time dense estimation
of curvature [92, 24]. Using a quadric representation allows the principal curvatures to
be extracted directly, through a simple manipulation of quadric parameters described
in Section 6.4.2. Additionally constraints can be placed on the quadric representation
to reduce the possible representable surfaces to improve the reliability of curvature
estimates [24]. A limitation of these methods is that they are designed for use on
single-frame of live data or pre-registered low noise dense point clouds. Error in the
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registration accuracy or noise in the model can result in poor curvature estimates.

The Iterative Closest Point (ICP) algorithm is considered to be the state of the art
method for geometric alignment of point cloud and range data which we briefly sum-
marise in Section 6.4.1. ICP was first described in [12] and [119] and has been exten-
sively used in scan matching and modelling [14, 129], due to its robustness and speed
to compute. The algorithm attempts to iteratively minimise the distance between cor-
responding points in multiple point clouds by rigidly transforming them.

Figure 6.1: Top Left: shows the original colour image, Top Right: shows the manually
labelled ground truth curvature value, Bottom Left: shows the result of estimating curvature
using a single frame [24], Bottom Right: shows the result from this work, using the joint-full
multi-frame optimisation. We enlarge the same sections of each image to provide the reader a
better view of the differences. Additionally we include a key to indicate how the values of the
principal curvatures (κ1, κ2) relate to the mapped colours, in the bottom corner of each image.

A more general solution to ICP was described in [203], where Mitra et al. show the
increased accuracy of using quadric based scan alignment. They also demonstrate the
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improved convergence radius of their method over previous implementations of ICP.
However, the presented methodology uses a fixed estimate of quadrics for frame-to-
frame alignment which can be affected by noise in data, and no real consideration is
made for online performance.

6.2 Contributions

In this paper we present a novel joint optimisation approach that:

• Solves for pose alignment and curvature simultaneously using a joint quadric op-
timisation function (Section 6.5).
• A novel implementation which is intended to be used as an semi-online addition to

a tracking system, reducing the relative pose error in adjacent point-clouds while
simultaneously improving the current dense estimates of principal curvature values
(Section 6.5).
• A novel implementation which is intended to be used as an offline process, per-

forming a joint pose and curvature optimisation across multiple frames after they
have been captured and provided with some estimate of their global alignment
(Section 6.6).

6.3 Related Work

ICP [12, 119] is a modelling technique important in robotics and computer vision for
navigation and mapping [129]. In [12], Besl introduced several different formulations of
the minimisation problem including point-to-point, point-to-plane and plane-to-plane,
which refer to the method of computing the distance between correspondences. In [120],
Rusinkiewicz et al. investigate the accuracy and speed of each formulation, finding
point-to-plane to be the best choice for most applications leading to its popularity
in tracking applications [14, 15, 129, 16]. This method of point-cloud alignment is
considered state of the art for aligning multiple overlapping depth scans or point clouds.

ICP relies on largely static scenes in order to operate and can be used to generate
both models and accurate ego-motion tracking. Point-to-Plane (Pt-Pl) ICP is used
extensively in modern Simultaneous Localisation and Mapping (SLAM) systems as the
primary tracking algorithm. In [13] Izadi et. al. use Pt-Pl ICP to produce a highly
accurate and robust dense model, by tracking against the current model, significantly
reducing pose drift. This method of tracking is fast to compute using GPUs, while
providing reasonably high accuracy. However, this method of tracking against a model
requires a large amount of data to be stored and a complex algorithm to move model
sections in and out of memory [16].
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An improved pose alignment method to point-to-plane ICP was proposed in [203], where
Mitra et al. use local surface approximations (quadrics) to provide improved pose
alignment accuracy. Additionally they demonstrate an improvement in the convergence
radius and increased robustness of choosing initial alignment. However, the increase in
convergence radius is achieved through a simple heuristic which measures how correct
the current alignment is and randomly perturbs the current solution if it appears to be
converging incorrectly. Additionally their implementation provides no real consideration
to online performance of their system.

An important geometric feature used in robotics and computer vision is surface curva-
ture. Curvature has been shown to be useful for many computer vision and robotics
applications [97, 94], primarily segmentation [19] and improved modelling [55]. In [19],
Besl et al. demonstrates that regions of high curvature often occur on object boundaries
and this can be used as a reliable basis for segmentation. This idea was extended in
[97], where Guillaume et al. apply this work to mesh based segmentation. However,
these previous approaches either only applied to a single model [93, 94], or rely on the
alignment of multiple scan-matches to highly accurate in order to build a single shape
model for curvature estimation. Additionally, these previous approaches often assume
relatively low-noise in the model, which is not the case when using low-cost depth sen-
sors. In [24], Spek et al. presents a method for real-time curvature computation that
solves the problem of sensor noise using a quadric based representation.

6.4 Fundamentals

The alignment approach proposed in this chapter is based on the ICP algorithm de-
scribed in Section 3.7. ICP is also used and detailed in Chapter 4, as part of the joint
calibration alignment optimisation defined. In this case the distance function is based on
the point-to-surface metric, where the surface is described by a quadric. The quadric
surface fitting is identical to the formulation in Chapter 5. For further information
please refer to these chapters. As a brief reminder a short explanation of ICP and the
quadric surface representation used is provided here.

6.4.1 Iterative Closest Point (ICP)

Iterative Closest Point (ICP) is a technique for aligning two overlapping 3D scans or
point clouds of a static scene and is considered state of the art in terms of accuracy
and speed. This operates by defining an error function which measures the distance
from transformed points in surface 1 (S̄1), to a small plane patch on surface 2 (S̄2). In
point-to-plane ICP the Euclidean planar distance is used, hence a planar estimate of
the surface at any point is required. Thus, a normal is computed for every point q ∈ S̄2,
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using a small neighbourhood N̄(q) around it. For each point pi ∈ S̄1 a transformation
estimate E is applied to find the point Epi = q′i, which is used to find the closest/-
corresponding point qi ∈ S̄2. The error is computed using the point-to-plane distance
between qi and pi defined as

ri = n̂i
T (Epi − qi), (6.1)

where E is the transformation from the surface S̄1 to S̄2 such that the points pi ∈ S̄1

are in the same frame as the points qi ∈ S̄2. Across all points in S̄1 this forms the total
error

R =
N̂∑
i=0

n̂Ti (Epi − qi), (6.2)

where N is the number of points in S̄1. To minimise this a standard Gauss-Newton
approach can be used and an update to the motion parameters γ̄ can be computed as
follows

∆γ̄ =
(
JTWJ

)−1
JTWε̄, (6.3)

where individual Jacobians Ji that are concatenated to form J are computed as in
Chapter 4 as

Ji =
∂ei
∂γ̄

=
[
n̂T , (q̄i ∧ n̂)

]
. (6.4)

Finally the subsequent update to the pose estimate is applied via a matrix exponential
as follows

Et+1 = e
∑1
i=k ∆γiGkEt. (6.5)

6.4.2 Quadric Surface Representation

As with the implementation in [24] described in Chapter 5 curvature is computed using
a quadric representation, which is defined by

pTkETQEpk = 0, (6.6)

where

Q =


A B

2 0 0

B
2 C 0 0

0 0 0 −1
2

0 0 −1
2 0

 , E =


0

R(θx, θy) 0

tz

0 0 0 1

 (6.7)

are the parabolic quadric matrix and transformation matrix used to align the frames
orientation to the true tangent plane. This is iteratively fit using Equation 6.6 as an
error function given by

εk = pTkETQEpk. (6.8)
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Then the principal curvatures (κ1, κ2) can be extracted using a simple Eigen value
decomposition of the upper-left 2 × 2 matrix of Q. The update to the motion and
quadric parameters ∆η̄ can also be computed via a Gauss-Newton optimisation.

6.5 Joint Frame-to-Frame Optimisation

The initial motivation to this work was to improve the quality of frame-to-frame align-
ment in a real-time system. It has been shown in [203] that point-to-surface alignment
is possible and improves the quality of ICP over point-to-plane significantly. However
the computation of this approach was not real-time and robotic systems have a heavy
focus on real-time performance. To this end the goal became an initial implementation
that could produce high accuracy frame-to-frame alignments in approximately real-time.
This section details the implementation of such a system.

In order to align multiple frames the error function in Equation 6.8 was extended to
include a single relative pose as follows

ε′k = qTk ET
12Q

′
piE12qk, (6.9)

where E12 is the current estimated transformation from S̄2 to S̄1. In this formulation
Q′pi = ET

piQpiEpi is the quadric at point pi, expressed in short form for convenience.
qk ∈ S̄2 are the points in an neighbourhood N̄(q′i) around the closest point q′i after pro-
jection to the frame of S̄2 via E21pi, where pi is the central point. The transformation is
considered to be a function of the motion parameters γ̄12, while the quadric is a function
of the quadric parameters η̄i, where each point pi ∈ S̄1 has a quadric representation.
This defines a residual in terms of the neighbourhood N̄(q′i) as

r′k =
∑

qk∈N̄(q′i)

(
ε′k(qk)

)2
. (6.10)

The original error function from Equation 6.8 forms a residual function in terms of the
neighbourhood N̄(pi)

rk =
∑

pk∈N̄(pi)

(
ε′k(pk)

)2
. (6.11)

Both residual functions are in terms of the joint quadric parameters, but only r′k is in
terms of the motion parameters. This implies that a single frame that defines S̄1 is the
source of the quadrics which is the case. The residual functions are used to refine a single
set of quadrics and a single relative pose estimate via a Gauss-Newton optimisation as
described in Section 3.5.

Gauss-Newton optimisation requires the computation of the error function derivatives
with respect to the motion and quadric parameters. This is performed separately for
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each residual function, for εk and ε′k the derivatives with respect to the quadric param-
eters η̄pi are identical to those defined in Chapter 5 (see Section 5.3.6) so we omit the
derivation here. The resulting Jacobian matrix is defined by

Jη̄k(p) =



p2
x

pxpy

p2
y

2(p′zpy − pzp′i)
2(p′xpz − pxp′z)

2p′z



T

, (6.12)

where p ∈ {pk, qk} is either pk or qk, and p′ = Epcp is the point in the neighbourhood
N̄(pc) transformed by the matrix Epc of the associated quadric Qpc around the central
point pc. The derivatives of ε′k with respect to the motion parameters γ̄12 are given by

∂ε′k
∂γi

= qTk
∂E12

∂γi

T

Q′piE12qk + qTk E12
TQ′pi

∂E12

∂γi
qk

= qTk ET
12GiQ

′
piE12qk + qTk ET

12Q
′
piGiE12qk

(6.13)

via the chain-rule (see Section 3.4.1). Where Gi defines the ith generator of the Lie-
group SE(3) (see Section 3.6). The final computed derivatives can be used to construct
the Jacobian matrix Jγ̄12 are given by

Jγ̄qk =



2(q”kx)

2(q”ky)

2(q”kz)

2(q′kyq”kz − q′kzq”ky)
2(q′kxq”kz − q′kzq”kx)

2(q′kyq”kx − q′kxq”ky)



T

, (6.14)

where q′kx is the x component of the transformed coordinate q′k = E12qk, and q”kx is
the x component of the transformed and quadric multiplied coordinate q”k = Q′piq

′
k.

For any point pi ∈ S̄1 this provides two sets of Jacobian matrices this provides two sets
of Jacobian matrices. The Jacobians of the joint quadric parameters can be formed by
concatenation as follows

Jη̄pi =
[

Jη̄0(p0) Jη̄1(p1) . . . Jη̄N (pN )
]T

Jη̄qi =
[

Jη̄0(q0) Jη̄1(q1) . . . Jη̄N (qN )
]T
,

(6.15)

where Jη̄pi and Jη̄qi define the Jacobian for all points in the neighbourhood of the centre
points pi and q′i respectively, and N is the size of the neighbourhood N̄ vector. The
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matrix for the motion Jacobian can be expressed as

Jγ̄i =
[

Jγ̄q0 Jγ̄q1 . . . Jγ̄qN

]T
. (6.16)

In this case Jη̄i is twice the length of Jγ̄i , as it involves the points from two neighbour-
hoods. The Jacobian matrices can once again be combined into the larger Jacobian
matrix J

J =



0 Jη̄p0 0
. . . . . . 0

Jγ̄0 Jη̄q0 0
. . . . . . 0

0 0 Jη̄p1 0
. . . 0

Jγ̄1 0 Jη̄q1 0
. . . 0

...
...

. . . . . . . . .
...

0 0 0
. . . 0 Jη̄pN

Jγ̄1 0 0 0 . . . Jη̄qN


. (6.17)

This forms a rather sparse matrix, as each quadric is assumed to be independent and
the poses only depend on half as many points (i.e. a single neighbourhood as opposed
to two). Similarly the residual vectors can be concatenated to form

r̄pi =
[
r0 r1 . . . rN

]T
and r̄qi =

[
r′0 r′1 . . . r′N

]T
, (6.18)

which can be concatenated into a single residual vector

r̄ =
[
r̄p0 r̄q0 r̄p1 r̄q1 . . . r̄pN̂ r̄qN̂

]T
(6.19)

This can be used in a standard Gauss-Newton optimisation to compute a joint update
to the shared motion parameters ∆γ̄12 and the individual quadric parameters ∆η̄i via
the update equation

∆ζ̄ =
(
JTwiJ

)−1
JT r̄. (6.20)

However this presents a significant practical issue during computation, the approximate
Hessian matrix JTWJ is quite large even for a single point-cloud, and calculating the
inverse would require potentially gigabytes of memory and a huge number of compute
cycles. Thankfully this matrix is in fact very sparse as indicated in Figure 6.2, and
in addition it takes a form that is suitable to apply the Schur-complement trick as
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...... ...
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C
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BT

A

Figure 6.2: Left: The joint Jacobian matrix J of Equation 6.20 and Right: the approximate
Hessian matrix JTWJ. Additionally this demonstrates the approximate Hessian is composed
of 3 sub-matrices A,B and C, where C is block diagonal.

described in Section 3.5.6. Letting

A =

N̂∑
i=0

(
(Jγi )TwiJ

γ
i

)
,

B =
N̂∑
i=0

(
(Jγi )TwiJ

η
qi

)
and

C =
N̂∑
i=0

(
(Jηpi)

TwiJ
η
pi + (Jηqi)

TwiJ
η
qi

)
(6.21)

splits the matrix computation sensibly, as well as letting

x̄ =
N̂∑
i=0

(
(Jγi )Twir̄qi

)
and ȳ =

N̂∑
i=0

(
(Jηpi)

Twir̄pi + (Jηqi)
Twir̄qi

)
. (6.22)

This allows the update to be computed using the re-arrangement of the block decom-
position as

ā =
(
A−BC−1BT

)−1
(x̄−BC−1ȳ) and b̄ = C−1ȳ −

(
BC−1

)T
ā, (6.23)

where ā = ∆γ12 is the update to the pose, and b̄ = ∆η̄ are all the quadric parameter
updates.

6.5.1 Implementation Details

The updates can be computed efficiently using CUDA (see Section 3.9] for details of
GPGPU programming). A basic implementation outline is shown in Algorithm 1.
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Data: Surfaces: S̄1, S̄2, Pose Estimate: E12

Result: Pose Update: ∆γ̄12, Curvature Updates: ∆η̄i
foreach pi ∈ S̄1 do

Qi = getCurrentQuadric(pi);
p′i = E−1

12 · pi;
q′i = project(S̄2, p

′
i);

for pj ∈ N̄(pi) do
Jηpj = computeQuadricJacobian(Qi, pj);
ej = computeError(Qi, pj); wj = computeWeight(ej);

Ci += JTηpj
wjJηpj ;

ȳi += JTηpj
wjej ;

end
for qj ∈ N̄(q′i) do

Jγqj = computePoseJacobian(Qi, qj);
Jηqj = computeQuadricJacobian(Qi, qj);
ej = computeError(Qi, qj); wj = computeWeight(ej);

A += JTγqj
wjJγqj ; Bi += JTγqj

wjJηqj ; Ci += JTηqj
wjJηqj ;

x̄ += JTγqj
wjej ; ȳi += JTηqj

wjej ;

end

A -= BiC
−1
i BT

i ; x̄ -= BiC
−1
i ȳi;

// Store BC−1 and C−1
i ȳ for use in the final quadric update

B′i = C−1
i BT

i ; ȳi = C−1
i ȳi;

end
∆γ̄12 = A−1x̄; // Pose update
foreach Qi ∈ Q do

∆η̄i = ȳi −Bi∆γ̄12; // Compute final quadric update vector
Qi = updateQuadric(Qi,∆η̄i); // Update quadric

end

Algorithm 1: Joint Frame-to-Frame Quadric-Pose Optimisation

This doesn’t include the optimisations used to make it run in near real-time. Many
of these optimisations are CUDA specific such as the warp-wise operations (refer to
[226] for further details of this CUDA optimisation). Additionally as was in the case
in Chapter 5 the inverse of C is never explicitly computed, instead a Cholesky decom-
position (see Section 3.1.6) is performed which allows for the matrix B and vector ȳ
to more efficiently be back-substituted (see Section 3.5.2). The computations are di-
vided such that a single warp is assigned per point pi, which allows all the Jacobian
matrix computations to be performed using register memory and warp reductions to
increase efficiency and reduce execution time. Shared memory is used to store interme-
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diate results, including those used in the back-substitutions which are also split across
a fraction of the threads in the warp. Although this increases thread divergence its
faster than returning to global memory and executing a new kernel. Additionally for
all symmetric matrices, only the unique values are stored to reduce redundant memory
and computation. Finally all computed values are written back to global memory and
a separate kernel is launched to compute the final updates, with a single thread per
quadric Qi. For the full details please refer to the repository.

6.6 Joint Multi-Frame Optimisation

The frame-to-frame is considered a special case of the multi-frame optimisation, as it
can be optimised to execute in near real-time using CUDA due to the minimal size of
the mutual information matrix. The error function in Equation 6.9 can now be trivially
generalised to work for the multiple frames. This slightly modified error function for
any particular neighbourhood N̄(q

′
ij) around a transformed central point q′ij = E−1

j pi
in surface S̄j is given by

εij = qTk ET
j Q′piEjqk, (6.24)

where Q′pi is the associated quadric for the central point pi, and Ej is the transformation
that takes points in surface S̄j to the frame of S̄0. This is basically identical to the
function in Equation 6.9, but now points in the S̄0 (this is the surface the quadrics are
computed from) aren’t considered to be a special case. As such a transformation for all
surfaces S̄j are computed during the optimisation, and a simple normalisation is applied
to return this the transformation of S̄0 to Identity (E0 = I). The joint cost function is
defined over all points pi ∈ S0 as

rmulti(Γ̄, η̄) =
∑
pi∈S0

M∑
j=0

(εij)
2, (6.25)

where Γ̄ = {γ̄0, γ̄0 . . . γ̄M} are the respective motion parameters of each surface S̄j , and
η̄ = {η̄1, η̄2 . . . η̄N} are the respective quadric parameters of each quadric Q′pi computed
from surface S̄0.

The cost function in Equation 6.25 was reduced using a standard Gauss-Newton opti-
misation approach. The gradients and Jacobian matrices are identical to those in the
single-frame case, but instead of a single pose now M poses are expressed in the opti-
misation. As indicated in Equation 6.25, the cost is summed over all neighbourhoods
that correspond to the quadric’s associated central point. This requires the additional
step of computing all associated correspondences across an overlapping set of frames,
which is identical to the correspondence estimation in Chapter 4. However, the only
correspondences that matter are those that involve surface/frame S̄0. As described in
Chapter 4 a project-and-scan correspondence estimate was used to compute the cor-
respondences for all surfaces to surface S̄0. An example of the Jacobian and Hessian
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related to pi

Figure 6.3: Left: a scene with three cameras that view a single point pi, and the corresponding
closest points (q′i1, q′i2) in two adjacent views (S̄1, S̄2) Centre: Jacobian matrix that additionally
demonstrates the corresponding sections for the point pi. A missing correspondence is shown in
pN̂ , where the surface S̄1 contains no correspondence. The values across the top indicate which
parameters this part of the Jacobian relates to, while the values across the right side indicate
the points that contribute. Right: approximate Hessian matrix that also indicates how the
point pi effects the final matrix.

computation for a set of three frames is shown in Figure 6.3. This demonstrates clearly
how the point correspondences effect the final computation, as well as how missing cor-
respondences result in some sparsity in the dense mutual information matrix, through
the light greyed-out sections.

As is the case with the frame-to-frame Jacobians, the matrix is block separable. This
is indicated in Figure 6.3(Right) by the slightly thicker lines marking the A,B and
C matrices that make up the approximate Hessian matrix JTWJ, which is ideal for
the Schurr-complement trick. However, in this case the size of the mutual informa-
tion matrix is different, and two block-diagonal matrices A and C require inversion.
The storage of the intermediate matrix C−1BT also requires a potentially much larger
amount of space in memory. These considerations are discussed in the following section
on implementation details.

6.6.1 Implementation Details

The joint multi-frame optimisation is implemented using a multi-threaded CPU imple-
mentation. The work is separated based the correspondences, this is loosely demon-
strated in Algorithm 2, where the computation is performed across all correspon-
dences of a single point pk. This division is identical to that of the work in Chap-
ter 4, however in this case only the correspondences to points in surface S̄0 are used.
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Data: Surfaces: S̄i, Pose estimates: Ei, Quadric estimates: Qk

Result: Pose updates: ∆γ̄i, Quadric updates: ∆η̄k

foreach k ∈ {1, 2, . . . , N̂} do
foreach i ∈ {1, 2, . . . ,M} do

// compute all corresponding points to point pk
// across all M surfaces S̄i
Qk = getCurrentQuadric(pk); // center quadric
p′k = Eipk; // center point
q′k = project(S̄i, p

′
k); // closest point in surface S̄i

foreach qj ∈ N̄(S̄i, q
′
k) do

Jγij = computePoseJacobian(Qk, qj);
Jηkj = computeQuadricJacobian(Qk, qj);
ej = computeError(Qk, qj); wj = computeWeight(ej);

Ai += (Jγij)
TwjJ

γ
ij ; Bik += (Jγij)

TwiJ
η
kj ; Ck += (Jηkj)

TwjJ
η
kj ;

x̄i += (Jγij)
Twjej ; ȳk += (Jηkj)

Twjej ;
end
Ai -= BikC

−1
k BT

ik; x̄i -= BikC
−1
k ȳk;

end
// store intermediate matrices required in existing Bjk and ȳk
Bik = C−1

k BT
ik; ȳk = C−1

k ȳk;
end
foreach i ∈ {1, 2, . . . ,M} do

∆γ̄i = A−1
i x̄i; // compute final pose updates

Ei = updatePose(Ei,∆γ̄i); // update poses using matrix exponential
end
foreach k ∈ {1, 2, . . . , N̂} do

foreach i ∈ {1, 2, . . . ,M} do
ȳk− = Bik∆γ̄i; // compute final quadric updates

end
∆η̄k = ȳk;
Qk = updateQuadric(Qk,∆η̄k)

end
Algorithm 2: Joint Full Quadric-Pose Optimisation

The quadrics for each point are estimated using the approach described in Chapter 5,
and the estimated poses are computed using the same point-to-plane ICP approach
used to initialise poses in Chapter 4. Separate memory per thread is used, to prevent
memory contention and avoid the need for atomics or mutexs in the multi-threaded
implementation. This increases the spatial complexity of the approach, which could
limit the number of overlapping frames that can be used. In practice the benefit of
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using additional frames reduces as more frames are included in the optimisation. This
is largely because no new information is really being added after the noise has been
compensated for. This relationship between performance and the number of frames, is
explored further in Section 6.7. As indicated in Algorithm 2, the matrix C−1BT is stored
during the computation, as this matrix is required for the final update computation.

As the system separates the computation such that a single thread will compute all
related Jacobians there is no requirement to duplicate this matrix as there can be no
memory conflicts, which is also true for the vector C−1ȳ. This is not true for the matrix
A − BC−1BT which will be accessed by every thread, as such each thread stores an
individual estimate of this matrix and the resulting estimates are sum reduced after all
threads finish executing. This has the added benefit of reducing the risk of underflow
by maintaining a statistically similar matrix conditioning for each estimate if the work
is distributed evenly among threads. Specifically this resulting matrix is the sum of tens
of millions of matrix products in a general case, which can be prone to underflow. By
dividing the work over threads this increases the effective precision. As M << N̂ the
inversion of the resulting matrix A−BC−1BT is comparatively cheap and as such this
section is performed single threaded. Following this the updates to the quadric estimates
are again computed across a single thread, but as the computation is already not real-
time this was deemed unnecessary. As is the case in Section 6.5, no explicit inversions are
actually performed, all calculations are performed using Cholesky decomposition and
back-substitution. The whole multi-frame system could be implemented on the GPU
and would potentially run as a background process but at the time of this research was
deemed beyond the scope, and can be considered future work.

6.7 System Evaluation

In this section the performance of the novel implementations is compared with state
of the art alternatives, and the improvement in accuracy is evaluated. Additionally
the approaches are evaluated using real-world low cost depth sensor datasets and their
applicability to robotic applications is demonstrated. In Section 6.8 several approaches
are evaluated on the task of relative pose alignment on real-world and synthetic data. In
Section 6.8.3, the amount of pose drift is measured for several approaches, which is an
important quantity in loop-detection. Finally in Section 6.9 several curvature estima-
tion methods are evaluated quantitatively using single and the multi-frame approaches
proposed in this chapter.

167



6 JOINT CURVATURE POSE OPTIMISATION

Quadric Error

Quadric Error

Quadric Error

Initial
Estimate
(iterative)

Initial
Estimate

Quadric Error

Quadric Error

Update 
Pose + Quadric

Final Joint
Estimate

Update
Pose

Update
Quadric

Extract
Patch

Planar
Initialisation

Extract
Patch

Extract
Patch

Single Frame Initialisation Multi-Frame Optimisation

-

+

+ -

Figure 6.4: Left: the initialisation process for a single patch in frame 0 using the quadric
surface alignment strategy from Chapter 5. Right: the multi-frame alignment for two frames,
demonstrating the extracted corresponding patch and the refinement of the quadric and pose
alignment to reduce the cost in Equation 6.25. Bottom: shows the initial and resulting quadric
surface estimates for the whole frame.
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Colour Curvature (Ground Truth)

-κ1

+κ1

+κ2 -κ2

Figure 6.5: An example from one of the real-world curvature datasets (Real-World 5 ). Right:
the colour image, Left: manually labelled ground-truth curvature values. Additionally a key
is shown to indicate the false-colouring used for the ground-truth curvature values.

Synthetic Dataset 1 Synthetic Dataset 2 Synthetic Dataset 3

Wall Dataset Desk Dataset Dataset Collection Setup

Microsoft
Kinect

Motion

Figure 6.6: The synthetic and real-world datasets used to assess pose accuracy of several
approaches. Top-Right: Demonstrates the experimental setup used to capture the real-world
datasets Wall and Desk. A Microsoft Kinect Version 1 is rigidly attached to a rail and moved
along a straight-line trajectory capturing frames exactly every 10mm.
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6.7.1 Evaluation Datasets

Several additional ground truth datasets were created in order to evaluate the systems
produced in this work. In addition to the real-world curvature datasets that were
created to evaluate the system described in Chapter 5 (an example is shown in Figure
6.5), two additional real-world ground truth pose datasets were created to evaluate the
relative pose estimates quantitatively. These datasets are pictured in Figure 6.6 (Top).
Both Wall and Desk were collected in the same way, a Kinect (Version 1) was rigidly
attached to a rail and moved along it in marked increments of 10mm. While the Kinect
was positioned, a single frame was captured that included depth and colour information.
A 1.3m straight line trajectory was captured for each dataset, but roughly only 65cm
segments of the dataset overlap sufficiently for a multi-frame evaluation. The depths
used in the evaluation are corrected using the calibration computed using the approach
described in Chapter 4.

To access the approach in a more controlled manner several synthetic datasets were
generated. As opposed to the synthetic scenes used to evaluate the system in Chapter
5, the datasets used in this work contain more complex scenes with a mixture of ob-
jects. This is intended to make the results from the synthetic data more meaningful.
As shown in Figure 6.6(Bottom), scenes vary in complexity but always contain a large
planar background in order to challenge the curvature estimation, and more accurately
represent a more realistic scene. Every image in each dataset includes a ground-truth
pose, curvature and depth value. Additionally simulated noise is added in the same
manner as described in Chapter 5, to examine the effect on pose and curvature esti-
mation accuracy. The trajectories for each dataset are different, but are all smooth
trajectories of simulated motion. The spacing between frames is not necessarily equal
are some trajectories accelerate.

6.7.2 Evaluation Metrics

The pose accuracy is evaluated using the absolute trajectory error (ATE) metric pro-
posed in [51] given by

εATE =

√√√√ 1

N

N∑
t=0

|E−1
t E∗t |2, (6.26)

where Et and E∗t are the ground-truth and estimated pose at time t respectively. This
is effectively an RMS error over the magnitude of the log-pose error and this is how the
magnitude of the pose is computed using loge(E

−1
t E∗t ) ∈ se3 which operates on the Lie-

algebra se3. The magnitude is separated into the translation and rotation components
are evaluated separately, which is trivial in the log pose form.
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The curvature accuracy is evaluated in the same manner as Chapter 5 using

εcurv =

√√√√ 1

N̂

N̂∑
i=0

|(κ1 − κ∗1)2 + (κ2 − κ∗2)2|, (6.27)

where κi and κ∗i are the groincludeund-truth and predicted principal curvature values
respectively. This computes the RMS curvature error over the entire set of points pi in
surface S̄0.

6.7.3 Compared Approaches

The tested pose alignment methods were:

• ICP-ftf : frame-to-frame dense ICP, same as the one used in Chapter 4 for the
initial alignment estimates
• ICP-bundle: dense frame-to-frame ICP bundle-adjustment that minimises the

point-to-plane error across all points simultaneously. This is also the same as the
one used in Chapter 4 for the calibration, but with fixed calibration parameters.
• J-ftf : the joint frame-to-frame approach described in Section 6.5
• J-full : the full multi-frame joint optimisation described in Section 6.6
• Q-full : is the full multi-frame joint optimisation described in Section 6.6, but with

the quadric parameters fixed in the optimisation. This is similar to the approach
in [203] but using the quadric formulation described in Chapter 5.

The tested curvature approaches were:

• Quad LS : the basic quadric least-squares approach described in [98]
• Quad IT : the real-time iterative re-weighted least-squares approach described in

[24], from Chapter 5.
• J-ftf : the joint frame-to-frame approach described in Section 6.5
• J-full : the full multi-frame joint optimisation described in Section 6.6

6.8 Pose Estimation Accuracy

This section details the quantitative evaluation of pose estimation accuracy using syn-
thetic and real-world data.
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Translational Error (m)

Noise Added ICP-ftf ICP-bundle Ours (Q-full) Ours (J-ftf) Ours (J-full)

σ 4.19e-3 6.93e-4 2.79e-4 2.87e-4 2.88e-4

1σ 9.22e-3 1.83e-3 8.15e-4 1.02e-3 6.90e-4

2σ 1.52e-2 3.00e-3 1.68e-3 1.92e-3 1.53e-3

3σ 2.01e-2 4.45e-3 2.53e-3 2.91e-3 2.37e-3

Rotational Error (rad)

σ 3.36e-3 5.77e-4 2.38e-4 2.31e-4 2.79e-4

1σ 7.35e-3 1.69e-3 3.69e-4 5.05e-4 4.98e-4

2σ 1.31e-2 2.69e-3 6.84e-4 8.70e-4 5.54e-4

3σ 1.72e-2 3.40e-3 1.21e-3 1.22e-3 8.75e-4

Table 6.1: Synthetic Pose Error - Dataset1

6.8.1 Synthetic Dataset Evaluation

The pose alignment accuracy is evaluated using the metrics described in Section 6.7.2,
on the synthetic datasets for each of the methods described in Section 6.7.3. The
results are presented in Tables 6.1,6.2 and 6.3. The lowest error is highlighted in each
category in bold. A consistent order of magnitude improvement over ICP-ftf by the
proposed J-ftf approach is observed. This is significant as this process can be used to
massively improve the quality of frame-to-frame alignments during tracking for an online
approach. A modest improvement is also visible for the proposed J-full system over a
full bundle adjustment (ICP-bundle) (approximately 30%-50%), despite the proposed
approach only aligning to a single frame. This is a significant result as ICP-bundle,
uses the information of all frame-to-frame alignments to compute a semi-dense pose
graph. More surprising is that the J-ftf approach is able to consistently out-perform
the ICP-bundle approach for synthetic data. This indicates that the more accurate
surface approximation could be very valuable in a SLAM based system, considering the
dense point-to-point bundle-adjustment is in fact similarly computationally expensive
to the J-ftf.

Another interesting result is the results of Q-full, which has essentially the same per-
formance as the J-ftf and J-full on low noise data, reducing in quality slightly faster
than the proposed approaches as more noise is added. This indicates the initial quadric
estimates are relatively robust to noise, more so than the normal estimates, and more
importantly that having more data improves the quality of those estimates and makes
alignment more robust.
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Translational Error (m)

Noise Added ICP-ftf ICP-bundle Q-full J-ftf J-full)

σ 3.56e-3 5.42e-5 3.55e-5 3.69e-5 3.58e-5

1σ 4.83e-3 6.22e-4 4.74e-4 4.70e-4 4.56e-4

2σ 8.29e-3 1.41e-3 1.07e-3 9.97e-4 9.86e-4

3σ 1.17e-2 2.60e-3 2.07e-3 2.07e-3 1.97e-3

Rotational Error (rad)

σ 2.00e-4 2.71e-5 1.14e-5 1.19e-5 8.49e-5

1σ 2.46e-3 1.01e-4 6.33e-5 5.92e-5 9.75e-5

2σ 5.70e-3 5.34e-4 3.54e-4 2.01e-4 2.10e-4

3σ 7.79e-3 2.32e-3 1.99e-4 2.26e-4 1.89e-4

Table 6.2: Synthetic Pose Error - Dataset2

Translational Error (m)

Noise Added ICP-ftf ICP-bundle Ours (Q-full) Ours (J-ftf) Ours (J-full)

σ 1.94e-3 1.27e-4 1.91e-4 1.23e-4 1.22e-4

1σ 4.61e-3 9.78e-4 9.49e-4 9.45e-4 9.39e-4

2σ 8.50e-3 1.95e-3 1.96e-3 1.82e-3 1.83e-3

3σ 1.58e-2 3.04e-3 2.69e-3 2.71e-3 2.72e-3

Rotational Error (rad)

σ 1.93e-3 7.09e-5 1.74e-4 7.64e-5 7.40e-5

1σ 4.74e-3 2.28e-4 2.73e-4 2.55e-4 2.55e-4

2σ 8.25e-3 3.82e-4 4.99e-4 4.10e-4 3.69e-4

3σ 1.30e-2 7.06e-4 5.52e-4 5.99e-4 5.30e-4

Table 6.3: Synthetic Pose Error - Dataset3

6.8.2 Real-world Dataset Evaluation

The performance of the proposed approaches on real-world datasets collected using a
low-cost depth sensor (the Microsoft Kinect) is shown in Figure 6.7. A similar reduction
in pose estimation error is observed using the proposed approaches, compared to the
dense ICP based approaches. In dataset Wall we see a significant improvement using
J-full approach over other approaches, despite the large number of planar surfaces
visible in the scene. This is surprising as these large planar objects should significantly
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Figure 6.7: Real-world pose error on two ground truth datasets. The datasets were both
captured using an on-rails setup with translation only along a straight trajectory. These results
demonstrate the improved accuracy of our methods over the standard approaches particularly
in the Dataset Desk (top), which shows a noticeable reduction in translation and rotational
error for the joint approaches.

improve the quality of ICP-ftf and ICP-bundle. In dataset Desk the improvement is less
significant for the proposed approaches, although all quadric based methods significantly
reduce RMS pose error.

6.8.3 Pose Estimation Drift

In order to demonstrate the applicability of our systems to real-world tracking appli-
cations we examine the estimated pose drift as we move along a known trajectory. As
shown in Figure 6.8 we observe a significant reduction in frame-to-frame drift using
quadric based approaches. Most surprising is the reduction in drift using our J-ftf
implementation, achieving comparable pose drift error to ICP-bundle and greatly im-
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proving upon the drift of ICP-ftf. This shows our implementation can be used in a
tracking system to greatly reduce the drift of adjacent keyframes, which can accumu-
late in a system and make the detection of loops very difficult for a non-feature based
approach. Additionally our J-full approach shows a significant reduction, and increases
significantly slower than all other approaches. The main reason for this is that methods
like ICP-bundle benefit greatly from large loop-closures, which are not present unless
the camera revisits a location.

ICP-ftf
ICP-bundle

Q-full

J-ftf
J-full

ICP-ftf
ICP-bundle

Q-full

J-ftf
J-full

 Dataset Wall  Dataset Desk 

Figure 6.8: Demonstrates the reduction in drift using the proposed approaches, including
J-ftf, which even manages to match the drift of the global ICP bundle adjustment for Dataset
Wall.

6.9 Curvature Estimation Evaluation

This section provides a quantitative analysis of the proposed approaches across all
datasets. An addition qualitative example can be found in Figure 6.1, at the begin-
ning of this section. This figure demonstrates a dramatic qualitative improvement to
curvature estimation for real-world data.

6.9.1 Synthetic Dataset Evaluation

We examine the results of principal curvature estimation using the synthetic datasets
shown in Figure 6.5. As described in Section 6.7.2 we compare both of our novel joint
approaches to existing methods, including a quadric least-squares (Quad LS ) approach
[98], and our previous iterative quadric fitting (Quad IT ) approach from [24]. We
show the results of testing on synthetic data in Figure 6.9. Not so surprisingly using
information from multiple frames results in reduced error, with both J-full and J-ftf
consistently out-performing the previous methods. Our J-ftf method only uses two
frames and as such the improvements are considerably more modest then the multi-
frame J-full.
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Synthetic Dataset 2

Synthetic Dataset 1 Synthetic Dataset 3

Quadric Estimate (J-full)Quadric Estimate (Quad LS)

Ground-truthColour

Figure 6.9: Results of testing several curvature estimation methods on 3 synthetic datasets
with successively increasing levels of noise added to each. This demonstrates our systems ability
to cope with aggressive noise, and shows the improvement upon previous curvature estimation
methods by using multiple frames. Bottom-Right: shows the qualitative performance for a
single frame of the synthetic dataset 3, including the ground-truth curvature values. This shows
where the system finds curvature estimation the most challenging, unsurprisingly it’s the edges
which technically contain infinite curvature.

6.9.2 Real-World Dataset Evaluation

Finally we compare the implementation on real-world datasets generated for [24], an
example is shown in Figure 6.5. The result of this testing shown in Figure 6.10 demon-
strates both our joint methods (J-ftf, J-full) can out-perform previous methods at prin-
cipal curvature estimation on real-world data. This is significant as curvature can be
used as a basis for scene segmentation, using our J-ftf method can therefore greatly
improve the results of segmentation. We also include a qualitative example of the im-
provement in Figure 6.1, which clearly demonstrates the improvement using multiple
frames has. This frame is from the dataset Real-World 4, and contrasts the performance
of our previous approach (Quad IT ) against our full joint optimisation (J-full). A more
subtle aspect of the improvement is the reduction in noise on the planar surface, which
is much flatter for the joint estimate.
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Figure 6.10: RMS curvature error for 3 real-world manually labelled datasets. Note the
reduction in error upon previous state-of-the-art techniques across all datasets using our joint
approaches. Even with just two frames (J-ftf ) our system shows a significant reduction in error
over the approach in [24]

6.10 Conclusions and Future Work

The two systems presented in this chapter use a joint optimisation approach to improve
curvature and pose estimates on synthetic and real-world datasets. This approach is
shown to not only be useful to improve offline dataset accuracy over state of the art
techniques such as dense ICP bundle adjustment but can also be incorporated into a
real-time system to greatly reduce pose drift to improve the results of re-localisation and
loop-closure. The current implementation of joint optimisation across multiple frames
has not been fully optimised, but has been designed such that a GPU implementation
should be a relatively simple extension of this work in the future.

6.11 Code/Datasets

The source code and datasets described in this chapter are provided at the following
repository https://github.com/aspek1/JointCurvatureOptimisation.git.
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7

Machine Learning Approaches for Geometric Quan-
tity Estimation

The following chapter is largely drawn from work performed jointly with Thanuja Dhar-
masiri, and published in [159] and is likely to appear in a similar form in his thesis. The
idea was to use the previous work from Chapter 5 in a machine learning problem. To
this end Thanuja Dharmasiri and I collaborated on a novel depth, normal and curvature
joint prediction network. The work from Chapter 5 was used to generate training data
for a Convolutional Neural Network (CNN) which was trained to replicate the output
using only colour information as input. The resulting network was found to demonstrate
the benefit of using relating quantities in training a network to overall performance.

A list of elements and the relevant percentages we have agreed in terms of contribution
to the production of this work is provided:

• Conception of idea (50%)
• Network architecture design (10%)
• Loss/Objective function design (40%)
• Coding the network (≈1%)
• Training data creation (70%)
• Testing and evaluation (50%)

7.1 Motivation

Extracting information from raw data is a well studied problem in robotics. A visual
image is one such form of raw data and has been widely used in the community to tackle
a range of problems including image segmentation [146], localization and mapping [14],
visual servoing [227] etc. and there exist a continuous stream of research which look
at maximizing the amount of information extracted. In this chapter it is shown that it
is possible to estimate geometric quantities such as surface curvature using only RGB
images as input. To our knowledge this was the first work to demonstrate such a
capability.

Surface Curvature is an important geometric surface feature, that indicates the rate
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Figure 7.1: Top: The corresponding RGB image from the NYUv2 test dataset which was used
as the only source of information to estimate curvature. Middle: The ground-truth curvature
computed using the depth data using the approach from [24]. Bottom: The predicted curvature
of this network. The false colouring is as shown in Chapter 5 and 6. Positive curvatures are
shown in blue, negative in red, saddles in green and planes in white.

at which the direction of the normals change on the surface at any particular point.
As discussed in Section 3.8. It has been shown to be particularly useful for the task
of segmentation on range image and 3D data [19, 98, 96, 222]. A key challenge in
accurately estimating surface curvature is its sensitivity to noise in the input data, as
it is a second order surface derivative, it is affected quadratically by noise. Previous
works have shown that neural networks can be used to provide accurate geometric
estimates from just single RGB images [34, 157, 187, 158], including estimating depth
and normals. In this work a Convolutional Neural Network (CNN) is used to estimate
principal surface curvatures as well as depth and normals, from a single RGB image.
This is an extension of the work performed in Chapter 5, as a practical application of
the system created in that work.

Contrary to the popular belief that hand-engineered features are inferior compared to
learnt features, this work argues that well designed features combined with machine
learnt representations provide improved performance. It should be stressed that the
features designed are calculated by hand, but rather predicted by the network itself as
part of the inference pipeline. More concretely, the network is forced to learn an internal
representation that will not just focus on the reduction of loss in one quantity, for
example depth, but also other quantities through the use of multiple loss functions and
a shared model capacity. This is demonstrated by estimating surface curvature, surface
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normals and depth in a multi task learning framework which provides superior results
compared to training them as individual tasks. The work presented was inspired by that
of Eigen et al. in [34]. In this work three quantities are also jointly estimated (depth,
surface normals and semantic labels) using a single network. Semantic segmentation is
clearly related to depth and normal estimation, and they demonstrate an improvement
estimating all three. The approach presented in this chapter shows that estimating
more tightly coupled quantities, even when the ground-truth is computed from noisy
data, increases the relative improvement of all three tasks. This is demonstrated both
quantitatively and qualitatively as the network is able to achieve better results on
depth and surface normals on the NYUv2 dataset [40] by estimating a view point
invariant quantity (surface curvature) jointly with depth and normals. Additionally as
an application of this work, a simple segmentation is performed using the estimated
quantities and a border function.

7.2 Contributions

The contributions of the work presented in this chapter are as follows:

• A novel application of the work presented in Chapter 5 for machine learning.
• A novel technique to estimate surface curvature of objects using purely RGB

images.(Method: Section 7.5.3, Results: Section 7.8.3)
• A framework which predicts depth,surface normals and curvature jointly.(Method:

Section 7.5, Results: Section 7.8)
• Demonstrate that joint training can improve the accuracy of all three tasks while

keeping the model capacity fixed (Method: Section 7.6.3, Results: Tables 7.1, 7.2,
7.3.

7.3 Related Work

In this section we review existing work in the literature that is related to this paper
and in turn inspired the ideas presented. We take a look at traditional approaches
used to compute surface curvature from raw depth data, then we summarize how deep
learning has been used to predict information from images and finally, we discuss how
the problem of learning multiple tasks in a single platform was performed using deep
learning.

As described in Section 3.8, surface curvature estimation is a well explored topic in
robotics and computer vision. It has been shown to be useful for object segmentation [19,
98, 222, 96] in depth scans and RGB-D imagery. There are several popular approaches
to estimating the surface curvature. One technique is to simply twice-differentiate the
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surface [19, 96], but this can lead to a high sensitivity to noise in the data and generally
requires removal or rejection of surface outliers. Another technique is to estimate the
surface curvature from a locally connected surface mesh based on the change in adjacent
facet normal angles [222, 94, 92]. This method is predominantly used for computer
graphics and low-noise data as it operates on a small neighbourhood of facets. Yet
another technique is to use locally fit surface quadrics and directly extract the principal
curvatures from their parameterization [98, 203], which has been shown to be robust
to noisy data and fast enough to be computed in real-time [24]. In this chapter the
approach in [24] is used, to compute surface curvature and surface normals from the
training data sourced from the NYUv2 dataset [40] as it has been shown to perform
well on range image data of the type present in the dataset.

Convolutional Neural Networks (CNNs) have been very effectively applied to a range of
robotic and vision tasks including grasp pose detection [184, 185], image classification
[26, 37], semantic segmentation [146], depth estimation [34, 157, 187, 158], surface
normal estimation [228, 160, 34]. The work presented in this chapter is more closely
related to the latter two tasks as we demonstrate surface curvature can be predicted
using RGB images as the only input. This work initially used the VGG architecture [27]
as a starting point to predict surface curvature in a standalone network and was then
extended to estimate depth and surface normals in a single network which is described
in Section 7.4.

Prior to the resurgence of neural networks depth was either computed using a Simul-
taneous Localisation and Mapping (SLAM) system [111, 15] or directly obtained from
a range sensor such as structured light sensors[14, 13] (Microsoft Kinect). As shown
in Section 3.3 each of the range sensors has potential drawbacks, and machine learn-
ing is seen as a possible complement to these sensors. Saxena et al. in [187] used a
supervised learning approach that combines local and global image features by using
a Markov Random Field (MRF). The idea of using both global and local features was
further investigated by Eigen et al. [35] using the AlexNet [26] architecture in a multi-
scale scheme. Liu et al. [157] proposed to combine graphical models in the form of a
Conditional Random Field (CRF) with a CNN to improve the accuracy of monocular
depth estimation. More recently, Laina et al. [158] proposed to use a far superior fully
convolutional residual architecture and obtain state-of-the-art results in single image
depth estimation.

Data driven single image surface normal estimation was first tackled by Fouhey et al.
in [229]. They used a SVM based detector followed by an iterative optimisation scheme
to extract geometrically informative primitives. Ladicky et al. proposed to use im-
age cues of pixel-wise and segment based methods to generate a feature representation
that can estimate surface normals in a boosting framework [230]. A ConvNet approach
to estimating surface normals in global and local scales while incorporating numerous
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constraints such as room layout and edge labels was taken by Wang et al. [228]. Re-
cently, Bansal et al. [160] showed that by combining hierarchy of features from different
levels of activations in a skip-network architecture that you could generate much finer
predictions for surface normals achieving state of the art results.

In one of the earliest works of multi-task learning Caruana et al. showed in [231] that by
learning related tasks in parallel, the performance of all tasks could be improved, which
is consistent with our findings. Multiple tasks were learned in the form of material
classification and defect detection in railway fasteners in [232] where they used Deep
CNN based multi task learning for railway track inspection. They were able to show
the adaptability of the multi task learning platform by using different training batch
sizes (due to availability of data). In our case, all three tasks were trained with the
same batch size as training data for the derived quantities (normals and curvature)
were computed from depth. Multi task learning algorithms were also used to perform
head pose estimation [233], web search ranking [234], face verification [235] etc. Li et
al. in their work Learning Without Forgetting [236] demonstrated that in the presence
of a model trained on one task, it can be fine-tuned to perform better on a new task
while not hindering the performance of the previous task by only using training data
of the new task. In this case however, access to training data for all three tasks is
available, and it was found that training the prediction stacks jointly, achieved superior
performance compared to fine-tuning.

7.4 Model Architecture

A more detailed description of Convolutional Neural Networks (CNN) and their con-
stituent layers can be found in Section 1.4. The current section is intended to provide
an overview of the layers used in context, some understanding of layer functionality and
use is assumed knowledge.

The model begins with a set of convolutional layers based on the VGG16 architecture
[27]. This allows the model to perform an initial feature extraction. This is followed by 2
fully connected layers which are used to distil the context of the whole image in a feature
embedding. Next an initial stack of convolutional layers corresponding to coarse level
predictions of depths, normals and curvatures. Each of these with an individual solver to
force the network to learn course level features at a lower resolution early in the network.
These course level predictions are now treated as feature maps and concatenated with
features from a different set of convolutions and convolved separately to predict at a
finer resolution. The convolutional layers in the coarse and fine level prediction stacks
perform 5x5 convolutions with a stride of 1 and a pad of 2, to preserve the input
resolution. There is an explicit up-sampling layer which increases the spatial resolution
of the coarse level prediction from 74x55 resolution to 147x109 which is maintained
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throughout. The entire model is summarised in Figure 7.2 and demonstrates the flow of
the data explicitly through the network. The individual solvers for each of the training
tasks compute the loss and initiate the backward propagation of gradients as described
in Section 1.4. During evaluation of the different configurations of this system the model
capacity was maintained in order to measure the contribution of each new task. This
required several changes to be made during training which are explained further in the
Section 7.6.3.

After the completion of this work, different architectural designs were explored and
these are discussed in Section 7.8.5.
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Figure 7.2: Visual Representation of Model Architecture

7.5 System Task Specification

This section is included to provide some background for each of the tasks the network
is trained to perform.
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7.5.1 Depth

The raw depth data distribution given by the NYUv2 dataset [40] was used for training
based on the official train and test scene split (that is 249 training scenes and 219 test
scenes). Similar to previous approaches the network was trained to estimate depth at
multiple scales, as this was found to benefit the overall performance [34]. The loss
function used for calculating the error in the depth estimation included a Euclidean
loss term, a scale invariant term, and a gradient term which compares the local rate of
change of the predicted and ground truth depth values spatially. Unlike in the work
of Eigen et al., the coarse level feature stacks were not fixed during training and were
jointly trained along with the fine level feature stacks. The loss function is given by the
following equation

L(D,D∗) =

N∑
i=1

d2
i −

1

2N2

(
N∑
i=1

di

)2

+
1

N

N∑
i=1

(
(∇xdi)2 + (∇ydi)2

)
, (7.1)

where di is the difference in predicted log depth and ground truth log depth for the
valid pixels N (pixels that contain non-zero depth values in the raw depth data), ∇xdi
is the horizontal image gradient of the difference and ∇ydi is it’s vertical counterpart.
This is the same loss criterion employed by Eigen et al. in [34].

7.5.2 Surface Normal

Ground truth normals are computed using a variety of techniques in the literature. In
this work the normals are estimated by fitting a quadric patch to a set of nearby points in
the point cloud, as described in Chapter 5. This provides a more accurate representation
of the surface compared to just fitting planar regions, and added little to the overall time
complexity as the normals are computed as part of the curvature computation pipeline.
A combination of pixel wise Euclidean loss along the three channels corresponding to
the three unit vectors x̄, ȳ, z̄ and the difference in angle between the predicted normals
and the ground truth were used as the loss criterion during training. This is expressed
as

L(n̂, n̂∗) = −n̂ · n̂∗ +
3∑
i=1

(n̂i − n̂∗i )2, (7.2)

where n̂ and n̂∗ are the predicted and ground truth normal respectively, n̂i ∈ n̂ and
n̂∗i ∈ n̂∗ are the three components {x̄, ȳ, z̄} of each of the normals. It was found
that including both the Euclidean terms and angular error jointly, improved both the
convergence rate and the final accuracy of the system.
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7.5.3 Surface Curvature

Principal surface curvatures were estimated using the method from [24], described in
Chapter 5. These principal curvatures were extracted using the same settings as de-
scribed in the original work. The principal curvature values κ1, κ2 were limited to a
range of {−100, 100} in order to avoid the estimation of implausible curvatures, effec-
tively limiting the minimum detectable radius of curvature to be 1cm. This roughly
aligns with the precision of the system[76] at the distances present in the training data.
The depth data was used as is provided by the NYUv2 dataset [40], and no effort was
made to calibrate it using the work from Chapter 4. This was in order to avoid the
ambiguity of the evaluation to previous approaches that train and test on uncalibrated
data. The curvature estimation is provided for every point in the input depth image
(640x480), which was then bicubicly down-sampled to 120x160 to generate the database
that was used in training the network. The proposed approach estimates principal cur-
vatures values directly as opposed to Gaussian or mean curvature, as these were found
to improve performance more during training.

A Euclidean loss criterion was employed with depth based weighting to predict surface
curvature. Due to the inherent sensor noise the computed principal curvatures which
are used as the ground truth tend to have a large uncertainty beyond a certain distance
threshold. To prevent the network from learning these rather uncertain values we use
the following loss function

L(C,C∗) =
n∑
i=1

(
(κ1i − κ∗1i)2 + (κ2i − κ∗2i)2

(1 +Di)−2
, (7.3)

where κ1i and κ2i are the predicted principal curvatures and κ∗1i and κ∗2i are their
corresponding ground truth values while D represents the depth in meters for the ith

pixel.

7.6 Training The Network

This section is included to provide details of the training procedure

7.6.1 Data Generation

Training data was randomly augmented using flips, translations, rotations, and multi-
plicative variations of the colour channels. Any sort of motion based augmentation (i.e.
not colour changes) were applied jointly to the RGB input, ground truth depth, surface
curvature and surface normals in order to obtain consistent training data. Unlike some
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notable previous approaches [34], the raw depth was used directly from the dataset
provided without any post processing to fill holes or smooth surfaces. Additionally the
raw depths were used to calculate the surface normals and surface curvature, which was
intended to provide a stronger link between our three ground truth sources.

As described in Section 7.5.3 the method in [24] was used to produce training data
for surface normals and surface curvature. This approach to curvature and normal
estimation is specifically targeted for noisy data such as that from a Microsoft Kinect,
and this has been shown in Chapter 5 to produce good estimates for both surface
normals and principal curvatures. In practice scaling the ground truth curvature values
by a factor of 0.1, to produce a similar range of values to the input depth, improved
both qualitative and quantitative results of curvature estimation during training. An
inverse scaling is applied to the final prediction for both principal curvatures κ1 and κ2.

7.6.2 Hyperparameters and Weight Initialisation

The accelerated gradient [237] by Nesterov, was used as the optimizer with a base
learning rate of 0.1 and a momentum of 0.95 and trained for 50 epochs using a single
NVIDIA GeForce GTX 1080, taking approximately 4 days. Weights of the convolutional
layers corresponding to feature extraction were initialized using VGG pretrained on
ILSVRC [238] image data. This initialisation was found to be more qualitatively and
quantitatively beneficial to performance over initialising the feature extraction layers
with the VGG weights of [34], although these converged faster. All other convolutional
layers, which correspond to depth, normals and curvature estimation and the fully
connected layers, were randomly initialized using MSRA weight initialization scheme
[37]. This converged much faster compared to initialising the filters from a Gaussian
distribution with zero mean and 0.01 standard deviation. During training, each time the
training loss plateaued (approximately every 10 epochs) the learning rate was halved and
training resumed. This was based on the assumption that the network was essentially
circling the solution, but moving too fast to converge. The learning framework used in
this work was Caffe [28], and all the experiments were carried out using a mini batch
size of 16. Batch-normalisation was not used in this work as it was not an element of
the architecture used as a basis for this system, but the network may have been able to
benefit from it in hindsight. A change in architecture was explored following this work
and is discussed in Section 7.8.5.

7.6.3 Training Separate Models With Equal Model Capacity

Several models were trained with equivalent model capacity to estimate quantities both
separately and jointly. This was done to demonstrate that the improved estimates
for normals and depths are not the result of increased model capacity, but the result
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Figure 7.3: Left: When all three tasks are trained jointly, there is a solver at the end of the
course scale for all three tasks and the coarse feature maps are passed on to the fine scale after
being concatenated together. Right: When only a single task is trained(in this case depth)
there is a single solver at the end of the course scale and the other two stacks now provide
additional feature maps which can trained by the fine scale solver(not shown in the figure).

of including derived features as related tasks for the network. Explicitly 4 models
were trained, depth only, normals only, depth and normals, and depth, normals and
curvature. Each model maintained a constant model capacity for all tasks. More
concretely, when a single quantity network is trained (depths only or normals only)
the coarse level convolutional layers corresponding to the other tasks in place are left
in place. The key difference is the removal of the intermediate solvers on these feature
maps, as only a single solver is attached at the end of the course scale based on the
training task. This is demonstrated more clearly in Figure 7.3, in which the course
scale prediction section of the network is shown. When training all three tasks jointly
(Figure 7.3 Left), there is a solver attached at the end of each prediction stack which is
passed to the finer scale as feature maps and refined further. In the scenario where there
is only one training task (Figure 7.3 Right), the solver corresponding to the training
task is kept intact while the other solvers are removed and the feature maps freed up
to learn additional weights in an unguided manner, trained using only the finer scale
solver. This preserves the model capacity by keeping the number of feature maps a
constant regardless of the task/tasks that is been trained while greatly influencing what
is being learnt by the feature maps through the use of additional tasks.
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7.7 Evaluation Metrics

The metrics used to evaluate depth, normal and curvature performance are the same
as those proposed in [35]. The depth errors are given by

Relabs =
1

N

N∑
i=1

(|(Di −Di∗)|/Di∗), (7.4)

RMSlin =

√√√√ 1

N

N∑
i=1

|Di −D∗i |2, (7.5)

RMSlog =

√√√√ 1

N

N∑
i=1

| log(Di)− log(D∗i )|2, (7.6)

% of points with in δ :

n∑
i=1

max

(
Di

D∗i
,
D∗i
Di

)
< δ, δ = 1.25m,

where N is the number of points in the entire test set, and Di and D∗i are the ith

predicted and ground truth depth respectively. The normal errors are given by

Mean =
1

N

N∑
i=1

(| arccos(N̂i · N̂∗i )|) (7.7)

Median = Ā(
N

2
), (7.8)

(7.9)

where N̂i and N̂∗i are the ith predicted and ground truth unit normal vectors respectively,
and Ā is the sorted vector of all measured angular differences in the test set. The
curvature error is given by

RMSκj =

√√√√ 1

N

N∑
i=1

|κij − κ∗ij |2 (7.10)

where κj is the jth principal curvature, and κij and κ∗ij is the j
th predicted and ground

truth principal curvature value of the ith test point.

7.8 Network Performance Evaluation

In this section the resulting network is evaluated qualitatively and quantitatively across
the three tasks. A practical segmentation example is included in this work to showcase
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how this work could be applied in a real life scenario. Additionally some discussion of
possible architectural improvements and qualitative examples of networks trained on
the same data are shown in Section 7.8.5.

Figure 7.4: Demonstrates the qualitative improvement of our approach for depth
estimation. Top: RGB image 1st row: Eigen’s Prediction 2nd row: Our Prediction Bottom:
Ground Truth
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Depth Prediction

Type Method
lower better higher better

Relabs RMSlin RMSlog δ δ2 δ3

si
ng

le

Liu[157] 0.230 0.824 - 0.614 0.883 0.972

Eigen[35] 0.214 0.877 0.283 0.614 0.888 0.972

Ours(Depth) 0.156 0.646 0.216 0.765 0.949 0.987

Laina[158] 0.127 0.573 0.195 0.811 0.953 0.988

jo
in
t

Eigen(Alex)[34] 0.198 0.753 0.255 0.697 0.912 0.977

Ours(D+N) 0.156 0.642 0.215 0.766 0.949 0.988

Eigen(VGG)[34] 0.158 0.641 0.214 0.769 0.950 0.988

Ours(Full) 0.156 0.624 0.212 0.776 0.953 0.989

Table 7.1: Depth prediction Metrics: the middle three columns indicate errors (lower better)
from ground truth, the final three columns indicate the percentage of points within δn (higher
better) of the ground truth (δ = 1.25). The bold values indicate the best performing method
of each type (single,joint).

7.8.1 Depth

Depth predictions were evaluated in the same manner as outlined in previous work
[158],[34] and the results are tabulated in Table 7.1. The predicted depth maps are
upsampled by a factor of 4 to match the image resolution of 640x480 and are evaluated
against the official ground truth depth maps including the filled in areas but limited
to the region where there is a valid depth map projection. In terms of relative per-
formance improvements were primarily in terms of RMSlin, with similar performance
for Relabs and RMSlog amongst different network configurations. These quantities are
more related to the ratio of predicted and ground truth depths. Methods that estimate
depth alone as a single task are included for completeness, although we outperform all
the methods except that of Laina et al. [158], which uses a much more powerful ResNet
[37] architecture. Based on the results of the joint task training scheme there is a strong
indication that the performance of [158] could still be improved had it been trained si-
multaneously with normals and surface curvature. These architectural considerations
are discussed and explored further in Section 7.8.5.

Adding additional tasks based on related quantities increases performance gains for each
addition related task. Also the contribution from curvature is much more significant
(reduction of RMSE by 0.02m) compared to the contribution of normals (reduction of
RMSE by 0.004m). This is consistent with the contribution of semantic labels (Eigen
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Surface Normal Predictions : Compared to [230]

Angular Error Within t◦

Type Method Mean Median ≤ 11.25◦ ≤ 22.5◦ ≤ 30◦

si
ng

le

Wang [228] 26.9 14.8 42.0% 61.2% 68.2%

Ours (Norms) 21.1 13.5 43.6% 66.6% 75.4%

Bansal et al [160] 19.8 12.0 47.9 % 70.0 % 77.8 %

jo
in
t

Eigen(Alex)[34] 23.7 15.5 39.2 % 62.0 % 71.1%

Ours (D+N) 21.1 13.6 43.6% 66.5% 75.4%

Eigen(VGG)[34] 20.9 13.2 44.4% 67.2% 75.9%

Ours (Full) 20.6 13.0 44.9% 67.7% 76.3%

Surface Normal Predictions : Compared to [24]

Angular Error Within t◦

Type Method Mean Median ≤ 11.25◦ ≤ 22.5◦ ≤ 30◦

si
ng

le Wang [228] 36.4 26.2 27.2% 45.6% 53.9%

Ours (Norms) 27.7 20.2 31.8% 53.7% 63.8%

Bansal[160] 27.1 19.0 32.8% 55.8% 65.7%

jo
in
t

Eigen(Alexnet)[34] 29.7 21.8 30.0% 51.0% 61.0%

Ours (D+N) 27.7 20.2 31.7% 53.6% 63.7%

Eigen(VGG)[34] 27.3 19.6 32.3% 54.7% 64.6%

Ours (Full) 27.2 19.6 32.9% 54.7% 64.7%

Table 7.2: The mean, median angular error and the percentage of points with an angular
error less than a threshold t◦ for several normal estimation approaches evaluated against two
different methods [230, 24].

VGG [34]) shown in Table 7.1 as it helps to increase the performance. However, curva-
ture provides the largest improvement potentially because it is more tightly coupled to
depth.

7.8.2 Surface Normals

Surface normals were compared in the same way as [34, 228, 229]. Although ground
truth normal data does not exist, approaches were compared against two different meth-
ods of estimating normals from the raw depth data as a proxy. The methods used
included the normals as shown in [230] and the method used to compute the input data
for training this approach taken from [24]. Qualitatively [230] takes a more aggressive
approach to noise and produces overly smoothed out estimates, while the method in
[24] produces smooth normals but still provides sharp edges. During evaluation the
regions corresponding to the missing depth values are masked out since the ground
truth normals can not be accurately computed on those areas. The results of testing
are summarised in Table 7.2 and demonstrate improvements for each normal estimation
method over previous approaches. Quantitatively we approach the performance metrics
of Bansal et al. [160] who used a skip architecture with a larger model capacity com-
pared to ours, although arguably qualitatively both [34] and the approach proposed in
this chapter outperform the predictions from [160] as shown in Figure 7.5.

Similar to depths, predicted normals also gained an increase in accuracy when the
network was trained in a multi task platform. Although, having merely depths in
parallel did not make a noticeable change extending the network to learn all three tasks
resulted in a significant improvement.
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Figure 7.5: Demonstrates the qualitative improvement of this approach for normal
estimation. Top: RGB image 2nd row: Bansal[160], 3rd row: Eigen[34], 4th row: Predic-
tion from this approach Bottom: Ground Truth [24]. The missing areas in the ground truth
normals coincide with those in the raw depth images.
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Figure 7.6: Demonstrates the qualitative improvement of our approach for surface
curvature estimation. Top: RGB image 2nd row: Computed surface curvature based on
Eigen’s[34] depth prediction 3rd row: Prediction of this approach Bottom: Ground Truth
computed from raw depth data

7.8.3 Surface Curvature

Again the dataset NYUv2 [40] lacks the ground truth surface curvature data, as a
method to evaluate the accuracy of estimating surface curvature the performance of
this approach is compared against the computed values using the method of [24] on
the raw depth data of the test set. The predictions from the proposed network were
evaluated against the estimated curvature values computed from the predicted depths
produced by the proposed network and the network from [34]. The RMS curvature
error of each of the principal curvatures (κ1, κ2) is compared against the computed
ground truth and the median error of the mean curvature 0.5 ∗ (κ1 + κ2) across two
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categories, planar and non-planar. Planar surfaces are defined to be those with a radius
of curvature greater than 1 meter. As expected predicted curvatures clearly outperform
the computed curvatures from depths. Furthermore, the predicted curvatures using
the joint model which learned surface normals and depths in parallel provide better
performance compared to the model which only learnt surface curvature.

Principal Curvature Predictions

RMS (m−1) Median (m−1) Within σt
Method [24] κ1 κ2 planar non-planar σ1 σ2 σ3

Eigen(Depth) [34] 5.56 7.50 3.86 1.44 25.7% 33.9% 43.5%

Ours (Depth) 6.03 6.50 4.23 1.38 26.9% 34.9% 44.2%

Ours (Curvatures) 3.41 5.17 1.984 0.184 52.6% 63.2% 73.2%

Ours (joint) 2.81 4.47 1.634 0.085 63.1% 72.7% 80.3%

Table 7.3: The table shows the RMS error of estimating the principal surface curvatures
(κ1, κ2), the median error for planar and non-planar regions and the percentage of curvatures
values that are within a threshold σ1 = 0.25m−1, σ2 = 0.5m−1, σ3 = 1m−1. The first two
approaches do not explicitly predict curvature and are computed from the predicted depths.

Figure 7.6 is included as a reference to show how the metrics in Table 7.3 translate into
visual appearance.

7.8.4 Segmentation Using Predicted Quantities

As a purely qualitative demonstration of this approach, a simple example of a scene
segmentation was performed that combines information from the colour, depth and
curvature on selected scenes. A simple segmentation generated by combining the gra-
dients of colour and depth, and curvature values through the use of a border function.
This border function b(u, v) can be expressed as

b(u, v) = wI · ∇I(u, v) + wd · ∇D(u, v) + wc · C(u, v), (7.11)

where ∇I(u, v) is the magnitude of the image intensity gradient, ∇D(u, v) is the mag-
nitude of the depth gradient and C(u, v) is the curvature value at the point u, v. That
is

∇I(u, v) =

√
∂I(u, v)

∂u

2

+
∂I(u, v)

∂v

2

and ∇D(u, v) =

√
∂D(u, v)

∂u

2

+
∂D(u, v)

∂v

2

. (7.12)
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The segmentation is then generated by a simple single threshold on this border function.
That is a pixel is considered a border (B(u, v)) if it satisfies the condition

B(u, v) =

{
1 if b(u, v) ≥ δthresh
0 otherwise

. (7.13)

Figure 7.7: Demonstrates a basic segmentation algorithm, that uses colour, depth and cur-
vature to generate a border function. Top: Input colour image 2nd row: Input ground truth
depth 3rd row: Segmentation From GT data Bottom: Segmentation from Predicted Data.
The key contribution of the depth and curvature to the segmentations, are on the depth bound-
aries and wall edges that can be difficult to differentiate from colour alone.

The performance was compared for this segmentation method using the ground truth
quantities and the predictions (depths and curvature) generated by our network. The
results of this are summaries in Figure 7.7. These results are not intended to be treated
as state of the art segmentations although this approach is inspired by Mishra et al. in
[142]. They are included to demonstrate a possible future extension of this work and
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also to illustrate that the information from the network can be used to perform similar
tasks.

7.8.5 Architectural Considerations

Figure 7.8: Top: Input colour image 2nd row: Predicted depth 3rd row: Predicted normals
Bottom: Predicted curvature. Demonstrates a significant qualitative improvement in perfor-
mance over the approach in this chapter by changing to an architecture similar to that used in
Chapter 8, adapted for depth, normal and curvature estimation.

After the completion of this work, investigation into the contribution of architectural
choice was performed. Qualitative results generated from the NYUv2 testset are shown
in Figure 7.8, which demonstrate a clear improvement in depth and normal estimation
over the approach detailed in this chapter. The network used for this is essentially identi-
cal to the depth estimation network described in Chapter 8, but similar to the approach
described here, a separate convolutional layer is used per quantity. The results of this
testing clearly demonstrated that architectural considerations are the most relevant to
overall network performance, summarised in Table 7.4. The obviously poor suitability
of VGG16 and the network proposed in this work is highlighted by the massive quanti-
tative improvements of an approach like Laina et al. in [158] which uses a ResNet style
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approach. Both approaches, VGG16 and ResNet were state of the art architectural
designs for the task of semantic image labelling, demonstrating that the features that
are important to depth estimation are also important to semantics. However, in [158]
there are no fully-connected layers indicating that the depth estimation network may
not require whole image context and that this adding computational complexity is un-
necessary or even potentially harmful to performance. This intuitively makes sense as
the features that determine depth in general have a relatively local context, compared
to those that are important for semantics. Such as a cow being in a meadow, where the
meadow is a rather nebulous concept in image terms. The network used in Figure 7.8
also has no fully-connected layers, and instead relies on a fully convolutional architec-
ture. This has become a standard approach to dense labelling tasks such as semantic
segmentation and depth estimation.

Depth Prediction

Method
lower better higher better

Relabs RMSlin RMSln δ δ2 δ3

Eigen(VGG)[34] 0.158 0.641 0.214 0.769 0.950 0.988

OursV GG(full) 0.156 0.624 0.212 0.776 0.953 0.989

Laina[158] 0.127 0.573 0.195 0.811 0.953 0.988

OursDense(depth) 0.119 0.555 0.176 0.855 0.970 0.992

OursDense(full) 0.118 0.513 0.171 0.864 0.972 0.992

Table 7.4: Demonstrates the improved performance of this change in architecture, while also
demonstrating the same trend that estimating depth, normals and curvature (OursDense(full))
performs better than just depth alone (OursDense(depth)).

The architecture of this network is similar to the network presented in Chapter 8, how-
ever it has a slightly smaller model capacity and contains auxiliary loss terms for depth,
normals and curvature at the previous scale level, similar to the VGG style network
presented in this chapter. Again the performance of this new network is compared to
an identical network trained only for depth estimation, and demonstrates a significant
improvement with the combing loss functions. This network produces near state-of-
the-art results on depth estimation. This demonstrates the importance of architectural
choice to network performance, also indicating the network improvements designed for
semantic labelling are still able to improve performance at depth estimation. Can ar-
chitectural changes be incorporated that specifically target the improvement of depth
estimation? This remains an open question.
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7.9 Conclusions and Future Work

In this work presented in this chapter is a unified multi task learning platform which is
capable of predicting depths, surface normals and surface curvatures using a single RGB
image. The analysis demonstrates that carefully chosen hand crafted feature represen-
tations can outperform the machine learnt features provided they are closely related to
the prediction task. This indicates that network guidance is an important considera-
tion to network design and should not be ignored when training neural networks. As an
extension of this work, an application is provided in Section 7.8.4, and an alternative
architecture is explored in Section 7.8.5.
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Using Pose Priors to Improve Depth Estimation

This chapter is largely drawn from work performed in collaboration with Thanuja Dhar-
masiri, which was formed into the submission [171] and is likely to appear in a similar
form in his thesis. This work extends upon the initial work of [159] presented in Chapter
7, to explore the use of a different more complex architecture with an informed method
of combining predicted data from multiple networks. This further demonstrates the
principal that network guidance through the use of related tasks in training is helpful,
even when these tasks are trained across separate networks. The work also advocates
for the appropriate use of machine learning to the task of relative pose prediction, to
understand what a network finds more or less challenging and play to the strengths of
the algorithm.

The relative contribution of this work was in fact equal in essentially all relevant areas.

8.1 Motivation

The importance of navigation and mapping to the fields of robotics and computer vi-
sion has only increased since its inception. Vision based navigation in particular is an
extremely interesting field of research due to its discernible resemblance to human nav-
igation and the wealth of information an image contains. Although creating a machine
that understands structure and motion purely from RGB images is challenging, the
computer vision community has developed a plethora of algorithms to replicate useful
aspects of human vision with a computer. Tracking and mapping remains an unsolved
problem, with many popular approaches. Traditional photometric based techniques
rely on establishing correspondences across different viewpoints of the same scene and
the matching points are then used to perform triangulation, acknowledging the strong
geometric priors that exist in the real-world. The field of tracking and mapping can be
coarsely divided into dense [14], semi-dense [10] and sparse[50] approaches, each comes
with advantages and disadvantages as discussed in Sections 1.1 and 2.2.2.

Applying machine learning techniques to solve vision problems has been another popular
area of research. Great advances have been made in the fields of image classification
[26, 37, 155] and semantic segmentation [146, 239] and this has led geometry based
machine learning researchers to attempt to replicate this success. The massive growth in
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neural network driven research has largely been facilitated by the increased availability
of low-cost high performance GPUs as well as the relative accessibility of machine
learning frameworks such as Tensorflow and Caffe.

In this work, both machine learning approaches (discussed in Section 1.4) as well as
SfM techniques (discussed in Section 1.1) are drawn from to create a unified framework
which is capable of predicting the depth of a scene and the motion parameters governing
the camera motion between an image pair. The network framework was constructed
incrementally, where the network is first trained to predict depths given a single colour
image. Then a colour image pair as well as their associated depth predictions are pro-
vided to a flow estimation network which produces an optical flow map along with an
estimated measure of confidence in x and y motion. Finally, the pose estimation block
utilises the outputs of the previous networks to estimate a relative motion vector corre-
sponding to a member of the Lie-algebra (se3) of the Special Euclidean Transformation
SE(3), which describes the relative camera motion between the frames as discussed in
Section 3.6. As with the work in Chapter 7 the connection between related tasks is
tightly coupled inside a network.

8.2 Contributions

The contributions made in this work are summarised as follows:

• An extension of the work detailed in Chapter 7, that explores a change in archi-
tecture as well as the use of alternative related error functions.
• A network that achieves state-of-the-art results for single image depth prediction

on both NYUv2 (indoor) and KITTI (outdoor) datasets. [Section 8.11: Table 8.1
and Table 8.2]
• A network that outperform previous camera motion prediction frameworks on

both TUM and KITTI datasets. [Section 8.11: Table 8.5 and Table 8.4]
• An approach that actively combats scale drift using the knowledge of metric depths

and subsequently produce more accurate visual odometry estimates. [Section 8.11:
Figure 8.9]

8.3 Related Work

Estimating motion and structure from two or more views is a well studied vision prob-
lem. In order to reconstruct the world and estimate camera motion, sparse feature
based systems [111, 50] compute correspondences through feature matching while the
denser approaches[10, 14] rely on brightness constancy across multiple viewpoints. In
this work, we leverage CNNs to solve the aforementioned tasks and we summarize the
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existing works in the literature that are related to the ideas presented in this paper.

8.3.1 Single Image Depth Prediction

Predicting depth from a single RGB image using learning based approaches has been
explored even prior to the resurgence of CNNs. In [187], Saxena et al. employed a
Markov Random Field (MRF) to combine global and local image features. Similar
to our approach Eigen et al. [35] introduced a common CNN architecture capable of
predicting depth maps for both indoor and outdoor environments. This concept was
later extended to a multi-stage coarse to fine network by Eigen et al. in [34]. Advances
were made in the form of combining graphical models with CNNs [157] to further
improve the accuracy of depth maps, through the use of related geometric tasks [159]
and by making architectural improvements specifically designed for depth prediction
[158]. Kendall et al. demonstrated that predicting depths and uncertainties improve
the overall accuracy in [141]. While most of these methods demonstrated impressive
results, explicit notion of geometry was not used during any stage of the pipeline which
opened the way for geometry based depth prediction approaches.

In one of the earliest works to predict depth using geometry in an unsupervised fashion,
Garg et al. used the photometric difference between a stereo image pair, where the
target image was synthesized using the predicted disparity and the known baseline[42].
Left-right consistency was explicitly enforced in the unsupervised framework of Goddard
et al. [43] as well as in the semi-supervised framework of Kuznietsov et al.[44], which
is a technique was also found to be beneficial during training on sparse ground truth
data.

8.3.2 Optical Flow Prediction

An early work in optical flow prediction using CNNs was [240]. This was later extended
by Ilg et al. to FlowNet 2.0 [241] which included stacked FlowNets [240] as well as warp-
ing layers. Ranjan and Black proposed a spatial pyramid based optical flow prediction
network [242]. More recently, Sun et al. proposed a framework which uses the princi-
ples from geometry based flow estimation techniques such as image pyramid, warping
and cost volumes in [243]. As our end goal revolves around predicting camera pose, it
becomes necessary to isolate the flow that was caused purely from camera motion, in
order to achieve this we extend upon these previous works to predict both the optical
flow and the associated information matrix of the flow. Although not in a CNN context
[244] showed the usefulness of estimating flow and uncertainty.
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8.3.3 Pose Estimation

CNNs have been successfully used to estimate various components of a Structure from
Motion pipeline. Earlier works focused on learning discriminative image based features
suitable for ego-motion estimation [245, 246]. Yi et al.[117] showed a full feature de-
tection framework can be implemented using deep neural networks. Rad and Lepetit
in BB8[247] showed the pose of objects can be predicted even under partial occlusion
and highlighted the increased difficulty of predicting 3D quantities over 2D quantities.
Kendall and Cipolla demonstrated that camera pose prediction from a single image
catered for relocalization scenarios [248].

However, each of the above works lack a representation of structure as they do not
explicitly predict depths. The work presented in this chapter is more closely related
to that of Zhou et al. [46] and Ummenhofer et al. [45] and their frameworks SfM-
Learner and DeMoN. Both of these approaches also predict a single confidence map in
contrast to ours which estimates the confidence in x and y directions separately. Since
our framework predicts metric depths in comparison to theirs, the work discussed in
this chapter is able produce far more accurate visual odometry and combat against
scale drift. Architectural improvements combined with the loss functions employed,
also yielded better depth prediction results (see Section 8.11).

8.4 Network Architecture

The overall architecture consists of 3 main subsystems in the form of a depth, flow and
camera pose network. A large percentage of the model capacity is invested in to the
depth prediction component for two reasons. Firstly, the output of the depth network
also serves as an additional input to the other subsystems. Secondly, we wanted to
achieve superior depths for indoor and outdoor environments using a common architec-
ture . To provide an overall understanding of the data flow a high level diagram of the
network is shown in Figure 8.1.

8.5 Depth Prediction

The depth prediction network consists of an encoder and a decoder module. The en-
coder network is largely based on the DenseNet161 architecture described in [155]. In
particular we use the variant pre-trained on ImageNet [238] and slightly increase the
receptive field of the pooling layers. It takes a global mean subtracted RGB image as

Although there are separate models for indoor and outdoor scenes the underlying architecture is
common.
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Figure 8.1: Overview of the system’s full pipeline.

an input, during the feature encoding stage the resolution of the activations are re-
duced by a factor of 16 in 4 stages. The first down-sampling operation is performed
using a strided convolutional layer, the next with a max-pooling layer and the final
two with average-pooling layers. As the original input is down-sampled 4 times by the
encoder, during the decoding stage the feature maps are up-sampled back 4 times to
make the model fully convolutional. Skip connections are used in order to re-introduce
the finer details lost during pooling, similar to [140]. Since the first down-sampling
operation is done at a very early stage of the pipeline and closely resemble the image
features, these activations are not reused inside the decoder. Up-project blocks are used
to perform up-sampling in this network, which provide better depth maps compared to
de-convolutional layers as shown in [158]. A visual summary of the resulting network is
shown in Figure 8.2.
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Figure 8.2: The Depth Prediction Network. We include a summary of all operations (bottom-
left) as well as description of the up-project blocks used in the decoder (bottom-right)
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Due to the availability of dense ground truth data for indoor datasets (e.g NYUv2 [40],
RGB-D[51]) this network can be directly utilised to perform supervised learning. The
ground truth data for the outdoor datasets (KITTI) is much sparser and led to the
incorporation a semi-supervised learning approach to provide a strong training signal.
Therefore, during training on KITTI, a Siamese version of the depth network with
complete weight-sharing is used and photometric consistency is enforced between the
left-right image pairs through an additional loss function. This is similar to the previous
semi-supervised approaches [42, 44] and is only required during the training stage,
during inference only a single input image is required to perform depth estimation
using this network.

8.6 Flow Prediction

The flow network provides an estimation of the optical flow along with the associated
confidences given an image pair. These outputs combined with predicted depths allow
us to predict the camera pose. As part of the ablation studies the flow predictions of
[241] were integrated with the depths predicted by the network in Section 8.5. This
was intended to examine the performance of the produced system in a configuration
that uses a state of the art off-the-shelf approach to investigate how important the
creation of a novel flow network was. The main limitation of using the flows from [241],
was the lack of a mechanism to filter out the dynamic objects which are abundant in
outdoor environments and greatly effect the resulting pose estimates. This was solved
by estimating confidence, specifically the information matrix in addition to the optical
flow. More concretely, for each pixel the flow network created for this work predicts 5
quantities, the optical flow F̄ = [∆u,∆v]T in the u and v normalised pixel directions (as
described in Section 3.2), and the quantities α̂, γ̂ and β̂. These final three quantities
are required to compute the information matrix (I) or the inverse of the covariance
matrix of the predicted flow given by

I =

[
α β

β γ

]
, α = eα̂, γ = eγ̂ , β = e

γ̂+α̂
2 tanh(β̂). (8.1)

This parameterisation guarantees I is positive-definite and can be used to parameterise
any 2×2 information matrix. This made the gradients more stable compared to predict-
ing the information matrix directly as the determinant of the matrix is always greater
than zero since tanh(β̂) = ±1 only when β̂ → ±∞. By formulating the uncertainty of
the flow explicitly through the information matrix in this way the system can use this
information to aid in the computation of the relative pose, by providing an estimated
weighting of each point.

With respect to the architecture, elements were borrowed from FlowNet [240] as well as
FlowNet 2.0 [241]. As mentioned in [241], FlowNet 2.0 was unable to reliably estimate
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Figure 8.3: The optical flow prediction network. A summary of all operations (bottom-left)
as well as description of the flow-conv and flow-deconv blocks is included bottom-right

small motions, this was addressed with two key changes. Firstly, the flow network takes
the predicted depth map as an input, allowing the network to learn the relationship
between depth and flow explicitly. That is, closer objects appear to move more compared
to the objects that are further away from the camera. Secondly, “warp-concatenation”
is used, where coarse flow estimates are used to warp the CNN activation tensors during
the decoder stage before concatenating the resulting warped activations. This appears
to resolve small motions more effectively particularly on the TUM [51] dataset as shown
in Section 8.11.

8.7 Pose Estimation

Two approaches were taken to pose estimation, shown in Figure 8.4, an iterative and
a fully-connected(FC). This was an attempt to contrast the ability of a neural network
to estimate using the available information, and the simplicity of a standard computer
vision approach using the available predicted quantities. FC layers were used to provide
the network with as wide a receptive field as possible, to compare more equivalently
against using the inferred quantities in the iterative approach.
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Figure 8.4: Details the two approaches used to estimate the relative pose alignment between
adjacent frames (best viewed in colour). Top-Left The iterative approach taken, that incorpo-
rates a re-weighted least-squares solver (RWLS) into a pose estimation loop. Details in Section
8.7.1. Top-Right The fully-connected (FC) approach, which incorporates a succession of 3× 3
strided convolutions, followed by several FC layers. Detailed in Section 8.7.2. Bottom Summary
of the information in this figure.

8.7.1 Iterative

This approach uses a more conventional method for computing relative pose estimates.
A standard re-weighted least squares solver (similar to the approaches throughout the
previous chapters of this thesis) based on the residual flow, given an estimate of the rel-
ative transformation. This approach attempts to minimise the following error function
with respect to the relative transformation

ε̄←−
21

=

N∑
i=1

((pi −E←−
21
qi)− F̄←−21

(ui)) =

N∑
i=1

(F̄+
←−
21

(ui)− F̄←−21
(ui)), (8.2)

where ε̄←−
21
∈ R2 is the total residual flow vector in normalised camera coordinates,

pi ∈ S̄1 is the ith homogeneous inverse depth coordinate pi =
[
u v 1 q

]T
of a

surface (S̄1), F̄←−21
(ui) and F̄+

←−
21

(ui) are the ith predicted flow and estimated flow respec-

tively, and ui =
[
X Y

]T
i
is the ith pixel coordinate. For simplicity, the values flow

values are expressed in terms of normalised camera coordinates. The estimated flow
F̄+
←−
21

is computed from the normalised camera coordinate and the current estimated
transformation E←−

21
∈ SE(3) as shown in Equation 8.2. As previously shown in Sec-

tion 3.6 the transformation matrices can be expressed using a matrix exponential as
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E←−
21

= e
∑6
j=1 γjGj , where γj ∈ γ̄←−21

is the jth component of the motion vector γ̄←−
21
∈ R6,

which is a member of the Lie-algebra se3, and Gj is the generator matrix corresponding
to the relevant motion parameter. The residual function was differentiated with respect
to the motion parameters to generate the following Jacobian

Ji =

[
q 0 − uq − uv u2 + 1 − v
0 q − vq − v2 − 1 uv u

]
, (8.3)

where Ji is the ith Jacobian, which is concatenated to form a larger Jacobian matrix
J =

[
JT1 ,J

T
2 , . . . ,J

T
N

]T . Additionally the residual vectors can be concatenated to form
the final residual vector r̄ =

[
r̄T1 , r̄

T
2 , . . . , r̄

T
N

]T . Using a standard Gauss-Newton ap-
proach (as described in Section 3.5) the loss function e was reduced iteratively through
successive updates to the pose vector calculated using

∆γ̄←−
21

=
(
JTWJ

)−1
JTWr̄, (8.4)

where ∆γ̄←−
21

is the additive update to the motion parameters γ̄←−
21
, and W is a diagonal

weight matrix W = diag({W1,W2, · · · ,WN}). Wi = W(ui) is the ith weight matrix
defined by

Wi =

[
(CXim

2)/(m2 + r̄2
Xi) 0

0 (CY im
2)/(m2 + r̄2

Y i)

]
, (8.5)

where CXi is the ith confidence value in the x-direction,m is a constant that is computed
from the residual r̄i (Equation 8.2), to be the mean residual magnitude of a single image,
and r̄Xi is the ith residual in the x-direction. This pipeline is implemented in Tensorflow
[206] and allows us to train the network end to end.

8.7.2 Fully-Connected

Similar to Zhou et al.[46] and Ummenhofer et al. [45] a fully connected layer based pose
estimation network was constructed. This network utilised 3 stacked fully connected
layers and was provided with the same inputs as the iterative approach, as shown in
Figure 8.4. This method ultimately did outperform the pose estimation benchmarks
of [46] and [45] using fully-connected network. However, the iterative network is the
approach that should be used. This preference for an iterative approach is beyond the
improved performance, and is discussed further in Section 8.11.
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8.8 Loss Function Design

8.8.1 Depth Losses

For supervised training on indoor and outdoor datasets a reverse Huber loss function
[158] was used, defined by

LB(Di, D
∗
i ) =

{
|Di −D∗i )| |Di)−D∗i | < c,

((Di −D∗i )2 + c2)/(2c) |Di −D∗i | > c,
(8.6)

where c = 1
5max(Di − D∗i ), and Di = D(ui) and D∗i = D∗(ui) represent the ith

predicted and the ground truth depth respectively. For the KITTI dataset an additional
photometric loss was employed during training as the ground truth is highly sparse, as
the LIDAR data used to generate the ground truth depth only samples the bottom half
of the image in this dataset. This unsupervised loss term enforces left-right consistency
between stereo pairs, defined by

LC =
1

n

n∑
i=1

|IL(ui)− IR(π(KE←−
LR
π−1(DL

i , ui))|

+
1

n

n∑
i=1

|IR(ui)− IL(π(KE←−
RL
π−1(DR

i , ui))|,
(8.7)

where IL and IR are the left and right images and DL
i and DR

i are their corresponding
depth maps, π(x) = ((x0/x2), (x1/x2))T is a normalisation function where x ∈ R3 is a
3D point, K is the camera intrinsic matrix as described in Section 3.2. The function
π−1(ui, D) = DK−1(ui) is the transformation from pixel to camera coordinates, and
E←−
RL
∈ SE(3) and E←−

LR
∈ SE(3) define the relative transformation matrices from left-to-

right and right-to-left respectively. In this case the rotation is assumed to be the identity
and the matrices purely translate in the x-direction. Additionally, a smoothness term
is used, which is defined by

LS =
1

n

n∑
i=1

(|∇xDi|+ |∇yDi|) , (8.8)

where ∇x and ∇y are the horizontal and vertical gradients of the predicted depth. This
was found to provide qualitatively better depths as well as a faster convergence rate
during training. The final loss function used to train KITTI depths is given by

Lss = λ1LB + λ2LC + λ3LS, λ1 = 2, λ2 = 1 , λ3 = e−4 , (8.9)

where LB and LS are computed on both left and right images separately.
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8.8.2 Flow Loss

The probability distribution of multivariate Gaussian in 2D can be defined as follows.

p(x|µ,I) = ((|I | 12 )/(2π))e−
1
2

(x−µ̄)TI(x−µ̄), (8.10)

where I = Σ−1 is the information matrix or inverse covariance matrix Σ−1. The flow
loss LF criterion can now be defined by

LF =
1

2
((F̄←−

21
− F̄ ∗←−

21
)TI(F̄←−

21
− F̄ ∗←−

21
)− log |I |), (8.11)

where F̄←−
21

is the predicted flow, and F̄ ∗←−
21

is the ground truth flow. This optimises by
maximising the log-likelihood of the probability distribution over the residual flow error.
This is an important aspect of the approach as it feeds into the re-weighting function
of the iterative pose estimation network.

8.8.3 Pose Loss

Given two input images I1, I2, the predicted depth map D1 of I1 and the predicted
relative pose γ̄←−

21
∈ R6 the unsupervised loss LU and pose loss LP can be defined as

LU =
1

n

n∑
i=1

|I1(ui)− I2(π(KE←−
21
π−1(D1(ui), ui))|, and (8.12)

LP = ||γ̄←−
21
− loge(E

∗←−
21

)||2 = ||γ̄←−
21
− γ̄∗←−

21
)||2, (8.13)

where loge(E) maps a transformation E from the Lie-group SE(3) to the Lie-algebra
se3 as described in Section 3.6. Finally, the ground truth relative pose parameters are
given by γ̄∗←−

21
.

8.9 Network Training Regime

The network is trained end-to-end on the NYUv2 [40], TUM[51] and KITTI[41] datasets.
The standard test/train split for NYUv2 and KITTI was used, and a new scene split
defined for TUM as this is not a traditional dataset used for this purpose. The amount
of training data used by the proposed approach in this chapter was radically reduced
compared to [46] and [45]. More concretely, for NYUv2 ≈ 3% of the full dataset was used
and for KITTI ≈ 25% was used. The reason for the reduction was not an investigation
in small training examples, although it shows that the network doesn’t actually require a
huge amount of training data to perform exceptionally well. One of the key motivations
of the reduced training size, particularly in the case of the KITTI dataset, was to avoid
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overlap with testsets used for other tasks. In the KITTI dataset, many of the training
datasets overlap with other testing datasets, so to avoid these collisions potentially
marring the results, all overlaps were removed. This was something, both [45] and
[46] seemed to ignore, and as such both include test images in their training set. For
all network training the Adam optimiser [249] was used with an initial learning rate of
1×10−4 and Tensorflow [206] was the chosen learning framework. The network training
was performed on a an NVIDIA-DGX1, and split across each of the GPUs to reduce
the overall training time significantly.

8.9.1 Depth Training

All of the DenseNet-161 layers [155] of the depth nets are initialised using Imagenet[238]
pretrained weights. Remainder of the layers are intialised using MSRC[37] initialisation.
NYUv2[40] and TUM[51] models are trained purely using the supervised loss term, as
the ground truth data is essentially dense, and no ground-truth poses are available from
the dataset NYUv2. The network is regularized using a weight decay of 1×10−4 through
out training and the learning rate schedule is shown below:
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Figure 8.5: Learning rate schedules for network training

Out of ≈ 400,0000 images in the NYU dataset, only 12,000 image were used during
training. We perform data augmentation in four ways to each image increasing the
total training set to 48000 images, using color shifts, random crops and left-right flips.
The input data was augmented offline to reduce the overall training time. The train set
and the corresponding ground truth are downsampled by a factor of two, in order to fit
a reasonable sized batch on an individual GPU. Hence, the resolution of each training
example becomes 320×240, which due to the network’s fully convolutional approach is
the same as the output resolution. Each training batch contains 8 images and we use
between 4 and 8 GPUs, resulting in a overall batch size of 32 to 64. In terms of training
speed we observe on average 19.3 examples/sec or 0.415 sec/batch using the NVidia
P100 GPUs present in the DGX1.

For the KITTI dataset 10,000 training images were used. This train set is extracted out
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of the proposed train set by [35], where any images that are part of the odometry test
set were excluded to ensure a proper separation between all networks. As the training
set is significantly smaller, the learning rate schedule used to train on NYUv2 (as shown
in Figure 8.5a) was doubled to avoid over fitting (as described in Section 3.10.4.3).

8.9.2 Optical Flow Training

In order to compute the ground truth optical flow image, for the NYUv2 [40] dataset
the relative camera pose was computed using the Iterative Closest Point (ICP) algo-
rithm (as described in Section 3.7) and these poses were used with the ground truth
depth map to compute optical flow. This is done by transforming the valid depths
and projecting to the image plane. Points with high photometric inconsistency and
those that project outside the image are removed from the training data. The ground
truth poses are provided for both the TUM[51] and KITTI[41] dataset which allowed
the use of these poses to generate the ground truth flows, and they were cleaned up in
the same way as for NYUv2. The network was then trained using the optical flow loss
criterion from Equation 8.11. All the layers of the flow network are initialised using the
MSRC[37] initialisation and the learning rate schedule is shown in Figure 8.5b. This
also demonstrates the overall training duration is much smaller compared to the depth
network training. The reduced training time is used as the primary objective at this
stage is to obtain a crude representation for both optical flow and the information ma-
trix as a complete end-to-end fine tuning happens when the network is trained using
the pose loss criterion from Equation 8.13.

8.9.3 Pose Training

The full network was optimised end-to-end using the pose loss. The full network (con-
structed from both depth networks, the flow network and the iterative or fully-connected
pose network) was trained for 20,000 iterations with an initial learning rate of 1× 10−5

which is halved at the half-way point. Due to the size and complexity of the overall
network, a lower initial learning rate was used (1× 10−5) and this was halved, this was
found to stabilise the overall resulting network. An important consideration in training,
particularly when combining multiple loss functions as was done in this research, is the
relative weighting of these losses. This process requires significant trial and error and a
more rigorous approach to weighting should be a further point of investigation, possible
making these learning meta-parameters but this requires careful consideration. This
training regime was able to demonstrate that the state-of-the art depths can be further
improved using the knowledge of pose predicted by the network. This is an extension
of the ideas conveyed in Chapter 7, which showed that related loss functions aid in
network performance. Clearly depth, flow and pose are highly related to, as having any
two of these quantities allows the computation of the third.
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8.10 Evaluation Metrics

The depth is quantitatively evaluated in the same manner as Chapter 7, using the error
metrics outlined in Section 7.7. These pose metrics used were drawn from [51]. Pose
is quantitatively evaluated using the absolute trajectory error (ATE) in the same way
as for Chapter 6. Additionally relative pose error (RPE) is also evaluated, which is
calculated using

RPEjk =
(
E∗−1
←−
ji

E∗←−
ki

)−1 (
E−1
←−
ji

E←−
ki

)
(8.14)

where E∗−1
←−
ji

and E−1
←−
ji

are the ground truth and predicted transformations from frame i
to frame j. As described in [51], the RPE provides a measure of the system’s tendency
to drift while the ATE gives an overall error of a resulting trajectory. The latter of these
metrics favours systems that use information from the entire trajectory, such as those
that close loops and perform bundle-adjustment, as these techniques redistribute the
error across poses. In the configuration used by this approach, the pose is estimated in
an open-loop visual odometry tracking approach, which makes the drift very influential
to tracking accuracy.

8.11 Network Performance Evaluation

In this section the single-image depth prediction and relative pose estimation perfor-
mance of the proposed system is summarised for several popular machine learning and
SLAM datasets. Additionally the effect of using alternative optical flow estimates from
[241] and [250] in this network’s pose estimation pipeline was investigated as an ablation
study, discussed in Section 8.12.

8.11.1 Depth Estimation

The results of evaluating the single-image depth estimation on the datasets NYUv2[40],
RGB-D[51] and KITTI[41] in is shown in Tables 8.1, 8.2 and 8.3 respectively. This quan-
titatively compares the current approach against previous state-of-the-art approaches
using the standard metrics proposed in [35].

Significant improvement across all datasets is demonstrated using the proposed baseline
approach (Ours(baseline)), which was developed for this work. This effectively validated
the choice of architecture used in the depth estimation network. Importantly an addi-
tional consistent improvement across all datasets is demonstrated when inferring using
the fully end-to-end trained network (Ours(full)). This is most noticeable in Tables
8.2 and 8.3, for which ground truth pose data was available for training. This seems
to indicate the quality of the ground-truth poses has an effect on the improvement, as
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the results in Table 8.1 are less significant after training which used the computed ICP
poses. However, this still validates the proposed method for improving single image
depth estimation performance, and demonstrates a depth estimation network can be
improved by enforcing more geometric priors on the loss functions.

Method
lower better higher better

RMSlin RMSln Relabs δ δ2 δ3

Eigenvgg [34] 0.641 0.214 0.16 76.9% 95.0% 98.8%

Laina et al.[158] 0.573 0.195 0.13 81.1% 95.3% 98.8%

Kendall et al. [141] 0.506 - 0.110 81.7% 95.9% 98.9%

Ours (baseline) 0.487 0.164 0.113 86.7% 97.7% 99.4%

Ours (full) 0.478 0.161 0.111 87.2% 97.8% 99.5%

Table 8.1: The performance of several approaches evaluated on single-image depth estimation
using the standard testset of NYUv2[40] proposed in [34]

Input RGB Eigen Laina Ours Groundtruth

0.910 1.233 0.756

0.621 0.434 0.501

0.272 0.270 0.233

1.411 1.441 0.796

Figure 8.6: Resulting single image depth estimation for several approaches and ours against
the ground truth on the dataset NYUv2[40]. The RMSE for each prediction is included

Qualitative results are shown for NYUv2[40] and KITTI[41] in Figure 8.6 and 8.7 re-
spectively. Each of which illustrates a noticeable qualitative improvement over previous
methods. This also demonstrates that the contribution of this approach is beyond the
numbers, as the proposed approach generates more convincing depths even when the
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Cap Method
lower better higher better

RMSlin RMSln Relabs δ δ2 δ3

0-80m

SFM-learner[46] 6.856 0.283 0.208 67.8% 88.5% 95.7%

Godard et al.[43] 4.935 0.206 0.141 86.1% 94.9% 97.6%

Kuznietsov et al. [44] 4.621 0.189 0.113 86.2% 96.0% 98.6%

Ours (baseline) 4.394 0.178 0.095 89.4% 96.6% 98.6%

Ours (full) 4.301 0.173 0.096 89.5% 96.8% 98.7%

0-50m

SFM-learner[46] 5.181 0.264 0.201 69.6% 90.0% 96.6%

Garg et al. [42] 5.104 0.273 0.169 74.0% 90.4% 96.2%

Godard et al. [43] 3.729 0.194 0.108 87.3% 95.4% 97.9%

Kuznietsov et al.[44] 3.518 0.179 0.108 87.5% 96.4% 98.8%

Ours(baseline) 3.359 0.168 0.092 90.5% 97.0% 98.8%

Ours(full) 3.284 0.164 0.092 90.6% 97.1% 98.9%

Table 8.2: The performance of previous state-of-the-art approaches evaluated on the standard
testset of the KITTI dataset [41]
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Figure 8.7: The resulting single image depth estimation for several approaches including SfM-
Learner[46], Godard[43] and Ours against a ground truth filled using [251] on the testset of the
KITTI dataset [41]. We include the RMSE values for each methods prediction. Filled depths
are included for visualisation purposes during evaluation the predictions are evaluated against
the sparse velodyne ground truth data.

RMSlin depth error may be higher. This is demonstrated by the second row of Figure
8.6, where [158] computes a lower RMSlin. More impressive still are the results in Fig-
ure 8.7, where the proposed approach is compared against previous approaches (that
are trained on much larger training sets than the one used in this work) and demon-
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Method
lower better higher better

RMSlin RMSlog Relabs Relsqr δ δ2 δ3

Laina et al.[158] 1.275 0.481 0.189 0.371 75.3% 89.1% 91.8%

DeMoN(est)[45] 2.980 0.910 1.413 5.109 21.0% 36.6% 48.9%

DeMoN(gt)[45] 1.584 0.555 0.301 0.581 52.7% 70.7% 80.7%

Ours(baseline) 1.068 0.353 0.128 0.236 86.9% 92.2% 93.5%

Ours(full) 0.996 0.329 0.108 0.194 90.3% 93.6% 94.5%

Table 8.3: The performance of previous state-of-the-art approaches on a randomly selected
subset of the frames from the RGB-D dataset [51]. Entries are separated for DeMoN(est) and
DeMoN(gt), the former is scaled by the estimated scale of their system while the latter is scaled
by the median ground-truth depth

strates noticeable qualitative improvements. It should be stressed that all comparisons
are performed on single-image depth estimation, that is at testing the network only has
access to a single image. This validates that the improvement is genuinely in terms of
the system’s ability to estimate depth from image features alone.
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Figure 8.8: Left: The RMSlin error (RMSE) on each image of the test set, sorted by our
performance on the dataset. The two competing approaches are included, as well as marking
which side of the line indicates where the proposed approach is better (‘We Win’ ) and where it
is worse (‘We Lose’ ). Right: The median ground-truth depth of each image in the test set also
sorted by the proposed approach’s RMSE performance. Additionally an approximate trend-line
to show the relationship between median sensor depth and RMSE

In order to shed some light on how useful the numbers are in evaluating the performance
of competing methods a more detailed analysis was performed on the test sets of NYUv2
[40] and KITTI [41]. This reveals that not surprisingly, when a depth estimation network
is trained to minimise the squared difference between the predicted and ground-truth
linear depth, a relationship forms between the median depth and the error. This is a
result of mathematics of this metric, that is to have a large error there needs to be
large depths in the original image for the estimator to get wrong. The improvement in
KITTI is potentially the most significant contribution of this work, not only does the
graph in Figure 8.8b Left demonstrate that the proposed approaches is quantitatively
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better on almost every single image of the test set, but this was achieved with a much
smaller training set. In the case of Godard et al., an addition refinement network was
also required in order to improve the output. Unfortunately this analysis does reveal an
issue with the KITTI dataset as an evaluation tool, highlighted by the disparity between
the qualitative and quantative performance of Zhou et al. The resulting predictions in
Figure 8.7 2nd row, reveal a network that fits to the modes of the dataset. This is not a
failure of the approach, rather the dataset only contains sparsely sampled ground-truth
data even for the test set, and the dataset contains almost entirely scenes with a visible
horizon line and a road moving away at the same distance from the camera. It could
be expected that a network that simply predicted the average depth for every image
would perform competitively with some previous approaches.

8.11.2 Pose Estimation

To demonstrate the ability of the proposed approach to perform accurate relative pose
estimation, it was compared on several unseen sequences from datasets for which ground-
truth poses were available. To quantitatively evaluate the trajectories we use the ab-
solute trajectory error (ATE) and the relative pose error (RPE) as proposed in [51].
To mitigate the effect of scale-drift on these quantities all poses were scaled to match
the magnitude of the ground-truth associated poses during evaluation. As mentioned
in Section 8.10, using both metrics provides an estimate of the consistency of each
pose estimation approach. The results of this quantitative analysis are summarised for
KITTI[41] in Table 8.4 and for RGB-D[51] in Table 8.5. The results of other state-of-the-
art pose estimation networks, namely SFM-Learner[46] and DeMoN[45], are included
for comparison. Additionally the proposed approach was compared against state-of-the-
art SLAM systems, namely ORB-SLAM2[50] and LSD-SLAM[10], in order to provide
context for the current state of machine learning approaches to visual odometry.

Sequence 09 10

Method ATE(m) RPE(m) RPE(◦) ATE(m) RPE(m) RPE(◦)

ORB-SLAM(no-loop)[50] 57.57 0.040 0.103 8.090 0.033 0.105

ORB-SLAM(full)[50] 9.104 0.056 0.084 7.349 0.031 0.100

SfM-learner(5)[46] 58.31 0.077 0.803 31.75 0.069 1.242

SfM-learner(1)[46] 81.09 0.050 0.976 75.89 0.045 1.599

Ours(fc) 41.50 0.087 0.387 29.29 0.081 0.486

Ours(iterative) 16.55 0.047 0.128 9.846 0.039 0.138

Table 8.4: Performance of several approaches evaluated on two sequences of the KITTI dataset
[41]. SfM-Learner(1) and SfM-Learner(5) indicates the different frame gaps used to construct
the trajectories. The results are separated by SLAM and machine learning approaches. We
highlight the strongest results in bold
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Figure 8.9: Top the scaled and aligned trajectories for SFM-Learner [46], ORB-SLAM2 [50]
(with and without loop-closure) and Ours respectively. Bottom box-plots of the relative pose
scaling required to bring the predicted translation to the same magnitude as the ground-truth
pose
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Figure 8.10: Trajectories of this approach in both configurations (iterative and fully-
connected), as well as the resulting trajectories of ORB-SLAM(full) [50] and SfM-Learner [46].
This demonstrate comparative quality of this approach to ORB-SLAM, while significantly out
performing SfM-Learner
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Table 8.4 demonstrates the most comparable performance to state-of-the-art SLAM
systems against the proposed approach. However, these state-of-the-art SLAM systems
do consistently out perform the machine learning approach. This is due to a number of
reasons, the primary of which is that SLAM systems use salient information from a large
number of frames simultaneously to perform bundle-adjustment. Another key reason
is that these approaches enforce geometric constraints more explicitly, something that
must be more carefully considered in future iterations of machine learning approaches.

There is a noticable improvement over SfM-Learner on both sequences across all metrics.
SfM-Learner was evaluated on its frame-to-frame tracking performance for adjacent
frames (SFM-Learner(1)) and for separations of 5 frames (SFM-Learner(5)). The reason
these two configurations were chosen is because they train their approach to estimate
this size frame gap[84]. Using a larger frame separation for poses is analogous to using a
keyframe which should result in a significant reduction in accumulation error as there are
far fewer poses to accumulate error. Even with this significant reduction in accumulation
error demonstrated in reduced ATE, the proposed system still produces more accurate
pose estimates and trajectories.

The resulting scaled trajectories of sequence 09 are shown in Figure 8.9, as well as the
relative scaling of each trajectories poses in a box-plot. The spread of scales present
for SfM-Learner indicates scale is essentially ignored by their system, with scale drifts
ranging across a two-full log scales, while ORB-SLAM’s and the proposed approach’s
are barely visible at this scale. A benefit of the proposed approach is that scale is
centered around 1.0, as it estimates scale directly through the metric depth network.
This seems to significantly reduce scale-drift and making the system more usable in
practice.

Sequence fr1-xyz fr2-360-hs fr3-walk-xyz

Method
ATE RPE RPE ATE RPE RPE ATE RPE RPE

(m) (m) (◦) (m) (m) (◦) (m) (m) (◦)

LSD-SLAM[10] 0.090 - - - - - 0.124 - -

ORB-SLAM[50] 0.009 0.007 0.645 - - - 0.012 0.013 0.694

DeMoN(10)[45] 0.178 0.021 1.193 0.601 0.035 2.243 0.265 0.049 1.447

DeMoN(1)[45] 0.183 0.037 3.612 0.669 0.032 3.233 0.279 0.040 3.174

Ours(fc) 0.169 0.028 1.887 0.883 0.030 1.799 0.268 0.044 1.698

Ours(iterative) 0.071 0.024 1.237 0.461 0.020 0.736 0.240 0.026 0.811

Table 8.5: Performance of pose estimation on several sequences from the RGB-D dataset [51].
DeMoN(10) and DeMoN(10) indicates the trajectories were constructed with a frame gap of 1
and 10 respectively. Both [50] and [10] fail to track on fr2-360-hs. The results are separated by
SLAM and machine learning approaches. We highlight the strongest results in bold
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Figure 8.11: Trajectories of Our method against ORB-SLAM [50] and DeMoN(10) [45], for
the evaluated sequenced from the RGB-D dataset [51]. We demonstrate a marked improvement
upon DeMoN which, although being given a slight advantage in some respects by widening the
baseline and reducing accumulated pose error, still performs poorly. However against ORB-
SLAM, both methods come up a little short, as ORB-SLAM is able to perform local bundle-
adjustments across multiple keyframes, which greatly reduces the overall error.

Table 8.5 demonstrates a significant improvement in performance against existing ma-
chine learning approaches across several sequences from the RGB-D dataset [51]. The
approach DeMoN from [45] was evaluated in two ways, frame-to-frame (DeMoN(1)) as
a visual odometry system, and in an attempt to provide the same advantage to DeMoN
as SfM-Learner by using wider baselines. This is a configuration which they claim im-
proves their depth estimations [45], and a frame gap of 10 (DeMoN(10)) was chosen as
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it experimentally improved their results the most. It was observed that even with the
significant reduction in accumulation error over a frame-to-frame approach, the pro-
posed approach still manages to significantly out-perform their approach in ATE, even
surpassing LSD-SLAM on the sequence fr1-xyz. ORB-SLAM is still the clear winner,
as they massively benefit from the ability to perform local bundle-adjustments on the
sequences used, which are short trajectories of small scenes. An example of a frame from
the sequence fr3-walk-xyz is shown in Figure 8.12, which shows this scene is not static.
The proposed system has the ability to deal with non-static scene objects through the
flow confidence estimates, which is discussed further in Section 8.12. Additionally, the
resulting trajectories for the scenes are shown in Figure 8.11, this truly demonstrates
the difficulty both machine learning approaches have under these conditions. The re-
sulting trajectories are far from usuable at this stage and indicate that machine learning
approaches have a significant gap to catch up to pure geometry based approaches.

8.12 Ablation Experiments

Sequence 09 10

Method ATE(m) RPE(m) RPE(◦) ATE(m) RPE(m) RPE(◦)

Ours(noconf) 53.40 0.356 0.931 58.50 0.308 1.058

Ours(noconf,iterative) 33.18 0.248 0.421 35.87 0.280 0.803

Flownet2.0[241] 29.64 0.349 0.838 51.90 0.222 0.954

Flownet2.0(iterative)[241] 24.61 0.185 0.400 22.61 0.142 0.484

EpicFlow[250] 119.0 0.566 0.931 20.98 0.199 0.853

EpicFlow(iterative)[250] 59.79 0.379 0.459 14.80 0.154 0.581

Ours(single) 31.20 0.089 0.324 24.10 0.095 0.389

Ours(iterative) 16.55 0.047 0.128 9.846 0.039 0.138

Table 8.6: Results of pose estimation on KITTI[41] sequence 09 with various components of
the network removed or replaced. We highlight the strongest results in bold

In order to examine the contribution of using each component of the full network the
pose estimates were evaluated under various configurations on sequences 09 and 10 of the
KITTI odometry dataset[41]. The results of this evaluation are summarised in Table 8.6.
This demonstrates the relative improvement of iterating the pose estimate until conver-
gence (ours(iterative)), against a single weighted-least-squares iteration (ours(single)).
To show the importance of using the predicted flows of the jointly trained network,
the performance was contrasted against a system where they were replaced with flow
estimates from two other state-of-the-art flow estimation methods from [241] and [250].
This consistently demonstrated that the approach taken provided an improvement over
previous approaches to flow estimation. In retrospect, the previous approaches should
probably have been integrated into the resulting system and trained jointly and con-
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fidence added to one of those pipelines separately. This may result in even further
improvement to pose estimation performance. The result of optimising with and with-
out confidences is also shown, demonstrating quantitatively how important they are to
pose estimation accuracy, with significant reductions across all metrics.

Figure 8.12: For a frame pair (Ii and Ij) from the sequence fr3-walk-xyz , F̄←−
ji

is the estimated
optical flow from Ii to Ij , and Cx and Cy are the estimated flow confidences in the x and y
direction respectively

An example flow is shown in Figure 8.12, which clearly indicates the system is able
to determine the presence of dynamic objects in the scene. Additionally, the system
appears to highlight points that should have projected outside the image but have
not given the predicted flow. Both these qualities significantly improved the systems
overall pose accuracy and robustness in practical tracking examples, but there is still
clearly further improvement to be made given the resulting trajectories in Figure 8.11.
The system also reinforces of the justification of traditional methods, demonstrating
higher confidences on edge pixels, helping the system focus on salient information during
optimisation in an approach similar to [10].

8.13 Conclusion and Further Work

In this work a unified framework was introduced which was trained end-to-end and
estimates depths and the motion parameters governing the camera pose given an image
pair. This achieved state-of-the-art performances on single image depth prediction for
both NYUv2 [40] and KITTI [41] datasets. Two models were trained, one each for
indoor and outdoor scenes with a common underlying architecture, and this was the
first work to achieve that result in that manner. Additionally the network demonstrated
both qualitatively and quantitatively that it was capable of producing better visual
odometry than previous machine learning approaches, considerably reducing scale-drift
by predicting metric depths.

The result of the research presented in this chapter indicates a step forward in the
evolution of machine based approaches, as they can be applied to the problem of vi-
sual odometry. The main message is that the machine learning certainly appears to
be stronger at some aspects, such as reducing scale drift as shown in sequence 09 in
Figure 8.9. This shows that approaches like this can be used to help improve the
overall performance of monocular approaches. An additional point is that machine
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learning approaches should be leveraged to their strengths, its clear that machine learn-
ing approaches are very good at estimating per pixel quantities such as depth, normals,
curvature, semantic labels, and optical flow, but find tasks such as computing a rela-
tive pose from two images very challenging. This appears to be down to the nature of
the neural networks, computing a relative pose given a convolution of an image pair is
a very challenging task, this can be made simpler by embedding the images in some
more descriptive space before attempting the alignment but still ignores the fact that
there are geometric constraints, and its very challenging to introduce those to a network
formulation. Using the iterative pose estimation approach in this work, demonstrates
a system that attempts to acknowledge the strengths and weaknesses of neural net-
works. The pose is still predicted entirely by a neural network but is enforced using
traditional geometric priors, this is also being explored in other recent works [252, 253].
In the context of this thesis this work demonstrates neural networks have the potential
to supplement data from depth sensors, particularly in the case of KITTI, where the
depth sensor provides a sparse sampling, this approach to depth estimation could be
integrating as a method of providing dense depths. One issue is still the computational
requirements of this approach, which are currently quite demanding, the model in fact
only fits on cards in the highest current performance level (>10GB). This performance
issue is addressed in the follow-up work presented in Chapter 9.

8.14 Code/Datasets

The code and training details, as well as the original submission with supplementary
material is available at the following url: https://github.com/tfb0/ENGnet.

The NYUv2 [40] dataset is available for download at: https://cs.nyu.edu/~silberman/
datasets/nyu_depth_v2.html.

The KITTI [41] dataset is available at: http://www.cvlibs.net/datasets/kitti/.

The RGB-D [51] dataset is available at: https://vision.in.tum.de/data/datasets/
rgbd-dataset/download.
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9

Real-time Depth Estimation via Model Compres-
sion

The following chapter is largely drawn from work performed in collaboration with
Thanuja Dharmasiri, which was formed into the submission [172] and is likely to appear
in a similar form in his thesis. This is an extension of the depth estimation work in
Chapters 7 and 8, towards a practical application in robotics. The goal was to train a
network that could perform reasonably well at the task of depth estimation and operate
in real-time on a mobile device. This was a challenging task at the time of writing, and
the use of the accelerated machine learning inference engines made it possible.

A list of elements and the relevant percentages both first authors have agreed in terms
of contribution to the production of this work is provided:

• Conception of Idea (80%)
• Network architecture design (50%)
• Loss/Objective function design (50%)
• Coding the network (50%)
• Training data creation (50%)
• Testing and evaluation (50%)

9.1 Motivation

Roboticists endeavour to build systems which are real-time capable for a vast array
of applications including autonomous vehicle navigation, visual servoing, and object
detection. The majority of the aforementioned tasks require a robot to interact with
other robots or humans and respond to actions of one another. Due to this very rea-
son, the low latency aspect which stipulates coherency becomes a prerequisite for such
systems. While building a real-time system on a modern computer can be challenging
as it stands, doing so on a mobile platform with less than one tenth of the compute is
extremely difficult. However, these mobile platforms are much more appealing for real
life scenarios as they consume less power and are compact in nature compared to the
desktop workstation counterparts.
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Another area of research that has been quite popular within the robotics community is
the application of machine learning to robotics problems. Neural Networks are being
applied with resounding success to solve many problems and have now surpassed human
level performance on tasks such as image recognition or even complex strategy games
such as Go, a task once thought too challenging for a machine.

The research conducted in this chapter, takes a step towards combining real-time
robotics and machine learning on a resource constrained mobile platform. This is the
first piece of work that performs single image depth prediction which runs at 30fps on
a NVIDIA-TX2 or at over 300fps on an NVIDIA-GTX1080Ti.

A.

B.

C. D.

Figure 9.1: Demonstrates the model running on the NVIDIA-TX2 development board (shown
in green square D.) in real-time. A. The colour image, B. The jet coloured groundtruth depth
image from a the Kinect C. The predicted depth from the colour input image. Using the
condensed model the demonstration runs at 30fps on the NVIDIA-TX2. Additionally the
model demonstrated has only been trained on the NYUv2 [40] dataset, but is still able to
predict relatively convincing depths on novel scenes such as the one pictured.

Learning deeper (more layers) and wider (more channels per layer) models generally
leads to better results [29, 155] for most vision based tasks. However, the fundamental
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limitation of such approaches is the inability to deploy on resource constrained devices.
The depth prediction framework presented here not only runs at frame rate on an
NVIDIA-TX2 but also outperforms denser architectures such as [35] despite the latter
being able to see the whole image in its field of view using stacked fully-connected layers.

Model compression is the concept of replicating the performance of a larger model or an
ensemble of large models using a smaller network. Common model reduction techniques
mainly focus on the architectural aspect and consist of techniques such as quantization
of weights, curtailing the depth etc. In this work, the emphasis is predominantly on
a training regime which tries to replicate the latent space of the deep model. This
allows the network to achieve superior performance over randomly initialised models of
equivalent size, while training both models to convergence.

This is an extension of the work presented in Chapter 8, with a focus on targeting
depth prediction as basis for improving mapping and navigation systems. The resulting
system is targeted towards situations with low levels of parallax while also eliminating
the requirement for expensive hardware such as LIDAR, in outdoor environments. The
networks created perform at frame rate for both indoor and outdoor scenarios. Addi-
tionally, a practical application of this work to robotics is demonstrated, by coupling
the real-time depth prediction with an off-the-shelf SLAM system ORB-SLAM2 [7].

9.2 Contributions

The following bullet points provide a summary of the contributions made in this paper
in-order to build dense real-time structure prediction frameworks :

• Present the first piece of work which performs depth prediction at frame-rate on a
mobile platform in the form of an NVIDIA-TX2 while outperforming architecture
with model architectures which has more than 30 times the number of parameters
than the proposed network. (Video demonstration included in supplementary
materials)
• Present an analysis of the system with extensive experiments to show how different

loss functions play a vital role when learning the underlying latent representation
while not compromising the training time.
• Real-time depth prediction enables integration of the predicted depths with ORB-

SLAM2[7] in order to perform tracking and mapping on mobile platforms while
significantly reducing scale-drift.
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9.3 Related Work

Inferring higher order quantities (semantic labels, structural information) from only
colour image data allows researchers to tackle a range of problems. Convolutional Neural
Networks perform remarkably well at extracting key pieces of information and ignoring
noise in image data. Although a lot of image driven machine learning frameworks aim
to solve classification and semantic segmentation problems [26, 146, 37, 155], most of
the techniques introduced can be readily applied to predict geometric quantities such
as depths [34, 35, 158, 42], normals [34, 160] and curvature [159].

An added benefit of predicted structural information is it allows the use of conventional
geometry based techniques in concert with machine learning systems. Garg et al. [42]
constructed an unsupervised depth prediction framework by enforcing an image recon-
struction loss. Left-right consistency of stereo images was leveraged in [43] and the
relationship of depths, normals and curvatures was exploited in [159] to improve the
accuracy of all three quantities. Structure prediction systems have also been combined
with SLAM systems [254], however the neural network employed in their approach [158]
does not run at frame rate even on a conventional gpu thus making it impossible to
deploy on a mobile platform. Contrary to this the proposed framework in this chapter
runs in real-time on an NVIDIA-TX2.

Due to the attractive qualities such as low power consumption and high mobility, re-
searchers have been keen to examine the possibility of building smaller architectures.
MobileNets [48], ICNet [188], ERFnet [189], have shown reasonable accuracy and real-
time performance on modern GPUs. However, none of these methods achieve inference
at frame rate on an NVIDIA-TX2. Many of these approaches focus on reducing the
overall model size, while attempting to maintain a comparable performance to larger
systems. This work focuses more on the latent space transfer aspect in which a larger
supervisor network is employed to aid in training the condensed network.

The machine learning community has investigated the problem of model compression
or emulating the performance of a larger network. Hinton et al. in [49] introduced a
concept called distillation which aimed to replicate the class probabilities of a larger
model using a smaller model. Since we are tackling a regression problem (compared to
a classification problem) training a smaller network to replicate the prediction layer of a
larger model becomes strictly suboptimal compared to training directly on the ground
truth since there is no notion of class probability. Inspired by this work, a tensor
loss was introduced in this work, where the aim was to mimic the latent space or the
embedding of the penultimate layer of the larger model. Initial results presented here
indicate having the supervised tensor loss gives inferior results compared to learning
the penultimate layer in an unsupervised manner. Similar to [49] Bucila et al. [191]
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showed that it is possible to replicate the performance of an ensemble of classifiers using
a single model. Their method relied on generating synthetic data using an ensemble of
networks and training the smaller network on this synthetic data. Finally, Han et al.
demonstrated model weight compression through the use of quantization and Huffman
coding in [192] for image classification.

9.4 Proposed Framework

Deep
Decoder

ND - Manifold 
Embedding

Condensed
Real-time Model

Large
Supervisor Model

c

c

c

Deep
Encoder

Fast
Encoder

Prediction
Layer

Fast
Decoder

Shared
Weights

Figure 9.2: This demonstrates the concept behind our training regimes we use to perform
model compression through knowledge transfer. The initial strategy was to minimise the dif-
ference (dti) between the intermediate activations (also referred to as the tensor loss) produced
as input to the prediction layer by the network. The other approach involves transplanting of
the prediction layer from the large network onto the condensed network, and an examination
of a combination of both approaches. In practice the transplant alone is both more effective
and much faster to train, although all knowledge transfer approaches improve the performance
over random.

This section aims to provide a step by step breakdown of the proposed network, training
process and datasets used. Initially the implemented model architecture is presented,
followed by the loss functions use during training. Finally the datasets are introduced,
that were used during training. An additional analysis of the training regime and how
this varies for each of the tested knowledge transfer training approaches.

9.4.1 Model Architecture

The model design was inspired by ENet [190] and ERFNet [255], which have demon-
strated a decent trade-off between performance and speed for the task of semantic
segmentation. They show in [190] the ability to run at near real-time (>10fps) perform-
ing a dense semantic segmentation task on the targeted hardware, the NVIDIA-TX1.
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Model Architechture Breakdown

Layer Type Resolution(in, out) Channels (in, out)

E

Downsample (2×2) 320×240, 160×120 3, 16

Downsample (2×2) 160×120, 80×60 16, 64

Non-btl 1D (3×3) 80×60, 80×60 64, 64

Non-btl 1D (3×3) 80×60, 80×60 64, 64

Non-btl 1D (3×3) 80×60, 80×60 64, 64

Non-btl 1D (3×3) 80×60, 80×60 64, 64

Downsample (2×2) 80×60, 40×30 64, 128

Non-btl ND (3×5) 40×30, 40×30 128, 128

Non-btl ND (3×5) 40×30, 40×30 128, 128

Non-btl ND (3×7) 40×30, 40×30 128, 128

D

Deconv (4×4) 40×30, 80×60 128, 64

Non-btl 1D (3×3) 80×60, 80×60 64, 64

Deconv (4×4) 80×60, 160×120 64, 64

Non-btl 1D (3×3) 160×120, 160×120 64, 64

Deconv (4×4) 160×120, 320×240 64, 64

P Conv 2D (3×3) 320×240, 320×240 64, 1

Table 9.1: A summary of the architecture implemented given an input resolution of 320×240,
which is used for both [40] and [51]. The left column refers to the broad section of the network
as shown in Figure 9.3, E: Encoder, D: Decoder and P: Predictor, where the predictor layer is
the layer that can be transplanted from the supervisor network.

However, the target was to produce a system with an even higher frame rate, to allow for
every frame to have a depth estimate in real-time. The targeted hardware platform was
the NVIDIA-TX2, which has ≈30% more compute power over the previous NVIDIA-
TX1. The NVIDIA supported TensorRT framework [256] was used in order to accelerate
inference of our models at runtime. This framework was developed by NVIDIA to target
a real-time inference on low-powered hardware, such as the TX1/TX2. However, this
limited the available layers to those supported by the framework, which at the time of
this research did not support dilated convolutions [257], despite purporting to do so.
Taking these factors into consideration and after a number of attempts the architecture
was decided upon, which is defined in Table 9.1. This architecture was felt to provide
a good compromise between runtime and accuracy, but a more thorough investigation
of architecture is required to fully develop this technique in the future.

228



9 REAL-TIME DEPTH ESTIMATION VIA MODEL COMPRESSION

Encoder Decoder PredictorInput
(RGB Image)

Output
(prediction)

Downsample 2x Non-btl 1D - 3x3 Non-btl 1D - 3xN Deconv 2x Conv 2D 3x3

Figure 9.3: The model architecture for our real-time depth estimation network. This network
is constructed from mostly Non-bottleneck blocks (Non-btl in figure), which are a series or
residual type blocks shown in Figure 9.4. Downsample, Conv 2D and Deconv are all standard
operations.
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Figure 9.4: The submodules of the Non-bottleneck 1D blocks. "Non-bottleneck" refers to
the channel count which remains unchanged when passing through this layer. The Nx1, 1xN,
3x1 and 1x3 Conv operations are standard asymmetrical convolutions where N is chosen. In
practice we used two Non-btl ND - 3x5 blocks followed by one Non-btl ND - 3x7 blocks, in
an attempt to increase the receptive field as much as possible. The plus indicates the addition
of the two sets of activations, followed by ReLU activation. The function of all layers used is
described further in Section 3.10.

9.4.2 Loss Functions and the Knowledge Transfer Process

The first choice of loss function when performing regression is the L2 distance between
the prediction and the ground truth as shown in Equation 9.1. This is the same loss used
in Chapter 8, which produced state-of-the-art depths. This was chosen as a starting
point to train the condensed networks defined in Table 9.1. The random models trained
using this formulation are referred to as R models (or by the superscript r) throughout
the remainder of the chapter. Note that since the network architecture was defined
from scratch in this case, there were no pre-trained weights to initialise from, as such
all the weights were initialized using MSRA initialization [37]. However, in the case of
the transplanted networks denoted by TR (or the superscript tr) in this chapter, the
final layer is drawn directly from the pre-trained supervisor network. The depth loss
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function is given by

Ld =
1

N

N∑
i=0

||Di −D∗i ||2 =
1

N

N∑
i=0

||dpi||2, (9.1)

where Di represents the predicted depth map and D∗i represents the ground truth
depth map obtained from a Kinect or a Velodyne LIDAR. The distance between the
ith predicted and ground-truth depth was defined as dpi, shown in Figure 9.2, where
the super script c and b are used to denote the error from the condensed and big
network predictions respectively. By training the randomly initialized model using the
Euclidean loss defined in Equation 9.1, the provided a baseline performance for the
given architecture to measure the contributions of this work against.

The model size is fixed for the comparison, providing a system that predicted at 30fps.
Additional loss functions were used (similar to [44]) in order to improve the network’s
performance. Although the question became what additional losses could be incorpo-
rated? Since the completion of the work in Chapter 7, a very large, very accurate depth
estimation network was available. The goal became to investigate how the knowledge
contained in this slow, state-of-the-art network could be used to help train the a faster
model.

Inspired by the work of [49], the basic motivation is to take the power of a state of
the art depth estimation network [171] and attempt to transfer the useful knowledge
to the condensed network defined in this chapter. This does immediately create a soft
cap on the possible performance, as a smaller network is unlikely to out-perform the
larger network. This trade off between speed and performance, is in general acceptable
for applications where the real-time performance is more important such as robotics
applications. The hope was to improve the performance enough over random to be
usable in robotics, and validate this approach as a valid method of training. The
condensed network was designed around the idea that the final layer of the large depth
estimator could be transplanted onto our condensed network, shown in Figure 9.2.

The approach in [49] was able to transfer knowledge through the logit distribution, as
their problem was classification. In this case the network is attempting to estimate a
continuous value, meaning there are no distributions to learn, so how can the knowledge
be transferred? As the logit distribution is passed to the soft-max solver in the case
of classification, one could learn based on the activations that are input to the depth
solver layer. The so-called tensor loss as depicted in Equation 9.2 aims to mimic the
activations of the penultimate layer of the supervisor (strong deep) model. This is a
supervised loss where we attempt to enforce the tensor of large and the condensed model
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to match in value.

Lt =
1

N

N∑
i=0

||T̄i − T̄∗i ||2 =
1

N

N∑
i=0

||dti||2 (9.2)

T̄i represents a tensor corresponding to the activations of the penultimate layer of the
condensed network and T̄∗i represents that of the deeper network. After training till
convergence using the tensor loss and a fixed solver that is randomly initialised, the
final layer is freed and the network is fine tuned using the depth loss. This model is
denoted as T in the results section. The thought is that potentially these activations
contain extra knowledge about the depth, that is not accessible through the random
initialisation training.

N-Dimensional
Manifold 

Embedding

Deep
Network

Tensor 
Supervised
Network

Transplanted
Network

Randomly
Initialised
Network

Tensor Visualisation

Input to 
Prediction Layer

Input to
Networks

Groundtruth
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Depth Predictions

Figure 9.5: Demonstrates how the different network training regimes will ultimately determine
the manifold embedding that the resulting networks form. The range of possible outputs of
the network are shown in the colour of the network, and is intended to show that some of the
embeddings are expected to very similar (overlapping) while others will generate potentially
completely unrelated embeddings. A visualization is included of the embedded tensors as a
magnitude image, which correlates strongly to the resulting depth magnitude.

As an alternative approach, the penultimate layers were also trained in an unsupervised
manner to mimic the output of the larger network. This is done by transplanting
the final/solver layer of the larger model onto a randomly initialized condensed model,
the network is trained using Equation 9.1 with a fixed solver. Once the network has
initially converged, the final solver to fine-tuned to improve the overall performance.
This strategy was designated the transplanted model (TR) training strategy.
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The final approach attempted was the T+TR model, which uses a combination of the
tensor loss and the transplanted solver. In this case, the network was trained for roughly
20 epochs using the tensor loss followed by introduction of the transplanted layer and
further fine tuning using the depth loss for another 5 epochs.

In an attempt to visualise the resulting embeddings created by this training process,
a simplified diagram of the rationale is shown in Figure 9.5. This demonstrates, that
one would expect to have the tensorloss embedding to most closely relate to the large
network, while the transplanted network will find some point nearby, and the random to
be largely uncorrelated as the space of possible networks would be incredibly complex
with many local minima. It is very difficult to evaluate these claims, but a more detailed
discussion as well as the findings made in this research is presented in Section 9.6.

9.4.3 Datasets

The same datasets as were used in Chapter 8 (NYUv2 [40], RGB-D [51] and KITTI
[41]) as these each had a corresponding state-of-the-art trained depth network. The
first two of these are indoor datasets, filmed using the Microsoft Kinect style sensor.
NYUv2 provides a large number of varied indoor sequences, where 249 scenes are used
during training, and 215 for testing. The official test set was created by drawing 654
images from the test scenes. RGB-D provides substantially less variation in a dataset
than NYUv2 but has enough to provide a challenging set of indoor scenes to predict on.
Finally KITTI is a large and varied outdoor dataset with over 20,000 training images.
The standard train-test split was followed when creating the training set and evaluate
on the official test images. In addition to being outdoors and providing a much larger
range of depths to estimate, this dataset also provides ground-truth odometry for a
subset of sequences.

9.4.4 Hyperparameters

Each network was trained with a batch size of 12 on a cluster of GTX1080Ti GPUs.
Once again the Adam optimizer [249] was used, with a initial learning rate of 1e-4.
Similar to the training regime of the original supervisor network, the learning rate
was halved every 2 epochs after the 4th. The Tensorflow [206] framework was used
during training allowing for rapid prototyping and later integrated with TensorRT for
deployment on the NVIDIA-TX2 device.
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9.5 Evaluation Metrics

The same evaluation metrics as were used in Chapters 6, 7, and 8. Please refer to those
chapters for the equations of the metrics.

9.6 Overall Evaluation

The output of the proposed networks was evaluated using the datasets described in Sec-
tion 9.4.3. This section summaries the results across several qualitative and quantitative
comparisons to existing approaches, and demonstrates the usefulness of our approach.

NYUv2 [40]

Method
lower better higher better

Relabs RMSlin RMSlog δ δ2 δ3

Liu [157] 0.230 0.824 - 61.4% 88.3% 97.2%

Eigenalex [34] 0.198 0.753 0.255 69.7% 91.2% 97.7%

Eigenvgg [34] 0.158 0.641 0.214 76.9% 95.0% 98.8%

Laina [158] 0.127 0.573 0.195 81.1% 95.3% 98.8%

Baseline [171] 0.111 0.480 0.161 87.2% 97.8% 99.5%

Real-time Networks

Ours (R) 0.216 0.765 0.277 64.4% 89.3% 97.1%

Ours (T) 0.204 0.713 0.261 68.5% 90.9% 97.5%

Ours (T+TR) 0.205 0.715 0.262 68.3% 90.8% 97.5%

Ours (TR) 0.190 0.687 0.251 70.4% 91.7% 97.7%

Table 9.2: The metrics are explained in Subsection 9.6.1. Lower numbers are better for the
first three columns as these represent errors and higher number are better for the last three
columns as they represent percentage of inliers.

9.6.1 Depth Evaluation

Both NYUv2 and KITTI datasets were evaluated using the following standard depth
prediction metrics, defined in Section 7.7.

The results for the NYUv2 dataset are summarised in Table 9.2 and for KITTI in Table
9.3. Additionally some qualitative results from NYUv2, RGB-D and KITTI are included
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0-50m KITTI [41]

Method
lower better higher better

Relabs RMSlin RMSlog δ δ2 δ3

Zhou [46] 0.201 5.181 0.264 69.6% 90.0% 96.6%

Garg [42] 0.169 5.104 0.273 74.0% 90.4% 96.2%

Goddard [43] 0.140 4.471 0.232 81.8% 93.1% 96.9%

Kuznietsov [44] 0.108 3.518 0.179 87.5% 96.4% 0.98.8%

Baseline [171] 0.092 3.359 0.168 90.5% 97.0% 98.8%

Real-time Networks

Ours(R) 0.147 4.530 0.234 80.3% 93.3% 97.3%

Ours(T) 0.139 4.434 0.228 81.7% 93.7% 97.5%

Ours(T+TR) 0.140 4.426 0.225 81.7% 93.8% 97.6%

Ours(TR) 0.156 4.363 0.224 81.8% 94.0% 97.7%

Table 9.3: Results of evaluating KITTI dataset, using the same metrics as defined in Subsec-
tion 9.6.1 and Table 9.2

in Figure 9.7 and 9.8. From the numerical results in both tables a consistent behaviour
was observed for both datasets with the following trend:

Random < Tensorloss < Transplanted

The fact that the random model is clearly inferior compared to all other variants high-
lights the importance of knowledge transferring process especially when it comes to
condensed networks.

Taking a more in depth look at the contributions of the tensor loss model (T) and
the transplanted model (TR), it can be observed in Figure 9.6 the tensor angles highly
correlate with that of the supervisor network when trained using the tensor loss, however
the magnitude of the activations correlate less strongly. This is because the magnitude
of the output is incredibly difficult to estimate in this way. Overall this appears to
negatively effect the quality of the reconstruction as shown in Figure 9.6 Top-Right.
However, the angle does negatively correlate to the depth error, that is the most aligned
tensors in the T network, have the lowest error in this case.

This seems to indicate the presence of a sort of uncanny valley, where the small network
begins to improve emulating the penultimate activations of the supervisor, also improv-
ing their predictions to a point. Then at some stage the network can’t quite perfectly
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Figure 9.6: Demonstrates the relationship between the tensors produced with the three dif-
ferent training approaches. Left The RGB input, the ground-truth depth Top-Right: The
tensor magnitude images for each network, which are a visualisation of the norm of the tensor
value. Right 2nd row: The angle correlation, which is the degree to which the direction of
the tensors agree. Bottom-Right: The magnitude of the depth error between the prediction
and ground truth. The RMS error in meters is included for each of the predictions below their
respective columns.

reproduce the tensors and gets stuck in a suboptimal minima, while the less restricted
TR network is free to navigate to a minima that exploits as much of the information
it can from the transplanted last layer. This valley seems to be created by the vastly
reduced model capacity, as given model of sufficient size the output of the supervisor
should be perfectly replicated. This is something that requires further investigation in
future.

9.6.2 Pose Estimation

As an practical application of this work, the tracking ability of an off-the-shelf SLAM
system using the depths inferred by our real-time network was evaluated. This was
compared against the ground-truth pose data available on a select number of KITTI
datasets. These results are summarised in Table 9.4 and examine the comparative
performance of the original SLAM system [7] in the Mono, Stereo and finally the RGB-
D configuration which used the predicted depths as the depth channel. The standard
Absolute Trajectory Error (ATE) as proposed in [51] was used to provide a quantitative
method of comparison for a number of novel test sequences.
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0.105

0.156

1.026

0.449

Network Input Groundtruth Depth Predicted Depth

Figure 9.7: The performance of our network at estimating depths on the datasets NYUv2 [40]
and RGB-D [51]. The first two rows are from [40] while the last two rows are from [51]. All
the images are from the test sets, and are not present in the training data. Included for each
prediction is the RME depth error for that frame.

Additionally, Figure 9.9 shows a qualitative comparison of trajectory accuracy using
the predicted depths (from the TR network) compared to using purely monocular data
against the ground-truth trajectory. Again these trajectories were computed using the
popular ORB-SLAM2 system [7]. This demonstrated that by using the predicted depths
from a real-time depth estimation network such as this, the system significantly out-
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Groundtruth Depth

Stereo Depth Computed Using SGM

Predicted Depth

Network Input 

Figure 9.8: Demonstrates impressive qualitative performance on the KITTI dataset [41], with
the predicted depths closely aligning to the ground-truth. The stereo reconstruction is included
to densify the sparse Velodyne points, using the method SGM from [59].

KITTI Odometry Absolute Trajectory Error (m)

Ours Mono Stereo

Sequence Predicted Depths ORB-SLAM [50] ORB-SLAM [7]

Seq00 4.23 6.62 1.3

Seq05 2.01 8.23 0.8

Seq07 1.15 3.36 0.5

Table 9.4: Pose estimation evaluation on KITTI sequences, measuring the ATE as defined in
[51].

performs the monocular only approach. This method is far from optimal, and could be
further improved by attempting to estimate quantities such as uncertainty or non-static
scene elements as discussed in Chapter 8.
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Ground Truth
Monocular
Ours (predicted depths)

Figure 9.9: Demonstrates the improvement to the trajectory produced using our predicted
depths from colour vs using colour images alone as input to the off the shelf SLAM system [7]
for seq00 of KITTI-odometry [41].

In an attempt to show a concrete example of what this system can contribute to an
off-the-shelf SLAM approach the effect of scale-drift was examined. Figure 9.10 clearly
demonstrates the reduction in scale-drift given the same SLAM configuration, using
the predicted depths vs using the monocular data alone. This establishes a practical
application of this approach, given that the network can also infer at over 70FPS for
this sequence, as shown in Table 9.5.

Average FPS over 50 runs (Min, Max)

Resolution GTX1080Ti TX2

640×480 105.96 (100.82, 107.92) 7.68 (7.50, 7.71)

320×240 † 312.29 (295.25, 320.00) 30.03 (27.76, 30.37)

640×192 ‡ 214.75 (202.76, 221.58) 19.08 (18.23, 19.21)

320×96 473.09 (439.01, 498.73) 70.95 (65.54, 72.63)

Table 9.5: Pose estimation - Real-time Performance FPS Speed comparisons for different
output resolutions, on each device. The configurations marked with † and ‡ are the typical
output resolutions of the state-of-the-art networks for indoor and outdoor datasets respectively.
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Monocular Only
After Loop-closureBefore Loop-closure

Using Depth Predictions
After Loop-closureBefore Loop-closure

Figure 9.10: Demonstrates the amount to which the scale-drift can be reduced using the
proposed approach in an off-the-shelf SLAM system. The first row shows the performance of
standard monocular ORB-SLAM2 [7] on sequence 00 of KITTI-odometry [41]. Before loop-
closure a very pronounced level of scale-drift is present. In contrast when estimated depths
are provided, the scale drift is almost completely removed, and the difference before and after
loop-closure is barely visible.

9.6.3 Speed and Computation Performance

The timing information for each of the approaches is summarised in Table 9.5. This
shows that at the typical operating resolutions we can infer at real-time on the NVIDIA-
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TX2, particularly on KITTI which was inferred at (320×96) for all evaluations. This
demonstrates this approach is sufficient to dramatically improve the accuracy and reduce
the scale-drift in tracking from monocular cameras.

9.7 Conclusions and Further Work

This work demonstrated a practical implementation of a novel approach to network
knowledge transfer, and showed this can be used to directly improve the performance
of a SLAM tracking system using only the information contained in the colour imagery.
This strongly suggests the compatibility of using machine learning depth approaches in
collaboration with an off-the-shelf depth sensor to provide improved performance in a
variety of situations. This was shown in the work of [254], where they focus on situations
where low-cost depth sensors fail and also integrate into an existing semi-dense SLAM
approach [10] to further optimise the predicted depths. The work presented in this
chapter is an attempt to move towards a greater level of collaboration in real-time
on a low-power mobile platform like the TX2. This work also demonstrates a general
approach to training fast models that produces significantly improved performance over
random initialisation. There is a strong suggestion from this work that transplanting
further layers of the supervisor network, or even other networks that have been trained
on the same task will produce even better performance. This is the same idea as partial
weight-transfer to an existing model, as the weights (regardless of their position in the
network) appear to contain important information for solving the problem.

An issue with the approach presented, in terms of training the tensorloss models, was
estimating the values of tensors is not a well conditioned problem, as the network is
attempting to replicate a multi-dimensional vector of varying magnitudes. The results
in Figure 9.6 clearly demonstrate that part of the network has encoded the depth in the
magnitude of this tensor vector. However, this makes the replication of this tensor very
challenging. A way to improve the ability of this approach may be to train the original
supervisor with a normalisation layer between the penultimate layer and the solver.
This would effectively force the network to encode the depth information in the activa-
tions independent of the tensor magnitude. This may be easier to emulate, but could
reduce the effective model capacity as the network would no longer be able to encode
information using magnitude. This is something that requires further investigation.
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Conclusion

This thesis presents a number of research outcomes, that improve alignment accuracy,
robustness of mapping approaches, and depth computation and estimation. Previous
related approaches have been compared, and new techniques thoroughly discussed. The
primarily contributions of this thesis are:

• A novel approach to low-cost depth sensor calibration, that’s applicable to struc-
tured light type sensors (see Chapter 4). This method is provided as open-source
and with few external library requirements, aiming to improve its utility. The
resulting calibration improved upon previous approaches and didn’t require the
use of external calibration patterns or large planar regions. The solution is based
on a general mapping based approach, where the calibration is solved jointly along
with the mapping parameters, resulting in an improved calibration that’s simpler
to obtain.
• As an effort to combat the wide-baseline problem present in dense alignment

approaches, a method to compute accurate surface curvature estimates in real-
time was developed. The presented approach is more accurate than previous
approaches, and shown to generate more robust measurements than previous ap-
proaches (see Chapter 5). This method is provided open-source and is imple-
mented in CUDA for GPU based programming. Additionally, this work demon-
strated that regions of similar surface curvature, can be used as a discriminative
region level segmentation, that can be used to compute an initial estimate for a
dense alignment approach.
• The approach for real-time curvature estimation was extended in Chapter 6 to

jointly optimise for the relative pose alignment (in addition to the curvature)
across multiple frames. This work is a novel joint optimisation approach, that
demonstrated qualitatively and quantitatively that a more general surface repre-
sentation is not only a more accurate method of aligning overlapping point clouds,
but fitting the general surfaces to noisy data becomes much more robust for cur-
vature estimation.
• The approach in Chapter 7 is the first of its kind to generate an estimate of

surface curvature from a colour image, additionally producing near state-of-the-
art normals and depths. This work demonstrated that learning related tasks
is a valid approach to improving accuracy in the primary task, learning depth
for example. This forces a network to learn more general features that direct
it towards a better position in the network embedding space, and was shown
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to be applicable across different architectures. This implies a general strategy for
improved depth estimation performance is through the use of related and auxiliary
tasks for better network conditioning.
• In a joint effort to improve visual odometry and depth estimation performance a

method the jointly optimises for both was also developed (see Chapter 8). This
approach produces state-of-the-art depths as a baseline, across indoor and outdoor
datasets, and then demonstrated a further improvement by forcing the network
to obey geometric constraints using relative pose estimates. This approach also
demonstrated that more traditional optimisation approaches can be used to en-
hance the performance of networks, by enforcing geometric constraints that might
be challenging for a network to learn. All these approaches indicate that using the
most available information will generate the strongest solutions, where supervised
approaches seem to contribute more significantly than unsupervised.
• Finally a method of network compression/distillation is shown that is a step to-

wards either replacing or enhancing low-cost depth sensors in real-time for low-
cost low-power robotic applications (see Chapter 9). This approach demonstrated
that knowledge can be efficiently transferred from a large teacher network to a
student network by simply transplanting layers. This work may even imply that
transplanting any layers from a trained state-of-the-art network will improve per-
formance on the given task.

10.0.1 Discussion and Future Work

Given the contributions outlined in this thesis, this brings up several points of discussion
as well as many possibilities for future research that have been touched upon throughout
this thesis.

• The approach presented in Chapter 5 and extended in Chapter 6, to incorporate
the pose into the optimisation of a quadric, demonstrated a number of points. This
work reaffirmed the fact that dense approaches are generally more accurate [17,
13], and a more general surface alignment is more robust and more accurate [258,
203]. In this work significant effort was put into increasing the speed of the multi-
frame approach. As the speed of computation increases, and with adjustments to
resolution or image pyramiding, a future implementation of the frame-to-frame
approach could be realistically incorporated into a real-time odometry approach.
Additionally, image luminiance could also be included in the optimisation in a
similar way to the works [15, 133, 17], to futher improve the performance and
robustness.
• In Chapter 7, a general approach to improving network performance through the

use of related loss functions was presented. The performance of the networks
that incorporate related loss functions reliably improved, regardless of the net-
work architecture. This indicates the importance of the choice of loss functions in
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optimisation, and further quantification of this contribution should be performed.
This work was extended in Chapter 8, to focus on pose and flow in the optimi-
sation, two quantities that are related to depth but less coupled. The analysis
of this work also showed an improvement in network performance, based on the
inclusion of the related loss terms. This result raises a number of questions; Is it
just that a network that attempts to learn the quantity and a derivative of that,
is going to learn better features in order to estimate the quantity? How much
network guidance is appropriate, and can a network learn what loss functions are
relevant to a primary goal?
• The work in Chapter 8 also explored the notion of direct pose estimation using

a neural network vs a more computationally grounded approach, that focused on
using quantities estimated by networks to iterate to a solution. In this case the
solution that iterates on the estimated quantities proved to be a much stronger ap-
proach than previous machine learning approaches. This indicates, that perhaps
the path forward with neural networks in SLAM systems may be to incorporate
them for specific tasks that are well suited to a CNN, including optical flow esti-
mation [240, 241], and depth estimation [171], instead of direct pose estimation.
The inclusion of certainty estimation is extremely helpful for robust optimisation
techniques, and proved to supply a massive improvement in this case. While this
doesn’t mean a machine learning approach won’t learn a better alignment using
only the information contained in two images, passed through a network, this
may indicate a simpler way, that’s motivated by geometry and could prove to
be a very powerful solution, with works like [259, 260] possibly paving the way
forward. Another possible extension of this could bring in the work of Chapter 6,
as a possible loss function for surface curvature and pose alignment.
• The work presented in Chapter 9 demonstrates one of the desired directions

for geometry based estimation networks, towards real-time inference. This work
again demonstrated another method of increasing network performance through
student-teacher training. This technique is becoming more popular [49, 261] as a
method of reducing the time-taken by a significantly bulkier approach by attempt-
ing to transfer knowledge between them. The original intuition of this work was
that it should show that a tensor-supervised approach will improve the network
performance the most, however as shown in the results it was the transplanted
network. The tensor-supervised network did improve the performance but to a
lessor extent. The intuition as to why this could be, comes down to a combination
of insufficient model capacity and unstable training regime. A future continuation
of this work may seek to train a new supervisor/teacher network, that normalising
the output of the penultimate layer, forcing the network to encode all the infor-
mation for depth in the vector, without using the magnitude as a piece of infor-
mation. This would be interesting from depth estimation point of view regardless.
The model capacity can also be further explored through novel architectures and
inference optimisation in future accelerated libraries like TensorRT.
• The works of Chapters 7, 8 and 9, show a steady improvement of single-image
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depth estimation networks. This could signal a future where a monocular camera
can be used as a depth sensor in a more general approach. In the short-term the
work presented here can easily be used as a method to enhance the ability of ex-
isting low-cost depth sensors, possible through the estimation of super-resolution
depths, or in-painting on incomplete depth images. The work in Chapter 9 in par-
ticular indicates a path towards real-time performance in these domains, perhaps
complementing the work of [254].
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