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Abstract

The brain represents the state of the world around us based upon a stream of
ambiguous sensory data. This requires the integration of different sources of
information, including information received from different sense modalities, and
information drawn from past experience. Bayesian theories of perception provide
an approach to characterising how systematic differences in the probabilistic
integration of information in the brain may underlie the differences that occur
between individuals in their perceptual experience. The present thesis explores
how perceptual, motor and social aspects of autism spectrum disorder (ASD) may
emerge from variation in the neurocognitive processes described by Bayesian
theories. A focus is on the predictive processing model of brain function, which

links Bayesian theories of perception to neural mechanisms.

The thesis includes empirical studies that examine perceptual, sensorimotor and
cognitive aspects of ASD. ASD and nonclinical autistic traits are first examined in
the context of body perception; concerning, specifically, how the brain represents
the state of the limbs based on visual, tactile and proprioceptive information, and
how this sensory information is integrated with prior expectations regarding the
body. These processes are investigated using a multisensory perceptual illusion:
the rubber hand illusion. ASD is associated with a largely typical perceptual
experience of this illusion, indicating intact multisensory integration in the context
of body representation. A reduced influence of the illusion on motor function,
however, supports a difference in ASD in the integration of expectations for limb
position (influenced by the illusion) with conflicting sensory (proprioceptive)

signals.

The integration of incoming information with existing expectations about the
environment is also examined in the context of statistical learning. A computerised
task is developed to assess the integration of iterative feedback with prior
information as participants predict the location of a noisy set of visual markers.
The hypothesis tested is that features of ASD are associated with a persistently

higher weighting of incoming information in driving inference, at the expense of



expectations developed from recent experience; in this more cognitive context,
these data provide evidence against this hypothesis, suggesting that a more
context-dependent atypicality in information processing in ASD is more likely than

that initially hypothesised.

The thesis also develops theoretical and philosophically-relevant treatments of
how the symptoms of ASD may emerge from differences in brain function
characterised within a Bayesian framework. This includes drawing on recent
theoretical developments regarding the role of volatility processing and action in
maintaining optimal inference on the environment. In addition, models of Bayesian
inference in the brain can be extended to the social domain. For instance, the
process of representing the mental states of other people (i.e., theory of mind) can
be cast in terms of implicit inference on the external causes of sensory signals. In
light of these expanded models of predictive processing, the differences in
information processing hypothesised to occur in ASD have implications not just for

perception, but also for motor behaviours, social cognition and social interaction.

The overall view that emerges is that diverse aspects of ASD may be captured in
terms of how incoming sensory signals are integrated, in a probabilistic manner,
with the brain’s hierarchical and multimodal model of its environment. A
promising direction for this field is in developing this idea in the context of action
(i.e., active inference) and more recent models of how the brain estimates the
optimal weighting of sensory information. This area of research has the potential
to provide a nuanced perspective on the neurocognitive basis of ASD and the

relationship between sensory mechanisms and autistic behaviours.
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Preface

Autism spectrum disorder (ASD) is a neuropsychiatric developmental condition
that is typically diagnosed at 3-4 years of age, and persists throughout life
(American Psychiatric Association, 2013; Lai, Lombardo, & Baron-Cohen, 2014).
Childhood is characterised by persistent deficits in social interaction, a strong
preference for routine, repetitive motor behaviours, and sensory sensitivities. The
precise presentation of these core diagnostic signs can differ considerably between
cases. Associated difficulties with language, motor skills, and general intellectual
functioning occur in some individuals who meet a diagnosis, but not others. In
adulthood, social and sensory difficulties persist, contributing to poor educational,
occupational, and relationship outcomes for the majority of those with ASD

(Henninger & Taylor, 2013; Levy & Perry, 2011).

ASD was first defined on the basis of common patterns of distinctive behaviours
exhibited in the child clinics of Hans Asperger and Leo Kanner in the 1940s. The
conception of ASD has continued to evolve with time, to encompass a broader
range of individuals who share similar characteristics, in recognition of sensory
aspects of the condition, and with greater awareness of how challenges in
childhood persist into adulthood (Silberman, 2015). Recent epidemiological
studies estimate that worldwide prevalence is around 1% or greater (Baxter et al,,
2015; Lai et al, 2014), with the most recent report of the Centres for Disease
Control and Prevention estimating a prevalence of 1 in 45 in the US population
(Zablotsky, Black, Maenner, Schieve, & Blumberg, 2015). ASD has a strong genetic
basis, though one that is highly complex and heterogeneous (Geschwind & State,
2015), and diagnosis is made on the basis of behavioural observation alone.
Critical insights into the physiological basis of ASD have emerged in part with the
application of neuroimaging in recent decades (Ecker, Bookheimer, & Murphy,
2015); however, the link between neural atypicalities and the psychological

symptoms of ASD are not yet well understood.



A recent trend in cognitive neuroscience is to draw upon Bayesian probability
theory to characterise perceptual and cognitive mechanisms, and to aid in
elucidating the physiological processes that realise these functions (e.g., Friston,
2005; Frith, 2007). The resulting picture of how the brain processes sensory
information can be considered across a broad range of brain functions and,
importantly, has promise in linking cognitive-, computational- and neural-level
descriptions of psychological phenomena. This framework is therefore appealing
for understanding how differences in our experience and interaction with the
world can emerge, both across individuals and between groups. The present thesis
explores how both social and non-social features of ASD can be understood within
a Bayesian framework, and how cognitive and neuroscience research into ASD can

be motivated and interpreted in this light.

Chapter 1 provides a simple introduction to Bayesian theories of brain function,
and reviews how systematic differences in the processes involved may account for
important aspects of autistic perception. Of particular focus is predictive
processing, which is a popular account of how Bayesian inference is implemented
in the brain, and is important in part for tying descriptions of differences in
information processing to predictions about brain function. Chapter 1 also
discusses lesser-explored aspects of Bayesian theories (including the role of action
within predictive processing) that will be crucial for the field going forward in
characterising the manner in which autistic symptoms might emerge from
differences in neurocognitive function. While appearing at the beginning of the
thesis, this chapter provides an overview of the current state of the field, and

draws partly on work presented in the remaining components of the thesis.

Chapters 2, 3, and 4 report empirical studies that investigate perceptual, motor and
cognitive function in light of Bayesian theories of ASD. We first examine individual
and group differences in sensory processing in the context of body perception,
employing a perceptual illusion (the rubber hand illusion) that requires the brain
to resolve between expectations about the body and conflicting multisensory
inputs. Chapter 2 reports evidence that autistic traits in non-clinical individuals

modulate the perceptual and sensorimotor effects of this illusion, suggestive of
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differences in information processing that are consistent with Bayesian theories of
ASD. Chapter 3 extends this experimental paradigm to a sample of adults
diagnosed with ASD, and examines differences in the sensorimotor effects of the
illusion in greater detail. Next, Chapter 4 takes an alternative approach to testing
Bayesian theories of ASD by examining how new information is integrated with
prior experience in the context of statistical learning. Together, this research
provides initial evidence for the differences in sensory processing hypothesised to
occur in ASD, and highlights certain aspects of the Bayesian framework (e.g., the
extension to action) that are useful for understanding and motivating empirical

investigations.

A further component of the thesis relates to the conceptualisation of ASD as the
high end of a spectrum of behavioural characteristics that encompasses the
population at large, such that nonclinical individuals can be rated in terms of their
level of autistic traits. Interestingly, there is evidence that cognitive and
neurophysiological functions implicated in ASD vary in the general population
with respect to autistic traits. Variation in the function of predictive processing
mechanisms implicated in ASD may thus also contribute to individual differences
in perception and behaviour in the general population. As noted, in this regard, the
empirical work reported in Chapters 2, 3, and 4 investigates perception and other
functions partly in relation to nonclinical autistic traits. However, the manner in
which autistic traits manifest in the general population is yet to be fully explored.
In Chapter 5 we examine in greater detail how autistic traits present in the general

adult population with the use of cluster analysis and other related techniques.

Finally, the perceptual characteristics of ASD are a focus of much research in part
because of how they may contribute to impaired social development. Bayesian
theories of brain function provide a framework for relating social-cognitive
functions and behaviours to aspects of sensory processing. For instance, our
representation of others’ mental states is a key paradigm in the field of social
cognition; Chapter 6 explores how this process can be understood in terms of
probabilistic perceptual inference. A focus in this chapter is recent theoretical

developments in Bayesian models of sensory processing; namely, the role of
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counterfactual sensorimotor predictions in tying sensorimotor expectations to
perceptual representations. These developments help to elucidate the demands on
social cognition in an interactive context, with implications for how social
differences may emerge in ASD from differences in predictive processing

mechanisms.

The present document is a thesis including published works, for which each chapter
was written to stand alone as a journal article. These chapters have not been
rewritten for the purpose of the thesis. Chapters 2, 3, 5 and 6 are published in peer-
reviewed journals, and the published versions of these articles are included as
appendices. Chapters 1 and 4 are not yet published at the time of thesis
submission. The thesis is of an interdisciplinary nature, relating most directly to
neuroscience and psychology, while also touching on contemporary debates in the
philosophy of mind. As noted, it includes both empirical studies and theoretical
contributions. Brief linking text has been included between chapters to help the
reader follow the broad connections between each piece. A short integrative

discussion is included in the concluding remarks to the thesis.
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Abstract

Recently, our understanding of the sensory features of autism spectrum disorder
(ASD) has been developed by drawing on Bayesian probability theory to describe
systematic differences in the processing of sensory information in the brain. The
key proposal is that ASD is characterised by a greater weighting of sensory
information in updating probabilistic representations of the environment. Setting
the appropriate weighting of sensory information is likely to be a complex neural
process that relies upon inferences about the volatility of the environment and the
interaction between higher- and lower-level perceptual representations in a
hierarchical setting. This broader picture of inference in the brain will be
important for understanding how the complexity of the autistic phenotype (e.g., its
heterogeneity) emerges from atypicalities in Bayesian mechanisms. In addition,
these considerations suggest that the stable trait in ASD may relate to finer
mechanisms involved in the context-sensitive adjustment of sensory weighting
rather than a persistent overweighting of sensory information per se. Moreover, in
light of recent sensorimotor treatments of predictive processing (i.e., active
inference), hypotheses regarding atypical sensory weighting in ASD have direct
implications for the regulation of action and behaviour. Given that core features of
ASD relate to how the individual interacts with the world around them (e.g,,
reduced social responding, repetitive behaviours, motor impairments and atypical
visual sampling), the extension to action may be where Bayesian theories of ASD

can yield the most critical insights into this condition.
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1. Introduction

ASD is a common neurodevelopmental condition (approx. 1%) with a strong
genetic basis, but lacks a clear neurological explanation tied to its cognitive profile
(Lai et al., 2014). Heterogeneity in how symptoms express across the spectrum
and the diverse range of social and non-social areas that tend to be affected within
each individual contribute fundamental challenges in this regard (Happé, Ronald,
& Plomin, 2006; Silberman, 2015). ASD lends itself to a top-down approach to
cognitive neuroscience: we begin by identifying some key characteristics of
cognition and behaviour, then move ‘downwards’ in an attempt to identify the
underlying neurobiological mechanisms that would account for those
characteristics. However, we can also consider a bottom-up approach. This
approach begins by considering an overall theory of brain function, developed
outside of the context of autism research, and then it moves ‘upwards’ to recover
an account of how the autistic phenotype could emerge from within the

constraints of that theory.

A general view of the brain’s function is that it works to model its environment, in
this way ensuring that it can regulate its internal and external conditions for the
sake of survival (Conant & Ashby, 1970; Friston, 2009). By drawing on
computational theory regarding how models can be derived from sensory data,
predictive processing has emerged as a general framework for understanding the
functional organisation of the brain (Clark, 2013; Friston, 2005; Hohwy, 2013;
Mumford, 1992). The theory is that top-down and bottom-up message passing
across the cerebral cortex implements hierarchical probabilistic inference on the
causes of sensory stimulation (Sections 2.1-2.2). It is currently a hot topic of
research in cognitive neuroscience to explore the ramifications of this framework
for a range of brain functions implicated in ASD. This includes sensory perception
(Friston, 2005; Mumford, 1992), movement execution (Friston, Daunizeau, Kilner,
& Kiebel, 2010; Shipp, Adams, & Friston, 2013), social cognition (Kilner, Friston, &
Frith, 2007; Koster-Hale & Saxe, 2013) and autonomic bodily functions (Barrett &
Simmons, 2015; Seth, 2013).
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The emerging hypothesis for ASD is that incoming sensory signals are weighted
more highly when integrated with the brain’s existing model of the environment,
such that perception (and other neural processes) are dictated to a greater extent
by the present sensory data rather than prior or contextual information (Hohwy,
2013; Lawson, Rees, & Friston, 2014; Palmer, Paton, Hohwy, & Enticott, 2013;
Pellicano & Burr, 2012; Van de Cruys et al, 2014) (Section 2.3). Setting the
appropriate weighting of sensory information is a fundamental aspect of
probabilistic inference, linked to modulatory neurotransmission in the brain, and
made vulnerable to disorder (and individual differences) in part by the need to
continually estimate the reliability of sensory information to maintain optimal
inference. Many cognitive theories of ASD have been proposed in the 70 years
since this condition was identified, with reoccurring themes across contemporary
accounts including an imbalance between top-down and bottom-up processing of
information in the brain (Happé & Frith, 2006; Mottron, Dawson, Soulieres,
Hubert, & Burack, 2006), the role of signal noise in sensory processing (Davis &
Plaisted-Grant, 2015; Simmons et al., 2009) and distinctive learning or analytical
styles (Baron-Cohen, 2009; Qian & Lipkin, 2011). It is enticing, therefore, to
formalise these ideas within a general computational framework of brain function,
with the prospect of tying cognitive-level descriptions more closely to their

physiological implementation. !

A broad picture of the interacting mechanisms involved in regulating probabilistic
inference in the brain will be necessary, however, to adequately explain how the
complex clinical symptomology of ASD can emerge from Bayesian mechanisms. In
particular, probabilistic inference in real-world environments necessitates
interactions between hierarchical and multimodal levels of environmental
representation and estimates of environmental volatility (i.e., the tendency for the
causes of input to change over time) (Section 3.1-3.2). This latter demand is
emphasised by recent computational work on probabilistic inference in changing
environments by Christoph Mathys and colleagues (Mathys, Daunizeau, Friston, &

Stephan, 2011; Mathys et al., 2014), which provides a method for modelling the

1 See Brock (2014) for a perspective on how Bayesian accounts fit into the history
of cognitive theories of autism.
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role of volatility processing in perceptual inference. Differences in the finer
mechanisms that underlie the context-dependent adjustment of sensory
weightings may manifest in a more variable manner than a persistent
overweighting of sensory information; this may be key to understanding the

heterogeneity and variability in autistic characteristics (Section 3.3).

Moreover, ASD fundamentally reflects a difference in how the individual interacts
with the world around them. Sensorimotor formulations of predictive processing
(referred to as 'active inference'; Adams, Shipp, & Friston, 2013; Shipp et al., 2013)
are therefore central to linking differences in inferential mechanisms to clinical
symptoms (Section 4). In particular, the hypothesised differences in the weighting
of sensory signals have direct implications for how the balance between perceptual
updating and action is regulated, with important implications for the manner in
which the nervous system interacts with the world to optimise its internal model.
Under the predictive processing account, this determines where we sample from in
the visual field, how we interact with others and the kind of motor behaviours that
we engage in. Core social and non-social aspects of ASD can thus be cast in terms of
differences in the regulation of active inference, including visual attention and
visual search behaviours, social responsiveness, repetitive behaviours and
differences in movement initiation. This extension to action and behaviour may be
where Bayesian theories hold the greatest promise for illuminating the

mechanisms underlying ASD.

2. Autism in a Bayesian framework

2.1. An introductory picture of Bayesian inference

Consider the task of determining the daily rainfall in your garden. The reading
from your rain gauge will vary each morning even if the actual rainfall is constant,
as strong winds and the like interfere with its accuracy. To get an estimate that is
less susceptible to these unwanted variations, we can record the rainfall each

morning and calculate the average of these measurements. In fact, we can update



18

our average after each new measurement, efficiently ensuring that our best
estimate of rainfall is always available to inform our behaviour. This means that
each new piece of information isn’t interpreted alone, but is integrated into an
existing model of rainfall. In this way, information from each measurement is

added to the knowledge gained from all previous measurements.

The optimal manner of updating beliefs sequentially is with Bayesian inference. In
this approach, beliefs are represented probabilistically. For example, our belief
about daily rainfall might be represented as a distribution of probability values
across a range of possible rainfall amounts (see Figure 1a). The process of
Bayesian inference entails updating our existing belief (the prior distribution) with
new information (the likelihood distribution) to form our new belief (the posterior
distribution). We therefore need to represent three probability distributions to
perform optimal inference; if we assume that these distributions are Gaussian,
they can each be represented with just their mean (u) and precision (m).2 The
sequential updating of beliefs then proceeds as follows (Mathys et al, 2011),

where x is the new measurement:

(1)
TMiikelihood
.uposterior = .uprior + (x - .uprior)
T[posterior
where
(2)

nposterior = T[prior + TMiikelihood

The mean of the prior belief (4,;,,) can be considered a prediction about what the

new measurement will be; the particular reading on our rain gauge that we think is

most likely to occur each morning. This is because the mean of a Gaussian

2 Precision refers to the inverse of the variance.
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probability distribution is also its maximum - the most probable outcome. The
difference between this prediction and the measurement (X — lpyior) is the
prediction error. Hence, Bayesian inference can be done by iteratively updating

predictions with the prediction error produced by each new measurement.

It is fundamental to probabilistic inference that the extent to which beliefs are
updated in light of new information is set appropriately. The precision of the prior
distribution indicates our confidence in our existing prediction, while the precision
of the likelihood distribution represents the ambiguity inherent in the
measurement (the noisiness of incoming data). Together, these two parameters
give an indication of how reliable or informative prediction errors are expected to
be regarding the true (hidden) state of the world. Prediction errors are therefore
weighted by the estimated precision of the new information relative to the
estimated precision of existing beliefs. Figure 1b-c illustrates the effect that this

weighting term can have on what is inferred.
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Probability

0 10 20 30 40 50
Rainfall (mm)

Figure 1. Bayesian inference.

(a) Belief about daily rainfall represented as a Gaussian probability distribution.

The mean (dotted line) indicates the subjectively most probable rainfall.
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(b) The posterior belief (green) is formed by integrating the existing belief (blue)
with new information, where the latter is represented as a likelihood distribution
(red). The mean of the likelihood is the newly collected data point (x), while the
uncertainty associated with this measurement is represented by the precision of
the likelihood (7ikerinooa)- The precision of a probability distribution reflects the
degree of ambiguity in the state of the environment. For instance, a highly precise
likelihood indicates that there are fewer states of the environment that have a high
probability of causing the collected data; an imprecise likelihood means that there

are many external states that could feasibly have caused the collected data.

(c) The extent to which the prior and the likelihood each influence the posterior

Tllikelihood

depends upon their relative precision ( ). In this example, the estimated

Tposterior

precision of the newly collected data point is greater than in example (b), and as a

result the inferred rainfall (i, s¢erior; indicated by the dotted line) is based more

closely on this new measurement.

Tllikelihood

The weighting term ( ) is the learning rate. A high learning rate means that

Tposterior

prediction errors drive inference about the state of the world to a greater extent.
Conversely, a low learning rate means that prior information is afforded more
weight in determining what is inferred. The learning rate ensures that beliefs are
more highly sensitive to new measurements when we know little about the world
(when our existing beliefs are imprecise), but less sensitive when we have already
gathered plenty of information about the world (when our existing beliefs are
highly precise). As we measure rainfall each morning, the precision of our belief
increases, and as a result, the extent to which it is altered in response to new
prediction errors is reduced. Similarly, when set appropriately, the learning rate
ensures that a prediction error is more meaningful when we expect that the
measurements we are taking are low in noise, such as if we live in a region where

there are few unpredictable winds interfering with the reliability of our rain gauge.
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Altogether, we can think of a prediction as a hypothesis about the true underlying
cause of the collected measurements. If the data that we sample are drawn from a
Gaussian distribution, then the hypothesis that will produce the least prediction
error on average is the mean of this underlying distribution. In this way,
minimizing prediction error over the long term, by updating predictions with
precision-weighted prediction errors, is an effective way of representing the

underlying cause of noisy data.

2.2. Bayesian inference in sensory cortex

From its seat within the skull, the brain faces a similar inferential challenge. What
you see right now is driven by the firing rates of your retinal photoreceptors;
however, for your brain to produce an accurate representation of the text in front
of you, retinal signals must first be processed and made sense of by the sensory
system. Significantly, the information that peripheral sense receptors provide is
ambiguous, as there are many external states of the environment that can underlie
a given pattern of sensory data. Similarly, perception is a temporal process,
requiring the brain to continually adjust its representation of the environment
while receiving an ongoing stream of sensory data. These considerations motivate
the view of perception as a process of unconscious inference, requiring that
hypotheses about the world are generated and continually updated to best account
for sensory data (Gregory, 1980; Helmholtz, 1860; Kersten, Mamassian, & Yuille,
2004). In this view, ambiguity in incoming sensory signals is dealt with by drawing
upon prior information regarding the relative probability of different possible
states of the world, furnished by recent experience, early brain development and
evolution. Given the key challenge of sensory ambiguity to accurate perception, it
would not be surprising if evolution has shaped the brain’s response to sensory

stimulation to share features with optimal (probabilistic) inference.

As we have seen, probabilistic inference occurs when a system engages in iterative
prediction-error updating. In the context of the brain, predictions are of sensory
states and come to represent the hidden environmental causes of these states

(edges, colours, objects and the like). Prediction errors communicate the
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discrepancy between the actual sensory data and that predicted on the basis of the
brain’s current representation of the environment. Precisions indicate the
estimated reliability of new sensory information and the confidence in existing
predictions. The predictive processing theory of brain function is that reciprocal
top-down and bottom-up message passing between sensory cortical areas
mediates predictions and prediction errors, respectively, with their interaction
regulated by the synaptic gain on cell populations that signal prediction-error, thus
approximating optimal (precision-weighted) inference (Clark, 2013; Friston, 2005;
Hohwy, 2013; Mumford, 1992). This theory has been developed in part to provide
a computational explanation for various anatomical features of the cerebral cortex;
for instance, that levels of processing can be defined hierarchically and that
connections between cortical areas tend to occur reciprocally (Mumford, 1992;
Shipp et al,, 2013). There is much else to suggest that probabilistic concepts are
useful for understanding the functional organization of the brain, including, for
instance, psychophysical evidence that sensory estimates used in perceptual and
motor systems are Bayes-optimal (see Vilares & Kording, 2011, for review) and
neurophysiological evidence that stimulus-evoked responses in sensory cortex

encode predictions and prediction errors (see Kok & de Lange, 2015, for review).

2.3. Autism as a variation from optimal inference

Can a probabilistic outlook on brain function shed light on ASD? It is clear that
biological differences in the message passing that constitutes predictive processing
could lead to differences in perception and behaviour. Notably, optimal inference
requires brain mechanisms that encode the present reliability of existing
predictions relative to incoming sensory signals; in this way, prediction errors are
given appropriate weighting in how the brain’s representation of the environment
is adjusted. In this regard, certain characteristics of ASD are suggestive of a higher
learning rate in perceptual inference (Hohwy, 2013; Lawson et al., 2014; Palmer et
al, 2013; Pellicano & Burr, 2012; van Boxtel & Lu, 2013b; Van de Cruys et al,,
2014).
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Pellicano and Burr (2012) argue that a chronically reduced precision of (Bayesian)
prior beliefs in ASD underpins an array of sensory symptoms, psychophysical data
and non-social behaviours. Van de Cruys et al. (2014) similarly suggest that a high
and inflexible weighting of prediction errors can explain a wide range of social and
non-social autistic characteristics. Brock (2012) notes that a tendency towards
more sensory-driven Bayesian inference can be equally well explained by either
reduced prior precision or increased likelihood precision (and Skewes, Jegindo, &
Gebauer, 2014, devise an approach towards testing these alternative hypotheses in
terms of signal detection theory). While this is an important conceptual point, each
of these hypotheses reduces to a persistently high learning rate (weighting of
prediction errors) and thus seemingly the same broad predictions regarding
functional differences and physiological markers (i.e., atypical synaptic gain,
described later in this section). We will now briefly summarise the evidence that

motivates and supports these proposals.

A perceptual system that weights prediction errors more highly will tend to be
more responsive to sensory stimulation and sensitive to finer fluctuations in
sensory input. This fits well with hypersensitivities to sensory stimulation in ASD
that are manifest in distress and sensory avoidance behaviours, first-person
reports, and found across perceptual modalities in the psychophysical literature,
including in certain tactile, auditory and visual discrimination thresholds and
reduced habituation to repeated stimulation (e.g., Baron-Cohen, Ashwin, Ashwin,
Tavassoli, & Chakrabarti, 2009; Blakemore et al., 2006; Puts, Wodka, Tommerdahl,
Mostofsky, & Edden, 2014; Simmons et al., 2009). Unusual preoccupations with
sensory stimulation (American Psychiatric Association, 2013; Zwaigenbaum et al,,
2009) and enhanced attention to detail (or a more detail-oriented processing
style), reported across a range of perceptual tasks that contrast processing of more
local and more integrated perceptual elements (Happé & Frith, 2006; Mottron et
al, 2006), are also suggestive of a persistently higher weighting of lower-level
prediction error signals. Recent psychophysical evidence that adolescents with
ASD show increased sensitivity to stimulus noise in motion perception similarly
supports a greater sensitivity to fluctuations in the sensory signal from that

predicted in sensory cortices (Zaidel, Goin-Kochel, & Angelaki, 2015).
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Consistent with these aspects of perceptual experience and behaviour, adolescents
with ASD show increased fMRI responses in primary sensory cortices to auditory,
visual and tactile stimulation compared to typically developing controls, with the
degree of activation related to behavioural symptoms of sensory over-responsivity
(e.g., the tendency to become distressed in noisy environments; Green et al., 2015;
Green et al, 2013). Evoked cortical responses to sensory stimuli also show
increased variability across perceptual modalities (Dinstein et al, 2012; Haigh,
Heeger, Dinstein, Minshew, & Behrmann, 2015) as well as differing dynamics
compared to controls as the predictability of stimuli changes over repeated
presentations (Gonzalez-Gadea et al.,, 2015; for review, see Van de Cruys et al,,
2014 and Lawson et al, 2014). Most consistently, there is evidence that the
reduction in neural response following repeated presentations of a stimulus (i.e.,
repetition suppression), a well-established phenomenon in neuroscience observed
across sensory modalities, reflects increased predictability of the stimulus
(Summerfield, Trittschuh, Monti, Mesulam, & Egner, 2008; Todorovic, van Ede,
Maris, & de Lange, 2011); evidence that autistic traits are associated with reduced
repetition suppression for both faces and non-social objects (Ewbank, Rhodes, et
al,, 2015; Kleinhans et al., 2009) is thus consistent with a failure to downregulate
prediction error, as is a finding of reduced neural habituation to repeated tactile
stimulation in adolescents with ASD (Green et al., 2015). (See Ewbank, von dem

Hagen, Powell, Henson, & Calder, 2015, for a conflicting finding).

Moreover, an increased learning rate reduces the extent to which prior
information informs what is perceived. The influence of past stimulation on
current perception can be considered over various timescales. Sensory illusions
occur when prior expectations that persist over longer timescales, reflecting
statistical regularities in the world, bias perception away from a veridical
representation of the present environment (demonstrated in Adams, Graf, & Ernst,
2004). Autistic individuals show reduced susceptibility to certain visual illusions,
consistent with a higher learning rate (Mitchell, Mottron, Soulieres, & Ropar, 2010;
conflicting evidence is reviewed in Section 3.3). In contrast, perceptual adaptation

reflects an effect of very recent sensory experience on perception in the present
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moment: exposure to a stimulus of one type biases perception of a subsequent
(and immediately presented) stimulus away from that type. Adaptation effects are
reduced in children with ASD for certain social and non-social visual stimuli (e.g.,
faces, Pellicano, Jeffery, Burr, & Rhodes, 2007; numerosity, Turi et al., 2015),
consistent with a generally reduced influence of past experience on perceptual
inference. Typical adaptation effects are found in ASD for certain other types of
non-social stimuli (e.g.,, Karaminis et al.,, 2015), which Turi et al. (2015) suggest

may reflect preserved adaptation for lower-level stimulus attributes.

Comparably, reduced global processing in ASD may reflect a reduced role for top-
down predictions in integrating sensory features into a more broadly coherent or
context-sensitive percept. Evidence for reduced global processing as a feature of
autistic perception exists across a range of visual paradigms (Happé & Frith, 2006;
Simmons et al.,, 2009), such as visuospatial object recognition (e.g., detection of
embedded figures; Ring et al., 1999; Shah & Frith, 1983). Similarly, reduced global
processing might be explained in terms of a persistent over-weighting of
prediction error signals resulting in the brain’s model of the environment being
over fitted to noisy sensory data and thus failing to extract longer-term regularities

in the sensory input.

In a somewhat more cognitive domain, Skewes et al. (2014) studied responses in a
signal detection task that required statistical learning across trials in order to
correctly categorise stimuli based on their visual characteristics. They found
evidence that recent experience concerning the relative frequency of stimulus
types influenced categorisation responses to a lesser extent in individuals higher
in autism-like traits than those lower in these traits, consistent with a greater
weighting of new information relative to prior information in ASD. Prior
information is also essential for disambiguating how the observable behaviours of
others reveal their hidden mental states such as intentions, emotions and beliefs
(Kilner et al., 2007; Koster-Hale & Saxe, 2013), a capacity that may be selectively
impaired in ASD, reflected in socio-cognitive developmental delays, reduced
activity in neural regions typically recruited in social perception tasks, and

reduced spontaneous mental-state attributions in adulthood (reviewed in Lai et al.,
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2014). Thus, there is scope for illuminating the coexistence of sensory, cognitive
and social deficits in ASD in terms of inference on sensory inputs (Hohwy &
Palmer, 2014; Lawson et al,, 2014; Palmer, Seth, & Hohwy, 2015; Van de Cruys et
al, 2014). Van de Cruys et al. (2014) and Lawson et al. (2014) provide
comprehensive summaries of the behavioural, psychophysical and
neurophysiological data collected from autistic individuals that are consistent with
chronic abnormalities in the weighting of prediction errors in inferential

mechanisms in the brain.

In sum, a variety of autistic characteristics are suggestive of a greater weighting of
sensory evidence in unconscious perceptual inference. In models of predictive
processing in sensory cortex, the learning rate is set by the post-synaptic gain on
distinct superficial pyramidal sub-populations that convey bottom-up prediction
error signals between sensory cortical areas.? Synaptic gain is controlled in
significant part by a number of interacting neuromodulatory systems, including
those for which dysfunction is implicated in ASD (Feldman & Friston, 2010;
Friston, 2009; Yu & Dayan, 2005) (see Lawson et al., 2014, for discussion in the
context of ASD). Linking the perceptual and neurophysiological characteristics of
ASD to Bayesian mechanisms has thus stimulated novel hypotheses regarding the
neural, genetic and developmental basis of this condition (e.g., Lawson et al., 2014;

Quattrocki & Friston, 2014).4

More direct empirical investigation of these ideas are warranted, and will benefit
in part from the ongoing effort to methodologically isolate the activity of neural
populations that play distinct computational roles in predictive processing

frameworks (Kok & de Lange, 2015). A clear and testable hypothesis is that cell

3 Alternative hypotheses are suggested in the literature concerning the finer neural
architecture of predictive processing (e.g., regarding the cortical layers that house
neural subpopulations responsible for transmitting prediction error signals),
reviewed in Kok and de Lange (2015).

4 The process of optimising the weighting of sensory inputs across the brain during
perceptual inference has been identified with attention in predictive processing
theories (Feldman & Friston, 2010; Friston, 2009; Kok & de Lange, 2015).
Hypotheses regarding atypical precision-weighting of sensory information in
autism can thus also be cast in terms of atypical attentional mechanisms.
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populations signalling prediction error exhibit enhanced gain in individuals with
ASD (Van de Cruys et al., 2014). However, the interplay between mechanisms
entailed by predictive inference complicate how simple neurocomputational
atypicalities can be linked to heterogeneous behavioural symptomology. For this
reason, a broader picture of probabilistic inference in the brain, portrayed in the
remaining sections of this paper, will be crucial when using this theoretical

approach to illuminate ASD and other neurocognitive conditions.

3. A broader picture of precision modulation

Consider some different circumstances that may elicit prediction error in the brain
(Mumford, 1992). First, prediction error may simply indicate that there is more to
learn about the true value of a hidden state (e.g., the orientation of an edge in the
visual field); in this case, prediction errors should be used to iteratively update the
brain’s estimate of the quantity that it is working to infer. Second, there may be
irreducible noise in the brain’s model of the environment, perhaps due to some
genuine randomness in how the underlying cause generates sensory data over
time; in this case, the existing predictions should be maintained even in the face of
prediction error. Third, the predictions may be accurate, but still fail to fully
explain the incoming data by itself; for example, it may be that the perceptual
system correctly infers the presence of a cat, but that occluding branches and
leaves alter the sensory signal, producing prediction errors that require the
inference of additional states of the environment to explain. In this way, sensory
uncertainty can indicate either irreducible noise or that there are additional causes
or interactions in the environment that have yet to be modelled. The challenge here
is that the ‘one-level’ treatment of Bayesian inference and predictive processing
presented in Section 2.1 is inadequate to capture the demands on perceptual
inference in real-world environments, as sensory input is always produced by a
complex, interacting and fluctuating set of external causes. In the present and
following sections we will delve into the mechanisms that this challenge entails,
including the difficulty it poses to a simple Bayesian hypothesis of ASD, but also the

promise that it holds for nuancing Bayesian accounts such that they are better
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equipped to explain how the heterogeneous autistic phenotype emerges from

systematic differences in sensory processing mechanismes.

3.1. Hierarchical representation

We can begin to meet this type of challenge by considering the basic hierarchical
and multimodal setting of predictive processing. Predictive inference in sensory
systems is suggested to occur across a hierarchy of inferred causes, where higher
levels engage in inference about causes that operate over greater spatial and
temporal scales (Friston, 2005; Mumford, 1992; Shipp et al.,, 2013). This entails
that the iterative prediction and prediction-error exchange that we saw in Section
2.1 occurs recurrently across the cerebral cortex, with top-down connections
mediating predictions of sensory states at the level below, and prediction error
computed at each level and signalled via feedforward connections to levels above.
In the context of face perception, for instance, higher levels of the visual sensory
hierarchy may represent global visual form and person identification, providing
predictions regarding the activity at lower levels in the hierarchy that encode
visual features that fluctuate over shorter timescales (e.g., perspective-dependent
edges and colours). Similarly, hierarchical coding must occur partly in parallel
across different sensory modalities (e.g., visual, auditory, tactile, interoceptive) and
extend to multimodal representations of the environment that modulate lower-
level predictions across these modalities. For example, inferences regarding
speech content entail both visual and auditory predictions, and inferences

regarding limb location entail both visual and proprioceptive predictions.

Representations of the environment thus occur at different levels of abstraction
according to the hierarchical depth, with predictions generated at each level
descending to act as a template or recreation of the expected pattern of sensory
activity occurring at levels below (Mumford, 1992). In this way, hierarchical
inference operationalizes the relationship between top-down and bottom-up
sensory processing (and global and local perception) central to certain perceptual
and cognitive characteristics of ASD (Happé & Frith, 2006; Mottron et al., 2006). A

further feature of hierarchical inference is that it allows the different causes of
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sensory input to be deconvolved; in other words, by modelling the interacting
causal structure of the world internally, the brain can better account for patterns
of sensory data produced (for example) by overlapping visual objects or
simultaneous sound sources. Thus, the demands of perceptual inference in a real-
world environment require that prediction error is minimised across extensive
multimodal hierarchies of predictions. This complicates the picture of precision
modulation in the brain, as it requires that the weighting of prediction errors is
controlled at least part-independently in different modalities and at different
levels of representation, this acting as a determinant on the relative influence of
priors in different parts of the system (Friston, 2009). Minimising prediction error
across the brain at a given point in time may entail variously increased and
decreased weighting of prediction errors at different levels of the distributed
hierarchal system, such that the best explanation for sensory input emerges across

the overall model.

The distinction between higher- and lower-level hypotheses is also important for
capturing how prior experience modulates inference over the longer term in a
Bayesian setting. For example, a ‘face’ hypothesis will entail a different set of priors
to a ‘house’ hypothesis regarding lower-level visual features, reflected in both the
value of predictions and the tendency for these low-level predictions to be
adjusted in response to prediction error. For instance, the strikingly robust ‘hollow
mask’ illusion occurs when the inside (concave) side of a facemask is perceived as
a convex face - consistent with the statistical regularities of the world that we live
in (Gregory, 1980). Research into the role of object type, orientation and lighting
conditions in this paradigm indicates that the illusion reflects in part specific
expectations about faces compared to other object types (Hill & Bruce, 1993,
1994). In predictive processing terms, this illusion can be explained as occurring
when a high-level ‘face’ hypothesis entails predictions about the value of low-level
visual features (related to convex object shape) and, moreover, reduces the
learning rate at these lower hierarchical levels such that non-veridical predictions
are maintained in the face of prediction error. This is equivalent to a highly precise
Bayesian prior for convexity, but represented across a hierarchical predictive

processing system, and, importantly, only invoked when higher-level face
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hypotheses are selected. Thus, considering precision modulation in the setting of
hierarchical inference is also important for operationalizing how expectations
about the world that persist over longer timescales are brought to bear in a

context-dependent manner.>

The nature of processing differences in ASD should be explored in the context of
hierarchical processing. For instance, an account of ASD would ideally be able to
specify the sensory modalities and level of hierarchical representation that
differences in precision modulation occur, and, further, the secondary (or
developmental) consequences of aberrant precision-weighting at one level of
representation for the greater system. For example, there may be consequences for
the development of higher-level representations if lower-level sensory cortex is
characterised by an overweighting of prediction errors, and consequences for the
development of multimodal representations if lower-level unimodal processing is

characterised by atypical precision modulation.

3.2. Hierarchical inference in a changing world

3.2.1. Volatility in the environment

The model of Bayesian inference that we have reviewed so far still carries a crucial

limitation. When estimating daily rainfall in Section 2.1, we adjusted the weighting

5 This consideration is important in the context of autism research, where certain
atypical perceptual mechanisms, such as repetition suppression, have been
implicated in social perception moreso than for non-social objects (e.g., Ewbank,
Rhodes, et al., 2015). In addition, the phenomenon of higher-level predictions
being maintained in the face of prediction error can be demonstrated in the brain:
using fMRI and population receptive field mapping, Kok and de Lange (2014)
examined the spatial profile of neural activity in early visual cortex (V1) during
viewing of illusory geometric shapes (Kanizsa triangles); neural activity
(potentially reflecting prediction error) was variously increased or decreased in
different parts of V1 depending on the region-specific consistency of the bottom up
signal with the perceived shape. Specifically, if predictions for lower level features
are drawn from inferences regarding higher-level object shape, predictions in this
paradigm will correspond to illusory and non-illusory elements in different parts
of the visual field, and thus will be associated with different degrees of prediction
error when compared to the bottom-up signal.
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of new information over time depending in part on how much we had already
learnt. We can imagine that when seasons change, however, the information
collected earlier in the year loses its relevance. Thus continuing to treat our
prediction as highly precise would no longer give us an accurate inference about
the (now different) daily rainfall. As the state of the environment changes, we need
to adjust the learning rate to maintain optimal inference. Specifically, we may need
to increase the learning rate when the underlying state of the world has changed,
so that we learn about the new state. Thus, the common model of Bayesian
inference (outlined in Section 2.1) only provides optimal inference in an
unchanging world. In the real world, the causes of the brain’s sensory input
constantly change, meaning that a Bayesian model sensitive to the temporal

demands of perception may be needed for a realistic picture of sensory processing.

Christoph Mathys and colleagues unpack this limitation by distinguishing between
different forms of uncertainty (Mathys et al., 2014) (drawing on Payzan-LeNestour
& Bossaerts, 2011; Yu & Dayan, 2005). Bayesian inference is sensitive to the idea
that hidden states generate ambiguous sensory data - this is captured in the
precision of the likelihood, and is termed outcome uncertainty. Bayesian inference
also involves representing beliefs probabilistically, reflecting that the brain cannot
ever be completely certain about what the hidden causes of its input are - this is
captured in the precision of the posterior, and is termed expected uncertainty.
Outcome uncertainty and expected uncertainty are reflected in how our inference
about the state of the world changes as we sample new data, the aim being to
update the hypothesis to be closer to the state of the world that generates this
data. However, this is a different challenge to that of determining if the underlying
cause of input has itself changed. This reflects environmental uncertainty, and is

not captured in the common Bayesian model.

Changes to the environment can be both in the causes of sensory data and in the
noisiness of sensory signals. In hand perception and movement, for instance, the
brain must estimate the position of the hand based on visual and proprioceptive
sensory signals. In addition to the position of the hand itself changing over time,

the reliability of visual signals regarding hand location differ depending on task
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context; for instance, visual information is more precise for the azimuthal location
of the hand than for its depth relative to the eye (van Beers, Sittig, & Gon, 1998;
van Beers, Wolpert, & Haggard, 2002). Similarly, the reliability of visual data may
differ across visibility conditions (e.g., lighting, blurriness) even as the objects in
our environment remain stable, with implications for how visual signals are
integrated with other sources of information (Alais & Burr, 2004). To maintain
optimal inference requires that the weighting of prediction errors be flexibly
adjusted in response to contextual shifts in the reliability of the relevant sensory

signals.

To complicate the picture further, we can make another distinction between two
broad ways in which the world can change. In one case, the parameters of the
hidden state change (i.e., the means and precisions; e.g., as the angle of the elbow
joint changes from 30° to 45° the hypothesised position of the arm ought be
adjusted accordingly); in the other, the quality of the hidden state appears to
change (e.g., as our eyes shift to foveate the house rather than the cat, the entire
nature of what is causing our retinal firing changes). In the latter case, we recruit a
new model to account for changes in the sensory data, rather than simply adjusting
the parameters of an existing model. Therefore, to explain differences in
perception between individuals, we may need to consider not only the iterative
updating of parameters but also how the system switches between different broad,
hierarchically-distributed hypotheses regarding the set of interacting causes that
best explain its sensory input. This latter aspect of perceptual inference has yet to

be explored in detail.

3.2.1. Predictive processing supplemented with volatility expectations

To accurately model the state of the environment over time, the brain requires
expectations about volatility - how liable the environment is to change. The
premise of perceptual inference, however, is that the brain has only indirect access
to the real state of the environment; this includes environmental volatility, leading
to a picture of predictive processing as being supplemented by inferences about

volatility. The implication is that volatility expectations must play a role in
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perception by modulating the learning rate used in inferences about the state of
the environment (Mathys et al., 2011; Mathys et al., 2014). This would allow for an
adaptive learning rate at each level of environmental representation, taking into
account how the ideal weighting of prediction errors changes as we sample more
data, as the underlying causes of input change, and as the reliability of sensory
information fluctuates across environmental contexts. A hierarchical
representation of the causal structure of the world is crucial to maintaining an
adaptive learning rate, as causes that operate over longer timescales have
implications regarding the expected volatility of causes inferred at lower levels,

and for identifying fluctuations in the reliability of sensory signals across contexts.

Mathys and colleagues have developed a mathematical tool for modelling Bayesian
inference modulated by volatility expectations: the Hierarchical Gaussian Filter
(HGF; Mathys et al., 2011; Mathys et al., 2014). In this scheme, the confidence in
predictions depends partly on inferred volatility estimates (and thus
environmental uncertainty) in addition to expected uncertainty. This means that
expectations about volatility modulate the denominator of the learning rate (e.g., in
equation 1 in Section 2.1), such that the weighting of prediction errors tends to
decrease over time when the underlying environment is stable, then increase
when a change in the underlying environment occurs. Moreover, volatility is
represented hierarchically, such that inference is sensitive not only to the extent to
which the world tends to change over time (volatility), but also to fluctuations in
the level of volatility over time. In support of the idea that quantities of this kind
are harnessed in the brain, neuroimaging data indicates that activity in distributed
cortical and subcortical regions during an audio-visual learning task relate to

precision-weighted prediction errors modelled by the HGF (Iglesias et al., 2013).

In the HGF, hierarchical inference of volatility is distinct from the causal hierarchy
described in Section 3.1. In each class of hierarchy, estimates are adjusted via
precision-weighted prediction errors, but in the causal hierarchy prediction errors
relate to estimates of causes (e.g., the present location of a seen cat) rather than
estimates of volatilities (how much the hidden location of the cat tends to change

over time). We saw in Section 2.1 that when inferring the causes of sensory data,
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predictions are of the mean of the hidden state. In contrast, the volatility hierarchy
is one of variances; that is, the variance of the hidden state (indicating its tendency
to change over time; its volatility), the variance of this variance (indicating how
much the volatility changes over time), the variance of the volatility’s variance, and
so on.® In this respect, the causal hierarchy represents features of the environment
that most clearly constitute the content of perception (see Hohwy, 2012; Hohwy,
2013; Seth, 2014), while volatility hierarchies modulate the processing that
determines this inference by influencing learning rates at each level of the causal

hierarchy.

Returning to our example of modelling rainfall, the data that we record each
morning is determined by multiple interacting causes that operate over different
timescales, each associated with differing degrees of volatility. For instance, cloud
cover might change every day, while the effect that seasons have on rainfall remain
relatively constant over the years. Moreover, various interactions might exist
between volatility estimates and causal estimates at different levels; for instance,
the inference of seasonal weather patterns that modulate sensory input over
longer time scales may have implications for the expected volatility of inferences at
shorter timescales. This amounts to a more convoluted picture of hierarchical
inference in the brain, illustrated in Figure 2a, allowing for the highly context-
dependent regulation of inference; and more closely capturing the nature of the

environment that the brain is working to infer.

6 Such a hierarchy might truncate after a small number of levels or keep going.
Higher levels (of both causal and volatility hierarchies) correspond to longer
timescales, however, meaning that eventually, as we go up the hierarchy, the
information represented at higher levels will have little bearing on the shorter
timescales that correspond to inference on the present state of the environment. In
other words, for volatilities, higher levels will have a tendency to become
uninformative.
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Figure 2. Expanded models of predictive processing in the brain.

(a) Predictive processing models can be expanded to include inferences about
volatility in a hierarchical setting (Mathys et al, 2011; Mathys et al, 2014).
Bayesian inference on the external causes of sensory input occurs across a causal

hierarchy, in which higher levels encode states of the environment that operate
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over greater temporal and spatial scales, and include multimodal representations.
At each level of the causal hierarchy, the weighting of prediction errors (learning
rate) is modulated by a different set of hierarchical inferences concerning the
volatility of the inferred causes. In both causal and volatility hierarchies, Bayesian
inference occurs via the exchange of top-down predictions and bottom-up
prediction errors (arrows in diagram). In the context of face perception, for
example, a higher level in the causal hierarchy might correspond to inference on
the global features of the face, sharing reciprocal connections with lower levels
that model finer details of the face, and each of these levels in the causal hierarchy
may be associated with volatility estimates provided by corresponding volatility
hierarchies. Various interactions might exist between volatility estimates and
causal estimates at different levels; for instance, the inference of certain higher-
level causes that modulate sensory input over longer time scales may have

implications for the expected volatility at lower levels of the causal hierarchy.

(b) Active inference extends predictive processing models to include action (Friston
et al, 2010). The sensory data that the brain receives is generated by (hidden)
external states of the physical world, which includes the states of the body. The
brain models these external states internally based upon the sensory data (and
prior expectations, expectations about volatility, etc.). Meanwhile, the brain can
modulate the external states of the world via action, which influences the sensory
data that is received. Minimising prediction error over time entails both revising
the model to better account for sensory data, and acting to control the sensory data

that is received.
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3.3. Is a broader picture of precision modulation necessary to capture the

characteristics of autism?

In Section 2, we saw that several characteristics of ASD were suggestive of a higher
learning rate in perceptual inference. This underlies proposals of chronic
differences in precision weighting in ASD, framed within the general context of
Bayesian inference (Pellicano & Burr, 2012) and within the predictive processing
theory of inference in the brain (Van de Cruys et al,, 2014). In Sections 3.1-3.2, we
explored challenges to perceptual inference that require the weighting of
prediction errors to be highly context-dependent, controlled in part by volatility
expectations and the interaction between higher- and lower-level representations
of the environment. This raises the possibility that the underlying trait in ASD is
not a persistently higher weighting of prediction errors per se, but rather a
difference in the mechanisms that control the context-sensitive adjustment of
precisions. For instance, a stable difference in volatility processing might manifest
as unusually high weighting of prediction errors in some contexts but not others.
In the present section, we will consider several reasons why these underlying
mechanisms implicated in the control of precision weighting in the brain may play

a necessary explanatory role in Bayesian accounts of ASD.

3.3.1. Accounting for empirical data

An initial reason to investigate beyond the possibility of chronic differences in
precision weighting is that such accounts make strong predictions about perceptual

and cognitive performance that are not always apparent in ASD.

One example is in the case of susceptibility to perceptual illusions, which is a key
paradigm for examining how (implicit) expectations about the world modulate
perceptual experience. While there is convincing evidence that susceptibility is
reduced in ASD for some visual illusions, in particular the Shepard illusion, which
relies on depth cues regarding the shape of a familiar object (Mitchell et al., 2010)
(see also Bolte, Holtmann, Poustka, Scheurich, & Schmidt, 2007; Happé, 1996), it is

also the case that individuals with ASD experience some perceptual situations that
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draw upon prior knowledge very similarly to controls. Certain visual illusions
seem to be experienced as usual in ASD, including the Muller-Lyer and Titchener
illusions (Hoy, Hatton, & Hare, 2004; Ropar & Mitchell, 1999, 2001) (see Mitchell &
Ropar, 2004, for review). Similarly, autistic traits in the general population
negatively correlate with susceptibility to some, but not other, visual illusions
(Walter, Dassonville, & Bochsler, 2009). Another example is the multisensory
rubber-hand illusion, in which synchronous stroking of the subject’s (hidden) limb
together with a (visible) prosthetic limb elicits an illusion of feeling touch on the
prosthetic limb (visual-tactile integration) and a sense that the prosthetic limb is a
part of one’s body (Botvinick & Cohen, 1998; Ehrsson, 2012). Susceptibility to this
illusion is modulated by prior expectations about the body; for instance, there is
evidence that the illusion is constrained by implicit expectations about the visual
appearance of the body (Tsakiris & Haggard, 2005) but that this constraint can be
overcome when visual-tactile experience immediately prior to the illusion favours
unusual bodily representations (Hohwy & Paton, 2010). Adults with ASD exhibit
the core perceptual effects of this illusion as robustly as controls, though show
reduced effects of the illusion on subsequent reaching movements (Palmer, Paton,
Kirkovski, Enticott, & Hohwy, 2015) (see also Cascio, Foss-Feig, Burnette, Heacock,
& Cosby, 2012; Palmer et al,, 2013; Paton, Hohwy, & Enticott, 2012), suggesting
that the influence of priors on perception is not chronically diminished in ASD, but

rather shows more subtle and context-dependent effects.

In the more cognitive domain of statistical learning, there is evidence that autistic
traits in the general population are unrelated to chronic differences in the
weighting of prediction errors (Chapter 4). This evidence comes from a study that
examined trial-by-trial learning in a task that requires explicitly predicting the
location of a visual marker based on statistical regularities. Similarly, Robic et al.
(2015) examined trial-by-trial learning over the course of a decision-making task
in which the (hidden) probabilities of reward associated with choice options were
either stable over a block of trials or fluctuated during the course of a block (i.e.,
constituting a type of volatility). Adults with ASD had particular difficulty in
performing the task in the volatile context, though performed similarly to controls

when the task contingencies were stable over time. This suggests that these
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participants were able to learn how to perform well when the outcomes were
uncertain, but less able to deal successfully with volatility (i.e, when the
underlying contingencies change). While this task examines a cognitive rather than
sensory function, it constitutes initial evidence that volatility processing is
impaired in ASD rather than the integration of prior and new information per se.
The anterior cingulate cortex has been implicated in volatility learning in decision-
making tasks of this nature (Behrens, Woolrich, Walton, & Rushworth, 2007), and
atypical functioning in this region has been discovered in ASD (e.g., Di Martino et

al,, 2009; Dichter, Felder, & Bodfish, 2009; Thakkar et al., 2008).

3.3.2. Addressing conceptual challenges to neurocognitive accounts of autism

Furthermore, several challenges central to an adequate neurocognitive account of
ASD are better addressed within the broader picture of hierarchical inference.
First, heterogeneity is a defining feature of ASD (Newschaffer, Fallin, & Lee, 2002).
For instance, individuals with ASD variously report (or exhibit) hyper- or hypo-
sensitivity to sensory stimulation in multiple sensory domains, reflected partly in
either sensory-seeking or sensory-aversive behaviours (e.g., lower thresholds to
touch detection, but either aversion or attraction to flickering lights; Baranek,
David, Poe, Stone, & Watson, 2006; Marco, Hinkley, Hill, & Nagarajan, 2011; Rogers
& Ozonoff, 2005). Similarly, high variability in autistic samples is reported across a
number of visual psychophysical paradigms (Simmons et al., 2009). Individual
social tendencies can entail marked detachment from social interaction with
others or only more subtle atypicalities in conversational and other interactive
behaviours. Intellectual functioning can similarly vary from that of severe
disability to no disability at all. Neurocognitive explanations of ASD, which try to
extract some degree of commonality from the assortment of individuals that fall
under the ASD diagnosis, are thus more plausible if amenable to how
heterogeneity arises through the hypothesised deficit. While a (chronically) high
learning rate captures important aspects of autistic perception, a more nuanced
picture of the context-dependent modulation of the learning rate, dependent on
volatility expectations, higher-level expectations regarding lower-level sensory

uncertainty, and different swathes of the hierarchy that may be impaired, is better
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equipped to address how a core deficit (in precision modulation) plays out

differently across individuals.

Accounting for the diversity of symptoms in ASD is a similar explanatory challenge.
Social interaction and communication are central to defining ASD, but exist
alongside non-social symptoms that span perceptual, motor, behavioural, and
cognitive domains. The most widely influential neurocognitive theories of ASD
each address certain symptoms much more directly than others; for example, the
theory of mind deficit hypothesis (Baron-Cohen, 1997) addresses difficulties in
understanding the behaviours of others, while the weak central coherence and
enhanced perceptual functioning theories (Happé & Frith, 2006; Mottron et al,,
2006) are based on perceptual and non-social cognitive differences in ASD. This
leads to a common question of how social symptoms engender non-social deficits
(e.g., by affecting learning in early development), or, alternatively, how general
differences in sensory processing in the brain extend to the social domain. The
approach that can be taken for Bayesian accounts is to equate important aspects of
social and non-social processing: specifically, our representation of others’ mental
states can be cast in terms of Bayesian inference on the hidden external causes of
sensory data, where this sensory data relates to the behaviours of others (Hohwy
& Palmer, 2014; Kilner et al,, 2007; Koster-Hale & Saxe, 2013; Palmer, Seth, et al.,
2015). Similarly, we will see in Section 4 that differences in non-social sensory
behaviours and social interaction may each reflect how the balance between action
and perception is maintained in an inferential system. To make such an account
plausible, an adequate framework is required for distinguishing between social
and non-social inference and for defining their interaction; for instance, to explain
why social functions are particularly vulnerable to general differences in sensory
processing in the brain (Happé et al, 2006). To meet this challenge within
Bayesian theories, we need to appeal to the broader hierarchical setting of
perceptual inference (discussed in Hohwy & Palmer, 2014; Palmer, Seth, et al,,
2015). For instance, commonalities (e.g., automaticity) between perception and
implicit social-cognitive processes can be examined partly in terms of the
hierarchical depth of inferred causes. The notion that social cognition is

particularly vulnerable to differences in information processing (compared to
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other perceptual or cognitive processes) due to the complexity of social situations
can similarly be operationalized to an extent in a Bayesian framework; for
example, inferring others’ mental states may require modelling the influence of
relatively long term causes in the environment on sensory input and a greater
dependence on the context-dependent adjustment of precision expectations, and
social situations entail a unique requirement to model the influence of our own
mental states on those of others (Hohwy & Palmer, 2014; Palmer, Seth, et al,,
2015).7

Finally, core symptoms of several psychiatric conditions other than ASD have been
similarly characterised in terms of inferential mechanisms, including
schizophrenia and Parkinson’s disease (e.g., Edwards, Adams, Brown, Parees, &
Friston, 2012; Fletcher & Frith, 2009). Notably, positive and negative symptoms of
schizophrenia are suggested to be indicative of reduced precision of prior beliefs
within a hierarchical predictive processing setting (Adams, Perrinet, & Friston,
2012; Adams, Stephan, Brown, Frith, & Friston, 2013). Accounting for ASD in terms
of a chronically altered learning rate is therefore likely only to be the beginning of
an adequate explanation for this condition; rather, a more nuanced description is
needed of aberrant precision-modulation in the autistic brain to account for how
ASD differs from other psychiatric conditions, taking into account developmental
trajectories, the location in the brain (or sensory hierarchy) that primary and
secondary differences occur, and mechanisms underlying precision modulation
(e.g., the role of volatility expectations or higher-level contextual modulation). A

recent example in this regard comes from Quattrocki and Friston (2014), which

7 There is compelling evidence from large-scale studies that the behavioural traits
that define the key DSM-IV diagnostic domains of autism (relating to social
interaction, communication, and restricted behaviours) vary independently across
the general population to a significant extent, meaning that these broad symptom
domains may have separate genetic and neurocognitive causes despite their co-
occurrence being necessary for a diagnosis of autism (reviewed in Happé et al,
2006). This argues in part against an attempt to explain social and non-social
features of autism with appeal to the same underlying Bayesian mechanisms.
However, these studies do indicate a tendency for impairments in DSM-IV domains
to co-occur to a moderate extent and for significant overlap in their genetic causes.
Furthermore, more specific cognitive, motor and perceptual characteristics
implicated in autism may to some extent interrelate differently than the broad
behavioural domains used in diagnostic procedures.



43

reviews evidence that ASD may stem from differences in the precision weighting of
interoceptive sensory signals in early childhood, controlled by oxytocinergic
neuromodulation. Predictive processing in the context of interoceptive sensory
signals, and their hierarchical interaction with exteroceptive signals, has been
linked to the experience of emotion and aspects of self-experience (such as bodily
ownership) as well as bodily homeostasis (Barrett & Simmons, 2015; Seth, 2013).
Impairment in the ability to modulate the salience of interoceptive sensory signals
context-dependently (e.g., in response to relevant visual cues) is correspondingly
suggested by Quattrocki and Friston (2014) to compromise the generation of
internal models of the self, with implications for the typical development of
various aspects of social functioning, including observational learning, theory of
mind and emotional responding (see Brewer, Happe, Cook, & Bird, 2015, for

commentary).

4. Precision modulation and behaviour

4.1 Prediction-error minimisation and action

In the predictive processing model, perception occurs as prediction error in the
sensory system is minimised by revising (hierarchical) cortical predictions in light
of incoming sensory signals. In this way, the brain’s representation of the world
changes to better account for sensory data; experientially, the perceived state of
the world changes. An alternative way in which prediction error can be reduced is
by acting on the world to bring sensory input closer in line with that predicted
(Friston et al., 2010). Consider the case of proprioception: descending predictions
regarding proprioceptive sensory signals can be made to better match incoming
data by either revising these predictions or moving to change the position of the
body to that predicted. Thus, we can make a distinction between perceptual
inference and active inference in their direction of fit in reducing prediction error
(Friston et al., 2010; this distinction in terminology is provisional, see Section 4.3).
Figure 2b illustrates the resultant situation of a biological agent schematically:

sensory states are determined by (hidden) external states of the physical world,
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which the agent models internally; meanwhile, the organism can act on the
external states of the world, modulating its own sensory input. In this way, the
agent is an active part of the causal structure of the world that generates the

sensory data that its sensory system is working to predict.

These considerations furnish a unique perspective on movement execution and the
functional organisation of the motor system (Adams, Shipp, et al., 2013; Friston et
al, 2010; Shipp et al, 2013). Specifically, descending projections from motor
cortex can be regarded as mediating predictions of proprioceptive states at the
level of the spinal cord (rather than motor commands, as these signals are more
typically conceived). Prediction error occurs at peripheral levels when
proprioceptive states fail to match corticospinal predictions. Unlike in the
perceptual system, however, peripheral prediction errors are resolved via spinal
reflexes that engage the muscles to bring proprioceptive input in line with that
predicted. In this way, motor predictions act as a set point, indicating the desired
(or expected) bodily state that peripheral reflexes work to maintain. Hence,
movement is initiated when (initially) inaccurate beliefs about proprioceptive
states are realised by engaging spinal reflexes. This is made possible by the close
relationship between muscular activity and the stimulation of proprioceptive
sense receptors; for example, the firing of (sensory) muscle spindles is directly

controlled by muscular contractions that alter the length of the muscles.

Descending motor signals (i.e., proprioceptive predictions) in the predictive
processing account are the result of a multimodal, hierarchical model of the world,
where this model includes a representation of the agent itself. Therefore,
exteroceptive prediction errors might also be resolved through action; for instance,
if visual predictions modulate proprioceptive predictions, the latter may induce
movement that shifts the eyes to bring visual input in line with that predicted. In
this way, active inference can be considered more broadly than proprioceptive
control. An important example in this regard is that bodily homeostasis can be
conceptualised as active inference on interoceptive sensory signals (Seth, 2013):
falling blood glucose levels, for example, can be met by either revising

interoceptive predictions (and failing to survive if the actual glucose concentration
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falls below a safe limit) or by acting to maintain interoceptive signals within an
expected range (via autonomic reflexes or motor behaviour). In some cases,
interoceptive expectations ought to shape proprioceptive and exteroceptive
predictions to drive behaviour (for instance, food seeking) that results in obtaining
the predicted interoceptive states. This highlights the importance of a multimodal
hierarchical system in which exteroceptive, proprioceptive and interoceptive

expectations interact over different time scales to result in adaptive behaviour.

4.2 Varieties of active inference

Action as discussed so far can be understood as confirmatory active inference, in
which the nervous system acts to make its beliefs about the environment true.
Predictions for multimodal sensory activity are shaped by evolution, early
development and recent experience, and function to keep the organism within a
limited set of states favourable to survival; in this way, concepts of utility and
adaptation can be captured in terms of hierarchical predictions that are

constrained by natural selection and brain development (Friston, 2010).

In their classic formulations of unconscious inference, Hermann Von Helmholtz
and later, Richard Gregory (Gregory, 1980; Helmholtz, 1860), emphasised the
investigative role for action in testing the brain’s beliefs about the world; for
instance, the hypothesis that a table is a current cause of visual stimulation can be
evidenced by moving about the room to sample consequent changes in the visual
stream. In the social domain too, conversation is a richly interactive process, in
which our speech, facial expressions and other behaviours interact with others’
intentions, emotions and beliefs to garner us evidence about these internal
psychological states (discussed in Palmer, Seth, et al,, 2015). In this way, action
plays a further role in inference by reducing uncertainty in the state of the
environment. This can be distinguished as disambiguatory active inference, in
which action helps to accumulate evidence for an existing hypothesis or resolve
between competing hypotheses (delineated further in Seth, 2015a). This in part
captures the benefit of exploration to an inferential system, even if it may come at

the cost of transiently increased prediction error. In practice, we are always
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interacting with the world, through saccades, speech and more overt movements;
and as a process of disambiguatory sampling, these movements and behaviours
are deeply ingrained in perceptual inference, with prediction error minimisation
over the longer term entailing a continuing synthesis of action and perceptual

updating.

To this end, active inference suggests that there would be benefit in deploying
counterfactual predictions; that is, predictions of the sensory consequences of
potential actions (Friston, Adams, Perrinet, & Breakspear, 2012; Seth, 2014, 2015a,
2015b). This is distinct from predictive processing as typically discussed in that it
involves encoding a range of possible future causes of sensory input and the
associated precisions expected (contingent upon actions that could be made),
rather than modelling the present state of the environment. The importance of
counterfactual predictions is in allowing for action selection on the basis of how
alternatives for action are expected to reduce uncertainty in the brain’s
representation of the environment. The implication is that behavioural patterns
(including visual search strategies, haptic exploration, and interactive social
behaviours, for example) are driven in part to sample the world such that
perceptual representations are made more precise. In the context of oculomotor
control, Friston et al. (2012) demonstrate that saccadic visual search strategies can
be modelled in terms of Bayesian inference driven by uncertainty-reduction.
Beliefs of this type can be represented in terms of a salience map that indicates
from where (in the visual field, for example) the system expects sampling will
maximise its confidence in predictions about the world; for instance, an area of
high salience might be the eyes of a face, the foveation of which will maximally
disambiguate the type of object that we are looking at (or the mental state of the
person we are interacting with). In this way, the inferential system selectively
samples its environment through active inference to optimise its internal

probabilistic model.
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4.3 Balancing action and perception with precision modulation

The possibility of resolving prediction error through either perception or action
poses a fundamental question: what mechanism determines when we act and
when we update predictions instead? What prevents the brain from failing to act at
all, instead adjusting its predictions to resolve prediction error? To initiate action
rather than perceptual updating, the process required is sensory attenuation: the
downregulation of sensory prediction errors such that predictions that are a
poorer fit for the current input are nevertheless able to predominate and drive
action (Brown, Adams, Parees, Edwards, & Friston, 2013; Brown, Friston, &
Bestmann, 2011). This mechanism is important for understanding the implications
of the hypothesised differences in precision weighting in ASD for the emergence of

clinical symptomology.

Picture two hypotheses that your brain may have regarding the position of your
hand. One hypothesis is that your hand is stationary by your side. An alternate
hypothesis is that your hand is out in front of you, gripping the coffee cup. These
hypotheses each translate to distinct patterns of proprioceptive signals for
perception and action; that is, different descending (hierarchical) predictions in
proprioceptive sensory and motor systems in the nervous system. If your arm
really is at your side at present, then the first hypothesis will minimise sensory
prediction error moreso than the other. By attenuating the feedforward signal in
sensory cortex, however, the alternate hypothesis can persist in the face of
prediction error. As this hypothesis furnishes motor predictions that fail to match
the actual proprioceptive signals, spinal reflexes will be engaged to extinguish

motor prediction error, bringing your arm to the coffee cup.?

8 Attenuation of the (predictable) sensory consequences of self-generated
movements has received much empirical attention, and is discussed in the context
of motor control theory (e.g., Blakemore, Frith, & Wolpert, 1999); in this model,
predictions of the sensory consequences of self-generated actions are compared to
the actual sensory consequences, with the degree of mismatch related to how
strongly the sensory consequences of the action are perceived. Sensory
attenuation in the context of active inference differs, however, in that bottom-up
sensory signals are broadly attenuated (i.e., it is not just those signals that are
predicted that are attenuated), such that sensory evidence that conflicts with the



48

Importantly, sensory attenuation is simply optimal precision weighting as we have
already seen it, and thus relies upon mechanisms related to volatility expectations
and hierarchical interactions as described in Section 3. As noted in Section 2,
Bayesian inference isn’t limited to simply minimising immediate prediction errors,
but aims rather to infer the underlying cause of noisy data and thus minimise
prediction error over the longer term. This requires that the precision of the
prediction and the precision of sensory evidence are constantly estimated. When
precision estimates tip in the direction of a lower weighting of prediction errors,
predictions will be maintained even in the face of conflicting sensory evidence.
This will induce action if the inferred state of the world carries with it
proprioceptive predictions that are a poor match for the current proprioceptive
input at peripheral levels. In this way, the distinction made in Section 4.1 between
active and perceptual inference as different modes to reducing prediction error is
artificial: the brain is always engaged in perceptual inference, with action
occurring when its best estimate of the state of the world happens to entail

proprioceptive prediction errors.

Prior expectations, furnished by sensory sampling, development, and evolution,
are central to this process. For example, the nervous system may have such strong
prior expectations that blood glucose is in a certain range (this prior being shaped
by natural selection) that it is very unlikely to ever represent blood glucose as
being outside of this range. A highly precise Bayesian prior for blood glucose levels
is manifest in predictive processing as a prediction for interoceptive sensory
activity together with attenuation of the weighting of interoceptive prediction
errors (such that prediction errors drive autonomic reflexes, such as insulin
release, or bodily actions). In this way, highly precise predictions will tend not to

be updated in light of prediction error at the sensory level. Action is thus

hypothesized (and initially non-veridical) state of the world represented by motor
predictions doesn’t drive inference, and action can be initiated. The distinction
between these accounts is discussed in Brown et al. (2013). Empirically, sensory
attenuation has been examined in part by comparing the perception of self-
generated vs. externally generated actions, for instance in force-matching and self-
tickle paradigms (Brown et al.,, 2013; e.g., Van Doorn, Hohwy, & Symmons, 2014).
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comparable to perceptual illusions in that prior expectations produce a non-
veridical representation of the world; the difference is that in the case of action,
peripheral reflexes proceed to rectify the mismatch between predictions and
sensory data by making the real world fit with that modelled internally. In other
words, returning to our previous example, our hand begins to move towards the
coffee cup because that state of the environment is calculated, based on prior and
contextual information, as being more probable than the (hidden) veridical state.
This highlights the internalist nature of the brain under predictive processing:
being compelled to infer a non-veridical model of the world is what enables an

inferential system to act and maintain itself within expected states.

4.4 The action-perception balance is central to autism

As described in the preceding sections, precision estimation is fundamental to
regulating the balance between perception and action, with implications for both
perceptual inference and behaviour. The hypothesized differences in precision
modulation in ASD thus suggest not only perceptual biases (as reviewed in Section
2.2) but also unusual patterns of behaviour. ASD is defined on the basis of impeded
development in social interaction and communicatory behaviours (e.g., reduced
social orienting), together with repetitive and restricted non-social behaviours
(e.g., stereotyped movements and a strong preference for routine; American
Psychiatric Association, 2013; Lai et al.,, 2014). These core aspects of ASD relate
fundamentally to how individuals interact with or sample the world. Active
inference points to how such interaction isn’t a merely a matter of acting upon
(potentially distorted) perceptual representations, but rather requires regulation
of the balance between perceptual updating and action; relating, for instance, to
where and for how long we sample in the visual field to optimise internal models,
and how we interact with others to elicit information about their mental states.
Investigating the outcomes of aberrant precision modulation for how action and
sensory sampling are regulated may thus be crucial to moving from a Bayesian
account of perceptual symptoms in ASD to an account of the core behavioural

features that define the condition.
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Reduced sensory attenuation (relating to chronically high precision expectations
or impaired volatility processing, for example) is immediately suggestive of
prolonged sampling behaviour at the expense of active investigation of the
environment. Atypical visual sampling behaviour consistent with this hypothesis is
a distinct characteristic of children with ASD, including in the years before
diagnosis is typically made. This can take the form of unusual fixation on particular
stimuli or object types (e.g., bright moving lights, carpet patterns, and small round
objects), longer latencies in disengaging attention from one visual stimulus in
order to orient to another, and unusual visual exploration of toys or toy-like
objects (Bryson et al, 2007; Elsabbagh et al, 2009; Ozonoff et al., 2008;
Zwaigenbaum et al.,, 2005). Similarly, visual exploration of object arrays shows a
similar persistent pattern of gaze behavior, such that fewer objects are examined,
yet with those examined being explored in more detail (Sasson, Elison, Turner-
Brown, Dichter, & Bodfish, 2011; Sasson, Turner-Brown, Holtzclaw, Lam, &
Bodfish, 2008). Features of this type are included in contemporary diagnostic
criteria as “unusual interest in sensory aspects of the environment” (American
Psychiatric Association, 2013), and an active area of investigation is whether the
tendency towards a more persistent attentional style in ASD, occurring early in
development, underlies the subsequent emergence of social abnormalities (Keehn,

Muller, & Townsend, 2013).°

9 Other findings are less clearly consistent with a bias against action initiation in
autism, yet still implicate differences in the balance between perceptual updating
and action as a central feature of autism early in development. A well-replicated
psychophysical feature of autism is superior visual search, for which the location of
a known target element embedded in an array of distractor elements is performed
more quickly than in children without autism (Jarrold, Gilchrist, & Bender, 2005;
Plaisted, O'Riordan, & Baron-Cohen, 1998). This finding has been replicated in
adults (Kemner, van Ewijk, van Engeland, & Hooge, 2008; O'Riordan, 2004) and
similarly extended to pre-verbal toddlers using gaze tracking (Kaldy, Kraper,
Carter, & Blaser, 2011). The centrality of visual search behaviour to autism has
been recently demonstrated in a prospective longitudinal study that tracked the
younger siblings of individuals with autism, a cohort that are at increased risk of
developing autism themselves. Spontaneous visual sampling behaviour was
assessed implicitly with the use of gaze tracking when faced with a two-
dimensional array of characters. Children whose gaze was drawn more readily to
novel elements in these arrays at 9 months of age exhibited greater autistic
symptoms at 15 months and 2 years of age (assessed using standard diagnostic
inventories). A similar prospective study in infants found that heightened risk of



51

Similarly, there is evidence that movement initiation is impeded in ASD in the
context of voluntary arm movements. Several studies report slower reaction times
for young autistic adults in the initiation of cued pointing and pressing movements
(Glazebrook, Elliott, & Lyons, 2006; Glazebrook, Elliott, & Szatmari, 2008; Nazarali,
Glazebrook, & Elliott, 2009; for a conflicting finding, see Stoit, van Schie, Slaats-
Willemse, & Buitelaar, 2013) and cued finger tapping (Turner, Frost, Linsenbardt,
Mcllroy, & Muller, 2006). Children with ASD similarly show longer and more
variable preparation time before beginning movement of a stylus towards an
illuminated target on a touch screen (Dowd, McGinley, Taffe, & Rinehart, 2012;
Rinehart, Bellgrove, et al., 2006) as well as atypicalities in movement preparation
in a button-pressing task (Rinehart, Bradshaw, Brereton, & Tonge, 2001; Rinehart,
Tonge, et al., 2006). Longer overall durations of grasping and pointing movements
(when excluding time before movement initiation) is similarly a well-replicated
finding in adults and school-age children (Glazebrook et al., 2006; Glazebrook et
al., 2008; Mari, Castiello, Marks, Marraffa, & Prior, 2003; Rinehart, Tonge, et al,,
2006; Stoit et al,, 2013). Palmer, Paton, Kirkovski, et al. (2015) examined the early
constituent sub-components of movement in adults with ASD while they
performed simple reach-to-grasp actions; early stages of movement were slow in
this group, with delayed time to peak velocity of the initial sub-component of
movement and delayed onset of later sub-components. When the process of
movement initiation is considered in terms of active inference, these findings
together suggest that the sensory attenuation required to facilitate a non-veridical
hypothesis of arm position (and thus initiate movement) is impaired in ASD,
reflecting an overweighting of sensory prediction error or atypical volatility

expectations.

developing autism was associated with less time sampling from a specific part of
two-dimensional static images (e.g., face, car) before shifting gaze to a different
part of the image (Wass et al., 2015). Kemner, Verbaten, Cuperus, Camfferman, and
van Engeland (1998) similarly find a greater number of saccades when viewing
static two-dimensional images in school-age children with autism, comparing to
both nonclinical children and children with ADHD. Whether effects of this nature
can be modelled together with instances of persistent visual attention in a
Bayesian framework is an interesting challenge to the theory.
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In addition to a strong preference for routine, repetitive or stereotyped behaviours
that occur in ASD include self-focussed motor behaviours (e.g., rocking or hand
flapping) and repetitive use of objects (e.g., continually twirling a piece of string in
front of the eyes). Prospective and retrospective studies indicate that atypical
behaviours of this type can be apparent at 10-12 months of age in children that go
on to receive a diagnosis of ASD (e.g., Bryson et al., 2007; Ozonoff et al., 2008;
Werner, Dawson, Munson, & Osterling, 2005). These behaviours are similarly
suggestive of a circumscribed sampling of the environment; as with tendencies
towards prolonged visual sampling, repetitive movements are a way of continually
sampling sensory information regarding the same external cause of input such that
hypotheses are made more precise (in the latter case, hypotheses regarding bodily
movement rather than visual objects). Similarly, by acting repetitively, the sensory
input (whether proprioceptive, visual, or otherwise) is made more predictable and
its external causes less volatile, such that uncertainty in the external causes of
sensory input is reduced. In this way, repetitive sampling (whether repetitive
motor behaviour or persistent visual attention) can be seen as a strategy for
reducing uncertainty in the brain’s representation of the world. As outlined in
Section 4.2, the optimal way of sampling the environment to reduce uncertainty in
perceptual representations is a fundamental challenge to perceptual inference that
relies upon expectations for precision; in this respect, autistic symptoms may
reflect a subtly different solution to this challenge, where maximal reduction in
uncertainty in the brain’s representation of the environment is linked to repeated
sampling or movement rather than more variable or exploratory behaviours.
Strategic differences in sampling behaviour can be cast in terms of volatility
expectations; in a world that is less volatile, repetitive sampling may be a more
optimal strategy to reducing uncertainty, while, in contrast, a stronger expectation
that the causes of sensory input will change (including self-generated causes of

sensory input) may facilitate less repetitive and exploratory movements.

The socially pertinent behaviours that define ASD in childhood and adulthood can
similarly be considered in terms of how the sensory world is interactively sampled

for the sake of perceptual inference. Early signs of ASD include reduced orienting
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to social stimuli (e.g., an individual’s response to their name being called, and the
extent to which they attend preferentially to people rather than objects) and
reduced joint attention (including both initiating shared attention with another by
directing their attention using eye contact, gestures and speech, and following
other’s locus of attention based on their eye gaze and bodily gestures) (Bryson et
al, 2007; Dawson et al., 2004; Zwaigenbaum et al., 2009). Atypical responses to
direct gaze, including a reduced tendency to fixate on others’ eyes (i.e., establish
eye contact), has been long associated with ASD, with the current balance of
evidence inconsistent but suggesting reduced direction of gaze towards others’
eyes in more demanding and interactive contexts (i.e., potentially more volatile
environments; Senju & Johnson, 2009). Similarly, autistic adults with intact ability
to explicitly represent others’ mental states (i.e., explicit theory of mind) show
reduced eye gaze towards stimuli made implicitly salient by others’ mental states
(Senju, Southgate, White, & Frith, 2009). These differences in orienting sensory
sampling towards social stimuli, and on the basis of others’ mental states, suggest
that socially related features of the environment, which readily capture attention,
sampling and interactive behaviours in typically developing children and non-
clinical adults, are afforded less precision in the brain of individuals with ASD and
thus do not drive active inference to the same extent. This is suggestive of
differences in the implicit counterfactual modelling of how the sensory
consequences of actions that we perform are dependent on others’ mental states,
such that action is driven less by the imperative to reduce uncertainty in social

aspects of the environment (Palmer, Seth, et al., 2015).

This section has argued that sensory-sampling behaviours, motor initiation,
repetitive motor behaviours, and social interaction in ASD can be understood in
terms of the balance between action and perceptual updating during inference. In
predictive processing, the regulation of action rests upon the context-sensitive
adjustment of precision weightings, itself depending on expectations about
volatility and the deep hierarchical modelling of interacting worldly causes.
Specifically, extended sampling behaviour at the expense of action, evidence for
which exists in visual behaviour, slower movement initiation and repetitive

movements, is suggestive of an expectation for less change in the environment.
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This implicates mechanisms involved in hierarchical volatility inference and the
recruitment of higher levels in the causal hierarchy to modulate predictions at

lower levels.

5. Conclusion

This paper began by reviewing how simple and systematic differences in the
processing of sensory information in the brain can be characterised within a
Bayesian framework to encapsulate important perceptual characteristics of ASD.
In the last several years, this approach has furnished initial hypotheses about ASD
that can be considered across cognitive, computational and neural levels of
description. We then explored theoretical challenges to optimal precision
modulation in the brain, including the need for volatility processing and
hierarchical interactions to maintain perceptual inference in the changing
environments that the brain operates within. The promise of Bayesian theories of
ASD is partly in how these more nuanced inferential mechanisms may allow for a
rich account of context-dependency and heterogeneity in the expression of autistic
characteristics. Moreover, the further expansion of the basic Bayesian model of
perception, to include the interaction between perception and action (i.e., active
inference), has promise for linking differences in the processing of sensory
information in the brain to a broad set of autistic symptoms. Importantly, the
hypothesised differences in the control of precision modulation in the autistic
brain are directly suggestive not only of perceptual biases, but also unusual

patterns of social and non-social behaviour.
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Linking text between chapters 1 and 2

In Chapter 1, predictive processing was introduced as a theory of how the brain
builds a representation of its environment based on ambiguous sensory
information. In the following chapters (Chapters 2 and 3) the processing of sensory
information is examined in the context of body perception. We employ the rubber
hand illusion, a paradigm that has been used widely in neuroscience research over
the past decade to investigate how the brain represents the body as distinct from
the external environment, the phenomenological sense of ownership we feel for
our own body, and the underlying role of multisensory integration in these

processes (Ehrsson, 2012).

To induce the illusion, the participant is typically seated in front of a prosthetic
arm, with his or her own arm hidden from view. Ongoing touch, such as repeated
stroking or brushing, is then applied synchronously to both the participant’s
hidden hand and the corresponding point of the prosthetic hand. Crossmodal
integration of the visual and tactile information typically occurs, such that
participants report the sensation of touch as spatially located where they see the
prosthetic hand being touched - as if the tactile sensation is caused by the touch
they see applied to the prosthetic hand. This illusion appears to exploit the fact
that, in natural environments, touch to our body is commonly registered both
visually and via tactile afferents, with temporal synchrony and anatomical

congruence between the information that these two senses provide.

Most strikingly, this pattern of visual-tactile stimulation induces a strong sense
that the prosthetic hand is a part of one’s own body. This aspect of the illusion is
most commonly assessed using self-report measures; however, several objective
measures also support the notion that the illusion is associated with changes in the
brain’s representation of the body. Firstly, the illusion induces a shift in the sense
of arm position towards the prosthetic arm, reflected in both explicit
proprioceptive estimates and the trajectories of subsequent reaching movements

(Botvinick & Cohen, 1998; Heed et al,, 2011; Newport, Pearce, & Preston, 2010;
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Tsakiris & Haggard, 2005; Zopf, Truong, Finkbeiner, Friedman, & Williams, 2011).
Secondly, induction of the illusion is associated with changes in autonomic activity,
including a drop in limb temperature (Hohwy & Paton, 2010; Kammers, Rose, &
Haggard, 2011; Moseley et al., 2008; Thakkar, Nichols, McIntosh, & Park, 2011) and
enhanced skin conductance responses when the prosthetic arm is threatened with
physical damage (Armel & Ramachandran, 2003; Ehrsson, Wiech, Weiskopf, Dolan,
& Passingham, 2007; Petkova & Ehrsson, 2009). Thirdly, crossmodal congruency
effects indicate that visual stimuli presented nearby the prosthetic arm interfere
with the processing of spatially-incongruent tactile stimulation of the real arm,
reflected in measures of reaction time in a tactile discrimination task and
suggesting that visual space around the prosthetic arm is in some regard ‘mapped’
to the body following the illusion (Pavani, Spence, & Driver, 2000; Zopf, Savage, &
Williams, 2010).

Importantly, these phenomena tend to exist specifically when the seen and felt
touch are applied synchronously, and are reduced for asynchronous stimulation.
Studies that examine the constraints of the illusion have also shown that a degree
of correspondence between the real and prosthetic arms in their position and
orientation is necessary for the illusion to be induced, suggesting that congruence
between proprioceptive and visual information also facilitates body representation
(Costantini & Haggard, 2007; Hohwy & Paton, 2010; Lloyd, 2007). Neuroimaging
studies of the illusion tend to implicate cortical regions that are known to integrate
visual, tactile and proprioceptive signals, including the ventral premotor area and
intraparietal regions (Brozzoli, Gentile, & Ehrsson, 2012; Ehrsson, Holmes, &
Passingham, 2005; Ehrsson, Spence, & Passingham, 2004; Ehrsson et al,, 2007).
These findings thus support a model of body representation as resting in
significant part on correlations between visual, tactile and proprioceptive
information (discussed in Botvinick, 2004; Botvinick & Cohen, 1998; Ehrsson et al.,

2004; Makin, Holmes, & Ehrsson, 2008).

In addition to multisensory correlations, what can be characterised as more top-
down perceptual mechanisms play a role in body representation. Most notably,

attempts to induce the rubber hand illusion using anatomically implausible
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prosthetic arms or other non-bodylike objects, such as sticks and boxes, have
shown absent or reduced effects (Hohwy & Paton, 2010; Tsakiris, Carpenter,
James, & Fotopoulou, 2010; Tsakiris & Haggard, 2005). This suggests that implicit
expectations regarding the visual appearance of the body contribute to body

representation.

Influential theories of autistic perception propose differences in the interplay
between higher- and lower-level perceptual mechanisms, with a reduced role for
integrative processing of sensory information (Happé & Frith, 2006). There is also
growing evidence for differences in the crossmodal integration of sensory
information in ASD (e.g., reduced integration of visual and auditory information
during speech perception; Mongillo et al.,, 2008). Effects of this nature are largely
yet to be explored in the context of body perception and movement. The
experience of the illusion may therefore be revealing about differences in the
processing of sensory information in ASD, including that relevant to recent
Bayesian hypotheses regarding autistic perception. For instance, the illusion
entails conflict between proprioceptive signals regarding arm position and
expectations for arm position influenced by the illusion. In this respect,
proprioceptive and kinematic effects of the illusion may be revealing about the
differences hypothesised for ASD in the weighting of incoming sensory information

against prior or contextual expectations.

The RHI had been studied only very recently in ASD prior to the work reported in
the present thesis. Paton et al. (2012) examined the illusion in a sample of high-
functioning adults diagnosed with either autistic disorder or Asperger’s disorder.
Both clinical participants and non-clinical controls reported the typical subjective
experience of the illusion. However, the ASD group were less sensitive to the
degree of spatial discrepancy between the real and prosthetic arm in their
experience of the illusion, and also exhibited subtle differences in the acceleration
of reach-to-grasp movements performed with the stimulated hand following the
illusion. The effects of the RHI have also been examined in children with ASD
compared to typically developing children (ages 8-17; Cascio et al., 2012). The

clinical group reported experiencing the typical subjective effects of the illusion,
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but required a longer duration of visual-tactile stimulation before an effect on

proprioceptive estimates was observed.

Together these initial findings suggest intact integration of seen and felt touch in
ASD, but with reduced interaction of this stimulation with proprioceptive
representations. These results cohere partly with evidence that individuals with
ASD exhibit a greater reliance than controls on proprioceptive input rather than
visual information when guiding reaching movements (Haswell, Izawa, Dowell,
Mostofsky, & Shadmehr, 2009; Masterton & Biederman, 1983) (see also
Glazebrook, Gonzalez, Hansen, & Elliott, 2009) and maintaining postural stability

(Minshew, Sung, Jones, & Furman, 2004).

In Chapter 2, susceptibility to the rubber-hand illusion is examined in a sample of
nonclinical adults. Proprioceptive and motoric effects of the illusion are found to
differ in this sample with respect to variation in autism-like traits. These findings
are then partially replicated and extended in Chapter 3, which reports data from
adults with formal ASD diagnoses in addition to nonclinical individuals that vary in
their autism-like traits. Chapter 3 also characterises the motoric effects of the
illusion in greater detail; we find that it is not the initiation of movement that is
influenced by the illusion, but rather later stages of movement, consistent with a
difference in ASD in the integration between sensory signals received during
movement and expectations for arm position influenced by the illusion. These
findings are discussed in the context of predictive processing theories of

neurocognitive function.
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Abstract

Recent research has begun to investigate sensory processing in relation to
nonclinical variation in traits associated with autism spectrum disorder (ASD). We
propose that existing accounts of autistic perception can be augmented by
considering a role for individual differences in top-down expectations for the
precision of sensory input, related to the processing of state-dependent levels of
uncertainty. We therefore examined autistic traits in relation to the rubber-hand
illusion: an experimental paradigm that typically elicits crossmodal integration of
visual, tactile, and proprioceptive information in an unusual illusory context.
Individuals with higher autistic traits showed reduced effects of the rubber-hand
illusion on perceived arm position and reach-to-grasp movements, compared to
individuals with lower autistic traits. These differences occurred despite both
groups reporting the typical subjective experience of the illusion concerning
visuotactile integration and ownership for the rubber hand. Together these results
suggest that the integration of proprioceptive information with cues for arm
position derived from the illusory context differs between individuals partly in
relation to traits associated with ASD. We suggest that the observed differences in
sensory integration can be best explained in terms of differing expectations

regarding the precision of sensory estimates in contexts that suggest uncertainty.
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1. Introduction

ASD frequently involves atypical sensory processing in both childhood and
adulthood (reviewed in larocci & McDonald, 2006; Marco et al., 2011; Simmons et
al., 2009). The upcoming fifth edition of the Diagnostic and Statistical Manual of
Mental Disorders will for the first time include sensory dysfunction as a diagnostic
criterion for ASD (i.e., “hyper- or hyporeactivity to sensory input or unusual
interest in sensory aspects of the environment,” American Psychiatric Association,
2013), calling attention to the need to advance our understanding in this area. To
understand the nature of ASD and to throw light on individual differences in
perception more generally, it is also important to explore the extent to which the

relevant underlying sensory mechanisms vary in the general population.

This broader focus of research originates from evidence that autistic traits vary
meaningfully amongst nonclinical individuals, with those meeting a clinical
diagnosis of ASD situated at the extreme end of a spectrum that encompasses the
population at large (reviewed in Happé et al., 2006; Mandy & Skuse, 2008). The
distribution of scores typically found for measures of autistic traits in large general
population samples tends to be compatible with this hypothesis (e.g., Constantino
& Todd, 2003; Posserud, Lundervold, & Gillberg, 2006), and correlations between
autistic traits and sensory task performance in non-clinical samples are consistent
with sensory differences seen in clinically-diagnosed ASD (e.g., Donohue, Darling,
& Mitroff, 2012; Walter et al,, 2009). A similar technique used to investigate
phenomena related to ASD is the group comparison of nonclinical individuals
scoring high on trait measures of ASD to those scoring lower. This approach has
also revealed sensory differences (Grinter, Maybery, et al., 2009; Grinter, Van Beek,
Maybery, & Badcock, 2009) and neurophysiological response characteristics
(Puzzo, Cooper, Vetter, & Russo, 2010) associated with autistic traits consistent
with that seen in clinically-diagnosed ASD, and this method is employed in the

present study.

Contemporary theories of perception in ASD propose fundamental differences in

the processing of sensory information to account for a complex pattern of
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strengths and weaknesses observed across different perceptual-cognitive tasks
and contexts (e.g., Brock, Brown, Boucher, & Rippon, 2002; Frith, 1989; Happé &
Frith, 2006; Mottron et al., 2006; Plaisted et al., 1998). A theme underlying parts of
this discussion, in particular the weak central coherence theory (Frith, 1989;
Happé & Frith, 2006), is the neurocognitive distinction between the contribution of
bottom-up sensory processing to perception (relating most directly to sensory
input) and the top-down modulation of input based on endogenous factors such as
prior knowledge and attention (Frith & Dolan, 1997; Gilbert & Sigman, 2007;
Kveraga, Ghuman, & Bar, 2007). More recent Bayesian accounts develop this point
in relation to ASD explicitly: for example, Pellicano and Burr (2012) suggest that
prior expectations regarding the state of the world may have diminished influence
on perception in ASD, increasing reliance on bottom-up signals (for discussion and
related proposals, see Brock, 2012; Friston, Lawson, & Frith, 2013; Hohwy, 2013;
Mitchell & Ropar, 2004; Paton et al., 2012; van Boxtel & Lu, 2013b).

An important challenge for these accounts is the uneven landscape of enhanced
and compromised perceptual performance in ASD, which does not cohere clearly
with a general bias in top-down processes. For example, for visual illusions, some,
but not all, studies have suggested less susceptibility (that is, increased veridical
perception) in ASD (Bolte et al., 2007; Happé, 1996; Hoy et al,, 2004; Ropar &
Mitchell, 1999, 2001; Walter et al., 2009). Similarly, whereas a general impairment
in top-down modulation would seem to predict diminished multisensory
integration in ASD, studies do not unequivocally support this, even though there
are a number of intriguing underlying differences (Cascio et al., 2012; Kwakye,
Foss-Feig, Cascio, Stone, & Wallace, 2011; reviewed in Marco et al.,, 2011; Paton et

al, 2012).

We reasoned that uneven performance could relate to differences in the way
context determines the expected levels of sensory precision, which is an aspect of
top-down modulation that has only recently been described (Feldman & Friston,
2010) and linked to ASD in the context of predictive processing models of
perception (Friston et al, 2013; Paton et al,, 2012). Conceptually, expectations

regarding the precision of sensory input are of importance to the relative
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weighting of bottom-up and top-down perceptual processes in response to state-
dependent (i.e., changing) levels of uncertainty. This proposal therefore predicts
that differences will become apparent in contexts and experimental set-ups where
changing conditions suggest changing levels of uncertainty in the sensory signal. In
particular, individuals with ASD, as well as nonclinical individuals with autistic
traits, may be less sensitive than individuals with few autistic traits to contexts
that suggest increased uncertainty. This would predict that in contexts that suggest
low uncertainty (i.e., high precision of sensory input) there would be less
difference between the groups, but that in contexts that suggest higher uncertainty
(i.e., suggests low precision of sensory input) differences would begin to emerge.
Sometimes these differences would give rise to enhanced performance of the ASD
and autistic groups, namely when the expectation for high precision input leads to
increased sensory sampling and less integration under prior expectations relevant
to the context. Sometimes this would lead to compromised performance for these
groups, namely when expectation for high precision leads to blindness to

underlying patterns of hidden, influencing factors.

We therefore explore this proposal in relation to the rubber-hand illusion
(Botvinick & Cohen, 1998), a well-studied experimental paradigm involving
multisensory interactions in relation to the neural representation of body location.
Here, repetitive tactile stimulation is applied synchronously to the participant’s
hand (hidden from view) and a fake rubber hand (that lies in view). This pattern of
sensory input typically induces the illusory sensation that touch is felt on the
surface of the rubber hand, as well as a heightened sense of ownership for the
rubber hand (see Ehrsson, 2012, for review). The integration between visual and
tactile sensory inputs is also associated with a measurable drift in perceived hand
location towards the rubber hand (Botvinick & Cohen, 1998; Tsakiris & Haggard,
2005) and subtle changes in subsequent reaching movements performed with the
stimulated hand (e.g., Kammers, Kootker, Hogendoorn, & Dijkerman, 2010).
Importantly, these phenomena tend to exist specifically when the seen and felt
touch are applied synchronously, and are reduced for asynchronous stimulation.

This paradigm therefore involves both sensory integration under different global
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causal models and, also, a highly unusual, uncertainty-inducing context of

experiencing touch on a rubber hand.

As described above, the rubber-hand illusion should be expected to trigger
differences in expected precisions of visual, tactile and proprioceptive sensory
input. Our previous study of this illusion (Paton et al., 2012) compared a clinical
ASD group with healthy controls and found differences in proprioception and
motor parameters on a reach task. Following the results of this study, we expect
that participants will experience the typical subjective effects of the illusion (e.g.,
that touch is mislocated to the rubber hand) regardless of their level of autistic
traits, and thus rate the strength of these effects, as assessed via questionnaire,
stronger during synchronous than asynchronous stimulation. We further predict
that individuals with autistic traits will show less sensitivity to the presence of the
illusion in their perceived arm position than individuals low on autistic traits (i.e.,
less of a difference in proprioceptive drift between synchronous and asynchronous
stimulation conditions). This hypothesis is based on the notion of lower sensitivity
to state-dependent uncertainty in individuals with autistic traits, and coheres with
the previous finding of more accurate proprioception in individuals with ASD

compared to controls (Paton et al., 2012).

In addition, it is predicted that reaching movements performed subsequent to the
illusion will reflect the uncertainty suggested by the unusual illusory content. This
latter hypothesis is based on the idea that expectations regarding the precision of
sensory (proprioceptive) input occurring as movement unfolds affect how
smoothly movement is performed. In short, if proprioceptive imprecision is
expected, movement should be uncertain, exploratory, and tentative (cf. Friston et
al, 2010). Specifically, we expect that individuals with low autistic traits will
exhibit less smooth movement after experiencing the illusion than individuals with
high autistic traits. Higher order temporal derivatives of position (e.g., jerk) are of
interest to this hypothesis due to their relationship with movement smoothness.
Our previous study, which found differences between clinical ASD and control
participants in the acceleration of reaching movements performed following the

illusion, was unable to assess comprehensively differences in movement (such as
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smoothness) due to limits of the tracking technique used. The current study
therefore extends previous findings to a nonclinical sample of individuals with and
without autistic traits and asks, in particular, whether the differences in motor

parameters could pertain to differences in expected precisions.

2. Method

2.1 Participants

Twenty-four right-handed individuals (M = 28.96, SD = 11.16 years; 13 female)
completed the experiment. Volunteers were recruited via advertisements
distributed to the general Monash University population. Participants were
separated into two groups based on a median-split of their scores on the Autism-
Spectrum Quotient (AQ, described below; whole sample: M = 116.33, SD = 14.47;
low AQ group: M = 104.58, SD = 8.95; high AQ group: M = 128.08, SD = 7.5). Note
that, while the present study used Likert scoring for the AQ, values for the AQ
using binary scoring are as follows: whole sample, M = 21.33, SD = 6.83; low AQ
group, M = 16, SD = 3.84; high AQ group, M = 26.67, SD = 4.56. Each group
contained 12 participants (low AQ group: M = 32.42, SD = 13.98 years, 7 female;
high AQ group: M = 25.50, SD = 6.26 years, 6 female). The study was approved by
the Monash University Human Research Ethics Committee. All participants

provided written informed consent.

2.2 Materials and Procedure

Participants were seated in accordance with the experimental set-up illustrated in

Figure 1.



67

Tactile stimulation
Cylinder for reach trial

Rubber arm
positions

Participant’s arm

Box and smock
blocking view of
participant’s arm

Figure 1. Experimental set-up. The rubber arm and participant’s right arm were
placed in separate compartments. A prosthetic right limb was used with a high
degree of visual similarity to a human limb regarding physical dimensions, skin
detail, and compression to touch. A semi-silvered mirror lid enabled the
experimenter to control the participant’s vision into either compartment via
adjustment of the lighting inside. Participants were able to see the rubber arm only
during the stimulation phase of each trial. The participant’s own arm was occluded
from view throughout the experiment. The cylindrical reach target was only visible

during the reaching phase of each trial.

2.2.1 Independent variables

The position of the rubber arm was varied between three positions across trials.
Synchronous and asynchronous tactile stimulation was delivered independently
for each position of the rubber arm. Trials were conducted in two blocks, each
comprised of a single trial for each of the six conditions. Participants therefore
completed two trials for each of the six conditions, and dependent measures were

averaged across these two trials. To control for order effects, trial order was
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randomised for each block across participants. The duration of the experiment was

90-120 min.

2.2.1.1 Stimulation type. An experimenter seated opposite to the participant
manually applied repetitive tactile stimulation to anatomically corresponding
locations of the participant’s right hand and the rubber arm. Stimulation was
applied at approximately 1-2 Hz for 3 min in each trial with a pair of small
paintbrushes (2-2.5 x 0.5 cm brush area). Trials involved either synchronous or
asynchronous stimulation for the entire period. Asynchronous tactile stimulation
is typically used as a control condition in rubber-hand illusion studies, as temporal
synchronicity between the seen and felt touch is associated with significantly
stronger perceptual effects (Botvinick & Cohen, 1998; estimated as best within
approximately 300 ms, Shimada, Fukuda, & Hiraki, 2009). Stimulation during the
asynchronous condition was both temporally and spatially asynchronous.
Participants were directed to attend to the rubber hand during the stimulation

period.

2.2.1.2 Rubber arm position. The participant’s arm rested in the same position for
every condition. The rubber arm was varied between three positions such that the
horizontal distance separating the middle finger of each hand was 20 cm, 25 cm, or
30 cm (numbered 1-3 in in Figure 1, and referred to as positions 1-3 henceforth).
The orientation of the rubber arm changed between each position such that the
end proximal to the participant always entered the box in line with the
participant’s right shoulder. This was intended to maintain anatomical plausibility
for ownership of the rubber arm across conditions, which is a known constraint on
illusion induction (Ehrsson et al.,, 2004; Pavani et al., 2000; Tsakiris & Haggard,
2005). The orientation of tactile stimulation on the rubber hand was adjusted
across positions to maintain congruency in the direction of stimulation applied to
the real and rubber hands in a hand-centred reference frame (see Costantini &
Haggard, 2007, for an investigation of orientation mismatch in hand-centred

versus external space reference frames).
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Anatomical congruence between the placement of the rubber arm and the position
of the real arm has been shown to influence the strength of the rubber-hand
illusion (Costantini & Haggard, 2007; Ehrsson et al., 2004; Ide, 2013; Lloyd, 2007;
Pavani et al, 2000; Tsakiris & Haggard, 2005; see also White & Aimola Davies,
2011). These findings may relate to expected precisions, in as much as different
positions of the (real) arm have been shown to have different proprioceptive
precisions (van Beers et al., 1998). The effects of manipulating rubber arm position
is of interest in relation to examining the influence of top-down processes on the
illusory experience; for example, top-down processes comparing expectations
regarding body position to that of the rubber arm (Tsakiris & Haggard, 2005).
Increasing the distance of the rubber arm from the real arm was expected to
decrease the self-rated strength of the illusion, as has been found previously in a
nonclinical sample (Lloyd, 2007). We further hypothesised that individuals with
stronger autistic traits may be less sensitive to changes in the anatomical
congruence between the real and rubber arms than individuals with lower autistic
traits, due to a lesser influence of top-down processes on perception. We therefore
expected the latter group to be more likely to show differences in self-rated
illusion strength and proprioceptive drift between the rubber arm positions during

synchronous stimulation.

2.2.2 Dependent measures

Several dependent measures were collected in each trial to capture perceptual and
sensorimotor effects of the rubber-hand illusion. Estimates of arm location were
recorded directly before and after each stimulation period. A reach-to-grasp
movement was conducted following the post-stimulation estimate of arm location.
At the end of each trial, participants completed a questionnaire related to their
subjective experience of the illusion. A psychological inventory designed to assess
autistic traits (the AQ) was completed during a break midway through the twelve

trials of the rubber hand illusion.

2.2.2.1 lllusion ratings. Participants completed a short questionnaire to report on

their experiences during tactile stimulation. This consisted of 11 items displayed in
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Table 1, adapted from Botvinick and Cohen (1998; 11-13, C2, C4, C5), Longo,
Schuur, Kammers, Tsakiris, and Haggard (2008; C6, C7), Petkova and Ehrsson
(2008; C3), and Hohwy and Paton (2010; C1, C8). Three items (I1-I3) were
statements describing the content of the illusion typically reported in the
literature. Eight items (C1-C8) were included to control for response biases, and
described possible experiences that were not expected to differ consistently
between synchronous and asynchronous stimulation. Each item was rated on a 20
cm horizontal visual analogue scale with left and right endpoints marked as
strongly disagree and strongly agree, respectively. The centre of the scale was
labelled very unsure whether agree or disagree. Participants could mark the scale
anywhere along its length, and markings were scored to the nearest millimetre.
Greater values indicated stronger agreement with the statement. Items were
presented in a fixed order across trials and in pen-and-paper format. Participants
were required to remove their right arm from the box when completing this

measure to help disrupt the effects of the illusion between trials.



Table 1. Self-rated illusion questionnaire.

71

Item type No. Text
[llusion 11 It seemed as if [ was feeling the touch of the paintbrush in
the location where I saw the rubber hand being touched.

12 [t seemed as though the touch I felt was caused by the
paintbrush I could see touching the rubber hand.

13 It felt as if the rubber hand was my hand.

Control C1 It felt as if my (real) hand was getting cold.

C2 [t seemed as if [ might have more than one right hand or
arm.

C3 It seemed as if I was in two different locations at the same
time.

C4 [t felt as if my (real) hand was turning ‘rubbery’.

C5 The rubber hand began to resemble my own (real) hand, in
terms of shape, skin tone, freckles or some other visual
feature.

Cé [ found the touch of the paintbrush on my hand was
pleasant.

C7 [ found myself liking the rubber hand.

C8 [ felt the room temperature change during the experiment.
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2.2.2.2 Proprioceptive drift. Participants were asked to estimate the position of
their visually occluded right hand directly before and after each period of
stimulation. For this procedure the experimenter slid a plexiglass marker across a
rail that ran horizontally with respect to the participant along the top of the box.
The participant verbally indicated when a vertical line on the marker was judged
as being directly above the centre knuckle of their right hand. The location of the
marker was recorded to the nearest millimetre via a fixed ruler (only visible to the
experimenter) that spanned the length of the rail. Participants were unable to see
either the rubber arm or their own arm during this stage of each trial, and were
asked to keep their arm still to limit proprioceptive feedback. A measure of
proprioceptive drift was calculated for each trial by subtracting the participant’s
pre-stimulation estimate of hand location from their post-stimulation estimate.
Positive values indicate that the estimate of hand location was closer to the rubber
arm following stimulation. As with questionnaire ratings, proprioceptive drift is a
common measure of illusion induction (e.g., Botvinick & Cohen, 1998; Tsakiris &
Haggard, 2005). There is evidence distinguishing the neural substrates (Brozzoli et
al., 2012; Ehrsson et al., 2004; Fiorio et al,, 2011; Kammers, Verhagen, et al., 2009)
and behavioural coincidence (Holmes, Snijders, & Spence, 2006; Rohde, Di Luca, &
Ernst, 2011) of these measures, however, suggesting a distinction between the
mechanisms underlying changes in perceived hand location and the subjective
experience of ownership and tactile mislocation induced in the rubber-hand

illusion set-up.

2.2.2.3 Reach-to-grasp movement. Following the post-stimulation estimate of hand
location, participants were asked to reach out and grasp a cylinder with the hand
involved in the stimulation period. The cylinder measured 4.5 cm diameter by 18
cm height and was located within the box 13 cm in front and 5 cm to the right of
the participant’s hand. Participants were able to see approximately the upper 2 cm
of the cylinder during this phase of the experiment while both their arm and the
rubber arm were occluded from view. Participants were instructed that they were
not required to minimise their reaction time or maximize their speed of

movement.
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Hand trajectories were recorded using an electromagnetic tracker (Ascension
Technology Corporation 3DGuidance trakSTAR with mid-range transmitter; 1.4
mm and 0.5 degrees static accuracy in an optimal environment). The six
dimensions of translation and rotation were recorded via a magnetic sensor
attached to the centre of the dorsal surface of the participant’s right hand. These
data were filtered with a 50 Hz notch filter to remove AC line noise and a third

order zero-phase low-pass Butterworth filter with a cutoff at 20 Hz.

Participants were instructed to begin the movement when a light was switched on
to allow vision of the target object. Position data were recorded continuously (60
Hz sample rate) for 5 seconds following this point. In an adaptation of the method
used by Kammers, de Vignemont, Verhagen, and Dijkerman (2009) and Kammers,
Verhagen, et al. (2009), movement onset was defined as when velocity first
exceeded 20 mm/s continuously for 0.05 seconds. Movement offset was defined as
when velocity first exceeded 20 mm/s for 0.05 seconds when proceeding
retrograde through the time series. Twelve trials were discarded due to recording
malfunction or on account of the participant failing to execute the movement as

instructed.

The kinematic parameter of primary interest was the normalised integrated jerk of
the reaching movement. Jerk is the derivative of acceleration with respect to time
(i.e., the third derivative of position, mm/s3), and is commonly employed as a
measure of movement smoothness (Hogan & Sternad, 2009). In the present study,
integrated jerk was calculated as the area under the curve of the Euclidean jerk
vector obtained from the three linear axes. Following previous research that has
studied the jerk of voluntary movements in clinical populations, the integrated jerk
for each trial was normalised for both movement extent and movement duration
before undergoing analysis (Hogan & Sternad, 2009; Nobile et al.,, 2011; Romero,
Van Gemmert, Adler, Bekkering, & Stelmach, 2003; Teulings, Contreras-Vidal,
Stelmach, & Adler, 1997).

The present study also analysed several other kinematic parameters that have

been examined in previous studies of reaching movement in the rubber-hand
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illusion (Kammers, de Vignemont, et al., 2009; Paton et al., 2012; Zopf et al., 2011).
Movement duration is the time between movement onset and offset as defined
above. Mean velocity is the mean of Euclidean velocity across the time series. Peak
velocity is the maximum instantaneous Euclidean velocity recorded across the
time series. Relative time to peak velocity is the time between movement onset
and when peak velocity is achieved, as a percentage of total movement duration.
Integrated acceleration was calculated from the recorded trajectories as the area
under the curve of the Euclidean acceleration vector. Peak horizontal displacement
is the maximum of displacement in the horizontal dimension (with respect to the
participant) in the direction towards the reach object and away from the rubber
arm. Following Zopf et al. (2011), the angle of initial movement was calculated
from the instantaneous velocity at the time point when 10% of the Euclidean
displacement towards the end point was achieved. These latter two measures of
hand displacement are of particular interest given that the rubber-hand illusion
affects perceived hand position, which may be expected to influence the initial
displacement of subsequent reaching movements towards a fixed target (Heed et
al, 2011; Newport et al, 2010; Zopf et al, 2011). Hence, by analysing both
displacement measures and other parameters (such as integrated jerk and
movement duration) we hoped to distinguish to an extent between an effect of
proprioceptive drift on subsequent reaching movements and other potential

effects of the rubber-hand illusion on reaching movements.

2224 AQ. The AQ is a self-administered and non-diagnostic 50-item
questionnaire, designed to measure traits associated with ASD in adults (Baron-
Cohen, Wheelwright, Skinner, Martin, & Clubley, 2001). The psychometric
properties of this scale have received support for use in non-clinical participants
with normal 1Q (e.g., Baron-Cohen et al., 2001; Hurst, Mitchell, Kimbrel, Kwapil, &
Nelson-Gray, 2007; Stewart & Austin, 2009). Each item consists of a statement; for
example, “I prefer to do things the same way over and over again”. Participants
rate their level of agreement with each statement on a 4-point Likert scale
(‘definitely agree’, ‘slightly agree’, ‘slightly disagree’, ‘definitely disagree’) and
responses are summed with 26 items reverse scored. The range of possible scores

is 50-200, with higher scores indicating greater similarity to traits of ASD. This



75

approach to scoring differs from the binary system used by Baron-Cohen et al.
(2001). Likert scoring is preferred in the current study to increase sensitivity to
individual differences between nonclinical participants. This method of scoring has
been used previously for the AQ (e.g., Stewart, Watson, Allcock, & Yaqoob, 2009),
and there is evidence that Likert scoring is associated with improved psychometric
properties compared to binary scoring for personality questionnaires (Muiiz,
Garcia-Cueto, & Lozano, 2005). In the present study, a pen-and-paper version of

this scale was administered.

2.3 Statistical analyses

The present study employed a mixed factorial design. The within-subjects factors
were questionnaire item type (illusion items vs. control items), stimulation type
(synchronous stimulation vs. asynchronous stimulation), and rubber arm position
(position 1 vs. position 2 vs. position 3). The between-subjects factor was AQ
group (low AQ group vs. high AQ group). Mixed between-within subjects ANOVAs
were conducted for each dependent measure to assess for main and interaction
effects across conditions. Normalised integrated jerk values were non-normally
distributed in the present study (as has been found previously in the literature;
Teulings et al., 1997). The nonparametric Wilcoxon signed-rank test was therefore
used to examine for differences in jerk between the two stimulation conditions
separately for each AQ group. Post-hoc tests were performed using Bonferroni

correction to control for Type I error. Effect sizes are reported here using Cohen’s

d.

3. Results

3.1 Illusion ratings

A 2x2x2x3 mixed ANOVA was performed for illusion ratings with Group (Low AQ

vs. High AQ) as a between-subjects factor and Item Type (Illusion vs. Control),
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Stimulation Type (Synchronous vs. Asynchronous) and Rubber Arm Position

(Position 1 vs. Position 2 vs. Position 3) as within-subjects factors.

A main effect was found for Item Type, indicating that illusion items (M = 10.00, SD
= 2.81) were rated higher than control items (M = 7.20, SD =2.94), F(1, 22) = 34.70,
p < .001, Cohen’s d = 0.97. A main effect was also found for Stimulation Type,
indicating that item ratings were higher following synchronous stimulation (M =
10.80, SD = 2.48) than following asynchronous stimulation (M = 6.40, SD = 3.27),
F(1, 22) = 79.81, p <.001, Cohen’s d = 1.52. Importantly, an interaction effect was
found between Item Type and Stimulation Type, F(1, 22) = 76.93, p < .001.
Interaction effects were also found between Stimulation Type and Group, F(1, 22)
= 4.53, p < .05, and between Item Type, Stimulation Type, and Group, F(1, 22) =

6.64, p < .05. There were no other significant main or interaction effects (p >.05).

As expected, post-hoc tests indicated that synchronous stimulation (M = 13.79, SD
= 2.96) was associated with higher illusion item ratings than asynchronous
stimulation (M = 6.21, SD = 4.00), t(23) = 8.78, p <.001, Cohen’s d = 2.15 (Figure 2).
Furthermore, synchronous stimulation was associated with significantly higher
ratings on illusion items (M = 13.79, SD = 2.96) than control items (M = 7.80, SD =
3.18), t(23) = 8.09, p < .001, Cohen’s d = 1.95. In contrast, there was no significant
difference between ratings for illusion and control items for asynchronous
stimulation, t(23) =-0.72, p = .48, Cohen’s d = -0.11. Together these results indicate
that synchronous stimulation induced the phenomenological features of the
illusion typically reported in the literature more strongly than asynchronous
stimulation. Further post-hoc analyses are presented in the Supplementary

Material.
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Figure 2. Ratings of illusion items across stimulation type conditions. Error bars

indicate *1 standard error. (***p <.001).

3.2 Proprioceptive drift

A 2x2x3 mixed ANOVA was performed for proprioceptive drift with Group (Low
AQ vs. High AQ) as a between-subjects factor and Stimulation Type (Synchronous
vs. Asynchronous) and Rubber Arm Position (Position 1 vs. Position 2 vs. Position

3) as within-subjects factors.

A significant main effect of Group was found for proprioceptive drift, F(1, 22) =
4.99, p < .05, Cohen’s d = 0.91. The low AQ group displayed greater proprioceptive
drift across conditions (M = 1.36, SD = 1.72) compared to the high AQ group (M = -
0.04, SD = 1.31). A significant main effect of Stimulation Type was found for
proprioceptive drift, F(1, 22) = 10.92, p < .01, Cohen’s d = 0.73, indicating that

synchronous stimulation (M = 1.38, SD = 2.19) was associated with greater drift in
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perceived arm position towards the rubber arm than asynchronous stimulation (M
=-0.07, SD = 1.73). There was no significant interaction between Stimulation Type
and Group (p > .05); however, a significant three-way interaction was found
between Stimulation Type, Rubber Arm Position, and Group, F(2, 44) = 3.28, p

<.05. No other main or interaction effects were found for this variable (p >.05).

To clarify the three-way interaction effect, two-way repeated-measures ANOVAs
were conducted separately for each AQ group, with Stimulation Type and Rubber
Arm Position as factors. A significant Stimulation Type by Rubber Arm Position
interaction effect was found for the low AQ group, F(2, 22) = 6.05, p < .01, but not
the high AQ group, F(2, 22) = 0.19, p = .83. Further one-way ANOVAs for the low
AQ group indicated a significant main effect of Rubber Arm Position for
synchronous stimulation, F(2, 22) = 5.20, p < .05, but not asynchronous stimulation,
F(2, 22) = 0.89, p = .43. Post-hoc tests for the low AQ group during synchronous
stimulation indicated that significantly greater drift was observed for position 3
(30 cm separation between participant’s arm and the rubber arm; M = 2.95, §D =
2.85) compared to position 1 (20 cm separation; M = .94, SD = 2.44; p < .01,
Cohen’s d = 0.76). To summarise, the degree of drift in arm position towards the
rubber arm following synchronous stimulation was influenced by the distance of
the rubber arm from the participant’s arm, but only for the group of participants

who scored lower on the AQ (Figure 3).
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Figure 3. Proprioceptive drift towards the rubber hand across rubber arm
position conditions following synchronous stimulation. Error bars indicate *1

standard error. (**p <.01).

3.3 Integrated acceleration

A 2x2x3 mixed ANOVA was performed for integrated acceleration with Group
(Low AQ vs. High AQ) as a between-subjects factor and Stimulation Type
(Synchronous vs. Asynchronous) and Rubber Arm Position (Position 1 vs. Position

2 vs. Position 3) as within-subjects factors.

A significant main effect of Group was found for integrated acceleration, F(1, 21) =
8.19, p < .01, Cohen’s d = 1.19. The low AQ group displayed greater integrated
acceleration across conditions (M = 31.36, SD = 7.66) than the high AQ group (M =
23.84, SD = 4.63; Figure 4). Consistent with our previous examination of the

acceleration of reaching movements in the rubber-hand illusion (Paton et al,
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2012), a significant main effect of Stimulation Type was found for integrated
acceleration, F(1, 21) = 6.19, p < .05, Cohen’s d = 0.47. However, contrary to the
direction of our previous finding for nonclinical participants, synchronous
stimulation (M = 29.70, SD = 10.50) was associated with greater integrated
acceleration in subsequently performed reach-to-grasp movements than
asynchronous stimulation (M = 25.82, SD = 4.99; Figure 5). This inconsistency
between studies may reflect the difference in the acceleration variables used
previously (recorded via an accelerometer) and in the current study (recorded via
a 6-dimensional tracker, and derived specifically from the linear axes, thus
controlling for rotational changes that occur throughout the movement). This
previous study also contained a number of independent variables not included in
the present study, potentially contributing to a difference between studies in the
stimulation-type comparison. No other main or interaction effects were found for

this variable (p >.05).
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Figure 4. Integrated acceleration of reach-to-grasp movements between

participant groups separated by AQ scores. Error bars indicate +1 standard error.

(**p <.01).
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Figure 5. Integrated acceleration of reach-to-grasp movements between

stimulation types. Error bars indicate *1 standard error. (*p <.05).

3.4 Normalised integrated jerk

Differences in integrated jerk between the two stimulation conditions were
examined separately for each AQ group using the nonparametric Wilcoxon signed-
rank test. For the low AQ group, the integrated jerk of reaching movements was
significantly greater following synchronous stimulation (M = .66, SD = .49) than
when following asynchronous stimulation (M = .32, SD = .21), z = -2.28, p < .05,
Cohen’s d = 0.89. In contrast, integrated jerk did not differ significantly between
stimulation conditions for the high AQ group, z = -0.24, p = .81, Cohen’s d = -0.16
(Figure 6). Similarly, post-hoc correlational analyses conducted to further elucidate
this effect indicated that AQ scores shared a significant negative correlation with

integrated jerk following synchronous stimulation (rs = -.47, p < .05, two-tailed),
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but not asynchronous stimulation (rs = -.11, p = .63, two-tailed; Figure 7). These
findings therefore indicate that the integrated jerk of reach-to-grasp movements
was increased by the presence of the illusion for participants who scored lower on
the AQ, but was not significantly different across stimulation types for participants

who scored higher on the AQ.
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Figure 6. Normalised integrated jerk of reach-to-grasp movements across AQ

groups and stimulation types. Error bars indicate 1 standard error. (*p <.05).
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Figure 7. A significant correlation was observed between AQ scores and the
normalised integrated jerk of reach-to-grasp movements following synchronous
stimulation. (rs = -.47, p < .05, two-tailed; linear least squares regression line of

best fit: y = -0.013x + 1.941, R2 = .18, t = -2.17, p < .05).

3.5 Movement duration

For movement duration, a 2x2x3 mixed ANOVA was performed with Group (Low
AQ vs. High AQ) as a between-subjects factor and Stimulation Type (Synchronous
vs. Asynchronous) and Rubber Arm Position (Position 1 vs. Position 2 vs. Position
3) as within-subjects factors. A significant two-way interaction between
Stimulation Type and Group was found, F(1, 22) = 4.48, p <.05. No other main or

interaction effects were found for this variable (p >.05).

Post hoc tests comparing movement duration between stimulation conditions did

not reach significance, however, for either the low AQ group (synchronous
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stimulation: M = 1.71, SD = 0.37; asynchronous stimulation: M = 1.53, SD = .40;
t(11) = 2.14, p = .06, Cohen’s d = 0.46) or the high AQ group (synchronous
stimulation: M = 1.55, SD = 0.50; asynchronous stimulation: M = 1.62, SD = .41;
t(11) =-0.94, p =.37, Cohen’s d = -0.13).

3.6 Further reach measures

For each of the remaining reach measures, a 2x2x3 mixed ANOVA was performed
with Group (Low AQ vs. High AQ) as a between-subjects factor and Stimulation
Type (Synchronous vs. Asynchronous) and Rubber Arm Position (Position 1 vs.
Position 2 vs. Position 3) as within-subjects factors. No significant differences were
found across conditions or groups for mean velocity, peak velocity, or maximum
horizontal displacement (p > .05). Significant differences observed for relative time
to peak velocity and angle of initial movement are reported in Supplementary
Material. Means and standard deviations for each reach measure are shown in

Table S1 in Supplementary Material.

4. Discussion

The present study supports the hypothesis that proprioceptive and sensorimotor
characteristics of ASD, as reflected in the multimodal effects of the rubber-hand
illusion, vary together with autistic traits in the general population. Nonclinical
adults scoring higher on autistic traits showed reduced effects of the illusion on
perceived arm position compared to those scoring lower on autistic traits (as
indicated by a lesser influence of the position of the rubber arm on estimated arm
position during synchronous stimulation). Individuals with higher autistic traits
also demonstrated reduced sensitivity to the presence of the illusion in their
reaching movements. These effects occurred despite both groups reporting the
typical subjective effects of the illusion, concerning referral of touch and a
heightened sense of ownership for the rubber hand. This pattern of intact
subjective effects but diminished proprioceptive and sensorimotor -effects

resembles that found previously for the rubber-hand illusion in a sample of adults
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diagnosed with ASD (Paton et al., 2012). The present findings are also consistent
with a study of the rubber-hand illusion in children diagnosed with ASD, which
reports intact subjective effects of the illusion but delayed proprioceptive effects
(Cascio et al., 2012). While autistic traits are most commonly defined in terms of
social difficulties and unusual repetitive behaviours and interests, the present
study adds to recent research that has found sensory differences associated with
ASD to vary together with other aspects of this condition in the general population
(e.g., Donohue et al., 2012; Grinter, Maybery, et al., 2009; Grinter, Van Beek, et al,,
2009; Walter et al, 2009). This research is therefore consistent with the
continuum hypothesis of ASD (Happé et al, 2006; Mandy & Skuse, 2008), and
highlights the relevance of sensory characteristics in defining a broader autistic

phenotype.

To characterise the proprioceptive and sensorimotor differences associated with
autistic traits in the present study, we need to emphasise a distinction between
different levels of sensory integration in the rubber-hand illusion. Visuotactile
integration in the illusion is dependent upon the close temporal synchrony of
repetitive tactile and visual inputs (Botvinick & Cohen, 1998; Shimada et al., 2009),
a signal that is conveyed precisely during illusion-induction by continuous tactile
and visual stimulation. In contrast, we can hypothesise that changes in perceived
arm position induced by the illusion reflect integration between sensory
(proprioceptive) estimates of arm position and predictions for arm position
derived from the illusory context. This context would, for example, include the
visual presence of the rubber arm and the (illusory) location of felt touch. The
evidence that proprioceptive differences occurred despite a typical subjective
experience of the illusion in each group suggests that enhanced proprioceptive
performance in the high AQ group reflects increased reliance on sensory
(proprioceptive) input at the expense of the more global context. This distinction
between visuotactile and proprioceptive mechanisms is consistent with a model of
the rubber-hand illusion proposed by Makin et al. (2008), in which changes in
perceived arm position occur subsequent to visual capture of the tactile input,
based on evidence disassociating the co-dependence, time course, and spatial

extent of these effects.
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The enhanced proprioceptive performance of individuals with autistic traits in the
present study (and in the ASD group in our previous rubber-hand illusion study;
Paton et al, 2012) conflicts somewhat with a recent study examining limb
proprioception in ASD outside of the context of sensory illusions (Fuentes,
Mostofsky, & Bastian, 2011). In particular, no differences were found in this latter
study in the accuracy and precision of proprioceptive estimates regarding arm
position between individuals with ASD and healthy controls. As described in the
preceding paragraph, enhanced performance in the present study can be explained
in terms of a reduced tendency for taking the wider context, here provided by the
rubber-hand illusion, into account. The more accurate proprioceptive performance
in the high AQ group may then be serendipitous given the specific (illusion-based)
task context used, rather than reflecting a superior capacity for accurate
proprioception in ASD. The apparent conflict between the present findings and
those of Fuentes et al. (2011) may therefore reflect a lack of a modulating context
in the experimental set-ups used in the latter study, such that the hypothesised
disregard for contextually-based models of sensory input in autistic perception did
not cause a deviation in the performance of individuals with ASD from controls.
The implication here is that group differences in performance may vary across
tasks depending on whether there is a more global model of sensory input
suggested by the specific task context, and whether this task-specific context aids
or misleads accurate performance. Integrating proprioceptive sensory information
into a more global model (as we suggest occurs for the low AQ group in the rubber-

hand illusion) is likely to be beneficial to accuracy in some contexts but not others.

Within a predictive processing framework of perception, the degree of precision
that is expected from the sensory input in a given context determines the relative
contribution of (top-down) relatively global hypotheses regarding the state of the
world and (bottom-up) sensory input (Feldman & Friston, 2010; Friston &
Stephan, 2007). The former are more likely to mediate an influence of contextual
information on perception. We can therefore speculate that the group differences
observed in the present study reflect individual variation in the expected levels of
sensory precision (Friston et al, 2013; Hohwy, 2013; Paton et al, 2012). In

particular, the greater tendency of the low AQ group to draw on the illusory
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context to estimate arm position, as suggested by greater proprioceptive drift
when the distance between the real and rubber arms was increased in the
synchronous stimulation condition, may reflect an expectation for low precision of
bottom-up sensory (proprioceptive) estimates within the unusual context of the
illusion. Similarly, the enhanced proprioceptive performance of the high AQ group
may reflect an expectation for high precision in sensory input, leading to a
lessened influence of global models that take into account the illusory context
when estimating arm position. This would explain why these participants
specifically show diminished proprioceptive effects of the illusion rather than
reduced effects of the illusion in general. The latter could otherwise be explained

by a general bias concerning global integration.

A group difference was also found in the effect of the rubber-hand illusion on the
smoothness of reach-to-grasp movements performed with the stimulated hand
following illusion-induction. In particular, we found that individuals lower in
autistic traits executed movements less smoothly following synchronous
stimulation (as indicated by increased normalised integrated jerk) compared to
the asynchronous stimulation control condition. The high AQ group, in contrast,
showed uniform movement smoothness across conditions, at a level similar to that
of the asynchronous condition for the low AQ group. This is partially consistent
with our previous study (Paton et al,, 2012), which observed differences in the
integrated acceleration of reach-to-grasp movements following the rubber-hand
illusion between a clinical ASD group and a nonclinical control group. This
previous clinical study did not assess movement smoothness, however, and there
was no group difference in integrated acceleration in the present study involving
nonclinical participants - so a direct comparison between reaching movements

found for clinical ASD and nonclinical autistic traits is a task for further studies.

The reach effects in the present study can also be interpreted in terms of group
differences in expectations for sensory precision, which we brought to bear on the
proprioceptive drift findings above. Again, given that individuals with higher
autistic traits report experiencing the typical subjective effects of the illusion, the

lack of difference in reaching movements across stimulation conditions seems best
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explained by insensitivity to the context of the illusion when executing movement
rather than a general resistance to the illusion itself. Explicating this notion of
context-insensitivity within the framework of predictive processing, we can
hypothesise that a less smooth movement would be performed when the
individual expects imprecision in their proprioceptive and kinaesthetic feedback
for the planned movement. This could occur due to difficulty coordinating
movement when the trajectory required to reach the target is uncertain, or,
similarly, could reflect the introduction of exploratory movements to elicit
proprioceptive and kinaesthetic feedback. In contrast, a more confident, or
smoothly executed, movement may be likely to occur when the individual assumes
high precision in their estimate of initial arm position and predicts high precision
in their proprioceptive and kinaesthetic feedback once the movement is underway.
Quantifying this in terms of differences of higher order temporal derivatives (e.g.,
jerk) is useful because one may assume that since such derivatives encompass
relatively long time-scales they are encoded at higher cortical levels, consistent
with the idea of more high-level, relatively global context modulation (in essence,
trying to anticipate the overall smoothness of the movement given levels of

expected uncertainty; cf. Friston et al., 2010).

An alternative explanation is that the observed differences in reaching movements
for the low AQ group are directly related to group differences in the magnitude of
drift in arm location induced by the illusion. Specifically, the reduced smoothness
of movement following the synchronous stimulation condition for the low AQ
group could reflect the increased tendency for proprioceptive drift that this group
demonstrates. Counter to this interpretation, however, is the lack of difference
found in the displacement measures of the reach-to-grasp movements. If the shift
in perceived arm location towards the rubber arm contributed significantly to the
subsequent reaching movements, we would expect this to manifest as a difference
in the angle of initial movement or peak horizontal displacement of the reach
trajectories. For example, a shift in perceived arm location to the left would mean
that the subsequent arm trajectory would have a sharper angle of movement to the
right and greater deviation to the right than that really required to reach the
target. This logic is adopted in Newport et al. (2010), Zopf et al. (2011), and Heed



90

et al. (2011), who each report differences in reach displacement induced by the
rubber-hand illusion (see also Kammers, de Vignemont, et al., 2009, who report no
differences in the displacement of reaching movements following the illusion;
Kammers, Longo, Tsakiris, Dijkerman, & Haggard, 2009; Kammers, Verhagen, et al,,
2009). Given that we did not see differences in displacement parameters in the
present study, the observed effect of the illusion on movement smoothness may

not merely reflect the increased proprioceptive drift experienced by the low AQ

group.

The interpretation of the reach data that we favour leads to an interesting
implication regarding movement impairments that commonly occur in ASD (e.g.,
Mari et al., 2003; Nazarali et al.,, 2009; Rinehart et al., 2001; Rinehart, Tonge, et al,,
2006) (see Fournier, Hass, Naik, Lodha, & Cauraugh, 2010, for meta-analysis). If, as
we suggest in the preceding paragraphs, the lack of differences in reaching
movements for the high AQ group across synchronous and asynchronous
stimulation conditions reflects insensitivity to the context-specific inducements of
expectations for imprecision in the sensory estimates used to guide reaching
movements, then a tendency to disregard context in this manner in ASD may lead
to overconfident movement in contexts that would usually suggest imprecision.
Difficulties in movement coordination might then be partly explained in terms of
movement errors caused by overconfident movement execution, and would be
specifically expected to occur in contexts that advise for tentative movement
execution. In other words, we suggest that a lesser sensitivity to, and urge to
resolve, ambiguity in body position may contribute to uncoordinated movement in
ASD. It might therefore be useful to further examine the effects of the rubber-hand
illusion on movement execution with respect to clinical measures of motor

coordination in ASD.

In summary, the present study examined individual differences in the relative
contribution of sensory input and contextual factors to perception. Working within
a Bayesian (prediction error minimisation) framework, we reasoned that autistic
sensory integration involves a tendency to ignore contextual information that

suggest imprecision, and predicted that this entails high estimations of sensory
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precision across contexts, leading to an increased reliance on lower-level sensory
estimates and a decreased tendency to subsume input under higher-level
expectations. The finding that, following synchronous stimulation, nonclinical
individuals high in autistic traits show reduced sensitivity to the position of the
rubber hand in their proprioceptive estimates and show less sensitivity to
uncertainty while executing reaching movements, despite reporting the subjective
experience of the illusion, is consistent with this hypothesis. The ability to
modulate expected levels of sensory precision in response to contextual
information suggesting varying uncertainty may lead to a better understanding of
the complex constellation of compromised and enhanced perceptual performance

in ASD, as well as of individual differences in perception in the general population.
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S1. Supplementary Results

$1.1 Further post-hoc analyses for illusion ratings

As described in Section 3.1. of the main text, an interaction effect was found
between Stimulation Type and Group, F(1, 22) = 4.53, p < .05. Post-hoc tests
indicated that the low AQ group rated questionnaire items higher following
synchronous stimulation (M = 10.59, SD = 2.59) than following asynchronous
stimulation (M = 5.14, SD = 3.19), t(11) = 6.61, p <.001, Cohen’s d = 1.88. The high
AQ group also rated items higher following synchronous stimulation (M = 11.01,
SD = 2.46) compared to asynchronous stimulation (M = 7.66, SD = 2.96), t(11) =
6.21, p <.001, Cohen’s d = 1.23. Further post-hoc tests indicated that groups didn’t
differ in their item ratings across the questionnaire following synchronous
stimulation, ¢(22) = -0.41, p = .69, Cohen’s d = -0.17, or following asynchronous
stimulation, ¢(22) =-2.01, p =.06, Cohen’s d = -0.82.

There was also a three-way interaction effect between Item Type, Stimulation
Type, and Group, F(1, 22) = 6.64, p <.05. To clarify this interaction effect, two-way
repeated measures ANOVAs were conducted separately for each AQ group, with
Item Type and Stimulation Type as factors. There was a significant main effect of
Item Type for both the low AQ group, F(1, 11) = 21.08, p < .01, Cohen’s d = 1.29,
and the high AQ group, F(1, 11) = 14.35, p < .01, Cohen’s d = 0.69. This indicates
that both groups rated illusion items (low AQ group: M = 9.73, SD = 3.12; high AQ
group: M = 10.27, SD = 2.58) higher than control items (low AQ group: M = 6.00, SD
= 2.65; high AQ group: M = 8.40, SD = 2.80). There was a significant main effect of
Stimulation Type for both the low AQ group, F(1, 11) = 43.74, p <.001, Cohen’s d =
1.87, and the high AQ group, F(1, 11) = 38.51, p < .001, Cohen’s d = 1.23. This
indicates that both groups made higher item ratings following synchronous
stimulation (low AQ group: M = 10.58, SD = 2.59; high AQ group: M = 11.01, SD =
2.46) compared to asynchronous stimulation (low AQ group: M = 5.14, SD = 3.19;
high AQ group: M = 7.66, SD = 2.96). There was a significant Item Type by
Stimulation Type interaction effect for both the low AQ group, F(1, 11) =49.42,p <
.001, and the high AQ group, F(1, 11) = 27.51, p < .001. Post-hoc tests for the low
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AQ group indicated that synchronous stimulation was associated with significantly
higher ratings on illusion items (M = 14.52, SD = 3.35) than control items (M = 6.65,
SD = 3.10), t(11) = 7.05, p < .001, Cohen’s d = 2.44, while there was no significant
difference between illusion and control items for asynchronous stimulation, ¢(11)
= -0.45, p = .66, Cohen’s d = -0.11. Similarly, post-hoc tests for the high AQ group
indicated that synchronous stimulation was associated with significantly higher
ratings on illusion items (M = 13.07, SD = 2.45) than control items (M = 8.94, SD =
2.93), t(11) = 6.39, p < .001, Cohen’s d = 1.53, while there was no significant
difference between illusion and control items for asynchronous stimulation, ¢(11)
= -0.57, p = .58, Cohen’s d = -0.12. Further post-hoc tests indicated that illusion
items were rated higher during synchronous stimulation (low AQ group: M =
14.52, SD = 3.35; high AQ group: M = 13.07, SD = 2.45) than asynchronous
stimulation (low AQ group: M = 4.95, SD = 4.19; high AQ group: M = 7.47, SD =
3.52) for both the low AQ group, t(11) = 7.66, p <.001, Cohen’s d = 2.52, and the
high AQ group, t(11) = 6.11, p <.001, Cohen’s d = 1.85. Differences in control item
ratings across synchronous (low AQ group: M = 6.65, SD = 3.10; high AQ group: M =
8.94, SD = 2.93) and asynchronous (low AQ group: M = 5.34, SD = 2.71; high AQ
group: M = 7.85, SD = 2.79) stimulation approached significance for the high AQ
group but did not survive Bonferroni correction of significance levels, t(11) = 3.28,
p = .007 (corrected a = .00625), Cohen’s d = 0.38, nor was this comparison
significant for the low AQ group, t(11) = 1.89, p =.09, Cohen’s d = 0.45.

$1.2 Relative time to peak velocity

There was a significant main effect of Rubber Arm Position for the relative time to
peak velocity measure, F(2, 44) = 5.60, p <.01. No other main or interaction effects
were found for this variable (p > .05). Post hoc tests indicated that it took
significantly longer to reach peak velocity for position 2 (25 cm separation
between the participant’s arm and the rubber arm; M = 33.51, SD = 8.12) compared
to position 1 (20 cm separation; M = 28.26, SD = 8.46), p < .01, Cohen’s d = -0.63.
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$1.3 Angle of initial movement

For the angle of initial movement, Mauchly’s Test of Sphericity indicated that the
assumption of sphericity was violated (p <.05), so Greenhouse-Geisser correction
was used for this variable. A significant interaction existed between Rubber Arm
Position and Group, F(2, 35) = 4.61, p < .05. To clarify this effect, one-way ANOVAs
were performed separately for each AQ group with Rubber Arm Position as the
factor. These tests indicated that the low AQ group showed a significant difference
between rubber arm positions, F(1, 14) = 5.22, p < .05, while the high AQ group did
not, F(1, 14) = 0.58, p = .50. Follow up post hoc tests revealed that the low AQ
group had a significantly greater angle of initial movement for position 3 (30 cm
separation between the participant’s arm and the rubber arm; M = 31.37, SD =
12.42) than for position 1 (20 cm separation; M = 24.42, SD = 14.14), p < .01,
Cohen’s d = 0.52 (Figure S1). These values indicate that for the low AQ group the
initial hand movement during the reaching phase was on average directed further
laterally when the rubber arm was placed in position 3, and more directly forward
for position 1. This effect was not specific to synchronous stimulation, however. No

other main or interaction effects were found for this variable (p >.05).
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Figure S1. Angle of initial movement across rubber arm position conditions
between participant groups separated by AQ scores. Error bars indicate 1
standard error.

(**p < .01).
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Means and standard deviations of reach measures across conditions separated by Stimulation Type and Rubber Arm Position.

Measure Unit Synchronous stimulation Asynchronous stimulation

Position 1 Position 2 Position 3 Position 1 Position 2 Position 3
Movement duration s 1.71 (0.54) 1.55 (0.47) 1.62 (0.47) 1.66 (0.56) 1.57 (0.41) 1.48 (0.45)
Mean velocity mm/s 173.06 (49.87) 175.48 (49.46) 177.78 (43.64) 176.61 (52.98) 178.03 (39.82) 185.70 (47.28)
Peak velocity mm/s 417.87 (135.70) 390.97 (131.49) 427.00 (129.14) 403.37 (116.61) 407.11 (125.84) 419.38 (126.26)
Relative time to peak velocity % 27.97 (8.61) 34.65 (10.46) 30.21 (11.24) 28.56(12.18) 32.38(9.23) 31.04 (8.78)
Peak horizontal displacement mm 56.94 (23.24) 54.53 (21.23) 57.90(20.71) 53.03(23.27) 53.92(21.16) 53.36 (20.77)
Angle of initial movement ° 24.72 (12.45) 24.77 (14.23) 28.26 (12.96) 23.34(13.52) 26.72(13.26) 24.72 (13.67)
Integrated acceleration mm/s? 28.90 (9.44) 27.81(9.51) 32.26 (17.55) 25.67 (5.01) 26.77 (7.19) 25.09 (5.08)
Normalised jerk - 0.57 (0.82) 0.37 (0.43) 0.47 (0.55) 0.39 (0.40) 0.32 (0.25) 0.26 (0.23)
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Linking text between chapters 2 and 3

In Chapter 2, susceptibility to the rubber-hand illusion was examined in a sample
of nonclinical adults. Proprioceptive and motoric effects of the illusion were found
to differ in this sample with respect to variation in autism-like traits. These
findings are partially replicated and extended in Chapter 3, which reports data
from adults with formal ASD diagnoses in addition to nonclinical individuals that
vary in their autism-like traits. Chapter 3 also characterises the motoric effects of
the illusion in greater detail; we find that it is not the initiation of movement that is
influenced by the illusion, but rather later stages of movement, consistent with a
difference in ASD in the integration between sensory signals received during
movement and expectations for arm position influenced by the illusion. These
findings are discussed in the context of predictive processing theories of
neurocognitive function. (For further background to this chapter, please refer back

to the linking text between Chapter 1 and Chapter 2.)



98

Declaration for Thesis Chapter 3

Declaration by candidate

In the case of Chapter 3, the nature and extent of my contribution to the work was the

following:
Nature of Extent of
contribution contribution
(%)
* Contributed to the experiment design. 50%

* Performed data analysis.
* Contributed to the interpretation of results.
*  Wrote the paper.

The following co-authors contributed to the work. If co-authors are students at Monash

University, the extent of their contribution in percentage terms must be stated:

Name Nature of contribution Extent of contribution
(%) for student co-
authors only

Bryan Paton Technical input to data collection and 10%
analysis. Contributed to the experiment
design, interpretation of results, and

writing.
Melissa Data collection. 15%
Kirkovski
Peter Enticott Contributed to the experiment design, N/A
interpretation of results, and writing.
Jakob Hohwy Contributed to the experiment design, N/A

interpretation of results, and writing.

The undersigned hereby certify that the above declaration correctly reflects the nature

and extent of the candidate’s and co-authors’ contributions to this work.

Candidate’s Date
Signature 16/02/2016

Date
16/02/2016

Main

Supervisor’s

Signature




99

Chapter 3

Context sensitivity in action decreases
along the autism spectrum:

A predictive processing perspective

Colin ]. Palmer?, Bryan Paton? 23, Melissa Kirkovski% 3, Peter G.

Enticott*> and Jakob Hohwy!

1Cognition and Philosophy Lab, Monash University, Clayton, VIC 3800, Australia
2School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia
3Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia
“Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School,
Monash University, Melbourne, VIC 3004, Australia
>Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood,

VIC 3125, Australia

Published in Proceedings of the Royal Society B: Biological Sciences, 2015



100

Abstract

Recent predictive processing accounts of perception and action point towards a
key challenge for the nervous system in dynamically optimising the balance
between incoming sensory information and existing expectations regarding the
state of the environment. Here we report differences in the influence of the
preceding sensory context on motor function, varying with respect to both clinical
and subclinical features of autism spectrum disorder (ASD). Reach-to-grasp
movements were recorded subsequent to an inactive period in which illusory
ownership of a prosthetic limb was induced. We analysed the sub-components of
reach trajectories derived using a minimum-jerk fitting procedure. Nonclinical
adults low in autistic features showed disrupted movement execution following
the illusion compared to a control condition. In contrast, individuals higher in
autistic features (both those with ASD and nonclinical individuals high in autistic
traits) showed reduced sensitivity to the presence of the illusion in their reaching
movements while still exhibiting the typical perceptual effects of the illusion.
Clinical individuals were distinct from nonclinical individuals scoring high in
autistic features, however, in the early stages of movement. These results suggest
that the influence of high-level representations of the environment differs between
individuals, contributing to clinical and subclinical differences in motor
performance that manifest in a contextual manner. Since high-level
representations of context help to explain fluctuations in sensory input over
relatively longer time scales, more circumscribed sensitivity to prior or contextual
information in autistic sensory processing could contribute more generally to
reduced social comprehension, sensory impairments and a stronger desire for

predictability and routine.
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1. Introduction

An influential idea in cognitive science is that for the brain to successfully
represent and interact with its environment it engages in an unconscious process
of inference about the external causes of sensory stimulation. This idea arises in
response to the ambiguous relationship between sensory inputs and worldly
states, which seems to necessitate that sensory information is integrated with
prior and contextual information regarding the likely causes of input.
Contemporary predictive processing accounts of cortical function provide a
computationally and biologically plausible mechanism through which this process
might occur via the implementation of probabilistic generative models (Friston,
2005, 2009). In a recurrent hierarchical arrangement, hypotheses regarding the
present causes of input are used to generate predictions of sensory activity at
subordinate levels. Hypotheses at each level are then updated iteratively to more
closely match predictions to incoming data. In this manner, a dynamic
representation of the causal structure of the world comes to be encoded across the
neocortex, graded from lower to higher levels of spatial and temporal abstraction.
Action is situated within this framework as a process of manipulating the sensory
input to match predictions (e.g., predictions regarding the parameters of unfolding

proprioceptive feedback) (Adams, Shipp, et al., 2013; Shipp et al,, 2013).

When the brain is cast in this light, we gain a nuanced perspective on how
systematic differences in perception and action may emerge between individuals.
To improve predictions over time, the influence of sensory input on cortical
representations must be weighted by how informative the input is expected to be
concerning regularities in the world (i.e., weighted in proportion to the expected
precision of the input relative to the precision of existing expectations) (Feldman &
Friston, 2010). This captures the intuitive principle that sensory information
should be drawn upon to a greater degree (at the expense of prior or contextual
information) in contexts when the present input is expected to be more highly
reliable in determining the state of the external world. Thus, a key task for the
nervous system is in optimising the relative influence of (top-down) prior or

contextual information on low level, local processing. This task can be challenging
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because different contexts require recruitment of different levels of the cortical
hierarchy to accurately represent the causal structure of the world. Changes in
sensory input could be best accounted for by inferring the presence of either
shorter or longer term regularities, for example, and could reflect changes in first-

or second-order statistics (for discussion, see Hohwy, 2013).

These concepts have been drawn upon very recently to understand ASD and
nonclinical variance in autistic features (Brock, 2012; Hohwy, 2013; Lawson et al,,
2014; Palmer et al., 2013; Pellicano & Burr, 2012; Skewes et al., 2014; van Boxtel &
Lu, 2013b; Van de Cruys et al., 2014). ASD is a highly prevalent developmental
condition (~1%) characterised in significant part by social, communicative and
behavioural atypicalities (American Psychiatric Association, 2013; Lai et al.,, 2014).
Other well-established features include sensory hyper- and hypo- sensitivities, a
detail-oriented processing style, a strong preference for predictability and routine,
cognitive inflexibility and poor motor coordination (Fournier et al., 2010; Gowen &
Hamilton, 2013; Happé & Frith, 2006; Simmons et al., 2009). Social and non-social
autistic characteristics vary to a significant degree across the general population,
in both children and adults (e.g.,, Baron-Cohen et al.,, 2001; Constantino & Todd,
2003; Hurst et al.,, 2007; Posserud et al., 2006). Pellicano and Burr (2012) argue
that nonsocial features of ASD can be understood as a reduced influence of prior
experience on sensory processing (see also Mitchell & Ropar, 2004). Within the
predictive processing framework, this idea has been developed in terms of an
increased effect of sensory stimulation on cortical representations of the world
such that perception is bound more closely to lower levels of representation -
where the weighting of sensory input is tied to estimations of state-dependent
uncertainty (Hohwy, 2013; Lawson et al., 2014; Van de Cruys et al, 2014). As
mentioned, differences between individuals in the modulation of lower-level
processing by higher-level representations can arise because there is not an
unequivocal answer regarding the appropriate levels of the hierarchy to recruit in
a given situation. Work has just begun in unpacking the implications of this type of
account for our understanding of sensory, motor and social symptoms in ASD, as

well as for individual differences more broadly (e.g., Gomez et al., 2014; Hohwy &



103

Palmer, 2014; Lawson et al,, 2014; Palmer et al., 2013; Skewes et al.,, 2014; van
Boxtel & Lu, 2013a; Van de Cruys et al., 2014).

Here we examine the influence of the preceding sensory context on sensorimotor
function with respect to both clinical and subclinical features of ASD. Specifically,
we investigate how reach-to-grasp movements unfold following exposure to the
rubber-hand illusion (RHI) - a multisensory illusion of ownership for a prosthetic
limb (Botvinick & Cohen, 1998; Ehrsson, 2012). Induction of this illusion (via
synchronous tactile stimulation of a visible prosthetic limb and the occluded real
limb) influences bodily representations for perception and action, reflected, for
example, in drift in perceived arm position towards the prosthetic limb (Tsakiris &
Haggard, 2005; Zopf et al,, 2011). Moving the arm subsequent to an inactive period
of illusion induction is therefore likely to require integration between prior,
context-sensitive  expectations regarding limb position and sensory
(proprioceptive) feedback received once movement is underway. This provides a
novel setting for examining consequences of the dynamic interaction between
sensory evidence and higher-order expectations specified by predictive
processing. In this type of paradigm, sensitivity to the context of the illusion can be
understood in terms of the relative influence of higher-level representations
filtering down the cortical hierarchy to modulate predictions at lower levels. We
therefore expected that divergence between individuals across illusory and non-
illusory conditions would be revealing in terms of the processing imbalances
hypothesised by inferential accounts of ASD. In particular, we expect individuals
higher in autistic features to be increasingly disinclined to let higher-level
representations be informative about low-level sensory input; conversely, they

should be more inclined to consider their sensory input informative.

Nonclinical individuals grouped by their level of autistic traits show differences in
sensitivity to the presence of the RHI in reaching movements (Palmer et al., 2013)
(see also Paton et al.,, 2012). Specifically, individuals low in autistic features exhibit
reduced smoothness of movement following the illusion compared to a control
condition, while individuals high in autistic features show uniformly smooth

movements across conditions. In the present study, we examined whether adults
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with ASD demonstrate similarly reduced sensitivity in movement to the preceding
context of the RHI. Crucially, we compare those with a diagnosis of ASD with both
nonclinical individuals high in autistic features and nonclinical individuals low in
autistic features. This allows us to assess how the predictive processing account of
individual differences we described and developed above coheres with clinical and
nonclinical features of movement. Additionally, we decompose reaching
trajectories into sub-components (described in Methods) to more closely examine
whether differences in action following the illusion are consistent with differences

in the context-sensitive integration of sensory feedback with prior expectations.

2. Methods

2.1 Participants

Three participant groups were involved in this experiment. Thirty nonclinical
adults were recruited via university and hospital advertisements and separated
into two groups based on a median-split of Autism-Spectrum Quotient scores (AQ,
an adult inventory measure of social and non-social autistic traits; Baron-Cohen et
al, 2001). Thus, we examined a Low AQ group of 15 nonclinical individuals (8
female; age: M = 30.20, SD = 7.31 years; AQ: M = 8.07, SD = 3.96) and a High AQ
group of 15 nonclinical individuals (5 female; age: M = 29.87, SD = 8.61 years; AQ:
M = 22.13, SD = 5.74). A third group of 15 adults with ASD were recruited via
advertisements and the Monash Alfred Psychiatry Research Centre volunteer

database (4 female; age: M = 29.27, SD = 9.17 years; AQ: M = 28.60, SD = 10.47).

Diagnoses were of either autistic disorder (high-functioning) or Asperger’s
disorder. All diagnoses were according to DSM-IV-TR criteria (American
Psychiatric Association, 2000) and established by a qualified clinician external to
the study (psychiatrist, paediatrician or clinical psychologist). All participants
were right-handed. Further demographic and clinical characteristics are reported

in Table S1, Supplementary Material. Approval for this research was granted by the
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Monash University Human Research Ethics Committee and the Alfred Hospital

Ethics Committee. All participants provided informed consent.

2.2 Procedure

Participants sat at a desk with their right arm resting in a fixed position. A
prosthetic right arm was posed in an anatomically plausible position in front of the
participant, while the participant’s corresponding limb was hidden from view. The
limbs were spaced 20 cm apart in the horizontal plane (as measured from the
middle fingers), aligned in the vertical plane, and positioned with approximately
equivalent hand configuration and orientation. The prosthesis was visually similar
to a human limb with respect to physical proportions, skin detail, and compression
to touch. An experimenter applied stroking concurrently to each limb using a pair
of soft brushes (2-2.5 x 0.5 cm tip size). Stimulation was applied to the dorsal
surface of the fingers and hand. Each trial consisted of either synchronous or
asynchronous stimulation, applied for 3 mins at approximately 1-2 Hz. In the
synchronous stimulation condition, stroking was applied in temporal synchrony to
corresponding locations of each limb. In asynchronous stimulation trials, stroking
was both temporally and spatially asynchronous. Asynchronous stimulation
constitutes the standard control condition in research employing the RHI, and
tends not to elicit behavioural and physiological responses characteristic of the
RHI (for review, see Ehrsson, 2012). Participants were instructed to attend to the
stroking of the prosthetic limb during stimulation. Sixteen trials were conducted in
total (eight with synchronous stimulation; eight with asynchronous stimulation).

Trial order was randomised for each participant.

Each trial included pre- and post-stimulation estimates of limb position and a post-
stimulation reach-to-grasp movement. At the end of each trial, participants
completed a questionnaire to assess their subjective experience of the illusion.
Throughout the experiment, the real and prosthetic limbs were situated in
separate compartments of an observation box that spanned the length of the desk.
Compartmentalised lighting allowed the prosthetic limb to be visible only in the

stimulation phase of each trial, while the participant’s limb was occluded
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throughout the experiment. The reach target was presented only in the reaching
phase of each trial. A smock blocked the participant’s view of how the real and

prosthetic limbs entered the box.

2.3 Perceptual measures

2.3.1 lllusion statements

Participants reported on their experience of the stimulation period in each trial
using a questionnaire comprised of 11 statements (see Palmer et al., 2013, for full
description). Three statements were worded to capture the typical
phenomenological qualities of the illusion: (i) “It seemed as if I was feeling the
touch of the paintbrush in the location where I saw the rubber hand being
touched,” (ii) “It seemed as though the touch I felt was caused by the paintbrush I
could see touching the rubber hand,” and (iii) “It felt as if the rubber hand was my
hand.” Also included were 8 control statements that were not expected to differ
systematically between synchronous and asynchronous conditions (e.g., “It
seemed as if | might have more than one right hand or arm”). Participants rated
their agreement with each statement on a 20 cm horizontal visual analogue scale.
Average ratings across illusion-related and control items were analysed. Statement

order was randomised for each trial.

2.3.2 lllusion onset latency

Participants pressed a footswitch during the stimulation phase of each trial when
they first agreed with the statement, “It seemed as though the touch I felt was
caused by the paintbrush I could see touching the rubber hand”, or the statement,
“It seemed as if [ was feeling the touch of the paintbrush in the location where I
saw the rubber hand being touched.” Participants were not required to press the
footswitch if they did not agree with either statement (these trials were treated as
missing data; missing data due to equipment issues described below). The illusion

onset latency for each trial was recorded as the duration between when the
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experimenter first began applying stimulation and when the participant first

pressed the footswitch.

2.3.3 Proprioceptive drift

Directly before and after each stimulation period, participants estimated the
position of their right hand. A bar was positioned across the box, above the
participant’s right hand, in the horizontal plane from the participant’s perspective.
The experimenter slid a marker across the bar, and the participant verbally
indicated when the marker was estimated to be directly above the centre knuckle
of their hand. The experimenter recorded the position of the marker to the nearest
millimetre. Proprioceptive drift was calculated as the difference between pre- and
post-stimulation estimates, with positive values indicating drift towards the

prosthetic limb.

2.4 Kinematic measures

Participants performed a reach-to-grasp movement in each trial using the hand
that had received stimulation. The target of the movement was a 4.5 cm by 18 cm
bright yellow cylinder, located 13 cm forward and 5 cm to the right of the
participant’s hand. Participants began the movement when a light was switched on
to allow vision of the upper ~2 cm of the target; vision of their hand and the

prosthetic limb was blocked throughout the movement.

Displacement was recorded continuously by an electromagnetic tracking device
together with a sensor attached centrally to the dorsal surface of the hand
(Ascension Technology Corporation 3DGuidance trakStar with mid-range
transmitter; reported resolution of 1.4 mm and 0.592). Recording was at 60 Hz with
a 50 Hz notch filter. The three spatial dimensions of movement were the subject of
analyses. All trials were visually screened for recording artefacts. Two participants
were excluded from reach analyses due to extensive recording failures in these
sessions; across the remaining 43 participants (688 trials), 11 trials in total were

similarly excluded due to equipment issues. For each trial, movement onset and
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offset were defined as when velocity first exceeded 20 mm/s for 0.05 s when
proceeding anterograde and retrograde through the time series, respectively (this
follows Kammers, de Vignemont, et al, 2009; Kammers, Verhagen, et al., 2009;
Palmer et al, 2013). A Savitzky-Golay filter was used to smooth and then

differentiate displacement data (frame length = 11-19; polynomial order = 2-3).

Area under the curve of the Euclidean jerk profile was a measure of interest. Jerk is
the change in acceleration over time (the third derivative of displacement).
Minimisation of mean or integrated squared jerk is a theoretical criterion for
producing smooth, naturalistic point-to-point trajectories (Hogan & Flash, 1987).
Previous clinical studies have used jerk measures to quantify movement
performance (e.g., Nobile et al., 2011; Romero et al., 2003; Teulings et al., 1997),
and we have previously demonstrated that individuals low in autistic features
show increased integrated jerk in reaching movements following the RHI (Palmer

etal, 2013).

Movement sub-components were also examined to probe for features that may
underlie differences in overall execution. This analysis drew on a fitting method
recently developed by Friedman and colleagues to decompose recorded
trajectories into constituent sub-movements (Friedman, 2012; Friedman, Brown,
& Finkbeiner, 2013). This procedure finds the minimum number of (potentially
overlapping) sub-movements that sum together to reproduce the observed
velocity profile. Individual sub-movements are assumed to minimise jerk (i.e.,
show a Gaussian velocity profile) and fit certain temporal and spatial constraints.
The fitting procedure described in Friedman et al. (2013) was run for 1:10 sub-
movements with an error threshold of 0.03. Spatial bounds were set for x (-200-
300) and y (-100-200) dimensions based on the physical proportions of the task
environment. This procedure returned 2-3 sub-movements for 84% of trials, with
a single trial returning no valid solution after not converging. The average
reconstruction error was 0.0166 (SD = 0.0026), similar to (Friedman et al., 2013).
We examined parameters of the first two velocity sub-movements as >99% of
trials contained at least two sub-movements. These parameters were peak

velocity, time to peak velocity, full width at half maximum (a measure of duration)
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and onset time. Fitted sub-components for a single trial are illustrated in Figure 3a

in Results.

3. Results

3.1 Perceptual measures

The typical perceptual effects of the RHI were observed across groups. A 2 x 2 x 3
mixed ANOVA was performed for self-reported ratings of the illusion, with
statement type (control versus illusion-related), stimulation type (synchronous
versus asynchronous) and group (Low AQ versus High AQ versus Clinical) as
factors. Importantly, a significant interaction was observed between statement
type and stimulation type, F(1, 42) = 113.09, p <.0001. Post-hoc t-tests indicated
that illusion items were rated higher following synchronous stimulation (M =
12.52, SD = 5.55) compared to asynchronous stimulation (M = 3.99, SD = 3.79),
t(44) = 11.09, p <.0001, Hedges’ gav = 1.81 (Figure 1). Similarly, illusion items were
rated higher than control items for synchronous stimulation, t(44) = 9.03, p <
.0001, Hedges’ gav = 1.32 (illusion ratings: M = 12.52, SD = 5.55; control ratings: M =
6.74, SD = 3.16), but not for asynchronous stimulation, for which a lesser
difference in the opposite direction was observed, t(44) = -4.59, p <.0001, Hedges’
gav = 0.37 (illusion ratings: M = 3.99, SD = 3.79; control ratings: M = 5.25, SD =
3.00). Together, these results indicate that the phenomenological features of the
illusion typically reported in the literature tended to be experienced following
synchronous stimulation but not asynchronous stimulation, as expected. A
significant interaction effect was also observed between statement type,
stimulation type and group, F(2, 42) = 4.33, p = .02. Post-hoc tests indicated that all
three groups demonstrated the same pattern of effects as reported above for the
whole sample, however (these post-hoc tests and further main effects are reported

in Supplementary Material).
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Figure 1. Perceptual measures of the RHI. Mean illusion ratings and drift in
perceived arm position are shown across RHI conditions. synch., synchronous;

asynch., asynchronous. Error bars indicate standard error.

Groups similarly did not differ in the average time required to induce the illusion
in the synchronous stimulation condition. A Kruskal-Wallis test with group as the
factor was performed on illusion onset latency during synchronous stimulation. (A
non-parametric test was used because the distribution of this data was positively
skewed). There was no significant difference across the three participant groups,
%% (2, n = 33) = 0.14, p = .93. Mean onset latency for the full sample was 51.25 sec
(SD = 42.29; median = 48.65; median absolute difference = 36.60).

Synchronous stimulation induced drift in perceived arm position towards the
prosthetic limb, and, consistent with other perceptual measures, this effect did not
differ in relation to autistic characteristics. A 2 x 3 mixed ANOVA was performed
for proprioceptive drift measurements, with stimulation type (synchronous versus
asynchronous) and group (Low AQ versus High AQ versus Clinical) as factors. Drift
in perceived arm position towards the prosthetic limb was significantly greater for
synchronous (M = 1.86, SD = 2.74) than asynchronous stimulation (M = 0.10, SD =
1.91), F(1, 42) = 43.73, p < .0001, n?, = .51, n%¢ = .13 (Figure 1). No other main or

interaction effects were significant (p >.05).
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3.2 Kinematic measures

3.2.1 Integrated jerk

While the perceptual effects of the RHI were intact across groups, autistic
characteristics were found to modulate reaching movements performed
subsequent to the experience of the illusion. A 2 x 3 mixed ANOVA was performed
for the integrated jerk index of movement performance, with stimulation type
(synchronous versus asynchronous) and group (Low AQ versus High AQ versus
Clinical) as factors. A significant interaction was observed between stimulation
type and group, F(2, 40) = 5.26, p =.009, n?, = .21 (Figure 2). In replication of our
previous study in nonclinical individuals (Palmer et al., 2013), the Low AQ group
showed increased integrated jerk in movements performed subsequent to
synchronous stimulation (M = 15.77, SD = 3.58) compared to asynchronous
stimulation (M = 14.30, SD = 3.06), t(13) = 3.55, p = .004, Hedges’ gav = 0.43. In
contrast, the High AQ group showed no difference between synchronous (M =
14.14, SD = 4.10) and asynchronous (M = 14.06, SD = 3.79) stimulation conditions,
t(13) = 0.23, p = .83, Hedges’ gav = 0.02. Moreover, in the present study we were
able to extend this analysis to individuals with ASD, who similarly showed no
change in integrated jerk across synchronous (M = 18.18, SD = 5.90) and
asynchronous (M = 18.56, SD = 6.05) conditions, t(14) = -0.79, p = .44, Hedges’ gav =
0.06. Additionally, there was a main effect of group, F(2, 40) = 3.59, p =.037, %, =
.15. Pairwise comparisons with Bonferroni adjustment indicated that the Clinical
group (M = 18.37, SD = 5.90) exhibited significantly greater integrated jerk in their
reaching movements (across conditions) than the High AQ group (M = 14.10, SD =
3.89; p = .015). The Low AQ group did not differ significantly from either other

group (p >.05). No other main or interaction effects were significant (p >.05).
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Figure 2. Mean integrated jerk of reaching movements performed subsequent to
the RHI. synch., synchronous; asynch., asynchronous. Error bars indicate standard

error.

3.2.2 Sub-movement analysis

Modelling the constituent sub-components of the reach-to-grasp movements
performed subsequent to the illusion shed light on the features of movement that
likely contributed to the differences in performance noted in the previous section.
Parameters of the first and second sub-movements were each analysed in a 2 x 3
mixed ANOVA with stimulation type (synchronous versus asynchronous) and

group (Low AQ versus High AQ versus Clinical) as the factors.
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Peak velocity of the first sub-movement did not differ across groups or RHI
conditions, nor was there an interaction effect (p > .05). However, for the second
sub-movement, there was a significant interaction between stimulation type and
group, F(2, 40) = 4.88, p =.013. There was no main effect of either factor (p >.05).
Post-hoc t-tests indicated that the Low AQ group showed greater peak velocity in
the second sub-movement following synchronous stimulation (M = 280.06, SD =
46.87) compared to asynchronous stimulation (M = 259.82, SD = 43.09), t(13) =
3.527, p =.004, Hedges’ gav = 0.44 (Figure 3b). In contrast, the High AQ and Clinical
groups showed no difference in peak velocity between the synchronous (High AQ:
M =260.46, SD = 44.50; Clinical: M = 288.96, SD = 112.95) and asynchronous (High
AQ: M = 273.35, SD = 45.50; Clinical: M = 301.48, SD = 121.01) stimulation
conditions [High AQ: t(13) = -1.39, p = .19, Hedges’ gav = 0.28; Clinical: t(14) = -
1.28, p =.22, Hedges’ gav = 0.10].

There was a significant main effect of group for time to peak velocity of the first
sub-movement, F(2, 40) = 3.85, p =.03, n?, = .16 (Figure 3c). Pairwise comparisons
with Bonferroni adjustment indicated that the Clinical group (M = .48, SD = .21)
took longer to reach peak velocity of the first sub-movement than the High AQ
group (M = .33, SD = .07; p =.009). The Low AQ group did not differ significantly
from either other group (p > .05). The other main and interaction effects for this
variable were non-significant (p > .05). Time to peak velocity of the second sub-

movement showed no main or interaction effects (p >.05).

A significant main effect of group also existed for the onset time of the second sub-
movement, F(2, 40) = 3.39, p = .044, n?, = .15 (Figure 3c). Similar to the difference
in time to peak velocity of the first sub-movement, pairwise comparisons with
Bonferroni adjustment indicated that the onset time of the second sub-movement
was later for the Clinical group (M = .42, SD = .24) than for the High AQ group (M =
.25, SD = .10; p = .016). The Low AQ group did not differ significantly from either
other group (p > .05), and the further main and interaction effects for this variable
were non-significant (p > .05). Further analysis of the reach data is reported in

Supplementary Material.
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Figure 3. Sub-component analysis of reach-to-grasp movements. (a) Modelled

sub-components of a single reach-to-grasp movement. Black, recorded data; red,

first sub-movement; green, second sub-movement; blue, third sub-movement. (b)

Mean peak velocity of the second sub-movement for the Low AQ group across RHI
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conditions. (c) Mean time to peak velocity (first sub-movement) and onset time
(second sub-movement) across participant groups. L = Low AQ; H = High AQ. Error

bars indicate standard error.

4. Discussion

This study was designed to examine sensitivity to the preceding sensory context in
motor function with respect to clinical and subclinical autistic features. In
nonclinical individuals, those higher in autistic characteristics were less sensitive
to the presence of the RHI in their reaching movements than those lower in autistic
characteristics. Adults with a diagnosis of ASD similarly exhibited little difference
in kinematic parameters across illusory and control conditions. Sensitivity to the
illusion manifested in the Low AQ group as increased integrated jerk (in
replication of our previous study of subclinical autistic characteristics; Palmer et
al,, 2013) and increased peak velocity in the second sub-component of movement.
The latter feature is likely to contribute to or underlie increased integrated jerk, as
integrated jerk is responsive to changes in the shape of the velocity profile. All
groups reported the typical subjective effects of the illusion and exhibited the same
degree of drift in perceived arm position towards the prosthetic limb. Thus, the
observed differences in reaching movements are explained better in terms of an
association between autistic features and sensitivity to prior (contextual)
information rather than a general resistance to the illusion in the High AQ and

Clinical groups.

This pattern of results supports and extends to movement the recent notion that
the autism spectrum is characterised by reduced top-down modulation of sensory
processing (Hohwy, 2013; Lawson et al.,, 2014; Palmer et al,, 2013; Pellicano &
Burr, 2012; Van de Cruys et al., 2014). In a predictive processing view of the RHI
paradigm, initial expectations for arm position influenced by the illusion are
updated iteratively with sensory (proprioceptive) feedback received once
movement is underway. In the Low AQ group, movement in illusory and control

conditions began in the same manner (as indicated by the lack of difference
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between conditions in the parameters of the first sub-movement) but differed in
peak velocity of the second sub-movement. This is consistent with the hypothesis
that movement performance in this group is modulated by conflict between
sensory feedback and illusory expectations for arm position: as movement unfolds
participants in the Low AQ group accumulate sensory evidence for the true
position of the arm and in that light make in-flight corrections to the movement.
Following on from this, we can understand the reduced sensitivity to the illusion in
the High AQ and Clinical groups as reflecting a greater weighting of sensory
feedback in determining arm position during movement, such that prior

representations of the environment are relatively circumscribed in their influence.

Individuals with ASD were also distinct from nonclinical individuals high in autistic
traits, the former showing greater integrated jerk in movements across conditions.
The sub-movement analysis was again revealing about the features of movement
that may contribute to this performance difference; specifically, the Clinical group
(compared to the High AQ group) showed a later time to peak velocity of the first
sub-component of movement and a later onset time of the second sub-component
of movement. This sluggishness in the early stage of movement coheres with
previous research investigating abnormalities in movement initiation and
preparation in ASD (e.g., Enticott, Bradshaw, lansek, Tonge, & Rinehart, 2009;
Rinehart, Tonge, et al., 2006). Thus, while nonclinical individuals higher in autistic
traits resemble clinical individuals in their lack of motor sensitivity to the RHI,
these groups are distinct in early features of movement that manifest across
contexts. A regression analysis indicated no relationship across the sample
between AQ score and movement performance across conditions (reported in
Supplementary Material), similarly suggesting that these features of movement are
specific to clinical individuals. This highlights how examining both clinical
individuals and nonclinical variation in autistic traits in the same experiment can
provide a more complete characterisation of how the clinical condition presents
with respect to variation that exists across the general population. Furthermore,
this pattern of results points to the possibility that the processing differences that

contribute to reduced sensitivity to the RHI in the High AQ and ASD groups occurs
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to such an extent in the latter that difficulties in motor performance are

experienced across contexts.

Motor incoordination (e.g., clumsiness) occurs commonly in ASD across a range of
different motor behaviours, including reaching movements and gait (Fournier et
al, 2010; Gowen & Hamilton, 2013). The results of the present study furnish an
account of the motor symptoms of ASD in terms of the relative weighting of prior
or contextual information against sensory feedback. A fundamental assumption of
the Bayesian approach to perception is that sensory information is noisy and
ambiguous, such that drawing upon prior and contextual information is necessary
to determine the state of the external world. Thus, the increased weighting of
sensory information in perceptual inference that is suggested to occur in ASD leads
directly to an account of motor incoordination in terms of how the brain estimates
the state of the body during movement. Namely, relying too highly on the incoming
sensory information at the expense of prior information should typically lead to a
less accurate sense of body position, which may contribute to clinical symptoms of
motor incoordination (and the reduced smoothness of movement observed for the
clinical group in the present study). Moreover, while the context of the illusion
misleads performance in the RHI, sensitivity to higher-order contextual
information may more commonly be of benefit to accurate motor performance
(e.g., when performing movement without visual feedback, or when contextual
factors like weight on the arm modulate the relationship between actions and their

sensory consequences).

The concepts that we draw upon to elucidate differences in sensitivity to the RHI
across the groups may also be useful in understanding the observed differences in
movement initiation in ASD. In their application of predictive processing to action,
Friston and colleagues have emphasised the role of sensory attenuation in
movement initiation (Brown et al., 2013). In brief, their notion is that action comes
about when predictions regarding the flow of proprioceptive input are fulfilled by
peripheral responses that engage the muscles to change the bottom-up signal
(Adams, Shipp, et al., 2013; Shipp et al, 2013). This contrasts with the more

passive process of updating predictions to match input suggested to occur in the
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perceptual system. To begin movement, sensory evidence for the hypothesis
concerning the current (true) arm position must be down-weighted such that
alternate hypotheses regarding arm position are favoured. As noted, the
mechanism thought to underlie a reduced influence of prior or higher-level
expectations in autistic perception is a tendency to weight the sensory input highly
relative to top-down predictions (i.e., increased gain on prediction errors) (Lawson
et al, 2014; Palmer et al, 2013; Van de Cruys et al, 2014). An implication of
increased sensory weighting may be that the attenuation of sensory evidence that
is suggested to facilitate movement initiation is compromised, contributing to

differences in the early stages of movement.

[s increased sensory weighting in ASD contextually driven or a chronic feature of
sensory processing? In the predictive processing framework, the relative
weighting of sensory information against prior expectations is adjusted top-down
in a state-dependent manner in response to changes in the expected precision of
sensory signals (i.e.,, the estimated uncertainty of the environment). This is a
mechanism that has the potential to add further nuance regarding how subtle
differences in sensory processing may manifest in a complex manner across
contexts, which may be crucial in accounting for the complex pattern of sensory
differences in ASD and the heterogeneity in symptoms reported between and
within individuals with ASD. The results of the present study point to both context-
independent differences in ASD, exhibited in movement performance across
conditions, and context-dependent differences in ASD, exhibited in differing
responses to the illusion in movement. While there is evidence that proprioceptive
estimates in non-illusory conditions are no more accurate or precise in ASD than in
controls (Fuentes et al, 2011), the present study differs in incorporating an
uncertain context in which conflict between cues for arm position derived from the
illusion and proprioceptive input during illusion induction may induce an
expectation for low precision in the sensory input. That is, sensorimotor input can
normally be interpreted unequivocally under long-held, very stable expectations
about body-image, body-schema and bodily self-awareness but the RHI challenges
these expectations and throws doubt on the sensory input. Those higher in the

autism spectrum may therefore weight sensory input more strongly than others in
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particular contexts due to a reduced response to cues that suggest that sensory

input should be distrusted.

Importantly, we can begin to see how differences in the depth of the cortical
hierarchy through which updating occurs could underlie clinical and subclinical
autistic features. Specifically, we can situate nonclinical individuals lower in
autistic traits as tending to appeal more to higher-level causes to explain sensory
input when compared to those higher in autistic features, while clinical individuals
have a tendency to predominantly recruit levels that are lower again. It is clear
that differences in this regard could be adaptive (as in nonclinical variation in
autistic features) or not (as in the clinically-defined condition), given the equivocal
challenge of determining where in the causal hierarchy to account for changes in
sensory input from within the skull. We can speculate that differences in the
recruitment of higher levels in the hierarchy may be reflected in neurobiological
features found in ASD such as reduced long-range connectivity (e.g., Just,
Cherkassky, Keller, & Minshew, 2004) and greater intra-individual variability in
evoked cortical responses (Dinstein et al.,, 2012). Since representations of context
help to explain fluctuations in sensory input over relatively longer time scales,
more circumscribed context sensitivity in autistic sensory processing could
contribute more generally to reduced social comprehension, sensory impairments

and a stronger desire for predictability and routine.

There is evidence that the perceptual experience of the RHI is facilitated by prior
expectations regarding bodily representation (e.g., Hohwy & Paton, 2010; Tsakiris
& Haggard, 2005). That the typical perceptual effects of the RHI were exhibited by
the ASD group thus suggests that individuals with ASD are able to learn
informative priors but differ instead in the relative weighting of priors against
conflicting sensory signals (for discussion, see Brock, 2012; Lawson et al., 2014;
Skewes et al., 2014). This is consistent with the mixed evidence on visual illusions
in ASD, which tends to suggest that prior information influences visual perception
in ASD but to a lesser extent than controls (Mitchell et al., 2010). The differences in
motor behaviour following the illusion despite the similar perceptual experience

across groups points to how subtle atypicalities in the integration of prior
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expectations with sensory information may manifest differently across tasks
depending on factors such as the nature of the priors involved (e.g., expectations
regarding bodily representation developed over long time scales versus shorter-
term contextual information regarding body position during movement). Similarly,
the predictive processing account emphasises the continual and dynamic
integration of incoming sensory signals with existing expectations regarding the
causes of sensory input, which the reaching task used in the present experiment is
likely to be more sensitive to than perceptual measures of the illusion due to the
immediate demand of integrating sensory feedback with existing estimates of arm
position as the movement unfolds. Thus, it may be important for future research in
this area to similarly consider the temporal nature of perceptual inference and

include measures that are sensitive to this process.

Reduced sensitivity to the RHI in movement fits broadly with established theories
of autistic perception that suggest reduced sensitivity to more global or contextual
information (weak central coherence, WCC; Happé & Frith, 2006) or enhanced
lower-level perceptual functioning (EPF; Mottron et al., 2006). Specifically, WCC
may predict a reduced sensitivity to the illusion in general due to reduced global
integration of sensory information, while EPF may predict better movement
performance in the context of the RHI due to enhanced discriminability of
proprioceptive input (though previous research has not supported better
proprioceptive discrimination in ASD, Fuentes et al, 2011). The predictive
processing account has an advantage in this regard in accounting for why the RHI
is experienced similarly in the ASD group but modulates subsequent movement
differently to low AQ controls (as discussed earlier), and further, why movement
performance is generally poor in the ASD group in addition to this group showing
insensitivity to the context of the RHI. Inferential accounts of autistic perception
formalise the distinction between bottom-up and top-down sensory processes
(Pellicano & Burr, 2012) within a computational framework, and situate clinical
symptoms and related nonclinical variation within a general model of brain
function. Drawing on the biological and computational depth of inferential models
may be important for elucidating the mechanisms underlying autistic symptoms;

for example, the concept of weak central coherence can be cast in predictive
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processing terms, leading to corresponding hypotheses regarding the cortical
circuitry and neurotransmitter systems involved (Lawson et al, 2014; Van de
Cruys et al, 2014). Further research may also be able to distinguish predictive
processing accounts from other theories by examining the role of sensory
uncertainty in modulating differences in perceptual or sensorimotor outcomes

between ASD and controls.

In this study, we find that both individuals with ASD and nonclinical individuals
high in autistic traits show reduced sensitivity to a multisensory illusion of limb
ownership in subsequent reaching movements despite experiencing the
perceptual effects of this illusion. In addition, clinical and nonclinical individuals
high in autistic traits are distinguishable in the integrated jerk and earlier phases
of movement across conditions. These sensorimotor differences can be understood
in terms of the relative weighting of sensory feedback against existing expectations
for body position as movement unfolds; these results thus extend recent predictive
processing accounts of ASD to sensorimotor function and to differences across the

nonclinical population.
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Low AQ High AQ Clinical
n 15 15 15
Age (years) 30.20 (7.31) 29.87 (8.61) 29.27 (9.17)
Gender (f:m) 8:7 5:10 4:11
AQ
Sociability 19.27 (3.52) 25.73 (6.89) 28.47 (8.55)
Mentalising 8.47 (1.64) 11.60 (3.31) 14.87 (4.32)
Detail Orientation 10.53 (3.02) 16.67 (3.92) 17.60 (3.85)

Total (likert-scored)

Total (binary-scored)
RAADS-R

Social Relatedness

Circumscribed
Interests

Sensory Motor

Social Anxiety

86.80 (10.08)

8.07 (3.96)

117.60 (11.64)

22.13 (5.74)

132.87 (24.68)
28.60 (10.47)

23.93 (12.21)
45.73 (16.72)

24.40 (10.74)
20.67 (10.17)

Total - - 113.40 (34.30)
SRS-2

Social Awareness - - 59.27 (12.09)

Social Cognition - - 62.40 (12.97)

Social - - 61.80 (16.32)
Communication

Social Motivation - - 62.60 (13.36)

RIRB - - 67.67 (13.89)

Total - - 64.93 (13.29)

Means and standard deviations are shown for continuous variables. Abbreviations:
AQ: Autism-Spectrum Quotient (Baron-Cohen et al., 2001) (see Palmer, Paton,
Enticott, and Hohwy (2015) for description of the subscales reported here);
RAADS-R: Ritvo Autism Asperger Diagnostic Scale-Revised (Ritvo et al.,, 2011);
RIRB: Restricted Interests and Repetitive Behavior subscale; SRS-2: Social
Responsiveness Scale, Second Edition (Constantino & Gruber, 2012) (SRS T-scores
from self ratings are reported here). Four individuals in the clinical group reported
co-morbidities (1 depression; 1 anxiety disorder; 1 depression/anxiety disorder; 1
depression/anxiety  disorder/dissociative  disorder/dyslexia). = Co-morbid
depression and anxiety are common in ASD (Matson & Williams, 2014), thus the
sample is likely better representative of the general ASD population with these
individuals included. Four clinical participants were medicated (1 serotonin-
norepinephrine reuptake inhibitor; 1 lithium/atypical
antipsychotic/benzodiazepine; 1 selective serotonin reuptake inhibitor/typical
antipsychotic/benzodiazepine; 1 atypical antipsychotic/anticholinergic).
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S2. Supplementary results

$2.1 Illusion ratings

Further to the three-way interaction between statement type, stimulation type and
group reported for illusion ratings in the main text: Post-hoc t-tests indicated that
all three groups showed (i) increased illusion ratings following synchronous
stimulation compared to asynchronous stimulation, and (ii) that illusion ratings
were greater than control ratings for synchronous stimulation but not for

asynchronous stimulation. These tests are reported below in Table S2.

In addition to the interaction effects for illusion ratings reported in the main text,
there was a main effect of statement type, F(1, 42) = 45.73, p < .0001, n?, = .52.
[llusion statements (M = 8.26, SD = 4.00) were rated higher than control
statements (M = 6.00, SD = 2.95). There was also a main effect of stimulation type,
F(1, 42) = 127.64, p < .0001, n?, = .75. Synchronous stimulation (M = 9.63, SD =
3.98) was associated with higher statement ratings than asynchronous stimulation
(M =4.62, SD = 3.30). All other main and interaction effects were non-significant (p
>.05).

$2.2 Further reach analysis

The full width at half maximum parameter was not associated with significant

main or interaction effects for either sub-movement (p > .05).

To further examine the relationship between autistic characteristics and the
features of movement that differed between the clinical and nonclinical (High AQ)
groups across the illusion and control conditions, a standard regression was
performed with AQ score as the dependent variable and movement features
(integrated jerk, time to peak velocity of the first sub-movement, and onset time of
the second sub-movement) as the independent variables. Unsurprisingly, given
their mutual relationship to movement initiation, there was strong evidence for

multicollinearity between the time to peak velocity and onset time variables based
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on their Pearson’s correlation (>.7), tolerance (<.10) and variance inflation factor
(>10). The onset time variable was thus omitted from the regression analysis. The
scatterplot of standardized residuals and Mahalanobis distances indicated a single
extreme outlier, which was removed from the analysis. The total variance
explained by the model was small and non-significant, R squared = 9.3%, F(2, 39) =
2.01, p = .15. Neither integrated jerk (beta = .20, p =.19) nor time to peak velocity
of the first sub-movement (beta = .22, p = .15) made a significant unique
contribution. Thus, while these features of movement differed across groups as
described earlier, there was not evidence that they shared a linear relationship
with AQ scores across the sample when combining clinical and nonclinical

individuals.

Peak lateral displacement (mm) away from the prosthetic arm was examined with
a 2 x 3 mixed ANOVA containing stimulation type (synchronous versus
asynchronous) and group (Low AQ versus High AQ versus Clinical) as factors.
Synchronous stimulation was associated with greater peak lateral displacement (M
= 74.90, SD = 14.58) than asynchronous stimulation (M = 71.00, SD = 15.05), F(1,
40) = 9.56, p =.004, n?, = .19, n%; = .02. No other main or interaction effects were

significant (p >.05).



Table S3. Post-hoc t-tests for three-way interaction

M (SD) ¢ (df) p Hedges’ gav
Low AQ
[llusion ratings
(Synch) 13.81 (5.04)
; . 9.20 (14) <.0001 2.49

[llusion ratings
(Asynch) 3.28(3.20)
[llusion ratings
(Synch) 13.81 (5.04)

: 7.66 (14) <.0001 1.90
Control ratings
(Synch) 6.44 (2.50)
[llusion ratings
(Asynch) 3.28(3.20)

. -3.87 (14) <.01 0.55
Control ratings
(Asynch) 4.82 (2.26)
High AQ
[llusion ratings
(Synch) 9.82 (6.10)
lllusion ratings 4.94(14) <.001 1.14
(Asynch) 3.74 (4.24)
[llusion ratings
(Synch) 9.82 (6.10)
Control ratings 3.97 (14) <.01 0.70
(Synch) 6.29 (3.70)
[llusion ratings
(Asynch) 3.74 (4.24)
Control ratings -1.69 (14) 11 (ns) 0.21
(Asynch) 4.56 (3.46)
Clinical
[llusion ratings
(Synch) 13.93 (4.75)

: . 6.32 (14) <.0001 201

[llusion ratings
(Asynch) 4.95 (3.93)
[llusion ratings
(Synch) 13.93 (4.75)
Control ratings 513 (14) <.001 1.56
(Synch) 7.50 (3.26)
[llusion ratings
(Asynch) 4.95 (3.93)

. -2.61 (14) <.05 0.40
Control ratings
(Asynch) 6.38 (3.03)
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Linking text between chapters 3 and 4

In Chapters 2 and 3, we reported that the experience of the multisensory rubber
hand illusion differed in individuals with ASD and in relation to nonclinical
variation in autism-like characteristics. These differences were reflected primarily
in reaching movements performed subsequent to the illusion, with autistic
features associated with reduced sensitivity to the context of the illusion in
movement. These findings can be understood as reflecting the level of integration
of prior or contextual expectations regarding arm position with incoming
proprioceptive signals. Reduced context sensitivity in movement is thus consistent
with an overweighting of sensory signals during Bayesian inference that is
hypothesised to occur in ASD (Lawson et al., 2014; Palmer et al., 2013; Pellicano &
Burr, 2012; Van de Cruys etal., 2014).

An attraction of drawing on Bayesian probability theory to characterise differences
in perceptual or cognitive function in neuropsychiatric conditions is the promise of
quantifying such differences in more precise computational terms. For instance,
Bayesian modelling techniques have provided evidence that the human brain
integrates crossmodal sources of information (e.g., vision and audition, or vision
and proprioception) in a manner sensitive to the relative reliabilities of each
unimodal source of information (Alais & Burr, 2004; van Beers, Sittig, & Gon,
1999). Furthermore, implicit prior expectations that the sensory system brings to
bear during perception can also be modelled - for instance, the assumed direction
of lighting sources during object shape perception. This method has been used to
assess differences between individuals in their apparent implicit prior
expectations that influence perceptual experience (Mareschal, Calder, & Clifford,
2013), and used for tracking changes in such expectations within an individual
over time in response to experience (Adams et al., 2004). The rubber hand illusion
is an attractive paradigm for examining perceptual inference, as it involves
integration between conflicting sensory cues and prior expectations regarding the
body (Hohwy, 2013; Hohwy & Paton, 2010; Limanowski & Blankenburg, 2013;

Tsakiris & Haggard, 2005). Nevertheless, there is some distance between the
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perceptual and kinematic measures of the illusion that we employ in Chapters 2
and 3 and the predictive processing mechanisms that we appeal to when

discussing why differences in these measures emerged across groups.

As one approach to more directly assessing the integration of incoming
information with existing expectations, we examined statistical learning: how
individuals learn about probabilistic regularities in the environment as they
sample the state of the environment over time. This type of learning (or inference)
on the basis of ambiguous information has been examined previously in a Bayesian
framework, with this research demonstrating that the brain is able to track the
uncertainty of environmental outcomes in an optimal manner (e.g., Behrens et al,,
2007; McGuire, Nassar, Gold, & Kable, 2014). An advantage of this type of learning
paradigm is that predictions and prediction errors can be quantified and tracked
over time as new information is gathered, and moreover, the experimenter can
precisely control the variance of the sampled data. In this way, it can be more
directly examined how an individual uses each new piece of information to update
their beliefs about the environment, and how this depends upon the noisiness of

the sampled data.

In Chapter 4, we employ a novel statistical learning task to test the hypothesis that
autistic characteristics are associated with a tendency to weight new information
more highly relative to prior expectations. Finer-grained hypotheses regarding the
information processing differences that characterise autistic brain function can
also be tested in the domain of statistical learning: for instance, expectations about
the volatility of environmental states can be modelled (Mathys et al., 2011; Mathys
et al,, 2014). More complex Bayesian modelling analyses of this nature are ongoing

and not reported in the present thesis.



128

Declaration for Thesis Chapter 4

Declaration by candidate

In the case of Chapter 4, the nature and extent of my contribution to the work was the

following:
Nature of Extent of
contribution contribution
(%)
* Contributed to the experiment design. 60%

* Performed data analysis.

* Contributed to the interpretation of results.

*  Wrote the paper.

* Performed data collection and analysis for pilot experiments
during development of the experimental paradigm.

The following co-authors contributed to the work. If co-authors are students at Monash

University, the extent of their contribution in percentage terms must be stated:

Name Nature of contribution Extent of contribution
(%) for student co-
authors only

Bryan Paton | Contributed to the experiment design, N/A
interpretation of results, and writing.

Peter Contributed to the interpretation of results N/A

Enticott and writing.

Jakob Hohwy | Contributed to the experiment design, N/A

interpretation of results, and writing.

The undersigned hereby certify that the above declaration correctly reflects the nature

and extent of the candidate’s and co-authors’ contributions to this work.

Candidate’s Date
Signature 16/02/2016

Date
16/02/2016

Main

Supervisor’s

Signature




129

Chapter 4

Developing Bayesian accounts of autism:

Evidence from statistical learning

Colin ]. Palmer?, Bryan Paton!23, Peter G. Enticott*, Jakob Hohwy12

I'1Cognition and Philosophy Lab, Monash University, Clayton, VIC 3800, Australia
2 ARC Centre of Excellence for Integrative Brain Function
3 School of Psychology, Monash University, Clayton, VIC 3800, Australia
4 Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood
Highway, Burwood, VIC 3125, Australia



130

Abstract

Advances in the neurocognitive understanding of autism spectrum disorder (ASD)
can be made by drawing on Bayesian theories of brain function. An emerging
hypothesis in this regard is that ASD is characterised by an increased reliance on
new sensory data relative to prior expectations in the information processing that
underlies perception and cognition. In predictive processing models of brain
function, this equates to a greater weighting of prediction error in updating
predictions about the environment. The present study examines behaviour in a
spatial prediction task in which prediction errors and prediction updates can be
directly quantified. We report evidence that autistic features across the general
population are not related to differences in the average weighting of prediction
errors, nor in how this weighting is adjusted as the precision of feedback data
changes. These findings are valuable in constraining the aspects of predictive
processing mechanisms that are likely to be atypical in ASD. One implication is that
differences in information processing mechanisms that characterise autistic
perception may not extend to more explicit statistical learning; another prospect is
that the gain on prediction errors in the autistic brain is characterised by a more

subtle atypicality than chronic over-weighting.
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1. Introduction

Bayesian theories of brain function provide a framework for understanding many
aspects of cognition and behaviour, and very recently have been used to generate
novel hypotheses regarding the neurocognitive bases of ASD (e.g., Palmer, Paton,
Kirkovski, et al., 2015; Pellicano & Burr, 2012; Quattrocki & Friston, 2014; Van de
Cruys et al,, 2014). This general approach to understanding cognition develops in
part from the view of perception as a process of implicit inference on the
environmental causes of sensory signals (Gregory, 1980; Helmholtz, 1860). In
perceptual inference, the ambiguity inherent in sensory data is resolved by
drawing on prior beliefs about the statistics of the world, such that the brain is able
to represent the most likely state of the environment given the sensory data.
Bayesian probability theory describes the optimal method for wupdating
representations of the environment in light of ambiguous sensory data (Kersten et
al, 2004; Vilares & Kording, 2011). Formally, prior beliefs are represented as
probability distributions over hypothesised causes of sensory data, and are
updated by likelihood functions that represent the ambiguous information carried
by new sensory data. In accordance with the principles of probability theory, the
degree of uncertainty associated with each of these two sources of information

determines their relative influence on the updated belief.

Predictive processing is a neurocognitive theory of how sensory information is
processed across the cerebral cortex in a manner consistent with Bayesian
principles (Clark, 2013; Friston, 2005; Hohwy, 2013; Mumford, 1992). Prior beliefs
furnish predictions about the most likely state of the environment; these
predictions are compared to the actual sensory input to produce prediction error.
Prediction error is used to update predictions in an iterative manner, thus bringing
the brain’s representation of the world closer to the (hidden) causes of its input.
This process is made probabilistic by weighting prediction error according to a
ratio of the precision of sensory data to the precision of existing beliefs (under
Gaussian assumptions). This weighting ratio is the learning rate, and sets the
extent to which each new data point updates the existing representation of the

environment. For instance, in contexts in which sensory data are highly precise,
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prediction errors are weighted highly such that fluctuations in the sensory signal
more readily drive changes to the represented state of the world at the expense of
prior learning. In this way, the precision-weighted updating of predictions
captures core aspects of Bayesian inference. This process is suggested to occur
continuously and recurrently in the form of hierarchical neuronal message passing
in the cerebral cortex, with cortical feedback connections mediating predictions

and feedforward connections signalling prediction error.

Atypicalities in how the weighting of prediction error is adjusted in response to
context-dependent uncertainty are suggested to underlie core aspects of ASD
(Hohwy, 2013; Lawson et al., 2014; Palmer, Paton, Kirkovski, et al., 2015; Pellicano
& Burr, 2012; Quattrocki & Friston, 2014; Van de Cruys et al.,, 2014) as well as
other neurological and psychiatric conditions (Friston, Stephan, Montague, &
Dolan, 2014). The most specific proposals at present are that autistic symptoms
arise from a chronically reduced precision of prior beliefs in perceptual inference
(Pellicano & Burr, 2012), or, similarly, a high and inflexible weighting of prediction
errors (Van de Cruys et al.,, 2014). Each of these hypotheses equate to a persistently
high learning rate in prediction-error updating; that is, inference that is driven to a
greater extent by incoming sensory signals rather than past experience. These are
exciting developments in ASD research as these theories are able to tie together
diverse cognitive, psychophysical and neurophysiological characteristics of the
condition, such as hypersensitivities to sensory stimulation, atypical balance
between lower- and higher-level perceptual processes and reduced susceptibility
to perceptual illusions (for reviews, see Lawson et al., 2014; Pellicano & Burr,
2012; Van de Cruys et al.,, 2014); however, empirical data that directly tests the
principal hypotheses of these accounts has only just begun to emerge (Skewes et

al, 2014).

In the present study, we tested the hypothesis that autistic features are associated
with a persistently high learning rate in the context of statistical learning that
requires inference on the underlying causes of observed data. Participants made
explicit predictions regarding the location of upcoming visual markers that were

sampled from (hidden) Gaussian distributions. Predictions could be adjusted trial
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by trial in response to each newly revealed data point; in this way, we could
directly quantify prediction errors and their influence on how predictions were
updated. Individual differences in the learning rate were examined with respect to

high- and low-autistic traits in non-clinical adults.

We also examined how the learning rate corresponded to the state-dependent
uncertainty of observed data by manipulating the variance of the underlying
distributions that generated this data. An important prediction of the proposal of
Van de Cruys et al. (2014) is that inflexibly high weighting of prediction errors in
ASD is especially problematic in contexts of greater sensory ambiguity (in which a
Bayes-optimal observer would downweight prediction errors). We therefore
tested the hypothesis that stronger autistic features are associated with a tendency
to weight prediction errors highly regardless of the degree of sensory uncertainty,
while weaker autistic features are associated with a tendency to flexibly reduce the

weighting of prediction errors when sensory uncertainty increases.

2. Method

2.1 Participants

Participants were 40 adults recruited from a general university population,
reporting no psychiatric or neurological diagnoses. A median split on Autism
Spectrum Quotient (AQ; described in the next section) was performed to divide
this sample into a High AQ group and a Low AQ group. Demographics, including AQ
statistics, are reported in Table 1. Each participant provided informed consent and
approval for this study was gained from the Monash University Human Research

Ethics Committee.
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Group AQ score (Likert) AQ score (binary) Age (years) Sex Handedness
M SD range M SD range M SD (fim) (r:1)
High AQ 120.55 7.04 111-135  22.60 3.33 17-29 26.30 6.63 10:10 20:0
Low AQ 101.65 6.10 88-110 13.10 4.09 5-20 30.65 13.26 12:8 19:1
Full sample 111.10 11.57 88-135 17.85 6.06 5-29 28.47 10.58 22:18 39:1

Autism Spectrum Quotient (AQ) scores used in the median split and statistical analyses were those computed with Likert (4-3-2-1) rather than
binary scoring (1-1-0-0), to better capture individual differences. The two AQ groups differed significantly in AQ score, t(38) = 8.06, p <.001, d
= 2.61, but not age, £(28) =1.31, p=.2,d = 0.43, nor sex, %2 (1, n = 40) = 0.40, p =.53, phi =.10.
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2.2 AQ

The AQ is the most well studied assessment of autistic traits in adult community
samples (Baron-Cohen et al., 2001). It consists of 50 items that participants rate
for personal applicability on a 4-point Likert scale; for instance, “When I'm reading
a story, I find it difficult to work out the characters’ intentions.” These items are
designed to assess a range of social and non-social behaviours that are
characteristic of ASD, including social preferences, social cognitive abilities,
restricted interests, and attentional habits. In addition to total score, the present
study analysed scores from three subscales consisting of 6-11 items each:
Sociability, Mentalising and Detail Orientation. These subscales were defined on an
empirical basis in a recent study of the AQ in a large sample of adults drawn from
the general population (Palmer, Paton, Enticott, et al., 2015). These subscales differ
from the five subscales more commonly used in research, which are defined on a
conceptual rather than empirical basis (Baron-Cohen et al., 2001). Higher scores
for each subscale (and total score) indicate greater similarity to ASD. Adults with a
diagnosis of ASD score highly on the AQ (e.g., Baron-Cohen et al., 2001; Hoekstra,
Bartels, Cath, & Boomsma, 2008), and importantly, in non-clinical samples, AQ
scores have been found to vary together with a range of psychophysical, cognitive
and neurophysiological features characteristic of ASD (e.g., Grinter, Maybery, et al.,
2009; Nummenmaa, Engell, von dem Hagen, Henson, & Calder, 2012; Walter et al,,
2009).

2.3 Visual inference task

Participants completed a computer-based task run with Psychtoolbox v3.0.12 in
MATLAB R2014b. In each trial of the task, participants were presented with a
horizontal line, along which a green target marker would appear. The object of the
task was to estimate where the target marker was most likely to appear in each
trial. Participants were instructed that the location of the target marker would
change between trials, but that there would be some consistency in where the
target marker appeared across trials. The main phases of each trial are depicted in

Figure 1a. The horizontal line was located centrally and spanned 50% of the screen
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(1680 by 1050 pixel resolution). Using the mouse, participants’ moved a red
marker along the horizontal line and clicked to make their prediction. The starting
point of the red marker was randomized in each trial. Participants then rated their
confidence in their prediction being near to where the target marker would
appear; ratings were made on a vertical continuous gauge (spanning 0% to 100%)
that appeared after each prediction. Participants were given no time limit in
making their prediction or rating their confidence. Following the confidence rating,
the target marker appeared for 2 seconds. The participants’ prediction (red
marker) was displayed throughout the confidence rating and feedback phases such
that participants could directly compare their prediction to the actual target
location. A fixation cross was presented centrally between trials for 1 second,
followed by a random visual noise mask for 0.5 seconds. Predictions and actual
locations were recorded to the nearest 0.01% of the horizontal line length.

Confidence data are not reported in the present paper.

The task consisted of four blocks of 100 trials each. In each block, target marker
locations were sampled from a Gaussian distribution with a standard deviation of
either one-sixth (High Variance) or one-twelfth (Low Variance) of the horizontal
line length. The mean of the Gaussian distributions did not change between blocks,
but was randomised across participants within the central third of the horizontal
line. Target locations drawn from the Gaussian distributions were resampled if
falling outside of the horizontal line. Block order was either High-Low-High-Low or
Low-High-Low-High, counterbalanced across participants. The frequency of
different block orders was close to even between participant groups (9:11 for Low
AQ group, 11:9 for High AQ group). Target locations were sampled anew each time
the task was run such that each participant received a different set of locations. An
example of target locations for one participant is shown in Figure 1b. Participants
were not instructed regarding how target markers were generated nor were they
told that the method by which target markers were generated changed throughout
the task. Similarly, block changes were not indicated to the participant and there

were no scheduled breaks in the task.
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Figure 1. (a) Schematic of the main phases in the computer-based inference task.
Participants first predict the horizontal location at which a target marker will
appear by using a mouse to position the red marker. At the end of each trial, the
(green) target marker is shown. The relative size of screen components has been

adjusted in these images to improve visibility. (b) An example of target marker
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locations across trials for one participant. Shaded areas indicate High Variance
blocks. (¢) An example of prediction errors and prediction updates across trials for

one participant.

3. Results

3.1 Prediction error weighting

In each trial, the prediction error is the spatial discrepancy between the
participant’s prediction and the target marker that appears after they make their
prediction (ranging from -100% to 100% of the horizontal line). The prediction
update is the spatial discrepancy between the prediction in a given trial and the
prediction in the following trial. An example of prediction errors and prediction
updates across the task for one participant is shown in Figure 1c. The learning rate
(or weighting of the prediction error) is the prediction update divided by the
prediction error. The learning rate is a measure of the extent to which a prediction
error informs the next prediction. For instance, if, in a given trial, the participant’s
prediction moves only a small fraction towards the most recently displayed target

marker, this indicates a low weighting of prediction error.

The primary measure computed for each participant was the median learning rate
across trials. The median was used rather than the mean due to the occurrence of
extreme scores in the learning rate data. Occasional extreme scores are expected
because the learning rate is a ratio between prediction updates and predictions
errors; for instance, an extreme score may result if the prediction error in a trial is
close to zero but the participant changes their prediction nonetheless. It is possible
for the learning rate in a given trial to be negative (indicating that the prediction
was shifted away from the most recent target marker) or above 1 (indicating that
prediction updates overshot the most recent target marker). In the present data,
however, the median learning rate across the task was positive for all participants
and typically below 1 (M = 0.65; SD = 0.26; range = 0.11-1.16). This indicates that

prediction updates tended to be towards the most recent prediction error,
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suggesting that participants used the prediction error feedback in each trial to

update their predictions, as expected.

The median learning rate was lower in the second half of the task (M = 0.58, SD =
0.29) compared to the first half of the task (M = 0.74, SD = 0.25), F(1, 38) = 19.48, p
<.001, n?, = .34. This is broadly consistent with Bayesian updating: as more data
are sampled, the precision of prior beliefs increases and as a result the learning
rate is reduced. There was no difference in this effect between participant groups,

as indicated by a non-significant interaction effect, F(1, 38) = 0.04, p =.85,1?%, <.01.

3.2 Block and Group comparisons

A 2 x 2 mixed model ANOVA was performed for median learning rate with Block as
the within-subjects factor (High Variance vs. Low Variance) and Group as the

between-subjects factor (High AQ vs. Low AQ).

A significant main effect of Block indicated that the learning rate was higher when
the underlying Gaussian distribution that target markers were sampled from was
more precise (M = 0.74, SD = 0.27) compared to when it was less precise (M = 0.58,
SD = 0.27), F(1, 38) = 28.04, p < .001, n?, = .43. In other words, participants were
more responsive to prediction errors when the incoming data was more precise.
This is consistent with the Bayesian principle that the extent to which new sensory

data should drive beliefs depends on its precision.

However, the main effect of Group was non-significant, F(1, 38) = 0.002, p =.97,1?,
< .01. Similarly, the Block by Group interaction effect was non-significant, F(1, 38)
= 0.10, p =.75, n?, < .01. Descriptive statistics are shown in Figure 2. These results
indicate no support for a difference between groups in their weighting of
prediction errors, conflicting with the hypothesis drawn from Pellicano and Burr
(2012) and Van de Cruys et al. (2014) that autistic features are associated with a
consistently higher weighting of prediction errors. Similarly, the lack of interaction
effect indicates that learning rates were adjusted in response to the precision of

target markers regardless of the individual’s level of autistic traits, conflicting with
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the notion that a chronically high learning rate linked to autistic features leads to
an inflexibility in adjusting the weighting of prediction errors in line with the

precision of sensory data.

A limitation of traditional significance testing is that a negative finding can indicate
either that the null hypothesis is supported or that there is a lack of evidence to
distinguish between the null and alternative hypotheses. A Bayesian analysis was
therefore applied to establish whether the present data provide evidence
specifically for the null hypothesis that High and Low AQ groups do not differ in
their learning rate. Bayes factors reported here (BFo1) quantify the evidence for the
null hypothesis against the evidence for the alternative hypothesis. Values that
approach 1 indicate that the data provide limited support for one hypothesis over
the other. Similar to an effect size, the Bayes factor is a continuous measure that it
typically interpreted with respect to rule of thumb labels (e.g., BFo1 > 3 suggests
moderate evidence for the null hypothesis, BFo1 > 10 suggests strong evidence,
etc.; see Jeffreys, 1961; Lee & Wagenmakers, 2013). Bayesian analyses were
performed with the open source statistical software JASP, Version 0.7.1 (Love et

al, 2015).

A Bayesian independent sample t-test compared median learning rate across the
full task between the High and Low AQ groups. Given the paucity of relevant prior
information in the literature, a wide prior distribution was set (Cauchy prior width
= 1; i.e, an uninformative prior) such that the test outcome was primarily
informed by the present data. The Bayes factor indicated moderate support for the
null hypothesis over the alternative hypothesis, BFo1 = 4.24. These data therefore
provide evidence that there is no difference in learning rate between High and Low

AQ groups.

The same conclusions were supported when AQ score was included as a random
factor in a Bayesian ANOVA with Block. This indicates that the lack of association
between autistic traits and task performance reported here is not simply due to an

effect of dichotomising the AQ variable via median split.
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Figure 2. Mean learning rate across task blocks for groups defined by high and low

autistic traits. Error bars indicate standard error.

3.3 Correlations

Pearson’s correlations were performed to examine the extent to which median
learning rate shared a linear relationship with total and subscale AQ scores across
the full sample. AQ measures did not share any significant correlations with
median learning rate (p > .05), correlation coefficients were all very small (r = -
.01-.09) and Bayesian Pearson correlations (with Beta prior width = 1) indicated
moderate support for the null hypothesis in each case (BFo1 = 4.43-5.07). These
results are displayed in Figure 3, and indicate that there is no linear relationship

between median learning rate and autistic traits.
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Figure 3. There was evidence that median learning rate shared no relationship
with autistic traits across the full sample. (a) The correlation between learning
rate and total AQ score was non-significant, r = .07, p = .69, two-tailed, BFo1 = 4.69.
(b) The correlation between learning rate and Sociability was non-significant, r = -
.01, p = .96, two-tailed, BFo1 = 5.07. (c) The correlation between learning rate and
Mentalising was non-significant, r = .09, p = .59, two-tailed, BFo1 =4.43. (d) The
correlation between learning rate and Detail Orientation was non-significant, r =

.06, p =.69, two-tailed, BFo1 = 4.71.
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4. Discussion

The present study examines inference in a statistical learning task and finds
evidence against the hypothesis that autistic features in a non-clinical sample are
associated with a persistently greater weighting of prediction errors. This conflicts
with specific proposals for data-driven inference in ASD, as well as broader
hypotheses regarding atypical precision weighting (e.g., Hohwy, 2013; Lawson et
al, 2014; Pellicano & Burr, 2012; Van de Cruys et al., 2014). There are several
implications of these negative findings that may be useful for developing Bayesian

accounts of ASD.

First, this study tests the relatively simple hypothesis for a chronic difference in
learning rate. To understand autistic cognition in Bayesian terms, we may need to
appeal to more nuanced aspects of precision-weighted inference. One example is
the role of volatility processing; Christoph Mathys and colleagues have developed a
model of Bayesian inference in which the learning rate is flexibly modulated in
part by inferences regarding the volatility of the environment - that is, the
tendency for the hidden causes of sensory data to change over time (Mathys et al,,
2011; Mathys et al.,, 2014). Thus, one possibility is that ASD is characterised by a
deficit in volatility processing rather than a chronic difference in learning rate per
se. This would be suggestive of a more context-dependent abnormality in learning
rate in autistic samples rather than a persistently high learning rate (discussed in
Palmer, Paton, Kirkovski, et al., 2015). Recent evidence in favour of this hypothesis
comes from a study that examined learning of reward probabilities associated with
choice options in a decision-making task (Robic et al., 2015); adults with ASD were
similar to controls in learning appropriate choice behaviour when reward
probabilities were stable over time, but performed significantly more poorly in a

volatile context in which the underlying reward structure fluctuated.

Second, Bayesian inference in the brain is most commonly considered as a
functional description of the unconscious sensory processing that underlies
perception. In contrast, the task used in the present study entails explicit

predictions and prediction errors, and thus can be considered more cognitive in
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nature. The implication is that differences in learning rate that seem to capture
important aspects of autistic perception may exist specifically for lower-level
sensory processing rather than being relevant to more explicit forms of inference
or statistical learning. There is considerable interest in the neuroscientific
literature regarding more explicit forms of statistical learning processed in
dorsomedial regions of frontal cortex (e.g., Behrens et al,, 2007; McGuire et al,,
2014); thus, the results of the present study help to address the natural question of
whether differences in sensory processing hypothesized for ASD are characteristic
of more cognitive as well as perceptual functions. This type of consideration is
important partly because very similar differences in precision-weighting have
been proposed to account for conditions other than ASD, such as schizophrenia
(Adams et al., 2012; Adams, Stephan, et al., 2013; Edwards et al., 2012; Fletcher &
Frith, 2009; Friston et al., 2014); one way of developing more specific predictive
processing accounts of different psychiatric and neurological conditions may be in
terms of where in the brain (or in what functions) aberrant precision weighting is

most pronounced.

A limitation of the present study is that statistical learning is examined with
respect to non-clinical autistic traits rather than in a clinical sample. However, a
wide range of studies have found that psychophysical, cognitive and
neurophysiological characteristics observed in clinical individuals also vary across
the general population with respect to autistic traits. This includes, for example,
aspects of weak central coherence (Grinter, Maybery, et al., 2009; Grinter, Van
Beek, et al,, 2009), susceptibility to sensory illusions (Palmer, Paton, Kirkovski, et
al,, 2015; Walter et al., 2009), sensory discrimination (Stewart, Griffiths, & Grube,
2015) and sensory hyper- and hypo-sensitivities (Robertson & Simmons, 2013).
Bayesian theories account for each of these characteristics in the clinical condition
with appeal to differences in the learning rate; for this reason, we should expect
differences in Bayesian mechanisms that underlie autistic symptoms to similarly
underlie individual variation in autistic traits in the general population. The
sample size and range of AQ scores in the present study are comparable to
previous studies that have reported correlations and between-group differences in

perceptual and behavioural measures related to autistic traits (e.g., Palmer, Paton,
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Enticott, et al.,, 2015; Palmer, Paton, Kirkovski, et al., 2015; Skewes et al., 2014; van
Boxtel & Lu, 2013a).

In summary, these data provide evidence against the hypothesis that autistic
features are associated with a persistently higher weighting of prediction errors,
operationalized in the context of statistical learning. This may be important for the
theoretical development of Bayesian accounts of ASD, indicating in particular that
a persistent difference in learning rate may not be characteristic of the autistic
phenotype (suggesting, perhaps, a more context-dependent atypicality in learning
rate) or that differences in sensory processing that underlie perceptual features of

ASD do not extend to cognitive processes underlying more explicit inference.
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Linking text between chapters 4 and 5

The empirical work reported in Chapters 2, 3 and 4 examined aspects of
perception, action and statistical learning partly with respect to variation in
autism-like traits in the nonclinical population. This approach is motivated by
evidence that sensory, cognitive and behavioural aspects of ASD represent an
extreme end of a spectrum of characteristics that encompasses the population at
large (reviewed in Chapter 5). An implication of this evidence is that the cognitive
and neural mechanisms that underlie autistic symptoms may also vary in their
function to a significant extent across the general population, accounting for
individual differences more broadly. Examining perceptual and cognitive
differences along the broader autism spectrum is thus an interesting testing
ground for understanding how our experience of the world is produced by brain
mechanisms. This in turn can help us to understand the nature of clinical
conditions, such as ASD, in which sensory and cognitive differences impact
strikingly upon the individual’s quality of life. For instance, by examining the
clinical symptoms of ASD together with non-clinical variation in autistic traits (as
reported for body perception in Chapter 3), we can gain a broader understanding
of how clinical individuals both differ and share similarities with different sections

of the non-clinical population.

As noted in the Preface, the diagnosis of ASD is made on the basis of a diverse set of
behaviours, such as reduced social responsiveness, strong preferences for routine,
and sensory hypersensitivity. Individuals who receive this diagnosis show
substantial heterogeneity in the how these characteristic symptoms present, as
well as differing in whether associated features (such as intellectual disability) are
present and in the underlying etiological pathways (e.g., multiple genetic causes;
Geschwind & State, 2015; Newschaffer et al, 2002; Silberman, 2015).
Correspondingly, there is ongoing debate regarding the extent to which ASD is a
unitary condition, a set of subgroups, or comprised of individual symptom domains
that are most appropriate to investigate independently from one another (e.g.,

Anderson, Montazeri, & de Bildt, 2015; Happé et al., 2006; Mandy & Skuse, 2008).
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These general questions regarding how the ASD diagnosis is best conceptualised
have implications for how we examine variation in autistic traits in the general
population. The majority of research to date that investigates cognitive and
neurophysiological mechanisms associated with autistic traits in adults treat
autistic traits as a singular spectrum along which individuals differ primarily in
severity alone: each individual is rated as being more or less autistic in general,
and this total measure of autistic tendency is examined with respect to cognitive or
neurophysiological measures of interest. An alternative approach, however, is to
consider individual symptom domains independently: thus individuals may differ
more meaningfully in their pattern or profile of traits across the different symptom

domains of ASD.

To further illuminate the neurocognitive basis of the autism spectrum, an
improved understanding of how autism-like traits manifest in adults will be
valuable. This is in part a methodological point concerning whether empirical
research would better proceed in examining autistic traits in adults as a singular
dimension or as a set of independent trait dimensions. It is also relevant to the
development of neurocognitive theories, however; for instance, there is a question
of whether a core difference in information processing mechanisms in the brain is
likely to underlie the myriad symptoms of ASD, or whether certain symptom
domains are more likely to have distinct etiologies. In Chapter 5, we contribute to
research in this area by analysing how autistic traits present in a large sample of

adults recruited from the general community.
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Abstract

The present study examined the presentation of autistic traits in a large adult
population sample (n = 2343). Cluster analysis indicated two subgroups with
clearly distinguishable trait profiles. One group (n = 1059) reported greater social
difficulties and lower detail orientation, while the second group (n = 1284)
reported lesser social difficulties and greater detail orientation. We also report a
three-factor solution for the Autism-Spectrum Quotient, with two, related, social-
themed factors (Sociability and Mentalising) and a third non-social factor that
varied independently (Detail Orientation). These results indicate that different
profiles of autistic characteristics tend to occur in the adult nonclinical population.
Research into nonclinical variance in autistic features may benefit by considering

social- and detail-related trait domains independently.
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1. Introduction

A central feature of autism spectrum disorder (ASD) is the range in symptom
severity: both within the clinical population, contributing to heterogeneity
amongst individuals with ASD, and, of particular interest here, encompassing the
general population (American Psychiatric Association, 2013; Lai, Lombardo,
Chakrabarti, & Baron-Cohen, 2013). This latter impression comes primarily from
research that has recorded the prevalence of autistic features across large
community samples. Significantly, the extent to which the relevant traits are
reported in the community appears to vary continuously and with normal or
skewed-unimodal distribution (e.g., Baron-Cohen et al., 2001; Constantino & Todd,
2003; Hurst et al., 2007; Posserud et al.,, 2006). This contrasts, for example, with
discontinuity or bimodality in trait distribution, either of which could set the
clustering of symptoms in ASD apart as a matter of type rather than degree.
Moreover, there is evidence for overlap in the genetic bases of autistic traits in the
nonclinical population and ASD symptoms in the clinical population (Bolton et al,,
1994; Chakrabarti et al.,, 2009; Piven, Palmer, Jacobi, Childress, & Arndt, 1997;
Robinson etal., 2011).

A recent surge in cognitive and neuroscientific research builds on these findings by
comparing nonclinical adults in their degree of autistic traits as an approach to
studying the mechanisms underlying this condition. This has included studies
examining visual search (e.g., Grinter, Maybery, et al., 2009; Grinter, Van Beek, et
al, 2009), visual illusion susceptibility (Walter et al., 2009), biological motion
processing (van Boxtel & Lu, 2013a), multisensory integration (Donohue et al,,
2012; Palmer et al., 2013), social attention (Freeth, Foulsham, & Kingstone, 2013;
Nummenmaa et al,, 2012), gaze responses (Bayliss & Tipper, 2005; Chen & Yoon,
2011) and neurophysiological characteristics (Jakab et al.,, 2013; Nummenmaa et
al, 2012; Puzzo et al., 2010; Sutherland & Crewther, 2010). These studies most
commonly use the Autism-Spectrum Quotient (AQ), an inventory measure
designed for use with adult community samples as either a screening or research
tool (Baron-Cohen et al., 2001). The AQ necessarily assesses a range of social (e.g.,

sociability, mentalising) and non-social (e.g., restricted interests, detail-focus)
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attributes, and researchers have typically compared individuals on their total AQ
score or subscale scores, each produced by summing across items that assess more

specific behaviours or characteristics.

It is an open question, however, regarding the extent to which ASD can be
conceived of as a singular construct that varies across the general population. A
‘unitary spectrum’ model such as this conflicts with a suggestion by Happé, Ronald
and colleagues that distinct genetic, neurological and cognitive causes may
underlie the symptoms of ASD (Happé & Ronald, 2008; Happé et al., 2006; see also
Mandy & Skuse, 2008). This alternate approach has been labelled the ‘fractionable
autism triad’ hypothesis - in reference to the three symptom domains of impaired
social interaction, impaired communication and restricted behaviours/interests
specified for Autistic disorder in the DSM-IV (American Psychiatric Association,
2000) and ICD-10 (World Health Organization, 2004). (This model is still relevant
to, and in some respects better represented by, the diagnostic criteria set out for
ASD in the current 5th edition of the DSM, however; American Psychiatric

Association, 2013)

The evidence that separate etiologies underlie the three DSM-IV symptom domains
comes most notably from research into the relationship between autistic
characteristics in the community, employing large-scale childhood twin samples
(Robinson et al., 2012; Ronald, Happé, Bolton, et al, 2006; Ronald, Happé, &
Plomin, 2005, 2006; Ronald, Larsson, Anckarsater, & Lichtenstein, 2011). While
symptoms in the three domains co-occur at a level above chance (Happé & Ronald,
2008; see Mandy & Skuse, 2008 for review), low to moderate (rather than strong)
correlations are observed between these characteristics. In addition, similarly
modest overlap is estimated between the heritability of each domain, and, finally,
individual symptoms can sometimes occur strongly in the absence of other
cardinal features of ASD. A recent review of factor analytic studies involving
clinical ASD participants concluded support for two distinct social and non-social
dimensions underlying inventory measures of ASD symptoms - again suggesting

that a conception of ASD as a unitary construct is insufficient (Shuster, Perry,
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Bebko, & Toplak, 2013). Multi-factor solutions are similarly reported for

nonclinical samples (e.g., Austin, 2005).

The idea here is that ASD trait domains vary independently to a marked degree
across the population - with a diagnosis of ASD applied in cases where these
characteristics happen to co-occur strongly. In principle, two individuals with the
same AQ score, for instance, may still have a different profile of autistic traits, with
corresponding cognitive and neurological dissimilarities. The present study aimed
to build on the discussed literature by examining how profiles of autistic
characteristics, as assessed by the AQ, tend to manifest in the general adult
population. We used cluster analysis to examine the presentation of AQ item
scores in a large sample recruited online. This statistical method finds the optimal
manner of grouping cases (here, individuals) based on their similarity across a
range of variables (here, the items of the AQ); in other words, this technique
allowed us to discover patterns of trait presentation that tend to occur in the
population. We also performed a factor analysis (as has been done previously for
the AQ; e.g., Austin, 2005) to provide a more complete picture of the relationship
between constructs underlying the AQ and how these constructs differ between

individuals.

To our knowledge, this is the first study to look specifically at nonclinical variation
in autistic traits in adults with cluster analysis, and one of the first to apply this
technique to the AQ. The presentation of autistic traits in the adult population is
important to clarify, due in part to the developmental nature of ASD and the
present trend in research that focuses on nonclinical adult samples. Cluster
analysis has been performed previously using the AQ with a high-functioning adult
clinical group: Ring, Woodbury-Smith, Watson, Wheelwright, and Baron-Cohen
(2008) report that their sample comprised between two and four clusters of
individuals that varied in the severity of symptoms but not in their symptom
profile. These authors note that this clustering supports a unitary spectrum (or
‘severity gradient’) characterisation of the heterogeneity in this clinical group, such
that individuals are best grouped according to their overall magnitude of traits

rather than in their profile of characteristics. Similarly, we can hypothesise that, if
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a unitary spectrum account best describes the presentation of autistic
characteristics in the general adult population, cluster analysis will reveal either a
single cluster (i.e., no subgroups) or multiple clusters that differ in mean item or
domain scores, but not in their profile of responses across the different traits that
the AQ assesses. In contrast, the fractionable triad hypothesis allows for the
possibility that the presentation of autistic traits in the general population is best

characterised in terms of subgroups with different trait profiles.

2. Methods

2.1 Participants

The sample comprised 2343 adults who completed the AQ via an online survey
platform (M = 31.36, SD = 11.17 years; 47.8% female; 86.6% right handers, 10.7%
left handers; 88.0% indicating some degree of tertiary education). A link to the
study was displayed in the Amazon Mechanical Turk system, and participation was
restricted to individuals who identified as over 18 years in age and with current
residence in the United States. Forty individuals who did not complete the survey
and 63 individuals who shared an IP address with a previous participant were
excluded prior to data analysis. Each participant received 1.50 USD upon
completion of the study. Ethical approval for the study was obtained from the
Monash University Human Research Ethics Committee. All participants gave

informed consent.

2.2 AQ

The AQ is a 50-item self-administered questionnaire designed to assess both
cardinal and associated traits of ASD in either clinical or nonclinical populations
(Baron-Cohen et al, 2001). Each item consists of a statement (e.g., “When I'm
reading a story, I find it difficult to work out the characters’ intentions”) that
respondents rate in terms of personal applicability on a 4-point Likert scale

»” « ”n «

(“definitely agree”, “slightly agree”, “slightly disagree”, “definitely disagree”). In the
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present study, we used Likert scoring (4-3-2-1) rather than the more common
binary scoring method (1-1-0-0), as the former may better capture individual
variability in responses and is more suitable for the analysis techniques employed
here. Scores using this method can range 50-200 overall, or 10-40 for each of five
subscales. Subscales are theoretically defined, consist of 10 items each, and are
labelled Social Skills, Imagination, Communication, Attention to Detail and
Attention Switching. Twenty-six items in the AQ are reverse scored, such that
higher scores indicate greater resemblance to the symptoms of ASD for all items.
Individuals with a diagnosis of ASD score significantly higher than nonclinical
samples on both total AQ and individual subscales (Baron-Cohen et al., 2001;
Broadbent, Galic, & Stokes, 2013; Hoekstra et al., 2008; Lau, Kelly, & Peterson,
2013). The test-retest reliability and internal consistency of this scale have each
been evaluated as within an acceptable range (Baron-Cohen et al, 2001;

Broadbent et al., 2013; Hoekstra et al,, 2008; Lau, Kelly, et al., 2013).

2.3 Factor analysis

An exploratory factor analysis (EFA) was conducted across the 50 items of the AQ
using the maximum likelihood method of factor extraction. EFA employs a
common factor analysis model as distinct from Principle Components Analysis.
Promax (oblique) rotation was applied, bearing in mind that the traits that this
questionnaire is designed to assess are expected to covary to an extent (Austin,
2005). EFA was performed from 1 to 10 maximum factors, and the factor solution
that minimised the Akaike information criterion (AIC) was selected for further
examination. AIC is preferred to significance testing here because the former
weights the log likelihood evidence for each factor solution by the number of
factors (model complexity). The scree plot, Kaiser’s criterion, and parallel analysis
were also examined for agreement with the AIC method in the number of factors to
extract. The scree plot involves plotting the eigenvalues for each factor and
retaining factors to the left of the point of inflexion. Kaiser’s criterion involves
retaining factors with eigenvalues greater than 1 (these methods, including their
potential deficiencies, are reviewed in Field, 2009; Ledesma & Valero-Mora, 2007).

Parallel analysis compares eigenvalues of each factor against the 95t percentile of
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eigenvalues obtained from a set of control samples. In the present application, we
used 1000 control samples that were permutations of the original data. The
permutation method and other details are described further in O'Connor (2000,
2014). Factor scores for each participant were derived using ridge regression.
Confidence intervals (95%) for item factor loadings were obtained via exhaustive
delete-one jackknife resampling. [tems that loaded on a given factor with a lower
confidence bound greater than 0.4 were examined for factor interpretation, as this
indicates at least 16% shared variance between the item and factor (Stevens,
2009). Cronbach’s unstandardized alpha was calculated to assess internal

consistency of the entire questionnaire and item subsets identified for each factor.

2.4 Cluster analysis

Clustering of the sample was investigated with cases characterised by responses
across the 50 items of the AQ. Proximity between cases was quantified in terms of
Spearman’s rank correlation coefficient, and clusters were formed via hierarchical
agglomerative clustering with complete linkage (consistent with Ring et al., 2008).
Martinez, Martinez, and Solka (2011) recommends examining data clustering with
the use of several distance and clustering methods: in the current dataset, the
number of clusters observed did not differ when instead employing the Euclidean

distance dissimilarity measure or Ward’s and weighted average linkage methods.

The gap statistic method was used to determine whether or not clustering was
apparent in the data and to estimate the number of clusters present (Martinez et
al,, 2011; Tibshirani, Walther, & Hastie, 2001). Participant data was first clustered
separately for 1-10 clusters such that the within-cluster dispersion for each of
these clustering outcomes could be calculated. Reference distributions were then
generated as uniform distributions across the range of participant data for each
variable. For each number of clusters (1-10), 10 reference distributions were
created and underwent clustering. The average within-cluster dispersion of the 10
reference distributions for each number of clusters was calculated to form the
dispersion expected if no real clustering was present in the data. The gap statistic

for each cluster number is the difference between the observed and expected
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dispersions. The number of clusters in the participant data is taken as the smallest
number of clusters that satisfies that criteria gap(k) >= gap(k+1) - sk+1, where gap
is the gap statistic, k is the number of clusters, and s the (weighted) standard
deviation of the within-cluster dispersion of the 10 reference distributions. This
procedure followed Tibshirani et al. (2001) and Martinez et al. (2011), and was
run using MATLAB code adapted from the latter.

Gaussian mixture modelling was also applied to examine whether the number of
clusters observed using the above techniques could be reproduced using a
different method. This technique employs a generative variational Bayesian
modelling procedure to find a set of Gaussian densities that best predict the
observed data. It minimises a free energy quantity to determine the optimal
number of clusters. This involves maximizing the negative log evidence for the
model given the data. This procedure was run using MATLAB code provided by
Daunizeau, Adam, and Rigoux (2014).

To characterise the observed clusters, mean scores for each item of the AQ were
plotted for each cluster. Confidence intervals (95%) of item mean scores were
computed using the jackknife resampling method. The proportion of items that
matched a consistent severity gradient across clusters was examined for each
subscale. Total AQ score, subscale scores, factor scores, and demographic
characteristics (gender, age, handedness, and education level) were also compared
between clusters using independent samples t-tests or Chi-square tests for

independence (with Yates Continuity Correction for 2x2 contingency tables).

Data analysis was conducted in MATLAB, version R2012a (7.14.0.739).
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3. Results

3.1 AQ score distribution

The mean total AQ score was 114 (SD = 14.5; median = 114; median absolute
deviation = 10), corresponding to a mean binary total score of 20 (SD = 6.9; median
= 20; median absolute deviation = 5). The distribution of total AQ scores is shown

in Figure 1.
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Figure 1. Distribution of total AQ scores across the full sample (n = 2343).
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3.2 Factor analysis

AIC values and variance accounted for by each factor solution are shown in Table 1.
The factor solution that minimised the AIC comprised 3 factors and accounted for
27% of the variance. The scree plot, shown in Figure 2, also supported extraction
of 3 factors. In contrast, Kaiser’s criterion indicated 5 factors, while parallel
analysis indicated 16 factors. Previous research using similar datasets has also
noted over-extraction of factors when using parallel analysis (e.g., Stewart &
Austin, 2009). The AIC method is preferable because it takes into account model
evidence and model complexity. Thus, together there was strongest support for the
three-factor solution. Items that loaded above threshold on each factor are shown
in Table 2. A very clear pattern in item content can be seen such that the three
factors correspond, respectively, to reduced sociability (reduced social skills or
social discomfort), reduced mentalising (difficulty in mental-state attribution) and

detail orientation.
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Figure 2. Scree plot for exploratory factor analysis with common factor analysis

model.



161

Table 5. AIC values and variance explained for factor solutions 1-10

Number of factors AIC value Variance accounted for
1 18.00 15.70
2 15.48 21.43
3 13.77 26.99
4 14.20 29.00
5 15.00 31.50
6 16.15 33.39
7 17.39 35.27
8 18.92 36.49
9 20.48 38.29
10 2210 40.21




Table 2. [tem loadings for three-factor solution.
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Item content Loading
Factor 1: Sociability
[ am good at social chit-chat.t 0.83
[ find social situations easy.* 0.81
[ enjoy social chit-chat. 0.80
[ enjoy social occasions. 0.80
[ enjoy meeting new people. f 0.79
I find it hard to make new friends. 0.63
[ find myself drawn more strongly to people than to things.t 0.59
New situations make me anxious. 0.56
[ would rather go to a library than a party. 0.55
[ frequently find that I don’t know how to keep a conversation 055
going.
[ prefer to do things with others rather than on my own. * 0.48
Factor 2: Mentalising
[ find it difficult to work out people’s intentions. 0.63
When I'm reading a story, I find it difficult to work out the 0.63
characters’ intentions. '
I find it easy to work out what someone is thinking or feeling just
: : 0.53

by looking at their face.f
[ find it easy to “read between the lines” when someone is talking 0.51
to me.*t '
When I'm reading a story, I can easily imagine what the characters

. : 0.50
might look like.
[ know how to tell if someone listening to me is getting bored. 0.47
Factor 3: Detail Orientation
[ notice patterns in things all the time. 0.63
[ usually notice car number plates or similar strings of 0.59
information. '
[ am fascinated by numbers. 0.57
[ am fascinated by dates. 0.55
I tend to notice details that others do not. 0.53
[ like to collect information about categories of things (e.g. types of 0.51

car, types of bird, types of train, types of plant, etc.).

Items with lower CI exceeding 0.4 loading threshold are shown. t-symbol indicates

reverse-scored items.
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The two social-themed factors shared a moderate positive association, but
correlated very weakly in the negative direction with the Detail Orientation factor
(Table 3). The associations between factor scores and the theoretically-defined
subscales of the AQ (Baron-Cohen et al,, 2001) demonstrated a similar pattern
(Table 4). Specifically, the Sociability and Mentalising factors shared mostly
moderate and strong positive correlations with the three social-themed subscales
(Social Skills, Imagination, Communication) and the Attention-Switching subscale,
but correlated negatively with the Attention to Detail subscale. In contrast, the
Detail Orientation factor correlated strongly in the positive direction with the
Attention to Detail subscale, but showed very weak correlations with the other
four subscales. Similarly, the social subscales of the AQ tended to vary together
moderately or strongly, but shared weak negative relationships with the Attention
to Detail subscale (Table 5). The association between the Attention Switching and
social domains of the AQ has been reported previously in the literature (Lau, Gau,
et al,, 2013; Murray, Booth, McKenzie, Kuenssberg, & O'Donnell, 2013; Stewart &
Austin, 2009). This (perhaps counterintuitive) finding is discussed further in the

Discussion.
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Table 3. Factor intercorrelations

Mentalising Detail Orientation
Sociability 48* -.09*
Mentalising -.14*

Pearson's linear correlation coefficients are shown. Bonferroni
correction was applied to the alpha level.
*p <.0001 (two-tailed).
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Table 4. Correlations between factor scores and AQ subscales

Total Score Social Skill Imagination = Communication Attention to Attention
Detail Switching

Sociability 0.79* 0.93* 0.27* 0.69* -0.11* 0.61*
[0.78,0.81] [0.93, 0.94] [0.23,0.30] [0.67,0.71] [-0.15,-0.07] [0.58, 0.63]

Mentalising 0.72% 0.59* 0.68* 0.78* -0.28* 0.52*
[0.70, 0.74] [0.56, 0.61] [0.66, 0.70] [0.76, 0.80] [-0.32,-0.24] [0.49, 0.55]

Detail 0.28* -0.08* 0.00 0.11* 0.84* 0.04
Orientation [0.25, 0.32] [-0.12,-0.04] [-0.04, 0.04] [0.07,0.15] [0.83, 0.85] [0.00, 0.08]

Pearson's linear correlation coefficients are shown with lower and upper bounds of the 95% confidence interval in
square brackets. Bonferroni correction was applied to the alpha level. * p <.0001 (two-tailed).



Table 5. Intercorrelations between AQ subscales

Social Skill Imagination = Communicatio  Attention to Attention
n Detail Switching
Total Score 0.81* 0.58* 0.81* 0.20* 0.70*
[0.80, 0.82] [0.56, 0.61] [0.80, 0.83] [0.16, 0.24] [0.68,0.72]
Social Skill 0.32* 0.69* -0.13* 0.55*
[0.28, 0.35] [0.67,0.71] [-0.17,-0.09] [0.52,0.58]
Imagination 0.41* -0.05 0.23*
[0.37, 0.44] [-0.09, 0.00] [0.19, 0.27]
Communication -0.09* 0.50*
[-0.13,-0.05] [0.47,0.53]
Attention to -0.09*
Detail [-0.13, -0.05]

Pearson's linear correlation coefficients are shown with lower and upper bounds of the 95%
confidence interval in square brackets. Bonferroni correction was applied to the alpha level. * p <

.0001 (two-tailed).
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The three factors identified each had high internal consistency (asociabiity = .90,
amenta]ising = .74, ((Detail orientation = .75), as dld the full questlonnall‘e (aAQ = .84). The

distribution of factor scores was approximately normal for each factor (Figure 3).
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Figure 3. Distribution of factor scores across the full sample (n = 2343). Gaussian

distribution fits are shown.



169

Females scored slightly higher on (reduced) Sociability than males, indicating that
females were less sociable on average (Mremates = 0.04, SDremares = 1.02; Mvates = -
0.04, SDwates = 0.92), t(2260) = -2.05, p < .05, r = .04. In contrast, males scored
higher than females on (reduced) Mentalising (Mwmares = 0.12, SDmaies = 0.93;
MremaLes = -0.13, SDremates = 0.92), t(2341) = 6.45, p < .001, r = .13, and Detail
Orientation (Mwmares = 0.09, SDmares = 0.86; Mremares = -0.10, SDrepmates = 0.94),
t(2275) = 4.93, p < .001, r = .10. Previous research has also tended to find that
males score more highly in the AQ than females (e.g., Baron-Cohen et al., 2001);
however, the effect sizes for the differences in factor scores between females and

males in the present study are small.

3.3 Cluster analysis

The gap statistic procedure indicated two clusters of individuals within the sample
(C1, C2; see Figure 4 for dendrogram plot). Figure 5 shows the observed
dispersion, expected dispersion and gap statistic for 1-10 clusters. As can be seen,
a single maximum occurs for the gap statistic at 2 clusters. The values of gap(k) -
gap(k+1) - sg+1 for k = 1-9 were: -0.63, 0.05, 0.09, 0.08, 0.09, 0.10, 0.13, 0.13, 0.13.
The smallest number of clusters that satisfied the criteria gap(k) >= gap(k+1) - Sk+
1 was two, indicating two clusters in the data. The two clusters were of roughly
equal size (nc1 = 1059; nc2 = 1284). The Gaussian mixture modelling procedure
indicated that a two-cluster model minimized free energy, providing supporting

evidence that the correct number of clusters was obtained.
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Figure 4. Dendrogram plot with 50 terminal nodes. Hierachical agglomerative
clustering with Spearman’s proximity and complete linkage was applied to the

sample with cases characterised by scores on the 50 items of the AQ.
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Figure 5. The gap statistic procedure indicated two clusters within the sample.

The upper plot shows observed and expected dispersion measures for clustering
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There was a small, significant association between gender and cluster status, x? (1,
n = 2343) = 21.10, p < .001, phi = -.10, with a greater proportion of females in C1
(53.1%) than C2 (43.5%). Individuals in C1 (M = 32.16, SD = 11.78 years) were also
marginally older on average than those in C2 (M = 30.69, SD = 10.60 years),
t(2152) = 3.15, p < .01, r = .07. There was a very weak association between
education level and cluster status, %2 (1, n = 2343) = 5.30, p < .05, phi = .05, with a
slightly greater proportion of respondents indicating some degree of tertiary
education in C2 (89.4%) than in C1 (86.2%). Finally, there was no significant
association between handedness and cluster status, x? (2, n = 2343) = 2.04, p = .36,
Cramer’s V = .03 (C1: 86.9% right handers, 11.0% left handers; C2: 86.4% right
handers, 10.5% left handers). In summary, the two clusters differed little in these
four demographic characteristics, given the very weak effect sizes and the
contribution of large sample sizes to the statistical significance of these
comparisons. Thus, clusters were defined mainly in terms of autism-related

features (as described below) rather than demographic characteristics.

The profile of mean scores across the 50 items of the AQ is shown for each cluster
in Figure 6. As can be seen, C1 typically scored higher than C2 on items that
comprise the three social subscales (C1 > C2 for all Social Skill items, 6 out of 10
Imagination items, and 7 out of 10 Communication items) and the Attention
Switching subscale (C1 > C2 for 7 out of 10 items). In contrast, C2 scored higher
than C1 for 9 out of 10 items that comprise the Attention to Detail subscale. The
pattern of C1 scoring higher than C2 in social-themed characteristics
(impairments) but lower in detail-themed characteristics is also apparent in the
comparison of subscale scores and factor scores across clusters in Table 6. The
effect sizes for comparisons of AQ subscale scores and factor scores between the
two cluster groups were most commonly in the moderate range, as reported in
Table 6. As can be seen, C1 also scored higher in total AQ than C2 (scoring higher

on 60% items in the questionnaire).
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Table 6. Comparison of AQ subscale scores and factor scores across clusters

Variable Cluster 1 Cluster 2
M (SD) M (SD)

t (df)

Cluster 1 mean > Cluster 2 mean

Total AQ 118.88 (14.74) 111.05(13.28)
Social Skill 25.70 (5.09) 20.37 (4.75)
Imagination 20.45 (4.25) 19.61 (3.83)
Communication 22.28 (4.40) 19.48 (4.35)
Attention 26.51 (4.23) 23.91 (3.84)
Switching

Sociability 0.56 (0.85) -0.46 (0.80)
Mentalising 0.29 (0.90) -0.24 (0.88)

Cluster 2 mean > Cluster 1 mean

Attention to Detail 23.94 (4.45) 27.67 (4.05)
Detail Orientation -0.42 (0.86) 0.35 (0.78)

13.39 (2151)
26.02 (2192)
493 (2154)
15.43 (2341)
15.43 (2161)

29.99 (2199)
14.28 (2341)

-21.02 (2162)
-22.35 (2163)

0.28*
0.49*
0.11*
0.30*
0.32*

0.54*
0.28*

0.41*
0.43*

Bonferroni correction was applied to the alpha level. * p <.0001 (two-tailed).
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4. Discussion

The present study provides evidence for two patterns of subclinical autistic traits
in the general adult population. In particular, cluster analysis indicated a group of
respondents characterised by greater social difficulties and weaker detail-
orientation, and a second group featuring better social abilities and stronger
detail-orientation. This conflicts with a unitary spectrum model of autistic traits,
which predicts either clustering based on symptom severity alone or an absence of
subsets within the sample. (On the other hand, our results suggest that social
characteristics - mentalising and sociability - do vary together to a moderate
extent, and show a consistent severity gradient across the two subgroups
identified). Clinical individuals score higher than controls on all subscales of the
AQ (Baron-Cohen et al., 2001; Broadbent et al.,, 2013; Hoekstra et al., 2008; Lau,
Kelly, et al,, 2013), suggesting that the differences in profile between clusters
reported in the present study cannot be explained as simply indicating that detail-
orientation traits are extraneous to ASD. Rather, our findings accord with a view
that social and detail-orientation characteristics related to ASD tend not to co-
occur in the adult population - to the extent that nonclinical individuals are best
grouped in terms of profile differences rather than in severity differences alone.
Overall, this point sits well with the fractionable autism triad hypothesis, which
suggests a degree of independent etiology for the three DSM-IV symptom domains
for Autistic disorder (Happé & Ronald, 2008; Happé et al., 2006).

The results of the cluster analysis described here conflict with those of a
comparable analysis employing the AQ in a high-functioning clinical sample (n =
333; aged 16 years and above, including adults) (Ring et al., 2008). This prior study
reports between two and four clusters distinguishable in terms of symptom
severity but not in symptom profile. The discrepancy between studies could reflect
a difference between the presentation of traits in clinical and nonclinical
populations; however, it is important to appreciate that the former are defined by
the co-occurrence of the diagnostic symptom domains, and thus Ring et al. (2008)
address a question of how heterogeneity manifests when these symptoms co-

occur, rather than how the relevant traits tend to present in general. Other
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research that has examined the clustering of individuals within clinical ASD
samples has typically focussed on children and employed measures other than the
AQ. A recent latent class analysis of a large sample of nonclinical children, using
questionnaire items based on DSM-IV diagnostic criteria, indicated four subgroups
that differed not only in severity but also in symptom profile (Beuker et al., 2013).
This latter finding is compatible with our results, although represents autistic

characteristics at a significantly different stage of development.

The three-factor solution described in the present study indicates that the AQ is
tapping into a ‘sociability’ construct, a ‘mentalising’ construct, and a ‘detail
orientation’ construct. This finding closely matches those of two previous factor
analyses of the AQ in smaller adult nonclinical samples (Austin, 2005; Hurst et al,,
2007). Other researchers, however, have reported 2, 4, or 5 factors (Freeth,
Sheppard, Ramachandran, & Milne, 2013; Hoekstra et al, 2008; Kloosterman,
Keefer, Kelley, Summerfeldt, & Parker, 2011; Stewart & Austin, 2009). The three-
factor solution provides empirical support for three item subsets in the AQ: one
subset resembling the existing Attention to Detail subscale, and two other subsets
characterised, respectively, by ‘sociability’ and ‘mentalising’ items drawn from the
three traditional social subscales. These results do not attest to the five subscales
typically used in research, however, which include separate Social Skills,

Communication, Imagination and Attention-Switching subscales.

It is worth reiterating that the Attention Switching subscale correlated positively
with the three social-themed subscales, as well as with the Sociability and
Mentalising factors identified empirically in the present study. This subscale
consists of items such as “I prefer to do things the same way over and over again”,
could be alternately labeled as ‘behavioural inflexibility’, and a priori would be
considered a non-social feature of ASD. Similarly, there was no evidence from the
factor analysis that the AQ items were tapping into a distinct ‘attention switching’
construct. Thus, findings based upon AQ scores (including the differences between
clusters reported here) appear to be best explained in terms of social and detail-
orientation characteristics. The positive association between Attention Switching

items and social domains of the AQ may indicate that individual items in this
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subscale tap into social characteristics and share this in common to a greater
degree than their tendency to tap into a unitary construct of attention switching.
Another possibility is that attention switching is a trait (or set of traits) that

benefits social behaviour.

The pattern of moderate-to-strong positive correlation between the Sociability and
Mentalising factors, while the third Detail Orientation factor varied more
independently, coheres reasonably well with the DSM-5 criteria for ASD, which
encompass a social-communicative domain and a second, non-social domain
(American Psychiatric Association, 2013). A recent review of factor analytic
studies employing clinical ASD samples similarly concludes that the most support
exists for a two-factor solution consisting of distinct social and non-social domains
(Shuster et al, 2013). The plurality of underlying constructs observed in the
current and previous studies is consistent with the fractionable triad hypothesis,
which suggests that the domains of autistic traits come apart to vary somewhat
independently across the population. In the present study, a ‘detail orientation’
dimension stands out most distinctly from the rest of the AQ. Thus, the
‘fractionation’ in autistic traits in adults may occur most prominently between

social (sociability and mentalising) and detail-orientation domains.

In terms of studying ASD via nonclinical samples, the present results indicate that
adults tend to present with one of two differing combinations of traits. This implies
that an individual lower on total AQ might actually be higher in detail orientation
(and hence, more similar to a clinical individual on this particular symptom set)
than an individual higher in total AQ. Thus, it is preferable to examine cognitive
and neurological measures of interest with respect to subsets of the questionnaire
rather than to total AQ score. Our results demonstrate two main domains that
present independently, to an extent, in the general population - social
characteristics and detail orientation - indicating that individuals are best
characterised with regard to their autistic presentation with the use of these two
dimensions. Further to this point, the majority of items in the AQ assess social
features of ASD, which may be important to note for studies examining cognitive or

neurological functions in relation to composite AQ scores in nonclinical samples
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(with detail-orientation arising here as the primary non-social feature that the AQ
assesses). The use of more specific, and empirically-supported, item subsets may
enhance the likelihood of relating nonclinical findings to the heterogeneous clinical

population.

A conceivable limitation of the present study is the use of an online sample,
recruited via the Amazon Mechanical Turk system. The demographics of this
population are well-described in several prior investigations, however, and it has
been argued that samples recruited in this fashion are more representative of the
general (U.S.) population than tertiary student samples typically employed in
psychological research (Berinsky, Huber, & Lenz, 2012; Buhrmester, Kwang, &
Gosling, 2011; Paolacci, Chandler, & Ipeirotis, 2010). In the present study, the
average score on the AQ (M = 20, SD = 6.9) was higher than that reported
previously for student nonclinical samples (e.g.,, M = 17.6, SD = 6.4) (Baron-Cohen
et al,, 2001), but not drastically so, and not approaching that reported previously
for clinical samples (e.g., M = 35.8, SD = 6.5) (Baron-Cohen et al., 2001). The
Amazon Mechanical Turk and other online recruitment systems are increasingly
commonplace in scientific research (e.g., Kidd & Castano, 2013; Quoidbach, Gilbert,
& Wilson, 2013). The use of online recruitment in the present experiment allowed
for the analysis of a notably larger sample than that employed by almost all

previous studies of autistic traits in adults.

To conclude, the present study provides a new perspective on the presentation of
autistic traits in the adult population. Two distinct profiles were apparent
following cluster analysis of a large general population sample, differing inversely
in the magnitude of social and non-social (detail orientation) features of ASD.
These differing profiles highlight a limitation in conceptualising ASD as a singular
construct that varies across the population - and indicate, instead, that it is
important to characterise adult individuals in their social- and detail-related traits
independently. This coheres with the fractionable autism triad model better than a

unitary spectrum view.
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Linking text between chapters 5 and 6

In the thesis so far, predictive processing models of brain function have been
discussed most directly in the context of sensory perception, action, and statistical
learning. In addition, aspects of social interaction that are fundamental to the
autistic phenotype were discussed briefly in Chapter 1 with respect to
sensorimotor formulations of predictive processing (i.e., active inference). In the
social neuroscience of ASD research, a highly influential cognitive theory proposes
that a specific deficit exists in mentalising or theory of mind; that is, the tendency to
represent the mental states of other individuals, whether explicitly or implicitly
(Baron-Cohen, 1997; Boucher, 2012; Frith, 2004; Happé, 1995; Pelphrey, Shultz,
Hudac, & Vander Wyk, 2011). The mental states that others hold include their
emotions, beliefs, and intentions, and our representation of these mental states are
crucial for us to understand and anticipate others’ behaviours, and thus for
successful social interaction. Mentalising is a social-cognitive function of the brain
that can be readily considered in the context of predictive processing. In particular,
it is suggested that representations of others’ mental states may arise via
hierarchical unconscious inference on the external causes of sensory input (e.g.,
Kilner et al., 2007; Koster-Hale & Saxe, 2013; discussed in detail in Chapter 6).
Linking hypotheses regarding aberrant predictive processing mechanisms to
mentalising is thus an exciting avenue for understanding social and non-social
aspects of ASD within the same neurocognitive framework, and for developing a
more specific and neurocomputational understanding of the social-cognitive

differences in ASD.

In Appendix 2a'%, we discuss mentalising in predictive processing terms, and focus
on the challenges to mentalising during particular forms of social coordination in

which we need to establish common knowledge with other individuals. Common

10 Published as Hohwy, ], Palmer, C. (2014). Social cognition as causal inference:
implications for common knowledge and autism.In Mattia Gallotti and John
Michael (Eds.), Social Ontology and Social Cognition, Springer Series “Studies in the
Philosophy of Sociality”, Vol. 4, 2014.
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knowledge is a concept developed in the economic, game theoretic and
philosophical literature, and, simply put, is the state in which two or more
individuals have a shared understanding of their respective intentions and states
of knowledge. Establishing common knowledge with others (e.g., via gaze signals)
may be fundamental to coordinating our behaviour successfully with theirs, and
for achieving the best individual outcomes in social contexts. We argue that
atypicalities in how the brain infers the external causes of its sensory input in ASD
may underlie mentalising difficulties, with particular implications for social
behaviours that depend upon being able to establish common knowledge with

others.

In Chapter 6, we focus more specifically on mentalising as an aspect of social
interaction in the context of active inference.ll A recent and exciting trend in social
neuroscience research is to focus not only on the brain’s response to social cues
(e.g., participants’ responses to gaze cues), but to examine cognition in situations
that allow for reciprocal interaction between experimental participants (Schilbach,
2014, 2015; Schilbach et al., 2013). In typical social exchanges, our own actions
directly modulate the cues that we receive from others, and thus a crucial aspect of
social behaviour is how we actively investigate others (including their mental
states) by interacting with them. In this regard, Schilbach et al. (2013) reviews
evidence that neural networks engaged during social processing (for instance, in
response to gaze cues; Schilbach et al.,, 2010) are notably distinct when we have
the ability to reciprocally interact with others compared to when we merely
observe them. Similarly, difficulties in social interaction are arguably central to
psychiatric disorders, including ASD, and thus examining psychiatric differences
specifically in the context of interaction may yield important insights into these

conditions (Schilbach, 2016).

Thus, in phrasing social cognition in terms of implicit hierarchical inference, it is
important to consider not only the passive inferential mechanisms that give rise to

a representation of others’ mental states, but also the inextricable role of action in

11 See K. Friston and C. Frith (2015) and K. ]. Friston and C. D. Frith (2015) for
another treatment of social interaction in the framework of active inference.
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the inferential process. In this regard, an important mechanism that has very
recently been proposed as a supplement to predictive processing models of brain
function is counterfactual prediction; that is, implicit predictions of the sensory
consequences of a range of actions that we could perform in a given moment (but
don’t necessarily perform; outlined in Chapter 1). Counterfactual predictions are
linked on a theoretical basis to action selection (Friston et al., 2012; Seth, 2015a)
and perceptual phenomenology (Seth, 2014). Within a hierarchical model of
unconscious inference on the external causes of sensory input, counterfactual
predictions may be partly dependent on the inferred mental states of other people,
and in this way play a crucial role in our social perception and in guiding our
interactions with others. In Chapter 6, we make a link between counterfactual
predictions and predictive processing models of social cognition, and consider the
implications of this link for how we understand social interaction in predictive
processing terms, the perceptual phenomenology of social experience, and the

difficulties in social interaction in ASD.

Chapter 6 was written for a special issue in Consciousness & Cognition edited by
John Michael and Leon De Bruin that focusses on the directness of social perception

(Michael & De Bruin, 2015).
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Abstract

The mental states of other people are components of the external world that
modulate the activity of our sensory epithelia. Recent probabilistic frameworks
that cast perception as unconscious inference on the external causes of sensory
input can thus be expanded to enfold the brain’s representation of others’ mental
states. This paper examines this subject in the context of the debate concerning the
extent to which we have perceptual awareness of other minds. In particular, we
suggest that the notion of perceptual presence helps to refine this debate: are
others’ mental states experienced as veridical qualities of the perceptual world
around us? This experiential aspect of social cognition may be central to conditions
such as autism spectrum disorder (ASD), where representations of others’ mental
states seem to be selectively compromised. Importantly, recent work ties
perceptual presence to the counterfactual predictions of hierarchical generative
models that are suggested to perform unconscious inference in the brain. This
enables a characterisation of mental state representations in terms of their
associated counterfactual predictions, allowing a distinction between spontaneous
and explicit forms of mentalising within the framework of predictive processing.
This leads to a hypothesis that social cognition in ASD is characterised by a
diminished set of counterfactual predictions and the reduced perceptual presence

of others’ mental states.
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1. Introduction

There is an intuitive difficulty in how to characterise our experience of other
people’s mental states. At times we engage in reasoning about what might be going
on in another person’s mind, but it is also common for our awareness of others’
mental states to appear more automatic and direct than explicit thought. For
example, as our friend smiles at us we have an immediate sense of her happiness.
As she glances at her drink we have an immediate understanding of her intention
to reach out and grasp it. There is an ongoing contemporary debate regarding how
‘direct’ social cognition is (reviewed in Michael & De Bruin, 2015); the question is,
to what extent do we have perceptual awareness of others’ mental states? This
subject is important, in part, because clinical conditions, including ASD and
schizophrenia, are associated with atypicalities in social function that elude
circumscribed descriptions in terms of perceptual and cognitive functions related
to the representation of others’ mental states. The neural and functional bases of
symptoms in ASD (and schizophrenia) may be better understood as our

conception of mentalising itself is further developed.

In this paper, we outline an account of how mental states come to be represented
in the brain - this being mentalising - via the same process as perceptual
representation. Namely, this is the unconscious process of hierarchical Bayesian
inference on the (hidden) causes of sensory input. Just as non-social objects in our
environment are causes of our visual input, the mental states of other people are a
part of the physical structure of the world that produces the stream of sensory
impressions that our brains receive. In this view, mentalising occurs implicitly and
shares a fundamental similarity with the representation of non-social objects: each

is a natural result of the brain’s endeavour to best explain its sensory input.

Against this background, we argue that the perceptibility of mental states can be
explicated in terms of whether they are experienced as having perceptual presence.
This is the sense of veridicality attached to the content of our perception - the
feeling that the objects that we perceive really exist in the environment around us.

A recent development of unconscious inference points to specific functional
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aspects of sensory processing that arguably underlie this sense of presence. On this
view, perceptual presence rests on the hierarchical depth and - innovatively - the
counterfactual richness of the generative models supporting unconscious
inference, where counterfactual richness refers to the degree to which generative
models encode predictions not only about the hidden causes of current sensory
inputs, but also about the causes of prospective sensory inputs conditioned on
possible but unexecuted actions. Generalizing these ideas to social perception
furnishes a concept of ‘mental presence’, which rests on counterfactual predictions
about the mental-state causes of sensory impressions. Consequently, we examine
how difficulties in social cognition in ASD may relate to problems with the implicit
predictive modelling of the sensory consequences of actions that we can perform

to interact with others’ mental states.

In the next section, we cast mentalising as a process of causal inference and discuss
how the representation of mental states can be situated relative to perception in
the predictive processing framework of the brain. In sections 3 and 4, we show
how the directness of social perception can be explicated in terms of the
perceptual presence of mental states, and that this coheres with recent predictive
processing accounts of this phenomenon that call on the counterfactual richness of
hierarchical generative models. Finally, in section 5, we draw out the implications
for our understanding of clinical conditions associated with differences in

mentalising: is the perceptual presence of others’ mental states etiolated in ASD?
2. Social cognition as causal inference

2.1 The world in the brain

To understand the relationship between perception and social cognition, we
should first consider how the brain comes to represent the world beyond the skull.

To this end, we will briefly introduce the predictive processing framework of brain

function (Clark, 2013; Friston, 2005; Hohwy, 2013). This framework provides a
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powerful and compelling account of how the brain responds to sensory

stimulation to embody information about its environment.

Predictive processing builds upon the notion of unconscious perceptual inference
developed by Helmholtz (1860), Gregory (1980) and others, most recently in the
form of Bayesian models of brain function (Kersten et al.,, 2004; Knill & Pouget,
2004; Vilares & Kording, 2011). This is the idea that what we are perceptually
aware of, at any given moment, is the state of the world that is calculated as being
most likely to be causing the sensory input that our brain receives, given prior
beliefs about these causes that are furnished by previous experiences,
development, and evolution. This idea emerges as a response to a fundamental
problem, namely that through various causal interactions, physical states external
to the brain (but including the body) conspire to produce an ambiguous stream of
activity at our peripheral sensory receptors. Specifically, the relationship between
states of the environment and sensory input is not one-to-one, as multiple causes
interact non-linearly to produce the received input. The brain is thus faced with an
inverse problem: the sensory effects of this process are directly accessible but
their external causes are not. Yet it is only by controlling the causes of sensory
input - which are physical features of the body and the world - that the brain can

ensure adaptive behaviour and ultimately its own continued existence.

How then are the causes of stimulation represented in the brain? Predictive
processing suggests that the problem is resolved by hierarchical generative models
instantiated across the cerebral cortex (Friston, 2005). A generative model is a
probabilistic mapping from worldly (and bodily) causes to sensory data; in other
words, it specifies what sensory input would be received if a certain set of causes
existed in the world. By feeding a generative model some expected (hypothetical)
causes, we get predictions about the sensory data, which when mapped to cortical
architecture are mediated by backwards connections between distinct levels in a
hierarchy of cortical levels. These predictions are compared, continuously, to the
actual sensory states at each level, with mismatch between the two constituting
the prediction error. Prediction errors are propagated to higher cortical levels to

provide information on how well the generative model and its input (the
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hypothesised causes) are replicating the sensory data. Recognition is the process of
determining what causes are most likely to produce the observed sensory input;
this is unconscious perceptual inference, and occurs by implicitly ‘inverting’ the
generative model by finding the hypothetical causes that minimise prediction

error.

A crucial feature of this framework is that prediction-error minimisation occurs
simultaneously at multiple levels of representation across the cortex (Friston,
2005; Shipp et al, 2013). Lower levels of the hierarchy encode hypothesised
causes that act over smaller spatial and temporal scales (e.g., the perspective-
dependent edges and colours that compose facial features). Higher levels
represent expected causes operating over greater spatial and temporal scales (e.g.,
non-perspectival face recognition; Shipp et al, 2013). Expectations regarding
higher-level sensory attributes generate predictions regarding the finer details
represented at subordinate levels, thus constraining inference at lower levels with
contextual information and generalised knowledge about regularities that occur in
the sensory input. Expected causes encoded at higher levels are also revised to
specify predictions that minimise prediction error. Thus, environmental (and
somatic) objects are represented in a distributed and internally interactive

manner.

The lowest level in this system is the sensory input itself - corresponding to retinal
or lateral geniculate nucleus activity in the visual system, for example. The entire
cortical hierarchy operating above shapes predictions arriving top-down at this
level. This framework thus paints a compelling picture whereby the hierarchical
causal structure of the world, in which causes occurring over shorter timescales
interact with causes occurring over longer timescales to produce the sensory
input, is recapitulated in the brain in the reverse direction. It is by minimising
prediction error across the full hierarchy that the most likely expected causes of

input are selected.

Representations of uncertainty and volatility are necessary for successful

prediction and learning; for example, a change in sensory input could reflect either
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a change in the causes of input or variance in the relationship between causes and
their sensory effects. While there are multiple variables in this system that can be
changed to minimise prediction error, the idea is that to fulfil this directive over
the longer term, information about the true causal structure of the world must be
approximated in the brain (Clark, 2013; Friston, 2005; Hohwy, 2013). It is
important to appreciate that: (i) this is a process of inference that is unconscious,
(ii) it is proposed to operate at the timescale of perception (e.g., as you shift your
gaze to bring different objects into visual awareness, this is due to prediction error
driving changes to the neural representation of the causes of visual input) and (iii)
it entails ‘prediction’ of the sensory consequences of a suppositional model of
worldly causes, rather than being limited to the identification of temporal

sequences and the anticipation of future events.

Considerable further detail of this theory of cortical function is available in Friston
(2005), including its consistency with a range of anatomical and functional facts
and the computational theory underlying probabilistic inference. Similarly, the
characterisation of the brain as an inferential system is discussed at length in
Hohwy (2013) and Clark (2013). While the outline here has focussed on
perceptual representation, the framework extends to encompass action (Adams,
Shipp, et al., 2013; Shipp et al,, 2013), attention (Feldman & Friston, 2010; Hohwy,
2012), interoception (Seth, 2013), and other cognitive functions: in fact, a strong
motivation for considering this theory is its demonstrated ability to unify
seemingly diverse brain functions within the notion of probabilistic inference on
sensory states (Friston, 2010; Hohwy, 2013). We will now consider the advantages

of understanding social cognition in these terms.

2.2 Mentalising as causal inference on sensory states

A central ingredient of our social experience is that we represent the mental states
of other people. In face-to-face interactions, for example, we commonly have an
awareness of the beliefs, emotions and intentions of those around us. This sense of
others’ mental states is a part of our understanding and anticipation of their

behaviour, and moulds our own behaviour correspondingly. If our friend shows up
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to the restaurant with a grim face, we have a sense of her mood and adjust our
greeting accordingly. If she glances at our empty glass while pouring herself some
wine, we have a sense of her intentions and might move our glass closer. This

concept of mentalising is a dominant paradigm in the science of social cognition.

The mental states of other people are causes of our sensory input just as non-social
objects are. Our friend’s intention to pour the wine corresponds to a physical state
in her brain that interacts with other causes in the world to modulate our sensory
impressions. Her intentions might impact upon her eye gaze, speech and other
bodily movements; her mood might cause changes in her facial expression, tone of
voice and how she responds in conversation. These behaviours are in turn
reflected in the sensory input that our brain receives. This is similar to the way our
felt temperature is affected by a number of more or less deeply hidden causes
throughout the day (nightfall, a sudden gust of wind, clouds, an open window,
fever, putting on warmer clothes; and any interaction of such causes). In the
predictive processing framework, inference regarding the most likely causes of
input occurs as the brain tries to minimise prediction error across a hierarchy of
temporal and spatial scales. Hence, we can conceive of mental states as just
another feature of the world that comes to be modelled as the brain tries to best
predict its sensory input. Just as we have a representation of the wine glass by
virtue of its place in the causal pathway that determines retinal firing, we
represent mental states because this too allows the brain to better predict its
sensory input over time. Thus, mentalising slots into predictive processing as
constituting the same kind of unconscious inference that the brain is already
engaged in to represent its environment (Hohwy & Palmer, 2014; Kilner et al,,

2007).

This is to say that mental state representations are expected causes of sensory
input that have been probabilistically inferred. These causes are situated as part of
a causal hierarchy, and share reciprocal interactions with higher and lower levels
of representation. Thus, mental state inferences are statistically constrained by
representations of longer-term expectations - perhaps regarding, for example, the

kind of mental states that people tend to have in a given context, or the sense of
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your friend’s mood that has been reflected in a variety of her behaviours since she
showed up to the restaurant, or even culturally defined social contexts and norms.
Similarly, mental state representations are closely coupled to inference regarding
lower level (and incontrovertibly perceptual) features of sensory input, with these
hierarchical levels of representation continually adjusted to minimise prediction
error throughout the system. By minimising prediction error, the most likely
mental causes of the agent’s actions can be inferred from observation, bypassing
the inverse problem produced by the lack of simple relationships between
observed behaviours and their mental causes (Kilner et al., 2007). For other
Bayesian accounts of mentalising, see Kilner et al. (2007), Brown and Brune
(2012), Zaki (2013), Diaconescu et al. (2014) and Koster-Hale and Saxe (2013),
which include reviews of behavioural and neuroscientific literature supporting the

utility of these frameworks.

2.3 What differs between mentalising and other forms of causal inference?

Considering the view developed thus far, we should expect that what makes the
representation of mental states different from non-social representation are the
challenges involved in applying causal inference to this particular class of causes.
In general, inference is made difficult by a lack of one-to-one relationships
between causes and their effects. This is why we need probabilistic inference that
incorporates prior knowledge about the likely states of the world and expectations
regarding the degree of noise or uncertainty. There are several sources of
ambiguity that are especially noteworthy in regard to mental causes. These are

discussed briefly here and in more detail in Hohwy and Palmer (2014).

Firstly, mental states are relatively deeply hidden in the causal structure of the
world. Mental states typically act on our senses via their effects on observed
behaviour, and so have a less direct effect on sensory input compared to certain
non-social objects. From a predictive processing perspective, mental state
representations predict behavioural representations, which in turn predict lower
level characteristics of the sensory input. This is to say that mental states are

represented higher in the cortical hierarchy than these other features. Kilner et al.
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(2007) sketch out a hierarchical representation of action observation along these
lines, in the context of the mirror neuron system. In their framework, inferred
intentions inform predictions about short-term motor goals, which in turn predict
the motor commands that the observed agent is issuing, which in turn predict
visual kinematics, which in turn predict lower level sensory features. By
minimising prediction error across this hierarchy, a representation of the most
likely mental state that underlies sensory input emerges alongside other levels of
description, with each level of representation informed by both those higher and
lower in the hierarchy via the reciprocal message passing that allows for

prediction error minimisation.

Secondly, we can expect a significant role of context in determining the
relationship between mental causes and their sensory effects. A colleague’s glance
at the clock during a meeting might reflect an eagerness to get home if it’s late in
the day, or an annoyance at my lateness in showing up if it's ten past nine in the
morning. Deception and acting are more extreme examples of context dependency
in the relationship between behaviours and the mental states that they reflect. It's
worth noting again that this type of context dependency is not specific to social
cognition. Consider the visual perception of a cat lurking in the bushes, its body
partly obscured by branches, leaves and shade. At some level of representation,
our brains infer that this is our cat that we are looking at, with, for example, an
expected colour and visual form. However, the pattern of input that our brains
should predict in the present moment is very much dependent on the immediate
context of the cat’s surroundings. In each case, causes in our environment
operating over a variety of timescales interact non-linearly to produce our sensory
input, and these interactions must similarly be modelled internally to most

successfully match predictions to sensory data.

A third challenge to causal inference regarding mental states is more specific to the
social domain. When we interpret other people’s behaviour, we are often aware
that they are also interpreting us and trying to model our own mental states. For
example, in joint action, if you and I are trying to coordinate to move a heavy table

into the other room, your sense of my intentions should depend on a
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representation of my sense of your intentions. You know, for example, that I'm not
going to try lifting the table until I think that you are also ready. The fact that other
brains are modelling the world just as we are adds another degree of complexity to
causal inference when applied to the internal states of other agents. This concept
of ‘meta-mentalising’, discussed further in Hohwy and Palmer (2014), becomes
particularly interesting in light of the need to establish common knowledge with

other agents when we are trying to coordinate our actions with theirs.

In this section, we have conceived of mentalising as unconscious inference on
sensory states; that is, a part of the process that also produces non-social
perception. Moreover, this inference takes the form of prediction error
minimisation, which is the matching between a hierarchical generative model of
sensory states and the observed sensory states. This differs, of course, from the use
of the term ‘inference’ to describe a higher-order, cognitive and consciously
effortful process, which we also engage in at times when thinking about the mental
states of other people. This points to a distinction between implicit and explicit
forms of mentalising that will be developed further in Section 5. In the present
section, we have also encountered specific challenges to inferring the existence
and nature of mental states compared to that of non-social causes. These
challenges help to define what is distinctive about unconscious inference of social
states (or other minds), specifically. Casting mentalising in these terms is a useful
step towards characterising how perceptual in nature social cognition is, which is

the subject we now turn to.

3. The perception of mental states

3.1 Direct social perception in predictive processing

A contemporary debate in cognitive science asks whether we are able to perceive
the mental states of other people (reviewed in Michael & De Bruin, 2015). A
starting point for this debate is the concern that mainstream accounts of social

cognition (theory theory and simulation theory) assume that our awareness of
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others’ mental states are inferred from their behaviour in a manner that is distinct
from perception (Bohl & Gangopadhyay, 2013; Gallagher, 2008). For instance, we
may first have a perceptual experience of our friend’s actions or facial expressions,
and then, conditioned upon this, we come to an understanding of what kind of
mental states underlie that behaviour. This extra cognitive step could involve a
store of knowledge about the relationship between mental states and certain
behaviours, or a kind of simulation of the mental states that observed behaviors
would reflect were you, the observer, performing them. In disagreement with this
picture, Shaun Gallagher presents a case for ‘direct social perception’: that our
awareness of others’ mental states is, in many instances, solely perceptual in
nature (Gallagher, 2008; for related views, see, for example, Krueger, 2012; Zahavi,

2011).

To illustrate that perception can contain information that we might more
intuitively think of as the product of higher-order cognitive processes, Gallagher

describes his experience of non-social object perception:

... when [ open my eyes I see my car. It is true that it has a specific shape and is
red, and I do see the shape and the color, but I see the shape and color as
being aspects of something that is amazingly recognizable as my car. Actually,
if you ask me what I see, I would likely not say that I see a red and shapely
mass. Somehow [ see through those aspects and I see my car. I do not see red
mass, shape, and color, and then try to piece all of that together to make it

add up to my car. [ simply and directly see my car. (Gallagher, 2008, p.536)

Accordingly, he argues, our perception of another’s behaviour often is an
awareness of that individual’s mental state. As our friend smiles at us, we simply
see that she is happy. As she reaches for the glass, we see her intention to grasp it.
The thrust of this idea can be understood as defining our sense of others’ mental
states as a form of recognition associated with the perceptual content of observed
behaviour, or a higher-order level of description of this content. Gallagher’s
position includes two closely related claims: (i) that perception can contain an

awareness of others’ mental states and (ii) that the involvement of a cognitive
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process going beyond perception (e.g., interpretation or explicit inference) isn’t
necessary for us to be aware of another’s mental state. While the basis for these
claims is largely phenomenological, empirical research centered on the sensitivity
of infants to emotional and intentional social stimuli is also taken to suggest
automaticity to social experience or an independence from developed cognitive

abilities (Gallagher, 2008).

Gallagher argues against the notion of there being hidden mental causes, and so in
this respect the predictive processing view on mentalising we develop is very
different from Gallagher’s in that we still conceive of mental states as hidden
causes of sensory data. However, a predictive processing account of direct social
perception is still conceivable and consistent with much of Gallagher’s
phenomenological description of social perception. This is because, in the Bayesian
view of perception, processes of unconscious inference can and do give rise to
‘direct’ perceptual experiences of inferred hidden causes. In other words, non-
social perceptual objects are inferred from sensory data in just the same way that
mental states are - any differences between how these states of the world are
represented relate to the challenges involved in causal inference on different kinds

of causes.

Predictive processing thus provides a different picture of inference than that which
Gallagher discerns in theory-theory and simulation theory. Specifically, the extra-
neural causes of sensory activity are represented in a hierarchical manner, with
higher levels more divorced from the present sensory input, reflecting their
association with causes operating over larger spatiotemporal scales. The
relationship between mental states and observed behaviour is thus comparable to
the relationship between local and global perceptual features, or causes that
modulate input over shorter and longer timescales. Moreover, this relationship is
bidirectional. The inference of a particular mental state entails predictions about
lower level representations, potentially shaping lower level perception;
conversely, prediction errors update mental state representations to better
account for lower-level features. Thus, lower-level perceptual features are not

merely the evidence that inference is conditioned on, in order to produce a mental
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state representation, but rather, mental state representations and lower-level
representations are each adjusted in interaction with one another to minimise
prediction error over time. Gallagher (2008) argues that, “The question about
direct perception, whether of objects or of others is ... [about] how smart, how
richly informed, it is. The smarter the perception is, the more work it does; the
dumber it is, the more it requires extra cognitive processes (theory, simulation) to
get the job done.” The view of mentalising as a level of representation in a
predictive cortical hierarchy provides us with a functional architecture of
unconscious sensory processing that could underlie the ‘smart’ perception of
mental states; that is, inferred representations of behaviour that are informed by,
and closely tied to, the mental states inferred at levels above. This helps to specify
the relationship between lower-level perceptual representation and mental state
representations, while circumventing the phenomenological criticism of inferential
accounts that mentalising doesn’t require any interpretative cognitive processes

that go beyond perception.

Having said this, casting mentalising in predictive processing terms does not
necessarily entail that mental state representations are experienced in a
perceptual manner. While predictive processing describes how information that
we are perceptually aware of comes to be encoded in the brain, it isn’t necessarily
the case that we have the same kind of perceptual awareness for all of the modeled
causes of input represented across the cortical hierarchy. In particular, there is a
spectrum between shorter- and longer-term expected causes of the sensory input,
grading between, for example, more perspectival and more perspective-invariant
levels of representation. Experientially, different levels of representation could be
more or less perceptual. Similarly, while Gallagher provides an argument that
observed behaviours can be automatically recognised as intentional or emotional
states, the lack of a firm distinction between perceptual experience and the
experience of (automatic) knowledge associations, for example, means that

ambiguity still remains in how we experience the mental states of others.
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3.2 Do mental states have perceptual presence?

In the previous section, our experience of others’ mental states was depicted (in
our reading of Gallagher) as a type of recognition that is closely entwined,
phenomenologically, with perceived behaviour. This helps to clarify the
perceptibility of others’ mental states, while also answering in part why there is
some ambiguity in this regard - as our experience of mental states is defined as a
type of ‘higher order’ perceptual property as distinct from the rawer perceptual
content also associated with the observed behaviour (like the “red mass, shape,
and color” of the car). There is more to perceptual experience, however (and to the
intuitive question of how perceptual our sense of others’ mental states is) than

how automatically and effortlessly our awareness comes about.

In particular, we can ask whether the recognition of a mental state in observed
behaviour is experienced as knowledge ‘in our head’ or as a veridical state of the
external world. Hence, a crucial quality of perception to consider in this debate is

the perceptual presence or subjective veridicality of others’ mental states:

In normal circumstances perceptual content is characterized by subjective
veridicality; that is, the objects of perception are experienced as real, as
belonging to the world. When we perceive the tomato we perceive it as an
externally existing object with a back and sides, not simply as a specific

view—a “perspectival take”—on an external scene. (Seth, 2014, p.2)

When we look around us, at the table, at the coffee cup, or at another person, we
have the experience that these are real objects in our environment. Subjective
veridicality, “whether the perceptual content appears, phenomenologically, as part
of the external world” (Seth, 2014), can be contrasted to doxastic veridicality, for
which “perceptual content is understood cognitively to reflect part of the external

world”, and further to perceptual reality, “vivid perceptual phenomenology” that
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doesn’t necessarily include an associated sense of presence, but which rather

marks a difference between perception and imagery or imagination.!?

Interestingly, certain perceptual experiences seem to lack perceptual presence,
thereby motivating a principled account of why some experiences would be
associated with a sense of presence and others not. Synesthetic concurrents and
certain kinds of hallucinations are examples in this respect (discussed in Seth,
2014), but an illustration that is typically more readily available is that of visual
afterimages. If you gaze at a bright light and then look away you will experience a
kind of residual watermark in your visual field. There is certainly perceptual
content - you can really see the afterimage in your field of view - but it isn’t
perceived as a robust part of the external world; one could say that afterimages

have diminished or absent perceptual presence.

Do we experience the mental states of other people as belonging to the world?
That is, do mental states have subjective veridicality or only doxastic veridicality?
While this issue isn’t explicitly discussed in Gallagher (2008), the direct social
perception account suggests that it is introspectively plausible that our sense of
others’ mental states has subjective veridicality in some instances. Moreover, as
described in the following section, presence should be expected for our awareness
of mental states when these phenomena are considered within the predictive
processing framework. Subjective veridicality may be a crucial concept for defining
how perceptual mental state representations are, and why in some instances

mentalising may be experienced more perceptually while in other cases as a

12 We thank an anonymous reviewer for pointing out that discussion of the
subjective veridicality of perceptual entities can be traced back through earlier
psychological literature to Albert Michotte’s concept of ‘phenomenal realness’
(Mausfeld, 2013; Thines, Costall, & Butterworth, 1991), “the impression that a
perceptual entity is perceived as having an autonomous existence in our external
mind-independent world” (Mausfeld, 2013). Michotte richly describes the
experience of certain visual illusions, flat images of three-dimensional objects
(drawings, photographs, etc.) and other phenomena to illustrate that phenomenal
realness is a separable attribute of our perceptual experience that can be
experienced more or less strongly for different perceptual entities. The
development of these ideas in terms of sensorimotor contingencies and the
counterfactual predictions of hierarchical generative models (Seth, 2014),
described in Section 4.1, provides a mechanistic explanation of this attribute.
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process of explicit cognition. This approach seems to capture a part of Gallagher’s
phenomenological intuition that mental states are experienced without any
‘additional interpretation or inference’: that is, mental states with perceptual
presence are sensed as being states of the world around us, not as mere ideas or

interpretations in our head.

An initial objection to the idea that mental presence has much to do with the
directness of social perception is that presence and perceptual reality can come
apart. For instance, it could be argued that we don’t need any cognitive process
beyond perception to have awareness (perceptual reality) of visual afterimages,
despite their relative lack of perceptual presence, and so should conclude that
presence is not necessary for direct perception. However, as discussed, Gallagher’s
notion of social perception relates to what we have called higher order perceptual
properties (such as recognition or perceptual integration), rather than perceptual
reality (like the colour and shape of an afterimage; see also Bohl & Gangopadhyay,
2013 for a related point about mental states). Thus, our focus on presence is built
upon the view that the intuitive question of ‘how perceptual’ mentalising is, relates
in part to how we characterise the experience of these higher order properties of
perception; whether we experience mental state representations as being

subjectively veridical is a crucial aspect of this matter.

Similarly to Gallagher, the authors Scholl and Gao (2013) contrast perceptual
processes with conscious (explicit) inference or decision making, while
acknowledging the difficulties in drawing a firm line between perception and
cognition. Importantly, they argue that “a hallmark feature of perception (vs.
cognition) is its strict dependence on subtle visual display details; percepts seem
to be irresistibly controlled by the nuances of the visual input regardless of our
knowledge, intentions, or decisions.” Scholl and Gao (2013) review phenomenal,
psychophysical and neuroimaging evidence regarding our detection of social
agents in visual stimuli, famously illustrated, for example, in the sense of animacy
or intentionality that can be elicited even by simple geometric shapes when they
are moving appropriately (e.g., "the triangle is fighting the square"; Heider &

Simmel, 1944). These authors ask whether our appreciation of animacy in visual
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stimuli is perceptual in the sense of reflecting a property of visual experience
comparable to colour, shape, and orientation, or instead, whether attributions of
animacy stem from explicit decisions conditioned upon perceptual experience. In
their experimental work, they exploit an implicit measure of agency detection: the
ability of a participant to avoid a geometric shape that is ‘chasing’ a participant-
controlled avatar across a computer screen (against a background of similar non-
chasing objects). A systematic relationship was found between the variability of
the antagonist’s motion and the participants’ difficulty in detecting its chasing
behaviour. The subtlety of the stimulus features that modulated agency detection
in this task was taken as evidence that our awareness of animacy is not dependent

on conscious appraisal of the stimuli, but is instead a perceptual process.

The view of Scholl and Gao is consistent with the predictive processing account of
social cognition, for which awareness of social states of the environment arises
through the same mechanisms as the perception of non-social environmental
properties (i.e., unconscious inference). Our focus on perceptual presence in this
paper (rather than on perception per se) builds on the notion developed in Seth
(2014) and Thines et al. (1991), for example, that presence is a separable property
that perceptual entities can be associated with to a greater or lesser degree.
Further, while we have argued that the predictive processing account of social
cognition is fully consistent with direct social perception, the former account
doesn’t necessitate that (unconsciously) inferred social states are experienced as
perceptually as are visual properties like shape and orientation. Rather, we
emphasise that the same unconscious mechanisms related to inference are crucial
to non-social perception and mentalising, including those that may underlie

perceptual presence, detailed in the next section.
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4. Perceptual presence and predictive processing

4.1 Perceptual presence in the brain

Predictive processing is in part a theory of how neurocognitive processes account
for perceptual content, its phenomenological properties and interactions with
other cognitive processes like attention and memory. To help account for the
phenomenon of perceptual presence, Seth (2014) expands upon this framework to
incorporate counterfactual predictions. The suggestion, drawing on Friston et al.
(2012), is that the hierarchical generative models implemented in the cortex
include predictions about how the sensory input would change were we to interact
with the world in the various possible ways that we can. For a given point in time,
this is the case for both the actions that we will actually perform next and,
importantly, a range of alternate actions that we could perform but won’t in this
instance. To illustrate, when we look at the coffee cup on our desk, we receive
retinal input from one side of the cup, and under predictive processing, the brain
hypothesises a worldly cause (or hierarchical set of causes) that accounts for this
input. The further suggestion, however, is that the brain is engaged in predicting
the sensory consequences of interacting with this object: like moving around the
cup in various ways, or picking up the cup, or occluding our view of the cup with
another object. This development of predictive processing provides a
neurocognitive operationalization of the notion of ‘sensorimotor contingencies’,
the mastery of which has previously been associated with perceptual presence
(O'Regan & Noég, 2001). The argument detailed in Seth (2014) is that examples of
perception that involve reduced perceptual presence (e.g., visual afterimages,
synesthesia concurrents and certain hallucinations) are likely to be associated
with an impoverished set of counterfactual predictions, as there are fewer ways in
which we can act to change our input contingent on these kinds of (hypothesised)
worldly causes. Correspondingly, perceptual presence comes about by virtue of
there being a rich repertoire of counterfactual predictions associated with the
(hierarchical) representation of the object in question. There are many ways in
which we can interact with the coffee cup to change our input - this accounts for

why our perception of the cup is associated with a strong sense of presence. There
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are fewer ways in which we can act to change our input based upon the visual
afterimage - thus the brain’s representation of the afterimage is associated with
fewer counterfactual predictions and, experientially, the afterimage has reduced

presence.

The counterfactual richness hypothesis of perceptual presence is built in part on
the unusual and revealing phenomenology of synesthesia. In synesthesia, the
perception of an inducer stimulus elicits a concurrent percept, either of the same or
another sensory modality. Significantly, while both inducer and concurrent
percepts are experienced with perceptual reality, only the inducer is experienced
as being subjectively veridical (reviewed in Seth, 2014). The counterfactual
richness hypothesis assigns a separable mechanism of hierarchical generative
models to perceptual reality (i.e., the inferred causes of sensory input and the
corresponding non-counterfactual predictions) and perceptual presence (i.e., the
richness of hierarchical counterfactual predictions). This furnishes a neat account
of why these two aspects of perceptual content tend to co-exist but come apart in
the case of synesthesia concurrents. Specifically, it is precisely because
concurrents reflect hypothesised states of the world that synesthetes are unable to
interact with, that they are resistant to the formation of a rich hierarchical set of
counterfactual predictions. In contrast, while, like concurrents, the perceptual
reality of inducer stimuli reflects their status as an inferred cause of sensory input,
the sensory consequences of our actions are contingent upon inducer stimuli to a
much greater degree. Thus, the brain is able learn these sensorimotor
contingencies over time and, in a given moment, model a richer set of
counterfactual predictions for inducer stimuli. The hypothesis that perceptual
presence relates specifically to the action-dependent prediction of sensory
outcomes similarly allows us to account for the characteristics of a range of other
types of perceptual experience, such as imagery and hallucinations (discussed in

Seth, 2014).

The notion of counterfactual prediction of sensory states builds upon a more
elementary extension of the predictive processing framework to action, known as

‘active inference’. The goal of the brain under this framework is to minimise
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prediction error: this can be achieved both by changing predictions to match the
observed data and, via action, changing the sensory input to match predictions.
Thus, movement is cast as a process by which initially inaccurate predictions
regarding the parameters of proprioceptive feedback (mediated by descending
cortical projections) are fulfilled by spinal reflexes that modulate muscle activity to
bring proprioceptive states into line with these predictions (Adams, Shipp, et al,,
2013; Shipp et al, 2013). In this manner, prediction error minimisation is an
ongoing synthesis of active and perceptual inference. As well as specifying how
action occurs, the concept of active inference hangs together with the idea
developed by Helmholtz (and later, Richard Gregory) that unconscious inference is
an investigative process, where intervening on the sensory stream allows us to test
hypotheses regarding the state of the world (Friston et al., 2012; Gregory, 1980;
Helmholtz, 1860). Predicting the sensory consequences of a range of possible
actions (i.e., counterfactual prediction) is then important to allow action selection
in a manner that will optimise our inferred representation of the world by

reducing uncertainty (Friston et al., 2012; Seth, 2014, 2015a).

The expected precision of predictions plays a key role in both action selection and
perceptual inference. It is those counterfactual predictions that are most highly
precise that will initiate action via active inference. In the case of perceptual
inference, the expected precision of (non-counterfactual) predictions and
prediction errors also regulates how perceptual content changes: in particular,
prediction errors are more likely to cause updating to representations of the world
if the sensory evidence is expected to be highly precise relative to existing
predictions. In this way, the counterfactual richness hypothesis of perceptual
presence differs in its emphasis on precision expectations in determining
perceptual content, as counterfactual predictions that are less precise (such that
they do not end up driving action) still contribute to phenomenology in the form of
perceptual presence. Moreover, the balance between active and perceptual
inference is regulated by the relative precision of predictions. Thus, it is
conceivable that a rich set of counterfactual predictions (and hence perceptual
presence) can exist when simply viewing an object without acting upon it, despite

the intimate relationship between action and counterfactual prediction. See
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Hohwy (2014) and Seth (2015b) for further discussion regarding the status of

counterfactual predictions.

An alternative explanation for perceptual presence in predictive processing terms
focuses instead on the role of higher-order perspective invariant object
representations (Hohwy, 2013, 2014). In this view, the sense of presence is related
to the representation of external objects as persisting in time, encoded at superior
levels of the distributed hierarchy of representation than perspectival takes on the
object!3. This account also relates in part to the role of action in predictive
processing: perspective invariant representations are presumably built up as we
experience an object from multiple perspectives, or, in other words, as persisting
to some degree as an external cause of stimulation in the face of the interventions
that we can perform upon the sensory stream. The functional and neural
instantiation of this account differs from the counterfactual view, however;
presence relates here to ‘passive’ components of representation that exist higher
in the cortical hierarchy than perspectival representations, while for the view
described in Seth (2014) presence relates to action-dependent counterfactual
predictions that are distributed across the cortical hierarchy, including at

perspectival levels of representation.

These two accounts are not mutually exclusive, and might be reconciled. For
example, higher-order invariants may support counterfactual predictions (at
corresponding and lower levels), and, further, developing counterfactual
predictions at lower (perspectival) levels may support the development of higher-
order invariants. See Seth (2015b) for further discussion of this point. The
distinction between these two accounts is in part between perceptual inference

and active inference, processes that are closely intertwined in the effort towards

13 An anonymous reviewer questions whether invariance can help to explain
presence given that we seem able to think of things invariantly without an
associated sense of presence. We stress that under this account presence occurs
when large swathes of the hierarchy are activated simultaneously: that is, precisely
when variant and invariant levels of the hierarchy together can suppress
prediction error. Thought without presence may be when predominantly higher
levels are activated (and perception without presence is when predominantly
lower levels are activated).
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improving the brain’s model of the world via prediction error minimisation.
Similarly, the sense of presence might be built up both via passive observation
(e.g., watching two colleagues talk) and active observation (joining in on the

discussion to probe the mental states that have been passively inferred).

4.2 Mental states and counterfactual predictions

We can hypothesise that counterfactual predictions occur across multiple levels of
the predictive processing hierarchy: for example, perspective invariant
representations of a face may allow counterfactual predictions regarding global
features of the face, which in turn allow counterfactual predictions regarding local
details of the face. In fact, counterfactual predictions should be expected to exist in
relation to any level of the external causal hierarchy that our actions can interact
with to modulate our sensory input in a discernable manner, thus enabling active
inference. Thus, an implication of the counterfactual account is that subjective
veridicality can potentially be experienced for any level of causal representation,

depending on the extent of associated counterfactuals.

We have already seen how mentalising can be conceived of as a level of
representation of the external causes of sensory input in a hierarchy of predictive
processing. We can now ask whether mental state representations are likely to be
associated with counterfactual predictions. This immediately seems plausible for
many instances of mentalising. If our friend is unhappy, this allows predictions
about how the sensory input would change if I were to make a joke. If she is
intending to reach out for the wine bottle to fill up her glass, this should shape
predictions about the sensory effects of moving the bottle away from her, or
moving my glass closer. Face-to-face conversation in particular illustrates a rich
sequence of auditory and visual input that is quite directly modulated by our own
utterances and expressive behaviours, the immediate sensory consequences of
which are highly dependent on the succession of beliefs, intentions and emotions
that we become aware of in our conversational partner throughout. Conversation
is thus a process where we actively interrogate the mental causes of our sensory

input, actively sampling new data by modulating the facial expressions of others,
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their bodily actions, and their speech. The immediate sensory consequences of our
actions - things we say, where we look, movements we make - are predictable in
part based on the inferred mental states of those around us, and thus it is
conceivable that mental state representations are associated with a broad
repertoire of counterfactual predictions. This is to say that, as we observe our
friend, the sensory consequences of a range of various possible actions that we
could perform are predicted dependent in part on the mental states that we model

her as having.

This contrasts with other instances of mentalising for which we are less able to
intervene upon the world to change our sensory input in a way can be predicted
dependent upon the mental states of other people. Interestingly, in this regard, the
temporal scale of representation is one factor that may determine the extent of the
accompanying counterfactual predictions. For example, if I receive an email
containing the schedule of exam times for this semester, I might experience the
notion that my friends will be stressed out in a months time when the exam period
starts, but due to the timescale involved this may not be associated with a rich set
of neural predictions regarding how my input will change consequent upon actions
[ can currently perform. Action necessarily occurs over certain shorter timescales;
thus, the representation of causes that operate over longer time scales may tend to
have diminished subjective veridicality than those that allow for counterfactual

predictions over the timescales that our actions can more directly impinge upon.14

14 The physical constraints of our body determine the repertoire of possible
actions that we can perform, and the types of causes in the world that we are able
to interact with. Our bodies therefore restrict the counterfactual component of our
brain’s representation of the external world. For example, we perceive the clouds
in the sky, but we are limited in how we can act to change our sensory input
consequent upon them, which, if the counterfactual view of presence is correct,
determines the extent of veridicality with which they are perceived. This is to say
that the quality of our perceptual experience of the world is dictated not only by
the limitations of the sensory organs that determine what the brain can represent
about the physical world (e.g., their stimulus selectivity, resolution, location, etc.),
but also by the limitations of our actions in intervening upon the causes of our
sensory input. There are interesting issues here regarding relations between
perceived presence and perceived objecthood; see Seth (2015b) for more
discussion.
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Similarly, certain kinds of stimuli that elicit mental state attributions can’t be
interacted with as fruitfully as the stimulation that is received in face-to-face
interactions. For example, as I read an email, or view a schematic version of the
Sally-Anne task, or try to decipher a New Yorker cartoon, there are relatively few
ways in which the mental states I attribute (to the absent author of the email, the
fictional characters in the cartoons, or perhaps the cartoonists) allow predictions
about how the sensory input will change consequent upon the actions that I can
currently perform. This contrasts with dynamic stimuli such as the gestures and
facial expressions of a person that we are directly interacting with face-to-face:
here my actions very much determine my consequent sensory input in a way that

is dependent on the mental states that modulate these stimuli.

The counterfactual account of presence implies that “perceptual presence will be
lacking when the corresponding generative models are counterfactually poor”
(Seth, 2014). This provides a principled way of characterizing the degree to which
mental state representations are associated with this dimension of perceptual
phenomenology. Representations with a richer set of counterfactuals, whether due
to the timescale or type of stimuli involved, are more likely to be experienced as
veridical states of the external world than those with a poorer set of
counterfactuals. This is important, because it allows us to hypothesise a distinction
between different types of mentalising in terms of the corresponding
counterfactuals (and sense of presence), discussed further in Section 5 with
respect to implicit and explicit forms of mentalising. It may be that mental states
associated with a poorer set of counterfactuals are experienced as conceptual
associations or explicit knowledge, while those with a richer set (e.g., those that
occur during conversation) are experienced as subjectively veridical states of the
surrounding perceptual world. This point might generalize such that the difference
in our experience of certain explicit thoughts or knowledge from perception (e.g.,
our abstract sense of the Andromeda galaxy, or our knowledge that the earth is
spherical) can be explained in part in terms of a concomitant weak set of

counterfactual predictions.
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4.3 Alternative theories of perceptual presence and mentalising

In the discussion of perceptual presence in the literature, one focus is on how
hidden parts of visual objects (e.g., the side of the coffee cup that is presently facing
away from you) contribute to our perceptual experience of these objects (No§,
2004). That is, as we look at the cup only the near side of it impacts upon our
sensory input, but nevertheless we are perceptually aware of the cup as a three-
dimensional object with components that are currently unseen. An analogy in this
regard has been made previously by other authors to our perceptual experience of
mental states (Bohl & Gangopadhyay, 2013; Krueger, 2012; Smith, 2010): drawing
upon Husserl’s characterisation of ‘present’ and ‘co-present’ aspects of perceived
objects, this earlier idea is that we may experience mental states along with our
experience of observed behaviour in a manner similar to how the hidden parts of
the cup contribute to our experience of the cup as a ‘full’ object even as we have a
more direct experience of the near side. It might be possible to develop this view in
line with the notion of counterfactuals in hierarchical generative models: however,
there is an issue here in how mental states can be modeled as counterfactual
causes of the sensory input (analogous to the hidden sides of the cup) without also
being modeled at times as the non-counterfactual causes of input (i.e., the causes of
the present input). Indeed, this kind of account is inspired partly by the notion that
mental states are hidden such that they can’t be as directly verified as non-social

objects (Bohl & Gangopadhyay, 2013).

The view developed in the present paper differs importantly from these previous
accounts in that mental states are represented as distinct causes of our sensory
input that are separate from, and that modulate, more proximal causes such as
another’s behaviour. That is, mental states are more closely analogous to the near
side of the cup in that they can be modeled as (non-counterfactual) causes of the
present sensory input - this conceptualization stems from our view of worldly
representation, whether concerning mental states or visual objects, as being a
process of causal inference on sensory states within a hierarchical generative
model. Further, we suggest that mental state representations themselves are in

some instances accompanied by a sense of subjective veridicality (and
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counterfactual predictions). The predictive processing view avoids some potential
criticisms of the idea that the brain models mental states as direct causes of
sensory input (see Bohl & Gangopadhyay, 2013). Firstly, this view avoids trending
towards behaviourism, because mental states are still represented distinctly from
observed behaviour. Secondly, it provides a principled way of accounting for the
intuition that mental states are more hidden that non-social objects like the cup, in
terms of the challenges to performing causal inference on mental causes discussed

in Section 2.3.

5. Autism and counterfactual predictions regarding others’

mental states

5.1 Implicit and explicit mentalising in ASD

Frith and Frith (2008) contrasts social cognition that entails “fast, relatively
inflexible routines that are largely automatic and implicit and may occur without
awareness” with that involving “slow, flexible routines that are explicit and require
the expenditure of mental effort.” One example of this division between implicit
and explicit processes occurs in the developmental trajectory of mentalising. A
cornerstone of research in this area concerns laboratory tests for the ability to
represent the false beliefs of others; for example, a participant may be shown an
actor, Sally, hiding Anne’s ball while Anne is away in the other room - to
understand where Anne will search for the ball when she returns, the participant
must have some sensitivity to how Anne’s state of knowledge differs from their
own. There is evidence from developmental studies that children demonstrate a
kind of implicit knowledge of others’ false beliefs (reflected in gaze direction and
looking time) even at an age when their verbal predictions of the actors’ behaviour
fail to demonstrate an explicit knowledge in this regard (Clements & Perner, 1994;
Frith & Frith, 2008). Comparable forms of looking behaviour are also apparent in

(preverbal) infants (Onishi & Baillargeon, 2005; Surian, Caldi, & Sperber, 2007).
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This distinction between implicit and explicit forms of mentalising has played a
crucial role in clarifying the deficits in social cognition that occur in ASD. This is a
diagnosis that covers a diverse set of individuals who show significant differences
from one another in their social cognition, language and intellectual functioning
(Lai et al., 2014; Lai et al., 2013). Frith (2004) suggests that a fundamental deficit
that exists across this spectrum is in the implicit or spontaneous sensitivity to the
mental states of other people, with socially higher-functioning individuals more
able to compensate for this deficit by drawing on explicit reasoning and learning
skills. Support for this idea comes, for example, from the examination of eye
movements in a group of adults with high-functioning ASD while they completed a
false belief task (Senju et al., 2009). These subjects were inseparable from age-
matched controls in their responses to a variety of tests of mentalising ability that
were conveyed to the participant verbally - one example of which was a version of
the Sally-Anne scenario sketched above. Nevertheless, in a nonverbal false belief
task that was acted out with puppets by an experimenter, the behaviour of the
groups diverged. Specifically, controls were significantly biased in their direction
of gaze towards stimuli made salient by the implied false beliefs of the actors,
while those with ASD were not, suggesting that those with a diagnosis lack a
spontaneous sensitivity to the mental states of other people, becoming most

apparent when prompts to explicit cognition are unavailable.

Tager-Flusberg (2001) makes a comparable proposal to Frith (2004) regarding
social cognition in ASD, contrasting ‘social-perceptual’ and ‘social-cognitive’
aspects of theory of mind. Gallagher similarly suggests that ASD may deviate from
typical social cognition in that mental states are not as readily experienced
‘directly’ (i.e., as given in our perceptual experience of others’ behaviour), but
rather that awareness of others’ mental states tends to require the (explicit)
interpretation or reasoning that, he argues, those without ASD more commonly

limit to social situations that are unusually ambiguous (Gallagher, 2004, 2008).

Importantly, this notion of a more specific deficit in ASD in implicit, spontaneous
or perceptual forms of mentalising can be developed in light of the idea of

perceptual presence and counterfactual predictions in predictive processing.
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Specifically, we can hypothesise that mentalising in ASD fails to occur spontaneously
as a part of the predictive inference on sensory states that operates on the timescale
of perception, and instead relies upon a slower process of explicit reasoning.
Importantly, this may entail that the representation of mental states in this
condition is less directly associated with the unconscious modelling of

counterfactual predictions.

Firstly, this implies that others’ mental states are experienced with reduced
perceptual presence in ASD compared to those without this diagnosis: that is, the
thoughts or feelings of others are more likely to be experienced as conceptual
associations or explicit interpretations rather than as veridical properties of the
surrounding world. Section 4 described how, in general, the quality of subjective
veridicality is expected for mental state representations that are replete with
counterfactual predictions, like, as we suggest, our sense of others’ mental states in
face-to-face conversation. Thus, it is these social situations that would be
experienced most differently in ASD, rather than situations that, even in those
without social cognition deficits, would tend not to elicit a rich set of
counterfactual predictions due to the timescale or type of stimuli involved. As
discussed in Section 4.2, the latter is likely to include mentalising based on written
stimuli (like stories, or email correspondence) as opposed to more dynamic social
interactions. This coheres with findings that higher-functioning individuals with
ASD (particularly adults) respond similarly to controls in traditional written or
verbal tests of mentalising ability (e.g.,, Callenmark, Kjellin, Ronnqvist, & Bolte,
2013; Senju et al.,, 2009), despite experiencing social difficulties to the extent

necessary to meet a diagnosis of ASD.

Moreover, counterfactual predictions are a basis on which action selection occurs
under predictive processing, in the setting of active inference. This provides a link
from the idea of reduced spontaneous mentalising in ASD to consequences for
action and behaviour. In typical function, the implicit representation of mental
states may come with the unconscious modelling of counterfactual outcomes,
important for driving our behaviour in a manner that is sensitive to the mental

states of other people. Specifically, on the basis of counterfactual predictions,
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actions are selected to minimise uncertainty in our inferred representation of the
world (Friston et al., 2012; Seth, 2014, 2015a). As we described earlier, the mental
state causes of our sensory input are actively interrogated via our own verbal and
expressive behaviours. Thus, if the brain were not unconsciously modelling the
counterfactual outcomes of our possible interactions with others’ mental states,
this may incur a profound impediment to the selection of actions that optimise the
inferred representation of the world by reducing uncertainty (contingent on the
mental states of others). Actions that are sensitive to the sensory consequences of
interacting with others’ mental states would not be generated as spontaneously via
predictive processing, and perhaps instead require top-down, deliberative control.
This is to say that a deficit in implicit mentalising in ASD, when this is cast under
the predictive processing umbrella, is not just about the perceptual awareness of
others’ mental states, but also the unconscious processing that underwrites the
selection of actions that fine tune generative models. A lack of counterfactual
modelling that would otherwise drive mentalising-sensitive action may underlie
the disassociation between eye tracking and verbal response results of Senju et al.

(2009), described above.

This develops the emerging picture that adults with ASD can ‘do’ mentalising, but
lack important automatic aspects of the process as compared to non-ASD people,
where these aspects rest on the counterfactual predictions in hierarchical
generative models. Thus, drawing on explicit reasoning skills may compensate in
part for deficits in spontaneous mentalising, but fail to ameliorate social difficulties

due to an unresolved absence of implicit counterfactual predictions.

5.2 Predictive processing in ASD

The inherent ambiguity between sensory input and its causes (necessitating
inference) allows for the possibility of different models of the world arising in
different individuals, contingent upon our different sensory streams. The
inexhaustible richness of worldly causes and their interactions, some subset of
which is modelled in the brain, similarly helps to explain why individual

differences in accounting for the sensory data would arise via predictive
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processing. Several hypotheses have been recently put forth regarding how causal
inference may occur differently in ASD, contributing to social and non-social
symptoms alike (Hohwy, 2013; Hohwy & Palmer, 2014; Lawson et al, 2014;
Palmer et al., 2013; Palmer, Paton, Kirkovski, et al., 2015; Pellicano & Burr, 2012;
Skewes et al.,, 2014; van Boxtel & Lu, 2013b; Van de Cruys et al., 2014). These
hypotheses help to explain why the unconscious inference of others’ mental states
may be compromised in ASD, resulting in a reliance on explicit cognition and

reduced counterfactual modeling in social situations.

5.2.1 Precision expectations in ASD

A core mechanism of predictive processing that has been drawn upon to
understand ASD is the weighting of prediction errors, via top-down modulation of
sensory processing. This weighting determines the extent to which new sensory
data drives changes to the brain’s representation of the world. Such a mechanism
is necessary because changes in sensory input could reflect either real changes in
the underlying causes of input, or various sources of context-dependent variability
or noise in the mapping from a given set of worldly causes to their current sensory
effects. To arrive at an accurate model of the external world, the reliability or
precision of sensory estimates (as the inverse of variance) must be estimated.
Hence, the weighting of prediction errors is suggested to occur in proportion to the
state-dependent expected precision of sensory information relative to the expected
precision of existing predictions (Feldman & Friston, 2010). Determining how
much precision to expect in sensory states across different contexts is itself a
matter of learning and inference suggested to come about via prediction error
minimization. Expecting low precision in the sensory input carries the risk of
persisting with a given model of worldly causes in the face of fluctuations in the
sensory input that reflect real changes in the environment (treating these
fluctuations as noise instead). Expecting high precision carries the risk of modeling
the expected causes of input on uninformative fluctuations in the input (noise) and
failing to generalize across samples to arrive at a deeper and more predictive
model of the underlying causes of sensory data (i.e., overfitting the model to

sensory data; Hohwy, 2013).
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Specifically, in relation to ASD, a common hypothesis that has emerged is that
sensory processing is associated with an expectation for high precision in sensory
input, related to the processing of state-dependent levels of uncertainty (Hohwy,
2013; Lawson et al, 2014; Palmer et al.,, 2013; Palmer, Paton, Kirkovski, et al.,
2015; Van de Cruys et al,, 2014). Physiologically, this is thought to be constituted in
the form of greater gain on cortical neurons signaling prediction error, where this
gain is controlled context-dependently by top-down modulation mediated by
several interacting neuromodulatory systems (Lawson et al,, 2014; Quattrocki &
Friston, 2014). Importantly, reduced sensitivity to the ambiguity inherent in
inference is suggested to instill a reliance on more detailed, less generalized, or
lower level representations of the world, as the depth of the cortical hierarchy
through which updating occurs in response to prediction error is constrained. In
particular, higher gain on prediction errors drives greater sensitivity to changes in
the input, promoting a model of the world that is fitted more to shorter-term
fluctuations in the data. When the bottom-up input is expected to be highly precise
and informative, it is less likely to be subsumed into higher-level expectations
about the causes of input, compromising the inference of higher-level, context-
sensitive causes of sensory input. This theory has the potential to explain a range
of social, motor, cognitive and perceptual symptoms of ASD, including, for example,
unusual sensitivities to sensory stimulation and reduced context sensitivity in
sensory or cognitive processing (weak central coherence) (reviewed in Lawson et

al., 2014; Van de Cruys et al., 2014).

5.2.2 Precision expectations and mentalising

Importantly, the implicit representation of others’ mental states via prediction
error minimization may sit at a level of the hierarchy that is particularly vulnerable
to biases away from the inference of higher-level and context-sensitive causes of
sensory input. As described in Section 2.3, mental states are more deeply hidden in
the causal structure of the world than many other causes that we are perceptually
aware of, and the relationship between mental causes and their sensory effects

(including their modulation of the sensory effects of our actions) is rife with
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context-sensitivity. In some respects, mentalising is the most difficult form of
inference that the brain is faced with: modeling another model of the world (that
itself is doing the same thing, leading to nesting and recursion). The mental states
of other people modulate the sensory input in a variety of ways depending of the
broader context, and hence, when modeled as expected causes, would play a
higher-level contributive role in prediction rather than precisely specifying the
expected sensory input in a given moment. Thus, an inflexible expectation for an
overly precise mapping between causes and their sensory effects in social
situations would mean that the mental states of others may not be inferred via
predictive processing, nor would be modeled their contribution to the sensory
consequences of potential actions. In other words, the particular complexity of the
social world, necessitating greater context-sensitivity and flexibility in precision
weighting for optimal learning and inference, makes the unconscious inference of
mental causes of sensory data (implicit mentalising) particularly vulnerable to the
hypothesised differences in precision weighting suggested to occur in ASD (Section

2.3; Hohwy & Palmer, 2014; Lawson et al,, 2014; Van de Cruys et al., 2014).

An interesting development of this approach in the domain of interoception,
proposed recently by Quattrocki and Friston (2014), further emphasizes the
developmental trajectory of ASD together with the dynamic nature of predictive
processing. Their proposal is that a primary etiological factor underlying the
autistic phenotype relates to the precision weighting of interoceptive sensory
signals in early child development. This is due to disruption in the function of the
oxytocin system in facilitating the appropriate context-dependent gain setting for
interoceptive prediction errors. In relation to social characteristics of ASD, it is
suggested that an abnormality in the processing of interoceptive signals impedes
the development of typical models of self and other, with a concomitant reduction
in the salience of certain socially-relevant signals. This is suggested to alter the
learning of adaptive social and communicative behaviour in crucial earlier stages
of development. In particular, observational and imitative learning may rely on the
appropriate integration of interoceptive and exteroceptive information regarding
self and other, and in turn provide a basis for understanding the mental states of

others.



217

Predictive processing accounts of ASD present a picture of neural processing in
this condition as providing a model of the external world that less readily contains
the mental causes of sensory input and how these causes contribute to the sensory
consequences of potential actions. In contrast, ASD is often characterised as having
enhanced processing or accuracy at low sensory and perceptual levels, based on a
wealth of psychophysical, perceptual and cognitive data (Happé & Frith, 2006;
Mottron et al, 2006; Plaisted et al., 1998). Together, this is suggestive of a
developmental trajectory whereby maladaptive precision weighting at low levels
precludes the formation of counterfactually-rich social-level predictive models. In
the current paper we have highlighted that a lack of counterfactual predictions
associated with the implicit modeling of others’ mental states (i.e., active inference
contingent upon others’ mental states) contributes to the social challenges that
individuals with ASD face, in spite of the ability of higher-functioning individuals to

engage in more explicit forms of mentalising.

6. Conclusion

The current paper has examined mentalising as a result of the brain’s inference on
the (hidden) causes of its sensory input, locating mental state representations
within a hierarchical cortical model of the external world. Depending on the
context and timescale, mental state representations may be more or less
associated with counterfactual predictions supported by active inference, thereby
determining their perceptual presence. This furnishes an account of the
experiential nature of implicit and explicit forms of mentalising, in terms of their
associated ‘mental presence’, the experience of others’ mental states as veridical
qualities of the perceptual world. Predictive processing treatments of ASD can
similarly be expanded with respect to implicit and explicit forms of mentalising
and active inference. Importantly, ASD may reflect a selective deficit in the
counterfactual predictions of generative models that encode deeply hidden other-

mind causes of socially relevant sensory signals.
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Concluding remarks

An influential approach to the psychological study of perception is to characterise
the function of the sensory system as unconscious inference on the external causes
of (ambiguous) sensory signals, this process resulting in the representation of the
world around us that we consciously experience. In the past decade, this idea has
been developed in terms of probabilistic (Bayesian) inference, furnishing normative
accounts of how the brain integrates different sources of information at an
unconscious level to form an optimal model of its environment. Predictive
processing theories cast cognitive function in terms of hierarchical probabilistic
inference that is achieved as the brain makes predictions about incoming sensory
data and continually works to minimise the resulting prediction error. The present
thesis has explored how the neurocognitive mechanisms entailed in predictive
processing shed light on the differences in perceptual experience and behaviour

that arise between individuals and between groups, focussing on the case of ASD.

A core hypothesis that has emerged in the last several years, partly from work
contained in the present thesis and partly from work by other researchers, is that
ASD reflects an overweighting of sensory signals against prior or contextual
expectations during perceptual inference. In other words, that the brain’s
representation of the world differs in ASD due to a systematic variation in how the
sensory system integrates incoming sensory information with an existing model of
the environment based on state-dependent estimates of the level of uncertainty
associated with each. While much work remains in testing this hypothesis, it
provides a novel perspective on a range of research findings and clinical
observations, primarily those relating to sensory aspects of ASD. Existing
perceptual and cognitive theories, such as the Weak Central Coherence and
Enhanced Perceptual Functioning accounts (Happé & Frith, 2006; Mottron et al,,
2006), have been highly successful in capturing important characteristics of ASD
and motivating what is now a large body of research into non-social aspects of the
condition. The attraction of a Bayesian account of ASD is partly in capturing these

aspects of the condition within a framework of brain function that lends itself to
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linking cognitive, computational and neural descriptions of the sensory processes

involved.

Importantly, as predictive processing models have been developed in recent years
to meet the challenges involved in perceptual inference, further mechanisms have
been proposed that are likely to contribute to individual differences in perception
and behaviour. These developments partly extend computational descriptions
beyond the basic Bayesian model; specifically, the hierarchical nature of predictive
inference, and the role of volatility processing in maintaining optimal inference in
changing environments are critical ingredients for a rich model of perceptual
inference in the brain. As argued in Chapter 1, these features provide needed depth
to Bayesian models that better allows us to elucidate how the complex autistic
phenotype could emerge from systematic differences in Bayesian mechanisms.
Moreover, the extension of predictive processing to action is important for linking
differences in perceptual inference, such as the hypothesised overweighting of
sensory information in ASD, to behavioural characteristics, including those relating
to motor function and the manner in which an individual samples the world

around them.

Core to ASD are deficits in typical social interaction, during both early
development and in adulthood. Social cognition and behaviour can similarly be
explored in the context of how the brain represents the state of the world via
Bayesian inference. As argued in Chapter 6, the brain’s implicit representation of
others’ mental states can be cast in terms of inference on the external causes of
sensory input, and in this way considered in the same framework as perceptual
inference. The prominent Theory of Mind-deficit hypothesis of ASD can thus be
considered in the light of systematic differences in how the brain infers the causes
of sensory signals in ASD. Moreover, the recently proposed role for counterfactual
sensorimotor predictions in hierarchical generative models (Friston et al., 2012;
Seth, 2014, 2015a) can be extended to the social context, in which generative
models include representations of others’ mental states. In this way, differences in
social interaction may reflect a failure to model the mental-state causes of sensory

input and the way in which these modulate the sensory consequences of one’s own
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actions. In an active inference framework, this entails consequences for the
initiation of behaviours that interact with others and the use of social actions to
reduce uncertainty in perceptual models. In this way, Bayesian accounts are not
just a development on theories of perception in ASD, but also suggest how
differences in the processing of sensory information in the brain link to atypical

behaviours more broadly.

The present thesis focussed partly on sensory processing in the context of body
perception and movement (Chapters 2 and 3). The neuroscience of body
perception has in the past decade unveiled the critical role of multisensory
integration underlying the brain’s representation of the body as distinct from the
external environment, and in producing the phenomenological sense of ownership
that we experience for our own body. The integration of seen and felt touch on the
body, and the manner in which this contributes to a sense of body ownership,
appears largely intact in ASD. However, autistic features in both clinical and non-
clinical groups are associated with reduced sensitivity in proprioceptive and
kinematic measures to illusory ownership of a fake limb (the rubber hand illusion).
This coheres with the hypothesis of an increased weighting of sensory
(proprioceptive) prediction errors in ASD, such that there is a reduced sensitivity
to prior or contextual expectations influenced by the illusion. Moreover, adults
with ASD exhibit disrupted movement initiation, which in the context of active
inference is similarly suggestive of a difficulty in setting the appropriate weighting
of prediction error signals against top-down predictions. These findings thus help
to extend predictive processing formulations of autistic perception to motor
dysfunction, which occurs commonly in ASD and, while not yet well characterised,
has received increased attention in autism research in recent years (e.g., Fournier

et al.,, 2010; Gowen & Hamilton, 2013).

The empirical results reported in the thesis provide initial evidence for certain
aspects of the emerging Bayesian hypotheses for ASD, while also pointing to how
these hypotheses may be refined. For instance, the intact perceptual experience of
the rubber hand illusion suggest that the influence of long term expectations

regarding body ownership on perception are not significantly diminished in ASD,
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while altered kinematic effects of the illusion suggest that the interaction between
shorter term expectations and proprioceptive feedback occurs differently in ASD
compared to controls. Also examined in the present thesis was how autistic traits
modulate performance on a novel statistical learning task (Chapter 4). This
experiment provided evidence against the basic hypothesis that autistic traits are
associated with a persistent overweighting of incoming information against
existing expectations. This goes against the idea of a persistent difference in the
weighting of sensory information (or prior expectations), which, as discussed in
Chapter 1, might instead be developed in terms of a deficit in volatility processing.
Together, these studies of multisensory processing, reach kinematics and
statistical learning help to highlight that differences in the processing of sensory
information may manifest in nuanced ways. Progress with Bayesian models may
be made by considering factors such the operation of expectations that have
developed over different timescales, and context-dependency in how sensory

information is integrated with prior expectations.

Moving forward, there is an opportunity now to test Bayesian hypotheses about
ASD more directly, including across psychophysical, electrophysiological and
pharmacological domains. The recent emergence of techniques for modelling the
role of hierarchical volatility processing in Bayesian inference provides
opportunities to test finer-grained hypotheses about the specific deficit in ASD
(Mathys et al., 2011; Mathys et al.,, 2014). Work has begun in modelling aspects of
social interaction within a Bayesian framework (e.g., Sevgi, Diaconescu,
Tittgemeyer, & Schilbach, 2015), and there is further scope for exploring aspects of
social perception (e.g., Mareschal et al, 2013) and mentalising in a Bayesian
framework for ASD; for instance, in terms of the role of state-dependent noise and
volatility processing in modulating differences in ASD in these functions. An
ongoing challenge will be in relating the somewhat heuristic level of description
afforded by Bayesian models of brain function to the reality of the finer neural
circuits that implement the processing of information in the brain. Importantly,
even if we are agnostic about the veracity of Bayesian hypotheses for ASD, these

theories motivate research into processes such as the role of sensory uncertainty
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in modulating perceptual function that are likely to provide important insights into

the nature of this condition.

There are many facets of brain function that can be related to the core activity of
representing the state of the world based on ambiguous sensory data.
Consequently, individual differences in the unconscious processing of sensory
information in the brain potentially underlie many aspects of our conscious life
and behaviour. This is a fascinating field of study because it provides a novel and
computationally substantiated perspective on how the world that an individual
experiences is generated in their sensory system. Moreover, this theoretical
approach holds promise for shedding light on how conditions such as ASD, in
which a diverse pattern of behavioural characteristics significantly impedes
quality of life, emerge from systematic differences in the functioning of the nervous
system. Due to the potential of Bayesian theories to span cognitive, computational
and neural levels of description, this approach may be an important step towards
developing medical treatments for the symptoms of ASD that cause distress (e.g.,

sensory hypersensitivities).
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