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Abstract 

Self-healing composites are an important class of materials which seek to restore their initial 

properties after sustaining damage. They have a huge potential for applications in various 

industries such as electronics, aerospace, sporting good, etc. Therefore, the interactions between 

the components of capsule based self-healing composites, release patterns of the healing agents 

and fracture mechanism of self-healing composites all need to be understood experimentally and 

theoretically. There is also a necessity for a proper computational model of the capsule based self-

healing composite that can simulate the fracture and the healing agent release as well as subsequent 

healing-fracture-healing cycles. To this end, this study was conducted to establish a basis for the 

computational modelling of capsule based self-healing composite materials. The first objective of 

this study was to develop a micro-scale model of a randomly distributed capsule based self-healing 

composite which can accurately simulate the mechanical response of the material under desired 

stress conditions. The second objective was to derive the composite material properties from the 

model when there were variations in capsule distribution and the mechanical properties of the 

matrix, capsule and capsule filler. The first objective was achieved by creating a Representative 

Volume Element (RVE) of the composite using a computer aided design feature found in 

commercial finite element software, ANSYS. The second objective was achieved by reviewing 

the properties of the material component of the RVE from the literature as well as from results of 

experiments done by various researchers. The model was solved numerically using ANSYS to 

obtain the stress distribution within the RVE. The stress distribution was analysed to derive insight 

concerning how the local stress variations underpin the stress transfers between the matrix and the 

capsules.  This thesis will present an investigation of the effect of several parameters on the 

mechanical properties of a capsule based self-healing composite material subjected to small static 

strains. The research will be carried out using computational modelling on ANSYS 17.0 (ANSYS 

Inc., Canonsburg, Pennsylvania, U.S.A.). The purpose of the research is to establish a basic finite 

element model for rapid analysis of capsule-based composites which can be further enhanced in 

future research to include the ability to model composite fracture, self-healing process and 

subsequent post-healing behaviour. 
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1. Introduction 

1.1 Modelling of capsule reinforced composites 

Capsule reinforced composites are made by adding judicious amounts of reinforcing capsules to 

a matrix. Polymers are widely used as the matrix phase in capsule reinforced composites. This 

addition will enhance the composite properties in various ways depending on the properties of 

the matrix, the type, shape, orientation, distribution, aspect ratio and volume fraction of 

reinforcing phase and manufacturing process (Brown, White, & Sottos, 2004; Singh, Shedbale, 

& Mishra, 2016; Wang, Ji, Shao, & Miao, 2011). The capsules act as reinforcement for the 

matrix and as storage for healing agents.  

The experimental testing of composites to determine their properties is a very costly and time-

consuming process. The composite must be synthesized, and the testing must be performed using 

advanced and often expensive equipment. In order to alleviate the cost of experimental testing, 

computational methods have been developed and have been proven to be quite accurate 

(Valavala & Odegard, 2005). Computational models enable researchers to conduct parametric 

studies of composites for design and application of composite structures in the real world. 

 

1.2 Modelling of self-healing composites 

Self-healing materials are important class of materials which have significant engineering interest 

(Zhang & Rong, 2012). They are polymers, metals, ceramics and their composites which can 

restore their original properties after sustaining damage (Roach et al., 2007; Wool, 2008). Most 

research in the domain of self-healing materials is focused on polymers and polymer composites 

as they are widely used in numerous applications such as electronics, aerospace, energy generation 

equipment, pressure vessels, marine structures, sporting goods, etc. (Wu, Meure, & Solomon, 

2008). They are attractive as engineering materials as they have desirable physical properties. This 

research will focus mainly on capsule based self-healing composites. Encapsulation of healing 

agents can be done at micro-scale or nano-scale levels. These capsules can be then embedded into 

a matrix to form a self-healing composite. Hia et al., (2016) have encapsulated epoxy resin into 

alginate microcapsules and embedded those capsules into an epoxy resin. Thakur & Kessler (2015) 
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have reviewed different methods such as emulsion electro spinning, emulsion solution blowing, 

and co-electro spinning for encapsulating self-healing liquid monomers into carbon nanotubes. 

A better understanding of capsule based self-healing material behaviour will enable design 

optimization which will positively affect material safety, product performance and product lifetime 

(Wool, 2008). The most promising area of study when it comes to these systems encompasses the 

key properties of capsule based self-healing epoxy composites after fracture damage including 

healing frequency, healing efficiency and the healing and fracture mechanisms.  

Self-healing materials mimic biological systems and have a huge potential for reducing the 

frequency for repair and maintenance of mechanical structures (Roach et al., 2007; Wool, 2008; 

Wu et al., 2008). One major drawback of polymers and their composites is that they are susceptible 

to internal crack formation from fatigue and fracture damage which severely deteriorates their 

mechanical properties (Zhong & Post, 2015). The elimination of this damage will have a 

significant impact in cases where the material’s intended use does not permit damage assessment 

and repairs and also when the damage is internal and cannot be detected (Wool, 2008). 

Experimental studies of composite materials, especially the study of composites with micro/nano-

scale reinforcements remains challenging due to the difficulty in observing how stresses are 

transferred and how the deformation occurs at such a small scale. Theoretical modelling and 

simulations can be used to fill in this gap. Computational models help provide insight into the 

composite behaviour (Al-Madani, Jarnaz, Alkharmaji, & Essuri, 2013; Lee, Buxton, & Balazs, 

2004; Shokrieh & Rafiee, 2010). 

This research is being proposed to create a foundation for the computational modelling of capsule 

based self-healing composite materials. It will help to obtain deeper insight into the interactions 

between the components of a capsule based self-healing composite under specified loading 

conditions. Consequently, computational methods will be used to create models and provide a 

guideline for optimized design of capsule based self-healing composites. 
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1.3 Problem Statement 

The development of self-healing materials is still at its initial stages. As such, self-healing 

materials have a huge potential for applicability across many fields. There are many configurations 

of self-healing materials that use different healing mechanisms (such as in-situ healing, dual 

capsule systems, etc.) as well as different types of healing containers (such as embedded healing 

capsules, vascular networks, etc.).  

As such, the main issues faced in self-healing materials research are as follows: 

1. The interactions between the components of a self-healing composite are difficult to 

observe in an experimental set-up since the self-healing components are usually 

embedded inside the matrix and are at a microscopic scale. 

2. Measurement of the internal stress distributions inside a capsule based self-healing 

composite is difficult in an experimental setup. 

3. The time investment required for producing and testing all the material configurations in 

order to optimize the material for a given application or work environment is quite 

significant.  

 

1.4 Objectives 

1. To develop a basic finite element model for the rapid modelling and simulation of the 

mechanical response of capsule based self-healing composites.  

2. To further develop the model to enable users to vary different parameters such as capsule 

distribution, capsule size variation, etc. This will enable the tailoring of parameters to 

obtain desired composite properties.  

 

1.5 Aim 

The aim of this project is to create a computational model that can simulate the mechanical 

behaviour of a capsule reinforced composite under small static strain. The model can be used as 
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a basis for the design and modelling of capsule based self-healing composites. The model will 

allow the user to input parameters such as the properties of the matrix, capsules and capsule 

filler, thickness of the capsule wall, volume fraction of matrix and filler, strain, etc, and obtain 

the overall composite properties. Furthermore, it will reduce the need for researchers to 

experimentally create and test several composite configurations in order to find their desired 

composite property. Researchers will be able to converge towards their ideal composite 

configuration while saving time and experimental costs. 

 

1.6 Hypothesis 

The translation of the physical microstructure and the experimental results into a computational 

model of self-healing materials will enable the rapid modelling and testing of samples in a virtual 

environment under static tensile conditions with quick parameter variations. This will enable 

savings in terms of time and material costs and will provide a better insight on the material 

behaviour, the stress distribution in the composite and the interactions between the components of 

the composite material. The successful completion of this model will open the possibility for future 

research into fracture modelling and self-healing modelling. 

 

1.7 Outline of thesis  

Section 1 will provide a general introduction on the topic of capsule reinforced composites and the 

importance of Finite Element Modelling in this field. Section 2 will provide some background 

research relevant to this project. A broad range of research topics were reported from different 

self-healing mechanisms at different scales to the modelling approach of materials comprising of 

distinct phases/materials. The literature review enabled a better understanding of self-healing in 

capsule reinforced composites and how to initiate the modelling process. Section 3 will elaborate 

on the steps and the method used to create and analyse the finite element model. Section 5 will 

present the results and the discussion. Section 5 will be the conclusion and section 6 will be the 

future works. 
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2. Literature review 

2.1 Self-healing mechanisms in nature 

Self-healing occurs in nature in both plants and animals. This phenomenon is triggered by stimuli, 

both internal and external. Naturally occurring materials have evolved into complex, hierarchical 

structures that exhibit multifunctional behavior. Drawing inspiration from naturally occurring 

materials will enable scientists to improve material performance (Williams, Bond, & Trask, 2009). 

In plants and animals, tissue damage causes changes in the chemical balance at the damage site 

and causes the organism to send healing agents to heal the damage via complex internal transport 

networks of vessels. Natural self-healing systems are extremely complex and not fully understood; 

therefore, scientists have had to adopt a more simplified approach to mimic those systems 

(Williams et al., 2009).  

 

2.2 Classification of healing mechanisms in synthetic materials 

Researchers have attempted different ways to classify self-healing materials. Thakur & Kessler 

(2015) have categorized self-healing systems into several groups and sub-groups. The two major 

groups are autonomic and non-autonomic self-healing materials. Autonomic materials can heal by 

themselves without external intervention whereas non-autonomic materials require some form of 

intervention (White et al., 2001). The external interventions may be in different forms such as 

changes in temperature, lighting conditions, chemical or mechanical. Self-healing materials can 

also be further divided into extrinsic and intrinsic based on their healing mechanism (Thakur & 

Kessler, 2015). Extrinsic materials rely on the inclusion of storage vessels containing the healing 

agents into the polymer matrix. Extrinsic materials are generally composites as they are made up 

of two or more materials meaning that the matrix, the storage vessels and the healing agents are 

all different materials. Intrinsic materials can heal themselves naturally due to how their molecular 

bonding is set up.  

On the other hand, some researchers have broadly classified self-healing systems into 3 categories 

as below (Grande et al., 2012; Shojaei, 2015): 
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1. Materials which incorporate microcapsules or micro-vascular networks in their matrix. 

The said micro features will contain the healing agents which get released upon crack 

propagation. The healing agent is usually a monomer which solidifies in the presence of a 

catalyst embedded in the matrix as illustrated in Figure 1 (Dementsov & Privman, 2008; 

Grande et al., 2012). These can be considered as autonomic self-healing composites 

(White et al., 2001). 

2. Incorporation of solid healing agents which diffuses to crack surfaces upon their 

formation. 

3. Innate healing capability in materials such as ionomers and materials with thermally 

reversible covalent bonds, shape memory alloys (SMAs) and shape memory polymers 

(SMPs). These can be considered as intrinsic self-healing materials. 

 

 

Figure 1. Self-healing mechanism of composites embedded with micro-caspsules (Shojaei, 2015). 

 

2.3 Self-healing of polymer nano-composites 

The use of polymers and polymer composite materials is widespread due to their overall desirable 

characteristics such as light weight, availability, flexibility, manufacturability, etc (Thakur & 

Kessler, 2015). On the downside, these materials have poor mechanical properties compared to 

metals and ceramics. They also degrade due to fatigue loading, thermal effects, environmental 
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effects, impact, etc. (Lanzara, Yoon, Liu, Peng, & Lee, 2009). The incorporation of nano-materials 

into a polymer matrix will significantly improve their properties and result in a material that is 

highly homogeneous. Imparting self-healing capabilities into polymer nanocomposites would 

make them more sustainable, longer lasting and expand their range of applications (Lanzara et al., 

2009; Thakur & Kessler, 2015). This is because polymers and their composites are susceptible to 

nano-scale damage which extends to the micro and the macro scale until catastrophic failure. The 

self-healing process in polymer composite materials has been studied using computational models 

and molecular dynamics simulations (Thakur & Kessler, 2015). From the idea that damage starts 

at a nano-scale level, Lanzara, Yoon et al., (2009) have created a conceptual model of a polymer 

nano-composite which uses Carbon Nanotubes (CNTs) as both matrix reinforcement and as 

containers for healing agents in polymer nano-composites. The model is illustrated in Figure 2. 

They have hypothesized that nano-scale damage will rupture the CNTs and cause the release of 

healing agents which will halt the damage progression at the initial stage itself. They have 

conducted molecular dynamics simulations whereby CNTs are used to store methane molecules 

and have found out that the healing agent release depends on the size of the crack on the CNT wall. 

The release of the healing agent is also temperature dependent and is prone to saturation which 

means that not all the healing agent molecules are released into the crack space. The results indicate 

that depending on the crack size, the percentage of methane molecules released ranges from 0.4-

0.5%. Therefore, they have concluded that the number of released methane molecules can be 

controlled by varying the packing density of the methane inside the CNTs (Lanzara et al., 2009). 

 

Figure 2. Concept of self-healing process using carbon nano-tubes (Lanzara et al., 2009). 
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2.4 Healing of fiber-reinforced polymers  

Due to the planar nature of fiber reinforced composites, they have poor impact resistance and the 

extent of the damage cannot be assessed by visual inspection (Williams et al., 2009). Researchers 

have tried to take advantage of fiber reinforced composite hierarchical microstructures by 

incorporating self-healing capabilities into them. This was done by using hollow glass fibres as 

storage vessels for the healing agents and incorporating those fibres in a polymer matrix. When 

the polymer composite got damaged, the fibres were ruptured and released the healing agents 

which seeped into the cracks. This helped to recover some mechanical strength and prevents 

further crack propagation (Williams et al., 2009).  

 

2.5 Non-autonomic healing of thermoplastic materials  

There are several mechanisms by which thermoplastics can recover from damage. One mechanism 

exploits the thermoplastics’ molecular chain mobility at temperatures above the glass transition 

temperature (Tg) (Wu et al., 2008). In other words, when the temperature of the thermoplastic 

exceeds the glass transition temperature, the polymer chains can move around and re-arrange 

themselves. This causes the crack surfaces to fuse together and restores the mechanical strength of 

the thermoplastic. This healing mechanism requires the application of heat to achieve temperatures 

above Tg and is illustrated in Figure 3. 

Another healing mechanism is photo-induced healing. This requires the irradiation of the polymer 

with light of a certain wavelength (>280nm). This healing technique only works with polymers 

which have been specially prepared in the presence of light to polymerize (Wu et al., 2008). 
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Figure 3. Illustration of molecular diffusion through crack interface (Wu et al., 2008). 

 

2.6 Intrinsic self-healing materials  

Ionomers are polymeric materials which can self-repair without any external intervention. 

However, their ability to self-heal is only limited to piercing damage under a very limited range of 

environmental and impact conditions such as the temperature, speed and shape of the projectile 

(Grande et al., 2012). 

Shojaei (2015) has also mentioned a self-healing material proposed in previous works which 

combined two healing mechanisms by embedding SMP fibres and solid thermoplastic particles in 

the composite matrix. When a crack forms, the SMP fibres will pull the crack faces together and 

the application of heat will cause the solid thermoplastic particles to melt and heal the crack. This 

healing system is illustrated in Figure 4. 
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Figure 4. Illustration of the healing system proposed by Shojaei (2015) which incorporates SMP fibers and solid 

healing agents in the form of thermoplastic particles dispersed in a matrix. Figure 4(a) depicts a macroscopic crack 

in the material. Figure 4(b) shows the crack surfaces being brought together when the SMP fiber restores its shape. 

Figure 4(c) represents the heating process which melts the solid healing agent and allows it to fill up the crack. 

Figure 4(d) shows the healed material at room temperature (Shojaei, 2015). 

 

The model illustrated in Figure 4 addresses an issue pertaining to the solid healing agents and the 

encapsulated liquid healing agents which is the run-off of liquid monomers from the crack sites 

before polymerization occurs. One of the main challenges is to create self-healing materials which 

can heal macro scale cracks repeatedly and efficiently. 

 

2.7 Healing efficiency of self-healing composites  

An important factor relating to self-healing composites is the healing efficiency. Healing efficiency 

is the percentage of strength restored after the composite has sustained damage and healed. In 

practice, it is the difference in load carrying capacity between the initial and the healed material 
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(Tsangouri, Aggelis, & Van Hemelrijck, 2015). Damage can be due to impact, extreme 

temperatures, radiation and fatigue and come in different forms such as warping, gashes, cracks, 

micro cracks and nano-cracks (Dementsov & Privman, 2008). The presence of micro cracks in the 

composite matrix will disrupt the load transfer mechanisms between capsules, fibres or any other 

containers used in the system and the matrix and it will ultimately lead to delamination and fracture 

of the container and the release of the healing agent (Wu et al., 2008). 

Williams et al. (2009) have conducted low velocity impact tests on fibre reinforced composites 

that have been imparted with self-healing capabilities by embedding hollow glass fibres containing 

healing agents. They have obtained conclusive proof that the presence of resin filled glass fibres 

enabled the restoration of a significant proportion of the compressive strength of the host material 

without having a detrimental effect on the material strength. Healing cracks at the nano scale would 

be advantageous as mentioned in section 2.3 since this would delay material fatigue earlier than 

micro scale healing. One main drawback of current self-healing materials is their inability to heal 

cracks at a macroscopic scale for example for cracks from impact damage. These crack surfaces 

have to be brought together for the healing agent to act (Shojaei, 2015). In the case of micro 

encapsulated liquid healing agents, the healing of macro-cracks would require the incorporation 

of a large amount of healing agents which would significantly affect the mechanical properties of 

the structure. In the case of large capsules and fiber encapsulated healing agents, the empty spaces 

left behind after the healing agent is released are potential defect sites (Shojaei, 2015). 

Most research on self-healing materials is focused on trial-and-error manufacturing processes to 

demonstrate their self-healing ability. However, to implement these materials into real world 

applications, the products need to be physically consistent. Since molecular level modelling 

techniques are difficult to implement computationally and experimentally, continuum level 

modelling approaches are the most widespread (Shojaei, 2015). 

The strength restoration will depend on how efficiently these cracks are healed. It is therefore 

important to understand the underlying chemical processes of self-healing and how it affects the 

material strength. According to Dementsov & Privman (2008), theoretical and numerical 

modelling of self-healing composite behaviour is still at the initiation stage. Furthermore, there is 

a need for a coordinated effort to combine computational methods and spectroscopic methods to 
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gain further understanding of how self-healing materials respond to stimuli (Urban, 2009). 

 

2.8 Fracture study of polymer composites 

It is important to study the fracture behaviour of polymer composites as it enables us to predict 

their response under daily work conditions. The ability of a polymer composite, employed in a 

structural application, to be able to absorb energy from strain or impact is crucial in many fields 

(Laurenzi, Pastore, Giannini, & Marchetti, 2013). It is therefore important to conduct experimental 

and computational studies to characterize its properties before using it in the field. 

Fracture study of self-healing polymer composites is crucial when trying to determine the healing 

efficiency (Tsangouri et al., 2015). Since self-healing polymers form adhesive joint interfaces after 

healing, it is necessary to employ established testing regimes for monitoring of crack formation in 

adhesive composites (Tsangouri et al., 2015). The most commonly used fracture test to 

characterize self-healing material tensile strength are the tapered double cantilever beam (TDCB) 

tests and the single-edge notched beam tensile tests.  

Researchers have identified 3 failure modes in polymers (illustrated in Figure 5.):  

1. Crack opening where tensile forces perpendicular to the crack separate the crack surfaces.  

2. Crack sliding where shear forces slide the crack surfaces on top of each other. 

3. Crack tearing where shear forces pull the crack surfaces apart. 
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Figure 5. Damage modes whereby mode 1 is crack opening, mode 2 is crack sliding and mode 3 is crack tearing. 

 

2.9 Computational modelling of materials 

Generally, the intention of computational models is to attain computational efficiency when 

calculating the mechanical response of the material during damage without sacrificing the key 

physical aspects of the material microstructure, architecture and behaviour (Grujicic et al., 2010). 

Experimental studies require the manufacture of the material that needs to be analysed as well as 

costly material testing equipment. Computational models can help save in terms of time and the 

cost. 

 

2.10 Finite element analysis of particle reinforced composites 

It is generally agreed that the modelling of the mechanical response of particle reinforced 

composite materials is a very complex problem due to the large number of factors that can 

influence the behaviour. The factors include the size, distribution and shape of the inclusions 

(Chawla, Sidhu, & Ganesh, 2006; Sun, Shen, Song, & Du, 2012). In these cases, analytical and 

simple numerical models are not ideal since they do not always account for the factors that affect 

the behaviour at the microstructural level. Chawla, Sidhu & Ganesh (2006) have been able to 

obtain accurate results by using a 3D microstructure based approach to model particle reinforced 

Mode 1  Mode 2 Mode 3  
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material behaviour. They have found that 3D Finite Element Method is very effective at modelling 

multiphase materials and local deformations and damage characteristics can be easily visualized. 

The experiment conducted by Chawla, Sidhu & Ganesh (2006) consisted of manufacturing pieces 

of aluminium alloy reinforced with various volume % of silicon carbide (SiC) particles and 

rendering the samples into 3D models for finite element analysis. The 3D rendering was done by 

taking a sample of the material, polishing the surface, taking a picture of the surface microstructure, 

shaving off thin slices off the surface while simultaneously taking pictures after each layer is 

removed. The pictures are then stacked together, and a 3D model is created. This process has 

enabled them to create very accurate representative volume elements. The process is illustrated in 

Figure 6. 

 

 

Figure 6. 3D modelling process of SiC reinforced Aluminum alloy (Chawla, Sidhu & Ganesh, 2006). 

 

Once the realistic particle distribution was obtained, the shape of the inclusions could be modified 

to spherical or ellipsoidal (Figure 7) to investigate the effect of varying inclusion shapes on the 

composite properties without changing the particle distribution. 
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Figure 7. Illustration of differently shaped inclusions (a) sharp, angular (b) ellipsoidal (c) spherical (Chawla et al., 

2006). 

 

The ideas that can help to successfully create accurate finite element models of particle reinforced 

composites can be applied to model capsule reinforced composites. The main difference between 

modelling capsule reinforced composites and particle reinforced composites is that the particle 

will be modelled as a solid sphere or ellipsoid while the capsule will be modelled as a sphere with 

an internal radius and a wall thickness which can be either hollow or filled with a distinct material 

(healing agents). 

 

2.11 Finite element analysis of metals comprised of 2 distinct phases 

Guo, Ji et al., (2014) have conducted computational studies on the fracture behaviour of bimodal 

nano-structured (NS) metals. Bimodal NS metals consist of coarse grained (CG) and nano-grained 

(NG) phases. This combination of two distinct microstructures can significantly alter the material 

behaviour. The metal strength and ductility can be modified by adjusting the size, shape and 

distribution of the coarse grain inclusions. However, the direct experimental characterization of 

bimodal NS metal behaviour has limitations since the grain size distribution and shape cannot be 

easily reproduced and predicted. Their modelling approach can be applied to particle reinforced 

composites, however, the models with square and hexagonally packed particles are not suitable to 

predict material behaviour as these particle arrangements cannot be currently achieved in real life. 

Furthermore, 2D models tend to be overly simplified compared to 3D models. 

(a) (b) (c) 
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The 2D models proposed by Guo et al., (2014) combine a mechanism-based strain gradient 

plasticity theory, a micromechanics composite model and the Johnson-Cook failure model. The 

model has been used to investigate the effect of the CG phase distribution and the shape of the CG 

phase on the fracture behaviour of bimodal nanostructured copper. The models display different 

microstructures as illustrated in Figure 8. Their models with differently shaped inclusions provided 

insights on how particles with sharp edges (square inclusions) affect the stress field as compared 

to particles with smooth edges (elliptical and spherical inclusions). They were also able to compare 

how regularly arranged inclusions can affect the mechanical response as opposed to randomly 

arranged inclusions. 

 

 

Figure 8. Illustration of different microstructures for the bimodal NS metal. The red structures represent the CG 

regions while the green area represents the NG region. The idealized microstructures are (a) spherical CG region 

with square packing (b) spherical CG region with hexagonal packing (c) square CG region with square packing (d) 

square CG region with hexagonal packing (e) randomly distributed elliptical CG region oriented parallel to the crack 

(f) randomly distributed elliptical region oriented perpendicularly to the crack (Guo, Ji, Weng, Zhu, & Lu, 2014). 

 

Guo et al., (2014) have compared the load versus boundary displacement for different grain sizes, 

grain shapes and microstructures. They have also compared the virtual crack length versus 

boundary displacement for the same parameters as shown in Figures 9(a) and 9(b). They have 

found that there exists a critical volume fraction of CG inclusions where the fracture resistance is 

minimal, and this should be avoided when designing bimodal NS metals.  

Half crack 
Strain direction 
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Figure 9. Results for microstructure with a CG grain size of 23nm where (a) shows the load vs boundary 

displacement with varying CG shapes and configurations and (b) shows the crack length vs boundary displacement 

with varying CG shapes and configurations (Guo et al., 2014). 

 

In a subsequent research, Ouyang, Guo et al., (2016) have extended the research into 3D modelling 

and investigated more complex shaped CG inclusions with different orientations as illustrated in 

Figure 10. 

 

 

Figure 10. 4 different CG inclusions used in the 3D models (Ouyang, Guo, & Feng, 2016). 

 

They have found that the presence of sharp edges on CG inclusions create areas of high stress 

concentration (see Figure 11) which are potential sites for crack initiation. This modelling 

approach is more suitable for modelling particle reinforced composites; however, these models are 

idealized and do not accurately reflect the arrangement of the inclusions inside the matrix. 
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Figure 11. Equivalent plastic strain distribution in RVEs containing (a) spherical inclusions, (b) diamond inclusions, 

(c) cube inclusions and (d) oblique cube inclusions (Ouyang et al., 2016). 
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2.12 Influence of interface cohesive strength between reinforcement and matrix on the 

mechanical properties of the overall material 

In further research on bimodal NS metals, Guo et al., (2016) have investigated the effect of the 

cohesive strength between the CG and NG phases on the strength and ductility of the material. 

They have found out that the strength of the interface is a crucial factor in the strength and ductility 

of bimodal metals. The cohesive finite element method (CFEM) has been used to investigate the 

fracture mechanism at this scale. The ratio of the cohesive strength of the CG to CG elements to 

the yield strength of the CG phase was denoted by 𝑛𝐶𝐺  while the ratio of cohesive strength of the 

NG to NG elements to the yield strength of the NG phase was denoted by 𝑛𝑁𝐺. While investigating 

the different combinations of 𝑛𝐶𝐺 − 𝑛𝑁𝐺 , it was found that at a certain combination level, the 

bimodal NS metal will hit an upper limit in strength and ductility (Guo, Yang, & Weng, 2016). 

The finite element analysis of bimodal nano-structured metal by Guo et al., (2014), Guo, Yang & 

Weng (2016) and Ouyang et al., (2016) has shown that computational models can be used to 

accurately predict the mechanical behaviour of dual-phase materials comprising of a matrix with 

dispersed inclusions having different properties, shapes and distribution. 

 

2.13 3D Progressive damage modelling of composite materials 

Koumpias et al., (2014) have developed a progressive damage model (PDM) of a 3D fully 

interlaced woven composite material (illustrated in Figure 12).  

 

Figure 12. 3D model of a fully interlaced woven composite material (Koumpias, Tserpes, & Pantelakis, 2014). 

 

The aim of the model was to simulate the mechanical response and predict the strength of the 

composite material. They have applied a Hashin-type failure criteria and the material property 

degradation was applied using a damage mechanics-based strain-softening law. Non-linear 



Page | 28  
 

behaviour of the matrix was done by applying a multi-linear continuum damage model. 

Comprehensive response behaviour of the RVE was measured by loading it in uniaxial tension, 

compression in all three axes and shear in all three planes.  

The PDM has integrated stress analysis, failure analysis and material property degradation by 

using an iterative algorithm which terminates when material failure is detected. This was 

performed using ANSYS APDL. 

Sanada et al., (2015) have also developed a progressive damage model of a self-healing fibre 

reinforced composite on ANSYS. Their model assumed perfect bonding between the fibre and the 

matrix. The model was meshed with 20 node hexahedral elements using tetrahedral and pyramid 

options. They have carried out stress analyses under incremental loads to determine the damage 

location. The failure criterion used in this research was the Von-Mises criterion. The damage 

progression mode is shown in Figure 13. 

 

 

Figure 13. Illustration of progressive damage model of a self-healing fiber composite (Sanada, Mizuno, & Shindo, 

2015). 

 

There are different approaches to modelling self-healing composite behaviour and the creation of 

a Representative Volume Element (RVE) plays a major role in determining the mechanics of 

random heterogeneous materials (Chen, Ji, & Wang, 2013). Researchers may choose to either 

adopt a 2D RVE approach which is simple and less computationally demanding or use a 3D RVE 
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which is more complex and closer to the actual situation (Chen et al., 2013).  Despite the extensive 

research being done on self-healing materials in experiments, there is a distinct lack of theories 

that describe the complex multi-physics healing mechanisms at the microscopic level (Shojaei, 

Sharafi, & Li, 2015). Consequently, the modelling techniques which attempt to emulate the 

behaviour of self-healing systems are very limited and very few have been reported (Shojaei et al., 

2015). 

The modelling of elastic and inelastic responses of metallic, ceramic and polymeric materials is 

generally developed on several scales: nano-scale, micro-scale, meso-scale and macro-scale. 

Nano-scale mechanics face computational difficulties in terms of the time, temperature and length 

scales and still cannot address real engineering problems. The meso-scale approach is more 

computationally efficient and links the micro-scale to the macro-scale (Shojaei et al., 2015). In the 

case of polymers, micro models describe micro-scale features such as crosslinking, chain mobility, 

interface, motion and entanglement of polymer chains whereas the macro-scale models describe 

the material behaviour in terms of overall mechanical properties and the latter are appropriate for 

numerical and finite element methods (Baghani, Naghdabadi, Arghavani, & Sohrabpour, 2012). 

Continuum damage healing mechanics are used to connect the microscopic healing processes to 

the recovery of the overall material (Shojaei et al., 2015). In other words, the linking of micro and 

macro scale is done by using averaging techniques which take the micro-scale properties and 

provide internal state variables to the continuum models (Shojaei, 2015).  

The main drawback of continuum models is the large number of material parameters that need to 

be determined experimentally and translated into simulations (Shojaei et al., 2015). To address 

this, modelling software packages provide material libraries which contain most of the necessary 

parameters needed. The user can also input their own material model based on their experimental 

results 

Regardless of the nature of the material system, all the designs used for structural purposes will 

experience a wide range of damage mechanisms during their service life. Service life is categorized 

as mechanical damage and includes low/high cycle fatigue, ductile and impact damage. Micro 

cracks, voids and micro-cavities are examples of mechanical damage that occur at the micro scale 

during service life. Self-healing materials such as shape memory alloy (SMA) and shape memory 
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polymer (SMP) experience an additional type of active damage mechanism which is specific to 

this class of materials. This damage is called thermo-mechanical damage and is associated with 

the process of programming and recovery of the material system. Continuum damage mechanics 

framework is used to formulate mechanical and thermo-mechanical damage (Shojaei et al., 2015).  

 While some believe that two independent damage variables are needed to describe isotropic 

mechanical damage, others have shown that the assumption of isotropic behaviour is sufficient to 

accurately predict load bearing capacity, number of cycles or time to local failure of components. 

Other researchers have developed a framework which superimposes mechanical and thermo-

mechanical damage which enables designers to predict the entire range of active damage 

mechanisms in self-healing materials containing SMA and SMP components (Shojaei et al., 2015). 

 

2.14 Fracture modelling using Finite Element Method 

Chen et al., (2013) have investigated the effect of incorporating microcapsules containing healing 

agents into an epoxy matrix. They have done so by analysing the behaviour of a 3D RVE 

containing a single healing capsule. The microcapsule had made up 10% of the RVE volume. 2 

models were created and analysed using extended Finite Element Method (XFEM). In one model, 

the crack was centred while in the other model, the crack was off centred as shown in Figure 14.  

 

 

(a) (b) 
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Figure 14. RVE containing a single capsule with (a) off centred edge crack and (b) centred edge crack (Chen et al., 

2013). 

 

The RVE was subjected to a uniaxial tensile strain of 10% along the Y axis to induce mode 1 

fracture. Using the rule of mixtures, it is generally agreed that composite properties are governed 

by the strength and volume fractions of their constituents. However, in their study, Chen et al. 

(2013) has found that the Young’s Modulus of the microcapsules have negligible effects on the 

overall composite carrying capacity. They have verified the effect of the capsule elastic modulus 

on the RVE by varying the value from 3 to 5 GPa. It was also found that crack propagation in the 

matrix initiates crack formation in the microcapsule and facilitates the release of the healing agent 

into the crack. Consequently, in the off centred crack model, 2 parallel cracks were formed while 

in the crack centred model; the first crack turned and joined the secondary crack. Both phenomena 

are illustrated in Figure 14. In both cases, the crack propagation tends to be attracted towards the 

microcapsule. 

    

Figure 15. Crack propagation path in both models. It can be seen in (a) that two cracks are formed while in (b) the 

first crack turns and joins the secondary crack formed in the micro capsule (Chen et al., 2013). 

 

2.15 Computational modelling of high speed deformation of materials 

Plastic deformation in polymers is a multi-stage process and a physically consistent model needs 

to be able to re-create them. Polymers exhibit unusual elastic-plastic behaviour that classical 

plasticity constitutive models are unable to address. Many solid polymers undergo necking under 

both tensile and compressive stress. The finite element modelling of the ballistic impact behaviour 

(a) (b) 
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of fabric armour carried out by Lim et al., (2003) has some important considerations worth 

mentioning. First, the detailed, high speed experimental analysis of impact would require difficult 

and costly high speed photographic measurements. Theoretical and finite element modelling 

provide cheaper alternatives to the aforementioned methods (Lim, Shim, & Ng, 2003). 

Describing material behaviour under high speed damage is very complex. Modelling the material, 

its individual components and their interactions would require huge computational time and power. 

In the case of ballistic armour, those components would be the individual yarns and the interactions 

refer to the frictional, crimping, fraying and unravelling of the fibres (Lim et al., 2003). Due to the 

complexity of the fabric structure, the researchers were forced to resort to certain assumptions to 

simplify the analysis. The simplified finite element model for ballistic tests on fabric armour is 

illustrated in Figure 16. The results obtained from the simulation were compared to the 

experimental results (Lim et al., 2003). 

 

Figure 16. Finite element model of projectile and target (Lim et al., 2003). 

 

The projectile was modelled using solid elements and the fabric was modelled using membrane 

elements. Both the projectile and the fabric were modelled in full to witness the ripple effects from 

the stress wave propagation through the fabric. The fabric was clamped on both ends and subject 

to impact by the projectile (Lim et al., 2003). 
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2.16 Multi-scale modelling of composite materials 

Experimental studies of composite materials, especially the study of composites with micro/nano-

scale reinforcements remain challenging due to the difficulty in observing how stresses are 

transferred and how the deformation occurs at such a small scale. Theoretical modelling and 

simulations can be used to fill in this gap. Computational models help provide insight into the 

composite behaviour (Shokrieh & Rafiee, 2010). Certain important considerations when modelling 

Carbon Nanotube Reinforced Polymers (CNTRP) are whether to model the CNT as a solid fibre 

or model the full lattice structure. Another consideration is how to model the interphase between 

the reinforcing material and the matrix. 

 

2.17 Modelling the flow of resin in self-healing composites 

Hall et al., 2015 have studied the flow of the healing agents through cracks in self-healing 

composites. They have found that it is important to deliver the correct amount of resin to the correct 

location and therefore, it is essential to understand how the liquid healing agent flows to the 

damage site from a single point or multiple points. They have created a model of the fluid flow 

leaving the healing storage and into the crack under the influence of a pressure gradient and/or 

capillary action. The flows involve complicated geometries, which may still be moving with 

respect to each other, free surface behaviour and chemical changes in the fluid.  

They have also determined the relationship between the local pressure differential across the crack 

and the flow rate through it using Smooth Particle Hydrodynamics (SPH) SPH is a meshless 

Langrangian numerical method for fluid dynamics. 

However, they did not simulate crack formation through the healing agent storage and the 

subsequent outflow of healing agent through the crack. Instead, they have simulated the flow of 

fluids of varying viscosities being forced through a crack (Figure 17) using a pressure gradient.  
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Figure 17. Geometry through which the healing agent is forced. The black area represents the fluid while the white, 

enclosed area represents the crack (Hall, Qamar, Rendall, & Trask, 2015). 

 

They have found that a high fluid viscosity leads to a lower volume fraction filled. The relationship 

between the Reynolds number and the volume fraction filled during a fixed time is shown in the 

following chart: 

 

Figure 18. Figure showing the volume fraction filled vs Reynolds number of healing fluid at a fixed time of t = 

1.258 x 10-4s (Hall et al., 2015). 

 

This means that a resin with a low viscosity will travel faster and fill both cracks more efficiently 

while a resin with high viscosity will travel slower and will not fill the adjacent lower crack to the 

same extent.  This research could be useful when modelling the flow of self-healing agents in 

fractured self-healing composites.  
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3. Methodology 

For this project, ANSYS Mechanical APDL 16.2 was used to develop a finite element model of a 

capsule reinforced composite material. Finite Element Analysis (FEA) was chosen over 

experimental methods as the former presents several advantages over the latter. 

Experimental methods tend to be costly and time consuming and require the use of specialized 

equipment. Finite Element methods are very useful when time and resources are scarce. It is 

possible to create parametric representative models, run many simulations and obtain results 

relatively fast depending on the complexity of the analysis. 

3.1 Overview of the Finite Element Method 

The Finite Element Method (FEM) is an established numerical method which is used when 

analytical methods are too difficult to implement. The finite element method approximates exact 

solutions at discrete points called nodes. The geometric model must be divided into small, discrete 

regions known as elements. Adjacent elements are joined by nodes and collectively, they form a 

mesh. The elements must obey certain element boundary conditions while obeying regional 

boundary conditions to be compatible with each other. 

A plane elasticity problem is used to illustrate the FE method (from Rockey et al., 1975). 

Figure 19 shows (a) a continuum divided into triangular elements and (b) a triangular element. 

Each element node has 2 degrees of freedom indicated by U and V. There are three nodes per 

element, therefore each element has 6 degrees of freedom. 
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Figure 19. Figure showing (a) a continuum divided into triangular elements and (b) a triangular element. 

 

Let the symbols U(X,Y) and V(X,Y) indicate displacement in the X and Y directions respectively at 

any point (X,Y) in the element. Assume U(X,Y) and V(X,Y) are linear in X and Y over the entire 

continuum domain. Therefore, 

𝑈(𝑋, 𝑌) =  𝛼1 + 𝛼2𝑋 + 𝛼3𝑌     − [1]       

𝑉(𝑋, 𝑌) =  𝛽1 + 𝛽2𝑋 + 𝛽3𝑌                   

Where 𝛼 and 𝛽 are constants and are known as generalised co-ordinates. They are determined by 

solving eq [1] at the nodal coordinates (𝑋𝑖, 𝑌𝑖), (𝑋𝑗, 𝑌𝑗) and (𝑋𝑘, 𝑌𝑘) simultaneously where i, j and 

k are designated nodes for an element (see figure 19 (b)). 

The displacement components U(X,Y) and V(X,Y) account for the internal displacement at any 

point in the element based on the nodal displacement vector 𝛿𝑒
⃗⃗  ⃗ , which is expressed as 

𝛿𝑒
⃗⃗  ⃗

𝑇
= (𝑈𝑖, 𝑉𝑖, 𝑈𝑗 , 𝑉𝑗 , 𝑈𝑘 , 𝑉𝑘)       −  [2] 

(U(X,Y), V(X,Y)) is related to 𝛿𝑒
⃗⃗  ⃗ via matrix, N, expressed as: 

(
𝑈(𝑋, 𝑌)
𝑉(𝑋, 𝑌)

) = 𝑁𝛿𝑒
⃗⃗  ⃗                       − [3] 
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This equation is derived from equations 1 and 2. N contains entries known as shape functions or 

interpolation functions which describe global coordinates of the nodes, i.e. (𝑋𝑖, 𝑌𝑖), (𝑋𝑗 , 𝑌𝑗) and 

(𝑋𝑘, 𝑌𝑘) and any point (X,Y), within the element. 

In the plane stress and strain problems, the strain components, 𝜀𝑥𝑥, 𝜀𝑦𝑦 and 𝛾𝑥𝑦 at any point in an 

element within the FE model can be represented as a single column matrix which is related to 𝛿𝑒
⃗⃗  ⃗, 

via a strain-displacement matrix, B, expressed by: 

(

𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

) = 𝐁𝛿𝑒
⃗⃗  ⃗                   − [4] 

B contains entries expressed in terms of global coordinates of the nodes in the element. 

The stress components 𝜎𝑥𝑥 , 𝜎𝑦𝑦 and 𝜏𝑥𝑦, at any point in an element can also be represented as a 

single column matrix, D, expressed by: 

(

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑥𝑦

) = 𝐃(

𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

)        − [5] 

The element stiffness matrix can be determined by the expression: 

𝐤𝑒 = ∫
𝑠
𝐁T𝐃𝐁d𝑠         − [6] 

Integrated over the volume, S, of the model. B and D are the strain-displacement (eq 4) and 

elasticity (eq 5) matrices respectively. 

𝐤𝑒 related the element nodal force vector, Q𝑒
⃗⃗ ⃗⃗  

 
 (which is the sum of body force and surface traction 

on the element), to the displacement within the element by the following equation: 

𝐤𝑒𝛿𝑒
⃗⃗  ⃗ =  Q𝑒

⃗⃗ ⃗⃗                   − [7] 

By superposing 𝐤𝑒 from all the elements within the FE model, we can obtain the global stiffness 

matrix, K, expressed by: 



Page | 38  
 

𝐊 = ∑𝐤𝑒                 − [8] 

The global stiffness matrix, 𝐊, is related to the global nodal displacement vector 𝛿  and the applied 

nodal force vector, 𝑄⃗ , by the expression: 

𝐊𝛿 =  𝑄⃗                − [9] 

𝛿  and 𝑄⃗  are derived by superposing 𝛿𝑒
⃗⃗  ⃗ and Q𝑒

⃗⃗ ⃗⃗   respectively over all elements. 𝛿  can then be 

determined by inverting K. From 𝛿 , 𝛿𝑒
⃗⃗  ⃗ can then be found at every element in the model. From 𝛿𝑒

⃗⃗  ⃗, 

strain components can be found at any point in the FE model by using equation [4] and the stress 

components can be determined using equation [5]. 

There are 3 stages in the finite element method: 

• Pre-processing involves creating and meshing the model and applying stresses and 

boundary conditions. The model is divided into discrete stress elements during meshing. 

The material properties and element types are also chosen during pre-processing.  

• Solving involves using the default solver to calculate the stresses in each stress element. 

• Post-processing involves reading the data and processing the data into meaningful results. 

A Representative Volume Element (RVE) consisting of random capsules embedded in a block 

matrix was developed to explore the viability of modelling a composite which contains a randomly 

scattered reinforcement phase. An initial model was created to establish dimensions and optimum 

meshing to be used in further models. The purpose of this model was also to ensure that the results 

are concurrent with the expected results for the range of properties tested. The mesh was refined 

and simplified at each step of the modelling process to ensure computational efficiency as well as 

result accuracy. Models with different types of random distribution in terms of capsule size and 

capsule distributions were created and will be further explained in the next section. 

The variables frequently used in the following sections are listed and described below: 

𝐿𝑥 and 𝐿𝑦 denote the width and the height of the model along the X and Y axes. 𝐿𝑧 denotes the 

length of the model along the Z axis (illustrated in Figure 19). 𝑟𝑜 denotes the outer radius of the 
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capsules, 𝑟𝑖 is the inner radius and t is the capsule wall thickness. N is the number of capsules. 𝐸𝑚 

and 𝑣𝑚 are the matrix modulus and matrix Poisson’s ratio respectively. 𝐸𝑐 and 𝑣𝑐 are the capsule 

modulus and capsule Poisson’s ratio respectively. 𝐸𝑓𝑖𝑙𝑙 and 𝑣𝑓𝑖𝑙𝑙 are the filler modulus and filler 

Poisson’s ratio respectively. ɛ is the strain applied on the model and S is the displacement applied 

on one face of the model. 

 

3.2 Description of models 

Initially, a macro-scale model was developed. However, due to computational restrictions, it was 

not possible to simulate the behaviour of a piece of composite material with potentially thousands 

of micro-capsules. Therefore, it was decided to create a meso-scale model with a small number of 

capsules (<100). A meso-scale model is an intermediate scale model between the macro and micro 

scale models. The different scale models are illustrated in Figure 20. 

 

 

Figure 20. Illustration of the different scale models showing the (a) macro-scale model (b) meso-scale model (c) 

micro-scale model. 

 

In our case, an example of a macro-scale model would be the full test sample and the micro-scale 

model would be a single capsule embedded in a block matrix. The meso or intermediate scale 

model would be multiple capsules embedded in a block matrix. 

(a) (b) (c) 

Lx 

Ly 

Lz 
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The models created are 3-dimensional RVE of a capsule reinforced composite material. They 

consist of randomly distributed capsules embedded in block matrices. The user can define the 

number of capsules, N, the capsule modulus, 𝐸𝑐, the capsule Poisson’s ratio, 𝑣𝑐, the matrix 

modulus, 𝐸𝑚, the matrix Poisson’s ratio, 𝑣𝑚, the capsule filler modulus, 𝐸𝑓𝑖𝑙𝑙, and the capsule filler 

Poisson’s ratio, 𝑣𝑓𝑖𝑙𝑙. The user can also choose between 4 distinct capsule distribution models: 

dispersion, agglomeration, single agglomeration + dispersion and multiple agglomerations + 

dispersion. The different capsule distribution models are illustrated in Figure 21 and detailed in 

the next section.  

 

 

Figure 21. Illustration of the different capsule distribution models: (a) dispersion model (b) agglomeration model (c) 

single agglomeration + dispersion model and (d) multiple agglomerations + dispersion model. 

 

The reason for having these different distribution models is when particle/capsule reinforced 

composites are manufactured; the particles/capsules are not uniformly distributed through the 

matrix. The particles tend to cluster up as observed in FESEM images of fracture surfaces by co-

workers (Hia, Pasbakhsh, Chan, & Chai, 2016). There will be areas where capsules will cluster up 

and other areas where individual capsules will be randomly distributed as well as areas without 

capsules. The particle/capsule distribution is known to affect the properties of the composite and 

(a) 

(b) 

(c) 

(d) 



Page | 41  
 

must be taken into consideration when creating 3D FEA models (Chawla et al., 2006; Wang et al., 

2011). The multiple agglomeration + dispersion model is part of an effort to create simulations 

that are more accurate to real life composites. The different distribution models in Fig. 21 (a), (b) 

and (c) help us analyse each distribution individually and the final model in Fig. 21(d) help us 

analyse all the distributions combined. 

Capsules are spherical in shape and can be either hollow or full. The user can define the capsule 

filler material properties by specifying the elastic modulus and the Poisson’s ratio. The capsule 

has an inner radius of 𝑟𝑖 and an outer radius of 𝑟𝑜. The capsule wall thickness is uniform and has a 

thickness: 𝑡 =  𝑟𝑜 − 𝑟𝑖. A single capsule embedded in a block matrix along with a sectional view 

is illustrated in Figure 22.  

 

 

Figure 22. Illustration of (a) single, hollow capsule embedded in block matrix and (b) cross section of single, hollow 

capsule embedded in block matrix. 

 

A basic damage model was also created to observe how the damage progresses inside of the 

different capsule distribution models. 

 

t 

𝑟𝑖 

𝑟𝑜 

(𝑎) (𝑏) 
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3.2.1 Capsule dispersion model  

In the first and simplest model, the capsules are randomly distributed inside the matrix. The 

capsules do not overlap or get into contact. There is always a minimum distance in the x,y and z 

directions between all capsules. Capsules do not overlap with the boundaries of the block matrix 

either. The reason for the spacing is that the software is unable to mesh and solve the model if the 

capsules overlap or are in contact. Models with different numbers of randomly scattered capsules 

with uniform distribution are illustrated in Figures 23(a) – 23(d). 
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Figure 23. RVE with (a) 20 (b)40 (c) 60 (d) 80 capsules showing capsule dispersion.  

 

3.2.2 Capsule agglomeration model 

In the second model, the capsules are randomly scattered and follow a normal distribution. 

The user can specify the mean point where the capsules will be concentrated as well as the standard 

deviation. The standard deviation dictates the degree to which the capsules are concentrated about 

the mean point. This capability will enable us to explore how various degrees of capsule 

(a) (b) 

(c) (d) 
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agglomeration affect the mechanical properties of the model. Some of the models are illustrated in 

Figure 24(a) – (d). 

 

 

 
Figure 24. Figure illustrating various capsule agglomerations achievable by the model (a) mean centred around the 

(0.5Lx, 0.5Ly,0.5Lz) with std deviation = 1 (b) mean centered around (0.5Lx, 0.5Ly,0.5Lz) with std deviation = 2 

(c) mean centred around (0.75Lx,0.5Ly,0.5Lz) with std deviation = 1 (c) mean centred around (0.75Lx,0.5Ly,0.5Lz) 

with std deviation = 2. 

 

3.2.3 Single agglomeration + dispersion model 

In the third model (Figure 25(a) – (d)), the capsules follow both normal and uniform distribution. 

(a) (b) 

(c) (d) 
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Like the agglomeration model, the user can specify the mean point where the capsules will be 

concentrated as well as the standard deviation. The user can also specify the number of capsules 

and the proportion of capsules that are agglomerated. 

 

 

 
 
Figure 25. Figure illustrating the various percentages of agglomerations that can be achieved by the model. In this 

case the agglomeration is at the center of the matrix. The agglomeration can be placed anywhere inside the matrix. 

The Figures illustrate 100 capsules with (a) 20% (b) 40% (c) 60% (d) 80% agglomeration. 

 

3.2.4 Multiple agglomerations + dispersion model 

The final model combines all the previous models; however, the user has no control over specific 

parameters.  

(a) (b) 

(c) (d) 
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Unlike the previous two models, the agglomerations are randomly located and contain a random 

number of particles each. The user can specify the number of capsules, the number of 

agglomerations and the standard deviation. The model is illustrated in Figure 26(a) – (j). 

 

 
 

Figure 26. Illustration of multiple agglomerations+dispersion model. All models contain 100 capsules. The different 

models shown have the following parameters (a) 5 agglomerations, std dev = 1 (b) 5 agglomerations, std dev = 2 (c) 

5 agglomerations, std dev = 3 (d) 10 agglomerations, std dev = 1 (e) 10 agglomerations, std dev = 2 (f) 10 

agglomerations, std dev = 3 (g) 15 agglomerations, std dev = 1 (h) 15 agglomerations, std dev = 2 (i) 15 

agglomerations, std dev = 3. 

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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It can be observed that, for a constant number of capsules, as the number of agglomerations 

increases, the particles tend to look dispersed similar to the simple dispersion model in section 

3.1.1. The same can be observed when the standard deviation is increased.  

 

3.3 Material properties 

Material properties of the matrix and capsules are listed in table 1. The material properties of 

Poly(urea-formaldehyde) were obtained from (Keller & Sottos, 2006). 

Table 1. Material properties of components. 

 Elastic modulus (Gpa) Poisson ratio 

Epoxy 3.5 0.34 

Poly(urea-formaldehyde) 3.9 0.33 

 

 

3.4 Material strength limits 

Material strength limits of the matrix and capsules for the damage model are listed in table 2.  

Table 2. Strength limit of material components. 

 
Tensile strength 

(Mpa) 

Compressive strength 

(MPa) 

Shear strength 

(MPa) 

Epoxy 85 190 112 

Poly(urea-

formaldehyde) 
0.07 0.14 0.1 
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3.5 Boundary conditions 

The boundary conditions are as follows (illustrated in Figure 27): 

u(BCFG) = 0 

v(ABGH) = 0 

w(HGFE) = 0 

v(DCFE) = S 

 

 

 

Figure 27. Illustration of boundary conditions. 

 

Letters A-G mark the corners of the RVE, u, v and w denote the displacement in the x, y and z 

directions respectively and S is the displacement applied on face DCFE. Faces BCFG, ABGH and 

HGFE are restricted from moving in a perpendicular direction from the respective planes. 

3.6 Meshing 

Tetrahedral elements with 4 nodes (SOLID285) were used to mesh the entire model. Due to the 

irregular internal shape of the model, brick elements could not be used. The meshed model is 

illustrated in Figure 28. 
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Figure 28. Illustration of RVE mesh showing (a) the matrix mesh (b) sectional view of the matrix showing 

embedded capsules (c) close-up of meshed capsules (d) sectional view of single meshed capsule (e) 4-Node 

Tetrahedral element (SOLID 285). 

(a) (b) 

(c) (d) 

(e) 
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3.7 Instruction manual 

This section will provide instructions on how to specify parameters, run the code and obtain results. 

Step 1: Open the code file and specify the material and geometric parameters. For each model, the 

parameters that can be specified will be slightly different and will be highlighted. 

a. Dispersion model: 

For the dispersion model, the following parameters can be specified: (a) material properties, (b) 

geometric values such as RVE dimensions and capsule external and internal radii, (c) number of 

capsules, (d) strain, (e) mesh parameters such as line divisions and element type. 

 

(c) 

(d) 

(e) 
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b. Agglomeration model: 

In addition to the parameters that can be specified in the previous model, the user can specify 

the (a) normal distribution parameters whereby the center of the agglomeration and the standard 

distribution in each plane can be specified. 
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c. Single agglomeration + dispersion model: 

In addition to the parameters that can be specified in the previous models, the user can specify 

(a) the ratio of capsules that are agglomerated. 
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d. Multiple agglomerations + dispersion model: 

In this model, the user can specify (a) the number of agglomerations and (b) the standard 

deviation that dictates how tightly packed the capsules are. However, unlike the previous 2 

agglomeration models, the user cannot specify the location of the agglomerations are those 

are random. 
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Step 2: Scroll down in the code and specify the output parameters. 

(a) Select the location where nodal data is to be extracted, specify the stress 

component to be extracted and retrieve the nodal stress. 

(b) Specify the output file name and file extension. 

(c) Specify the target folder where the file will be written. 

 

    

 

(c) 
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Step 3: Open APDL, (a) click File  read input from. 
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Step 4: Select (a) the folder where the file is located and (b) the code file to be read. 
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Step 5: Viewing and processing the output file.  

The output file will look like this: 

 

 

It can be viewed using Notepad and the information can be extracted and plotted on Microsoft 

Excel or Matlab. 
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Non-linear damage model: 

The progressive damage model is considered as a non-linear model because the stiffness of the 

model will change as the analysis progresses. In this model, the damage initiation criteria and the 

damage evolution law are specified. Note that progressive damage refers to how the damage 

progresses spatially throughout the model. 

The damage initiation criteria are specified by entering the material strength limits listed in table 

2 into the code. The damage evolution law is then specified. The damage evolution law dictates 

how damage progresses through the model. In this model, we have chosen the material property 

degradation (MPDG) method as the damage evolution law. This means that, once the stress 

(tensile, compressive or shear) of an element reaches the strength limit of the material specified 

for that element, the element will undergo an instant stiffness reduction (both tensile and 

compressive). In this case, an arbitrary stiffness reduction of 70% was chosen. 

For this model, steps 1-3 in the linear section should be followed and the material strength limits 

must be specified as follows: 

(a) Assign values to the variables: Matrix tensile strength, matrix compressive strength, matrix 

shear strength, capsule tensile strength, capsule compressive strength, capsule shear 

strength, filler tensile strength, filler compressive strength, filler shear strength. The solid 

epoxy filled capsule RVE is used as an example. 
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(b) Specify the failure criteria for each material by using the TB and TBDATA commands The 

TB command activates a data table to input special material properties. The TBDATA 

command enables us to input the data in the table invoked by the previous TB command 

(refer to ANSYS online help manual for further details on how to use TB and TBDATA). 

(c) Specify the damage evolution law for each material by using the TB and TBDATA 

commands. 

(d) Assign the respective strength limits by using the TB and TBDATA commands. 
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(c) 

(c) 

(c) 
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4. Results & discussion 

4.1 Linear analysis 

This section will compare the FEA results with theoretical results obtained by using the Voigt and 

Reuss models for rule of mixtures (ROM) to assess the model. The Voigt model for rule of 

mixtures for composites is as follows: 

𝐸𝐶 = 𝐸𝑚𝑉𝑚 − 𝐸𝑝𝑉𝑝     - [1] 

The Reuss model for rule of mixtures for composites is as follows: 

𝐸𝐶 = [
𝑉𝑚

𝐸𝑚
− 

𝑉𝑝

𝐸𝑝
]−1     - [2] 

Where 𝐸𝐶 is the elastic modulus of the composite, 𝐸𝑚 is the elastic modulus of the matrix, 𝑉𝑚 is 

the volume fraction of the matrix, 𝐸𝑝 is the elastic modulus of the capsule and 𝑉𝑝 is the volume 

fraction of the particles. Both ROM models apply for continuous, unidirectional fiber composites. 

In the case of the Voigt model, the stress is applied in a direction parallel to the fiber direction to 

evaluate the effective elastic modulus of the composite while for the Reuss model, the stress is 

applied in a direction perpendicular to the fiber alignment (Kim, 2000).  Since reinforcement by 

spherical inclusions will be much less effective than aligned fiber reinforcement, it is expected that 

the resulting elastic moduli will be much lower than the results obtained from both ROM models. 

The following sub-sections will compare the expected ROM results with the simulated FEA results 

for hypothetical composites reinforced with hollow capsules, PUF capsules filled with solid PUF 

and capsules containing solid epoxy under different strain values. The strain values will be 0.1%, 

0.4% and 0.7%. This is to ensure that the model will function properly through a range of strains 

that the material might be subjected to in real life. The same results of elastic modulus are expected 

for all strain values, however, when modelling, it is important to assess the sensitivity of the model 

to different parameters. There will also be a comparison between composites with different capsule 

distributions namely: dispersion, agglomeration, single agglomeration + dispersion and multiple 

agglomerations + dispersion. The single agglomeration + dispersion model will have a 50% 

capsule agglomeration ratio. The multiple agglomerations + dispersion model will have 3 

agglomerations and will simply be labelled as “multiple agglomerations” in the graphs. The 
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following table (table 3) summarizes all the strains applied, the capsule configurations and the 

capsule distributions. 

 

Table 3. Summary of strain and RVE configurations used in this project. 

Strain Capsule configuration Capsule distribution 

  Pure dispersion 

 Hollow Pure agglomeration 

0.1% Solid PUF capsule Single agglomeration + dispersion 

 Solid epoxy filled PUF capsule Multiple agglomerations (3) + dispersion 

  Pure dispersion 

 Hollow Pure agglomeration 

0.4% Solid PUF capsule Single agglomeration + dispersion 

 Solid epoxy filled PUF capsule Multiple agglomerations (3) + dispersion 

  Pure dispersion 

 Hollow Pure agglomeration 

0.07% Solid PUF capsule Single agglomeration + dispersion 

 Solid epoxy filled PUF capsule Multiple agglomerations (3) + dispersion 

 

Below is a table (table 4) listing the number of capsules vs. the different volume fractions of each 

component for hollow capsules, solid PUF capsules and solid epoxy filled capsules. 
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Table 4. Number of capsules and corresponding volume fraction for different material configurations. 

Number of 
capsules 

Hollow capsule Epoxy filled capsule Solid PUF capsule 

𝑉𝑚 𝑉𝑝 𝑉𝑚 𝑉𝑝 𝑉𝑚 𝑉𝑝 

10 0.99755 0.00245 0.99756 0.00244 0.99507 0.00493 

20 0.99509 0.00491 0.99511 0.00489 0.99014 0.00986 

30 0.99261 0.00739 0.99267 0.00733 0.98522 0.01478 

40 0.99013 0.00987 0.99023 0.00977 0.98029 0.01971 

50 0.98763 0.01237 0.98778 0.01222 0.97536 0.02464 

60 0.98512 0.01488 0.98534 0.01466 0.97043 0.02957 

70 0.98259 0.01741 0.98290 0.01710 0.96550 0.03450 

80 0.98006 0.01994 0.98045 0.01955 0.96058 0.03942 

90 0.97751 0.02249 0.97801 0.02199 0.95565 0.04435 

99 0.97520 0.02480 0.97581 0.02419 0.95121 0.04879 

 

The resulting elastic modulus will be plotted against the % volume of capsules. The following 

table lists the number of capsules and the corresponding volume percentage of capsules. 

 

Table 5. Number of capsules and corresponding % volume for different material configurations 

Number of 
capsules 

Hollow capsule Epoxy filled capsule Solid PUF capsule 

%𝑉𝑝 %𝑉𝑝 %𝑉𝑝 

10 0.24 0.24 0.49 

20 0.49 0.49 0.99 

30 0.74 0.73 1.48 

40 0.99 0.98 1.97 

50 1.24 1.22 2.46 

60 1.49 1.47 2.96 

70 1.74 1.71 3.45 

80 1.99 1.95 3.94 

90 2.25 2.20 4.44 

99 2.48 2.42 4.88 
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4.1.1 Solid PUF capsules (0.1% strain) 

A 0.1% strain is applied on the RVE and the resulting elastic moduli are compared for the different 

capsule distributions. The capsules are filled with solid PUF. 

Figure 29 shows the variation of elastic modulus vs. the % volume of capsules for the different 

capsule distributions for the case of solid PUF capsules. 

 

 
Figure 29. Elastic modulus vs % volume of solid PUF capsules for RVE under 0.1% for; ROM, Voight (), ROM, 

Reuss (●), dispersion model (), agglomeration model (), single agglomeration + dispersion model () and 

multiple agglomerations + dispersion model (*). 

 

In this case, the elastic modulus of the RVE increases as the number of capsules increases. The 

increase in elastic modulus is greatest for the pure dispersion and the multiple agglomerations + 

dispersion models. The pure agglomeration model shows the least increase in elastic modulus 

while the single agglomeration + dispersion model falls in between the pure dispersion and the 

pure agglomeration models. 
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4.1.2 Solid epoxy filled capsules (0.1% strain) 

A 0.1% strain is applied on the RVE and the resulting elastic moduli are compared for the different 

capsule distributions. The capsules are filled with solid epoxy in this case. 

Figure 30 shows the variation of elastic modulus vs. % volume of capsules for the different capsule 

distributions for the case of solid epoxy filled. 

 

 
Figure 30. Elastic modulus vs % volume of capsules of epoxy filled capsules for RVE under 0.1% for; ROM, 

Voight (), ROM, Reuss (●), dispersion model (), agglomeration model (), single agglomeration + dispersion 

model () and multiple agglomerations + dispersion model (*). 

 

Like the solid PUF particles case, for the solid epoxy filled capsules model, the elastic modulus of 

the RVE increases as the number of capsules increases. The increase in elastic modulus is greatest 

for the pure dispersion and the multiple agglomerations + dispersion models. The pure 

agglomeration model shows the least increase in elastic modulus while the single agglomeration 

+ dispersion model falls in between the pure dispersion and the pure agglomeration models. 
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4.1.3 Solid PUF capsules (0.4% strain) 

A 0.4% strain is applied on the RVE and the resulting elastic moduli are compared for the different 

capsule distributions. The capsules are filled with solid PUF. 

Figure 31 shows the variation of elastic modulus vs. the % volume of capsules of capsules for the 

different capsule distributions for the case of solid PUF particles. 

 

 
Figure 31. Elastic modulus vs % volume of capsules of solid PUF capsules for RVE under 0.4% for; ROM, Voight 

(), ROM, Reuss (●), dispersion model (), agglomeration model (), single agglomeration + dispersion model 

() and multiple agglomerations + dispersion model (*). 

 

The solid PUF particles case subject to 0.4% strain shows similar results to the 01% strain case. 

The elastic modulus of the RVE increases as the number of capsules increases. The increase in 

elastic modulus is greatest for the pure dispersion and the multiple agglomerations + dispersion 

models. The pure agglomeration model shows the least increase in elastic modulus while the single 

agglomeration + dispersion model falls in between the pure dispersion and the pure agglomeration 

models. 
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4.1.4 Epoxy filled capsules (0.4% strain) 

A 0.4% strain is applied on the RVE and the resulting elastic moduli are compared for the different 

capsule distributions. The capsules are filled with solid epoxy in this case. 

Figure 32 shows the variation of elastic modulus vs. the % volume of capsules of capsules for the 

different capsule distributions for the case of solid epoxy filled capsules. 

 

 
Figure 32. Elastic modulus vs % volume of capsules of epoxy filled capsules for RVE under 0.4% for; ROM, 

Voight (), ROM, Reuss (●), dispersion model (), agglomeration model (), single agglomeration + dispersion 

model () and multiple agglomerations + dispersion model (*). 

 

The solid epoxy filled capsules case subject to 0.4% strain shows similar results to the 01% strain 

case. The elastic modulus of the RVE increases as the number of capsules increases. The increase 

in elastic modulus is greatest for the pure dispersion and the multiple agglomerations + dispersion 

models. The pure agglomeration model shows the least increase in elastic modulus while the single 

agglomeration + dispersion model falls in between the pure dispersion and the pure agglomeration 

models. 
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4.1.5 Solid PUF capsules (0.7% strain) 

A 0.7% strain is applied on the RVE and the resulting elastic moduli are compared for the different 

capsule distributions. The capsules are filled with solid PUF. 

Figure 33 shows the variation of elastic modulus vs. the % volume of capsules of capsules for the 

different capsule distributions for the case of solid PUF particles. 

 

 
Figure 33. Elastic modulus vs % volume of capsules of solid PUF capsules for RVE under 0.7% for; ROM, Voight 

(), ROM, Reuss (●), dispersion model (), agglomeration model (), single agglomeration + dispersion model 

() and multiple agglomerations + dispersion model (*). 

 

When the RVE containing solid PUF particles is subject to 0.7%, it shows a similar trend as the 

two previous cases (solid PUF particles RVE under 0.1% & 0.4% strain). The elastic modulus of 

the RVE increases as the number of capsules increases. The increase in elastic modulus is greatest 

for the pure dispersion and the multiple agglomerations + dispersion models. The pure 

agglomeration model shows the least increase in elastic modulus while the single agglomeration 

+ dispersion model falls in between the pure dispersion and the pure agglomeration models. 

 

3.50E+09

3.51E+09

3.51E+09

3.52E+09

3.52E+09

3.53E+09

0.00 1.00 2.00 3.00 4.00 5.00

El
as

ti
c 

m
o

d
u

lu
s 

(P
a)

% Volume of capsules

ROM (Voigt Model)

Dispersion

Agglomeration

Agglomeration+dispersion

Multiple agglomerations

ROM (Reuss Model)



Page | 69  
 

4.1.6 Epoxy filled capsules (0.7% strain) 

A 0.7% strain is applied on the RVE and the resulting elastic moduli are compared for the different 

capsule distributions. The capsules are filled with solid epoxy in this case. 

Figure 34 shows the variation of elastic modulus vs. the % volume of capsules of capsules for the 

different capsule distributions for the case of solid epoxy filled capsules. 

 

 
Figure 34. Elastic modulus vs % volume of capsules of epoxy filled capsules for RVE under 0.7% for; ROM, 

Voight (), ROM, Reuss (●), dispersion model (), agglomeration model (), single agglomeration + dispersion 

model () and multiple agglomerations + dispersion model (*). 

 

The solid epoxy filled capsules case subject to 0.7% strain shows similar results to the 0.1% and 

0.4% strain cases. The elastic modulus of the RVE increases as the number of capsules increases. 

The increase in elastic modulus is greatest for the pure dispersion and the multiple agglomerations 

+ dispersion models. The pure agglomeration model shows the least increase in elastic modulus 

while the single agglomeration + dispersion model falls in between the pure dispersion and the 

pure agglomeration models. 

In the case of solid PUF particles and solid epoxy filled capsules, it was observed that the elastic 

modulus tends to increase as the number of capsules increases (Figure 35). This increase in elastic 

modulus is higher in the case of solid PUF particles as compared to the epoxy filled capsule case. 
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This is because PUF has a higher elastic modulus than epoxy and a higher volume fraction of PUF 

particles will increase the elastic modulus of the RVE more. 

 

 

 
Figure 35. Illustration of the differences in the elastic modulus vs. % volume of capsules of capsules trends between 

(a) solid PUF particles and (b) solid, epoxy filled capsules for the case of 0.4% strain. 

 

It can also be observed that the different capsule distributions produce elastic moduli trend lines 

with different gradients. The trend line for the ROM calculations has the steepest gradients. The 

dispersion and multiple agglomerations + dispersion models produce similar trend lines with the 
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second steepest gradients. The trend line for the single agglomeration has a lower gradient while 

the trend line for pure agglomeration has the lowest gradient.  

 

Epoxy Filled capsules Solid PUF particles 

   

  
Figure 36. Comparison of cross sectional views showing stress contours inside the RVE for the following 

configurations (a) epoxy filled capsules – dispersion, (b) Solid PUF particles – dispersion, (c) Epoxy filled capsules 

– multiple agglomerations + dispersion and (d) Solid PUF capsules – multiple agglomerations + dispersion. 

 

As it can be seen from the stress contour plots (Figures 36 & 37), the solid PUF particles create 

some widespread higher stress regions inside the matrix while for the epoxy filled capsule scenario 

(a) 

(c) 

(b) 

(d) 



Page | 72  
 

and the higher stress regions are concentrated around the capsule shell which is made of PUF. This 

could explain the higher elastic modulus caused by the solid PUF particles. 

 

Epoxy Filled capsules Solid PUF particles 

 
Figure 37. Comparison of cross sectional views showing stress contours inside the RVE for the following 

configurations (a) epoxy filled capsules – single agglomeration + dispersion, (b) Solid PUF particles – single 

agglomeration + dispersion, (c) Epoxy filled capsules – pure agglomeration and (d) Solid PUF capsules –pure 

agglomeration. 

 

(e) (f) 

(g) (h) 
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Comparing the stress contour plots based on capsule distributions, the dispersion and multiple 

agglomerations + dispersion models produce very similar stress contours. The agglomeration 

model and the single agglomeration + dispersion models also produce similar stress contours. It 

can be concluded that pure agglomeration causes minimal reinforcement of the RVE and as the 

capsules get more dispersed, the reinforcement becomes more effective. Therefore, the capsule 

distribution can have a major impact on the composite elastic modulus. 

 

4.1.7 Hollow capsules (0.1% strain) 

In the following sub-sections, a 0.1% strain is applied on the RVE and the resulting elastic moduli 

are compared for the different capsule distributions. The capsules are hollow in this case. 

Figure 38 shows the variation of elastic modulus vs. the number of capsules for the different 

capsule distributions for the case of hollow capsules. 

 

 
Figure 38. Elastic modulus vs number of hollow capsules for RVE under 0.1% strain for; ROM, Voight (), ROM, 

Reuss (●), dispersion model (), agglomeration model (), single agglomeration + dispersion model () and 

multiple agglomerations + dispersion model (*). 
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It can be observed that the elastic modulus decreases as the number of hollow capsules in the RVE 

increases. The pure dispersion and multiple agglomerations + dispersion models display similar 

behaviour and suffer the most significant decrease in elastic modulus while the pure agglomeration 

model has the least decrease in elastic modulus. The decrease in elastic modulus in the pure 

agglomeration model is also closest to the ROM calculations. The single agglomeration + 

dispersion model falls in between the pure agglomeration and pure dispersion models. 

 

4.1.8 Hollow capsules (0.4% strain) 

In the following sub-section, a 0.4% strain is applied on the RVE containing hollow capsules and 

the resulting elastic moduli are compared for the different capsule distributions. 

Figure 39 shows the variation of elastic modulus vs. the number of capsules for the different 

capsule distributions for the case of hollow capsules. 

 

 
Figure 39. Elastic modulus vs number of hollow capsules for RVE under 0.4% for; ROM, Voight (), ROM, Reuss 

(●), dispersion model (), agglomeration model (), single agglomeration + dispersion model () and multiple 

agglomerations + dispersion model (*). 
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When the RVE is subjected to 0.4% strain, the elastic modulus results are the same as the 0.1% 

case. The pure dispersion and multiple agglomerations + dispersion models display similar 

behaviour to each other and suffer the most significant decrease in elastic modulus while the pure 

agglomeration model has the least decrease in elastic modulus. The decrease in elastic modulus in 

the pure agglomeration model is also closest to the ROM calculations. The single agglomeration 

+ dispersion model falls in between the pure agglomeration and pure dispersion models. 

 

4.1.9 Hollow capsules (0.7% strain) 

In the following sub-sections, a 0.7% strain is applied on the RVE and the resulting elastic moduli 

are compared for the different capsule distributions. The capsules are hollow in this case. 

Figure 40 shows the variation of elastic modulus vs. the number of capsules for the different 

capsule distributions for the case of hollow capsules. 

 

 
Figure 40. Elastic modulus vs number of hollow capsules for RVE under 0.7% for; ROM, Voight (), ROM, Reuss 

(●), dispersion model (), agglomeration model (), single agglomeration + dispersion model () and multiple 

agglomerations + dispersion model (*). 
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When the RVE containing hollow capsules is subject to 0.7%, it shows a similar trend as the two 

previous cases (hollow capsule cases subject to 0.1% & 0.4% strain). The elastic modulus of the 

RVE decreases as the number of hollow capsules increases. The pure dispersion and the multiple 

agglomerations + dispersion cases show the greatest decrease in elastic modulus. The pure 

agglomeration model shows the least decrease in elastic modulus and is very close to the ROM 

calculations. The single agglomeration + dispersion case results falls in between pure 

agglomeration and pure dispersion. 

For the case of hollow capsules, the trend in elastic modulus vs. number of capsules is very 

different (Figures 38-40). The elastic modulus decreases as the number of capsules increases. This 

is because the hollow capsules can be considered as voids and they tend to weaken the matrix. It 

can be observed that the dispersion and multiple agglomerations + dispersion models produce the 

largest decrease in elastic modulus as the number of capsules increases. The agglomeration + 

dispersion model shows a lesser decrease in elastic modulus while the pure agglomeration model 

shows the least decrease in elastic modulus.  

Looking at the stress contour plots for the case of hollow capsules (Figure 41), the highest stress 

concentrations are located at the capsule walls, perpendicular to the direction of the strain applied. 

It can also be observed that capsules that horizontally adjacent to each other tend to create low 

stress in between them whereas capsules that are vertically adjacent to each other tend to create 

regions of high stress. It can be inferred that cracks will propagate in a direction perpendicular to 

the direction in which strain is applied. If the capsule is filled with healing agents, this will facilitate 

the release of healing agents into the crack.  
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Figure 41. Cross sectional views for the RVE containing hollow capsules for the following capsule distributions (a) 

dispersion (b) multiple agglomerations + dispersion (c) agglomeration (d) single agglomeration + dispersion. 

 

It must also be noted that the calculated changes of elastic modulus vs % volume of capsules are 

less than 0.05 GPa which is below the typical uncertainty of 0.1 GPa when the elastic modulus of 

polymers and composites is measured. 

 

4.2 Non-linear analysis (damage model) 

This section presents the damage progression in the RVE when material strength limits are 

specified. All the diagrams are cross sectional views of the RVEs. All RVEs contain 99 capsules. 

Each sub-section will display results for the different types of capsule distribution. In ANSYS 

(a) 

(c) 

(b) 

(d) 
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APDL, the damage status is represented by 3 numbers: 0 – undamaged, 1 – partially damaged and 

2 – completely damaged. The colour chart on each diagram will vary depending on the maximum 

damage in each individual RVE. This software feature is still being developed in ANSYS and not 

much information is available on what the software considers as ‘partially damaged’. However, it 

can be inferred that since the material strength limits have to be specified in the code, the element 

is considered ‘damaged’ once the element stress exceeds the material strength limit associated with 

this element. 

 

4.2.1 Epoxy filled capsules, pure agglomeration: 1% strain to 2% strain 

This section presents the damage progression for the RVE containing 99 epoxy filled PUF capsules 

which are agglomerated at the centre of the RVE (Figure 42). These cross sections have been 

obtained by inserting a cutting plane parallel to the x-y plane in the centre of the RVE. 

 

   
Figure 42. Comparison of damage between (a) 1% strain and (b) 2% strain for RVE containing 99 solid epoxy filled 

PUF capsules which are agglomerated at the centre of the RVE. 

 

In Figure 41 and 41(b), the blue areas represent undamaged elements while the red areas represent 

partially damaged elements. When the RVE is subject to 1% strain, the capsules are seen to get 

(a) (b) 

1% strain 2% strain 
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partially damaged with areas surrounding the capsule varying between undamaged and partially 

damaged. When the strain is increased to 2%, the partially damaged areas are seen spreading 

vertically through the matrix in between the capsules.  

 

4.2.2 Epoxy filled capsules, single agglomeration + dispersion: 1% strain to 2% strain 

This section presents the damage progression for the RVE containing 99 epoxy filled PUF capsules 

where 50% of the capsules are agglomerated at the centre of the RVE and the remaining capsules 

are dispersed in the rest of the matrix (Figure 43). These cross sections have been obtained by 

inserting a cutting plane parallel to the x-y plane in the centre of the RVE. 

 

  
Figure 43. Comparison of damage between (a) 1% strain and (b) 2% strain for RVE containing 99 solid epoxy filled 

PUF capsules half of which are agglomerated at the centre of the RVE and half are dispersed in the remaining RVE. 

 

In Figure 42(a) and 42(b), the blue areas represent undamaged elements while the red areas 

represent partially damaged elements. When the RVE is subject to 1% strain, the capsules are seen 

to get partially damaged with areas surrounding the capsule varying between undamaged and 

partially damaged. When the strain is increased to 2%, the damage spreads vertically through the 

(a) (b) 

1% strain 2% strain 
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matrix in between the capsules. When the capsules are in close vertical proximity, the partially 

damaged areas bridge vertically through the matrix. 

 

4.2.3 Epoxy filled capsules, multiple agglomerations + dispersion: 1% strain to 2% strain 

This section presents the damage progression for the RVE containing 99 solid epoxy filled PUF 

capsules where there are 3 agglomerations and the remaining capsules are dispersed in the rest of 

the matrix (Figure 44). These cross sections have been obtained by inserting a cutting plane parallel 

to the x-y plane in the centre of the RVE. 

 

  

Figure 44. Comparison of damage between (a) 1% strain and (b) 2% strain for RVE containing 99 solid epoxy filled 

PUF capsules with 3 agglomerations and the rest dispersed in the remaining RVE. 

 

In Figure 43(a) and 43(b), the blue areas represent undamaged elements while the red areas 

represent partially damaged elements. When the RVE is subject to 1% strain, the capsules are seen 

to get partially damaged with areas surrounding the capsule varying between undamaged and 

partially damaged. When the strain is increased to 2%, the damage spreads vertically through the 

matrix in between the capsules. There are instances where the damage spreads for a longer distance 

(a) (b) 

1% strain 2% strain 
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and bridges a wider vertical gap between capsules. To further investigate the damage patterns, two 

cutting planes parallel to plane y-z were introduced at A-B and C-D. The capsules 1,2 and 3,4 were 

labelled so they can be easily situated in Figures 45(a) and 45(b). 

 

 

Figure 45. Cutting planes (a) A-B and (b) C-D parallel to plane y-z. 

 

In both cases, the damage bridge can be attributed to the presence of adjacent capsules in the x-y 

plane. 

 

4.2.4 Epoxy filled capsules, pure dispersion: 1% strain to 2% strain 

This section presents the damage progression for the RVE containing 99 solid epoxy filled PUF 

capsules where the capsules are dispersed in the matrix and follow a random uniform distribution 

(Figure 46). These cross sections have been obtained by inserting a cutting plane parallel to the x-

y plane in the centre of the RVE. 
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Figure 46. Comparison of damage between (a) 1% strain and (b) 2% strain for RVE containing 99 epoxy filled PUF 

capsules dispersed in the RVE. 

 

In Figure 46(a) and 46(b), the blue areas represent undamaged elements while the red areas 

represent partially damaged elements. When the RVE is subject to 1% strain, the capsules are seen 

to get partially damaged with areas surrounding the capsule varying between undamaged and 

partially damaged. When the strain is increased to 2%, the damage spreads vertically through the 

matrix in between the capsules.  

 

4.2.5 Solid PUF particles, pure agglomeration: 1% strain to 2% strain 

This section presents the damage progression for the RVE containing 99 solid PUF particles which 

are agglomerated at the centre of the RVE (Figure 47). These cross sections have been obtained 

by inserting a cutting plane parallel to the x-y plane in the centre of the RVE. 

 

(a) (b) 

1% strain 2% strain 
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Figure 47. Comparison of damage between (a) 1% strain and (b) 2% strain for RVE containing 99 solid PUF 

particles which are agglomerated at the centre of the RVE. 

 

In Figures 47(a) and 47(b), the blue areas represent undamaged elements while the red areas 

represent partially damaged elements. When the RVE is subject to 1% strain, the capsules are seen 

to get partially damaged with areas surrounding the capsule varying between undamaged and 

partially damaged. When the strain is increased to 2%, the partial damage is seen to spread 

vertically in between the particles.  

 

4.2.6 Solid PUF particles, single agglomeration + dispersion: 1% strain to 2% strain 

This section presents the damage progression for the RVE containing 99 solid PUF particles where 

50% of the capsules are agglomerated at the centre of the RVE and the remaining capsules are 

dispersed in the rest of the matrix (Figure 48). These cross sections have been obtained by inserting 

a cutting plane parallel to the x-y plane in the centre of the RVE. 

 

(a) (b) 

1% strain 2% strain 
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Figure 48. Comparison of damage between (a) 1% strain and (b) 2% strain for RVE containing 99 solid PUF 

particles half of which are agglomerated at the centre of the RVE and half are dispersed in the remaining RVE. 

 

In Figures 48(a) and 48(b), the blue areas represent undamaged elements while the red areas 

represent partially damaged elements. When the RVE is subject to 1% strain, the capsules are seen 

to get partially damaged with areas surrounding the capsule varying between undamaged and 

partially damaged. When the strain is increased to 2%, the partial damage is seen to spread 

vertically in between the particles. For the 2% strain case, the damage areas are seen to grow larger. 

When capsules are in close vertical proximity, the partially damaged areas can sometimes form a 

bridge between the capsules. 

 

4.2.7 Solid PUF particles, multiple agglomerations + dispersion: 1% strain to 2% strain 

This section presents the damage progression for the RVE containing 99 solid PUF particles where 

there are 3 agglomerations and the remaining capsules are dispersed in the rest of the matrix 

(Figure 49). These cross sections have been obtained by inserting a cutting plane parallel to the x-

y plane in the centre of the RVE. 

 

(a) (b) 

1% strain 2% strain 
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Figure 49. Comparison of damage between (a) 1% strain and (b) 2% strain for RVE containing 99 solid PUF 

particles with 3 agglomerations and the rest dispersed in the remaining RVE. 

 

In Figures 49(a) and 49(b), the blue areas represent undamaged elements while the red areas 

represent partially damaged elements. When the RVE is subject to 1% strain, the particles are 

shown to be partially damaged with areas surrounding the capsule varying between undamaged 

and partially damaged. When the strain is increased to 2%, the partial damage is seen to spread 

vertically in between the particles. There are instances where the damage spreads for a longer 

distance and bridges a wider vertical gap between capsules. There are instances where the damage 

spreads even in the absence of particles which are in close vertical proximity.  

 

4.2.8 Solid PUF particles, pure dispersion: 1% strain to 2% strain 

This section presents the damage progression for the RVE containing 99 solid PUF particles where 

the capsules are dispersed in the matrix and follow a random uniform distribution (Figure 50). 

These cross sections have been obtained by inserting a cutting plane parallel to the x-y plane in 

the centre of the RVE. 

 

(a) (b) 

1% strain 2% strain 
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Figure 50. Comparison of damage between (a) 1% strain and (b) 2% strain for RVE containing 99 solid PUF 

particles dispersed in the RVE. 

 

In Figure 50(a) and (b), the blue areas represent undamaged elements while the green areas 

represent partially damaged elements. When the RVE is subject to 1% strain, the capsules are seen 

to get partially damaged with areas surrounding the capsule varying between undamaged and 

partially damaged. When the strain is increased to 2%, the partial damage is seen to spread 

vertically in between the particles. The damage does not spread horizontally, and the matrix is still 

seen to be intact in between the particles in a direction parallel to the strain applied. There are 

instances where the damage spreads for a longer distance into the matrix in the absence of particle 

in close vertical proximity. 

 

4.2.9 Hollow capsules, pure agglomeration: 1% strain to 2% strain 

This section presents the damage progression for the RVE containing 99 hollow PUF capsules 

which are agglomerated at the centre of the RVE (Figure 51). These cross sections have been 

obtained by inserting a cutting plane parallel to the x-y plane in the centre of the RVE. 

 

(a) (b) 

1% strain 2% strain 
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Figure 51. Comparison of damage between (a) 1% strain and (b) 2% strain for RVE containing 99 hollow PUF 

capsules which are agglomerated at the centre of the RVE. 

 

In Figures 51(a) and 51(b), the blue areas represent undamaged elements, the green areas represent 

partially damaged elements and the red areas represent completely damaged elements. When the 

RVE is subject to 1% strain (the strain direction is indicated by the arrow), the damage starts at 

the hollow capsules. Most of the body of the hollow capsule gets partially damaged (green). The 

areas around the capsules range between intact (blue) to partially damaged (green). The damage 

variation inside the capsule ranges from partially damaged (green) to completely damage (red). 

When the strain is increased to 2%, the areas of partial damage can be seen to widen through the 

matrix. There are instances where the partial damage reaches further out vertically. This can be 

attributed to the presence of other capsules in the z-direction. When cutting planes, A – B and C – 

D, parallel to the y-z plane are inserted in the centre of the RVEs, the following images can be 

observed (Figure 52). 

(a) (b) 

1% strain 2% strain 
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Figure 52. Cross sectional view of RVEs when the cutting plane is parallel to the y-z plane for the case of (a) 1% 

strain and (b) 2% strain. 

 

When Figures 52(a) and 52(b) are compared, when the strain is increased, the damage areas tend 

to spread in a direction that is perpendicular to the direction of the strain applied. Therefore, when 

a strain is applied to the RVE, the damage will start at the capsule and will spread in a direction 

perpendicular to the strain direction. The presence of nearby capsules in the same vertical plane 

will help to bridge the damage areas. If healing agents are present inside the capsules, this may 

help in the release of more healing agents into the cracks as the cracks will adopt trajectories that 

go through nearby capsules. 

 

 

 

 

 

(a) (b) 

1% strain 2% strain 
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4.2.10 Hollow capsules, single agglomeration + dispersion: 1% strain to 2% strain 

This section presents the damage progression for the RVE containing 99 hollow PUF capsules 

where 50% of the capsules are agglomerated at the centre of the RVE and the remaining capsules 

are dispersed in the rest of the matrix (Figure 53). These cross sections have been obtained by 

inserting a cutting plane parallel to the x-y plane in the centre of the RVE. 

 

 
Figure 53. Comparison of damage between (a) 1% strain and (b) 2% strain for RVE containing 99 hollow PUF 

capsules half of which are agglomerated at the centre of the RVE and half are dispersed in the remaining RVE. 

 

In Figures 53(a) and 53(b), the blue areas represent undamaged elements, the green areas represent 

partially damaged elements and the red areas represent completely damaged elements. When the 

RVE is subjected to 1% strain, the capsule walls get partially damaged with red spots in a straight-

line parallel to the strain direction. When the strain increases to 2%, the partial damage spreads 

vertically in the matrix between vertically adjacent capsules. This damage spread can also be 

observed to a lesser extent around the capsules which are dispersed in the matrix. The red areas 

(complete damage) become wider; however, they do not spread into the matrix. If a cutting plane 

A-B is inserted parallel to plane y-z, it can be observed what causes the spike in partial damage 

(light blue & green areas) vertically upwards from the topmost capsule. 

1% strain 2% strain 

(a) (b) 
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Figure 54. Cross sectional view of RVEs when the cutting plane is parallel to the y-z plane for the case of  2% 

strain. 

 

The damage spike is due to the presence of adjacent capsules. This further reinforces the idea that 

the presence of nearby hollow capsules helps to propagate the damage by offering a path of low 

damage resistance. If the capsules are filled with healing agents, this pattern of damage propagation 

may help in the release of healing agents into the cracks.  
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4.2.11 Hollow capsules, multiple agglomerations + dispersion: 1% strain to 2% strain 

This section presents the damage progression for the RVE containing 99 hollow PUF capsules 

where there are 3 agglomerations and the remaining capsules are dispersed in the rest of the matrix 

(Figure 55). 

 

 

Figure 55. Comparison of damage between (a) 1% strain and (b) 2% strain for RVE containing 99 hollow PUF 

capsules with 3 agglomerations and the rest dispersed in the remaining RVE. 

 

In Figures 55(a) and 55(b), the blue areas represent undamaged elements, the green areas represent 

partially damaged elements and the red areas represent completely damaged elements. When the 

RVE is subjected to 1% strain, the capsule walls get partially damaged with red spots in a straight-

line parallel to the strain direction. When some capsules are in close vertical proximity, the partial 

damage tends to bridge between the capsules. When the strain increases to 2%, the partial damage 

spreads vertically in the matrix. There are instances where the damage spreads for a longer distance 

and bridges a wider vertical gap between capsules. This damage spread can also be observed to a 

lesser extent around the capsules which are dispersed in the matrix. The red areas (complete 

damage) become wider; however, they do not spread into the matrix. The damage spikes around 

(a) (b) 

1% strain 2% strain 
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capsules 1,2 and 3 were investigated by inserting 2 cutting planes, A – B and C – D parallel to 

plane y-z (Figure 56). 

 

 

Figure 56. Cross sectional view of RVEs when the cutting plane is parallel to the y-z plane for the cutting planes (a) 

A – B and (b) C – D. 

 

Between capsules 1 and 2, it looks like the damage is bridging between the capsules in the absence 

of adjacent capsules. For the case of capsule 3, the damage spikes were caused by the proximity 

of 2 other capsules. 

 

 

 

 

 

(a) (b) 
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4.2.12 Hollow capsules, pure dispersion: 1% strain to 2% strain 

This section presents the damage progression for the RVE containing 99 hollow PUF capsules 

where the capsules are dispersed in the matrix and follow a random uniform distribution (Figure 

57). 

 
Figure 57. Comparison of damage between (a) 1% strain and (b) 2% strain for RVE containing 99 hollow PUF 

capsules dispersed in the RVE. 

 

In Figures 57(a) and 57(b), the blue areas represent undamaged elements, the green areas represent 

partially damaged elements and the red areas represent completely damaged elements. When the 

RVE is subjected to 1% strain, the capsule walls get partially damaged with red spots in a straight-

line parallel to the strain direction. When some capsules are in close vertical proximity, the partial 

damage tends to bridge between the capsules. When the strain increases to 2%, the partial damage 

spreads vertically in the matrix. There are instances where the damage spreads for a longer distance 

and bridges a wider vertical gap between capsules. This damage spread can also be observed 

around the capsules which are dispersed in the matrix. The red areas (complete damage) become 

wider, however, they do not spread into the matrix. To further investigate the damage spikes 

between capsules 1 and 2 and around capsule 3, two cutting planes, A – B and C – D, parallel to 

plane y-z were inserted.  

(b) 

2% strain 

(a) 

1% strain 
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Figure 58. Cross sectional view of RVEs when the cutting plane is parallel to the y-z plane for the cutting planes (a) 

A – B and (b) C – D. 

 

In Figure 58(a), there are several hollow capsules close to capsules 1 and 2. The same can be 

observed in Figure 58(b) where there are several capsules adjacent to capsule 3. This shows that 

when particles clump together, they tend to act as a bridge for damage propagation.  

In several cross-sectional models, it can be observed that when the capsules are placed close to the 

boundaries of the RVE, the damage contours tend to point towards the RVE boundary. This 

phenomenon can be seen in all models where the capsules are formed closest to the RVE 

boundaries. Some prominent examples of this phenomenon are illustrated in Figure 59 (a) – (d). 

A possible explanation for this behaviour would be the modelling process. Since there is no 

material beyond the RVE boundary, for the capsules that are formed at the boundaries, the capsule 

will consider the boundary as the path of least damage resistance.  

(a) (b) 
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Figure 59. Illustration of the damage spike around capsules which are close to the RVE boundaries. These images are magnified 

versions of (a) Figure 54b, (b) Figure 52b, (c) Figure 45b, (d) Figure 43a. 

  

 

 

(a) (b) 

(c) (d) 
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5. Conclusions 

The internal stress contours and the internal damage progressions of capsule-polymer composites 

were studied by running finite element simulations. Parameters such as material configurations, 

number of capsules and capsule distribution were varied to observe their effects on the RVE 

behaviour. Several findings were made: 

• The capsule distribution influences the elastic modulus of the RVE. For the cases of 

capsules with solid fillings (solid epoxy and solid PUF), it is observed that the elastic 

modulus increases more when the capsules are distributed through the RVE. The increase 

in elastic modulus is less significant when the capsules are agglomerated at the centre of 

the RVE. This effect is reversed for the hollow capsule case. The elastic modulus suffers a 

significant drop when the hollow capsules are uniformly distributed through the RVE. This 

drop in elastic modulus is less significant when the hollow capsules are agglomerated at 

the centre of the RVE.  

• The number of capsules influences the volume fraction of components and therefore affects 

the elastic modulus of the RVE. For the cases of capsules with solid fillings (solid epoxy 

and solid PUF), it is observed that the elastic modulus increases as the number of capsules 

increases. For the case of hollow capsules, it is observed that the elastic modulus decreases 

as the number of hollow capsules increases.  

• In our case, for the specified material properties, it was observed that hollow capsules tend 

to decrease the elastic modulus of the composite. A possible cause for this phenomenon is 

that hollow capsules can be considered as voids and will therefore weaken the overall 

structure of the RVE. 

• The damage models can be used to observe the how the damage progresses internally 

throughout the RVE and how capsule agglomeration and dispersion can influence the 

damage path. The damage follows a mode 1 type failure whereby the damage progresses 

in a direction perpendicular to the direction of the applied strain. It has also been observed 

that when capsules are close to each other, they provide a path of least resistance to the 

damage propagation. 
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• Capsules that agglomerate tend to facilitate the damage propagation in the matrix. If the 

capsules contain healing agents, this will cause the release of said healing agents into the 

crack.  

• When designing capsule based self-healing composites, the material parameters must be 

carefully considered so that the composite can self-heal without being too prone to internal 

crack formation and catastrophic failure. 



Page | 98  
 

6. Future work 

Due to time and resource limitations, certain objectives had to be abandoned. With appropriate 

funding, this work can be further enhanced in the following ways: 

• Experimental works can be conducted to validate the computational model. 

• With more time and software resources, models with higher capsule packing can be 

created. In other words, a model with higher number of capsules per unit volume can be 

created by fitting more capsules into the interstitial spaces between the existing capsules. 

• With more powerful hardware and software support, models with higher capsule numbers 

and finer meshes can be created. This will increase the accuracy of the results. 

• Powerful hardware and software can enable fracture simulation using extended finite 

element method (XFEM). 

• With more powerful hardware and software expertise, fluid elements can be inserted into 

the hollow capsule model to simulate flow of healing agents out of the capsules. 

• For the damage model, the application of higher strains requires a larger number of sub-

steps to achieve the solution. This increase in sub-steps is very demanding in terms of CPU 

and memory usage. More powerful hardware will enable the application of higher strains. 
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