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Abstract

This thesis studies the design of optimal investment strategies. A strategy
is considered optimal when it minimizes the variance of terminal portfolio
wealth for a given level of expected terminal portfolio wealth, or equiva-
lently, maximizes an investor’s utility. We study this issue in two particular
situations: when asset returns follow a continuous-time path-independent
process, and when they follow a discrete-time path-dependent process.
Continuous-time path-independent return models are popular but con-

troversial in the literature. We formulate the criteria for portfolio rules to be
considered as optimal in this framework. We construct a portfolio consisting
of a risky and a risk-free asset where the return on the risky asset follows a
Gaussian diffusion process with non-constant drift and diffusion. Portfolio
rules satisfying the specified criteria are shown to be compatible with the
objective of utility maximization.
Discrete-time path-dependent return models are more realistic, given the

fact that almost all historical return data are measured in discrete time and
exhibit serial correlation. Hence, we develop a novel methodology to assess
the market effi ciency and predictability of Australian index returns on equi-
ties, debts and cash, which we show are path-dependent empirically. We pro-
pose a one-step Multivariate Semi-parametric Maximum Likelihood Estima-
tion (one-step MSMLE) technique to estimate a Vector-autoregressive Mul-
tivariate Generalized Autoregressive Conditional Heteroskedasticity (VAR-
MGARCH) model of Australian asset returns. The estimation is done using
a "rolling historical window" approach so as to highlight and capture path-
dependency in asset returns as well as allow for parameter changes. Serial
correlation is found in both the return and the volatility levels of the Aus-
tralian assets that we consider. Having shown this, we then extend a class of
reactive portfolio controls to the case when returns follow a VAR-MGARCH
process. The portfolio controls are formulated by solving the Lagrangian
which minimizes the variance in next period wealth for a given targeted next
period wealth. We quantitatively demonstrate that this class of reactive
portfolio controls are effi cient, even under the existence of market impacts.
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Chapter 1

Introduction

Money has a diminishing time value. A dollar received some time in the

future is worth less than a dollar received today. This idea has been uni-

versally accepted in finance literature. People prefer to spend money today

rather than spending the same amount in the future. Hence, whether to

forgo consumption today and invest the money depends on the return one

expects to earn from the investment. The higher the expected return, the

more likely one will choose to invest instead of spending the money today

(Parrino et al. 2014). Therefore, a common objective of an investor is to

maximize his investment returns at his accepted level of risk, or equivalently,

to minimize risks at his desired level of expected return so as to maximize

his utility. Most people invest in portfolios which consist of multiple classes

assets. The advantage of creating a portfolio with mixed assets is that it

diversifies risks. The impact of a decline in one asset on the entire portfolio

is limited at any point in time. An investment portfolio normally comprises

at least three asset classes, the principal ones being equity, debt and cash.

1



2 CHAPTER 1. INTRODUCTION

Equities represent ownership in a company. Returns on equities can be high

but volatile, depending on business performance. Debt instruments generally

have lower returns but are less volatile than equities. One distinctive char-

acteristic of debt instruments is their term to maturity. Debt instruments

have very different term structures; for instance, they can be in short-term

as a ninety-day bank accepted bill, or in long-term as a thirty-year gov-

ernment bond. Cash and cash equivalent securities (easily liquidated assets

that can be converted into cash immediately) provide liquidity in a portfolio

to purchase new equity or debt. They are transitory assets. Holding cash

does not always attract interest, hence funds do not normally reserve a large

cash balance. Return on cash refers to the interest earned by deposits in

commercial banks. Decision on how much an investor should allocate his

fund in each asset requires comprehensive analysis and judgement of each

asset class’s performance. Generally, there are three main types of asset

allocation strategies implemented over time. These are to adopt a fixed as-

set allocation; to adopt an allocation that evolves according to a fixed and

pre-determined schedule; and to adopt a dynamic allocation that is, at any

future point of time, not pre-determined, but determined according to the

actual investment experience up to that time. We will review some examples

comparing these allocations strategies below. Merton (1969) showed that a

fixed asset allocation (the first type of strategies mentioned) would be opti-

mal only if asset returns were independently identically distributed (i.i.d.),

the utility function was a Constant Relative Risk Aversion (CRRA) power

function and there were no transaction costs. His claim was supported and

extended by Samuelson (1969). Samuelson (1969), in his landmark paper, in-
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vestigated the question of how much of an individual’s total wealth should be

consumed or be invested at any point in time, assuming that no bequest was

to be left behind. He utilized a backward dynamic programming recursion

to prove that a fixed allocation between a risky and a risk-free asset would

be optimal when returns on the risky asset were i.i.d. over time, income

was generated only from investments, and consumption was evaluated by

using a power utility function over an individual’s lifetime. An example of a

comparison between a fixed allocation (the first type of strategy mentioned)

and a pre-scheduled allocation (the second type of strategy mentioned) was

provided in a U.S. patent taken out by Frain and Gallo (2011). They pointed

out that many investors failed to change their asset allocation strategies and

these strategies become inconsistent with their risk tolerance levels when cer-

tain "trigger events" happened. The patent proposed a systematic process

to adjust asset allocation rules.Bone and Goddard (2009) provided a quan-

titative comparison between a fixed proportion allocation (the first type of

strategy mentioned) and a contrarian rebalancing allocation (an example of

the third type of strategy mentioned). Their contrarian rebalancing rule

allocated 75% to equity when the last period’s return in equity is higher

than the return in debt, and 75% to debt when the opposite occurs. They

concluded that, compared to the fixed proportion allocation, the contrarian

rebalancing strategy attained a closer terminal wealth to the targeted value.

This result may be explained intuitively by the fact that asset returns and

volatilities are not constant, and the fixed proportion allocation strategy does

not adjust for this flexibility in returns and volatilities.Basu and Drew (2009)

demonstrated the risk-reduction advantage of dynamic asset allocations (the
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third type of strategies mentioned) by constructing a ‘contrarian’strategy

of weighting towards defensive assets when experience was favorable. They

also suggested that most people become more risk-averse as they age, and

hence an investor’s portfolio should become increasingly conservative. Asset

allocation decisions should be made carefully since the size of the portfolio

at different stages of the life-cycle substantially influences the final outcome.

Each of the three examples listed above (Frain and Gallo (2011), Bone and

Goddard (2009) and Basu and Drew (2009)) show that dynamic asset allo-

cations (the third type of strategy mentioned) can perform better than fixed

allocations (the first type) or pre-scheduled allocations (the second type), in

the sense that the associated risks in the portfolios are smaller while tar-

geted portfolio returns are better maintained. Therefore, research attention

has gradually focused on dynamic investment strategies that follow the third

approach listed above, which have the potential to reduce risk. This is con-

sistent with an investor’s goal to choose the most suitable portfolio wealth

distribution given his risk tolerance level. The above discussion is nicely sum-

marized by Trippi and Harriff (1991), who define dynamic asset allocation as

‘a class of investment strategies that shifts the content of portfolios between

two or more asset classes in response to either changes in the value of the

portfolio and/or external economic states, on a more or less continual basis’.

The motivation is two-fold: to tailor the distribution of portfolio returns at

some future time so that it can be entirely different from that of the market

index; and, to exploit predictable regularities including market timing and

other tactical allocation strategies. In other words, an investor’s goal is to

control the distribution of portfolio returns according to his risk tolerance,
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and to predict and react to changes in the external economy. This thesis

focuses on the explicit formulation of dynamic asset allocation under certain

situations. Predictability of and reaction to macroeconomic changes are left

for future work.

1.1 Considerations in Dynamic Strategies

Explicit formulation of a dynamic investment strategy has three considera-

tions: the definition of the optimization objectives, the expectation of future

asset cash flows, and the choice of an optimization approach. We will elabo-

rate on each of these three aspects below. An investment portfolio can drift

from its target asset allocation, acquiring risk and return characteristics that

may be inconsistent with an investor’s goals and preferences. As a portfo-

lio’s expected return increases, so does its vulnerability to deviations from

the targeted value. The trade-off between higher returns and higher risks,

or lower returns and lower risks, can be thought of as a rebalancing frontier.

This defines the optimization objectives (the first consideration mentioned).

On the other hand, risk measurements such as the standard deviation (or

volatility) of portfolio returns, the Sharpe ratio (Sharpe 1994) and Value at

Risk (Jorion 2006), are measures describing different aspects of distributions

of portfolio returns or wealth. Maximizing the expected utility of an investor

is equivalent to choosing a distribution of portfolio wealth from all possibili-

ties with respect to the desired risk measure. This thesis adopts a standard

approach which chooses to minimize risks by minimizing the volatility of port-

folio return for a desired level of portfolio wealth. The evolution of portfolio
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wealth depends on the evolution of asset returns (the second consideration

mentioned above). Path-independent return models are popular in academic

research, for their mathematical convenience. Path-independence refers to a

situation in which current or future states of return do not depend on past

states; examples include returns being i.i.d. over time, and the distribution

of returns being a function of time only. However, it is widely recognized

that serial correlation often exists in asset returns. A more practical ap-

proach is to apply path-dependent return models, that is, past experience

has implications for current and future returns. Although not very realistic,

studies based on path-independent return models do provide some insights of

the formulation of optimal portfolio allocations. We will provide a detailed

review of return models in Section 1.2.1. The main approaches to dynamic

asset allocation (the third consideration mentioned above) rely on analytical

solutions, stochastic programming and dynamic programming. We now ex-

plain and provide examples of each of these approaches in the remainder of

this section. Direct application of an analytical solution (the first approach

listed) to a class of optimal strategies is not always easy, especially when the

functional form of an investor’s utility is not explicitly specified. Popular

and relevant tools in the maximization of utility involve, but are not limited

to, the Hamilton-Jacobi-Bellman (HJB) equation (Bellman 1957), calculus of

variations (Gelfand and Fomin 1963) and the Feynmann-Kac formula (Kac

1949). Examples of analytical solutions provided by the HJB equation to

the maximization of particular forms of utility functions can be found in the

following studies: a Hyperbolic Absolute Risk Aversion (HARA) utility was

considered in Merton (1971), an iso-elastic utility was considered in Brennan
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et al. (1997), and a Constant Relative Risk Aversion (CRRA) power utility

was considered in Cvitanic et al. (2008). Examples of applications of the

Feynman-Kac formula to maximize given utility functions can be found in two

recent papers; Tanaka (2009) and Chiarella et al. (2007). However, the ap-

plication of the Feynman-Kac formula is subject to certain conditions which

impose limitations on the resulting portfolio controls. We will investigate

these conditions in Chapter 2. The single-period mean-variance framework

proposed by Markowitz (1952) is widely considered to be the starting point

of modern research on portfolio optimization, and stochastic programming

(the second approach listed) for financial optimization is considered to be

a practical multi-period extension to this. Stochastic programming employs

mathematical programming in which historical asset returns are viewed as

realizations of an assumed distribution of returns, and solutions can either

be analytical or empirical. It is an effective tool to deal with practical is-

sues such as transaction costs, market incompleteness, taxes, trading limits

and regulatory restrictions. Yu et al. (2003) and Dupačová (1999) provide

summaries of examples of stochastic programming in financial optimization

which include asset allocations for pension plans and insurance companies,

security selections for portfolio managers and currency hedging. Dynamic

programming (the third approach listed) considers possible changes in asset

returns or portfolio wealths period by period, and solutions are empirical; for

example, see Musumeci and Musumeci (1999) and Samuelson (1969).
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1.2 Practical Issues

1.2.1 Asset Return Process

Perhaps the most important consideration in the formulation of an invest-

ment strategy is our expectation of future returns. We will review some

popular models and methods in the analysis of returns below.

Diffusion Process

Merton (1971) was the first to introduce the application of Itô’s Lemma

and the Fundamental Theorem of Stochastic Dynamic Programming into

the systematic construction and analysis of optimal continuous-time dynamic

models under uncertainty. He considered two types of stochastic processes,

Brownian motion and Poisson processes. Major advantages of his work are its

mathematical simplicity as the number of parameters involved is limited, and

the relevance of continuous-time models for actual applications. Modelling

asset returns based on diffusion processes assumes that investors’decision

making is primarily affected by the portfolio’s expected return and variance.

This idea of focusing on the first two moments of portfolio wealth is widely

accepted. However, empirical evidence has shown that asset returns are not

normally distributed in practice, and hence the mean and variance do not

fully characterize the distribution of portfolio wealth. The development of

portfolio allocation theories for non-Gaussian markets has always been chal-

lenging, and has generally met limited success. Despite the historical fact

that returns (or logarithmic returns) are not normally distributed, Gaussian

diffusion processes have been standard for modeling asset returns since Mer-
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ton’s work in 1971. Dynamic asset allocations based on diffusion processes

have been prominent. Examples include Black and Scholes (1973), Cox and

Ross (1976) and Carr et al. (2002). Hodges and Clarkson (1994) provided

a survey of this topic covering the period up to the early 1990s. On the

other hand, Merton (1971) used an arbitrary ‘bequest function’as a bound-

ary condition in utility maximization, but this idea was criticized by Taksar

and Sethi (1988). Taksar and Sethi (1988) pointed out that the boundary

behavior around zero terminal wealth might be inconsistent with Merton’s

‘bequest function’.

Constant Return Characteristics and Path-independence

Cox and Leland (2000) derived criteria for controls that optimize an in-

vestor’s objectives when returns are path-independent, basing their work on

Merton (1969) and Merton (1971). Their study was conducted on a portfolio

that consisted of a risky and a risk-free asset, where returns on the risky

asset followed a geometric Brownian motion with constant drift and diffu-

sion. Their restriction to a single risky asset involves no significant loss of

generality according to the separation theorem of mutual funds (Ross 1978).

However, their restriction to the consideration of assets with constant char-

acteristics is not realistic. In addition, their use of the discrete-time binomial

model, converging in continuous-time as the time interval shrinks to zero, is

cumbersome and detracts from the economics of the issue. Although Cox

and Leland (2000) made several limiting assumptions in their work, their

results have been extensively cited in the literature, especially in the stud-

ies of hedge funds, because the payoff function of hedge funds is naturally
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path-independent and non-decreasing in the index values (Amin and Kat

2003). Hodges and Clarkson (1994) provided a numerical example com-

paring different dynamic strategies and claimed that, although the results

presented by Cox and Leland (2000) were not well known at that time, path-

independence of a strategy is often necessary for a dynamic strategy to be

optimal. Vanduffel et al. (2009) extended the relevance of path-independence

to the case when prices of risky assets follow an exponential Lévy process.

However, path-independent strategies are not always attractive. Kassberger

and Liebmann (2012) show that path-dependent strategies are suboptimal

for risk-averse investors when the pricing model is a function of the risky asset

price at the terminal time, and not surprisingly, path-dependent strategies

are preferred if the pricing model of the risky asset is itself path-dependent.

Non-constant Return Characteristics and Path-dependence

Most of the previous studies on investment strategies, like Cox and Leland

(2000), are based on the assumption that return processes have constant drift

and diffusion. Although this assumption is idealistic, it simplifies the problem

and makes the formulation of an optimal portfolio allocation more feasible in

reality. Data generating processes of prices of / returns on financial instru-

ments are far more complex. They are often path-dependent, and do not nec-

essarily reflect constant parameters. Models capturing path-dependent asset

returns have drawn more and more attention in recent years. One example

is the stochastic volatility model. Detailed references for stochastic diffusion

processes may be found in Ibe (2009) and Klebaner (2005). One observation

that reveals the path-dependency in returns is serial correlation in both asset
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returns and their volatility. Many models that capture the path-dependency

of time series have been developed over the last few decades. Perhaps the

most successful and now standard model in the academic literature is the

Autoregressive (AR) model for levels (see Yule (1927) and Walker (1931)),

and a Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

model for volatility (see Bollerslev (1986) and Bollerslev (1987)). Examples

of asset allocation strategies based on AR return models can be found in

Huang and Lee (2010) and Leung (2011). Huang and Lee (2010) adopted an

AR model of asset returns when formulating explicit functional forms of the

first two moments for accumulated portfolio wealth. They designed an opti-

mal allocation utilizing a numerical approach, and exploited the advantage

obtained from approximating an analytical method. Leung (2011) proposed

a reactive investment strategy with no restrictions on the path-dependency

in the return level. His study provided a method to locate, on the effi cient

frontier, the corresponding portfolio weights, for a given target portfolio re-

turn at each scheduled time. He demonstrated the effi ciency of the proposed

strategy for a Vector-autoregressive (VAR) return model. In addition to the

AR and GARCH effects on the first two moments of asset returns, some re-

searchers suggest that higher moments on total wealth should be taken into

account, given the non-normality of returns. Cvitanic et al. (2008) investi-

gated the effect of higher order moments on the optimal investment strategy

of a risk-averse investor. They employed a dynamic jump diffusion model,

which enabled them to study the third and the fourth moments of the distri-

bution of portfolio wealth, as the effects of higher order moments often arise

naturally when there are jumps (that is discontinuities) in returns. They pro-
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vided tractable, closed-form and inter-temporal portfolio rules for investors

with CRRA utility. They showed that observed skewness and kurtosis would

lead to lower holdings in risky assets than the standard Merton (1971) model

would imply, and a higher chance of overinvestment (attempting to diversify

risks by investing in too many projects). Other examples of return models

with jumps can be found in Liu et al. (2003) and Das and Uppal (2004).

Continuous Time v. Discrete Time

There is a rich financial literature that employs both continuous-time and

discrete-time models. The Gaussian diffusion, stochastic volatility and jump

diffusion models mentioned above are examples of continuous-time mod-

els. The AR-GARCH model provides an example of discrete time models.

Continuous-time models often have elegant mathematical representations

and hence they often have compact analytical solutions. Results derived

from the discrete time models can be shown to converge to corresponding

continuous-time counterparts in most cases, by taking limits as the time in-

terval shrinks to zero. However, the fact that almost all available financial

data used by practitioners are measured in discrete time whereas theoretical

models are in continuous time raises questions about the compatibility of the

theoretical model and empirical application. In addition, analytical solutions

to continuous time models often require restrictive assumptions that are not

supported in reality. The constant asset characteristics assumption is an ex-

ample. In contrast, empirical solutions to discrete time models can mitigate

the use of restrictive assumptions.
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Estimating Asset Returns

AR-GARCH models are often estimated via the Maximum Likelihood Es-

timation (MLE) approach, but parametric MLE techniques are consistent

and effi cient only if the true model and distribution of variables are correctly

specified. Di and Gangopadhyay (2013) proposed a one-step Semiparamet-

ric MLE (one-step SMLE) technique that utilized kernel density estimates.

This technique provides a plausible solution to the distribution specification

problem, although estimation will no longer be as effi cient. On the other

hand, parameters in time series are expected to change over a long time

horizon. This viewpoint motivates a rolling window estimation approach.

Examples of parameter changes in return models can be found in a rolling

window study on New York Stock Exchange common stocks conducted by

Fama and MacBeth (1973) and in a rolling window study on the UK stock

market conducted by Pesaran and Timmermann (2000). The evolution of

parameters has also been studied at the volatility level. Examples may be

found in Foster and Nelson (1996) and Andreou and Ghysels (2001).

1.2.2 Transaction Costs

Another fundamental question to ask when making investment decisions is

how frequently an investor needs to rebalance his portfolio (Seth 2002). An-

swers to this question depend on the volatility of returns and transaction

costs. We will present an extensive quantitative study of the effects of trans-

action costs in Chapter 5. Transaction costs are the penalty paid for trans-

acting or trading and they are made up of several components. Cheng (2003)
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provided a summary of the main quantitative costs and these include trans-

action fees, the bid-ask spread, opportunity cost, liquidity impact and market

impact. These costs are detailed below.

Transaction fees

Commissions, fees and taxes (except capital gains tax) are unavoidable costs.

They are the charges calculated as the percentage per share paid to the

broker and tax offi ce for executing the trade, and hence they can be well

anticipated by the market participants. These make the smallest contribution

to transactions costs, and they are the easiest to measure.

Bid-ask Spread

The bid-ask spread is the difference between the highest bid and the lowest

sell offer for the underlying stock at any given time. It measures the loss from

buying one share of a stock and then immediately selling it, and hence it is

approximately the cost of trading one share of stock. The bid-ask spread is

the main component of transaction costs when trading size is small (Grinold

and Kahn 1999).

Opportunity Costs

In economics, opportunity cost is the trade-off between two options. In the

context of investments, an investor gives up returns when he chooses a certain

portfolio that earns less than the best alternative investment with a similar

risk profile (Parrino et al. 2014). One example of an opportunity cost is the
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loss on any intra-day or day-by-day return when orders are not filled on the

same day as they are placed (Grinold and Kahn 1999).

Liquidity Impacts

Liquidity impact arises when an order is larger than the inside market or it

requires more immediate liquidity than liquidity providers can provide. The

trade becomes visible to the rest of the market because of its size. Due to the

immediate demand on liquidity, trading costs will be higher (Cheng 2003).

Market Impacts

Market impact is the effect that is observed when a market participant buys

or sells an asset, and the purchase or sale shifts the price of the underlying

asset. The price moves upward after a significant purchase and downward

after a significant sale. Market impact is positively related to the size of

orders and the resulting supply-demand imbalance in assets. The effect of

trading on asset returns exhibits a strong positive relationship with con-

temporaneous returns (Brown, Walsh, and Yuen 1997; Chordia, Roll, and

Subrahmanyam 2002; Chordia and Subrahmanyam 2004). This effect can

be quantitatively modelled by order imbalance, which exists when the num-

ber of buyer-initiated transactions differs from the number of seller-initiated

transactions (Kissell and Glantz 2003). Order imbalances cause price pres-

sures. The effects due to positive and negative imbalances are differentiable,

because price pressures resulting from large sell orders are greater than those

from buy orders (Chan and Fong 2000; Chordia, Roll, and Subrahmanyam

2002). These effects influence asset prices in the aggregate market. Market
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impact grows as the transaction size increases, and it dominates transaction

costs in significant transactions. Although the effects by different market par-

ticipants may cancel or magnify each other and hence are beyond the traders

and the portfolio managers’control, market impacts need to be taken into

consideration when making trade decisions. We will provide a numerical ex-

ample of how market impacts affect the performance of investment strategies

in Chapter 5.

1.3 Our Research Framework and Contribu-

tions

1.3.1 Research Focus

The research in the thesis studies two different but related questions. First,

we consider the case of continuous-time path-independent return models. We

investigate the requirements for an allocation rule to be optimal in this situ-

ation. The derivation is an extension to Cox and Leland (2000). Second, we

proceed to discrete-time path-dependent return models, which are supported

by historical data. We generate and assess a particular class of allocation

rules introduced by Leung (2011), and implement them within the context

of a Vector Autoregressive - Multivariate GARCH (VAR-MGARCH) return

framework. We also consider the empirical effect of market impacts on this

class of allocation rules.
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1.3.2 Our Contributions

Chapter 2 formulates the requirements for portfolio controls to be optimal

and compatible with expected utility maximization when asset returns are

path-independent. We consider a portfolio that consists of a risky and a risk-

free asset. We assume that returns on the risky asset are path-independent

with drift and diffusion being functions of the price of the risky asset, port-

folio wealth and time. This is an extension to Cox and Leland (2000).

We then assess the predictability and effi ciency of the Australian market

in Chapter 3. We consider a VAR-MGARCHmodel which is path-dependent.

Inspired by Pesaran and Timmermann (2000) and Di and Gangopadhyay

(2013), we present a study of the evolution of parameters in a fitted VAR-

MGARCH model for Australian index returns on equities, debt instruments

and short-term bank deposits. The study is conducted using a "rolling win-

dow" approach which is to capture small parameter changes over different

estimation windows. We develop and apply a one-step Multivariate SMLE

(one-step MSMLE) method to estimate the model parameters.

We consider a portfolio consisting of three VAR-MGARCH asset classes

(equity, debt and cash) and extend the dynamic portfolio rules proposed by

Leung (2011) in Chapter 4, after recognizing the path-dependency of asset

returns in Chapter 3. We quantitatively demonstrate that the proposed

dynamic strategy exhibits excellent effi ciency, in the sense that the associated

variance is minimized for a given level of expected terminal portfolio wealth.

Chapter 5 investigates the effect of market impacts on the allocation rule

proposed in Chapter 4. Our simulated examples show that the proposed
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strategy maintains its optimality in the presence of market impacts.



Chapter 2

Path-independent Returns and

Asset Allocation

19



20CHAPTER 2. PATH-INDEPENDENTRETURNSANDASSETALLOCATION

Declaration for Thesis Chapter 2



21

We begin our study of investment strategies by following Merton (1971) to

employ geometric Brownian motion models to study asset returns. Merton

(1971) provided examples of how to systematically construct and analyze

optimal continuous-time dynamic models with geometric Brownian motion

and Poisson processes in his landmark paper. The mathematical simplicity

of the two continuous-time processes limits the number of parameters in the

problem and allows the derivation of analytical solutions.

Early work by Cox and Leland in 1970s, which was published much later

in Cox and Leland (2000), derived criteria for portfolio controls to be consid-

ered as optimal in the sense that the controls maximize an investor’s expected

utility. Their study was based on a portfolio consisting of two assets, a risky

(a stock) and a risk-free one, where asset returns were assumed to be path-

independent and to have constant means and volatilities. Path-independence

means that current returns do not depend on past returns. They started with

the use of a discrete time binomial model to describe changes in portfolio

wealth, and then took limits as the time interval shrank to zero to let the

discrete measurements of changes converge to partial differential equations

(PDEs) of portfolio wealth.

Ross (1978) addressed the use of two-asset portfolios. A portfolio with a

single risky asset can be taken as a mutual fund. Ross (1978) showed that

if geometric Brownian motion models are adopted, the separation theorem

of mutual funds can be applied: in a portfolio problem of allocating wealth

across many risky assets, the problem can be reduced to that of choosing

amongst combinations of a few funds formed from these assets. However, as-

set returns are observed in practice to have non-constant means and volatil-
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ities. The use of a discrete-time binomial model, converging in continuous

time by taking limits on the time interval, is cumbersome and detracts from

the economics of the issue. We generalize some results due to Cox and Leland

(2000) in this chapter.

We consider total wealth, W = G+H, with G invested in a risky asset (a

stock) and H invested in a risk-free asset. Investors are allowed to increase

or decrease their investment by an amount K, such that K > 0 for cash

withdrawals and K < 0 for cash injections. W is a function of the price of

the risky asset, s, at time, t. G, H and K are functions to be determined.

The price of the risky asset at time is assumed to follow a geometric

Brownian motion such that

ds(t)

s
= µdt+ σdB(t), (2.1)

where B (t) is a Brownian motion with dB ∼ N (0, dt) , µ is the drift and σ is

the diffusion. Both µ and σ are assumed to be constants in Cox and Leland

(2000). We generalize their results to the case when both µ and σ may be

functions of s and t, but the evolution of s is path-independent.

The risk-free rate at time t is denoted by r(t), which is generally indepen-

dent of the stock price s so that rs = ∂r/∂s = 0, by virtue of being risk-free.

The process of r(t) evolves as

dPf

Pf
= rdt, (2.2)

where Pf is the price of the risk-free asset.
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Hence, total wealth W obeys

dW = dG+ dH (2.3)

=
ds

s
G+ rH dt−Kdt

= [rW + (µ− r)G−K] dt+ σGdB.

Subscripts in this chapter are reserved solely for derivatives. Most of the

following results are published in Leung and Shi (2013).

2.1 Synopsis of Utility Functions

Portfolio controls are considered to be optimal if they maximize an investor’s

expected utility. Utility functions, u(.), were originally designed as tools for

choosing between alternatives that would produce different levels of wellbe-

ing. The function u(.) gives different scores to different arguments (alterna-

tives) and the argument that is both feasible and gives the highest expected

score will be chosen. The purpose of setting up an investment strategy is

to maximize an investor’s expected utility, subject to the evolution of the

investor’s wealth.

Let U(W ) = E [u(W )] be the expected utility of total wealth, W . We

assume that expected utility is increasing and is also concave in wealth, that

is

U ′(W ) ≥ 0, and (2.4)

U ′′(W ) ≤ 0; (2.5)
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and these inequalities ensure that it is possible to find an optimal total wealth

(that is W ∗) that maximizes expected utility.

2.2 Controls Based on the Price of the Risky

Asset and Time

Both the risk-free rate, r(t), and the price of the risky asset, s(t), are out of an

investor’s control. It is interesting to consider the case when an investor sets

portfolio controls in response to s(t), that is, when µ, σ and the corresponding

controls may depend on both the price of the risky asset and time. This is the

case when an investor believes that the portfolio controls and hence wealth

are driven by the price of the risky asset.

We note that since W = G+H, we only need to control two of W, G and

H to identify the entire portfolio.

2.2.1 Zero Cash Withdrawals or Inflow

A portfolio is self-financing when there are no cash withdrawals or injections,

that is K = 0. The purchase of new assets is funded by the sales of old ones.

In this case, the process for total wealth in (2.3) reduces to

dW = [rW + (µ− r)G] dt+ σGdB. (2.6)

By Itô’s theorem we have

dW = Wtdt+Wsds+
1

2
Wss (ds)2 (2.7)
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= Wtdt+ sWs
ds

s
+

1

2
Wss

[
(µsdt)2 + 2µσs2dBdt+ (σsdB)2

]
= Wtdt+ sWs (µdt+ σdB) +

1

2
σ2s2Wssdt

=

(
Wt + µsWs +

1

2
σ2s2Wss

)
dt+ σsWsdB

where, in the limit as dt → 0, terms of higher orders of dt go to zero faster

than first order terms and hence can be ignored.

Knowing the process of W , we can easily deduce the requirements for

portfolio controls to be considered optimal in this situation as follows.

Proposition 1. The optimal controls W (s, t) and G (s, t) satisfy the PDEs:

Wt + rsWs +
1

2
σ2s2Wss − rW = 0, (2.8)

Gt + s (r + sσσs)Gs +
1

2
σ2s2Gss − (r + sσσs)G = 0, and (2.9)

G = sWs from (2.11).

Proof. Equating (2.6) and (2.7), and combining like-terms, we have

rW + (µ− r)G = Wt + µsWs +
1

2
σ2s2Wss, (2.10)

and we have

G = sWs. (2.11)

Thus

rW + (µ− r) sWs = Wt + µsWs +
1

2
σ2s2Wss,
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and so

Wt + rsWs +
1

2
σ2s2Wss − rW = 0. (2.12)

These partial differential equations (PDEs) are consistent with the con-

ditions of Proposition 1 in Cox and Leland (2000).

Differentiating (2.12) with respect to s yields:

Wst+(rsWss+ rWs)+(
1

2
σ2s2Wsss+σ2sWss+σσss

2Wss)−rWs = 0. (2.13)

Multiplying both sides of (2.13) through by s, we obtain

sWst + (rs2Wss + rsWs) +

(
1

2
σ2s3Wsss + σ2s2Wss

)
+σσss

3Wss− rsWs = 0.

(2.14)

On the other hand, given the process of G in (2.11), we have the following

partial derivatives of G :

Gt = sWst, (2.15)

Gs = Ws + sWss, and (2.16)

Gss = 2Wss + sWsss. (2.17)

Hence (2.14) becomes

Gt + rsGs +
1

2
σ2s2Gss + σσss

(
s2Wss + sWs − sWs

)
− rG = 0

Gt + rsGs +
1

2
σ2s2Gss + σσss (sGs −G)− rG = 0.
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Remark 1. Proposition 1 of Cox and Leland (2000) will not apply if σs 6= 0.

Note that both (2.8) and (2.9) are parabolic PDEs (Salsa 2008). G has the

same functional form as W, but with r replaced by r + sσσs. Therefore, the

price of the risky asset in (2.1) has drift equal to r + sσσs, that is

ds = (r + sσσs)sdt+ σsdB(t). (2.18)

2.2.2 Non-zero Cash Withdrawals or Inflow

We now consider the case when cash withdrawals or inflows are involved,

that is, K(s, t) 6= 0.

Proposition 2. Necessary and suffi cient conditions for the differentiable

functions G(s, t), W (s, t) and K(s, t) to be the optimal controls of an invest-

ment strategy are that:

Wt + rsWs +
1

2
σ2s2Wss − rW +K = 0, (2.19)

Gt + s (r + sσσs)Gs +
1

2
σ2s2Gss − (r + sσσs)G+ sKs = 0, and (2.20)

G = sWs. (2.21)

for all s and t.
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Proof. Equating (2.3) and (2.7), we have

[rW + (µ− r)G−K] dt+ σGdB (2.22)

=

[
Wt + µsWs +

1

2
σ2s2Wss

]
dt+ σsWsdB.

Combining like-terms in (2.22), we obtain

sWs = G,

which is the same condition as in (2.11) (when there were no cash withdrawals

or inflows), and

rW + (µ− r)G−K = Wt + µsWs +
1

2
σ2s2Wss. (2.23)

Substituting (2.11) into (2.23), we have

rW + (µ− r) sWs −K = Wt + µsWs +
1

2
σ2s2Wss,

so

Wt + rsWs +
1

2
σ2s2Wss − rW +K = 0. (2.24)

Following the technique from the previous section, on differentiating (2.24)

with respect to s and then multiplying through by s, we can easily show that

sWst+(rs2Wss+rsWs) +

(
1

2
σ2s3Wsss + σ2s2Wss

)
+σσss

2Wss−rsWs+sKs = 0.

Given the partial derivatives of G in (2.15) to (2.17), the above can be
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rewritten as

Gt + rsGs +
1

2
σ2s2Gss − σσss(G− sGs)− rG+ sKs = 0,

which has an extra term sKs that accounts for cash withdrawals and inflows,

compared to the process in (2.9) when there are no cash withdrawals or

inflows.

Remark 2. Proposition 2 generalizes Proposition 1 of Cox and Leland (2000),

since the latter assumes constant diffusion in the price process, that is σs = 0.

In addition, the process of W in (2.19) follows a parabolic PDE, and this

property will be elaborated upon in Section 2.4.

2.3 Controls Based on Portfolio Wealth and

Time

Recall that an investor chooses portfolio controls to maximize the expected

utility of his resulting portfolio wealth. It is interesting to explicitly formulate

controls as functions of portfolio wealth for this purpose. This case is taking

the view that portfolio controls should correspond to the current state of the

portfolio wealth.

Let us now consider the case when µ, σ and the corresponding controls

may be functions of portfolio wealth and time. Note that µ and σ are char-

acteristics of the risky asset and hence they are also functions of the price of

the risky asset. Setting µ and σ as functions of the portfolio wealth reflects
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the idea that portfolio controls have market impacts on the risky asset.

2.3.1 Zero Cash Withdrawals or Inflows

This section is analogous to Section 2.2.1.

The requirements for portfolio controls to be considered optimal in this

situation are as follows.

Proposition 3. The optimal control G (W, t) = sWs, viewed as a function

of total wealth, satisfies:

Gt|W + rWGW +
1

2
σ2G2GWW − rG = σσWG

2 (1−GW ) . (2.25)

Proof. Total wealthW is a function of (s, t), therefore, we have the following

partial derivatives of G and σ:

Gt = Gt|W +GWWt, (2.26)

Gs = GWWs, (2.27)

Gss = GWWss +GWWW
2
s , and (2.28)

σs = σWWs. (2.29)
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Substituting (2.26) to (2.29) into (2.9), we have

Gt + rsGs +
1

2
σ2s2Gss − rG− sσσs (G− sGs)

=

 (Gt|W +GWWt

)
+ σ2s2

2
(GWWss +GWWW

2
s )

+rsGWWs − rG− sσσWWs (G− sGWWs)


=

 Gt|W +GW

(
Wt + rsWs + σ2s2

2
Wss

)
− rG

+σ2s2

2
GWWW

2
s − [σσWG

2 − s2σσWGWW
2
s ]


= 0.

Recalling (2.8) and (2.11), the above becomes

Gt|W + rWGW +
1

2
σ2G2GWW − rG− σσWG2 (1−GW )

= 0.

Remark 3. Proposition 3 generalizes Proposition 2 of Cox and Leland (2000).

Proposition 2 of Cox and Leland (2000) is a special case of (2.25) when

σW = 0.

2.3.2 Non-zero Cash Withdrawals or Inflows

This section is in analogy with Section 2.2.2.

Let K be a function of (W, t). We have:

Ks = KWWs. (2.30)
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The requirements for portfolio controls to be considered optimal in this

situation are as follows.

Proposition 4. The optimal control G (W, t) = sWs, viewed as a function

of total wealth, satisfies:

Gt|W+(rW−K)GW+
1

2
σ2G2GWW−(r−KW )G = σσWG

2 (1−GW ) . (2.31)

Proof. Substituting the partial derivatives in (2.26) to (2.29) and (2.30), and

condition (2.11) into the process of G in (2.20), we have

Gt + s (r + sσσs)Gs +
1

2
σ2s2Gss − (r + sσσs)G+ sKs = 0, (

Gt|W +GWWt

)
+ s (r + sσσWWs)GWWs

+1
2
σ2s2 (GWWss +GWWW

2
s )− (r + sσσWWs)G+ sKWWs

 = 0,

 Gt|W +GWWt + (r + σσWG)GWG

+1
2
σ2s2WssGW + 1

2
σ2GWWG

2 − (r + σσWG)G+KWG

 = 0,

and hence Gt|W +GW

(
Wt + rG+ 1

2
σ2s2Wss

)
+σσWGWG

2 + 1
2
σ2GWWG

2 − (r + σσWG)G+KWG

 = 0.

Using condition (2.24), the above becomes

Gt|W + (rW −K)GW +
1

2
σ2G2GWW − rG+KWG− σσWG2 (1−GW )

= 0.
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Remark 4. This result generalizes Proposition 2 of Cox and Leland (2000)

when σW = 0. That is, the portfolio controls can have market impacts on

the price of the risky asset.

2.4 Controls that are Compatible with Con-

cave Utility

Recall from our discussion of utility maximization that the portfolio controls

formulated in Sections 2.2 and 2.3 are optimal if they maximize some ex-

pected concave utility U(W ). We will show that this concavity requirement

is satisfied below.

An investor acquires utility from both the portfolio wealth and consump-

tion from cash withdrawals. Therefore, the investor’s problem of choosing

the optimal portfolio and consumption rules over N years is formulated as

to choose W , G, H and K to maximize

U = Eπ̄
{
u(W ) +

∫ N

0

c(K)dt

}
, (2.32)

where u(W ) is the utility from portfolio wealth and it is concave in W , c(K)

is the utility from consumption and it is concave in K, and the expectation

is taken with respect to the physical stock (the risky asset) price process.

The density for the physical stock price process is π̄(s0, 0;S,N), where the

initial and terminal times are specified at t = 0 and t = N , s(0) = s0 and
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s(N) = S. Then the expected utility is evaluated by the integral

U =

∫ ∞
0

u [W (S)] +

N∫
0

c(K)dτ

 π̄dS. (2.33)

On the other hand, K(s, t) is a control, hence there is no loss of generality

by replacing it with k(s, t)W , and then (2.24) becomes

Wt + rsWs +
1

2
σ2s2Wss = (r − k)W, (2.34)

which is a parabolic PDE. Therefore, if there exists a solution toW (s, t), the

Feynman-Kac (Kac 1949) formula can be applied to find such a solution as

W (s, t) = Eπ [ψ(S)γ(t) |s(N) = S|] (2.35)

= γ(t)

∫ ∞
0

ψ(S)π(s0, 0;S,N)dS,

where the expectation is taken with respect to the risk-neutral process ds =

rsdt + σsdB with density π(s0, 0;S,N), ψ(S) = W (S,N) is the terminal

wealth at time N with stock price S, and

γ(s, t) = exp

{∫ N

t

[k(s, z)− r(z)] dz

}
(2.36)

= v (t) exp

[∫ N

t

k(s, z)dz

]

is the discount factor. Replacing W (S,N) with ψ(S), the expected utility
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becomes

U =

∫ ∞
0

u [ψ(S)] +

N∫
0

c(K)dτ

 π̄dS. (2.37)

The investment in the risky asset is governed by G(s, t) = sWs according

to the parabolic PDE given in (2.9). Therefore, by similarity, if there exists

a solution to the parabolic PDE to G, the solution can be found as

G(s, t) = w(t)Eπ̄ [Sψs(S) |s(N) = S|] , (2.38)

where the expectation is taken with respect to the physical stock process

defined in (2.18) and w(t) = exp
{
−
∫ N
t

(r + sσσs)dz
}
.

Remark 5. Let us rewrite the PDE of W in (2.34) as:

Wt + rsWs +
1

2
σ2s2Wss − (r − k)W

= Wt + pWs +
1

2
qWss − νW

= 0.

The above PDE can be solved utilizing the Feynman-Kac formula as in

(2.35) and (2.36) only when the following conditions are satisfied:

C1 p and q are in C0,1(R2)1, and are globally bounded above;

C2 q is globally bounded from zero across (s, t);

1Ck,α(Ω) is the Hölder space that consists of functions on an open Euclidean subset Ω
having continuous derivatives up to order k and such that the kth partial derivatives are
Hölder continuous (or satisfy the Hölder condition) with exponent α ∈ [0, 1].
A function f defined on Euclidean space satisfies a Hölder condition when there are

nonnegative real constants C and α such that |f(x)− f(y)| ≤ D |x− y|α, for any x and y
in the domain of f . When α = 1, f satisfies the Lipschitz condition, and when α = 0, f
is bounded.
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C3 p and q satisfy a global Hölder condition with respect to s;

C4 p ∈ C2,1(R2) and q ∈ C2,1(R2);

C5 p and q and their second derivatives with respect to s are of most

polynomial growth;

C6 the growth of p and q is at most linear;

C7 q is continuous in t; and

C8 υ is uniformly bounded and locally Hölder.

Remark 6. Investment in the risky asset is governed by G(s, t) = sWs, and

it has a parabolic PDE given in (2.9), when there are no cash withdrawals

or inflows. Therefore, by similarity, if there exists a solution to the parabolic

PDE to G, the solution can be found as

G(s, t) = w(t)Eπ̄ [Sψs(S) |s(N) = S|] , (2.39)

where the expectation is taken with respect to the physical stock price process

defined in (2.18), and w(t) = exp
{
−
∫ N
t

(r + sσσs)dτ
}
.

2.4.1 Zero Cash Withdrawals or Inflows

There is no utility from consumption when cash withdrawals are not allowed,

that is, K(s, t) = 0 = k(s, t)), and the expected utility for an investor in

(2.37) reduces to

U = Eπ̄ {u [ψ (S)]} (2.40)

=

∫ ∞
0

u [ψ (S)] π̄(s(0), 0;S,N)dS.
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The solution to W (s, t) given by the Feynman-Kac formula in (2.35) re-

duces to

W (s, t) = v(t)Eπ [ψ(S) |s(N) = S|] , (2.41)

where v(t) = exp
{
−
∫ N
t
r(z)dz

}
is the discount factor. The initial condition

is then

W (s(0), 0) = v(0)Eπ [ψ(S) |s(N) = S|] (2.42)

= v(0)

∫ ∞
0

ψ(S)π(s(0), 0;S, T )dS.

The problem of choosing optimal portfolio controls for an investor who

operates for a period [0, N ] is formulated as to maximize his expected utility

of terminal portfolio wealth subject to a given initial wealth. The Lagrangian

is constructed to maximize (2.40) subject to (2.42) as

L =

∫ ∞
0

[π̄u [ψ (S)]− λπψ (S)] dS, (2.43)

where λ is a positive constant chosen for (2.42) to hold (see Gelfand and

Fomin (1963)).

Differentiating (2.43) with respect to terminal wealth ψ (S) and setting

the derivative equal to zero:

LW =
d

dW

∫ ∞
0

[π̄u [ψ (S)]− λπψ (S)] dS

=

∫ ∞
0

[uW π̄ − λπ] dS = 0,
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we obtain the first order condition that

uW = λ
π(s(0), 0;S,N)

π̄(s(0), 0;S,N)
> 0, (2.44)

which satisfies (2.4), that the utility function is non-decreasing. The second

order condition to maximize (2.43) requires that

LWW =

∫
uWW π̄dS ≤ 0, and hence

uWW ≤ 0,

which satisfies (2.5), that the utility function is concave. Therefore, con-

trols satisfying (2.8), (2.9) and (2.25) are compatible with a concave utility

function.

Proposition 5. A path independent strategyW (s, t) can be found to optimize

a given concave utility u(W ) if and only if a solution to terminal wealth

W (S,N) = ψ (S) can be found to satisfy

uW = λ
π(s(0), 0;S, T )

π̄(s(0), 0;S, T )
,

where λ is a positive constant.

2.4.2 Non-zero Cash Withdrawals or Inflows

When cash withdrawals are allowed, that is then K(s, t) 6= 0, we are con-

sidering the expected utility from both portfolio returns and consumption

for an investor, which is defined in (2.32). Maximizing (2.32) is a continu-
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ous stochastic control problem (Dreyfus 1965). We will show that controls

satisfying (2.24), (2.20), (2.11) and (2.31) are compatible with the concav-

ity requirements in utility functions in (2.32) using two methods. The first

method will solve the fundamental PDE, while the second method will apply

calculus of variations.

Fundamental Partial Differential Equation

The expected utility acquired from both investment returns and consumption

in (2.32) can be maximized by solving the fundamental PDE. References to

this procedure can be found in Dreyfus (1965).

Let us define an optimal expected value function such that

O(W, t) = max
K
Eπ̄
{
u [ψ (S)] +

∫ N

t

c(K)dz

}
(2.45)

= max
K

∫ ∞
0

u [ψ(S)] +

N∫
0

c(K)dτ

 π̄dS.
The physical stock price process outlined in (2.1) terminates at time N .

The terminal contribution to the expectation is assessed, and the boundary

condition is

O(W (S,N), N) = u [ψ (S)] . (2.46)

Notice that O(W (S,N), t) may be referred to as an indirect utility function.

Recall the process of W in (2.3). It has a drift of Ẇ = (µG + rH −K),
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and a diffusion of h1/2 = σG. The fundamental PDE is

0 = max
K

[
c+OW Ẇ +Ot +

1

2
Ossh

]
(2.47)

= max
K

[
c+OW (µG+ rH −K) +Ot +

1

2
Ossσ

2G2

]
.

The first order condition for a maximum requires

cK = OW (2.48)

=

∫ ∞
0

uW π̄dS ≥ 0,

given that uW > 0, which satisfies the non-decreasing requirement of a utility

function in (2.4). Differentiating (2.48) with respect toK, we have the second

order condition for a maximum that

cKK =

∫∞
0
uWW π̄dS

KW

≤ 0,

given that uWW ≤ 0, which satisfies the concavity requirement of a utility

function in (2.5). Therefore, controls satisfying (2.24), (2.20), (2.11) and

(2.31) are compatible with concave consumption and utility functions.

Proposition 6. For a given concave utility function for terminal wealth

u(W ) and consumption c(K), with terminal wealth W = ψ (S) , the opti-

mal cash withdrawal is given by K(s, t) satisfying

cK =

∫ ∞
0

uW π̄dS, and (2.49)
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cKK =

∫∞
0
uWW π̄dS

KW

.

Notice that Proposition 6 requires thatKW > 0, that is, cash withdrawals

increase with portfolio wealth. We will elaborate on this relation below in

Remark 7.

Calculus of Variations

A simpler approach to utility maximization utilizes the calculus of variation.

A good reference can be found in Gelfand and Fomin (1963).

The initial wealth given by (2.35) is

W (s(0), 0) = EQ [ψ(S)γ(0)s(N) |s(N) = S ] (2.50)

=

∫ ∞
0

{
v(0)ψ(S) exp

[∫ N

0

k(s, z)dz

]
π(s(0), 0;S,N)

}
dS.

Hence, the Lagrangian that maximizes the expected utility in (2.37) subject

to the initial condition in (2.50) is

L = EP

u [ψ (S)] +

N∫
0

c(K)dτ

− ωEQ [ψ(S)γ(0)s(N) |s(N) = S ] (2.51)

=

∫ ∞
0

u [ψ (S)] +

N∫
0

c(K)dτ

 π̄dS − ωv(0)

∫ ∞
0

ψ(S)e
∫N
0 k(s,z)dzπdS

=

∫ ∞
0


u [ψ (S)] +

N∫
0

c(K)dτ

 π̄ − ωv(0)ψ(S)e
∫N
0 k(s,z)dzπ

 dS.

where ω is a positive constant chosen to ensure that (2.50) holds.

Given ψ (S) , consider a small variation in k, say ∆k, localized at time τ
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and in state s so that

∆k = η in [τ , τ + dτ ]

for some constant η, which induces a variation of ∆K = ηW. This further

induces variations in the terms
N∫
0

c(K)dτ and γ(t), to the first order in dτ .

These are

∆c(K) = cK∆K +
1

2
cKK (∆K)2 ,

that is

∆

N∫
0

c(K)dτ = cKWηdτ +
1

2
cKK (ηW )2 dτ ,

and

∆γ(s, t) = v(s) exp

 N∫
0

k(s, τ)dτ

 · (eηdτ − 1
)

' γ(s, t) (ηdτ) , as ηdτ is very small.

Since η is localized at s, EQ
{
ψ(S) exp

[∫ N
0
k(s, z)dz

]}
=
∫∞

0
αdS is a

positive constant. The variation in the Lagrangian function (2.51) is

∆L =

∫ ∞
0

{[
cKηWdτ +

1

2
cKK (ηW )2 dτ

]
π̄ − ω (ηdτ) v (0)α

}
dS, (2.52)

which is nonnegative. We require the variation in the Lagrangian given in

(2.52) to be at a maximum, when the Lagrangian is maximized. The first

order condition is given by differentiating (2.52) with respect to η to obtain:

∫ ∞
0

{(
cKWdτ + cKKηW

2dτ
)
π̄ − ωv (0)αdτ

}
dS = 0, and hence (2.53)
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(
cKW + cKKηW

2
)
π̄ − ωv (0)α = 0. (2.54)

The second order condition is given by differentiating (2.53) with respect to

η. This shows that ∫ ∞
0

cKKW
2π̄dS ≤ 0,

and hence

cKK ≤ 0, (2.55)

which satisfies (2.5). Substituting (2.55) into (2.54) we have

π (s0, 0; s, τ) cKW = κ (2.56)

for some constant κ ≥ 0, which indicates that cK ≥ 0. This satisfies the

non-decreasing requirement of a feasible utility function in (2.4). Hence we

have the following result.

Proposition 7. Given a concave utility function for terminal wealth u(W )

and for consumption c(K), and terminal wealth ψ (S) , the optimal cash with-

drawal is given by K(s, t) satisfying:

cK =
κ

π (s0, 0; s, t)W
(2.57)

for some constant κ > 0. This result is compatible with Proposition 6.

Remark 7. The above proposition indicates that cK is a decreasing function

in W . On the other hand, concavity of utility from consumption requires

that cK is a decreasing function in K, since cKK is non-positive. These two
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conditions imply that cash withdrawals should increase when greater wealth

W is likely to be achieved and decrease when such wealth is less likely to

be achieved, that is KW > 0 as in Proposition 6. This corresponds with the

conditions contained in Proposition 4 of Cox and Leland (2000).

2.5 Conclusions

This chapter addresses two related issues, building on the work by Cox and

Leland (2000). We formed a portfolio that consisted of a risky and a riskfree

asset, where the returns are path independent but the expected return and

volatility of the risky asset are non-constant, or even stochastic.

We first examined and derived the characteristics of optimal portfolio con-

trols. This was done from two perspectives. One view is that portfolio wealth

is driven by the price of the risky asset, and hence we took partial derivatives

of the portfolio wealth and controls with respect to the price of the risky asset

and time. Another view is that portfolio controls should correspond to the

current state of the portfolio wealth, which incorporates market impacts due

to rebalancing, and hence we took partial derivatives of the portfolio controls

with respect to the portfolio wealth and time. We showed that the optimal

control criteria in Cox and Leland (2000) were special cases of ours, in which

they assumed that the expected return and volatility of the risky asset were

constant. We also showed that the portfolio controls satisfying the PDEs we

derived were compatible with utility maximization.



Chapter 3

Asset Returns in the

Australian Market

Perhaps, the key to success in investments is the ability to forecast future

returns. Finding the appropriate means for modeling uncertainties is critical

and drives the results. Investment strategies are useful only insofar as the

forecasts of future returns and their variabilities are reliable, which in turn

requires the parameters governing the return process to be appropriately

estimated.

Kassberger and Liebmann (2012) show that path-dependent strategies

are preferred if the pricing model of the underlying risky assets is itself path-

dependent. Therefore, if the true data generating process of returns on the

risky asset is path-dependent, the criteria for optimal investment strategies

we have shown in Chapter 2 will not apply. More realistic asset models are

often path-dependent. One continuous time example is when the stock price

45
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follows the process
ds

s
= (α + βr)dt+ σrγdB, (3.1)

where s is the price of the risky asset, r is the risk-free return, σ is the

standard deviation of return on the risky asset, B is a Brownian motion, and

α, β and γ are coeffi cients. Equation (3.1) encompasses a number of models

used in the literature, as discussed in a survey article by Chan et al. (1992).

Examples of discrete time asset pricing models include an Autoregressive

(AR) model of returns, in which returns at time t depend on past realizations,

and a Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

model in which current state variance depends on the entire sequence of past

returns up to that time.

A question to ask when studying asset returns is to what extent our

modeling of returns is going to change over time. Different points of view

can be taken on this issue. The most basic one would be to assume that

returns are stationary, so that we would not need to update our beliefs about

the properties of asset returns as we progress into the future. This is called

"fixed estimation", which assumes that parameters are constant over time.

Another approach, in contrast, is that as we progress into future planning

horizon, we will update the parameters based upon the additional realized

returns we observe. This is called "recursive estimation". The "recursive

estimate" allows for slow parameter changes over time. Both approaches are

based on the assumption that, over a certain period of time, returns can be

treated as if they were samples drawn from a distribution characterized by

certain parameters and we choose different historical periods to estimate the
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underlying parameters.

An alternative modeling methodology is to use a "rolling historical win-

dow". This methodology divides sequential historical data into windows of

equal size. Earlier observations drop out as we "roll into" later windows.

The same parametric model is reevaluated for each data window, and if pa-

rameters change over time then the rolling window estimates will reflect these

changes. An example of the rolling window method can be found in the study

of UK stock returns by Pesaran and Timmermann (2000).

Our goal is to study how the prices of Australian securities evolve in this

chapter. This is done in a Vector Autoregressive - Multivariate Generalized

Autoregressive Conditional Heteroskedasticity (VAR-MGARCH) framework.

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) mod-

els are often estimated by Maximum Likelihood Estimation (MLE) methods.

When studying asset returns, the underlying likelihood function is often writ-

ten under the assumption that returns are normally distributed. However, it

is widely acknowledged that returns are not normally distributed. Hence the

resulting estimator is in fact a pseudo- or quasi-Maximum Likelihood Esti-

mator (QMLE), which is still consistent but not effi cient. A non-parametric

solution to this problem is to construct the likelihood function utilizing an

estimated density of returns. The resulting estimator is consistent and can

also be asymptotically effi cient if we have a proper estimate of the density.

In this chapter, we develop a one-step multivariate semiparametric maxi-

mum likelihood estimation (one-step MSMLE) technique to study MGARCH

models, which extends the work of Di and Gangopadhyay (2013). Di and

Gangopadhyay (2013) proposed a one-step semiparametric maximum like-
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lihood estimation (one-step SMLE) technique to study univariate GARCH

models, utilizing kernel density estimation to investigate the distribution of

the data. This technique is one-step in the sense that compared to a two-step

SMLE, it does not require a first step to perform QMLE to acquire a fitted

residual series. The proposed estimators are consistent and asymptotically

unbiased and effi cient.

We then estimate an MGARCH model of Australian monthly asset re-

turns using rolling windows of 120 effective months of returns. The estimation

is done by our proposed one-step MSMLE. We summarize and discuss the

evolution of Australian security prices at the end of this chapter. A key result

is that parameters of VAR-MGARCH model are path-dependent and change

over time. This supports the adoption of dynamic investment strategies that

are studied in Chapter 4.

Subscripts in this chapter and thereafter are reserved for indices on vari-

ables.

3.1 One-step MSMLE

Suppose we have an n-period time series rt = σtet, where et are indepen-

dently identically distributed (i.i.d.) innovations with mean 0, variance of

1 and density f(et;θ). The conditional variance of rt, σ2
t (θ) has a GARCH

form governed by the parameter θ. We wish to maximize the log-likelihood

function

l(θ) =
1

n

n∑
t=1

ln

[
f(et;θ)

σt(θ)

]
(3.2)
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=
1

n

n∑
t=1

ln

[
1

σt(θ)
f

(
rt

σt(θ)

)]

to obtain an estimate of θ, θ̂, which belongs to the family of M-estimators

Hayashi (2000).

The maximum likelihood estimate (MLE) is consistent and asymptoti-

cally effi cient, only when the true innovation distribution is correctly speci-

fied. However, the true innovation distribution is often unknown. Therefore,

in order to perform MLE, we need to replace f(et;θ) in (3.2) by a cor-

responding estimated density. This can be done using two approaches: a

QMLE approach or a SMLE approach.

A QMLE proceeds as if the data follows a pre-determined parametric

distribution. The resulting estimators are consistent but not effi cient.

An SMLE, in contrast, utilizes a non-parametric estimate of the distrib-

ution of the data. The resulting estimators are consistent, and they are even

asymptotically effi cient if the density is estimated properly.

3.1.1 Univariate One-step SMLE

Di and Gangopadhyay (2013) proposed a one-step SMLE technique to study

univariate GARCH models by utilizing kernel density estimates. In particu-

lar, the estimated density for e is

f̂n (e;θ) =
1

nhn

n∑
s=1

K

(
e− es(θ)

hn

)
,

where K(., hn) is a regular kernel function and hn is the bandwidth.
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Substituting the above estimated density in the log-likelihood in (3.2), we

have

l̂n(θ|e) =
1

n

n∑
t=1

ln

[
f̂n (et;θ)

σt(θ)

]
(3.3)

=
1

n

n∑
t=1

ln

[
1

σt(θ)nhn

n∑
s=1

K

(
et − es
hn

)]
.

The one-step semiparametric maximum likelihood estimator (one-step SMLE)

of θ, is θ̂1SMLE, which maximizes (3.3).

3.1.2 One-step MSMLE

We extend the above method, proposed by Di and Gangopadhyay (2013), to

MGARCH cases as follows.

Suppose that we have a d-variate n-period time series

ut = Σ
1/2
t (θ)et, (3.4)

where et is an independently identically distributed (i.i.d.) innovation with

E(et) = 0 and covariance Id (where Id is a d × d identity matrix). The

covariance of ut isΣt(θ). Σt(θ) is symmetric and positive-definite, and it has

an MGARCH form specified by parameters θ. We write Σ
1/2
t (θ) as the lower

triangular Cholesky decomposition of Σt(θ) such that Σ
1/2
t (θ)

(
Σ

1/2
t (θ)

)T
=

Σt(θ). The parameter θ has finite dimension 0 ≤ k < ∞ that θ ∈ Θ ⊂ Rk,

where Θ is the parameter space.

Suppose further that Ω is the sample space and the information set F is
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the sigma-algebra generated by Ω.

We also impose some additional regularity conditions as follows.

Assumption 1. ut is ergodic stationary and is squared integrable, ∀θ ∈ Θ.

Assumption 2. The model in (3.4) is identifiable, that is, if Σt(θ) = Σt(θ0)

then θ = θ0.

Assumption 3. The parameter space Θ is compact.

Assumption 4. The true parameter θ∗ is in the interior of Θ.

Assumption 5. The density of e given parameter θ f (e;θ) ∈ G is finite,

where

G =
{f : Rd → R++

∣∣ ∫ f(x)dx = 1,
∫

xf(x)dx = 0,
∫

xxTf(x)dx = Id,∫
xxTf(x)dx = Id,∀i sup

∣∣f (i)(x)
∣∣ <∞} .

Assumption 6. E[| ln(|Σt|)|] <∞, ∀θ ∈ Θ.

Assumption 7. Σt(θ) is continuous and measurable on (Ω, F ) for all θ in Θ.

The log-likelihood function of θ is

l(θ|u) =
1

n

∑n

t=1
ln f (ut;θ) (3.5)

=
1

n

∑n

t=1
ln
[
|Σt(θ)|−1/2f (et;θ)

]
where f(.) is the true density of et given θ

The true distribution of et is unknown. Hence the density f (et;θ) in

(3.5) needs to be replaced by its estimate f̂n (et;θ), and we acquire an semi-
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parametric log-likelihood as

l(θ|u) =
1

n

∑n

t=1
ln [f (ut;θ)] (3.6)

=
1

n

∑n

t=1
ln
[
|Σt(θ)|−1/2f (et;θ)

]
.

The kernel density estimate of the standardized innovation e is given by

f̂n (e;θ) = n−1|H|−1

n∑
s=1

K
(
H−1 [e− es(θ)]

)
, (3.7)

where H is a symmetric positive-definite bandwidth matrix of dimension

(d× d). The multivariate kernel function K(ω) (ω = H−1(e− es)) satisfies

∫
Rd
K(ω)dω = 1, (3.8)

∫
Rd
ωK(ω)dω = 0, and (3.9)

∫
Rd
ωωTK(ω)dω = Id (Scott 1992). (3.10)

The choice of K(.) is not crucial for the accuracy of density estimates.

However, the choice of bandwidth H is crucial for the accuracy of density

estimates. Unfortunately, there is no general closed-form expression for the

optimal bandwidth. Popular methods of bandwidth selections up to date

include plug-in bandwidths (in particular, rule-of-thumb bandwidths, see for

example Scott (1992) andWand and Jones (1995)) and cross-validation band-

widths (see for example Hall et al. (1992) and Park and Marron (1992)).
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The one-step SMLE chooses to maximize the semiparametric likelihood

l̂n(θ|u) =
1

n

∑n

t=1
ln
[
|Σt(θ)|−1/2f̂n (et;θ)

]
(3.11)

with respect to θ.

Remark 8. The proposed one-step MSMLE method searches for a local max-

imum of the semiparametric likelihood, and hence the estimated results are

very sensitive to the initial values chosen. Different sets of initial values may

lead to very different convergence times and estimation results. Although

ineffi cient, the traditional MLEs provide a feasible set of initial values.

3.1.3 Asymptotic Properties of one-step MSMLE

Let us now study the asymptotic properties of the proposed one-stepMSMLE.

For a diagonal bandwidth matrix H in (3.7), without loss of generality, we

can write

H = |H|1/d A = hA (3.12)

where h = |H|1/d, and A is a diagonal matrix with |A| = 1.

Proposition 8. (Pointwise convergence in probability of f̂n (e;θ)) The den-

sity estimate f̂n (e;θ) converges pointwise in probability to the true density

f (e;θ) (that is, f̂n (e;θ)
p→ f (e;θ) pointwise) when h → 0 and nhd =

n |H| → ∞ as n → ∞. (This can easily be proved by using results in Scott

(1992).)

Proposition 9. (Uniform convergence in probability of f̂n (e;θ)) The den-

sity estimate f̂n (e;θ) converges uniformly in probability to the true density
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f (e;θ) (that is, f̂n (e;θ)
p→ f (e;θ) uniformly), if

(i) f̂n (e;θ) is uniformly continuous,

(ii) the Fourier transforms of f̂n (e;θ) and K (H−1 [e− es]) exist, and

(iii) nh2d → ∞ as n → ∞.(The proof of this proposition is in Appendix

A.2.)

Let the semiparametric score be defined as

Ŝ(u,θ)=
∂ ln f̂n (u;θ)

∂θ
, (3.13)

and the semiparametric Hessian be defined as

Ĥ(u,θ) =
∂Ŝ(u,θ)

∂θT
=
∂2lnf̂n(u;θ)

∂θ∂θT
. (3.14)

Also let

Q = Cov
[
Ŝ(u,θ∗)

]
(3.15)

= E

[
∂ ln f̂n (u;θ∗)

∂θ

∂ ln f̂n (u;θ∗)

∂θT

]
,

and

J= −E
[
Ĥ(u,θ∗)

]
(3.16)

= −E
[
∂2lnf̂n(u;θ)

∂θ∂θT

]
.
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Theorem 10. (Weak Consistency and Strong Consistency of θ̂1SMLE) Sup-

pose that

(i) f̂n (e;θ) is measurable on (Ω, F ) for all θ in Θ, where e =Σ−1/2(θ)u,

(ii) f̂n (e;θ) is continuous in θ, and

(iii) f̂n (e;θ)
p→ f (e;θ) pointwise (conditions for this to be true are outlined

in Proposition 8).

Then, the one-step SMLE θ̂1SMLE converges pointwise in probability to

the true parameter θ∗, that is,

θ̂1SMLE
p→ θ∗ pointwise.

The one-step SMLE θ̂1SMLE also converges pointwise almost surely to the

true parameter θ∗, that is,

θ̂1SMLE
a.s.→ θ∗ pointwise.

(The proof of this theorem is in Appendix A.3.)

Theorem 11. (Asymptotic normality of θ̂1SMLE) Suppose that

(i) f̂n (e;θ) is twice continuously differentiable with respect to θ,

(ii) Ĥ(u,θ) is non-singular, and

(iii) 1
n

∑n
t=1 Ĥ(ut, θ̃)

p→ −J.
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Then, the one-step SMLE θ̂1SMLE follows that

√
n(θ̂1SMLE − θ∗)

Dist→ N(0, J−1QJ−1). (3.17)

(The proof of this theorem is in Appendix A.4.)

Theorem 12. (Asymptotic effi ciency of θ̂1SMLE) The one-step SMLE θ̂1SMLE

is asymptotically effi cient that

√
n(θ̂1SMLE − θ∗)

Dist→ N(0, I−1(θ∗)) (3.18)

where I(θ∗) is the Fisher Information, when

(i) θ̂1SMLE is asymptotically normally distributed (conditions for this to be

true are outlined in Theorem 11),

(ii) f̂n (e;θ)
p→ f (e;θ) uniformly (conditions for this to be true are outlined

in Proposition 9),

(iii) ∂ lnK(ω)/∂θ converges uniformly on Θ, and

(iv) ∂2 lnK(ω)/∂θ∂θT converges uniformly on Θ.(The proof of this theorem

is in Appendix A.5.)

3.1.4 Small Sample Performance of One-step MSMLE

In this section, we provide numerical studies comparing the performances

of 500 replications of QMLE (assuming normality), the proposed one-step

MSMLE, two-step MSMLE (following Hafner and Rombouts (2007)) and

MLE in a small sample size of 100.
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Suppose that et =

[
e1,t e2,t

]T
is i.i.d with mean equals 0 and covari-

ance equals I2, where e1,t is of asymmetric Laplace distribution (location

m = 8/
√

82, scale λ =
√

82/3, asymmetry κ = 3) and e2,t is of Asymmetric

Laplace distribution (location m = −8/
√

82, scale λ =
√

82/3, asymmetry

κ = 1/3). Suppose further that ut = Σ
1/2
t et follows a Baba, Engle, Kraft

and Kroner (BEKK) MGARCH model (Engle and Kroner 1995) where the

covariance is

Σt(θ) = M + AT
1 ut−1u

T
t−1A1+BT

1 Σt−1B1,

and the parameters θ=

[
M0,11 M0,12 M0,22 A1,11 A1,12 A1,22 B1,11 B1,12 B1,22

]T
are chosen to be

M =

 M0,11 M0,12

M0,12 M0,22

 =

 0.2 0.1

0.1 0.1

 ,
A1 =

 A1,11 A1,12

0 A1,22

 =

 0.25 0.15

0 0.15

 , and
B1 =

 B1,11 B1,12

0 B1,22

 =

 0.2 0.3

0 0.1

 .

A one-step MSMLE utilizes a kernel density estimate. Recall that the

choice of kernel is not crucial for the accuracy of density estimates. For

elliptically distributed series, a Gaussian kernel is an appropriate candidate.
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The Gaussian kernel for a d-variate standardized innovation e is given by

K
(
H−1(e− es)

)
= (2π)−d/2 |H|−1 exp

(
−1

2
(e− es)

TH−2(e− es)

)
. (3.19)

Scott’s rule of thumb in Rd (Equation (6.42) in Scott (1992)) suggests that,

for a Gaussian kernel, a feasible choice of bandwidth is

H̃ = n−1/(d+4)Ṽ, (3.20)

where Ṽ is the prior belief of the covariance of the standardized innovation

e. Hence, an appropriate choice of H could be

H̃ = n−1/(d+4)Id. (3.21)

Note that, if ut ∼ N(0,Σt(θ)) and we choose H = Σt1/2(θ) and K(.) to be

a normal kernel, then |H|−1K (H−1ut) is the true density of ut.

Substituting the kernel (3.19) where d = 2 and the bandwidth (3.21) into

(3.7) we obtain the density estimate of e as

f̂n (e,θ) =
n1/3

2π

n∑
s=1

exp

(
−n

1/3

2
(e− es)

T (e− es)

)
. (3.22)

Substituting the above density estimate into (3.11) gives the semi-parametric
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log-likelihood that

l̂n(θ|u) =


n
3

lnn− n ln(2π)

+
n∑
t=1

 −1
2

ln |Σt(θ)|

+ ln
n∑
s=1

exp
(
−n

1
3

2
(et − es)

T (et − es)
)

 . (3.23)

The one-step MSMLE θ̂1MSMLE is obtained by maximizing (3.23).

Comparing the choice of bandwidth in (3.21) with the structure of band-

width in (3.12), in this case, we can define

h = n−1/6 and A = Id, (3.24)

which satisfy

lim
n→∞

h = lim
n→∞

n−1/6 = 0, (3.25)

lim
n→∞

nhd = lim
n→∞

n1/3 =∞, and

lim
n→∞

nh2d = lim
n→∞

n2/3 =∞. (3.26)

Hence, according to Proposition 8, 9, Theorem 10 and 11, the kernel es-

timate is consistent1 and the resulting one-step MSMLE is consistent and

asymptotically normally distributed.

We record in Table 3.1 the averages and the standard deviations based

on the 500 replications of the estimates given by a QMLE (assuming nor-

1This set of choices of kernel function and bandwidth in (3.19) and (3.21) will not
provide strong consistency of the resulting kernel estimate, when dimension is greater
than 3.
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mality), the proposed one-step MSMLE, a two-step MSMLE and the MLE

on a bivariate sample of 100 data points. Our results show that, on aver-

age, all four estimation techniques will provide considerably accurate point

estimates. Both of the MSMLE techniques outperform QMLE as expected.

One-step MSMLE provides more effi cient estimates than the two-step tech-

nique in this particular example, where the One-step MSMLEs on M, A1

and B1,11 have the smaller standard deviations than the two-step MSMLEs.

This is due to the fact that the shape of a bivariate asymmetric Laplace

distribution is significantly different from that of a bivariate normal distri-

bution. The poor first step QMLE is a burden on the performance of the

two-step SMLE.

We will apply the one-step MSMLE on Australia market returns (the es-

timation window contains 120 effective observations) in the following section.

3.2 Asset Returns in the Australian Market

An investment portfolio often consists of three asset classes, equity, debt and

cash. Understanding of the securities in these three markets is crucial for the

success of the portfolio. We will provide a study of the evolution of security

prices in Australian markets below.

We obtain a 284-month return series from Australian indexed data dating

from December 1989 to August 2013. The S&P/ASX200 index serves as the

equity class, which is obtained from Table 8.7 "the Australian Stock Market

Indexes, MONTHLY" in Chapter 8 of the report on Australian Economic
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Parameter θ̂QMLE θ̂1SMLE θ̂2SMLE θ̂MLE

M0,11 = 0.2 0.1430 0.1710 0.1831 0.2001
(0.0761) (0.0244) (0.0463) (0.0162)

M0,12 = 0.1 0.0701 0.1138 0.1234 0.999
(0.0560) (0.0124) (0.0667) (0.0107)

M0,22 = 0.1 0.0589 0.0805 0.0748 0.0986
(0.0453) (0.0110) (0.0638) (0.0109)

A1,11 = 0.25 0.2327 0.2502 0.2522 0.2473
(0.2708) (0.0053) (0.0360) (0.0512)

A1,12 = 0.15 0.1641 0.1461 0.1518 0.1455
(0.2871) (0.0097) (0.0248) (0.0368)

A1,22 = 0.15 0.1196 0.1439 0.1494 0.1481
(0.2718) (0.0126) (0.0142) (0.0487)

B1,11 = 0.2 0.3086 0.2056 0.2001 0.2007
(0.4211) (0.0079) (0.0183) (0.0207)

B1,12 = 0.3 0.3625 0.2874 0.2986 0.1455
(0.3074) (0.0162) (0.0135) (0.0368)

B1,22 = 0.1 0.1129 0.0906 0.0989 0.1481
(0.3376) (0.0122) (0.0097) (0.0487)

Table 3.1: Averages of QLEs, one-step MSMLEs, two-step MSMLEs and
MLEs for simulated samples of size 100 (the standard deviations of the esti-
mates are outlined in blackets).

Indicators published by the Australian Bureau of Statistics2.The (logarith-

mic) return on equity is calculated as the logarithm of the ratio between two

consecutive prices. The 90-day Bank Accepted Bill (BAB) index serves as

the debt class. This is obtained from Statistical Table F1.1 "Interest Rates

and Yields - Money Market - Monthly" published by the Reserve Bank of

2Data for period dating from December 1989 to February 2009 is available at
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Apr%202009?
OpenDocument. Data for period dating from April 2009 to April 2010 is available
at http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Jun%202010?
OpenDocument. Data for period dating from May 2010 to May 2012 is available
at http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Jul%202012?
OpenDocument. Data for period dating from June 2012 to August 2013 is available at
http://www.rba.gov.au/statistics/tables/index.html#share-mkts.

http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Apr%202009?OpenDocument
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Apr%202009?OpenDocument
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Jun%202010?OpenDocument
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Jun%202010?OpenDocument
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Jul%202012?OpenDocument
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Jul%202012?OpenDocument
http://www.rba.gov.au/statistics/tables/index.html#share-mkts
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Australia (RBA)3. BAB index yields are quoted as 100 less price. Hence, we

can retrieve the price series from the yield, and the return on BABs can then

be calculated as the logarithm of the ratio between two consecutive prices.

The one-month bank’s term deposit index serves as the cash class, which is

obtained from Statistical Table F4 "Retail Deposit and Investment Rates"

published by the RBA4. Term deposit yields are nominal returns quoted in

percentage per year, and these can be converted into monthly returns by

dividing by 12.

Let rt =

[
r1,t r2,t r3,t

]T
be the vector of asset returns at time t, where

r1 is the return on equity, r2 is the return on debt and r3 is the return on

cash. The average monthly returns are given by

r̄i,monthly =
1

284

∑284

t=1
ri,t, i = 1, 2, 3. (3.27)

Returns on equity and debt are logarithmic, and hence the average annual

returns are given by

r̄i,annual =
1

284

∑284

t=1

(
e12ri,t − 1

)
, i = 1, 2. (3.28)

Returns on cash, on the other hand, are quoted on a compound interest basis,

and hence the average annual return is given by

r̄3,annual =
1

284

∑284

t=1
(1 + r3,t)

12 − 1.

3Data is acquired from http://www.rba.gov.au/statistics/tables/index.html#
interest-rates.

4Data is acquired from http://www.rba.gov.au/statistics/tables/index.html#
interest-rates.

http://www.rba.gov.au/statistics/tables/index.html#interest-rates
http://www.rba.gov.au/statistics/tables/index.html#interest-rates
http://www.rba.gov.au/statistics/tables/index.html#interest-rates
http://www.rba.gov.au/statistics/tables/index.html#interest-rates
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The average monthly volatility is given by

σ̄i,monthly =

√
1

284

∑284

t=1
r2
i,t, i = 1, 2, 3; (3.29)

and the average annual volatility is given by

σ̄i,annual =

√
12

284

∑284

t=1
r2
i,t, i = 1, 2, 3. (3.30)

Figure 3.1 plots all three monthly return series, and Table 3.2 provides a

summary of both monthly and annual returns.

Summary Statistics S&P/ASX200 90-day BABs Cash

Average Monthly Return 0.3998% 0.0601% 0.3006%
Average Monthly Volatility 0.0387% 0.0028% 0.0037%
Average Annual Return 15.61% 0.78% 3.70%
Average Annual Volatility 0.1342% 0.0098% 0.0128%

Table 3.2: Summary statistics of asset returns

3.2.1 A Rolling Window Estimate

We now apply the one-step MSMLE method developed in Section 3.1 to

study the multivariate evolution of Australian asset returns. Our study is

based on a VAR-MGARCH model of the three asset returns discussed in

Section 3.2, and we follow Pesaran and Timmermann (2000), who conducted

a similar "rolling window" study of how the parameters in a model of UK

stock returns evolve over time.

We include two sets of explanatory variables in our specification of re-

turns:



64 CHAPTER 3. ASSET RETURNS IN THE AUSTRALIAN MARKET

Qt =

[
1 XT

t

]T
, 5

where

Xt =


r1,t−1

r1,t−1

r3,t−1

 .
The explanatory regressor Xt contains first-order lagged returns, rt−1.

Moreover, we observe heteroskedasticity in asset returns (Figures 3.2 to

3.4) which Pesaran and Timmermann (2000) did not allow for. We capture

this effect by utilizing an MGARCH(1,1) model.

The complete model is

rt
(3×1)

= CT

(3×4)
Qt

(4×1)

+ vt (3.31)

=


C10 C11 C12 0

C20 C21 C22 0

C30 0 0 C33





1

r1,t−1

r2,t−1

r3,t−1


+ vt (3.32)

vt = Σ
1/2
t et (3.33)

5Pesaran and Timmermann (2000) include a seasonal dummy variable which equals 1
if the return is for January and 0 otherwise. Their model also include a dummy variable
Dt. They exclude Dt in the first instance and make a one-step-ahead prediction on returns
for the following month. If any of the prediction errors are greater than three standard
deviations of the subset of returns included in a regression window, then Dt is set to
a vector of ones and the model is reestimated. However, we find that the inclusion of
the seasonal dummy and Dt is not necessary. For further details, refer to Pesaran and
Timmermann (2000).



3.2. ASSET RETURNS IN THE AUSTRALIAN MARKET 65

Σt
(3×3)

=AT
0 A0+AT

1 vt−1v
T
t−1A1+BT

1 Σt−1B1 (3.34)

where et is i.i.d. with mean 0 and covariance of I3, and Σt is the conditional

covariance of asset returns at time t represented by a Baba, Engle, Kraft

and Kroner (BEKK) MGARCH model (Engle and Kroner 1995), in which

the parameters A0, A1 and B1 are in upper-triangular form. Note that we

do not incorporate interactions between equity and cash, or between debt

and cash by requiring these coeffi cients equal 0. This is because, as seen

in Figures 3.2 to 3.4 (plots of returns on each asset class), returns on cash

exhibit weak or no correlation with returns on equity or debt.

We set up an estimation window containing 120 effective months of ob-

servations, and this window is moved forward one observation at a time. The

estimated model is updated 164 times as the sample window moves forward.

Let us now construct the semiparametric log-likelihood about parameters

θ= [A0,A1,B1]. We again choose a Gaussian kernel and the corresponding

Bandwidth by Scott’s rule of thumb in Rd (Equation (6.42) in Scott (1992))

for the standardized innovation e =Σ−1/2(r −QC). Thus, in analogy with

the example in Section 3.1.4, the semiparametric log-likelihood is

l̂n(θ|u) =


1
7

lnn− 3
2

ln(2π)

+ 1
n

n∑
t=1

 −1
2

ln |Σt|

+ ln
n∑
s=1

exp
(
−n

2
7

2
(et − es)

T (et − es)
)

 , (3.35)

and the one-step MSMLE of θ, θ̂1MSMLE= [Â0, Â1, B̂1], is obtained by max-

imizing (3.35). Detailed derivations of (3.22) and (3.35) are provided in
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Appendix A.7.

Note that, we have nh2d = n
4−d
d+4 = n

1
7 →∞ as n→∞. Hence, according

to Proposition 8, 9, Theorem 10 and 11, the kernel estimate is consistent and

the resulting one-step MSMLE is consistent and asymptotically normally

distributed.

The log-likelihood in (3.35) is a conditional log-likelihood, conditioned

on the initial value r0. The resulting estimates are M-estimators, which are

numerically the same as the equation-by-equation Ordinary Least Square

(OLS) estimators (Hayashi 2000). Hence, if the parametric return equation

(3.31) is correctly specified, the estimate of the parameter C is

Ĉ = (Q
T
Q)−1QT r, (3.36)

where r = [ r1 r2 ... r120 ]T and Q = [ Q1 Q2 ... Q120 ]T . The esti-

mate, Ĉ, is consistent and asymptotically unbiased.

3.3 Estimated Results

The estimated unconditional mean returns are given by

µ̂ = (I− Ĉ1)−1Ĉ0 (3.37)

where Ĉ0 contains the constant coeffi cients and Ĉ1 contains the coeffi cients

for Xt. The vectorized estimated unconditional covariance matrix is given

by

vec(Σ̂) = [I9 − (ÂT
1 ⊗ ÂT

1 )− (B̂T
1 ⊗ B̂T

1 )]−1vec(ÂT
0 Â0), (3.38)
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where I9 is a (9× 9) identity matrix. Since we are using rolling windows

for estimation, each of Ĉ0, Ĉ1, Â0, Â1 and B̂1 are updated as windows are

rolled forward.

3.3.1 The Return Equations

Figure 3.5 plots the estimated autocorrelation (AR) coeffi cients for returns

on the S&P/ASX 200 index, Australian 90-day BABs and RBA 1-month

bank deposits across time. Figure 3.6 plots the estimated first lag effects

of returns on Australian 90-day BABs and returns on S&P ASX 200 on

each other. The time-varying AR coeffi cients support the use of the rolling

estimation method, and shows that returns are path dependent.

Returns on the S&P/ASX 200 index exhibit clear mean-reverting pattern

from 1989 to early 2008, while returns on Australian 90-day BABs and RBA

1-month bank deposits exhibit mean-aversion (Figures 3.2 to 3.4). Fama

and French (1986) suggested that, for long horizons, AR coeffi cients should

be negative for mean-reverting returns and positive for mean-averting re-

turns. Our estimated coeffi cients are consistent with this claim, in that, the

AR coeffi cients for returns on Australian 90-day BABs and RBA 1-month

bank deposits are always positive and the AR coeffi cients for returns on the

S&P/ASX 200 index are mostly negative. Similar conclusions for negative

autocorrelation coeffi cients for returns on Australian equities can be found in

research papers published by RBA (see McNelis (1993) and Cecchetti et al.

(2005)) and MLC6 (see Napper (2008)).

On the other hand, the lagged effects due to 90-day BABs returns on

6MLC is the wealth management division of the National Australia Bank (NAB)
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S&P/ASX200 returns change dramatically while the effects due to equity

returns on returns on debt are insignificant over the observation period (Fig-

ure 3.6), as the magnitudes of 90-day BABs returns are on average 10 times

greater than the magnitudes of 90-day BABs returns.

Figure 3.7 plots the estimated ten-year mean returns on the S&P/ASX

200 index and Australian 90-day BABs across time. Our estimated ten-year

mean returns on the S&P/ASX 200 index increase for the 10-year windows

ending before November 2000 and then decrease for the 10-year windows

ending before late 2003. This is consistent with the historical data. We

observe largely negative returns on the S&P/ASX 200 index in 1990 corre-

sponding to the early 1990’s recession. Australian investors in equity enjoyed

a buoyant period from mid-year 1999 to late 2000, before the recession from

mid-year 2001 to early 2003, which corresponded to the collapse in the US

equity market due to the growth and collapse in IT (Anderson et al. 2010).

The Australian equity market recovered from late 2003 until the outburst

of the Global Financial Crisis (GFC) in 2008. More information about the

2008 subprime crisis can be found in Shiller (2008). The dramatic decreases

in our estimated ten-year mean returns on the S&P/ASX 200 index for the

10-year windows ending in late 2007 to early 2009 and the maintained lower

levels thereafter correspond to this recent crisis.

We also find an interesting pattern when comparing unconditional mean

returns on S&P/ASX 200 (equity) and unconditional mean returns on Aus-

tralian 90-day BABs (debt), in that there is a slightly negative correlation

between returns in the equity market and the debt market. Diggle and Brooks

(2007) drew a similar conclusion based on their studies of the relationships
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between target cash rates and investment asset returns in Australia from

January 1990 to December 2000. They found that returns on the ASX All

Ordinaries (equity) were negatively correlated with RBA target cash rates

while yields on Australian Government 13-week Treasury Notes (debt) were

positively correlated with RBA target cash rates.

3.3.2 The Covariance Equations

The estimated variance in returns on the S&P/ASX 200 index, Australian

90-day BABs and RBA 1-month bank deposits all increase over time, and

this provides additional evidence that return paths are time dependent. The

results are comparatively more stable for the ten-year windows before 2007

than for the 10-year windows after 2007. There were a number of financial

crises in the first decade of the twenty-first century, for example the early

2000s recession, but by far, the 2008 GFC had the strongest and longest

impact. While most countries had not yet recovered from the 2008 GFC,

a global recession began in late 2009. The increasing trends that we see in

estimated variance are most likely related to this series of crises.

Shiller (2008) suggested that there was a grim feedback loop, in that

the failure in the US property price bubble (subprime lending problem) fed

into major failures in Europe, which in turn also fed back into the US. The

collapse in the property market also contributed to energy and food crises.

This loop led to the global recession which began in late 2009, which was

the greatest global recession since World War II . There is a great volume

of literature addressing the 2008 GFC and the following global recession, for
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example, see the associated commentary in the International Monetary Fund

(2009), International Monetary Fund (2010) and Gore (2010).

3.4 Discussion and Conclusion

We developed a one-step multivariate semiparametric maximum likelihood

estimation (one-step MSMLE) technique to study MGARCH models in this

chapter. We have shown that the one-step MSMLE provides consistent and

asymptotically normally distributed estimates of the MGARCH parameters.

We applied this estimation technique to study Australia’s security returns.

We divided the return data set into rolling windows each containing 120

effective observations and estimated a VAR(1)-MGARCH(1,1) model for each

window. We found that parameters in the VAR-MGARCH model change

over time, providing strong evidence of path-dependency in returns. Our

results also show that returns on equity are mean-reverting, while returns on

debts and cash exhibit mean-aversion, while the variances in all asset classes

increase over time.

The estimated parameters in this chapter suggest that Australian asset

returns are path-dependent. The path-dependency is found in both return

and covariance levels. Since the investment rules we developed in chapter

2 relate to path-independent processes, it follows that these rules might not

be optimal for Australian market. We will proceed to the development of

optimal investment strategies for path-dependent returns in the next chapter.



3.4. DISCUSSION AND CONCLUSION 71

Figure 3.1: Monthly index returns of S&P/ASX200, ASX 90-day Bank Ac-
cepted Bills and RBA 1-month Bank’s Deposits from January 1990 to August
2013.

Figure 3.2: Monthly index returns of S&P/ASX200 from January 1990 to
August 2013.
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Figure 3.3: Monthly index returns of ASX 90-day Bank Accepted Bills from
January 1990 to August 2013.

Figure 3.4: Monthly index returns of RBA 1-month Banks’Deposits from
January 1990 to August 2013.
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Figure 3.5: First lag autocorrelation coeffi cients for returns on the S&P/ASX
200 index, Australian 90-day BABs and 1-month bank deposits (X-axis in-
dicates the end of each window)

Figure 3.6: First lag cross asset coeffi cients for returns on the S&P/ASX 200
index and Australian 90-day BABs (X-axis indicates the end of each window)
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Figure 3.7: Estimated ten-year mean returns on the S&P/ASX200 index and
Australian 90-day BABs (X-axis indicates the end of each window)

Figure 3.8: Estimated ren-year variances in the S&P/ASX200 index returns
(X-axis indicates the end of each window)
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Figure 3.9: Estimated ten-year variances in Australian 90-day BABs returns
(X-axis indicates the end of each window)

Figure 3.10: Estimated ten-year variances in RBA 1-month banks’deposits
returns (X-axis indicates the end of each window)
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Chapter 4

VAR-MGARCH Returns and

Asset Allocation

We have studied the evolution of Australian security prices in Chapter 3.

We found autoregressive (AR) effects in both the return and volatility levels.

This is evidence showing that asset returns may be path-dependent; that is,

current returns depend on past returns. According to Kassberger and Lieb-

mann (2012), path-dependent strategies are preferred if the pricing model of

the risky assets is itself path-dependent, which implies that the portfolio rules

we developed in Chapter 2 may not be applicable to Australian markets.

Leung (2011) proposed a class reactive investment strategy which im-

poses no restrictions on the path-dependency of the mean level of returns.

This study provides a method of choosing the targeted portfolio return at

each scheduled time according to the difference between current portfolio

wealth and the terminal wealth. Portfolios are rebalanced according to the

chosen targeted portfolio return. However, Leung (2011) assumed a constant

77
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covariance matrix for returns. This condition is not satisfied, given our re-

sults from Chapter 3. We will relax this constraint and extend his work

to a case when covariances of returns are non-constant. In particular, we

will study portfolio wealth when asset returns follow a Vector-Autoregressive

(VAR) Multivariate Generalized Autoregressive Conditional Heteroskedas-

ticity (MGARCH) process. Continuing from Chapter 3, we will consider a

VAR(1)-MGARCH(1,1) return process as a starting point.

Let Wt denote the portfolio wealth and µ(Wt) denote the expected port-

folio return at time t. For a total of N periods, we take optimization as to

minimize the variance σ2(µt) for a given level of µt, that is, to locate the

portfolio on the effi cient frontier for the targeted return. Equivalently, we

want to find the minimum E(W 2
T ) for a given E(WT ).

The evolution of portfolio wealth is described by a recursive relationship

that

Wt+1 =
(
1 + wT

t rt
)
Wt +Kt+1, (4.1)

where Kt is the cashflow, rt is the vector of asset returns and wt contains

the portfolio weights at time t.

4.1 Compatibility with Path-independent Con-

trols

We first check if the portfolio rules proposed by Leung (2011) are compati-

ble with the criteria we formulated in Chapter 2, when they are applied to

path-independent returns. Asset returns are path-independent when current
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returns do not depend on past experiences.

We construct a portfolio with two assets, a risky one and a riskfree one

for simplicity. We require cash withdrawal and injection to be zeros. Leung

(2011) defined cash withdrawals and injections as arbitrary numbers at the

end of each scheduled period. Therefore, setting them equal to zero involves

no loss of generality in the following proof. Also note that when there are

only two assets, any portfolio choice will be on the effi cient frontier.

Let s denote the price of the risky asset. Returns on the risky asset

are independently normally distributed over time. Let b be the price of the

riskfree asset and rf be the riskfree rate. The processes of the two assets are

given by

ds

s
= µdt+ σdB, and

db

b
= rfdt,

where µ and σ are the mean and standard deviation of returns on the risky

asset, and B(t) is Brownian motion as in Chapter 2. Note that σ is required

to be a constant over time in Leung (2011), but µ and rf are not necessarily

constant and we only require them to be path-independent.

The above can be expressed in matrix form as

rt=

 µ

rf

+

 σet

0

 , and
Σ =

 σ2 0

0 0

 ,
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where rt is the vector of asset returns at time t, and Σ is the covariance

matrix in returns.

For given portfolio wealth Wt at time t, according to Leung (2011), port-

folio weights should be adjusted to

wt =
1

Wt


 µ

rf


 µ

rf


T

+ Σ


−1[λ−Wt]

 µ

rf

− η
 1

1


 ,

where λ is the Lagrangian multiplier chosen by the targeted portfolio return,

and η is chosen to ensure the weights sum up to 1. Hence, investment in the

risky asset Gt and the riskfree asset Ht at time t are given by Gt

Ht

 = Wtwt (4.2)

=

 (µ2 + r2
f − 2µrf + σ2)−1(r2

f − µrf )ηWt

(µ2 + r2
f − 2µrf + σ2)−1(µrf − µ2)ηWt

 .

On the other hand, according to the evolution in portfolio wealth given

in (4.1), when K = 0, the change in portfolio value is then:

∆Wt = Wtw
T
t ∆rt

=

 Gt

Ht


T

∆r(t).
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When the time interval shrinks to 0, the above becomes

dW =

 G

H


T

dr

= G
ds

s
+H

db

b
,

which is exactly the same as (2.6) in Chapter 2. Therefore, the evolution of

portfolio wealth in (2.12) in Proposition 1 in Chapter 2 follows; that is

∂W

∂t
+ rs

∂W

∂s
+

1

2
σ2s2∂

2W

∂s2
− rW = 0. (4.3)

We have shown that Gt and Ht are linear functions ofWt in (4.2). Hence,

Gt follows the same process as that for Wt, that is

∂G

∂t
+ rs

∂G

∂s
+

1

2
σ2s2∂

2G

∂s2
− rG = 0, (4.4)

which is consistent with (2.9) in Proposition 1 in Chapter 2 when σ is a

constant.

Therefore, we have shown that the class of investment strategies proposed

by Leung (2011) satisfies the requirements for being optimal, when asset

returns are path-independent and the variance of the return on the risky

asset is constant.
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4.2 Time-varying Effi cient Frontier

Recall that we choose portfolio weights on the effi cient frontier of the port-

folio. An effi cient frontier is the combinations of assets with the minimum

portfolio variance for each level of portfolio returns. Put another way, port-

folio combinations on the effi cient frontier are effi cient in the sense that they

have the minimum risk compared to other combinations giving the same level

of portfolio returns.

Let us study the distribution of portfolio wealth. Note that, for a given

level of expected wealth, the variance of portfolio wealth is determined by its

second moment. Therefore, we are interested only in the first two moments

of portfolio wealth.1

Suppose the probability density function of Wt is f(Wt). The targeted

portfolio return is µt, that is, we wish E
(
wT
t rt
)

= µt. Also let σ
2
t be the

variance of the portfolio return at time t. The expected next period wealth

is then

E(Wt+1) = E
[(

1 + wT
t rt
)
Wt

]
+Kt+1 (4.5)

=
∫ (

1 + wT
t rt
)
Wtf(Wt)dWt +Kt+1

= E(Wt) +Kt+1 +
∫
µtWtf(Wt)dWt.

The second moment of the next period wealth is

E(W 2
t+1) = E

[(
1 + wT

t rt
)
Wt +Kt+1

]2
1The first two moments will not fully characterize the return process when returns are

not normally distributed. We are considering a VAR-MGARCH framework here and have
made the assumption of normality.
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= E
[(

1 + 2wT
t rt +

(
wT
t rt
)2
)
W 2
t +K2

t+1 + 2
(
1 + wT

t rt
)
Kt+1Wt

]
= E(W 2

t ) + E


(

2wT
t rt +

(
wT
t rt
)2
)
W 2
t −K2

t+1

+2Kt+1

(
Wt + wT

t rtWt +Kt+1

)


= E(W 2
t ) + 2Kt+1E(Wt+1)−K2

t+1 + E
[(

2wT
t rt +

(
wT
t rt
)2
)
W 2
t

]
.

We also have E
(
wT
t rt
)2

= V ar(wT
t rt) +

[
E
(
wT
t rt
)]2

= σ2
t + µ2

t . Hence, the

above becomes

E(W 2
t+1) =

 E(W 2
t ) + 2Kt+1E(Wt+1)−K2

t+1

+
∫

(2µt + σ2
t + µ2

t )W
2
t f(Wt)dWt

 . (4.6)

Note that

V ar(Wt+1) = E(W 2
t+1)− [E(Wt+1)]2 .

Hence, the problem of portfolio control is to minimize E(W 2
t+1) for a given

level of E(Wt+1). Leaving out the constant components, this reduces to

minimizing ∫
(2µt + σ2

t + µ2
t )W

2
t f(Wt)dWt,

subject to a given level of

∫
µtWtf(Wt)dWt.

The Lagrangian for the above minimization is

L =
∫

(2µt + σ2
t + µ2

t )W
2
t p(Wt)dWt − λ(EF )

t

∫
µtWtf(Wt)dWt, (4.7)
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where λ
(EF )
t is the positive Lagrangian Multiplier. Note that λ(EF )

t has a

time subscript which indicates that it is a parameter that may change over

time.

The first order variation in L due to a small variation in ∆µt = ε(Wt),

such that µt + ε(Wt) does not exceed the minimum or maximum feasible

values of µt, is:

∆L =
∫
ε(Wt)

[
2(1 + σt

∂σ

∂µ
+ µt)Wt − λ(EF )

t

]
Wtf(Wt)dWt. (4.8)

We require ∆L to be insensitive to ε(Wt) for L to be at a minimum, that

is ∆L = 0. This is so when

f(Wt) = 0, or

µt = µmin or µt = µmax, or

2(1 + σt
dσt
dµ

+ µt)Wt = λ
(EF )
t , which implies that (4.9)

1 +
1

2

dσ2
t

dµt
+ µt =

λ
(EF )
t

2Wt

.

The Ordinary Differential Equation (ODE) in (4.9) has to be solved for

σt on the effi cient frontier that has a positive-definite quadratic form given

by

σ2
t = ϕtµ

2
t + 2ψtµt + χt, (4.10)

where ϕt, ψt and χt are parameters describing the nature of covariances in

returns and hence they do not depend on portfolio wealth. Notice that the
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parameters have time subscripts and may not be constant, meaning that the

effi cient frontier may shift over time.

Substituting (4.10) back into (4.9), we have the targeted portfolio return

at each period being

µt =
λ

(EF )
t

2Wt(1 + ϕt)
− 1 + ψt

1 + ϕt
(4.11)

=
βt
Wt

+ αt,

where

βt =
λ

(EF )
t

2(1 + ϕt)
, and (4.12)

αt = −1 + ψt
1 + ϕt

4.3 Targeted Portfolio Return

The targeted portfolio return at each rebalancing time is determined by the

current expectation of the terminal portfolio wealth. We wish to choose tar-

geted portfolio returns for each period such that for a given level of targeted

terminal wealth, the variance of terminal wealth is minimized. We first sub-

stitute the functional form of µt in (4.11), which has the return characteristics

embedded into it, back into the first two moments of next period wealthWt+1

in (4.5) and (4.6). We obtain

E(Wt+1) = utE(Wt) + bt, (4.13)
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and

E(W 2
t+1) = vtE(W 2

t ) + ptE(Wt) + qt, (4.14)

where the constants at time t are:

ut = 1 + αt,

bt = βt +Kt+1,

vt = 1 + χt −
(1 + ψt)

2

1 + ϕt
,

pt = 2(1 + αt)Kt+1, and

qt = (βt +Kt+1)2 + ϕtβ
2
t .

See Appendix B.1.1 for the derivation of (4.13) and (4.14).

Let us consider a situation in which the investor has a horizon of N

periods. Then the first two moments of terminal wealth WN evaluated at

time t can then be written as:

Et(WN) =

N−t−1∑
i=0

(
bt+i

N−t−1∏
s=i+1

ut+s

)
+ Et(Wt)

N−t−1∏
i=0

ut+i, (4.15)

and

Et(W 2
N) =


∑N−t−1

i=0

[
(pt+iEt(Wt+i) + qt+i)

N−t−1∏
s=i+1

vt+s

]
+Et(W 2

t )
N−t−1∏
i=0

vt+i

 . (4.16)

The Lagrangian for minimizing Et(W 2
N) for a given level of Et(WN) at



4.3. TARGETED PORTFOLIO RETURN 87

time t is

Lt = Et(W 2
N)− 2λ

(N)
t Et(WN) (4.17)

=


∑N−t−1

i=0

[
(pt+iEt(Wt+i) + qt+i)

N−t−1∏
s=i+1

vt+i

]
+ Et(W 2

t )
N−t−1∏
i=0

vt+i

−2λ
(N)
t

[∑N−t−1
i=0

(
bt+i

N−t−1∏
s=i+1

us+i

)
+ Et(Wt)

N−t−1∏
i=0

ut+i

]
 .

where λ(N)
t is the Lagrangian Multiplier.

However, at time t, the best estimate of future returns, and hence ϕ, ψ,

χ, u and v in (4.17) may be the current values. Therefore, we can define

the approximated (or estimated) first two moments of terminal wealth WN

evaluated at time t, as

Êt(WN) =
N−t−1∑
i=0

bi+tu
N−t−1−i
t + E(Wt)u

N−t
t , and (4.18)

Êt(W 2
N) =


∑N−t−1

i=0

[(
pt+iÊt(Wt+i) + qt+i

)
vN−t−1−i
t

]
+Et(W 2

t )vN−tt

 . (4.19)

Hence, the approximated (or estimated) Lagrangian for minimizing Êt(W 2
N)

for a given Êt(WN) is now

L̂t =


∑N−t−1

i=0

[(
pt+iÊt(Wt+i) + qt+i

)
vN−t−1−i
t

]
+ Et(W 2

t )vN−tt

−2λ
(N)
t

[∑N−t−1
i=0 bt+iu

N−t−1−i
t + Et(Wt)u

N−t
t

]
 .

(4.20)

Again, consider a small variation in µt, which comes from βt, ∆βt. We
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have

∆bt = ∆βt,

∆qt = 2 [(1 + ϕt)βt +Kt+1] ∆βt, and

∆Êt(Wt+i) =

i−1∑
s=0

∆βt+su
i−1−s
t .

The first order variation in the approximated Lagrangian is then

∆L̂t =



N−t−2∑
i=0

∆βt+i
N−t−1∑
s=i+1

pt+su
s−1−i
t vN−t−1−s

t

+2
N−t−1∑
i=0

vN−t−1−i
t

[
(1 + ϕt)βt+i +Kt+i+1

]
∆βt+i

−2λ
(N)
t

∑N−t−1
i=0 ∆βt+iu

N−t−1−i
t


. (4.21)

For the Lagrangian to be at a minimum, we require it to be insensitive

to ∆βt+i. Hence the coeffi cients of ∆βt+i must sum up to 0, that is


N−t−1∑
s=i+1

pt+su
s−1−i
t vN−t−1−s

t

+2vN−t−1−i
t

[
(1 + ϕt)βt+i +Kt+i+1

]
− 2λ

(N)
t uN−t−1−i

t

 = 0,

which gives

(1 + ϕt)βt+i = λ
(N)
t

(
ut
vt

)N−t−1−i

−
N−t−1∑
s=i

Kt+s+1

(
ut
vt

)s−i
, for t < T − 1.

(4.22)

The above functional form of βt+i (λ
(N)
t ) should give the targeted value of

Êt(WN) evaluated at time t. Substituting βt+i (λ
(N)
t ) into Êt(WN) in (4.18),
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we have

Êt(WN) =


λ
(N)
t

1+ϕt

[(
u2t
vt

)N−t
− 1

]
(
u2t
vt
− 1)−1 + Et(Wt)u

N−t
t

+uN−tt

(
1 + 1

1+ϕt

vt
u2t−vt

)∑N−t
i=1 Kt+iu

−i
t −

uN−tt

1+ϕt

vt
u2t−vt

∑N−t
i=1

(
ut
vt

)i
Kt+i

 .

λ
(N)
t can be retrieved from Êt(WN) as

λ
(N)
t =

(1 + ϕt)(
u2t
vt
− 1)(

u2t
vt

)N−t
− 1


Êt(WN)− E(Wt)u

N−t
t

−uT−tt

1+ϕt

vt
u2t−vt

∑N−t
i=1

(
ut
vt

)i
Kt+i

+uN−tt

(
1 + 1

1+ϕt

vti
u2t−vt

)∑N−t
i=1 Kt+iu

−i
t

 . (4.23)

βt is retrieved by substituting λ
(N)
t into (4.22).

See Appendix B.1.2 for the detailed derivation of the Lagrangian Mul-

tiplier λ(N)
t in for minimizing the variance in the (approximated) terminal

wealth subject to a given level of this (approximated) terminal wealth.

4.4 Portfolio Weights in a VAR-MGARCH

Process

The results of Section 4.2 are now ready to be incorporated into the re-

turn process. We will adopt the same return model as in Chapter 3. Sup-

pose that asset returns follow a VAR(1)-MGARCH(1,1) process, where the

MGARCH(1,1) effects are governed by a BEKK model (Engle and Kroner

1995). In summary,
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rt = γ + Crt−1 + vt, (4.24)

vt = Σ
1/2
t et,

Σt=AT
0 A0+AT

1 vt−1v
T
t−1A1+BT

1 Σt−1B1,

where rt is a vector of asset returns at time t, et are independently identically

distributed (i.i.d.) standard normal innovations and Σt is the covariance

matrix of returns.

Also suppose that the joint distribution of (rt−1,Wt) is f(rt−1,Wt). Recall

that the accumulation of portfolio wealth is specified in (4.1). The first two

moments of next period portfolio wealth Wt+1 are now

E(Wt+1) = E(Wt) +

∫ ∫
wT
t

(
γ + Crt−1

)
Wtf(rt−1,Wt)dWtdrt−1 +Kt+1,

(4.25)

and

E(W 2
t+1) =


∫ ∫


2wT

t

(
γ + Crt−1

)
+
[
wT
t

(
γ + Crt−1

)]2
+wT

t Σtwt

W 2
t f(rt−1,Wt)dWtdrt−1

E(W 2
t ) + 2Kt+1E(Wt+1)−K2

t+1


.

(4.26)

Detailed derivations for (4.25) and (4.26) are outlined in Appendix B.2.

Let us again use the fact that the second moment of portfolio returns

equals the sum of the variance and the squared expectation of portfolio
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returns. The objective of minimizing the variance in next period wealth

is equivalent to minimizing E(W 2
t+1) for a given level of E(Wt+1). We also

require that the portfolio weights sum up to 1, that is wT
t j = 1 where

j =

[
1 1 1

]T
. The optimization problem can be solved by construct-

ing the Lagrangian function:

L =

∫ ∫  2wT
t

(
γ + Crt−1

)
+ wT

t Σtwt

+
[
wT
t

(
γ + Crt−1

)]2
W 2

t f(rt−1,Wt)dWtdrt−1 (4.27)

− 2λt

∫ ∫
wT
t

(
γ + Crt−1

)
Wtf(rt−1,Wt)dWtdrt−1

+ 2ηt

∫ ∫
wT
t jWtf(rt−1,Wt)dWtdrt−1.

where λt and ηt are the positive Lagrangian Multipliers.

Let us consider a small variation, ε(rt−1,Wt), in wt such that jTε = 0

and µt +4µt = (wT
t +4wT

t )rt ∈ [µmin, µmax]. The resulting variation in L

to the first order is:

4L =

∫ ∫
2

 εT
(
γ + Crt−1

)
+ εTΣtwt

+εT
(
γ + Crt−1

)
wT
t

(
γ + Crt−1

)
W 2

t fdWtdrt−1 (4.28)

− 2λt

∫ ∫
εT
(
γ + Crt−1

)
WtfdWtdrt−1

+ 2

∫ ∫
εT jη(rt−1,Wt)WtpdWtdrt−1 +Kt+1

= 2

∫ ∫
εT



 (
γ + Crt−1

)
+ Σtwt

+
(
γ + Crt−1

)
wT
t

(
γ + Crt−1

)
Wt

−λt
(
γ + Crt−1

)
+ ηtj

WtfdWtdrt−1

Again, at a minimum, we require 4L to be insensitive to ε(rt−1,Wt).
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This is so when

f(rt−1,Wt) = 0 or;

µt is at a minimum or maximum,

or

 (
γ + Crt−1

)
+ Σtwt

+
(
γ + Crt−1

)
wT
t

(
γ + Crt−1

)
Wt − λt

(
γ + Crt−1

)
+ ηtj = 0.

The last relation gives the portfolio weight at time t as:

wt =
1

Wt

G−1
[
(λt −Wt)

(
γ + Crt−1

)
− ηtj

]
(4.29)

where

G =


(
γ + Crt−1

) (
γ + Crt−1

)T
+AT

0 A0+BT
1 Σt−1B1

+AT
1 vt−1v

T
t−1A

T
1

 . (4.30)

The Lagrangian Multiplier ηt is set to ensure that the weights to sum up

to 1. Thus

wt =
1

Wt

G−1(λt −Wt)
(
γ + Crt−1

)
− η

Wt

G−1j

wt
T j=

(λt −Wt)

Wt

(
γ + Crt−1

)T (
G−1

)T
j− η

Wt

jT (G−1)T j

1 =
(λt −Wt)

Wt

(
γ + Crt−1

)T (
G−1

)T
j− η

Wt

jT (G−1)T j,
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and hence

ηt=
[
(λt −Wt)

(
γ + Crt−1

)T (
G−1

)T −Wt

]
j
[
jT (G−1)T j

]−1
. (4.31)

If we compare the Lagrangian in (4.27) with the Lagrangian in (4.7) that

we set up in Section 4.2, the Lagrangian Multiplier λt in (4.27) should be

half of the Lagrangian Multiplier λ(EF )
t in (4.7), that is

λt =
1

2
λ

(EF )
t (4.32)

where λ(EF )
t is given by βt in (4.12).

4.5 The Algorithm to Determine Optimal Port-

folio Weights

We have developed a class of optimal dynamic investment strategies, which

seek portfolio weights on the effi cient frontier at a scheduled rebalancing time.

The strategy is summarized below:

1. Assess asset return characteristics ϕt, ψt and χt, and construct the

effi cient frontier specified in (4.10).

2. Determine the desired terminal portfolio wealth E(WN) and let Êt(WN)

equal this targeted value. Substitute the return characteristics and

Êt(WN) into (4.23) to obtain λ(N)
t .

3. Substitute λ(N)
t into (4.22) to obtain βt and the desired portfolio return
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µt.

4. Determine λ(EF )
t by substituting βt into (4.12), and hence determine λt

in (4.32).

5. Substitute λt into (4.29) to obtain the required portfolio weights.

One common constraint in portfolio management is that shortselling is

forbidden in many markets, for example, in the Australian market. Let us

refer to a strategy as being constrained when the portfolio weights have to

lie in the interval [0, 1]. The solution to these constrained dynamic portfolio

weights wt has to be solved numerically. There are two ways of doing this.

The first approach is to numerically minimize the Lagrangian function in

(4.27) using a grid search that covers a wide set of combinations of portfolio

weights between 0 and 1.

Alternatively, a simpler approach is to apply quadratic programming to

minimizewT
t Σt(θ)wt when the forecast portfolio returnwT

t (γ+Crt−1) equals

a chosen level indicated in (4.11). We replace µt with the maximum in

(γ + Crt−1) when the indicated level µt is greater than the maximum in

(γ + Crt−1), and similarly, we replace µt with the minimum in (γ + Crt−1)

if µt is less than the minimum in (γ + Crt−1).

4.6 Performance of the Dynamic Strategy

Let us study the performance of the proposed strategy by simulating ten

thousand sets of twenty-year returns on three asset classes: equity, debt and
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cash. The return series will be generated under the VAR-MGARCH frame-

work specified in (4.24). Parameters are obtained by estimating (4.24) on

20 years of annual returns on the S&P/ASX 200 index2, Australian 90-day

bank accepted bills (BABs)3 and Australian one-year bank’s term deposit

index4 from 1990 to 2012. This is done by following the one-step multivari-

ate semiparametric maximum likelihood estimation (one-step MSMLE) we

developed in Chapter 3.

The estimated VAR(1)-MGARCH(1,1) parameters for the entire sample

are

γ̂=


0.0724

0.0044

0.0081

 , Ĉ =


−0.3634 0.3535 0

−0.0333 0.2173 0

0 0 0.6591

 ,

Â0 =


0.0243 0.0036 0.0028

0 1.9795× 10−7 5.2368× 10−8

0 0 1.6966× 10−11

 ,
2Annual returns are aggregated monthly returns. Monthly indexed data is acquired

from publications of the Australian Bureau of Statistics (1350.0 Australian Economic
Indicators, Chapter 8 Table 8.7 Australian stock market indexes, MONTHLY) and the
Reserve Bank of Australia (Statistical Table F7 Australian Share Market) Data for the
period dating from December 1989 to February 2009 is available at http://www.abs.
gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Apr%202009?OpenDocument. Data for
the period dating from April 2009 to April 2010 is available at http://www.abs.gov.
au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Jun%202010?OpenDocument. Data for the
period dating from May 2010 to May 2012 is available at http://www.abs.gov.au/
AUSSTATS/abs@.nsf/DetailsPage/1350.0Jul%202012?OpenDocument. Data for the pe-
riod dating from June 2012 to August 2013 is available at http://www.rba.gov.au/
statistics/tables/index.html#share-mkts.

3Data is acquired from Statistical Table F1.1 Interest Rates and Yields - Money Market
- Monthly by the RBA at http://www.rba.gov.au/statistics/tables/index.html#
interest-rates.

4Data is acquired from Statistical Table F4 Retail Deposit and Investment Rates by the
RBA at http://www.rba.gov.au/statistics/tables/index.html#interest-rates.

http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Apr%202009?OpenDocument
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Apr%202009?OpenDocument
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Jun%202010?OpenDocument
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Jun%202010?OpenDocument
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Jul%202012?OpenDocument
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Jul%202012?OpenDocument
http://www.rba.gov.au/statistics/tables/index.html#share-mkts
http://www.rba.gov.au/statistics/tables/index.html#share-mkts
http://www.rba.gov.au/statistics/tables/index.html#interest-rates
http://www.rba.gov.au/statistics/tables/index.html#interest-rates
http://www.rba.gov.au/statistics/tables/index.html#interest-rates
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Â1 =


−4.2493× 10−4 −8.6205× 10−5 −5.5102× 10−5

0 −1.9429× 10−4 −5.1382× 10−5

0 0 −3.9935× 10−7

 , and

B̂1 =


−0.0653 −0.0012 6.6802× 10−4

0 −0.0568 0.0056

0 0 −0.0783

 .

Hence, the estimated unconditional mean return is

µ̂ = (I− Ĉ)−1γ̂ =


0.0540

0.0033

0.0239

 , (4.33a)

and the estimated unconditional covariance on returns is

Σ̂ =


5.9378× 10−4 8.6843× 10−5 6.8107× 10−5

8.6843× 10−5 1.2701× 10−5 9.9610× 10−6

6.8107× 10−5 9.9610× 10−6 7.8119× 10−6

 . (4.34)

We set each parameter value in the VAR(1)-MGARCH(1,1) system in

(4.24) equal to its estimated value in the work that follow. We also assume

that the innovations et in (4.24) follow a standard normal distribution.

Suppose we have an initial wealth of 100 and we are going to invest

in three asset classes: equity, debt and cash. The total investment period

is twenty years, and we rebalance our portfolio annually. We also assume

a constant cash inflow of Kt = 1 at the end of each period. We set the
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targeted annual portfolio return to be µ = 0.05, and hence the targeted

terminal wealth is E(W20) = 298.3957 calculated by the recursive relationship

in (4.1).

We compare the distribution of portfolio wealth at the end of each rebal-

ancing period, for each of four different investment strategies:

1. an unconstrained dynamic strategy that rebalances portfolio weights

to the level indicated by (4.29);

2. a constrained dynamic strategy that rebalances portfolio weights to the

constrained numerical minimizer of portfolio variance for the desired

portfolio return given in (4.11);

3. an unconstrained static strategy that rebalances portfolio weights to

wu = [ −0.0801 −1.3875 2.4676 ]T on equity, debt and cash, found

on the longrun effi cient frontier5; and

4. a constrained static strategy that rebalances portfolio weights to wc =

[ 0.8680 0 0.1320 ]T on equity, debt and cash, found on the con-

strained longrun effi cient frontier6.

Strategies are constrained in the sense that shortselling is forbidden, that

is, portfolio weights lie in the interval [0, 1].

5The longrun effi cient frontier is constructed with the unconditional mean returns given
in (4.33a) and the unconditional covariance in returns given in (4.34).

6The longrun effi cient frontier is constrained in the sense that it contains portfolios
with weights that lie in the interval [0,1].



98CHAPTER 4. VAR-MGARCH RETURNS AND ASSET ALLOCATION

4.6.1 Simulated Results

Figure 4.1 portrays the distributions of portfolio wealth at the end of the

first, fifth, tenth, fifteenth and twentieth years resulting from the four dif-

ferent strategies. Table 4.1 summarizes the mean and standard deviation of

portfolio wealth at the end of each year due to the four different strategies.

The average portfolio wealth under the dynamic strategies (both uncon-

strained and constrained) approach the targeted terminal wealth. The means

of terminal portfolio wealth, W20, under the static strategies (both uncon-

strained and constrained) do not align with the targeted value. Compared

to static strategies, the dynamic strategies result in more concentrated dis-

tributions of terminal portfolio wealth around the targeted value. In this

particular exercise, average W20 under an unconstrained dynamic strategy is

$300.73, under a constrained dynamic strategy is $300.41, under an uncon-

strained static strategy is $272.73 and under a constrained static strategy is

$273.24, while the targeted terminal value is $298.40. The standard deviation

inW20 under an unconstrained dynamic strategy is 1.15, under a constrained

dynamic strategy is 5.70, under an unconstrained static strategy is 24.77 and

under a constrained static strategy is 24.85. This pattern is consistent with

our goal of minimizing the variance for given level of portfolio wealths.

4.6.2 Constrained Strategies v. Unconstrained Strate-

gies

It is worth pointing out that portfolio wealth under an unconstrained dy-

namic strategy accumulates fast during early periods and it approaches the
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targeted terminal value at a decreasing rate, while the portfolio wealth un-

der a constrained dynamic strategy approaches the targeted terminal value

at a relatively constant rate. Recall that the desired portfolio return µt at

time t is defined in (4.11) by the portfolio wealth Wt and the parameter βt,

which is determined by the Lagrangian Multiplier λ(N)
t and the target termi-

nal wealth E(W20). βt are large and Wt are small for early periods, leading

to high levels of desired portfolio returns. The resulting portfolio weights for

early periods are either much greater than 1 or very negative. An example

of portfolio trajectory (βt, Wt and the corresponding µt) is given in Table

4.2. The targeted portfolio returns are 161.23% for the first period, 62.1%

for the second period and 21.28% for the third period in this example. The

unconstrained dynamic strategy in this case is unrealistic due to huge lever-

age effects, that is, a great amount needs to be borrowed to invest in equities

in order to achieve the desired level of expected portfolio return. Therefore,

in practice, one might introduce a regulatory limit on portfolio weights when

implementing unconstrained strategies.

4.6.3 Backtesting on Historical Returns

Let us compare the performances of the proposed dynamic strategy with a

static strategy on historical returns on equity, debt and cash. Recall that, in

Chapter 3, we estimated a VAR(1)-MGARCH(1,1) model for a set of 284-

month (from December 1989 to August 2013) returns on the S&P/ASX 200

index, Australian 90-day bank accepted bills and Australia one-year bank

term deposit index using a "rolling window" framework. Let us assume that



100CHAPTER 4. VAR-MGARCHRETURNSANDASSETALLOCATION

we use the first 120 effective months of data to obtain an initial estimate of the

VAR(1)-MGARCH(1,1) model, and we start our investment from January

2000 with an initial input of $100. Let us also assume that we rebalance the

portfolio at the end of each month, and there is a monthly cash injection of

$1. We wish to gain a portfolio return of 0.005 per month, which leads to

a targeted terminal wealth of W163 = $476.38 by the end of August 2013.

We employ our estimation results obtained in Chapter 3 to determine the

dynamic portfolio weights proposed in this chapter given by (4.29). The

unconstrained static weights of wu = [−0.0532,−2.7166, 3.7698]T and the

constrained static weights of wc = [0.8964, 1.4715× 10−4, 0.1034]T on equity,

debt and cash are found on the unconstrained and the constrained longrun

effi cient frontier based on the first 120 effective months of returns.

Figure 4.2 plots the evolution of portfolio wealth due to the unconstrained

dynamic strategy and the unconstrained static strategy specified above. Af-

ter 163 months, the unconstrained dynamic strategy leads to a terminal

wealth of $468.76, the constrained dynamic strategy leads to a terminal

wealth of $457.40, the unconstrained static strategy leads to a terminal

wealth of $551.00, and the constrained static strategy leads to a terminal

wealth of 557.4536, while the targeted value is $476.38. These results show

that our proposed dynamic strategies achieve terminal values that are closer

to the target than the static strategy.

We notice that the trajectory of portfolio wealth resulting from the uncon-

strained dynamic strategy drops significantly in late 2008. This is due to the

Global Financial Crisis bursted in that period. The one-period-ahead fore-

cast according to the previous ten-year experience was not reliable. Hence,
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the portfolio weights calculated based on this forecast led to a completely

different outcome than what we expected. Another informative feature here

is the significant differences between the terminal wealth due to the static

strategies and the targeted value. We have two explanations. First, static

strategies are not risk-minimizing, and they are likely to lead to extreme

values. Second, there are changes in the parameters of the return model

over time. The static weights are determined based on the first 120 effective

months of returns. The parameters in the VAR(1)-MGARCH(1,1) model

change over time, and the static allocations given by the initial estimate will

not be on the longrun effi cient frontiers for later periods.

4.7 Conclusion

This chapter provides a detail derivation of an extension of a type of dy-

namic portfolio rules, introduced by Leung (2011), to non-constant effi cient

frontiers of asset returns. We consider the case when returns follow a VAR(1)-

MGARCH(1,1) process in particular. The proposed investment strategy de-

termines the desired portfolio returns by assessing the difference between

current portfolio wealth and the targeted terminal wealth. It then seeks

portfolio weights on the effi cient frontier according to the desired portfolio

return level at each scheduled rebalancing time.

We quantitatively demonstrate the performance of the proposed dynamic

strategy. Our results show that dynamic strategies are more effi cient than

static strategies, in the sense that the variance of terminal portfolio wealth

is reduced.
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This analysis may be generalized in several directions. First, when the

trading amount is significant, the resulting market impact on asset returns

should be included in the formulation of dynamic strategies. This is pursued

in the next chapter. Second, other return models may be considered. Third,

instead of rebalancing annually at a predetermined time, the rebalance time

can be defined as a function of portfolio wealth and returns.
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Figure 4.1: Distributions of the portfolio wealth, Wt, at the end of the first,
fifth, tenth, fifteenth and twentieth year due to an unconstrained dynamic
strategy, a constrained dynamic strategy, an unconstrained static strategy
and a constrained static strategy
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Figure 4.2: Portfolio wealth due to an unconstrained dynamic strategy, a
constrained dynamic strategy, an unconstrained static strategy and a con-
strained static strategy for investments in Australian equity, debt and cash
from January 2000 to August 2013
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Average Wt

Unconstrained Unconstrained Constrained Constrained
t dynamic static dynamic static
1 276.80 101.78 108.56 107.67
2 241.85 105.36 114.67 107.13
3 235.82 109.78 122.61 112.15
4 233.35 115.13 130.57 116.51
5 233.80 121.16 138.77 121.99
6 238.07 127.64 147.77 128.59
7 242.68 134.76 156.97 135.20
8 246.96 142.37 166.37 142.46
9 252.95 150.38 177.06 151.04
10 257.66 158.96 188.00 159.24
11 262.41 168.06 199.42 168.13
12 266.76 177.69 211.24 177.55
13 270.68 187.67 224.03 187.92
14 285.11 198.10 237.03 198.08
15 279.67 208.95 251.13 209.57
16 284.32 220.55 263.98 220.39
17 288.97 232.67 276.38 233.26
18 293.27 245.41 286.29 245.35
19 297.67 258.67 294.54 259.04
20 300.73 272.73 330.41 273.24

Standard deviations of Wt

Unconstrained Unconstrained Constrained Constrained
t dynamic static dynamic static
1 75.77 0.67 2.62 2.31
2 25.36 1.43 3.32 2.44
3 11.98 2.27 4.42 3.20
4 12.66 3.25 4.96 3.50
5 12.90 4.22 6.00 4.41
6 6.80 5.21 6.82 5.30
7 5.76 6.18 7.92 6.36
8 11.30 7.19 8.89 7.39
9 4.81 8.33 9.97 8.39
10 14.94 9.49 11.04 9.33
11 4.01 10.61 12.48 10.76
12 3.35 11.81 13.97 12.21
13 6.60 13.07 15.17 13.04
14 6.62 14.39 16.29 14.10
15 6.28 15.84 17.34 15.85
16 4.38 17.45 16.92 17.49
17 1.48 19.20 14.60 19.37
18 1.79 21.01 12.02 21.19
19 0.81 22.93 8.82 22.56
20 1.15 24.77 5.70 24.85

Table 4.1: Statistics of Wt under different strategies
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t βt Wt µt = βt/Wt + αt

0 251.70 100 1.6123
1 163.69 127.13 0.6210
2 162.41 181.20 0.2128
3 213.55 240.74 0.0191
4 153.46 247.11 -0.0241
5 171.79 234.01 -0.0078
6 163.36 230.87 0.0185
7 183.54 236.15 0.0248
8 173.82 242.48 0.0328
9 193.19 254.69 0.0069
10 183.40 256.90 0.0135
11 193.29 261.22 0.0120
12 173.49 264.82 0.0160
13 209.41 269.91 0.0129
14 191.39 273.58 0.0188
15 232.62 280.61 0.0118
16 214.92 285.37 0.0110
17 205.79 287.57 0.0177
18 223.55 294.35 0.0104
19 246.12 296.61 0.0107
20 N.A. 300.71 N.A.

Table 4.2: Example of desired portfolio returns



Chapter 5

Market Impacts and Asset

Allocation

One of the most important practical issues in portfolio rebalancing is that

every transaction causes market impact. Market impact is shift in the price

of an asset when a market participant buys or sells the underlying asset. It is

significant when trade size is large. Asset prices move upward after a signif-

icant purchase and downward after a significant sale in general. Therefore,

the dynamic strategy that we proposed in Chapter 4 has to be adjusted if

trade size is significant.

Market impact is positively related to the size of orders and the resulting

supply-demand imbalance in assets. Therefore, the effects of trading trans-

actions on asset returns can be modelled by order imbalance, which is the

difference between the number of buyer-initiated transactions and the num-

ber of seller-initiated transactions (Kissell and Glantz 2003). The effects on

asset returns due to excess buy and sell orders are different. Imbalances cause

107
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price pressures, and price pressures resulting from large sell orders are greater

than those from buy orders (Chan and Fong 2000; Chordia et al. 2002). In

addition, order imbalances post temporary impacts on asset prices due to

liquidity requirements and permanent impacts due to information leakage

(Kissell and Glantz 2003). These effects influence the aggregate market.

This chapter provides a highly simplified quantitative example to demon-

strate how the dynamic strategy we proposed in Chapter 4 can be adjusted

to incorporate market impacts. We only consider the permanent effects of

order imbalances on asset prices in the following analysis. We also assume

that order imbalances only shift the mean returns, and any impacts on the

covariance level are negligible.

5.1 Order Imbalances and Returns

Let us incorporate market impacts captured by order imbalances into the

Vector-Autoregressive Multivariate Generalized Autoregressive Conditional

Heteroskedasticity (VAR-MGARCH) model considered in Chapter 4. Let

rt− = γ + C0rt−1 + vt; (5.1)

MIt = C1N
+
t + C2N

−
t ; (5.2)

rt = rt− + MIt (5.3)

= γ + C0rt−1 + C1N
+
t + C2N

−
t + vt;

vt = Σ
1/2
t et; (5.4)

Σt=AT
0 A0+AT

1 vt−1v
T
t−1A1+BT

1 Σt−1B1. (5.5)
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Trading occurs at time t, rt− is the vector of returns at time t− immedi-

ately before the transaction, rt is the vector of returns immediately after the

transaction, and this latter variable has incorporated market impacts. MIt is

the market impact caused by the transaction, and it consists of effects due to

both excess buy orders, N+
t , and excess sell orders, N

−
t . et are independently

and identically distributed (i.i.d.) innovations, while Σt is the covariance ma-

trix which is assumed to be unaffected by market impacts. Order imbalances

N−t and N+
t are calculated as follows.

Recall from Chapter 4 that the total wealth of a portfolio evolves as

Wt+1 = (1 + wT
t rt)Wt +Kt+1, (5.6)

where Kt is the cash injection, and wt is the vector of portfolio weights.

Let the weight in asset i at time t− immediately before the transaction

be wi,t−, and this weight is given by

wi,t− = Wt−1wi,t−1(1 + ri,t−1)/Wt− ,

where Wt− = (1 + wT
t−1rt−1)Wt−1 is the instantaneous portfolio value just

before the transaction, wi,t−1 is the weight on asset i at time t− 1, and ri,t−1

is the return on asset i at time t− 1.

Suppose we require a weight of wi,t of the total fund to be invested in

asset i. Then the transaction should change the weight on asset i by

∆wi,t = wi,t − wi,t−

= wi,t −Wt−1wi,t−1(1 + ri,t−1)/Wt− .
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The accumulated value of asset i over the last period is

Wt−∆wi,t.

Therefore, the number transacted in asset class i at time t, based on the

instantaneous asset prices just before the transaction, is

Ni,t =
Wt−∆wi,t +Ktwi,t

Pi,t−
(5.7)

=
[(1 + wT

t−1rt−1)Wt−1 +Kt]wi,t −Wt−1wi,t−1(1 + ri,t−1)

(1 + ri,t−)Pi,0
∏t−1

s=0
(1 + ri,s)

,

where Pi,t− is the instantaneous price of asset i at time t− just before the

transaction, and Pi,0 is the initial price of asset i. The vector of number of

buy orders is

N+
t = max(0,Nt), (5.8)

and the vector of number of sell orders is

N−t = |min(0,Nt)| . (5.9)

Note that N−t is the modulus of the negative order imbalance.

Remark 9. N+
t and N−t in our complete system outlined in (5.1) to (5.5)

represent the excess buy and sell orders in the whole market. However, the

aggregate order imbalance in the market is complicated. It is reasonable for

us to assume that transactions by other investors are at equilibrium and the

only order imbalance is caused by ours.
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5.2 Portfolio Wealth at Time t

This section is analogous to Section 4.4.

Suppose that the joint distribution of asset returns and accumulated val-

ues (portfolio wealths) is f(rt−1,Wt). The first and second moments of the

next period’s wealth are given by:

E(Wt+1) = E
[
(1 + wT

t rt)Wt +Kt+1

]
(5.10)

= E(Wt) + E(wT
t rtWt) +Kt+1

= E(Wt) +

∫ ∫
wT
t

 γ + C0rt−1

+C1N
+
t +C2N

−
t

WtfdWtdrt−1 +Kt+1,

and

E(W 2
t+1) = E

 W 2
t+1 + (wT

t rtWt)
2 + 2wT

t rtW
2
t

+2(1 + wT
t rt)WtKt+1 +K2

t+1

 (5.11)

=

 E(W 2
t ) + E

{[
2wT

t rt + (wT
t rt)

2
]
W 2
t

}
+2Kt+1E[(1 + wT

t rt)Wt] + 2K2
t+1 −K2

t+1

=

 E(W 2
t ) +

∫ ∫ [
2wT

t rt + (wT
t rt)

2
]
W 2
t fdWtdrt−1

+2Kt+1E[(1 + wT
t rt)Wt +Kt+1]−K2

t+1

=


∫ ∫


2wT

t

(
γ + C0rt−1 + C1N

+
t + C2N

−
t

)
+
[
wT
t

(
γ + C0rt−1 + C1N

+
t + C2N

−
t

)]2
+wT

t Σtwt

W 2
t fdWtdrt−1

+E(W 2
t ) + 2Kt+1E(Wt+1)−K2

t+1

,
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where E(Wt) and E(W 2
t ) are known at time t+ 1.

Our goal is to minimize the expected variance for the next period’s wealth

for a given level of the expected next period’s wealth. This desired level of the

expected next period’s wealth is determined by the targeted portfolio return

µt, which is obtained from the time-varying effi cient frontier (see Section 4.3).

In summary, the problem is to minimize

∫ ∫ 
2wT

t

(
γ + C0rt−1 + C1N

+
t + C2N

−
t

)
+
[
wT
t

(
γ + C0rt−1 + C1N

+
t + C2N

−
t

)]2
+wT

t Σtwt

W 2
t fdWtdrt−1,

subject to a given level of

∫ ∫
wT
t (γ + C0rt−1 + C1N

+
t + C2N

−
t )WtfdWtdrt−1

and

wT
t j = 1,

where j = [1 1 1]T is a vector of ones.

The Lagrangian of the above problem is

L =

∫ ∫ 
2wT

t

(
γ + C0rt−1 + C1N

+
t + C2N

−
t

)
+
[
wT
t

(
γ + C0rt−1 + C1N

+
t + C2N

−
t

)]2
+wT

t Σtwt

W 2
t fdWtdrt−1

− 2λt

∫ ∫
wT
t (γ + C0rt−1 + C1N

+
t + C2N

−
t )WtfdWtdrt−1

+ 2ηt

∫ ∫
wT
t jWtpdWtdrt−1,
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where the Lagrangian Multipliers λt and ηt are positive.

Consider a small variation, say ε (rt−1,Wt) in wt, such that jTε = 0. The

resulting variation in L to the first order is:

∆L = 2

∫ ∫
εTt





(
γ + C0rt−1 + C1N

+
t + C2N

−
t

)
+
(
γ + C0rt−1 + C1N

+
t + C2N

−
t

)
×wT

t

(
γ + C0rt−1 + C1N

+
t + C2N

−
t

)
+εTt Σtwt


Wt

−λt(γ + C0rt−1 + C1N
+
t + C2N

−
t ) + ηtj


WtfdWtdrt−1.

We require ∆L to be insensitive to ε (rt−1,Wt) when L is at its minimum.

This is so when at least one of the following conditions holds:

f(rt−1,Wt) = 0;

µt is at a minimum or maximum;

or 
(
γ + C0rt−1 + C1N

+
t + C2N

−
t

)
+
(
γ + C0rt−1 + C1N

+
t + C2N

−
t

)
×wT

t

(
γ + C0rt−1 + C1N

+
t + C2N

−
t

)
+Σtwt

Wt (5.12)

= λt(γ + C0rt−1 + C1N
+
t + C2N

−
t )− ηj.

The Lagrangian Multiplier ηt is chosen to ensure that the weights sum

up to 1, and λt is determined by the time-varying effi cient frontier studied

in Chapter 4 (see Section 4.2 to 4.4).

An analytical solution to wt in (5.12) can not be obtained easily. The

causality between wt and rt is bidirectional, that is, changes in wt affects rt

and hence the expected portfolio return, while the expected portfolio return
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determines wt.

We will attempt to solve this problem numerically. In Chapter 4, we dis-

cussed two approaches to obtain numerical solutions towt. These approaches

can be modified in this case.

The first approach is to numerically solve for wt in (5.12) by trying differ-

ent combinations of portfolio weights. An alternative approach is to numer-

ically minimize the portfolio variance wT
t Σtwt for a given targeted level of

portfolio return. The intuition is that if we know how the change in portfolio

weights will shift asset returns, we can simulate weights which give the de-

sired portfolio return when market impacts exist. The optimal weights will

be the set that gives the smallest portfolio variance.

Remark 10. The above algorithms, while they may be intuitively simple,

suffer from high computational complexity. The computational requirement

increases exponentially with the accuracy level, when constructing and cal-

culating all possible combinations of portfolio weights. Starting from the

weight for the first asset being zero and each increment being 10−5 until one,

in a three-asset case, there will be approximately 1015 possible combinations.

If we have k periods in each simulation and a total of m repeats, there will

be approximately mk × 1015 evaluations of wT
t Σtwt. We utilized the service

fromMonash Campus Grid, which allowed us to run the simulations provided

in the following section simultaneously on the computer grid. This service

significantly shortened the time required.
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5.3 Performance of the Dynamic Strategy

We study the performance of the proposed dynamic strategy by considering

a portfolio consisting of three asset classes: equity, debt and cash. The total

investment period is 20 years. We simulate ten thousand sets of twenty-

year returns under the VAR-MGARCH model specified in (5.1) to (5.5). We

adopt the same values for parameters γ,C0,A0,A1 and B1 as in Section 4.4,

for comparison purpose. We also require the innovations et in (5.4) follow a

standard normal distribution.

Coeffi cients for excess buy and excess sell orders, C1 and C2, are chosen

by following a the study of Chordia et al. (2002). Chordia et al. (2002)

investigated the effects of contemporaneous order imbalances on the S&P500

stock market index returns for 1988-1998. They suggested that the coef-

ficients of excess buy orders are positive and the coeffi cients of excess sell

orders are negative on the US market. Brown et al. (1997) drew a similar

conclusion on the Australian market, that, on the ASX, a buy order imbal-

ance is weakly associated with higher future prices and a sell order imbalance

is weakly associated with lower prices. We adopt the effects of excess buy

and excess sell orders on equity from Chordia et al. (2002). The effects of

excess buy and excess sell orders on debts (or cash) are chosen as the ef-

fects on equity multiplied by the ratio of unconditional variance in debts (or

cash) to unconditional variance in equity. These effects are per 1000 shares

transacted.
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In summary, we have

γ̂=


0.0724

0.0044

0.0081

 , Ĉ0=


−0.3634 0.3535 0

−0.0333 0.2173 0

0 0 0.6591

 ,

Ĉ1 =


0.000683 0 0

0 0.000039 0

0 0 0.000003

 ,

Ĉ2 =


−0.002244 0 0

0 −0.000129 0

0 0 −0.000010

 ,

Â0 =


0.0243 0.0036 0.0028

0 1.9795× 10−7 5.2368× 10−8

0 0 1.6966× 10−11

 ,

Â1 =


−4.2493× 10−4 −8.6205× 10−5 −5.5102× 10−5

0 −1.9429× 10−4 −5.1382× 10−5

0 0 −3.9935× 10−7

 , and

B̂1 =


−0.0653 −0.0012 6.6802× 10−4

0 −0.0568 0.0056

0 0 −0.0783

 .

Note that we assume no cross-asset-class market impacts here by setting Ĉ1
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and Ĉ2 to be diagonal. The estimated unconditional mean return is

µ̂ = (I− Ĉ0)−1γ̂ =


0.0540

0.0033

0.0239

 , (5.13)

and the estimated unconditional covariance on returns is

Σ̂ =


5.9378× 10−4 8.6843× 10−5 6.8107× 10−5

8.6843× 10−5 1.2701× 10−5 9.9610× 10−6

6.8107× 10−5 9.9610× 10−6 7.8119× 10−6

 . (5.14)

We start with an initial asset price vector of P0 = [ 1 1 1 ]T , and

an initial investment of W0 = 1000000. There are constant cash inflows of

Kt = 10000 at the beginning of each year. Notice that, compared to Chapter

4, we choose a large amount of investments. This is because market impacts

are significant only when trade size is large. We set the targeted annual

portfolio return to be 0.05 per annum for 20 years, which leads to a targeted

terminal wealth of E(W20) = 2983957 calculated by the recursive relationship

in (5.6). Portfolios are rebalanced annually under three strategies:

1. an unadjusted constrained dynamic strategy proposed in Chapter 4;

2. an adjusted constrained dynamic strategy proposed in this Chapter;

and

3. a constrained static strategy which rebalances portfolio weights towc =

[ 0.8680 0 0.1320 ]T on equity, debt and cash, found on the con-
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strained longrun effi cient frontier1.

A dynamic strategy is unadjusted when it does not consider the effect of

market impacts. Strategies are constrained in the sense that shortselling is

not allowed, that is, portfolio weights are within [0, 1].

Different choices of portfolio weights will lead to different one-step-ahead

returns, when incorporating market impacts into our simulation. Each step

contributes to a unique terminal portfolio wealth. Therefore, unlike the sim-

ulations in Chapter 4, different strategies are not comparable as they are not

based on the same set of asset returns. However, it is still worth plotting the

distribution of logarithmic portfolio wealths. The general pattern will give

us some insights of how market impact affects the performance of different

strategies.

5.3.1 Simulated Results

Figure 5.1 plots the distributions of logarithmic portfolio wealth, ln(Wt), at

the end of the first, the fifth, the tenth, the fifteenth and the twentieth year

under an unadjusted constrained dynamic strategy, an adjusted constrained

strategy and a constrained static strategy. Table 5.1 presents the means

and standard deviations of ln(Wt) at the end of each period under the three

different strategies.

The means of logarithmic portfolio wealth, ln(Wt), under both unadjusted

and adjusted constrained dynamic strategy approach the targeted terminal

value of 14.92 (ln [E(W20)]) gradually. The mean of logarithmic terminal

1The longrun effi cient frontier is constructed with the unconditional mean returns given
in (5.13 and the unconditional covariance of returns given in (5.14).
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portfolio wealth under the constrained static strategy does not center around

the targeted value. The dynamic strategies both provide more concentrated

distributions of portfolio wealth, compared to the constrained static strategy,

and these distributions become more concentrated over time. Such a result is

consistent with our goal of minimizing portfolio variances. In this particular

example, the standard deviation of the logarithmic terminal wealth, ln(W20),

under an unadjusted constrained dynamic strategy is 0.0173, under an ad-

justed constrained dynamic strategy is 0.0165, and under a constrained static

strategy is 0.0749. This is suggesting that, when trade sizes are significant,

considering the effects of potential market impacts by performing an adjusted

dynamic strategy can minimize the possibility of obtain extreme (much larger

than or much smaller than the targeted value) terminal portfolio wealth.

5.3.2 Larger Coeffi cients and Larger Fund

The difference between the distributions of terminal wealth under an unad-

justed and an adjusted constrained dynamic strategy in Figure 5.1 is small.

Let us magnify the coeffi cients for excess buy and excess sell orders, and the

fund size. Let

Ĉ1 =


0.00683 0 0

0 0.00039 0

0 0 0.00003

 and
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Ĉ2 =


−0.02244 0 0

0 −0.00129 0

0 0 −0.00010


per 1000 shares transacted. Also let the initial investment be W0 = 1000000

and the constant cash inflow be Kt = 100000 per year. The targeted termi-

nal wealth after 20 years is E(W20) = 29839572 calculated by the recursive

relationship in (5.6) for a 5% targeted annual return.

Figure 5.3 plots the distributions of the logarithmic terminal portfolio

wealth under an unadjusted dynamic strategy and an adjusted dynamic strat-

egy for the case with smaller coeffi cients and smaller fund size specified in

the previous section, and the case with larger coeffi cients and larger fund

size specified in this section. Our result shows clearly that, with larger coeffi -

cients and larger fund size, the adjusted dynamic strategy achieves terminal

wealth that is closer to the target than the unadjusted dynamic strategy

when market impact is significant.

5.4 Conclusion

In this chapter, we demonstrate an algorithm to modify our dynamic asset

allocation rules when market impact is significant. We follow (Kissell and

Glantz 2003) and model market impacts by order imbalance. We assume

that transactions by other investors are at equilibrium and the majority

of order imbalances is caused by us rebalancing our portfolio periodically.

The experiment that we conducted is an approximation of reality, and the
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goal is to determine sensible and robust decisions for the underlying real-life

problem.

The constructed model for market impacts considered in this chapter, is

a simple template, and it can be generalized to more complicated cases. For

example, Chordia and Subrahmanyam (2004) suggested that the expectation

of price change is linearly dependent on contemporaneous and lagged order

imbalances, and Chan and Fong (2000) suggest that order imbalance and

lagged imbalances also have impact on asset volatility. Future work might

include lags of order imbalances in both the return and volatility represen-

tations.
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Figure 5.1: Distributions of the logarithmic portfolio wealth, ln(Wt), at the
end of the first, fifth, tenth, fifteenth and twentieth year due to an unadjusted
constrained dynamic strategy, an adjusted constrained dynamic strategy, and
a constrained static strategy.
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Figure 5.2: Distributions of logarithmic terminal portfolio wealth, ln(W20),
under an unadjusted constrained dynamic strategy, an adjusted constrained
dynamic strategy and a constrained static strategy.
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Figure 5.3: Distributions of logarithmic terminal portfolio wealth, ln(W20),
under an unadjusted constrained dynamic strategy and an adjusted con-
strained dynamic strategy for the case with smaller coeffi cients and smaller
fund size, and the case with larger coeffi cients and larger fund size.
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Average ln(Wt)
Unadjusted Adjusted Constrained

t constrained dynamic constrained dynamic static
1 13.9005 13.9025 13.8912
2 13.9853 13.9893 13.9667
3 14.0426 14.0457 14.0198
4 14.1082 14.1110 14.0802
5 14.1715 14.1757 14.1386
6 14.2360 14.2408 14.1975
7 14.2984 14.3021 14.2557
8 14.3611 14.3652 14.3138
9 14.4227 14.4270 14.3718
10 14.4853 14.4912 14.4289
11 14.5480 14.5541 14.4858
12 14.6081 14.6125 14.5427
13 14.6690 14.6741 14.5992
14 14.7263 14.7277 14.6554
15 14.7800 14.7808 14.7115
16 14.8252 14.8249 14.7671
17 14.8610 14.8601 14.8230
18 14.8871 14.8855 14.8783
19 14.9061 14.9053 14.9332
20 14.9193 14.9189 14.9879

Standard deviations of ln(Wt)
Unadjusted Adjusted Constrained

t constrained dynamic constrained dynamic static
1 10.1180 10.1456 9.9716
2 10.85929 10.9217 10.7357
3 10.8972 10.8636 10.7750
4 11.0944 11.0993 10.9355
5 11.1919 11.1685 11.0486
6 11.3135 11.3445 11.1581
7 11.4096 11.4363 11.2639
8 11.5313 11.6098 11.3685
9 11.6316 11.7038 11.4703
10 11.7313 11.8277 11.5668
11 11.8426 11.9233 44.6636
12 11.9305 12.0222 11.7555
13 12.0020 12.0647 11.8379
14 12.0253 12.0291 11.9215
15 11.9668 11.9662 12.0028
16 11.7942 11.7887 12.0853
17 11.4773 11.4295 12.1621
18 11.0766 11.0360 12.2441
19 10.5269 10.4495 12.3223
20 10.0481 9.8956 12.3975

Table 5.1: Statistics of logarithmic portfolio values, ln(Wt), under different
strategies
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Chapter 6

Conclusion and Possible

Further Research

Asset liability management has always been one of the core concerns in fi-

nance. Dynamic asset allocation (investment strategy) has been identified

as an appropriate approach to manage a portfolio. However, the formulation

of an optimal dynamic investment strategy is complicated, and research in

this area has had limited success. This thesis has addressed two different but

related asset allocation problems and suggests a framework for dynamic asset

allocation. A strategy is considered as optimal if it maximizes an investor’s

expected utility, or equivalently, minimizes the variance of the targeted ter-

minal portfolio wealth.

The first asset allocation problem is when asset return models are path-

independent (current or future states of returns do not depend on past states)

and in continuous time. Continuous-time path-independent returns models,

although not realistic, are popular approximations among academics. Cox

127
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and Leland (2000) assessed the criteria for optimal portfolio controls based

on a two-asset portfolio, which consists of a risky asset and a risk-free one,

and the price of the risky asset follows a geometric Brownian motion with

constant drift and diffusion. We extend their work by allowing the drift and

diffusion of the process followed by the price of the risky asset to be non-

constant, and even path-independent functions of the price of the risky asset,

portfolio wealth and time. We study two formulations of portfolio controls:

when investments in the assets are functions of the price of the risky asset and

time, and when investments in the assets are functions of portfolio wealth

and time. The first formulation is adopted by investors who believe that

portfolio wealth is purely driven by the price of the risky asset. The second

formulation is adopted by investors wishing to manage market impact that

results from their trading activities. Our contributions generalize the optimal

portfolio control criteria outlined Cox and Leland (2000), and show that the

generalized criteria are compatible with utility maximization.

The second part of our research considers asset allocation strategies when

return models are path-dependent and in discrete time. In particular, Vector-

Autoregressive - Multivariate Generalized Autoregressive Conditional Het-

eroskedasticity (VAR-MGARCH) models are considered.

We first study securities in the Australian market with a novel estima-

tion technique, namely one-step multivariate semi-parametric maximum like-

lihood estimation (one-step MSMLE). This technique is an extension to uni-

variate one-step semi-parametric maximum likelihood estimation (one-step

SMLE) proposed by Di and Gangopadhyay (2013), and it utilizes kernel den-

sity estimation to analyze the joint distribution of asset returns. This type
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of estimation is one-step in the sense that it does not require a first step

that performs a quasi-maximum likelihood estimation (QMLE) to acquire a

residual series. We show that our extended estimator produces consistent

and asymptotically unbiased and effi cient estimates under certain regulatory

conditions for kernel estimation. We utilize rolling windows that each con-

sist of 120 effective months of indexed returns on Australian equity, debt

and cash to estimate the VAR-MGARCH model. This recursive estimation

allows us to investigate slow parameter changes over time. Our result show

clear evidence of multivariate serial correlation in both the return and the

covariance levels.

We then develop a class of optimal asset allocation strategies based on

VAR-MGARCH return models, which extends the work by Leung (2011).

The proposed strategy chooses targeted portfolio returns by minimizing the

variance of expected terminal wealth at each scheduled rebalance time. It

adjusts portfolio weights by attempting to minimize the expected variance

for the next period’s wealth implied by the targeted portfolio return. The

minimization is conducted by looking up the desired portfolio weights on the

effi cient frontier through a Lagrangian, which is updated by observing the

asset returns process and terminal wealth each period. We have also intro-

duced an algorithm to adjust the proposed strategy to account for market

impact. We provide a highly simplified but informative numerical example

of managing the market impact on portfolio wealth when transaction sizes

are significant.

This thesis has mainly focused on the first two moments of portfolio

wealth when developing portfolio rules. However, as returns often have asym-
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metric distributions in practice, bringing in considerations of higher moments

of portfolio wealth may improve the performance of investment strategies.

Extension of our work may include studying the case when asset prices fol-

low a jump diffusion process (which naturally involves higher moments) or

the case when the volatility of asset returns is itself stochastic. On the other

hand, we have only considered periodic portfolio rebalances in this thesis.

Further work could also consider the situation when the rebalance time is

not pre-determined but a function of time and portfolio wealth.



Appendix A

Detailed Working for Chapter 3

A.1 Proof of Proposition 8

We require the following lemma to prove that the density estimate converges

pointwise in probability to the true density:

Lemma 1. Convergence in mean square implies convergence in probability.

(This can easily be proved using Chebyshev’s inequality.)

Let us construct a norm in Lebesgue space with dimension p = 2, which

is an L2 norm, which is also known as the pointwise mean squared error

(MSE). Then we have

MSE = E
{∣∣∣f̂n (e;θ)− f (e;θ)

∣∣∣2} (A.1)

=


{
E
[
f̂n (e;θ)

]
− f (e;θ)

}2

+E
{

[f̂n (e;θ)]2
}
−
{
E[f̂n (e;θ)]

}2

=
{
Bias

[
f̂n (e;θ)

]}2

+Var
[
f̂n (e;θ)

]
,
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where Bias
[
f̂n (e;θ)

]
and Var

[
f̂n (e;θ)

]
are the expected bias and the vari-

ance of the density estimate f̂n (e;θ) = |H|−1K (H−1(e− es)). The point-

wise limit of f̂n (e;θ) in L2 when the MSE goes to 0 will be f (e;θ). This

requires that

lim
n→∞

{
Bias

[
f̂n (e;θ)

]}2

= lim
n→∞

V ar
[
f̂n (e;θ)

]
= 0.

The bias and variance of the density estimate f̂n (e;θ) are derived follow-

ing pages 153 to 155 in Scott (1992) below.

Let us change the variables to ω = H−1(e− es) so that
∣∣∣ dωdes ∣∣∣ = |H|−1 =

h−d. The expectation of the density estimate f̂n (e;θ) is then

E
{
f̂n (e;θ)

}
=

∫
Rd
K (ω) f(e−Hω;θ)d$s (A.2)

The second order Taylor expansion of the expectation around Hω = 0 is

E
{
f̂n (e;θ)

}
=

∫
Rd
K (ω)

 f(e;θ)− ωTHT∇fn (e;θ)

+1
2
$THT∇2f (e;θ) Hω +O(h4)

 dω (A.3)

=

 f (e;θ)
∫
Rd K (ω) dω−∇f (e;θ) H

∫
Rd ωK (ω) dω

+1
2

∫
Rd K (ω)ωTHT∇2f (e;θ) Hωdω +O(h4)

 .1

Recalling the properties of K (ω) in (3.8) to (3.10), the above becomes

E
{
f̂n (e;θ)

}
= f (e;θ)−0 +

1

2

∫
Rd
K (ω)ωTHT∇2f (e;θ) Hωdω +O(h4).

(A.4)

1The remainder terms here are O(h4). This is because kernel functions are symmetric,
and their third moments are 0.
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The integrand in the third term of (A.4) is a scalar, so its trace equals itself.

Hence, using the usual properties of the trace operator, the third term in

(A.4) becomes

1

2
tr

[∫
Rd
K (ω)ωωTHT∇2f (e;θ) Hdω

]
=

1

2
tr

[(∫
Rd
K (ω)ωωTdω

)
HT∇2f (e;θ) H

]
=

1

2
tr
[
HT∇2f (e;θ) H

]
=

1

2
h2tr(AAT∇2f (e;θ) .

Hence, the expectation of the density estimate of e is

E
[
f̂n (e;θ)

]
= f (e;θ) +

1

2
h2tr(AAT∇2f (e;θ) +O(h4), (A.5)

and the expected bias in f̂n (e;θ) is

Bias
[
f̂n (e;θ)

]
=

1

2
h2tr(AAT∇2f (e;θ) +O(h4). (A.6)

We deduce that

lim
n→∞

{
Bias

[
f̂n (e;θ)

]}2

= 0,

as h→ 0 (from (3.12)).

The variance of f̂n (e;θ) may be written as

Var
[
f̂n (e;θ)

]
= Var

[
n−1 |H|−1

n∑
s=1

K
(
H−1(e− es)

)]
(A.7)
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=
1

n

[
E
{[
|H|−1K

(
H−1(e− es)

)]2}− {E [|H|−1K
(
H−1(e− es)

)]}2
]
.

The first term in the square brackets in (A.7) expands as

E
{[
|H|−1K

(
H−1(e− es)

)]2}
=

∫
Rd

[
|H|−1K

(
H−1(e− es)

)]2
f(es;θ)des

(A.8)

= h−d
∫
Rd
K2 (ω) f(e;θ)dω +O(h1−d),

and the second term expands as

{
E
[
|H|−1K

(
H−1(e− es)

)]}2
=

{
f (e;θ) +

1

2
h2tr(AAT∇2f (e;θ) +O(h4)

}2

(A.9)

= f 2 (e;θ) +O(h2).

Therefore, for the variance in (A.7) to vanish, we require that h→ 0 and

nhd →∞ as n→∞.

In summary, f̂n (e;θ)
m.s.→ f(e;θ) and f̂n (e;θ)

p→ f(e;θ) when h→ 0 and

nhd →∞ as n→∞.

A.2 Proof of Proposition 9

Definition 13. f̂n (e;θ) uniformly converges in probability to f(e;θ) if for

every ε > 0,

P
[
sup
e

∣∣∣f̂n (e;θ)− f(e;θ)
∣∣∣ < ε

]
= 1. (A.10)
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We provide the following proof in light of Theorem 3A in Parzen (1962).

To show (A.10) is equivalent to show that

lim
n→∞

√
E
[
sup
e

∣∣∣f̂n (e;θ)− f(e;θ)
∣∣∣2] = 0. (A.11)

It follows from Proposition 8 that, when h→ 0,

lim
n→∞

sup
e

∣∣∣E [f̂n (e;θ)
]
− f(e;θ)

∣∣∣ = 0.

Hence, to show (A.11), it suffi ces to show that

lim
n→∞

√
E
[
sup
e

∣∣∣f̂n (e;θ)− E
[
f̂n (e;θ)

]∣∣∣2] = 0. (A.12)

The Fourier transform F(τ ) of the density estimate f̂n (e;θ), when both

f̂n (e;θ) and F(τ ) are integrable, is defined as

F(τ ) =

∫
Rd
eiτ

T ef̂n (e;θ) de, τ∈Rd

= Ef̂n
[
eiτ

T e
]
.

Substituting f̂n (e;θ) in (3.7) into its Fourier transform, we have

F(τ ) =

∫
Rd
eiτ

T en−1|H|−1

n∑
s=1

K
(
H−1 [e− es(θ)]

)
de, τ∈Rd

= n−1

n∑
s=1

eiτ
T es

∫
Rd
eiHτ

T$K (ω) dω

= n−1

n∑
s=1

eiτ
T esK(Hτ ),
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where K(Hτ ) is the Fourier transform of K (ω) and ω= H−1 [e− es].

F(τ ) is integrable when K(Hτ ) is integrable. The integrability of F(τ )

implies that f̂n (e;θ) is uniformly continuous. According to the inversion

theorem of Fourier transform, f̂n (e;θ) can be written as

f̂n (e;θ) = (2π)−1

∫
Rd
e−iτ

T eF(τ )dτ , e ∈Rd (A.13)

= (2π)−1

∫
Rd
e−iτ

T en−1

n∑
s=1

eiτ
T esK(Hτ )dτ .

Let

φn(τ ) = n−1

n∑
s=1

eiτ
T es .

Taking expectation of (A.13), we have

E
[
f̂n (e;θ)

]
= (2π)−1

∫
Rd
e−iτ

T eE [φn(t)]K(Hτ )dτ ,

and so,

f̂n (e;θ)− E
[
f̂n (e;θ)

]
= (2π)−1

∫
Rd
e−iτ

T e {φn(τ )− E [φn(τ )]}K(Hτ )dτ .

The triangle inequality yields that
∣∣∣e−iτT e∣∣∣ ≤ 1, and hence

sup
e

∣∣∣f̂n (e;θ)− E
[
f̂n (e;θ)

]∣∣∣ = (2π)−1

∫
Rd
|φn(τ )− E [φn(τ )]| |K(Hτ )| dτ .

The quantity in (A.12) is then

√
E
[
sup
e

∣∣∣f̂n (e;θ)− E
[
f̂n (e;θ)

]∣∣∣2] = (2π)−1

∫
Rd

√
V ar[φn(τ )] |K(Hτ )| dτ ,



A.2. PROOF OF PROPOSITION 9 137

where V ar[φn(τ )] = E
[
|φn(τ )− E [φn(τ )]|2

]
due to the complex component

involved. Let us rewrite the complex component in φn(τ ) as

eiτ
T es = cos(τ Tes) + i sin(τ Tes).

Hence,

V ar(eiτ
T es) = V ar(cos(τ Tes)) + V ar(sin(τ Tes))

≤ E
[
cos2(τ Tes) + sin2(τ Tes)

]
= 1.

Because es are i.i.d., we have

V ar[φn(τ )] = n−2

n∑
s=1

V ar(eiτ
T es) ≤ 1

n
.

It follows then that

√
E
[
sup
e

∣∣∣f̂n (e;θ)− E
[
f̂n (e;θ)

]∣∣∣2]
≤ (2π)−1n−1/2

∫
Rd
|K(Hτ )| dτ

= (2π)−1n−1/2 |H|−1

∫
Rd
|K(x)| dx,

where x = Hτ . For this value to vanish, we require that and nh2d → ∞ as

n→∞.

In summary, f̂n (e;θ) converges uniformly in probability to f(e;θ) if

(i) f̂n (e;θ) is uniformly continuous,
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(ii) the Fourier transforms of f̂n (e;θ) and K (H−1 [e− es]) exist, and

(iii) nh2d →∞ as n→∞..

A.3 Proof of Proposition 10

We need the following lemmata to prove the consistency of the one-step

MSMLE:

Lemma 2. Let (Ω, F ) be a measurable space, where Ω is the sample space

and F is the sigma-algebra generated by Ω. Let τ be an arbitrary real-

valued function on Ω × Θ. If τ(x,θ) is measurable in x for every θ in Θ

and continuous in θ for every x in Ω, and Θ is compact, then there exists

a measurable function which maps Ω to Θ. (See the proof of Lemma 2 in

Jennrich (1969)).

Lemma 3. Consider a probability space (Ω, F, {Pθ : θ ∈ Θ}), where Ω is the

sample space, F is the sigma-algebra generated by Ω, Θ ⊆ Rk is a non-empty

parameter set and {Pθ : θ ∈ Θ} is a family of probability measures. Suppose

that g(x,θ) is measurable in x for every θ ∈ Θ and continuous in θ for every

x ∈ Ω, and Θ is compact. Let Γ denote the set of all measurable functions

mapping Ω to Θ. If for any θ ∈ Θ, there exists a map γ(x) ∈ Γ such that

γ−1(θ) is a measurable set, then

sup
θ∈Θ

E[g(x,θ)] = E[sup
θ∈Θ

g(x,θ)], (A.14)

where the expectation is taken over x. (The proof of lemma is in Appendix

A.6.)
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Let us define

ID(u,θ) = ln f̂n (u;θ)− ln f̂n (u;θ∗) . (A.15)

The semiparametric log-likelihood l̂(θ|u) = 1
n

∑n
t=1 ln f̂n (ut;θ) is continuous

in θ, hence ID(u,θ) is continuous in θ.

Assumption 2 (Identification) indicates that, f̂n (u;θ) 6= f̂n (u;θ∗) for

any θ 6=θ∗. By Kullback-Leibler information inequality for density functions

(Gibbs 1902), We have

Eθ∗ [ID(u,θ)] = Eθ∗
[
ln f̂n (u;θ)− ln f̂n (u;θ∗)

]
(A.16)

= Eθ∗
[

ln
f̂n (u;θ)

f̂n (u;θ∗)

]

≤ lnEθ∗
[
f̂n (u;θ)

f̂n (u;θ∗)

]

= ln

[∫
Ω

f̂n (u;θ)

f̂n (u;θ∗)
f̂n (u;θ∗) du

]

= ln 1 = 0

with equality when θ=θ∗.

Let

U(θ) := sup
θ∈Θ
|ID(u,θ)| ,

then

E[U(θ)] = E
[
sup
θ∈Θ
|ID(u,θ)|

]
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≤ E
[
sup
θ∈Θ

∣∣∣ln f̂n (u;θ)
∣∣∣]+ E

∣∣∣ln f̂n (u;θ∗)
∣∣∣ .

E[U(θ)] is finite if and only if E
[
sup
θ∈Θ

∣∣∣ln f̂n (u;θ)
∣∣∣] and E ∣∣∣ln f̂n (u;θ∗)

∣∣∣ are
finite.

According to Lemma 2 and 3 in this section, the first term above becomes

E
[
sup
θ∈Θ

∣∣∣ln f̂n (u;θ)
∣∣∣] = sup

θ∈Θ

[
E
∣∣∣ln f̂n (u;θ)

∣∣∣] . (A.17)

E
∣∣∣ln f̂n (u;θ)

∣∣∣ expands as follows:
E
∣∣∣ln f̂n (u;θ)

∣∣∣ = E
∣∣∣∣−1

2
ln |Σt(θ)|+ ln f̂n (e;θ)

∣∣∣∣ (A.18)

≤ 1

2
E |ln |Σt(θ)||+ E

∣∣∣ln f̂n (e;θ)
∣∣∣ .

We first need to show that E |ln |Σt(θ)|| < ∞. Σt(θ) (θ) is a positive-

definite covariance matrix, hence |Σt(θ)| > 0 and ln |Σt(θ)| > −∞. Let λi

be the eigenvalues of Σt(θ), where i = 1, 2, ..., d. All λi are positive. Then

we have

ln |Σ (θ) | = ln
d∏
i=1

λi =
d∑
i=1

lnλi

≤
d∑
i=1

λi = tr [Σt(θ)] .

By the squared integrability of u, E {vech [Σt(θ)] |} <∞ and hence ln |Σt(θ)| ≤

tr [Σt(θ)] <∞ (Williams 1991).

We now show that E
∣∣∣ln f̂n (e;θ)

∣∣∣ < ∞. The density estimate f̂n (e;θ) is
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always positive. For 0 < f̂n (e;θ) ≤ 1, we have −∞ < ln f̂n (e;θ) ≤ 0 and

0 ≤ E
∣∣∣ln f̂n (e;θ)

∣∣∣ < ∞. We have shown in Proposition 8 that f̂n (e;θ)
p→

f (e;θ) pointwise when nh → ∞ and h → 0. The true density f(e,θ) is

assumed to be finite. Hence when f̂n (e;θ) > 1, we have

E
[
ln f̂n (e;θ)

]
≤ lnE

[̂
fn (e;θ)

]
= ln f (e;θ) <∞.

Recall the assumption that f̂n (e;θ) is continuous in θ for every e in the

sample space. In addition, Σt(θ) is continuous in θ. Hence, f̂n (u;θ) =

|Σt(θ)|−1/2f̂n (e;θ) and ln f̂n (u;θ) are continuous in θ for every u in Ω. We

now have

E[U(θ)] ≤ E
[
sup
θ∈Θ

∣∣∣ln f̂n (u;θ)
∣∣∣+
∣∣∣ln f̂n (u;θ∗)

∣∣∣]
= sup
θ∈Θ
E
[∣∣∣ln f̂n (u;θ)

∣∣∣]+ E
∣∣∣ln f̂n (u;θ∗)

∣∣∣
<∞,

and so
1

n

n∑
t=1

ID(ut,θ)
a.s.→Eθ∗ [ID(u,θ)] , uniformly. (A.19)

To show the weak consistency of θ̂1SMLE, we define a compact set S :=

{θ ∈ Θ : ‖θ−θ∗‖ ≥ ρ, ∀ρ > 0}, which is a subset of Θ. By the identification

condition in (A.16), we have

sup
θ∈S

1

n

n∑
t=1

ID(ut,θ) < 0 with probability 1.
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Therefore, the θ̂1SMLE, which maximizes 1
n

∑n
t=1 ID(ut,θ) and hence maxi-

mizes 1
n

∑n
t=1 ln f̂n (ut;θ), is not in S, so that

lim
n→∞

Pr(
∥∥∥θ̂1SMLE−θ∗

∥∥∥ ≥ ρ) = 0, ∀ρ > 0,

that is

θ̂1SMLE
p→θ∗ pointwise.

Let us now define a compact set S ′ := {θ ∈ Θ : ‖θ−θ∗‖ ≤ ρ, ∀ρ > 0},

which is also a subset of Θ. Strong consistency of θ̂1SMLE requires

Pr( lim
n→∞

∥∥∥θ̂1SMLE−θ∗
∥∥∥ < ρ) = 1, ∀ρ > 0 (A.20)

If (A.20) does not hold, there exists a non-null set

Z :=
{
θ̃ ∈ Θ : lim

n→∞
sup

∥∥∥θ̃−θ∗∥∥∥ > ρ,∀ρ > 0
}

. There also exists a non-null subset of Z that,

Z ′ ⊂ Z =
{
θ̃ ∈ Z : θ̃

a.s.→θ ∈ S ′
}
.

We then have

lim
n→∞

supEθ∗
[
ID(u,θ̃)

]
≤ Eθ∗

[
lim
n→∞

sup
θ̃∈Z′

ID(u,θ̃)

]

= Eθ∗
θ∈S′

[ID(u,θ)] ≤ 0

= sup
θ∈S′

Eθ∗ [ID(u,θ)] .
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The above contradicts that 1
n

∑n
t=1 ID(ut,θ) = 0 if and only if θ=θ∗. There-

fore, θ̂1SMLE, which maximizes 1
n

∑n
t=1 ID(ut,θ) and hence maximizes 1

n

∑n
t=1 ln f̂n (ut;θ),

satisfies (A.20).

A.4 Proof of Proposition 11

The following proof is closely in line with pages 470 to 472 in (Hayashi 2000).

Suppose the semiparametric log-likelihood l̂n(θ|u) = 1
n

∑n
t=1 ln̂fn (ut;θ)

is twice continuously differentiable with respect to θ, and θ̂1SMLE is in the

interior of Θ. The first order derivative of ln̂fn (u;θ) with respect to θ is

the semiparametric score Ŝ defined in (3.13), and the second order derivative

of ln̂fn (u;θ) with respect to θ is the semiparametric Hessian Ĥ defined in

(3.14).

The mean value expansion of Ŝ(u, θ̂1SMLE) is

Ŝ(u, θ̂1SMLE) = Ŝ(u,θ∗) + Ĥ(u, θ̃)(θ̂1SMLE − θ∗), (A.21)

where θ̃ is the mean value lies between θ̂1SMLE and θ
∗. The estimate θ̂1SMLE

is obtained by maximizing l̂n(θ|u). Hence,

∂l̂n(θ|u)

∂θ

∣∣∣∣∣
θ=θ̂1SMLE

=
1

n

n∑
t=1

Ŝ(ut, θ̂1SMLE) = 0. (A.22)

If 1
n

∑n
t=1 Ĥ(ut, θ̃) is nonsingular, (A.21) and (A.22) together yield

√
n(θ̂1SMLE − θ∗) = −

[
1

n

n∑
t=1

Ĥ(ut, θ̃)

]−1
1√
n

n∑
t=1

ŝ(ut,θ
∗). (A.23)
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The Central Limit Theorem implies that

√
nQ−1/2

{
1

n

n∑
t=1

Ŝ(ut,θ
∗)− E

[
Ŝ(u,θ∗)

]}
Dist→ N(0, Id), (A.24)

where Q−1/2 is the lower-triangular Cholesky decomposition of the covariance

of Ŝ(u,θ∗). The true parameter θ∗ maximizes l̂n(θ|u) by definition. Hence,

it is reasonable to assume that the expectation of the score evaluated at

the true parameter equals 0, that is E
[
Ŝ(u,θ∗)

]
= 0. Let us also assume

that 1
n

∑n
t=1 Ĥ(ut, θ̃)

p→ −J (J = −E
[
Ĥ(u,θ∗)

]
) in the neighborhood of θ∗.

Combining (A.24) and (A.23), by Slutsky’s theorem we have

√
n(θ̂1MSMLE − θ∗)

Dist→ N(0, J−1QJ−1)

as in (3.17).

A.5 Proof of Proposition 12

Continued from Theorem 11, we need the following theorem to prove the

effi ciency of the one-step SMLE.

Theorem 14. Suppose that {gn(x)} is a sequence of functions, which are

differentiable on [a, b] within the domain of x and such that {gn(x)} con-

verges for some point x0 on [a, b]. If {g′n(x)} converges uniformly on [a, b],

then {gn(x)} converges uniformly on [a, b] to a function g(x), and {g′n(x)}

converges uniformly on [a, b] to g′(x). (See Theorem 7.17 and the following

proof in Rudin (1976))
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The one-step SMLE θ̂1SMLE is asymptotically effi cient, if its asymptotic

covariance achieves the inverse of the Fisher Information, which is the lower

bound of covariance of estimates (Cramér 1946).

Let us now assume that f (u;θ) is twice continuously differentiable. The

first order derivative of ln f (u;θ) with respect to θ as the score that

S(u,θ) =
∂ ln f (u;θ)

∂θ
. (A.25)

It follows that

E [S(u,θ)] =

∫
Rd

∂ ln f (u;θ)

∂θ
f (u;θ) du

=
∂

∂θ

∫
Rd
f (u;θ) du = 0,

and so E [S(u,θ∗)] = 0 when θ=θ∗. The second order derivative of ln f (u;θ)

with respect to θ is that

H(u,θ) =
∂s(u,θ)

∂θT
=
∂2lnf(u;θ)

∂θ∂θT
. (A.26)

The Fisher Information is given by

I(θ∗) = E
[
S(u,θ∗)S(u,θ∗)T

]
= −E [H(u,θ∗)] . (A.27)

We first show that Ŝ(u,θ)
p→ S(u,θ) uniformly. Suppose that the condi-

tions in Proposition 9 are satisfied. We then have

sup

∣∣∣∣∣ f̂n (u;θ)

f (u;θ)
− 1

∣∣∣∣∣ p→ 0. (A.28)
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The Taylor expansion of
[
f (u;θ) /f̂n (u;θ)

]
around f̂n (u;θ) = f (u;θ) is

f (u;θ)

f̂n (u;θ)
= 1 +

∑∞

k=1
(−1)k

1

(k − 1)!

f (u;θ)

f̂n (u;θ)

[
f̂n (u;θ)− f (u;θ)

f̂n (u;θ)

]k
. (A.29)

Multiplying both hand-sides of (A.29) by
[
f̂n (u;θ) /f (u;θ)

]
and rearranging,

we have
f̂n (u;θ)

f (u;θ)
− 1 = O

(
f̂n (u;θ)− f (u;θ)

f̂n (u;θ)

)
, (A.30)

if we assume that f̂n (u;θ) is close to f (u;θ) such that

∣∣∣∣∣ f̂n (u;θ)− f (u;θ)

f̂n (u;θ)

∣∣∣∣∣ < 1.

Comparing (A.28) and (A.30), it follows that

sup

∣∣∣∣∣ f̂n (u;θ)− f (u;θ)

f̂n (u;θ)

∣∣∣∣∣ p→ 0,

that is,
f (u;θ)

f̂n (u;θ)

p→ 1 uniformly.

Similarily,

ln f̂n (u;θ)
p→ ln f (u;θ) uniformly

when

f (u;θ)

f̂n (u;θ)

p→ 1 uniformly.
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According to Theorem 14, for

∂ ln f̂n (u;θ)

∂θ

p→ ∂ ln f (u;θ)

∂θ
uniformly, (A.31)

we require an addition assumption that ∂K (ω) /∂θ converges uniformly on

Θ. The uniform convergence in probability of Ŝ(u,θ) to S(u,θ) is the direct

result of (A.31), which also yields that

E
[
Ŝ(u,θ)

]
p→ E [S(u,θ)] = 0, (A.32)

and

Cov
[
Ŝ(u,θ)

]
p→ Cov [S(u,θ)] = I(θ∗). (A.33)

The convergence of the semiparametric Hessian that

Ĥ(u,θ)
p→H(u,θ) uniformly

also holds if both ∂ lnK (ω) /∂θ and ∂2 lnK (ω) /∂θ∂θT converge uniformly

on the parameter space Θ. The uniform convergence in probability of Ĥ(u,θ)

to H(u,θ) yields that

E
[
Ĥ(u,θ∗)

]
p→ E [H(u,θ∗)] = −I(θ∗). (A.34)

Combining conditions (A.33) and (A.34), by Slutsky’s theorem, (3.17)

becomes
√
n(θ̂1MSMLE − θ∗)

Dist→ N(0, I−1(θ∗))
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as in (3.18).

A.6 Proof of Lemma 3

Recall the definitions of notations in Lemma 3. According to Lemma 2,

(A.14) can be written as

sup
γ(·)∈Γ

E[g(x, γ(x))] = E[sup
θ∈Θ

g(x,θ)]. (A.35)

Let

ς(x) := sup
θ∈Θ

g(x,θ),

and {θi}i≥1 be a countable dense set in Θ. Then

ς(x) = sup
i≥1

g(x,θi).

Let γ0 ∈ Γ such that ς(x) is bounded below by g(x, γ0(x)). It follows that

E[supθ∈Θ g(x,θ)] is well defined.

It follows that (A.35) always holds if the expectations are +∞. We may

assume the expectations on both hand-sides of (A.35) are finite.

Since g(x,θ) is continuous in θ and the set {θi}i≥1 is dense in Θ, for any

ε ∈ R+ and any x ∈ Ω, there exists a number j(x) such that

g(x,θj(x)) > ς(x)− ε,

for all i ≥ j.
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We now show the function x 7→ θj(x) is measurable, that is, we show

W := {x ∈ Ω : θj(x) ∈ V }

is measurable for any open set V ⊆ Θ.

Let {θjk}k≥1 be a subsequence in {θj}, then

W =
⋃
k≥1

{x ∈ Ω : θjk = θj(x)},

where

{x ∈ Ω : θjk = θj(x)}

=
k−1⋂
l=1

{x ∈ Ω : g(x,θjl) ≤ ς(x)− ε}
⋂
{x ∈ Ω : g(x,θjk) > ς(x)− ε}.

This shows that W is a countable union of intersections of measurable sets

and hence is measurable.

For an arbitrary m ∈ R+, let

Ωm := {x ∈ Ω : ||θj(x)|| < m}

and

γm(x) :=

 θj(x) : x ∈ Ωm

γ0(x) : x ∈ Ωc
m

.

Thus, γm ∈ Γ, where Γ denote the set of all measurable functions mapping

Ω to Θ.
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We now have

sup
γ∈Γ

E[g(x, γ(x))] ≥ E[g(x, γm(x))]

= E
[
g(x,θj(x))1lΩm(x)

]
+ E

[
g(x, γ0(u))1lΩcm(x)

]
≥ E[(ς(x)− ε)1lΩm(x)] + E

[
g(x, γ0(u))1lΩcm(x)

]
.

where 1lΩm(x) = 1 if x ∈ Ωm and 0 otherwise. By the monotone convergence

theorem, we have

E[(ς(x)− ε)1lΩm(x)] + E[g(x, γ0(x))1lΩcm(x)]→ E[(ς(x)]− ε

when m→ +∞. We note that ε ∈ R+ is arbitrary, so

sup
γ∈Γ

E[g(x, γ(x))] ≥ E[(ς(x)] = E[sup
θ∈Θ

g(x,θ)].

Since supγ∈Γ E[g(x, γ(x))] is the least upper bound of E[g(x, γ(x))] and it is

not less than E[supθ∈Θ g(x,θ)], the above becomes

sup
γ∈Γ

E[g(x, γ(x))] = E[sup
θ∈Θ

g(x,θ)],

that is

sup
θ∈Θ

E[g(x,θ)] = E[sup
θ∈Θ

g(x,θ)].

A.7 Detailed Working for Page 63 to 64

The estimated (or empirical) density of the standardized errors e is given by
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f̂n (e;θ) = n−1|H|−1

n∑
s=1

K
(
H−1(e− es)

)
,

Consider a Gaussian kernel in (3.19), given by

K
(
H−1(e− es)

)
= (2π)−d/2 |H|−1 exp

(
−1

2
(e− es)

TH−2(e− es)

)
.

We require et to be i.i.d. with a mean of 0 and a covariance matrix of Id.

Scott’s rule of thumb in Rd (Equation (6.42) in Scott (1992)) suggests that

an appropriate choice of H for a Gaussian kernel is

H̃ = n−1/(d+4)Id.

Substituting (3.19) and (3.21) into (3.7), we have the estimated density

as

f̂n (e;θ) = n−1|H̃|−1

n∑
s=1

K
(
H̃−1(e− es)

)
= n−1|H̃|−1

n∑
s=1

(2π)−d/2
∣∣∣H̃∣∣∣−1

exp

[
−1

2
(e− es)

T H̃−2(e− es)

]
= n−1|H̃|−2(2π)−d/2

n∑
s=1

exp

[
−1

2
(e− es)

T H̃−2(e− es)

]
.

where ∣∣∣H̃∣∣∣ =
∣∣n−1/(d+4)Id

∣∣ = n−d(d+4).

Hence, the estimated density becomes
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f̂n (e;θ) = n−1
(
n
−d
d+4

)−2

(2π)−d/2
n∑
s=1

exp

[
−|H̃|

− 2
d

2
(e− es)

T (e− es)

]

= n−
d−4
d+4 (2π)−d/2

n∑
s=1

exp

(
−n

2
d+4

2
(e− es)

T (e− es)

)
,

as in (3.22).

Substituting the above estimated density into (3.6), we have the semi-

parametric log-likelihood as becomes

l̂n(θ|u) =
1

n

n∑
t=1

ln
[
|Σt|−1/2f̂n (e;θ∗)

]
=

1

n

n∑
t=1

{
−1

2
ln |Σt|+ ln

[
f̂n (e;θ∗)

]}

=
1

n

n∑
t=1

[
−1

2
ln |Σt|

]
+

1

n

n∑
t=1

 −d−4
d+4

lnn− d
2

ln 2π+

ln
n∑
s=1

exp

(
−n

2
d+4

2
(et − es)

T (et − es)

)


=


− 4
d+4

lnn− d
2

ln(2π)

+ 1
n

n∑
t=1

[
−1

2
ln |Σt|+ ln

n∑
s=1

exp
(
−n2/(d+4)

2
(et − es)

T (et − es)
)]

as in (3.35).
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Detailed Working for Chapter 4

B.1 Detailed Derivations for Section 4.3

B.1.1 The Next PeriodWealth for Given Targeted Port-

folio Return

The first two moments of next period wealth Wt+1 are given by (4.5) and

(4.6) as

E(Wt+1) = E(Wt) +Kt+1 +
∫
µtWtp(Wt)dWt,

and

E(W 2
t+1) =

 E(W 2
t ) + 2Kt+1E(Wt+1)−K2

t+1

+
∫

(2µt + σ2
t + µ2

t )W
2
t p(Wt)dWt

 .
Substitute the targeted portfolio return µt = βt/Wt + αt into the above

two moments of Wt+1 we acquire

E(Wt+1) = E (Wt) +Kt+1 +

∫ (
βt
Wt

+ αt

)
Wtp(Wt)dWt

153
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= E (Wt) +Kt+1 +

∫
βtp(Wt)dWt + αt

∫
Wtp(Wt)dWt

= (1 + αt)E(Wt) + βt +Kt+1

= utE(Wt) + bt,

and

E(W 2
t+1) =

 E(W 2
t ) + 2Kt+1E(Wt+1)−K2

t+1

+
∫

(2µt + σ2
t + µ2

t )W
2
t p(Wt)dWt


=


E(W 2

t ) + 2Kt+1 [(1 + αt)E(Wt) + βt +Kt+1]−K2
t+1

+
∫  2(1 + ψt)

(
βt
Wt

+ αt

)
+(1 + ϕt)

(
βt
Wt

+ αt

)2

+ χt

W 2
t p(Wt)dWt


=


E(W 2

t ) + 2(1 + αt)Kt+1E(Wt) + 2βtKt+1 +K2
t+1

+2(1 + ψt) [αtE(W 2
t ) + βtE(Wt)]

+(1 + ϕt)
[
β2
t + 2αtβtE(Wt) + α2

tE(W 2
t )
]

+ χtE(W 2
t )


=


[(1 + αt)

2 + 2ψtαt + ϕtα
2
t + χt]E(W 2

t )

+ [2(1 + αt)(Kt+1 + βt) + 2βt(ψt + αtϕt)]E(Wt)

+(βt +Kt+1)2 + ϕtβ
2
t


=


[
1 + χt −

(1+ψt)
2

1+ϕt

]
E(W 2

t ) + 2(1 + αt)Kt+1E(Wt)

+(βt +Kt+1)2 + ϕtβ
2
t


= vtE(W 2

t ) + ptE(Wt) + qt,

where the constants at time t are:

ut = 1 + αt,
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bt = βt +Kt+1,

vt = 1 + χt −
(1 + ψt)

2

1 + ϕt
,

pt = 2(1 + αt)Kt+1, and

qt = (βt +Kt+1)2 + ϕtβ
2
t .

as in (4.13) and (4.14).

B.1.2 The Lagrangian for Minimizing Variance of Ter-

minal Wealth

The approximated (or estimated) Lagrangian, evaluated at time t for min-

imizing the second of terminal wealth Êt(W 2
N) (given in (4.19)) for a given

level of first moment of terminal wealth Êt(WN) (given in (4.18)) is

L̂t =


∑N−t−1

i=0

[(
pt+iÊt(Wt+i) + qt+i

)
vN−t−1−i
t

]
+ Et(W 2

t )vN−tt

−2λ
(N)
t

[∑N−t−1
i=0 bt+iu

N−t−1−i
t + Et(Wt)u

N−t
t

]


as in (4.20).

Consider a small variation in βt, ∆βt. We have

∆bt = ∆βt,

∆qt = 2 [(1 + ϕt)βt +Kt+1] ∆βt, and

∆Êt(Wt+i) =
i−1∑
s=0

∆βt+su
i−1−s
t .



156 APPENDIX B. DETAILED WORKING FOR CHAPTER 4

Hence, the first order variation in the approximated Lagrangian due to

the small variation ∆βt is

∆L̂t =


∑N−t−1

i=0 vN−t−1−i
t

[(
pt+i∆Êt(Wt+i) + ∆qt+i

)]
−2λ

(N)
t

N−t−1∑
i=0

uT−t−1−i
t ∆βt+i



=



N−t−1∑
i=1

vN−t−1−i
t pt+i

(
i−1∑
s=0

ui−1−s
t ∆βt+s

)
+2

N−t−1∑
i=0

vN−t−1−i
t

[
(1 + ϕt)βt+i +Kt+i+1

]
∆βt+i

−2λ
(N)
t

∑N−t−1
i=0 ∆βt+iu

N−t−1−i
t



=



N−t−2∑
i=0

∆βt+i
N−t−1∑
s=i+1

pt+su
s−1−i
t vN−t−1−s

t

+2
N−t−1∑
i=0

vN−t−1−i
t

[
(1 + ϕt)βt+i +Kt+i+1

]
∆βt+i

−2λ
(N)
t

∑N−t−1
i=0 ∆βt+iu

N−t−1−i
t


as in (4.21).

We require


N−t−1∑
s=i+1

pt+su
s−1−i
t vN−t−1−s

t

+2vN−t−1−i
t

[
(1 + ϕt)βt+i +Kt+i+1

]
− 2λ

(N)
t uN−t−1−i

t

 = 0

for the Lagrangian to be at a minimum, that it is insensitive to ∆βt+i. Re-

arrange this condition, we have

(1 + ϕt)βt+i =
[
2vN−t−1−i

t

]−1


2λtu

N−t−1−i
t

−
N−i−1∑
s=i+1

pi+su
s−1−t
i vN−i−1−s

i

−Kt+i+1
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= λ
(N)
t

(
ut
vt

)N−t−1−i

−
N−t−1∑
s=i+1

utKt+s+1u
s−1−i
t v

N−t−1−s−(N−t−1−i)
t −Kt+i+1

= λ
(N)
t

(
ut
vt

)N−t−1−i

−
N−t−1∑
s=i

Kt+s+1

(
ut
vt

)s−i
, for t < T − 1.

as in (4.22).

λ
(N)
t can be retrieved from Êt(WN). Substituting βt+i (λ

(N)
t ) into Êt(WN)

in (4.18), we have

Êt(WN) =
N−t−1∑
i=0

bt+iu
N−t−1−i
t + Et(Wt)u

N−t
t

=
N−t−1∑
i=0

(
βt+iu

N−t−1−i
t

)
+

N−t−1∑
i=0

(
Kt+i+1u

N−t−1−i
t

)
+ Et(Wt)u

N−t
t

=


λ
(N)
t

1+ϕt

N−t−1∑
i=0

(
u2t
vt

)N−t−1−i
+
∑N−t−1

i=0

(
Kt+i+1u

N−t−1−i
t

)
+ Et(Wt)u

N−t
t

− 1
1+ϕt

∑N−t−1
i=0

∑N−t−1
s=i Kt+s+1

(
ut
vt

)s−i
uN−t−1−i
t


=


λ
(N)
t

1+ϕt

N−t∑
i=1

(
u2ti
vt

)N−t−i
+
∑N−t

i=1

(
Kt+iu

N−t−i
t

)
+ Et(Wt)u

N−t
t

− 1
1+ϕt

∑N−t
i=1 uN−t−it

∑N−t
s=i Kt+s

(
ut
vt

)s−i


=


λ
(N)
t

1+ϕt

[(
u2t
vti

)N−t
− 1

]
(
u2t
vt
− 1)−1 +

∑N−t
i=1

(
Kt+iu

N−t−i
t

)
+ Et(Wt)u

N−t
t

− 1
1+ϕt

∑N−t
i=1 Kt+i

(
ut
vt

)i∑i
s=1 u

N−t−s
t

(
ut
vt

)−s


=


λ
(N)
t

1+ϕt

[(
u2t
vt

)N−t
− 1

]
(
u2t
vt
− 1)−1 +

∑N−t
i=1

(
Kt+iu

N−t−i
t

)
+ Et(Wt)u

N−t
t

− 1
1+ϕt

∑N−t
i=1 Kt+i

(
ut
vt

)i∑i
s=1 u

N−t
t

(
u2t
vt

)−s


=


λ
(N)
t

1+ϕt

[(
u2t
vt

)N−t
− 1

]
(
u2t
vt
− 1)−1 +

∑N−t
i=1

(
Kt+iu

N−t−i
t

)
+ Et(Wt)u

N−t
t

− 1
1+ϕt

∑N−t
i=1 Kt+iu

N−t
t vt

[
1−

(
u2t
vt

)−i]
(u2

t − vt)
−1


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=


λ
(N)
t

1+ϕt

[(
u2t
vt

)N−t
− 1

]
(
u2t
vt
− 1)−1 +

∑N−i
t=1

(
Kt+iu

N−t−i
t

)
+ Et(Wt)u

N−t
t

− 1
1+ϕt

∑N−t
i=1 Kt+iu

N−t
t vt

[(
ut
vt

)t
− u−it

]
(u2

t − vt)
−1


=


λ
(N)
t

1+ϕi

[(
u2t
vt

)N−t
− 1

]
(
u2t
vt
− 1)−1 + Et(Wt)u

N−t
t

+uN−tt

∑N−t
i=1 Kt+i

(
u−tt − vt

1+ϕt

1
u2t−vt

[(
ut
vt

)i
− u−it

])


=


λ
(N)
t

1+ϕt

[(
u2t
vt

)N−t
− 1

]
(
u2t
vt
− 1)−1 + Et(Wt)u

N−t
t

+uN−tt

(
1 + 1
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vt
u2t−vt
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i=1 Kt+iu

−i
t −

uN−tt

1+ϕt

vt
u2t−vt

∑N−t
i=1

(
ut
vt

)i
Kt+i

 .

Rearranging the above equation, we acquire

λ
(N)
t =

(1 + ϕt)(
u2t
vt
− 1)(

u2t
vt

)N−t
− 1

 Êt(WN)− E(Wt)u
N−t
t − uT−tt

1+ϕt

vt
u2t−vt

∑N−t
i=1

(
ut
vt

)i
Kt+i

+uN−tt

(
1 + 1

1+ϕt

vti
u2t−vt

)∑N−t
i=1 Kt+iu

−i
t


as in (4.23). Note that in the derivation of Êt(WN) in terms of λ(N)

t , we have

used the fact that
t∑

s=1

a−s =
1− a−t
a− 1

.

B.2 Some Detailed Derivations for Section 4.4

We adopt a VAR(1)-MGARCH(1,1) return model outlined in (4.24) as

rt = γ + Crt−1 + vt,

vt = Σ
1/2
t et,

Σt=AT
0 A0+AT

1 vt−1v
T
t−1A1+BT

1 Σt−1B1,
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where rt is a vector of asset returns at time t, et are independently identically

distributed (i.i.d.) standard normal innovations and Σt is the covariance

matrix of returns.

Substituting the return process into the recursive relation of portfolio

wealth in (4.1),the first two moments of next period wealth are

E(Wt+1) = E
[
(1 + wT

t rt)Wt

]
+Kt+1

=

∫ ∫ [
1 + wT

t

(
γ + Crt−1

)]
Wtp(rt−1,Wt)dWtdrt−1 +Kt+1

= E(Wt) +

∫ ∫
wT
t

(
γ + Crt−1

)
Wtp(rt−1,Wt)dWtdrt−1 +Kt+1,

and

E(W 2
t+1) = E

{[
(1 + wT

t rt)Wt +Kt+1

]2}
= E

[
(1 + wT

t rt)
2W 2

t + 2(1 + wT
t rt)Kt+1Wt +K2

t+1

]
= E

[
(1 + 2wT

t rt +
(
wT
t rt
)2

)W 2
t

]
+ E

[
2(1 + wT

t rt)Kt+1Wt +K2
t+1

]
= E

[
(2wT

t rt +
(
wT
t rt
)2

)W 2
t

]
+ E

(
W 2
t

)
+ 2Kt+1E(Wt+1)−K2

t+1

=


∫ ∫ [
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(
wT
t

(
γ + Crt−1 + vt

))]2
W 2
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)
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2wT
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γ + Crt−1
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E(W 2
t ) + 2Kt+1E(Wt+1)−K2

t+1
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,
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as in (4.25) and (4.26).



Bibliography

Amin, G. and H. Kat (2003). Hedge fund performance 1990-2000: Do the

"Money Machines" really add value? Journal of Financial and Quantitative

Analysis 38 (2), 251—274.

Anderson, K., C. Brooks, and A. Katsaris (2010). Speculative bubbles in

the S&P 500: Was the tech bubble confined to the tech sector? Journal of

Empirical Finance 17, 345—361.

Andreou, E. and E. Ghysels (2001). Rolling-sample volatility estimators:

some new theoretical, simulation and empirical results. Journal of Business

and Economic Statistics 20, 363—376.

Basu, A. and M. Drew (2009). Portfolio size effect in retirement accounts:

what does it imply for lifecycle asset allocation funds?

Bellman, R. (1957). Dynamic Programming. U.S.A.: Princeton University

Press.

Black, F. and M. Scholes (1973). The pricing of options and corporate

liabilities. The Journal of Political Economy 81 (3), 637—654.

161



162 BIBLIOGRAPHY

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedas-

ticity. Journal of Econometrics 31 (3), 307—327.

Bollerslev, T. (1987). A conditional heteroskedastic time series model for

speculative prices and rates of return. The Review of Economics and Sta-

tistics 69, 542—47.

Bone, S. and A. Goddard (2009, April). Rebalancing revisited. In the Insti-

tute of Actuaries of Australia 2009 Biennial Convention, Sydney. Institute

of Actuaries of Australia.

Brennan, M. J., E. S. Schwartz, and R. Lagnado (1997). Strategic asset

allocation. Journal of Economic Dynamics and Control 21, 1377—1403.

Brown, P., D. Walsh, and A. Yuen (1997). The interaction between order

imbalance and stock price. Pacific-Basin Finance Journal 5, 539—557.

Carr, P., H. Geman, and D. Madan (2002). The fine structure of asset

returns: An empirical investigation. Journal of Business 75 (2), 305—332.

Cecchetti, S., A. Flores-Lagunes, and S. Krause (2005, July). Assessing the

sources of changes in the volatility of real growth. In The Changing Nature

of the Business Cycle, Canberra. Reserve Bank of Australia.

Chan, K. and W.-M. Fong (2000). Trade size, order imbalance and the

volatility-volume relation. Journal of Financial Economics 57, 247—273.

Chan, K., G. Karolyi, F. Longstaff, and A. Sanders (1992). An empirical

comparison of alternative models of the short-term interest rate. Journal of

Finance 47 (3), 1209—1227.



BIBLIOGRAPHY 163

Cheng, M. (2003). Pretrade cost analysis and management of implementa-

tion shortfall. In AIMR Conference Proceedings, Number 7, pp. 26—34.

Chiarella, C., C. Y. Hsaio, and W. Semmler (2007). Intertemporal in-

vestment strategies under inflation risk. Technical Report Working Paper,

University of Technology Sydney.

Chordia, T., R. Roll, and A. Subrahmanyam (2002). Order imbalance,

liquidity, and market returns. Journal of Financial Economics 65, 111—130.

Chordia, T. and A. Subrahmanyam (2004). Order imbalance and individual

stock returns: theory and evidence. Journal of Financial Economics 72 (3),

458—518.

Cox, J. and H. Leland (2000). On dynamic investment strategies. Journal

of Economic Dynamics and Control 24 (11-12), 1859—880.

Cox, J. C. and S. A. Ross (1976). The valuation of options for alternative

stochastic processes. Journal of Financial Economics 3 (1-2), 145—166.

Cramér, H. (1946). Mathematical Methods of Statistics. U.S.A.: Princeton

University Press.

Cvitanic, J., V. Polimenis, and F. Zapatero (2008). Optimal portfolio allo-

cation with higher moments. Annals of Finance 4, 1—28.

Das, S. and R. Uppal (2004). Systemic risk and international portfolio

choice. The Journal of Finance 59 (6), 2809—2834.

Di, J. and A. Gangopadhyay (2013). One-step semiparametric estimation

of the GARCH model. Journal of Financial Econometrics 12 (2), 382—407.



164 BIBLIOGRAPHY

Diggle, J. and R. Brooks (2007). The target cash rate and its impact on

investment asset returns in Australial. Applied Financial Economics 17 (8),

615—633.

Dreyfus, S. E. (1965). Dynamic Programming And The Calculus of Varia-

tions. New York: Academic Press INC.
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