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Abstract

We present in this thesis our recent work concerning phase transitions of some

discrete models in statistical mechanics. Our work can be separated into three

parts. In the first part, by performing extensive Monte Carlo simulations, we

carefully estimate percolation thresholds and universal parameters in percolation

and directed percolation. Specifically, we estimate percolation thresholds and

critical exponents of the bond and site percolation models on a simple-cubic lattice.

Various universal amplitudes are also obtained, including wrapping probabilities,

ratios associated with the cluster-size distribution, and the excess cluster number.

We also study the bond and site directed (oriented) percolation models in (d +1)

dimensions on simple-cubic and body-centered-cubic lattices, with 2  d  7. Both

percolation thresholds and critical exponents are precisely estimated. Typically,

the estimates we reported significantly improve the precision of previous results,

especially for directed percolation in high dimensions where our estimates are the

first reported.

The second part of this thesis is devoted to understanding critical percolation clus-

ters. We first study the geometric structure of percolation clusters by considering

a natural partition of occupied bonds. Specifically, we classify all occupied bonds

into three types: branches, junctions and nonbridges. Deleting all branches from

a percolation configuration results in a leaf-free configuration, while deleting all

bridges produces a bridge-free configuration. For critical bond percolation on the

ix



square lattice, we show that the density of bridges and nonbridges both tend to 1/4

for large system sizes. Although branches account for ⇡ 43% of all occupied bonds,

we find that the fractal dimensions of the cluster size and hull length of leaf-free

configurations are consistent with those for standard percolation configurations.

The fractal dimensions of the cluster size and hull length of bridge-free configura-

tions are respectively given by the backbone and external perimeter dimensions.

Inspired by the nontrivial properties of leaf-free configurations, we then study a

leaf-excluded percolation model in which all configurations are conditioned to

have no leaves. We study this model on the square and simple-cubic lattices via

Monte Carlo simulation, using a worm-like algorithm. Our results imply that the

phase transition of the leaf-excluded percolation model belongs to the standard

percolation universality class.

The third part of this thesis seeks to rigorously study an n-component face-cubic

model on the complete graph. We first consider the standard face-cubic model,

and perform a large deviation analysis of the probability distribution of the

magnetization, i.e. the empirical mean of the spin states. We study the limit

theorems of the magnetization for all temperatures, which reveals that there

exist continuous phase transitions for n  3, and discontinuous phase transitions

for n � 4. This result clarifies the longstanding uncertainty about the nature

of phase transition at n = 3. We then study a general version in which a Potts-

like interaction is added. We rigorously study the phase diagram of this general

face-cubic model, by a large deviations analysis. We prove the n = 2 case on the

(J1, J2) plane, except the region �J1 < J2 < 0 when J1 > 2. Our results show that

at least four phases exist on the phase diagram: disordered, Ising, Potts, and

face-cubic.
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Chapter 1

Introduction

1.1 Percolation

Probably the simplest way to introduce phase transitions is to define the perco-

lation model (Broadbent and Hammersley, 1957; Grimmett, 1999; Stau↵er and

Aharony, 2003; Bollobás and Riordan, 2006) on the square lattice. Let the graph

G = (V ,E) denote the L⇥L square lattice, where |V | = L2 and |E| = 2L2. The perco-

lation model is then defined as follows. Every edge on the lattice is independently

visited and occupied by a bond with a probability p. A bond configuration is

obtained once all edges are visited. All edges are occupied by bonds if p = 1,

whilst none are occupied if p = 0. Given a bond configuration, two bonds are

called connected if there exists a bond-path between them; otherwise they are not

connected. A cluster is a maximal set of bonds in which all bonds are connected

with each other.

Despite the simplicity of the definition, percolation has attracted much attention

in both mathematics and physics, because it exhibits non-trivial phase transitions.

To study the critical properties, one has to take the thermodynamic limit which
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corresponds to L! +1. For percolation, a natural question to ask is what is the

probability that there exists an infinitely large cluster. For bond percolation on

the square lattice, it is well known that the probability is 0 for p  1/2 and 1 for

p > 1/2. This means that, as p crosses 1/2, an infinitely large cluster emerges

suddenly. The threshold pc = 1/2 can be easily predicted from a duality argument,

but providing a mathematical proof took decades of research and was finally

completed by Kesten in 1980 (Kesten, 1980). In two dimensions, exact values of

thresholds are also available on certain lattices with duality properties (Essam,

1972). However, no exact results are reported in three and above dimensions.

Numerous numerical results can be found in Refs. (Wang et al., 2013b; Zhou

et al., 2012a; Martins and Plascak, 2003; Grassberger, 2003; Ballesteros et al., 1999;

Lorenz and Zi↵, 1998a,b) and the references therein.

Close to the threshold pc, the critical properties of percolation are believed to be

universal, which means they are independent of the lattice details (like square

lattice, triangular lattice, or others), but only depend on the dimensions of lattices

and range of interactions. For other statistical-mechanical models with spins

interactions, the critical properties also depend on the dimensions of spins. The

concept of universality is used to classify the critical behaviors of various models,

and each universality class is characterized by its critical exponents. To define the

fundamental critical exponents for percolation, we first introduce two important

quantities. The first is the probability that the origin of the lattice belongs to an

infinite cluster. This quantity defines the order parameter of percolation, and

behaves as a power-law in the neighbourhood of pc,

P1 ⇠

8

>

>

>

>

>

<

>

>

>

>

>

:

0, p  pc,

(p � pc)� , p! p+c .
(1.1.1)
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Here p! p+c means that p approaches pc from above. The second quantity is the

correlation length ⇠ , which is defined via the correlation function by ⇢(r) ⇠ e�r/⇠

(p , pc). The correlation function ⇢(r) can be interpreted as the probability that

two bonds separated by a distance r are in the same cluster. Around pc, the

correlation length ⇠ diverges as ⇠ ⇠ (p �pc)�⌫ . In two dimensions, the exact values

of � = 5/36 and ⌫ = 4/3 are predicted by Coulomb gas arguments (Nienhuis, 1987)

and conformal field theory (Cardy, 1987), which have been confirmed rigorously in

the specific case of triangular-lattice site percolation (Smirnov and Werner, 2001).

For dimension 3 or above, no exact results for critical exponents are available, and

numerical results can be found in Refs. (Wang et al., 2013b; Zhou et al., 2012a;

Martins and Plascak, 2003; Grassberger, 2003; Ballesteros et al., 1999; Lorenz and

Zi↵, 1998a,b) and the references therein. At or above the upper critical dimension

6 (Toulouse, 1974), the mean-field results � = 1 and ⌫ = 1/2 are believed to be

hold.

Not only critical exponents are believed to be universal, but also certain ampli-

tudes. One of the most important universal amplitudes in percolation is the

crossing probability (Langlands et al., 1992; Cardy, 1992). For a lattice drawn

on a torus, the analogue is the wrapping probability (Langlands et al., 1994).

Wrapping probabilities are defined as the probability that a cluster wraps around

the torus in certain specified directions. Wrapping probabilities are believed to

be universal and have proved to be an e↵ective practical means of estimating

percolation thresholds. In two dimensions, the values of wrapping probabilities

can be determined exactly (Pinson, 1994). Numerical results are available for

three dimensions (Martins and Plascak, 2003; Wang et al., 2013b), but no results

are reported for higher dimensions. In addition to wrapping probabilities, another

commonly studied amplitude ratio is the Binder cumulant, which is defined from

the moments of cluster sizes. Let S2 and S4 be the second and fourth moments of

5
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the cluster size, then the binder cumulant U is defined as

U = 1� hS4i
3hS2

2i2
. (1.1.2)

Binder cumulants have been widely used in various lattice models to estimate the

critical points.

In recent decades, one of the main goals in studying percolation theory has been to

understand the geometric structure of the critical percolation clusters. The early

studies (Stanley, 1977) decomposed the incipient infinite cluster into backbone

and dangling bonds, and further decomposed the backbone into blobs and red

bonds. To define the backbone, one typically fixes two distant sites in the incipient

infinite cluster. The backbone is defined as those occupied bonds in the cluster

which belong to trails between the specified sites. A trail in a graph is a sequence

of adjacent edges with no repetitions. The remaining bonds in the cluster are

considered dangling. In the backbone, the deletion of red bonds will disconnect

the specified sites. At pc, the number of backbone bonds scales as LdB, and the

number of red bonds scales as LdR. The exponents dB and dR are the corresponding

fractal dimensions. In two dimensions, the value of dR is predicted to be exactly

3/4 (Nienhuis, 1984) by Coulomb gas arguments, but no exact results are known

for dB. Pursuing the exact value of dB is one of the unsolved problems in two-

dimensional percolation.

1.2 Directed percolation

As a fundamental model in non-equilibrium statistical mechanics, directed per-

colation (DP) has been extensively studied since it was first introduced in 1957

(Broadbent and Hammersley, 1957). In recent decades, much attention has been

given to DP largely because of the conjectured universality first proposed by
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Janssen and Grassberger (Janssen, 1981; Grassberger, 1982). Specifically, it is

believed that any model possessing the following properties will belong to the

DP universality class: short-range interactions; a continuous phase transition into

a unique absorbing state; a one-component order parameter and no additional

symmetries. DP can be used to model a variety of natural phenomena, including

forest fires (Broadbent and Hammersley, 1957; Albano, 1994), epidemic diseases

(Mollison, 1977), and transport in porous media (Bouchaud and Georges, 1990;

Havlin and ben Avraham, 1987).

Although DP was originally defined by analogy with standard percolation on

oriented lattices, it is most common to formulate DP as a stochastic cellular

automaton. Taking DP on the square lattice for example, the oriented lattice can

be obtained by partitioning the sites on the lattice into a sequence of sets (Vt)t�0.

The origin “0" is the only element in V0 which is located at the top of the oriented

lattice, see Fig. 1.1. A site is in Vt if and only if the shortest path to the origin

has length t. Then the DP model can be defined as a spreading process on the

sites set {V0,V1, ·}. Specifically, every site on the lattice is assumed to be either

wet (s = 1) or dry (s = 0). At t = 0, a spread process starts from the wet site “0"

and proceeds as follows. The process for bond and site DP are slightly di↵erent

and thus we discuss them separately. For the site DP process, a site v 2 Vt+1 is

wet with probability p if and only if there exists at least one wet neighbor in Vt;

otherwise v is dry. For the bond DP process, the probability that a site v 2 Vt+1 is

wet depends on the number of wet neighbors in Vt. Denote this number by nv ,

then the site v is wet with probability 1� (1� p)nv . For both bond and site DP, the

process from Vt to Vt+1 is Markovian. Due to this formulation, it is typical to refer

to two-dimensional DP as (1 + 1) dimensional DP (space plus time).

Analogous to standard percolation, one can ask under what circumstances the

growth process can last forever. For the spread process, a natural order parameter

is the density of active sites at time t, denoted as ⇢t . For p  pc, ⇢t decays to zero as

7
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t=6

t

t=0

t=1

t=2

t=3

t=4

t=5

Figure 1.1: Stochastic formulation of DP on the square lattice. The vertical direction
corresponds to time, and the dashed lines identify the sets Vt .

t! +1. For p > pc, ⇢t decays to a non-zero constant. Here pc is the threshold for

DP. As p approaches pc from above, ⇢1 decays as a power law: ⇢1 ⇠ (p �pc)� . Due

to the existence of a distinguished direction (temporal direction), the correlation

length of DP is not isotropic, and thus two correlation lengths are defined: parallel

to the temporal direction ⇠k and perpendicular to the temporal direction ⇠?.

Around the threshold pc, these diverge as ⇠k ⇠ |p � pc|⌫k and ⇠? ⇠ |p � pc|⌫? . Here

�,⌫k,⌫? are three independent critical exponents for DP.

Despite of the simplicity of definition, no exact results are available for directed

percolation, even in (1 + 1) dimensions. Various numerical methods, including

series expansions, transfer matrix, and Monte Carlo simulations, are applied

to estimate critical points and exponents. Especially in (1 + 1) dimensions, by

series analysis (Jensen, 1996, 1999), the thresholds of several lattices have been

determined to the eighth decimal place, with the critical exponents to the sixth

decimal place. Estimates of thresholds and critical exponents in higher dimensions

can be found in Refs. (Blease, 1977; Adler et al., 1988; Grassberger and Zhang,

1996; Perlsman and Havlin, 2002; Lubeck and Willmann, 2004; Grassberger,

2009b,a). At and above the upper critical dimension (dc = 4), mean-field values

for the critical exponents � = 1, ⌫k = 1, and ⌫? = 1/2 are believed to hold. A more

detailed review for DP can be found in Ref (Hinrichsen, 2000).
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1.3 The face-cubic model

The n-component general face-cubic (GFC) model was first introduced in 1975 by

Kim et al (Kim et al., 1975; Kim and Levy, 1975) to model the non-trivial critical

behaviors of the cubic rare-earth compounds. Given a graph G = (V ,E), the GFC

model can be defined as follows. The state space ⌃ consists of 2n n-dimensional

vectors; each vector has only one non-zero entry and the entry is either 1 or �1.
For example, if n = 1 then ⌃ = {1,�1}, and if n = 2 then {(1,0), (�1,0), (0,1), (0,�1)}.
If one plots the 2n vectors in n-dimensional Cartesian coordinates, they comprise

the 2n face centers of an n-cube centered at the origin. If N = |V |, then a set

! = {!1,!2, · · · ,!N } is a configuration, where !i 2 ⌃ for i = 1, · · · ,N . The GFC

model is defined by randomly choosing a configuration ! 2 ⌃N via the Gibbs

measure,

⇡(!) =
1

Z(J1, J2)
exp[�H(!)] .

Here the Hamiltonian is defined via

H(!) = �J1
X

↵�2E
h!↵ ,!�i � J2

X

↵�2E
h!↵ ,!�i2 ,

and Z(J1, J2) is the partition sum

Z(J1, J2) =
X

!2⌃N

exp[�H(!)] .

We note that, without loss of generality, the parameter � (the inverse temperature)

commonly appearing in the definition of Gibbs measure, is set to one.

One motivation for studying the GFC model is that many fundamental models

in statistical mechanics appear as special cases. This can be partially explained

from the state space ⌃, which can be considered a combination of colors and spins.

The 2n states in ⌃ can be classified into n colors and in each color a spin can point
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either up or down. Specifically, two states !i ,!j are said to possess the same color

if |!i ·!j | = 1 and di↵erent colors otherwise. Analogously, two states are in the

same spin states if !i ·!j = 1 and opposite spin states if !i ·!j = �1. Now let us

describe some special cases of the GFC model in more detail. For n = 1, the GFC

model reduces to the Ising model. This can be seen from the facts that the state

space ⌃ = {1,�1} and the J2 term in the Hamiltonian becomes constant. For n = 2,

if one redefines new variables ⌧i ,�i 2 {1,�1} and writes !i =
1
2
(⌧i +�i ,⌧i ��i), then

the Hamiltonian of the GFC model can be rewritten as

H(!) = �J1
2

X

ij2E
(⌧i⌧j +�i�j )��J22

X

ij2E
⌧i⌧j�i�j � J2|E|/2 .

We observe that, up to an additional constant, this is exactly the Hamiltonian

for the Ashkin-Teller model (Ashkin and Teller, 1943). Other special cases can

be obtained by taking special values of J1 and J2. When J1 = 0, the n-state Potts

model is recovered, since the Hamiltonian fails to distinguish the spin states under

the same color. When J1 = J2, one can verify that the Hamiltonian is non-zero i↵

!i = !j , which therefore corresponds to the 2n-state Potts model.

From these special cases of the GFC model, a natural question to ask is what is the

explicit phase diagram of the GFC model on the (J1, J2) plane. In 1982, Nienuhis

et al (Nienhuis et al., 1983) studied the GFC model in two dimensions by means

of renormalization group and provided a schematic phase diagram for general n.

Two years later, a more detailed phase diagram on the square lattice was provided

by Blöte et al (Blöte and Nightingale, 1984), in which the critical couplings and

exponents were estimated using transfer matrix and finite-size scaling techniques.

They also proposed a graphical representation for the GFC model such that the

vector dimension n can vary continuously. In particular, on a special line on the

(J1, J2) plane (cosh J1 = e�J2), the GFCmodel can be mapped exactly to a loop model.

Critical points and exponents along this line were studied by Guo et al (Guo et al.,

10
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2006). The mean-field approximation of the standard face-cubic model (J2 = 0)

was first studied by Kim et al in 1975 (Kim et al., 1975). They argued that the

nature of the phase transitions is continuous for n < 3 and of first order for n > 3.

They also argued that for n = 3 the exponents are tricritical. However, the validity

of the mean-field approximation was challenged by the Bethe-Peierls-Weiss and

high-temperature approximations, both of which demonstrate that the transition

for n = 3 is of first order (Kim and Levy, 1975). The phase diagram of the Ashkin-

Teller model was first considered in 1980 (Ditzian et al., 1980), using mean-field

approximation.

Much attention has been given to study models on the complete graph, since it

is possible to perform rigorous analysis. For instance, the Ising model on the

complete graph has been rigorously analysed in (Ellis and Newman, 1978b,a; Ellis

et al., 1980). The Potts model on the complete graph was also rigorously treated by

Ellis and Wang(Ellis and Wang, 1990). In recent work, we rigorously studied the

standard face-cubic model on the complete graph, using a large deviation analysis.

We rigorously deduced that the transition is continuous for n  3 and of first order

for n � 4. The phase diagram of the GFC model was also explicitly studied.

1.4 Thesis Outline

We list at the end of this chapter the contents of this thesis.

Chapter 2 is the published paper “Bond and site percolation in two and three

dimensions" (Wang et al., 2013b).

Chapter 3 is the published paper “High-precision Monte Carlo study of directed

percolation in (d +1) dimensions" (Wang et al., 2013a).
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Chapter 4 is the published paper “Geometric structure of percolation clusters"

(Xu et al., 2014b).

Chapter 5 is the published paper “Leaf-excluded percolation in two and three

dimensions" (Zhou et al., 2015).

Chapter 6 is an unpublished paper “A n-component face-cubic model on the

complete graph", which will be submitted shortly.

Chapter 7 is Conclusion.
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Bond and Site Percolation in Three

Dimensions
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Y. 2013b. Bond and site percolation in three dimensions. Physical Review E 87:

052 107.

Abstract. We simulate the bond and site percolation models on a simple-cubic lattice

with linear sizes up to L = 512, and estimate the percolation thresholds to be pc(bond) =

0.24881182(10) and pc(site) = 0.3116077(2). By performing extensive simulations at

these estimated critical points, we then estimate the critical exponents 1/⌫ = 1.1410(15),

�/⌫ = 0.47705(15), the leading correction exponent yi = �1.2(2), and the shortest-path

exponent = 1.3756(3). Various universal amplitudes are also obtained, including

wrapping probabilities, ratios associated with the cluster-size distribution, and the

excess cluster number. We observe that the leading finite-size corrections in certain

wrapping probabilities are governed by an exponent ⇡ �2, rather than yi ⇡ �1.2.

Keywords. lattice theory and statistics, critical point phenomena, percolation, equilib-

rium properties near critical points, critical exponents

References are considered at the end of the thesis.





Chapter 2

Bond and Site Percolation in Three

Dimensions

2.1 Introduction

Percolation (Broadbent and Hammersley, 1957) is a cornerstone of the theory of

critical phenomena (Stau↵er and Aharony, 1994), and a central topic in probability

(Grimmett, 1999; Bollobás and Riordan, 2006). In two dimensions, Coulomb gas

arguments (Nienhuis, 1987) and conformal field theory (Cardy, 1987) predict

the exact values of the bulk critical exponents � = 5/36 and ⌫ = 4/3, which have

been confirmed rigorously in the specific case of triangular-lattice site percolation

(Smirnov and Werner, 2001). Exact values of the percolation thresholds pc on

several two-dimensional lattices are also known (Essam, 1972). In particular, it is

known rigorously (Kesten, 1980) that pc = 1/2 for bond percolation on the square

lattice. For all d greater than or equal to the upper critical dimension (Toulouse,

1974) of dc = 6, the mean-field values for the exponents � = 1 and d⌫ = 3 are

believed to hold; this has been proved rigorously (Aizenman and Newman, 1984;

Hara and Slade, 1990) for d � 19.
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For dimensions 2 < d < 6 by contrast, no exact values for either the critical

exponents or the percolation thresholds are known. Significant e↵ort has therefore

been expended on obtaining ever more accurate estimates, especially in three

dimensions.

In addition to percolation thresholds and critical exponents, crossing probabilities

(Langlands et al., 1992; Cardy, 1992) also play an important role in studies of

percolation. For lattices drawn on a torus, the analogous quantities are wrapping

probabilities (Langlands et al., 1994), and in two dimensions their values can

be determined exactly (Pinson, 1994). The three-dimensional case (Martins and

Plascak, 2003) has been far less studied however. Precise estimation of wrapping

probabilities on the simple-cubic lattice represents one of the central undertakings

of the current work.

In addition to their intrinsic importance, wrapping probabilities have proved to

be an e↵ective practical means of estimating percolation thresholds (Newman

and Zi↵, 2000; Feng et al., 2008). Using Monte Carlo (MC) simulations and

performing a careful finite-size scaling analysis of various wrapping probabilities

in the neighborhood of the transition, we obtain very accurate estimates of pc for

both site and bond percolation. We observe numerically that the leading finite-

size corrections for certain wrapping probabilities appear to be governed by an

exponent ⇡ �2, rather than by the leading irrelevant exponent yi ⇡ �1.2.

We then estimate the thermal exponent yt = 1/⌫ by fixing p to our best estimate

of pc, and studying the divergence with linear size L of the derivative of the

wrapping probability, which is proportional to the covariance of its indicator

with the number of bonds. We find this procedure for estimating yt preferable

to methods in which yt is estimated by studying how quantities behave in a

neighborhood of p values around pc. In particular, we believe the current method

produces more reliable error estimates.
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The remainder of this paper is organized as follows. The simulation method and

the sampled quantities are discussed in Sec. 2.2. The results for the wrapping

probabilities and thresholds are given in Sec. 2.3. Critical exponents and the

excess cluster number are discussed in Sec. 2.4. We then finally conclude with a

discussion in Sec. 2.5.

2.2 Sampled quantities

We study bond and site percolation on a periodic L⇥L⇥L simple-cubic lattice with

linear system sizes L = 8, 12, 16, 24, 32, 48, 64, 128, 256, and 512. For each system

size, we produced at least 2.5⇥ 107 independent samples. Each independent bond

(site) configuration is generated by independently occupying each bond (site) with

probability p. The clusters in each configuration are identified using breadth-first

search. The number of sites in each cluster defines its size.

We sampled the following observables in our simulations:

1. The number of occupied bondsNb for bond percolation, and the number of

occupied sitesNs for site percolation.

2. The number of clustersNc.

3. The size C1 of the largest cluster.

4. The cluster-size moments Sm =
P

C |C |m with m = 0,2,4. The sum runs over

all clusters C, and S0 is simply the number of clusters.

5. An observable S := max
C

max
y2C d(xC,y) used to determine the shortest-path

exponent. Here d(x,y) denotes the graph distance from site x to site y, and

xC is the vertex in cluster C with the smallest vertex label, according to some

fixed (but arbitrary) vertex labeling.
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6. The indicators R(x), R(y), and R(z), for the event that a cluster wraps around

the lattice in the x, y, or z direction, respectively.

From these observables we calculated the following quantities:

1. The mean size of the largest cluster C1 = hC1i, which at pc scales as C1 ⇠ Lyh

with yh = df = d � �/⌫, where df is the fractal dimension.

2. The cluster density ⇢ = hNci/Ld .

3. The mean size of the cluster at the origin, � = hS2i/Ld , which at pc scales as

� ⇠ L2yh�d .

4. The dimensionless ratios

Q1 =
hC1i2
hC12i

, Q2 =
hS22i

h3S22 � 2S4i
. (2.2.1)

5. The shortest-path length S = hSi, which at pc scales as S ⇠ Ldmin with dmin

the shortest-path fractal dimension.

6. The wrapping probabilities

R(x) =hR(x)i = hR(y)i = hR(z)i ,
R(a) =1� h(1�R(x))(1�R(y))(1�R(z))i ,
R(3) =hR(x)R(y)R(z)i .

(2.2.2)

Here R(x) gives the probability that a winding exists in the x direction, R(a)

gives the probability that a winding exists in at least one of the three possible

directions, and R(3) gives the probability that windings simultaneously exist

in all three possible directions. Near pc, we expect each of these wrapping

probabilities to behave as ⇠ f ((p � pc)Lyt ), where f is a scaling function.
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Figure 2.1: Plots of R(x)(p,L) (top) and R(a)(p,L) (bottom) vs L for fixed values of p,
for bond percolation. In both cases, the curves correspond to our preferred
fit of the MC data for R(p,L) by the ansatz (2.3.1); the dashed curve
corresponds to setting p = 0.24881182. The shaded blue strips indicate
an interval of 1� above and below the estimates R(x)

c = 0.25778(6) and
R(a)
c = 0.45997(8).

7. The covariance of R(x) andNb

g (x)bR = hR(x)Nbi � hR(x)ihNbi

= p(1� p)@R
(x)

@p
.

(2.2.3)

At pc, we expect g (x)bR ⇠ Lyt . An analogous definition of g (x)sR , with Nb being

replaced withNs, was used for site percolation.

To derive (2.2.3), one can explicitly di↵erentiate hR(x)i with respect to p, and use

the fact that hNbi = p|E| where |E| is the total number of edges on the lattice.

The complete set of data for all observables, for both bond and site percolation, is

available as Supplemental Material.
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Figure 2.2: Plots of Q1 and Q2 vs L�1.2 (top), and R(x) and R(a) vs L�2 (bottom), with
p = 0.2488118, for bond percolation. The solid lines are simply to guide
the eye.

2.3 Estimating pc

2.3.1 Bond percolation

We estimate the thresholds of bond and site percolation by studying the finite-size

scaling of the wrapping probabilities R(x), R(a), and R(3), and the dimensionless

ratios Q1 and Q2. Around pc, we perform least-squares fits of the MC data for

these quantities by the ansatz

O(✏,L) = Oc +
2

X

k=1

qk✏
kLkyt + b1L

yi + b2L
�2 , (2.3.1)
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Table 2.1: Fits of the wrapping probabilities R(x), R(a), and R(3), and the ratios Q1 and
Q2 for bond percolation. We did not obtain stable fits with yi free for R(3).

Lmin �2/DF pc yt Oc q1 b1 yi b2

Q1

16 53/40 0.248 812 03(5) 1.16(1) 0.865 37(1) �0.36(1) �0.0423(5) �1.2 0.341(5)
24 33/33 0.248 811 98(6) 1.16(2) 0.865 35(2) �0.31(2) �0.040(2) �1.2 0.31(2)
32 28/26 0.248 811 93(7) 1.19(3) 0.865 33(2) �0.31(3) �0.036(3) �1.2 0.25(5)
16 44/39 0.248 811 84(8) 1.16(1) 0.865 39(3) �0.36(1) �0.10(4) �1.34(9) 0.50(8)
24 31/32 0.248 811 88(9) 1.19(2) 0.865 29(4) �0.32(3) �0.10(8) �1.3(2) 0.5(2)
32 28/25 0.248 811 96(14) 1.19(3) 0.865 4(2) �0.31(3) �0.02(4) �1.0(5) 0.2(3)

Q2

32 28/25 0.248 811 20(5) 1.17(2) 0.633 58(3) �0.80(5) �0.104(4) �1.2 0.05(7)
48 16/18 0.248 811 95(6) 1.14(2) 0.633 50(3) �0.89(8) �0.088(9) �1.2 �0.3(2)
64 10/11 0.248 811 84(11) 1.12(3) 0.633 4(2) �1.0(2) �0.05(4) �1.2 �1(1)
32 28/26 0.248 812 02(6) 1.17(2) 0.633 58(5) �0.80(5) �0.097(8) �1.08(3) -
48 16/19 0.248 811 93(7) 1.14(2) 0.633 46(7) �0.89(8) �0.15(4) �1.22(7) -
64 10/12 0.248 811 82(11) 1.12(3) 0.633 3(2) �1.0(2) �0.5(6) �1.5(4) -

R(x)

16 41/37 0.248 811 81(4) 1.143(7) 0.257 77(2) �1.22(3) 0.005(2) �1.2 �0.23(1)
24 30/31 0.248 811 83(4) 1.15(2) 0.257 78(3) �1.22(6) 0.003(3) �1.2 �0.26(4)
32 25/24 0.248 811 82(6) 1.15(2) 0.257 76(5) �1.20(8) 0.006(7) �1.2 �0.20(10)
16 41/37 0.248 811 82(4) 1.144(7) 0.257 79(2) �1.22(3) 0.18(2) �1.83(4) -
24 31/31 0.248 811 84(4) 1.15(2) 0.257 79(2) �1.22(6) 0.22(8) �1.9(2) -
32 25/24 0.248 811 82(6) 1.15(2) 0.257 77(4) �1.20(8) 0.1(1) �1.7(3) -

R(a)

16 40/39 0.248 811 82(4) 1.149(7) 0.459 99(3) �1.65(4) 0.004(2) �1.2 0.73(2)
24 25/32 0.248 811 82(5) 1.14(2) 0.459 97(5) �1.74(9) 0.003(4) �1.2 0.72(6)
32 22/25 0.248 811 83(6) 1.14(2) 0.459 98(7) �1.7(2) 0.005(9) �1.2 0.7(2)
16 40/39 0.248 811 82(4) 1.149(7) 0.459 97(2) �1.65(4) 0.81(6) �2.06(3) -
24 25/32 0.248 811 82(4) 1.14(2) 0.459 95(3) �1.74(9) 0.8(2) �2.05(8) -
32 22/25 0.248 811 82(5) 1.14(2) 0.459 96(5) �1.74(2) 1.0(9) �2.1(3) -

R(3)
16 44/38 0.248 811 85(6 ) 1.14(1) 0.080 41(2) �0.66(2) 0.010(1) �1.2 �0.076(8)
24 35/31 0.248 811 91(6 ) 1.15(2) 0.080 43(3) �0.63(5) 0.007(3) �1.2 �0.04(3)
32 23/24 0.248 811 85(8 ) 1.17(3) 0.080 39(4) �0.59(5) 0.014(6) �1.2 �0.15(9)

where ✏ = pc � p, Oc is a universal constant, and yi is the leading correction

exponent. We perform fits with both b1 and b2 free, as well as fits with b2 being

set identically to zero. By performing fits with yi free we estimate that yi = �1.2(2).
We also perform fits with yi fixed to yi = �1.2.

As a precaution against correction-to-scaling terms that we have neglected in our

chosen ansatz, we impose a lower cuto↵ L � Lmin on the data points admitted in

the fit, and we systematically study the e↵ect on the �2 value of increasing Lmin.

In general, our preferred fit for any given ansatz corresponds to the smallest Lmin

for which �2 divided by the number of degrees of freedom (DFs) is O(1), and for

which subsequent increases in Lmin do not cause �2 to drop by much more than

one unit per degree of freedom.
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Table 2.1 summarizes the results of these fits. From the fits, we can see that the

finite-size corrections of Q1 and Q2 are dominated by the exponent yi ⇡ �1.2.
From Q1 and Q2, we estimate pc = 0.2488119(3), and their universal critical

values Q1,c = 0.8654(2) and Q2,c = 0.6335(2).

For R(x) and R(a), fixing yi = �1.2 and including both the b1 and b2 terms we

find that b1 is consistent with zero, while b2 is clearly nonzero. Furthermore,

if we set b2 = 0 and leave yi free, we find yi ⇡ �2. This suggests that either the
amplitudes of the leading corrections of R(x) and R(a) vanish identically, or at least

that they are su�ciently small that they cannot be detected from our data. Due

to these weak finite-size corrections, the values of pc fitted from R(x) and R(a) are

much more stable than those obtained from Q1 and Q2. From R(x) and R(a), we

estimate pc = 0.24881182(10). For R(3), we report only the fits with corrections

b1L�1.2 + b2L�2. If yi is left free the fits become unstable, regardless of whether

the b2L�2 term is included. From R(3), we estimate pc = 0.24881185(15) which is

consistent with the value obtained from R(x) and R(a). From these fits, we estimate

the universal wrapping probabilities to be R(x)
c = 0.25778(6), R(a)

c = 0.45997(8)

and R(3)
c = 0.08041(8).

In Fig. 2.1, we illustrate our estimate of pc by plotting R(x) and R(a) vs L. Precisely

at p = pc, as L!1 the data should tend to a horizontal line, whereas the data

with p , pc will bend upward or downward. Figure 2.1 shows that our estimate

of pc lies slightly below the central value 0.2488126 reported in Lorenz and Zi↵

(1998a).

In Fig. 2.2, we plot the data at p = 0.2488118 for R(x) and R(a) vs L�2, and for Q1

and Q2 vs L�1.2. The figure strongly suggests that the correction L�1.2 dominates

in Q1 and Q2, but vanishes (or is very weak) in R(x) and R(a).
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Table 2.2: Fits of the wrapping probabilities R(x), R(a), and R(3), and the ratios Q1 and
Q2 for site percolation. For R(x) we obtain unstable results when yi is free.

Lmin �2/DF pc yt Oc q1 b1 yi b2

Q1

32 19/16 0.311 606 9(2) 1.14(2) 0.865 05(2) �0.22(2) 0.062(2) �1.2 0(3)
48 11/11 0.311 607 0(2) 1.11(3) 0.865 09(3) �0.25(3) 0.054(6) �1.2 0.2(2)
64 3/6 0.311 607 7(3) 1.12(6) 0.865 26(7) �0.24(6) 0.01(2) �1.2 1.4(5)
32 19/16 0.311 606 9(2) 1.15(2) 0.865 06(3) �0.22(2) 0.063(4) �1.11(2) -
48 10/11 0.311 607 1(2) 1.11(3) 0.865 12(4) �0.25(3) 0.09(2) �1.22(7) -
64 3/6 0.311 607 7(3) 1.12(6) 0.865 27(5) �0.24(6) 0.9(10) �1.8(3) -

Q2

64 3/6 0.311 607 6(2) 1.12(4) 0.633 3(1) �0.56(9) 0.02(3) �1.2 5.1(7)
48 13/11 0.311 607 2(1) 1.14(2) 0.633 06(4) �0.52(4) 0.9(1) �1.52(3) -
64 2/6 0.311 607 6(2) 1.12(4) 0.633 29(8) �0.56(9) 4(2) �1.9(2) -

R(x)
16 42/39 0.311 607 85(5) 1.13(1) 0.257 89(2) �0.76(4) 0.004(1) �1.2 �0.22(1)
24 30/31 0.311 607 74(6) 1.14(2) 0.257 84(3) �0.75(5) 0.009(2) �1.2 �0.29(3)
32 24/24 0.311 607 66(7) 1.14(2) 0.257 80(3) �0.73(5) 0.015(4) �1.2 �0.39(6)

R(a)

16 39/40 0.311 607 70(5) 1.12(2) 0.460 02(2) �1.09(6) 0.023(2) �1.2 0.08(2)
24 25/32 0.311 607 67(7) 1.13(2) 0.459 99(4) �1.05(6) 0.025(3) �1.2 0.05(4)
32 19/24 0.311 607 65(8) 1.13(2) 0.459 98(5) �1.06(7) 0.027(6) �1.2 0.02(9)
16 36/40 0.311 607 75(6) 1.12(2) 0.460 06(3) �1.09(6) 0.055(5) �1.33(4) -
24 25/32 0.311 607 68(8) 1.13(2) 0.460 01(5) �1.05(7) 0.039(9) �1.21(9) -
32 19/24 0.311 607 65(9) 1.13(2) 0.459 99(7) �1.06(7) 0.03(2) �1.1(2) -

R(3)

16 50/38 0.311 608 01(8) 1.14(2) 0.080 55(1) �0.38(3) �0.010(8) �1.2 �0.30(1)
24 27/30 0.311 607 79(9) 1.14(2) 0.080 49(2) �0.39(4) �0.004(2) �1.2 �0.38(3)
32 18/23 0.311 607 65(11) 1.15(3) 0.080 45(3) �0.38(4) �0.002(3) �1.2 �0.47(5)
16 40/38 0.311 607 89(7) 1.15(2) 0.080 510(9) �0.38(3) �0.21(1) �1.77(2) -
24 26/30 0.311 607 77(8) 1.14(2) 0.080 48(2) �0.39(4) �0.30(5) �1.88(5) -
32 18/23 0.311 607 66(10) 1.15(3) 0.080 46(2) �0.38(4) �0.6(2) �2.1(2) -

2.3.2 Site percolation

For site percolation, we again estimate pc by fitting Q1 and Q2, R(x), R(a), and R(3)

with Eq. (2.3.1). The fitting procedure is similar to that of bond percolation, and

the results are summarized in Table 2.2. From the table, we can see that the fits of

Q1 and Q2 are less stable for site percolation than for bond percolation. The ratio

of �2 per DF remains large until Lmin � 32 for Q1 and Lmin � 48 for Q2, and the

resulting estimates of pc range from 0.3116069(2) to 0.3116077(3).

The fits of the wrapping probabilities are better behaved, as was the case for bond

percolation. For R(3), fixing yi = �1.2 and including both the b1 and b2 terms, we

find that b1 is consistent with zero, while b2 is clearly nonzero. Furthermore, if

we set b2 = 0 and leave yi free, we find yi ⇡ �2. This suggests that the amplitude

of the leading correction of R(3) is smaller than the resolution of our fits, and

might possibly be zero. The fits of the R(a) data, however, quite clearly indicate
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the presence of the b1L�1.2 term. For R(x), we report only the fits with corrections

b1L�1.2 + b2L�2; if yi is left free the fits become unstable, regardless of whether the

b2L�2 term is included. As for R(a), the amplitude b1 appears to take a nonzero

value. These observations suggest that the leading correction L�1.2 does not

generically vanish for all wrapping probabilities, but rather that the amplitudes

in some cases are smaller than the resolution of our simulations.

Comparing the various fits, we estimate pc = 0.3116077(2) for site percolation,

which is consistent with the previous result 0.3116077(4) (Deng and Blöte,

2005). In addition, we estimate the universal wrapping probabilities to be

R(x)
c = 0.25782(6), R(a)

c = 0.45999(8), and R(3)
c = 0.08046(6), which are consis-

tent with those estimated from bond percolation. In Fig. 2.3, we show plots of R(x)

and R(a) which illustrate our estimate of pc.
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Figure 2.3: Plots of R(x)(p,L) (top) and R(a)(p,L) (bottom) vs L for fixed values of p, for
site percolation. In both cases, the curves correspond to our preferred fit of
the MC data for R(p,L) by ansatz (2.3.1); the dashed curve corresponds to
setting p = 0.3116077. The shaded blue strips indicate an interval of 1�
above and below the estimates R(x)

c = 0.25782(6) and R(a)
c = 0.45999(8).

2.4 Results at pc

In this section, we estimate the critical exponents yt, yh, and dmin, as well as the

excess cluster number. Fixing p at our estimated thresholds for bond and site

percolation, we study the covariances g (x)bR and g (x)sR , the mean size of the largest

cluster C1, the mean size of the cluster at the origin, �, the shortest-path length S ,

and the cluster density ⇢. The MC data for g (x)bR , g
(x)
sR , C1, � and S are fitted by the

ansatz

A = LyA(a0 + b1L
�1.2 + b2L

�2) . (2.4.1)

We perform fits using di↵erent combinations of the two corrections b1L�1.2 and

b2L�2 and compare the results.
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Table 2.3: Fits of covariances g (x)bR and g (x)sR .

Lmin �2/DF yt a0 b1 b2

g (x)bR

16 4/4 1.140 4(9) 0.231(1) �0.03(2) 0.1(2)
24 4/3 1.140 6(13) 0.231(2) �0.02(5) 0.0(4)
16 4/5 1.140 9(4) 0.230 7(3) �0.012(3) -
24 4/4 1.140 6(6) 0.231 1(6) �0.017(7) -

g (x)sR

16 5/4 1.141 6(4) 0.155 1(3) �0.004(7) �0.06(5)
24 4/3 1.141 1(6) 0.155 4(6) �0.02(2) �0.1(2)
16 7/5 1.141 1(2) 0.155 5(1) �0.013(1) -
24 4/4 1.141 4(3) 0.155 3(2) �0.010(2) -

2.4.1 Estimating yt

We estimate yt by studying the covariances g (x)bR and g (x)sR , both of which scale as

⇠ Lyt at the critical point. We find this procedure for estimating yt preferable

to methods, such as that employed in (Deng and Blöte, 2005), in which yt is

estimated by studying how quantities behave in the neighborhood of pc as the

system deviates from criticality. In particular, we believe the current method

produces more reliable error estimates.

We fit the data for g (x)bR at p = 0.2488118 and g (x)sR at p = 0.3116077 to Eq. (2.4.1),

and the results are shown in Table 2.3. The estimate of yt from g (x)sR produces a

smaller error bar than that from g (x)bR . From these fits we take our final, somewhat

conservative, estimate to be yt = 1.1410(15).

In Fig. 2.4, we plot (lng (x)bR �yt lnL) and (lng (x)sR �yt lnL) vs lnL using three di↵erent

values of yt: our estimate, as well as our estimate plus or minus three standard

deviations. Using the true value of yt should produce a horizontal line for large L.

In the figure, the data using yt = 1.1365 and yt = 1.1455 respectively bend upward

and downward, suggesting that the true value of yt does indeed lie within 3� of our

estimate. The data with yt = 1.141 appear to be consistent with an asymptotically

horizontal line. We note that while the curve appears to be increasing around

the point at L = 512 for bond percolation, it instead slightly decreases for site
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Figure 2.4: Plots of (lng (x)bR � yt lnL) (top) and (lng (x)sR � yt lnL) (bottom) vs lnL illus-
trating our estimate yt = 1.1410(15). The dashed curves are simply to
guide the eye.

percolation, suggesting that in fact this movement is dominated (or even entirely

caused) by noise.

2.4.2 Estimating yh

We estimate yh by studying the divergence of C1 and � as L increases with p fixed

to our best estimates of pc. We fit the MC data for C1 and � with Eq. (2.4.1), with

the exponent yA then corresponding to yh and 2yh � d, respectively. The results
are reported in Table 2.4. We use superscripts b and s to distinguish bond and site

percolation. For Cb
1 and �s, the amplitude b1 is quite small, while b1 in �b and

Cs
1 is clearly present. In the fits of �s with one correction term b1L�1.2, the ratio

of �2 per DF remains large until Lmin � 64. We therefore show the fits with the

correction b2L�2 instead. Comparing these fits, we estimate yh = 2.52295(15).
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Table 2.4: Fits of C1 and �. The superscripts b and s denote bond and site percolation,
respectively.

Lmin �2/DF yh a0 b1 b2

Cb
1

16 3/4 2.522 86(5) 0.939 4(3) �0.014(6) 0.22(4)
24 3/3 2.522 89(7) 0.939 3(4) �0.009(11) 0.2(1)
24 5/4 2.522 98(3) 0.938 8(2) 0.009(2) -
32 3/3 2.522 94(4) 0.939 0(2) 0.005(3) -

�b

16 4/4 2.523 03(4) 1.125 7(5) 0.14(1) 0.18(7)
24 3/3 2.523 00(5) 1.126 2(7) 0.12(2) 0.3(2)
24 6/4 2.523 08(3) 1.125 1(3) 0.157(4) -
32 4/3 2.523 05(3) 1.125 5(4) 0.151(6) -

Cs
1

16 5/4 2.522 99(3) 0.471 16(7) 0.024(2) �0.44(2)
24 5/3 2.523 00(5) 0.471 1(2) 0.024(4) �0.45(4)

�s

32 0.9/2 2.522 91(5) 0.284 1(2) �0.001(7) �1.15(9)
48 0.7/1 2.522 94(9) 0.284 0(4) �0.007(18) �1.3(3)
32 0.9/3 2.522 92(1) 0.284 06(3) - �1.16(1)
48 0.9/2 2.522 91(2) 0.284 08(7) - �1.17(5)
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Figure 2.5: Plots of (lnCb
1 �yh lnL) (top) and (lnCs

1�yh lnL) (bottom) vs lnL to show
our estimate yh = 2.52295(15). The dashed curves are simply to guide the
eye.

32



Chapter 2 – (Wang et al., 2013b)

Table 2.5: Fits of S . The superscripts b and s denote bond and site percolation, respec-
tively.

Lmin �2/DF dmin a0 b1 b2

Sb 24 2/3 1.375 26(5) 1.814 9(5) �0.65(2) �3.8(2)
32 1/2 1.375 33(7) 1.814 2(7) �0.59(5) �4.4(4)
48 0/2 1.375 30(9) 1.815(1) �0.63(9) �4(1)

Ss
16 5/4 1.375 80(2) 1.383 4(2) �3.432(5) 2.72(3)
24 4/4 1.375 77(3) 1.383 6(3) �3.45(2) 2.82(3)
32 4/2 1.375 76(5) 1.383 7(4) �3.45(3) 2.9(3)

Table 2.6: Fits of ⇢. The superscripts b and s denote bond and site percolation, respec-
tively.

Lmin �2/DF ⇢c b b1

⇢b

16 3/5 0.272 932 83(1) 0.679(3) 0.1(6)
24 1/4 0.272 932 83(1) 0.674(6) 3(4)
16 2/7 0.272 932 83(1) 0.678 9(6) -
24 2/6 0.272 932 83(1) 0.679(2) -

⇢s

12 4/6 0.052 438 218(3) 0.674 5(5) 0.02(8)
16 4/5 0.052 438 218(3) 0.674 7(8) �0.02(21)
24 4/4 0.052 438 218(3) 0.674(2) 0.2(10)
12 4/7 0.052 438 218(3) 0.674 6(2) -
16 4/6 0.052 438 218(3) 0.674 6(3) -
24 4/5 0.052 438 218(3) 0.674 6(5) -

In Fig. 2.5, we plot (lnCb
1 � yh lnL) and (lnCs

1 � yh lnL) vs lnL using three di↵erent

values of yh: our estimate, as well as our estimate plus or minus three standard

deviations. As L increases, the data with yh = 2.52250 and 2.52340 respectively

slope upward and downward, while the data with yh = 2.52295 are consistent

with an asymptotically horizontal line.

2.4.3 Estimating dmin

We estimate the shortest-path fractal dimension dmin by studying the quantity

S at our estimated thresholds. The MC data for S are fitted to Eq. (2.4.1) with

the exponent yA replaced by dmin, and the results are reported in Table 2.5. We

again use the superscripts b and s to distinguish bond and site percolation. In

the fits, both b1 and b2 are clearly observable for Sb and Ss. And when we set
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Table 2.7: Summary of estimated thresholds, critical exponents, universal wrapping
probabilities, and excess cluster number of bond and site percolation on the
simple-cubic lattice. We note that the values of yt and yh in (Deng and Blöte,
2005) marked by the superscript ⇤ contained typographical errors. The final
error bars reported in (Deng and Blöte, 2005) were also underestimated,
taking insu�cient account of systematic errors.

Ref. pc(bond) pc(site) yt = 1/⌫ yh = df dmin
Lorenz and Zi↵ (1998a) 0.2488126(5) 1.12(2) 2.523(4)
Lorenz and Zi↵ (1998b) 0.3116080(4)
Ballesteros et al. (1999) 0.3116081(13) 1.141(2) 2.5230(3)
Martins and Plascak (2003) 0.2490(2) 0.3115(3) 1.15(2)
Deng and Blöte (2005)* 0.3116077(4) 1.145 0(7) 2.522 6(1)
Zhou et al. (2012a) 0.248 812 0(5) 1.142(3) 2.523 5(8)
Zhou et al. (2012b) 1.375 6(6)
Kozlov and Laguës (2010) 1.142(8)
This work 0.248 811 82(10) 0.311 607 7(2) 1.141 0(15) 2.522 95(15) 1.375 6(3)
Ref. yi R(x) R(a) R(3) b
Lorenz and Zi↵ (1998a)
Lorenz and Zi↵ (1998b)
Ballesteros et al. (1999) �1.61(13)
Martins and Plascak (2003) 0.265(6) 0.471(8) 0.084(4)
Deng and Blöte (2005)*
Zhou et al. (2012a)
Zhou et al. (2012b)
Kozlov and Laguës (2010) �1.0(2)
This work �1.2(2) 0.257 80(6) 0.459 98(8) 0.080 44(8) 0.675(2)

b2 = 0, the ratio of �2 per DF remains relatively large. We also did the fits by

replacing the correction with b2 by a constant term c0 in Eq. (2.4.1), and obtained

dmin(bond) = 1.37555(6) and dmin(site) = 1.37559(6). Comparing these fits, we

estimate dmin = 1.3756(3).

To illustrate this estimate, Fig. 2.6 shows a log-log plot of S versus L.

2.4.4 Excess number of clusters

The cluster density tends to a finite limit ⇢c = limL!1 limp!pc ⇢ at critical-

ity. While the value of ⇢c is non-universal, the excess cluster number b :=

limL!1 limp!pc L
d(⇢ � ⇢c) is universal Zi↵ et al. (1997). To estimate b, we study ⇢

with p fixed to our estimated thresholds for bond and site percolation and fit the
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Figure 2.6: Log-log plot of S versus L for bond and site percolation. Two straight lines
with slope 1.375 6 are included for comparison.

data to the ansatz

⇢ = ⇢c +L�3(b + b1L
�2) . (2.4.2)

The resulting fits are summarized in Table 2.6, where we again use superscripts

b and s to di↵erentiate the bond and site cases. We report fits both with b1 free

and with b1 = 0. We find that ⇢ can be well fitted to (2.4.2) with b1 = 0 fixed.

Leaving b1 free, we find that b1 is consistent with zero, suggesting that the leading

correction exponent might be even smaller than �2. We also performed fits in

which the leading correction exponent was fixed to �1.2 and �3, and in both

cases the resulting estimates of ⇢c and b were consistent with those reported in

Table 2.6. Leaving the leading correction exponent free produces unstable fits

however. Comparing these fits, we estimate b = 0.675(2).
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Our estimate of b is determined on th periodic L ⇥ L ⇥ L simple cubic lattice;

on the L ⇥ L square lattice b = 0.8835(8) Zi↵ et al. (1997). The excess cluster

number was studied in Lorenz and Zi↵ (1998a) on an L⇥L⇥L0 lattice with L0 � L.

Naively, extrapolating their results to L0 = L gives an estimate of b ⇡ 0.412 which is

significantly below our estimate. We also note that our estimate of the number of

clusters ⇢c = 0.27293283(1) di↵ers slightly from the estimate ⇢c = 0.2729310(5)

reported in Lorenz and Zi↵ (1998a).

2.5 Discussion

We study in this paper standard bond and site percolation on the three-

dimensional simple-cubic lattice with periodic boundary conditions. Using exten-

sive Monte Carlo simulations and finite-size scaling analysis, we report the esti-

mates: pc = 0.24881182(10) (bond) and pc = 0.3116077(2) (site). The bulk thermal

and magnetic exponents are estimated to be yt = 1.1410(15) and yh = 2.52295(15),

the shortest-path fractal dimension to be dmin = 1.3756(3), and the leading irrele-

vant exponent to be yi = �1.2(2). The universal value of the excess cluster number

is estimated to be b = 0.675(2).

We emphasize that the reported estimates of pc are obtained by studying wrap-

ping probabilities, which are found to have weaker corrections to scaling than

dimensionless ratios constructed from moments of magnetic quantities such as

C1 and Sm. In particular, we find evidence suggesting that the leading correction

exponent in certain wrapping probabilities (R(x) and R(a) for bond percolation, R(3)

for site percolation) may be ⇡ �2 rather than �1.2, although the reasons are not

clear. The universal values of the wrapping probabilities we studied are estimated

to be: R(x)
c = 0.25780(6), R(a)

c = 0.45998(8), and R(3)
c = 0.08044(8), by comparing

the results for bond and site percolation.
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From these values we can estimate other wrapping probabilities discussed in the

literature, such as

R(1) : = hR(x)(1�R(y))(1�R(z))i
=
1
3
(2R(a) +R(3) � 3R(x)) ,

R(2) : = hR(x)R(y)(1�R(z))i
=
1
3
(3R(x) � 2R(3) �R(a)) ,

R(x,y) : = hR(x)R(y)i = 1
3
(3R(x) +R(3) �R(a)) .

In words, R(1) is the probability that a winding exists in one given direction but not

in the other two directions; R(2) is the probability that a winding exists in two given

directions but not in the third; and R(x,y) is the probability that a winding exists in

two given directions, regardless of whether a winding exists in the third direction.

We obtain R(1)
c = 0.07567(14), R(2)

c = 0.05085(14), and R
(x,y)
c = 0.13129(12).

Table 2.7 summarizes the estimates presented in this work. For comparison, we

also provide an (incomplete) summary of previous estimates.
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Chapter 3

A high-precision Monte Carlo study

of directed percolation in (d+1) di-

mensions

3.1 Introduction

Directed (or oriented) percolation (DP) is a fundamental model in non-equilibrium

statistical mechanics. A variety of natural phenomena can be modeled by DP,

including forest fires (Broadbent and Hammersley, 1957; Albano, 1994), epidemic

diseases (Mollison, 1977), and transport in porous media (Bouchaud and Georges,

1990; Havlin and ben Avraham, 1987).

A major reason for the longstanding interest in DP is its conjectured universality,

first described by Janssen (Janssen, 1981) and Grassberger (Grassberger, 1982).

Specifically, it is believed that any model possessing the following properties will

belong to the DP universality class: short-range interactions; a continuous phase
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transition into a unique absorbing state; a one-component order parameter and

no additional symmetries.

At and above the upper critical dimension (dc = 4), mean-field values for the

critical exponents � = 1, ⌫k = 1, ⌫? = 1/2 are believed to hold. For d < dc however,

no exact results for either critical exponents or thresholds are known, and instead

one relies on numerical estimates obtained by series analysis, transfer matrix

methods, and Monte Carlo simulations. In (1 + 1) dimensions, series analysis

(Jensen, 1996, 1999) has enabled the threshold estimates on several lattices to

be determined to the eighth decimal place, with the critical exponents being

estimated to the sixth decimal place.

Estimates of thresholds and critical exponents for d � 2 can be found in (Grass-

berger and Zhang, 1996; Grassberger, 2009b; Perlsman and Havlin, 2002; Lubeck

and Willmann, 2004; Adler et al., 1988; Blease, 1977; Grassberger, 2009a). Com-

pared with results for d = 1 however, the precision of these estimates in higher

dimensions is less satisfactory. The central undertaking of the present work is to

use high-precision Monte Carlo simulations to systematically study the thresholds

of bond and site DP on simple-cubic (SC) and body-centered-cubic (BCC) lattices

for 2  d  7.

In order to obtain precise estimates of the critical thresholds, we study the finite-

size scaling of the dimensionless ratio Qt =N2t/Nt , where Nt is the mean number

of sites becoming wet at time t.

Having obtained these estimates for pc, we then fix p to our best estimate of pc and

use finite-size scaling to obtain improved estimates of the critical exponents for

d = 2,3. In addition, we also study the finite-size scaling at pc of the distribution

pN (t, s) := P(Nt = s|Nt > 0), (3.1.1)
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where Nt is the number of sites becoming wet at time t. We conjecture, and

numerically confirm, that

pN (t, s) ⇠ t�yN FN (s/tyN ), t!1, (3.1.2)

with exponent yN = ✓ + �, where ✓ = (d⌫? � �)/⌫k and � = �/⌫k for d < dc and

yN = 1 for d � dc. We also study an analogous distribution of the random radius

of gyration, as in Eq. (3.1.2) with yN being replaced by yR = ⌫?/⌫k.

The remainder of this paper is organized as follows. Section 3.2 introduces the DP

models we study and describes how the simulations were performed. Results are

presented in Secs. 3.3, 3.4 and 3.5. In Sec. 3.6 we present estimated thresholds of

bond and site DP on the square, triangular, honeycomb and kagome lattices, while

Sec. 3.7 contains some technical results justifying the definitions of the improved

estimators defined in Sec. 3.2.4. We conclude with a discussion in Sec. 3.8.

3.2 Description of the model and simulations

3.2.1 Generating DP configurations

Although DP was originally introduced from a stochastic-geometric perspec-

tive (Broadbent and Hammersley, 1957), as the natural analog of isotropic perco-

lation to oriented lattices, the most common formulation of DP is as a stochastic

t=6

t

t=0

t=1

t=2

t=3

t=4

t=5

Figure 3.1: Stochastic formulation of DP on the square lattice. The vertical direction
corresponds to time, and the dashed lines identify the sets Vt .
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cellular automaton. To obtain a stochastic formulation of DP on a given oriented

lattice, one defines a sequence (Vt)t�0 which partitions the set of lattice sites, such

that each adjacent site directed to v 2 Vt belongs to some Vt0 with t0 < t. See Fig. 3.1

for the example of the square lattice. By setting V0 = {0}, the trajectory of the

stochastic process then generates the cluster connected to the origin. Typically

t0 = t � 1, and the resulting process is then Markovian.

For both site and bond DP, at time t the stochastic process visits each site v 2 Vt

and sets either sv = 1 (wet) or sv = 0 (dry). In more detail, the process proceeds as

follows. At t = 0, we wet the origin with probability 1. At time t > 0, we construct

for each v 2 Vt the (random) set Ev of edges directed from wet sites to v. In the

case of site DP, if Ev is non-empty we set sv = 1 with probability p, otherwise we

set sv = 0. For bond DP, we select an edge e 2 Ev and occupy it with probability p.

If e is occupied, we set sv = 1, and then proceed to update the next site in Vt . If e

is unoccupied, we repeat the procedure for the next edge in Ev , and continue until

either an edge is occupied or the set Ev is exhausted 1.

We note that in this description, the sets Vt have been given a pre-specified order,

as have the sets of edges incident to each v 2 Vt. The precise form of these

orderings is obviously unimportant, and in practice they were induced in the

natural way from the coordinates of the vertices. We used a hash table (Sedgewick,

1998) to store the wet sites in our simulations, as described in (Grassberger, 2003).

For p > pc, there is a non-zero probability that the number of wet sites will diverge

as t!1. In our simulations, the cluster growth stops either at the first time that

no new sites become wet, or when t = tmax, where tmax is predetermined. The

values of tmax used for each simulation were chosen as follows. For site and bond

1We note that the version of bond DP that we are simulating generates a di↵erent ensemble of
bond configurations compared to the standard geometric version of bond DP, in which each edge
is occupied independently. However, the resulting site configurations generated by these two bond
DP models are identical. Since we only consider properties of the site configurations in this article,
the distinction is unimportant for our purposes. For the sake of computational e�ciency, we find
the version described in the text more convenient.
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Figure 3.2: (2+1)-dimensional SC (left) and BCC (right) lattices.

DP with 2  d  5, we set tmax = 214. On SC lattice with d = 6,7, we set tmax = 213

and tmax = 211 respectively. On BCC lattice with d = 6,7, we set tmax = 212 and

tmax = 210 respectively. In all cases, the number of independent samples generated

was 109.

3.2.2 Lattices

We simulated (d + 1)-dimensional simple-cubic (SC) and body-centered cubic

(BCC) lattices with 2  d  7. The stochastic processes formulation of DP on

these lattices that we used in our simulations is Markovian, and is described most

easily by explicitly describing the sets Vt together with the edges between Vt and

Vt+1. In (d +1) dimensions, each Vt ⇢ Zd . Let x 2 Vt , and let {e1, . . . ,ed} denote the
standard basis of Zd . On the BCC lattice, the coordinates of the � = 2d neighbors

of x in Vt+1 are x+
Pd

i=1↵i ei for ↵ 2 {0,1}d . On the SC lattice, the coordinates of

the � = d+1 neighbors of x in Vt+1 are x+
Pd

i=1↵i ei for all ↵ 2 {0,1}d with k↵k1  1.

The (2+1)-dimensional cases are illustrated in Fig. 3.2.

3.2.3 Observables

For each simulation we sampled the following random variables:

1. Nt , the number of sites becoming wet at time t;
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2. St =
q

P

v r
2
v , where rv denotes the Euclidean distance of the site v to the time

axis, and the sum is over all wet sites in Vt ;

3. Nt =
P

v2Vt
bv , where bv is the number of Bernoulli trials needed to determine

the state of v 2 Vt , given the configuration of sites in Vt�1;

4. St =
q

P

v2Vt
bv r

2
v .

We note that, as shown in Sec. 3.7, we have

⌦Nt
↵

= p hNti , (3.2.1)
D

S2t
E

= p
D

S2
t

E

, (3.2.2)

where h·i denotes the ensemble average. As explained in Section 3.2.4, Nt and St

can be used to construct reduced-variance estimators.

Using the above random variables, we then estimated the following quantities:

1. The percolation probability Pt = P(Nt > 0);

2. The mean number of sites becoming wet at time t, Nt = hNti;

3. The dimensionless ratio Qt =N2t/Nt ;

4. The radius of gyration R2
t =

D

S2t
E

/Nt ;

5. The distribution pN (t, s) defined by (3.1.1);

6. The distribution

pR(t, s) := P(Rt = s |Nt > 0) (3.2.3)

where

Rt :=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

St
pNt

, Nt > 0,

0, Nt = 0.

(3.2.4)
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We expect the second moment of pR(t, ·) to display the same critical scaling as the

radius of gyration. We discuss this point further in Sec. 3.5.

3.2.4 Improved Estimators

To estimate Nt, R2
t and Qt, we adopted the variance reduction technique intro-

duced in (Grassberger, 2003, 2009a; Foster et al., 2009), the details of which we now

describe. To clearly distinguish sample means generated by our simulated data

from the ensemble averages to which they converge, we will use X =
Pn

i=1X
(i)/n to

denote the sample mean of n independent realizations X(1), . . . ,X(n) of the random

variable X. While limn!1X = hXi, we emphasize that X is a random variable for

any finite n.

In addition to the naive estimatorN t , we can also estimate Nt via

bNt := pt
t

Y

t0=1

Nt0

N t0�1
. (3.2.5)

Indeed, taking the number of samples to infinity and using (3.2.1) we find

bNt = pt
t

Y

t0=1

Nt0

N t0�1
�!

t
Y

t0=1

Nt0

Nt0�1
=Nt. (3.2.6)

Any convex combination ofN t and the estimator (3.2.5) will therefore also be an

estimator for Nt . As our final estimator for Nt we therefore used

↵N t + (1�↵)bNt, (3.2.7)

with ↵ = ↵min chosen so as to minimize the variance of (3.2.7). Explicitly,

↵min =
(bNt)� cov(N t , bNt)

(N t) + (bNt)� 2cov(N t , bNt)
. (3.2.8)
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Note that ↵min can be readily estimated from the simulation data. Similarly, to

estimate Qt we use the minimum-variance convex combination of N 2t/N t and

dN2t/ bNt .

An analogous estimator for R2
t can also be constructed:

cR2
t =

t
X

t0=1

0

B

B

B

B

B

@

S
2
t0

Nt0
� S

2
t0�1
N t0�1

1

C

C

C

C

C

A

. (3.2.9)

Taking the number of samples to infinity and using (3.2.2) shows that indeedcR2
t !

R2
t . Analogously to the argument above, we then take the convex combination of

cR2
t and S2t /Nt with minimum variance to be our final estimator for R2

t .

We now comment on the motivation behind these definitions. For DP on a �-ary

tree we have the simple identity Nt = �Nt�1, which implies that bNt is deter-

ministic in this case, and therefore has precisely zero variance. For DP on a

(d + 1)-dimensional lattice, as d increases the updates become more and more

like the updates for DP on the �-ary tree, and so intuitively one expects that the

variance of bNt should decrease as d increases. This is indeed what we observe

numerically. For the simulations of bond DP on the BCC lattice for example,

we find that for d = 4 the variance of cNt is ⇡ 0.1 of the variance of N t. This

factor reduces to 10�4 for d = 7. For low dimensions, however, the above variance

reduction technique is less e↵ective. Similar arguments and observations apply to

the reduced-variance estimator for the radius of gyration. Interestingly, our data

suggest that the above technique is more e↵ective for bond DP than site DP.
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pc Qc yk q1 q2 c1 yu tmin/DF/�2

SCb
2 0.382 224 62(2) 1.173 42(4) 0.776 7(4) �3.127(7) 2.25(3) �0.011(1) �0.5 64/224/175

SCs
2 0.435 314 10(5) 1.173 42(2) 0.777 4(3) �2.403(5) 1.37(2) �0.025(6) �0.48(7) 64/223/168

BCCb
2 0.287 338 37(2) 1.173 36(2) 0.776 2(4) �4.177(9) 4.26(4) �6(3) �2.1(2) 64/224/235

BCCs
2 0.344 574 01(4) 1.173 41(2) 0.777 2(3) �2.879(6) 1.95(2) �0.31(2) �0.54(7) 64/223/82

SCb
3 0.268 356 28(1) 1.076 52(8) 0.905(4) �3.8(2) 5.6(3) 0.005(1) �0.3 64/223/166

SCs
3 0.303 395 39(2) 1.075 2(4) 0.906(4) �2.7(1) 2.9(2) 0.024(1) �0.26(2) 64/223/367

BCCb
3 0.132 374 169(3) 1.076 29(6) 0.904(2) �8.5(2) 28.6(9) �0.032(3) �0.62(3) 64/359/341

BCCs
3 0.160 961 28(1) 1.076 7(3) 0.904(4) �5.0(2) 10.0(6) 0.026(1) �0.34(2) 64/223/163

Table 3.1: Fit results for Qt with d = 2,3 on the SC and BCC lattices. Superscripts b
and s represent bond and site DP, respectively. The subscript represents the
dimensionality d.

pc q1 c1 h1 tmin
SCb

4 0.207 918 153(3) �5.2(9) �0.22(2) 0.50(2) 64
SCs

4 0.231 046 861(3) �3.83(1) �0.53(2) �1.2(1) 64
BCCb

4 0.063 763 395(1) �18.6(1) �0.08(1) 3.34(3) 64
BCCs

4 0.075 585 154(2) �11.4(4) �0.55(2) �1.12(2) 64

Table 3.2: Fit results for Qt with d = 4 on the SC and BCC lattices. Superscripts b
and s represent bond and site DP, respectively. The subscript represents the
dimensionality d.

pc q1 q2 c c1 yu tmin/DF/�2

SCb
5 0.170 615 153(1) �5.253(5) 13.5(2) �0.72(7) 0.026(1) �0.49(1) 48/258/208

SCs
5 0.186 513 581(2) �4.115(6) 8.6(1) �1.17(9) 0.054(1) �0.49(1) 48/258/172

BCCb
5 0.031 456 631 6(1) �30.78(4) 450(6) �1.6(7) 0.009(1) �0.48(1) 48/248/176

BCCs
5 0.035 972 542 1(5) �21.17(5) 164(7) �5.3(7) 0.049(1) �0.48(1) 48/242/119

SCb
6 0.145 089 946 5(4) �6.538(2) 21.4(2) - 0.028(1) �0.99(1) 48/235/147

SCs
6 0.156 547 177(3) �5.428(4) 13.1(4) - 0.051(3) �0.87(2) 64/193/55

BCCb
6 0.015 659 382 96(3) �63.394(8) 1945(30) - 0.003(1) �0.99(3) 48/193/110

BCCs
6 0.017 333 051 7(4) �49.33(4) 1343(27) - 0.043(1) �0.88(2) 48/198/79

SCb
7 0.126 387 509 0(6) �7.663(2) 28.9(4) - 0.015(2) �1.32(3) 32/225/196

SCs
7 0.135 004 173(2) �6.566(4) 20.8(5) - 0.092(6) �1.45(2) 32/225/212

BCCb
7 0.007 818 371 82(1) �127.63(1) 7557(157) - 0.0007(2) �1.31(8) 32/176/171

BCCs
7 0.008 432 989 5(3) �107.0(2) 3882(1000) - 0.036(5) �1.29(4) 32/181/84

Table 3.3: Fit results for Qt with d = 5,6,7 on the SC and BCC lattices. Superscripts b
and s represent bond and site DP, respectively. The subscript represents the
dimensionality d.
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Figure 3.3: (Color online) Plot of P(Nt/ |Vt | = ·) at t = 16384 for d = 3 bond DP on
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3.3 Percolation Thresholds

3.3.1 Fitting Methodology

To estimate the critical threshold pc we applied an iterative approach. We ran

preliminary simulations at several values of p and relatively small values of tmax,

and used these data to estimate pc by studying the finite-size scaling ofQt . Further
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simulations were then performed at and near the value of pc estimated in the

initial runs, using somewhat larger values of tmax. For both site and bond DP, and

for each choice of lattice and dimension, this procedure was iterated a number

of times before we performed our final high-precision runs at the single value

of p which corresponded to the best estimate of pc obtained in the preliminary

simulations. For these final simulations we used the values of tmax reported in

Section 3.2.1.

For computational e�ciency, we then used re-weighting to obtain expectations

corresponding to multiple values of p, from each of our final high-precision runs.

Our approach to re-weighting is similar to that described for the contact process

in (Dickman, 1999), and relies on the simple observation that for any observable

At we have the identity hAtip0 =
D

Wp,p0At

E

p
, where the random variableWp,p0 is

defined on the space of site configurations C by

Wp,p0 (C) =
Pp0 (C)
Pp(C)

=
tmax
Y

t=1

 

p0
p

!Nt(C)  1� p0
1� p

!Nt(C)�Nt(C)

.

As with any application of re-weighting, in practice one must of course be care-

ful that the distributions Pp(·) and Pp0 (·) have su�cient overlap, so that a finite

simulation with parameter p will generate su�ciently many samples in the neigh-

bourhood of the peak of Pp0 (·). As t increases, the range of acceptable p0 values is
expected to decrease. To verify that we had su�cient overlap, for both bond and

site DP and for each choice of lattice and dimension, we performed additional

low-statistics simulations (107 independent samples, rather than 109) for the p0

values furthest from p, and compared the histograms generated at t = tmax for sim-

ulations at p0 with those generated at p. In all cases the overlap was excellent. Fig-

ure 3.3 gives a typical example, showing the estimated distribution P(Nt/ |Vt | = ·)
at t = 16384 for d = 3 bond DP on the BCC lattice, with p = 0.13237417 and

p0 = 0.13237453.
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These final high-precision data sets were then used to perform our final fits for pc,

which we report in Tables 3.1, 3.2 and 3.3. Specifically, we performed least-squares

fits of the Qt data to an appropriate finite-size scaling ansatz. As a precaution

against correction-to-scaling terms that we failed to include in the chosen ansatz,

we imposed a lower cuto↵ t > tmin on the data points admitted in the fit, and we

systematically studied the e↵ect on the �2 value of increasing tmin. In general, our

preferred fit for any given ansatz corresponds to the smallest tmin for which the

goodness of fit is reasonable and for which subsequent increases in tmin do not

cause the �2 value to drop by vastly more than one unit per degree of freedom.

In practice, by “reasonable” we mean that �2/DF/ 1, where DF is the number of

degrees of freedom.

In Table 3.1, 3.2 and 3.3, we list the results for our preferred fits for Qt, with d

from 2 to 7. The superscripts “b" and “s" are used in these tables to distinguish the

bond and site DP, and the subscript denotes the dimensionality d. The error bars

reported in Tables 3.1, 3.2 and 3.3 correspond to statistical error only. To estimate

the systematic error in our estimates of pc we studied the robustness of the fits to

variations in the terms retained in the fitting ansatz and in tmin. This produced

the final estimates of the critical thresholds shown in Table 3.4.

3.3.2 Results for d = 2,3

Near the critical point pc, we expect that

Qt(p) = Q̃(vtyk ,utyu ) , (3.3.1)

where v and u represent the amplitudes of the relevant and the leading irrelevant

scaling fields, respectively, and yk = 1/⌫k and yu < 0 are the associated renormal-

ization exponents. Linearizing v ⇡ a1(pc � p) around p = pc we can expand Qt
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as

Qt =Qc +
X

k�1
qk(pc � p)ktkyk + c(pc � p)tyk+yu

+ c1t
yu + · · · (3.3.2)

where Qc = 2✓ and qk = ak1
@kQ̃
@vk
|v=0. It follows that qk/(q1)k is a universal quantity.

In practice, we neglected terms higher than cubic in the finite-size scaling variable

(pc � p)tyk .

We fitted our data for Qt to the ansatz (3.3.2) as described above, and the results

are reported in Table 3.1. From the fits for site DP, we observe that on both the

SC and BCC lattices, the leading correction exponent yu ⇡ �0.5 for d = 2, and

yu ⇡ �0.3 for d = 3. However, for bond DP on the BCC lattice, the fits yield yu ⇡ �2
for d = 2, and yu ⇡ �0.6 for d = 3. This suggests that, within the resolution of our

simulations, the amplitude c1 is consistent with zero in this case. For the fits for

bond DP on the SC lattice, we could not obtain numerically stable fits with yu left

free, and so we instead report the results using correction terms c1t�0.5 + c2t�2 for

d = 2 and c1t�0.3 + c2t�2 for d = 3.

For d = 2, we estimate Qc = 1.17340(6), ⌫k = 1/yk = 1.287(2), and q2/q12 = 0.24(1).

For d = 3, we estimate Qc = 1.076(1), ⌫k = 1/yk = 1.104(6), and q2/q12 = 0.40(1).

In Fig. 3.4 we plot the Qt data versus q1(pc � p)tyk , for bond and site DP on the

two-dimensional SC and BCC lattices. We use the estimated value yk ⇡ 0.777,

and q1 and pc are taken respectively from Table 3.1 and Table 3.4. An excellent

collapse is observed in Fig. 3.4. The data for t < 1024 have been excluded to

suppress the e↵ects of finite-size corrections. The data collapse to a line with slope

1 clearly demonstrates universality.
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Lattice Site Bond
pc(Present) pc(Previous) pc(Present) pc(Previous)

d = 2, SC 0.435 314 11(10) 0.435 31(7) (Grassberger and Zhang, 1996) 0.382 224 62(6) 0.382 223(7) (Grassberger and Zhang, 1996)
d = 2, BCC 0.344 574 0(2) 0.344 573 6(3) (Grassberger, 2009b) 0.287 338 38(4) 0.287 338 3(1) (Perlsman and Havlin, 2002)

0.344 575(15) (Lubeck and Willmann, 2004) 0.287 338(3) (Grassberger and Zhang, 1996)
d = 3, SC 0.303 395 38(5) 0.302 5(10) (Adler et al., 1988) 0.268 356 28(5) 0.268 2(2) (Blease, 1977)
d = 3, BCC 0.160 961 28(3) 0.160 950(30) (Lubeck and Willmann, 2004) 0.132 374 17(2) -
d = 4, SC 0.231 046 86(3) - 0.207 918 16(2) 0.208 5(2) (Blease, 1977)
d = 4, BCC 0.075 585 15(1) 0.075 585 0(3) (Grassberger, 2009a) 0.063 763 395(5) -

0.075 582(17) (Lubeck and Willmann, 2004)
d = 5, SC 0.186 513 58(2) - 0.170 615 155(5) 0.171 4(1) (Blease, 1977)
d = 5, BCC 0.035 972 540(3) 0.035 967(23) (Lubeck and Willmann, 2004) 0.031 456 631 8(5) -
d = 6, SC 0.156 547 18(1) - 0.145 089 946(3) 0.145 8 (Blease, 1977)
d = 6, BCC 0.017 333 051(2) - 0.015 659 382 96(10) -
d = 7, SC 0.135 004 176(10) - 0.126 387 509(3) 0.127 0(1) (Blease, 1977)
d = 7, BCC 0.008 432 989(2) - 0.007 818 371 82(6) -

Table 3.4: Final estimates of critical thresholds for bond and site DP on the SC and
BCC lattices, with 2  d  7. A dash “-” implies that we are unaware of
any previous estimates in the literature.

3.3.3 Results for d = 4

At the upper critical dimension, the existence of dangerous irrelevant scaling

fields typically leads to both multiplicative and additive logarithmic corrections

to the mean-field behavior. Field-theoretic arguments (Janssen and Täuber, 2005;

Janssen and Stenull, 2004) predict that in the neighborhood of criticality

Nt ⇠
 

ln
t
t0

!↵

�

 

(pc � p)tyk
 

ln
t
t2

!�↵
, u tyu

!

, (3.3.3)

with ↵ = 1/6, yk = 1 and � a universal scaling function. From (3.3.3) we then

obtain

Qt =
 

1+
ln2

ln t + h1

!1/6

+ c(pc � p) t1+yu

(ln t + h2)1/6

+
X

k�1
qk(pc � p)k tk

(ln t + h2)k/6
+ c1t

yu + . . . (3.3.4)

We fitted the d = 4 data forQt to the ansatz (3.3.4), and the results of our preferred

fits are reported in Table 3.2. In the reported fits, we fixed c = 0 and h2 = 0

since performing fits with them left free produced estimates for both which were

consistent with zero. We could not obtain stable fits with yu left free, and so the

reported fits use yu = �1; the resulting estimate of pc was robust against variations
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in the fixed value of yu . All qi with i � 3 were set identically to zero. In addition,

to suppress the e↵ects of various higher-order corrections associated with the

deviation |pc � p|, we only fitted the Qt data corresponding to p values which were

su�ciently close to pc that q2 was consistent with zero. Thus, in Table 3.2, we do

not report estimates for q2.

3.3.4 Result for d = 5, 6, 7

For d > dc, we fitted the data for Qt to the ansatz (3.3.2) with Qc and yk fixed at

their mean-field values (Hinrichsen, 2000), Qc = 1 = yk. The results are reported in

Table 3.3. Repeating the fits with Qc and yk left free produced estimates in perfect

agreement with the predicted values. For d = 6 and 7, leaving the amplitude c free

produced estimates consistent with zero, and we therefore omitted this term in

the reported fits.

From Table 3.3, we observe that the universal amplitude q2/q21 ⇡ 0.5 holds for all

models in d = 5, 6 and 7 dimensions. We also observe that the leading correction

exponents yu are ⇡ �1/2, �1, �3/2 for d = 5, 6, and 7, respectively, in agreement

with the field-theoretic prediction (Janssen and Täuber, 2005) of yu = 2� d/2.

3.3.5 Summary of thresholds

We summarize our final estimates of the critical thresholds for 2  d  7 in

Table 3.4. The error bars in these final estimates of pc are obtained by estimating

the systematic error from a comparison of the results from a number of di↵erent

fits, varying both the terms retained in the fitting ansatz and the value of tmin used.

For comparison, we also present several previous estimates from the literature.

To illustrate the accuracy of our threshold estimates, we plot in Fig. 3.5 the data

for Qt versus t for a number of DP models. At the critical point, the data for Qt
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should tend to a horizontal line as t increases, while the data with p , pc will bend

upwards or downwards. In each case in Fig. 3.5, the central curve corresponds to

our estimated pc, and the other two curves correspond to the p values which are

the estimated pc plus or minus three error bars.

We conclude this section with some observations regarding the pc values reported

in Table 3.4. Based on empirical observations, (Kurrer and Schulten, 1993) conjec-

tured the ansatz

1/pc ⇡ a1 + a2� , for �� 1 , (3.3.5)

relating pc to the coordination number �, when � is large. In Fig. 3.6, we plot

1/pc versus �. We observe that on the SC lattice, the slopes for bond and site DP

are approximately equal, while on the BCC lattice the bond and site cases clearly

di↵er. In Table 3.5 we report the values of a1 and a2 obtained by fitting (3.3.5)

to the d � 4 data for pc from Table 3.4. From Table 3.5 we conjecture that a2 is

identical for bond and site DP on the SC lattice.

SCb SCs BCCb BCCs

a1 �0.35(4) �0.71(2) �0.23(4) �2.6(4)
a2 1.034(5) 1.026(2) 1.0011(4) 0.946(5)

Table 3.5: Estimates of a1 and a2 in (3.3.5), calculated from the d � 4 data.

O(t) yO c0 c1 c2 tmin
Nt 0.230 70(7) 0.976 0(5) 0.004(4) 4(2) 64
Pt �0.4511(2) 0.830 6(8) 0.83(9) �30(5) 96
R2
t 1.13219(4) 1.633 7(5) 1.09(4) �4(2) 64

Nt 0.105 58(10) 0.958 2(7) 0.33(5) �4(2) 64
Pt �0.7403(3) 1.069(3) 0.6(3) �60(12) 64
R2
t 1.05301(7) 2.715(2) 2.2(2) �60(15) 128

Table 3.6: Fits results of Nt, Pt, and R2
t on the BCC lattice for d = 2 (top) and 3

(bottom). The leading correction exponent yu was fixed to �1.
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Figure 3.5: (Color online) Plots of Qt � c1tyu (for d , 4) and (Qt � c1t�1)/(log t +
h1)1/6 (for d = 4) versus t for several DP models. The subfigures (a) to (f)
respectively correspond to d = 2 SC site DP, d = 3 BCC bond DP, d = 4 SC
bond DP, d = 5 BCC site DP, d = 6 SC site DP and d = 7 BCC bond DP.
The values of c1, yu and h1 are our best estimates, taken from Tables 3.1, 3.2
and 3.3. The three curves show the Monte Carlo data corresponding to the
central value of our estimated pc, and the central value of pc plus or minus
three error bars (from Table 3.4). The curve corresponding to pc is plotted
with its statistical error, corresponding to one standard error.
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3.4 Critical Exponents

At p = pc, one expects

Pt ⇠ t�� , Nt ⇠ t✓ , R2
t ⇠ t2/z . (3.4.1)

The critical exponents �, ✓, z are related to the standard exponents �, ⌫k, ⌫? by

(Hinrichsen, 2000)

� = �/⌫k , ✓ = (d⌫? � 2�)/⌫k , and z = ⌫k/⌫? . (3.4.2)

Fixing p to our best estimate of pc from Table 3.4, we estimated the critical

exponents ✓, �, and z for d = 2 and 3, by studying the critical scaling of Nt , Pt and

R2
t . Specifically, we fitted the data for Nt , Pt , and R2

t to the ansatz

O(t) = tyO (c0 + c1t
yu + c2t

�2) , (3.4.3)

where yO corresponds to ✓, �� and 2/z, respectively. We focused on the case of

bond DP on the BCC lattice, since we find empirically that it su↵ers from the
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weakest corrections to scaling. In Table 3.6, we report the results of the fits with yu

fixed at �1. To estimate the systematic error in our exponent estimates we studied

the robustness of the fits to variations in the fixed value of yu , and in tmin. This

produced the final exponent estimates reported in Table 3.7.

For comparison, we also report in Table 3.7 several previous exponent estimates

from the literature. We note that our estimates of z and ✓ in (3+1) dimensions

are inconsistent with the field-theoretic predictions reported in (Janssen, 1981;

Bronzan and Dash, 1974).

d Ref. � ⌫k ⌫? z ✓ �

2

Present 0.580(4) 1.287(2) 0.729(1) 1.7665(2) 0.2307(2) 0.4510(4)
(Grassberger and Zhang, 1996) 1.295(6) 1.765(3) 0.229(3) 0.451(3)
(Voigt and Zi↵, 1997) 1.766(2) 0.229 5(10) 0.450 5(10)
(Perlsman and Havlin, 2002) 1.766 6(10) 0.230 3(4) 0.450 9(5)

3
Present 0.818(4) 1.106(3) 0.582(2) 1.8990(4) 0.105 7(3) 0.739 8(10)
(Jensen, 1992) 0.813(11) 1.11(1) 1.901(5) 0.114(4) 0.732(4)
(Janssen, 1981) 0.822 05 1.105 71 0.583 60 1.887 46 0.120 84 0.737 17

Table 3.7: Final estimates of the critical exponents for d = 2 and 3.
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Figure 3.7: (Color online) Log-log plots of tyN pN (t, s) versus s/tyN , and tyRpR(t, s)
versus s/tyR . The subfigures (a) to (f) respectively correspond to pN (t, s)
for d = 1, pR(t, s) for d = 1, pN (t, s) for d = 4, pR(t, s) for d = 4, pN (t, s)
for d = 5 and pR(t, s) for d = 5. The data correspond to bond DP on the
square lattice (d = 1) and BCC lattice (d = 4,5). The exponents yN = ✓+�
and yR = 1/z are calculated from Table 3.9 for d = 1, and are given by the
exact mean-field values for d = 4 and 5. The dashed lines have slopes equal
to 1/yN � 1 and 1/yR � 1+ d for pN (t, s) and pR(t, s), respectively.
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3.5 Critical Distributions

In this section we consider the critical scaling of pN (t, s) and pR(t, s). From finite-

size scaling theory, we expect that pN (t, s) and pR(t, s) should scale at criticality

as

pN (t, s) ⇠ t�yN FN (s/tyN ),

pR(t, s) ⇠ t�yRFR(s/tyR).
(3.5.1)

The scaling functions FN and FR are expected to be universal. It follows immedi-

ately from (3.5.1) that for all k 2 N we have

hN k
t i ⇠ tk yN ��,

hRk
t i ⇠ tk yR��.

(3.5.2)

Since hNti ⇠ t✓ , we can then identify

yN = ✓ + �. (3.5.3)

Similarly, making the assumption that

hR2
t i ⇠ R2

t Pt ⇠ t2/z��

at criticality implies

yR = 1/z. (3.5.4)

To test these predictions, Fig. 3.7 shows log-log plots of tyN pN (t, s) versus s/tyN

and tyR pR(t, s) versus s/tyR . The figures show bond DP data for the square lattice

for d = 1 and the BCC lattice for d = 4,5. For d = 1, we set the exponents yN

and yR to yN = 0.47314 and yR = 0.63263, using the results from Table 3.9 in
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Sec. 3.6. For d = 4 and 5, the mean-field predictions yN = 1 and yR = 1/2 were

used. In principle, logarithmic corrections should be taken into account for d = 4,

however we did not pursue this here. The conjectures (3.5.1), (3.5.3) and (3.5.4)

are strongly supported by the excellent data collapse observed in Fig. 3.7.

From Fig. 3.7, we observe that for s/tyN , s/tyR ⌧ 1, the curves appear to asymptote

to a straight line. We find empirically that these slopes are well described by the

expressions 1/yN � 1 and 1/yR � 1 + d, for pN (t, s) and pR(t, s) respectively. We

therefore conjecture that these expressions hold exactly, and we illustrate them

with the dashed lines in Fig. 3.7. As a result, the scaling forms (3.5.1) can be recast

as

pN (t, s) ⇠ t�1 s1/yN �1 fN (s/tyN ),

pR(t, s) ⇠ t�1�d yR s1/yR�1+d fR(s/tyR),
(3.5.5)

with fN and fR universal.

3.6 Estimates of thresholds and critical exponents

in (1+1) dimensions.

In this section we report estimates of the critical thresholds and critical exponents

for a number of (1 +1)-dimensional lattices. Specifically, we simulated bond and

site DP on square (Fig. 3.1), triangular, honeycomb, and kagome lattices (Fig. 3.8).

On the triangular lattice, a site at time t has three neighboring sites at times t0 < t:

two at t � 1 and one at t � 2. On the honeycomb lattice, a site at an odd time t has

two neighboring sites at time t�1, while sites at even times have only one neighbor

at time t �1. On the kagome lattice, a site at an odd time t has one neighbour at

time t �1 and one at time t �2, while sites at even times have two neighbours at

time t � 1.
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Figure 3.8: Plots of triangular, honeycomb, and kagome lattices.

The general methodology applied for these simulations is as described in Sec-

tion 3.2. However we did not apply the reduced-variance estimators in this case,

since their variance only becomes suppressed in high dimensions. The thresholds

estimated from Qt for d = 1 are shown in Table 3.8. The estimates of the critical

exponents are shown in Table 3.9. These estimate are consistent with, but less

precise than, results obtained previously using series analysis.

Lattice Site Bond
pc(Present) pc(Previous) pc(Present) pc(Previous)

square 0.705 485 2(3) 0.705 485 22(4) (Jensen, 1999) 0.644 700 1(2) 0.644 700 185(5) (Jensen, 1999)
0.705 489(4) (Lubeck and Willmann, 2002) 0.644 700 15(5) (Jensen, 1996)

triangular 0.595 647 0(3) 0.595 646 75(10) (Jensen, 2004) 0.478 025 0(4) 0.478 025 25(5) (Jensen, 2004)
0.595 646 8(5) (Jensen, 1996) 0.478 025(1) (Jensen, 1996)

honeycomb 0.839 931 6(2) 0.839 933(5) (Jensen and Guttmann, 1995) 0.822 856 9(2) 0.822 856 80(6) (Jensen, 2004)
kagome 0.736 931 7(2) 0.736 931 82(4) (Jensen, 2004) 0.658 968 9(2) 0.658 969 10(8) (Jensen, 2004)

Table 3.8: Estimates of thresholds in (1+1) dimensions on the square, triangular,
honeycomb and kagome lattices.

� ⌫k ⌫? z ✓ �
Present 0.276 7(3) 1.735 5(15) 1.097 9(10) 1.580 7(2) 0.313 70(5) 0.159 44(2)
(Jensen, 1999) 0.276 486(8) 1.733 847(6) 1.096 854(4) 1.580 745(10) 0.313 686(8) 0.159 464(6)

Table 3.9: Estimates of the critical exponents for d = 1.

3.7 Discussion of the improved estimators

In this section we prove the identities (3.2.1) and (3.2.2). Both are direct conse-

quences of the following lemma.
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Lemma 3.7.1. For both bond and site DP we have the following. If bv is the number of

Bernoulli trials required to determine the state of v 2 Vt given the site configuration at

time t � 1, then
P(sv = 1) = p hbvi.

It follows immediately from Lemma 3.7.1 that for any set of constants av with

v 2 Vt we have
*

X

v2Vt

av �sv ,1

+

= p

*

X

v2Vt

av bv

+

, (3.7.1)

where �·,· denotes the Kronecker delta. Choosing av = 1 in (3.7.1) gives (3.2.1),

while choosing av = r2v gives (3.2.2).

It now remains only to prove Lemma 3.7.1.

Proof of Lemma 3.7.1. For v 2 Vt , let nv denote the number of wet neighbours of v

in Vt�1.

For site DP,

bv =

8

>

>

>

>

>

<

>

>

>

>

>

:

1, if nv > 0,

0, if nv = 0,

and so hbvi = P(nv > 0). Since P(sv = 1) = pP(nv > 0), the stated result then follows.

For bond DP, the situation is more involved. Since P(sv = 1) =
⌦

1� (1� p)nv↵, our
task is to establish

p hbvi = ⌦

1� (1� p)nv↵ . (3.7.2)
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If we consider a fixed value of nv then consideration of the stochastic process

defined in Section 3.2.1 shows that

E(bv |nv) =
nv�1
X

k=1

k(1� p)k�1p +nv(1� p)nv�1

=
1
p
(1� (1� p)nv ) . (3.7.3)

From (3.7.3) Taking the expectation of (3.7.3) yields (3.7.2), which concludes the

proof.

3.8 Discussion

We present a high-precision Monte Carlo study of bond and site DP on (d + 1)-

dimensional simple-cubic and body-centered-cubic lattices, with 2  d  7. A

dimensionless ratio Qt = N2t/Nt constructed from the number of wet sites Nt is

defined and used to estimate the critical thresholds. We report improved estimates

of thresholds for 2  d  7, and in high dimensions (d > 4) we provide estimates

of pc in several cases for which no previous estimates appear to be known. In

addition, we report improved estimates of the critical exponents for d = 2 and 3.

The accuracy of these estimates was due in part to the use of reduced-variance

estimators introduced in (Grassberger, 2003, 2009a; Foster et al., 2009). At the

estimated thresholds, we also conjecture, and numerically confirm, the finite-size

scaling of the critical probability distributions pN (t, s) and pR(t, s).

The high-precision Monte Carlo data reported in this work also suggests that

further investigation of a number of questions is desirable. Firstly, is there an un-

derlying physical reason (e.g. hidden symmetry) that in two and three dimensions

bond DP on the BCC lattice su↵ers less finite-size corrections than site DP on the
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BCC lattice and both site and bond DP on the SC lattice? Second, can we obtain

deeper understanding of origin of the scaling behavior described by (3.5.5)?
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Abstract. We investigate the geometric properties of percolation clusters, by studying

square-lattice bond percolation on the torus. We show that the density of bridges and

nonbridges both tend to 1/4 for large system sizes. Using Monte Carlo simulations,

we study the probability that a given edge is not a bridge but has both its loop arcs

in the same loop, and find that it is governed by the two-arm exponent. We then

classify bridges into two types: branches and junctions. A bridge is a branch i↵ at least

one of the two clusters produced by its deletion is a tree. Starting from a percolation

configuration and deleting the branches results in a leaf-free configuration, while

deleting all bridges produces a bridge-free configuration. Although branches account for

⇡ 43% of all occupied bonds, we find that the fractal dimensions of the cluster size and

hull length of leaf-free configurations are consistent with those for standard percolation

configurations. By contrast, we find that the fractal dimensions of the cluster size

and hull length of bridge-free configurations are respectively given by the backbone

and external perimeter dimensions. We estimate the backbone fractal dimension to be

1.64336(10).
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Geometric structure of percolation

clusters

4.1 Introduction

One of the main goals of percolation theory (Stau↵er and Aharony, 2003; Grim-

mett, 1999; Bollobás and Riordan, 2006) in recent decades has been to understand

the geometric structure of percolation clusters. Considerable insight has been

gained by decomposing the incipient infinite cluster into a backbone plus dan-

gling bonds, and then further decomposing the backbone into blobs and red bonds

(Stanley, 1977).

To define the backbone, one typically fixes two distant sites in the incipient infinite

cluster, and defines the backbone to be all those occupied bonds in the cluster

which belong to trails 1 between the specified sites (Herrmann and Stanley, 1984).

The remaining bonds in the cluster are considered dangling.

1A trail in a graph is sequence of adjacent edges, with no repetitions.
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Similar definitions apply when considering spanning clusters between two oppos-

ing sides of a finite box (Grassberger, 1992); this is the so-called busbar geometry.

The bridges 2 in the backbone constitute the red bonds, while the remaining bonds

define the blobs. At criticality, the average size of the spanning cluster scales as

LdF, with L the linear system size and dF the fractal dimension. Similarly, the size

of the backbone scales as LdB, and the number of red bonds as LdR.

While exact values for dF and dR are known (Nienhuis, 1984; Coniglio, 1989)

(see (4.1.1)), this is not the case for dB. In (Aizenman et al., 1999) however, it

was shown that 2� dB coincides with the so-called monochromatic path-crossing

exponent x̂Pl with l = 2. An exact characterization of x̂P2 in terms of a second-

order partial di↵erential equation with specific boundary conditions was given

in (Lawler et al., 2002), for which, unfortunately, no explicit solution is currently

known. The exponent x̂P2 was estimated in (Jacobsen and Zinn-Justin, 2002) using

transfer matrices, and in (Deng et al., 2004) by studying a suitable correlation

function via Monte Carlo simulations on the torus.

In this paper, we consider a natural partition of the edges of a percolation config-

uration, and study the fractal dimensions of the resulting clusters. Specifically,

we classify all occupied bonds in a given configuration into three types: branches,

junctions and nonbridges. A bridge is a branch if and only if at least one of the two

clusters produced by its deletion is a tree. Junctions are those bridges which are

not branches. Deleting branches from percolation configurations produces leaf-

free configurations, and further deleting junctions from leaf-free configurations

generates bridge-free configurations. These definitions are illustrated in Fig. 4.1.

It is often useful to map a bond configuration to its corresponding Baxter-Kelland-

Wu (BKW) (Baxter et al., 1976) loop configuration, as illustrated in Fig. 4.1. The

loop configurations are drawn on the medial graph (Ellis-Monaghan and Mo↵att,

2An edge in a graph is a bridge if its deletion increases the number of connected components.
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2

1

Figure 4.1: (Color Online). Decomposition of a percolation configuration into leaf-
free and bridge-free configurations. Periodic boundary conditions are
applied. Nonbridges are denoted by dark blue lines, branches by light blue
lines, and junctions by dashed lines. The union of the nonbridges and
junctions defines the leaf-free configuration. Also shown is the BKW loop
configuration on the medial lattice, corresponding to the entire percolation
configuration.

2013), the vertices of which correspond to the edges of the original graph. The

medial graph of the square lattice is again a square lattice, rotated 45�. Each

unoccupied edge of the original lattice is crossed by precisely two loop arcs, while

occupied edges are crossed by none. The continuum limits of such loops are of

central interest in studies of SLE (Kager and Nienhuis, 2004; Cardy, 2005). At

the critical point, the mean length of the largest loop scales as LdH, with dH the

hull fractal dimension. A related concept is the accessible external perimeter

(Grossman and Aharony, 1987). This can be defined as the set of sites that have

non-zero probability of being visited by a random walker which is initially far

from a percolating cluster. The size of the accessible external perimeter scales as

LdE with dE  dH.

In two dimensions, Coulomb-gas arguments (Nienhuis, 1984; Saleur and Du-

plantier, 1987; Coniglio, 1989; Duplantier, 1999) predict the following exact
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expressions for dF, dR, dH and dE

dF = 2� (6� g)(g � 2)/8g = 91/48 ,

dR = (4� g)(4 + 3g)/8g = 3/4 ,

dH = 1+2/g = 7/4 ,

dE = 1+ g/8 = 4/3 , (4.1.1)

where for percolation the Coulomb-gas coupling g = 8/3 3. We note that the

magnetic exponent yh = dF, the two-arm exponent (Saleur and Duplantier, 1987)

satisfies x2 = 2�dR, and that for percolation the thermal exponent yt = dR (Coniglio,

1982; Vasseur et al., 2012). The two-arm exponent gives the asymptotic decay

L�x2 of the probability that at least two spanning clusters join inner and outer

annuli (of radii O(1) and L respectively) in the plane. We also note that dE and dH

are related by the duality transformation g 7! 16/g (Duplantier, 2000). The most

precise numerical estimate for dB currently known is dB = 1.6434(2) (Deng et al.,

2004).

We study critical bond percolation on the torus Z2
L, and show that as a consequence

of self-duality the density of bridges and nonbridges both tend to 1/4 as L!1.

Using Monte Carlo simulations, we observe that despite the fact that around 43%

of all occupied edges are branches, the fractal dimension of the leaf-free clusters is

simply dF, while their hulls are governed by dH. By contrast, the fractal dimension

of the bridge-free configurations is dB, and that of their hulls is dE. Fig. 4.2 shows a

typical realization of the largest cluster in critical square-lattice bond percolation,

showing the three di↵erent types of bond present.

In more detail, our main findings are summarized as follows.

3In terms of the SLE parameter we have  = 16/g = 6.
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Figure 4.2: (Color Online). The largest cluster in a random realization of critical
square-lattice bond percolation on an L⇥L torus with L = 100. Nonbridges,
junctions and branches are respectively drawn by bold, thin, and gray lines.

1. The leading finite-size correction to the density of nonbridges scales with

exponent �5/4, consistent with �x2. It follows that the probability that

a given edge is not a bridge but has both its loop arcs in the same loop

decays like L�x2 as L!1. The leading finite-size correction to the density

of junctions also scales with exponent �5/4, while the density of branches is

almost independent of system size.

2. The fractal dimension of leaf-free clusters is 1.89584(4), consistent with

dF = 91/48 for percolation clusters.

3. The hull fractal dimension for leaf-free configurations is 1.74996(8), consis-

tent with dH = 7/4.

4. The fractal dimension for bridge-free clusters is consistent with dB, and we

provide the improved estimate dB = 1.64336(10).

5. The hull fractal dimension for bridge-free configurations is 1.3333(3), con-

sistent with dE = 4/3.
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The remainder of this paper is organized as follows. Section 4.2 introduces the

model, algorithm and sampled quantities. Numerical results are summarized and

analyzed in Section 5.3. A brief discussion is given in Section 5.4.

4.2 Model, Algorithm and Observables

4.2.1 Model

We study critical bond percolation on the L⇥L square lattice with periodic bound-

ary conditions, with linear system sizes L = 8, 16, 24, 32, 48, 64, 96, 128, 256,

512, 1024, 2048, and 4096. To generate a bond configuration, we independently

visit each edge on the lattice and randomly place a bond with probability p = 1/2.

For each system size, we produced at least 7⇥ 106 independent samples; for each

L  512 we produced more than 108 independent samples.

A leaf in a percolation configuration is a site which is adjacent to precisely one

occupied bond. Given a percolation configuration we generate the corresponding

leaf-free configuration via the following iterative procedure, often referred to as

burning. For each leaf, we delete its adjacent bond. If this procedure generates new

leaves, we repeat it until no leaves remain. The bonds which are deleted during

this iterative process are precisely the branches defined in Section 6.1.

The bridges in the leaf-free configurations are the junctions. Deleting the junctions

from the leaf-free configurations then produces bridge-free configurations. The

algorithm we used to e�ciently identify junctions in leaf-free configurations is

described in Sec. 4.2.2.
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4.2.2 Algorithm

Given an arbitrary graph G = (V ,E), the bridges can be identified in O(|E|) time

(Tarjan, 1974; Schmidt, 2013). Rather than applying such graph algorithms to

identify the junctions in our leaf-free configurations however, we took advantage

of the associated loop configurations. These loop configurations were also used to

measure the observable Hlf, defined in Section 5.2.2.

Consider an edge e which is occupied in the leaf-free configuration, and denote

the leaf-free cluster to which it belongs by Ce. In the planar case, it is clear that e

will be a bridge i↵ the two loop segments associated with it belong to the same

loop. More generally, the same observation holds on the torus provided Ce does
not simultaneously wind in both the x and y directions.

If Ce does simultaneously wind in both the x and y directions, loop arguments

may still be used, however the situation is more involved. It clearly remains true

that if the two loop segments associated with e belong to di↵erent loops, then e is

a nonbridge.

Suppose instead that the two loop segments associated with e belong to the same

loop, which we denote by L. Deleting e breaks L into two smaller loops, L1 and

L2. For each such loop, we let wx and wy denote the winding numbers in the x

and y directions, respectively, and we define w = |wx|+ |wy |. As we explain below,

the following two statements hold:

(i) If w(L1) = 0 or w(L2) = 0, then e is a bridge.

(ii) If w(L) = 0 and w(L1) = 1, then e is a nonbridge.

As an illustration, in Fig. 4.1 Edge 1 is a junction while Edge 2 is a nonbridge,

despite both of them being bounded by the same loop. Edge 1 can be correctly
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classified using statement (i), while Edge 2 can be correctly classified using state-

ment (ii).

By making use of these observations, all but very few edges in the leaf-free clusters

can be classified as bridges/nonbridges. We note that in our implementation of

the above algorithm, the required w values can be immediately determined from

the stored loop configuration without further computational e↵ort. For the small

number of edges to which neither of the above two statements apply, we simply

delete the edge and perform a connectivity check using simultaneous breadth-first

search. This takes O(LdF�x2) time per edge tested (Deng et al., 2010).

We now justify statement (i). In this case, the loop L1 is contained in a simply-

connected region on the surface of the torus. The cluster contained within the

loop L1 is therefore disconnected from the remainder of the lattice, implying that

e is a bridge. Edge 1 in Fig. 4.1 provides an illustration.

Finally, we justify statement (ii). In this case, L1 and L2 either both wind in the x

direction, or both in the y direction (one winds in the positive sense, the other in

the negative sense). Suppose they wind in the y direction. It then follows from

the definition of the BKW loops that there can be no x-windings in the cluster

Ce \ e. By assumption however, Ce does contain an x-winding, so it must be the

case that e belongs to a winding cycle in Ce that winds in the x direction. The edge

e is therefore not a bridge. Edge 2 in Fig. 4.1 provides an illustration.

4.2.3 Measured quantities

From our simulations, we estimated the following quantities.

1. The mean density of branches ⇢b, junctions ⇢j, and nonbridges ⇢n.

2. The mean size of the largest cluster C1
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3. The mean size of the largest leaf-free cluster Clf

4. The mean size of the largest bridge-free cluster Cbf

5. The mean length of the largest loop,Hlf, for the loop configuration associated

with leaf-free configurations

6. Themean length of the largest loop,Hbf, for the loop configuration associated

with bridge-free configurations

We note that fewer samples were generated for C1 and Hbf than for other the

quantities.

4.3 Results

In Sections 4.3.2, 4.3.3, 4.3.4, we discuss least-squares fits for ⇢b, ⇢j, ⇢n and Clf,

Cbf, Hlf, Hbf. The results are presented in Tables 4.1, 4.2 and 4.3. In Section 4.3.1,

we first make some comments on the ansätze and methodology used.

4.3.1 Fitting ansätze and methodology

Let ⇢1 (⇢2) denote the mean density of occupied edges whose two associated loop

segments belong to the same (distinct) loop(s). From Lemma 4.4.1 in Sec. 4.4, we

know that for p = 1/2 bond percolation on Z2
L we have ⇢1 = ⇢2 = 1/4 for all L. In

the plane however, an edge is a bridge i↵ the two associated loop segments belong

to the same loop. We therefore expect that both ⇢n and ⇢j + ⇢b should converge to

1/4 as L!1.

Furthermore, there is a natural interpretation of the quantity ⇢n � ⇢2. As noted in

Section 4.2.2, if the two loop segments associated with an edge belong to di↵erent

loops, then that edge cannot be a bridge. This implies that ⇢n � ⇢2 is equal to the
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probability of the event that “a given edge is not a bridge but has both its loop arcs

in the same loop”. Let us denote this event by B. Studying the finite-size behaviour

of ⇢n will therefore allow us to study the scaling of P(B). Since ⇢j +⇢b+⇢n = ⇢1+⇢2,
it follows that ⇢1 � ⇢j � ⇢b is also equal to P(B).

Armed with the above observations, we fit our Monte Carlo data for the densities

⇢j, ⇢b and ⇢n to the finite-size scaling ansatz

⇢ = ⇢0 + a1L
�y1 + a2L

�y2 . (4.3.1)

We note that since ⇢j + ⇢b + ⇢n = 1/2 for all L, the finite-size corrections of ⇢j + ⇢b

should be equal in magnitude and opposite in sign to the finite-size corrections of

⇢n. Since ⇢n = 1/4+P(B), the latter should be positive and the former negative.

Finally, we note that the event B essentially characterizes edges which would be

bridges in the plane, but which are prevented from being bridges on the torus by

windings. By construction, branches always have at least one end attached to a

tree, suggesting that they cannot be trapped in winding cycles in this way. This

would suggest that it should be ⇢j that contributes the leading correction of ⇢j +⇢b

away from its limiting value of 1/4.

The observables Clf, Cbf,Hlf,Hbf are expected to display non-trivial critical scaling,

and we fit them to the finite-size scaling ansatz

O = c0 +LdO (a0 + a1L
�y1 + a2L

�y2) (4.3.2)

where dO denotes the appropriate fractal dimension.

As a precaution against correction-to-scaling terms that we failed to include in

the fit ansatz, we imposed a lower cuto↵ L > Lmin on the data points admitted in

the fit, and we systematically studied the e↵ect on the �2 value of increasing Lmin.
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Generally, the preferred fit for any given ansatz corresponds to the smallest Lmin

for which the goodness of fit is reasonable and for which subsequent increases in

Lmin do not cause the �2 value to drop by vastly more than one unit per degree of

freedom. In practice, by “reasonable” we mean that �2/DF/ 1, where DF is the

number of degrees of freedom.

In all the fits reported below we fixed y2 = 2, which corresponds to the exact value

of the sub-leading thermal exponent (Nienhuis, 1984).

4.3.2 Bond densities

Leaving y1 free in the fits of ⇢j and ⇢n we estimate y1 = 1.2505(10). We therefore

conjecture that y1 = 5/4, which we note is precisely equal to the two-arm exponent

x2 = 5/4. We comment on this observation further in Section 4.5.

For ⇢b by contrast, we were unable to obtain stable fits with y1 free. Fixing

y1 = 5/4, the resulting fits produce estimates of a1 that are consistent with zero.

In fact, we find ⇢b is consistent with 0.214 050 18 for all L � 24. This weak finite-

size dependence of ⇢b is in good agreement with the arguments presented in

Section 4.3.1.

All the fits for ⇢b, ⇢j and ⇢n gave estimates of a2 consistent with zero. We therefore

set a2 = 0 identically in the fits reported in Table 4.1.

From the fits, we estimate ⇢b,0 = 0.21405018(5), ⇢j,0 = 0.03594979(8) and ⇢n,0 =

0.2500001(2). We note that ⇢b,0 + ⇢j,0 = ⇢n,0 = 1/4 within error bars, as expected.

The fit details are summarized in Table 4.1. We also note that the estimates of a1

for ⇢j and ⇢n are equal in magnitude and opposite in sign, which is as expected

given that a1 is consistent with zero for ⇢b.
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⇢ ⇢0 y1 a1 Lmin/DF/�2

⇢b
0.214 050 19(3) 5/4 0.000 04(4) 24/9/6
0.214 050 19(3) 5/4 0.000 05(5) 32/8/6
0.214 050 18(3) 5/4 0.000 09(6) 48/7/4

⇢j
0.035 949 78(5) 1.2502(2) �0.2777(2) 24/8/4
0.035 949 78(5) 1.2502(3) �0.2777(3) 32/7/4
0.035 949 79(6) 1.2500(4) �0.2775(4) 48/6/4

⇢n
0.250 000 1(1) 1.2507(5) 0.278 3(5) 24/8/2
0.250 000 1(1) 1.2508(6) 0.278 4(6) 32/7/2
0.250 000 1(1) 1.2506(7) 0.278 1(9) 48/6/2

Table 4.1: Fit results for ⇢b, ⇢j, and ⇢n.

In Fig. 4.3, we plot ⇢b, ⇢j and ⇢n versus L�5/4. The plot clearly demonstrates that

the leading finite-size corrections for ⇢j and ⇢n are governed by exponent x2 = 5/4,

while essentially no finite-size dependence can be observed for ⇢b.

4.3.3 Fractal dimensions of clusters

The first question to be addressed in this section is to determine if the fractal

dimension of leaf-free clusters di↵ers from dF. We therefore fit the data for Clf to

the ansatz (4.3.2). The fit results are reported in Table 4.2. In the reported fits we

set c0 = 0 identically, since leaving it free produced estimates for it consistent with

zero. Leaving y1 free, we estimate y1 = 1.3(3), which is consistent with the value

y1 = 5/4 observed for ⇢j and ⇢n.

From the fits, we estimate dClf = 1.89584(6), which is consistent with the fractal

dimension of percolation clusters, dF = 91/48. This indicates that although around

43% of all occupied bonds are branches (see Table 4.1), their deletion from perco-

lation configurations does not alter the fractal dimension of the resulting clusters.

In Fig. 4.4, we plot L�91/48Clf versus L�5/4.

For comparison, we also performed fits of C1 to the ansatz (4.3.2), obtaining the

estimate a0 = 0.9838(5), which is strictly larger than the value estimated for Clf.
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Figure 4.3: Plots of ⇢n (top), ⇢b (middle), and ⇢j (bottom) versus L�5/4. From top
to bottom, the three dashed lines respectively correspond to values 1/4,
0.21405018, and 0.03594979. The statistical error of each data point is
smaller than the symbol size. The straight lines are simply to guide the eye.

As L!1 therefore, a non-trivial fraction 1� a0(Clf)/a0(C1) ⇡ 40% of sites in the

largest percolation cluster are deleted by burning the branches. This is close to,

but slightly smaller than, the proportion of occupied bonds which are branches

2⇢b ⇡ 43%.

We next study the fractal dimension of bridge-free clusters. We fit the Monte Carlo

data for Cbf to the ansatz (4.3.2), and the results are reported in Table 4.2. In the

fits, we fixed y1 = 5/4, and again observed that c0 is consistent with zero. We also

performed fits (not shown) with y1 free, or fixed to y1 = 1, in order to estimate
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Figure 4.4: Plot of L�91/48Clf versus L�5/4. The statistical error of each data point is
smaller than the symbol size. The straight lines are simply to guide the eye.

the systematic error in our estimates of dB. This produced our final estimate

dB = 1.64336(10). This value is consistent with the estimate dB = 1.6434(2) (Deng

et al., 2004), but with an improved error bar.

Fig. 4.5 plots L�dBCbf versus L�5/4, with dB chosen to be the central value of our

estimate, as well as the central value plus or minus three error bars. The obvious

upward (downward) bending as L increases when using a dB value above (below)

our central estimate illustrates the reliability of our final estimate of dB.

O dO a0 a1 a2 Lmin/DF/�2

Clf

1.89582(2) 0.588 88(2) �0.103(6) �0.61(5) 24/7/8
1.89584(2) 0.588 81(6) �0.091(9) �0.75(9) 32/6/4
1.89584(2) 0.588 78(8) �0.08(2) �0.8(3) 48/5/4

Cbf

1.64332(3) 0.809 2(2) 0.07(2) �0.2(2) 24/7/4
1.64332(3) 0.809 1(2) 0.08(3) �0.3(3) 32/6/4
1.64336(4) 0.808 9(3) 0.14(5) �1.2(7) 48/5/1

Table 4.2: Fit results for Clf and Cbf.

4.3.4 Fractal dimensions of loops

Finally, we studied the fractal dimensions of the loop configurations associated

with both leaf-free and bridge-free configurations.
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Figure 4.5: Plot of L�dBCbf versus L�5/4, with dB = 1.64306, 1.643 36 and 1.643 66.
The statistical error of each data point is smaller than the symbol size. The
straight lines are simply to guide the eye.

We fit the data for Hlf and Hbf to the ansatz (4.3.2), with y1 = 5/4 fixed. For both

Hlf and Hbf, the fits gave estimates of c0 consistent with zero. We therefore fixed

c0 = 0 identically in the fits reported in Table 4.3. To estimate the systematic error,

we compared these results with fits in which y1 was free, and also fits with y1 = 1

fixed. Our resulting final estimates are dHlf = 1.74996(8) and dHbf = 1.3333(3).

For leaf-free configurations, therefore, our fits strongly suggest dHlf = 7/4 = dH.

Thus, deleting branches from percolation configurations a↵ects neither the fractal

dimension for cluster size, nor the fractal dimension for lengths of the associated

loops. For bridge-free configurations by contrast, the fits suggest that dHbf = 4/3 =

dE.

In Fig. 4.6, we plot Hlf and Hbf versus L to illustrate our estimates for dHlf and dHbf .
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Figure 4.6: Log-log plot of Hlf and Hbf versus L. The two dashed lines have slopes 7/4
and 4/3 respectively. The statistical error of each data point is smaller than
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O dO a0 a1 a2 Lmin/DF/�2

Hlf

1.75005(2) 0.408 11(6) 0.039(6) �0.25(5) 24/7/12
1.75002(3) 0.408 17(7) 0.029(9) �0.15(9) 32/6/10
1.74999(4) 0.408 30(9) 0.00(2) 0.3(3) 48/5/5

Hbf

1.33333(8) 0.734 0(4) 0.28(3) �1.1(2) 16/5/4
1.3332(2) 0.734 5(6) 0.20(8) �0.3(8) 32/4/3
1.3333(2) 0.734 2(9) 0.3(2) �2(3) 64/3/2

Table 4.3: Fit results for Hlf and Hbf.

4.4 A loop duality lemma

Let L1 (L2) denote the fraction of occupied edges whose two associated loop

segments belong to the same (distinct) loop(s).

e

e⇤

e

e⇤

Figure 4.7: Left: Illustration of a configuration A ✓ E for which the event `1(e) occurs.
Right: The corresponding configuration A⇤ [ e⇤ for which the event `2(e⇤)
occurs.
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Lemma 4.4.1. Consider p = 1/2 bond percolation on Z2
L. For any L we have EL1 =

EL2 = 1/4.

Proof. Let m = 2L2 denote the number of edges in G = Z2
L. Since G is a cellularly-

embedded graph (Ellis-Monaghan and Mo↵att, 2013), it has a well-defined geo-

metric dual G⇤ and medial graphM(G) =M(G⇤). For any e 2 E we denote its dual

by e⇤ 2 E⇤.

For e 2 E, let `1(e) be the event that the two loop segments associated with e both

belong to the same loop, and let `2(e) be the event that they belong to distinct

loops. The key observation is that for any 0  a m we have

X

A✓E
|A|=a

X

e2A
1`1(e)(A) =

X

B⇤✓E⇤
|B⇤ |=m+1�a

X

e⇤2B⇤
1`2(e⇤)(B

⇤) (4.4.1)

To see this, first note that the number of terms on either side of (4.4.1) is
�m
a
�

a =
� m
m+1�a

�

(m + 1 � a), and that each term is either 0 or 1. Then note that there is a

bijection between the terms on the left- and right-hand sides such that the term

on the LHS is 1 i↵ the term on the RHS is 1, as we now describe. Let A ✓ E with

|A| = a, and let A⇤ denote the dual configuration: include e⇤ in A⇤ i↵ e < A. With

the term on the LHS corresponding to (A,e), associate the term (B⇤, e⇤) = (A⇤ [ e⇤, e⇤)
appearing on the RHS. This is clearly a 1-1 correspondence.

Let L(A) denote the loop configuration corresponding to A. By construction,

L(A) = L(A⇤). The loop configuration L(A⇤ [ e⇤) di↵ers from L(A) only in that the

loop arcs cross e⇤ in L(A) but cross e in L(A⇤ [ e⇤). If 1`1(e)(A) = 1, then it follows

that 1`2(e⇤)(B
⇤) = 1. The converse holds by duality, and so (4.4.1) is established. See

Fig. 4.7 for an illustration.
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Summing both sides of (4.4.1) over a and dividing by m2m then shows that EL1 =
EL2. Since on average precisely 1/2 of all edges are occupied when p = 1/2, the

stated result follows.

4.5 Discussion

We have studied the geometric structure of percolation on the torus, by consider-

ing a partition of the edges into three natural classes. On the square lattice, we

have found that leaf-free configurations have the same fractal dimension and hull

dimension as standard percolation configurations, while bridge-free configura-

tions have cluster and hull fractal dimensions consistent with the backbone and

external perimeter dimensions, respectively.

In addition to the results discussed above, we have extended our study of leaf-free

configurations to site percolation on the triangular lattice and bond percolation

on the simple-cubic lattice, the critical points of which are respectively 1/2 and

0.248 811 82(10) (Wang et al., 2013b). We find numerically that the fractal di-

mensions of leaf-free clusters for these two models are respectively 1.895 7(2)

and 2.522 7(6), both of which are again consistent with the known results 91/48

and 2.52295(15)(Wang et al., 2013b) for dF. In both cases, our data show that the

density of branches is again only very weakly dependent on the system size.

It would also be of interest to study the bridge-free configurations on these lattices.

In addition to investigating the fractal dimensions for cluster size, and in the

triangular case also the hull length, it would be of interest to determine whether

the leading finite-size correction to ⇢n is again governed by the two-arm exponent.

The two-arm exponent is usually defined by considering the probability of having

multiple spanning clusters joining inner and outer annuli in the plane. As noted in
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Section 4.3.1 however, our results show that for percolation, the two-arm exponent

also governs the probability of a rather natural geometric event on the torus: the

event that a given edge is not a bridge but has both its loop arcs in the same loop.

This provides an interesting alternative interpretation of the two-arm exponent in

terms of toroidal geometry.

Let us refer to an edge that is not a bridge but has both its loop arcs in the same

loop as a pseudobridge. We note that an alternative interpretation of the observation

that (⇢n � ⇢2) ⇠ L�x2 is that the number of pseudobridges L2(⇢n � ⇢2) scales as LdR.

A natural question to ask is to what extent the above results carry over to the

general setting of the Fortuin-Kasteleyn random-cluster model. Consider the

case of two dimensions once more. In that case, we know that if we fix the

edge weight to its critical value and take q! 0 we obtain the uniform spanning

trees (UST) model. For this model all edges are branches, and so the leaf-free

configurations, which are therefore empty, certainly do not scale in the same

way as UST configurations. Despite this observation, preliminary simulations 4

performed on the toroidal square lattice at q = 0.09, 0.16, 1.5, 2.0, 2.5, 3.0 and 3.5

suggest that, for all q 2 (0,4], the leaf-free configurations have the same fractal

dimension and hull dimension as the corresponding standard random cluster

configurations. In the context of the random cluster model, the behaviour of

the leaf-free configurations for the UST model therefore presumably arises via

amplitudes which vanish at q = 0.

In addition, these preliminary simulations suggest that the number of pseudo-

bridges in fact scales as LdR for the critical random cluster model at any q 2 (0,4].
It would also be of interest to determine whether the fractal dimensions of cluster

size and hull length for bridge-free random cluster configurations again coincide

with dB and dE when q , 1.

4These simulations were performed using the Sweeny algorithm (Sweeny, 1983) for q < 1 and
the Chayes-Machta algorithm (Chayes and Machta, 1998) for q > 1.
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Chapter 5
Leaf-excluded percolation in two and

three dimensions



Chapter 5 is based on the article Zhou Z, Xu X, Garoni TM, Deng Y. 2015.

Leaf-excluded percolation in two and three dimensions. Physical Review E 91:

022 140.

Abstract. We introduce the leaf-excluded percolation model, which corresponds

to independent bond percolation conditioned on the absence of leaves (vertices of

degree one). We study the leaf-excluded model on the square and simple-cubic lattices

via Monte Carlo simulation, using a worm-like algorithm. By studying wrapping

probabilities, we precisely estimate the critical thresholds to be 0.3552475(8) (square)

and 0.185022(3) (simple-cubic). Our estimates for the thermal and magnetic exponents

are consistent with those for percolation, implying that the phase transition of the leaf-

excluded model belongs to the standard percolation universality class.

References are considered at the end of the thesis.



Chapter 5

Leaf-excluded percolation in two and

three dimensions

5.1 Introduction

Graphical models, i.e. statistical-mechanical models in which the configuration

space consists of certain bond configurations drawn on a lattice, play a fundamen-

tal role in the theory of critical phenomena. Examples include percolation, and

more generally the Fortuin-Kasteleyn random-cluster model, as well as dimers

and various loop models. In the latter two cases, the models are in fact examples

of “forbidden-degree” models, in which only bond configurations which preclude

specified vertex degrees are allowed; for dimers, all degrees higher than 1 are

forbidden, while loop models forbid all odd degrees.

In this article, we introduce and study another example of a forbidden-degree

model, the leaf-excluded model, which forbids bond configurations containing

vertices of degree 1 (i.e. leaves). Consider a finite connected graph G = (V ,E), and
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let

⌦ = {A ✓ E : dA(i) , 1}, (5.1.1)

where dA(i) denotes the degree of vertex i in the spanning subgraph (V ,A). As an

example, Fig. 5.1 illustrates a typical element of ⌦ in the case where G is a 6⇥ 6
patch of the square lattice. In this case, ⌦ is the set of all ways of drawing bond

configurations such that each site has degree 0, 2, 3 or 4.

The leaf-excluded model on G chooses random configurations A 2⌦ according to

the distribution

P(A) / v |A|, (5.1.2)

where v > 0 is a (temperature-like) bond fugacity, and |A| denotes the number of

bonds in the configuration A.

The model defined by (5.1.1) and (5.1.2) is equivalent to considering standard

independent bond percolation and conditioning on the absence of leaves. This

conditioning then introduces non-trivial correlations between the edges. Note

that, on the square lattice, if we additionally forbid degree 3 vertices, the resulting

model coincides with the high temperature (and low temperature) expansion of

the Ising model. On the square lattice therefore, the definition of the leaf-excluded

model lies precisely half way between the definitions of standard percolation

(no vertex degrees forbidden) and the Ising loop representation (both leaves and

degree 3 vertices forbidden). It is therefore natural to ask to which universality

class does the leaf-excluded model belong?

One of the main goals of percolation theory in recent decades has been to under-

stand the geometric structure of percolation clusters, following the pioneering

work of Stanley (Stanley, 1977). Recently, the present authors (Xu et al., 2014b)

studied the geometric structure of percolation clusters by classifying the bridges

present in clusters into two types: branches and junctions. A bridge was defined to
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Figure 5.1: A typical configuration (denoted by bold edges) of the leaf-excluded model
on a 6⇥ 6 patch of the square lattice.

be a branch if and only if at least one of the two clusters produced by its deletion

is a tree. It was found that the leaf-free clusters, obtained by deleting the branches

from percolation clusters, have the same fractal dimension and hull dimension as

the original percolation clusters.

The set of all such leaf-free configurations coincides with ⌦ as defined in (5.1.1).

We emphasize, however, that in (Xu et al., 2014b) these configurations were gen-

erated by applying a burning algorithm (Herrmann et al., 1984) to standard bond

percolation configurations, whereas in the current work they are sampled directly

from the distribution (5.1.2). The probability distribution on these configurations

studied in (Xu et al., 2014b) is therefore very di↵erent to the distribution that we

consider here. Nevertheless, based on the observations from (Xu et al., 2014b),

one might expect that the leaf-excluded model should belong to the percolation

universality class. In this article, we present a careful numerical study which

confirms this picture.

Due to the non-trivial combinatorial constraint inherent in the definition of ⌦,

to e�ciently generate random samples from the leaf-excluded model requires a

suitable Markov-chain Monte Carlo algorithm. We introduce a worm-like algo-

rithm for this purpose. Using this algorithm, we simulate the leaf-excluded model

on the square and simple-cubic lattices with periodic boundary conditions. We
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estimate the critical threshold vc by studying the finite-size scaling of wrapping

probabilities. Wrapping probabilities are believed to be universal, and have been

successfully applied to the estimation of critical thresholds of several models

(Wang et al., 2013b; Newman and Zi↵, 2000; Xu et al., 2014a). By simulating

precisely at our estimated vc, we then estimate the thermal exponent yt = 1/⌫

and magnetic exponent yh = d � �/⌫. Here the exponent � describes the critical

scaling of the percolation probability P1 ⇠ (v � vc)� , while ⌫ describes that of the

correlation length ⇠ ⇠ |v � vc|�⌫ . Our results for critical exponents and universal

amplitudes strongly suggest that the phase transition of the leaf-excluded model

belongs to the standard percolation universality class.

The remainder of this paper is organized as follows. Sec. 5.2 introduces the

worm-like algorithm and the observables measured in our simulations. Numerical

results are summarized and analyzed in Section 5.3. A brief discussion is then

given in Section 5.4.

5.2 Algorithm and Observables

5.2.1 Monte Carlo algorithm

In this section we describe a Markov-chain Monte Carlo algorithm for simulating

the leaf-excluded model, which is similar in spirit to a worm algorithm (Prokof’ev

and Svistunov, 2001). Worm algorithms provide very e↵ective tools for simulating

models on configuration spaces which are subject to non-trivial combinatorial

constraints. The key idea underlying worm algorithms is to first enlarge the

configuration space by including “defects", and to then move these defects via

a random walk. Numerical studies have shown that worm algorithms typically
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provide highly e�cient Monte Carlo methods (Deng et al., 2007; Wol↵, 2009b,a,

2010a,b).

To simulate the leaf-excluded model, we therefore consider an enlarged configura-

tion space in which up to two leaves are permitted. For clarity, it is convenient to

define the algorithm on an arbitrary (finite and connected) graph G = (V ,E). The

space of worm configurations is then

S = {(A,u,v) 2 E ⇥V 2 : dA(i) , 1 for i , u,v}.

The algorithm proceeds as follows. Let 4 denote symmetric di↵erence of sets. At

each time step, we perform precisely one of the following three possible updates,

chosen at random with respective probabilities p1,p2,p3:

1. Set (A,u,v) 7! (A,v,u)

2. Choose uniformly random w 2 V and set (A,u,v) 7! (A,w,v) if dA(u) , 1 and

dA(w) , 1.

3. Do the following:

(a) Choose uniformly random w ⇠ u

(b) Propose (A,u,v) 7! (A4uw,w,v), and accept with probability

min[1, v |A4uw|�|A|], provided (A4uw,w,v) 2 S .

After each update, if the new state is leaf-excluded, we measure observables. In

our simulations, we used p1 = p2 = 1/4 and p3 = 1/2.

We note that, unlike the case of the worm algorithm for the Ising model (Prokof’ev

and Svistunov, 2001), there is no particular reason for using two defects in our

algorithm, and in fact the above algorithm can be easily modified to use any fixed

number of defects; including one defect. We also note that it would be somewhat
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of a misnomer to refer to the above algorithm as a worm algorithm; for a state

(A,u,v) 2 S , it will not be true in general that u and v are connected by occupied

bonds, and so in general there is no worm as such. This is in contrast to worm

algorithms for Eulerian subgraphs (e.g. Ising high temperature graphs), where the

handshaking lemma demands that the two defects be connected.

5.2.2 Sampled quantities

We simulated the leaf-excluded model on the L⇥L square lattice for system sizes

up to L = 1024, and on the L ⇥ L ⇥ L simple-cubic lattice for system sizes up to

L = 96. For each system size, approximately 108 samples were produced.

For each sampled leaf-excluded bond configuration, we measured the following

observables.

1. The number of occupied bondsNb.

2. The size of the largest cluster C1.

3. The cluster-size moments Sm =
P

C |C|m with m = 2,4, where the sum is over

all clusters C.

4. The indicators R(x), R(y), R(z) for the event that a cluster wraps around the

lattice in the x, y, or z direction, respectively.

From these observables, we calculated the following quantities:

1. The mean size of the largest cluster C1 = hC1i, which scales as ⇠ Lyh at the

critical point vc.

2. The mean size of the cluster at the origin, � = hS2i/Ld , which at vc scales as

⇠ L2yh�d .
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3. The dimensionless ratios

Q1 =
hC12i
hC1i2 , Q2 =

h3S22 � 2S4i
hS22i

. (5.2.1)

4. The probability that a winding exists in the x direction R(x) = hR(x)i. In two

dimensions, we also measured R(2) = hR(x)R(y)i, and in three dimensions

measured R(3) = hR(x)R(y)R(z)i. R(d) gives the probability that windings

simultaneously exist in all d possible directions.

5. The covariance of R(x) andNb

g (x)bR = hR(x)Nbi � hR(x)ihNbi, (5.2.2)

which is expected to scale as ⇠ Lyt at the critical point.

5.3 Results

5.3.1 Fitting methodology

We began by estimating the critical point vc by performing a finite-size scaling

analysis of the ratios Q1, Q2 and wrapping probabilities R(x), R(d). The MC data

for these quantities were fitted to the ansatz

O(✏,L) = Oc +
2

X

k=1

qk✏
kLkyt + b1L

yi + b2L
y2 , (5.3.1)

where ✏ = vc � v, yi and y2 are respectively the leading and sub-leading correction

exponents, and Oc = O(✏ = 0,L! +1) is a universal constant. The parameters

qk,b1, b2 are non-universal amplitudes.
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We then performed extensive simulations at our best estimate of vc, in order to

estimate the critical exponents yt and yh. These exponents were obtained by fitting

g (x)bR , C1 and � to the ansatz

O(L) = LyO (a0 + b1L
yi + b2L

y2) , (5.3.2)

where yO equals yt for g
(x)
bR , yh for C1 and 2yh�d for �, and a0 is a non-universal con-

stant. In all fits reported below, we fixed y2 = �2, which corresponds to the exact

value of the sub-leading correction exponent (Nienhuis, 1984) for percolation.

As a precaution against correction-to-scaling terms that we failed to include in

the fit ansatz, we imposed a lower cuto↵ L � Lmin on the data points admitted in

the fit, and we systematically studied the e↵ect on the �2 value of increasing Lmin.

Generally, the preferred fit for any given ansatz corresponds to the smallest Lmin

for which the goodness of fit is reasonable and for which subsequent increases in

Lmin do not cause the �2 value to drop by vastly more than one unit per degree of

freedom. In practice, by “reasonable” we mean that �2/DF/ 1, where DF is the

number of degrees of freedom.

We analyze the data on the square lattice in Sec. 5.3.2 and Sec. 5.3.3. The results

on the simple cubic lattice are shown in Sec. 5.3.4.

5.3.2 Square lattice near vc

We first study the critical behavior of R(x), R(d) and Q1, Q2 near vc. Fig. 5.2 plots

R(x) and Q1 versus v. Clearly, R(x) su↵ers from only very weak corrections to

scaling.

We begin by considering R(x). Setting b2 = 0 and leaving yi free, we were unable

to obtain a stable estimate of yi . The fits with two correction terms included
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(fixing yi = �1) show that b1 is consistent with zero and b2 = 2(1) for Lmin = 64.

In fact, the data for R(x) with Lmin = 128 can be well fitted even with fixed b1 =

b2 = 0. We also perform fits with only one of b1L�1 or b2L�2 included. Comparing

the various fit results, we estimate vc = 0.3552475(5) and yt = 0.752(3). The

latter is clearly consistent with 3/4 for two-dimensional percolation. We also

estimate the universal amplitude R(x)
c = 0.5212(2), consistent with the exact value

0.521058290(Pinson, 1994; Zi↵ et al., 1999).

The fits of R(d) show that it su↵ers even weaker finite-size corrections. The am-

plitudes b1 and b2 are both consistent with zero for Lmin = 16. Again, we also

perform fits in which we include only one of these corrections, and also fits in

which we include neither. We then estimate vc = 0.3552474(5), yt = 0.754(3) and

R(d)
c = 0.3517(1), the latter of which is consistent with the exact value 0.351642855

for standard percolation (Pinson, 1994; Zi↵ et al., 1999).

Finally, we fit the data forQ1 andQ2. The fits predict a leading correction exponent

yi = �1.57(5) and �1.7(1) respectively. We note that this is consistent with the

exact value �3/2 (Zi↵, 2011) for two-dimensional percolation. We estimate vc =

0.3552475(5) from Q1 and vc = 0.3552475(8) from Q2. Both of their fits produce

yt = 0.751(3). We also estimate the universal amplitudes Q1,c = 1.04147(5) and

Q2,c = 1.1486(2), both of which are consistent with the estimates for standard

percolation (Hu et al., 2012).

Our estimates for vc, yt and the universal wrapping probabilities are summarized

in Tab. 5.1, where we also report the known results for standard percolation.

The results strongly suggest that the phase transition of the leaf-excluded model

belongs to the standard percolation universality class.

In Fig. 5.3, we illustrate the accuracy of our estimate of vc by plotting R(x) versus

L with v set to our central estimate of vc, v = 0.3552475, and also with v chosen
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Figure 5.2: Plots of R(x) and Q1 versus v for the leaf-excluded model on the square
lattice.
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Figure 5.3: Plots of R(x)(v,L) versus L for fixed values of v, for the two-dimensional
leaf-excluded model. The curves correspond to our preferred fit of the Monte
Carlo data. The shaded grey strips indicate an interval of one error bar
above and below the estimate R(x)

c = 0.5212(2).
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three error bars above and below this estimate. Precisely at v = vc, as L!1 the

data should tend to a horizontal line, whereas the data with v , vc should bend

upward or downward. Fig. 5.3 provides confirmation that the true value of vc

does indeed lie in the interval (0.3552451,0.3552499). Moreover, the asymptotic

flatness of the R(x) curve at our reported central estimate of vc strongly suggests

that our estimate lies very close indeed to the true value of vc.

5.3.3 Square lattice at vc

To obtain final estimates of yt and yh, we performed high-precision simulations at

a single value of v corresponding to our estimated threshold vc = 0.3552475, and

fitted the data for g (x)bR , C1 and � to (5.3.2). The leading correction exponent was

set to yi = �3/2.

The fits of g (x)bR show that both the amplitudes b1 and b2 are consistent with zero.

The data for g (x)bR can be well fitted (�2/DF < 1 for Lmin = 24) even without any

corrections. From the fits, we estimate yt = 0.750(1), which is consistent with the

estimate in Sec. 5.3.2 but with improved precision.

The fits of C1 and � show a non-zero b1 if only the leading correction term

is included in the fits. For comparison, we also performed fits including only

the b2L�2 term, and including both corrections. Both of these fits suggest yh =

1.8958(1), which is fully consistent with the exact result yh = 91/48 for two-

dimensional percolation. As further illustration, Fig. 5.4 shows a plot of L�3/4g (x)bR

and L�91/48C1 versus L�3/2.

5.3.4 Simple-cubic lattice

We performed an analogous study of the leaf-excluded model on the simple-cubic

lattice.

109



Chapter 5 – (Zhou et al., 2015)

 0.618

 0.619

 0.62

 0  0.002  0.004  0.006  0.008  0.01

L
-9

1
/4

8
C

1

L
-3/2

 0.289

 0.29

 0.291

L
-3

/4
g

b
R

(x
)

Figure 5.4: Plots of L�3/4g (x)bR and L�91/48C1 versus L�3/2. The straight lines are simply
to guide the eye.

We again began by fitting the data for R(x), R(d) and Q1, Q2 to the ansatz (5.3.1)

in order to estimate vc. Fig. 5.5 plots R(x) and Q1 versus v, which again clearly

shows that R(x) su↵ers from only very weak corrections to scaling. In each case

of fits, leaving yi free resulted in unstable fits. Instead, we fixed yi = �1.2, which

is numerically estimated in (Wang et al., 2013b) to be the leading correction

exponent for three-dimensional percolation. For comparison, we performed

fits with di↵erent combinations of the terms b1L�1.2 or b2L�2 present. The best

estimates were obtained from R(x), which yield vc = 0.185022(3) and yt = 1.143(8).

We also estimated the universal amplitudes R(x)
c = 0.260(4) and R(d)

c = 0.083(4).

The universal amplitudes for Q1 and Q2 cannot be precisely estimated due to the

strong finite-size corrections.

Simulating at our estimated vc, we then fitted the data for g (x)bR , C1, � to the

ansatz (5.3.2) to estimate yt and yh. Both correction terms were included in the fits.

The fits of g (x)bR yields yt = 1.142(7). From C1 we estimate yh = 2.513(5). However,

we find that it is di�cult to estimate yh from � due to the strong finite-size

corrections.
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Figure 5.5: Plots of R(x) and Q1 versus v for the leaf-excluded model on the simple-
cubic lattice.
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Figure 5.7: Plot of L�1.1415g (x)bR and L�2.52295C1 versus L�1.2. The values of the
critical exponents used on the vertical axis correspond to the estimates
yt = 1.1415(15) and yh = 2.52295(10) (Wang et al., 2014, 2013b). The
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We again illustrate our estimated vc by plotting R(x) versus L for fixed values

of v around our central estimate of vc. The figure confirms that the true value

of vc lies within two error bars of our central estimate. In this case however,

the curvature suggests the central estimate lies slightly above the true value of

vc. See Fig. 5.6. Our estimates for the critical threshold, critical exponents and

wrapping probabilities on the simple-cubic lattice are summarized in Tab. 5.1.

The agreement with the corresponding values for standard three-dimensional

percolation (Wang et al., 2013b) strongly suggests the leaf-excluded model is in

the percolation universality class. As further illustration, Fig. 5.7 shows plots

of L�yt g (x)bR and L�yhC1 versus Lyi , using percolation exponent values taken from

(Wang et al., 2013b).
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d Model vc yt yh R(x)
c

2 Leaf-excluded 0.355 247 5(8) 0.751(1) 1.8958(1) 0.5212(2)
Percolation (Nienhuis, 1984; Pinson, 1994; Zi↵ et al., 1999; Hu et al., 2012) 1 3/4 91/48 0.521058290

3 Leaf-excluded 0.185 022(3) 1.143(8) 2.513(5) 0.260(4)
Percolation (Wang et al., 2013b, 2014) 0.331 224 4(1) 1.1415(15) 2.52295(15) 0.257 80(6)

d Model R(d)
c Q1,c Q2,c

2 Leaf-excluded 0.3517(1) 1.04146(10) 1.1487(2)
Percolation (Nienhuis, 1984; Pinson, 1994; Zi↵ et al., 1999; Hu et al., 2012) 0.351642855 1.04148(1) 1.14869(3)

3 Leaf-excluded 0.083(4) - -
Percolation (Wang et al., 2013b, 2014) 0.080 44(8) 1.155 5(3) 1.578 5(5)

Table 5.1: Summary of our estimates for the thresholds vc, critical exponents yt and
yh, and wrapping probabilities for the leaf-excluded model. A comparison
with standard bond percolation is also included.

5.4 Discussion

We have introduced in this paper the leaf-excluded model, and investigated its

critical behavior. Monte Carlo simulations of the leaf-excluded model were carried

out on the square and simple-cubic lattices with periodic boundary conditions.

By studying wrapping probabilities, we estimated the critical thresholds vc =

0.3552475(8) (square) and vc = 0.185022(3) (simple-cubic). The critical exponents

yt and yh and wrapping probabilities were found to be consistent with those for

standard percolation, which indicates that the phase transition of the leaf-excluded

model belongs to the percolation universality class.

As mentioned in the Introduction, rather than enforcing the absence of degree

1 vertices, as we have considered in the current work, one could more generally

forbid any specified set of vertex degrees. A very familiar example is to exclude

odd vertices, in which case one obtains the high-temperature expansion of the

Ising model. Dimer, monomer-dimer, and fully-packed loop models also fit into

this framework. A general forbidden-degree model of this kind was studied on

the complete graph (i.e. in mean field) from a probabilistic perspective in (?),

however questions of universality were not considered. It would be of interest to

understand systematically how the choice of forbidden vertex degrees a↵ects the

resulting universality class.
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Finally, it would be natural to consider a generalization of (5.1.2) which included a

cluster fugacity, in addition to the bond fugacity. Such a model would correspond

to the Fortuin-Kasteleyn model conditioned on the absence of leaves.
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Chapter 6
An n-component face-cubic model on

the complete graph



Chapter 6 is based on the paper in preparation Zhou Z, Garoni TM. 2015. An

n-component face-cubic model on the complete graph. in preparation .

Abstract. In the first part of this paper we rigorously study phase transitions of an

n-component face-cubic model on the complete graph with integer n � 1, by performing

a large deviation analysis to the probability distribution of the magnetization, i.e. the

empirical mean of spin states. We prove limit theorems for the magnetization, which

reveals that phase transitions are continuous for n  3 and of first order for n � 4.

We exactly calculate critical points, and for n  3 the critical points are equal to n.

Both thermal and magnetic exponents are 1/2 for n  3. The second part of this

paper is studying the phase diagram of a general n-component face-cubic model on the

complete graph. This general model is defined by including a Potts-like interaction

to the Hamiltonian of the standard face-cubic model. We rigorously prove the phase

diagram for n = 2 on the (J1, J2) plane, except the region �J1 < J2 < 0 when J1 > 2. We

show that at least four phases exist on the phase diagram: disordered, Ising, Potts, and

face-cubic.

Keywords. Face-cubic; Phase transitions; Complete graph; Large deviations

References are considered at the end of the thesis.



Chapter 6

An n-component face-cubic model

on the complete graph

6.1 Introduction

Exactly solving non-trivial models with phase transitions is a challenging but

important problem in statistical mechanics. An important example is Onsager’s

solution (Onsager, 1944) of the Ising model on the square lattice. A review of the

exactly solvable models in statistical mechanics can be found in Ref. (Baxter, 1982).

Despite the di�culty of the calculation, several exact results are now known. For

example, critical exponents of two-dimensional percolation are exactly predicted

by Coulomb gas argument (Nienhuis, 1987) and conformal field theory (Cardy,

1987). The percolation thresholds on certain two-dimensional lattices are also

exactly known (Essam, 1972). However, to provide rigorous proofs for these exact

results is extremely di�cult. For instance, it was a long-standing conjecture that

the critical point for the Fortuin-Kasteleyn random cluster model (Fortuin and

Kasteleyn, 1972) on the square lattice is
p
q/(1 +

p
q), yet this was only rigorously
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proved very recently by Be↵ara and Duminil-Copin in 2012 (Be↵ara and Duminil-

Copin, 2012).

Fortunately, to rigorously study critical behaviors on the complete graph is typi-

cally more tractable than on a lattice. A quite early example is the Curie-Weiss

model (see Ref. (Ellis, 2005) and the references therein), which is defined as

the Ising model on the complete graph. The Curie-Weiss model was rigorously

studied in detail around 1980 in Refs. (Ellis and Newman, 1978b,a; Ellis et al.,

1980). Precise limit theorems for the magnetization, which is the empirical mean

of variables or spins, were proved at all temperatures. From this, a continuous

phase transition is indicated at �c = 1, with � the inverse of temperature. In 1990,

the q-state Curie-Weiss-Potts model (the Potts model on the complete graph) was

rigorously studied by Ellis andWang for q � 3 (Ellis andWang, 1990). They proved

limit theorems for the empirical vector (also called type, defined in Eq. (6.2.3)) at

all temperatures, from which a first order transition at �c = 2(n�1)log(n�1)/(n�2)
is revealed.

Another way to generalize the Ising model is the n-component face-cubic model,

with n a positive integer. In contrast of the Ising state space {�1,1}, the single-spin
state space of the face-cubic model consists of 2n n-dimensional vectors. Each

vector has only one non-zero entry and it is either 1 or �1. These 2n vectors point

to the 2n face-centers of an n-cube centered at the origin. Therefore the Ising

model is the special case of the face-cubic model with n = 1. Denote the single-spin

state space by ⌃. On the complete graph, the face-cubic model is defined by the

Hamiltonian

H(!) = � 1
2N

N
X

↵,�=1

h!↵ ,!�i , ! 2 ⌃N , . (6.1.1)

where N is the number of spins. The interaction between each pair of spins

is scaled by 1/2 to cancel the repeated counting, and by 1/N to guarantee an

extensive energy. The face-cubic model was introduced in 1975 by Kim and Levy
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(Kim et al., 1975; Kim and Levy, 1975) to model the non-trivial critical behaviors

of the cubic rare-earth compounds. The mean-field approximation (Kim et al.,

1975) predicts that the nature of the phase transitions is continuous for n  3 and

of first order for n > 3; with tricritical exponents at n = 3. However, the validity of

the mean-field approximation was challenged by the Bethe-Peierls-Weiss and high-

temperature approximations, both of which suggest that the transition for n = 3 is

of first order (Kim and Levy, 1975). To clarify the nature of phase transitions at

n = 3 was a primary motivation of the present work.

In this paper we present the first rigorous study of the face-cubic model on the

complete graph for n � 2. We apply a large deviation analysis, similar to the

methods used in Ref. (Ellis and Wang, 1990), to study limit theorems of the

magnetization at all temperatures. Our results prove that the nature of the phase

transition is continuous for n  3, and of first order for n � 4. The critical point is

�c = n for n  3, consistent with the results from the mean-field approximation. At

criticality, the central limit theorem for the magnetisation SN breaks down, and we

show N1/4SN converges in distribution to a random variable whose distribution is

non-Gaussian. Then the thermal and magnetic exponents are obtained as yt = 1/2

and yh = 1/2 for all n  3. This suggests that, compared with n = 1 and 2, no

special behavior is observed for n = 3.

We also study in this paper a general n-component face-cubic model (Kim et al.,

1976) on the complete graph, which is defined by including a Potts-like interaction

between spins. Its Hamiltonian is

H(!) = � J1
2N

N
X

↵,�=1

h!↵ ,!�i � J2
2N

N
X

↵,�=1

h!↵ ,!�i2 . (6.1.2)

The general face-cubic model is remarkable for the possession of both color (Potts)

and spin (Ising) orderings, which can be clearly seen from the following special

cases. The classic n-state and 2n-state Curie-Weiss-Potts models, the Curie-Weiss
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model, and the Ashkin-Teller model respectively correspond to J1 = 0, J1 = J2,

n = 1, and n = 2 cases. Many results are known nonrigorously about this general

model in two dimensions, such as the schematic phase diagram for general n

(Nienhuis et al., 1983), critical points and exponents for the face-cubic, Potts and

Ashkin-Teller phase transitions (Blöte and Nightingale, 1984; Guo et al., 2006).

We note that the Ashkin-Teller model (Ashkin and Teller, 1943; Fan and Wu,

1970) can be exactly mapped to the n = 2 case of the general face-cubic model by

redefining 2!↵ = (�↵+⌧↵ ,�↵�⌧↵) where �↵ ,⌧↵ 2 {�1,1}. In detail, the Hamiltonian

H(!) can be written as

� J1
4N

N
X

↵,�=1

⇣

�↵�� + ⌧↵⌧�
⌘

� J2
4N

N
X

↵,�=1

⇣

�↵��⌧↵⌧� +1
⌘

. (6.1.3)

This is exactly the Hamiltonian of the Ashkin-Teller model if we neglect the

constant 1. The phase diagram of the Ashkin-Teller model was studied in 1980

(Ditzian et al., 1980), by mean-field approximations.

In the present paper, we rigorously study the phase diagram of the general face-

cubic model on the complete graph, by a large deviation analysis. We prove

the phase diagram for n = 2 on the (J1, J2) plane (except the region �J1 < J2 < 0

when J1 > 2), and show the existence of the disordered, Ising, Potts and face-cubic

phases. Two possible scenarios are considered for this unproved region. One

is that there are only the face-cubic and the Ising phases, and the other one is

that a new ordered phase is located between them. We call this new phase the

super-ordered phase, as colors and spins are ordered simultaneously. Numerical

results support the existence of this super-ordered phase. Finding a rigorous proof

is left for future work.

The remainder of this paper is organized as follows. Section 6.2 explicitly defines

the face-cubic model and the large deviation property of the magnetization. Limit

theorems of the magnetization are presented in Section 6.3. The preliminary
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results needed to prove limit theorems are summarized in Section 6.4. We then

start in Section 6.5 the discussion of the general face-cubic model. The phase

diagram is presented in Theorem 6.5.6, with a proof in the subsection after.

Propositions and lemmas for proving the phase diagram are given in Section 6.5.4.

We finally conclude this paper in Section 6.6.

6.2 The n-component face-cubic model

6.2.1 Model

The face-cubic model on the complete graph is defined by choosing a configuration

! via the Gibbs measure,

⇢�(!) =
1

ZN (�)
exp[��H(!)]⇢(!) , (6.2.1)

where the prior measure corresponds to independent uniform spins, ⇢(!) =

(1/2n)N . The parameter � > 0 is the inverse of temperature, the Hamiltonian

H(!) : ⌃N ! R is given by Eq. (6.1.1), and the partition function is

ZN (�) =
X

!2⌃N

exp[��H(!)]⇢(!) .

On the complete graph, one can verify that H(!) can be written as

H(!) = �1
2
NhSN (!),SN (!)i , (6.2.2)

with SN (!) :=
1
N

PN
↵=1!↵ , the empirical mean of spin states. In the section below

we study the large deviation property for the probability distribution of SN . We

first clarify our notations below: P(SN = ·) is the probability distribution of SN with
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respect to the prior measure ⇢(!), and P�(SN = ·) is the probability distribution of

SN with respect to Gibbs measure ⇢�(!).

6.2.2 Large deviations theory

We introduce an example of the large deviations theory in this section, following

Chapter 2 in the book by Dembo and Zeitoni (Dembo and Zeitouni, 2009). We

first consider the probability distribution of the empirical vector and empirical

mean for a sequence of i.i.d. random variables, by recalling the discrete cases of

Sanov’s and Cramér’s theorems. For details of the complete theorems and their

proofs, see for example (Dembo and Zeitouni, 2009).

Let ⌃ = {a1, a2, · · · , a|⌃|} be a finite state space. LetM1(⌃) be the set of all prob-

ability measures defined on ⌃. Thus, if ⌫ 2 M1(⌃) then 0  ⌫(ai)  1 for all

i 2 {1,2, · · · , |⌃|} and P|⌃|
i=1⌫(ai) = 1. Let Y1,Y2, · · · be a sequence of i.i.d. random

variables with Yi distributed according to a law µ 2M1(⌃). We assume µ(ai) > 0

for all i 2 {1,2, · · · , |⌃|}. Let Y denote the partial sequence Y = {Y1,Y2, · · · ,YN }, and
y a realization y = {y1, y2, · · · , yN }. The type of a sequence y is defined as

L
y
N = (LyN,1,L

y
N,2, · · · ,LyN,|⌃|) , (6.2.3)

with L
y
N,i =

1
N

PN
↵=11(ai ,y↵), the fraction of the occurrence of ai in the sequence y.

Obviously L
y
N 2M1(⌃) for all sequence y 2 ⌃N .

Denote LN as the set of all outcomes of the random variable LYN . Let Pµ(L
Y
N = ·) be

the probability distribution of LYN . For ⌫ 2 LN , one has (see Lemma 2.1.9 in Ref.

(Dembo and Zeitouni, 2009))

(N +1)�|⌃|e�NH(⌫ |µ)  Pµ(LYN = ⌫)  e�NH(⌫ |µ) ,
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where

H(⌫ |µ) =
|⌃|
X

i=1

⌫i ln
⌫i
µi

, (6.2.4)

is the relative entropy ⌫ with respect to µ. Thus, as N ! +1, one has

I(⌫) := � lim
N!+1

1
N

logPµ(LYN = ⌫) =H(⌫ |µ)

The function I(⌫) is the rate function of Pµ(LYN = ·). As N ! +1, the type of the

sequence of random variables is concentrated on those ⌫ for which I(⌫) = 0. Note

that I(⌫) =H(⌫ |µ) = 0 if and only if ⌫ = µ.

Now suppose ⌃ ⇢ Rd , and consider the probability distribution of the empirical

mean SN =
1
N

PN
↵=1Y↵ , which can be rewritten as

SN =
1
N

N
X

↵=1

Y↵ =
|⌃|
X

i=1

LYN,iai = hLYN ,ai , (6.2.5)

where a denotes the vector (a1, a2, · · · , a|⌃|). Therefore, the empirical mean of the

sequence Y is determined by its type. Let SN be the set of all possible outcomes

of SN , and Pµ(SN = ·) be the probability distribution of SN . For x 2 SN , it is

straightforward to obtain

I(x) := � lim
N!+1

1
N

logPµ(SN = x) = inf
{⌫:h⌫,ai=x}

H(⌫ |µ) . (6.2.6)

Here I(x) is the rate function of Pµ(SN = ·). An explicit expression for the rate

function I(x) can be obtained from the Legendre-Fenchel transform of the loga-

rithmic moment generating function ⇤(�) (see Theorem 2.1.24 in Ref. (Dembo

and Zeitouni, 2009)),

I(x) = sup
�2Rd
{h�,xi �⇤(�)} , and ⇤(�) = ln

|⌃|
X

i=1

µ(ai)eh�,aii . (6.2.7)
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6.2.3 Rate function for P�(SN )

We study in this section the probability distribution of SN under the Gibbsmeasure

⇢�(!), and derive the corresponding rate function. The most probable macroscopic

states are those, for which the rate function vanishes. We first consider the free

energy which is defined as

� = � lim
N!+1

1
N

lnZN (�) .

From the definition of the partition funtion ZN (�) we have

� = � lim
N!+1

1
N

lnZN (�)

= � lim
N!+1

1
N

ln
X

!2⌃N

exp[��H(!)]⇢(!)

= � lim
N!+1

1
N

ln
X

x2SN

exp{�N [��hx,xi/2+ I(x)]}

= min
x2SN

[I(x)� �hx,xi/2] .

Here we use Eq. (6.2.2) and Eq. (6.2.6).

Consequently, we calculate P�(SN = x) as

P�(SN = x) :=
1

ZN (�)

X

{!2⌃N :SN (!)=x}
exp[��H(!)]⇢(!)

=
1

ZN (�)
exp[�Nhx,xi/2]P(SN = x) ,

and find

I�(x) := � lim
N!+1

1
N

lnP�(SN = x) = I(x)� �
2
hx,xi � � .

Here I�(x) is the rate function of the distribution P�(SN = ·).
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A state x is called an equilibrium macrostate of the face-cubic model if it satisfies

I�(x) = 0. Other states with non-zero rate function will vanish as N ! +1. The set

of all equilibriummacrostates is denoted as⌦m(�), thus⌦m(�) = {x : I�(x) = 0}. To
find the set⌦m(�) is equivalent to finding the set of global minimum points (GMP)

of {I(x)� �
2
hx,xi}. In principle, the function I(x) can be obtained by performing

the Legendre-Fenchel transform of the logarithmic generating function ⇤(�). Let

X1 be a face-cubic spin variable. For all � 2 Rn one has

⇤(�) := lnE[exp(h�,X1i)] = ln
1
n

n
X

i=1

1
2
(e�i + e��i )

= ln
1
n

n
X

i=1

cosh�i .

However, to derive I(x) using the transform Eq. (6.2.7) is somewhat complicated.

Fortunately, convex duality (Appendix C in (Eisele and Ellis, 1983)) avoids the

direct use I(x) and provides the useful relation,

min
x2⌦ [I(x)� �

2
hx,xi] = min

�2Rn
[
1
2�
h�,�i �⇤(�)] .

We note that
1
2�
h�,�i is the Legendre-Fenchel transform of

�
2
hx,xi. Let � = �u.

We now need to find the global minimum points of the function G�(u), defined as

G�(u) =
�
2
hu,ui � ln

n
X

i=1

cosh(�ui) , with u 2 Rn . (6.2.8)

6.3 Limit theorems

We state in this section limit theorems for the probability distribution of the

empirical mean SN (magnetization). Theorem 6.3.1 discusses existence of laws
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of large numbers for SN . Central limit theorems for di↵erent � are considered in

Theorems 6.3.3, 6.3.4, 6.3.5.

We first define the following 2n+1 vectors: ⌫0 = (0,0, · · · ),⌫1 = (x(�),0, · · · ,0),
⌫2 = (0,x(�),0, · · · ,0), · · · ,⌫n = (0, · · · ,0,x(�)), and ⌫n+i = �⌫ i for i = 1,2, · · · ,n. Here

x(�) is the global minimum point of the function A�(x),

A�(x) =
1
2
�x2 � ln[cosh(�x) +n� 1] . (6.3.1)

To extend the discrete distribution of SN to a measure on Rn, for any set A 2 Rn

we introduce

P(SN 2 A) =
X

v2⌦
1(v 2 A)P(SN = v) ,

P�(SN 2 A) =
X

v2⌦
1(v 2 A)P�(SN = v) . (6.3.2)

For convenience, we now state the value of the critical point �c, with the proof

given in Proposition 6.3.2. For 1  n  3, �c = n. For n � 4, �c is the solution to the

following equations,

1
2
�x2 � ln[cosh(�x) +n� 1 = � lnn (6.3.3)

x� sinh(�x) + (1� �)cosh(�x) +n� 1 = 0 , (6.3.4)

where x 2 (0,1).

Theorem 6.3.1. (i) For 1  n  3, SN converges in distribution to S⇤ (SN ) S⇤)

where S⇤ has distribution

8

>

>

>

>

<

>

>

>

>

:

�⌫0 for 0 < �  �c
1
2n

P2n
i=1 �⌫ i for � > �c ,

(6.3.5)
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as N ! +1.

(ii) For n � 4, SN ) S⇤ where S⇤ has distribution

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�⌫0 for 0 < � < �c

�0�⌫0 +�1
P2n

i=1 �⌫ i for � = �c
1
2n

P2n
i=1 �⌫ i for � > �c ,

(6.3.6)

as N ! +1, with

�0 =
0

0 + 2n1
, �1 =

1
0 + 2n1

,

0 =
⇣

detD2G�c(⌫
0)
⌘�1/2

, 1 =
⇣

detD2G�c(⌫
1)
⌘�1/2

.

Proof of Theorem 6.3.1. let W 2 Rn a random vector whose entries are indepen-

dently and normally distributed random variables: Wi ⇠ N (0,��1). Let W be

independent of the states of spins !i , with i = 1,2, · · · ,N . Given a Lebesgue

measurable set V ✓ Rn, we know from Lemma 6.4.4 that

P�(N�1/2W + SN 2 V ) =

R

x2V exp
h

�NG�(x)
i

dx
R

x2Rn exp
h

�NG�(x)
i

dx
. (6.3.7)

For � > 0, let ⌦m(�) be the set of global minimum points of G�(u). For each

vi 2 ⌦m(�) with i = 1,2, · · · , |⌦m(�)|, let B(vi ,bvi ) be a ball centered at vi with

radius bvi such that Lemma 6.4.6 can be satisfied. Then we respectively partition

V as V1,V2, and partition Rn as R1,R2, with

V1 =
[

vi2V\⌦m(�)

B(vi ,b1) , and V2 = V \V1 ,

R1 =
[

vi2⌦m(�)

B(vi ,b2) , and R2 = Rn \R1 .
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We let V1 = ; if V \⌦m(�) = ;, and define b1, b2 via

b1 = min{bvi ,vi 2 V \⌦m(�)} , and b2 = min{bvi ,vi 2⌦m(�)} .

Multiplying both nominator and denominator of Eq. (6.3.7) by eNG� , where G� =

min⌫2⌦G�(u), yields

P
�
N (N

�1/2W + SN 2 V )

=
eNG�

R

x2V1
exp

h

�NG�(x)
i

dx + eNG�
R

x2V2
exp

h

�NG�(x)
i

dx

eNG�
R

x2R1
exp

h

�NG�(x)
i

dx + eNG�
R

x2R2
exp

h

�NG�(x)
i

dx
.

Lemma 6.4.5 tells us that both the integrals over V2 and R2 behaves as O(e�N✏).

Thus we only consider here the ratio of the integrals over V1 and R1. Our discus-

sions are separated into the following two cases.

For �  �c (n  3) and � < �c (n � 4), where ⌦m(�) = {⌫0} from Proposition 6.3.2,

we have P�N (SN 2 V )) �⌫0(V ) as N ! +1.

For � > �c (n � 1), where ⌦m(�) = {⌫1,⌫2, · · · ,⌫2n}, from Lemma 6.4.6 we have as

N ! +1,

P
�
N (SN 2 V ) ⇠

P2n
i=1det

h

D2G�(⌫ i)
i

�⌫ i (V )
P2n

i=1det
h

D2G�(⌫ i)
i =

1
2n

2n
X

i=1

�⌫ i (V ) .

For � = �c (n � 3), where ⌦m(�) = {⌫0,⌫1,⌫2, · · · ,⌫2n}, from Lemma 6.4.6 we have

as N ! +1,

P
�
N (SN 2 V ) ⇠ det

h

D2G�(⌫0)
i

�⌫0(V ) +
P2n

i=1det
h

D2G�(⌫ i)
i

�⌫ i (V )

det
h

D2G�(⌫0)
i

+
P2n

i=1det
h

D2G�(⌫ i)
i .

The theorem then follows by defining 0,1,�0,�1 as in Eq. (6.3.7).
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The following proposition locates the global minimum points of the function

G�(u).

Proposition 6.3.2. Let ⌦m(�) be the set of global minimum points of G�(u).

(i) For 1  n  3,

⌦m(�) =

8

>

>

>

<

>

>

>

:

{⌫0} if 0 < �  �c
{⌫1,⌫2, · · · ,⌫2n} if � > �c .

(6.3.8)

(ii) For n � 4,

⌦m(�) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

{⌫0} if 0 < � < �c

{⌫0,⌫1,⌫2, · · · ,⌫2n} if � = �c

{⌫1,⌫2, · · · ,⌫2n} if � > �c .

(6.3.9)

Here �c = n for 1  n  3. For n � 4, �c is obtained by solving the following equations,

1
2
�x2 � ln[cosh(�x) +n� 1] = � lnn

x� sinh(�x) + (1� �)cosh(�x) +n� 1 = 0 , (6.3.10)

with x 2 (0,1).

Proof. Fix n � 1. From Lemma 6.4.2, we know one of the global minimum points

of G�(u) can be denoted as ⌫ = (x,0,0, · · · ,0), with |x| < 1 a function of �. Due

to the symmetry of G�(u), the other global minimum points can be obtained by

exchanging x with any one of those zero entries. Now we can simplify G�(u) as a

function of x, which is

A�(x) = G�(u = ⌫) =
1
2
�x2 � ln[cosh(�x) +n� 1] , (6.3.11)
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where |x| < 1. We next study the minimum of A�(x). SinceA�(x) is an even function

of x, we only need to consider x 2 [0,1). We first let the first derivative of A�(x) be

zero, which is

A0�(x) = �x �
� sinh(�x)

cosh(�x) +n� 1 = 0 . (6.3.12)

One trivial solution is x = 0. The second derivative A00� (x = 0) = �(1� �/n), which

is positive for � < n and negative for � > n, implying that for the vector ⌫0 is

respectively a local minimum and maximum for � < n and � > n. We then look for

other extremas.

We rewrite (6.3.12) as

A0�(x) =
�

cosh(�x) +n� 1[x cosh(�x)� sinh(�x) + (n� 1)x]

=
�

cosh(�x) +n� 1f (x) .

Since the denominator in the right-hand side is always positive, we then only need

to consider f (x). Two properties about A0�(x) are known, which are A0�(x = 0) = 0

and A0�(x = 1) > 0. We then want to know if there are other extremas in (0,1),

which is to find the solutions of f (x) = 0. Let g�(x) be the first derivative of f (x),

g�(x) = f 0(x) = x� sinh(�x) + (1� �)cosh(�x) +n� 1 . (6.3.13)

In Lemma 6.4.3, we show g�(x) = 0 has at most two non-zero solutions in (0,1).

We denote the solution as s1(�) if there is only one solution; use s1(�) and s2(�) if

there are two solutions and let s1(�) < s2(�). Lemma 6.4.3 gives the extremas of

g�(x) in the regime x 2 [0,1], from which we conclude as follows.

For n  3, the solutions to g�(x) = 0 are respectively none, x = 0 and x = s1(�) for

� < n, � = n and � > n. Then in the regime x 2 (0,1], f (x) is positive for �  n.
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For � > n, f (x) is negative in (0, s1(�)) and positive in (s1(�),1]. Thus, the global

minimum points of A�(x) are respectively x = 0 and x = s1(�) for �  n and � > n.

For n � 4, by similar arguments we know x = s1(�) is the global minimum point of

A�(x) for � � n. We then consider the � < n case. For �  3, we have f (x) > 0 for

x 2 [0,1], thus x = 0 is the unique global minimum point of A�(x). As � increases,

some � (say �1) is arrived such that there exists a unique solution to g�1(x) = 0 in

(0,1). As � keeps increasing, there exist two solutions to g�(x) = 0 in (0,1), denoted

as s1(�) and s2(�) with s1(�) < s2(�). Moreover s2(�) is a local minimum point and

s1(�) is a local maximum point. As we increase � from �1 to n, we sequentially

have A�(0) < A�(s2(�)),A�(0) = A�(s2(�)) and A�(0) > A�(s2(�)), respectively for

�1 < � < �c, � = �c, and � > �c. Here �c is the solution to Eqs. (6.3.10).

We now study the central limit theorems for SN for all � > 0, in the next three

theorems. We first propose a theorem for 0 < � < �c.

Theorem 6.3.3. For all n � 1 and 0 < � < �c, as N ! +1,

P�{pN (SN � ⌫0)})N (0,
h

D2G�(⌫0)
i�1 � ��1I ) , (6.3.14)

where I is the n⇥n identity matrix, and the covariance matrix
⇣

D2G�(⌫0)�1 � ��1I
⌘

is

positive definite and has an eigenvalue (n� �)�1 with multiplicity n.

Proof. For any t 2 Rn andW ⇠N (0,��1I ), the generating function ofW +
p
N (SN �

⌫0) is

E
n

exp
h

ht,W +
p
N (SN � ⌫0)i

io
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=

R

Rn exp
"

�NG�(⌫0 +
xp
N
) + ht,xi

#

dx

R

Rn exp(�NG�(⌫0 +
xp
N
))dx

=
e�
p
Nht,⌫0i R

Rn exp
h

�NG�(x0) +
p
Nht,x0i

i

dx0
R

Rn exp
h

�NG�(x0)
i

dx0

=
e�
p
Nht,⌫0i R

B(⌫0,b0)
exp

h

�NG�(x0) +
p
Nht,x0i

i

dx0
R

B(⌫0,b0)
exp

h

�NG�(x0)
i

dx0

=

R

Rn exp


�1
2
hx,D2G�(⌫0)xi+ ht,xi

�

dx
R

Rn exp


�1
2
hx,D2G�(⌫0)xi

�

dx

= exp
1
2
ht, [D2G�(⌫0)]�1ti

�

. (6.3.15)

with an explanation present as follows. The first equality follows from

Lemma 6.4.4. Then we change the variable x ! x0 = ⌫0 + x/
p
N and have the

second equality. Multiplying both the nominator and denominator of right-hand

side of the second equality by eNG� and using Lemma 6.4.5 result the third equal-

ity. We remind that G� = G�(⌫0) for � < �c, and B(⌫0, b0) denotes the ball centered

at ⌫0 with the radius b0 defined in Lemma 6.4.6. The fourth equality is obtained

by directly using Lemma 6.4.6 and changing back x0 to x. The last equality follows

by calculating integral for matrix and noting that the eigenvalue of the matrix

[D2G�(⌫0)]�1 (the inverse matrix of D2G�(⌫0) ) is the reciprocal of the eigenvalue

of D2G�(⌫0).

Since W ⇠N (0,��1I ), we have E[eht,W i] = exp
 

t2

2�

!

. The theorem then follows by

noticing the fact that W and
p
N (SN � ⌫0) are independent which yields

E
n

exp
h

ht,pN (SN � ⌫0)i
io

= exp
1
2
ht,

✓

h

D2G�(⌫0)
i�1 � ��1I

◆

ti
�

. (6.3.16)
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The matrix D2G�(⌫0) has an positive eigenvalue �(1 � �/n) with multiplicity n

since D2G�(⌫0) = �(1��/n)I . Thus, the covariance matrix
h

D2G�(⌫0)
i�1 ���1I has

an positive eigenvalue (n� �)�1 with multiplicity n.

We next consider central limit theorems for � � �c. For � = �c and n  3, the

central limit theorem for
p
NSN fails to hold, but we show that N1/4SN has a

biquadratic probability distribution function. For � > �c and n  3, we show that

a central limit theorem holds in a small region containing only one of the global

minimum point of G�(u). Such conditional central limit theorems also hold for

� � �c and n � 4.

The next theorem is for � = �c = n and n  3. The proof follows and generalizes

the proof for the Curie-Weiss model (Theorem V9.5 in (Ellis, 2005)).

Theorem 6.3.4. For � = �c = n and 1  n  3, the random variable N1/4SN con-

verges in distribution to a random vector X which has the probability density function

proportional to

exp

0

B

B

B

B

B

B

@

� 1
12

X

i,j,k,l

xixjxkxl
@4G�(x)

@xi@xj@xk@xl

1

C

C

C

C

C

C

A

(6.3.17)

Proof. We start by calculating the expectation E
h

exp
⇣

N1/4hr,SN i
⌘i

for any r 2 Rn,

which is
R

⌃N exp


N1/4hr,SN i+ �N2 hSN ,SN i
�

⇢N (d!)

R

⌃N exp
�N
2
hSN ,SN i

�

⇢N (d!)
.

We remind that ⌃ is the state space of the spins. Here we just need to calculate the

nominator, since the denominator can be obtained by setting r = 0. Let
p

�NSN = y

then the integral in the nominator can be written as

Z

⌃N
exp



(N�2)�1/4hr,yi+ 1
2
hy,yi

�

⇢N (d!)

= exp
"�hr, ri
2�
p
N

#

Z

⌃N
exp

"

1
2
hy + r

(�2N )1/4
, y +

r
(�2N )1/4

i
#

⇢N (d!)
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= (2⇡)�n/2n�N (N�2)1/4 exp
"�hr, ri
2�
p
N

#

Z

Rn
exp

h

�NG�(x/N1/4) + hr,xi
i

dx .

The last step follows by first using the identity

exp[
1
2
ht, ti] = (2⇡)�n/2

Z

Rn
exp[ht,xi � 1

2
hx,xi]dx ,

where t = y + r/(�2N )1/4 in our case. Then we take the integral over ⇢N (d!), and

obtain

Z

⌃N
exp[hy,xi]⇢N (d!) =

Z

⌃N
exp

2

6

6

6

6

6

4

n
X

i=1

hp�/N!i , xi
3

7

7

7

7

7

5

⇢N (d!)

=
N
Y

i=1

Z

⌃
exp

h

hp�/N!i , xi
i

⇢(d!)

= n�N
2

6

6

6

6

6

4

n
X

i=1

cosh(
p

�/Nxi)

3

7

7

7

7

7

5

N

The third equality then follows by using the definition of the function G�(x) and

redefine x as x/
p

�/N1/2. Combine with Eq. (6.3.18) and let N ! +1 we have

E
h

exp
⇣

N1/4hr,SN i
⌘i

=

R

Rn exp
h

�NG�(x/N1/4) + hr,xi
i

dx
R

Rn exp
h

�NG�(x/N1/4)
i

dx
.

Therefore N1/4SN has a probability density function proportional to

exp[�NG�(x/N1/4)]. The theorem follows by noticing that the first, second, and

third derivatives of G�(u) are all zero.

The last theorem is for the limit theorem for � > �c with 1  n  3 and for � � �c
with n � 4.

Theorem 6.3.5. For � > �c with 1  n  3 and for � � �c with n � 4, let ⌦m(�) be the

set of global minimum points of G�(u). Let d(�) be the minimum distance between

any pair of global minimum points. For any � 2 (0,d(�)) and ⌫ i 2⌦m, the following
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conditional probability holds,

P
�
N {
p
N (SN � ⌫ i)|SN 2 B(⌫ i ,�)})N

✓

0,
h

D2G�(⌫ i)
i�1 � ��1I

◆

. (6.3.18)

The proof to this theorem is the same as the proof of Theorem 2.5 in (Ellis and

Wang, 1990), and thus we omit it here.

6.4 Preliminary results needed to prove theorems

Lemma 6.4.1. For � > 0, G�(u) is a real analytic function of u 2 Rn. There exists a

real number M� > 0, such that for k u k�M� we have G�(u) � �4 hu,ui.

Proof. Because G�(u) is an even function, here we only need to consider all ui � 0.

We have

G�(u) =
�
2
hu,ui � ln

n
X

i=1

cosh(�ui)

� �
2
hu,ui � ln

n
X

i=1

e�ui

=
�
2
hu,ui � ln

n
Y

j=1

e�uj
n

X

i=1

e�ui
Qn

j=1 e
�uj

� �
2
hu,ui � ln

n
Y

j=1

e�uj � lnn

� �
4
hu,ui+ �

4

n
X

i=1

(ui � 2)2 �n� � lnn.

Choosing some M� such that
�
4
Pn

i=1(ui � 2)2 � n� � lnn � 0 for k u k� M� , the

lemma then follows.
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We then aim to find the set of global minimum points of G�(u). The next lemma

imposes a constraint on the possible global minimum points.

Lemma 6.4.2. If ⌫ is a global minimum point of G�(u), then ⌫ must be one of the

following 2n+1 vectors: ⌫0 = (0,0, · · · ,0), ⌫1 = (x,0,0, · · · ,0), ⌫2 = (0,x,0, · · · ,0), · · · ,
⌫n = (0, · · · ,0,x), and ⌫n+i = �⌫ i for i = 1,2, · · · ,n, and |x| < 1.

Proof. If ⌫ is a global minimum point of G�(u), one must have

 

@G�(u)
@ui

!

u=⌫
= ⌫ i � sinh(�⌫ i)

Pn
i=1 cosh(�⌫ i)

= 0 . (6.4.1)

We have ⌫ i 2 (�1,1), since from the above equation ⌫ i  sinh(�⌫ i)
cosh(�⌫ i)

which is

bounded by �1 and 1.

We next show that if ⌫ is a global minimum point of G�(u), the number of non-zero

entries in ⌫ is at most one. In Eq.(6.4.1), a trivial solution is ⌫ i = 0. Thus ⌫0 =

(0,0, · · · ,0) is a possible global minimum of G�(u). If there are more than one non-

zero entries in ⌫, for example ⌫ i and ⌫j , we must have sinh(⌫ i)/⌫ i = sinh(⌫j )/⌫j .

Since sinh(x)/x is an even function, it directly follows that |⌫ i | = |⌫j |. This means

that all non-zero entries in ⌫ have the same absolute value, and we denote this

value as x. Next we will show that if there are more than one non-zero entry in ⌫,

then ⌫ is not a global minimum.

Assume ⌫k,⌫ l , 0 for some 1  k  l  n and define a vector w as a function

of t in the following way: wk = 2x � t and wl = t and wi = ⌫ i for i , k, l. Let

W (t) = G� (u = w(t)) and take the second derivative of W (t) at the point t = x, we

have
 

@2W (t)
@t2

!

t=x
= 2�

 

1� �x
tanh(�x)

!

. (6.4.2)
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Since the right hand side is always negative for x , 0, the vector w(t = x) is a local

maximum. Therefore, if ⌫ is a GMP of G�(u), the number of non-zero entries in ⌫

is at most one. The Lemma 6.4.2 then follows by the symmetry of G�(u).

Lemma 6.4.3. Define the function

g�(x) = x� sinh(�x) + (1� �)cosh(�x) +n� 1 , (6.4.3)

where x 2 [0,1], � > 0, and n is a positive integer. Define the set ⌦X := {x : g(x) = 0}.
Then we have the following results.

(i) For 1  n  3,

⌦X =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

; if � < n

{0} if � = n

{s1(�)} if � > n .

(6.4.4)

(ii) For n � 4,

⌦X =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

; if � < �0

{0} if � = �0

{s1(�), s2(�)} if �0 < � < n

{0, s1(�)} if � = n

{s1(�)} if � > n .

(6.4.5)

The value of �0 is determined by solving the following equations.

g�(x) = 0 , tanh(�x) =
�

� � 2x . (6.4.6)

The number of non-zero solutions to g�(x) = 0 is at most two, and they are

denoted as s1(�), s2(�) and 0 < s1(�)  s2(�) < 1.

Proof. We start the proof by considering the boundary value of g�(x) at x = 0

and x = 1. We have g�(x = 0) = (n � �), which is respectively positive, zero and
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negative for � < n, � = n, and � > n. For x = 1, we have g�(x = 1) = � sinh(�) +

(1 � �)cosh(�) + n � 1, which is positive for any � > 0 and any positive integer

n , with reasons given as below. We first note that g�(x = 1) is an increasing

function of n, thus it is su�cient if we show that g�(x = 1) > 0 for n = 1, which is

g�(x = 1,n = 1) = e��(e2� +1� 2�)/2. The part (e2� +1� 2�) is positive since it is an
increasing function of � with positive initial value at � = 0.

Now we know that g�(x) is a function which initializes at x = 0 with a positive,

zero and negative value, respectively for � < n, � = n, and � > n, and reaches a

positive value at x = 1. To determine the number of solutions to g�(x) = 0 with

x 2 (0,1), we first study the number of extremas of g�(x) in this regime. We next

show that there are at most two extremas of g�(x) for x 2 (0,1). To see this point,

we consider the first derivative of g�(x) which is

g 0�(x) = � [(2� �)sinh(�x) + �x cosh(�x)] .

Letting g 0(x) = 0 yields

(� � 2)tanh(�x) = �x . (6.4.7)

We then separate our discussions as follows.

The �  3 case. In this case, the only solution to (6.4.7) is x = 0 and thus g�(x) is

an increasing function of x 2 [0,1]. Thus for � < n,� = n and � > n, the solution set

⌦X are respectively {;}, {0} and {s1(�)}.

The � � 4 case. In this case, there exists a unique non-zero solution to (6.4.7),

implying that there is a unique extrema in the regime x 2 (0,1). Thus, for � = n

and � > n, where g�(x = 0) is zero and negative respectively, the solution set is

s1(�). For � < n, although g�(x) has a unique extrema, the existence of non-zero

solutions to g�(x) = 0 still depends on the value of �. As � increases from 3 to n,

the equation g�(x) = 0 has respectively no solution, a unique solution s1(�) and
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Figure 6.1: Plot of g�(x) versus x for n = 4. The curves from top to bottom respectively
correspond to � = 3.5,3.625,3.785,4,4.1. The values of 3.625 and 3.785
are respectively the estimates of �0 and �c. The reason that �c ⇡ 3.785 can
be seen in Fig. 6.2
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Figure 6.2: Plot of A�(x) versus x for n = 4. From left to right, plots respectively
correspond to � = 3,� = 3.785, and � = 4. A first order phase transition
can be seen around � = 3.785.

two solutions s1(�), s2(�), respectively for 3 < � < �0, � = �0 and �0 < � < n. The

value of �0 is the solution to the equations (6.4.6).

The theorem follows by combining the cases �  3 and � � 4.

The following Lemma plays a central role in proving our limit theorems. The

proof given follows the proof of Lemma 3.2 in (Ellis and Wang, 1990).

Lemma 6.4.4. For � > 0, let W 2 Rn a random vector whose entries are independently

and normally distributed random variables: Wi ⇠ N (0,��1). Let W be independent

of !i , for all i = 1,2, · · · ,N . Then for any m 2 Rn and � 2 R and any N = 1,2, · · · , the
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probability density function of
W

N1/2�� +
N (SN �m)

N1�� is

f (x) =
exp



�NG�(m+
x
N� )

�

R

x2Rn exp


�NG�
✓

m+
x
N�

◆�

dx
. (6.4.8)

Proof. We first consider the probability P�
 

W

N1/2�� +
N (SN �m)

N1��  ⇠
!

, which is

equivalent to P�
⇣

N1/2W +NSN  AN (⇠)
⌘

with AN (⇠) =N1��⇠ +Nm. Since

P�(NSN 2 dx) = 1
ZN (�)

exp
✓ �
2N
hx,xi

◆

P(NSN 2 dx) ,

we have

P�
⇣

N1/2W +NSN  AN (⇠)
⌘

=
Z

x2Rn
P�(NSN 2 dx)P

⇣

N1/2W  AN (⇠)� x
⌘

=
1

ZN (�)

Z

x2Rn
exp

✓ �
2N
hx,xi

◆

P(NSN 2 dx)

⇥
✓ �
2⇡N

◆n/2Z

tAN (⇠)�x
exp

✓

� �
2N
ht, ti

◆

dt .

Substitute t � x = u, one has

P�
⇣

N1/2W +NSN  AN (⇠)
⌘

=
1

ZN (�)

✓ �
2⇡N

◆n/2Z

uAN (⇠)
exp

✓

� �
2N
hu,ui

◆

du

⇥
Z

x2Rn
exp

✓ �
N
hu,xi

◆

P(NSN 2 dx)

The inner integral in the right-hand side is

Z

x2Rn
exp

 �
N
hu,xi

�

P(NSN 2 dx) =
X

!2⌃N

exp
 �
N
hu,NSN i

�

⇢N (!)

= E [exp[�hu,SN i]]
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= exp[N⇤(�u/N )] ,

where ⇤ is the logarithmic moment generating function. Using the Eq. (6.2.8) for

⇤(�u/N ), we have

P
�
N

 

W

N1/2�� +
N (SN �m)

N1��  ⇠
!

=
1

ZN (�)

✓ �
2⇡N

◆n/2Z

uAN (⇠)
exp

h

�NG�(u/N )�N lnn
i

du

=
1

ZN (�)

✓ �
2⇡N

◆n/2 N (1��)n
nN

Z

x⇠
exp



�NG�(m+
x
N� )

�

dx . (6.4.9)

The last step follows from changing variable u = xN1�� +mN . The lemma follows

from obtaining the normalization factor ZN (�) by taking ⇠ to (+1,+1, · · · ,+1).

Lemma 6.4.5. For � > 0, let G� = minu2Rn G�(u), and let V ⇢ Rn be a Borel set

containsing no global minimum points of G�(u). For any vector t 2 Rn there exists an

✏ such that

eNG�

Z

V
e�NG�(u)+

p
Nht,uidu  Ce�N✏ , as N ! +1 ,

with C a constant independent of N and V .

Proof. There exists an positive ↵ such that G�(u 2 V ) � G� +↵. From Lemma 6.4.1,

we have

NG�(u)�
p
Nht,ui � 1

5
u2 , as kuk �M ,

for large enough M . Thus, we have

eNG�

Z

V
e�NG�(u)+

p
Nht,uidu

= eNG�

Z

V\{kuk�M}
e�NG�(u)+

p
Nht,uidu + eNG�

Z

V\{kuk<M}
e�NG�(u)+

p
Nht,uidu

 eNG�

Z

V\{kuk�M}
e�u2/5du + e�N↵e

p
NMktk

Z

V\{kuk<M}
du .
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The lemma follows since G�  G� [u = (0,0, · · · ,0)] = � lnn < 0.

Lemma 6.4.6. Let ⌫ be a global minimum point of G�(u), and B(⌫, b) denote a ball

centered at ⌫ with radius b. There exists a positive b such that for any bounded

continuous function f (u) : Rn! R,

lim
N!1e

�pNht,⌫iNn/2eNG�

Z

B(⌫,b)
f (u)e�NG�(u)+

p
Nht,uidu

= f (⌫)
Z

Rn
exp{�1

2
hx,D2G�(⌫)xi+ ht,xi}dx

Proof.

lim
N!1e

�pNht,⌫iNn/2eNG�

Z

B(⌫,b)
f (u)e�NG�(u)+

p
Nht,uidu

= lim
N!1e

NG�

Z

B(0,b
p
N )

f (⌫ + x/
p
N )exp

n

�N
h

G�(⌫ + x/
p
N )

i

+ ht,xi
o

dx

= f (⌫) lim
N!1

Z

B(0,b
p
N )

exp
⇢

�1
2
hx,D2G�(⌫)xidx + ht,xi

�

= f (⌫)
Z

Rn
exp

⇢

�1
2
hx,D2G�(⌫)xi+ ht,xi

�

dx . (6.4.10)

The first step follows by replacing u = ⌫ + x/
p
N . The last step follows by doing

Taylor expansions of G�(u) and using that G0(⌫) = 0.

6.5 The general face-cubic model

6.5.1 Model

The Hamiltonian of the general face-cubic model on the complete graph is in-

troduced in Eq. (6.1.2). There are a number of special cases where the general

face-cubic model can be reduced to more familiar models.

• J1 = 0, the n-state Curie-Weiss-Potts model.
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• J2 = 0, the standard face-cubic model.

• J1 = J2, the 2n-state Curie-Weiss-Potts model.

• n = 1, the Curie-Weiss model.

• n = 2, the Ashkin-Teller model by redefining !↵ =
1
2
(�↵ + ⌧↵ ,�↵ � ⌧↵) with

�↵ ,⌧↵ 2 {�1,1}, see Eq. (6.1.3).

We can rewrite the Hamiltonian Eq. (6.1.2) as follows,

H(!) = � J1
2N

n
X

i=1

(N+
i �N�i )2 �

J2
2N

n
X

i=1

(N+
i +N�i )

2 , ! 2 ⌃N .

Here N+
i and N�i are respectively the number of spins of the following two states

on the configuration !: the i-th entry is 1 and the i-th entry is �1. To determine

the Hamiltonian, one has to know exactly N+
i and N�i . This implies that SN ,

the magnetization, is not enough to determine the Hamiltonian. We need a 2n

dimensional vector which explicitly gives N+
i and N�i . A natural choice is the

empirical vector L, with Li = N+
i /N and Li+n = N�i /N . Now we can rewrite the

Hamiltonian as H(!) = eH(L(!)), where eH : �! R is an energy representation

function for L. Here � denotes the (2n� 1)-dimensional simplex. Precisely,

eH(v) = �NJ1
2

n
X

i=1

(vi � vi+n)2 � NJ2
2

n
X

i=1

(vi + vi+n)2 , v 2 � .

A standard large deviation analysis (see Theorem 2.4 in Ref. (Ellis et al., 2000))

yields the rate function for the distribution of the empirical vector, that is

I0(J1, J2, v) = I(J1, J2, v)�min
v2� I(J1, J2, v) , v 2 � , (6.5.1)

145



Chapter 6 – Zhou and Garoni (2015)

with I(J1, J2, v) defined as

I(J1, J2, v) = �J1
2

n
X

i=1

(vi � vi+n)2 � J2
2

n
X

i=1

(vi + vi+n)2

+
2n
X

i=1

vi logvi , v 2 � . (6.5.2)

Here we have taken � = 1. Compared with Eq. (6.2.4), we neglect the constant

log(2n) since any constants in I(J1, J2, v) will be subtracted in Eq. (6.5.1). In ad-

dition, we note from the definition that the rate function I0(J1, J2, v) = 0 when

I(J1, J2, v) attains its global minimums. Therefore, the main task in the next sec-

tions is to study how the global minimum points of I(J1, J2, v) change with respect

to J1 and J2, which reveals the phase transitions. Without confusion, we call

I(J1, J2, v) the rate function in the discussions below.

6.5.2 Useful definitions

We now introduce some useful notation and definitions.

Definition 6.5.1. Let c > 0 and define �(c) ⇢ R2n such that a vector v 2 �(c) i↵ it

satisfies vi � 0 for all 1  i  n and
P2n

i=1 vi = c.

Definition 6.5.2. Let ⌦(c) ⇢ �(c). A vector ⌫ 2⌦(c) i↵

(i) ⌫1 = max{⌫i ,1  i  2n};

(ii) ⌫i � ⌫i+n for all 1  i  n.

For c = 1, we denote �(1) = � and ⌦(1) =⌦.

For v 2 �, since Pn
i=1 vi logvi is bounded, the function I(J1, J2, v) must have at least

one global minimum points in �. Moreover, the symmetry of I(J1, J2, v) guarantees

that there must be at least one global minimum points in ⌦. We also note that, at
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the critical point of a first order transition, the number of global minimum points

in ⌦ is more than one. Unless stated otherwise, the probability vectors we discuss

below belong to ⌦.

Definition 6.5.3. (i) Let x > 0, J1 2 R and a real function g(J1,x) := logx � 2J1x.
The function s(J1,x) is defined as

s(J1,x) := min
y>0
{y : g(J1, y) = g(J1,x)} . (6.5.3)

(ii) Let x > 0 and J1, J2 2 R, define a function

F(J1, J2,x) = logx + logs(J1,x)� 2J2 [x + s(J1,x)] . (6.5.4)

If J1 < 0, then g(J1,x) is monotonically increasing and thus s(J1,x) = x. For J1 > 0,

it can be easily shown that g(J1,x) increases on (0,1/(2J1)] and decreases on

[1/(2J1),+1). This directly implies that s(J1,x) = x if x  1/(2J1), and s(J1,x) < x if

x > 1/(2J1). The function s(J1,x) is introduced to describe the constraints on ⌫i and

⌫i+n if ⌫ is a global minimum point, that is ⌫i+n = s(J1,⌫i) (see Lemma. 6.5.12). Sim-

ilarly, the function F(J1, J2,x) is defined to describe the constraints on ⌫i and ⌫j if ⌫

is a global minimum point, with details shown in Lemma. 6.5.12. Di↵erentiating

the equality logx � 2J1x = logs(J1,x)� 2J1s(J1,x) with respect to x yields

s0(J1,x) =
1/x � 2J1

1/s(J1,x)� 2J1 . (6.5.5)

Definition 6.5.4. (i) Define � ⇢⌦ such that ⌫ 2 � i↵ there exists J1 2 R for which

⌫i+n = s(J1,⌫i) for all 1  i  n.

(ii) Define ⌦m(J1, J2) ⇢⌦ as the set of global minimum points of I(J1, J2, v).

Lemma. 6.5.12 (ii) shows that for any J1, J2, if ⌫ 2⌦ is a global minimum point of

the rate function, then ⌫ 2 �. Thus, we have ⌦m(J1, J2) ⇢ �.
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Definition 6.5.5. We define a number of distinguished subsets of � as follows.

(i) The constant vector (1/(2n),1/(2n), · · · ,1/(2n)) is called the disordered vector,

and denoted ⌫0.

(ii) A vector ⌫ 2 � is called an Ising vector if ⌫i = a and ⌫i+n = b for all 1  i  n with

a > b. The set of all Ising vectors is called the Ising set, denoted ⌦I.

(iii) A vector ⌫ 2 � is called a Potts vector if ⌫1 = a and ⌫i = b for all 2  i  n, with

a > b, and ⌫i+n = ⌫i for all 1  i  n. The set of all Potts vectors is called the Potts

set, denoted ⌦P.

(iv) A vector ⌫ 2 � is called a super-ordered vector if there exists J1 > 0 such that

⌫1 = a and ⌫i = b for all 2  i  n, with 1/(2J1) < b < a; and ⌫i+n = s(J1,⌫i) for

all 1  i  n. The set of all super-ordered vectors is called the super-ordered set,

denoted ⌦SO.

(v) A vector ⌫ 2 � is called a face-cubic vector if there exists J1 > 0 such that ⌫1 = a

and ⌫i = b for all 2  i  n, with b  1/(2J1) < a; and ⌫i+n = s(J1,⌫i) for all

1  i  n. The set of all face-cubic vectors is called the face-cubic set, denoted

⌦FC.

Recall that ⌦m(J1, J2) is the set of global minimum points of I(J1, J2,⌫). We re-

spectively say the general face-cubic model is in the disordered, Ising, Potts,

super-ordered, or face-cubic phase if ⌦m(J1, J2) is a subset of the set {⌫0}, ⌦I, ⌦P,

⌦SO, or ⌦FC. To better understand these phases, we can describe the states of the

face-cubic model in terms of colors and spins. The 2n vectors in the state space

can be partitioned into n colors. A state is in color i if the i-th entry is non-zero. In

each color, a state is respectively called spin up or down if the non-zero entry is 1

or �1. Taking n = 2 for example, the state (1,0) is in color 1 and spin up, and (�1,0)
is in color 1 and spin down. We can now interpret the various phases in terms of
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...

... ...

...

Figure 6.3: Illustration of an Ising vector (top left), Potts vector (top right), super-
ordered vector (bottom left), and face-cubic vector (bottom right). In each
figure, the size of each ellipse represents the fractional occupation of the
corresponding color, while the regions above and below the bar respectively
represent spin up and down.

the ordering of colors and spins. The disordered phase corresponds to both color

and spin disorder. The Ising phase is spin ordered but color disordered. The Potts

phase is ordered in color but not in spin. The face-cubic phase is more subtle.

The color is ordered, but spin is ordered in the dominant color but disordered in

others. The super-ordered phase is both spin and color ordered. These ordered

phases are illustrated in Fig. 6.3 by ellipses. In each figure, we use n ellipses to

denote the fractional occupations of n colors. In each ellipse, a bar is used to

separate the occupations of spin up and down.

6.5.3 Phase diagram

We present in Theorem 6.5.6 the phase diagram of the general n-component face-

cubic model with n = 2 on the (J1, J2) plane. The structure of the phase diagram

for n = 2 is shown in Fig. 6.4 to help interpreting the theorem.

Theorem 6.5.6. On the complete graph, the phase diagram of the n-component general

face-cubic model with n = 2 on the (J1, J2) plane is separated into two infinite half plane

by a curve C. The values of J1 on C satisfy 1 < J1  n. Furthermore J1 = n for all J2  0.
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 0

 0  1

J2,P,c

n

Face-Cubic

n-Potts

Ising

Disordered

J 2

J1

Figure 6.4: Phase diagram for the general n-component face-cubic model on the com-
plete graph with n = 2. The phase diagram is rigorous except the region
�J1 < J2 < 0 when J1 > 2.

On the left infinite plane, a line J2 = n separates the disordered phase and the n-state

Potts phase. On the right infinite plane, the system is in the face-cubic phase for J2 � 0,

and in the Ising phase for J2  �J1.

Proof. Recall that phases of the general face-cubic model on the complete graph

are determined by the global minimum points of the rate function I(J1, J2, v).

Proposition 6.5.7 states that the minimum of I(J1, J2, v) is a continuous function of

J1 and J2.

We first prove that for n = 2, there are at most five phases on the phase diagram.

Let ⌫ 2 ⌦m(J1, J2) (defined in Def. 6.5.4), Lemma 6.5.12 with c = 1 implies that

⌫ i+n = s(J1,⌫ i) for i = 1,2. When J1  0, the function g(J1,x) (see Def. 6.5.3) is

monotonically increasing and thus we have ⌫ i+n = ⌫ i . This corresponds to either

the Potts or disordered phase. We next discuss the J1 > 0 case, where ⌫ i+n = ⌫ i if

⌫ i  1/(2J1) and ⌫ i+n < ⌫ i if ⌫ i > 1/(2J1). For n = 2, if ⌫1  1/(2J1), then ⌫3 = ⌫1 and

⌫2 = ⌫4, which implies that the system is either in the Potts phase or disordered

phase. If ⌫1 > 1/(2J1), the cases ⌫2  1/(2J1) < ⌫1, 1/(2J1) < ⌫2 < ⌫1, and ⌫2 = ⌫1
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Figure 6.5: Illustration of five phases by means of the function g(J1,x) and ellipse
diagrams. From top to bottom, they respectively denote the disordered,
Potts, face-cubic, super-ordered, and Ising phases. The curves on the left
plot the function g(J1,x) = logx � 2J1x. On the right, we use ellipses to
represent the fractional occupation of colors and in each ellipse, a bar is used
to distinguish spin up and down. One can see both spin and color disorder
in the disordered phase, color order but spin disorder in the Potts phase,
color disorder but spin order in the Ising phase. In the face-cubic phase,
color is ordered and spin is ordered in the dominant color but disordered in
the other. In the super-ordered phase, both color and spin are ordered.
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respectively corresponds to the face-cubic phase, the super-ordered phase, and

the Ising phase. We illustrate these five phases in Fig. 6.5.

We now separate our discussions into three regions on the (J1, J2) plane: J1  1,

J2  �J1  0, and J2 � 0. We note that the proofs for the first two regions also hold

for n � 3.

Region J1  1. For J1  1, part (i) in Proposition 6.5.8 gives that ⌦m(J1, J2) ⇢
⌦P [ {⌫0}. This means if ⌫ is a global minimum point, then ⌫ i+n = ⌫ i for all

1  i  n. Therefore, finding the minimum of I(J1, J2, v) is reduced to find the

minimum of the following function

� J2
2

n
X

i=1

(2⌫ i)2 +
n

X

i=1

(2⌫ i) log(2⌫ i)� log2 ,

which is independent of J1. This is exactly the rate function of the n-state Curie-

Weiss-Potts model (Ellis and Wang, 1990), if we define ⌫ 0i = 2⌫ i and neglect the

constant log2. The transition is continuous for n = 2 and of first order for n � 3,

and the critical value J2,P,c = n for n = 2 and J2,P,c = 2(n � 1)log(n � 1)/(n � 2) for
n � 3.

Region J2  �J1  0. Part (iii) in Lemma 6.5.12 with c = 1 tells that F(J1, J2,⌫ i) =

F(J1, J2,⌫j ) for all 1  i, j  n, if ⌫ is a global minimum point. Part (iii) in Proposi-

tion 6.5.11 shows the function F(J1, J2,x) is monotonic in this region, thus we have

⌫ i = ⌫j for all 1  i, j  n. From part (ii) in Lemma 6.5.12, we know ⌫ i+n = s(J1,⌫ i),

thus ⌫ i+n = ⌫j+n for all 1  i, j  n. Let ⌫ i = x and ⌫ i+n = 1/n � x for all 1  i  n

with x 2 [1/(2n),1/n], then the minimum of I(J1, J2, v) is equal to the minimum of

the following function,

� J1
2n

(2nx � 1)2 +nx log(nx) + (1�nx) log(1�nx)

= �J
0
1
2
(x1 � x2)2 + x1 logx1 + x2 logx2 � J2

2n
� logn .
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Here we let x1 = nx, x2 = 1�nx, and J 01 = J1/n. Ignoring the unimportant constant
✓

� J2
2n
� logn

◆

, we notice that this is exactly the rate function for the Curie-Weiss

model (Eisele and Ellis, 1983), where a continuous phase transition happens at

J 01 = 1 (or equivalently at J1 = n) for all n � 2.

Region J2 � 0. We prove this region only for n = 2. Di�culties for n � 3 in

this region are discussed in the Discussion. We already know that for J1  1, the

line J2 = J2,P,c separates the Potts phase and the disordered phase. In addition,

part (ii) in Proposition 6.5.8 states that the system cannot be disordered or in the

Potts phase when J1 > n. In other words, the region J1 > n contains some other

ordered phases. From the monotonic properties of Potts and disordered phases

(see Proposition 6.5.10), we know there must be a boundary in the region 1 < J1  n

separating the Potts and disordered phases on the left with some other ordered

phases on the right. We denote this boundary as the curve C. Their monotonic

properties also imply that the line J2 = J2,P,c extends to C. Moreover for n = 2

and 3, since J1 = n is the critical point of the standard face-cubic model (J2 = 0), a

vertical line J1 = n is a boundary between the disordered phase and the ordered

phase for all J2  0.

We then discuss the right of C for J2 � 0. We separate our discussions into two

parts, J1  2 and J1 > 2. If J1  2, the right of C is face-cubic ordered since part (iii)

of Proposition 6.5.8 implies that the Ising and super-ordered phases cannot exist

in this region. We then discuss the region where J1 > 2 and J2 � 0. When J1 > 2

and J2 = 0, the system is in the face-cubic phase, as indicated in Theorem 6.3.1.

Proposition 6.5.9 says that if ⌦m(J1, J2) ⇢⌦FC, then ⌦m(J1, J2 + ✏) ⇢⌦FC for any

✏ > 0. So, to the right of C and J2 � 0, the system is in the face-cubic phase.
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6.5.4 Preliminary knowledge needed to prove the phase dia-

gram

Define M(J1, J2) = inf⌫2⌦ I(J1, J2,⌫), the next lemma proves the continuity of

M(J1, J2) on the (J1, J2) plane.

Proposition 6.5.7. Define M : R2! R via M(J1, J2) = inf⌫2⌦ I(J1, J2,⌫). Then M is

continuous.

Proof. Note that I(J1, J2,⌫) is well-defined for all J1, J2 2 R and ⌫ 2⌦. We need to

prove that for any x0, y0 2 R

lim
||(x,y)�(x0,y0)||!0

M(x,y) =M(x0, y0) . (6.5.6)

If µ is a vector such that M(x0, y0) = I(x0, y0,µ), then

M(x,y)  I(x,y,µ) =M(x0, y0)� x � x0
2

n
X

i=1

(µi �µi+n)2 � y � y0
2

n
X

i=1

(µi +µi+n)2 .

Similarly, if ⌫ is a vector such that M(x,y) = I(x,y,⌫), then

M(x,y) = I(x,y,⌫) = I(x0, y0,⌫)� x � x0
2

Pn
i=1(⌫i � ⌫i+n)2 �

y � y0
2

Pn
i=1(⌫i + ⌫i+n)

2

� I(x0, y0,µ)� x � x0
2

Pn
i=1(⌫i � ⌫i+n)2 �

y � y0
2

Pn
i=1(⌫i + ⌫i+n)

2

=M(x0, y0)� x � x0
2

Pn
i=1(⌫i � ⌫i+n)2 �

y � y0
2

Pn
i=1(⌫i + ⌫i+n)

2 .

We have therefore shown thatM(x,y)�M(x0, y0) is bounded both above and below

by quantities which tend to 0 as ||(x,y)� (x0, y0)||! 0. It follows that Eq. (6.5.6) is

valid for any (x0, y0) 2 R2, so M is continuous.
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The next proposition gives bounds for the locations of the disordered, Potts, Ising,

and super-ordered phases.

Proposition 6.5.8. Let ⌫ 2⌦m(J1, J2).

(i) For J1  1, ⌫ 2⌦P [ {⌫0}.

(ii) For J1 > n, ⌫ <⌦P [ {⌫0}.

(iii) For J1  n, ⌫ <⌦I [⌦SO.

Proof. Recall that ⌦m(J1, J2) is defined in Def. 6.5.4. For part (i), we consider

J1  0 and 0 < J1  1 separately. If J1  0, then g(J1,x) (defined in Def. 6.5.3)

is monotonically increasing. Lemma 6.5.12 (ii) with c = 1 implies that ⌫ i+n =

s(J1,⌫ i) = ⌫ i for every 1  i  n. We then consider the 0 < J1  1 case. Part (ii)

in Lemma 6.5.13 says that x + s(J1,x) is an increasing function of x in the region

[1/(2J1),+1). Therefore, if ⌫ i > 1/(2J1), then ⌫ i + s(J1,⌫ i) > 1/(2J1) + s(J1,1/(2J1)) =

1/J1 > 1. The facts that ⌫ i+n = s(J1,⌫ i) (from part (ii) in Lemma 6.5.12 with c = 1)

and s(J1,1/(2J1)) = 1/(2J1) are used. So, for 0 < J1  1, we again have ⌫ i  1/(2J1)

for all 1  i  n, which further indicates that ⌫ i+n = s(J1,⌫ i) = ⌫ i . Part (i) then

follows, recalling the definition of ⌦P and ⌫0 in Def. 6.5.5.

For part (ii), recall that ⌫1 is the largest entry of ⌫ (see Def. 6.5.2). Therefore, if

J1 > n, then ⌫1 � 1/(2n) > 1/(2J1), and so s(J1,⌫1) < ⌫1. Lemma 6.5.12 (ii) with c = 1

then shows ⌫1+n = s(J1,⌫1) < ⌫1, which implies ⌫ <⌦P [ {⌫0}.

For part (iii), suppose J1 < n. If ⌫ 2⌦I[⌦SO, then ⌫ i+n < ⌫ i for all 1  i  n, which

implies ⌫ i > 1/(2J1) for all 1  i  n. Therefore, Lemma 6.5.13 (ii) shows

⌫ i + s(J1,⌫ i) >
1
2J1

+ s

 

J1,
1
2J1

!

=
1
J1

.
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So Lemma 6.5.12 (ii) with c = 1 implies ⌫ i + ⌫ i+n > 1/J1, which means
Pn

i=1(⌫ i +

⌫ i+n) > n/J1 > 1. So ⌫ <⌦I [⌦SO.

Proposition 6.5.9. Let n = 2. If ⌦m(J1, J2) ⇢⌦FC, then ⌦m(J1, J2 + ✏) ⇢⌦FC for any

✏ > 0.

Proof. Recall that ⌦m(J1, J2) is defined in Def. 6.5.4. For ✏ > 0 and ⌫ 2⌦,

I(J1, J2 + ✏,⌫) = I(J1, J2,⌫)� ✏2
2

X

i=1

(⌫i + ⌫i+2)2 .

Let ⌫ 2⌦m(J1, J2). If ⌦m(J1, J2) ⇢⌦FC, then ⌫1 > 1/(2J1) > ⌫3 and ⌫2 = ⌫4  1/(2J1).

Let µ 2 ⌦ satisfy that µ3 = s(J1,µ1) and µ4 = s(J1,µ2). Suppose µ1 < ⌫1. Proposi-

tion 6.5.13 (ii) says that f (x) = x + s(J1,x) is an increasing function for all x > 0,

so

µ1 +µ3 = µ1 + s(J1,µ1) < ⌫1 + s(J1,⌫1) = ⌫1 + ⌫3 ,

µ1 +µ3 = µ1 + s(J1,µ1) > µ2 + s(J1,µ2) = µ2 +µ4 .

We also have µ2 +µ4 > ⌫2 + ⌫4 since
P4

i=1µi =
P4

i=1⌫ i . Therefore,

⌫2 + ⌫4 < µ2 +µ4 < µ1 +µ3 < ⌫1 + ⌫3 . (6.5.7)

A straightforward optimization analysis gives

(⌫2 + ⌫4)2 + (⌫1 + ⌫3)2 > (µ2 +µ4)2 + (µ1 +µ3)2 .

From Eq. (6.5.7),

I(J1, J2 + ✏,⌫) = I(J1, J2,⌫)� ✏2
2

X

i=1

(⌫ i + ⌫ i+2)2
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< I(J1, J2,µ)� ✏2
2

X

i=1

(⌫ i + ⌫ i+2)2

< I(J1, J2,µ)� ✏2
2

X

i=1

(µi +µi+2)2

= I(J1, J2 + ✏,µ) .

So µ must not be a global minimum point of I(J1, J2 + ✏,⌫) if µ1 < ⌫1.

Let µ 2⌦m(J1, J2+✏). We now know µ1 � ⌫1 > 1/(2J1), and so µ3 = s(J1,µ1) < 1/(2J1).

Since f (x) is increasing for all x > 0, we have

µ1 +µ3 = µ1 + s(J1,µ1) � ⌫1 + s(J1,⌫1) = ⌫1 + ⌫3 , (6.5.8)

and so µ2+µ4  ⌫2+⌫4. Since ⌫2 = ⌫4  1/(2J1), we have µ2+µ4 = µ2+s(J1,µ2)  1/J1.

Again, since f (x) is increasing and f (1/(2J1)) = 1/J1, we have µ2  1/(2J1) and so

µ4 = s(J1,µ2) = µ2. Therefore µ1 > 1/(2J1) > µ3 and µ2 = µ4, implying µ 2⌦FC. So

⌦m(J1, J2 + ✏) 2⌦FC for any ✏ > 0.

The next proposition shows the monotonicity properties of the Ising, Potts and

disordered phases.

Proposition 6.5.10. Let ✏ > 0.

(i) If ⌦m(J1, J2) ⇢⌦P, then ⌦m(J1 � ✏, J2) ⇢⌦P.

(ii) If ⌦m(J1, J2) ⇢⌦I, then ⌦m(J1, J2 � ✏) ⇢⌦I.

(iii) If ⌦m(J1, J2) = {⌫0}, then ⌦m(J1 � ✏, J2) = {⌫0}.

(iv) If ⌦m(J1, J2) = {⌫0}, then ⌦m(J1, J2 � ✏) = {⌫0}.
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Proof. We first prove part (i). Assume ⌦m(J1, J2) ⇢ ⌦P. Let ⌫ 2 ⌦m(J1, J2), then

⌫ i = ⌫ i+n for all 1  i  n, and ⌫1 > ⌫2 = · · · = ⌫n. For ✏ > 0,

I(J1 � ✏, J2,⌫) = I(J1, J2,⌫) + (✏/2)
n

X

i=1

(⌫i � ⌫i+n)2, ⌫ 2⌦ . (6.5.9)

We observe that ⌫ also minimize I(J1 � ✏, J2,⌫), since ⌫ minimizes (✏/2)
Pn

i=1(⌫i �
⌫i+n)2. It further implies that I(J1 � ✏, J2,⌫) = I(J1, J2,⌫).

Let µ 2⌦(J1 � ✏, J2). From Eq. (6.5.9), we have I(J1 � ✏, J2,µ) � I(J1, J2,µ). Since ⌫ is

a minimizer of both I(J1, J2,⌫) and I(J1 � ✏, J2,⌫), we have

I(J1 � ✏, J2,µ) � I(J1, J2,µ) � I(J1, J2,⌫) = I(J1 � ✏, J2,⌫) = I(J1 � ✏, J2,µ) .

The first inequality becomes equality i↵ µi = µi+n for all 1  i  n. The second

inequality becomes equality i↵ µ 2⌦P. So ⌦m(J1 � ✏, J2) 2⌦P.

We now prove part (ii). Assume ⌦m(J1, J2) ⇢⌦I. Let ⌫ be a minimizer of I(J1, J2, v),

then ⌫1 = · · · = ⌫n > ⌫n+1 = · · · = ⌫2n, which further implies ⌫ i + ⌫ i+n = 1/n for all

1  i  n. For ✏ > 0,

I(J1, J2 � ✏,⌫) = I(J1, J2,⌫) + (✏/2)
n

X

i=1

(⌫i + ⌫i+n)2, ⌫ 2⌦ . (6.5.10)

We observe that ⌫ also minimize I(J1, J2 � ✏,⌫), since ⌫ minimizes (✏/2)
Pn

i=1(⌫i +

⌫i+n)2. It further implies that I(J1, J2 � ✏,⌫) = I(J1, J2,⌫).

Let µ be a minimizer of I(J1, J2 � ✏, v). From Eq. (6.5.10), we have I(J1, J2 � ✏,µ) �
I(J1, J2,µ). Since ⌫ is a minimizer of both I(J1, J2,⌫) and I(J1, J2 � ✏,⌫), we have

I(J1, J2 � ✏,µ) � I(J1, J2,µ) � I(J1, J2,⌫) = I(J1, J2 � ✏,⌫) = I(J1, J2 � ✏,µ) .
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The first inequality becomes equality i↵ µi +µi+n = 1/n for all 1  i  n. The second

inequality becomes equality i↵ µ 2⌦I. So ⌦m(J1, J2 � ✏) 2⌦I.

The proof of part (iii) is similar to part (i), and the proof of part (iv) is similar to

part (ii).

Proposition 6.5.11. Let J1 > 0 and J2 2 R.

(i) If J2 > 0, then F(J1, J2,x) increases in (0,1/(2Jmin)) and decreases in

(1/(2Jmin),+1), with Jmin = max(J1, J2).

(ii) If J2  �J1 < 0, then F(J1, J2,x) is monotonically increasing in (0,+1).

Proof. Recall that F(J1, J2,x) is defined in Def. 6.5.3. We use F(x) for F(J1, J2,x) for

simplicity. Recall that, if x  1/(2J1) then s(J1,x) = x. In this case we have

F(x) = 2(logx � 2J2x) = 2g(J2,x) , (6.5.11)

which is monotonically increasing for J2  0 or for J2 > 0 and x  1/(2J2).

We first prove part (i). From Eq. (6.5.11), we see that F(x) = 2g(J2,x) in the

region (0,1/(2J1)). If J2 > J1, then F(x) increases in (0,1/(2J2)] and decreases

in [1/(2J2),1/(2J1)). If J2 < J1, then F(x) increases in (0,1/(2J1)]. The function

F(x) is monotonically decreasing in [1/(2J1),+1) because both log(xs(J1,x)) and

�2J2(x + s(J1,x)) are decreasing functions, see Lemma 6.5.13.

We then prove part (ii). Again F(x) = 2g(J2,x) in the region (0,1/(2J1)]. If J2  0,

then F(x) is monotonically increasing in (0,1/(2J1)]. We next study F(x) in the

region [1/(2J1),+1) with J2 = �J1 < 0 . The first derivative is

F 0(x) =
1
x
+
s0(J1,x)
s(J1,x)

� 2J2(1 + s0(J1,x))

=
2

x(1� 2J1s(J1,x)) [1� (J1 + J2) (x + s(J1,x)) + 4J1J2xs(J1,x)]
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=
2

x(1� 2J1s(J1,x))
h

1� 4J21xs(J1,x)
i

. (6.5.12)

From Lemma 6.5.13 (iii), we see that xs(J1,x) >
1
2J1

s(J1,1/(2J1)) = 1/(4J21 ), which

yields F 0(x) < 0. If J2 < �J1 < 0, we can write J2 = �J1 � ✏ with ✏ > 0, then

F 0(x) = 2
x(1� 2J1s(J1,x))

h

1� 4J21xs(J1,x) + ✏(x + s(J1,x)� 4J1xs(J1,x))
i

.

From Lemma 6.5.13 (ii) and (iii), we see that x+s(J1,x) in increasing whilst xs(J1,x)

is decreasing in (1/(2J1),+1). This implies that

x + s(J1,x)� 4J1xs(J1,x) > 1
2J1

+ s(J1,1/(2J1))� 4J1 1
2J1

s(J1,1/(2J1)) = 0 .

So F 0(x) > 0 in (1/(2J1),+1), when J2  �J1 < 0. Therefore, if J2  �J1 < 0 then F(x)

is monotonically increasing.

We next summarize the lemmas. Define the rate function I(J1, J2, v) (see Eq. (6.5.2))

on �(c) (defined in Def. 6.5.1). We first propose a lemma showing that the global

minimum points of I(J1, J2,⌫) must live in the interior of �(c), and deriving neces-

sary conditions for possible global minimum points.

Lemma 6.5.12. Define the rate function I(J1, J2, v) on �(c). Let ⌫ 2⌦(c) be a global

minimum point of I(J1, J2,⌫), then the following statements hold.

(i) ⌫ is in the interior of �(c);

(ii) ⌫ i+n = s(J1,⌫ i) for all 1  i  n;

(iii) F(J1, J2,⌫ i) = F(J1, J2,⌫j ) for all 1  i, j  n.

Proof. Recall that the functions s(J1,x) and F(J1, J2,x) are defined in Def. 6.5.3, and

⌦(c) ⇢ �(c) is defined in Def. 6.5.2. Write I(J1, J2,⌫) as I(⌫) for simplicity. We first
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note that I(⌫) is bounded in �(c). For 1  i  n, the partial derivatives are

Ii(⌫) :=
@I(v)
@vi

�

�

�

�

�

�

v=⌫

= �J1 (⌫i � ⌫i+n)� J2 (⌫i + ⌫i+n) + log⌫i +1 ,

Ii+n(⌫) :=
@I(v)
@vi+n

�

�

�

�

�

�

v=⌫

= �J1 (⌫i+n � ⌫i)� J2 (⌫i + ⌫i+n) + log⌫i+n +1 .(6.5.13)

Let ⌫ lie on the boundary of �(c), then there exists 1  i, j  2n such that ⌫i = 0

and ⌫j > 0. If we set ⌫ 0i = ✏, ⌫
0
j = ⌫j � ✏ with a su�ciently small ✏ > 0, and ⌫ 0k = ⌫k

for k , i, j . The change of I(⌫) is

�I = I(⌫ 0)� I(⌫) =
⇣

Ii(⌫)� Ij(⌫)
⌘

✏ + o(✏) . (6.5.14)

Since Ii(⌫)!�1 as ⌫i ! 0+ but Ij (⌫) is finite, one has �I < 0 which implies that ⌫

cannot be a minimum. Part (i) then follows.

We then study part (ii). Let ⌫ be a global minimum point, then ⌫ is in the

interior of �(c) from the above argument. Since ⌫ 2 �(c), from Eq. (6.5.14) we

have Ii(⌫) = Ij(⌫) for all 1  i, j  2n. Let 1  i  n and j = i + n, we have from

Eq. (6.5.13) that

log⌫ i � 2J1⌫ i = log⌫ i+n � 2J1⌫ i+n .

Define g(J1,x) = logx � 2J1x for J1 2 R and x > 0, then g(J1,⌫ i) = g(J1,⌫ i+n) for all

1  i  n. If J1  0, then g(J1,x) is monotonically increasing and thus ⌫ i+n = ⌫ i . If

J1 > 0, then g(J1,x) increases in (0,1/(2J1)] and decreases in [1/(2J1),+1). Since

⌫ 2⌦, we have ⌫ i+n  ⌫ i , and so if ⌫ i  1/(2J1) then ⌫ i+n  1/(2J1). Therefore, since

g(J1,x) is monotonic for x  1/(2J1), the constraint g(J1,⌫ i+n) = g(J1,⌫ i) implies

that ⌫ i+n = ⌫ i = s(J1,⌫ i).
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We next show by contradiction that if ⌫ i > 1/(2J1) then ⌫ i+n < ⌫ i . Let ⌫
0
i = ⌫ i + ✏,

⌫ 0i+n = ⌫ i+n � ✏, and ⌫ 0j = ⌫j for any j , i, i +n. Then

�I = I(⌫ 0)� I(⌫) =
✏2

2
⇥

Ii,i(⌫)� 2Ii,i+n(⌫) + Ii+n,i+n(⌫)
⇤

+ o(✏2)

=
✏2

2

 

�4J1 + 1
⌫ i

+
1
⌫ i+n

!

+ o(✏2) . (6.5.15)

with

Ii,i(⌫) =
@2I(v)
@v2i

�

�

�

�

�

�

v=⌫

, Ii,j(⌫) =
@2I(v)
@vj@vi

�

�

�

�

�

�

v=⌫

, Ij,j(⌫) =
@2I(v)
@v2j

�

�

�

�

�

�

v=⌫

.

The terms associated with first derivatives vanish since ⌫ is an extrema. Thus, if ⌫

is a global minimum point, then

1
⌫ i

+
1
⌫ i+n

� 4J1 . (6.5.16)

If ⌫ i = ⌫ i+n > 1/(2J1) then �I < 0, which implies that ⌫ is not a minimum. Part (ii)

of this lemma then follows by noticing the definition of s(J1,x) in Def. 6.5.3.

Finally, we prove part (iii). Using the fact that Ii(⌫) = Ij (⌫) for 1  i, j  n, we have

� J1 (⌫ i � ⌫ i+n)� J2 (⌫ i + ⌫ i+n) + log⌫ i = �J1
⇣

⌫j � ⌫j+n
⌘

� J2
⇣

⌫j + ⌫j+n
⌘

+ log⌫j .

(6.5.17)

Multiplying Eq. (6.5.17) by 2 and setting ⌫k+n = s(J1,⌫k) for k = i, j (using part (ii)),

we obtain

F(J ,⌫ i) + g(J1,⌫ i)� g(J1, s(J1,⌫ i)) = F(J ,⌫j ) + g(J1,⌫j )� g(J1, s(J1,⌫j ))

By definition of s(J1,x) (Def. 6.5.3), we have g(J1,x) = g(J1, s(J1,x)) for all x. The

part (iii) then follows.

Lemma 6.5.13. For J1 > 0 and x > 1/(2J1).
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(i) 1/x +1/s(J1,x) > 4J1.

(ii) x + s(J1,x) is an increasing function of x.

(iii) xs(J1,x) is a decreasing function of x.

Proof. Recall that s(J1,x) is defined in Def. 6.5.3. We first prove part (i). In the

proof of part (ii) in Lemma 6.5.12, we showed that if ⌫ is a minimizer of I(J1, J2, v)

on �(c), then 1/⌫ i +1/⌫ i+n � 4J1, see Eq. (6.5.16). We now show that in fact

1/x +1/s(J1,x) � 4J1 (6.5.18)

for all x. The J1  0 case is trivial, since s(J1,x) = x and x > 0. The other trivial case

is when J1 > 0 and x  1/(2J1), since again s(J1,x) = x and so 2/x � 1/(4J1). We now

study the J1 > 0 and x > 1/(2J1) case. Fix J1 > 0, x > 1/(2J1) and let x + s(J1,x) = c.

The inequality (6.5.18) follows once we show that ⌫ = (x,s(J1,x)) is a minimizer

of I(J1,0, v) on �(c) with n = 1. From the definition of s(J1,x), we know (x,s(J1,x))

is an extrema (or saddle point) of I(J1,0, v). Lemma 6.5.14 implies that if ⌫ 2 �(c)
satisfies ⌫2 = s(J1,⌫1) < ⌫1, then ⌫ is a local minimum point. So the inequality

(6.5.18) follows.

We then show equality holds only at x = s(J1,x) = 1/(2J1). If 1/x +1/s(J1,x) = 4J1,

then s(J1,x) =
x

4J1x � 1. But from the definition of s(J1,x), we have

logx � 2J1x = logs(J1,x)� 2J1s(J1,x) ,

and so

log(4J1x � 1)� 2J1x + 2J1x
4J1x � 1 = 0 . (6.5.19)

Elementary calculus shows the LHS of Eq. (6.5.19) is strictly decreasing for all

x > 1/(2J1). So equality holds only at x = 1/(2J1). Part (i) is proved.
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We then consider part (ii). The first derivative of f (x) is

f 0(x) = 1+ s0(x) = s
1� 2J1s(x)

 

1
x
+

1
s(x)
� 4J1

!

Since x > 1/(2J1), one has s(x) < 1/(2J1). Thus f 0(x) > 0 i↵ 1/x +1/s(x) > 4J1, and so

part (ii) follows from part (i).

Finally, we prove part (iii). Define h(x) := xs(J1,x) for J1 > 0 and x > 1/(2J1), we

have

h0(x) = s(J1,x) + xs0(J1,x) =
2J1s(J1,x)

2J1s(J1,x)� 1 (x + s(J1,x)� 1/J1) .

For x > 1/(2J1), we have s(J1,x) < 1/(2J1) and so 1 � 2J1s(J1,x) > 0. Part (ii) says

that x + s(J1,x) is increasing for J1 > 0 and all x > 1/(2J1), and thus x + s(J1,x) >

1/(2J1) + s(J1,1/(2J1)) = 1/J1. So h0(x) < 0 for all x > 1/(2J1).

Lemma 6.5.14. Let n = 1, c > 0 and J2 = 0. If a 2 (c/2, c) is a solution to the equation

logx � 2J1x = log(c � x)� 2J1(c � x) ,

then (a,1� a) is a minimizer of I(J1,0, v) on �(c).

Proof. Applying Lemma 6.5.12 (i) with n = 1 and J2 = 0 shows that the minimum

of I(J1,0, v) lies in the interior of �(c). We can rewrite I(J1,0, v) as

I(J1,0, v) = Ĩ(J1,x) = �J12 (2x � c)2 + x logx + (c � x) log(c � x) ,

where x = v1 and c � x = v2 with 0  x  c. The first derivative of Ĩ(J1,x) with

respect to x is

Ĩ 0(J1,x) = �2J1(2x � c) + logx � log(c � x) .

Thus, we have I 0(x! 0+)!�1, I 0(c/2) = 0, and I 0(x! c�)! +1. Moreover, for

J1  c, one can verify that I 0(x) is monotonically increasing and thus x = c/2 is the
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Figure 6.6: Plot of I 0(J1,x) (left) and I(J1,x) (right) for J = c/2, c and 3c/2, with c = 1.

only minimum. For J1 > c, I(x) has three extremas. The point x = c/2 is a local

maximum while other two extremas are minimums. Plots of Ĩ 0(J1,x) and Ĩ 0(J1,x)

with di↵erent values of J1 are shown in Fig. 6.6 for interpretation. The lemma

then follows.

6.6 Discussion

We study in the first part of this paper the standard n-component face-cubic model

on the complete graph. We prove limit theorems for the magnetization SN , which

implies that the phase transitions are continuous for n = 2,3 and of first order

for n � 4. This rigorously resolve the longstanding uncertainty about the nature

of phase transition at n = 3. The critical points are also exactly calculated for

n � 2, and for n = 2,3 we simply have �c = n, consistent with the results from the

mean-field approximation. For n � 4, the values of �c can be obtained by solving

nonlinear equations. We also study central limit theorems for the magnetization

at all temperatures. At criticality, the central limit theorem for SN breaks down,

and we show N1/4SN converges to a distribution which is independent of N . This

yields that E[(N1/4SN )k] ⇠ C where k is any positive integer and C denotes a

constant independent of N . Based on this, we obtain the asymptotic behaviors

of the susceptibility � and the specific heat CH which are defined as � /NE
h

S2
N

i

and CH ⇠N�1
⇣

E[H2]�E[H]2
⌘

. Using the fact that H = �NS2
N/2 on the complete
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Figure 6.7: Phase diagram for the general n-component face-cubic model on the com-
plete graph with n = 2. A super-ordered phase is observed in the region
�J1 < J2 < 0 (J1 > 2) by numerically calculating the global minimums of
the rate function.

graph, we have � ⇠ N1/2 ⇠ Nyh and CV ⇠ N0 ⇠ N2yt�1. This implies the thermal

exponent yt = 1/2 and the magnetic exponent yh = 1/2, for n = 2 and 3.

We also studied the n-component general face-cubic model on the complete graph.

For n = 2, we prove the existence of disordered, n-state Potts, Ising and face-

cubic phases on the (J1, J2) plane. However, there is still an unproved region

where �J1 < J2 < 0 when J1 > 2. Two possible scenarios can happen in this region.

Proposition 6.5.8 (ii) states that this region cannot be Potts ordered or disordered.

So, the first scenario is that no other ordered phase exists in this region. From

the monotonic properties of the face-cubic phase (Proposition 6.5.9) and the Ising

phase (Proposition 6.5.10(ii)), we know there exists a boundary such that above

and below this boundary are respectively the face-cubic phase and the Ising phase.

The other scenario is that another ordered phase exists in this region. As we

discussed in Sec. 6.5.3, this ordered phase can only be the super-ordered phase.

Again, the monotonic properties of the face-cubic and the Ising phases guarantee

that the super-ordered phase is located between them. The results obtained by

numerically locating the global minimum points of the rate function support the
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second scenario, which is for all J1 > 2, a super-ordered phase locates between the

face-cubic and the Ising phases, see Fig. 6.7. Finding a rigorous proof is left as

future work.

For the face-cubic model, the state of a random variable can be rephrased in terms

of colors and spins. Two states !i and !j have the same color if |!i ·!j | = 1. In

addition, two states !i and !j have the same spin if !i ·!j = 1, opposite spin if

!i ·!j = �1. Various phases can be interpreted as the ordering of colors and spins.

The disordered phase corresponds to both color and spin disorder. The Ising phase

is spin ordered but color disordered. The Potts phase ordered in color but not

in spin. The face-cubic phase is more subtle. The color is ordered, whilst spin is

ordered in the dominant color but disordered in other colors. The super-ordered

phase is both spin and color ordered. For the general n-component face-cubic

model on the complete graph, we observed the above five phases on the phase

diagrams for n � 2. We note that the super-ordered phase has not been previously

discovered, even in the n = 2 case which corresponds to the Ashkin-Teller model.

In addition, we note that the 2n-state Potts model is recovered when J2 = J1. On

the phase diagram, one can see the 2n-state Potts phase can be taken as a special

case of the face-cubic phase.

In order to better understand the phases of the n = 2 general face-cubic model

on the complete graph, we can compare them with the phases of the Ashkin-

Teller model. We recall that two models can be mutually mapped by defining

2!i = (�i + ⌧i ,�i � ⌧i) with �i ,⌧i 2 {�1,1}. Define h�i = limh!0+h�iih as the order

parameter for {�i}, with h an external field. We call � is ordered if h�i , 0 and

disordered if h�i = 0. Analogous definitions apply for ⌧ and �⌧; the latter is the

product of them. The comparison is summarized in Tab. 6.1. The paramagnetic

phase corresponds to that � and ⌧ are independently disordered, that is, h�i = 0

and h⌧i = 0. Baxter phase corresponds to � and ⌧ are independently ordered, that

is h�i = ±h⌧i , 0. It is also true that h�⌧i , 0 and has the same sign as the product
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h�ih⌧i. The (�⌧) phase is such that (�⌧) is ordered but h�i = h⌧i = 0. The partially

ordered phase is such that either � or ⌧ (but not both) is ordered, that is, h�i , 0
(h⌧i , 0) but h⌧i = h�⌧i = 0 (h�i = h�⌧i = 0). It is straightforward to verify that the

above four phases correspond respectively to the disordered, face-cubic, Potts and

Ising phases in the n = 2 general face-cubic model. The super-ordered phase has

not been observed in the Ashkin-Teller model, which in fact corresponds to both

� and ⌧ ordered but h�i , h⌧i.

A common feature is observed in the five phases of the GFC model. Let ⌫ be a

global minimum point of the rate function, and for 1  i  n define ⌫ i + ⌫ i+n as

the fractional occupation of color i. The common feature is that, in all phases, at

least (n�1) colors all have the same occupation. In other words, there can be at

most one dominant color. When they are all equal, we have color disorder and it

corresponds to either the disordered phase or the Ising phase. When there exists a

dominant color, we have color order and this corresponds to the Potts, face-cubic

or super-ordered phases. This seems a quite natural conjecture, and a common

sense in the study of phase transitions. However, to rule out the possibility of

other phases for the general face-cubic model with n � 3 is di�cult. We note that,

conditioned on the natural conjecture, the hase diagrams for n � 3 can also be

proved rigorously.

Finally, let us mention another cubic model, the n-component corner-cubic model,

the state space of which is ⌃ = {1,�1}n. On the complete graph, the Hamiltonian

of the corner-cubic model can be written as

H = � 1
2N

N
X

↵,�=1

h!i ,!ji = � 1
2N

N
X

↵,�=1

n
X

k=1

!↵k!�k = � 1
2N

n
X

k=1

N
X

↵,�=1

!↵k!�k . (6.6.1)

Since !·k is either 1 or �1, it is exactly the superimposition of n independent

Curie-Weiss models. Thus, there is a continuous phase transition at �c = 1 for all

integer n � 1.
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Ashkin-Teller n = 2 general face-

cubic

Paramagnetic phase Disordered phase

Baxter phase Face-cubic phase

(�⌧) phase Potts phase

Partially ordered phase Ising phase

Not observed Super-ordered phase

Table 6.1: Comparison of phases in the Ashkin-Teller model and the n = 2 general
face-cubic model on the complete graph.
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Conclusion

7.1 Estimating thresholds and critical exponents

for the percolation and directed percolation

models

The contributions of this thesis consist of three parts. First, by extensive Monte

Carlo simulations, we provide precise estimates of percolation thresholds and

universal parameters for some percolation and directed percolation models. These

universal parameters are considered essential in understanding the nature of phase

transitions, as revealed from the renormalization group theory. Precisely locating

thresholds are also crucial since corrections associated with the deviations from

criticality can be largely suppressed. In this thesis, our estimates are either new or

improvements of previous results. To be specific, for bond and site percolation

on the simple-cubic lattice in Chapter 2, our reported estimates of percolation

thresholds and critical exponents are more precise than previous results. We also

improve estimates of various universal amplitudes, wrapping probabilities, ratios

associated with the cluster-size distribution, and the excess cluster number. We
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also studied the bond and site directed percolation models on (d +1) dimensions

on simple-cubic and body-centered-cubic lattices in Chapter 3, with 2  d  7.

Generally, our estimates of thresholds and critical exponents are much more

precise than previously known results, especially in high dimensions where no

previous estimates are available.

7.2 Geometric structure of percolation clusters

In addition to estimating percolation thresholds and universal parameters, our

study also provide insights to understand the geometric structure of percolation

clusters in Chapter 4. For critical bond percolation on the square lattice, we show

that the density of bridges and nonbridges both tend to 1/4 for large system sizes.

In (Elçi et al., 2015), the authors derive an exact and more general formula for the

density of bridges, that is 1/(2(1 +
p
q)), for the critical random cluster model with

0 < q  4 on the square lattice.

On the square lattice, we have found that leaf-free configurations have the same

fractal dimension and hull dimension as standard percolation configurations,

while bridge-free configurations have cluster and hull fractal dimensions consis-

tent with the backbone and external perimeter dimensions, respectively. This

observation is also confirmed for site percolation on the triangular lattice and bond

percolation on the simple-cubic lattice. We also extend our study to the general

random cluster model with 0 < q  4 in two dimensions. Results fromMonte Carlo

simulations show that the leaf-free configurations have the same fractal dimension

and hull dimension as the corresponding standard random cluster configurations.

It would also be of interest to determine whether the fractal dimensions of cluster

size and hull length for bridge-free random cluster configurations again coincide

with dB and dE when q , 1.

174



Chapter 9 – Conclusion

Motivated by the nontrivial properties of leaf-free clusters, we then consider a leaf-

excluded percolation model which is defined as independent bond percolation

conditioned on the absence of leaves in Chapter 5. We study this model on

the square and simple-cubic lattices via Monte Carlo simulation, using a worm-

like algorithm. Our results imply that the phase transition of the leaf-excluded

percolation model belongs to the standard percolation universality class. It would

also be of interest to study a bridge-excluded percolation model, which can be

defined as independent bond percolation conditioned on the absence of bridges.

Intuitively, one would expect that large clusters are broken into a collection of

small clusters, and thus the critical behavior would change dramatically. To

numerically confirm this scenario would be interesting.

7.3 Phase transitions of an n-component face-

cubic model on the complete graph

We finally rigorously study phase transitions of an n-component face-cubic model

on the complete graph in Chapter 6, by a large deviations analysis. Limit theorems

are proved for the magnetization, which reveals that the phase transitions are

continuous for n  3 and of first order for n � 4. This clarifies the longstanding

uncertainty about the nature of the phase transition for n = 3. Both thermal and

magnetic exponents are 1/2 for n  3.

We also rigorously study the phase diagram of a general n-component face-cubic

model on the complete graph. We prove the phase diagram for n = 2 on the (J1, J2)

plane, except the region �J1 < J2 < 0 when J1 > 2. We proved that at least four

phases exist on the phase diagram: disordered, Ising, Potts, and face-cubic. In

the unproved region, we numerically observe a new ordered phase. We call it the
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super-ordered phase, since spins and colors are ordered simultaneously. Proving

the existence of the super-ordered phase is one of our future work.

In our future work, we will first prove the existence of the super-ordered phase for

n = 2, and then try to prove the phase diagram of the general n � 3 cases. In fact,

two proved regions J1  1 and J2  �J1 for n = 2 can be directly applied to the n � 3

cases. However, other regions for n � 3 are di�cult to prove. A major obstacle is

the validation of a conjecture, that is, that there are at most one dominant color in

any phase of the general face-cubic model. This seems a quite natural conjecture,

and a common sense in the study of phase transitions. However, finding a rigorous

proof is di�cult.
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