Computational Screening of Soft Materials Systems with Application to Nano-**Lubrication Systems**

Peter T. Cummings

Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN Vanderbilt University Multiscale Modeling and Simulation (MuMS) Center, Nashville, TN

Motivation - Computational Materials Discovery

- □ Computational discovery of new materials is emerging as new subfield of computational materials science developing out of the Materials Genome Initiative (MGI), e.g.:
 - o The Materials Project
 - https://materialsproject.org
 - Properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries.
 - Based on use of low-level electronic structure methods on crystalline (ordered) materials

o Screening of metal-organic frameworks (MOFs)¹

- 137,953 hypothetical MOF structures generated
 - Each MOF evaluated for methane storage at 35 bar and 298 K using grand canonical Monte Carlo
- ~300 MOFs had higher methane-storage capacity at 35 bar than current world record

o Crowdsourced Clean Energy Project database at H

- http://www.molecularspace.org
- Data and analyses on 2.3 million candidate compounds for organic photovoltaics
 - Ab initio methods applied to single molecules, linking structural and electronic properties

[1] Wilmer, et al., Large-scale screening of hypothetical metal–organic frameworks. Nature Chemistry, 4 (2011) 83-89. doi:10.1038/nchem.1192

 $https://www.mgi.gov/sites/default/files/documents/materials_genome_initiative-final.pdf and the set of the s$

Motivation - MGI for Soft Matter

□ In soft matter, predominant physical behaviors occur at energy scales comparable with k_BT Quantum aspects generally unimportant

- o Weak dispersion interactions frequently dominate
 - Contrast with hard materials
 - Energy scales large by comparison to k_BT
 - Relatively easy to predict properties since atoms/molecules are typically in crystalline lattice
- o It can be difficult to predict properties directly from atomic or molecular constituents
 - Soft matter often self-organizes into mesoscopic physical structures that are much larger than microscopic scale yet much smaller than the macroscopic scale
 - Macroscopic properties are result of mesoscopic structure
 - Hard materials typically have no mesoscopic structuring
 - Many steps are needed to gather properties based on a given chemistry and condition

The Molecular Simulation and Design Framework

□ Motivation - develop a platform for performing MGI-style screening of soft-matter systems

o Goal:

o The procedures grouped into the arrow can be considered a "cottage industry" that is not always easy to reproduce

- Only a few people have the knowledge to reproduce the specific simulation
 - Procedures are not always well documented/described
 - The properties may depend on the exact details of the procedures
- Ad hoc tools/scripts are not always made available
 - Software may be highly specific and not extensible
 - Software may be poorly written and not be well validated

SCHOOL OF ENGINEERING

MUMS

5

A Molecular Simulation and Design Framework

Motivation - develop a platform for performing Materials Genome Initiative (MGI) style screening of soft-matter systems

A Molecular Simulation and Design Framework

Motivation - develop a platform for performing Materials Genome Initiative (MGI) style screening of soft-matter systems

- o To do so, need to automate each of these steps and be able to combine them together
 - Model-Integrated Computing (MIC)
 - Developed by Vanderbilt researchers in the Institute for Software Integrated Systems (ISIS)
 - Used in wide variety of applications where scientific/engineering workflows require automation and integration to achieve complex goals
 - Car manufacturing assembly line automation and control (GM)
 - Health records management (NIH)
 - Amphibious infantry fighting vehicle design (DARPA)
 - MIC involves meta-language abstraction
- o MoSDeF is outgrowth of three NSF grants joint with ISIS
 - NSF CDI CBET 1028374, NSF SSI ACI 1047828, NSF SSE ACI 1535150
 - MoSDeF also seeks to address simulation reproducibility

SCHOOL OF ENGINEERING Sztipanovits, J. Karsai, G., "Model-integrated computing," Computer, 30, 110-111 (1997)

A Molecular Simulation and Design Framework

□ Why does MoSDeF promote simulation reproducibility and why is this important?

- o In a science-skeptic world, the "reproducibility crisis" in scientific research has emerged as critical issue
 - http://www.nature.com/news/reproducibility-1.17552
- o Reproducibility in computational science is becoming a forefront issue in the computational science community
 - Automation is a key device for reproducibility
 - Sandve, G. K. et al. (2013), Ten simple rules for reproducible computational research, PLOS Comp. Bio. (editorial), Vol. 9(10):1–4, doi: 10.1371/ journal.pcbi.1003285
 - "Reproducible computational research, in which all details of computations—code and data—are made conveniently available to others, is a necessary response to [the credibility] crisis."
 - Donoho, D. et al. (2009), Reproducible research in computational harmonic analysis, Comp. Sci. Eng. 11(1):8–18, doi: 10.1109/MCSE.2009.15
 - GUIs are the enemy of reproducibility
 - Lorena A. Barba, George Washington University; see her blog <u>http://lorenabarba.com/category/blog/</u> and "The hard road to reproducibility", Science, 354(6308):142 (October 2016)
- Scriptability, open-source, complete data dissemination needed to reproduce published simulations are goals inherent to MoSDeF

SCHOOL OF ENGINEERING

A Molecular Simulation and Design Framework

Motivation - develop a platform for performing Materials Genome Initiative (MGI) style screening of soft-matter systems

Missing Functionality in Existing Tools

□ Surface functionalization

- o Need ability to express patterns
- o Expose parameters that tune chemistry

□ Flexible force field development and dissemination

- o Few force fields exist for all chemistries we care about
- o Not certain how accurate existing FFs will behave under high shear conditions
- o Collaborators and group members developing for specific systems
- Desire to use different simulation engines (meta-level abstraction)
 - o LAMMPS, HOOMD, Gromacs all currently used in group
- MoSDeF is open source, built on open source components

Nuzzo et al., JACS, 1983, 105

mBuild: a Hierarchical Molecular Builder

□ Sketch or otherwise create simple components (dashed boxes)

□ Combine operations on components into more complicated structures

- o Our applications (nanotribology, supercapacitors, skin lipid self-assembly) typically involve interfacial systems
- □ Everything is scriptable

https://github.com/mosdef-hub/mbuild.git

Example: polymerization

import mbuild as mb
from mbuild.lib.moieties import CH2

polymer = mb.Compound()

last_monomer = CH2()
polymer.add(last_monomer)

for _ in range(10):
 current_monomer = mb.clone(last_monomer)

polymer.add(current_monomer)
last_monomer = current_monomer

□ Above code with additional features is provided as mb.Polymer

SCHOOL OF ENGINEERING

Exposing Tunable Chemistry as Simple Variables

monolayer = AlkaneMonolayer(chain_length, pattern, n_tiles)

SCHOOL OF ENGINEERING C. Klein, J. Sallai, T.J. Jones, C.R. Iacovella, C. McCabe, P.T. Cummings, A Hierarchical, Component Based Approach to Screening Properties of Soft Matter, in: Springer, Singapore, 2016: pp. 79–92. doi:10.1007/978-981-10-1128-3_5.

Using mBuild: CER Multilayer

Atom Typing and Applying Force Fields

Need general purpose atom typer

- o Arbitrary chemistry means we cannot rely on templates
- o Needs to be easy to develop new atom types and associated logic
- o Don't want to rely on rigid rule hierarchies for atom type definitions
 - Ordered least to most general

Removing gap between logic and parameters

- o Parameters exist in various files
- o Logic often encoded as series of if/else statements deep in source code
- o Why not combine the two?
- □ Similar concept being developed by Open Force Field group
 - o https://github.com/open-forcefield-group/

Foyer: Applying and Disseminating force fields

□ End user should only require

- o Force field file
- o Chemical topology

```
from foyer import Forcefield
import parmed as pmd
untyped_ethane = pmd.load_file('ethane.mol2', structure=True)
oplsaa = Forcefield(forcefield_files='oplsaa.xml')
ethane = oplsaa.apply(untyped_ethane)
# Save to any format supported by ParmEd
ethane.save('ethane.top')
ethane.save('ethane.gro')
```


Adding Atom Type Definitions to OpenMM XML

OpenMM XML file convenient to extend

- o Existing infrastructure
- o Great support for custom functional forms

<ForceField> <AtomTvpes> <Type name="opls_135" class="CT" element="C" mass="12.01100" def="[C;X4](C)(H)(H)H" desc="alkane CH3"/> <Type name="opls_140" class="HC" element="H" mass="1.00800" def="H[C;X4]" desc="alkane H"/> </AtomTypes> </ForceField>

□ Add machine/human readable SMARTS

o First atom token in SMARTS indicates the type that we are defining

Optionally, add colloquial description and DOI

o Adding DOI produces BibTeX file when applying force field

Promoting Dissemination of Force Fields

- □ Template repo for building foyer compatible force field files
 - o https://github.com/mosdef-hub/forcefield_template
 - o Skeleton force field file
 - o Skeleton testing setup
 - User needs to only add correctly typed .mol2 files
 - o Tutorial for adding SMARTS definitions
 - Walkthrough for adding more and more complex definitions
 - Testing with small example set of hydro carbons from alkanes through alkenes and benzene
 - How to run tests with py.test and enable TravisCl for your repo
- □ Force field development within our group
 - OPLS-AA compatible parameters for perfluoroethers

DOI 10.5281/zenodo.56807

- o Coarse-grained models for skin lipids
- o Automating force field derivation for supercapacitor electrodes

SCHOOL OF ENGINEERING

MUMS

MetaMDS - Overview

□ MetaMDS was designed with the goal of being able to perform screening simulations

o It can submit large batches of jobs with various input parameters

□ MetaMDS relies on 3 key inputs:

- o mBuild "recipe"
 - This tells metaMDS how to construct the system
 - Allows us to screen over not just thermodynamic properties, but over different structures/molecules/etc.
- o Simulation template
 - This is a script that encapsulate the underlying simulation routines/calls
- o List(s) of parameters to vary
 - These parameters are used to change thermodynamic states in the simulation script and change inputs to the mBuild recipe
 - These lists could also include different forcefields to evaluate

MetaMDS - Screening

- □ By using simulation templates, mBuild recipes, and simple parameter lists, we can create a streamlined, abstracted interface
 - o Users only need a few lines of code to do large scale, complex screening
 - o Individual elements can be easily tested before large scale deployment
 - o All procedures are well documented and described

```
In [ ]: # Initialize a simulation instance with a template and some metadata
                   sim = mds.Simulation(name='monolayer', template=create run script, output dir='output')
                   chain lengths = [8, 12, 16, 20]
                   for length in chain lengths:
                      parameters = { 'chain length': length,
                                    'n molecules': 100,
                                    'forcefield': 'OPLS-aa',
                                    'build func': build monolayer}
                       # Parameterize our simulation template
                       sim.parametrize(**parameters)
          In [ ]: # Run
                   sim.execute all(hostname='rahman.vuse.vanderbilt.edu', username='ctk3b')
          In [ ]: sim.sync all()
                                                                                                          CHOOL OF ENGINEERING
                              User interface is Python notebook (c.f. Mathematica)
```

Building a community

- o Hackathon in February with representation from 11 research groups and ExxonMobil
- o Goal of learning how to use MoSDeF and become co-developers
 - Add forcefields
 - Currently support OPLS, TRAPPE, specific forcefields (e.g., ionic liquids)
 - Wish to add other standard forcefields (e.g., bio forcefields, ReaxFF generic and specialized) plus workflows to automate forcefield derivation
 - Add simulation workflows for specific properties and applications
 - Currently support many standard workflows, coarse-graining (MSIBI), etc
 - LONG wish list!
 - Add simulation packages
 - Currently support LAMMPS, GROMACS, HOOMD-Blue
 - Wish to add open-source AIMD codes, Monte Carlo (e.g., Cassandra), other MD codes
- o Plan to jointly submit NSF SSI to support next MoSDeF cycle

SCHOOL OF ENGINEERING

Putting it All Together: Signac Workflow Manager

Recently adopted in place of metaMDS

- Define heterogenous parameter spaces
- Provides link between data and metadata
 - o Every job and its data is tied to a point in parameter space
 - o Provides glue for seamless building, execution and analysis

Developed by Simon Adorf in Glotzer group

MUMS

SCHOOL OF ENGINEERING

Adorf et al., <u>arXiv:1611.03543</u> [cs.DB]

Putting It All Together

Our tribology operations

- o mBuild + save with foyer
- o Minimize
- o Equilibrate
- o Shear at range of normal load

□ Customize compute environment

- o Defaults provided for common envs
- o Collection of envs for major computing centers
 - OLCF, NERSC, NICS

□ Execute and monitor

SCHOOL OF ENGINEERING

Putting It All Together

Our tribology operations

- o mBuild + save with foyer
- o Minimize
- o Equilibrate
- o Shear at range of normal load

Customize compute environment

- o Defaults provided for common envs
- o Collection of envs for major computing centers
 - OLCF, NERSC, NICS

class MyTorqueEnvironment(flow.environment.TorqueEnvironment): hostname_pattern = 'mymoabcluster.university.edu' cores_per_node = 16

@classmethod

def mpi_cmd(cls, cmd, np):
 return 'mpirun -np {np} {cmd}'.format(n=np, cmd=cmd)

@classmethod

def script(cls, _id, nn, walltime, ppn=None, **kwargs):
 if ppn is None:
 ppn = cls.core_per_node
 js = super(MyTorqueEnvironment, cls).script()
 js.writeline('#/BS -i oe')
 js.writeline('#PBS -i nodes={}:ppn={}'.format(nn, ppn))
 js.writeline('#PBS -i walltime={}'.format(format_timedelta(walltime)))
 js.writeline('#PBS -N {}'.format(_id))
 js.writeline('#PBS -N {}'.format(_id))
 return js

Execute and monitor

SCHOOL OF ENGINEERING

>>> project = MyProject() >>> project.print_status(detailed=True, params=('a',)) Status project 'test-project': Total # of jobs: 10 label progress Detailed view: job_id S next_job a labels 108ef78ec381244447a108f931fe80db U 1 initialized, processed be01a9fd6b3044cf12c4a83ee9612f84 U 2 initialized, processed 32764c28ef130baefebeba76a158ac4e U process 3 initialized # ... >>>

Intro to Nanotribology

- Micro- and nano-electromechanical devices (MEMS and NEMS) used in a wide range of applications
 - o Accelerometers
 - Airbag deployment
 - Consumer electronics
 - Apple iPhone, Nintendo Wii
 - o Micromirror arrays
 - HD projectors (DLPTV)
 - o Sensors
- Typically applications avoid parts in contact
 - o Surface forces such as adhesion, stiction, friction, and wear dominate
- Lubrication schemes needed for devices to reach full potential

_

Monolayer Lubricants

Considerations for nanoscale lubricants

- o Low surface energy
 - Minimize adhesion
- Low friction coefficient (μ)
 - Minimize friction
- o Robust/durable
 - Wear-resistant
- □ Alkylsilane monolayers
 - o Densely-packed chains reduce surface energy, protect underlying surface from wear
 - Low adhesion between surfaces even in the presence of water
 - o Friction coefficients vary widely by composition, density, and chain length
 - μ reduced to < 50% of value for bare silica¹
 - o Durability concerns

SCHOOL OF ENGINEERING

Alkanethiol monolayer on gold

Smith et al., Prog. in Surf. Sci., 2004

Alkylsilane monolayer on silica

Booth et al., Langmuir, 2011

Screening Monolayers (with metaMDS)

Proposed hypotheses in the literature

- o More flexible chains reduce friction force on amorphous substrates
- o Crystalline monolayers imposed artificially induced ordering
 - Leads to lower friction coefficients

Design space:

- o Crystalline β -cristobalite and amorphous silica
- o Alkanes and polyethylene glycols (PEG)
- o Varied chain length and surface coverage

Klein, C., Sallai, J., **Jones, T. J**., lacovella, C. R., McCabe, C. Cummings, P.T., "A Hierarchical, Component Based Approach to Screening Properties of Soft Matter," In Foundations of Molecular Modeling and Simulation: Select Papers from FOMMS 2015; R. Q. Snurr; C. S. Adjiman and D.A. Kofke, Ed.; Springer Singapore: Singapore, 2016; pp 79-92.

Nematic Order

- □ Nematic order measure of the global orientational ordering of monolayer chains
 - o 0 = isotropic
 - o I = perfectly ordered

$$S_2 = \langle \frac{3}{2} \cos^2 \theta - \frac{1}{2} \rangle$$

- PEG is found to feature lower nematic order than alkanes, particularly at lower surface coverage
 - o Floppier/more liquid-like

Klein, C., Sallai, J., **Jones, T. J.**, lacovella, C. R., McCabe, C. Cummings, P.T., "A Hierarchical, Component Based Approach to Screening Properties of Soft Matter," In Foundations of Molecular Modeling and Simulation: Select Papers from FOMMS 2015; R. Q. Snurr; C. S. Adjiman and D.A. Kofke, Ed.; Springer Singapore: Singapore, 2016; pp 79-92.

Surface Coverage has Greater Impact on Short Chains

□ Subset of friction force data for polyethylene glycol monolayers on crystalline surface

Klein, C., Sallai, J., **Jones, T. J**., lacovella, C. R., McCabe, C. Cummings, P.T., "A Hierarchical, Component Based Approach to Screening Properties of Soft Matter," In Foundations of Molecular Modeling and Simulation: Select Papers from FOMMS 2015; R. Q. Snurr; C. S. Adjiman and D.A. Kofke, Ed.; Springer Singapore: Singapore, 2016; pp 79-92.

MUMS

SCHOOL OF ENGINEERING

Friction Forces

 $\hfill\square$ Similar behavior for PEG and alkanes on amorphous surface

□ Strange results for alkanes on crystalline surfaces

Crystalline Monolayers Can Exhibit artifacts

Crystalline monolayers impose artificial ordering on monolayers

- o Portions of monolayer can get trapped in different configurations
- o High forces perpendicular to shear direction

SCHOOL OF ENGINEERING

Terminal Group Chemistry

- Terminal groups form the boundary at the monolayer interface, thus having important effects on tribology
 - o Methyl most common low surface energy
- □ Higher friction forces in hydroxyl-terminated monolayers
 - o Attributed to H-bonding across the monolayer interface
- Phenyl terminal groups can improve durability by resisting asperity penetration
- □ Only a few chemistries studied in the context of lubrication

Yu et al., Tribol. Lett., 2009

 $F_{\text{friction}} = F_0 + \mu F_{\text{normal}}$

MUMS

42

Next Steps

□ Large parameter set screening

- o Other factors which affect tribological behavior
 - Different tether chemistry
 - Mixed monolayers
 - Mixed length, end-functionalization, tether chemistry
 - Asymmetric functionalization different end groups on tethers
 - For N ways to produce a monolayer, N(N+1)/2 asymmetric functionalization scenarios
 - Identified ~45,000 variations to be screened
 - Hope to perform on OLCF Titan in the next few months

a. (

SCHOOL OF ENGINEERING

Conclusions

- To perform MGI-style screening of soft materials requires automating many steps currently largely performed by hand
- □ MoSDeF is an environment for automating molecular simulations
 - o mBuild, Foyer, metaMDS,....
- □ Simulations performed within MoSDeF are completely reproducible
 - o All steps are scripted, which can be distributed online through github
 - In line with identified best practices for reproducibility of computational research
- MoSDeF is being co-developed with other groups interested in transparency, reproducibility, usability, and extensibility (TRUE)
- Application to nanoscale lubrication is one example of application of soft materials screening made possible by MoSDeF and other tools (Signac)
- \Box All resources available on github with version control
 - o MoSDeF Hub https://github.com/mosdef-hub
 - o Foyer <u>https://github.com/mosdef-hub/foyer</u> and mBuild <u>https://github.com/mosdef-hub/mbuild</u>

SCHOOL OF ENGINEERING

Acknowledgments

UVU ChBE

- o Clare McCabe
- Chris lacovella 0
- **Christoph Klein** 0
- Andrew Summers 0
- Justin Gilmer 0
- o Trevor Jones

- o Akos Ledezci
- Gabor Karsai 0
- Janos Sallai 0
- o Tengyu Ma

SCHOOL OF ENGINEERING

Funding

- o NSF ACI 1047828: Development of an Integrated Molecular Design Environment for Lubrication Systems (iMoDELS)
- o NSF CDI CBET 1028374: Cyber-Enabled Design of **Functional Nanomaterials**
- o NSF SSE ACI 1535150: Development of a Software Framework for Formalizing Forcefield Atom-Typing for Molecular Simulation

□ Resources

- o National Energy Research Supercomputing Center (NERSC), Lawrence Berekeley Laboratory
- o Oak Ridge Leadership Class (OLC), Oak Ridge National Laboratory

MUM