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Abstract

In data mining, the conventional approach to measuring similarities of data instances

is primarily based on a geometric model, where data are assumed to be embedded in a

multidimensional space and the similarity of two instances is estimated as the inverse of

their distance in the space. Minkowski distance (also known as `p-norm with p > 0) and

cosine distance are the most widely-used similarity measures. Their performances vary

significantly in different data distributions for two main reasons: (i) the similarity of two

instances is solely based on their spatial positions in the space and it is independent of

the distribution of data; and (ii) the spatial distance is sensitive to units and scales of

measurement.

This thesis investigates a (dis)similarity measure where data distribution is the key de-

terminant of the measurement. It introduces a new data-dependent dissimilarity measure

called mp-dissimilarity (with p ≥ 0). mp-dissimilarity has exactly the same formulation as

the traditional `p-norm, except that the spatial distance of two instances in each dimension

is replaced with the probability data mass between them.

mp-dissimilarity differs from traditional distance-based measures in two ways: (i) data-

dependent dissimilarity: two instances in a dense region of the distribution are more

dissimilar than two instances in a sparse region, even if the two pairs have the same

geometric distance; and self-dissimilarity is also data-dependent, i.e., the dissimilarity of

two instances is data-dependent when their spatial distance is zero; and (ii) it is robust

to units and scales of measurement: the dissimilarity of two instances is based on the

data mass between them, which is robust to monotonic transformation of data in each

dimension. These two characteristics are particularly important in measuring similarities

of instances in high-dimensional spaces.
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High-dimensional data often lie in low-dimensional subspaces and many instances have

the same value in many dimensions, e.g., bag-of-words (BoW) representation of text doc-

uments where many vector components are zeros. Data-dependent dissimilarity, more

specifically data-dependent self-dissimilarity, provides a useful means to differentiate be-

tween instances. In addition, the properties of data objects in many applications are often

measured by different sensors using different units and scales; this information may not

be available after the data are collected. Therefore, the use of a measure which is robust

to units and scales of measurement provides at least more consistent or better similarity

results than the use of a measure which is not.

An analysis of mp-dissimilarity reveals that it is a generic data-dependent measure.

Existing data-dependent measures of rank difference and Lin’s probabilistic similarity are

special cases with p > 0 and p = 0, respectively, where the special cases have data-

independent self-dissimilarities but mp-dissimilarity has data-dependent self-dissimilarity.

The empirical evaluation conducted across a wide range of low-to high-dimensional

datasets from different applications (e.g., text, image, music etc.) shows thatmp-dissimilar-

ity produces at least more consistent or better task-specific performances than widely-used

distance-based measures (e.g., `p-norm and cosine distance) and existing data-dependent

measures (e.g., rank difference and Lin’s probabilistic similarity).

This thesis shows that fully data-dependent similarity (which includes data-dependent

self-similarity), and robustness to units and scales of measurement, are two important

characteristics of a similarity measure in order to produce consistent task-specific perfor-

mance across a wide range of datasets. The mp-dissimilarity introduced in this thesis is

one such measure, which has both of these characteristics.
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Chapter 1

Introduction

In this information age, data are everywhere in our daily life, such as social media, sales

transactions, health care and telecommunications. Massive volumes of data are being

added to different databases. Data stored in databases have no value unless they are

analysed to extract useful information and knowledge. The enormous volume of data is

impossible to analyse manually. Over the last few decades, computers have been widely

used to analyse these rapidly growing databases. Knowledge discovery from databases

(KDD) (Tan et al., 2006; Han and Kamber, 2006) is the process of extracting interesting

hidden patterns by analysing databases automatically. KDD comprises the following key

steps:

1. Data pre-processing: collecting data from multiple sources and cleaning data to

remove noise and irrelevant data.

2. Data mining: analysing pre-processed data using computers to extract useful infor-

mation.

3. Pattern evaluation: evaluating extracted patterns based on some measure and pre-

senting to users.

1.1 Data mining

Data mining is the process of discovering hidden patterns from data using computers and

artificial intelligence (Tan et al., 2006; Han and Kamber, 2006). Data-mining systems use

tools and techniques from computer science, mathematics and statistics. The nature and

type of interesting patterns extracted from data depend on application domains. Some

examples of data-mining tasks are as follows:

1. Anomaly detection: Identification of anomalous records in a given database, e.g.,

detection of fraudulent credit card transactions, intrusion detection in computer

networks, identification of extreme conditions in natural systems such as hurricanes

and earthquakes.

2. Classification: Classification of data into one of the predefined categories. This is

a widely-used data-mining task in many applications, such as character recognition

1
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(classifying hand-written characters into 26 alphabetical characters), email filter-

ing (classifying emails as spam or not) and cancer diagnosis (predicting whether a

tumour is benign or malignant).

3. Clustering: Automatic detection of data clusters. Some applications of clustering

are market segmentation in marketing, detecting communities in social networks,

identifying homologous gene sequences in bioinformatics.

4. Information retrieval: Retrieval of data records from a given database which are

relevant to the information needs of a user. It has a wide range of applications, e.g.,

recommending new songs to a user based on the songs they like, search engines (pre-

senting relevant information for a query), image retrieval (searching images similar

to a given image).

5. Association analysis: Discovery of interesting relationships between variables in a

given database. In market basket analysis, association rule mining is used to discover

co-occurrences of products in transactions. This is useful for making marketing

decisions such as pricing and product placement.

6. Regression: Predicting the value of a target variable of a data instance from the

values of its other variables. Predicting share prices in a stock market, and predicting

house prices in a real estate market are examples of regression tasks.

Different techniques and algorithms have been introduced to accomplish different data-

mining tasks, and many rely on similarities between data instances.

Measuring similarities of data instances is an essential core computation in many data-

mining tasks. For example, in content-based information retrieval (CBIR), also known as

query-by-example, the task is to rank instances in a given database with respect to their

similarities to a given query instance. Similarly, nearest neighbour (NN) search, which

is a core process in many data-mining algorithms designed to solve different data-mining

tasks, also uses (dis)similarities of data instances to find their nearest neighbour (most

similar) instances.

NN-based data-mining techniques are simple and intuitive, and they have been shown

to be effective in different data-mining tasks, such as kNN classification (Aha and Kibler,

1991), kMeans clustering (Macqueen, 1967), and kNN-based anomaly detection (Breunig

et al., 2000; Bay and Schwabacher, 2003).

The subject of this thesis is measuring similarities between data instances. It primarily

deals with the data-mining tasks of CBIR and kNN classification.

1.2 Similarity measures commonly used in data mining

In databases, a real-world entity is represented as a data instance defined by a fixed

number of selected features or properties. Let D be a collection of N data instances

{x(1),x(2), · · · , x(N)} where each instance x is represented as a vector of its values of M

features 〈x1, x2, · · · , xM 〉. Let s(x,y) ∈ R (where R is a real domain) be the measure of

similarity of two instances x and y.
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The conventional approach to estimating s(x,y) is primarily based on a geometric

model where D is assumed to be embedded in an M -dimensional metric space X , and

s(x,y) is estimated as the inverse of their spatial distance in X—the higher the distance

between x and y, the less their similarity. Because X is assumed to be a metric space,

s(x,y) has nice mathematical properties which can be exploited in solving many data-

mining problems (Deza and Deza, 2009).

Minkowski distance (also known as `p-norm where p > 0) and cosine distance (also

known as angular distance) (Deza and Deza, 2009) are the two most widely-used distance

measures. The Minkowski distance of x and y is estimated by aggregating their spatial dis-

tances in every dimension. Euclidean distance (also known as `2-norm) is a popular choice

of distance measure as it intuitively corresponds to the distance in the three-dimensional

world humans experience in daily life. The cosine distance of two vectors is proportional

to their Euclidean distance if the vectors are normalised to be of unit lengths.

1.3 Thesis motivations: Limitations of distance-based simi-

larity measures

Although distance-based measures perform well in many problems, they have the following

three limitations which motivated this thesis.

1.3.1 Task-specific performances vary significantly on different data dis-

tributions

The task-specific performances of distance-based similarity measures (e.g. Euclidean dis-

tance or cosine distance) depend on the distribution of data, and a distance measure that

performs well in one distribution may perform poorly in others. A huge variation in per-

formance can be observed when a distance measure is used in different data distributions.

Therefore, a distance measure must be chosen carefully for the given dataset.

It has been suspected that the huge variation in the performance of a distance-based

similarity measure in different data distributions occurs because the distance between two

instances x and y is solely based on their geometric positions in X , and the data distribu-

tion is not taken into consideration. Psychologists have expressed their concerns with the

geometric model of similarity (Tversky, 1977; Krumhansl, 1978). They have argued that

the judged similarity between two instances is influenced by the data distribution between

the two instances, i.e., the similarity of two instances is data-dependent.

Krumhansl (1978) introduced a distance-density model of similarity and suggested

that two instances in a relatively dense region would be less similar than two instances

of equal distance but located in a less dense region. For example, consider evaluating the

similarity between two apples (red and green) in two different contexts, where the two

apples are among (a) apples of different colours or (b) pears of different colours, as shown

in Figure 1.1. The two apples among apples of different colours in case (a) are perceptually

less similar than the same two apples among pears of different colours in case (b). It is
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(a) Apples (b) Pears

Figure 1.1: Judged similarity of the same red and green apples in two different contexts
(Images source: Google Image, 2015).

interesting to note that the two apples are perceived to be less similar in case (a), mainly

because there are more instances of the same kind in case (a) than in case (b).

In order to improve the task-specific performance of a distance measure, particularly

Euclidean distance, in a given dataset, distance metric learning techniques (Weinberger

et al., 2006; Yang, 2006; Weinberger and Saul, 2009; Wang and Sun, 2015) have been used.

In distance metric learning, data in the original space X are projected to a new space Z
(often lower dimensional than X ) where the task-specific performance of the distance

measure can be maximised in the given dataset.

An appropriate Z is learned by optimising task-specific constraints. For example, in a

classification problem, Z is learned such that instances belonging to the same class become

closer to each other (similarity constraints) and instances belonging to different classes are

separated further apart (dissimilarity constraints) (Weinberger et al., 2006).

Thus far, distance metric learning has been shown to produce better task-specific

performance than using distance measures in the original space across different datasets

in the classification task (Weinberger et al., 2006; Weinberger and Saul, 2009).

Because distance metric learning is tailored to the specific task at hand, it is not a

general-purpose similarity measure like Euclidean distance. A distance metric learned

for one task may not be good for other tasks in the same dataset. In addition, it is

computationally expensive in high-dimensional and/or large datasets because it requires

optimisation to find the best Z.

1.3.2 Sensitivity to units and scales of measurement

In the geometric model, there is an implicit assumption that a unit distance implies the

same degree of similarity everywhere in the space, regardless of scales or units of measure-

ment. This is referred to as the interval scale assumption by Stevens (1946). However, this

assumption is often violated in real-world problems where feature values are measured in

different units and scales. For example, if the annual incomes of individuals are measured

in the logarithmic scale of base 10, w = $50k, x = $150k, y = $1100k and z = $1200k

become w′ = 4.70, x′ = 5.18, y′ = 6.04 and z′ = 6.08. Although x − w = z − y in the

original scale, x′ − w′ > z′ − y′ in the logarithmic scale. In other words, distance-based

similarity measures are sensitive to units and scales of measurement.
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The impact of the interval scale assumption can be even worse in multidimensional

datasets, where different feature values are often measured by different sensors using differ-

ent scales and units of measurements. For example, in the previous example of individuals,

income can be measured in dollars (which can be in the order of tens or hundreds of thou-

sands) and age can be measured as years in normal integer scale (which is in the order

of tens to a hundred). The unit distances in these two features do not provide the same

amount of information about the similarity of two individuals. Such differences in many

features can have a significant effect on the similarity of two individuals using distance

measures.

In many data-mining problems, the units and scales of measurement may not be avail-

able where only magnitudes are provided. In order to address this issue to some extent,

data pre-processing techniques such as min-max normalisation and standardisation are

used (Duda et al., 2000). Min-max normalisation ensures that data in each dimension are

in the same range, whereas standardisation ensures that the data in each dimension have

zero mean and unit variance. However, these data pre-processing techniques are sensitive

to outliers. It is difficult to choose the most appropriate pre-processing technique without

any prior knowledge.

In order to deal with this issue, researchers have used different measures which do not

rely on the interval scale assumption. One simple solution is to assume that data are

ordinal and use measures such as (1) rank difference - distance after rank transformation

(Conover and Iman, 1981); and (2) Lin’s information theoretic measure (Lin, 1998). How-

ever, these methods have high time complexities, particularly when two instances given for

the similarity measurement are not in the observed data, limiting them to small datasets

only.

It is interesting to note that measures such as rank difference and Lin’s probabilistic

similarity are data-dependent for x 6= y only, i.e., their similarity will be higher if they lie

in a sparse region than in a dense region, as suggested by psychologists. For example, in

the above example of annual incomes, two individuals earning y = $1100k and z = $1200k

become more similar to each other than two other individuals earning w = $50k and

x = $150k, even though z − y = x − w = 100k because there are many more individuals

earning in [50k, 150k] than those earning in [1100k, 1200k].

However, for x = y, the similarity is data-independent even with these measures, i.e.,

self-similarity of data is a constant everywhere in the space. Because of the constant self-

similarity of data, two individuals earning $1m each become equally similar to each other

as two other individuals earning $50k each, even though there are many more individuals

earning $50k than those earning $1m. Psychologists argue that the former are judged to

be more similar than the latter by humans.

Other similarity measures which do not rely on the interval scale assumption are based

on random forest (Shi and Horvath, 2006). Similarly, ReFeat (Zhou et al., 2012) uses a

form of random forest called “Isolation Forest” (iForest) (Liu et al., 2008, 2012), which

was originally introduced for anomaly detection, to solve the content-based multimedia

information retrieval (CBMIR) task. Although these measures are shown to produce better
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task-specific results than distance-based measures, they require large ensemble sizes to

produce good results, and are not appropriate in high-dimensional datasets. Furthermore,

a problem with ReFeat is that it does not guarantee that relevant instances lie in the same

local neighbourhood, i.e., x can be more relevant to q than y even though y lies in closer

proximity of q than x.

1.3.3 Curse of dimensionality

The effectiveness of distance measures such as Minkowski distance decreases as the number

of dimensions (M) increases. In high-dimensional space, data distribution becomes sparse,

which makes the concepts of distance and nearest neighbour meaningless, i.e., all pairs of

data instances are almost equidistant for a wide range of data distributions and distance

measures. This is referred to as the “curse of dimensionality” (Beyer et al., 1999; Aggarwal

et al., 2001; François et al., 2007; Radovanović et al., 2010).

In order to deal with the curse of dimensionality issue, different dimensionality reduc-

tion techniques (Fodor, 2002; Van der Maaten et al., 2009) have been used. These include

feature selection or the projection of data into a lower-dimensional space.

In feature selection, the assumption is that all available features are not relevant to

represent the underlying concept of given data. The task of feature selection is to remove

irrelevant features and retain the most salient features (Guyon and Elisseeff, 2003). Fea-

ture selection requires a search strategy over the possible combinations of features and

evaluation criteria to be optimised (Molina et al., 2002).

Projecting data into a lower-dimensional subspace is another widely-used dimensional-

ity reduction technique. The central assumption here is that high-dimensional data often

lie in a low-dimensional manifold. There are different linear and non-linear projection-

based dimensionality reduction techniques (Fodor, 2002; Van der Maaten et al., 2009).

Principal component analysis (PCA) (Jolliffe, 2005), kernel PCA (KPCA) (Cristianini and

Shawe-Taylor, 2000) and random projection (Kaski, 1998; Achlioptas, 2001) are commonly-

used projection-based dimensionality reduction techniques.

Note that distance metric learning (Weinberger et al., 2006; Yang, 2006; Wang and

Sun, 2015) can also be viewed as a dimensionality reduction technique, because data are

often projected into a lower-dimensional new space Z where the task-specific performance

of a distance measure can be maximised in the given dataset.

Although the projection-based dimensionality reduction techniques including distance

metric learning maintain the geometric interpretation of data in the projected space, it

is difficult to interpret the meaning of the new dimensions. Furthermore, techniques

such as KPCA have high computational complexity in large datasets as they require the

calculation of pairwise distances of data instances.

1.4 Thesis aims

Motivated by the limitations of distance measures discussed in Section 1.3, psychologists’

arguments and existing non-distance-based approaches, such as Random Forest (Shi and
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Horvath, 2006), ReFeat (Zhou et al., 2012), rank difference (Conover and Iman, 1981)

and Lin’s probabilistic measure (Lin, 1998), this thesis investigates a fully data-dependent

similarity measure (where even self-similarity is data-dependent), which is also robust to

units and scales of measurement.

Data-dependent self-similarity and robustness to units and scales of measurement are

important characteristics of a measure for the measurement of similarities between data

instances in high-dimensional spaces for the following reasons:

1. High-dimensional data often lie in low-dimensional subspaces and many data in-

stances have the same value in many dimensions. Data-dependent self-similarity is

particularly useful in this case to differentiate between instances. In each dimension,

having the same feature value which is very frequent (high probability) in a given

dataset contributes less in the overall similarity of two instances than having the

same feature value which is rare (low probability) in the dataset. However, they

both contribute equally in distance-based similarity measures.

2. In a distance-based similarity measure, the effect of the difference in units and scales

of measurement is more severe in high-dimensional datasets than in low-dimensional

datasets. The effect of similarity in differentiating instances is weakened if the unit

or scale of measurement is vastly different in different dimensions, and the degree of

weakening increases as the number of dimensions increases.

A similarity measure which is fully data-dependent and robust to different units and

scales will be less affected by the curse of dimensionality and is expected to produce bet-

ter task-specific performance than distance-based similarity measures in high-dimensional

datasets.

Therefore, this thesis aims to:

1. Develop a new (dis)similarity measure which is fully data-dependent and robust to

units and scales of measurement.

2. Verify that the new measure (a) produces better task-specific performance than widely

used distance-based measures and existing data-dependent measures in different datasets

from different application domains; and (b) is robust to units and scales of measure-

ment.

3. Test the hypothesis that the new measure produces better task-specific performance

than distance-based similarity measures in high-dimensional spaces (i.e., it is less

affected by the curse of dimensionality).

1.5 Thesis contributions

This thesis makes the following main contributions:

1. It introduces a generic data-dependent dissimilarity measure called “mp-dissimilarity”

(p ≥ 0), where the similarity of two instances in each dimension is based on the prob-

ability data mass between them instead of their spatial distance. In comparison to
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distance measures, mp-dissimilarity has the following two distinguishing character-

istics:

(a) Fully data-dependent dissimilarity including self-dissimilarity. Two instances

in a dense region of the distribution are more dissimilar than two instances in

a sparse region, even if the two pairs have the same spatial distance and even

if the spatial distance is zero.

(b) Robust to units and scales of measurement. In each dimension, the dissimilarity

of two instances is based on the data mass between them which is robust to the

monotonic transformation of data.

2. It analyses the characteristics and relationships of mp-dissimilarity with existing

data-dependent measures and reveals thatmp-dissimilarity is a generic data-dependent

measure. Existing data-dependent measures of rank difference and Lin’s probabilis-

tic measure are its special cases with p > 0 and p = 0, respectively. These special

cases have data-independent self-dissimilarities but the general version has data-

dependent self-dissimilarity.

3. It evaluates the performance of mp-dissimilarity with existing widely-used data-

independent (distance-based) and data-dependent (dis)similarity measures in a wide

range of low-to high-dimensional datasets from different application areas, includ-

ing text, image and music. The empirical results show that mp-dissimilarity often

produces better or at least more consistent task-specific performances than other

contenders across different datasets.

The superior performance of mp-dissimilarity over distance-based measures in high-

dimensional datasets, such as bag-of-words (BoW) text datasets, confirms that a measure

which is fully data-dependent and robust to units and scales of measurement is less affected

by the curse of dimensionality than distance-based similarity measures.

In addition to the primary contribution of developing the data-dependent dissimilarity

measure of mp-dissimilarity, this thesis makes the following secondary contributions:

i. It introduces the notion of “relative mass” to improve the performance of ReFeat.

Using relative mass, the relevance of an instance x with respect to a query q is

measured in each tree as the ratio of data mass in two nodes: (a) the leaf node in

which q falls; and (b) the deepest node shared by both x and q in the tree. The rel-

evance measure based on relative mass guarantees that two relevant instances lie in

the same local neighbourhood. The concept of relative mass also overcomes a weak-

ness of iForest in anomaly detection being not able to detect local anomalies. The

similarity measure based on the relative mass motivated the work in mp-dissimilarity.

ii. It improves the runtime complexities of rank difference and Lin’s probabilistic sim-

ilarity measure to be of the same order as those of distance-based measures and

mp-dissimilarity. This improvement makes them feasible to run in large datasets.

iii. It identifies the shortcomings of the underlying assumptions of term-weighting schemes

(Salton and Buckley, 1988; Manning et al., 2008) employed in existing BoW docu-

ments similarity measures such as cosine (Salton and Buckley, 1988), and provides
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an alternative assumption which is more congruous with the requirements of inter-

document similarity measurement. Based on the new assumption, a simplified ver-

sion of the mp-dissimilarity measure called Sp is introduced for BoW inter-document

similarity measurement. Sp does not require any term weighting and yet produces

better or more consistent task-specific performance than existing measures using

state-of-the-art term-weighting schemes.

The concept of a fully data-dependent dissimilarity measure based on probability mass

has led to subsequent research. To estimate s(x,y), Ting et al. (2016) use data mass in

the deepest node shared by both x and y in each tree in iForest and demonstrate that the

mass-based similarity measure produces better task-specific performance than distance-

based similarity measures in anomaly detection, clustering and multilabel classification.

1.6 Thesis structure

This is a thesis including publications and it is organised as follows:

Chapter 1 introduces the context of the thesis. It outlines the motivations and contri-

butions of the thesis.

Chapter 2 presents a paper published in the proceedings of the 18th Pacific-Asia Con-

ference on Knowledge Discovery and Data Mining (PAKDD) 2014 (Aryal et al., 2014a).

The paper introduces the notion of “relative mass” and proposes two algorithms called

ReMass-iForest and ReMass-ReFeat to overcome weaknesses of iForest (Liu et al., 2008,

2012) in anomaly detection and content-based information retrieval tasks, respectively.

ReMass-ReFeat motivated the work in data-dependent dissimilarity measure presented in

Chapter 3.

Chapter 3 presents a paper accepted for publication (published online) in the Knowl-

edge and Information Systems (KAIS) journal in 2017 (Aryal et al., 2017), which is an

extended version of the paper published in the proceedings of the IEEE International

Conference on Data Mining (ICDM) 2014 (Aryal et al., 2014b) included in Appendix A.

The paper proposes a data-dependent dissimilarity measure called mp-dissimilarity (where

p > 0) as an effective alternative to distance measures, particularly in high-dimensional

spaces. It shows that the proposed mp-dissimilarity measure produces similar or better

task-specific performance than widely-used distance measures such as `p-norm and cosine

distance across a wide range of medium-to high-dimensional datasets.

Chapter 4 presents a paper submitted to the Data Mining and Knowledge Discovery

(DMKD) journal. This paper generalises mp-dissimilarity where p is allowed to be 0

by introducing m0-dissimilarity. By examining the relationships and characteristics of

different data-dependent measures, the paper shows that mp-dissimilarity is a generalised

data-dependent similarity measure of which the rank difference and Lin’s probabilistic

measure are special cases with p > 0 and p = 0, respectively. It also improves the runtime

complexities of rank difference and Lin’s probabilistic measure to be of the same order as

that of distance-based measures and mp-dissimilarity. Empirical evaluation reveals that

the fully data-dependent measure of mp-dissimilarity, which is robust to units and scales of
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measurement, is more effective than other existing data-dependent and data-independent

similarity measures.

Chapter 5 presents a paper submitted to the Computational Intelligence (COIN) jour-

nal which is an extended version of the paper published in the proceedings of the 11th

Asia Information Retrieval Society (AIRS) conference 2015 (Aryal et al., 2015) included

in Appendix B. This paper identifies the shortcomings of the underlying assumptions of

term-weighting schemes employed in existing BoW document similarity measures, and

provides an alternative assumption which is more congruous with the requirements of

inter-document similarity measurement. Based on the new assumption, it introduces a

simple but effective BoW inter-document similarity measure called Sp. Unlike existing

measures, the explicit adjustment of document vectors through term weighting is not

required in Sp. It is a simplified version of m0-dissimilarity.

Chapter 6 concludes the thesis and provides some directions for future research.
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Chapter 2

Improving the performance of

ReFeat using relative mass

The idea of the data-dependent dissimilarity measure discussed in this thesis is moti-

vated by the superior performance of ReFeat over distance-based similarity measures in

the content-based multimedia information retrieval (CBMIR) task. ReFeat uses a non-

distance-based ranking measure based on iForest, which was originally developed to solve

anomaly detection (AD) problems. Although iForest has been shown to be effective in

both CBMIR and AD tasks, this thesis has identifies its limitations in both tasks.

This chapter introduces the notion of “relative mass” and proposes two algorithms,

ReMass-iForest and ReMass-ReFeat, as effective alternatives to iForest and ReFeat in AD

and CBMIR tasks, respectively. ReMass-ReFeat motivated the work on data-dependent

dissimilarity measure to be discussed in Chapter 3.

The work on relative mass is reported in the following published paper:

Aryal, S., Ting, K. M., Wells, J. R. and Washio, T. (2014), Improving iForest with Rel-

ative mass, In Proceedings of the 18th Pacific-Asia Conference on Knowledge Discovery

and Data Mining (PAKDD) 2014, Springer, Cham, pp. 510-521.

This chapter is a copy of the paper published in the conference proceedings. In order

to generate a consistent presentation within the thesis, the format and some notations

or symbols used have been changed, minor grammar and spelling mistakes have been

corrected, and sections of the published paper have been renumbered.

The original published version of the paper is available at Springer via https://doi.

org/10.1007/978-3-319-06605-9_42
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Improving iForest with Relative

Mass

Sunil Aryal†, Kai Ming Ting†, Jonathan R. Wells† and Takashi Washio‡
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Abstract:

iForest uses a collection of isolation trees to detect anomalies. While it is effective in

detecting global anomalies, it fails to detect local anomalies in datasets with multiple clus-

ters of normal instances, because the local anomalies are masked by normal clusters of

similar density and they become less susceptible to isolation. In this paper, we propose a

very simple but effective solution to overcome this limitation by replacing the global ranking

measure based on path length with a local ranking measure based on relative mass that takes

local data distribution into consideration. We demonstrate the utility of relative mass by

improving the task-specific performance of iForest in anomaly detection and information

retrieval tasks.

Keywords: Relative mass, iForest, ReFeat, anomaly detection

2.1 Introduction

Data-mining tasks such as anomaly detection (AD) and information retrieval (IR) require

a ranking measure in order to rank data instances. Distance-or density-based methods

are widely used to rank instances in these tasks. The main problem of these methods

is that they are computationally expensive in large datasets because of their high time

complexities.

Isolation Forest (iForest) (Liu et al., 2008) is an anomaly detector that does not use

distance or density measures. It performs an operation to isolate each instance from the

rest of the instances in a given dataset. Because anomalies have characteristics of being

‘few and different’, they are more susceptible to isolation in a tree structure than normal

15



CHAPTER 2. RELATIVE MASS 16

instances. Therefore, anomalies have shorter average path lengths than those of normal

instances over a collection of isolation trees (iTrees).

Although iForest has been shown to perform well (Liu et al., 2008), we have identi-

fied a weakness in detecting local anomalies in datasets with multiple clusters of normal

instances, because the local anomalies are masked by normal clusters of similar density;

thus they become less susceptible to isolation using iTrees. In other words, iForest cannot

detect local anomalies because the path length measures the degree of anomaly globally.

It does not consider how isolated an instance is from its local neighbourhood.

iForest has its foundation in mass estimation (Ting et al., 2013a). Ting et al. (2013a)

have shown that the path length is a proxy for mass in a tree-based implementation. On

this basis, we consider that iForest’s inability to detect local anomalies can be overcome by

replacing the global ranking measure based on path length with a local ranking measure

based on relative mass using the same iTrees. In general, the relative mass of an instance

is the ratio of data mass in two regions covering the instance, where one region is a subset

of the other. The relative mass measures the degree of anomaly locally by considering the

data distribution in the local regions (superset and subset) covering an instance.

In addition to AD, we show the generality of relative mass in IR that overcomes the

limitation of a recent IR system called ReFeat (Zhou et al., 2012), which uses iForest as

a core ranking model. Even though ReFeat performs well in content-based multimedia

information retrieval (CBMIR) (Zhou et al., 2012), the ranking scheme based on path

length does not guarantee that two instances with a similar ranking score are in the same

local neighbourhood. The new ranking scheme based on relative mass provides such a

guarantee.

The contributions of this paper are as follows:

1. It introduces relative mass as a ranking measure.

2. It proposes ways to apply relative mass instead of path length to overcome the

weaknesses of iForest in AD and IR.

3. It demonstrates the utility of relative mass in AD and IR by improving the task-

specific performance of iForest and ReFeat using exactly the same implementation

of iTrees as that employed in iForest.

The rest of the paper is organised as follows. Section 2.2 introduces the notion of

relative mass and proposes ways to apply it to AD and IR. Section 2.3 provides the

empirical evaluation, followed by conclusions in the last section.

2.2 Relative mass: A mass-based local ranking measure

Rather than using the global ranking measure based on path length in iForest, an in-

stance can be ranked using a local ranking measure based on relative mass w.r.t its local

neighbourhood. In a tree structure, the relative mass of an instance is computed as the

ratio of mass in two nodes along the path the instance traverses from the root to a leaf

node. The two nodes used in the calculation of relative mass depend on the task-specific

requirements.
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• In AD, we are interested in the relative mass of x w.r.t its local neighbourhood.

Hence, the relative mass is computed as the ratio of mass in the immediate parent

node and the leaf node where x falls.

• In IR, we are interested in the relative mass of x w.r.t to a query q. Hence, the

relative mass is computed as the ratio of mass of the leaf node where q falls and the

lowest node where x and q shared along the path q traverses.

We converted iForest (Liu et al., 2008) and ReFeat (Zhou et al., 2012) using the relative

mass, and named the resultant relative mass versions ReMass-iForest and ReMass-ReFeat,

respectively. We describe iForest and ReMass-iForest in AD in Section 2.2.1, and ReFeat

and ReMass-ReFeat in IR in Section 2.2.2.

2.2.1 Anomaly Detection: iForest and ReMass-iForest

In this subsection, we first discuss iForest and its weakness in detecting local anomalies and

introduce the new anomaly detector, ReMass-iForest, based on relative mass to overcome

the weakness.

iForest

Given an M -variate database of N instances (D = {x(1),x(2), · · · ,x(N)}), iForest (Liu

et al., 2008) constructs t iTrees (Γ1,Γ2, · · · ,Γt). Each Γi is constructed from a small

random sub-sample (Di ⊂ D, |Di| = ψ < N) by recursively dividing it into two non-empty

nodes through a randomly-selected attribute and split point. A branch stops splitting when

the height reaches the maximum (Hmax) or the number of instances in the node is less

than MinPts. The default values used in iForest are Hmax = log2(ψ) and MinPts = 1.

The anomaly score is estimated as the average path length over t iTrees as follows:

L(x) =
1

t

t∑
i=1

li(x) (2.1)

where, li(x) is the path length of x in Γi

As anomalies are likely to be isolated early, they have shorter average path lengths.

Once all instances in the given dataset have been scored, the instances are sorted in

ascending order of scores. The instances at the top of the list are reported as anomalies.

iForest runs very fast because it does not require distance calculation and each iTree

is constructed from a small random sub-sample of data.

iForest is effective in detecting global anomalies (e.g., a1 and a2 in Figures 2.1(a) and

2.1(b)) because they are more susceptible to isolation in iTrees. However, it fails to detect

local anomalies (e.g., a1 and a2 in Figure 2.1(c)) as they are less susceptible to isolation

in iTrees. This is because the local anomalies and the normal cluster C3 have about the

same density. Some fringe instances in the normal cluster C3 will have shorter average

path lengths than those for a1 and a2.
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Figure 2.1: Global and local anomalies. Note that both anomalies a1 and a2 are exactly
the same instances in Figure 2.1(a), 2.1(b) and 2.1(c). In Figure 2.1(a) and Figure 2.1(b),
a1 and a2 have lower density than that in the normal clusters C1 and C2. In Figure 2.1(c),
a1, a2 and the normal cluster C3 have the same density but a1 and a2 are anomalies
relative to the normal cluster C1 with a higher density.

ReMass-iForest

In each iTree Γi, the anomaly score of an instance x w.r.t its local neighbourhood, si(x),

can be estimated as the ratio of data mass as follows:

si(x) =
m(Γ̆i(x))

m(Γi(x))× ψ
(2.2)

where Γi(x) is the leaf node in Γi in which x falls, Γ̆i(x) is the immediate parent of Γi(x),

and m(·) is the data mass of a tree node. ψ is a normalisation term which is the training

data size used to generate Γi.

si(·) is in (0, 1]. The higher the score, the greater the likelihood of x being an anomaly.

Unlike li(x) in iForest, si(x) measures the degree of anomaly locally.

The final anomaly score can be estimated as the average of local anomaly scores over

t iTrees as follows:

S(x) =
1

t

t∑
i=1

si(x) (2.3)

Once every instance in the given dataset has been scored, instances can be ranked in

descending order of their anomaly scores. The instances at the top of the list are reported

as anomalies.

Relation to LOF and DEMass-LOF

The idea of relative mass in ReMass-iForest has some relation to the idea of relative density

in Local Outlier Factor (LOF) (Breunig et al., 2000). LOF uses k nearest neighbours to

estimate density f̄k(x) =
|NN(x, k)|

n
∑

x′∈NN(x,k) distance(x,x
′)

, where NN(x, k) is the set of k

nearest neighbours of x. It estimates its anomaly score as the ratio of the average density

of x’s k nearest neighbours to f̄k(x). In LOF, the local neighbourhood is defined by k

nearest neighbours which requires distance calculation. In contrast, in ReMass-iForest,

the local neighbourhood is the immediate parent in iTrees. It does not require distance

calculation.
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Table 2.1: Ranking measure and complexities (time and space) of ReMass-iForest, iForest,
DEMass-LOF and LOF.

ReMass- DEMass
iForest iForest -LOF LOF

Ranking
1

tψ

t∑
i=1

m(Γ̆i(x))

m(Γi(x))

1

t

t∑
i=1

li(x)

∑t
i=1

m(Γ̆i(x))
v̆i∑t

i=1
m(Γi(x))

vi

∑
x′∈NN(x,k)

f̄k(x′)
|NN(x,k)|

f̄k(x)
Measure

Time
O(t(N + ψ) logψ) O(t(N + ψ) logψ) O(t(N + ψ)bM) O(MN2)

Complexity

Space
O(tψ) O(tψ) O(tMψ) O(MN)

Complexity

v̆i and vi are the volumes of nodes Γ̆i(x) and Γi(x), respectively.

DEMass-LOF (Ting et al., 2013b) computes the same anomaly score as LOF from

trees, without distance calculation. The idea of relative density of parent and leaf nodes is

used in DEMass-LOF. It constructs a forest of t balanced binary trees where the height of

each tree is b×M (b is a parameter that determines the level of division on each attribute

and M is the number of attributes). It estimates its anomaly score as the ratio of average

density of the parent node to the average density of the leaf node where x falls. The

density of a node is estimated as the ratio of mass to volume. It uses mass to estimate

density and ranks instances based on the density ratio. Like iForest, it is fast because no

distance calculation is involved, but it has limitation in dealing with problems with even

a moderate number of dimensions, because each tree has 2(b×M) leaf nodes.

In contrast to LOF and DEMass-LOF, ReMass-iForest does not require density esti-

mation, but uses relative mass directly in order to estimate the local anomaly score from

each iTree.

The ranking measure and complexities (time and space) of ReMass-iForest, iForest,

DEMass-LOF and LOF are summarised in Table 2.1.

2.2.2 Information Retrieval: ReFeat and ReMass-ReFeat

In this subsection, we first describe how ReFeat uses iForest in IR and its weakness. Then,

we introduce a new IR system, ReMass-ReFeat, based on the relative mass to overcome

the weakness.

ReFeat

Given a query instance q, ReFeat (Zhou et al., 2012) assigns a weight wi(q) = li(q)
c − 1

(where c is a normalisation constant) to each Γi. The relevance feedback process (Rui

et al., 1998) allows the user to refine the retrieved result by providing some ‘relevant’ and

‘irrelevant’ examples for the query. Let Q = P ∪ N be a set of feedback instances to the

query q where P and N are the sets of positive and negative feedbacks, respectively. Note
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that P includes q. In a relevance feedback round, ReFeat assigns a weight to Γi using pos-

itive and negative feedback instances as: wi(Q) =
1

|P|
∑
y+∈P

wi(y
+) − γ 1

|N |
∑

y−∈N

wi(y
−),

where 0 ≤ γ ≤ 1 is a trade-off parameter for the relative contribution of positive and

negative feedbacks. The relevance of x w.r.t Q is estimated as the weighted average of its

path lengths over t iTrees as follows:

RReFeat(x|Q) =
1

t

t∑
i=1

(wi(Q)× li(x)) (2.4)

Although ReFeat has been shown to have superior retrieval performance over other

existing methods in CBMIR, the ranking scheme does not guarantee that two instances

having similar ranking scores are in the same local neighbourhood. Two instances can

have a similar score if they have equal path lengths in an iTree, even though they lie

in two different branches which share few common nodes. This effect will degrade the

performance of ReFeat, especially when the tree height (h) is increased. Hence, ReFeat

must use a low h (2 or 3) in order to reduce this weakness. The superior performance of

ReFeat is mainly due to its large ensemble size (t = 1000). We discuss the effect of h and

t in ReFeat in Section 2.3.2. ReFeat does not consider the positions of instances in the

feature space, as it computes the path length in iTrees.

ReMass-ReFeat

In each iTree Γi, the relevance of x w.r.t. q, ri(x|q), is estimated using relative mass as

follows:

ri(x|q) =
m(Γi(q))

m(Γi(x,q))
(2.5)

where Γi(x,q) is the smallest region in Γi where x and q appear together.

In Eqn 2.5, the numerator corresponds with wi(q) in ReFeat. The denominator term

measures how relevant x is to q. In contrast, ReFeat’s li(x) is independent of q (it does not

examine whether x and q are in the same locality (Zhou et al., 2012)), whereas m(Γi(x,q))

measures how close x and q are in the feature space. In each Γi, ri(x|q) is in the range

of (0, 1]. The higher the score, the more the relevance of x w.r.t q. If x and q lie in the

same leaf node in Γi, ri(x|q) is 1. This relevance measure gives a high score to an instance

which lies deeper in the branch where q lies.

The final relevance score of x w.r.t q, R(x|q), is the average over t iTrees:

R(x|q) =
1

t

t∑
i=1

ri(x|q) (2.6)

Once the relevance score of each instance is estimated, the scores can be sorted in

descending order. The instances at the top of the list are regarded as the most relevant

instances to q.

ReMass-ReFeat estimates the relevance score with relevance feedback as follows:
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Table 2.2: Time and space complexities of ReMass-ReFeat and ReFeat

ReMass-ReFeat ReFeat

Time O(t(N + ψ) logψ) (Model building) O(t(N + ψ) logψ) (Model building)
Complexity O(t(N + logψ)) (On-line query) O(t(N + logψ)) (On-line query)

Space
O(t(N + ψ)) O(N + tψ)

Complexity

R(x|Q) =
1

|P|
∑
y+∈P

R(x|y+)− γ 1

|N |
∑

y−∈N

R(x|y−) (2.7)

Note that Eqns 2.5 and 2.6 do not make use of any distance or similarity measure,

and R(x|q) is not a metric as it does not satisfy all metric axioms. It has the following

characteristics. For x,y ∈ D,

i. 0 < R(x|y) ≤ 1 (Non-negativity)

ii. R(x|x) = R(y|y) = 1 (Equal self-similarity; maximal similarity)

iii. R(x|y) 6= R(y|x) (Asymmetric)

Note that ReMass-ReFeat and ReFeat have the same time complexities. If the indices

of data instances falling in each node are recorded in the modelling stage, the joint mass

of q and every x ∈ D can be estimated in one search from the root to Γi(q) in each tree.

However, it will increase the space complexity as it requires to store N indices in each

iTree. The time and space complexities of ReMass-ReFeat and ReFeat are provided in

Table 2.2.

2.3 Empirical evaluation

In this section, we evaluate the utility of relative mass in AD and CBMIR tasks. In AD,

we compared ReMass-iForest with iForest (Liu et al., 2008), DEMass-LOF (Ting et al.,

2013b) and LOF (Breunig et al., 2000). In CBMIR, we compared ReMass-ReFeat with

ReFeat (Zhou et al., 2012) and the other existing CBMIR systems: MRBIR (He et al.,

2004), InstRank (Giacinto and Roli, 2005) and Qsim (Zhou and Dai, 2006). Both the AD

and CBMIR experiments were conducted in unsupervised learning settings. The labels

of instances were not used in the model building process. They were used as the ground

truth in the evaluation stage. The AD results were measured in terms of the area under

the ROC curve (AUC). In CBMIR, the precision at the top 50 retrieved results (P@50)

(Zhou et al., 2012) was used as the performance measure. The presented result was the

average over 20 runs for all randomised algorithms. A two-standard-error significance test

was conducted to check whether the difference in performance of the two methods was

significant.

We used the same MATLAB implementation of iForest provided by the authors of

ReFeat (Zhou et al., 2012), the JAVA implementation of DEMass-LOF in the WEKA

(Hall et al., 2009) platform, and the JAVA implementation of LOF in the ELKI (Achtert

et al., 2011) platform.
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Figure 2.2: Anomaly scores by iForest and ReMass-iForest using t = 100, ψ = 256. Note
that in anomaly score plots, instances are represented by their values in x1 dimension.
Anomalies are represented by black lines and normal instances are represented by grey
lines. The height of lines represents the anomaly scores. In order to differentiate the scores
of normal and anomaly instances, the maximum score for normal instances is subtracted
from the anomaly scores so that all normal instances have scores of zero or less.

We present the empirical evaluation results in the following two subsections.

2.3.1 Anomaly Detection: ReMass-iForest versus iForest

In the first experiment, we used a synthetic dataset to demonstrate the strength of ReMass-

iForest over iForest to detect local anomalies. The dataset has 263 normal instances in

three clusters and 12 anomalies representing global, local and clustered anomalies. The

data distribution is shown in Figure 2.2(a). Instances a1, a2 and a3 are global anomalies;

four instances in A4 and two instances in A5 are clustered anomalies; and a6, a7 and a8 are

local anomalies; C1, C2 and C3 are normal instances in three clusters of varying densities.

Figures 2.2(b)-2.2(d) show the anomaly scores of all data instances obtained from

iForest and ReMass-iForest. With iForest, local anomalies a6, a7 and a8 had lower anomaly

scores than some normal instances in C3; and it produced an AUC of 0.98. In contrast,

ReMass-iForest had ranked local anomalies a6, a7, a8 higher than any instances in normal

clusters C1, C2 and C3 along with global anomalies a1, a2 and a3. However, ReMass-iForest

with MinPts = 1 had some problem with ranking clustered anomalies in A4 and produced
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Table 2.3: AUC and runtime (seconds) of ReMass-iForest (RM), iForest (IF), DEMass-
LOF (DM), and LOF in benchmark datasets.

Dataset N M
AUC Runtime

RM IF DM LOF RM IF DM LOF

Http 567K 3 1.00 1.00 0.99 1.00 71 99 19 19965
ForestCover 286K 10 0.96 0.88 0.87 0.94 42 56 4 2918

Mulcross 262K 4 1.00 1.00 0.99 1.00 20 23 16 2169
Smtp 95K 3 0.88 0.88 0.78 0.95 10 12 16 373

Shuttle 49K 9 1.00 1.00 0.95 0.98 4 9 7 656
Mammography 11K 6 0.86 0.86 0.86 0.68 1 1 5 127

Satellite 6K 36 0.71 0.70 0.55 0.79 1 4 0.6 24
Breastw 683 9 0.99 0.99 0.98 0.96 0.1 0.4 0.3 0.4

Arrhythmia 452 274 0.80 0.81 0.52 0.80 0.3 0.5 5 1
Ionosphere 351 32 0.89 0.85 0.85 0.90 2 3 0.5 0.3

an AUC of 0.99. One fringe instance in the cluster C3 was ranked higher than two clustered

anomalies in A4. This is because cluster anomalies have similar mass ratios w.r.t their

parents to those for the instances in sparse normal cluster C3. Clustered anomalies were

correctly ranked and an AUC of 1.0 was achieved when MinPts was increased to 5. The

performance of iForest did not improve when MinPts was increased to any values in the

range of 2, 3, 4, 5 and 10.

In the second experiment, we used the ten benchmark datasets previously employed

by Liu et al. (2008). In ReMass-iForest, iForest and DEMass-LOF, the parameter t was

set to 100 as default and the best value for the sub-sample size ψ was searched from

8, 16, 32, 64, 128 to 256. In ReMass-iForest, MinPts was set to 5 as default. iForest

uses the default settings as specified in (Liu et al., 2008), i.e, MinPts = 1. The level of

subdivision (b) for each attribute in DEMass-LOF was searched from 1, 2, 3, 4, 5, and 6.

In LOF, the best k was searched between 5 and 4000 (or to N
4 for small datasets), with

steps from 5, 10, 20, 40, 60, 80, 150, 250, 300, 500, 1000, 2000, 3000 to 4000. The best

results were reported. The characteristics of the datasets, AUC and runtime (seconds) of

ReMass-iForest, iForest, DEMass-LOF and LOF are presented in Table 2.3.

In terms of AUC, ReMass-iForest had better or at least similar results to iForest. Based

on the two-standard-error significance test, it produced better results than iForest in the

ForestCover and Ionosphere datasets. Most of these datasets do not have local anomalies.

Therefore, both methods had similar AUCs in eight datasets. Note that iForest did not

improve AUC when MinPts was set to 5. ReMass-iForest produced significantly bet-

ter AUC than DEMass-LOF in relatively high dimensional datasets (Arrhythmia - 274,

Satellite - 36, Ionosphere - 32, ForestCover - 10, Shuttle - 9). These results show that

DEMass-LOF has problems in handling datasets with a moderate number of dimensions

(9 or 10). ReMass-iForest was competitive with LOF. It was better than LOF in the Mam-

mography dataset, worse in the Smtp and Satellite datasets, and had equal performance

in the other seven datasets.

As shown in Table 2.3, the runtimes of ReMass-iForest, iForest and DEMass-LOF

were of the same order of magnitude, whereas LOF was up to three orders of magnitude
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slower in large datasets. Note that we cannot conduct a head-to-head comparison of the

runtimes of ReMass-iForest and iForest with DEMass-LOF and LOF because they were

implemented in different platforms (MATLAB versus JAVA). The results are included

here to provide an idea of the order of magnitude of runtime. The difference in runtime

of ReMass-iForest and iForest was due to the difference in ψ and MinPts. MinPts = 5

results in smaller sized iTrees in ReMass-iForest than those in iForest (MinPts = 1).

Hence, ReMass-iForest runs faster than iForest, even though the same ψ is used.

2.3.2 CBMIR: ReMass-ReFeat versus ReFeat

The performance of ReMass-ReFeat was evaluated against that of ReFeat in music and

image retrieval tasks with the GTZAN music dataset (Tzanetakis and Cook, 2002) and

the COREL image dataset (Zhou et al., 2006), respectively. GTZAN is a dataset of

1000 songs uniformly distributed in 10 genres. Each song is represented by 230 features.

COREL is a dataset of 10,000 images uniformly distributed over 100 categories. Each

image is represented by 67 features. These are the same datasets used in Zhou et al.

(2012) to evaluate the performance of ReFeat. The results of the existing CBMIR systems

InstRank, Qsim and MRBIR were taken from Zhou et al. (2012).

We conducted our experiments using the same experimental design as that in Zhou

et al. (2012). Initially five queries were chosen randomly from each class. For each query,

instances from the same class were regarded as relevant and the other classes were irrel-

evant. At each round of feedback, two relevant (instances from the same class) and two

irrelevant (instances from the other classes) instances were provided. Up to five rounds of

feedback were conducted for each query. The instance was not used in ranking if it was

used as a feedback instance. The feedback process was repeated five times with different

relevant and irrelevant feedbacks. The above process was repeated 20 times and average

P@50 was reported.

In ReMass-ReFeat, the parameters ψ and MinPts were set as default to 256 and 1,

respectively. In ReFeat, ψ was set to 4 for GTZAN and 8 for COREL, as reported in

Zhou et al. (2012). Other settings of ψ in ReFeat were found to perform worse than these

settings. In order to show how their retrieval performance varies when ensemble size was

increased, we used two settings for t: ReMass-ReFeat and ReFeat with (i) t = 100 (RM-

100 and RF-100) and (ii) t = 1000 (RM-1000 and RF-1000). The feedback parameter γ

was set as default to 0.5 in ReMass-ReFeat and 0.25 in ReFeat (as used in Zhou et al.

(2012)).

P@50 of ReMass-ReFeat (RM-100 and RM-1000), ReFeat (RF-100 and RF-1000),

InstRank, MRBIR and Qsim in the GTZAN and COREL datasets are shown in Figure 2.3.

P@50 curves in both the datasets show that ReMass-ReFeat (RM-1000) has better retrieval

performance than all contenders, especially in feedback rounds. In round 1 or no feedback

(query only), ReMass-ReFeat (RM-1000) and ReFeat (RF-1000) produced similar retrieval

performance but in later feedback rounds, RM-1000 produced better results than RF-1000.

It is interesting to note that the performance of RF-100 was worse than that of RM-100

in all feedback rounds including query only (no feedback). In GTZAN, RF-100 had worse



CHAPTER 2. RELATIVE MASS 25

Query 1 2 3 4 5
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Feedback Round

P
@
5
0

 

 

(a) GTZAN

Query 1 2 3 4 5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

Feedback Round

P
@
5
0

 

 

(b) COREL
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Figure 2.4: P@50 at feedback round 5 with varying sample size (ψ) in the GTZAN dataset.

performance than all other contenders. The increase in P@50 from RF-100 to RF-1000

was much larger than that of RM-100 to RM-1000. This result shows that the retrieval

performance of ReFeat is mainly due to the large ensemble size of 1000. The difference in

P@50 of RM-100 and RF-1000 decreased in subsequent feedback rounds. This indicates

that ReMass-ReFeat produces better results than ReFeat, even with a smaller ensemble

size if more feedback instances are available.

In terms of runtime, ReMass-ReFeat had slightly higher runtime than ReFeat because

of the higher ψ that allows trees to grow deeper (256 vs. 4 in GTZAN and 8 in COREL).

The model-building time of RM-1000 was 21 seconds (vs. 4 seconds for RF-1000) in

COREL and 20 seconds (vs. 2 seconds for RF-1000) in GTZAN. The on-line retrieval

time for one query of RM-1000 was 0.9 seconds (vs. 0.3 seconds for RF-1000) in COREL

and 0.2 seconds (vs. 0.2 seconds for RF-1000) in GTZAN.

Figure 2.4 shows the effect of ψ on the P@50 of ReMass-ReFeat and ReFeat at feedback

round 5 (one run) in the GTZAN dataset. In ReFeat, when ψ was increased above 4,

the retrieval performance degraded. This is due to the increase in the height of iTrees

(h = log2(ψ)) and instances falling in two distinct branches having similar relevance
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scores based on the same path lengths. In contrast, ReMass-ReFeat improved its retrieval

performance up to 64 and then remained almost flat beyond that. A similar effect was

observed in the COREL dataset where the performance of ReFeat degraded when ψ was

set above 8.

2.4 Conclusions

While the relative mass was motivated to overcome the weakness of iForest in detecting

local anomalies, we have shown that the idea has a wider application. In information

retrieval, we applied it to overcome the weakness of a state-of-the-art system called ReFeat.

Our empirical evaluations show that ReMass-iForest and ReMass-ReFeat perform better

than iForest and ReFeat, respectively, in terms of task-specific performance. In comparison

with other state-of-the-art systems in both tasks, ReMass-iForest and ReMass-ReFeat are

found to be either competitive or better.

The idea of relative mass in ReMass-iForest is similar to that of relative density in

LOF and our empirical results show that ReMass-iForest and LOF have similar anomaly

detection performance. However, ReMass-iForest runs significantly faster than LOF in

large datasets because it does not require distance or density calculations.
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Chapter 3

mp-dissimilarity: A

data-dependent dissimilarity

measure

This chapter introduces a data-dependent dissimilarity measure called mp-dissimilarity

(where p > 0). It has the same formulation as the traditional `p-norm, except that

the spatial distance of two instances in each dimension is replaced with the probability

data mass between them. This chapter shows that by simply replacing the distance with

the probability mass, mp-dissimilarity produces better and more consistent task-specific

performance than other widely-used distance measures such as `p-norm and cosine distance

across a wide range of medium-to high-dimensional datasets.

The work on mp-dissimilarity is reported in the following papers:

Aryal, S., Ting, K. M., Haffari, G. and Washio, T. (2014), mp-dissimilarity: A data-

dependent dissimilarity measure, In Proceedings of the IEEE International conference on

data mining (ICDM) 2014, IEEE, pp. 707-712.

Aryal, S., Ting, K. M., Washio, T. and Haffari, G. (2017), Data-dependent dissimilarity

measure: an effective alternative to geometric distance measures, Knowledge and Infor-

mation Systems, Springer, London, pp. 1-28. doi: 10.1007/s10115-017-1046-0 (published

online, paper format in press).

The journal paper is an extended version of the conference paper. This chapter is a copy

of the paper published in the journal and a copy of the conference paper is attached in

Appendix A. In order to generate a consistent presentation within the thesis, the format

and some notations or symbols used have been changed, minor grammar and spelling

mistakes have been corrected, and sections of the published paper have been renumbered.

The original published version of the journal paper is available at Springer via https:

//doi.org/10.1007/s10115-017-1046-0
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Abstract:

Nearest neighbour search is a core process in many data-mining algorithms. Finding re-

liable closest matches of a test instance remains a challenging task as the effectiveness of

many general-purpose distance measures such as `p-norm decreases as the number of di-

mensions increases. Their performances vary significantly in different data distributions.

This is mainly because they compute the distance between two instances solely based on

their geometric positions in the feature space, and data distribution has no influence on

the distance measure.

This paper presents a simple data-dependent general-purpose dissimilarity measure called

‘mp-dissimilarity’. Rather than relying on geometric distance, it measures the dissimilarity

between two instances as a probability mass in a region that encloses the two instances in

every dimension. It deems two instances in a sparse region to be more similar than two

instances of equal inter-point geometric distance in a dense region.

Our empirical results in kNN classification and content-based multimedia information re-

trieval tasks show that the proposed mp-dissimilarity measure produces better task-specific

performance than existing widely-used general-purpose distance measures, such as `p-norm

and cosine distance, across a wide range of moderate-to high-dimensional datasets with

continuous only, discrete only, and mixed attributes.

Keywords: Distance measure, `p-norm, cosine distance, mp-dissimilarity

29



CHAPTER 3. MP -DISSIMILARITY 30

3.1 Introduction

In order to make a prediction for a test instance, many data-mining algorithms search

for its k closest matches or nearest neighbours (kNNs) in the given training set, and

make a prediction based on the kNNs. They use a (dis)similarity or distance measure to

find kNNs. However, finding reliable kNNs becomes a challenging task as the number of

dimensions increases. In high-dimensional space, data distribution becomes sparse, which

makes the concept of distance meaningless, i.e., all pairs of points are almost equidistant

for a wide range of data distributions and distance measures (Beyer et al., 1999; Aggarwal

et al., 2001; François et al., 2007).

Let D = {x(1),x(2), · · · ,x(N)} be a collection of N data instances in an M -dimensional

space X . Each instance x is represented as an M -dimensional vector 〈x1, x2, · · · , xM 〉. Let

d : X × X → R (where R is a real domain) be a measure of dissimilarity between two

vectors in X . The most common approach to measuring dissimilarity of two data instances

x and y is based on a geometric model, where X is assumed to be a metric space (which

has nice mathematical properties) and d(x,y) is estimated as their geometric distance in

the space. We use distance measures to refer to dissimilarity measures which are metric.

Minkowski distance (also known as `p-norm) (Deza and Deza, 2009) is a widely-used

distance measure. It estimates the dissimilarity between two M -dimensional vectors x

and y by combining their distances in each dimension. Euclidean distance (`2-norm) is

a popular choice of distance function as it intuitively corresponds to the distance defined

in the real three-dimensional world. In bag-of-words vector representation of documents,

cosine distance has been shown to produce more reliable kNNs than `2-norm (Salton and

McGill, 1986). Cosine distance is proportional to the Euclidean distance of the length

normalised vectors (i.e., they are translated in the space to be of unit lengths).

The performance of general-purpose distance measures such as `p-norm and cosine

distance depends on the data distribution: a distance measure that performs well in one

distribution may perform poorly in others. This has been suspected to be due to the

fact that these distance measures compute the dissimilarity between two instances, solely

based on their geometric positions in the vector space, and data distribution (positions of

other vectors) is not taken into consideration.

Psychologists have expressed concerns about the geometric model of dissimilarity mea-

sure (Tversky, 1977; Krumhansl, 1978), arguing that the judged dissimilarity between two

objects is influenced by the context of dissimilarity measurement and other objects in prox-

imity. Krumhansl (1978) has suggested a distance-density model of dissimilarity measure,

arguing that two objects in a relatively dense region are less similar than two objects of

equal distance but located in a less dense region. For example, two Chinese individuals

will be judged as more similar when compared in Europe (where there are fewer Chinese

and more Caucasian people) than in China (where there are many Chinese people).

In order to understand the influence of data distribution in judged dissimilarity, con-

sider an example of a dataset with distributions in dimensions i and j as shown in Table 3.1.

In this example, x(1) and x(2) have the same values in dimensions i and j. Their value

in dimension i is significantly different from the rest of the instances but their value in
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Table 3.1: An example of data distribution in two dimensions

x · · · xi xj · · ·
x(1) · · · 9 1 · · ·
x(2) · · · 9 1 · · ·
x(3) · · · 2 1 · · ·
x(4) · · · 1 1 · · ·
x(5) · · · 1 1 · · ·
x(6) · · · 1 1 · · ·
x(7) · · · 1 1 · · ·
x(8) · · · 1 1 · · ·
x(9) · · · 1 1 · · ·
x(10) · · · 0 5 · · ·

dimension j is very common (9 out of 10 instances have the same value). In geometric

distance measures such as `p-norm, because x
(1)
i −x

(2)
i = x

(1)
j −x

(2)
j = 0, the differences in

dimensions i and j have the same contribution in d(x(1),x(2)). The main concern raised by

psychologists is that the same value in dimension j (where probability of the value is very

high) does not provide the same amount of information about the (dis)similarity between

x(1) and x(2) as the same value in dimension i (where the probability of the value is very

small). This scenario, where many instances have the same value in many dimensions,

can be very common in high-dimensional spaces, as data often lie in a low-dimensional

subspace. For example, in bag-of-words vector representation, many entries in document

vectors are zero, as each document has only a few terms from the dictionary.

In this paper, we propose a simple data-dependent general-purpose dissimilarity mea-

sure called ‘mp-dissimilarity’, in which dissimilarity between two instances is estimated

based on data distribution in each dimension. Rather than using the spatial distance

in each dimension, mp-dissimilarity evaluates the dissimilarity between two instances in

terms of the probability data mass in a region covering the two instances in each dimension.

The final dissimilarity between the two instances is estimated by combining dissimilarity

in every dimension as in `p-norm. The intuition behind the proposed dissimilarity measure

is that two instances are likely to be dissimilar if there are many instances between and

around them in many dimensions. In the proposed data-dependent dissimilarity measure,

two instances in a dense region of the distribution are more dissimilar than two instances in

a sparse region, even if the two pairs have the same geometric distance, which is suggested

by psychologists.

Our empirical evaluation in kNN classification and content-based multimedia infor-

mation retrieval tasks shows that the proposed mp-dissimilarity measure produces better

task-specific performance than existing widely-used general-purpose distance measures

such as `p-norm and cosine distance across a wide range of moderate-to high-dimensional

datasets with continuous only, discrete only and mixed attributes.

The rest of the paper is organised as follows. Previous work related to this paper

is discussed in Section 3.2. The proposed mp-dissimilarity is presented in Section 3.3,



CHAPTER 3. MP -DISSIMILARITY 32

followed by empirical results in Section 3.4. The relationship of mp-dissimilarity with `p-

norm after rank transformation of data is discussed in Section 3.5, followed by the related

discussion in Section 3.6. Finally, we conclude the paper with conclusions and future work

in the last section. Hereafter, we refer to mp-dissimilarity and `p-norm as mp and `p,

respectively.

3.2 Related work

In this section, we review some widely-used techniques to measure dissimilarity between

instances in domains with continuous only, discrete only, and mixed attributes.

3.2.1 Dissimilarity measures in continuous domain

In the continuous domain where each dimension is numeric, i.e., ∀i xi ∈ R, the dissimilarity

between two M -dimensional vectors x and y is primarily based on their positions in the

vector space. Minkowski distance of order p > 0 (also known as `p-norm distance) is

defined as follows:

dmink,p(x,y) = `p(x,y) = ‖x− y‖p =

(
M∑
i=1

abs(xi − yi)p
) 1

p

(3.1)

where abs(·) is an absolute value.

Euclidean distance (p = 2) is a popular choice of distance function, as it intuitively

corresponds to the distance defined in the real three-dimensional world.

As distance in each dimension has equal influence, `p is very sensitive to the units

and scales of measurement. Min-max normalisation (x′i = xi−mini
maxi−mini

, where mini and

maxi are the minimum and maximum values in dimension i respectively), is commonly

used to rescale feature values in the unit range ([0,1]). Although min-max normalisation

takes account of scale differences between different dimensions, it does not take account

of differences in variance across different dimensions. A unit distance in a dimension with

low variance may not be the same as that in a dimension with high variance. In order

to ensure equal variance in each dimension, standard deviation normalisation (x′′i = xi
σi

where σi is the standard deviation of values of instances in dimension i) is used in the

literature. We call the `p applied on standard deviation normalised vectors standardised

`p (s-`p) i.e., s-`p(x,y) = `p(x
′′,y′′). Standardised `p with p = 2 (s-`2) is the simplest

variant of Mahalanobis distance (Deza and Deza, 2009), where the covariance matrix is a

diagonal matrix of variance of values in each dimension.

The Mahalanobis distance (Mahalanobis, 1936; Deza and Deza, 2009) of x and y is

defined as follows:

dmah(x,y) =
√

(x− y)TΣ−1(x− y) (3.2)

where Σ ∈ RM×M is the covariance matrix of D.
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Rather than using the inverse of the sample covariance matrix, the distance metric

learning literature focuses on learning a generalised Mahalanobis distance (Yang, 2006;

Kulis, 2013; Bellet et al., 2013; Wang and Sun, 2015) from D defined as follows:

dgenMah(x,y) =
√

(x− y)TΩ(x− y) (3.3)

where Ω ∈ RM×M is a positive semi-definite matrix.

Since Ω is positive semi-definite, it can be factorised as Ω = ΛTΛ where Λ ∈ Rω×M and

ω is a positive integer and dgenMah(x,y) can be written as: dgenMah(x,y) = ‖Λx− Λy‖2
(Kulis, 2013; Bellet et al., 2013; Wang and Sun, 2015). The generalised Mahalanobis

distance is the Euclidean distance of vectors transformed by matrix Λ. The goal of dis-

tance metric learning is to learn a transformation matrix Λ to improve the task-specific

performance of the Euclidean distance, subject to some optimality constraints, e.g., simi-

lar instances become closer to each other (similarity constraints) and dissimilar instances

are separated further from each other (dissimilarity constraints). Learning the best Λ

requires learning intensive optimisation, which is expensive in high-dimensional and/or

large datasets. Furthermore, Λ is optimised specifically for the given task, and it may not

be good for other tasks using the same dataset. It is not a general-purpose measure like

`p.

In many high-dimensional problems, data have the same value (0 or any other constant)

in many dimensions. This leads to sparseness in data distribution. For example, only a

small proportion of terms in a dictionary appear in each document of a corpus. Many

entries of a term vector representing a document are zero. Euclidean distance is not a good

choice of distance measure in such problems. The direction of vectors is more important

than their lengths. The angular distance measure (also known as cosine distance) (Deza

and Deza, 2009) is a more sensible choice to measure dissimilarity between two documents.

The cosine distance between two vectors x and y is defined as follows (Deza and Deza,

2009):

dcos(x,y) = 1−
∑M

i=1 xi × yi√∑M
i=1 x

2
i ×

√∑M
i=1 y

2
i

(3.4)

Cosine distance is proportional to Euclidean distance when the vectors are length nor-

malised to be of unit lengths, which is referred to as cosine normalisation in the literature.

Different term-weighting schemes are used to adjust the positions of the document vectors

in the space, based on the importance of their terms, in order to improve the task-specific

performance of cosine distance (Salton and Buckley, 1988; Lan et al., 2009). Cosine dis-

tance with Term Frequency - Inverse Document Frequency (TF-IDF)-based term weighting

(Salton and Buckley, 1988) has been shown to perform well in many text mining problems,

such as text categorisation, text clustering and text retrieval tasks.

In both distance metric learning and term weighting, the focus is to transform data

so that the task-specific performance of Euclidean or cosine distance is maximised in

the given dataset. Some aspects of data distribution are taken into consideration in the

transformation in metric learning and in term weighting, but still restricted to being
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Table 3.2: s(xi, yi) of two labels xi and yi of a nominal attribute i. f(xi) is the occurrence
frequency of label xi in D; N = |D|

s(xi, yi) xi = yi xi 6= yi

Overlap 1 0

OF 1 [1 + log N
f(xi)

× log N
f(yi)

]−1

IOF 1 [1 + log f(xi)× log f(yi)]
−1

a metric in the transformed space, i.e., dissimilarity is still computed based solely on

geometrical positions in the transformed space.

3.2.2 Dissimilarity measures in discrete domain

In discrete domain, each attribute is a categorical attribute, i.e., ∀i xi ∈ {vi,1,· · · , vi,ui}
where vi,j is a label out of ui possible labels for xi. A discrete attribute can be ordinal

where there is an ordering of discrete labels vi,1 < vi,2 < · · · < vi,ui , or nominal where

there is no ordering of discrete labels.

In order to measure similarity between two labels xi and yi for a discrete attribute i,

s(xi, yi), the simplest overlap approach assigns maximum similarity of 1 if xi = yi and

minimum similarity of 0 if xi 6= yi (Tanimoto, 1958; Boriah et al., 2008). Other approaches

such as occurrence frequency (OF) and inverse occurrence frequency (IOF) (Boriah et al.,

2008) estimate s(xi, yi) based on the frequencies of xi and yi in D if xi 6= yi, and assign

maximum similarity of 1 if xi = yi, regardless of the frequency. The definitions of s(xi, yi)

based on overlap, OF and IOF (Boriah et al., 2008) are provided in Table 3.2.

Lin (1998) defined similarity using information theory and suggested a probabilistic

measure of similarity in ordinal discrete domain. The similarity between two ordinal labels

xi and yi is defined as follows:

slin,ord(xi, yi) =
2× log

∑max(xi,yi)
zi=min(xi,yi)

P (zi)

logP (xi) + logP (yi)
(3.5)

where P (xi) is the probability of xi and it is estimated from D as P̂ (xi) = f(xi)+1
N+ui

where

f(xi) is the occurrence frequency of label xi in D.

Boriah et al. (2008) used Lin’s information theoretic definition of similarity in nominal

discrete domain as follows:

slin,nom(xi, yi) =
2× logP (xi ∨ yi)

logP (xi) + logP (yi)
(3.6)

In multivariate discrete domain, dissimilarity1 between two instances x and y using

Lin’s measure can be estimated as follows (Boriah et al., 2008):

dlin(x,y) = 1− 1

M

M∑
i=1

slin(xi, yi) (3.7)

1We use dissimilarity so that it is consistent with other distance or dissimilarity measures.
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Figure 3.1: Ri(x,y)

Boriah et al. (2008) have shown that dlin performs better than dof and diof in discrete

domains. Although measures such as sof , siof and slin assign similarity between xi and yi

in each dimension based on the distribution of labels if xi 6= yi, they assign the maximum

similarity of 1 in the case of xi = yi, regardless of the distribution of the label.

3.2.3 Dissimilarity measures in mixed domain

Many real-world applications have both continuous and discrete attributes, resulting in

a mixed domain. In order to measure (dis)similarity between two instances in such a

domain, the most commonly-used `p-norm uses the overlap approach to measure dissimi-

larity between two labels xi and yi of a discrete attribute i, as xi − yi = 0 if xi = yi; and

1 otherwise.

Other approaches include converting attributes into continuous only or discrete only

and using (dis)similarity measures designed for continuous or discrete domains. A con-

tinuous attribute can be converted into a discrete attribute through discretisation (Hall

et al., 2009). A discrete attribute with u discrete labels can be converted into u continuous

attributes by converting each discrete label into a binary attribute, where 0 represents the

absence of the label and 1 represents the presence. All converted u binary attributes are

treated as continuous attributes (Hall et al., 2009).

3.3 Data-dependent dissimilarity measure

In order to measure dissimilarity between x and y, instead of using abs(xi−yi) in Eqn 3.1,

we propose to consider the relative positions of x and y with respect to the rest of the

data distribution in each dimension. The dissimilarity between x and y in dimension i

can be estimated as the probability data mass in region Ri(x,y) that encloses x and y.

If there are many instances in Ri(x,y), x and y are likely to be dissimilar in dimension i.

Using the same power mean formulation as in `p-norm, the data-dependent dissimilarity

measure based on probability mass can be defined as:

mp(x,y) =

(
1

M

M∑
i=1

(
|Ri(x,y)|

N

)p) 1
p

(3.8)

where |Ri(x,y)| is the data mass in region Ri(x,y) = [min(xi, yi)−δ,max(xi, yi)+δ] (i.e.,

|Ri(x,y)| = |{zi : min(xi, yi)− δ ≤ zi ≤ max(xi, yi) + δ}|), δ ≥ 0, p > 0 and N is the total

number of instances in D. An example of Ri(x,y) is shown in Figure 3.1.
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(a) p = 2.0

(b) p = 0.5

Figure 3.2: Contour plots of dissimilarity of points in the space with reference to the centre
(〈0.5, 0.5〉), based on mp (with δ for each dimension i set to σi

2 ) in three data distributions
(uniform: left column, normal: middle column, and bimodal: right column). The darker
the colour, the smaller the dissimilarity.

The region is extended by small δ > 0 beyond xi and yi to consider the density

distribution around them and the distribution between them. The role of parameter p is

similar to that in `p, i.e., p controls the influence of the dissimilarity in each dimension.

We call the proposed dissimilarity measure mp(x,y) ‘mp-dissimilarity’. This

measure captures the essence of the distance-density model proposed by psychologists

(Krumhansl, 1978), which suggests that two instances in a sparse region are more sim-

ilar than two instances in a dense region. Although mp employs the same power mean

formulation as `p, the core calculation is based on probability mass rather than distance.

The proposed mp-dissimilarity has a probabilistic interpretation, which is provided in

Appendix 3.A.

The dissimilarity between a pair of instances using Eqn 3.8 depends on the distribution

of data. Figure 3.2 shows contour plots of mp-dissimilarity between the point (0.5,0.5) and

any other point in the feature space in three different data distributions (uniform, normal

and bimodal) for p = 2.0 and p = 0.5. In contrast, `p or dcos would produce the same

contour in all three distributions. Under uniform distribution and with infinite samples,

mp will yield the same result as `p because the data mass in Ri(x,y) will be proportional

to abs(xi − yi). This is depicted in the two contour plots in the first column in Figure 3.2

which exhibit similar contour plots to those of `2 and `0.5.

3.3.1 Time complexity and efficient approximation

In continuous domains, estimating mp(x,y) using Eqn 3.8 is expensive, especially when

either x or y is an unseen instance, as it requires a range search in each dimension to
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Figure 3.3: Defining Ri(x,y) using bins

estimate |Ri(x,y)|. One-dimensional range search can be done in O(logN) using a binary

search tree resulting in the time complexity of O(M logN) to measure dissimilarity of a

pair of instances against O(M) of `p. It is expensive to compute in large datasets.

Alternatively, |Ri(x,y)| can be approximated efficiently by using a histogram, i.e.,

dividing the range of real values in each dimension i into b bins (hi1, hi2, · · · , hib). The

number of instances in each bin can be computed in a pre-processing step. When two

instances x and y are given for dissimilarity measurement, Ri(x,y) can be computed by

using the bins between x and y, as shown in Figure 3.3. Although the approximation

using bins does not extend the range exactly by δ beyond xi and yi, the bins in which xi

and yi fall into provide a reasonable approximation of the distribution around xi and yi.

If hil and hio are the two bins in which min(xi, yi) and max(xi, yi) fall, respectively,

then |Ri(x,y)| can be estimated as follows:

|Ri(x,y)| =
o∑
q=l

|hiq| (3.9)

Note that the binning can be done in two ways: (i) equal-width: each bin is of the

same size (bins in the dense region have more data mass than those in the sparse region);

(ii) equal-frequency: each bin has approximately the same number of instances (bins are

smaller in the dense region than in the sparse region). The former is sensitive to outliers.

If there is only one instance with significantly different value than others, it may affect

the discrimination between the other instances, as they may all fall in the same bin and

many bins in the middle will be left empty. Hence, we used the latter approach of binning,

where each bin has approximately the same number of instances with b = 100 using WEKA

implementation2 (Hall et al., 2009). Note that bins in a dimension can have different data

mass if many instances have the same values in that dimension, making them impossible

to split in b bins with equal data mass.

The pre-processing requires a total of O(NMb + Mb2) time and O(Mb2) space com-

plexities. It builds the histogram and the pairwise dissimilarity matrix of bins in each

dimension. A histogram of b bins is built for each dimension and the number of in-

stances falling in each bin can be calculated in O(NMb) time. The dissimilarity matrix

for (|Ri(·, ·)|) can be pre-computed for each pair of bins in each dimension in O(Mb2)

time and stored in O(Mb2) space. Following pre-processing, the dissimilarity between two

instances in each dimension can be done as a table look-up in O(1) time, resulting in

O(M) time to measure dissimilarity between a pair of instances, equivalent to those of `p

and dcos.

2We used sufficiently large b in order to discriminate instances well.
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3.3.2 Handling discrete attributes

For ordinal discrete attributes, |Ri(x,y)| can be estimated as follows:

|Ri(x,y)| =
max(xi,yi)∑

zi=min(xi,yi)

f(zi) (3.10)

where f(zi) is the frequency of discrete label zi in D.

Unlike dlin which assigns dissimilarity in an ordinal attribute i based on the frequencies

of labels if xi 6= yi and assigns minimal dissimilarity of 0, regardless of the distribution of

labels if xi = yi, mp assigns dissimilarity based on the frequency of the label, even in the

case of xi = yi.

For nominal discrete attributes, |Ri(x,y)| can be estimated as follows:

|Ri(x,y)| =

{
f(xi) if xi = yi

N otherwise
(3.11)

It is interesting to note the difference between mp and the existing dissimilarity mea-

sures for nominal domains such as dlin, dof and diof (Boriah et al., 2008). For a nominal

attribute i, they use the frequency of labels if two instances have different labels (xi 6= yi),

and assign the maximal similarity of 1 (or minimal dissimilarity of 0) if xi = yi. In con-

trast, mp uses the frequency of the label if xi = yi and assigns the maximal dissimilarity

of 1 otherwise. In the case of xi = yi, existing measures assign maximal similarity of 1

without considering the distribution of the label. It might be the case that all the other

instances have the same label and there is no discrimination between instances w.r.t the

attribute.

The frequency of each discrete label can be computed in a pre-processing step which

requires O(NM) time and O(Mu) (where u is the average number of discrete labels per

dimension) space.

3.3.3 Dissimilarity measure in bag-of-words vector representation

In the case of bag-of-words (BoW) (Salton and McGill, 1986) vector representations, each

component of a vector represents the frequency of a feature (term in documents or a visual

descriptor in images). Given any two vectors x and y, many features have zero frequency

i.e., xi = yi = 0 for many dimensions, because a document contains only a small proportion

of words in the dictionary. Since the absence of a feature in both instances does not provide

any information about the (dis)similarity of x and y, those features should be ignored.

Hence, in the BoW vector representation, mp-dissimilarity of x and y is estimated using

only those features that occur in either of x or y as follows:

mp(x,y) =

 1

|Fx,y|
∑
i∈Fx,y

(
|Ri(x,y)|

N

)p 1
p

(3.12)
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where Fx is the set of features that occur in x (i.e., Fx = {i : xi > 0}), and |Fx,y| = |Fx∪Fy|
is the normalisation term employed to account for different numbers of features used for

measuring the dissimilarity of any two instances.

It is important to ignore those features which have zero frequency in both instances

(xi = yi = 0); otherwise, mp would assign large dissimilarity w.r.t those features as many

instances in the dataset will have 0 values. This is not an issue for `p because it assigns 0

dissimilarity when xi = yi = 0.

3.3.4 Distinguishing properties of mp

Data-dependent self dissimilarity. The distinguishing characteristic of mp compared

with the geometry-based (`p and dcos) and probabilistic (dlin) dissimilarity measures dis-

cussed in Section 3.2 is self-dissimilarity. The self-dissimilarity of mp is not zero; it ranges

from the minimum of 1
N to the maximum of 1, depending on the data distribution in

each dimension. In contrast, `p(x,x) = dcos(x,x) = dlin(x,x) = 0 irrespective of the data

distribution. Because of the data-dependent self-dissimilarity, mp is non-metric.

The approximation of |Ri(x,y)| using equal-frequency bins will yield a non-zero con-

stant self-dissimilarity for mp only if each bin has the same number of instances in each

dimension. This is often not possible, because there are duplicate values in many in-

stances, and this occurs in many dimensions. This is a common characteristic of many

high-dimensional datasets because data often lie in a low-dimensional subspace. As a

result, bins often have different numbers of instances, resulting in data-dependent self-

dissimilarity. The advantage of the data-dependent self-dissimilarity of mp over data-

independent self-dissimilarity of existing measures is discussed in Section 3.5.

In discrete domains, unlike dlin, dof and diof based measures that use the probabilities

of categorical labels only in the case of different labels, mp uses the probability of the label

in the case of matching labels: data-dependent self-dissimilarity in action.

mp is equivalent to `p only under uniform distribution. Under uniform dis-

tribution and with infinite data, mp is equivalent to `p as the data mass in the range is

proportional to its length. This is the only condition under which mp—a data-dependent

measure—is equivalent to `p—a geometric model based measure.

Robust to scale, units of measurement and outliers. As mp is based on counts

and does not use the feature values in the dissimilarity measure directly, it is robust to

the scales and units of measurement in continuous domains. It does not require pre-

processing of data to address the scaling issue (min-max normalisation) or differences in

variance across different dimensions (standard deviation normalisation). In many real-

world applications, different properties of data may have been represented or measured

in different scales (e.g., income is represented in dollars and age in normal integer scale:

one unit difference is not the same in these two attributes). This can be the case in high-

dimensional problems, where different properties are measured by different sensors. For

the same reason (i.e., based on the count and not the actual feature values), mp is less

sensitive to outliers. In the case of `p, outliers can have an adverse impact, as they might

change variance significantly.
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3.4 Empirical evaluation

This section presents the results of experiments conducted to demonstrate that by simply

replacing the geometric distance with the probability mass in each dimension, mp produces

better task-specific performances than `p and dcos across a wide range of datasets. We

evaluated the performance of mp against the general-purpose dissimilarity measures of

Minkowski distance (`p), Minkowski distance after standard deviation normalisation (s-

`p), cosine distance (dcos) and Lin’s probabilistic measure (dlin) in k-nearest neighbour

(kNN) classification and content-based multimedia information retrieval (CBMIR) tasks.

We used two settings of p ∈ {0.5, 2.0} in `p, s-`p and mp resulting in eight measures:

dcos, dlin, `0.5, `2, s-`0.5, s-`2,m0.5 and m2. All dissimilarity measures and algorithms were

implemented in Java using the WEKA platform (Hall et al., 2009).

We used moderately high to high-dimensional (M ≥ 20) datasets from different ap-

plication areas such as text, image, music, character and digit recognition, medical and

biology, games, etc. In text collections, documents were represented by TF-IDF (Salton

and Buckley, 1988) weighted ‘bag-of-words’ (Salton and McGill, 1986) vectors. Feature

values in each dimension in all other non-text datasets were normalised to be in the unit

range. For dlin, continuous attributes were converted into ordinal attributes using dis-

cretisation, as in the case of mp.

The properties of the datasets are provided in Table 3.3. NG20, R52, R8, Webkb were

from Cardoso-Cachopo (2007)3; Ohscal, Wap, New3s and Fbis were from Han and Karypis

(2000)4; Caltech256 (sift bag-of-words features) from Tuytelaars et al. (2010)5; Corel and

Gtzan were from Zhou et al. (2012); HBA was from Ariyaratne and Zhang (2012) and the

rest of the other datasets were from UCI (Bache and Lichman, 2013)6 and WEKA (Hall

et al., 2009)7.

We discuss the experimental set-ups and results in kNN classification and content-

based multimedia information retrieval (CBMIR) tasks in the next two subsections.

3.4.1 kNN classification

In the kNN classification context, in order to predict a class label for a test instance

x, its k nearest neighbours were searched in the training set using all eight dissimilarity

measures and the most frequent label in kNNs was predicted as the class label for the test

instance. All classification experiments were conducted using 10-fold cross-validation: 10

train-and-test trials using 90% of the given dataset for training and 10% for testing. We

set k to the commonly-used value of 5. The average classification accuracy (%) over a

10-fold cross-validation was reported. The accuracies of two algorithms were considered

to be significantly different if their confidence intervals (based on two standard errors over

the 10-fold cross-validation) did not overlap. The average classification accuracies over

3http://web.ist.utl.pt/acardoso/datasets/
4http://www.cs.waikato.ac.nz/ml/weka/datasets.html
5http://homes.esat.kuleuven.be/∼tuytelaa/unsup features.html
6https://archive.ics.uci.edu/ml/datasets.html
7Available with WEKA software http://www.cs.waikato.ac.nz/ml/weka/
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Table 3.3: Data sets used to compare the performance of mp with other distance or
dissimilarity measures. The number of nominal attributes (Mnom) is provided in brackets
along with the total number of dimensions (M) and c is the number of classes in a dataset

Name N M (Mnom) c Application area

New3s 9558 26832 (0) 44 Text (TREC Collection)
Ohscal 11162 11465 (0) 10 Text (Ohsumed patients’ information)
Arcene 200 10000 (0) 2 Bioinformatics (Cancer)
Wap 1560 8460 (0) 20 Text (Yahoo web pages)
R52 9100 7369 (0) 52 Text (Reuters Collection)
NG20 18821 5489 (0) 20 Text (20 Newsgroup)
Gisette 7000 5000 (0) 2 Digits Recognition
R8 7674 3497 (0) 8 Text (Reuters Collection)
Fbis 2463 2000 (0) 17 Text (TREC Collection)
Webkb 4199 1816 (0) 4 Text (University web pages)
Ads 3279 1558 (1555) 2 Internet Advertisements
Caltech 30607 1000 (0) 257 Image
Mnist 70000 784 (0) 10 Digits Recognition
Mfeat 2000 649 (0) 10 Digits Recognition
Isolet 7797 617 (0) 26 Spoken letters
Madelon 2600 500 (0) 2 Artificial data
Arrhythmia 452 279 (73) 2 Medical (Cardiac Arrhythmia)
Gtzan 1000 230 (0) 10 Music
Ismis 12495 191 (0) 6 Music
Hba 1500 187 (0) 15 Music
Musk2 6598 166 (0) 2 Chemoinformatics
Corel 10000 67 (0) 100 Image
Splice 3190 60 (60) 3 Bioinformatics (DNA)
Miniboone 129596 50 (0) 2 Physics (particles)
Connect-4 67557 42 (42) 3 Game (Connect-4)
Annealing 898 38 (32) 6 Steel annealing
Satellite 6435 36 (0) 7 Satellite Image
Chess 3196 36 (36) 2 Game
Hypothyroid 3772 29 (22) 4 Medical (Thyroid)
Credit-g 1000 20 (13) 2 Finance (Credit risks)

the 10-fold cross-validation of the eight dissimilarity measures in all datasets are provided

in Table 3.4.

Out of 30 datasets, m0.5 and m2 produced the best result or equivalent to the best

result in 23 and 16 datasets, respectively. Either m0.5 or m2 produced significantly better

classification accuracy than any other contenders in the New3s, Ohscal, Wap, R52, NG20,

R8, Webkb, Caltech, Corel, Connect-4 and Hypothyroid datasets. The results summarised

in the last two rows in Table 3.4 show that both m0.5 and m2 produced consistently

top or near-top results across different datasets. m0.5 and m2 have average ranking of

1.97 and 2.37, respectively, whereas the average rank of the closest contender dcos is

3.30. Table 3.5 provides the results summarised in terms of the win:loss:draw counts of

m0.5 and m2 against the other six contenders using confidence intervals based on the two

standard errors in the 10-fold cross-validation (standard errors are provided in Table 3.10
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Table 3.4: Average accuracy of 5NN classification over a 10-fold cross-validation. The
average accuracy and average rank of measures in 30 datasets are included in the last two
rows

Data set dcos `0.5 `2 s-`0.5 s-`2 dlin m0.5 m2

New3s 76.28 24.35 64.78 27.53 36.72 1.97 ∗80.11 79.51
Ohscal 60.30 19.57 42.64 15.51 26.62 6.84 ∗73.22 71.94
Arcene 82.00 84.00 83.50 83.50 80.00 82.00 84.00 79.50
Wap 73.53 22.95 35.06 19.62 25.90 29.42 ∗82.82 ∗82.50
R52 87.44 74.79 76.18 72.09 62.74 0.97 ∗90.07 88.63
NG20 83.44 27.05 58.07 27.50 58.37 4.82 ∗84.63 81.80
Gisette ∗97.76 94.59 96.50 95.16 95.77 92.30 96.77 ∗97.73
R8 90.36 81.89 79.59 80.02 70.11 51.90 ∗94.94 93.72
Fbis ∗77.91 48.18 70.40 49.61 60.74 56.23 ∗79.21 ∗78.85
Webkb 73.40 51.28 63.85 51.34 62.47 47.30 ∗85.23 84.31
Ads 96.43 96.49 96.46 ∗97.26 ∗97.07 94.54 ∗96.59 ∗97.04
Caltech 11.40 2.90 8.46 3.49 8.74 1.52 13.83 ∗14.68
Mnist ∗97.66 95.62 97.19 95.49 94.79 41.58 95.77 97.23
Mfeat 98.00 98.15 98.20 98.20 98.15 97.78 97.85 98.20
Isolet ∗88.37 83.71 ∗89.16 83.42 87.51 81.49 79.68 82.42
Madelon 57.27 ∗60.92 56.88 ∗60.23 53.92 58.65 ∗59.23 55.00
Arrhythmia 63.93 64.83 63.93 65.48 ∗68.15 ∗71.00 ∗71.90 ∗69.88
Gtzan ∗70.90 65.00 ∗70.40 63.10 65.20 ∗70.40 ∗72.00 68.80
Ismis 94.53 94.35 94.41 94.10 94.14 ∗95.42 ∗95.54 94.48
Hba 50.20 59.07 52.00 59.40 53.67 ∗65.27 ∗67.07 60.73
Musk2 96.45 95.35 96.62 95.18 ∗97.03 95.01 95.01 95.47
Corel 24.59 35.66 23.68 36.82 28.80 37.67 ∗39.76 35.30
Splice 78.21 78.21 78.21 78.21 78.21 ∗85.52 ∗84.64 83.17
Miniboone 92.65 ∗93.03 92.63 92.84 92.89 76.76 92.77 ∗92.94
Connect-4 74.85 74.85 74.85 74.85 74.85 30.29 76.62 ∗77.11
Annealing 84.65 87.88 85.09 88.65 85.53 ∗89.76 ∗89.64 85.87
Satellite 84.86 ∗90.68 ∗90.97 ∗90.54 ∗91.03 ∗90.65 ∗90.97 ∗90.85
Chess ∗96.24 ∗96.24 ∗96.24 ∗96.24 ∗96.24 ∗96.31 93.52 ∗95.87
Hypothyroid 93.43 93.72 93.45 94.30 94.25 94.94 ∗95.71 94.19
Credit-g 72.40 72.20 72.40 71.60 72.80 70.80 73.20 71.80

Avg. Acc. 77.65 68.92 73.39 68.71 70.41 60.64 81.08 79.98
Avg. Rank 3.30 4.07 3.60 3.97 3.83 4.67 1.97 2.37

Boldface represents a measure which has significantly better performance than all other
competitors and ∗ represents the best or equivalent to the best performance (it is not used when
all the measures produced the best or equivalent to the best results, e.g., Arcene, Mfeat and
Credit-g).

in Appendix 3.C). Table 3.5 shows that both m0.5 and m2 had significantly more wins

than losses against all other contenders.

Note that in datasets with nominal attributes only (e.g., Connect-4, Chess and Splice),

dcos, `p and s-`p produced exactly the same results, because they are effectively the same

measure. Because of the one-of-all transformation, all the vectors are of the same length

of M (as each instance has exactly M 1s), in which case dcos is proportional to `2. Since

the difference in each dimension is either 0 or 1, the parameter p is meaningless.
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Table 3.5: Win:loss:draw counts of m0.5 and m2 against other measures in 5NN classifica-
tion

m0.5 m2

dcos 18:5:7 16:5:9
`0.5 18:4:8 17:3:10
`2 19:4:7 17:2:11
s-`0.5 19:3:8 16:4:10
s-`2 21:4:5 16:2:12
dlin 17:2:11 16:7:7

All eight measures had runtimes of the same order of magnitude. For example, pre-

dicting class labels for instances in one fold of train-and-test in NG20 took 21458 seconds

for m2 and 26484 seconds for m0.5, in comparison to 16296 (dcos), 28168 (`0.5), 24380 (`2),

29210 (s-`0.5), 25944 (s-`2) and 20515 (dlin) seconds. In Corel, m2 and m0.5 took 37 and

47 seconds, whereas dcos took 22 seconds followed by 32 (`2), 45 (`0.5), 47 (s-`2), 59 (s-`0.5)

and 90 (dlin) seconds.

3.4.2 Content-based multimedia information retrieval (CBMIR)

Given a query instance q for a retrieval task, all the instances in a dataset were ranked in

ascending order of their dissimilarity to q, based on a dissimilarity measure, and the first

k instances were presented as the relevant instances to q. For performance evaluation, an

instance was considered to be relevant to q if they had the same category label. A good

information retrieval system returns relevant instances at the top. Hence, the precision

in the top 10 (P@10) retrieved results was used as the performance measure. The same

process was repeated for each instance in a dataset as a query and the rest of the instances

were ranked. The average P@10 of N queries was reported. For the information retrieval

task, we used 10 datasets with 10 or more classes from multimedia (text, music and image)

applications: New3s, Ohscal, Wap, R52, NG20, Fbis, Caltech, Gtzan, Hba and Corel. The

average P@10 of dcos, `0.5, `2, s-`0.5, s-`2, dlin,m0.5 and m2 are provided in Table 3.6.

Table 3.7 presents the results summarised in terms of the win:loss:draw counts of

m0.5 and m2 using confidence interval based on the two standard errors over N queries

(standard errors are provided in Table 3.11 in Appendix 3.C). The table shows that both

m0.5 and m2 produced significantly better retrieval results than the other six contenders

in many datasets: m0.5 has only 1 loss and between 7 and 10 wins; m2 has at least 7 wins

and at most 3 losses. The detailed results in Table 3.6 show that, out of the 10 datasets

used, m0.5 and m2 produced the best result or equivalent to the best result in 9 and 6

datasets, respectively. They have average rankings of 1.20 and 2.70, respectively whereas

the closest contender dcos has an average ranking of 3.2.
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Table 3.6: Average P@10 over N queries. The average P@10 and average rank of measures
in 10 datasets are included in the last two rows

Data set dcos `0.5 `2 s-`0.5 s-`2 dlin m0.5 m2

New3s 0.66 0.16 0.47 0.14 0.15 0.03 ∗0.69 0.68
Ohscal 0.48 0.17 0.27 0.15 0.15 0.10 ∗0.61 0.59
Wap 0.64 0.18 0.24 0.16 0.16 0.20 ∗0.73 ∗0.72
R52 0.81 0.69 0.70 0.66 0.59 0.33 ∗0.85 0.83
NG20 ∗0.71 0.19 0.42 0.19 0.40 0.06 0.697 0.65
Fbis ∗0.68 0.36 0.57 0.34 0.45 0.41 ∗0.68 0.67
Caltech 0.08 0.02 0.06 0.03 0.06 0.01 0.09 ∗0.10
Gtzan ∗0.53 0.49 ∗0.53 0.48 0.49 ∗0.53 ∗0.54 0.51
Hba 0.37 0.44 0.38 0.45 0.40 ∗0.50 ∗0.51 0.46
Corel 0.16 0.24 0.16 0.25 0.19 0.253 ∗0.27 0.24

Avg. P@10 0.51 0.29 0.38 0.29 0.30 0.24 0.57 0.55
Avg. Rank 3.20 5.30 4.40 5.80 5.80 5.50 1.20 2.70

Boldface represents a measure which has significantly better performance than all other
competitors and ∗ represents the best or equivalent to the best performance.

Table 3.7: Win:loss:draw counts of m0.5 and m2 against other measures in CBMIR

m0.5 m2

dcos 7:1:2 7:2:1
`0.5 10:0:0 7:1:2
`2 9:0:1 9:1:0
s-`0.5 10:0:0 8:1:1
s-`2 10:0:0 9:0:1
dlin 8:0:2 7:3:0

3.5 Relation to `p with rank transformation

It might appear that mp (Eqn 3.8 with δ = 0) is equivalent to `p with rank transformation

(Conover and Iman, 1981) in continuous domains because they both measure dissimilarity

based on the number of instances between the two instances under measurement. In

rank transformation (Conover and Iman, 1981), instances in each dimension are ranked in

ascending order with the smallest value having rank 1, the second smallest value having

rank 2, and so on. The values of instances are then replaced by their ranks. If there are

n < N instances which have the same value and the value has rank r, then all instances

are assigned the same rank r, and the next available rank is r+n (i.e, the minimum rank

is assigned in the case of tie)8.

The distance between two instances in each dimension after the rank transformation

as discussed above can be defined as abs(rank(xi)− rank(yi)) = |{zi : min(xi, yi) ≤ zi <

8Another approach to assigning rank in the case of a tie is to assign the average rank, i.e.,
r+(r+1)+···+(r+n)

n
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max(xi, yi)}|. In mp (with δ = 0) using the implementation based on the range search,

|Ri(xi, yi)| = |{zi : min(xi, yi) ≤ zi ≤ max(xi, yi)}| 9.

These two formulations are equivalent only if all values in dimension i are distinct, i.e.,

|Ri(xi, yi)| = abs(rank(xi) − rank(yi)) + 1. They are different when there are duplicate

values and the degree of difference is proportional to the number of duplicates.

It is interesting to note that the self-dissimilarity of xi if there are duplicate xi:

abs(rank (xi) − rank(xi)) = 0 versus |Ri(xi, xi)| = f(xi) where f(xi) is the frequency

of xi. Although the rank difference between xi and yi is data-dependent when xi 6= yi

(i.e., the rank difference between xi and yi is larger in a denser region than in a sparse

region, even if the geometric distance is the same), but it is zero, irrespective of the

distribution when xi = yi. In the extreme case where all the instances have the same

value in dimension i, the self-dissimilarity is 1 (maximum) in the case of mp, whereas the

self-dissimilarity of `p after rank transformed is 0 (minimum). Often in high-dimensional

real-world problems, many instances can have the same value in many dimensions, e.g.,

many documents in a collection can have the same occurrence frequency of a term, or

different individuals can have the same age etc.

We compared the performances of mp and `p with rank transformation (`rankp ) in

the kNN classification task using datasets with continuous attributes only because rank

transformation is applicable only in continuous domains. Both `rankp and mp (since the

efficient approximation of Ri(·, ·) as discussed in Section 3.3.1 is not used) have high time

complexities. Estimating |Ri(·, ·)| in mp and computing the rank of an unseen value of

a test instance in `rankp in each dimension requires O(logN) time using binary search,

resulting in the total time complexity of measuring dissimilarity of a pair instances being

O(M logN), which is very expensive in large datasets. We managed a 10-fold cross-

validation of kNN classification completed in 24 hours in ten relatively small datasets

only: Hba, Gtzan, Arcene, Mfeat, Madelon, Satellite, Fbis, Wap, Webkb and R8.

In order to provide an indication of the number of duplicate values per dimension in a

dataset, the factor of distinct values averaged over all dimensions, i.e., α, is calculated as:

α =
1

M

M∑
i=1

wi
N

(3.13)

where wi is the number of distinct values in dimension i. α = 1 indicates that the dataset

has unique values in all dimensions (no duplicates at all) and α = 1
N indicates that all

instances have the same value in each and every dimension.

The average accuracies of 5NN classification over a 10-fold cross-validation using `rank2 ,

`rank0.5 , m2 and m0.5 are provided in Table 3.8. Based on the two standard error confidence

interval significance test, `rank2 & m2 and `rank0.5 & m0.5 produced similar results in Hba,

Gtzan, Arcene, MFeat, Madelon and Satellite, but bothm2 andm0.5 produced significantly

better accuracies than `rank2 and `rank0.5 in Fbis, Wap, Webkb and R8. These results show

9We used the implementation based on the range search and not the approximation using binning in
order to have a similar formulation to `p with rank transformation.
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Table 3.8: The average accuracy of 5NN classification in a 10-fold cross-validation. The
distinct values statistic α is provided in the second column

Data set α `rank2 m2 `rank0.5 m0.5

Hba 0.973 60.40 60.73 66.67 66.93
Gtzan 0.966 68.40 68.50 71.50 71.50
Arcene 0.378 84.50 79.50 80.00 84.00
Mfeat 0.320 97.95 98.20 97.80 97.90
Madelon 0.054 55.08 55.23 59.23 59.73
Satellite 0.011 90.72 90.80 90.69 90.94
Fbis 0.005 64.60 78.85 59.40 79.21
Wap 0.002 26.54 82.82 25.19 82.50
Webkb 0.002 61.28 84.31 59.18 85.23
R8 0.001 85.80 93.72 87.35 94.94

Boldface represents significantly better performance than the corresponding contender.

(a) Hba (b) Gtzan

Figure 3.4: 5NN classification accuracies of `rank2 , `rank0.5 ,m2 and m0.5 for different values
of a.

that mp performs better than `rankp in the case where many instances have the same values

(i.e, there are only a very few distinct values) in many dimensions.

In order to further demonstrate this difference, we conducted experiments with the

Hba and Gtzan datasets (with large α) by increasing the number of duplicate values in

many dimensions. The range of values in dimension i was divided into 10 equal-width

bins represented by bin id. 1, 2, · · · , 10 and an instance’s value was replaced by the id.

of the bin in which the instance falls, resulting in many duplicate values in dimension

i. In order to control the number of dimensions with duplicate values, we introduced a

parameter a that determines the proportion of attributes to be converted into bins, i.e.,

a = 0 indicates that no attribute was converted into bins (i.e., values in all attributes

were left as they were and no duplicate values were introduced) and a = 1.0 indicates

that all attributes were converted into bins (i.e., many instances have duplicate values in

all dimensions). The 5NN classification accuracies of `rank2 , `rank0.5 ,m2 and m0.5 in the Hba

and Gtzan datasets with a = 0, 0.1, 0.2, 0.5, 0.75 and 1.0 are shown in Figure 3.4 and the

corresponding α values are provided in Table 3.9.
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Table 3.9: The distinct values statistic α for different values of a

Data set a = 0 a = 0.1 a = 0.2 a = 0.5 a = 0.75 a = 1.0

Hba 0.973 0.881 0.783 0.485 0.241 0.006
Gtzan 0.966 0.870 0.774 0.486 0.246 0.009

Figure 3.4 shows that there is a significant difference between the classification accu-

racies of m2 and m0.5 compared to those of `rank2 and `rank0.5 for a ≥ 0.75 in both the Hba

and Gtzan datasets. This indicates that mp can provide more reliable nearest neighbours

than `rankp if many instances have duplicate values in many dimensions. This superior

performance of mp over `rankp is primarily due to the data-dependent self-dissimilarity.

Furthermore, the rank transformation is possible in continuous domains only. In con-

trast, mp cannot only be applied to both continuous and discrete domains, but has a

seamless treatment of mixed attribute-type domains.

3.6 Discussion

In a high-dimensional space, the most widely-used Euclidean distance (`2-norm) becomes

ineffective. Many researchers have argued that this is due to the ‘concentration’ effect

of `p, i.e., pairwise distances become almost equal or similar and the contrast between

the nearest and farthest instances diminishes (Beyer et al., 1999; Aggarwal et al., 2001;

François et al., 2007). Let dmax(x, d) and dmin(x, d) be the dissimilarity of x to its

farthest and nearest neighbours in D using dissimilarity measure d, respectively. For a

given instance, the distance between the nearest and farthest instances does not increase

as fast as the distance to the nearest instance for many distributions (Beyer et al., 1999)

i.e., the ‘relative contrast’
(
dmax(x,`p)−dmin(x,`p)

dmin(x,`p)

)
vanishes as the number of dimensions

increases.

In our investigation, we observed that mp is more concentrated than `p and dcos, i.e.,

the relative contrast of mp is smaller than that of `p and dcos. Despite having a higher

concentration effect, mp provides more reliable nearest neighbours than `p and dcos in

many datasets, particularly in high-dimensional problems (see the experimental results in

Sections 3.4.1 and 3.4.2). This indicates that the negative impact of the concentration

phenomenon may not be as severe in practice as it is believed to be theoretically. This

finding is consistent with that suggested by François et al. (2007). The detailed empirical

result of the phenomenon of concentration of m2, `2 and dcos is provided in Appendix 3.B.1.

Another issue of distance measures in high-dimensional spaces discussed in the litera-

ture is ‘hubness’ (Radovanović et al., 2010). Let Nk(y) be the set of k nearest neighbours

of y, and k-occurrences of x, Ok(x) = |{y : x ∈ Nk(y)}|, i.e., the number of other in-

stances in the given dataset where x is one of their k nearest neighbours. As the number

of dimensions increases, the distribution of Ok(x) becomes considerably skewed (i.e., there

are many instances with zero or small Ok and only a few instances have large Ok) for many

widely-used distance measures (Radovanović et al., 2010). The instances with large Ok(·)
are considered as ‘hubs’, i.e., the popular nearest neighbours. Hubness becomes prominent
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in high-dimensional space, and it affects the performance of kNN-based algorithms. For

example, if x is a hub, it appears in the kNN sets of many test instances and contributes

to the prediction decisions, but it may not be relevant to make predictions for all test

instances.

We observed that the hubness phenomenon in mp is not as severe as in the case

of `p and dcos when the number of dimensions is increased, particularly in non-uniform

distributions. This may contribute to the superior performance of mp over `p and dcos.

The detailed empirical result of the phenomenon of hubness of m2, `2 and dcos is provided

in Appendix 3.B.2.

In order to circumvent the high-dimensionality issue, dimensionality reduction (Fodor,

2002) techniques are used before using distance measures. In continuous domain, principal

component analysis (PCA) (Jolliffe, 2005) is commonly used to project data into a lower

dimensional space defined by principal components with high variance. The principal

components are computed by the eigen decomposition of the covariance or correlation

matrix, which is computationally expensive in the case of large M and N . It relies on

variance of data in each dimension, which may not be enough to capture the characteristics

of local data distribution. As it selects the dimensions with high variance, we may lose

differences between instances in the dimensions with low variance.

The main purpose of PCA is dimensionality reduction, which enables the application

of distance measures to high-dimensional datasets. It usually does not improve predictive

accuracy. This is exactly what we observed in the 5NN classification task. For example,

the 5NN classification accuracies of dcos and `2 were increased in Corel and Hba but

that of `0.5 was decreased in both datasets. Similarly, the classification accuracies of all

three measures decreased significantly in Mnist and R52. In general, m2 and m0.5 in the

original space (without dimensionality reduction) produced better and more consistent

results across different datasets. The detailed results of this comparison are provided in

Table 3.12 in Appendix 3.D.

Note that PCA changes the distribution of data to maximise the variance (which is

defined by inter-point distances). Therefore, it does not make sense to apply PCA when

using mp.

Various data-dependent distance metric adaptation techniques to improve the task-

specific performance of distance measures in a given dataset have been proposed. Weighted

Minkowski distance (Deza and Deza, 2009) assigns weight to the distance in each dimen-

sion, based on the observed data. Standardised Euclidean distance (s-`2) is a simple

weighted Euclidean distance, where the distance in each dimension is weighted by the

inverse of data variance in that dimension. Assigning weights more intelligently requires

some learning or optimisation. In transductive learning, Lundell and Ventura (2007) cor-

rected the Euclidean distance between two instances based on meta clustering, which itself

relies on pairwise Euclidean distances and can be computationally expensive in large and

high-dimensional problems.

Distance metric learning (Yang, 2006; Wang and Sun, 2015) projects data from the

original space to a new low-dimensional space that best suits the Euclidean distance to
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solve the task at hand. Rather than projecting data in a low-dimensional space by ignoring

dimensions with smaller eigen values, regularised matrix relevance learning (Schneider

et al., 2010) uses a regularization scheme which inhibits decays in the eigen profile. Both

of these techniques require intensive learning, which is computationally expensive in large

and/or high-dimensional datasets. They optimise distance metric specifically for the given

task which may not be good for other tasks using the same dataset. They are not general-

purpose measures like mp, `p or dcos.

All the adaptive distance metric learning techniques discussed in the literature attempt

to adjust the inter-point distances in the space based on the data distribution that satisfies

some optimality constraints. Because the transformed space is still embedded in the

Euclidean space, the self-similarity is still constant, regardless of the data distribution.

All these techniques still rely on geometric models and metric assumptions. Although

metric-based measures have nice mathematical properties, their assumptions might be

inappropriate to model some problems. Recently, Schleif and Tino (2015) discussed issues

of metric based proximity learning and provided a comprehensive review of non-metric

proximity learning.

In this paper, we focus only on general-purpose distance or dissimilarity measures which

requires no learning. We have evaluated the performance of the proposed data-dependent

general-purpose dissimilarity measure mp against the geometric general-purpose distance

measures `p and dcos. In future, it would be interesting to investigate how learning can

be applied to data-dependent dissimilarity measures such as mp to produce non-metric

learning, and then compare non-metric learning with metric learning.

Because of the implementation of mp using bins, it appears to have some similarity

with Locality Sensitive Hashing (LSH) (Indyk and Motwani, 1998). The aims of binning

are different in the two cases. In LSH, bins are used to quickly find a small set of candidate

nearest neighbours of a test instance, of which the kNNs are searched using the Euclidean

distance. In contrast, in mp, probability data mass in bins is used as a direct measure of

dissimilarity. It is an open question whether LSH can be used to generate candidate sets

quickly for mp. LSH has nice theoretical bounds for Euclidean distance but it is not clear

if similar bounds can be derived for mp.

3.7 Conclusions and future work

In this paper, we propose a new dissimilarity measure called ‘mp-dissimilarity’. It estimates

the dissimilarity between two instances in each dimension as a probability data mass in

the region enclosing the two instances. The final dissimilarity between the two instances

is estimated by combining all single-dimensional dissimilarities, as in the case of `p. The

fundamental difference between the formulations of mp and `p is the replacement of the

geometric distance with the probability mass in each dimension.

Our empirical evaluations in kNN classification and content-based multimedia infor-

mation retrieval tasks show that mp provides better closest matches than those provided

by `p and cosine distance in high-dimensional spaces. Its performance is more consistent

across different datasets. By simply replacing the geometric distance in each dimension
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with the probability mass, kNN using mp significantly improves the performance of kNN

using `p in many high-dimensional datasets.

In contrast to the commonly-used distance measures, mp does not use the values of

instances in each dimension in the measure directly. Because it is based on data mass, it

is robust to units and scales of measurement and the difference in variance of values of

instances between dimensions. Therefore, it does not require any pre-processing such as

min-max normalisation to rescale values in the same range, standard deviation normali-

sation to ensure unit variance across all dimensions, or TF-IDF weighting to adjust the

importance of a term in a document.

Although `p can be made data-dependent through rank transformation, it is applicable

only in the case where all instances have distinct values (or a few duplicates only) in each

dimension. However, the data-dependent characteristics of mp are applicable in both

cases of with and without many instances having duplicate values in many dimensions.

Many instances having duplicate values in many dimensions are a common characteristic

of high-dimensional datasets where the data lie in a low-dimensional subspace. In such

high-dimensional datasets, mp produces better task-specific performance than `p with the

rank transformation.

Future work includes investigating learning for mp and comparing non-metric learning

with metric learning, examining the effectiveness of mp in other data-mining tasks such

as clustering, anomaly detection, vector quantization and SVM kernel learning, and de-

veloping indexing schemes for mp to speed up the nearest neighbour search in the case of

large N .
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Appendix 3.A: Probabilistic interpretation of mp

The formulation of mp(x,y) (Eqn 3.8) has a probabilistic interpretation. The simplest

form of data-dependent dissimilarity measure is to define an M -dimensional region R(x,y)

that encloses x and y, and to estimate the probability of a randomly-selected point t from

the distribution of data, φ(x), falling in R(x,y), P (t ∈ R(x,y)|φ(x)). Let R(x,y) have

a length of Ri(x,y) in dimension i. Assuming that the dimensions are independent,
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P (t ∈ R(x,y)|φ(x)) can be approximated as:

P (t ∈ R(x,y)|φ(x)) ≈
M∏
i=1

P (ti ∈ Ri(x,y)|φi(x)) (3.14)

where P (ti ∈ Ri(x,y)|φi(x)) is the probability of ti falling in Ri(x,y) for dimension i.

The approximation in Eqn 3.14 is sensitive to outliers. An approximation which is

tolerant to outliers can be estimated by replacing the product with the summation (Minka,

2003). The sum-based approximation relates to the probability of t in Eqn 3.14 under the

following outlier model. Consider a data generation process in which, to sample ti, a coin

with the probability of turning heads (1− ε) is flipped. If the coin turns heads, ti is drawn

from the distribution of data in dimension i, φi(x), where the probability of sampling ti is

Pi(ti|φi(x)), otherwise it is sampled from the uniform distribution with probability 1/A,

and A is a constant.

Lemma 3.1. (Minka, 2003) Under the data generation process described above, the prob-

ability of a data point P ′(·) can be approximated as

P ′(t|φ(x), ε) ≈ C1 + C2 ×
M∑
i=1

Pi(ti|φi(x))

where C1 and C2 are constants.

Proof. Under the outlier model, the probability of generating the value of the i’th dimen-

sion ti is

P ′(ti|φ(x), ε) = ε/A+ (1− ε)P (ti|φi(x)) (3.15)

We assume that each dimension is generated independently, hence

P ′(t|φ(x), ε) ≈
M∏
i=1

P ′(ti|φ(x), ε) =
M∏
i=1

(ε/A+ (1− ε)P (ti|φi(x)))

= (ε/A)M + (ε/A)M−1(1− ε)
M∑
i=1

P (ti|φi(x)) +O
(
(1− ε)2

)
In the extreme case where the probability of generating ti from the uniform distribution

(i.e. the outlier component) is high, i.e. ε is close to 1, only the first two terms matter.

Assuming C1 := (ε/A)M and C2 := (ε/A)M−1(1− ε), the lemma follows.

In addition to the above approximation given by Minka (2003), we propose that the

chance of ti being drawn from the outlier model can be further reduced by sampling from

φi(x)p, p > 1 when the coin turns up heads in the above-mentioned data generation

process. The probability of sampling ti from φi(x)p is P (ti|φi(x))p

Zi,p
, where P (·)p is the

probability of a random event occurring in p successive trials and Zi,p is the normalisation

constant to ensure the total probability sums up to 1 in the ith dimension.
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Lemma 3.2. Under the data generation process of sampling from exponential distribution

described above, the probability of a data point P ′′(·) can be approximated as

P ′′(t|φ(x), ε, p) ≈ C1 + C2 ×
M∑
i=1

Pi(ti|φi(x))p

Zi,p

where C1, C2, and {Zi,p}Mi=1 are constants.

Proof. This follows from Lemma 3.1 by drawing ti from φi(x)p p > 1 when the coin turns

up heads in the data generation process.

As a result of Lemma 3.2 (by considering the outlier tolerant model), P (t ∈ R(x,y))

can be approximated as:

P (t ∈ R(x,y)) ≈ C1 + C2 ×
M∑
i=1

Pi(ti ∈ Ri(x,y))p

Zi,p
(3.16)

Note that P (t ∈ R(x,y)) is a data-dependent dissimilarity measure for x and y.

All the constants on RHS of Eqn 3.16 are independent of x and y and they are simply

the scaling factors of the dissimilarity measure. In order to find the nearest neighbour

of x among a collection of data instances, the only important term in the measure is∑M
i=1 Pi(ti ∈ Ri(x,y))p. The constants can be ignored, as they do not change the ranking

of data points. Hence, by ignoring the constants in Eqn 3.16, mp(x,y) can be expressed

as its rescaled version as follows:

mp(x,y) =

(
1

M

M∑
i=1

Pi (ti ∈ Ri(x,y))p
) 1

p

(3.17)

where the outer power of 1
p is a rescaling factor and 1

M is a constant.

In practice, Pi (ti ∈ Ri(x,y)) can be estimated from D as:

P̂i (ti ∈ Ri(x,y)) =
|Ri(x,y)|

N
(3.18)

Hence, Eqn 3.17 and Eqn 3.18 lead to mp defined in Eqn 3.8.

Appendix 3.B: Analysis of concentration and hubness

We examined the concentration and hubness of the three dissimilarity measures m2, `2 and

dcos in different data distributions with the increase in the number of dimensions. We used

synthetic datasets with uniform (each dimension is uniformly distributed between [0,1])

and normal (each dimension is normally distributed with zero mean and unit variance)

distributions with M = 10 and M = 200. Feature vectors were normalised to be in unit

range in each dimension.
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Figure 3.5: Relative contrast
(
dmax(x,d)−dmin(x,d)

dmin(x,d)

)
of m2, `2 and dcos. Note that x-axis is

instance id and corresponding y-axis value is the relative contrast of that instance.

Appendix 3.B.1: Concentration

The relative contrast between the nearest and farthest neighbour was computed for all

N = 1000 instances in each dataset using m2, `2 and dcos. The relative contrast for each

instance in uniform and normal distributions with M = 10 and M = 200 are shown in

Figure 3.5.

The relative contrast of all three measures decreased substantially (note that the y-

axes have different scales in Figure 3.5) when the number of dimensions were increased

from M = 10 to M = 200 in both distributions. It is interesting to note that m2 has the

least relative contrast in both distributions with M = 10 and M = 200, and dcos has the

maximum relative contrast in all cases. The relative contrasts of `2 and m2 are almost the

same, except in the case of normal (M = 200), where the relative contrast of `2 is slightly

higher than that of m2 for many instances.

This suggests that m2 is more concentrated than `2 and dcos. Even in real datasets,

we observed that m2 is more concentrated than `2 and dcos.

Appendix 3.B.2: Hubness

In order to examine the hubness phenomenon, 5-Occurrences of each instance x ∈ D were

estimated, i.e., O5(x) = |{y : x ∈ N5(y)}|, where N5(y) is the set of 5NN of y. Then, the

O5 distribution is plotted for each measure (m2, `2 and dcos) in all four synthetic datasets,

and the results are shown in Figure 3.6.
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Figure 3.6: The O5 distributions of m2, `2 and dcos in synthetic datasets. Note that x-axis
is in the log scale hence x-axis value is log(O5 + 1) to consider the case of O5 = 0.

The O5 distributions of all three measures become skewed when the number of dimen-

sions were increased from M = 10 to M = 200 in both distributions. It is interesting

to note that the O5 distributions of m2 in uniform and normal distributions are almost

similar for both M = 10 and M = 200, whereas those of `2 and dcos in the case of nor-

mal distribution are more skewed than those in uniform distribution for both M = 10

and M = 200. Note that the O5 distributions of m2 and `2 in uniform distribution are

similar for both M = 10 and M = 200. This is because m2 is proportional to `2 under

uniform distribution (also reflected in Figure 3.2(a)). In the case of normal distribution

and M = 200, the O5 distribution of m2 is less skewed than those of `2 and dcos. There

are 361 and 348 (out of 1000) instances with O5 = 0 (which do not occur in the 5NN set

of any other instance) in the case of `2 and dcos, respectively, whereas there are only 161

instances with O5 = 0 in the case of m2. Similarly, the most popular nearest neighbours

using `2 and dcos have O5 = 146 and 152, respectively, whereas the most popular nearest

neighbour using m2 has O5 = 69.

We also observed similar behaviour in many real datasets where the O5 distribution

of m2 is less skewed than that of `2 and dcos.

Appendix 3.C: Standard error

Table 3.10 shows the standard error of classification accuracies (in %) of 5NN classification

over a 10-fold cross-validation (average classification accuracy is presented in Table 3.4 in

Section 3.4.1).
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Table 3.10: Standard error of accuracies of 5NN classification over a 10-fold cross-
validation. Average classification accuracy is presented in Table 3.4 in Section 3.4.1

Data set dcos `0.5 `2 s-`0.5 s-`2 dlin m0.5 m2

New3s 0.35 0.59 0.67 0.67 0.66 0.03 0.34 0.36
Ohscal 0.57 0.48 0.49 0.81 0.70 0.01 0.26 0.26
Arcene 2.49 1.45 1.83 1.98 2.11 2.00 2.96 2.17
Wap 0.78 0.65 0.72 0.66 0.77 1.07 0.83 1.08
R52 0.51 0.23 0.44 0.45 0.42 0.13 0.31 0.25
NG20 0.22 0.42 0.39 0.30 0.24 0.05 0.19 0.23
Gisette 0.16 0.23 0.19 0.27 0.23 0.44 0.22 0.14
R8 0.29 0.40 0.51 0.42 0.45 0.08 0.25 0.29
Fbis 0.80 2.90 1.04 1.91 1.30 1.47 0.71 0.75
Webkb 0.53 0.43 0.75 0.30 0.70 0.28 0.51 0.40
Ads 0.28 0.24 0.30 0.20 0.29 0.23 0.28 0.29
Caltech 0.15 0.09 0.20 0.09 0.14 0.06 0.10 0.11
Mnist 0.08 0.09 0.08 0.09 0.08 0.28 0.07 0.06
Mfeat 0.30 0.32 0.29 0.25 0.32 0.40 0.37 0.38
Isolet 0.45 0.27 0.40 0.23 0.48 0.22 0.33 0.33
Madelon 1.04 1.30 1.18 1.46 1.35 0.78 0.79 0.98
Arrhythmia 2.00 1.32 2.01 1.76 1.42 1.68 1.89 2.34
Gtzan 1.68 1.32 1.61 1.41 1.49 1.48 1.20 1.67
Ismis 0.23 0.24 0.20 0.28 0.24 0.17 0.16 0.19
Hba 1.18 1.31 0.88 1.20 1.21 1.50 1.12 1.36
Musk2 0.18 0.15 0.21 0.15 0.14 0.16 0.13 0.09
Corel 0.44 0.38 0.41 0.41 0.38 0.43 0.49 0.38
Splice 0.67 0.67 0.67 0.67 0.67 0.59 0.41 0.54
Miniboone 0.07 0.07 0.07 0.07 0.05 0.05 0.06 0.07
Connect-4 0.11 0.11 0.11 0.11 0.11 0.19 0.17 0.12
Annealing 1.24 1.48 1.22 1.30 1.35 1.38 1.46 1.46
Satellite 0.29 0.38 0.27 0.35 0.22 0.28 0.39 0.34
Chess 0.39 0.39 0.39 0.39 0.39 0.33 0.29 0.34
Hypothyroid 0.15 0.13 0.15 0.23 0.17 0.21 0.27 0.13
Credit-g 1.41 1.12 1.37 1.12 1.26 1.10 0.89 1.25

Table 3.11 shows the standard error of precision at top 10 retrieved results (P@10) over

N queries in content-based multimedia information retrieval (average P@10 is presented

in Table 3.6 in Section 3.4.2).

Appendix 3.D: Comparison with geometric distance mea-

sures after dimensionality reduction

Average 5NN classification accuracies over a 10-fold cross-validation of dcos, `0.5 and `2

before and after dimensionality reduction through PCA, along with those of m0.5 and m2

in the original space in 16 out of 22 datasets with continuous only attributes are provided

in Table 3.12. With PCA, the number of dimensions was reduced by projecting data in

the lower-dimensional space defined by the principal components capturing 95% of the

variance in data. The principal components were computed by the eigen decomposition



REFERENCES 56

Table 3.11: Standard error of P@10 overN queries. Average P@10 is presented in Table 3.6
in Section 3.4.2

Data set dcos `0.5 `2 s-`0.5 s-`2 dlin m0.5 m2

New3s 0.004 0.002 0.004 0.002 0.002 0.002 0.003 0.003
Ohscal 0.003 0.002 0.002 0.002 0.001 0.001 0.003 0.003
Wap 0.009 0.006 0.007 0.006 0.006 0.006 0.008 0.008
R52 0.003 0.004 0.004 0.004 0.004 0.004 0.003 0.003
NG20 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.002
Fbis 0.006 0.005 0.007 0.005 0.006 0.006 0.006 0.006
Caltech 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Gtzan 0.009 0.010 0.010 0.010 0.010 0.009 0.010 0.010
Hba 0.007 0.007 0.007 0.007 0.007 0.008 0.008 0.007
Corel 0.002 0.003 0.002 0.003 0.002 0.003 0.003 0.003

of the correlation matrix of the training data to ensure that the projection was robust to

scale differences in the original dimensions. Note that PCA did not complete in 24 hours

in the remaining six datasets with M > 5000: New3s (26832), Ohscal (11465), Arcene

(10000), Wap (8460), R52 (7369) and NG20 (5489).
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Chapter 4

Generalised mp-dissimilarity and

its relation to other

data-dependent measures

This chapter generalises mp-dissimilarity where p is allowed to be 0 by introducing m0-

dissimilarity. It investigates the relationships and characteristics of different data-dependent

measures. It shows that mp is a generalised data-dependent dissimilarity measure, of which

the existing data-dependent measures of rank difference and Lin’s probabilistic measure

are special cases with p > 0 and p = 0, respectively. It also analyses the behaviour of

different data-dependent measures with the change in units and scales of measurements

of feature values. Empirical evaluation reveals that the fully data-dependent measure of

mp-dissimilarity, which is robust to units and scales of measurement, is more effective than

other data-dependent and data-independent similarity measures.

The work on generalised mp-dissimilarity and a comparative study of its relationship,

characteristics and relative performance with existing data-dependent measures has been

reported in the following paper:

Aryal, S., Ting, K. M., Washio, T. and Haffari, G. (2017), A comparative study of data-

dependent approaches in measuring similarities of data objects, Knowledge Discovery and

Data Mining (under review).

This chapter is a copy of the paper submitted to the Knowledge Discovery and Data Mining

journal. In order to generate a consistent presentation within the thesis, the format and

some notations or symbols used have been changed, minor grammar and spelling mistakes

have been corrected, and sections of the submitted paper have been renumbered.
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Abstract:

Conventional distance-based similarity measures are data-independent and sensitive to

units or scales of measurement. There are existing data-dependent approaches, such as

rank difference, Lin’s probabilistic measure and mp-dissimilarity, which are not sensitive

to units or scales of measurement. Although they have been shown to be more effective than

the traditional distance measures, their characteristics and relative performances have not

been investigated.

In this paper, we study the characteristics and relationships of different data-dependent

measures and find that mp-dissimilarity is a generic data-dependent measure with data-

dependent self-similarity, whereas rank difference and Lin’s measure are special cases with

data-independent self-similarity. We evaluate the effectiveness of a wide range of data-

dependent and data-independent measures in content-based information retrieval and kNN

classification tasks. Our findings show that the fully data-dependent measure of mp is a

more effective alternative to other data-dependent and commonly-used distance-based sim-

ilarity measures as its task-specific performance is more consistent across a wide range of

datasets.

Keywords: Distance measures, `p-norm, Lin’s probabilistic similarity, rank transforma-

tion, data-dependent similarity measures, mp-dissimilarity
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4.1 Introduction

Measuring pairwise similarities of data instances is ubiquitous in many data-mining al-

gorithms. The conventional approach to similarity measurement is primarily based on a

geometric model where data are assumed to be embedded in a multi-dimensional space

and the similarity of two instances is estimated as the inverse of their distance in the

space (Deza and Deza, 2009). Minkowski distance (also known as `p-norm with p > 0)

and cosine distance are the most widely-used distance measures.

In a geometric model, there is an implicit assumption that a unit distance implies the

same degree of similarity everywhere in the space, which is referred to as interval scale

assumption by Stevens (1946). This assumption can be problematic for two reasons:

1. The need for data-dependence: Psychologists (Tversky, 1977; Krumhansl, 1978) ar-

gue that the human-judged similarity between two instances is data-dependent as

two instances in a dense region are less similar than two instances of equal distance

in a less dense region. For example, many people earn in the range of 50 to 150

thousands, and significantly fewer persons earn more than one million a year. Two

individuals earning w = $50k and x = $150k are judged to be less similar than two

individuals earning y = $1100k and z = $1200k, even though z−y = x−w = $100k,

because there are many more people earning in the range of $50k to $150k than

those earning more than a million.

2. Sensitivity to units or scales of measurement: The commonly-used distance measures

are sensitive to units or scales of measurement. For example, in the logarithmic scale

of base 10, the annual incomes in the above example become w′ = 4.70, x′ = 5.18,

y′ = 6.04 and z′ = 6.08. Although x−w = z−y in the original scale, x′−w′ > z′−y′

in the logarithmic scale. Unfortunately, the units or scales of measurement may not

be known in many data-mining problems. Distance measures can produce poor task-

specific performances if different units or scales of measurement are used in the same

dataset (Fernando and Webb, 2017).

One simple solution is to assume that data are ordinal and use measures such as (1)

rank difference - distance after rank transformation (Conover and Iman, 1981) and (2) Lin’s

information theoretic measure (Lin, 1998). They are scale-invariant and the similarity of

two distinct values x and y (i.e., x 6= y) is data-dependent. However, their self-similarities

are constant everywhere in the space, regardless of the data distribution. The similarity of

two individuals earning $50k is the same as two individuals earning $1200k, even though

the former is judged by humans to be less similar than the latter, because there are many

more people earning $50k than those earning $1200k.

In order to understand the importance of data-dependent self-similarity, consider an

example of a multidimensional dataset with 10 instances, the values of which in two

dimensions i and j are distributed as shown in Table 4.1 (Aryal et al., 2017). In this

example, Inst1 and Inst2 have the same values in both dimensions, but their value in

dimension i is less common (has lower probability) than their value in dimension j. In

measures with data-independent self-similarity, their similarities in two dimensions i and
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Table 4.1: An example of data distribution in two dimensions of a multi-dimensional
dataset (Aryal et al., 2017).

Dim. Inst1 Inst2 Inst3 Inst4 Inst5 Inst6 Inst7 Inst8 Inst9 Inst10

· · · · · · · · · · ·
· · · · · · · · · · ·
i 2 2 1 1 1 1 1 1 1 1
j 2 2 2 2 2 2 2 2 1 1
· · · · · · · · · · ·
· · · · · · · · · · ·

j have the same contribution to the overall similarity. Psychologists argue that having

the same values in dimensions i (rare value) and j (common value) do not provide the

same amount of information about the similarity of Inst1 and Inst2. The situation where

many instances have the same value in many dimensions can be very common in high-

dimensional spaces, as data often lie in a low-dimensional subspace.

Recently, Aryal et al. (2017, 2014b) introduced a fully data-dependent dissimilar-

ity measure called mp-dissimilarity (with p > 0) where even the self-similarity is data-

dependent. In the example shown in Table 4.1, the similarity of Inst1 and Inst2 in

dimension i is more than their similarity in dimension j using mp as suggested by psy-

chologists.

All these data-dependent measures have been shown to produce better task-specific

performance than traditional distance measures, but their characteristics and relative per-

formances have not been investigated. Furthermore, some data-dependent measures such

as rank difference are inefficient to compute, particularly for testing instances which are

new and not previously seen in the training data.

In this paper, we make the following contributions:

1. Analysis of the characteristics and relationships of different data-dependent mea-

sures. We generalise mp from p > 0 to p ≥ 0 by introducing m0-dissimilarity and

show that mp is a generic data-dependent measure, where rank difference and Lin’s

measure are special cases of mp with p > 0 and m0, respectively, having data-

independent self-similarities.

2. Evaluation of the task-specific performance and sensitivity to units or scales of mea-

surement of a wide range of data-dependent and data-independent (distance-based)

measures in content-based information retrieval (CBIR) and kNN classification tasks

in a wide range of datasets. Our results show that (a) data-dependent measures pro-

duce more consistent results than commonly-used data-independent measures; (b)

among data-dependent measures, those with data-dependent self-similarity, partic-

ularly m0 (introduced in this paper), produce better results than those with data-

independent self-similarity in bag-of-words (BoW) text datasets; and (c) most data-

dependent measures are robust to units or scales of measurement.

In addition, based on the methodology used by mp (Aryal et al., 2017), we improve

the efficiency and effectiveness of rank difference and Lin’s measure as follows:
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i. The efficiency of rank difference is improved by converting continuous domain into

ordinal intervals through discretisation, as in the case of mp (Aryal et al., 2017).

With this improvement, rank difference, Lin’s measure and mp have runtimes similar

to those of the traditional distance measures.

ii. Adapting the formulations of data-dependent similarity measures of rank difference,

Lin’s measure and mp so that they work well in datasets with bag-of-words (BoW)

vector representations.

The rest of the paper is organised as follows. Section 4.2 reviews existing data-

dependent (dis)similarity measures, along with some widely-used data-independent dis-

tance measures. In Section 4.3, we discuss the characteristics and relationships of differ-

ent data-dependent measures and introduce a new variant of mp with p = 0 (i.e., m0).

Section 4.4 discusses the adaptation of data-dependent measures for bag-of-words (BoW)

vector representations. Converting real valued attributes into ordinal intervals in order

to speed up data-dependent measures is discussed in Section 4.5. Section 4.6 presents

empirical evaluation results, followed by discussion in Section 4.7. Finally, we conclude

the paper in the last section.

4.2 Similarity or dissimilarity measures

Let D be a collection of N data instances where each instance x is represented by an M -

dimensional vector of numerical values of itsM selected features, i.e., x = 〈x1, x2, · · · , xM 〉.
Let d(x,y) be a measure of dissimilarity1 of x and y. In the traditional approach, D is

assumed to be embedded in an M -dimensional metric space and d(x,y) is computed as

their geometric (spatial or angular) distance in that space.

Minkowski distance (also known as `p-norm) estimates d(x,y) as the power mean with

p > 0 of distances in each dimension. Euclidean distance (`2-norm) is a popular choice,

as it intuitively corresponds to the distance defined in the real three-dimensional world.

In high-dimensional sparse data distributions such as bag-of-words (BoW) text datasets

(Salton and McGill, 1986), cosine distance (also known as angular distance) is a more

sensible choice, because the direction of vectors is more important than their lengths.

Note that the cosine distance of two vectors is proportional to their Euclidean distance if

the vectors are normalised to unit lengths.

Minkowski distance becomes meaningless as the number of dimensions increases, be-

cause all pairs of points become almost equidistant in a high-dimensional space (Beyer

et al., 1999; François et al., 2007). Recently, Mansouri and Khademi (2015) introduced

multiplicative distance where d(x,y) is computed as the product of their distances in every

dimension, and showed that it is more effective than the traditional Minkowski distance

in high-dimensional spaces.

The formulations of Minkowski, cosine and multiplicative distances are provided in

Table 4.2.

1Similarity is the inverse of dissimilarity. We use dissimilarity in this paper to be consistent with
distance measures.
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Table 4.2: Distance measures. abs(·) returns an absolute value and p > 0

Distance measure Notation d(x,y)

Minkowski `p(x,y)

(
M∑
i=1

abs(xi − yi)p
) 1

p

Cosine dcos(x,y) 1−
∑M

i=1 xi × yi√∑M
i=1 x

2
i ×

√∑M
i=1 y

2
i

Multiplicative dMD(x,y)

(
M∏
i=1

(1 + abs(xi − yi))

)
− 1

In all distance measures discussed above, d(x,y) is data-independent because it is

estimated using the feature values of x and y only and the distribution of data has no

influence on it. This has been suspected to be one of the key reasons why a distance

measure that performs well in one data distribution can perform poorly in others (Aryal

et al., 2014b). Several data-dependent measures are discussed in the literature which utilise

information from the distribution of data, i.e., d(x,y) is data-dependent. We review some

of them in this section.

4.2.1 Mahalanobis distance and metric learning

The Mahalanobis distance (Mahalanobis, 1936; Deza and Deza, 2009) of x and y is defined

as follows:

dmah(x,y) =
√

(x− y)TΣ−1(x− y) (4.1)

where Σ ∈ RM×M is the covariance matrix of D and T is a transpose operator.

Although it takes into account the differences in variance across different dimensions

and captures covariance between them, it does not consider variation in local data dis-

tribution within a dimension. Covariance is not enough to capture the characteristics of

non-normal distributions, and it can therefore perform poorly in many real-world problems

where data distribution is often non-normal.

Instead of using the inverse of the covariance matrix, distance metric learning algo-

rithms (Wang and Sun, 2015; Weinberger et al., 2006) learn a generalised Mahalanobis

distance from D defined as follows:

dgenMah(x,y) =
√

(x− y)TΩ(x− y) (4.2)

where Ω ∈ RM×M is a positive semi-definite matrix. It can be factorized as Ω = ΛTΛ where

Λ ∈ Rω×M and ω is a positive integer. Hence, distance metric learning can be expressed

as: dgenMah(x,y) = ‖Λx − Λy‖2 (Wang and Sun, 2015). The generalised Mahalanobis

distance is the Euclidean distance of vectors projected by Λ.

The main learning task is to learn a projection matrix Λ to improve the task-specific

performance of the Euclidean distance, subject to some constraints. For example, in a

classification problem, the task is to learn Λ such that instances belonging to the same class
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become closer to each other (similarity constraints) and instances belonging to different

classes are separated further apart (dissimilarity constraints) (Weinberger et al., 2006).

4.2.2 Rank difference

In rank transformation (Conover and Iman, 1981), feature values of instances in each

dimension are ranked in ascending order with the smallest value having rank 1, the second

smallest value having rank 2, and so on. If n (≤ N) instances have the same value, and the

value has rank r, then all these n instances are assigned the average rank r+(r+1)+···+(r+n)
n

and the next available rank is r+n. The dissimilarity of x and y is estimated by aggregating

their rank difference in each dimension using the same power mean formulation as in `p

as follows:

drank(x,y, p) =

(
1

M

M∑
i=1

abs(x̃i − ỹi)p
) 1

p

(4.3)

where x̃i and ỹi are the ranks of xi and yi in dimension i.

Rank difference is data-dependent because for a given magnitude difference abs(xi −
yi) > 0, abs(x̃i− ỹi) is higher if xi and yi are located in a dense region than in a sparse re-

gion. However, the self-dissimilarity is data-independent, i.e., abs(x̃i− x̃i) = 0 everywhere

in the space.

4.2.3 Lin’s probabilistic measure

Assuming data are ordinal in each dimension, the dissimilarity2 of x and y can be estimated

using Lin’s probabilistic measure (Lin, 1998) as follows:

dlin(x,y) = 1− 1

M

M∑
i=1

2× log
∑max(xi,yi)

zi=min(xi,yi)
P (zi)

logP (xi) + logP (yi)
(4.4)

where P (xi) is the probability of xi which can be estimated from D as P̂ (xi) = f(xi)+1
N+ui

where f(xi) is the occurrence frequency of xi in D and ui is the total number of distinct

values in dimension i. Note that the default base of the logarithm in this paper is e (i.e.,

natural logarithm) unless specified otherwise.

Although the dissimilarity of xi and yi is data-dependent, the self-dissimilarity is con-

stant, regardless of the data distribution.

4.2.4 Random forest-based measures

Shi and Horvath (2006) introduced a similarity measure based on unsupervised random

forest (URF) (Breiman, 2001). Recently, Fernando and Webb (2017) used a different

implementation of trees called unsupervised stochastic forest (USF), where each tree is

built from a small random subsample of data (Di ⊂ D, |Di| = ψ � N). At each internal

node in a tree, subsamples are partitioned into two equal subsets by splitting at the median

2 Author(s) defined it as a similarity measure, but we define it as a dissimilarity measure to be consistent
with other measures.
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of values in a randomly-chosen attribute. It builds t balanced binary trees, each with ψ

leaf nodes. The dissimilarity 3 of x and y is estimated as follows:

dUSF (x,y) = 1− 1

t

t∑
j=1

I (Lj(x) = Lj(y)) (4.5)

where I(·) is the indicator function, and Lj(x) is the leaf node where x falls in jth tree.

Fernando and Webb (2017) showed that dUSF produces competitive task-specific re-

sults in comparison to URF and rank difference but runs faster because (a) trees in USF

are shallower than those in URF; and (b) rank difference is very expensive as it requires

a range search to find the rank of a previously unseen value in each dimension. It is

data-dependent for x 6= y because they are more likely to fall in the same leaf if they

are in a sparse region because leaves in sparse regions are larger than those in dense re-

gions. However, the self-dissimilarity is zero everywhere in the space, regardless of the

data distribution.

4.2.5 mp-dissimilarity

Aryal et al. (2014b, 2017) introduced a fully data-dependent dissimilarity measure called

mp-dissimilarity with p > 0 where even the self-dissimilarity is data-dependent. In each

dimension, rather than using the spatial distance abs(xi−yi), the dissimilarity is estimated

as the probability mass in a region covering xi and yi. The measure uses the similar power

mean formulation with p > 0 as in `p to aggregate dissimilarities in each dimension.

mp(x,y) =

(
1

M

M∑
i=1

(
|Ri(x,y)|

N

)p) 1
p

(4.6)

where Ri(x,y) = [min(xi, yi),max(xi, yi)] and |Ri(x,y)| = |{zi : min(xi, yi) ≤ zi ≤
max(xi, yi)}|.

It has been shown that mp is more effective than `p and cosine distance, particularly

in high-dimensional datasets (Aryal et al., 2014b, 2017).

4.2.6 Probability mass-based dissimilarity measure using trees

In a recent study, Ting et al. (2016) used a probability mass-based dissimilarity measure

where the dissimilarity between x and y is estimated as the average probability data

mass in the deepest node shared by them in a collection of t trees. They used the tree

implementation of isolation forest (IF) (Liu et al., 2008), where each tree is built from a

small subsample of data (Di ⊂ D, |Di| = ψ � N) with random non-empty partitioning

(attribute and split point are selected randomly at each intermediate node) of the space

until instances in Di are isolated or the tree height reaches the maximum of log2 ψ. Once

a tree is built, the data mass in each node is calculated from the entire data D. Using a

3 Author(s) defined it as a similarity measure, but we define it as a dissimilarity measure to be consistent
with other measures.
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collection of t trees, the dissimilarity of x and y is estimated as follows:

mIF (x,y) =
1

t

t∑
j=1

(
|Rj(x,y)|

N

)
(4.7)

where Rj(x,y) is the deepest node where x and y appear together in jth tree.

4.3 Characteristics and relationships of data-dependent mea-

sures

On the basis of data-dependence, the data-dependent dissimilarity measures discussed in

Section 4.2 can be categorised into two groups:

1. data-dependent projections: Data are projected into a new space through a

data-dependent projection and the dissimilarity of two instances is estimated using

distance measures (usually `2) in the projected space. Mahalanobis distance and dis-

tance metric learning-based measures are examples of such measures. Even though

the projection into a new space maintains the geometric interpretation, it is difficult

to interpret the meaning of the new dimensions.

2. data-dependent measures: Dissimilarities of instances are estimated using data-

dependent measures in the original space. They can be further categorised into two

subgroups:

2.1. One-dimensional data-dependent measures: The dissimilarity of two instances

is estimated by aggregating data-dependent dissimilarities in each dimension in

the original space. Examples are drank, dlin and mp.

2.2. Tree-based data-dependent measures: The dissimilarity of two instances is esti-

mated by aggregating data-dependent dissimilarities w.r.t. subsets of dimen-

sions in the original space using tree structures. Examples are dUSF and mIF .

The data-dependent characteristic in some of these measures is applicable only for

x 6= y and self-dissimilarity is always a constant. The characteristics of all the data-

dependent measures reviewed in the last section are summarised in Table 4.3.

Distance metric learning (dgenMah) learns the best projection matrix Λ by optimising

task-specific constraints in a given dataset. Metric learned for one task may not be good

for other tasks in the same dataset. It is not a general-purpose data-dependent measure

like others discussed in Table 4.3. It is computationally expensive in high-dimensional

and/or large datasets. Different distance metric learning algorithms for different tasks are

discussed in the literature. We refer interested readers to the latest survey papers by Kulis

(2013) and Wang and Sun (2015). In this paper, our primary focus is on general-purpose

data-dependent measures which do not require learning and optimisation.

Note that the formulation of mIF is similar to m1 except that Ri(x,y) is considered

and implemented differently. Unlike in m1, where regions are defined in each dimension

separately only after x and y are given, multi-dimensional regions are defined by random

partitioning of the space using multiple trees in mIF .
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Table 4.3: Characteristics of data-dependent measures

Measure Basis of data-dependence
data-dependent? Learning
x 6= y x = y required?

P
ro

je
ct

io
n

b
a
se

d

dmah Projection based on data covari-
ance

X × ×

dgenMah Projection based on task-specific
constraints in the given dataset

X × X

1-
d

im
e-

n
si

o
n

a
l drank Measure based on rank difference X × ×

dlin Measure based on data mass X × ×
mp Measure based on data mass X X ×

T
re

e-
b

a
se

d dUSF Definition or size of regions X × ×
mIF Definition or size of regions and

measure based on data mass
X X ×

All one-dimensional data-dependent dissimilarity measures (mp, drank and dlin) assume

that data are ordinal and estimate d(x,y) based on the probability mass distribution of

values in each dimension.

The difference and similarity between drank and mp are as follows:

• Similar under uniform data distribution. Note that |Ri(x,y)| = abs(x̃i − ỹi) +
f(xi)+f(yi)

2 . As a result, drank and mp are equivalent if the probability mass distribu-

tion over ui possible values in dimension i is uniform (i.e. ∀xi,yi f(xi) = f(yi) = bi

where bi = N
ui

is a constant) because |Ri(x,y)| = abs(x̃i− ỹi)+bi. They are different

if the probability mass distribution is not uniform.

• Difference in self-dissimilarity. For example, in the case of annual income where

there are significantly more people earning xi = $50k than those earning yi = $1m

(i.e., f(xi) > f(yi)), the dissimilarity of two individuals earning $50k is higher than

that of two individuals earning $1m under mp because |Ri(x,x)| > |Ri(y,y)|. In

contrast, they both are zero under drank because abs(x̃i − x̃i) = abs(ỹi − ỹi) = 0. In

other words, the self-dissimilarity is data-independent in drank, whereas it is data-

dependent in mp.

The relationship of mp with dlin is not straightforward. In the next subsection, we

generalise mp where p is allowed to be zero by introducing a new variant of mp with p = 0

(m0) and then discuss its relationship with dlin.

4.3.1 m0-dissimilarity

m0-dissimilarity estimates the dissimilarity of x and y as the geometric mean of their

probability mass-based dissimilarities in each dimension.

m0(x,y) =

(
M∏
i=1

|Ri(x,y)|
N

) 1
M

(4.8)
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It can be shown that mp → m0 when p→ 0. Let A = 1
M and αi = |Ri(x,y)|

N . Eqn 4.6 can

then be rewritten as:

mp(x,y) = exp

log

(A M∑
i=1

αpi

) 1
p

 = exp

 log
(
A
∑M

i=1 α
p
i

)
p


At the limit when p → 0, the exponential component can be estimated using L’Hopital

rule as:

lim
p→0

log
(
A
∑M

i=1 α
p
i

)
p

= lim
p→0

A
∑M

i=1 α
p
i logαi

A
∑M

i=1 α
p
i

=

∑M
i=1 logαi
M

= log

(
M∏
i=1

αi

) 1
M

Using the above two equations and substituting αi, we obtain Eqn 4.8.

It has a nice probabilistic interpretation. The simplest form of data-dependent dissim-

ilarity measure is to define an M -dimensional region R(x,y) that encloses x and y in the

space which has the length of Ri(x,y) in dimension i, and estimate the probability data

mass in the region. In other words, it estimates the probability of a randomly-selected

point z falling in the region, i.e., P (z ∈ R(x,y)). In order to have a reasonable estimate

of P (z ∈ R(x,y)), a large amount of data is required in high-dimensional spaces. Assum-

ing that the dimensions are independent, P (z ∈ R(x,y)) can be approximated from the

observed data as follows:

P̂ (z ∈ R(x,y)) ≈
M∏
i=1

P (zi ∈ Ri(x,y)) (4.9)

where P (zi ∈ Ri(x,y)) is the probability of zi falling in Ri(x,y) in dimension i which can

be estimated from the observed data D as P̂ (zi ∈ Ri(x,y)) = |Ri(x,y)|
N . The outer power

of 1
M in Eqn 4.8 is simply a scaling factor of the dissimilarity, and does not change the

similarity rankings of instances.

In order to avoid floating point overflow in the case of large M , logm0(x,y) is used as

the degree of dissimilarity of x and y, effectively using the summation of the logarithm of

dissimilarities in each dimension.

logm0(x,y) =
1

M

M∑
i=1

log

(
|Ri(x,y)|

N

)
(4.10)

Now, it is interesting to note the relationship of m0 (as defined in Eqn 4.10) with

dlin (defined in Eqn 4.4) since log
(
|Ri(x,y)|

N

)
= log

∑max(xi,yi)
zi=min(xi,yi)

P (zi). Unlike in dlin, the

dissimilarity in each dimension in m0 is not normalised by (logP (xi)+logP (yi)) resulting

in data-dependent self-dissimilarity when probability mass distribution in dimension i is

non-uniform, which is the only difference between them.

In other words, we can consider mp (p ≥ 0) as a generic, fully data-dependent measure

of which drank and dlin are special cases of mp (p > 0) and m0, respectively, where the

special cases have data-independent self-dissimilarity and the generic measure has data-

dependent self-dissimilarity.
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Note that mp (p > 0) and m0 are data-dependent counterparts of the Minkowski

distance (`p) and the multiplicative distance (dMD), respectively, where the dissimilarity

of two instances in each dimension is estimated using probability data mass between them

instead of using spatial distance.

4.4 (Dis)similarity measures in bag-of-words vector repre-

sentation

In the bag-of-words (BoW) (Salton and McGill, 1986) vector representation, each compo-

nent of a vector represents the frequency of a feature (i.e., a term in a document). Many

components of a vector representing a document have zero value because a document

contains only a small proportion of words in the dictionary, resulting in a sparse vector

representation. Euclidean distance is not a good choice for such problems (Salton and

McGill, 1986; Salton and Buckley, 1988). The direction of a vector is more important

than its length. Hence, cosine distance is a more sensible choice to measure dissimilarity

between two documents. It has been shown that the cosine distance with inverse document

frequency (IDF) (Salton and Buckley, 1988) weighted vectors produces better results than

the cosine distance with unweighted vectors. The assumption of IDF weighting is that

rare terms are more important than frequent terms. The IDF weighted vector component

of ith term in a document x is estimated as x′i = xi × log N
dfi

where dfi is the number of

documents in a corpus in which the ith term occurs. The dissimilarity of two documents

is estimated using cosine distance as:

dcosIdf (x,y) = dcos(x
′,y′) (4.11)

In data-dependent measures such as rank difference, Lin andmp, explicit IDF weighting

is not required as they use a similar statistic based on the number of documents in the

measure itself. However, they require a simple adjustment in their formulations. Since the

absence of a term in both x and y (i.e., xi = yi = 0) does not provide any information about

their (dis)similarity, these terms should be ignored. Those terms where xi = yi = 0 are

ignored implicitly in the cosine distance as they do not affect any terms in its formulation.

Aryal et al. (2015, 2017) re-defined mp (p > 0) (Eqn 4.6) in the BoW vector representation

as follows:

mbow
p (x,y) =

 1

|Fx,y|
∑
i∈Fx,y

(
|Ri(x,y)|

N

)p 1
p

where Fx is the set of indices of terms that occur in x (i.e., Fx = {i : xi > 0}), and

|Fx,y| = |Fx ∪ Fy| is the normalization term employed to account for different numbers of

terms used for measuring dissimilarity of any two documents.
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(a) Two clusters (b) Outlier

Figure 4.1: Situations where equal-width discretisation (EWD) can be problematic for
dissimilarity measurement.

Using the same idea, the other three one-dimensional data-dependent measures - rank

difference (Eqn 4.3), Lin’s measure (Eqn 4.4) and m0-dissimilarity (Eqn 4.10) are re-

defined in the BoW vector representation as follows:

dbowrank,p(x,y) =

 1

|Fx,y|
∑
i∈Fx,y

(x̃i − ỹi)p
 1

p

dbowlin (x,y) = 1− 1

|Fx,y|
∑
i∈Fx,y

2× log
∑max(xi,yi)

zi=min(xi,yi)
P (zi)

logP (xi) + logP (yi)

logmbow
0 (x,y) =

1

|Fx,y|
∑
i∈Fx,y

log
|Ri(x,y)|

N

4.5 Numeric to ordinal conversion to speed up one-dimensional

data-dependent measures

The one-dimensional data-dependent measure of drank is computationally expensive be-

cause computing the rank of an unseen feature value in a set of N seen values in each

dimension is in the order of O(logN) using a binary search (Fernando and Webb, 2017).

It is infeasible to use in datasets with large N and/or M . The time complexity can be

reduced by converting a continuous valued domain in each dimension into an ordinal dis-

crete domain by discretising the range of data values into η � N intervals, as done by

Aryal et al. (2017) in the case of mp. By computing and storing the frequency and rank

of each interval from the seen data in the pre-processing step, the rank of an unseen value

can be estimated by finding the interval in which it falls in O(log η). Unlike the ranking

of the original values which is strictly monotonic, i.e., a < b =⇒ ã < b̃, ranking intervals

is weakly monotonic, i.e., a < b =⇒ Ã ≤ B̃ where A and B are the intervals in which a

and b fall.

If the number of unique values in the seen data u ≤ η, sorted one-dimensional data

can be discretised easily by splitting at the mid-point of each pair of consecutive unique

values. In the case of u > η, discretisation can be done in main two ways: (i) equal-width

discretisation (EWD), where intervals are of the same width, and (ii) equal-frequency

discretisation (EFD), where intervals have the same frequency. In EFD, it may not be

possible to have the same frequency in each interval because of duplicate values; hence

intervals are created to have approximately the same frequency.

EWD may not be effective to measure dissimilarities of data in some distributions,

such as those shown in Figures 4.1(a) and 4.1(b), where the data fall in intervals at the
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Table 4.4: Time and space complexities. Note that the time complexity in the last column
is to compute dissimilarity of a pair of instances in program execution. N : Number of
instances, M : Number of dimensions, t: Number of trees in forest-based methods, ψ:
Subsample size to build trees in forest-based methods, η: Average number of intervals
over all dimensions in the EFD.

Measures
Pre-processing d(x,y) in execution

Time Space Time

`p, dMD and dcos O(NM) O(M) O(M)
dmah O(NM2) O(M2) O(M)
dUSF O(tψ log2 ψ) O(tψ) O(t log2 ψ)
dIF O(tN log2 ψ + tψ2) O(tψ2) O(t log2 ψ)
drank, dlin and mp O(NMη +Mη2) O(Mη2) O(M log2 η)

Complexities of distance metric learning (dgenMah) are not included in the table as they depend
on the constraints and optimisation techniques used. Different metric learning algorithms are
discussed in Kulis (2013) and Wang and Sun (2015).

two ends and many intervals in the middle are empty. Many instances falling in the same

interval in dense regions become equally similar to each other and cannot be differentiated.

This issue is less severe in EFD, where only ϕ = dNη e instances are allowed to be in the

same interval. Hence, EFD is used to convert numeric values in continuous domain into

ordinal intervals, as done by Aryal et al. (2017). Note that intervals can have different

number of instances if more than ϕ instances have the same value (i.e., there are many

duplicate values), resulting in data-dependent self-dissimilarity even though EFD is used.

Many instances having the same value in many dimensions is a common characteristic of

many high-dimensional datasets as data often lie in a low-dimensional subspace.

4.5.1 Time and space complexities

In each dimension, pairwise dissimilarities of intervals can be pre-computed from the

observed data and stored as a matrix. Similar pre-processing can be done in mIF where

pairwise dissimilarity of each pair of leaf nodes in each tree is pre-computed. After pre-

processing, the dissimilarity between two instances in each dimension can be computed

as a table look-up by finding intervals or leaves where they fall. The time and space

complexities of pre-processing along with the time complexities to estimate d(x,y) using

dissimilarity measures discussed in Section 4.2 are provided in Table 4.4.

Note that distance measures such as `p, dcos and dMD require pre-processing to nor-

malise values in each dimension to be in the unit range. The constants in time complexities

to compute d(x,y) in the program runtime are higher in distance measures than in data-

dependent measures, because of the floating-point operations to compute distance in each

dimension. Floating-point operations are not required in data-dependent measures to

compute dissimilarity in each dimension as it is done as a table look-up.
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Table 4.5: Characteristics of datasets in terms of the number of instances (N), number of
dimensions (M) and number of classes (C). The last six datasets are bag-of-words (BoW)
text datasets

Name N M C Application area

Gas 13790 128 6 Chemistry (gases)
Ismis 12495 191 6 Music collection
Corel 10000 67 100 Image collection
SatImg 6435 36 6 Satellite images
Blocks 5473 10 5 Web design (webpage blocks)
Mfeat 2000 649 10 Handwritten digits
Steel 1941 25 7 Steel plates manufacturing
ImgSeg 1500 19 7 Image segmentation
Hba 1500 187 15 Music collection
Gtzan 1000 230 10 Music collection

NG20 18821 5489 20 20 Newsgroups text collection
Ohscal 11162 11465 10 Ohsumed patients’ document collection
R52 9100 7369 52 Reuters (52 classes) collection
R8 7674 3497 8 Reuters (8 classes) collection
Fbis 2463 2000 17 TREC document collection
Wap 1560 8460 20 Yahoo web pages collection

4.6 Empirical evaluation

In order to evaluate the relative performance of data-dependent and data-independent

(distance) measures discussed in Section 4.2, we used them in two data-mining tasks (a)

Content-based information retrieval (CBIR), where the task is to retrieve similar (relevant)

instances to a given query instance from a database (i.e., query-by-example); and (b) kNN

classification, where the task is to predict the class label of a test instance based on its

k most similar (nearest neighbour) instances in a training set. We conducted a series

of experiments to evaluate contending dissimilarity measures in terms of (i) task-specific

performance and runtime; and (ii) sensitivity to units or scales of feature values.

4.6.1 Datasets

We used 16 datasets from different application areas with varying numbers of instances

(N), numbers of dimensions (M) and numbers of classes (C). The properties of these

datasets are provided in Table 4.5, of which the last six are bag-of-words (BoW) text

datasets and the first 10 are non-BoW datasets.

Of the BoW text datasets, NG20, R52 and R8 were from Cardoso-Cachopo (2007)4;

and Ohscal, Wap and Fbis were from Han and Karypis (2000)5. Of the non-BoW datasets,

Corel and Gtzan were from Zhou et al. (2012); HBA was from Ariyaratne and Zhang

(2012); Ismis was the dataset used in the International Symposium on Methodologies for

4http://web.ist.utl.pt/acardoso/datasets/
5http://www.cs.waikato.ac.nz/ml/weka/datasets.html
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Intelligent Systems (ISMIS) 2011 music information retrieval contest6; and the remain-

ing six non-BoW datasets were from the UCI Machine Learning repository (Bache and

Lichman, 2013)7.

4.6.2 Experimental set-up

Each dataset was divided into two subsets D and Q using 10-fold cross-validation, where 9

folds (90% of instances) were included in D and the remaining one fold (10% of instances)

was included in Q. In the CBIR task, D was used as a database from which relevant

instances were extracted for each query in Q. In the kNN classification task, D was used

as the training set and Q was used as the testing set. We repeated the experiment 10 times

using each of the 10 folds as Q and the remaining 9 folds as D. The average task-specific

performance and standard error over 10 runs were reported. The task-specific perfor-

mances of two measures were considered to be significantly different if their confidence

intervals based on two standard errors did not overlap.

In the CBIR task, for each query q ∈ Q, instances in D were ranked in ascending

order of their dissimilarity to q using different dissimilarity measures. The top k instances

were presented as the relevant instances to q. For performance evaluation, an instance was

considered to be relevant to q if they had the same category label. In order to demonstrate

the consistency of measures at different top k retrieved results, we evaluated the precision

at the top k retrieved results (P@k) with k = 1, 2, · · · , 25 and used the mean average

precision up to k = 25, MAP@25 =
∑25

k=1 P@k
25 as a performance evaluation criterion. The

average MAP@25 and standard error over 10 runs were reported.

In the kNN classification task, a class label for a test instance q ∈ Q was predicted using

the class labels of its k least dissimilar (or nearest neighbours) instances in the training

set D using different dissimilarity measures. We used k = 5, i.e., 5NN classification. The

classification error in the test set Q was used as a performance evaluation criterion. The

average classification error and standard error over 10 runs were reported.

For distance-based measures, min-max normalisation was done using the data ranges

in D in each dimension and the same range was used to normalise the instances in Q.

Similarly, in the BoW text datasets, IDF term-weighting factors were estimated from D
and the same weights were used for documents in both D and Q.

In the tree-based measures (dUSF and mIF ), the subsample size (ψ) was set to the

default settings suggested by their respective authors - 32 in dUSF (Fernando and Webb,

2017) and 256 in mIF (Ting et al., 2016). The ensemble size was set to t = max(100,M)

to ensure that the ensemble size was sufficiently large in high-dimensional datasets. The

number of intervals (η) in EFD (Section 4.5) was set as default to η = blog2 |D|c + 1, as

suggested by Sturges (1926) for the number of histograms.

As dUSF and mIF are random methods (they build trees from a small random sub-

sample of D), dUSF and mIF experiments with each pair of D and Q sets were repeated

10 times and the average result was considered.

6http://tunedit.org/challenge/music-retrieval
7https://archive.ics.uci.edu/ml/datasets.html
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Table 4.6: Average MAP@25 and standard error (within the parentheses in the second
row in small font) over 10 runs in non-BoW datasets. The best result is underlined and
the results equivalent (insignificant difference based on two standard errors) to the best
result are bold-faced.

Gas Ismis Corel SatImg Blocks Mfeat Steel SegImg Hba Gtzan

dcos
0.982 0.898 0.155 0.804 0.948 0.954 0.591 0.897 0.357 0.514
(0.001) (0.001) (0.001) (0.002) (0.001) (0.003) (0.002) (0.005) (0.003) (0.009)

`2
0.981 0.897 0.151 0.869 0.938 0.954 0.590 0.899 0.370 0.512
(0.001) (0.002) (0.002) (0.002) (0.001) (0.003) (0.003) (0.004) (0.004) (0.010)

`1
0.982 0.899 0.202 0.872 0.944 0.955 0.610 0.908 0.421 0.498
(0.001) (0.001) (0.001) (0.002) (0.001) (0.003) (0.003) (0.004) (0.004) (0.009)

dMD
0.982 0.898 0.207 0.871 0.945 0.955 0.613 0.908 0.425 0.495
(0.001) (0.001) (0.001) (0.002) (0.001) (0.003) (0.003) (0.004) (0.005) (0.008)

dmah
0.959 0.768 0.133 0.603 0.949 0.422 0.597 0.838 0.192 0.229
(0.001) (0.002) (0.001) (0.002) (0.001) (0.003) (0.005) (0.007) (0.004) (0.004)

mIF
0.977 0.883 0.196 0.865 0.949 0.950 0.609 0.899 0.443 0.507
(0.001) (0.002) (0.001) (0.002) (0.001) (0.003) (0.004) (0.004) (0.005) (0.007)

dUSF
0.979 0.869 0.213 0.864 0.951 0.945 0.602 0.898 0.443 0.495
(0.001) (0.002) (0.001) (0.002) (0.002) (0.003) (0.004) (0.004) (0.005) (0.007)

drank
0.980 0.898 0.256 0.866 0.953 0.953 0.627 0.899 0.489 0.520
(0.001) (0.002) (0.001) (0.002) (0.002) (0.003) (0.005) (0.003) (0.007) (0.008)

dlin
0.980 0.898 0.252 0.864 0.953 0.949 0.618 0.888 0.497 0.523
(0.001) (0.002) (0.001) (0.002) (0.001) (0.003) (0.005) (0.004) (0.007) (0.007)

m1
0.980 0.898 0.255 0.865 0.954 0.951 0.627 0.897 0.490 0.520
(0.001) (0.002) (0.001) (0.002) (0.002) (0.003) (0.005) (0.003) (0.007) (0.008)

m0
0.980 0.898 0.255 0.864 0.953 0.947 0.615 0.892 0.498 0.523
(0.001) (0.002) (0.001) (0.002) (0.002) (0.003) (0.005) (0.004) (0.007) (0.007)

All the experimental set-ups and dissimilarity measures were implemented in Python

using Scikit-Learn Machine Learning Library (Pedregosa et al., 2011). All the experiments

were conducted on a Linux machine with a 2.27 GHz processor and 16 GB memory.

4.6.3 Content-based information retrieval (CBIR) task

We present the CBIR results in non-BoW and BoW text datasets separately in the next

two subsections.

CBIR in non-BoW datasets

In non-BoW datasets, we compared the effectiveness of data-dependent measures, Rank

distance with p = 1 (drank)
8, Lin’s probabilistic measure (dlin), measure based on unsu-

pervised stochastic forest (dUSF ), mp-dissimilarity with p = 0 and 1 (m0 and m1) and

mass-based dissimilarity measure using isolation forest (mIF ), against data-independent

measures, Euclidean and Manhattan distances (`2 and `1), cosine distance (dcos), multi-

plicative distance (dMD) and Mahalanobis distance (dmah). The average MAP@25 and

standard error over 10 runs of all contending measures in the 10 non-BoW datasets are

presented in Table 4.6.

The results in Table 4.6 show that even though data-independent measures (`2, `1,

dcos and dMD) are good in some datasets, they perform poorly in others. Each of `2,

8Fernando and Webb (2017) have shown that it is a better alternative than any other p settings.
Hereafter, to simplify notation, we refer to drank(x,y, 1) as drank(x,y).
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Table 4.7: Win:loss:draw counts of one-dimensional data-dependent measures against the
other contenders based on two standard errors in the CBIR task in non-BoW datasets.

dcos `2 `1 dMD mIF dUSF

m0 5:1:4 4:2:4 4:3:3 4:3:3 6:0:4 5:0:5
m1 5:0:5 4:0:6 5:2:3 5:2:3 6:0:4 5:0:5
dlin 5:0:5 4:2:4 4:2:4 4:2:4 6:1:3 5:1:4
drank 5:0:5 4:0:6 5:2:3 5:2:3 6:0:4 6:0:4

`1 and dMD produced the best or competitive results to the best performing measure in

five datasets, followed by dcos in four datasets. In contrast, data-dependent measures of

drank and m1 produced the best or competitive results to the best performing measure

in eight datasets, followed by dlin and m0 in seven and six datasets, respectively. The

tree-based data-dependent measures of dUSF and dIF produced competitive result to the

best performing measure in only one dataset each. The projection-based measure of dmah

did not produce competitive results to the best performing measure in any dataset. This

could be due to the normality assumption of Mahalanobis distance.

The summarised CBIR results in 10 non-BoW datasets in terms of win:loss:draw counts

of one-dimensional data-dependent measures (drank, dlin, m1 and m0) against the other

key contenders based on the two standard errors significance test are provided in Table 4.7.

The table shows that they had more wins than losses over data-independent (distance)

and tree-based data-dependent measures.

It is interesting to note that m1 and m0 produced similar results to drank and dlin,

respectively. As discussed in Section 4.3, m1 is equivalent to drank and m0 is equivalent

to dlin if probability mass in each dimension is uniformly distributed. Since there are not

many xi where f(xi) > ϕ (expected interval frequency) in each dimension, each interval

has almost the same mass of ϕ because of the equal-frequency discretisation.

Another interesting result to note is the superior performance ofm1 overmIF . The only

difference between them is the implementation to define regions: multi-dimensional regions

are defined through hierarchical partitions using trees in mIF , whereas one-dimensional

regions are defined through equal-frequency discretisation in m1. The reason could be the

hierarchical partitioning of the space (detailed discussion is provided in Section 4.7).

The relative average precision (P@k) of different measures at each of k = 1, 2, · · · , 25

is consistent with the average MAP@25 results presented in Table 4.6. The P@k for

k = 1, 2, · · · , 25 of `2, dcos, mIF , mUSF , drank and m0 in the Corel and Hba datasets are

presented in Figure 4.2.

In terms of runtime, all dissimilarity measures had comparable runtimes in all datasets.

The average total runtime of pre-processing and retrieval of all queries in Q over 10 runs

is presented in Table 4.8.

One-dimensional data-dependent measures drank,m1, dlin andm0 run faster than distance-

based measures such as `2 and dcos because they do not require floating-point operations

to compute dissimilarity in each dimension, which is done as a table look-up. They ran

faster than tree-based data-dependent measures of mIF because η = blog2Nc+ 1 is gen-

erally smaller than ψ = 256. They ran slower than the tree-based measure of dUSF in



CHAPTER 4. GENERALISED MP 78

Figure 4.2: Average P@k at k = 1, 2, · · · , 25 in the Corel and Hba datasets.

Table 4.8: Average CBIR runtime (seconds) for a query set over 10 runs in non-BoW
datasets. The presented runtime is the total runtime including pre-processing and retrieval
time for all queries in the query set.

Gas Ismis Corel SatImg Blocks Mfeat Steel SegImg Hba Gtzan

dcos 3043 2517 1534 585 353 66 50 35 31 14
`2 1949 1752 940 374 137 102 31 26 23 8
`1 1193 1151 601 245 128 54 16 15 12 7
dMD 993 785 371 174 124 22 7 8 10 5

dmah 13577 8027 697 307 104 1687 10 11 107 49

mIF 1131 1467 635 247 180 231 23 20 31 22
dUSF 506 463 241 77 61 95 7 6 6 5

drank 576 369 175 111 30 29 5 7 11 7
dlin 571 509 301 118 41 24 4 7 12 7
m1 557 365 268 114 64 30 4 7 10 6
m0 571 533 281 116 31 28 4 7 12 6

some datasets because of the pre-processing to compute the pairwise dissimilarity matrix

of intervals in each dimension, which is not required in dUSF . The Mahlanobis distance

(dmah) was up to two orders of magnitude slower than other contending measures because

computing the covariance matrix and its inverse can be expensive in datasets with large

N and/or M .

CBIR in BoW text datasets

In the document retrieval task, we evaluated the retrieval results of the BoW versions

of data-dependent measures drank,m1, dlin and m0 (discussed in Section 4.4) against the

cosine distance with and without IDF term weighting (dcosIdf and dcos). We did not

consider the other distance-based measures such as `2 and `1 as contenders in the text

datasets as they have been shown to produce significantly worse results than cosine dis-

tance (Salton and Buckley, 1988). We did not consider tree-based measures (dUSF and

mIF ) as contenders in text datasets because they did not produce competitive results in
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Table 4.9: Average MAP@25 and standard error (within the parentheses in small font)
over 10 runs in BoW text datasets. The best result is underlined and the results equivalent
(insignificant difference based on two standard errors) to the best result are bold-faced.

NG20 Ohscal R52 R8 Fbis Wap

dcos 0.542(0.002) 0.521(0.003) 0.843(0.003) 0.909(0.003) 0.687(0.005) 0.621(0.008)

dcosIdf 0.701(0.002) 0.475(0.003) 0.803(0.003) 0.854(0.002) 0.674(0.006) 0.626(0.006)

drank 0.628(0.002) 0.588(0.002) 0.832(0.002) 0.908(0.002) 0.654(0.005) 0.660(0.006)

dlin 0.638(0.002) 0.587(0.002) 0.832(0.002) 0.907(0.002) 0.653(0.005) 0.657(0.006)

m1 0.653(0.002) 0.589(0.002) 0.833(0.002) 0.907(0.002) 0.662(0.005) 0.710(0.005)

m0 0.715(0.001) 0.593(0.002) 0.838(0.002) 0.910(0.001) 0.672(0.005) 0.708(0.005)

Table 4.10: Win:loss:draw counts of m0 and m1 against the other contenders based on two
standard errors in the CBIR task in BoW datasets.

dcos dcosIdf drank dlin

m0 3:1:2 5:0:1 5:0:1 5:0:1
m1 3:2:1 4:2:0 2:0:4 2:0:4

non-BoW datasets where the number of dimensions is lower than in text datasets (we

discuss their limitations in high-dimensional datasets in Section 4.7). MAP@25 of all

contending dissimilarity measures in the six BoW text datasets are presented in Table 4.9.

Table 4.9 shows that m0 produced better or competitive retrieval results to the best

performing measure in five datasets, with the exception of Fbis where it produced a

worse retrieval result than the best performing measure dcos. The summarised CBIR

results in six BoW datasets in terms of win:loss:draw counts of one-dimensional data-

dependent measures with data-dependent self-dissimilarity (m0 and m1) against the other

key contenders based on the two standard errors significance test provided in Table 4.10

show that they had more wins than losses over the cosine measures (dcos and dcosIdf ) and

one-dimensional data-dependent measures with data-independent self-dissimilarity (dlin

and drank).

Of the two variants of mp, m0 produced results better than or similar to m1. m1

produced significantly worse results than m0 in NG20 and R52, while producing compet-

itive results in others. Of the union of terms in documents x and y (Fx,y), only a small

proportion of terms occur in both x and y. They have small dissimilarities w.r.t those

few common terms because only a few documents have non-zero frequency of a term and

large dissimilarities w.r.t many other terms that occur in either one of them only because

many documents have zero frequency of a term. As those few small dissimilarities have a

greater influence in the geometric mean than in the arithmetic mean, m0 produced better

similarity results than m1
9.

It is interesting to note that m0 and m1 produced either similar or better retrieval

results than drank and dlin (although drank produced better retrieval results than m1 in R8,

the difference is not significant). The only difference between them is the data-dependent

9We also examined whether the geometric mean of rank differences produced better results than the
arithmetic mean (drank); but we observed that it produced worse results than drank in all six datasets.
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Figure 4.3: Average P@k at k = 1, 2, · · · , 25 in the NG20 and Wap datasets.

self-dissimilarity. As η = blog2Nc + 1 is generally larger than the number of distinct

frequency values of each term, ui (the average number of frequency values ūi per term

in the six text datasets is from 3 to 12), the equal-frequency discetisation creates ui < η

frequency intervals for each term. Because a term occurs zero times or only once in many

documents and occurs multiple times in a few documents (i.e., zero or small integers are

more common frequency values than larger integers), frequency intervals for each term have

varying probability mass—higher at small integers (with the highest at zero) and very small

in larger integers. For a term, the same frequency value which is rare (i.e, low probability

mass) provides more information about the similarity of two documents than the same

frequency value which is very common (i.e., high probability mass). Therefore, assigning

dissimilarity between documents w.r.t terms with matching frequency values based on the

probabilities of the matching frequency values (data-dependent self-dissimilarities) can

differentiate documents well and produce better results.

It is interesting to note that dcosIdf produced better retrieval results than dcos only in

two (NG20 and Wap) out of six datasets. This result is consistent with the study by Aryal

et al. (2015), which shows that IDF term weighting may not always improve task-specific

performance, and may be detrimental in some datasets.

The relative average precision (P@k) of different measures at each of k = 1, 2, · · · , 25

is generally consistent with the average MAP@25 results presented in Table 4.9, except

in one dataset where a measure produced better P@k than another measure at some k

and worse at others. The P@k for k = 1, 2, · · · , 25 of dcos, dcosIdf , drank and m0 in the

NG20 and Wap datasets are presented in Figure 4.3. In Wap, dcosIdf was worse than dcos

until k = 9 and produced better results after k = 9. This result shows that it is important

to evaluate the average precision of measures over a wide range of k to generalise the

effectiveness of measures.

In terms of runtime, all dissimilarity measures had comparable runtimes (they all ran

in the same order of magnitude) in all six datasets. The average total runtime for pre-

processing and retrieval of all queries in Q over 10 runs in the six BoW text datasets is

provided in Table 4.11. The cosine distance with IDF term weighting (dcosIdf ) ran faster
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Table 4.11: Average CBIR runtime (seconds) for a query set over 10 runs in BoW text
datasets. The presented runtime is the total runtime including pre-processing and retrieval
times for all queries in the query set.

NG20 Ohscal R52 R8 Fbis Wap

dcos 34263 21915 5341 1453 92 1070
dcosIdf 25367 4952 3484 781 87 515

drank 14717 12446 5057 1286 97 113
dlin 17192 15049 3662 1283 100 201
m1 18955 13396 4006 1251 101 150
m0 16211 18475 4133 1475 111 130

than the cosine distance without IDF term weighting (dcos) because the IDF-based weights

of terms occurring in all documents are zero and these terms can be ignored, which reduces

the number of floating-point operations required in the dissimilarity measurement of any

two documents.

4.6.4 kNN classification task

In the kNN classification task, we compared the performance of all the contending data-

dependent measures with data-independent (distance-based) measures and a supervised

distance metric learning method designed specifically for kNN classification called Large

Margin Nearest Neighbour (dlmnn) (Weinberger et al., 2006). The method learns a space

to project data where instances belonging to the same class become closer to each other

(similarity constraints) and instances belonging to different classes are separated further

apart (dissimilarity constraints) in the training set. In other words, it projects data into

a new space where the kNN classification accuracy of `2 can be maximised.

We did kNN classification experiments only in the non-BoW datasets where the num-

ber of dimensions is low to moderate, because dlmnn is very expensive to learn in high-

dimensional BoW text datasets. We used the python implementation of dlmnn by Stewart

(2015) available in the GitHub repository10. The parameter of the maximum number of

iterations in dlmnn was set to 1000.

The average classification errors and standard error of the 12 contending dissimilarity

measures over a 10-fold cross-validation are provided in Table 4.12.

Among dissimilarity measures that do not require learning, as in the CBIR results

discussed in Section 4.6.3, one-dimensional data-dependent measures (drank, m1, dlin and

m0) produced better or competitive classification results than data-independent and tree-

based data-dependent measures for eight datasets, except the SatImg and ImgSeg datasets

where they produced worse results than the best performing distance measure. In compar-

ison with the distance metric learning-based measure, they produced worse classification

results than dlmnn in four out of six datasets where dlmnn could run and produced better

classification results in the other two datasets (Blocks and Steel). dlmnn did not complete

in datasets with large N and/or M - Gas, Corel, Ismis and Mfeat because of insufficient

10https://github.com/michaelstewart/metric-learn
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Table 4.12: Average 5NN classification error and standard error (within the parentheses
in the second row in small font) over a 10-fold cross-validation in non-BoW datasets. The
best result is underlined and the results equivalent (insignificant difference based on two
standard errors) to the best result are bold-faced.

Gas Ismis Corel SatImg Blocks Mfeat Steel SegImg Hba Gtzan

dcos
0.007 0.052 0.760 0.149 0.033 0.020 0.308 0.054 0.498 0.289
(0.001) (0.002) (0.003) (0.004) (0.002) (0.003) (0.011) (0.008) (0.012) (0.013)

`2
0.007 0.054 0.765 0.093 0.043 0.019 0.303 0.053 0.484 0.301
(0.001) (0.002) (0.002) (0.003) (0.002) (0.003) (0.010) (0.006) (0.006) (0.018)

`1
0.005 0.052 0.686 0.087 0.039 0.020 0.289 0.041 0.423 0.323
(0.001) (0.002) (0.004) (0.003) (0.002) (0.003) (0.007) (0.005) (0.010) (0.016)

dMD
0.005 0.052 0.681 0.087 0.039 0.019 0.286 0.041 0.417 0.326
(0.001) (0.002) (0.003) (0.003) (0.002) (0.003) (0.006) (0.005) (0.014) (0.016)

dmah
0.014 0.088 0.790 0.273 0.036 0.362 0.311 0.083 0.730 0.725
(0.001) (0.002) (0.003) (0.003) (0.002) (0.011) (0.009) (0.010) (0.008) (0.009)

dlmnn n/a n/a n/a
0.086 0.038

n/a
0.307 0.037 0.300 0.206

(0.003) (0.003) (0.006) (0.004) (0.009) (0.014)

mIF
0.007 0.055 0.696 0.096 0.032 0.021 0.295 0.051 0.404 0.324
(0.001) (0.002) (0.002) (0.003) (0.002) (0.002) (0.004) (0.004) (0.009) (0.010)

dUSF
0.007 0.059 0.673 0.091 0.033 0.021 0.297 0.048 0.394 0.324
(0.001) (0.002) (0.002) (0.002) (0.003) (0.003) (0.007) (0.004) (0.010) (0.011)

drank
0.006 0.046 0.613 0.096 0.031 0.019 0.273 0.043 0.354 0.289
(0.001) (0.002) (0.001) (0.002) (0.003) (0.003) (0.008) (0.003) (0.007) (0.008)

dlin
0.006 0.045 0.617 0.099 0.034 0.020 0.271 0.060 0.349 0.300
(0.001) (0.002) (0.001) (0.002) (0.003) (0.003) (0.007) (0.004) (0.007) (0.007)

m1
0.006 0.046 0.612 0.098 0.031 0.021 0.271 0.049 0.351 0.289
(0.001) (0.002) (0.001) (0.002) (0.002) (0.003) (0.009) (0.003) (0.007) (0.008)

m0
0.006 0.046 0.613 0.099 0.034 0.020 0.280 0.056 0.347 0.300
(0.001) (0.002) (0.001) (0.002) (0.003) (0.003) (0.009) (0.004) (0.007) (0.007)

n/a: result not available because of out of memory error

memory in a machine with 16 GB RAM. This result shows that simple data-dependent

measures such as drank,m1, dlin and m0 which do not use any supervised information in

the training or pre-processing steps and do not require any learning, can be quite com-

petitive with complex method such as dlmnn which is specifically designed to maximise

kNN classification results in some datasets. dlmnn has high time and space complexities

because it requires learning and optimisation to find the best projection of data, making

it inapplicable to datasets with large N and/or M . It was at least one order of magnitude

slower than the simple data-dependent measures, as shown in Table 4.14.

The summarised kNN classification results for 10 non-BoW datasets in terms of win:loss:

draw counts of one-dimensional data-dependent measures (drank, dlin, m1 and m0) against

the other key contenders based on the two standard errors significance test provided in

Table 4.13 show that they had more wins than losses over data-independent (distance)

and tree-based data-dependent measures. Although they had more losses than wins over

the data-dependent measure that require learning (dlmnn), they were better than or com-

petitive with dlmnn in some datasets.
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Table 4.13: Win:loss:draw counts of one-dimensional data-dependent measures against
the contenders based on two standard errors in the kNN classification task in non-BoW
datasets.

dcos `2 `1 dMD mIF dUSF dlmnn

m0 5:0:5 5:1:4 3:2:5 4:2:4 5:0:5 5:1:4 1:4:1
m1 5:0:5 5:0:5 6:1:3 5:1:4 5:0:5 5:1:4 2:4:0
dlin 5:0:5 5:1:4 4:2:4 5:2:3 5:1:4 5:2:3 1:4:1
drank 5:0:5 6:0:4 6:1:3 5:1:4 6:0:4 5:1:4 2:4:0

Table 4.14: Average 5NN classification runtime (seconds) over a 10-fold cross-validation.
The presented runtime is the average total runtime including pre-processing, training and
testing time.

Gas Ismis Corel SatImg Blocks Mfeat Steel SegImg Hba Gtzan

dcos 2782 2526 1514 663 399 36 39 31 38 18
`2 2013 1761 1059 386 142 36 25 22 24 12
`1 1066 1151 622 252 125 18 15 14 16 7
dMD 933 829 417 159 79 20 6 10 12 5

dmah 13522 6385 738 247 170 696 10 13 202 43
dlmnn n/a n/a n/a 4088 1368 n/a 440 350 2764 2592

mIF 1116 1338 627 251 118 224 23 19 26 23
dUSF 504 468 241 83 56 77 7 5 8 5

drank 656 508 280 90 35 26 4 6 10 7
dlin 617 537 295 83 74 26 4 6 10 7
m1 574 540 286 85 31 22 4 7 8 6
m0 603 551 289 89 69 23 4 6 12 7

n/a: result not available because of out of memory error

4.6.5 Robustness to units and scales of measurement

In order to investigate the robustness of dissimilarity measures to scales and units of

measurement, we evaluated their performances after some monotonic transformation of

feature values, as done by Fernando and Webb (2017). We used the non-BoW datasets

only in this experiment11.

We employed six different linear and non-linear order-preserving and order-reversing

monotonic transformations, as discussed in Fernando and Webb (2017), where each feature

value x was transformed using: ex, e−x, 1
x , log x, x2 and

√
x. Because 1

x and log x are not

defined for x = 0, all transformations were applied on x′′ = b(x+a) where a = 0.0001 and

b = 100. A positive value b was used to transform values into a wide range which changes

the inter-point distance significantly. Note that the feature values in all dimensions were

normalised to a unit range of [0,1] before applying the transformations, in order to ensure

the same effect of a and b in all dimensions. Once the feature values were transformed,

they were renormalised to be in the unit range. We used exactly the same procedure of

monotonic transformation as employed by Fernando and Webb (2017).

11The BoW text datasets were not used because there is no issue of scales and units of measurement as
feature values are frequency counts.
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Figure 4.4: Average MAP@25 over 10 runs in the Corel and Hba datasets with different
monotonic transformation of feature values.

In the CBIR task, we observed that the retrieval results of all four one-dimensional

data-dependent measures and dUSF remained almost the same with or without monotonic

transformations, whereas those of distance-based measures and mIF varied significantly

when different monotonic transformations were applied and produced significantly worse

results, particularly with ex and e−x. The information retrieval results in terms of the

average MAP@25 over 10 runs of `2, dcos, mIF , dUSF , drank and m0 in the Corel and

Hba datasets are provided in Figure 4.4. The trend was similar in the other datasets. It

is interesting to note that `2, dcos and mIF produced their best retrieval results with the
√
x transformation in the Corel dataset. This demonstrates that it is important to use

the right scale to achieve optimal task-specific performance using distance measures and

mIF .

Even the data-dependent measure of mIF was sensitive to monotonic transformations

because of the random split on a randomly-selected attribute at each node to build trees.

The probability of selecting a split point between any two points is proportional to their

distance. When the distribution is skewed, many cut points will be in sparse regions,

resulting in many instances in dense regions being in the same leaf, which cannot be

differentiated (as in the case of equal-width discretisation discussed in Section 4.5). This

is not a problem in drank or m0, as the equal frequency discretisation creates intervals

such that each interval will have no more than ϕ = dNη e instances even in dense region,

unless there are more than ϕ instances with the same value.

Similar behaviour was observed in the kNN classification task when different trans-

formations were applied. The average 5NN classification errors of `2, dlmnn, mIF , dUSF ,

drank and m0 over a 10-fold cross-validation in the SatImg and Hba datasets are provided

in Figure 4.5. Note that dlmnn and `2 had similar behaviour. They were both sensitive to

monotonic transformations and produced worse classification results than data-dependent

measures like dUSF , drank and m0 with some transformations such as ex and e−x.
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Figure 4.5: Average 5NN classification error over a 10-fold cross-validation in SatImg and
Hba datasets with different monotonic transformations of feature values.

4.6.6 Summary of experimental results

Our empirical results in the above three subsections are summarised as follows:

a. In datasets where the dimensionality of data is low to moderate and the distribution

is not sparse (i.e., not many instances have the same values) in many dimensions, as

in the case of non-BoW datasets, one-dimensional data-dependent measures (drank,

dlin, m1 and m0) produce better or equivalent task-specific performances than tradi-

tional distance-based (data-independent) and tree-based data-dependent measures.

b. In datasets where the dimensionality of data is high and data distribution is sparse

(i.e., many instances have the same value) in many dimensions as in the case of

BoW text datasets, one-dimensional data-dependent measures with data-dependent

self-dissimilarity (m1 and m0, particularly m0) produced better results than one-

dimensional data-dependent measures with data-independent self-dissimilarity (drank

and dlin), and the commonly-used cosine distance with or without IDF term weight-

ing.

c. Simple one-dimensional data-dependent measures (drank,m1, dlin and m0) can pro-

duce task-specific results competitive with the complex supervised distance metric

learning method of dlmnn in some datasets. As they do not require any optimisation

and learning, they run significantly faster than metric learning methods which have

high space and time complexities.

d. Even though tree-based data-dependent measures (dUSF and mIF ) produced better

or competitive results than traditional distance-based methods, they produced worse

results than one-dimensional data-dependent measures.

e. All one-dimensional data-dependent measures and dUSF are robust to units and

scales of measurement of feature values, whereas all distance-based measures includ-

ing dlmnn and the tree-based data-dependent measure of mIF are sensitive to units

and scales of measurement.
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4.7 Discussion

As the magnitudes of feature values are used directly in dissimilarity measurement, dis-

tance measures are sensitive to units and scales of measurement. In order to address

this issue to some extent, data pre-processing techniques, such as min-max normalisation

to ensure feature values in the unit range, and standardisation to ensure unit variance

in all dimensions are used to adjust the positions of the data objects in the space. In

the case of BoW text datasets, the positions of document vectors are adjusted through

IDF term weighting. Distance measures require some form of transformation to produce

good results and finding the right transformation is not easy. However, one-dimensional

data-dependent measures such as drank, dlin and mp are robust to units and scales of

measurement.

Although scale-invariant and data-dependent measures of rank difference and Lin’s

measure were introduced decades ago, they are not used as alternatives to distance mea-

sures mainly due to their high computational complexities when one or both instances

given for similarity measurement are unseen. This is often the case in data mining, where

similar instances of a query/test instance are to be searched in the seen database (Fernando

and Webb, 2017). In this paper, we improved the runtimes of data-dependent measures

such as drank to be of the same order as that of distance measures by converting numeric

data in continuous domain in each dimension to ordinal domain through discretisation.

Some studies have used an ensemble of random trees to measure similarity between

data objects. Torkkola and Tuv (2005) used random forest (Breiman, 2001) and measured

similarity between x and y as the average shared pathlength in random trees. Shi and

Horvath (2006) used the number of shared leaves over a collection of random trees. Aryal

et al. (2014a) used isolation forest (Liu et al., 2008) and measured similarity using relative

mass. Note that the similarity measure based on relative mass is asymmetric (i.e., the

similarity of x to y can be different from the similarity of y to x). Fernando and Webb

(2017) used a different implementation of random trees and measured similarity using the

number of shared leaves, and Ting et al. (2016) used data mass in isolation trees as the

measure of dissimilarity of x and y. Of all random tree-based measures, mIF is the only

fully data-dependent measure where even the self-dissimilarity is data-dependent.

Note that both tree-based (mIF and dUSF ) and one-dimensional data-dependent mea-

sures (drank, dlin and mp) estimate the dissimilarity of x and y using the regions (leaves

or intervals) into which they fall. The only difference is that the former defines regions

using a subset of attributes, whereas the latter defines one-dimensional regions through

discretisation. There are two limitations of these region-based approaches. Firstly, they

lose differences in the feature values of instances in a region. This may not be an issue

in most datasets, because these differences are small. Secondly, instances with similar

magnitudes or rank differences may appear to be more dissimilar if they happen to fall in

two regions. For example, in the case of one-dimensional data as shown in Figure 4.6, 4 is

more dissimilar to 5 than 6, simply because the partitioning happens to be between 4 and

5. This problem is even worse in mIF because of the hierarchical partitioning of regions

— 4 is more dissimilar to 5 than 9. The expectation in tree-based implementations is that
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(a) Tree (b) Discretisation

Figure 4.6: Partition of one-dimensional data to define regions

4 and 5 will occur together in a node much deeper than 5 and 9 would in many trees when

multiple trees are created. Hence, tree-based measures require a fairly large number of

trees to produce good results, but the runtime increases linearly with the number of trees.

In mIF and dUSF , the dissimilarity of x and y is estimated using a small subset of

attributes in each tree. The number of possible combinations of such attributes subsets

increases exponentially with the increase in the number of dimensions. In mIF , even

the order in which attributes are selected at each intermediate node to build a tree is

important. For a given subset of features, the dissimilarity of x and y in a tree can be

different if attributes are selected in different orders. Therefore it is necessary to build

a large number of trees (more than M) to cover as many attributes subsets as possible.

With a large number of trees (t ≥M), they become computationally more expensive than

one-dimensional data-dependent measures (drank, dlin and mp). The CBIR results of dUSF

and mIF with a varying number of trees in the Corel and Hba datasets are discussed in

Appendix 4.A.

The characteristics and effectiveness of tree-based and one-dimensional data-dependent

measures depend on the definition of regions. Fernando and Webb (2017) discussed that

some implementations of random trees are sensitive to units and scales of measurement.

Our empirical results in Section 4.6.5 also show that mIF is sensitive to units, whereas

dUSF is not. Similarly, in one-dimensional definition of regions, equal-width discretisation

(EWD) is sensitive to units, whereas equal-frequency discretisation (EFD) is invariant.

Our empirical evaluation reveals that EFD always produced either better or competitive

results with EWD. The CBIR results of drank, dlin, m1 and m0 with EFD and EWD in

the Corel and Hba datasets are provided in Figure 4.8 in Appendix 4.B.

In many existing dissimilarity measures, the self-dissimilarity of data objects is zero.

It is assumed that two data objects are identical if they have the same feature values.

Black (1952) argued against this with counter examples and claimed that it is possible

to have two distinct objects with the same properties. This can easily happen in data

mining, because real-world entities are represented by a fixed number of selected features.

Two distinct objects can appear to be identical if they happen to have the same values

for all selected features, despite their differences in other unselected features. Unlike

existing measures, probability mass-based dissimilarity measures (e.g., mp and mIF ) do

not consider two objects with the same values for all selected features to be identical (i.e.,

zero dissimilarity), they assign the dissimilarity based on the number of objects with the

same value in each selected feature.
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4.8 Conclusions

In this paper, we have studied the characteristics and relationships of different data-

dependent measures. The study has deepened our understanding of these measures in two

aspects. First, we extend the one-dimensional data-dependent measure of mp from p > 0

to p ≥ 0 by introducing m0-dissimilarity. We show that mp (p ≥ 0) is a generic data-

dependent measure, where rank distance (drank) and Lin’s measure (dlin) are special cases

of mp with p > 0 and p = 0, respectively, with a unique difference: mp has data-dependent

self-dissimilarity whereas the other two measures have data-independent self-dissimilarity.

Second, the empirical evaluations revealed that (a) one-dimensional data-dependent

measures (drank, dlin, mp) produce more consistent results than commonly-used distance-

based measures and tree-based data-dependent measures across different datasets; (b)

among one-dimensional data-dependent measures, those with data-dependent self-dissimil-

arities (i.e., mp) produce better results than those with data-independent self-dissimilarities

(i.e., rank difference and Lin’s measure) in datasets where many instances have the same

value (i.e., the probability mass is concentrated at a few values) as in the case of BoW

text datasets; and (c) unlike traditional distance-based methods, data-dependent mea-

sures such as rank difference, Lin’s measure and mp are robust to units and scales of

measurement.

To summarise, fully data-dependent similarity (including data-dependent self-similarity)

and robustness to units and scales of measurement are two important characteristics of

a similarity measure in order to produce good task-specific performance across a wide

range of datasets. The fully data-dependent measure of mp-dissimilarity, which has both

of these characteristics, is a more effective similarity measure for data objects than other

measures, among all the measures without learning investigated in this study.

Appendix 4.A: Effect of ensemble size in tree-based data-

dependent measures

In order to investigate the effect of ensemble size (t) in tree-based data-dependent measures

(dUSF and mIF ), we evaluated their task-specific performance by varying the number of

trees. The CBIR performances of dUSF and mIF with a number of trees up to t = 1000

in the Corel and Hba datasets are shown in Figure 4.7.

As expected, MAP@25 of both measures increased with the increase of t in both

datasets. However, they did not produce competitive retrieval results with one-dimension

data-dependent measure of m0 even with t = 1000 in both datasets where the number

of dimensions (M) is much less than 1000: Corel (M = 67) and Hba (M = 187). This

result shows that tree-based methods require a large ensemble size (t < M) to produce

a good result, but using a large t makes them expensive to run. For example, average

total runtime (building trees, pre-processing and retrieval) of one run in the Corel dataset

with t = 1000 took 809 seconds in dUSF and 2216 seconds in mIF , whereas m0 took 281

seconds only.
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Figure 4.7: Average MAP@25 in the Corel (M = 67) and Hba (M = 187) datasets with
different ensemble size.

Figure 4.8: Average MAP@25 of drank, dlin, m1 and m0 over 10 runs in the Corel and
Hba datasets with equal-frequency discretisation (EFD) and equal-width discretisation
(EWD).

Appendix 4.B: Effectiveness of equal-frequency and equal-

width discretisation approaches to speed up one-dimensional

data-dependent measures

We evaluated the performances of one-dimensional data-dependent measures with equal-

width discretisation (EWD), and equal-frequency discretisation (EFD) in the CBIR task

using the Corel and Hba datasets. We used the same number of intervals η = blog2Nc+1

with both discretisation approaches; therefore, the only difference between them was the

discretisation approach. The average MAP@k of drank, dlin, m1 and m0 over 10 runs in

the Corel and Hba datasets with EFD and EWD are provided in Figure 4.8.

The CBIR results in Figure 4.8 show that EFD produced either better or at least

competitive results with EWD. It did not produce worse retrieval results than EWD in

any case.
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Chapter 5

Inter-document similarity

measurement in the bag-of-words

vector space model

To explain the superior performance of m0-dissimilarity over the most widely-used cosine

measure in BoW text datasets in the last chapter, this chapter investigates the issues of

existing BoW document similarity measures more closely. It discusses the shortcomings of

the underlying assumptions of term-weighting schemes employed in existing BoW docu-

ment similarity measures and provides an alternative assumption, which is more congruous

with the requirements of inter-document similarity measurement. Based on the new as-

sumption, it introduces a new simple but effective BoW inter-document similarity measure

called Sp, where the explicit adjustment of document vectors through term weighting is

not required and evaluates the performance of Sp with that of existing BoW document

similarity measures using different term-weighting schemes. Sp is a simplified version of

m0-dissimilarity in BoW document similarity measurement.

This work on inter-document similarity measurement in the BoW vector space model

has been reported in the following papers:

Aryal, S., Ting, K. M., Washio, T. and Haffari, G. (2015), Beyond tf-idf and cosine

distance in document dissimilarity measures, In Proceedings of the 11th Asia Information

Retrieval Societies Conference (AIRS) 2015, Springer Cham, pp. 400-406.

Aryal, S., Ting, K. M., Washio, T. and Haffari, G. (2017), A new simple and effective

measure for inter-document similarity measurement, Computational Intelligence (under

review).

The journal paper is an extended version of the conference paper. This chapter is a copy

of the paper submitted to the journal and a copy of the conference paper is attached in

Appendix B. In order to generate consistent presentation within the thesis, the format and

some notations or symbols used have been changed, minor grammar and spelling mistakes

have been corrected, and sections of the submitted paper have been renumbered.
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Abstract:

To measure the similarity of two documents in the bag-of-words (BoW) vector represen-

tation, different term-weighting schemes are used to improve the performance of cosine

similarity—the most widely-used inter-document similarity measure in text mining. In

this paper, we identify the shortcomings of the underlying assumptions of term weighting

in the inter-document similarity measurement task, and provide a more fit-for-purpose as-

sumption. Based on this new assumption, we introduce a new simple but effective similarity

measure which does not require explicit term weighting. The proposed measure employs a

more nuanced probabilistic approach than those used in term weighting to measure the sim-

ilarity of two documents w.r.t each term occurring in the two documents. Our empirical

comparison with the existing similarity measures using different term-weighting schemes

shows that the new measure produces (i) better results in the binary BoW representation;

and (ii) competitive and more consistent results in the term-frequency-based BoW repre-

sentation.

Keywords: Inter-document similarity, tf-idf term weighting, cosine similarity, BM25,

weighted Jaccard, Sp

5.1 Introduction

Pairwise similarity measurements of documents is a fundamental task in many text-mining

problems such as query-by-example, document classification and clustering.

94
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In the bag-of-words (BoW) (Salton and McGill, 1986; Manning et al., 2008) vector

space model, a document x is represented by an M -dimensional vector where M is the

number of terms in a given dictionary, i.e., x = 〈x1, x2, · · · , xM 〉; and it has the following

two representations:

1. Term-frequency-based representation: each xi ∈ Z+ (Z+ is a set of non-negative

integers) is the occurrence frequency of term ti in document x.

2. Binary representation: each xi ∈ {0, 1} where 0 represents the absence of term ti in

document x and 1 represents the presence of ti in x.

Because the number of terms in a document is significantly less than that in the

dictionary, every document is represented as a sparse BoW vector, where many entries

are zero. Because of sparsity, Euclidean distance is not a good similarity measure and the

angular distance, also known as cosine distance, is the preferred choice of inter-document

similarity measures (Salton and McGill, 1986; Salton and Buckley, 1988).

Because all terms in a document are not equally important to represent its subject,

different term-weighting schemes (Manning et al., 2008; Salton and Buckley, 1988) are

used to adjust vector components based on the importance of their terms.

The idea of term weighting was first introduced in the field of information retrieval

(IR), where the task is to measure the relevance of documents in a given collection D for a

given query phrase consisting of a few terms. It is based on the following two assumptions

(Manning et al., 2008; Salton and Buckley, 1988; Zobel and Moffat, 1998):

i. A term is important in a document if it occurs multiple times in the document.

ii. A rare term that occurs in a few documents in the collection is more important than

frequent terms that occur in many documents in the collection.

The importance of terms in a document is estimated independent of the query. Because

a query in the IR task is short and each term generally occurs only once, it is not an issue

that the weights are determined independent of the query.

However, it can be counter-productive in the query-by-example task, where the query

itself is a document, and terms often occur more than once in the query document. For

example, to a query document q, a document x having more occurrences of the terms in

q may not be more similar than y which has exactly the same occurrences of terms in q.

Previous research in the BoW inter-document similarity measurement task has focused

on developing effective term-weighting schemes to improve the task-specific performance of

existing measures, such as cosine and Best Match 25 (BM25) (Salton and Buckley, 1988;

Robertson et al., 1994; Joachims, 1997; Singhal, 1997; Roberston and Zaragoza, 2009;

Paltoglou and Thelwall, 2010; Han et al., 2012; Wang and Zhang, 2013). In contrast, we

investigate an alternative similarity measure where an adjustment of vector components

using term weighting is not required.

This paper makes the following contributions:

1. It identifies the shortcomings of the underlying assumptions of term-weighting schemes

employed in existing measures, and provides an alternative assumption which is more

congruous with the requirements of inter-document similarity measurement.
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Table 5.1: Key notations

D A collection of N documents (i.e., |D| = N)
x BoW vector of a document 〈x1, x2, · · · , xM 〉
ti The ith term in the dictionary
ni The number of documents in D having ti
Tx The set of terms in x
wi(x) The importance or weight of ti in x
tfi(x) Term frequency factor of ti in x
idf(ti) Inverse document frequency factor of ti
s(x,y) The similarity of two documents x and y

dl(x) The length of document x (i.e.,
∑M

i=1 xi)
avgdl The average length of documents in D
x �

q{i}
y x is more similar to q than y w.r.t ti ∈ Tq

x =
q{i}

y x is equally similar to q as y w.r.t ti ∈ Tq

2. It introduces a new simple but effective inter-document similarity measure which is

based on the new assumption and does not require explicit term weighting. It uses a

more nuanced probabilistic approach than those used in term weighting to measure

the similarity of two documents w.r.t each term occurring in the two documents

under measurement.

3. It compares the performance of the new measure with existing measures (which

use different term-weighting schemes) in the query-by-example task. Our results

reveal that the new measure produces (i) better results than existing measures in

the binary BoW representation; and (ii) results competitive with and more consistent

than existing measures in term-frequency-based BoW representation.

The rest of the paper is organised as follows. Related work in the areas of term

weighting and inter-document similarity measures is discussed in Section 5.2. Issues of

term weighting in inter-document similarity measurement are discussed in Section 5.3.

The proposed new inter-document similarity measure is presented in Section 5.4, followed

by empirical results in Section 5.5, related discussion in Section 5.6, and the last section

presents the conclusions.

The key notations used in this paper are defined in Table 5.1.

5.2 Related work

In this section, we discuss term weighting and some widely-used existing BoW inter-

document similarity measures.

5.2.1 Term weighting

In the field of IR, there has been considerable research on effective term-weighting schemes.

The importance of a term ti in document x, wi(x), is estimated using different variants and

combinations of two factors (Manning et al., 2008; Salton and Buckley, 1988; Joachims,
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1997; Robertson et al., 1994; Singhal, 1997; Roberston and Zaragoza, 2009; Paltoglou and

Thelwall, 2010; Han et al., 2012; Wang and Zhang, 2013): (i) a document-based factor

based on the frequency of ti in x, xi; and (ii) a collection-based factor based on the number

of documents where ti occurs, ni.

The most widely-used term-weighting scheme is term frequency - inverse document

frequency (tf-idf) where wi(x) = tfi(x)×idf(ti) (Manning et al., 2008; Salton and Buckley,

1988); and it includes:

i. Document-based factor: tfi(x) = 1 + log(xi) if xi > 0, and 0 otherwise;

ii. Collection-based factor: idf(ti) = log
(
N
ni

)
.

In the IR task, the idea of tf-idf term weighting is based on the following assumptions

(Zobel and Moffat, 1998):

i. Documents with multiple occurrences of query terms are more relevant than docu-

ments with a single occurrence of query terms [the tf assumption].

ii. Documents with rare query terms occurring in a few documents in the collection are

more relevant to the query than documents with frequent query terms occurring in

many documents in the collection [the idf assumption].

The tf factor considers the importance of ti in a document. Even though a document

with multiple occurrences of a query term is more likely to be relevant to the given query,

a document with greater occurrences of one query term is not necessarily more relevant

than a document with fewer occurrences of two query terms. Therefore, the logarithmic

scaling of raw term frequencies is used to reduce the over-influence of high frequencies of

query terms (Manning et al., 2008; Salton and Buckley, 1988).

The idf factor considers the importance of ti in the given collection. Basically, it ranks

the importance of terms in the given dictionary based on the number of documents where

they occur. Terms occurring in only a few documents (i.e., rare terms) are considered to be

more important in documents, and they are given more weight than the terms occurring in

many documents (i.e., frequent terms) (Manning et al., 2008; Salton and Buckley, 1988).

5.2.2 Inter-document similarity measures

Here, we discuss three commonly-used measures to estimate the similarity of two document

vectors x and y, s(x,y)→ R where R is a real domain.

Cosine similarity

The cosine similarity measure with tf-idf term weighting is the most commonly-used inter-

document similarity measure. Using term-weighted vectors, the cosine similarity of two

documents x and y is estimated as:

scos(x,y) =

∑M
i=1wi(x)× wi(y)√∑M

i=1wi(x)2 ×
√∑M

i=1wi(y)2
(5.1)
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Note that the two terms in the denominator of Eqn 5.1 are the Euclidean lengths

(`2-norms) of the term-weighted vectors.

It is important to normalise the similarity of documents by their lengths, otherwise

cosine similarity favours longer documents which have higher probability of having more

terms in common with the query document over shorter documents (Salton and McGill,

1986; Manning et al., 2008; Salton and Buckley, 1988; Singhal et al., 1996).

Best Match 25 (BM25)

BM25 (Roberston and Zaragoza, 2009; Jones et al., 2000) is a state-of-the-art document

ranking measure in IR. It is based on the probabilistic framework of term weighting by

Robertson et al. (1994). Han et al. (2012) used BM25 to measure the similarity of two

documents x and y as follows:

sbm25(x,y) =
M∑
i=1

idfbm25(ti)×
xi · (a+ 1)

xi + a ·
(

1− b+ b · dl(x)
avgdl

) × yi · (a+ 1)

yi + a ·
(

1− b+ b · dl(y)
avgdl

)
(5.2)

where dl(x) =
∑M

i=1 xi is the normal length of document x (i.e., `1-norm of the unweighted

vector), avgdl = 1
N

∑
x∈D dl(x) is the average normal document length, a and b are free

parameters that control the influence of the term frequencies and document lengths, and

idfbm25(ti) is the idf factor of term ti defined as follows:

idfbm25(ti) = log

(
N − ni + 0.5

ni + 0.5

)
(5.3)

BM25 uses different variants of tf and idf factors in the similarity measure. The

pivoted normal document length (Singhal et al., 1996) is used in the tf factor so that

longer documents which have higher probability of having more terms in common with

the query document are not favoured over shorter documents.

Jaccard similarity

The Jaccard similarity (Jaccard, 1901) of two documents x and y is estimated as follows:

sjac(x,y) =
|Tx ∩ Ty|
|Tx ∪ Ty|

(5.4)

where Tx = {ti : xi > 0} is the set of terms in document x and | · | is the cardinality of a

set.

Jaccard similarity only considers the number of terms occurring in both x and y

and does not take into account the importance of terms in documents. The similarity is

normalised by the number of distinct terms occurring in either x or y to take into account

that x and y have higher chance of having terms in common if they have more terms.

The weighted or generalised version of Jaccard similarity (Chierichetti et al., 2010) of

two documents using term-weighted vectors is defined as follows:
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swjac(x,y) =

∑M
i=1 min{wi(x), wi(y)}∑M
i=1 max{wi(x), wi(y)}

(5.5)

The similarity of x and y w.r.t ti ∈ Tx∩Ty depends on the importance of ti in the two

documents. The similarity is normalised by the sum of maximum weights of all ti ∈ Tx∪Ty.

Note that the weighted Jaccard similarity of x and y (Eqn 5.5) in the binary BoW

vector representation without any term weighting is equivalent to the traditional Jaccard

similarity (Eqn 5.4).

5.3 Issues of the tf-idf assumptions in inter-document sim-

ilarity measurement

Even though the tf and idf assumptions discussed in Section 5.2.1 are intuitive in the IR

task to rank documents for a given query phrase of a few terms, they can be counter-

intuitive in the query-by-example task, which requires inter-document similarity measure-

ments to rank documents in D w.r.t a given query document.

In the literature, the query-by-example task is treated as an IR task, where query is

a document, and the same idea of the tf-idf term weighting is used. However, there is a

fundamental difference between the two tasks. Unlike in the typical IR task where the

query comprises a few distinct terms (i.e., each term generally occurs only once in the

query phrase), the query in the query-by-example task is a long document which often has

multiple occurrences of terms.

5.3.1 Issue of the tf assumption

For a query document q with terms Tq, a document x having more occurrences of terms in

Tq than in q, may not be more similar to q than another document y, which has similar

occurrences of terms in Tq as in q. For example, assume x and y have frequencies of

tr ∈ Tq as xr = 10 and yr = 1, respectively. If q has qr = 1, it is difficult to say that x is

more similar to q than y w.r.t tr

(
i.e.,x �

q{r}
y

)
, simply because of xr > qr (and qr = yr).

It might be the case that y is exactly the same document as q.

Because of the tf-based term-weighting factor, x 6= q can be more similar to q than

q itself using some existing measure such as BM251. Therefore, the tf assumption can be

counter-intuitive in inter-document similarity measurement.

5.3.2 Issue of the idf assumption

Similarly, x having rare terms of Tq may not be more similar to q than y having frequent

terms of Tq. For example, consider the scenario presented in Table 5.2:

Because idf(th) = 0, the term th will be completely ignored. However, qh = yh = 10

is more useful than qg = xg = yg = 1 because y is the only document in D which has as

many occurrences of th as q. Even though there is no discrimination between documents

1It depends on the lengths of documents and parameters a and b.



CHAPTER 5. INTER-DOCUMENT SIMILARITY MEASUREMENT 100

Table 5.2: A scenario to demonstrate the issue of the idf assumption. Note that all
N
2 documents having tg have a frequency of 1; and all N documents having th have a
frequency of 1 except y where yh = 10

n idf(t) x y q

tg
N
2 log(2) 1 1 1

th N 0 1 10 10

w.r.t tg (all N
2 documents with tg have a frequency of 1), tg is assigned more weight with

idf(tg) = log 2 than th with idf(th) = 0. As a result, x and y become equally similar to q

w.r.t tg and th

(
i.e.,x =

q{g,h}
y

)
even though y has exactly the same occurrences of tg and

th as q. This example shows that the idf assumption can be counter-intuitive in document

similarity measurements.

5.4 Our proposal to overcome the issues of tf-idf based term

weighting in inter-document similarity measurement

The main problem of the tf-idf term weighting in inter-document similarity measurement

is that the importance of ti in x, wi(x), is estimated without considering the frequency of

ti in q, qi. This is not an issue in the IR task because qi is almost always 1 if ti occurs

in the given query phrase q. In a query document, qi can be larger than 1. Therefore,

judging the importance of ti in x, without considering qi can be counter-productive in

inter-document similarity measurement.

A more fit-for-purpose approach would be to evaluate the importance of ti in x by

examining the similarity of xi w.r.t. qi. However, as discussed in Section 5.3.2, simply

having similar occurrences of ti (i.e., xi = qi) is not sufficient to consider them to be

similar. The similarity measure should also consider how rare the frequency of ti is in the

collection.

Putting the above requirements together, the similarity of x and q w.r.t ti should be

based on the number of documents in D which have similar occurrence frequencies of

ti as in both x and q. More formally, x and q are more likely to be similar w.r.t ti if

|{z ∈ D : min(xi, qi) ≤ zi ≤ max(xi, qi)}| is small. The first part in Table 5.3 compares

the underlying assumptions of the tf-idf term weighting (used in existing measures) and

the proposed approach called Sp, to be introduced in the next subsection.

This approach addresses the limitations of both the tf and idf assumptions discussed

in Section 5.3. The results of the new approach using the same examples discussed in

Sections 5.3.1 and 5.3.2 are provided in the second part of Table 5.3. The comparisons

demonstrate that the new approach provides more intuitive outcomes than the tf-idf term

weighting.
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Table 5.3: The tf-idf weighting (in existing measures) versus Sp: (i) Underlying assump-
tions for documents to be relevant/similar to a query document q; and the relation of
similarities of x and y to q (ii) in the same example discussed in Section 5.3.1 and (iii) in
the same example used in Section 5.3.2.

tf-idf term weighting Sp (the proposed approach)

(i) Underlying Assumptions
tf: y �

q{i}
x if yi > xi y �

q{i}
x if |{z ∈ D : α(yi, qi) ≤ zi ≤ β(yi, qi)}| <

idf: y �
q{i,j}

x if ni < nj (for qi > 0, qj > 0; |{w ∈ D : α(xi, qi) ≤ wi ≤ β(xi, qi)}|
xi = 0, xj = qj ; yi = qi, yj = 0) where α(·, ·) = min(·, ·);β(·, ·) = max(·, ·)

(ii) Example discussed in Section 5.3.1 (xr = 10, yr = 1, qr = 1)
x �

q{r}
y because xr > yr (even though y �

q{r}
x because |{z ∈ D : qr = zr = yr}| <

yr = qr) |{w ∈ D : qr ≤ wr ≤ xr}|
(iii) Example discussed in Section 5.3.2 (Table 5.2)
x =

q{g,h}
y because (i) qg = xg = yg = 1; y �

q{g,h}
x because (i) |{z ∈ D : qg = zg = yg}| =

and |{w ∈ D : qg = wg = xg}|
(ii) idf(th) = 0 (even though (ii) |{z ∈ D : qh = zh = yh}| <
qh = yh = 10 and xh = 1) |{w ∈ D : xh ≤ wh ≤ qh}|

5.4.1 Sp: A new document similarity measure

Recently, Aryal et al. (2014b, 2017) introduced a data-dependent measure where the sim-

ilarity of two data objects u and v depends on the distribution of data between u and v

(Aryal et al., 2014b, 2017). The intuition is that u and v are more likely to be similar if

there are less data between them. For example, two individuals earning 800k and 900k are

judged to be more similar by humans than two individuals earning 50k and 150k, because

many more people earn in [50k, 150k] than [800k, 900k].

Using the similar idea, the similarity of two documents x and y can be estimated as:

ssp(x,y) =
1

|Tx ∪ Ty|
∑

ti∈Tx∩Ty

log
N

|{z ∈ D : min(xi, yi) ≤ zi ≤ max(xi, yi)}|
(5.6)

where 1
|Tx∪Ty| is a normalisation term to account for the probability of a term occurring in

both x and y. The normalisation term reduces the bias towards documents having more

terms because they have a higher probability of having terms in a query document than

documents with fewer terms.

The number of distinct terms is used as a normalisation factor (as in the traditional

Jaccard similarity) because it is not sensitive to multiple occurrences of the terms in a

document which do not occur in the query document. In the IR task, Singhal et al. (1996)

have shown that it is more effective than the cosine or normal length normalisation which

penalise documents with multiple occurrences of the terms which are not in the query

phrase.

Sp can be interpreted as a simple probabilistic measure where the similarity of two

documents w.r.t ti ∈ Tx ∩ Ty is assigned based on the probability of the frequency of ti to

be in [min(xi, yi), max(xi, yi)], P (min(xi, yi) ≤ χi ≤ max(xi, yi)) (where χi is a random

variable representing the occurrence frequency of term ti in a document). In practice,



CHAPTER 5. INTER-DOCUMENT SIMILARITY MEASUREMENT 102

P (min(xi, yi) ≤ χi ≤ max(xi, yi)) = |{z∈D : min(xi,yi)≤zi≤max(xi,yi)}|
N , which is the inverse

of the term used in Eqn 5.6.

5.4.2 Characteristics of Sp

The proposed measure has the following characteristics:

i) Term weighting is not required:

Unlike in existing measures such as cosine and BM25, xi and yi are not used

directly in the similarity measure. They are used simply to define min(xi, yi) and

max(xi, yi), and the similarity is based on |{z ∈ D : min(xi, yi) ≤ zi ≤ max(xi, yi)}|,
which is invariant to the monotonic scaling of frequency values. Hence, Sp does not

require additional term weighting to adjust frequency values.

ii) Self-similarity is data-dependent and the upper bound of similarity:

Unlike cosine and both variants of Jaccard similarity, where the self-similarity

of documents is fixed with the maximum of 1, Sp has data-dependent self-similarity

because ssp(x,x) depends on the P (xi) for all ti ∈ Tx. Therefore, ssp(x,x) and

ssp(y,y) can be different.

The similarity in Sp is bounded by its self-similarity i.e., ∀y 6=x ssp(x,x) > ssp(x,y).

Although BM25 also has data-dependent self-similarity, it is possible to have simi-

larity of different documents larger than the self-similarity, i.e., there may be y 6= x

with sbm25(x,y) > sbm25(x,x)2.

iii) Relationship with the traditional Jaccard similarity and idf term weighting:

The formulation of Sp (Eqn 5.6) looks similar to the formulation of the traditional

Jaccard similarity (Eqn 5.4), except that the similarity of x and y w.r.t ti ∈ Tx ∩Ty
is based on |{z ∈ D : min(xi, yi) ≤ zi ≤ max(xi, yi)}| in Sp, whereas it is the fixed

constant of 1 in the traditional Jaccard similarity.

In the binary BoW vector representation, when ti ∈ Tx ∩ Ty and |{z ∈ D : zi =

1}| = ni, Sp assigns the similarity of x and y w.r.t ti based on idf(ti), whereas in the

traditional Jaccard similarity, it is 1, irrespective of whether ti is rare or frequent in

D .

In the term-frequency-based BoW representation, Sp is different from the idf

weighting because idf(ti) is based on |{z ∈ D : zi > 0}|, whereas Sp is based on

|{z ∈ D : min(xi, yi) ≤ zi ≤ max(xi, yi)}|, where xi > 0 and yi > 0 when ti ∈ Tx∩Ty.

5.4.3 Computational complexity

In the term-frequency-based BoW vector representation, it appears that computing |{z ∈
D : min(xi, yi) ≤ zi ≤ max(xi, yi)}| naively can be expensive, as it requires a range search

to find the number of documents with the frequencies of ti between xi and yi. Since all xi

2It depends on the lengths of x and y and parameters a and b.
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Table 5.4: Characteristics of datasets (N : Number of documents, M : Number of terms,
C: Number of classes).

Name N M C Collection

Fbis 2,463 2,000 17 TREC collection
La1s 3,204 13,195 6 TREC collection
La2s 3,075 12,432 6 TREC collection
New3s 9,558 26,832 44 TREC collection
Ng20 18,821 5,489 20 20 Newsgroup collection
Ohscal 11,162 11,465 10 Ohsumed patients records
R8 7,674 3,497 8 Reuters collection
R52 9,100 7,379 52 Reuters collection
Wap 1,560 8,460 20 Yahoo web pages
Webkb 4,199 1,817 4 University web pages

are integers (term occurrence frequency counts), |{z ∈ D : min(xi, yi) ≤ zi ≤ max(xi, yi)}|
can be computed in constant time by the following simple pre-processing.

Let mi be the maximum frequency of term ti in any document in the given collection

D. We can maintain a cumulative frequency count array Fi of size mi + 1 where Fi[j]

contains the number of documents with occurrences of ti fewer than or equal to j.

Using Fi, |{z ∈ D : min(xi, yi) ≤ zi ≤ max(xi, yi)}| can be estimated in constant

time as Fi[max(xi, yi)] − Fi[min(xi, yi) − 1]. Note that min(xi, yi) cannot be 0 because

|{z ∈ D : min(xi, yi) ≤ zi ≤ max(xi, yi)}| is computed only if ti ∈ Tx ∩Ty (i.e., xi > 0 and

yi > 0) and thus min(xi, yi) > 0.

The above pre-processing requires O(MN) time and O(Mm) space, where m is the

average maximum frequency of terms.

With the above pre-processing, the runtime for computing the similarity of x and y

using Sp is the same as that of the existing similarity measures, which is O(M).

5.5 Empirical evaluation

In this section, we present the results of experiments conducted to evaluate the task-specific

performances of Sp, BM25, weighted Jaccard and cosine similarity in the query-by-example

task to retrieve documents similar to a given query document. We conducted experiments

with both the term-frequency-based and binary BoW vector representations. We used

different combinations of tf and idf-based term-weighting factors with the weighted Jaccard

and cosine similarity measures.

5.5.1 Datasets and experimental set-up

We used 10 datasets from 6 benchmark document collections. The characteristics of the

datasets are provided in Table 5.4. NG20, R8, R52 and Webkb are from Cardoso-Cachopo

(2007)3; and the others are from Han and Karypis (2000)4.

3BoW vectors available at: http://web.ist.utl.pt/acardoso/datasets/
4BoW vectors available at: http://www.cs.waikato.ac.nz/ml/weka/datasets.html
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Each dataset was divided into two subsets D and Q using a 10-fold cross-validation

such that D and Q have 90% and 10% of the documents, respectively. D was used as a

given collection from which similar documents were extracted for each query document in

Q. For each q ∈ Q, documents in D were ranked in descending order of their similarities

to q using different contending similarity measures. The top k documents were presented

as similar documents to q.

For performance evaluation, a document was considered to be similar to q if they have

the same class label. In order to demonstrate the consistency of a measure at different top

k retrieved results, we evaluated the precision at the top k retrieved results (P@k in terms

of percentage) with k = 1, 2, · · · , 25 and used the mean average precision up to k = 25.

The performance evaluation criterion was: MAP@25 =
∑25

k=1 P@k
25 .

We repeated the experiment 10 times using each of the 10 folds as Q and the remaining

9 folds as D. The average MAP@25 and standard error over the 10 runs were reported.

The average MAP@25 of two measures were considered to be significantly different if their

confidence intervals based on two standard errors did not overlap.

The free parameters a and b in BM25 were set to 1.2 and 0.95, respectively, as recom-

mended by Paltoglou and Thelwall (2010) and Jones et al. (2000).

All the experimental set-ups and similarity measures were implemented in Java using

the WEKA platform (Hall et al., 2009). All the experiments were conducted on a Linux

machine with a 2.27 GHz processor and 16 GB memory. We discuss the experimental

results with the term-frequency-based and binary BoW vector representations separately

in the following two subsections.

5.5.2 Results in the term-frequency-based BoW vector representation

Here we used two term-weighting schemes: tf factor only and tf-idf factors, with weighted

Jaccard and cosine. The six contending measures were: Sp, BM25, Cos.tf-idf (cosine with

tf-idf), Cos.tf (cosine with tf only), WJac.tf-idf (weighted Jaccard with tf-idf) and WJac.tf

(weighted Jaccard with tf only).

The average MAP@25 and standard error over 10 runs of six contending measures

are provided in Table 5.5 and the summarised results in terms of pairwise win-loss-draw

counts of contending measures based on the two standard error significance test over the

10 datasets used in the experiment are provided in Table 5.6.

Table 5.5 shows that Sp and Cos.tf produced the best or competitive to the best

result in five datasets each, followed by WJac.tf-idf in four, whereas Cos.tf-idf, BM25 and

WJac.tf were best or competitive to the best measure in only one dataset each.

The first column in Table 5.6 shows that Sp had more wins than losses over all con-

tending measures. It had one more wins than losses against the closest contenders Cos.tf

and WJac.tf-idf.

Of the two cosine measures, Cos.tf had more wins than losses to Cos.tf-idf. This

shows that the idf term weighting can be counter-productive with cosine in inter-document

similarity measurement. This is mainly due to the cosine normalisation which penalises

documents with rare terms (with high idf weights) which are not in q. In comparison
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Table 5.5: Term-frequency-based BoW representation: Average MAP@25 and standard
error over 10 runs. The best result is underlined and the results equivalent (insignificant
difference based on two standard errors) to the best result are bold-faced.

BM25 Cos.tf-idf Cos.tf WJac.tf-idf WJac.tf Sp

Fbis 65.12±0.62 68.42±0.61 68.28±0.58 68.48±0.49 66.75±0.54 67.77±0.51
La1s 74.41±0.32 75.97±0.42 73.08±0.49 79.18±0.33 77.54±0.47 79.36±0.32
La2s 76.42±0.49 78.11±0.42 75.24±0.44 81.06±0.42 79.45±0.37 80.89±0.40
New3s 67.01±0.18 68.31±0.19 70.19±0.19 69.36±0.16 68.45±0.15 68.98±0.16
Ng20 76.47±0.19 74.81±0.24 67.80±0.28 73.67±0.23 64.28±0.24 72.30±0.20
Ohscal 59.72±0.22 53.59±0.21 61.06±0.26 59.68±0.21 60.81±0.20 60.14±0.19
R52 85.50±0.20 80.80±0.27 86.57±0.15 84.55±0.21 84.72±0.19 84.39±0.22
R8 91.05±0.14 86.14±0.22 92.93±0.19 91.03±0.18 91.94±0.21 91.40±0.17
Wap 19.67±0.42 65.33±0.34 61.97±0.41 70.54±0.46 65.10±0.48 70.92±0.50
Webkb 70.28±0.23 68.55±0.24 73.04±0.27 73.90±0.31 75.25±0.25 74.91±0.33

Table 5.6: Term-frequency-based BoW representation: Win-loss-draw counts of measures
in columns against those in rows based on the two standard error significance test over 10
runs.

Sp WJac.tf WJac.tf-idf Cos.tf Cos.tf-idf

BM25 8-2-0 8-2-0 6-2-2 7-0-3 5-5-0
Cos.tf-idf 8-1-1 6-2-2 8-1-1 5-4-1
Cos.tf 5-4-1 4-5-1 5-4-1
WJac.tf-idf 3-2-5 3-6-1
WJac.tf 5-2-3

to BM25, Cos.tf produced better results with seven wins and no loss, and Cos.tf-idf was

competitive with five wins versus five losses.

In the Wap dataset, BM25 produced significantly worse results than the other con-

tenders, due to the idf factor used in BM25. If a term ti occurs in more than half of the

documents in D (i.e., ni >
N
2 ), idfbm25(ti) is negative and ti has negative contribution to

the similarity of two documents. When idfbm25(ti) was replaced by the traditional idf(ti)

in the formulation of BM25 (Eqn 5.2), it produced MAP@25 = 67.04%, which was still

worse than those of Sp and WJac.tf-idf.

In weighted Jaccard similarity, WJac.tf-idf produced better retrieval results than WJac.tf.

It is interesting to note that WJac.tf-idf produced better retrieval results than Cos.tf-idf,

Cos.tf and BM25. This could be mainly due to the vector length normalisations used in

BM25 and cosine that penalise documents with higher frequencies of terms which are not

in q.

Sp and WJac.tf-idf produced more consistent results than the other contending mea-

sures. They did not produce the worst result in any dataset, whereas WJac.tf produced

the worst result in one dataset (NG20) followed by Cos.tf in two datasets (La1s and La2s),

BM25 in three datasets (Fbis, New3s and Wap), and Cos.tf-idf in four datasets (Ohscal,

R8, R52 and Webkb).

In terms of runtime, all measures had runtimes of the same order of magnitude. For ex-

ample, in the NG20 dataset, the average total runtime of one run (including pre-processing)
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Table 5.7: Binary BoW representation: Average MAP@25 and standard error over 10
runs. The best result is underlined and the results equivalent (insignificant difference
based on two standard errors) to the best result are bold-faced.

BM25 Cos.idf Cos WJac.idf WJac Sp

Fbis 67.90±0.50 66.46±0.50 63.24±0.56 67.17±0.46 64.58±0.52 66.94±0.47
La1s 74.78±0.25 76.78±0.34 75.96±0.38 78.54±0.34 77.55±0.39 79.04±0.30
La2s 76.71±0.48 78.48±0.42 77.55±0.38 80.02±0.39 79.12±0.35 80.54±0.40
New3s 69.61±0.20 66.73±0.16 64.88±0.15 67.76±0.15 65.66±0.16 68.13±0.16
Ng20 74.37±0.16 73.80±0.17 64.12±0.20 72.26±0.19 63.07±0.21 72.61±0.20
Ohscal 58.95±0.19 55.06±0.17 58.56±0.18 58.66±0.21 58.45±0.17 59.23±0.19
R52 83.87±0.24 79.01±0.28 84.19±0.20 83.23±0.22 83.36±0.21 83.80±0.22
R8 90.54±0.16 86.03±0.19 91.60±0.17 90.24±0.17 91.10±0.20 90.92±0.18
Wap 16.47±0.34 66.97±0.47 59.16±0.44 70.18±0.54 65.09±0.48 70.02±0.53
Webkb 73.29±0.39 70.86±0.23 75.61±0.27 74.19±0.37 75.59±0.29 74.97±0.35

Table 5.8: Binary BoW representation: Win-loss-draw counts of measures in columns
against those in rows based on the two standard error significance test over 10 runs.

Sp WJac WJac.idf Cos Cos.idf

BM25 5-2-3 5-5-0 4-3-2 4-4-2 3-7-0
Cos.idf 8-1-1 5-4-1 8-1-1 4-6-0
Cos 7-2-1 5-3-2 6-3-1
WJac.idf 5-0-5 2-6-2
WJac 8-0-2

using Sp took 15935 seconds, whereas BM25, Cos.tf-idf and WJac.tf-idf took 27432, 16089

and 14875 seconds, respectively.

5.5.3 Results in the binary BoW vector representation

Here, the six contending measures were: Sp, BM25, Cos.idf (cosine with idf), Cos (cosine

without idf), WJac.idf (weighted Jaccard with idf) and WJac (weighted Jaccard without

idf). Note that WJac which does not use any term weighting is equivalent to the traditional

Jaccard similarity defined in Eqn 5.4.

The average MAP@25 and standard error over 10 runs of the six contending measures

are provided in Table 5.7, and the summarised results in terms of pairwise win-loss-draw

counts of contending measures based on the two standard error significance test over the

10 datasets used in the experiment are provided in Table 5.8.

Table 5.7 shows that Sp produced the best or competitive to the best result in six

datasets, followed by BM25 in five, WJac.idf in four, Cos in two, and WJac in one dataset

only. Cos.idf did not produce a competitive result to the best performing measure in any

dataset.

In terms of pairwise win-loss-draw counts as shown in the first column in Table 5.8,

Sp had many more wins than losses against all other contending measures.

It is interesting to note that BM25, Cos.idf and Cos using the binary BoW repre-

sentation produced better retrieval results than their respective counterparts using the

term-frequency-based BoW representation in some datasets. For example, (i) BM25 in
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Fbis, New3s and Webkb; (ii) Cos.idf in La1s, Ohscal, Wap and Webkb; and (iii) Cos in

La1s, La2s and Webkb. In contrast, WJac.idf, WJac and Sp using binary BoW vectors

did not produce better retrieval results than their respective counterparts using term-

frequency-based BoW vectors.

As in the term-frequency-based BoW representation, all measures had runtimes of the

same order of magnitude.

5.6 Discussion

Although some studies have used different variants of tf and idf term-weighting factors

with the most widely-used cosine similarity, the tf and idf factors discussed in Section 5.2.1

have been shown to be the most consistent in the IR task (Singhal, 1997).

For the tf factor, instead of using the logarithmic scaling of xi, some researchers have

used other scaling approaches, such as augmented
(

0.5 + 0.5× xi
max(x1,x2,··· ,xM )

)
(Salton

and Buckley, 1988) and Okapi
(

xi
2+xi

)
(Robertson et al., 1994). Similarly, for the idf

factor, instead of using N
ni

, some researchers have used the probabilistic idf factor based

on N−ni
ni

(Robertson et al., 1994; Singhal, 1997). Note that BM25 (Eqn 5.2) uses a tf

factor similar to Okapi and an idf factor similar to the probabilistic idf factor (Roberston

and Zaragoza, 2009).

In the supervised text-mining task of document classification, different approaches util-

ising class information have been proposed to estimate the collection-based term-weighting

factors (Wang and Zhang, 2013; Debole and Sebastiani, 2003; Lan et al., 2009). Inverse

category frequency (icf) (Wang and Zhang, 2013) has been shown to produce better clas-

sification results than the traditional idf factor with the cosine similarity measure. Icf

considers the distribution of a term among classes rather than among documents in the

given collection. The intuition behind icf is that the fewer classes in which a term ti

occurs, the more discriminating power the term ti contributes to classification (Wang and

Zhang, 2013). If C and ci are the total number of classes and the number of classes in

which ti occurs at least once in at least one document, then the icf factor is estimated as

icf(ti) = log
(

1 + C
ci

)
.

We evaluated the performance of Sp in the kNN document classification task with

existing measures using the supervised term-weighting scheme of icf (Wang and Zhang,

2013). Sp produced either better or competitive classification results with existing mea-

sures using supervised or unsupervised term weighting in the 5NN classification task. The

classification results are provided in the Appendix 5.A.

Although the weighted Jaccard similarity has been used in other application domains

(Chierichetti et al., 2010), it is not widely used to measure similarities of BoW documents.

Our experimental results in Section 5.5 show that the weighted Jaccard similarity with

the tf-idf term-weighting scheme may be an effective alternative to cosine and BM25 in

inter-document similarity measurement.

Sp has superior performance over all contenders in the binary BoW vector represen-

tation. It can be very useful in application domains such as legal and medical where the
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exact term frequency information may not be available due to privacy issues, because it is

possible to infer information in a document from its term frequencies (Zhu et al., 2008).

5.7 Concluding remarks

For the purpose of inter-document similarity measurement tasks, we identify the limita-

tions of the underlying assumptions of the most widely-used tf-idf term-weighting scheme

employed in existing measures such as cosine and BM25, and provide an alternative as-

sumption which is more intuitive in this task.

Based on the new assumption, we introduce a new simple but effective inter-document

similarity measure called Sp.

Our empirical evaluation in the query-by-example task shows that:

1. Sp produces better or at least competitive results to the existing similarity measures

with the state-of-the-art term-weighting schemes in term-frequency-based BoW rep-

resentations. Sp produces more consistent results than the existing measures across

different datasets.

2. Sp produces better results than the existing similarity measures with or without idf

term weighting in the case of binary BoW representation.

When cosine and BM25 are employed, our results show that it is important to use

an appropriate BoW vector representation (binary or term-frequency-based) and an ap-

propriate term-weighting scheme. Using inappropriate representation and term weighting

can result in poor performance.

In contrast, using Sp, users are not required to apply any additional term weighting

to measure the similarity of two documents and still obtain better or competitive results

in comparison to the best results obtained by cosine or BM25.
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Appendix 5.A: kNN classification results

In order to predict a class label for a test document q, its k nearest neighbour (or most

similar) documents were searched in the given labelled training set of documents using a

contending similarity measure, and the majority class among the kNNs was predicted as

the class label for q.

All classification experiments were conducted using a 10-fold cross-validation (10 runs

with each one out of the 10 folds as the test set and the remaining 9 folds as the training

set). The average classification accuracy and standard error over a 10-fold cross-validation

were reported. All collection-based term-weighting factors (idf and icf) were computed

from the training set and used in both the training and test documents. The parameter k

was set to the commonly-used value of 5 (i.e., 5NN classification was used).
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Table 5.9: Term-frequency-based BoW representation: Win-loss-draw counts of measures
in columns against those in rows based on the two standard errors significance test over a
10-fold cross-validation of 5NN classification.

Sp WJac.tf WJac.tf-idf WJac.tf-icf Cos .tf Cos.tf-idf Cos.tf-icf

BM25 6-2-2 7-2-1 6-2-2 7-2-1 5-2-3 4-5-1 2-3-5
Cos.tf-icf 6-1-3 5-2-3 5-0-5 6-1-2 4-2-4 2-5-3
Cos.tf-idf 8-0-2 5-1-4 9-0-1 6-1-3 5-4-1
Cos.tf 5-4-1 4-3-3 5-3-2 5-1-4
WJac.tf-icf 2-2-6 0-3-7 3-2-5
WJac.tf-idf 1-1-8 2-5-3
WJac.tf 4-1-5

We discuss the 5NN classification results with the term-frequency-based and binary

BoW vector representations separately in the following two subsections.

Term-frequency-based BoW vector representation

We used term weighting based on tf only, tf-idf and tf-icf with weighted Jaccard and

cosine, resulting in eight contending measures: Sp, BM25, Cos.tf-icf, Cos.tf-idf, Cos.tf,

WJac.tf-icf, WJac.tf-idf and WJac.tf.

The average classification accuracies and standard errors over a 10-fold cross-validation

of the eight contending measures are provided in Table 5.10 and the summarised results in

terms of pairwise win-loss-draw counts of contending measures based on the two standard

error significance test in the 10 datasets used in the experiment are provided in Table 5.9.

The 5NN classification accuracies in Table 5.10 show that Sp, WJac.tf-idf, WJac.tf-

icf and Cos.tf produced the best or competitive to the best result in five datasets each,

followed by WJac.tf in four, Cos.tf-icf and BM25 in two datasets each, and Cos.tf-idf in

one dataset only.

The pairwise win-loss-draw counts of Sp in the first column of Table 5.9 show that it

had more wins than losses over all contending measures except Wjac.tf-idf and Wjac.tf-icf,

where it had competitive results with the same number of wins and losses.

Sp and all three variants of weighted Jaccard similarity produced better classification

results than all three variants of cosine and BM25. As in the similar document retrieval

task discussed in Section 5.5, BM25 produced the worst classification accuracy in the Wap

dataset because of idfbm25(ti). The classification accuracy was increased to 79.42% when

idfbm25(ti) was replaced by the traditional idf idf(ti).

The supervised term weighting using icf (tf-icf) did not always produce better clas-

sification results than the traditional tf-idf-based term weighting with both cosine and

weighted Jaccard. It had five wins and two losses with cosine, whereas it had two wins

and three losses with weighted Jaccard.
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Table 5.12: Binary BoW representation: Win-loss-draw counts of measures in columns
against those in rows based on the two standard errors significance test over a 10-fold
cross-validation of 5NN classification.

Sp WJac WJac.idf WJac.icf Cos Cos.idf Cos.icf

BM25 4-1-5 4-3-3 3-2-5 4-3-3 3-3-4 3-6-1 3-3-4
Cos.icf 4-0-6 0-1-8 3-2-5 3-1-6 0-4-6 1-5-4
Cos.idf 6-0-4 4-3-3 7-1-2 7-1-2 4-4-2
Cos 6-0-4 3-2-5 5-0-5 6-0-4
WJac.icf 3-1-6 0-5-5 3-3-4
WJac.idf 1-0-9 0-4-6
WJac 6-0-4

Binary BoW vector representation

We used weighted Jaccard and cosine similarities with and without idf and icf weight-

ing, resulting in eight contending measures: Sp, BM25, Cos.idf, Cos.icf, Cos, WJac.idf,

WJac.icf and WJac.

The average classification accuracies and standard errors over a 10-fold cross-validation

of the eight contending measures are provided in Table 5.11, and the summarised results in

terms of pairwise win-loss-draw counts of contending measures, based on the two standard

error significance test in the 10 datasets used in the experiment, are provided in Table 5.12.

The 5NN classification accuracies in Table 5.11 show that Sp produced the best or

competitive to the best result in eight datasets. The closest contenders BM25 and WJac.idf

produced the best or competitive to the best result in six datasets each, followed by

WJac.icf in five, Cos.icf in four, WJac and Cos in three datasets each, and Cos.idf in two

datasets only.

In terms of pairwise win-loss-draw counts, as shown in the first column in Table 5.12,

Sp had more wins than losses against all other contending measures. It had one win and

no loss against WJac.idf and three wins and one loss against WJac.icf.

As in the term-frequency-based BoW representation, the supervised term-weighting

scheme based on icf did not always produce better classification results than the traditional

idf-based term-weighting scheme with both cosine and weighted Jaccard in the binary BoW

vector presentation. It had five wins and one loss with cosine, whereas it had three wins

and three losses with the weighted Jaccard.

It is interesting to note that BM25, Cos.icf, Cos.idf and Cos which use the binary

BoW vector representation produced better classification accuracies than their respec-

tive counterparts using the term-frequency-based BoW representation in some datasets;

e.g., BM25 was better in three datasets (Fbis, New3s, WebKb), Cos.icf and Cos in three

datasets (La1s, La2s, Webkb), and Cos.idf in two datasets (La2s, Webkb). However, all

three variants of weighted Jaccard and Sp with the term-frequency-based BoW represen-

tation produced either better or competitive results with the binary BoW representation.



Chapter 6

Thesis conclusions and future work

This chapter concludes the thesis in Section 6.1 and provides potential avenues for future

research in Section 6.2.

6.1 Thesis conclusions

To overcome the limitations of conventional distance-based (dis)similarity measures such

as `p-norm and cosine stated in Section 1.3 of Chapter 1, this thesis has investigated an

alternative approach of measuring similarities of data instances. The conclusions of this

thesis are summarised as follows:

6.1.1 Traits of an effective similarity measure

This thesis has shown that fully data-dependent similarity and robustness to units and

scales of measurement are important characteristics of a similarity measure to produce

consistent task-specific performance across a wide range of datasets. The task-specific

performances of distance-based similarity measures vary significantly in different datasets

because they do not possess these characteristics.

In traditional distance-based similarity measures, the similarity of two instances is

based solely on their geometric positions in the feature space, which is independent of

the underlying data distribution. This thesis has shown that exploiting the local data

distribution between the two instances is more beneficial than using spatial distance alone

in measuring their similarity.

Simply having the same value (i.e., zero distance) in a dimension does not necessarily

mean that the two instances are similar in that dimension. The probability mass around

zero distance contributes useful information towards the similarity measurement in dis-

criminating instances in this and other dimensions. For example, having zero distance in

a dimension where every instance has the same value provides less information about the

similarity of two instances than having zero distance in a dimension where only those two

instances have the same value and other instances are significantly different from them.
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This becomes more prominent in high-dimensional problems where data often lie in low-

dimensional subspaces and many instances have the same value in many dimensions in

the original space.

Distance-based similarity measures are sensitive to units and scales which are often un-

known in data mining where only feature values are given. In order to produce good simi-

larity results using distance measures, it is important to transform data by pre-processing

to ensure all dimensions are on the same scale. Using inappropriate scales may result in

poor task-specific performance. However, finding the appropriate scale is difficult. There-

fore, measures which are robust to units and scales of measurement provide more consistent

results than similarity measures which are sensitive.

6.1.2 mp-dissimilarity: An effective alternative to distance measures

This thesis has introduced a new data-dependent measure called “mp-dissimilarity” which

has both of the above-mentioned characteristics. It has the same formulation as the

traditional `p-norm, but the geometric distance of two instances in each dimension is

replaced with the probability data mass between them.

The dissimilarity of two instances in each dimension is data-dependent, including self-

dissimilarity. Under mp-dissimilarity, having the same value in a dimension where every

instance has the same value contributes less in the overall similarity of two instances than

having the same value in a dimension where only those two instances have that value.

As mp-dissimilarity does not use the actual feature values in the dissimilarity measure

and the dissimilarity of two instances is based on the number of instances between them,

the dissimilarity measure is robust to units and scales of measurement. It does not require

any pre-processing to standardise or normalise data.

Replacing spatial distance with probability mass, mp-dissimilarity produces similar

or better task-specific performance than traditional distance measures over a wide range

of datasets from different application domains, particularly in high-dimensional datasets

such as bag-of-words (BoW) document collections.

The superior performance of mp-dissimilarity over distance-based measures in high-

dimensional datasets confirms that a measure which is fully data-dependent and robust

to units and scales of measurement is less affected by the “curse of dimensionality” issue

than distance-based similarity measures.

mp-dissimilarity is a generic data-dependent measure, of which the existing data-

dependent measures of rank difference and Lin’s probabilistic similarity are special cases

with data-independent self-dissimilarities.

In order to handle datasets with mixed numeric and nominal attributes, existing dis-

similarity measures require the conversion of one attribute type to another. In contrast,

mp-dissimilarity provides seamless treatment to numeric and nominal attributes directly

using probability mass in mixed domains without the need for any conversion.

mp-dissimilarity is a non-metric dissimilarity measure as self-dissimilarity is neither

zero nor any other fixed constant.
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6.1.3 Sp: A new BoW document similarity measure

In the BoW vector space model, existing document similarity measures such as cosine and

BM25 use term weighting to measure inter-document similarity. This thesis has shown

that term weighting can be detrimental in the inter-document similarity measurement

task because the underlying assumptions of term weighting do not hold in this case. This

thesis provides a more congruous alternative assumption for inter-document similarity

measurement.

This thesis has introduced a new BoW inter-document similarity measure called Sp,

based on the new assumption for inter-document similarity measurement. Sp is a simplified

version of m0-dissimilarity. Sp does not require explicit term weighting but produces task-

specific results better than or competitive with existing measures.

6.1.4 Relative mass to improve the task-specific performance of iForest

Although iForest has been shown to be effective in anomaly detection and content-based

information retrieval (CBIR), this thesis has identified its limitations in both tasks and

introduced the notion of “relative mass” to overcome these limitations:

• In anomaly detection, iForest fails to detect local anomalies that lie close to a dense

normal cluster but have density similar to other sparse normal clusters. This is

mainly because path length used in iForest is a global measure with respect to the

root of each tree and it does not consider local variation in the data distribution. As

in the case of density-based paradigm where relative density is used to capture the

variation in local distribution, relative mass is a ranking measure that considers local

variation in the data distribution. Unlike relative density, relative mass can be esti-

mated efficiently, because it does not require pairwise distance calculations. Relative

mass enables iForest to detect local anomalies without creating new weaknesses.

• In CBIR, ReFeat, which has iForest at its core, does not guarantee that relevant

instances lie in the same local neighbourhood. ReMass-ReFeat based on relative mass

guarantees that relevant instances lie in the same local neighbourhood. ReMass-

ReFeat produces produces better CBIR results than ReFeat and existing distance-

based CBIR systems, and requires much smaller ensemble size than ReFeat.

6.2 Future work

The pairwise (dis)similarity measurements of data instances is a core computation in

many data-mining algorithms. This thesis has introduced a data-dependent dissimilarity

measure where even self-dissimilarity is data-dependent. It is more effective than distance-

based measures in high-dimensional problems. This opens many opportunities for future

research in designing (dis)similarity measures which are not geometry-based. Potential

areas for future work include the following:
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6.2.1 Using mp-dissimilarity in other data-mining tasks

This thesis has shown that mp-dissimilarity produces better results than data-independent

and other data-dependent measures in CBIR and kNN classification tasks. It will be

interesting to evaluate their relative performance in other tasks, such as clustering and

anomaly detection.

Using mp-dissimilarity in some existing algorithms such as kMeans clustering (Mac-

queen, 1967) is not a simple replacement of distance measure. This is because using

an arbitrary (dis)similarity measure in kMeans is not straightforward. Each iteration of

kMeans requires updating cluster centres to minimise intra-cluster distances or maximise

intra-cluster similarities. This can be done easily if Euclidean distance (`2-norm) or Man-

hattan distance (`1-norm) is used by computing the mean or median vector of the instances

assigned to each cluster. With other (dis)similarity measures, new cluster centres have to

be searched through optimisation.

6.2.2 Investigating mathematical properties of mp-dissimilarity

The limitations of distance measures in high-dimensional spaces have been studied in terms

of two phenomena:

• distance concentration - under certain assumptions in data distribution, the contrast

in distances of different instances diminishes as the number of dimensions increases

(Beyer et al., 1999; Aggarwal et al., 2001; François et al., 2007).

• hubness - the distribution of k-occurrences, which is the number of other instances

in a given dataset of which an instance is one of their k nearest neighbours, becomes

considerably skewed as the number of dimensions increases (Radovanović et al.,

2010).

Chapter 3 of this thesis shows empirically that the concentration effect in mp-dissimilarity

is even worse than that in distance-based measures, whereas the effect of hubness is not as

severe as in distance-based measures. It is worth investigating this empirical result more

closely to provide concrete theoretical evidence.

Some data-mining algorithms exploit the mathematical properties of similarity mea-

sures in the learning process. For example, support vector machine (SVM) requires simi-

larity measures to be valid kernels (Cristianini and Shawe-Taylor, 2000). It is not clear if

mp-dissimilarity is a valid kernel.

Therefore, another potential avenue for future research is to study the mathematical

properties of mp-dissimilarity and investigate the implications of having data-dependent

similarity and not satisfying the metric axioms.

6.2.3 Developing pruning strategies to speed up nearest neighbour search

using mp-dissimilarity in very large datasets

For distance-based similarity measures, different indexing schemes have been developed

using efficient data structures, such as k-d tree (Bentley and Friedman, 1979), R∗-tree
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(Beckmann et al., 1990), M-tree (Ciaccia et al., 1997) and Cover trees (Beygelzimer et al.,

2006) to speed up the nearest neighbour search in very large datasets. These schemes

are based on the spatial positions of data in the geometric space. It will be interesting

to investigate whether similar efficient data structures can be developed to speed up the

nearest neighbour search using mp-dissimilarity.

Another potential avenue for future research is examining whether pruning strategies

such as Locality Sensitive Hashing (LSH) (Indyk and Motwani, 1998) can be used with

mp-dissimilarity. Because of the implementation of mp-dissimilarity using equal-frequency

bin discretisation, it appears to have some similarity with LSH, although the aims of

binning are different in the two cases. It is an open question whether LSH can be used

to generate candidate nearest neighbour sets quickly for mp-dissimilarity. LSH has nice

theoretical bounds for the Euclidean distance but it is not clear if similar bounds can be

derived for mp-dissimilarity.

6.2.4 Investigating the effectiveness of Sp in measuring similarities of

documents using word embedding

This thesis has shown that Sp, a variant of mp-dissimilarity, produces better task-specific

results than widely-used document similarity measures with the traditional BoW (Salton

and McGill, 1986) vector representation. It would be interesting to investigate if Sp

produces better task-specific results than existing similarity measures if documents are

represented as vectors using word embedding techniques such as word2vec (Mikolov et al.,

2013a,b; Le and Mikolov, 2014).
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Appendix A

Conference paper on

mp-dissimilarity

This chapter includes the following conference paper on mp-dissimilarity where preliminary

results were reported. The extended journal version of the paper is presented in Chapter 3.

Aryal, S., Ting, K. M., Haffari, G. and Washio, T. (2014), mp-dissimilarity: A data-

dependent dissimilarity measure, In Proceedings of the IEEE International conference on

data mining (ICDM) 2014, IEEE, Pages 707-712.

This chapter is a copy of the paper published in the conference proceedings. In order

to generate a consistent presentation within the thesis, the format and some notations

or symbols used have been changed, minor grammar and spelling mistakes have been

corrected, and sections of the published paper have been renumbered.

The original published version of the paper is available at IEEE Xplore Digital Library

via https://doi.org/10.1109/ICDM.2014.33
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mp-dissimilarity:

A data-dependent dissimilarity

measure

Sunil Aryal∗, Kai Ming Ting†, Gholamreza Haffari∗ and Takashi Washio‡

∗Clayton School of Information Technology, Monash University, Australia
†School of Engineering and Information Technology, Federation University, Australia
‡The Institute of Scientific and Industrial Research, Osaka University, Japan

Abstract:

Nearest neighbour search is a core process in many data-mining algorithms. Finding re-

liable closest matches of a query in a high-dimensional space remains a challenging task.

This is because the effectiveness of many dissimilarity measures, that are based on a geo-

metric model, such as `p-norm, decreases as the number of dimensions increases.

In this paper, we examine how data distribution can be exploited to measure dissimilarity

between two instances and propose a new data-dependent dissimilarity measure called ‘mp-

dissimilarity’. Rather than relying on geometric distance, it measures the dissimilarity

between two instances in each dimension as a probability mass in a region that encloses

the two instances. It deems two instances in a sparse region to be more similar than

two instances in a dense region, although these two pairs of instances may have the same

geometric distance.

Our empirical results show that the proposed dissimilarity measure indeed provides a re-

liable nearest neighbour search in high-dimensional spaces, particularly in sparse data.

mp-dissimilarity produced better task specific performance than `p-norm and cosine dis-

tance in classification and information retrieval tasks.

Keywords: Distance measure, `p-norm, mp-dissimilarity
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A.1 Introduction

In order to make a prediction for a given query, many data-mining algorithms search

for the k closest matches or nearest neighbours (kNNs) of the query in a database, and

make a prediction based on those kNNs. They use a similarity or dissimilarity measure

to find kNNs. Minkwoski distance (also known as `p-norm) (Deza and Deza, 2009) is a

widely-used dissimilarity measure. Although it performs well in many applications, its

effectiveness degrades as the number of dimensions increases. In high-dimensional space,

data distribution becomes sparse, which makes the concept of distance meaningless: the

“curse of dimensionality”. All pairs of points are almost equidistant for a wide range

of data distributions and distance measures (Beyer et al., 1999; Aggarwal et al., 2001),

resulting in unreliable closest match that leads to erroneous predictions.

The performance of distance measure depends on the data distribution and task at

hand. A distance measure that performs well in one distribution or task may perform

poorly in others. A huge variation in performance can be observed when a distance mea-

sure is used in different data distributions and tasks. We hypothesize that this variation

is because the distance measure computes the dissimilarity between two instances solely

based on the geometric positions. The data distribution (i.e., the relative position of the

two instances with respect to the rest of the data) is not taken into consideration.

Psychologists have expressed their concerns about the geometric model of dissimilarity

measure (Tversky, 1977; Krumhansl, 1978). They have argued that the judged dissimilar-

ity between two instances is influenced by the context of dissimilarity measurement and

other instances in proximity. Krumhansl (1978) has suggested a distance-density model of

dissimilarity measurements, arguing that two instances in a relatively dense region would

be less similar than two instances of equal distance but located in a less dense region.

For example, two white persons will be judged as more similar when compared in Africa

(where there are fewer white and more black people) than in America (where there are

many white people.)

In this paper, we propose a new dissimilarity measure called ‘mp-dissimilarity’ in

which data distribution is the primary factor in measuring dissimilarity between instances.

Rather than using a spatial distance in each dimension, mp-dissimilarity evaluates the

dissimilarity between two instances in terms of probability mass in a region covering the

two instances in each dimension. The final dissimilarity between the two instances is

estimated as a power mean of dissimilarities in each dimension as in `p-norm. The intuition

behind the proposed dissimilarity measure is that two instances are likely to be more

dissimilar if there are more instances between and around them in many dimensions. In

the proposed data-dependent dissimilarity measure, two instances in a dense region of the

distribution are more dissimilar than two instances with the same geometric distance in a

sparse region, as suggested by psychologists.

This paper makes the following contributions:

1. It proposes a new data-dependent dissimilarity measure called mp-dissimilarity.

2. It provides its theoretical basis and interpretation.
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3. It compares the performance of mp-dissimilarity against `p-norm and cosine distance

in moderate-to high-dimensional datasets from text and music domains in classifi-

cation and information retrieval tasks.

The rest of the paper is organised as follows. Two widely-used geometric distance

measures, `p-norm and cosine distance, are discussed in Section A.2. The proposed data-

dependent dissimilarity measure, mp-dissimilarity, is discussed in Section A.3. Empirical

results are provided in Section A.4, followed by conclusions and future work in the last

section. Hereafter, we refer mp-dissimilarity and `p-norm by mp and `p, respectively.

A.2 Measures based on geometric models

A wide range of geometric (proximity-based) dissimilarity measures are used in the liter-

ature, which are discussed in Deza and Deza (2009). In this section, we discuss the two

most widely-used measures: `p-norm and cosine distance.

A.2.1 `p-norm distance

The distance between two M -dimensional vectors x and y based on `p-norm is defined as

follows (Deza and Deza, 2009):

`p(x,y) = ‖x− y‖p =

(
M∑
i=1

abs(xi − yi)p
) 1

p

(A.1)

where p > 0, ‖ · ‖p is the p order norm of a vector, ai is the ith component of a vector a

and abs(·) is the absolute value. The limit condition is defined as follows:

`∞(x,y) = ‖x− y‖∞ = max
i

abs(xi − yi) (A.2)

Manhattan distance (`1), Euclidean distance (`2) and Chebysev distance (`∞) are

widely-used `p-norm-based distance functions. Euclidean distance is a popular choice of

distance function as it intuitively corresponds to the distance defined in the real three-

dimensional world.

A.2.2 Cosine distance

In many high-dimensional problems, data have the same value (0 or any other constant)

in many dimensions, creating ‘sparseness’. For example, only a few terms in a dictionary

appear in each document in a corpus. Many entries of a vector representing a document are

zero. `p-norm is not a good choice of distance measure for such problems. The direction of

vectors is more important than their lengths. The angular distance measure (also known

as cosine distance) (Deza and Deza, 2009) is a more sensible choice to measure dissimilarity

between two documents.
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The cosine distance between two vectors x and y is defined as follows (Deza and Deza,

2009):

dcos(x,y) = 1− x · y
‖x‖2 × ‖y‖2

= 1−
∑M

i=1 xi × yi√∑M
i=1 x

2
i ×

√∑M
i=1 y

2
i

(A.3)

Cosine distance has been shown to perform well in many text-mining problems such

as text categorisation, text clustering and text retrieval tasks.

A.3 Data-dependent measure

In order to measure dissimilarity between x and y, instead of using (xi − yi) in Eqn A.1,

we propose to consider the relative positions of x and y with respect to the rest of the

data distribution in each dimension. The dissimilarity between x and y in dimension i

can be estimated as the probability data mass in a region Ri(x,y) that encloses x and

y. If there are many instances in Ri(x,y), x and y are likely to be more dissimilar in

dimension i. Using the same power mean formulation as in `p-norm, the data-dependent

dissimilarity measure based on probability mass can be defined as:

mp(x,y) =

(
M∑
i=1

(
|Ri(x,y)|

N

)p) 1
p

(A.4)

where |Ri(x,y)| is the data mass in regionRi(x,y), Ri(x,y) = [min(xi, yi)− δ,max(xi, yi) + δ],

δ ≥ 0 and N is the number of data instances.

An example of Ri(x,y) is shown in Figure A.1. We use δ = σi
2 (σi is the standard

deviation of data in dimension i) in this paper.

Figure A.1: Ri(x,y)

We call the proposed dissimilarity measure mp(x,y) ‘mp-dissimilarity’. This mea-

sure captures the essence of the distance-density model proposed by Krumhansl (1978)

which suggests that two instances in a sparse region are more similar than two instances

with the same distance in a dense region. Although mp employs the same power mean

formulation as `p, the core calculation is based on mass rather than distance. It signifies

the degree of dissimilarity: the higher the measure, the more dissimilar the two instances

are, similar to `p.

The formulation of mp(x,y) (Eqn A.4) has a probabilistic interpretation. The simplest

form of data-dependent dissimilarity measure is to define a region R(x,y) ∈ RM that

encloses x and y and estimate the probability of a randomly-selected point z from the

distribution of data, φ(x), falling in R(x,y), P (z ∈ R(x,y)|φ(x)). Let R(x,y) be centred

at h = 〈h1, h2, · · · , hM 〉, hi = xi+yi
2 and have a length of Ri(x,y) on dimension i. We use
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the shorthand R and Ri to represent R(x,y) and Ri(x,y), respectively. Assuming that

the dimensions are independent, P (z ∈ R|φ(x)) can be approximated as:

P (z ∈ R|φ(x)) ≈
M∏
i=1

Pi(zi ∈ Ri|φi(x)) (A.5)

where Pi(zi ∈ Ri|φi(x)) is the probability of z falling in R in dimension i.

The approximation using Eqn A.5 is sensitive to outliers. P (z ∈ R|φ(x)) becomes

small (or zero) even if only one Pi(zi ∈ Ri|φi(x)) is small (or zero). An approximation

which is tolerant to outliers can be estimated by replacing the product with a summation

(Minka, 2003).

Lemma A.1. (Minka, 2003) In an outlier model having data distribution φ(x),

M∏
i=1

Pi (xi|φi(x)) ∝
M∑
i=1

Pi (xi|φi(x))

Proof. Let us consider a data generation process in which, to sample xi, a coin with

probability of turning heads (1 − ε) is flipped. If the coin turns heads, xi is drawn from

the distribution of data in dimension i, φi(x), where the probability of sampling xi is

P (xi|φi(x)), otherwise it is drawn from a uniform distribution 1/A (A is the area under

the domain of x). This model considers outliers as:

P ′i (xi|φi(x)) = ε/A+ (1− ε)Pi (xi|φi(x)) (A.6)

Using Eqn A.5,

P ′ (x|φ(x)) ≈
M∏
i=1

P ′i (xi|φi(x))

≈
M∏
i=1

(ε/A+ (1− ε)Pi (xi|φi(x)))

(A.7)

A Taylor series expansion in (1− ε) leads to:

(ε/A)M + (ε/A)M−1(1− ε)
M∑
i=1

Pi (xi|φi(x)) +O
(
(1− ε)2

)
In the extreme case where there are many outliers, i.e. ε is close to 1, only the first

two terms matter. The first term is a constant and hence, Lemma A.1 follows.

In addition to the above approximation given by Minka (2003), we propose that the

chance of xi being drawn from the outlier model can be further reduced by sampling

from φi(x)p, yielding the probability of sampling xi as P (xi|φi(x))p, where P (·)p is the

probability of a random event occurring in p successive trials.
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Lemma A.2. In the outlier model of φ(x), a more generalised outlier-tolerant approxi-

mation can be achieved as:

d∏
i=1

Pi (x|φ(x)) ∝
M∑
i=1

Pi (xi|φi(x))p

Proof. This follows from the proof of Lemma A.1 by simply drawing xi from φi(x)p when

heads turns up in the coin toss.

Using Lemma A.2, Eqn A.5 can be expressed as follows:

P (z ∈ R|φ(x)) ∝
M∑
i=1

Pi(zi ∈ Ri|φi(x))p (A.8)

As a result of Eqn A.8 and ignoring the constant which is simply a scaling factor of

the dissimilarity, mp(x,y) can be estimated as follows:

mp(x,y) =

(
M∑
i=1

Pi (zi ∈ Ri|φi(x))p
) 1

p

(A.9)

where the outer power of 1
p is simply a rescaling of P (zi ∈ Ri|φi(x)).

It is important to note the two assumptions made in the above derivation of mp, i.e.,

dimension-independence and the outlier model. The assumption of dimension-independence

has been applied in data mining, e.g., the Naive Bayes classifier. It has been shown that

this assumption does not affect the classification accuracy in many scenarios, even if the

assumption is violated.

With the assumption of the outlier model, mp produces many small Pi (zi ∈ Ri(x,y)|φi(x))

if x and y are similar in dimension i. In other words, instances which are similar are as-

sumed to have small |Ri| in many dimensions. This is not an unrealistic assumption in

high-dimensional problems.

In practice, Pi (zi ∈ Ri|φi(x)) can be estimated as:

Pi (zi ∈ Ri|φi(x)) =
|Ri|
N

(A.10)

Hence, Eqn A.9 and Eqn A.10 lead to mp-dissimilarity defined in Eqn A.4. The role of

parameter p is similar to that in `p, i.e., p controls the influence of a dimension by scaling

up the degree of dissimilarity.

Figure A.2 shows the contours of dissimilarity measured from an instance at (0.5,0.5)

based on m2 (mp with p = 2) in three different data distributions (uniform, normal and

bimodal). In contrast, `p and cosine distance would produce the same contour in all three

distributions. For uniform distribution and infinite samples, mp will yield the same result

as `p because the data mass in Ri will be proportional to xi − yi. This is depicted in the

first contour plot in Figure A.2 where it approaches the contour plot of `2.
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Figure A.2: Contour plots of dissimilarity based on m2-dissimilarity to the instance at
(0.5,0.5) in three different data distributions: uniform, normal and bimodal.

Complexity:

Computationally, mp is more expensive than `p as it requires a range search in each

dimension. One-dimensional range search can be done in O(logN) using a binary search

tree. Hence, the dissimilarity of a pair of instances can be computed in O(M logN) against

O(M) of `p. In sparse data, the unique values in each dimension will be much less than

N . Hence, the average case runtime will be much less than O(M logN). In addition, it

requires O(MN) time and O(M logN) space to build and store M binary search trees,

respectively.

A.4 Empirical evaluations

This section presents the results of the experiments conducted to evaluate the performance

of mp against `p and cosine distance in kNN classification and information retrieval.

Eleven datasets from different domains with different sizes (1000 ≤ N ≤ 9100), num-

bers of dimensions (188 ≤ M ≤ 10000) and numbers of classes (2 ≤ c ≤ 52) were used.

All the attributes in the datasets are numeric. Out of 11 datasets used, six are from text

mining, two from music classification and retrieval, two from character recognition and

the last one is a synthetic dataset from the UCI Machine Learning Repository (Bache

and Lichman, 2013). Text data were represented by TFIDF (Salton and Buckley, 1988)

weighted ‘bag of words’ vectors. Other datasets (non-text) were normalised to in the range

of [0,1]. The properties and references of the datasets are provided in Table A.1.

We discuss the experimental set-ups and results in classification and information re-

trieval tasks in the following two subsections.

A.4.1 kNN classification

In the kNN classification context, in order to predict a class label for a test instance x, its

k nearest neighbours were searched in the training set based on a dissimilarity measure

and the most frequent label of the kNN instances was predicted.

All classification experiments were conducted using a 10-fold cross-validation. We used

four settings of p (2.0, 1.0, 0.5, 0.1) in `p and mp and two settings of k (k = 1 and k = 10)

for all classifiers. The average accuracy (%) over a 10-fold cross-validation is reported. The
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Table A.1: Characteristics of datasets

Name Reference N M c Domain

Amazon Bache and Lichman (2013) 1500 10000 50 text
CNAE Bache and Lichman (2013) 1080 856 9 text
Reuter Bache and Lichman (2013) 5000 9288 50 text
R8 Cardoso-Cachopo (2007) 7674 3497 8 text
R52 Cardoso-Cachopo (2007) 9100 7369 52 text
Webkb Cardoso-Cachopo (2007) 4199 1818 4 text
HBA Ariyaratne and Zhang (2012) 1500 188 15 music
GTZAN Tzanetakis and Cook (2002) 1000 230 10 music
Gisette Bache and Lichman (2013) 7000 5000 2 digit recognition
Mfeat Bache and Lichman (2013) 2000 649 10 digit recognition
Madelon Bache and Lichman (2013) 2600 500 2 artificial data

accuracies of two algorithms are considered to be significantly different if their confidence

intervals (based on ± one standard error) do not overlap.

The best average classification accuracy over a 10-fold cross-validation achieved by mp,

`p and cosine distance in all 11 datasets is presented in Figure A.3. A red dot on the top

of the bar indicates that the best performer had significantly better classification accuracy

than the other two contenders.

As shown in Figure A.3, mp produced better classification accuracies than `p and

cosine distance in eight datasets and similar results in the other three datasets. The result

is statistically significant in five datasets (CNAE, R8, R52, Webkb and HBA) and not

significantly worse in any dataset.

It is interesting to note that mp produced significantly better classification accuracy

than `p in all six text (sparse) datasets, and better than cosine distance in four out of six.

This is because mp assigns (i) the maximum dissimilarity (of a dimension) if the majority

of instances have the same value, which is often the case in sparse text data where term

frequencies are zeros in many dimensions; and (ii) the minimum dissimilarity if the value

has the least number of training instances in the local neighbourhood.

In terms of p, mp produced better results with p = 2 in eight out of 11 datasets used

with the exceptions of Amazon (p = 0.5), CNAE (p = 0.1) and Madelon (p = 0.1). The

result with `p, was mixed: p = 0.1 produced better classification results in four datasets,

p = 2 was better in four, p = 1 was better in two, and 0.5 was better in one dataset.

Generally, we observed that p = 2 is a reasonable setting in mp, but we cannot say

anything about setting p in `p as the accuracy varies significantly with p.

A.4.2 Information retrieval

In information retrieval, given a query q, the relevance of a database instance x, Rel(x|q),

was measured using dissimilarity measure d as:

Rel(x|q) = −d(x,q) (A.11)
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Figure A.3: The best classification accuracies of `p, mp and cosine distance in kNN clas-
sification. A red dot on the top signifies that the best performer had significantly better
classification accuracy than the other two contenders.

In a relevance feedback process (Rui et al., 1998), a user examines the current retrieval

result and provides some ‘relevant’ and ‘irrelevant’ examples to the retrieval system. Let

Q = P ∪ N be a set of feedback instances to the query q where P and N are the sets

of positive and negative feedback, respectively. Note that P includes q. In a relevance

feedback round, the relevance score is estimated as follows:

Rel(x|Q) =
1

|P|
∑
y+∈P

Rel(x|y+)− γ 1

|N |
∑

y−∈N

Rel(x|y−) (A.12)

where 0 ≤ γ ≤ 1 is a trade-off parameter for the relative contribution of positive and

negative feedback.

We used text and music information retrieval datasets (Reuter, CNAE, HBA, Amazon,

R8 and Gtzan) with more than five classes in information retrieval. R52 was not used in

information retrieval as the class distribution is heavily skewed and many classes have a

few instances, which is not sufficient for query and feedback.

Initially five queries were chosen randomly from each class. For each query, instances

from the same class were regarded as relevant and those from the other classes were

irrelevant. At each round of feedback, two relevant (instances from the same class) and

two irrelevant (instances from the other classes) instances were provided. Five rounds of

feedback were conducted for each query. An instance was not used in ranking if it was

used as a feedback instance in current or previous feedback rounds. The feedback process

was repeated five times with different relevant and irrelevant feedback. This process was

repeated 10 times with different queries from each class. The average precision at top 10

(P@10) returned results was reported.
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(a) Reuter (b) CNAE (c) HBA

(d) Amazon (e) R8 (f) Gtzan

Figure A.4: Precision at top 10 retrieved results (P@10).

We used the same four settings of p (2.0, 1.0, 0.5, 0.1) and two settings of γ (0,1).

Note that when γ = 0, no negative feedback was needed. The best result achieved at the

end of the fifth round of feedback is shown in Figure A.4. mp produced either better than

or similar results to `p and cosine distance in five datasets. The only exception is in R8

where cosine distance was better than mp.

It is interesting to note that mp produced better results with γ = 0. Its performance

degraded in all cases when negative feedback was given. This is because mp considers the

probability of two instances being different and assigns a dissimilarity score according to

the distribution of other instances already. Hence, deducting the average relevance score

w.r.t irrelevant feedback affects the relevance score of an instance w.r.t q. An instance

relevant to a negative feedback may not be equally irrelevant to the query.

On the other hand, `p-norm significantly improved its performance when negative

feedback was given. The performance was improved drastically even in the first round of

feedback in the sparse text datasets (Reuter, CNAE, Amazon and R8), whereas this was

not the case in the non-sparse music datasets (HBA and Gtzan). In text data, instances are

similar in many dimensions with zero values. Initially, in the query round, many irrelevant

instances have a high relevance score, as `p assigns zero distance in many dimensions

because of zero frequency. They also have high similarity with negative feedback. Hence,

deducting the average relevance w.r.t negative feedback compensates well for the high

relevance score given in the first place to irrelevant instances. With negative feedback, `p

produced competitive retrieval results with mp and cosine distance in the Amazon and

Reuter datasets. In the other four datasets, `p was significantly worse than mp.

Cosine distance produced significantly worse results in the music datasets. In text

retrieval, it produced better results than mp in subsequent feedback rounds in R8, but
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was worse than mp in CNAE. In Amazon and Reuter, they produced similar retrieval

results. Note that cosine distance also produced better results with γ = 1, i.e., with

negative feedback. mp produced significantly better retrieval performance than `p and

cosine distance in the music (non-sparse) datasets (HBA and Gtzan).

Again, p = 2 was better in all six datasets for mp in information retrieval. For `p-norm,

p = 1 or 2 achieved the best retrieval results.

A.5 Conclusions and future work

In this paper, we propose a new dissimilarity measure called ‘mp-dissimilarity’ that mainly

utilises data distribution in its dissimilarity calculations. It estimates the dissimilarity

between two instances in each dimension as a probability of data mass that falls in a

region enclosing the two instances. The final dissimilarity between the two instances is

estimated as the power mean of all single dimensional dissimilarities, as in the case of `p.

The fundamental difference between the formulations of mp and `p is the replacement of

the geometric difference with the probability mass.

Our empirical evaluations in classification and information retrieval suggest that mp

provides more meaningful closest neighbours than those provided by `p and cosine distance

in high-dimensional space, especially in text datasets where sparsity is a dominant data

characteristic.

Potential avenues for future work include investigating an efficient implementation of

mp-dissimilarity, its strengths and limitations along with theoretical analysis and applying

mp to tasks such as clustering, anomaly detection and kernel learning.
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Appendix B

Conference paper on

inter-document similarity

This chapter includes the following conference paper on inter-document similarity mea-

surement which shows that tf-idf-based term weighting with cosine (dis)similarity can be

detrimental. The extended version of the paper submitted to a journal is presented in

Chapter 5.

Aryal, S., Ting, K. M., Washio, T. and Haffari, G. (2015), Beyond tf-idf and cosine

distance in document dissimilarity measures, In Proceedings of the 11th Asia Information

Retrieval Societies Conference (AIRS) 2015, Springer, Cham, Pages 400-406.

This chapter is a copy of the paper published in the conference proceedings. In order

to generate a consistent presentation within the thesis, the format and some notations

or symbols used have been changed, minor grammar and spelling mistakes have been

corrected, and sections of the published paper have been renumbered.

The original published version of the paper is available at Springer via https://doi.

org/10.1007/978-3-319-28940-3_33
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Abstract:

In a vector space model, different types of term-weighting schemes are used to adjust bag-

of-words document vectors in order to improve the performance of the most widely-used

cosine distance. Although cosine distance with some term-weighting schemes results in

more reliable (dis)similarity measures in some datasets, it may not perform well in others

because of the underlying assumptions of the term-weighting schemes. In this paper, we

argue that the explicit adjustment of bag-of-words document vectors using term weighting

is not required if a data-dependent dissimilarity measure called mp-dissimilarity is used.

Our empirical results in document retrieval task reveal that mp with the simplest binary

bag-of-words representation is either better than or competitive with cosine distance with

the best performing state-of-the-art term-weighting schemes in four widely-used benchmark

document collections.

Keywords: Cosine distance, term weighting, mp-dissimilarity

B.1 Introduction

Using bag-of-words (Salton and McGill, 1986) vector representation, a document di in a

collection of N documents (i = 1, 2, · · · , N) is represented by an M -dimensional vector

(where M is the number of terms in the dictionary), i.e., di = 〈di1, di2, · · · , diM 〉, where

each entry dij represents the frequency of occurrence of term tj in di. As the most widely-

used cosine distance (Salton and McGill, 1986) estimates the dissimilarity of two vectors

134
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Table B.1: Dissimilarity between dq and other documents in a dataset.

doc t1 t2 t3 distcos

d1 5 2 0 0.82
d2 2 2 0 0.58
d3 2 0 0 1.00
d4 1 2 0 0.32
d5 0 2 1 0.74
d6 3 2 4 0.93
d7 1 6 2 0.63

dq 0 2 0 -

using their geometric positions only, it is important to adjust their positions in the space

according to the importance of their terms. Two types of term-weighting factors are used

in the literature to estimate the importance of term tj in document di (wij) (Salton and

Buckley, 1988). First, a term frequency (tf)-based factor of tj in di (tfij) can be estimated

in different ways: (a) Binary (bin tf): tfij = 1 if tj is in di and 0 otherwise; (b) Raw

term frequency (Raw tf): tfij = dij ; and (c) Logarithmic (log tf): tfij = log(1 + dij).

Second, the inverse document frequency (idf)-based weighting factor of a term tj (idfj) is

estimated using the number of documents in the given collection having term tj (nj) as

idfj = log
(
N
nj

)
. Using tfij and idfj , a term-weighted document vector of document di is

represented as having component wij = tfij × idfj . The dissimilarity between document

vectors d1 and d2 using the cosine distance is estimated as follows:

distcos(d1, d2) = 1−
∑

j w1j × w2j√∑
j w1j

2 ×
√∑

j w2j
2

(B.1)

It has been shown that the above cosine distance is more meaningful than the tra-

ditional `2-norm in text retrieval (Salton and McGill, 1986; Salton and Buckley, 1988).

The only difference between the cosine distance and `2-norm is that it uses the length

normalised vector which is referred to as cosine normalisation in the literature.

The ideas of term weighting and cosine normalisation are based on the following three

monotonic assumptions (Zobel and Moffat, 1998): (i) Multiple appearances of a term in

a document are no less important than single appearance (the tf assumption). (ii) Rare

terms are no less important than frequent terms (the idf assumption). (iii) For the same

quantity of term matching, long documents are no more important than short documents

(the cosine normalisation assumption).

Although these assumptions appear reasonable, the similarity measure biases toward

smaller documents, documents with infrequent terms, and documents with multiple oc-

currences of terms, which can be disadvantageous in some cases (Polettini, 2004). The

cosine distance with term-weighted document vectors may perform well in some datasets

or domains where the above assumptions hold, but it may perform worse in other datasets

where the assumptions do not hold (see the experimental results in Section B.3).

In the example shown in Table B.1, the dissimilarity between dq and each of the

documents d1-d7 using the cosine distance with raw tf -idf term weighting is provided
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in the fourth column. Although d4 and d5 have the same occurrences of the common

term t2 as dq, d4 is considered to be more similar to dq than d5 for no particular reason

because of the idf assumption (d5 is penalised more due to the mismatch in infrequent

term t3). Similarly, d2 is considered to be more similar to dq than d1 because of the cosine

normalisation assumption (d2 is shorter than d1). Although d6 has the same occurrences

of the common term t2 as dq, d7 is considered to be more similar to dq than d6 because of

the tf assumption (d7 has more occurrences of t2).

Furthermore, in order to use the tf-based weights such as raw tf and log tf , the fre-

quency of each term in each document is required. However, in some application domains

such as legal and medical, it may not be possible to have the exact term frequencies, due

to privacy issues, because it is possible to infer information in the document from its term

frequencies (Zhu et al., 2008). Hence, in some domains, only binary representation of

documents is available rather than their raw term frequencies.

In this paper, we investigate a dissimilarity measure that does not require the adjust-

ment of bag-of-words vectors and demonstrate that the recently proposed data-dependent

dissimilarity measure called mp-dissimilarity (Aryal et al., 2014b) is one such measure. It

uses a similar statistic as that used in idfj but it is used as the measure of dissimilarity

directly rather than for vector adjustment in the space. Our empirical evaluation shows

that mp-dissimilarity with the simplest binary representation performs either better than

or competitively with the cosine distance with different term-weighting schemes in doc-

ument retrieval tasks. Its performance is more consistent across different datasets than

that of cosine distance with any term-weighting scheme.

B.2 mp-dissimilarity in bag-of-words document vectors

In order to measure dissimilarity between two M -dimensional data points x and y, rather

than simply relying on the positions of x and y in the space, mp-dissimilarity (Aryal et al.,

2014b) (we refer to it as mp hereafter) considers the probability data mass in the range

Rj(x, y) that encloses x and y in each dimension j. It estimates the final dissimilarity as

follows (Aryal et al., 2014b):

mp(x, y) =

 1

M

M∑
j=1

(
|Rj(x, y)|

N

)p 1
p

(B.2)

where |Rj(x, y)| is the number of data points falling in Rj(x, y); N is the total number of

data points, and p > 0 is a parameter.

By simply replacing the geometric distance in each dimension by the probability mass

in the range, mp has been shown to provide more reliable nearest neighbours than `p-norm

in high-dimensional spaces (Aryal et al., 2014b). However, it is very expensive to compute

as it requires a range search to determine how many instances fall in each Rj(x, y). Using

a binary search tree, one-dimensional range search can be done in O(logN), resulting in

the run-time complexity of O(M logN) to measure the dissimilarity of a pair of vectors.
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In a document collection, only a few terms in the dictionary appear in each document.

Many terms do not appear in either of the two documents provided for dissimilarity

measurement. Since the absence of a term in both documents does not provide any

information about the (dis)similarity of documents, those terms should be ignored. Hence,

we make a simple modification in the formulation of mp shown in Eqn B.2 by considering

only those terms that occur in either of the two documents as follows:

mp(d1, d2) =

 1

|T1,2|
∑

tj∈T1,2

(
|Rj(d1, d2)|

N

)p 1
p

(B.3)

where |T1,2| = |T1 ∪T2| (Ti is the set of terms that appear in di) is the normalisation term

employed to account for different numbers of terms used for any two documents.

Using the simplest binary representation, where each dij in a document vector di has

only two values {1,0} indicating whether the term tj exists in the document di, |Rj(d1, d2)|
can be estimated easily using the total number of documents in the collection (N) and

the number of documents where tj occurs (nj) as follows:

|Rj(d1, d2)| =

{
N if d1j 6= d2j

nj if d1j = d2j = 1
(B.4)

Note that the case where d1j = d2j = 0 is not required because Eqn B.3 does not

measure dissimilarity of d1 and d2 w.r.t a term which does not appear in both d1 and d2.

nj can be precomputed for all tj in pre-processing; thus, |Rj(d1, d2)| can be estimated in

O(1) resulting in O(M) complexity to compute mp-dissimilarity of a pair of documents

using Eqn B.3 which is equivalent to that of the cosine distance. The pre-processing to

compute nj for all tj requires O(MN) time and O(M) space complexities. Note that the

same complexities are involved in computing the idf factor.

Note that Eqn B.3 does not require the adjustment of the positions of documents in

the vector space, because it does not use the absolute positions of two vectors in the

dissimilarity measure. It estimates dissimilarity w.r.t each term tj that appears in both

the documents, based on the number of documents having the term (i.e., high dissimi-

larity if tj appears in many documents, and low dissimilarity if it appears only in a few

documents) and assigns maximal dissimilarity of 1 w.r.t terms that appear in only one of

them. Although a similar statistic to that in idf-based weighting is used in the case of

matching terms, it is not used to transform vectors in the space but it is used as a mea-

sure of (dis)similarity between two documents w.r.t. tj directly. In the example shown in

Table B.1, mp(dq, d4) = mp(dq, d5), mp(dq, d1) = mp(dq, d2) and mp(dq, d6) = mp(dq, d7).

B.3 Empirical evaluation

In this section, we present the empirical results of mp (using the binary representation)

and the cosine distance with the six different term-weighting schemes discussed in Section

B.1 (bin tf , raw tf and log tf with and without idf) in relevant document retrieval tasks.

Since we want to capture the contrast between two documents with low dissimilarity in a
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Table B.2: Datasets

Name #docs #terms #cat

NG20 18,821 5,489 20
R52 9,100 7,379 52
Ohscal 11,162 11,465 10
Wap 1,560 8,460 20

Table B.3: P@10 with average over four datasets in the fourth column (∗: best, †: second
best and ‡: third best).

Contenders NG20 R52 Ohscal Wap Avg.

raw tf 0.56 0.85† 0.53 0.63 0.64
raw tf -idf 0.71 0.81 0.48 0.64 0.66

log tf 0.70 0.87∗ 0.61∗ 0.64 0.71
log tf -idf 0.76∗ 0.81 0.54 0.67‡ 0.70

bin tf 0.66 0.84 0.59† 0.60 0.67
bin tf -idf 0.75† 0.79 0.56 0.68† 0.70

m0.1 0.74‡ 0.85† 0.61∗ 0.72∗ 0.73

few common terms and maximal dissimilarity w.r.t many terms that appear in either of

them, p < 1 is preferred to amplify the effect of low dissimilarities in the average. Hence,

we used p = 0.1 for mp (i.e. m0.1) in our experiments1.

We used four different datasets from four benchmark document collections that are

used in the text-mining literature. The data characteristics are provided in Table B.2.

NG202 is the widely-used 20 Newsgroup dataset and R522 is a subset of another widely

used Reuters document collection (Cardoso-Cachopo, 2007). Ohscal3 is a dataset from the

Ohsumed patients’ medical information collection and Wap3 is a collection of web pages

from Yahoo (Han and Karypis, 2000).

Given a query document dq, documents in a dataset were ranked in ascending order of

their distance/dissimilarity to dq, and the first k documents were presented as the relevant

documents. For performance evaluation, a document was considered to be relevant to dq

if they have the same category label. A good retrieval system returns relevant documents

at the top. Hence, the precision in the top 10 (P@10) retrieved documents was used as the

performance measure. The same process was repeated for every document in a dataset as a

query and the rest of the documents were ranked. The average P@10 over N (the number

of documents in a collection) queries of m0.1 and cosine with six different term-weighting

schemes are provided in Table B.3. Note that all the differences are statistically significant

as they are averaged over N (≥ 1560) queries and the standard error is negligible (up to

two decimal places) in each case.

1The parameter p in mp has the same role as in the case of traditional `p-norm. The performance of mp

may be changed slightly using different p values in some datasets. Empirically, we observed that p = 0.1
is a reasonably good setting.

2 http://web.ist.utl.pt/acardoso/datasets/
3 http://www.cs.waikato.ac.nz/ml/weka/datasets.html
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The performance of m0.1 was more consistent than the cosine distance with any term-

weighting scheme across four datasets (see the average result in the last column in Ta-

ble B.3). It was among the top three performers in each dataset (and had the best

performance in Wap and Ohscal, the second best in R52 and the third best in NG20),

whereas none of the term-weighting schemes were among the top three performers in all

datasets.

It is interesting to note that the idf-based weighting does not always result in good

performance as it produced poor results in R52 and Ohscal with any of the three tf

representations. Although log tf produced the best result in R52 and Ohscal, it did not

produce the top three results in the other two datasets. Similarly, log tf -idf produced the

best result in NG20 and the third best in Wap but did not produce the top three results

in Ohscal and R52. Cosine with bin tf -idf was among the top three performers in two

datasets, whereas bin tf and raw tf in one dataset each and raw tf -idf did not produce

the top three results in any dataset.

B.4 Concluding remarks

Since the cosine distance measures (dis)similarity solely based on the positions of two

vectors, it is important to adjust the positions of document vectors in the space w.r.t

the importance of the terms in those documents. In the literature, many term-weighting

schemes are proposed using the tf and idf factors based on certain assumptions. Although

these methods perform well in some datasets when the assumptions hold, they may perform

poorly when the assumptions do not hold.

Rather than focusing on researching an effective term-weighting scheme to improve

the performance of the cosine distance, this paper opens a different avenue for research

by investigating an alternative dissimilarity measure that does not require the adjustment

of document vectors using a term-weighting scheme. We show that a data-dependent

dissimilarity measure called mp-dissimilarity is one such effective alternative. It consid-

ers (dis)similarity between a pair of documents w.r.t each term based on the number of

documents having the term.

Our empirical results of relevant document retrieval tasks show that mp-dissimilarity

with the binary bag-of-words representation produces either better or competitive results

in comparison to cosine distance with the state-of-the-art term-weighting schemes.
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