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Abstract

To engineer the wavefunction of a Bose–Einstein condensate is to exert control over
both the density and phase of the Bose–Einstein condensate order parameter. Hav-
ing the ability to engineer the condensate order parameter down to the smallest
length scale relevant to condensate dynamics—the healing length scale—would en-
able the study of new combinations of topological defects and may pave the way to
using Bose–Einstein condensates as versatile, precise quantum simulators.

In this thesis, we present a new wavefunction engineering technique which
reaches the sub-optical healing length scale. Influenced by magnetic resonance
imaging, we name this technique magnetic resonance control. This technique uses
time-varying coupling between internal spin states of a spinor Bose–Einstein con-
densate within a magnetic field gradient to address spatial regions of the conden-
sate, enabling control over both the phase and the density of the condensate order
parameter down to the healing length scale.

Techniques already exist to engineer condensate wavefunctions, but not with
such a fine degree of control. These techniques primarily rely on either the intensity
variation of a laser beam, which limits the resolution to the diffraction limit (larger
than the typically sub-optical healing length scale), or the adiabatic inversion of a
magnetic trapping potential, which can not be easily changed to produce a variety
of structures in the condensate wavefunction.

To develop our magnetic resonance control technique, we simulate a spinor
condensate in one dimension with time-dependent coupling between spin states
and time-dependent external magnetic field gradients using the Gross–Pitaevskii
equation. We show that magnetic resonance control can engineer a single black
soliton using experimentally feasible parameters. A black soliton is an ideal target
state to select for this demonstration because engineering such a state requires con-
trol over both the phase and density of the condensate with healing-length resolu-
tion. We demonstrate thatmagnetic resonance control can be extended to engineer
more complicated target states by simulating the creation of multiple solitons in a
condensate, with control over the initial positions and trajectories of the solitons.

When magnetic resonance control is applied to Bose–Einstein condensates in
the laboratory, it will be necessary to have an imaging system capable of resolving
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the fine structures created. As an alternative to high-cost, custom-manufactured
lenses, and in-vacuum optical systems, I have designed and bench-tested an ob-
jective lens with a high numerical aperture (0.36) and a long working distance
(35mm) consisting of standard catalogue lenses. Using 780 nm light, suitable for
imaging rubidium condensates, this objective can achieve a resolution of 1.3µm
across a diffraction-limited field of view of 360µm through a 5mm thick glass
window of a science cell. By changing the spacing between the lens elements, this
objective lens can compensate for the aberrations produced by a glass window up
to 15mm thick, and by changing the aperture size the objective becomes suitable
for diffraction-limited monochromatic imaging on the D line of all the alkalis.

Before performing proof-of-principlemagnetic resonance control experiments
on real Bose–Einstein condensates, we needed to construct an experimental ap-
paratus capable of producing spinor Bose–Einstein condensates. In this thesis I
summarise my main contributions to this group endeavour, including: construct-
ing the ultra-high vacuum system; supervising the bakeout of our vacuum system;
designing and aligning the optical systems to produce laser beams of different, tun-
able frequencies to trap, cool, and image rubidium gas; trapping a cloud of rubid-
ium atoms in a magneto-optical trap; constructing laser beam shutters, photode-
tectors, and photodetector signal filters; and designing and constructing our side
imaging and top imaging systems.

Using our spinor Bose–Einstein condensate apparatus, I performed the first
proof-of-principle magnetic resonance control experiments. With a pair of con-
densates side-by-side, separated by 200µm, we can use magnetic resonance con-
trol to invert the spin of one condensate only, while leaving the other condensate
unaffected.

We anticipate magnetic resonance control being used in the laboratory to en-
gineer the first black soliton in a Bose–Einstein condensate. Looking beyond soli-
tons, magnetic resonance control could have applications to the field of magnon
spintronics, and extending the technique to higher dimensions could enable the
study of exotic topological defects such as spin knots in a quantum fluid.
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C
Introduction

Welcome to my thesis! I hope you find the contents interesting and useful for your
own research endeavours. I have designed each chapter to be largely self-contained,
making it easier to skip to areas you are interested in; unless, of course, you are as-
sessing this thesis, in which case I hope you enjoy the cover-to-cover read. In this
chapter I place this thesis in the broader context of quantum simulation, explain
why we are interested in devising better ways to engineer the Bose–Einstein con-
densate (BEC) wavefunction, and review the current techniques for engineering
solitons in Bose–Einstein condensates. I summarise the main scientific contribu-
tions of this thesis, discuss the evolution of my research project, and provide an
outline of the structure of this thesis.

. Engineering the Bose–Einstein condensate wavefunction for
quantum simulation

An outstanding challenge in the physical sciences is the simulation of quantumme-
chanical systems. During the surging popularity of computers in the early s
people realised that simulating quantum mechanics with classical computers was
going to be a very difficult problem. In his  lecture, ‘Simulating Quantum Me-
chanics’, Richard Feynman discussed the situation as follows:

“And therefore, the problem is, how can we simulate the quantum me-
chanics? There are two ways we can go about it. We can give up on
our rule about what the computer was, we can say: Let the computer
itself be built out of quantum mechanical elements which obey quan-
tum mechanical laws. Or we can turn the other way and say: Let the
computer still be the same kind that we thought of before—a logical,
universal automaton; can we imitate this situation?” []

These two options have since formed two active fields of research; the former being
quantum simulation, the latter quantum computation.

While much progress has been made in the field of quantum computation [–
], we are still far from the realisation of a quantum computer with sufficient qubits
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 Chapter . Introduction

to simulate a condensed matter system of moderate size. A different approach is
to use a quantum simulator [] instead of a quantum computer. While a quantum
computer uses bits and gates to simulate a quantum system, a quantum simulator
uses one complex quantum system to mimic another completed quantum system
without the need for programmable logic [–].

For a quantum system to be a suitable quantum simulator, we need to be able
to do the following three things []:

. Set up amapping between theHamiltonian of the systemwe seek to simulate
and the Hamiltonian of the quantum simulator.

. Prepare the initial quantum state of the system for the start of the simulation
with high fidelity.

. Make high-precision measurements of the quantum simulator.

Systems proposed for quantum simulators include neutral atoms in optical lat-
tices, trapped ions, polar molecules, cavity arrays, quantum dots, superconduct-
ing circuits, photons, and nuclear spins. A summary of the potential of these
systems for quantum simulation, and experimental realisations, can be found in
Reference . Examples of experimental implementations include simulating the
Bardeen–Cooper–Schrieffer (BCS) model with liquid state nuclear magnetic reso-
nance [], observing the BCS-BEC crossover in Fermi gases [,] and simulating
the Dirac equation using a single trapped ion [].

For this thesis, we are particularly interested in the potential of Bose–Einstein
condensates as quantum simulators. Several proposals have been made to use
Bose–Einstein condensates to simulate aspects of cosmology [–], and experi-
mentally Bose–Einstein condensates have been used to study Hubbardmodels and
quantum phase transitions [], and black hole analogues []; do Bose–Einstein
condensates have the potential to simulate other systems?

For the purposes of most experiments, a Bose–Einstein condensate is well de-
scribed by the mean-field Gross–Pitaevskii model, in which a multi-component
condensate is viewed as amacroscopically occupied coherent quantum state, which
is then described by an order parameter inwhich a density and a phase is associated
with each spatial location within the condensate, for each internal component of
the condensate []. In this thesis, we follow the convention in our field and refer to
such an order parameter as a macroscopic wavefunction. Being macroscopic wave-
functions, Bose–Einstein condensates provide an isolated and highly controllable
platform which may prove ideal for quantum simulation of a variety of physical
systems [].

At the start of my research project, we asked ourselves: can the Bose–Einstein
condensate wavefunction be controlled rapidly, with arbitrarily high precision, to
create the desired initial conditions for quantum simulation of a variety of physical
systems? This is a very ambitious question to say the least, encompassing an entire
sub-field of investigation rather than a single doctoral project! Consequently, we
reduced the scope of this question to the following:



.. Dark solitons in Bose–Einstein condensates 

Can the Bose–Einstein condensate wavefunction be controlled rapidly,
with resolution at the smallest relevant length scale of the condensate, to
engineer a stable black soliton in the condensate?

One PhD project later, we can state that the answer to this research question is yes
in theory, and therefore probably for the purposes of experimental implementation.

We note that in practice it is unlikely that a perfect black soliton can be engi-
neered. Even aside from experimental imperfectionswhichwould cause deviations
from the black soliton mode (for example, drift of the dipole trap position relative
to the magnetic gradient coils), the rate of quantum depletion of the condensed
fraction into the non-condensed fraction is higher in a condensate with a black soli-
ton than one without; this quantum depletion perturbs the soliton so it is no longer
stationary []. Regardless, a black soliton is an appropriate target state for testing
a new wavefunction engineering technique, for the following reasons. First, a soli-
ton is a one-dimensional object. This allowed us to develop our proof-of-principle
technique in only one dimension, which is conceptually easier to consider, before
considering how to extend the technique to higher dimensions. Second, solitons
are the smallest one-dimensional structure that can exist with stability in a quan-
tum fluid. Engineering a stationary soliton in a Bose–Einstein condensate demon-
strates the ability to control the wavefunction down to the smallest relevant length
scale. Third, to engineer a black (stationary) condensate rather than simply a grey
(moving) soliton requires control over both the density and the phase of the con-
densate.

Techniques exist to engineer wavefunctions beyond the context of solitons and
vortices; for example, engineering the spin state of atoms in optical lattices [], or
spatially controlling the condensate scattering length to form spin interfaces [].
For the remainder of this chapter, we focus our discussion to existing engineering
techniques which aim to engineer topological defects in superfluids.

. Dark solitons in Bose–Einstein condensates

Non-linear systems support solitary waves, or solitons: excitations stable against
perturbations that propagate without changing shape. The field of soliton research
emerged in  when Scottish naval architect John Scott Russell observed a shal-
low water wave created by the sudden halt of a boat in a narrow channel propa-
gating without dispersion []. Since then, solitons have been observed in other
non-linear systems including optical fields [] and, of particular interest for this
thesis, Bose–Einstein condensates [, ].

Bose–Einstein condensates support either bright solitons or dark solitons, de-
pending on the sign of the s-wave scattering length as. When as < 0 the particle
self-interaction is attractive and bright solitons can form. These bright solitons are
localised density packets that propagate without dispersion, reminiscent of soli-
tons formed in water, and were first engineered at Rice University in  [].
When as > 0 the particle self-interaction is repulsive and dark solitons can form;
these are the type considered in this thesis. Dark solitons are stable notches in
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Figure .: The (a) density and (b) phase of a soliton with different velocities vsol in a homo-
geneous condensate, where c is the speed of sound in the condensate. These curves were
made using Equation ..

the condensate density, with an associated maximum phase shift of π, formed by
the balance of two opposing tendencies: the repulsive self-interaction seeking to
shrink the density notch, and the chemical potential limiting the sharpness of den-
sity gradients [, p. ]. Dark solitons in condensates were first engineered in
Hannover [] and the National Institute of Standards and Technology (NIST) []
in  using a phase-imprinting technique discussed in Section ...

In Bose–Einstein condensate literature, the term ‘dark soliton’ is used in two
contexts. The first is to refer to all solitons formed in a repulsive condensate, in
contrast to bright solitons (as used in the previous paragraph). The second is as
one of three categories of solitons formed in a repulsive condensate, qualitatively
determined by the depth (or ‘darkness’) of the soliton: a grey soliton has a shallow
density dipwith a broad, shallow phase gradient, a dark soliton has a deeper density
dipwith a steeper phase gradient, while a black soliton has a density dip that reaches
zero with a π phase discontinuity. This is demonstrated in Figure .. The fact
that the phase only exhibits a discontinuity when vsol = 0 leads to the following
observation: although solitons are sometimes referred to as topological defects [],
they do not have true topological protection since they can be smoothly deformed
away. Some believe solitons should be classed as pseudo-topological defects [].

The healing length ξ of the condensate,

ξ =
1√

8π n0 as
=

~√
2mµcp

, (.)

determines the width of the soliton in the condensate. Here n0 is the peak conden-
sate density, as is the s-wave scattering length,m is the atomic mass and µcp is the
chemical potential;

µcp = 4π ~2
n0 as
m

. (.)

The healing length is the shortest distance over which density perturbations exist
in a stationary state of a condensate; consequently, it is the smallest length scale
relevant to wavefunction engineering. To give an example, rubidium condensates
typically have a peak density of 1014 atoms/cm and an s-wave scattering length of
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An excellent derivation of the
soliton wavefunction can be found
in “Bose–Einstein Condensation of
Dilute Gases” by C. J. Pethick and
H. Smith [, p. –].

5.3 nm. For such a condensate the healing length is 270 nm, which is smaller than
the visible transitions in rubidium: typically 780 nm, with a more technically chal-
lenging transition at 420 nm. This sub-optical healing length scale precludes the
use of optical potentials alone for wavefunction engineering at the healing length
scale; this issue is discussed further in Section .. While lasers do exist which pro-
duce such short wavelengths, using them is an impractical solution because pro-
ducing a diffraction-limited spot size requires a very high numerical aperture lens,
which extremely limits the optical access around the condensate.

The wavefunction for a soliton in a one-dimensional homogeneous condensate
is

ψsol (z, t) =
√
n0

(
i
vsol
c

+

√
1−

(vsol
c

)2
tanh

(
5 (z − vsol t)

2
√
2wsol, v

))
e−i

µcp t

~ ,

(.)
where vsol is the velocity of the soliton, c =

√
µcp/m is the speed of sound in the

condensate, and wsol, v is the velocity-dependent width of the soliton,

wsol, v =
5 ξ

2

√
1−

(
vsol
c

)2 . (.)

The density at the base of a soliton is

nmin = n0

(vsol
c

)2
. (.)

Equation . shows that the soliton depth depends on its velocity; if vsol = 0, we
formablack solitonwithwidthwsol = 5 ξ/2. For the case of grey or dark solitons in
a trapped condensate, the soliton oscillates within the condensate as though it were
a particle of mass 2m [, ], turning at the point when the density dip reaches
zero; consequently, grey solitons have a larger amplitude of oscillation than dark
solitons.

While dark (moving) solitons have been engineered in condensates before, a
stable, single black soliton has to date not been experimentally realised in a con-
densate. The black soliton is an ideal target state for the demonstration of any
new wavefunction engineering protocol, because it requires both density control
and phase control at the healing length scale. If the engineering protocol forms
a density notch wider than the healing length, the notch will decay into multiple
grey solitons (Figure .(a)). Even if the density notch is engineered to the correct
width, the protocol must also engineer the requisite π phase discontinuity for the
soliton to be stable (Figure .(b)).

. Engineering solitons in Bose–Einstein condensates

.. Phase-imprinting

The first dark solitons in condensates were engineered using a technique called
phase-imprinting, where an off-resonant laser beam is masked to produce a ‘sharp’
intensity profile, then imaged onto the condensate [, ], as shown in Figure ..
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Figure .: Examples of poor soliton engineering. (a) If the density notch is wider than
the healing length (in this example, seven times wider) the feature is unstable and decays
into multiple grey solitons, even if the initial phase step is π. (b) If the density notch is
initially the correct width (wsol) but the phase step is not equal to π, the feature will de-
cay into one grey soliton by shedding sound waves. This data is from simulations of the
Gross–Pitaevskii equation, discussed in Chapter . This simulated condensate consists of
104 rubidium atoms (87Rb) in a harmonic trapwith an axial frequency of 2.4Hz and a radial
frequency of 158.4Hz, but the general principles illustrated apply to all condensates.
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Figure .: From J. Denschlag et. al.  []. Reprinted with permission from AAAS. A
schematic of the phase imprinting technique (upper left) shows a mask being used to shine
light on half the condensate, to imprint a π phase step. Since this technique does not also
engineer the condensate density, the engineered feature evolves into a grey soliton by shed-
ding sound waves (upper right, lineout from ‘H’). Experimental data (A–E) shows the grey
soliton moving downwards through the condensate, while the higher density sound waves
move upwards. This behaviour is also apparent in the simulated data (F–J).

Phase-imprinting was first
proposed by Dobrek et al. [] as a
way of producing a vortex in a
condensate, using a circular phase
mask. However this was never
successfully implemented due to
the deleterious diffraction effects at
the 2π boundary of the phase
mask (K. Helmerson, private
communication).

The beam induces a light shift (ac Stark shift), causing the phase of the condensate
to accumulate faster in the exposed region. If the condensate is exposed to this
beam for an appropriate length of time a phase shift of π is produced. But phase-
imprinting is fundamentally limited by diffraction at the edge of the beam; the
resulting phase profile is not a discontinuity, instead the phase changes across a
distance greater than the (sub-optical) healing length. This means that, at best,
this technique can only produce moving solitons. A further problem is that phase-
imprinting does not allow direct control over the condensate density. The induced
phase gradient causes density to be ejected from the soliton site in the formof either
sound waves or supersonic shock waves [], further perturbing the condensate
from the target state.

.. Matter-wave interference

Dark solitons can be engineered using amatter-wave interference technique to con-
trol the density profile of the condensate. In this technique, first proposed by Scott
et al. in  [], two condensates initially held in a double-well potential ex-
pand into each other with low collisional energy as the potential is slowly removed.
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Figure .: Reprinted with permission from A. Weller et. al.  []. Copyright  by the
American Physical Society. Two condensates are transferred from the double-well potential
of an optical lattice to a single harmonic potential. This is an example of matter-wave in-
terference being used to engineer solitons. As the condensates interfere with low collisional
energy an array of grey solitons form (the two deepest solitons are marked with arrows). Ex-
perimental data is shown in (a), with simulations shown in (b) and (c); the latter has been
convolved with the resolution of the experimental data. Since only the density of the con-
densate has been directly controlled, not both the density and phase, this technique can only
form even numbers of solitons.

Normally the collision of two condensates would result in a cosine standing-wave
interference pattern, as first observed by W. Ketterle in  []. However, if the
collisional energy is less than the repulsive interaction energy [] the atomic in-
teractions modify the shape of the interference pattern into an array of grey soli-
tons []. Viewed another way, as the collisional energy decreases the wavelength
of the interference pattern increases. If the wavelength of the interference pattern
equals the width of a soliton, a soliton array is formed []. In experiments, the
requisite double well potential has been formed by either an optical lattice (Fig-
ure .) [] or a blue-detuned laser which forms a repulsive barrier in a single
condensate [].

Matter-wave interference alone does not add an extra π phase step across the
condensate, which means that it will form only even numbers of solitons moving
symmetrically apart (such that the array of phase steps across the condensate sum
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to zero). But matter-wave interference combined with phase-imprinting can pro-
duce odd-numbered soliton arrays. This technique was proposed by Carr et al. in
 [], and realised experimentally by Theocrasis et al. in  []. In principle
this combination of phase and density engineering could be used to make a single
black soliton, but at best has matched the achievements of phase-imprinting by
making a single grey soliton []. This is because matter-wave interference shares
the same fundamental limitation as phase-imprinting: it is diffraction-limited and
as such cannot engineer sub-optical features.

. Other wavefunction engineering techniques

This literature review would not be complete without discussing wavefunction en-
gineering techniques that aim to form structures other than solitons.

.. Laguerre–Gaussian beams

Laser beams with Laguerre–Gaussian spatial modes carry quantised angular mo-
mentum, which can be coupled into two internal states of a Bose–Einstein con-
densate to form a quantised vortex in one internal state [–]. Intricate ring lat-
tices suitable for trapping cold quantum gases can be formed by interfering two La-
guerre–Gaussian beams []. These techniques have a similar limitation to phase
imprinting, in that they are optical techniques limited in resolution by diffraction
effects. It is not apparent that these techniques could be used to form non-radially
symmetric density and phase structures.

.. Topological phase imprinting

By adiabatically inverting amagnetic trapping potential, a relative geometric phase
shift can form across a condensate []. This technique has been used to engineer
a vortex [, ] and a two-dimensional skyrmion [, ] in Bose–Einstein con-
densates. It is possible that this technique could be used to form a spin knot in a
condensate [], or a vortex with very high vorticity [–]. While it is apparent
that this is a powerful technique, it is not very flexible because it is reliant on the
configuration of the magnetic trapping potential on the experimental apparatus,
so it would not be easy to create a situation where a variety of structures could be
formed in succession using the same condensate machine.

. What’s new in this thesis

The primary scientific result in this thesis is the development of a new wavefunc-
tion engineering technique, which we name magnetic resonance control (MRC).
The optical diffraction limit does not apply toMRC because it is a non-optical tech-
nique; instead the resolution ofMRC is provided by a linearmagnetic field gradient
that induces a spatially-varying level splitting between two internal states. In the
presence of this gradient a strong time-dependent coupling between the states is
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used to control both the phase and the density of the quantum fluid, more rapidly
than the fastest system dynamics of the uncontrolled fluid.

In this thesis our exemplar quantum fluid is a spinor Bose–Einstein condensate
with three Zeeman sublevels coupled by radiofrequency-driven magnetic dipole
transitions. More generally, MRC is applicable to any spatially-extended quantum
systemwith internal states as long as the splitting between these states can bemade
spatially-dependent and the states can be coupled in a time-dependent way. Suit-
able quantum systems include Fermi gases [], atoms in optical lattices [,,],
and 3He films [].

I demonstrate in simulations that magnetic resonance control can engineer a
black soliton in a Bose–Einstein condensate using experimentally realistic param-
eters, and perform the first proof-of-principle experiments using this technique in
our laboratory. Our vision is that magnetic resonance control will one day enable
Bose–Einstein condensates to be used as quantum simulators for a variety of quan-
tum systems, and enable the controlled creation and study of exotic topological
defects.

An instrumentation result presented in this thesis that the quantum gas com-
munity may find interesting is the high-resolution objective lens I have designed
and bench-tested. This objective lens should enable diffraction-limited imaging of
topological defects in a Bose–Einstein condensate through the thick glass wall of a
vacuum cell using optical elements available in standard lens catalogues. Capable
of achieving resolution of around one micrometer with a wide field of view, for the
imaging wavelengths of all the alkalis, it provides a versatile, low-cost option for
high-resolution imaging.

. Chronology of this research project

We planned for my research project to be primarily experimental in nature. We
started a collaboration with theorist Joseph Hope at the Australian National Uni-
versity, with the intent that his group would provide the theoretical expertise and
we would provide the experimental expertise. As such, for the first two years of
my project I devoted my time primarily to the construction of our spinor Bose–
Einstein condensate apparatus, a monumental task shared between the othermem-
bers of my research group. As collaborations are wont to do, ours evolved into
a joint theoretical collaboration, with both parties performing theoretical investi-
gations for the remainder of my research project. This evolution is reflected in
the structure of this thesis: first focusing on building a spinor Bose–Einstein ap-
paratus and associated hardware, then presenting my own extensive simulations
developing our magnetic resonance control protocol, and finally exploring in the
laboratory what interesting things can be achieved by applyingmagnetic resonance
control to our condensates within the capabilities of our apparatus.



.. Outline of this thesis 

. Outline of this thesis

Chapter  presents my contributions to building our spinor Bose–Einstein conden-
sate apparatus: constructing the ultra-high vacuum system; baking the vacuum
system to achieve the vacuum pressure required for long-lived Bose–Einstein con-
densates; installing optics and electronics needed to trap and cool atoms; designing
our ‘workhorse’ side-imaging system and creating our low-resolution top-imaging
system.

Chapter  presents the design, construction and performance testing of our
high-resolution objective lens. This work was published in Optics Express []. I
then discuss the design of a complete imaging system to be used with the objective
lens.

In Chapter  I move away from the laboratory and delve into simulations, de-
veloping our new technique for engineering condensate wavefunctions. I simulate
a spin- condensate in one dimension and demonstrate how magnetic resonance
control can engineer a stable black soliton in the condensate. I extend this work
by simulating the creation of multiple solitons, with control over their positions
and initial trajectories. Sections of this chapter form the basis of our manuscript
published on the ArXiv [], currently in peer-review.

Chapter  explores the range of condensate parameters in which our magnetic
resonance control technique can successfully engineer a stable black soliton with
experimentally realistic parameters. This work will be valuable for implementing
the protocol in laboratories.

In Chapter  I apply magnetic resonance control to the Bose–Einstein conden-
sates in our laboratory, displaying individual control over the spin projection of
two spatially separated condensates.

Chapter  concludes this thesis by speculating on the future directions of mag-
netic resonance control.





C
Building a spinor Bose–Einstein

condensate machine

When I joined the spinor Bose–Einstein condensate research group atMonashUni-
versity in , the laboratory contained two empty optical benches and dreams
for the future. Transforming the space into a functional research laboratory was a
monumental task and a team effort from the whole research group. In this chapter
I present the aspects of the spinor Bose–Einstein Condensate apparatus that I was
primarily involved with. Further information about other aspects of our appara-
tus is presented in the PhD theses of my colleagues Alex Wood [] and Martijn
Jasperse [].

. Overview of the apparatus

Our spinor Bose–Einstein machine follows the design of J. Porto and I. Spielman
at NIST []. Construction of the vacuum system is discussed in Section ., with
the process to obtain ultra-high vacuum in Section .. An atomic beam is formed
using a collimated effusive oven, and slowed using a single-layer, variable pitch
Zeeman slower []. This atomic beam loads a 3D magneto-optical trap (MOT)
in the science cell, an optically flat glass cell chosen to maximise optical access,
described further in Section .. A photograph of the apparatus, taken in June
, is shown in Figure ..

I was heavily involved with constructing the apparatus up to and including
loading atoms into the MOT, and with building the associated electronics (Sec-
tion .) and optics required (Section . and Section .). I then developed the
high resolution imaging system presented in Chapter  while Alex Wood and Rus-
sell Anderson continued down the temperature scale to make BEC. Full details of
how we create BECs are in Alex’s thesis []. Briefly, we use a molasses cooling
stage and magnetic trapping stage, then load into a hybrid magnetic and optical
dipole trap, before finally reaching condensation in a purely optical cross-beam
dipole trap. The absence of magnetic trapping in the final stage creates a spinor
Bose–Einstein condensate, in which there remains a spin degree of freedom. This


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.. Constructing the vacuum system 

I constructed the Zeeman slower
in a rd year research project in
 [].

is essential, not only for my work on magnetic resonance control, but also for my
colleagues’ work on studying the effects of magnetic gradients on spinor conden-
sates [] and on Faraday imaging of condensates [].

. Constructing the vacuum system

At the start of my PhD project in March , the vacuum system was still in two
pieces. One section contained the rubidium oven, a 75 L/s ion pump, atomic beam
collimator, and Zeeman slower, and was constructed by Alex Wood as part of his
Honours project in  []. This vacuum section is shown in Figure .. During
my Honours project in  [] I constructed the ultra-high-vacuum (UHV) sec-
tion, which houses a 75 L/s ion pump (Gamma Vacuum 75S), an UHV-grade ion
gauge, an Extorr residual gas analyser (RGA) and the titanium sublimation pump
required to maintain ultra-high vacuum pressure of less than 10−11 Torr. To these
vacuum components I attached a temporary (not optically-flat) glass cell fed by
a rubidium getter (Alvatec AS-3-Rb-10-V). This vacuum section is shown in Fig-
ure .. The reason for this separate construction was that our optically flat glass
cell, custom-made by Hellma Optik GmbH Jena, suffered extended delays. While
waiting for it to arrive we wanted to characterize the Zeeman slower and practice
making a magneto-optical trap (MOT).

Figure .: The state of the apparatus at the start of my research project. This is one half of
the vacuum system, containing the rubidium oven, ion pump, atomic beam collimator, and
Zeeman slower. Notice the junction of viewports in the lower right corner, which was later
removed to join the two haves together. The other half of the vacuum system is shown in
Figure ..
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Figure .: The state of the apparatus at the start of my research project. This is the UHV
system containing the ion pump, ion gauge, residual gas analyser (RGA) and titanium sub-
limation pump. This photograph shows the temporary glass cell, fed by a getter, used to
make a ‘practice’ magneto-optical trap (MOT) during my Honours project as we awaited
the arrival of our optically-flat glass cell. Once the cell arrived, we mated this half of the
vacuum system to the other half (shown in Figure .).

Positioning a copper gasket in
mid-air for a horizontal vacuum
join is an art in itself. Kudos to Alex
Wood for perfecting this technique.

.. Installing the glass cell in our vacuum system

In December  we had a MOT in the temporary glass cell, and by August 
the Zeeman slower had been extensively characterized by Alex Wood []. By this
time the custom glass cell had finally arrived, enabling the completion of our vac-
uum system. The mating of the two sections was the result of a heroic day’s work,
where we broke vacuum in the UHV section, removed the temporary glass cell,
pushed the UHV section into position next to the Zeeman slower, and installed
the glass cell. Some action shots of the UHV migration are shown in Figure ..

Attaching the glass cell to the vacuum system was not easy. We first attached
the glass cell to the Zeeman slower vacuum flange via a flexible metal bellows. We
then carefully positioned the very heavy (around 100 kg) UHV system by hand to
sit less than 1mm from the open end of the glass cell with an accuracy of better
than 100µm, such that once the glass cell was bolted in place the cell remained
axial with the atomic beam. I monitored the strain on the glass cell while the final
bolts were tightened, to make sure we didn’t break the glass cell by over-tightening
the bolts, by viewing the glass cell through a pair of crossed-polarisers and making
sure that there was no significant change to the strain pattern as each bolt was
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(a)

(b)

(c)

Figure .: Positioning the UHV system, in preparation for installing the glass cell, by Alex
Wood and Russell Anderson. The School’s talented workshop technician BrettWilliams was
on hand to provide professional advice. Shown here are photographs automatically taken
by a webcam as they (a) were getting ready to push the UHV chamber towards the Zee-
man slower, (b) were halfway through the migration, and (c) after the UHV chamber was
carefully positioned, leaving the precise gap needed for the glass cell.
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Figure .: Lincoln Turner had the honour of tightening the final bolt to join the glass cell to
the vacuum system, while I monitored the strain in the glass cell using crossed-polarisers.

gradually tightened. A photograph of this event is shown in Figure ..

. Bakeout

In order for a BEC to have long trap lifetime of several seconds it must exist within
ultra-high vacuum, where the pressure is on the order of 10−11 Torr. Vacuum
pumps cannot reach this pressure until the water monolayer coating the inside of
the steel walls, and the hydrogen embedded in the steel, is removed. To do this we
performed a bakeout, where the UHV chamber was heated to an average tempera-
ture of 250 ◦C for several days.

Although our bakeout ultimately had a successful conclusion, it was an ex-
tended lesson in how not to do a bakeout. What should have taken two weeks
to complete took close to two months due to a succession of vacuum leaks. Here
are the two main lessons we learned:

• Support the vacuum system at a minimum number of points, and if possible
don’t bolt the system down to the table, so that it is free to expand and con-
tract during the bake. Our leakswere caused by our vacuum system straining
against supports and opening joins while it was heating.

• It is preferable to over-tighten, rather than under-tighten, bolts on vacuum
flanges. We initially followed the torque guidelines recommended by Ref-
erence . When our vacuum system kept springing leaks, we tightened the
bolts further, with no ill-effects.
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(a) (b)

Figure .: Preparing for bakeout. (a) The UHV chamber wrapped in heater tapes, with a
tight base layer of aluminium foil for increased conduction, before the addition of a loose
top layer of aluminium foil to trap air for insulation. The glass cell is shown here wrapped in
lens tissue for protection. Thermocouples for temperature monitoring can be seen leaving
the vacuum system in the lower left corner. The black rectangles near the glass cell are some
of the bias coil supports. (b) The view inside the oven constructed around the glass cell using
aluminium foil-wrapped fire bricks. The glass cell was protected from baking residues by
an aluminium sheet. At the base of the oven is the heating element used to heat the cell via
convection rather than conduction, to ensure even heating.

Limited by the  channels of our
SRS SR thermocouple reader.

At first our bakeout went relatively to plan. I wrapped the UHV system in
fibreglass heater tape and insulated it with several layers of aluminium foil (Fig-
ure .(a)). We constructed an oven around the glass cell made of fire bricks and
ceramic fibre board, so the cell was heated by convection from a heating filament
instead of heater tape (Figure .(b)). This prevented the glass cell developing hot
spots, which could have otherwise broken the cell.

The heating elements were manually controlled using Variacs (variable auto-
transformers), with thermocouples monitoring temperatures at  locations. To
prevent leaks occurring during the bakeout, the vacuum system had to be heated
slowly (at a rate of less than 20 ◦C per hour) and evenly (notably, keeping the tem-
perature difference across any glass-to-metal seals smaller than 10 ◦C). To achieve
this, I monitored the reports from the thermocouple reader using a LabVIEW pro-
gram (developed by Martijn Jasperse) and manually adjusted the Variacs accord-
ingly. Example screenshots of this software are shown in Figure . and Figure ..
So that we could sleep (mildly) at ease, the Variacs were connected to an interlock
system that would notify us through emails and text messages if any temperatures
deviated beyond set ranges. I highly recommend using an interlock system during
bakeout; further details of the interlock system used is in Alex Wood’s thesis [].



 Chapter . Building a spinor Bose–Einstein condensate machine

Figure .: Screenshots of part of the temperaturemonitoring software used during the bake-
out. Red letters indicated which Variacs controlled the temperature of different regions of
the vacuum system. Temperatures were shown in real time, reported from the thermocou-
ple monitor.
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Figure .: A screenshot of part of the temperaturemonitoring software use during the bake-
out. This showed real-time graphs of the temperature at different regions of the vacuum sys-
tem, allowing us to become ‘human PID controllers’ by adjusting the Variacs to ensure even,
slow heating of the vacuum system. In this screenshot, the temperatures have stabilised.
This software also displayed the pressure in the vacuum system, which on good days slowly
decreased (like shown here) and on bad days suddenly spiked as leaks opened up in the
vacuum system.

Yes, our bakeout was a pretty
trying experience. If you are about
to embark on a bakeout, I hope
your experience is better.

By removing the third support we
had to decide to remove the gate
valve at the end of the atomic
beamline, originally included to
allow future expansion of the
vacuum system. Hopefully this
decision will not be cursed by
future members of the research
group.

Our first significant bakeout misfortune occurred while we were cooling the
vacuum system back to room temperature after baking at an average temperature
of 250 ◦C for six days. When the average temperature was 200 ◦C, with the bulk
metal of the UHV end still above 250 ◦C, a leak suddenly appeared which raised
the pressure from 10−7 Torr to 10−4 Torr (the pressure stabilised here due to the
efforts of the roughing pump). We initially thought this leak was due to either cool-
ing too rapidly, or not enough tension in the bolts around the leak point. However
after several smaller leaks appeared over the next several weeks we realised the
problem lay in the vacuum support structures. The UHV system was held by three
supports, which seemed a sensible choice given the weight of these components.
Unfortunately, because the supports were necessarily at different heights, they ex-
panded by different amounts during heating; as the system heated and expanded,
the supports stressed the core of the vacuum system, opening up joins. To solve
this problemwe removed the least-essential third support and removed the clamps
fixing the supports to the table so that the system could expand more freely. After
doing so, we were finally able to bake the vacuum system for four consecutive days,
and cool back to room temperature without any leaks occurring, thus concluding
two months of bakeouts. A picture of the vacuum system post-bakeout is shown
in Figure ..

The post-bake pressure in the vacuum system was 10−10 Torr. To reduce this
pressure by a final order of magnitude, we fired the titanium sublimation pump
filaments to coat the interior surfaces of the vacuum system with titanium. We
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happily achieved a final pressure of 4 × 10−11 Torr. This value approaches the
floor of the ion gauge, which has an x-ray limit of 2 × 10−11 Torr. This pressure
is low enough to enable BEC trap lifetimes of several minutes. Our pressure may
have been limited in the end to the effectiveness of our titanium sublimation pump,
which was exposed to atmosphere while hot during the first vacuum leak. As a
result, we believe that it did not coat the steel surfaces with as much titanium as it
should have, to absorb the remaining hydrogen outgassing from the steel.
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 Chapter . Building a spinor Bose–Einstein condensate machine

This issue is actually being
remedied by my colleagues as I
write this thesis, demonstrating
how quickly apparatus chapters can
become dated.

We were perhaps influenced in
this naming by the Australian
Synchrotron across the road from
our laboratory.

. Optics after the tapered amplifier

Trapping atoms in the MOT requires laser beams of four different frequencies,
around the cooling and repump transitions. For 87Rb, the cooling and repump
transitions are between F = 2 → F ′ = 3 and F = 1 → F ′ = 2 respec-
tively. The MOT trapping light is detuned 16MHz below the cooling transition,
and requires the ability to sweep the frequency 60MHz below resonance during
the molasses stage. The MOT repump light is resonant with the repump transition.
The Zeeman slower uses slowing light detuned 160MHz below the cooling transi-
tion, with repump light detuned 160MHz below the repump transition. Imaging
requires yet another frequency; the imaging beam is resonant with the cooling tran-
sition.

To produce these beams we designed an optical layout for the laser table that
uses only three lasers, which are all MOGlabs external cavity diode lasers (ECDLs).
The master laser provides the input for a tapered amplifier (TA-0780-1500, m2k-
Laser GmbH) housed in the master oscillator power amplifier (MOPA), and is
locked to a single frequency using a modulation transfer spectroscopy (MTS) lock
developed by my colleague Vlad Negnevitsky []. The MOPA produces up to
800mW of light, which is used to form the MOT trapping beams, Zeeman slower
beam and imaging beam. The Zeeman repump laser provides the repump light
for the Zeeman slower, and is locked referenced to the master laser with a beat-
note lock []. The MOT repump laser provides the repump light for the MOT,
and is locked using a current-modulated saturated absorption spectroscopy lock.
Schematics of the three laser locks are shown in Figure .. Ideally a single laser
would provide all the repump light needed, but our repump lasers have both suf-
fered from poor performance, producing less than 50mW each.

The lasers and MOPA are located on one optical bench (the ‘laser table’) while
the vacuum system is located on a second optical bench (the ‘vacuum table’). This
is to minimise electrical equipment and stray fields near the science cell. We use
polarisation-maintaining (PM) optical fibres to transfer light from the laser table to
the vacuum table. I was responsible for designing and building the optics after the
MOPA which split the amplified light into three paths, or beamlines, for the MOT
trapping beams, Zeeman slower beam and imaging beam, shifting the frequency
of each beam as required with acousto-optic modulators (AOMs). A schematic of
the beamline optics is shown in Figure .

The beamlines experienced several iterations as our requirements changed. For
instance, our original intention was use a six-way fibre splitter to form the sixMOT
beams, which required the MOT repump light and the MOT trapping light to be
coupled into the same fibre. This is very difficult and wasted weeks of time, avoid it
if you can. We abandoned this approach for other reasons, discussed in Section ..

AOMs change the pointing direction of the output beam, depending on the
frequency shift required. If we do not need to change the frequency of a particular
beamline during an experiment, or from one experiment to the next, this is not a
problem because the static pointing direction does not reduce the efficiency of the
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Figure .: Layout of the locks for the master laser, Zeeman slower repump laser and MOT
repump laser. All three lasers are MOGlabs external cavity diode lasers. The master laser
uses a modulation transfer spectroscopy lock. The Zeeman repump laser is referenced to
the master laser using a beatnote lock. The MOT repump laser uses a standard current-
modulated saturated absorption spectroscopy lock. If the Zeeman repump laser could pro-
duce 100mW of light we would retire the MOT repump laser, which has an unreliable lock,
and produce all our repump light with the one laser. Image courtesy of AlexWood,modified
with permission [].

fibre couple. But in some cases we need to sweep the frequency over a large range
during an experiment, like the MOT beamline during the molasses stage. This
would ordinarily drastically reduce the fibre coupling efficiency. To combat this,
we set up these AOMs in a double-pass configuration [], shown in Figure .. A
perfectly aligned double-passed AOM does not allow the pointing direction of the
beam to change as the frequency changes. In practice, some deviation in pointing
direction still occurs but it is greatly reduced. For example, as the frequency of
the AOM in the MOT beamline is swept, the fibre coupling efficiency maintains a
FWHM of 85MHz.
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its propagation distance, as we require it to have the greatest power stability. Image credit
to Alex Wood, modified with permission [].
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MOPA. We use a telescope to shrink the beam before the AOM for maximum diffraction
efficiency. To minimise changes in the pointing direction of the double-passed beam as the
AOM frequency changes, the lens after the AOM is positioned one focal length from both
the AOM and the mirror.
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. Trapping atoms in the magneto-optical trap

With an operational vacuum system and light for the MOT and Zeeman slower
piped over to the vacuum table, we could then build the optics on the vacuum table
to start trapping atoms in the MOT. While Alex Wood took charge of the Zeeman
slower optics, I created the six MOT beams.

The first stage was to combine the MOT cooling light and repump light, and
then split this beam into six. To do this, I designed a system using minimal optical
components where the power balance of each pair of counter-propagating beams
is independently adjustable, making the task of balancing the powers in each MOT
beam relatively straight forward. This layout is shown in Figure .. These op-
tical components were mounted onto fixed-height 1 inch diameter posts, ranging
between 17.5mm and 25mm tall, to set the beam height at only 45mm above the
vacuum table. This was the height required for direct input into the MOT beam
expanders.

The MOT cooling and repump light is collimated after the optical fibre using a
Thorlabs F810APC-780 collimator to form a 1/e2 beamdiameter of 7.5mm. After
splitting, we expand the six beams to a diameter of 16mm using beam expanders
I designed and constructed during my Honours project []. Within each beam
expander (not shown in Figure .) the MOT beam is circularly polarised using a
quarter-wave plate.

Our original plan when designing these beam expanders was that the MOT
cooling and repump light would be combined into one fibre, and then this fibre
would be split into six fibres which could then be attached directly to each beam
expander; removing the need for a lot of optics on the vacuum table. However,
Philip Starkey determined during his Honours project that it is very difficult to
build your own fibre splitter that both splits the power evenly and maintains polar-
isation stability [], and unfortunately a commercial fibre splitter was beyond our
budget.

Once the MOT beams were aligned and the powers in each beam were bal-
anced, and the Zeeman slower beam was aligned and slowing atoms, we were able
to start trapping atoms. A photograph of the MOT when it is well aligned is shown
in Figure ..
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Figure .: Layout of the optics around the glass cell used to form the six MOT beams. For
simplicity, only optics on the ground floor layer of the vacuum table are shown; the sixMOT
beamexpanders are not included in full detail. This diagram shows that the power balance in
each pair of counter-propagating beams (shown in a different colour) can be independently
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aligned at 45 degrees to the beam path.
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Figure .: Aphotograph of atoms trapped in theMOT, takenwith a camera with sensitivity
extending into the near IR. For scale, the glass cell is 40mm tall.
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. Laser shutters, photodetectors and signal filters

While building our spinor BEC apparatus, the entire research group constructed
many of the electronic devices needed to make and perform experiments on BECs.
As my contribution to this effort, I built several laser shutters out of recycled hard
disc drives (HDDs), and designed and constructed photodetectors and signal filters
for our laser beam power monitoring system.

.. Laser shutters

During an experimental run we need to automatically block different laser beams.
We use acousto-optic modulators (AOMs) not only to change the frequency of
beams, but also to rapidly switch beams on and off (with typical switching times
< 1µs). But sometimes during an experiment we require beams to be switched off
for several seconds. If we switched the AOM off for this long, it would cool down,
changing the diffraction efficiency (and hence the beam power) during an experi-
ment. To avoid this problem, we first block the beam rapidly using an AOM, then
use a (comparatively slower) mechanical laser shutter to block the beam, letting us
switch the AOM back on before it cools.

On some beamlines we use commercial laser shutters (SRS SR475); for others
I constructed custom shutters made from the voice-coil actuators (or read-write
arm) from recycled HDDs [], and assembled electronic drivers for each using
printed circuit boards purchased from MOGlabs (SD-002). Figure . shows an
assembled shutter and driver, while Figure . shows the driver circuit diagram.

The main feature of the driver is the 1mF capacitor that discharges into the
voice-coil of the HDD read-write arm, moving the arm at 17m/s (the exact speed
being dependent on the model of HDD used), which blocks a 1mm 1/e2 diameter
beam in 100µs. The HDD shutter has three main advantages over commercial
shutters: it is faster than the SR shutter, which moves at only 10m/s, blocking
the same beam in 190µs (Figure .); it is much cheaper, at a quarter of the cost of
the commercial shutter; and it has a more compact design which requires less free
beam propagation distance. The disadvantage of our HDD shutters is that they are
less robust than commercial shutters. In our laboratory we use the HDD shutters
where speed is essential, access is tight, or wherever our budget requires them.

.. Photodetectors

I designed and constructed several photodetectors with the intent of installing a
laser powermonitoring system at locations throughout our optical system, tomon-
itor the stability of alignment into fibre couples and AOMs. In practice we decided
that a complete laser power monitoring system was not necessary; instead we have
used them for other applications. We use them to continuously monitor the ‘seed’
input beam to the tapered amplifier as part of an interlock system that turns off
the tapered amplifier if the seed power drops below a threshold value, to prevent
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Figure .: A photograph of the voice-coil actuator cut from a HDD, with an aluminium
flag attached used to block the laser beam, and the circuit used to control the shutter (either
with a manual switch or a transistor-transistor logic (TTL) signal).

Figure .: Circuit diagram for theHDD shutter driver, from theMOGlabs SD-002manual.
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Figure .: SIMetrix simulation of the photodetector circuit. (a) Response to a step function
input signal showing a rise time of 0.8µs. (b) Frequency response curve showing a −3 dB
point, or bandwidth, of 5MHz.

damage to the tapered amplifier. We use them tomeasure delay times for the HDD
shutters, which are dependent on beam alignment.

The photodetectors convert a 0–500µW input signal incident on a silicon pho-
todiode to a 0–10V output signal. To be sensitive to weak pick-off beams, they are
shot noise limited at input powers above 60µW. To achieve this performance I
optimised resistor and capacitor values by simulating the circuit using SIMetrix,
and selected two op-amps with stringent requirements on voltage offsets, voltage
and current noise densities, bias currents and gain-bandwidth products [, ch. ].
SIMetrix simulations indicate the photodetector has a rise time (10 − 90) of
400 ns and a bandwidth of 5MHz (Figure .). This is faster than theAOMswitch-
ing time, which means they can resolve the salient features of an experimental run.
The photodetector circuit diagram is shown in Figure .. A photograph of a con-
structed photodetector is shown in Figure .
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Figure .: Circuit diagram of the photodetectors which convert an input light signal of 0–
500µW (D) to an output signal of 0–10V (OUT). Black components are suitable for most
applications to filter noise from the power supply, while orange components are specifically
chosen to produce a shot-noise limited signal between 60–500µW with minimal voltage
offset. The transimpedance amplifier converts the input current to a 0–1V signal and the
output buffer multiplies this signal by 10. The output buffer adds capacitive load-driving
ability so that the photodetector can be connected to the filter box by a long firewire cable.
The capacitance-multiplier power filter reduces the power supplied by a separate 15Vpower
supply (POS, NEG) to 11V (VCC, VEE) while removing AC noise from the power supply.
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Figure .: One of the photodetectors housed in a small box (with lid removed for photo-
graph). For scale, the circuit board is 25mm across.

.. Signal filters

Our data acquisition system (National Instruments PCIe-6363) can monitor one
photodetector at 2MSPS, corresponding to a bandwidth of 700 kHz, or monitor
16 photodetectors at the slower rate of 60 kSPS. Since the photodetectors designed
in Section .. have a bandwidth of 5MHz, monitoring multiple photodetectors
simultaneously would result in a noisy signal. To allow us to simultaneously mon-
itor powers in different locations, I designed and constructed anti-alias filters for
each photodetector to optionally reduce the bandwidth to 100 kHz. The filter cir-
cuit diagram is shown in Figure .. Results of simulations using the filter design
software LTspice are shown in Figure .. Using a Bessel-type filter, in contrast to
Butterworth or Chebyshev filters, maintains a good response in the time domain,
with minimal overshoot or ‘ringing’ [, p ]. We can use the filters when moni-
toring many photodetectors, or bypass the filter when we wish to perform a wider
bandwidth measurement of only one photodetector.
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An example of an alternative
measurement technique is Faraday
imaging of condensates, developed
by my colleague Martijn
Jasperse [].

This isn’t a typographical error,
the effective pixel size in µm is
coincidentally the same number as
the magnification.

This coordinate system is defined
in Figure ..

. Our imaging systems

The primary measurement technique used in Bose–Einstein condensate physics is
absorption imaging [], where resonant light is absorbed by the condensate and a
shadow is cast onto a camera. In our laboratory we have the ability to image con-
densates from the side or from the top as required. I designed the image-forming
optics for the side imaging system, and was in charge of the design and alignment
of the image-forming optics for the top imaging system. The experimental details
of our typical absorption imaging sequence is discussed in Alex Wood’s thesis [].

As discussed below, both of these imaging systemhave relatively low resolution;
suitable for observing the bulk structure of condensates, but not fine structures like
solitons. In Chapter  I present a high resolution imaging system, to be installed
when we require the ability to image fine structures within condensates.

.. Side imaging

The simplest of imaging systems is a spherical singlet lens and a camera; outweigh-
ing its simplicity is the high degree of spherical aberration such a system exhibits,
particularly with a thick glass cell in front of the object. We reduce spherical aber-
ration in our side imaging system by using two ‘back-to-back’ achromats, with a
small distance between the lenses to accommodate an aperture. The objective lens
and image-forming lens have a focal length of f1 = 50mm and f2 = 100mm
respectively, and are both 1 inch in diameter. This small diameter allowed close
placement of the optics to the glass cell without obstructing the MOT beams. The
lenses and aperture are housed inside a Thorlabs 1 inch lens tube attached to the
camera to reduce stray light.

The achromats are infinity-corrected, meaning that aberrations are minimised
when the rays from the object are collimated between the two lenses. To achieve
this the lenses are positioned as shown in Figure .. The aperture between the
lenses has a diameter of 15mm to further reduce aberration. The size of this aper-
ture was chosen by simulating the imaging system in the imaging design software
Zemax. In this simulation, we sought an aperture size which produced a ray trace
spot size equal to the diffraction-limited Airy disc; a smaller aperture would cause
the spot size to be dominated by diffraction, while a larger aperture would cause
the spot size to be dominated by aberration.

If the lenses were positioned exactly as shown in Figure ., the magnification
of the system would be 2; by tracking the centroid position of the condensate for
different drop times, we measured the magnification of the side imaging system to
be 2.1. For the AVTGX1920 camera CCD, with a pixel size of 4.5µm, this magni-
fication gives an effective pixel size at the object plane of 2.1µm.

.. Top imaging

Currently our top imaging system uses the y-directed MOT beam as the imaging
light; since the MOT beams are detuned 16MHz below resonance, and are highly



.. Our imaging systems 
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Figure .: Schematic of our side imaging system (to scale). Two infinity-corrected back-to-
back achromats magnify our condensates by two, sufficient for imaging the bulk structure
of our condensates. A 15mm diameter aperture between the achromats is used to reduce
spherical aberration. This is our primary imaging system, which we use for measurements
of condensate atom number and spin projection.

This choice of lens combination
was influenced by the availability of
lenses in the laboratory at the time.

aberrated by theMOT beam expanders, this is far from ideal. Since we to date only
use the top imaging system for alignment of the cross-beam dipole trap, this probe
beam is sufficient. A ‘proper’ resonant probe beam will be installed when this top
imaging system is replaced with the high-resolution system described in Chapter .
The −y-directed MOT beam reflects off an electromechanically-activated flipper
mirror into the glass cell during the MOT trapping and molasses stages. For top
imaging, this flipper mirror is then moved out of the MOT beam path to allow the
y-directed MOT beam to travel into the top imaging optics.

This top imaging system is similar to the side imaging system, in that it uses
two back-to-back infinity corrected achromats. The key difference is that we re-
quire space for the flipper mirror in the beam path, preventing us from placing the
objective achromat close to the glass cell. As such, to obtain a useful magnification
of greater than two, the total track length of the imaging system must be much
longer than the side imaging system. The length of the top imaging system is an
issue because of space limitations around the apparatus, but this problem can be
reduced by using a telephoto lens design.

I chose achromats 2 inches in diameter with focal lengths of f1 = 200mm and
f2 = 400mm respectively, with the addition of a 1 inch diameter diverging singlet
with focal length f = −100mm. This diverging singlet in combination with the
achromat increases the effective focal length of the image-forming lens, increasing
the magnification of the system without a significant increase in the track length.

From a simulation using Zemax this choice of lenses could give amagnification
of 2.9, while partially cancelling the spherical aberration introduced by the glass
cell, if the lenses are positioned as shown in Figure .. In practice, the actual
placement of lenses resulted in a magnification of 2.0, measured by comparing
the size of the condensate viewed with the top imaging system to the calibrated
side imaging system. With this magnification and the camera used (Andor Neo
sCMOS), the effective pixel size in the object plane is 3.2µm.
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object
plane

f = 200 mm f = 400 mm

f = -100 mm image plane

215 mm 287 mm 83 mm

Figure .: Schematic of our top imaging system (not to scale). Two back-to-back achro-
mats and a diverging spherical singlet produce a magnification of 2.9. This telephoto lens
design enables the imaging system to fit the space requirements around the apparatus while
still producing a sufficient magnification. We use this imaging system primarily for align-
ment of the cross-beam optical dipole trap.

. Summary

Building a spinor Bose–Einstein condensate apparatus ‘from scratch’ was an ex-
perience I feel proud to have been involved in. My main contributions to this en-
deavour were: constructing the ultra-high vacuum system and science cell; leading
the saga of the vacuum system bakeout to its successful conclusion; assembling the
optics to form the different laser beams needed to cool, trap, and image rubidium;
making laser shutters, photodetectors, and photodetector signal filters; creating the
six intersecting beams for themagneto-optical trap and capturing our first cloud of
cooled atoms in this trap; and designing our absorption imaging systems. For the
full details of all the elements of our spinor Bose–Einstein condensate apparatus,
the interested reader can combine this chapter will associated chapters from the
theses of my colleagues Alex Wood [] and Martijn Jasperse [].



C
A high resolution imaging system

In this chapter I present a high resolution imaging system which we plan to use
to resolve small features within condensates, such as solitons. I have bench-tested
the performance of the objective lens of this imaging system, but we have not yet
used it to take images of our condensates. Once we require the ability to take high-
resolution images of condensates, this imaging system will be installed onto our
apparatus.

Section . outlines our requirements for this imaging system, and the main
challenges in design. Section . presents our published paper [] which docu-
ments the design, construction and performance testing of the objective lens. Sec-
tion . describes a suggested set of image-forming optics which could be combined
with the objective lens when installing the imaging system onto our apparatus.

. Our requirements for the imaging system

In Section . I described the imaging systems that are currently installed on our
apparatus. While these imaging systems are capable of producing absorption im-
ages tomeasure the condensate atomnumber and spin projection, they do not have
a high enough resolution to image small spatial features within the condensate in
situ. Since one of our aims is to use magnetic resonance control to engineer a black
soliton in a condensate, we will need the ability to resolve roughly 1µm features in
our absorption images to verify the success of our new wavefunction engineering
technique experimentally.

The main obstacle to achieving this resolution with our apparatus is the thick
(5mm) glass walls of our science cell. The cell was engineered to be optically flat
(less than 200 nm of curvature across the surface), which necessitated thick glass
to avoid deformation under vacuum pressure. Unfortunately, rays which diverge
through a plane-parallel glass plate become spherically aberrated by an amount
proportional to the thickness of the glass plate [, p.]. This means that in order
to achieve a diffraction-limited resolution the imaging system needs to be able to
correct for this spherical aberration introduced by our glass cell.


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You might understand this
preference if you have read
Section . of this thesis.

If we were working with
fluorescent images, it would suffice
to consider the classical rays
emanating from the object. For
absorption images, we must instead
consider the Abbe-rays. An
excellent discussion of this subject
can be found in “An introduction to
Fourier optics” by
J. W. Goodman [].

One approach to solving this problem is to place a lens, or system of lenses,
inside the glass cell, to collimate the rays before they pass through the glass cell.
Such collimated rays would not develop any aberration as they pass through the
glass cell. This approach has been used to create some beautiful high-resolution
imaging systems [,], but was unappealing to us because it requires in-vacuum
optics; since in our laboratory we would prefer to never break vacuum ever again,
such a design would prevent changes to our imaging system if our requirements
changed over time. For us, the best approach was to have all our optics outside the
glass cell, and correct for the introduced spherical aberration.

Our high-resolution imaging system is split into two stages. The first stage,
called the objective lens, collimates the Abbe-rays from the object plane while cor-
recting the spherical aberration from the glass cell. The second stage, called the
imaging lens, focuses the rays to form the image. Such a system is common in mi-
croscopes, and enables us to replace the (simpler, cheaper) imaging lens with mod-
erate ease if we decide to change the magnification of the imaging system, without
modifying the objective lens.

The objective lens needs to have a long working distance to be positioned out-
side the glass cell, 35mm from the object plane. This rules out the majority of
commercially-available microscope objectives, designed to be placed close to a mi-
croscope sample slide. Even if a microscope objective had a long working distance,
they are designed to correct only the aberration introduced by a thin glass cover
slip (typically 170µm thick) rather than a thick glass wall.

In addition to our resolution and working distance requirements, the imag-
ing system needs to produce a wide diffraction-limited field of view of a few hun-
dred micrometers, so that the entire condensate can be imaged. We could have
decided to pay several thousand dollars for a custom-manufactured objective lens,
where the individual lens elements are custom-ground to meet, or even exceed,
our particular requirements [–]. Instead, with patience and the lens design
software Zemax, I was able to design an objective lens which uses a combination
of commercially-available spherical singlets which is both perfectly adequate for
our needs and better suited to our research budget, costing less than one thousand
dollars to manufacture.

. Designing and testing the objective lens

In this section I present our published paper on the objective lens, which details
the design, construction and performance testing of the objective lens. I should
first briefly outline the contributions of the authors of this paper. I am responsible
for the design and assembly of the objective lens, with the advice of my supervisors
Lincoln Turner and Russell Anderson. Martijn Jasperse wrote the camera control
software which we continue to use in our research lab. Philip Starkey and Christo-
pher Billington developed our lab control system [] which I used to automate the
data collection for mapping the field of view of the objective lens. Philip Starkey
earned the place of second author by also assisting me with interfacing the elec-
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tronic translation stages with the control system software, and teaching me how to
use Python to analyse my data.

I have reproduced this paper here with permission of the publishers, with the
agreement that the following text is included:

“This paper was published in Optics Express and is made available as an
electronic reprint with the permission of OSA. The paper can be found at
the following URL on the OSA website: www.opticsinfobase.org/
oe/abstract.cfm?uri=oe-21-7-9011. Systematic or multiple re-
production or distribution to multiple locations via electronic or other
means is prohibited and is subject to penalties under law.”

www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-7-9011
www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-7-9011
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imaging quantum gases
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Abstract: We present a high resolution objective lens made entirely
from catalog singlets that has a numerical aperture of 0.36. It corrects for
aberrations introduced by a glass window and has a long working distance
of 35 mm, making it suitable for imaging objects within a vacuum system.
This offers simple high resolution imaging for many in the quantum gas
community. The objective achieves a resolution of 1.3 µm at the design
wavelength of 780 nm, and a diffraction-limited field of view of 360 µm
when imaging through a 5 mm thick window. Images of a resolution target
and a pinhole show quantitative agreement with the simulated lens per-
formance. The objective is suitable for diffraction-limited monochromatic
imaging on the D2 line of all the alkalis by changing only the aperture
diameter, retaining numerical apertures above 0.32. The design corrects for
window thicknesses of up to 15 mm if the singlet spacings are modified.
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1. Introduction

Imaging systems are an essential component of quantum gas experiments. There is an increas-
ing need for high resolution imaging (< 3µm) to extract fine detail, such as topological defects
in a Bose–Einstein condensate [1], or a single trapped ion [2]. One difficulty faced is that the
object of interest is held within a vacuum chamber and must be viewed through a thick glass
window. Even a perfect optical flat introduces significant spherical aberration [3, p. 572] in a
large numerical aperture (NA) system.

One approach is to house an infinity-corrected objective within the vacuum chamber [4, 5].
Collimated rays from such objectives are not significantly aberrated because they pass through
an optically flat window at near-normal incidence. With this approach the objective can have
a short working distance, allowing for large NAs and permitting the use of commercial micro-
scope objectives [6]. Howeverin vacuo optics must be vacuum-compatible and bakeable, and
are fixed in positions that limit optical access to the experiment.

Optics housed external to the vacuum chamber are particularly desirable, for example, in a
Bose-Einstein condensate apparatus that shares a common source chamber and science cham-
ber [7], or in the study of liquid helium using optical cryostats [8]. Theex vacuo objective must
have a long working distance if the object is located far (&5mm) within a vacuum chamber and
must also correct for the spherical aberrations introduced by the vacuum window. Fortunately
in quantum gas experiments the illumination is typically monochromatic with a small field of
view (∼ 1mm), nevertheless long working distance objectives that correct for large spherical
aberrations are not available commercially and remain a design challenge. Published designs
that meet these criteria [9–14] require manufacturing at least one custom singlet, which is a
slow and costly process. Because of this difficulty, many experiments employ a single lens,
or a single light-gathering objective lens followed by a single image forming lens [15]. Such
imaging systems are not corrected for aberrations and consequently have low resolution.

This article provides an alternative solution to the problem of high resolution imaging with
ex vacuo optics: an objective consisting of entirely catalog singlets that achieves diffraction-
limited imaging with an NA of 0.36. The objective achieves a resolution of 1.3 µm with a field
of view (FOV) of 360 µm for a 5 mm thick window using 780 nm illumination. The objective is
suitable for diffraction-limited imaging of all the alkalis, retaining NAs above 0.32 by changing
only the aperture diameter and accounting for the chromatic focal shift. The objective remains
well-corrected into the near ultraviolet; we predict sub-micrometer resolution when imaging
Yb+ at 370 nm in ion trapping experiments. A useful diffraction-limited FOV can be retained
for glass windows up to 15 mm thick by changing the singlet spacings. The required spacings
can be found through re-optimization of the design in ray-tracing software.
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Table 1. (a) Lens prescription of the objective suitable for entry into a ray-tracing system
(λ = 780nm, 5 mm silica window, 35 mm working distance,f = 47mm). (b) Changing
only the aperture diameter enables diffraction-limited imaging of all the alkalis and Yb+.

(a) Objective prescription
Sur- Curvature Thick- Mat-
face rad. (mm) ness (mm) erial
1 ∞ 4.00 BK7
2 51.50 10.50 air
3 89.47 10.36 BK7
4 -89.47 0.76 air
5 47.90 7.30 BK7
6 119.30 1.12 air
7 30.30 9.70 BK7
8 65.80 7.30 air
9 ∞ 14.94 air
10 ∞ 5.00 silica
11 ∞ 15.00 vacuum

(b) Objective performance
λ Ap Res NA FOV
(nm) (mm) (µm) (µm)

Li 671 24.0 1.20 0.34 400
Na 589 22.0 1.13 0.32 560
K 767 25.0 1.33 0.35 400
Rb 780 25.4 1.31 0.36 360
Cs 852 26.0 1.44 0.36 340
Fr 718 24.0 1.29 0.34 470
Yb+ 370 16.0 0.90 0.25 520

Ap = aperture diameter.
Res = resolution
FOV = diffraction-limited FOV diameter

2. Design and construction

Our Bose–Einstein condensate apparatus is similar to [7], but with an optically flat glass cell
as our science chamber to maximize optical access. The magnetic coils surrounding the glass
cell accommodate 50.8 mm diameter lenses, while the distance between the 5 mm thick glass
window and the condensate demands a working distance greater than 25 mm. We require a
diffraction-limited FOV of at least 300 µm for imaging condensatesin situ.

The objective was designed using Zemax 12 SE [16], a ray-tracing program which varies
parameters to optimize the lens performance. The design of Alt [9] was chosen as a start-
ing point because it achieved a diffraction-limited performance using BK7 glass—a material
widely available in standard lens catalogs—with only four singlets. Our design is distinguished
from Alt’s by a larger NA and the use of only catalog lenses (Thorlabs and Newport). After
scaling the design to 50.8 mm diameter singlets, we optimized both on- and 200 µm off-axis
for maximal NA with the required working distance. The optimization routine chosen in Ze-
max minimized the squared sum of all wavefront aberrations up to 7th order. The default merit
function was modified to seek a diffraction-limited modulation transfer function (MTF). This
ensures high image contrast for objects with spatial frequencies up to the resolution determined
by the NA [17, p. 132]. Initially all singlet thicknesses, spacings and curvatures were varied un-
til the diffraction limit was reached for the desired working distance and NA. We then replaced
the singlet most similar to a catalog lens, fixing its curvature and thickness to the catalog values,
and repeated the optimization routine for the remaining lenses. This process was repeated until
all singlets were catalog lenses. During this process we occasionally made dramatic changes to
lens curvatures and spacings to ensure that the optimization routine did not stagnate in a local
minimum [18].

The final design comprises four catalog singlets: two positive meniscus lenses to enable a
high NA with minimal addition of spherical aberration, a bi-convex lens, and a rear plano-
concave lens to cancel aberrations introduced by the other lenses and by the window [19].
This design is shown in Fig. 1, with the singlet curvatures and spacings listed in Table 1(a). Our
objective has an NA of 0.36 yielding a resolution of 1.3 µm at the design wavelength of 780 nm.
It has a long working distance of 35 mm measured from the front aperture (surface 9, Fig. 1)
and an effective focal length of 47 mm. The objective is infinity-corrected, allowing the image-
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O-ring

Spacer rings

Fig. 1. Cross-section of the objective in its aluminium housing assembly. The four cata-
log lenses, from left to right, are Thorlabs LC1093-B, Newport KBX151AR.16, Thorlabs
LE1418-B and Thorlabs LE1076-B. The cell is fused silica and is optically flat to less than
λ/4. The rays shown propagate from the object plane through the maximum aperture of
the objective. The geometry of the spacer rings A, B, C and D are shown.
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Fig. 2. The calculated MTF of the objective. On-axis and 180 µm off-axis, both tangential
and sagittal, exhibit marginally lower contrast than an aberration-free lens with the same
NA. Residual aberrations are a consequence of limiting the design to catalog singlets.

forming optics to be chosen separately to suit various applications. The aberration produced by
the 5 mm thick window is corrected over a diffraction-limited FOV of 360 µm. Here we consider
the FOV to be ‘diffraction-limited’ where the Strehl ratio is greater than 0.8 [17, p. 90]. The
calculated MTF, both on-axis and at the edge of the FOV, is compared to the diffraction-limited
MTF in Fig. 2. The similarities between the curves indicate that the residual aberrations will
not significantly degrade image contrast across the 360 µm diameter FOV.

Our objective is applicable to imaging all the alkalis and Yb+ at commonly used wave-
lengths. Retaining a diffraction-limited FOV of a few hundred micrometers only requires
changing the aperture diameter (Table (1b)). The objective is not corrected for chromatic aber-
ration, so the effective focal length changes with wavelength and hence the objective is only
suitable for monochromatic light.

While a full tolerance analysis was not performed, the objective appears robust to changes
in singlet spacing: rounding the spacings (thickness of surfaces 2, 4 and 6 in Table 1) to the
nearest 0.5 mm had negligible effect on the predicted performance. Similarly, the performance
and focus are robust to thermal expansion of the spacers across±10 K. This allowed the housing
assembly to be the simple design shown in Fig. 1. The singlets are held on-axis inside a smooth
aluminium tube and are separated by aluminium spacer rings. These rings contact each singlet
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(a) (b)

Fig. 3. Image of a USAF 1951 resolution target, illuminated with coherent light, formed by
the objective and anf = 1000 mm achromat. The white rectangle in (a) marks the region
shown in (b). The bars marked with asterisks are (a) 22.1 µm and (b) 1.95 µm wide in the
object plane.

2 mm from its outer edge, avoiding chamfers which can result in large spacing errors. The tube
screws into a mounting bracket to hold the singlets in place and an o-ring moderates the pressure
applied to the singlets. Aluminium components are anodized black to reduce reflections.

3. Experimental performance

We measured the FOV and point spread function of the objective using a USAF 1951 resolution
target (Edmund Optics 58-198) and a 1 µm pinhole (Edmund Optics 39-878), both illuminated
by collimated 780 nm laser light. A 5 mm fused silica optical flat was used to mimic a vacuum
window. An f = 1000mm achromat placed immediately after the objective formed images of
the test objects at a magnification of -21.4 on an sCMOS camera (Andor Neo). This camera
has a pixel size of 6.50 µm, corresponding to an effective pixel size of 304 nm in the object
plane. Including the achromat in our simulation further compensated aberrations, permitting
an increase of both the FOV to 400 µm and the aperture diameter to 26 mm. Accordingly, this
aperture diameter was used in the constructed objective.

The image of the resolution target (Fig. 3) is undistorted beyond the diffraction-limited FOV.
The line pairs in element 6 of group 8 are clearly resolved, corresponding to a resolution of
≤ 2.20µm. The predicted resolution of 1.3 µm would also resolve the elements in group 9, but
the coherent illumination produced diffraction fringes which degraded the image quality.

The point spread function—the image of a point source—provides another measure of the
lens performance. The measured image of a 1 µm pinhole is similar to the convolution of a 1 µm
top-hat function with the simulated point spread function (Fig. 4(d), inset). The azimuthal aver-
ages of these images about the pinhole center (Fig. 4) are in agreement, affirming the objective
performed as expected. Asymmetry in the on-axis pinhole image is likely due to tilt of the
optical flat or objective relative to the camera [10].

The pinhole was also used to measure the diffraction-limited FOV and to locate the position
of the optic axis relative to the camera chip. We raster-scanned the pinhole across the object
plane using two motorized translation stages under automated control [20], taking 3600 images
on a 10 µm grid in one hour. At each point on the grid we fitted a two dimensional Gaussian
to the pinhole image; the geometric mean of the fitted rms diameters (spot size) are shown in
Fig. 4(a). Row- and column-wise averages of the spot size revealed distinct minima, which we
took to be the position of the optic axis (cross in Fig. 4(a)). The diffraction-limited FOV was
measured to be 350 µm in diameter, commensurate with a circle inside which the spot size is less
than

√
2 times the on-axis spot size. The measured FOV is smaller than the simulated 400 µm,
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Fig. 4. (a) The spot size of a 1 µm pinhole measured at 3600 positions across the object
plane. (b, c) The spot size and constituent diameters across they- andx-axis respectively
through the optic axis (cross in (a)). The measured spot size is in good agreement with our
simulation within the FOV. (d) The on-axis pinhole image compared to the simulated point
spread function convolved with a 1 µm pinhole. The curves are the azimuthal averages of
the inset images.

owing to the asymmetry in spot size about the optic axis. This asymmetry was likely caused
by tilt in the translation stages that moved the pinhole through either side of focus across the
object plane. Figures. 4(b) and 4(c) show the diameters of the pinhole image along the column
and row that intersect the optic axis respectively. In addition to the spot size, the constituentx
andy Gaussian rms diameters are shown. The variation between thex andy diameters reveals
small astigmatism, suggesting tilt of the optical flat and objective relative to the camera. The
measured spot size compares favorably to simulation both on- and off-axis.

4. Conclusion

The combination of catalog singlets presented in this paper form a high resolution, long work-
ing distance objective suitable for imaging objects far within a vacuum chamber through a thick
window. Optical tests confirm the performance predicted using ray-tracing software. Remark-
ably this objective enables diffraction-limited imaging across a wide FOV of all the alkalis
and ytterbium ions, by changing only the aperture diameter. Spherical aberration from a range
of window thicknesses can be corrected by changing the singlet spacings. The versatility and
simplicity of this design makes it applicable to many experiments in the field of quantum gases.
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 Chapter . A high resolution imaging system

. Design of the full imaging system

Figure . shows a schematic of the high-resolution objective lens positioned in the
apparatus, alongwith suggested image-forming optics. The bore of our quadrupole
coils is (deliberately) large enough to accommodate -inch lenses housed in a lens
tube, so that the high-resolution objective lens can be inserted into this hole and
positioned 15mm from the surface of the glass cell. The vertical MOT trapping
beams pass through the quadrupole coils and reflect off an electromechanically-
actuated flipper mirror; During the imaging stage this flipper mirror moves aside,
so that there are no moving elements used in the imaging system itself.

When the objective lens is installed, the MOT beam travelling downwards into
the cell will be focused by the objective lens. To correct for this and ensure that
the MOT beam is collimated within the glass cell, the MOT beam will need to be
brought to a focus 22mm before the back element of the objective lens.

When choosing the image-forming optics to accompany the objective lens, we
need to satisfy three criteria. First, the magnification must be high enough so that
the effective pixel size of the camera CCD in the object plane is smaller than the
point-spread function of the objective lens; otherwise we would be underutilising
our high resolution objective. Second, the image-forming optics should introduce
only minimal aberration, so that the imaging system remains diffraction-limited.
Third, the total length of the imaging system should not become too long, other-
wise the imaging system may not fit in the space available around the apparatus
without several folding mirrors, and we wish to use minimal optical elements to
reduce etaloning in the images from mechanical vibrations. The first two criteria
could be satisfied by using a single achromat with a long focal length. But to also
satisfy the third criteria, we must use two achromats to form a telephoto lens, in-
stead of a single achromat, which decreases the length of the optical system while
maintaining the level of magnification.

One possible design of the image-forming optics is to use two achromats with
focal lengths f = 250mm and f = −100mm positioned as shown in Figure ..
With this design the object plane and imaging plane are separated by 400.4mm,
and the magnification of the image is 10. If we use our Andor Neo sCMOS cam-
era, this gives an effective pixel size of 650 nm in the object plane, which is smaller
than the resolution of the objective lens. Figure . shows that these lenses main-
tain a diffraction-limited performance. The point-spread function (PSF) of the full
imaging system at the image plane is shown in Figure ..



.. Design of the full imaging system 

fli
pper

3m
irr

or

MOT3beams

to3scale

not3to3scale

f3=32503mm

f3=3-1003mm

CCD

objective3lens

quadrupole3coilquadrupole3coil

vacuum

object3plane

53mm 353mm

telephoto

imaging3lens 193.03mm

86.83mm

Figure .: A cross-section schematic showing the objective lens positioned inside the
quadrupole coil above the glass science cell (to scale), with the imaging lens positioned above
(not to scale). Dark blue lines indicate the maximal Abbe-rays emanating from the object
plane. These rays are collimated by the objective lens, then brought to a focus on the CCDby
the telephoto imaging lens (consisting of two achromats). An electronically-actuated flip-
per mirror is located between the objective lens and the imaging lens. When moved into
position, this directs the vertical MOT beam down into the glass cell.
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By comparing this to the MTF of the objective lens alone, in Figure  of Section ., we can
see that the choice of the imaging lens has not introduced significant additional aberrations
to the imaging system.
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Figure .: The point spread function of the full imaging system (grey) compared to the
point spread function of the objective lens. Remember that the imaging lens has deliberately
produced a magnification of 10.

. Summary

This objective lens enables high resolution imaging through the thick glass wall
of a science cell without the expense of custom-manufactured lens elements. It is
suitable for absorption imaging of all the alkali elements, making it widely applica-
ble to the quantum gas research community. In our laboratory, it will be essential
when we wish to image topological defects in Bose-Einstein condensates in situ.
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Simulating magnetic resonance control

In this chapter I simulate engineering a soliton in a Bose–Einstein condensate us-
ing our proposed wavefunction engineering protocol, which we call magnetic res-
onance control (MRC). The key results of this chapter form the basis of my first-
author paper published on the ArXiv [], currently in peer-review. Aspects of
this work were developed in collaboration with PhD student Paul Wigley, Dr Stu-
art Szigeti and Associate Professor Joseph Hope.

As discussed in Section ., a black (stationary) soliton is the sharpest stable
structure supported by a single component condensate. A black soliton exhibits a
π phase step across a density zero with a width on the order of the healing length
of the condensate. The healing length is ξ = (8π n0 as)

−1/2, where n0 is the peak
atomic density of the condensate and as is the s-wave scattering length. In rubid-
ium condensates the healing length is typically smaller than optical wavelengths.
For example, a condensate with a peak atom density of n0 = 1014 atoms/cm and
a s-wave scattering length of as = 5.3 nm has a healing length of ξ = 270 nm.

When magnetic resonance control was still at the whiteboard stage of design,
we had to decide on an example target state we would aim to engineer. We decided
to engineer a black soliton to demonstrate the precision of MRC. The ability to en-
gineer a black soliton is a stringent test of any wavefunction engineering protocol,
because a black soliton can only be engineered using a protocol that manipulates
both the phase and density of themacroscopic wavefunctionwith healing length res-
olution. Developing an experimentally feasible technique for engineering a black
soliton has been a compelling topic, because a truly black soliton has never been
experimentally achieved in a condensate; existing wavefunction engineering tech-
niques, discussed in Section ., have lacked either the required precision, simulta-
neous phase and density control, or both.

Sections . and .. provide a conceptual overview of the protocol used to
engineer a black soliton in a condensate, while Section . outlines howwe simulate
one-dimensional condensates. Section . presents the key result of this chapter:
using MRC to engineer a black soliton in a condensate with a sub-optical healing
length using experimentally feasible parameters. Section . discusses the details
that must be considered when selecting the parameters of the protocol. We then


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extend the base protocol to produce multiple solitons in Section ., including a
multiple-soliton state that has yet to be experimentally realised.

. The protocol to engineer a soliton

In magnetic resonance imaging (MRI), a magnetic field gradient combined with
coupling between two internal states provides spatial resolution of spin []. We
propose a ‘reversal’ of this technique; instead of imaging spins we aim to control
them.

We start by describingmagnetic resonance control in the context of a two-level
system, then from Section . onwards we change to a three-level system. We take
this approach despite the integer spin of bosons because the essential physics of
our technique is the spin degree-of-freedom of the condensate, rather than the di-
mension of this spin degree-of-freedom. In any case, pseudospin-/ systems are
readily realised in bosonic quantum fluids []. After describing this protocol for
a pseudospin-/ condensate, we move to the full three-level system for our simu-
lations of a condensate in the F = 1 state of 87Rb.

Consider a one-dimensional, spin-/ condensate described by the spinor

Ψ (z, t) =

ψ↓ (z, t)

ψ↑ (z, t)

 . (.)

The spatial population distribution and phase of this condensate is shown in Fig-
ure . during the stages of MRC.

The condensate begins in the spin-down state: ψ↑ (z, 0) = 0. The condensate
is at rest within a harmonic potential, meaning that the condensate phase is uni-
form; without loss of generality, we can set arg (ψ↓ (z, 0)) = 0. This initial state is
shown in Figure .(a).

During the first stage ofMRC, population in one side of the condensate is trans-
ferred from the spin-down state |↓⟩ to the spin-up state |↑⟩. We arbitrarily choose
the ‘left’ side, z < 0, as shown in Figure .(b). Ordinarily, resonant coupling
would transfer the population of the whole condensate. To obtain spatial selectiv-
ity we apply a linear magnetic field B(z) = B0 +

dB
dz z which spatially varies the

energy splitting between state |↓⟩ and state |↑⟩. This enables the use of an adiabatic
coupling pulse to address a spatial subset of the condensate. The nature of this adi-
abatic coupling pulse is discussed in Section ... For the moment, it suffices to
imagine a coupling pulse that transfers the z < 0 region of the condensate from
state |↓⟩ to state |↑⟩.

The magnetic field gradient causes a spatially-dependent phase across the con-
densate, thereby exerting a force on the condensate. Since the direction of the force
is state-dependent, the phase variation is much smaller on the left side because the
left side of the condensate spends roughly half the time in each state during the
pulse. As a result, the two sides of the condensate move in different directions
after the first coupling pulse. This effect is discussed further in Section ..
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Figure .: The stages of the MRC protocol used to engineer a soliton in a condensate. This
figure explains how the phase of the condensate is engineered. Energy level diagrams in-
dicate the population in the two energy levels across the condensate. (a) Initially the con-
densate is entirely in |↓⟩ with uniform phase of arg (ψ↓ (z, 0)) = 0. (b) A magnetic field
gradient shifts the energy level splitting across the condensate, so that an adiabatic coupling
pulse can excite the left side of the condensate to |↑⟩. (c) The magnetic field gradient is re-
moved, andwewait until a phase difference ofπ accumulates between the two sides. (d) The
magnetic field gradient is reversed, and a second coupling pulse returns the left side to |↓⟩.
This removes the phase gradient introduced by the first magnetic field gradient, revealing
the accumulated π phase step.

After the first pulse, once the left side of the condensate is in state |↑⟩ (with
the right side still in state |↓⟩), we remove the magnetic field gradient, returning
to a uniform energy level splitting across the condensate. Because the left side
is in a higher energy state compared to the right side, the left side accumulates
phase at a faster rate than the right side. The two states of the condensate will
accumulate a phase difference of π after an interval of tϕ = π/∆ϕ, where ∆ϕ is
the detuning during the interval between the two pulses. This phase-accumulation
stage is shown in Figure .(c).

Next we reintroduce the magnetic field gradient, with opposite sign, and apply
a second adiabatic coupling pulse to return the left side of the condensate from
state |↑⟩ to state |↓⟩. Both sides of the condensate are now in state |↓⟩, with a π
phase step at z = 0, as shown in Figure .(d).

Note that in addition to the phase difference which accumulates due to one side
of the condensate being in a higher energy state, there will also be some phase shift
due to mean-field interactions. Such phase shifts depend on the s-wave scattering
length and the atomic density. For the F = 1 87Rb condensate we simulate later
in this chapter, the singlet and triplet scattering lengths are very similar, and as a
result the mean-field phase shift will be very small over the time scale of the proto-
col compared to the effect of the accumulated phase difference. By simulating the
condensate using the Gross–Pitaevskii equation, we include the mean-field phase
shift and can adjust the protocol to counter this effect if necessary.

At this point, you should be asking yourself the following:

. Complete wavefunction engineering requires control over both the phase
and density of the condensate; how does MRC engineer the condensate den-
sity?
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Figure .: The finite pulse duration provides the ability to engineer the condensate density
at the phase step. (a) A finite duration pulse has a finite slice sharpness of δz. (b) After the
second pulse, this finite slice sharpness leaves some population remaining in |↑⟩ near z = 0.
This population is then removed to form a notch in the condensate density. If we design
the pulse to make this notch have the same width as a black soliton, and at the same time
engineer the requisite phase step of π (Figure .), we will engineer a black soliton in the
condensate.

A suggested technique for doing
this is discussed in Section ...

While we didn’t invent the term
healing time, it is seldom used in
BEC literature. A similar definition,√
2 smaller than tξ here, is given in

Reference 

. Wouldn’t the magnetic field gradient adversely perturb the condensate?

To answer the first question, MRC engineers the condensate density using an
intrinsic feature of the coupling pulse: the finite pulse duration. Only an infinitely
long pulse can transfer population in the region z < 0 with infinite sharpness at
the boundary (z = 0). When a finite duration pulse is applied the boundary of the
transferred region will be blurred over some distance δz, as shown in Figure .(a).
In MRI literature this distance is called the slice sharpness []. The finite slice
sharpness of each coupling pulse results in some population remaining in state |↑⟩
in the region z = ±δz/2 after the second pulse (Figure .(b)).

To create an unfilled soliton in state |↓⟩, we remove this ‘residual’ population
from the condensate. This produces a notch in the condensate density at the lo-
cation of the phase step. We must select the slice sharpness of the coupling pulse
so that the resulting density dip has the same width as a black soliton. When the
protocol also generates the requisite π phase step, a black soliton is engineered.

Returning to the second question, if the protocol is too slow then the force from
the magnetic field gradient will cause bulk movement of the condensate; an issue
discussed further in Sections .. and ... If this movement is too large then the
slice sharpness is broadened, and taken to the extreme the region addressed by the
second pulse may not coincide with the region addressed by the first pulse.

We minimise this movement in two ways. The primary way is to make the
protocol fast: as discussed in Section .., a good ‘rule of thumb’ is to ensure the
protocol duration is less than the healing time tξ = ξ/c, where c is the speed of
sound in the condensate. This still results in somemovement, sowe further reduce
the effect by ensuring that the second magnetic field gradient has the reverse sign
to the first gradient. This means that the magnetic field gradient imparts no net
impulse to the condensate over the duration of the protocol.
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We specify this requirement in
Section ...

Nevertheless, the applications of
π-pulses in magnetic resonance
control are explored experimentally
in Chapter .

.. Hyperbolic secant pulses

When designing the coupling pulse, we must consider both the pulse duration and
the resulting spin projection Fz (z) ≡ ⟨F̂z (z)⟩ of the transferred region. In MRI
literature, the resulting spin projection is called the slice profile []. Since the spa-
tial selectivity of the coupling pulse is provided by amagnetic field gradient, we can
describe the slice profile in either the spatial or frequency domain. We work in the
frame rotating at the instantaneous radiation frequency ω, for which the detuning
∆(z, t) is given spatial dependence by the magnetic field strengthB (z),

∆(z, t) = ω (t)− γ B (z) (.)

= ω (t)− γ

(
B0 +

dB
dz

z

)
, (.)

where γ = µB |gF | /~ is the gyromagnetic ratio and B0 = B (z = 0) is the mag-
netic field offset.

It may seem as though the ideal coupling pulse for magnetic resonance control
would be one that produces a slice profile as close to a top-hat as possible, to max-
imise spatial resolution by making the slice edge very sharp. The catch is that this
would require a long pulse, and we need to keep the duration of the protocol be-
low the healing time. In addition, we don’t want the slice sharpness to be infinitely
sharp; we require the slice sharpness to be on the order of the healing length. Mov-
ing to the opposite extreme, the fastest pulse that inverts the condensate spin is a
π-pulse: a single frequency, resonant, and constant amplitude pulse with duration
tp = π/Ω, whereΩ is the Rabi frequency. Unfortunately, a π-pulse produces an os-
cillatory slice profile (close to a sinc function) which does not allow precise spatial
selectivity.

A good compromise between having a short pulse duration and a sharp slice
profile can be achieved using a hyperbolic secant pulse; an adiabatic coupling pulse
used extensively in MRI. In a hyperbolic secant pulse, the amplitude and detuning
of the coupling are both time-dependent. The Rabi frequency and detuning are
commonly expressed in the form

Ω(t) = Ω0 sech
(
β

(
t− tp

2

))
, (.a)

∆(t, z) = ∆0 tanh
(
β

(
t− tp

2

))
+∆1 (z) , (.b)

t ∈
[
−tp
2
,
tp
2

]
, (.c)

where Ω0 is the peak Rabi frequency, ∆0 is the peak detuning, β is the sweep rate
of the detuning, tp is the pulse duration and ∆1 is the offset of the detuning from
resonance;

∆1 (z) = −γ dB
dz

(z − z0) . (.)

By comparing Equations ., .b and ., we can see that themodulation in detun-
ing can be affected by changing either the radiation frequency ω, or the magnetic
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Figure .: An example of a hyperbolic secant pulse. (a) The amplitude of a hyperbolic secant
pulse over time. The envelope of the coupling oscillation smoothly increases, then decreases,
in the form of a sech function, while the frequency sweeps through resonance. (b) The same
hyperbolic secant pulse, with the Rabi frequency Ω(t) and detuning from resonance ∆(t)
shown separately.

field offset B0, or both. An example of a hyperbolic secant pulse is shown in Fig-
ure ..

.. Pulse requirements to engineer a black soliton

We define the resolution of the spatially-dependent transfer effected by a single
pulse to be

R =
∆z

δz
, (.)

where ∆z is the slice thickness and δz is the slice sharpness. For consistency with
MRI literature, we define the slice thickness to be the full width at half maximum
(FWHM) and the slice sharpness to be the 10– 90 rise distance of the popula-
tion transfer P↑, final (see Equation .).

To engineer a single soliton (by addressing one half of the condensate) the slice
thickness needs to span at least one Thomas–Fermi radius zTF (see section ..),

∆z = ζ zTF , (.)

where ζ is a constant which adjusts the thickness of the slice. For the condensates
we simulate later in this chapter, it is sufficient to set ζ = 1.2, such that when
one side of the slice is at the centre of the condensate, the other side of the slice is
beyond the extent of the condensate.

To carve the shape of a black soliton into the condensate density, the slice sharp-
nessmust approximately equal the FWHMof the black soliton. To clarify this state-
ment, a black soliton in an otherwise homogeneous condensate of density n0 has
a density profile [] of

n(z) = n0 tanh2

(
z√
2 ξ

)
, (.)

with a corresponding FWHM of

wsol = 2
√
2 tanh−1

(
1√
2

)
ξ ≃ 5 ξ

2
. (.)



.. The protocol to engineer a soliton 

From analytic expressions given in
Reference .

Using the symbol µ for the
normalised pulse bandwidth—the
convention of much magnetic
resonance literature—is
unfortunate given that this symbol
is also used to represent the
chemical potential of the
condensate. To avoid confusion, in
this thesis I use µcp for the
chemical potential.

By observing the shape of the density notch formed after two hyperbolic secant
pulses we can observe that the requisite slice sharpness is

δz ≃ 5wsol

4
≃ 3 ξ . (.)

Equations . and . allow us to express the required resolution of the pulse
to be

R ≃ ζ zTF

3 ξ
. (.)

Additionally, we require the pulse duration to be

tp ≤ tξ
4
, (.)

to avoid detrimental movement of the condensate during the pulse. This require-
ment is explored in more detail in Section ...

.. Reparametrising the hyperbolic secant pulse

When the hyperbolic secant pulse is expressed in the form given in Equations .a
and .b, it is not easy to see how to design the pulse to satisfy the pulse resolu-
tion requirement (Equation .) and the the pulse duration requirement (Equa-
tion .). To develop a method of designing the pulse, we first reparametrise
Equations .a and .b using the dimensionless parameters µ, Γ and α, which
each have a distinct effect on the shape of the pulse, as defined below.

The range of the frequency sweep, 2∆0, determines the slice thickness ∆z: the
full width at half maximum (FWHM) of the transferred slice. From Equation .,
the slice thickness can be expressed as

∆z =
2∆0

γ dB
dz
. (.)

We can replace ∆0 with the normalised pulse bandwidth µ, where

µ =
∆0

Ω0
. (.)

We must ensure that the pulse is adiabatic, otherwise the spin projection at the
centre of the slice will be Fz < 1 and there will be some population left behind
in the original spin state. The criterion for a pulse to be adiabatic [, p. ] is
Ω0 ≫

√
∆0 β, which using Equation . can be expressed asΩ0 ≫ µβ. We thus

introduce the adiabaticity parameter Γ, where

Γ =
Ω0

µβ
, (.)

and know that the pulse will be adiabatic for Γ ≫ 1 (this statement is refined in
Section ..). The effect of Γ on the slice profile is shown in Figure .(b). The
value of Γ determines the peak spin projection at the centre of the slice, and the
resolution (ratio of slice thickness to slice sharpness) of the slice.
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Figure .: The slice profile in frequency space for different hyperbolic secant pulse param-
eters. For all three curves, the normalised pulse bandwidth was set to µ = 1. (a) Here the
adiabaticity parameter is Γ = 5 and the pulse truncation is α = 0.003. This produces a
smooth, moderately rectangular slice profile; a shape suitable for magnetic resonance con-
trol. (b) Here we reduce the adiabaticity of the pulse by settingΓ = 1while keeping all other
parameters the same. Even though the slice profile remains smooth, the spin projection at
the centre of the slice no longer reaches 1. (c) Here we reduce the smoothness of the slice
profile by setting α = 0.2. While the spin projection at the centre of the slice is still high,
detrimental ‘wriggles’ appear in the slice profile which reduce the spatial selectivity of the
slice.

The pulse truncation α is the ratio between the initial Rabi frequency (from
Equation .a, Ω(−tp/2) = Ω0 sech (β tp/2)) and the peak Rabi frequency Ω0,
and can be expressed in the form

α = sech
(
β tp
2

)
. (.)

The pulse truncation determines the smoothness of the slice profile, as shown in
Figure .(c).

The spin projections shown in Figure . were calculated by numerically solv-
ing the time-dependent Schrödinger equation for a two-state systemusing the Rabi
Hamiltonian

H =
~
2

∆(z, t) Ω (t)

Ω (t) −∆(z, t)

 . (.)

This is equivalent to considering a line of spins fixed in position along the z-axis.
In Section . we observe that this simple calculation shows excellent agreement
with mean-field simulations of a three-level condensate provided that the pulse
duration is sufficiently short, such that the condensate does not move significantly
during the pulse.
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.. Selecting the correct set of pulse parameters

Now that we have defined the dimensionless parameters µ, Γ, and α, we can dis-
cuss how to select these pulse parameters to satisfy the pulse resolution and pulse
duration requirements (Equations . and ., respectively). In the limit of an
infinitely long hyperbolic secant pulse applied to a line of stationary spins (rather
than a fluid condensate), there is an analytic expression for the fractional popula-
tion transferred from the spin-down state |↓⟩ to the spin-up state |↑⟩ []:

P↑, final =
cosh

(
π Γµ2

)
− cosh

(
π Γµ

√
µ2 − 1

)
cosh (π Γµ2) + cosh (π Γ dµ2)

, (.)

where d = ∆1/∆0 is the normalised detuning offset. We define the pulse fidelity
as the maximum fractional population transferred to the final Zeeman state at the
centre of the slice profile after application of the pulse, which we estimate by setting
d = 0 in Equation .. In other words, the hyperbolic secant pulse transfers popu-
lationmost efficiently when the frequency sweep crosses resonance simultaneously
with the maximum coupling amplitude;

P↑, adiabatic ≡ max d (P↑, final) (.a)

= 1− cosh2
(π
2
Γµ
√
µ2 − 1

)
sech2

(π
2
Γµ2

)
(.b)

≈ 1− e−π Γ/2 . (.c)

The approximation in Eq. .c is accurate to within 1 for µ > 2 and Γ > 2 (and
is exact in the limit of µ→ ∞), and thus Γ serves as a good adiabaticity parameter,
analogous to the adiabaticity parameter in the Landau–Zener probability [, ].

We can estimate the pulse resolution R by rearranging Equation . to find
the normalised detuning offset for a given fractional population transferred to the
spin-up state:

d(P↑, final) =
1

π Γµ2
cosh−1

((
P−1
↑, final − 1

)
cosh

(
π Γµ2

)
−P−1

↑, final cosh
(
π Γµ

√
µ2 − 1

))
.

(.)

The single-pulse resolution in the limit of an infinitely long pulse is then

R(µ, Γ) =
∆z

δz
=

2 d(0.5)

d(0.9)− d(0.1)
. (.)

In this form, Equation . does not enable immediate insight into how the pulse pa-
rameters determine the resolution of the pulse. However, when Γ ≥ 3 and µ ≥ 1,
Equation . is well approximated by

R ≈
√
2Γµ2 , (.)

agreeing with Equation . to within 1.
Truncating the hyperbolic secant pulse to have a finite duration tp results in

non-adiabatic, off-resonant Rabi oscillations at the beginning and end of the pulse,
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rendering Equations .–.b inexact. Approximating the coupling at the bound-
aries of the sweep to be that of an unmodulated off-resonant pulse (which is rea-
sonable as both the frequency and amplitude of the hyperbolic secant pulse change
most slowly at the boundaries), the off-resonant oscillations in P↓,final are given by

P↓,asymptotic ≡
Ω(t = tp)

2

Ω(t = tp)2 +∆(t = tp)2
=

α2

α2 + µ2
(
d+

√
1− α2

) . (.)

These off-resonant Rabi oscillations can not only perturb the resonant pulse fi-
delity, but also lower the resolution of the pulse if α is not chosen to be sufficiently
low (as demonstrated in Figure .). A lower value of α reduces the amplitude
of these oscillations, but also increases the duration of the pulse. As such, the
trick is to predict how low α needs to be to not significantly degrade the adiabatic-
limited resolution given in Equation .. We have found that the resolution limit
imparted by the finite pulse duration is related to the width of the curve given by
Equation . as a function of normalised detuning d. This is a Lorentzian curve
with a FWHM of 2α/µ centred at d0 = −

√
1− α2. The resolution of a finite-

duration pulse agrees to within 1 of an infinite pulse if

α <
1√

2 η µΓ
, (.)

where η = 30 typically characterises this resolution limit.
The above considerationsmotivate the followingmethod for selecting the pulse

parameters to engineer a black soliton in a condensate:

. Given a desired resonant fidelity P↑, adiabatic = 1− P↓, adiabatic, the adiabatic-
ity parameter is well-approximated byΓ ≈ −2/π lnP↓, adiabatic. For example,
to obtain a fidelity of 99 (adequate formany experiments), choosingΓ = 3

is more than sufficient.
. With Γ chosen, the normalised detuning µ can be obtained using Equa-

tion ..
. With µ selected, we can calculate α using Equation ..
. The last step is to set the peak Rabi frequency Ω0. From Equations . and

., the minimum permissible pulse area is

(Ω0 tp)min = 2Γµ cosh−1 (α−1
)
. (.)

Recall that for a given condensatewe require tp < tξ/4 for the quantum fluid
to remain stationary during the pulse sequence. Substituting tp = tξ/4 into
Equation . sets the required peak Rabi frequency Ω0:

Ω0 =
8Γµ cosh−1 (α−1

)
tξ

. (.)

It is important to note that the method outlined in this section is not the only
way to find an adequate set of pulse parameters for a given condensate. Equa-
tion . shows that you could setΓ to be larger than necessary (thereby giving your
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pulse a higher fidelity than required) and compensate by reducing µ to achieve the
same pulse resolution. This increases the required effective pulse areaΩ0 tp ∝ Γµ,
but otherwise results in the same slice profile. Indeed the results presented in the
rest of this chapter use Γ > 3, as the above method was established after I had al-
ready simulated MRC to engineer a black soliton, and prepared the main results
of this chapter. That a different set of pulse parameters can also produce a black
soliton speaks to the robustness of this technique.

.. Required magnetic field gradient

The equations derived in this chapter lead to an alternate expression for the re-
quired magnetic field gradient in terms of the healing length. By combining Equa-
tions ., ., ., ., ., and ., we arrive at the equation∣∣∣∣dBdz

∣∣∣∣ ≈ 8 ~ cosh−1 (α−1
)

3 γ mξ3
. (.)

This shows that the magnetic field required by MRC to engineer a black soliton in
a condensate depends only on the healing length of the condensate, without depen-
dence on the Thomas–Fermi radius of the condensate, which may seem counter-
intuitive. This equation also allows us to estimate the required magnetic field
gradient for a particular condensate before finding appropriate pulse parameters;
the rd order scaling with healing length shows that the magnetic field gradient
needed will increase dramatically for very small healing lengths. For example, set-
ting α = 0.003, if a 87Rb condensate has a healing length of 500 nm, the required
magnetic field gradient will be on the order of 250G/cm. If the healing length is
decreased to 150 nm, the required magnetic field gradient dramatically increases
to the order of 10 kG/cm

.. Gradient-induced motion

An aspect of condensate motion we have not considered in detail in the above anal-
ysis is the Stern–Gerlach effect; the fact that the magnetic field gradient will accel-
erate the different spin components of the condensate in different directions. This
acceleration is given by

aSG = −~ γ mF

m

dB
dz

, (.)

and during each pulse the |+1⟩ and |−1⟩ components will move in opposite direc-
tions by the amount

δzSG =
1

2
aSG t

2
p . (.)

To keep this movement negligible during the pulse, we require |δzSG| < ξ. Using
Equation ., setting tp = tξ/4, this requirement can be expressed in the form∣∣∣∣dBdz

∣∣∣∣ < 16 ~
γ mξ3

. (.)

This cubic scaling betweenmagnetic field gradient and length-scale of the achieved
resolution is the same relationship previously found in the resolution limits of
atomic position measurements of laser-cooled gases and atomic beams [].
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We have found that the upper bound for the magnetic field gradient in Equa-
tion . can be close to the gradient required in Equation .. This means that
to be certain of engineering a black soliton, we need to simulate the condensate via
the Gross–Pitaevskii equation (Section .) which includes this gradient-induced
motion. We discuss in Section .. that if this effect is small, it can be mitigated
through appropriate choice of the sign of the magnetic field gradient. As the heal-
ing length of the condensate decreases, and hence the requiredmagnetic field gradi-
ent increases, the gradient-induced motion will become more significant. In these
cases, it might be necessary to use a pulse duration shorter than tp = tξ/4.

.. Relationship to the proposal by Williams and Holland

After developing our magnetic resonance control technique, we realised that it
seemed reminiscent of a wavefunction engineering proposalmade by J. E.Williams
and M. J. Holland in  [], which was used to create the first vortex in a Bose-
Einstein condensate [], and later an unstable soliton []. After these examples
this technique did not become commonly used, perhaps because simpler methods
were soon discovered for creating vortices in condensates; for example, stirring the
condensate with a repulsive potential [], or coupling angular momentum from
a LagurreGaussian beam [,]. As a result it did not develop a short, descriptive
name; in order to compare and contrast this technique with magnetic resonance
control, we will refer to it as the Williams–Holland technique.

Both magnetic resonance control and the Williams-Holland technique estab-
lish an effective two-level system and create a spatially-varying splitting between
these two levels to control the density and phase of the condensate with spatial res-
olution. However, this is the extent of the similarity between these two techniques.

The Williams-Holland technique varies the level splitting over time in an os-
cillatory manner, and uses constant coupling between the levels. In contrast, mag-
netic resonance control modulates the coupling while using a static level splitting.

Unlike magnetic resonance control, the William-Holland technique does not
achieve healing-length resolution, instead creating larger structures which then re-
lax into the target state at a rate governed by the underlying dynamics of the un-
coupled system. Achieving a finer spatial resolution using the Williams-Holland
techniquewould requireweaker coupling between the two levels, necessarily result-
ing in a slower protocol compared to magnetic resonance control; one advantage
of the sub-healing-time speed of magnetic resonance control is that it enables us
to engineer the condensate wavefunctions multiple times during the course of an
experiment, near-instantaneously.

Williams and Holland proposed that their technique could be used to create
wavefunctions less symmetric than a single vortex or soliton by applying time- and
spatially-varying level splittings with a profile more complicated than a linear gra-
dient. Achieving this experimentally would usually require either microstructured
current elements to produce suchmagnetic field gradients, or alternatively a spatial
light modulator to produce an effective magnetic field gradient using a light-shift.
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Both these options add to the experimental complexity of the technique, and poten-
tially impose constraints on the resolution of the technique. We show in Section .
that we can use magnetic resonance control to engineer the less symmetric wave-
functions ofmultiple off-centre solitons by retaining the simple linear gradient and
instead varying the profile of the time-dependent coupling; such pulses are readily
achievable with agile radiofrequency synthesisers.

. Simulating a one-dimensional spin- condensate

The Gross–Pitaevskii model [, ] is used ubiquitously to study the evolution
of Bose–Einstein condensates in themean-field approximation [,]. A deriva-
tion of thismodel applied to a two-level system can be found in Reference , with
the extension to spin- systems in Reference .

To demonstrate our magnetic resonance control protocol, we simulate a spin-
Bose–Einstein condensate with three Zeeman sublevels which are coupled by mag-
netic dipole transitions in a time-dependent magnetic field gradient. The conden-
sate is elongated, held in a cylindrically symmetric potential with radial and axial
trap frequencies ωr ≫ ωz . In such a condensate, the relevant dynamics occur in
the direction of weakest confinement; the axial direction z. This allows us to use a
quasi-1D Gross–Pitaevskii equation (GPE) to reduce the number of simulated spa-
tial dimensions, applying a Thomas–Fermi ansatz to the density along the radial
direction [].

This quasi-1D simulation better represents experimental reality than a strictly
one-dimensionalGPEbecause it considers the finite radial extent of the condensate.
For example, a 1D GPE simulation predicts a parabolic single-component ground
state, which differs to the profile observed in an elongated condensate; the lower
density at the axial extent of the condensate rounds the sharp parabolic boundary.
Such a profile is better predicted by the quasi-1D simulation described below.

In these simulations we model a spin-1 system instead of the two-level system
described previously in this chapter. We choose a spin- system because it enables
a higher rf Rabi frequency than a pseudospin-/ condensate with two-photon cou-
pling. For a spin-F system starting in |F, mF = −F ⟩, all analytics discussed pre-
viously in this chapter map through the relation

⟨Fz⟩
F

= 2P↑, final − 1 (.)

since spin-rotations of the polarised state |F, mF = ±F ⟩map to the Bloch-sphere
representation of spin- systems [].

.. Spin- quasi-D Gross–Pitaevskii equation with magnetic resonance

A cylindrically symmetric spin- BEC has a spinor order parameter

Ψ(r, z) =


ψ−1 (r, z)

ψ0 (r, z)

ψ+1 (r, z)

 . (.)
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Applying the Thomas–Fermi ansatz described in Reference , the wavefunction
of the Zeeman component is

ψmF
(r, z) = Φ⊥(r, χ(z))fmF

(z) , (.)

where Φ⊥(r, χ(z)) represents the radial dependence of the condensate density,
common to all Zeeman components. This radial density is a Thomas–Fermi pro-
file, with an axially-varying radius χ(z);

Φ⊥(r, χ(z)) =

√
2

π

1

χ(z)
max

(
1− r2

χ(z)2
, 0

)1/2

. (.)

The fields are normalised such that∫
|ψmF

(r, z)|2 dV =

∫ ∞

−∞
|fmF

(z)|2 dz = NmF
, (.)

whereNmF is the number of atoms in the Zeeman statemF . The 3D atomic den-
sity (with units of atoms/m3) of themF component is

nmF (r, z) ≡ |ψmF (r, z)|2 (.)

while the linear density (with units of atoms/m) of themF component is

ρmF (z) ≡ |fmF (z)|2 . (.)

From the fields fmF (z) and axially-dependent radial width χ(z) we can calcu-
late experimentally relevant quantities such as the peak atomic density n0, the aver-
age density ⟨n⟩, and the column density ñ(y, z) =

∫∞
−∞ n(r =

√
x2 + y2, z) dx.

For example, the peak atomic density is

n0 = max z

(
2 ρ(z)

π χ(z)2

)
, (.)

where ρ(z) ≡
∑

mF
ρmF

(z) is the total linear density.
The spinor f(z, t) = (f−1, f0, f+1)

T obeys a coupled quasi-1D GPE

i ~
∂f
∂t

=

(
− ~2

2m

∂2

∂z2
+ V + E⊥ + c0 η ρ+ S +HC

)
f , (.)

wherem is the atomic mass, V (z) = mω2
z z

2/2 is the spin-independent external
potential along the axial direction,E⊥(z) = mω2

r χ(z)
2/6 is the transverse mode

energy, c0 = 4π ~2 (2 a2 + a0) /3m is the spin-independent interaction strength,
η(z, t) = 4/

(
3π χ(z)2

)
is the scaling factor (with units of m−2), ρ(z, t) is the to-

tal linear density, S(z, t) is the spin-exchange operator andHC(z, t) is the linear-
coupling Hamiltonian (both defined below).

The spin-exchange operator which governs the spin-spin interactions is

S = c2 η


ρ0 + ρ−1 − ρ+1 f∗+1 f0 0

f+1 f
∗
0 ρ−1 + ρ+1 f−1 f

∗
0

0 f∗−1 f0 ρ0 + ρ+1 − ρ−1

 , (.)
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where c2 = 4π ~2 (a2 − a0) /3m is the spin-dependent interaction strength. The
z-dependent radial width χ(z) at any given time is determined by an auxiliary dif-
ferential equation arising from the Lagrangian formulation of the quasi-one dimen-
sional GPE []:

ρ
∂E⊥

∂χ
+

1

2

(
c0 ρ

2 + c2 S2

) ∂η
∂χ

= 0 , (.)

where

S2 = (ρ−1− ρ+1)
2+2 ρ0 (ρ−1+ρ+1)+2 f∗20 f+1 f−1+2 f∗+1 f

∗
−1 f

2
0 . (.)

For the Thomas–Fermi ansatz applied here, this reduces to an algebraic equation
for χ in terms of the one-dimensional fields fmF and the densities ρmF :

χ2 =
2

ωr

√
c0 ρ2 + c2 S2

πmρ
. (.)

The Hamiltonian for linear coupling between the states |mF = −1, 0, +1⟩ is

HC = ~


−∆ Ω√

2
0

Ω√
2

q Ω√
2

0 Ω√
2

∆

 , (.)

where Ω is the Rabi frequency for transitions between the three spin- Zeeman
states, and q = (E−1 + E+1 − 2E0)/2 ~ is the quadratic Zeeman shift.

The spin-exchange terms in Equations . and . (those proportional to c2)
vanish in the absence of a superposition of Zeeman states, and are negligible during
the pulses. For example, c2⟨n⟩ is around 10Hz for F = 1 87Rb condensates with
typical densities of ⟨n⟩ = 1014 atoms/cm.

To perform our quasi-1D GPE simulations I used our ‘in-house’ simulation
engine pygpe developed by Martijn Jasperse, which I extended to include time-
dependent magnetic fields and time-dependent coupling. This simulation engine
uses a Python front-end combined with C and FORTRAN to increase computa-
tional speed. It numerically solves the Gross–Pitaevskii equation on a regular spa-
tial lattice using a split-step Fourier method; the kinetic energy term is integrated
in Fourier space first (using the FFTW library), followed by integrating the poten-
tial energy term in real space. We use the high-performance numerical FORTRAN
library EXPOKIT for matrix exponentiation of the spin-exchange operator at each
point in space. Further details of the computational methods used are discussed
in Martijn Jasperse’s PhD confirmation report [].

.. Choosing the space step and time step

Simulatingmagnetic resonance control needs a spatial grid with small spacing zstep
and small time steps tstep. We seek to resolve features at the healing length scale, re-
quiring zstep < ξ/2, and since the hyperbolic secant pulses occur over a time scale
smaller than the healing time, we also require tstep ≪ tξ during the protocol. If
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By defining the initial density and
phase using the equation for a
soliton (Equation .) multiplied by
the lowest energy state.

The terminology of ‘black’, ‘dark’
and ‘grey’ solitons is defined in
Section ..

the space steps or time steps (or both) are too large, the simulated wavefunction
degenerates into meaningless noise after a few thousand time steps. The space step
needs to be sufficiently small to sample the soliton. Once the space step is chosen,
the time step needs to be sufficiently small so that the superfluid flow during one
time step is much less than one space step, and so that the modulation of the cou-
pling pulse is sufficiently sampled. But we do not want to choose unnecessarily
small space steps and time steps, since this increases the computation time.

A good way to find the largest permissible space step and time step is to simu-
late an analytically-defined black soliton for one trap period, and check that the soli-
ton remained stationary. This analytically-defined black soliton is the numerically-
determined ground state wavefunction multiplied by the analytic expression for a
soliton in a homogeneous density profile (equation .). I use this term to dis-
tinguish this from a soliton engineered into the condensate using our magnetic
resonance control protocol.

.. Confirming the physicality of our simulations

Before simulatingmagnetic resonance control, I simulated condensates under a va-
riety of familiar conditions to ensure that the simulations were producing physical
results.

I checked that in the absence of magnetic field gradients and coupling, the
ground-state finder was able to converge to the lowest energy state. The ground-
state finder in pygpe uses imaginary time propagation [] until the change in
energy after each time step reaches a defined threshold value.

I confirmed that constant resonant radiofrequency coupling produced Rabi os-
cillations between the Zeeman states, and that a hyperbolic secant pulse (in the
absence of a magnetic field gradient) could transfer the condensate population en-
tirely from |−1⟩ to |+1⟩ (and vice versa).

By pulsing a strong gradient on and off, I observed the sloshing mode of a har-
monically trapped single-component condensate. I also checked that when a con-
stant magnetic field gradient was applied, a condensate in the |−1⟩ Zeeman state
moved towards smaller |B| while a condensate in the |+1⟩ Zeeman state moved
towards larger |B|. This is consistent with the weak and strong field seeking be-
haviour of these states, respectively.

In the final stages of confirming the physicality of my simulations, I had the
valuable opportunity to compare my results with collaborators Joseph Hope and
Paul Wigley, who were using the simulation environment XMDS2 [] to simu-
late the same system. The simulations in XMDS2 use an adaptive time stepmethod
with the algorithm ARK45, which is a fourth order ‘almost Runge–Kutta’ integra-
tion technique with five stages [].

Setting the initial state of the condensate to contain a soliton was another way
to confirm that the simulation produced expected results. For example, we con-
firmed that a dark soliton oscillates within the condensate with a frequency of

√
2
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Figure .: Simulating an oscillating soliton, initially located at z = 10µm. Here the trap
frequencies are fz = 24Hz and fρ = 240Hz, and the condensate contains 2× 105 atoms.
(a) The soliton oscillates with a frequency of

√
2 fz as expected [, p. ]. (b) The linear

density of the condensate at different times shows that the turning points of the oscillation
occur when the density dip reaches zero.

times the trap frequency [, p. ], and saw that the turning point of this oscilla-
tion occurs when the soliton density dip reaches zero (Figure .).

We can observe how the stability of the soliton depends on the width of the
density dip (while maintaining a π phase step). Figure . shows that as the width
of the density dip is increased beyondwsol = 5 ξ/2, the feature decays intomultiple
dark solitons. Interestingly, when the width of the density dip is wsol = n 5 ξ/2,
where n is an odd integer, the density dip decays into n dark solitons. When n is
even, n+ 1 solitons form. This is because we have defined an initial π phase step;
since phase must be conserved across the condensate, such a system can support
only odd numbers of solitons.

At this stage of our investigations, we had not yet developed the criteria dis-
cussed in Chapter  for choosing condensate parameters (atom number and trap
frequencies) that are suitable for engineering black solitons. This meant that the
choice of condensate and trap parameters for the simulations presented above were
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Figure .: Increasing the width of the density dip causes the density dip to decay into mul-
tiple solitons. Figure .(a) shows that indeed a black soliton, with width wsol = 5 ξ/2, re-
mains stationary at the centre of the condensate (Equation .). Figures .(b–e) show that
as the width is increased by integer multiples n, the density dip is unstable and decays into
n solitons when n is odd, and n+ 1 solitons when n is even.
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The figures in this chapter do not
show the full spatial extent, instead
truncating just beyond the
Thomas–Fermi radius.

fairly arbitrary; here the trap frequencies were fz = 24Hz and fρ = 240Hz, with
atomnumberN = 2× 105, similar to the condensates produced in our laboratory.
For such a condensate, ξ = 148 nm and zTF = 33µm. This necessitated a spatial
grid of 2048 points, with step size zstep = 43 nm, and time step tstep = 1µs.

. Engineering a black soliton using magnetic resonance control

Here I use magnetic resonance control to simulate engineering a single black soli-
ton in a condensate with experimentally feasible parameters. Developing this suc-
cessful protocol was the culmination of a year of research, including a close collab-
oration in the last few months with Paul Wigley and Joseph Hope. To keep this
section as transparent as possible, I wait until Section . to motivate some of the
choices made in designing the protocol parameters.

.. The condensate parameters

The condensate considered for the rest of this chapter contains N = 104 87Rb
atoms in a harmonic trap with axial frequency fz = 2.4Hz and radial frequency
fρ = 158.4Hz. These condensate parameters satisfy all of the criteria discussed in
Chapter  necessary for engineering a black soliton using magnetic resonance con-
trol. Using equations defined in Section ., this condensate has a Thomas–Fermi
radius of zTF = 96µm, a healing length of ξ = 504 nm, a soliton full width at half
maximum (FWHM) of wsol = 1.3µm, and a healing time of tξ = 492µs.

The spatial grid consists of 2048 points with a step size of zstep = 195 nm, cor-
responding to a total spatial extent of 400µm. This space step is fine enough to
model a soliton in this condensate, since it corresponds to seven points across the
FWHM of the soliton.

The spatial extent is deliberately much larger than the Thomas–Fermi radius
of the condensate because the Fourier integration technique used by our simula-
tion engine results in periodic boundary conditions; any portion of the condensate
which reaches the boundary would reappear on the other side of the simulation. To
manage these non-physical boundary effects, in addition to making the spatial ex-
tent much larger that the condensate, we introduce exponential damping of the
wavefunction near the edges of space.

The time step was chosen to accommodate this step size without allowing com-
putational error to significantly accumulate. During the protocol, with coupling
pulses of shorter duration than the healing time, the time step is tstep = 100 ns.

To check that a black soliton has been successfully engineered, we need to
observe the condensate evolve over several trap periods. With a trap period of
41.7ms, we choose to propagate up to one second after the protocol. After the
second coupling pulse the time step is increased to tstep = 10µs with no ill-effects,
thereby significantly reducing the computation time (from hours to minutes).
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.. The pulse parameters

For the simulations in this section, we use the following hyperbolic secant pulse
parameters:

• the normalised pulse bandwidth µ = 3.2,
• the adiabaticity parameter Γ = 5,
• the pulse truncation α = 0.003,
• the peak Rabi frequency Ω0 = 2π × 300 kHz.

These parameters produce a smooth slice profile (shown in Figure .) with a peak
spin projection at the centre of the slice of Fz > 0.999. Using Equation ., the
pulse duration is tp = 110.4 µs, which satisfies the requirement that tp < tξ/4.
To achieve the necessary slice thickness of ∆z = ζ zTF, with ζ = 1.2, from Equa-
tion . the magnetic field gradient needs to be |dB/dz| = 237.5G/cm. In this
gradient, the slice sharpness is δz = 1.6µm, which satisfies the slice sharpness cri-
terion (Equation .).

A peak Rabi frequency of Ω0 = 2π × 300 kHz is experimentally feasible; be-
cause γ = 702 kHz/G for theF = 1 level of 87Rb, such a frequency corresponds to
an oscillatingmagnetic field amplitude of 430mG, which can be generated by a coil
antenna 10 cm from the condensate driven by a 30W radiofrequency amplifier.

Figure . shows the spin projection after this hyperbolic secant pulse, both
from the stationary spins calculation (Equation .) and from the GPE simulation.
The two curves show excellent agreement, validating the simplification of using the
stationary spins calculation while selecting the pulse parameters, instead of using
the full GPE simulation.

The pulse parameters we have chosen here are not precisely the values obtained
by following the procedure outlined in Section ..; the pulse used here is exces-
sively adiabatic, which is compensated by a lower normalised pulse bandwidth.
This is because the findings in Sections .. and .. were not refined until after
these simulations were performed. However, you will see that these pulse param-
eters do still allow us to engineer a black soliton in this condensate. If we were to
follow the procedure outlined in Section .. this would allow us to use either a
pulse with a shorter duration, or a lower peak Rabi frequency.

.. Experimental considerations for the magnetic field gradient

For experimentalists accustomed to manipulating spinor condensates with mag-
netic field gradients generated by bias coils located outside a vacuum chamber, like
in our laboratory, a magnetic field gradient of order 200G/cm seems quite strong.
Fortunately, this gradient is comparable in magnitude to those used for magnetic
trapping of condensates. This means that an apparatus using a magnetic trapping
stage on the way to creating spinor condensates could implement this protocol,
by using (comparatively weaker) bias coils to offset the field produced by large
quadrupole coils. If the spinor condensate is created on an atom-chip trap, the
magnetic field gradient ceases to be an issue. Much larger gradients are routinely
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Figure .: The spin projection after a hyperbolic secant pulse with pulse parameters of
Ω0 = 2π × 300 kHz, µ = 3.2, Γ = 5, and α = 0.003, corresponding to a pulse duration
of tp = 110.4µs, in a magnetic field gradient of |dB/dz| = 237.5G/cm. Results are
shown for the stationary spins calculation with no quadratic Zeeman shift (orange), with
the quadratic Zeeman shift included (green), and from a simulation of the GPE (grey). (a)
The spin projection across the entire condensate (zTF = 96µm). The slice thickness has
been set to ∆z = 1.2zTF = 115.3µm to ensure that the left side of the slice is well outside
the condensate. (b) The spin projection near the edge of the slice profile. The slice sharpness
is δz = 1.6µm. The curves from the GPE simulation and the stationary spins calculation
with no quadratic Zeeman shift show such close agreement that they are difficult to distin-
guish on this scale. The quadratic Zeeman shift results in a horizontal offset to the slice.
This offset can be compensated for by an additional detuning offset to the pulse.
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created by atom-chip traps, where current-carrying wires can be tens of microns
from the condensate [].

If due to apparatus limitations the gradient cannot be generated by coils of wire,
the necessary spatially-varying energy level splitting could instead be achieved op-
tically. The vector light shift from the side of an off-resonant Gaussian laser beam
canproduce an effectivemagnetic field gradient. The deleterious state-independent
force generated by such an intensity gradient can be made to vanish if the laser is
tuned to a magic-zero wavelength [], while still synthesising a sufficiently large
vector light shift []. This optical approach has the added advantage of providing
the ability to rapidly modulate the effective magnetic field; rapid switching using
current-carrying wires can be experimentally more challenging than modulating
the polarisation of a laser beam.

.. The quadratic Zeeman shift

We require that the magnitude of the magnetic field across the entire condensate
is large enough to allow radiofrequency coupling between Zeeman states (ideally
in the regime of the rotating-wave approximation, such that ωL ≫ Ω0, where ωL

is the Larmor frequency). To achieve this, it is sufficient to set the minimum mag-
netic field strength (on one edge of the condensate) to be

|B|min = 10
Ω0

γ
. (.)

The pulse we use has Ω0 = 2π × 300 kHz, which requires |B|min = 4.3G. For a
magnetic field gradient of 237.5G/cm, the maximum magnetic field strength at
the other edge of the condensate (with zTF = 96µm) is |B|max = 8.8G.

The quadratic Zeeman shift in an F = 1 87Rb condensate [, ] is

q (z) = 2π × (B (z))
2 × 71.89Hz/G2

, (.)

which for this maximum magnetic field gives qmax = 2π × 5.6 kHz.
In Figure . we can compare the slice profile for the same pulse, with and

without the presence of this spatially-dependent quadratic Zeeman shift. We see
that the quadratic Zeeman shift primarily results in a horizontal offset to the slice
on order q (equivalent to an offset in the detuning ∆1). This is understandable,
since the quadratic Zeeman shift changes the resonance of the sweep between |−1⟩
and |0⟩, and the detuning is the difference between the frequency of the pulse and
the Larmor frequency. We can therefore compensate for the majority of the effect
of the quadratic Zeeman shift with an appropriate offset of the detuning of each
pulse.

Since q is not constant across the condensate, the slice offset is not constant;
this results in a small distortion of the slice profile (as though the magnetic field
gradient has a slight curvature). It would be possible to remove this distortion by
using an asymmetric pulse, to deliberately skew the slice profile in the opposite di-
rection. Alternatively, we believe a quadratic Zeeman shift of this magnitude could
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This choice in sign of the gradient
is deliberate, and is discussed in
Section ... The consequences of
the direction of the sweep across
the condensate are discussed in
Section ...

This choice of ∆ϕ and tϕ is
explained in Section ...

be cancelled using amicrowave pulse []. With these options inmind, for simplic-
ity we choose to neglect the quadratic Zeeman shift term from the Hamiltonian for
the simulations presented in this chapter.

.. The MRC protocol used to engineer a black soliton

The condensate starts at rest in the ground state of the harmonic trap with all pop-
ulation in the |−1⟩ state. We apply a magnetic field gradient of−237.5G/cm, and
apply the first hyperbolic secant pulse. The first pulse begins with a detuning of
2π × 1.92MHz, and ends on resonance, with respect to the centre of the conden-
sate. This results in the resonant coupling position starting outside the condensate,
at z = −115.2µm, and sweeping to the condensate centre. At the end of the
first pulse, the left side of the condensate is in the |+1⟩ state, while the right side
remains in |−1⟩. This is shown in Figure .(a). Due to the finite edge sharpness
of the pulse, there is some overlap of all three spin populations at the centre of the
condensate, as shown in Figure .(a).

At the conclusion of the first pulse, we remove the magnetic field gradient and
apply a constant detuning of ∆ϕ = 2π × 79.5 kHz for a duration of tϕ = 5µs.

During this stage, the Rabi frequency is zero (the radiofrequency oscillator con-
tinues to run but no signal is applied to the atoms) and a phase difference is al-
lowed to accumulate between the two sides of the condensate. The density of each
spin state at the end of this phase-accumulation stage is shown in Figures .(b)
and .(b). Experimentally, this detuning ∆ϕ can be controlled by adjusting the
spatially-uniform Zeeman splitting across the condensate using a magnetic field
offset, or by adjusting the frequency of the coupling field between the two pulses.

Then we apply a magnetic field gradient of +237.5G/cm, and apply a sec-
ond hyperbolic secant pulse which starts on resonance and ends with a detuning
of −2π × 1.92MHz, with respect to the centre of the condensate. The resonant
coupling position starts at the centre of the condensate and sweeps back out to
z = −115.2µm. At the end of the second pulse, we remove the magnetic field gra-
dient. The left side of the condensate has been returned to the |−1⟩ state, while the
right side (as always) remains in |−1⟩. This is shown in Figure .(c). Due to the
finite edge sharpness of the pulse, some residual population remains in states |0⟩
and |+1⟩ at the centre of the condensate, as shown in Figure .(c).

At the conclusion of the second pulse, we have created both a density notch of
width wsol = 1.6µm and a π phase step in the |−1⟩ state, filled by population in
states |0⟩ and |+1⟩. To create a black soliton this residual population must be re-
moved. Experimentally, this can be achieved by using a microwave coupling pulse
to rapidly transfer this population to |F = 2⟩, then an optical pulse can remove
this population from the trap entirely []. In these simulations, to remove this
residual population we set the populations in |0⟩ and |+1⟩ to zero after the second
pulse. Figure . shows the density of each spin state during the entire protocol
as a D colour-map plot.
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Figure .: The density of each spin state at key times during the protocol. (a) In the mag-
netic field gradient of −237.5G/cm the first pulse transfers the left side of the condensate
to |+1⟩. There is a slight bulk movement of the condensate to the right as a result of the
magnetic gradient (seen in the offset of dotted lines from solid lines), but this movement is
small because the protocol completes faster than the healing time; this is discussed further
in Section ... (b) After the first coupling pulse, the magnetic field gradient is removed,
and a constant detuning is applied for 5µs to accumulate a phase difference between the
two sides of the condensate. (c) In the magnetic field gradient of −237.5G/cm the second
pulse returns the left side to |−1⟩. Near z = 0 some population remains in |0⟩ and |+1⟩,
creating a density dip in |−1⟩. This central region is shown in Figure ..
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Figure .: The density of each spin state in the central region of the condensate at key times
during the protocol. (a) After the first pulse, some population remains in state |0⟩ due to
the finite sharpness of the slice profile. (b) Comparison of the dotted and solid lines shows
the minimal movement of the condensate during the phase accumulation stage. (c) After
the second pulse some population remains in |0⟩ and |+1⟩ at the centre of the condensate,
creating a density dip in |−1⟩ with a FWHM of 1.6µm, matching the width of a black
soliton in this condensate. With this density dip and the accumulated phase difference, a
black soliton is created after the residual population is removed.



 Chapter . Simulating magnetic resonance control

−100

−50

0

50

100

z
(µ

m
)

(a) |ψ−1 (z, t)|2

−100

−50

0

50

100

z
(µ

m
)

(b) |ψ0 (z, t)|2

0 50 100 150 200

t (µs)

−100

−50

0

50

100

z
(µ

m
)

(c) |ψ+1 (z, t)|2

Figure .: The density in each spin state while engineering a black soliton. The first pulse
slices in from the left edge of the condensate to the centre, completing the transfer of the
left side from |−1⟩ to |+1⟩ at t = 110.4µs. After a 5µs wait time to accumulate a phase
difference between the two sides, the second pulse slices out from the centre of the conden-
sate, returning the left side of the condensate to |−1⟩. The finite edge sharpness of the pulse
carves a density dip of widthwsol = 1.6µm into the |−1⟩ state, filled by residual population
in states |0⟩ and |+1⟩.
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.. Confirming that a black soliton is engineered

To confirm that we have engineered a black soliton, we observe the stability of the
soliton for several trap periods. Figure . shows the total density of the conden-
sate |ψ−1 (z, t)|2 over one second of evolution. At this scale, the time over which
we apply the magnetic resonance control protocol (Figure .) is not visible. This
much longer time scale reveals that the protocol did indeed engineer a black soli-
ton; the soliton remains stationary at z = 0.

We note that the protocol did not result in an exact black soliton immediately
after the protocol. Figure .(a) shows that the engineered density notch only
reaches 0.04n0, not all the way to zero. This ‘almost-black’ soliton heals to a
black soliton by shedding small-amplitude sound waves which oscillate within the
condensate as shown in Figure ., with a lineout at t = 100ms shown in Fig-
ure .(b). We anticipate that these sound waves could be reduced through fur-
ther optimisation of the hyperbolic secant pulse parameters. Remember that per-
fect black soliton creation is not the end goal of magnetic resonance control, but is
rather simply an example of wavefunction engineering that requires rapid comple-
tion with sub-optical resolution. We have demonstrated here that magnetic reso-
nance control is capable of engineering such a challenging target.
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Figure .: (a) The phase and total density of the condensate immediately after the protocol,
showing the engineered density dip with FWHM of wsol = 1.6µm and minimum density
of 0.04n0. (b) The phase and total density of the condensate 100ms after the protocol,
showing that this state has healed into a black soliton by shedding some small-amplitude
soundwaves. We anticipate that these soundwaves could be reduced by further optimisation
of the pulse used to engineer the soliton.



 Chapter . Simulating magnetic resonance control

This requirement is presented
here as an empirical observation.
Future work may investigate the
underlying cause of this
requirement.

. Protocol design details

There were three main factors that needed to be considered when designing the
magnetic resonance control protocol used to engineer a black soliton. These factors
were the phase accumulated during the time between pulses, the duration of the
protocol, and the force applied by the magnetic field gradient (Section ..), and
I discuss these in Sections .., .., and .. respectively.

.. Ensuring a π phase step

In Section .. I stated that after the first pulse we apply a constant detuning of
∆ϕ = 2π × 79.5 kHz for a duration of tϕ = 5µs to ensure that at the end of the
protocol there is a π phase difference across the condensate. In theory, to accu-
mulate a phase difference of κ between two states |mF = ±F ⟩, the time-detuning
product should be

∆ϕ tϕ =
κ

2F
, (.)

so to accumulate a phase difference of π in our spin- system, we should want to
set ∆ϕ tϕ = π/2. However, we instead found that ∆ϕ tϕ = 1.59π/2 was the nec-
essary time-detuning product to create a phase difference of π at the end of the
protocol. This apparent discrepancy arises from that each pulse contributes a dif-
ference in phase across the two sides of the condensate, due to evolution during
each pulse. If the pulses used to engineer a black soliton are applied back-to-back,
with no phase-accumulation stage in between, the result is a broad phase step of
roughly π/2, decreasing from left to right. The shape of the phase step depends on
the pulse duration, and the direction of the detuning sweep (whether the resonance
point moves into the condensate, or starts at the centre and moves outwards). This
means that there is already a non-uniform phase profile at the beginning of the
phase-accumulation stage.

This explains why we need to set the time-detuning product to ∆ϕ tϕ ̸= π/2,
but implies that we should require ∆ϕ tϕ < π/2; instead, we find that we require
∆ϕ tϕ = 1.59π/2 to form a black soliton. This time-detuning product was found
empirically by setting tϕ = 5µs and observing the stability of the engineered soli-
ton for various∆ϕ until the resulting solitonwas black (Figure .). It appears that
to create a black soliton, the phase step at the end of the protocol must be a rising
edge (increasing from left to right) with a height of π; when the phase exhibits a
falling edge of π, the resulting density dip is shallow. Since the pulses contribute
a phase slope with a falling edge, the time-detuning product needs to be greater
than π/2 to result in a rising edge of π at the end of the protocol.

I set tϕ = 5µs to reduce movement of the condensate between the two pulses.
The rapid switching ofmagnetic fields this necessitates is challenging to implement
experimentally. This wait time can be increased; a black soliton can still be engi-
neered provided that the detuning∆ϕ is adjusted to compensate for themovement
of the condensate. For example if tϕ = 50µs, then a time-detuning product of
∆ϕ tϕ = π produces a black soliton.
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Figure .: The total density of the condensate evolved for one second after the magnetic
resonance control protocol. In all cases the hyperbolic secant pulses and the magnetic gra-
dient had the same parameters as used in Section ., and the wait time was tϕ = 5µs. The
simulations shown here have a different detuning ∆ϕ between the pulses, with the time-
detuning product indicated by each label. When ∆ϕ tϕ < 1.59π/2, the phase step is less
than π and a grey soliton is formed. When∆ϕ tϕ > 1.59π/2 the phase step is greater than
π, and the feature decays into two grey solitons.
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Figure .: The spin projection of the condensate after the first pulse, for different pulse
durations. In all cases the pulse parameters are Γ = 5, µ = 3.2 and α = 0.003. (a) The
stationary spins prediction is independent of the pulse duration. The slice edge is located
at z = 0 with a sharpness of 1.6µm. (b) When Ω0 = 2π × 300 kHz, the pulse duration
is tp = 110.4µs, and the GPE simulation agrees closely with the stationary spins predic-
tion. (c) When Ω0 = 2π × 50 kHz, the pulse duration is tp = 622.3µs. In this case, even
though the slice sharpness is only slightly increased (to 1.8µm), the edge of the slice has
noticeably moved compared to the stationary spins prediction (to z = 0.6µm). (d) When
Ω0 = 2π × 5 kHz, the pulse duration is tp = 6.6ms. Now the effect of the magnetic field
gradient is very apparent; the condensate has moved so far to the right during the pulse that
the slice edge is now centred at z = 6.5µm, and the sharpness has blurred to δz = 7.6µm.
In all cases the magnetic field gradient was set using Equation ., with ∆z = 1.2 zTF so
that the entire left side of the condensate is coupled. Even though the magnetic field gra-
dient decreases when Ω0 is decreased, the movement due to the gradient becomes more
significant because the duration of the magnetic field gradient is increased.

.. The importance of being faster than the healing time

In Section . we discussed the necessity of keeping the duration of the protocol
below the healing time of the condensate. Figure . demonstrates the change to
the slice profile if the duration of the pulse is increased beyond the healing time.
We can see that when the pulse is too slow, the GPE simulations no longer agree
with the stationary spins prediction (Section ..); the edge of the slice profile be-
comes broader, and moves to the right. This is because, unlike in the single-atom
prediction, the condensate in the GPE simulation is free to move. Provided the
pulse duration is less than the healing time, this movement does not significantly
alter the shape and position of the slice, and the combination of two pulses can be
used to engineer a black soliton.

.. Tolerating the magnetic gradient ‘kick’

For 87Rb atoms in a magnetic field gradient, atoms in |−1⟩ will experience a force
towards smaller |B| while atoms in |+1⟩ will experience a force towards larger |B|.
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Figure .: (a) The same data presented in Figure .; the black soliton created by the suc-
cessful protocol, in which we apply a negative gradient during the first pulse, and a positive
gradient during the second pulse. (b) Reversing the orientation of the gradient, while still
addressing the left side of the condensate, results in larger amplitude sound waves being
shed from the soliton, and the soliton oscillates within the condensate.

This means that during the first pulse, the uncoupled side of the condensate will
move to one side, the direction depending on both the initial spin state of the con-
densate and the sign of the magnetic field gradient. The coupled side of the con-
densate does not move as much as the uncoupled side because, at least on average
across that side of the condensate, the population spends equal time in both states.

It is best to ensure that the two sides of the condensate move apart from each
other during the first hyperbolic secant pulse, rather than moving towards each
other, by choosing the appropriate sign of the gradient. To achieve this, since the
condensate starts in |−1⟩ and we choose to couple the left side, we apply a nega-
tive gradient. If the two sides are pushed together by the magnetic field gradient,
the partial miscibility of the two states causes higher density peaks to form at the
boundary. These density peaks decay into sound waves, which perturb the soliton
(Figure .).
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Remember that previously, we
used µ = 3.2 and Γ = 5 to create
a single black soliton, with a slice
thickness of ∆z = 115.3µm and a
slice sharpness of δz = 1.6µm.

. Controlled creation of multiple solitons

In the simulations described in this chapter so far, the coupling pulses have only
addressed the left side of the condensate; the coupled slice has had a thickness of
∆z = 1.2 zTF, and the detuning offset has been set to the amplitude of the detun-
ing sweep (∆1 = ∆0) to position the right edge of the slice at z = 0. This means
that the left edge of the slice has been an unused commodity. If both edges are posi-
tioned inside the condensate we can engineer two solitons simultaneously, located
at each edge of the coupled slice; one of the solitons has a rising phase step, while
the other has a falling phase step.

To do this, we need to ensure that as the slice thickness is decreased, the slice
sharpness remains unchanged. Otherwise, the resulting density notches will be
narrower than a black soliton, and hence produce unstable solitons. To achieve
this, we decrease the range of the detuning sweep while maintaining the duration
of the pulse. In terms of our dimensionless hyperbolic secant pulse parameters,
this corresponds to decreasing µ and increasing Γ in proportion, while keeping all
other parameters (including the magnetic field gradient) the same.

.. A Newton’s cradle with two solitons

If we position the left edge of the slice inside the condensate, while keeping the right
edge at z = 0, we can engineer two solitons that oscillate in the condensate like a
two-ball Newton’s cradle; initially the left solitonwill move towards the (stationary)
right soliton, and on collision the momentum will be exchanged so that the left
soliton is stationary and the right soliton is moving to the right.

To demonstrate this effect, we set µ = 0.5 and Γ = 32 while keeping all other
parameters unchanged. In the magnetic field gradient of 237.5G/cm, this results
in a slice thickness of∆z = 18.0µmwhile the slice sharpness is still δz = 1.6µm.

The densities of the three spin states during the protocol are shown in Fig-
ure .. We can see that the left edge of the coupled slice is now at z = −18.0µm,
and at the end of the protocol a notch in the |−1⟩ density has formed on either
side of the slice. Figure . shows the evolution of the condensate over one sec-
ond, demonstrating the solitons undergoing momentum-conserving collisions.

.. Two solitons oscillating in phase

If we move the two solitons closer together and change the detuning offset ∆1 to
position both solitons to one side of the condensate, we can engineer a state in
which the two solitons maintain their relative separation and oscillate in phase.
This state is of particular interest because such a double soliton state has never
been experimentally realised in a quantum fluid. To engineer this state, we set
µ = 0.14, Γ = 115.3 and ∆1 = −2π × 166.52 kHz. In the magnetic field gradi-
ent of 237.5G/cm, the slice edges are located at z = −12.3µm and z = −7.3µm.
Figure . shows the evolution of the condensate over one second, demonstrating
that the solitons oscillate in phase with each other.
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Figure .: The density of each spin state |ψi (z, t)|2 across the condensate during the mag-
netic resonance protocol. Here we have reduced the slice thickness (butmaintained the slice
sharpness) by setting µ = 0.5 and Γ = 32, while all other parameters remain the same as
those used to engineer a single black soliton (shown in Figure .). Bringing the left edge
of the slice within the condensate in this manner results in a soliton forming at each edge of
the slice.
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Figure .: The total density of the condensate evolved for one second after the magnetic
resonance control protocol. We observe the two solitons oscillating like a two-ball Newton’s
cradle.
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Figure .: The total density of the condensate evolved for one second after engineering
two solitons at z = −12.3µm and z = −7.3µm. These two solitons oscillate in phase.

We note that a particular orientation of the magnetic field gradient is not go-
ing to be ideal for both solitons. In this case, the right edge of the slice moved
first away, then towards, the uncoupled condensate which minimises the ampli-
tude of sound waves produced by the rightmost soliton. Consequently, the left
edge of the slice pushed against the uncoupled portion of the condensate, increas-
ing the amplitude of sound waves which shed from the leftmost soliton after the
protocol, which then perturb the rightmost soliton. With a small soliton separa-
tion of 5µm, the sound waves shed from one soliton will perturb the other soliton.
To correct for this so that the two solitons ultimately oscillate in phase, we can
adjust the initial trajectory of each soliton by varying the accumulated phase dif-
ference. Here, we set ∆ϕ tϕ = 1.53π/2, with tϕ = 5µs, instead of the previous
optimal value of ∆ϕ tϕ = 1.59π/2 for creating a single black soliton. We adjust
both the time-detuning product and the soliton separation until the solitons oscil-
late in phase.
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.. Repeating the protocol to make four solitons

We can engineer four solitons by repeating the protocol that makes two solitons,
with a different offset to the slice position each time. Because our magnetic reso-
nance control protocol is so fast, it can be successfully applied to the same conden-
sate multiple times to make multiple pairs of solitons.

Figure . shows the density of the three spin states while engineering four
solitons positioned symmetrically about the condensate centre: at z = −12.3µm,
z = −7.3µm, z = 7.3µm and z = 12.3µm. Each pair alone would oscillate in
phase like those shown in Figure .. Together, the four solitons experience sym-
metric collisions, as shown in Figure ..

Instead of engineering four symmetric solitons, we can offset both slices to one
side of the condensate to make four equidistant solitons, initially located to the
left of the condensate centre. Figure Figure . shows four such solitons located
at z = −22.0µm, z = −17.0µm, z = −11.5µm and z = −6.5µm. The sound
waves shed from these solitons perturb the solitons sufficiently to prevent perfect
in-phase oscillations of all four solitons; they oscillate roughly in-phase, with the
trajectories of two inner solitons being constrained by the trajectories of the two
outer solitons.

Here I have demonstrated that our magnetic resonance control protocol can be
applied in succession tomakemultiple pairs of solitons. Since single solitons can be
engineered if one side of the slice remains outside the condensate, we could make
odd numbers of solitons, not just multiple pairs of solitons. The initial position
of each soliton is controlled by the width and offset of the slice, while the initial
trajectory of each soliton is controlled by adjusting the phase accumulated between
pulses.

Being able to create arbitrary arrangements of solitons, with control over their
initial trajectories, could enable the study of soliton interactions with unprece-
dented control. This could also provide the ability to create soliton arrays, which
exhibit fermionisation within the bosonic condensate [, p. ]. Further, instead
of simply repeating the protocol to make more solitons, we could use a multi-tone
rf sweep to simultaneously engineer multiple solitons; I have not attempted this
yet, but recommend it as an area to explore.



 Chapter . Simulating magnetic resonance control

−100

−50

0

50

100

z
(µ

m
)

(a) |ψ−1 (z)|2

−100

−50

0

50

100

z
(µ

m
)

(b) |ψ0 (z)|2

0 100 200 300 400

t (µs)

−100

−50

0

50

100

z
(µ

m
)

(c) |ψ+1 (z)|2

Figure .: The density of the three spin states across the condensate while engineering
four solitons. The first iteration of the protocol creates a pair of solitons at z = 7.3µm
and z = 12.3µm, while the second iteration produces a soliton pair at z = −7.3µm and
z = −12.3µm.
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Figure .: The total density of the condensate evolved for one second after engineering
four solitons at z = −12.3µm, z = −7.3µm, z = 7.3µm and z = 12.3µm. If only one
of the two soliton pairs were present, they would oscillate in phase like the pair shown in
Figure ..
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Figure .: The total density of the condensate evolved for one second after engineering four
solitons at z = −22.0µm, z = −17.0µm, z = −11.5µm and z = −6.5µm. These four
solitons almost exhibit in-phase oscillations, but have been perturbed by the sound waves
shed by each soliton.

. Summary

The simulations in this chapter demonstrate that for a spin- condensate in a lin-
ear magnetic field gradient, we can design hyperbolic secant pulses that couple the
Zeeman sublevels of the condensate with spatial dependency. We can select the
coupled regionwith healing-length precision, allowing us to control both the phase
and the density of the condensate. We use this magnetic resonance control tech-
nique to simulate engineering a black soliton in a condensate using experimentally
feasible parameters. Further, we have shown this technique to be easily extensible,
simulating the creation of multiple soliton states with control over their placement
and initial trajectories.
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Table .: Record of the datasets (.py files) containing the results shown in figures in this
chapter. The time stamps are unique identifiers for the files, which have names of the form
<timestamp>_spinor_1D.py.

Figure Time stamp

. 20140529T094741

. 20140527T105810
20140611T103716
20140611T103354
20140611T102931
20140611T102430

. – . 20150205T112108

. 20150205T142530
20150205T143031
20150205T112108
20150205T143055
20150205T143120

. 20150205T112108
20150207T160257
20150208T135927

. 20150205T112108
20150207T121704

., . 20150208T153606

. 20150209T145358

., . 20150209T165356

. 20150209T162519

. Record of simulation files

Every time I ran a simulation, the results were stored in a .h5 file with a name
containing the time and date of the execution and the name of the Python script
used to define the simulation parameters. Inspired by a similar systemweuse in our
laboratory for recording and organising our experimental data, for each simulation
I also stored a copy of the Python script with the same filename as the .h5 file.
This enabled me to easily keep a log of my simulations, and to revisit a previous
simulation to check results or parameters.

If anyone with access to our data repository wishes to investigate any of the
results presented in this chapter, Table . is a record of the .py files used to create
the results shown in each figure.



C
Searching the condensate parameters

In the previous chapter, I presented simulations of using magnetic resonance con-
trol to engineer solitons in a 87Rb condensate. This condensate contained 104

atoms in a harmonic trap with axial frequency ωz = 2π × 2.4Hz and radial fre-
quency ωρ = 2π × 158.4Hz. This particular set of condensate parameters was
not an arbitrary choice. In this chapter, we explore how these condensate parame-
ters are constrained by four criteria necessary to engineer a black soliton in a con-
densate using magnetic resonance control. Examining this condensate ‘parameter
space’ informs the design of trapping potentials to create condensates in the labo-
ratory suitable for applying our magnetic resonance control technique.

The condensate must satisfy four criteria to use magnetic resonance control to
best demonstrate using magnetic resonance control to engineer a black soliton in
the condensate. These criteria are:

. The quasi-D condensate criterion: To support a stable soliton for several trap
periods, long enough to be studied experimentally, the condensate must be
quasi-one dimensional.

. The sub-optical healing length criterion: We want the healing length of the
condensate to be smaller than 500 nm. This criterion allows us to show that
the resolution of magnetic resonance control can surpass the optical diffrac-
tion limit.

. The reasonable axial frequency criterion: If the condensate is to be held in
an optical dipole trap, the axial frequency of the trap should be greater than
1Hz, otherwise the stability of the trap becomes extremely sensitive to the
tilt of the dipole beam with respect to gravity.

. The pulse resolution criterion: An experimentally feasible hyperbolic secant
pulse must achieve the resolutionR required to engineer a black soliton.

Here we explore the condensate parameter regions that satisfy each of these
criteria, both in terms of the aspect ratio η = ωρ/ωz of a generic trap, and for the
specific case of a single-beam optical dipole trap, which is defined by the power P
and the waist sizew0 of the beam. As we see in Section ., happily the intersection


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of these four criteria is non-zero, accommodating a range of different condensate
shapes and sizes.

. Quasi-D condensate criterion

To verify that a black soliton has been engineered, we need to be able to observe
the soliton motion (or lack thereof) for several trap periods. This requires the con-
densate to be quasi-one dimensional, otherwise the soliton will rapidly become
unstable and decay into vortex rings [, ].

A condensate is defined to be quasi-one dimensional [] if it satisfies the re-
lation

µcp

~ωρ
< γcrit , (.)

with µcp as the chemical potential,

µcp =

(
Ng

8π
15

(
2

mω2

)3/2
)2/5

, (.)

where ω =
(
ω2
ρ ωz

)1/3 is the geometric mean of the trapping frequencies, and the
mean field interaction strength is g = 4π ~2 (a0 + 2 a2) /3m.

The value of γcrit increases with the aspect ratio of the trap, converging to
γcrit = 2.4 for very elongated traps (ωρ ≫ ωz). For simplicity, we decide to set
γcrit = 2.4 always; condensates with a low aspect ratio that satisfy Equation . with
γcrit = 2.4 will be more quasi-one dimensional than necessary for stable solitons.
This is preferable to using a weaker region that includes some condensates which
are not quasi-one dimensional.

We can express Equation . explicitly in terms ofN , η, and ωz as

η >

(
1

~ γcrit

)5 (
15N gm3/2

16
√
2π

)2

ωz , (.)

constraining the previously independent parameters N , η, and ωz . We can now
see that there is a linear relationship between the axial trap frequency and the trap
aspect ratio for condensates which to satisfy the quasi-one-dimensional criterion.
This relationship is shown in Figure . as a 3D region plot of N (fz, η), and in
Figure . as a stack of 2D region plots of η (fz) for different values of N . These
figures demonstrate that if we seek a quasi-one dimensional condensate with high
atom number, we should aim for a condensate with either a high aspect ratio, or a
low axial trapping frequency.

We can recast this criterion for the specific case of a single-beam optical dipole
trap in terms of the independent parameters N , P , and w0. For a focussed off-
resonant laser beam [] the radial trap frequency is

ωρ =

√
4U0

mw2
0

, (.)
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Figure .: This solid region shows the combinations ofN , η and fz for which condensates
are quasi-one dimensional (Equation .). Planes of constant atom number from this solid
region are shown in Figure ..
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Figure .: These regions show the combinations of η and fz for which a condensate is quasi-
one dimensional (Equation .) withN = 5× 103,N = 1× 104, andN = 2× 104. The
regions corresponding to higher atom numbers are contained within the regions for lower
atom numbers.
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Figure .: This solid region shows the combinations ofN ,P andw0 for which a condensate
trapped by a single-beamoptical dipole trap is quasi-one dimensional (Equation .). Planes
of constant atom number from this solid region are shown in Figure ..

and the axial trap frequency is

ωz =

√
2U0

mz2R
. (.)

Here, U0 = 2αs P/π w
2
0 is the trap depth, where αs is the dynamic scalar polar-

isability [] (in units of J/Wm), and zR = π w2
0/λ is the Rayleigh range of the

beam with wavelength λ. Using this information, Equation . can be expressed in
terms of the beam power P and waist w0 as

P <

(
~ γcrit√
m

)10 (
16

15N g λ

)4
2π9

αs
w8

0 . (.)

This relationship is shown in Figure . as a 3D region plot of N (w0, P ), and in
Figure . as a stack of 2D region plots of P (w0) for different values ofN . These
figures show that to have a quasi-one dimensional condensate in a single-beam
optical dipole trap with high atom number, we should aim for a large beam waist.
This th order scaling in the beamwaist size constrains the waist sizemore strongly
than power for a given atom number.
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Figure .: These regions show the combinations of P and w0 for which a condensate
trapped by a single-beam optical dipole trap is quasi-one dimensional (Equation .) with
N = 5× 103, N = 1× 104, and N = 2× 104. The regions corresponding to higher
atom numbers are contained within the regions of lower atom numbers.

. Sub-optical healing length criterion

To showcase that the resolution of magnetic resonance control is not limited to
optical wavelengths, we demand the healing length be sub-optical: ξ < λopt, where
λopt = 500 nm. If we write this succinct condition explicitly in terms of the axial
trap frequency ωz and the trap aspect ratio η, it transforms into the more verbose
relation

η >

(
~

λopt
√
2m

)5/2 (
8π

15N g

)1/2 (
2

m

)3/4
1

ω
3/2
z

. (.)

This relationship is shown in Figure . as a 3D region plot of N (fz, η), and in
Figure . as a stack of 2D region plots of η (fz) for different values of N . These
figures show that to produce a condensate with a sub-optical healing length and a
high atom number, the condensate should have either a high aspect ratio or a high
axial trapping frequency. Since we saw previously that a high aspect ratio or low
axial trapping frequency is required for quasi-one dimensional condensates, we can
conclude that having a high aspect ratio would be the best approach for satisfying
both these conditions.

We can again express this condition specifically for a single-beamoptical dipole
trap in the form

P >

(
~

λopt
√
m

)10/3 (
π7/2

15
√
2N g λ

)2/3 (
1

2αs

)
w

14/3
0 . (.)

This relationship is shown in Figure . as a 3D region plot of N (w0, P ), and in
Figure . as a stack of 2D region plots of P (w0) for different values ofN . These
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Figure .: This solid region shows the combinations ofN , η and fz for which condensates
have a healing length of less than 500 nm (Equation .). This criterion primarily excludes
the choice of condensates with both a low aspect ratio and small axial trap frequency. Planes
of constant atom number of this solid region are shown in Figure ..
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Figure .: These regions show the combinations of η and fz for which a condensate has
a healing length of less than 500 nm (Equation .), withN = 1× 103,N = 1× 104 and
N = 1× 105. The regions corresponding to lower atom numbers are contained within the
regions of higher atom numbers.
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Figure .: This solid region shows the combinations of N , P and w0 for which a conden-
sate trapped by a single-beam optical dipole trap has a healing length of less than 500 nm
(Equation .). This criterion excludes traps with large beam waists for small condensates.
Planes of constant atom number of this solid region are shown in Figure ..

figures show that if we need to use a larger beam waist, we will need to increase the
number of atoms in the condensate to maintain a sub-optical healing length.

. Reasonable axial frequency criterion

This criterion is simple; we ensure that ωz > 2π × 1Hz, so that the atoms can
be adequately trapped in the axial direction. In a single-beam optical dipole trap,
the axial trapping frequency is always lower than the radial trapping frequency,
and if the axial trapping frequency is too small, then the beam must be aligned
precisely horizontally, otherwise the atoms will fall out due to gravity. While this
is no issue theoretically, in practice it is much easier to align a dipole trap if some
small horizontal tilt is permissible.

For the case of a single-beam optical dipole trap, this criterion becomes

P >
mπ3 ω2

z(min)

4αs λ4
w6

0 , (.)

which is shown in Figure . as a 2D region plot of P (w0). This expression is
independent of atom number. This relationship shows that for a given power, if the
beamwaist size becomes too large the condensate will not be sufficiently trapped in
the axial direction. The th order scaling in waist size demonstrates that, similar to
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Figure .: These regions show the combinations of P and w0 for which a condensate
trapped by a single-beam optical dipole trap has a healing length of less than 500 nm (Equa-
tion .), withN = 1× 103,N = 1× 104 andN = 1× 105. The regions corresponding
to lower atom numbers are contained within the regions of higher atom numbers.

the quasi-one dimensional criterion, setting a minimum axial trapping frequency
constrains the allowed waist size far more than the beam power.

. Pulse resolution criterion

As discussed in Section . and Section .., to produce a single black soliton using
magnetic resonance control we require a hyperbolic secant pulse that achieves a
pulse resolution of R ≃ 2 ζ zTF/5 ξ (Equation .), where typically ζ = 1.2, in a
time faster than one quarter of the condensate healing time with a pulse fidelity
of at least 99.9. If R is much smaller than this, the engineered density dip will
be too wide, and decay into multiple solitons. If R is much larger than this, the
engineered density dip will be too narrow, and expand to form a soliton by ejecting
sound waves.

Combining Equations ., . and ., we can express this pulse resolution
requirement as (

tξ
4

)2 √
2Γ(

2 Γ
Ω0

cosh−1 (α−1)
)2 ≃ 2 ζ zTF

5 ξ
. (.)

Making the dependence onN , η and ωz explicit, the above equation becomes

η ≃

(
~3 πΩ0

2
√
2Γ

(
cosh−1 (α−1)

)2
360m5/2N g ζ

)1/2
1

ωz
. (.)

In Section .. we discussed that appropriate values of the adiabaticity param-
eter Γ and pulse truncation α for engineering a soliton using magnetic resonance
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Figure .: This region shows the combinations of P and w0 for condensates trapped in a
single-beam optical dipole trap with an axial frequency of fz > 1Hz (Equation .). Note
that this criterion is independent of atom number.

control are Γ = 3 and α = 0.003. With these values set, the only free parameters
in Equation . are N , η, ωz , and Ω0. This allows us to show this criterion in
Figure . as 3D surface plots of N (fz, η) for example values of Ω0, and in Fig-
ure . as lines of η (fz) for example values of N with the Rabi frequency fixed
at Ω0 = 2π × 300 kHz. We select this Rabi frequency in particular because this is
the frequency used in the simulations presented in Chapter .

Figure . shows that using a higher Rabi frequency enables the choice of con-
densates with both higher aspect ratio and higher axial trapping frequency. Fig-
ure . shows that, for a selected Rabi frequency, a higher atomnumber condensate
can only be used if it has a high aspect ratio and low axial frequency, or conversely
a low aspect ratio and high axial frequency; resulting from the inverse relation be-
tween η and ωz in Equation ..

For the case of a condensate in a single-beam optical dipole trap, Equation .
can be rewritten in terms ofN , P and w0 as

P ≃ ~3 π2 Ω0

5760
√
2Γ

(
cosh−1 (α−1)

)2
m3/2N g ζ αs

w4
0 . (.)

Again fixing Γ = 3 and α = 0.003, this relation is shown in Figure . as 3D sur-
face plots of N (w0, P ) for example values of Ω0, and in Figure . as lines of
P (w0) for example values of N with fixed Ω0. Figure . demonstrates that us-
ing a pulse with a higher Rabi frequency requires a higher power beam, while Fig-
ure . shows that for a fixed Rabi frequency, to increase the atom number we
require either a lower beam power or larger waist.
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Figure .: These surfaces show the combinations ofN , η and fz for condensates in which
a hyperbolic secant pulse can achieve the resolution required to engineer a single soliton, for
Ω0 = 2π × 30 kHz,Ω0 = 2π × 300 kHz, andΩ0 = 2π × 3MHz. Lines of constant atom
number from the surface corresponding to Ω0 = 2π × 300 kHz are shown in Figure ..
The yellow triangular region near the upper vertex in the foreground is a rendering artefact,
and should be ignored.

Figure .: These lines show the combinations of η and fz for condensates in which a hy-
perbolic secant pulse with Rabi frequency Ω0 = 2π × 300 kHz can achieve the resolution
required to engineer a single soliton, forN = 1× 103,N = 1× 104, andN = 1× 105.
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Figure .: These surfaces show the combinations ofN , P andw0 for condensates trapped
by a single-beam optical dipole trap in which a hyperbolic secant pulse can achieve the res-
olution required to engineer a single soliton, for Ω0 = 2π × 30 kHz, Ω0 = 2π × 300 kHz,
andΩ0 = 2π × 3MHz. Lines of constant atom number from the surface corresponding to
Ω0 = 2π × 300 kHz are shown in Figure .. The yellow-orange banding on the left hand
side of the figure is a rendering artefact, resulting from the closeness of the three surfaces in
this region.

Figure .: These lines show the combinations of P and w0 for condensates trapped by
a single-beam optical dipole trap in which a hyperbolic secant pulse with Rabi frequency
Ω0 = 2π × 300 kHz can achieve the resolution required to engineer a single soliton, for
N = 1× 103,N = 1× 104, andN = 1× 105.
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. Intersection of all criteria

Having explored the condensate parameters which satisfy our four criteria for en-
gineering a black soliton using magnetic resonance control, we can now observe
the intersection of these four criteria; namely, the condensate parameters which
will produce a quasi-one dimensional condensate with a sub-optical healing length,
and an axial trapping frequency greater than 1Hz, for which a hyperbolic secant
pulse of duration tp = tξ/4 can achieve the resolution required to engineer a black
soliton using an experimentally feasible Rabi frequency.

The grey 3D solid in Figure . shows the region ofN (fz, η) for condensates
that are both quasi-one dimensional and have a healing length of ξ < 500 nm. For
the ranges ofN and η chosen, this solid naturally satisfies the fz > 1Hz criterion.
The orange surface shows the region of N (fz, η) for condensates in which a hy-
perbolic secant pulse with a Rabi frequency ofΩ0 = 2π × 300 kHz can achieve the
resolution necessary to engineer a black soliton.

Figure . shows slices of the 3D objects in Figure ., η (fz), for particular
values of N . This figure shows that for the low atom number of N = 1× 103

there is a wide range of η and fz which satisfy all four criteria; we can choose axial
frequencies of 1Hz < fz < 150Hz and aspect ratios of 3 < η < 400, as long as
they satisfy Equation .. As the atom number is increased, the ranges of η and
fz become further restricted; at N = 1× 104 we can choose axial frequencies of
1Hz < fz < 10Hz and aspect ratios of 20 < η < 150, while for an atom number
of N = 3× 104 we can choose axial frequencies of 1Hz < fz < 3Hz and aspect
ratios of 50 < η < 70, provided they satisfy Equation ..

Moving to the case of a condensate in a single-beam optical dipole trap, the
grey 3D solid in Figure . shows the region ofN (w0, P ) for condensates that are
quasi-one dimensional, have a healing length ξ < 500 nm, and an axial trapping
frequency fz > 1Hz. The orange surface intersecting the solid shows the region
of N (w0, P ) for condensates in which a hyperbolic secant pulse with a Rabi fre-
quency of Ω0 = 2π × 300 kHz can achieve the resolution necessary to engineer a
black soliton.

Figure . shows slices of the 3D objects in Figure ., P (w0), for particu-
lar values of N . This figure shows that for the low atom number of N = 1× 103

there is a wide range of P and w0 which satisfy all four criteria; we can choose
waist sizes of 1µm < w0 < 100µm and beam powers of η < 50W, as long as
they satisfy Equation .. As the atom number is increased, the ranges of w0

and P become further restricted; for N = 1× 104 we can choose waist sizes of
10µm < w0 < 30µm and beam powers of P < 40mW. For N = 1× 105, we
would need to use a higher Rabi frequency to engineer a black soliton in the con-
densate, since the pulse resolution criterion using Ω0 = 2π × 300 kHz does not
intersect the quasi-one dimensional, sub-optical healing length region. In general,
we can see that for condensates containing a reasonable number of atoms, we are
pushed towards fairly tight traps with low trapping powers, which are achievable
technical requirements.
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Figure .: The grey solid shows the combinations of N , η and fz for which a condensate
is both quasi-one dimensional and has a sub-optical healing length. For the range shown in
this figure, the grey solid naturally satisfies fz > 1Hz. The orange surface is the same as that
shown in Figure .; the surface of condensates for which a hyperbolic secant pulse with
Ω0 = 2π × 300 kHz achieves the resolution required to engineer a black soliton. Planes of
constant atom number are shown in Figure ..

Figure .: The grey regions show the combinations of η and fz for quasi-one dimensional
condensates with sub-optical healing length, for particular values of N (indicated by differ-
ent outlines). The grey region shrinks with increasing atom number, with the quasi-one
dimensional criterion encroaching from the right, and the sub-optical healing length crite-
rion from the left. The orange lines indicate condensates for which a hyperbolic secant pulse
withΩ0 = 2π × 300 kHz achieves the resolution required to engineer a black soliton, again
for particular values ofN .



 Chapter . Searching the condensate parameters

Figure .: The grey solid shows the combinations of N , P and w0 for which a conden-
sate in a single-beam optical dipole trap is quasi-one dimensional, has a sub-optical healing
length, and an axial frequency fz > 1Hz. Sharp oscillations in the grey solid are rendering
artefacts and should be ignored. The orange surface is the same as that shown in Figure .;
the surface of condensates for which a hyperbolic secant pulse with Ω0 = 2π × 300 kHz
achieves the resolution required to engineer a black soliton. Planes of constant atom num-
ber are shown in Figure ..

Figure .: The grey regions show the combinations ofP andw0 for quasi-one dimensional
condensates with sub-optical healing length and axial frequency fz > 1Hz, for particular
values of N (indicated by different outlines). The grey region shrinks with increasing atom
number, with the sub-optical healing length criterion encroaching from the right, and the
quasi-one dimensional criterion from the left. The orange lines indicate condensates for
which a hyperbolic secant pulse with Ω0 = 2π × 300 kHz achieves the resolution required
to engineer a black soliton, again for particular values ofN . ForN = 1× 105, the orange
line no longer intersects with the grey region; for such large condensates, a higher Rabi
frequency would be necessary to engineer a black soliton in the condensate.
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. Summary

The results presented in this chapter can be used to guide the choice of conden-
sate parameters for those interested in experimentally implementing magnetic res-
onance control in order to engineer a black soliton in a condensate. The four cri-
teria we require for the choice of condensate parameters to be able to engineer a
black soliton with MRC are: the condensate should be quasi-one dimensional, for
soliton stability; the healing length should be sub-optical, otherwise optical wave-
function engineering techniques might be utilised instead; the axial trapping fre-
quency should be greater that 1Hz, for ease of trap alignment; and a hyperbolic se-
cant pulse of duration tp = tξ/4 should be able to achieve the resolution required
to engineer a black soliton in the condensate.

Fortunately, we have shown that the intersection of the four criteria forms a
comfortably non-vanishing region. This demonstrates that magnetic resonance
control should be applicable to a variety of experimental condensate apparatuses,
rather than a single ‘magic’ set of values for atom number, axial frequency and
aspect ratio.





C
Magnetic resonance control in the

laboratory

This chapter presents magnetic resonance control experiments performed using
our spinor Bose–Einstein condensate apparatus. At the date of these experiments,
the apparatus was incapable of producing magnetic field gradients strong enough
to create the solitons described in the previous chapter. Remedying this would re-
quire either the installation of additional coils, applying a synthetic gradient using
vector light shifts, or rapidly offsetting the quadrupole trap (discussed further in
Chapter ). I did not explore any of these approaches at the time, instead choosing
to perform proof-of-principle experiments in the regime of small magnetic field
gradients.

First, we explore how to individually control the spin projection of two spatially-
separated condensates using a weak magnetic field gradient and a square-profile
pulse (a finite-duration coupling pulse with uniform amplitude and frequency,
ubiquitous in cold atom physics). Next, we use a hyperbolic secant pulse instead
of a square-profile pulse and show that we retain the ability to individually control
the two condensates. Finally, we observe the power of hyperbolic secant pulses in
magnetic resonance control by changing to a regime where a square-profile pulse
cannot address two condensates individually, but a hyperbolic secant pulse still
can.

. Square-profile coupling pulses

In Section .. we discussed hyperbolic secant coupling pulses in the context of
magnetic resonance control, and brieflymentioned the advantages of such a profile
over the more common square-profile coupling pulse (in that discussion, specifi-
cally a π-pulse, which completely inverts the condensate spin projection). Since in
this chapter we will examine the application of square-profile pulses to magnetic
resonance control, we first discuss coupling three-level atoms with square-profile
pulses.


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Figure .: Examples of Rabi spectra, formed by plotting the spin projectionFz after a square-
profile coupling pulse as a function of the detuning of the pulse from resonance. For the
three curves shown in (a), the coupling is always a π-pulse (t1 = π/Ω1, t2 = π/Ω2, and
t3 = π/Ω3) so that the spin projection at resonance is Fz = +1. We see that the width of
a Rabi spectrum increases with greater Rabi frequency Ω. The three curves shown in (b)
show the effect of changing the pulse duration while using the same Rabi frequency. If the
pulse duration is not tπ = π/Ω, the spin projection at resonance reduced.

In a high magnetic field, the
quadratic Zeeman shift causes this
splitting to become uneven.

Resonant coupling between two atomic states with single-frequency, constant
amplitude radiation causes the spin projection Fz of the condensate to oscillate
sinusoidally in time; these are called Rabi oscillations. For example, consider a
condensate within the F = 1 Zeeman manifold. In a low magnetic field, the split-
ting between themF = −1 andmF = 0 states (|−1⟩ and |0⟩) is very similar to the
splitting between themF = 0 andmF = +1 states (|0⟩ and |+1⟩). As such, cou-
pling resonant to these (equal) transitions will cause the spin projection to oscillate
betweenFz = ±1. The frequency of this oscillation is called the Rabi frequencyΩ.
We can invert the condensate spin projection, from Fz = +1 to Fz = −1 and vice
versa, by applying a π-pulse: a resonant coupling pulse with duration tπ = π/Ω.

A general expression for the final spin projection of a three-level condensate
after a square-profile pulse, where the spin projection was initially Fz = −1, is

Fz =
2Ω2

Ω2 +∆2
sin2

((√
Ω2 +∆2

) t

2

)
− 1 , (.)

where ∆ = ω − ω0 is the detuning from resonance [].
To see how a square-profile coupling pulse can be used in the context of mag-

netic resonance control, consider the slice profile of such a pulse, or in other words
the shape of the graph of spin projection as a function of detuning from resonance.
Using Equation ., example slice profiles are shown in Figure .. These slice pro-
files are called Rabi spectra. The frequency corresponding to the maximum spin
projection of a Rabi spectrum is called the Rabi peak, and the frequencies corre-
sponding to the lowest spin projections are called Rabi minima.

We see that the slice profile of aπ-pulse contains lobes on either side of themain
slice; at certain detunings the spin projection of the condensate will remain in |−1⟩,
but at other detunings we see a change in the spin projection. This is not ideal for
magnetic resonance control, since it means that we are unable to use this pulse to
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address a specific localised region of the condensate. We saw in Section .. that
a hyperbolic secant pulse produces a slice profile in frequency space more similar
to a top-hat function with no side lobes, which allows us to address one specific
region of the condensate.

In addition to the issue that the side lobes introduce, a square-profile pulse
does not have a resolution R sufficient to address one side of the condensate with
healing-length resolution. Recall from Equation . that the resolution of the slice
profile is the ratio of the FWHM of the transferred slice (the slice thickness) to
the 10–90 rise distance of the edge of the slice (the slice sharpness). Using
Equation ., the resolution of a π-pulse isR ≈ 1.6. This is an order of magnitude
smaller than the resolution achievable with a hyperbolic secant (remember that
a larger value of R is better for magnetic resonance control). This shows that a
π-pulse cannot produce a slice profile which both has a large slice thickness and
sharp edges.

Nevertheless, one of the simplest experiments demonstrating magnetic reso-
nance control—individually addressing the spin of two spatially-separated conden-
sates—can be achieved using a π-pulse.

In a magnetic field gradient, two condensates A and B separated by a distance
∆z will have a different resonance frequency; ω0 (A) and ω0 (B), respectively. The
difference between these two frequencies is

ω0 (B) − ω0 (A) =
d |B|
dz

γ∆z . (.)

We seek to align the Rabi peak of condensate B with the first Rabi minimum of
condensate A. To do this, we need to locate the Rabi minima of condensate A. By
inspection, Equation . satisfies this condition (by reducing to Fz = −1) when

∆n = Ω

√
(2n)

2 − 1 , (.)

where n ∈ Z+. Hence, the first Rabi minimum corresponds to ∆1 =
√
3Ω.

Combining Equations . and ., the Rabi peak of condensate B will coincide
with the first Rabi minima of condensate A if the condensate separation and mag-
netic field gradient satisfy the condition

d |B|
dz

γ∆z =
√
3Ω . (.)

If Equation . is satisfied, a π-pulse resonant with the centre of condensate A will
not tip the spin of the centre of condensate B (Figure .). To avoid also coupling
the edges of condensate B, we require the condensate separation to be large enough
so that the whole condensate ‘fits’ within the first Rabi minima; otherwise there
would be a significantly non-uniform spin-tip across the width of each condensate.
In other words, since the resolution R of a π-pulse is around 1.6, the ratio of the
condensate size to condensate separation needs to be much less than 1.6.
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Figure .: Rabi spectra for two spatially-separated condensates, where the detuning ∆ is
relative to the resonance frequency of condensate A. This system satisfies Equation . such
that a π-pulse resonant with condensate A will not change the spin projection of condensate
B.

. Experimental sequence for proof-of-principle MRC

Our standard experimental sequence formaking a single spinor Bose–Einstein con-
densate has been described in Alex Wood’s thesis []. Here I describe the modi-
fication to this standard sequence to produce two spatially-separated condensates,
and then the procedure used formagnetic resonance control experiments. This sec-
tion includes hardware settings common to the presented results; values obtained
from atomicmeasurements, such as magnetic field gradients, are presented in later
sections alongside the experimental data.

.. Making two condensates

As discussed in Reference , to make a single spinor condensate we load atoms
from the magnetic trap into two crossed dipole beams ( ‘dipole beam ’ and ‘dipole
beam ’), then evaporate to condensation. Dipole beam  has a waist size of 70µm,
and dipole beam  has a waist size of 100µm []. To make two spatially-separated
condensates, we can send a two-tone radiofrequency signal into the AOM control-
ling either dipole beam  or dipole beam , splitting the beam to form two crossed
dipole traps. If the two crossed dipole traps are separated by less than 200µm,
atoms can be loaded directly from the magnetic trap into these two dipole traps,
and then evaporated to condensation. If we require a larger separation, after evap-
oration the condensates can bemoved further apart by smoothly increasing the dif-
ference between the two-tome radiofrequency signal driving the AOM. Figure .
shows a schematic of our dipole traps and defines the lab coordinates and dipole
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Figure .: Schematic of the crossed dipole trap (not to scale) showing how we split our
dipole beams to create two condensates. Only essential optical components are shown; free-
space bends in beam path indicate excluded optics. We define a right-handed laboratory
coordinate frame, where the origin is at the center of the science chamber, with gravity along
−y and z pointing in the direction of the atomic beam. The dipole beams are aligned at
45 degrees to the laboratory frame in the x-z plane. Dipole beam  points along z′ while
dipole beam  points along−x′. To form two condensates split along z′ we drive the dipole
beam  AOM with a two-tone radiofrequency signal.

beam coordinates used in the rest of this chapter. For the results presented in this
chapter the two condensates are always separated along z′, by sending a two-tone
radiofrequency signal into the AOM controlling dipole beam .

We use a similar technique when performing magnetic tensor gradiometry to
measure the magnetic gradient tensor at the centre of our science chamber. This
technique was developed by my colleague Alex Wood, and I contributed to these
efforts by collecting a large portion of the data used to measure the magnetic gra-
dient tensor, earning my place as second author on our paper, Reference .

.. Applying the magnetic gradient

To create a magnetic field gradient we apply current through only one of the z-bias
coils, while using the x- and y-bias coils to null the background magnetic field
along x and y. The currents used to null the background magnetic field are Ix =
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391.6mA, Iy = 311.8mA, Iz1 = 8.8A, and Iz0 = 0. The procedure for finding
these nulling currents is described in Reference . Applying a current through
only one of the pair of z-bias coils produces the largest gradient possible without
reversing the current in one coil. We keep the magnetic field offset to below 1G,
so that the quadratic Zeeman shift is negligible. For higher offsets, the population
transfer between the three Zeeman sublevels becomes unbalanced, reducing the
maximum spin-tip (or pulse fidelity) possible using a π-pulse.

.. Measuring the spin projection

After ramping the magnetic field gradient gradually over 10ms to prevent exciting
the condensates into sloshing modes, and waiting 75ms for ringing in the coils to
fade, we apply either a square-profile pulse or a hyperbolic secant pulse (depending
on the experiment performed), whichmight change the spin projectionFz of either
or both condensates. To detect the effect of the coupling pulse, wemeasure the spin
projection of each condensate.

We measure the spin projection by separating the three spin components of
each condensate. We release the condensates from the trap, and 11ms later turn
on a 60G/cm magnetic field gradient for 3ms using the quadrupole coils. As the
condensates fall, they experience a state-selective force from themagnetic gradient
(the Stern–Gerlach effect). The three spin components of each component separate
spatially to form six distinct clouds. We then take an absorption image of these
clouds.

To formone imagewhich shows the optical depth of the clouds, we record three
images: one with the imaging light turned off (the ‘dark field’ image), one with the
imaging light turned on with no atoms present (the ‘flat field’ image), and one with
the imaging light passing through the atoms (the ‘atom’ image). From this data, the
optical depth (OD) is calculated by

OD = ln
(
Iatom − Idark
Iflat − Idark

)
, (.)

where Ix is the intensity from the ‘x’ image. To minimise spatial fringes in the OD
image from vibrations of optical components, the flat field and atomic frames are
taken in rapid succession, as close together in time as possible. With our equip-
ment, this interframe time is 40µs; details of how we achieve this rapid “back-to-
back” imaging are discussed in Reference .

To measure the spin projection of one condensate, we first measure the total
atom numberNi in each spin component i, from which we can calculate the spin
projection:

Fz =
N+1 −N−1

N+1 +N0 +N−1
. (.)

To measure Ni, we fit a Thomas–Fermi distribution to each spin component;
hence the uncertainty in Fz is a result of the uncertainty in this atom number fit.
We find that our fitting algorithmbecomes less accurate for very low atomnumbers.
To account for this, if the uncertainty in the measured atom number is more than
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30 we decide to record the atom number in that spin component as zero, with an
uncertainty of 500 atoms (a typical uncertainty for successful atom number fits).

. Individually addressing two condensates with a square-profile
pulse

Herewe use experimental parameters satisfying Equation . to successfully tip the
spin of one condensate, while leaving the second condensate unchanged.

To find these suitable parameters, I first applied a differential current through
one pair of bias coils, aiming for the largest gradient achievable with these coils
while limiting the magnetic field offset to around 1G (to keep the quadratic Zee-
man shift negligible). I then set the condensate separation to be ∆z′ = 840µm;
this is the largest separationwe can achieve by splitting our optical dipole trap with-
out the power loss through the AOMs significantly reducing the atom number in
each condensate.

Fromprevious calibrations of our bias coils, I could predict approximately what
Rabi frequency Ω0 would be required to achieve a π-pulse in this magnetic field.
With this initial Rabi frequency, I found the resonance frequency ω0 of one of the
condensates by measuring the Rabi spectrum of the condensate. With the reso-
nance frequency found, I then varied the pulse duration until I found the correct
duration tπ (the pulse which maximised the spin projection) for this condensate
with this Rabi frequency in this magnetic field environment.

I then measured the Rabi spectra of both condensates and observed two well-
separated Rabi spectra. Unsurprisingly, the separation of the Rabi spectra was not
exactly what we desired; the first minimum of one curve did not align with the
peak of the other curve, they were separated by more than was necessary.

To remedy this, I reduced the physical separation∆z between the condensates
and measured the Rabi spectra again, until the first Rabi minimum of condensate
A coincidedwith the Rabi peak of condensate B. Thesemeasurements are shown in
Figure .. This allows us to tip the spin of one condensate while leaving the other
unchanged; the first proof-of-principle demonstration of magnetic resonance con-
trol. Here the condensate spacing was ∆z′ = 288.7(9)µm, as measured in Fig-
ure .(a). The uncertainty in this measurement is from the uncertainty in the
centroid position from the Thomas–Fermi fit to the optical depth, and from the
uncertainty in the magnification of the imaging system (which was measured by
tracking the centre-of-mass motion of the condensate during free-fall for several
known drop times). At this separation, the difference in resonance frequencies was
2π × 4.43(4) kHz. This gives a measure of the applied magnetic gradient: from
Equation ., the gradient along z′ is 219(2)mG/cm. The average of the Rabi fre-
quency measured with each condensate is 2π × 2.56(5) kHz.

These measured values for the magnetic field gradient, condensate separation
and Rabi frequency satisfy Equation . within uncertainty. Particular examples of
absorption images from the two Rabi curves, shown in Figure ., demonstrate our
ability to individually address the two condensates with just a square-profile pulse.
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Figure .: Using a square-profile pulse to individually address two condensates. These are
the Rabi spectra of two condensates spatially separated by ∆z′ = 288.7(9)µm in a mag-
netic gradient of d |B| /dz′ = 219(2)mG/cm. The duration of the pulse was tπ = 196µs.
Uncertainties in spin projection Fz are due to fits to atom number in each spin component,
as discussed in Section ... Solid lines are fits using Equation ., with fit results inset.
Dotted lines mark the measured resonance frequencies of each condensate, showing that
the resonance frequency of condensate B coincides with the first Rabi minima of conden-
sate A, and vice versa.

The spacing necessary to allow individual addressing of these condensates was
larger than the separation of the crossed dipole traps when the condensates were
formed, so after reaching condensationwe needed tomove the condensates further
apart. To avoid introducing a sloshingmodewhile increasing the separation, the ra-
diofrequency signals driving the dipole beam  AOM were smoothly ramped from
96.1MHz to 95.7MHz and from 105.1MHz to 106.5MHz, respectively, over two
seconds.
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Figure .: Examples of absorption images from the data shown in Figure .. These im-
ages were taken after 20ms of free-fall. (a) The two condensates after no pulses were ap-
plied, showing that the condensates are formed in |−1⟩ (with measured spin projections of
Fz(A) = −1.000(3) andFz(B) = −1.000(4)). Thomas–Fermi fits to the condensates deter-
mined a separation of∆z = 204.2(6)µm, corresponding to∆z′ = 288.7(9)µm(sincewe
have a 45◦ oblique view). (b) A π-pulse with frequency ω0 = 2π × 748.6 kHz (mid-way
between the resonance frequencies of the condensates) addresses both condensates, pop-
ulating all three spin components (Fz(A) = 0.00(1) and Fz(B) = 0.16(2)). (c) A π-pulse
with frequency ω0 = 2π × 746.53 kHz tips the spin of condensate A while leaving con-
densate B unchanged (Fz(A) = 1.00(1) and Fz(B) = −1.00(1)). (d) A π-pulse with fre-
quency ω0 = 2π × 750.98 kHz tips the spin of condensate B while leaving condensate A
unchanged (Fz(A) = −1.00(1) and Fz(B) = 0.99(1)).

.

. Individually addressing two condensates with a hyperbolic
secant pulse

Here we demonstrate that under the same conditions a hyperbolic secant pulse
can also individually address the two condensates. Equations .a and .b define
the Rabi frequencyΩ(t) and detuning∆(t, z) of the hyperbolic secant pulse. We
again use the dimensionless pulse parametersµ,Γ, andα to describe the hyperbolic
secant pulse, as defined in Equations ., ., and ., respectively.

We use the same magnetic field gradient, condensate separation and peak Rabi
frequency used in Section . to enable a direct comparison between using a hyper-
bolic secant pulse and a square-profile pulse. These values are∆z′ = 288.7(9)µm,
d |B| /dz′ = 219(2)mG/cm, and Ω0 = 2π × 2.56(5) kHz.

We select hyperbolic secant pulse parameters of ∆0 = 2π × 2.5 kHz (corre-
sponding to µ = 0.98(2)), Γ = 40 and α = 0.003. This pulse has a duration of
tp = 33.1ms. These parameters were chosen so that the slice thickness was simi-
lar to the thickness of the π-pulse used in Section .. Here the slice sharpness (as
calculated for a line of stationary spins) is 4.9µm, which is smaller than the width
of each condensate.

Figure . shows the measured hyperbolic secant pulse spectra for the two con-
densates using these pulse parameters, along with theoretical curves. We see that
the general form of the hyperbolic secant pulse spectrum is as expected; a rectan-
gular profile without any side lobes. However, the slice sharpness is much broader
than expected, as observed in Figure .. We attribute this to the long pulse dura-
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tion which makes us sensitive to magnetic field fluctuations during the pulse.
The dominant source of magnetic field fluctuations in our laboratory is the AC

line cycle, which oscillates at 50Hz (a period of 20ms). We typically minimise the
effects of this by synchronising the start of the coupling pulse with a zero-crossing
of the AC line cycle. This is sufficient for short coupling pulses, but this hyperbolic
secant pulse has a duration longer than the AC line oscillation period. This change
in the background magnetic bias field during the pulse has the effect of blurring
the position of the slice edge, causing the measured slice edge to be broader than
expected.

The other possible explanation of the broad slice edge is the fact that the pulse
duration is several orders of magnitude longer than the healing time of the con-
densate (typically on the order of 100µs) which makes the condensate fluid flow
significant during the pulse, as discussed in Section ...

Even though the slice edge is broader than we aimed for, this hyperbolic se-
cant pulse successfully tips the spin of one condensate while leaving the other un-
changed. In fact, we can see from Figures . and . that there is a much wider
frequency domain (3.5 kHz) in which this can be achieved, compared to using
a square-profile pulse. This means that a hyperbolic secant pulse is dramatically
more robust than a square-profile pulse against fluctuations in magnetic field and
rf coupling strength. Key examples of absorption images from the data in Figures
. and . are shown in Figure ..
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Figure .: Using a hyperbolic secant pulse to individually address two condensates. Here
the condensate separation and magnetic field gradient were the same as those used in Fig-
ure .. The pulse parameters used were ∆0 = 2π × 2.5 kHz, Γ = 40 and α = 0.003.
This data shows that there is a frequency region 3.5 kHz wide for each condensate in which
the hyperbolic secant pulse can tip the spin of one condensate while leaving the other un-
changed. Solid lines are the theoretical hyperbolic secant pulse spectra, with only the reso-
nance frequency of each condensate (the horizontal offset) as a free parameter. This offset
was found by eye for each condensate, and is stated in the figure. Later in Section . we
use a least-squares fit to find the offset, but that algorithm fails here because the slice edge
is broader than predicted by theory.
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Figure .: A subset of the data shown in Figure ., revealing the shape of the edges of the
hyperbolic secant pulse spectra. The edge sharpness of 0.7 kHz is larger than the theoretical
sharpness of 0.1 kHz; we attribute this to the long pulse duration causing sensitivity to mag-
netic field fluctuations, and the fluid flow motion of the condensate, during the pulse. The
uncertainty in Rabi frequency is insignificant, resulting in a change in the slice edge shape
too small to be seen on this scale.
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Figure .: Examples of absorption images from the data shown in Figures . and .. These
images were taken after 20ms of free-fall. (a) The condensate separation was the same as
when we applied π-pulses in Section ., as was the magnetic field gradient. (b) A hyper-
bolic secant pulse with centre frequencyω0 = 2π × 749.55 kHz locates the slice edge at the
centre of condensate A, partially tipping the spin of condensate A while completely tipping
the spin of condensate B (Fz(A) = 0.07(1) and Fz(B) = 1.000(8)). The state populations
in condensate A do not follow the typical [0.25, 0.5, 0.25] distribution that a π-pulse pro-
duces; it would be interesting to investigate this effect further. (c) A hyperbolic secant pulse
with centre frequency ω0 = 2 ]pi× 747.00 kHz tips the spin of condensate A while leaving
condensate B unchanged (Fz(A) = 1.000(7) and Fz(B) = −1.000(8)). (d) A hyperbolic
secant pulse with centre frequency ω0 = 2π × 751.80 kHz tips the spin of condensate B
while leaving condensate A unchanged (Fz(A) = −1.000(8) and Fz(B) = 1.000(8)).
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. A hyperbolic secant pulse succeeds where a square-profile pulse
fails

Finally, we further demonstrate the advantages of using a hyperbolic secant pulse
for magnetic resonance control instead of a square-profile pulse by moving to a
regime where a square-profile pulse cannot individually address the two conden-
sates but a hyperbolic secant pulse still can. We do this by increasing the Rabi fre-
quency to Ω0 = 2π × 63(2) kHz, while keeping the same condensate separation
and magnetic field gradient used in Section .. As we expect from Figure ., this
broadens the Rabi spectra so that the resonance frequency of one condensate no
longer coincides with the first Rabi minima of the other condensate (Figure .).

Increasing the Rabi frequency has the additional benefit of reducing the dura-
tion of the pulse, reducing the effect of magnetic field fluctuations, and condensate
fluid flow, during the pulse. The hyperbolic secant pulse parameters used here
are ∆0 = 2π × 65 kHz (corresponding to µ = 1.03(3)), Γ = 40 and α = 0.003.
The resulting pulse spectra for the two condensates are shown in Figure ., with
pulse edges shown in Figure .. These demonstrate excellent agreement between
measured data and theory, and show that unlike the square-profile pulse, the hyper-
bolic secant pulse can still individually address the two condensates. Additionally,
using hyperbolic secant pulses to measure the condensate spectra produces a mea-
surement of the resonance frequency, and hence the magnetic field, to an accuracy
three orders of magnitude greater than can be achieved using square-profile pulses.
Key examples of absorption images from the data in Figures . and . are shown
in Figure ..
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Figure .: Increasing the Rabi frequency of the π-pulse increases the width of the
Rabi spectra, so that for the same condensate separation and magnetic field gradient
(∆z′ = 288.7(9)µm and d |B| /dz′ = 219(2)mG/cm) a π-pulse can no longer individ-
ually address the two condensates. The pulse duration was 8µs. Solid lines are fits using
Equation ., with fit results inset.
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Figure .: Hyperbolic secant pulse spectra using the pulse parameters∆0 = 2π × 65 kHz,
Γ = 40 and α = 0.003. The pulse duration is 1.3ms. Here the condensate separation and
magnetic gradient is ∆z′ = 288.7(9)µm and d |B| /dz′ = 219(2)mG/cm. Solid lines
are the theoretical spectra, with only the centre frequency of each condensate left as a free
parameter, found using a least-squares fitting algorithm, with fit results inset. There is a
frequency region 0.9 kHzwide inwhich the spin of one condensate can be completely tipped
without changing the spin of the other condensate.
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Figure .: A subset of the data shown in Figure ., revealing the shape of the edges of the
hyperbolic secant pulse spectra. To better compare theory to experiment, included is data
fromcondensateC, formedwithout splitting dipole beam . This results in a condensatewith
a higher atom number, and reduces the uncertainty in Fz . We can see that the data shows
excellent agreement with theory; there is only a slight broadening of the slice edge, which
we attribute to the pulse duration still being longer than the healing time of the condensate.
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Figure .: Examples of absorption images from the data shown in Figures . and ..
These imageswere taken after 20msof free-fall. (a) The condensate separationwas the same
as when we applied π-pulses in Section ., as was the magnetic field gradient. (b) A hyper-
bolic secant pulse with centre frequencyω0 = 2π × 812.23 kHz locates the slice edge at the
centre of condensate A, partially tipping the spin of condensate A while completely tipping
the spin of condensate B (Fz(A) = 0.08(2) and Fz(B) = 1.000(9)). (c) A hyperbolic secant
pulse with centre frequency ω0 = 2π × 684.40 kHz tips the spin of condensate A while
leaving condensate B unchanged (Fz(A) = 1.000(8) andFz(B) = −1.000(9)). (d) A hyper-
bolic secant pulse with centre frequencyω0 = 2π × 814.40 kHz tips the spin of condensate
B while leaving condensate A unchanged (Fz(A) = −1.000(8) and Fz(B) = 1.000(9)).
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. Summary

These proof-of-principle experiments demonstrate that magnetic resonance con-
trol provides the ability to rotate the spin projection of one condensate without
changing the spin projection of an adjacent condensate. The magnetic field gradi-
ents our apparatus is currently able to produce are weak compared to the gradients
used in the simulations presented in Chapter . If we were to increase the mag-
netic field gradient, we would be able to selectively address regions within a single
condensate with shorter duration hyperbolic secant pulses; one step closer to engi-
neering a single black soliton in a Bose-Einstein condensate.

. Record of experiment data files

We have a system in our research group of saving a .h5 file for each experimental
run (typically, each measurement of a condensate), containing a complete record
of the hardware instructions and subsequent analysis results (such as the spin pro-
jection), with the filename in the format of a time and date stamp, the name of the
experiment script file, and optionally a number indicating a sequence of shots or
a repeated measurement. Since it is likely that there will be people in the research
group continuing this work on magnetic resonance control, Table . contains a
record of the .h5 files used to create the plots shown in this chapter. To measure
the spin projection of condensate A and condensate B, and the un-split condensate
C, the regions of interest passed to fitting routines are recorded in Table ..
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Table .: Record of the experiment .h5 files which generated the results presented in this
chapter. An asterisk in the filename indicates an entire sequence of shots.

Figure File name

. 20150106T141775_mrc_*
20150106T164514_mrc_*

. 20150106T170832_mrc_0
20150106T141755_mrc_50
20150106T170712_mrc_0
20150106T170724_mrc_0

. 20150110T155231_mrc_*
20150110T163324_mrc_*
20150110T170254_mrc_*
20150110T175321_mrc_*

. 20150110T155231_mrc_*
20150110T163324_mrc_*
20150110T175321_mrc_*

. 20150106T170832_mrc_0
20150110T170254_mrc_03
20150110T155231_mrc_19
20150110T155231_mrc_46

. 20150110T145817_mrc_*

. 20150109T170249_mrc_*
20150110T132244_mrc_*
20150110T135926_mrc_*

. 20150109T170249_mrc_*
20150110T132244_mrc_*
20150110T135926_mrc_*
20150109T143623_mrc_*
20150109T150949_mrc_*
20150109T153711_mrc_*

. 20150106T170832_mrc_0
20150110T135926_mrc_01
20150110T132244_mrc_18
20150110T135926_mrc_20
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Table .: The regions of interest (subsets of the entire camera image) used when mea-
suring the condensate spin projection, in units of pixels, defined by the coordinates
[(x0, y0) , (x1, y1)] relative to the camera chip.

Condensate Spin state ROI

A mF = −1 [(1074, 477) , (1230, 613)]

mF = 0 [(1236, 477) , (1380, 613)]

mF = +1 [(1386, 477) , (1528, 613)]

B mF = −1 [(1074, 630) , (1230, 759)]

mF = 0 [(1236, 630) , (1380, 759)]

mF = +1 [(1386, 630) , (1528, 759)]

C mF = −1 [(1082, 556) , (1227, 688)]

mF = 0 [(1232, 555) , (1365, 691)]

mF = +1 [(1366, 549) , (1527, 694)]



C
Conclusion

For decades, the magnetic resonance imaging (MRI) community have combined
magnetic field gradients with radiofrequency pulses to measure nuclear spin. I
have shown in this thesis that we can apply similar techniques to operate on the
atomic spin of Bose–Einstein condensates; not only to image condensates (as my
colleague has shown []) but also to engineer the condensate density and phase.
Our technique, which we have called magnetic resonance control, involves expos-
ing the condensate to a magnetic field gradient, which causes the resonance fre-
quency between internal states to have spatial dependence, so that we can use a
time-dependent coupling between internal states to address selected points within
the condensate, giving us the ability to engineer the density, or phase, or both, of
the condensate.

Unlike other wavefunction engineering techniques which rely on an optical
field to address different spatial regions of the condensate, the spatial resolution of
magnetic resonance control is not limited to the wavelength of the light used; in-
deed, radiofrequency pulses have wavelengths many orders of magnitudes greater
than the size of a condensate. Instead, the resolution ofmagnetic resonance control
is limited by the strength of themagnetic field gradient you can generate, the speed
at which this gradient can be switched, and the strength of the coupling; unlike the
optical diffraction limit, these are limits which can be circumvented through suc-
cessful grant applications.

I have shown through simulations that we should be able to use magnetic res-
onance control to engineer a single black soliton in a Bose–Einstein condensate (a
feat requiring healing-length resolution) using simple hyperbolic secant radiofre-
quency pulses and magnetic gradients which, while strong, are not unusual for
those who form Bose–Einstein condensates using chip traps. Achieving this in the
laboratory would be remarkable because no one has engineered a single black soli-
ton in a condensate before.

Developing this technique a step further, I have simulated using magnetic res-
onance control to engineer multiple solitons in rapid succession with control over
their initial locations and trajectories. I achieved this through repeated application
of a magnetic resonance control pulse sequence, engineering two solitons at a time,


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but we believe magnetic resonance control could engineer more than two solitons
simultaneously if we used multi-tonal coupling pulses; a waveform made of the
superposition of hyperbolic secant pulses with different detuning offset, or differ-
ent sweep range, or both, to address multiple regions of the condensate during the
single pulse. This could allow the study of densely packed soliton lattices [],
dispersive shock waves in Bose–Einstein condensates [] and soliton gases [].

Another area of interest is the formation of spin domain walls [], and the
interactions between spin domain walls and spin waves [, ]. We observe that
during the magnetic resonance control sequence which forms a black soliton, after
the first pulse we have formed a spin domain wall; each half of the condensate
is in a different spin state, with the boundary extending over roughly one healing
length. Magnetic resonance control is a technique which could be applied to create
multiple spin domainwalls, or even amixture of spin domainwalls, spinwaves, and
solitons, to observe how they interact.

In this thesis we have considered hyperbolic secant pulses, which are one of the
simplest forms of pulses. Looking to the MRI field for inspiration, there are a wide
array of intricate pulse shapes which could be investigated for use in the context
of magnetic resonance control (e.g. [–]). It may be possible to find a pulse
which could engineer the desired state in a much shorter time than a hyperbolic
secant pulse, or, equivalently, a pulse which could engineer the desired state in the
same length of time but requiring a much weaker coupling strength. There are
likely to be different forms of pulses which could engineer target states difficult to
produce using hyperbolic secant pulses alone. To find such a pulse, optimal control
theory might be used to create an automated optimisation of pulse parameters.

The target states discussed so far have all been one-dimensional features, butwe
aim to extend magnetic resonance control to higher dimensions. For the study of
topological defects, higher-dimensional magnetic resonance control would allow
us to engineer vortices, skyrmions, and spin knots with precision. There is recent
interest in the behaviour of caustics and diffraction catastrophes in Bose–Einstein
condensates [], where an exotic two-dimensional potential is applied to the
condensate, causing it to contract (or focus) into intricate aberration patterns as
though the condensate were an optical beam which had passed through a lens.
In this paper, there are no suggestions for how these lensing potentials could be
made; I suggest that magnetic resonance control could be used to modulate the
phase across the whole condensate (rather than in only one sharp region, as we
have considered in this thesis), in the same way as a lens modulates the phase of a
light beam.

To achieve anythingmore complicated than a ‘cylindrical lens’ effect, we would
need to extend magnetic resonance control to at least two dimensions. We might
do this by using a rotating magnetic field gradient, or by using the vector light
shift from an optical field. This optical field could be shaped using a spatial light
modulator to synthesise a non-monotonic magnetic field gradient which varies in
two dimensions (limited by the resolution of the spatial light modulator). A time-
dependent coupling pulse could then be used to selectively address regions within
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this gradient across scales smaller than the resolution of the spatial light modulator.
Before being able to perform magnetic resonance control experiments in the

laboratory, we needed to build our spinor Bose–Einstein condensate apparatus. In
this thesis I summarised my main contributions to this endeavour, including opti-
cal and electronic design and construction, assembling the ultra-high vacuum sys-
tem, coordinating the vacuum bakeout, designing imaging systems, and creating
the magneto-optical trap.

One of my tasks particularly pertinent to magnetic resonance control was de-
signing and testing a high resolution diffraction-limited objective lens. Using this
lens we should be able to resolve solitons in condensates in situ, a necessary ability
in order to to confirm the success of engineering a black soliton in a condensate
using magnetic resonance control. This objective lens consists of entirely standard
lens elements, available from commercial catalogues, making this lens simpler and
cheaper than using custom-ground objective lenses. Another feature of my de-
sign is that by changing the spacings between lens elements, the diffraction-limited
performance is maintained across the imaging wavelengths for all the alkali gases.
With these features, this objective lens design could become the ‘work-horse’ lens
in the field of quantum gas experiments.

After constructing our Bose–Einstein condensate apparatus, and developing
the technique of magnetic resonance control in simulations, I was able to per-
form the first proof-of-principlemagnetic resonance control experiments on Bose–
Einstein condensates. Limited by the weak magnetic field gradients we could pro-
duce with our bias coils I selectively transferred the spin state of only one of two
adjacent condensates using a hyperbolic secant pulse, in a regime where we were
unable to achieve this with a square-profile pulse.

The next step in these investigations will be to increase the magnetic field gra-
dient, so that we can address the condensate at the healing length scale. We could
increase themagnetic field gradient by either installing additional coils close to the
science cell, or by using the vector light shift from a laser beam to synthesise the
gradient. It may even be possible to use our bias coils to offset the strong magnetic
trap produced by the quadrupole coils, to move a region of strong magnetic field
gradient into the condensate. Of course, instead of pursuing these options our-
selves, we might decide to form a collaboration with another research group who
make Bose–Einstein condensates using chip traps easily capable of producing the
requisite gradients for healing-length resolution.

Once we can use magnetic resonance control in the laboratory to engineer the
condensate wavefunction with healing-length precision, we could investigate com-
bining this technique with Faradaymagnetic resonance imaging [] which applies
the techniques of MRI to construct images of condensates non-destructively. Us-
ing our laboratory control system software [] it is possible to set up autonomous
feedback control, where parameters for the next experimental procedure are au-
tomatically selected based on measurements of the system. With the combined
powers of magnetic resonance control, Faraday MRI, and autonomous feedback
control at our disposal, it could be possible to achieve real-time adaptive control
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over the condensate wavefunction. Having the ability to modify the wavefunction
immediately after non-destructively imaging some desired event would be ideal for
using Bose–Einstein condensates as quantum simulators.

At the moment magnetic resonance control is still in its infancy, but with all
these possible directions we can predict that it has a bright future ahead of it. My
hope is that further development of magnetic resonance control will lead to it be-
coming a common technique in Bose–Einstein condensate experiments, whenever
a fine degree of control over the full condensate wavefunction is desired.
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