
Constraint-based Reasoning for Description Logics with
Concrete Domains and Aggregations

by

Wudhichart Sawangphol

Thesis
Submitted by Wudhichart Sawangphol

for fulfillment of the Requirements for the Degree of

Doctor of Philosophy (0190)

Supervisor: Dr. Yuan-Fang Li

Associate Supervisor: Dr. Guido Tack

Faculty of Information Technology
Monash University

August, 2017

Copyright notice
Copyright © Wudhichart Sawangphol (2017)
Faculty of Information Technology
Monash University
Australia

This thesis is required by the examination office of Monash University to contain the
following copyright notices:

1. Under the Copyright Act 1968, this thesis must be used only under the normal
conditions of scholarly fair dealing. In particular no results or conclusions should be
extracted from it, nor should it be copied or closely paraphrased in whole or in part
without the written consent of the author. Proper written acknowledgement should
be made for any assistance obtained from this thesis.

2. I certify that I have made all reasonable efforts to secure copyright permissions for
third-party content included in this thesis and have not knowingly added copyright
content to my work without the owner’s permission.

Contents

List of Tables . v

List of Figures . vi

Abstract . viii

Acknowledgments . x

1 Introduction . 1
1.1 Description Logics with concrete domains and aggregations 1
1.2 Reasoning in Description Logics . 4
1.3 Contributions . 7
1.4 Thesis Outline . 7
1.5 Publications . 8

2 Description Logics . 9
2.1 Knowledge Representation and Description Logic 9
2.2 Syntax, Notation and Semantics . 10

2.2.1 Syntax and Notation . 10
2.2.2 Semantics . 11

2.3 Reasoning Services . 12
2.4 Description Logic Families . 14

2.4.1 Light-Weight Description Logics . 15
2.4.2 Core Description Logic ALC . 17

2.5 Description Logics with Concrete Domains and Aggregations 19
2.5.1 Concrete Domains . 19
2.5.2 Aggregations in Description Logics 21

2.6 Relationship to OWL . 26

3 Reasoning Algorithms for Description Logics 29
3.1 Tableau-based Algorithms . 29

3.1.1 Tableau-based Algorithms for Concrete Domain 31
3.1.2 Tableau-based Algorithms for Aggregations 33

3.2 Polynomial-Time Subsumption (Classification) Algorithms 35
3.2.1 Normalisation . 35
3.2.2 Completion Rules . 36

4 Constraint Programming . 39
4.1 Basics on Search and Constraint Propagation 39

4.1.1 Basics on CP and Notation . 40
4.1.2 Search . 41
4.1.3 Constraint Propagation . 43

iii

4.2 MiniZinc Modelling Language . 45
4.2.1 Basic Specification of MiniZinc . 46
4.2.2 MiniZinc and Description Logic . 47

4.3 Advanced Modelling and Solving Techniques 50
4.3.1 Lazy Clause Generation . 50
4.3.2 Symmetry Breaking . 51
4.3.3 Search Heuristics . 54

5 Encoding Reasoning Problems into MiniZinc 57
5.1 The Encoding of ALC and its sub-logics . 57

5.1.1 ALC to MiniZinc . 57
5.1.2 Finiteness of MiniZinc Models . 61
5.1.3 Encoding Rules Implementation . 63

5.2 Correctness and Completeness of the Encoding 64
5.3 Empirical Evaluation . 67

5.3.1 Evaluation Description . 68
5.3.2 Results of the Evaluation . 69

5.4 Related Works . 75

6 A Novel Description Logic ELU (¬)(f,Σ) . 79
6.1 ELU (¬)(f,Σ) Syntax and Semantics . 80

6.1.1 An ELU (¬)(f,Σ) Normal Form . 84
6.2 OWL Functional Syntax Extension for ELU (¬)(f,Σ) 84
6.3 ELU (¬)(f,Σ) Terminological Reasoning . 87

6.3.1 Concept Satisfiability Checking . 87
6.3.2 Limited Concept Subsumption Checking 87
6.3.3 Consistency Checking . 89

6.4 Decidability of ELU (¬)(f,Σ) . 90
6.5 Related Works . 94

7 Encoding ELU (¬)(f,Σ) into MiniZinc . 97
7.1 Concept Satisfiability and Limited Subsumption Checking 98

7.1.1 ELU (¬)(f,Σ) to MiniZinc . 98
7.1.2 Finiteness of MiniZinc Models . 103

7.2 Correctness and Completeness of the Encoding 105
7.3 Optimisations . 112

7.3.1 The Need for Symmetry Breaking and Search Heuristics 113
7.3.2 Symmetry Breaking Constraints . 113
7.3.3 Search Heuristics . 116

7.4 Empirical Evaluation . 117
7.4.1 Evaluation Description . 118
7.4.2 Results of the Evaluation . 118

8 Conclusions .131
8.1 Summary and Main Contributions . 131
8.2 Future Research . 132

Appendix A MiniZinc constraints of the stream ontology in Figure 6.5 . .133

Vita .135

References .137

iv

List of Tables

2.1 The syntax and semantics of DL constructs. 12
2.2 The syntax and semantics of some DL axioms. 12
2.3 Summary of the Description Logic naming scheme. 14
2.4 The syntax and semantics of EL. 15
2.5 The syntax and semantics of ALC. 17
2.6 Summary of some Description Logics with concrete domains. 22
2.7 The syntax and semantics of EL(Σ). 25
2.8 Summary of specification and complexity of main reasoning tasks of OWL

2 profile (Motik et al., 2012). 28

4.1 The MiniZinc syntax of EL. 49
4.2 The syntax and semantics of EL in terms of sets. 49

5.1 Summary of syntax of ALC and MiniZinc syntax. 59
5.2 Simple ontology details for evaluation of ALC. 68
5.3 Details of hardest ontologies for tableau-based reasoners in JNH. 72
5.4 Performance comparison between Chuffed and Light. 73
5.5 Sample number of individuals for evaluation of ALC. 73
5.6 Details of hardest ontologies for tableau-based reasoners in Tableau’98: SAT

ontologies. 75

6.1 The syntax and semantics of ELU (¬)(f,Σ). 81
6.2 OWL functional syntax of ELU (¬)(f,Σ). 85

7.1 Geometric mean of runtime ratio for all ontologies. 129
7.2 Geometric mean of number of conflicts ratio for all ontologies. 130

v

List of Figures

2.1 A fragment of Gene Ontology (GO). 15
2.2 Example of aggregation. 23

3.1 Tableau expansion rules for ALC. 30
3.2 Tableau expansion rules for concrete domains. 32
3.3 Tableau expansion rules for aggregations. 34
3.4 Completion rules for EL (Suntisrivaraporn, 2009). 36

4.1 A search tree of backtracking search of Example 4.1.1. 42
4.2 A search tree of backtracking search combined with constraint propagation

of Example 4.1.1. 44
4.3 Solving concept satisfiability in Example 4.1.2 using tableau-based algorithm. 45
4.4 Solving concept satisfiability in Example 4.1.2 using CP techniques. 45
4.5 A graph with 4 nodes. 52
4.6 Solutions of colouring of the graph with 4 nodes. 53

5.1 Overview of ontology consistency checking time on ORE2014. 70
5.2 Overview of ontology consistency checking time on JNH. 71
5.3 Overview of ontology consistency checking time on JNH: UNSAT ontologies. 71
5.4 Overview of ontology consistency checking time on JNH: SAT ontologies. . 72
5.5 Overview of ontology consistency checking time on Tableaux’98: SAT on-

tologies. 74
5.6 Scatter plot of ontology consistency checking time on Tableaux’98: SAT

ontologies. 74

6.1 An example ontology about house and street 83
6.2 An ontology about the intersection of 4 roads in DL syntax. 86
6.3 OWL functional syntax of the ontology about the intersection of 4 roads. . 86
6.4 A static ELU (¬)(f,Σ) ontology about daily fitness that describes basic

knowledge of the fitness exercises. 88
6.5 A stream ontology recording daily fitness activities. 89

7.1 MiniZinc constraints of the ontology in Figure 6.4. 103
7.2 Sample of MiniZinc constraints of the ontology in Figure 6.5. 104
7.3 Assignment of individuals to concepts. 115
7.4 Matrix of role R. 115
7.5 Solution 1. 116
7.6 Solution 2. 116
7.7 The problem of the combination between SB3 and SB4. 116
7.8 Comparison of models with Chuffed: all 3-states ontologies. 119
7.9 Comparison of models with Chuffed: 3-states SAT ontologies. 120
7.10 Comparison of models with Chuffed: 3-states UNSAT ontologies. 120

vi

7.11 Number of conflicts comparison of models with Chuffed: all 3-states ontolo-
gies. 121

7.12 Number of conflicts comparison of models with Chuffed: 3-states SAT on-
tologies. 121

7.13 Number of conflicts comparison of models with Chuffed: 3-states UNSAT
ontologies. 122

7.14 Comparison of models with Chuffed: all 5-states ontologies. 123
7.15 Comparison of models with Chuffed: 5-states SAT ontologies. 123
7.16 Comparison of models with Chuffed: 5-states UNSAT ontologies. 124
7.17 Number of conflicts comparison of models with Chuffed: all 5-states ontolo-

gies. 124
7.18 Number of conflicts comparison of models with Chuffed: 5-states SAT on-

tologies. 125
7.19 Number of conflicts comparison of models with Chuffed: 5-states UNSAT

ontologies. 125
7.20 Comparison of models with Chuffed: all 7-states ontologies. 126
7.21 Comparison of models with Chuffed: 7-states SAT ontologies. 126
7.22 Comparison of models with Chuffed: 7-states UNSAT ontologies. 127
7.23 Number of conflicts comparison of models with Chuffed: all 7-states ontolo-

gies. 127
7.24 Number of conflicts comparison of models with Chuffed: 7-states SAT on-

tologies. 128
7.25 Number of conflicts comparison of models with Chuffed: 7-states UNSAT

ontologies. 128
7.26 Runtime ratio for all ontologies. 129
7.27 Number of conflicts ratio for all ontologies. 130

vii

Constraint-based Reasoning for Description Logics with
Concrete Domains and Aggregations

Wudhichart Sawangphol

Monash University, 2017

Supervisor: Dr. Yuan-Fang Li

Associate Supervisor: Dr. Guido Tack

Abstract

Expressive Description Logics (DLs) are used to describe, in the form of ontologies, many
real-world phenomena such as biology and biomedicine.

Automated DL reasoning is used to maintain quality of an ontology and deduce implicit
knowledge encoded in DL based ontologies. Tableau calculi are the mainstream reasoning
algorithms for expressive DLs. However, the efficiency of tableau-based algorithms is still
a bottleneck for large and complex ontologies. Another limitation of these algorithms is
that any extension of the language typically requires significant re-engineering effort.

This thesis makes two main contributions to the field of Description Logic. Firstly,
we propose a novel decidable Description Logic ELU (¬)(f,Σ) that supports concrete do-
mains and aggregations. Concrete domains and aggregations allow us to model complex
knowledge that involves concrete values such as numbers and their aggregations (min,
max, count, and sum). Reasoning over DLs with concrete domains and aggregations has
not received much attention, due to the inherent complexity of certain reasoning tasks
as well as difficulties in extending existing DL reasoning algorithms. We show that some
fundamental reasoning tasks of the new Description Logic are NP-complete.

Secondly, we propose a new DL reasoning framework based on Constraint Program-
ming (CP) techniques. This CP-based framework supports our new Description Logic as
well as the most well-known Description Logic ALC. We show that our approach is sound
and complete.

The long-standing research in CP has made tremendous progress. CP has been devel-
oped to handle numerical constraints and offers powerful search and solving techniques
that can reduce the search space effectively.

Our reasoning framework encodes Description Logics to concise and straightforward
MiniZinc, a standard modelling language for modelling CP problems. Thus, we are able
to employ mature CP solving and optimisation techniques to improve reasoning efficiency
for DLs with and without aggregations. To the best of our knowledge, our proposed
approach is the first implementation that provides reasoning support for DLs with concrete
domains and aggregations. Our comprehensive evaluation also shows that our approach
is competitive against, and sometimes superior to, state-of-the-art DL reasoners for some
ontologies. Furthermore, our approach is feasible and effective for our new Description
Logic ELU (¬)(f,Σ).

viii

Constraint-based Reasoning for Description Logics with
Concrete Domains and Aggregations

Declaration

I declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any university or other institute of tertiary education. Infor-
mation derived from the published and unpublished work of others has been acknowledged
in the text and a list of references is given.

Wudhichart Sawangphol
August 14, 2017

ix

Acknowledgments

I owe thanks to many people who have supported me during my PhD. Firstly, I would
like to thank my supervisors, Dr. Yuan-Fang Li and Dr. Guido Tack, who made correc-
tions and helped bring this research to a completion. Without the useful comments and
crucial support of them, this project could not be finished. They, always offered me time,
suggestions, and constant encouragement during the time I conducted this research.

I am also grateful to Faculty of Information and Communication Technology, Mahidol
University, Thailand for their funding and supports during my PhD study.

I would like to thank my beloved Sawangphol family especially my parents, Benjapen
and Natachok Sawangphol for their supports and encouragement which mean so much to
me. In addition, I would also like to extend my thankfulness to Ketmany Vilayvong, my
girlfriend for her support.

I would like to thank my colleagues at Monash University whom I shared interesting
discussions and wondelful time in Australia. I wish to mention in no particular order
Senthooran, Omid, Tennyson, Tian, Ariesta, Ranjie, Yuri, Prajwol, and Kevin.

Moreover, I would like to extend my thankfulness to my Thai friends who always
give me helps and suggestions when I need. I also wish to mention them here Boonlom,
Narumon, Chantanee, Kanlaya, Sirakul, Wanchana, and Thanabhorn.

Finally, I would like to thank the staffs of Office of Educational Affairs, Royal Thai
Embassy, Australia for their supports and helps.

Wudhichart Sawangphol

Monash University
August 2017

x

Chapter 1

Introduction

Description Logics (DLs) are a family of logic-based knowledge representation formalisms
which aim at representing knowledge of application domains by defining concepts of the
domain, relationships of the concepts and instances in the concepts. There have been
significant research in this area in two main directions. The first direction is to extend
Description Logics with some language constructs in order to improve their expressiveness.
The second direction is to investigate algorithms fro efficient reasoning about Description
Logics.

This thesis investigates both directions. First, we have developed a novel Description
Logic that allows numeric constraints and aggregations be placed on concepts. Second,
we have explored a reasoning paradigm by translating Description Logics to Constraint
Programming (CP) constraint models, which can be efficiently solved by CP solving tech-
niques.

1.1 Description Logics with concrete domains and aggrega-
tions

Description Logics (DLs) are a family of knowledge representation languages that pro-
vide semantics to model relationships between objects in particular domains in a logical
manner (Baader & Nutt, 2003). In the Semantic Web, DLs provide the theoretical founda-
tion for standard ontology languages, OWL 1 (Horrocks, Patel-Schneider, & van Harmelen,
2003) and OWL 2 (Grau et al., 2008), and serve as the basis of the development of ontology
reasoning algorithms. DLs have became more important due to the advent of Semantics
Web. In addition, DLs have been successfully exploited in various application domains
such as biology (Ashburner et al., 2000; Sidhu, Dillon, Chang, & Sidhu, 2005; Osumi-
Sutherland et al., 2012), medicine (Stearns, Price, Spackman, & Wang, 2001; McBride,
Lawley, Leroux, & Gibson, 2012), and pervasive computing (Wang, Zhang, Gu, & Pung,
2004; Chen, Perich, Finin, & Joshi, 2004).

A Description Logic defines axioms that state how certain concepts are related to
each other, where concepts can be considered sets of abstract objects called individuals.
Concepts are typically defined using constructs such as conjunction and disjunction, as
well as quantification over binary relations, so-called roles.

A DL knowledge base (or ontology) generally consists of a set of statements, or axioms.
Axioms are used to capture partial knowledge of a particular domain. There are three
main groups of axioms. The first one is Terminological axioms (TBox), which is the
schema of the knowledge base. The second one is Assertional axioms (ABox), which is an
instantiation of the terminological schema. The third one is Role characteristics (RBox),
which expresses axioms about roles. The complexity of such a knowledge base depends on

1

2 CHAPTER 1. INTRODUCTION

not only the language constructs, but also the combination of these three types of axioms
and how they are defined.

Description Logics have many different language constructs for describing concepts of
domains and relations among them. Each different combination of language constructs
may yield a new Description Logic. The most well-known Description Logic is ALC, which
is a notational variant of the Modal Logic Km (Schmidt-Schauß & Smolka, 1991).

For many years, the complexity and properties of different combination of language
constructs have been studied. Researchers have tried to balance between the expres-
sive power and complexity of Description Logics. More expressive extensions of ALC
have been proposed, mostly in the abstract domain. Some well-known Description Log-
ics are ALCQ (Hollunder & Baader, 1991), SHOIQ (Horrocks & Sattler, 2005), and
SROIQ(D) (Horrocks, Kutz, & Sattler, 2006). These extensions improve the expressive
power of Description Logics in order to support real-world applications. For example,
SROIQ(D) extends ALC with qualified number restriction, role characteristics such as
transitive role and role hierarchy, nominals, and data types. It is the base Description
Logic of the OWL 2 ontology language (Grau et al., 2008).

Restrictions on ALC have also been investigated, resulting in less expressive but
tractable DLs. For instance, the EL-family (EL, EL+, and EL++) of logics (Baader,
2003; Baader, Brandt, & Lutz, 2005; Baader, Lutz, & Brandt, 2008) are tractable,
but expressive enough to model several important ontologies such as the Gene Ontol-
ogy (GO) (Ashburner et al., 2000), the Systematized Nomenclature of Medizine, Clinical
Terms ontolgy (SNOMED-CT) (Stearns et al., 2001), and the thesaurus of the National
Cancer Institute (NCI) ontology (Golbeck et al., 2003). Example 1.1.1 shows a simple DL
ontology in ALC.

Example 1.1.1. An example ontology about pizzas Opizza, inspired by the Pizza Ontol-
ogy (Drummond, Horridge, Stevens, Wroe, & Sampaio, 2007), is defined as follows:

VegetableTopping ⊑ ¬MeatTopping (A1)
VegetableTopping ⊑ ¬FishTopping (A2)

MeatFishPizza ≡ Pizza ⊓
∃hasTopping.(MeatTopping ⊔ FishTopping) (A3)

VegetarianPizza ≡ Pizza ⊓ ∀hasTopping.VegetableTopping (A4)

This ontology introduces the concepts VegetableTopping, MeatTopping, FishTopping,
Pizza, MeatFishPizza, and VegetarianPizza, and defines axioms that constrain their sub-
concept (subsumption) and equivalence relationships. For example, a VegetableTopping is
subsumed by a negated MeatTopping, which simply means that all individuals that are
classified as VegetableTopping are not MeatTopping. The symbol ⊑ denotes a sub-concept
(subsumption) relationship and a negation is denoted as ¬. The concept MeatFishPizza
is defined as those individuals that are classified as Pizza, and for which there exists a
successor individual in the hasTopping binary relation (role) that is classified as either
MeatTopping or FishTopping. The concept VegetarianPizza is defined as those individuals
that are classified as Pizza, and for which all successors in the hasTopping relation (role)
that are classified as VegetableTopping. The symbol ≡ denotes an equivalence relationship,
the symbol ∃ represents an existential quantifier, the symbol ∀ represents a universal
quantifier, an intersection (conjunction) is denoted as ⊓, and a union (disjunction) is
denoted as ⊔.

Another important extension is concrete domains (Lutz, Areces, Horrocks, & Sattler,
2003), such as number and string, and aggregations (Baader & Sattler, 2003) such as sum

1.1. DESCRIPTION LOGICS WITH CONCRETE DOMAINS AND AGGREGATIONS3

and count. Aggregation over concrete domains is a very natural extension to Description
Logics, as it allows concepts and individuals to be organised by their physical attribute
values. Examples of DL that is extended by these extensions are ALC(D) (Baader &
Hanschke, 1991) and ALC(Σ) (Baader & Sattler, 2003). These extension helps to express
some phenomena more precisely and directly. However, extensions on concrete domains
and aggregations have not received much attention. Currently, DLs have been mostly de-
veloped over the abstract domain due to the difficulty in extending the dedicated tableau
reasoners. Lack of such DLs motivated our research. It is interesting to revisit and inves-
tigate aggregations as concept constructs further since the ability to express aggregation
over concrete domains is useful in many domains and situations.

The Description Logic with concrete domains and aggregations ALC(Σ) was first pro-
posed in (Baader & Sattler, 2003). This Description Logic is undecidable. In order to
retain decidability, syntactic restrictions were placed on ALC(Σ), resulting in the decid-
able Description Logic EL(Σ) (Baader & Sattler, 2003). However, this logic has been
designed to express only concept descriptions, and it does not allow us to express knowl-
edge bases (or ontologies) involving concrete domains and aggregations. If we can develop
a Description Logic with concrete domains and aggregations to express knowledge bases,
the knowledge bases will be more precise and useful. Let us use Example 1.1.2 to illustrate
the usefulness of concrete domains, in this case natural numbers and their aggregations.
Note that other examples with more complex concrete domain and aggregations will be
presented in Chapter 6.

Example 1.1.2. Suppose we want to model knowledge about calories of pizzas. For
example, we can add the following axioms to Opizza in Example 1.1.1:

Pizza ⊑ = .(calories, sum(hasTopping ◦ calories)) (A5)
HealthyPizza ⊑ Pizza ⊓ ≤400 .(calories) (A6)
MeatTopping ≡ ≥200 .(calories) ⊓ ≤400 .(calories) (A7)
FishTopping ≡ ≥50 .(calories) ⊓ ≤100 .(calories) (A8)

With aggregations, we then can define the concept Pizza as those individuals that have
calories that are equal to the sum of calories-values of hasTopping-successors, in A5, assum-
ing calories is a concrete domain feature. With concrete domains, the concept HealthyPizza
is defined as those individuals that are classified as Pizza and have calories less than 200,
in A6. The concept MeatTopping is defined as those individuals that have calories between
100 and 200, in A7, and the concept FishTopping is defined as those individuals that have
calories between 50 and 100, in A8.

Goal 1. Our first goal is to develop a novel decidable Description Logic that supports
concrete domains and aggregations for modelling knowledge bases (or ontologies). Our
work investigated the combination of different abstract syntax, concrete domains, aggre-
gations, and types of TBox and proposed a novel decidable DL that supports concrete
domains and aggregations ELU (¬)(f,Σ). In addition, we explored the reasoning services
that would arise from this Description Logic.

4 CHAPTER 1. INTRODUCTION

1.2 Reasoning in Description Logics

Automated reasoning, a major research topic in DL, is used to maintain quality of an
ontology and deduce implicit knowledge encoded in an ontology. It also helps debug an
ontology.

The consistency checking task determines whether there is no logical contradiction in
an ontology, while the concept satisfiability task checks whether a particular atomic con-
cept in the ontology is empty or not, i.e., if a concept can contain instances. The concept
subsumption task checks whether one concept subsumes another concept, whereas the clas-
sification task identifies subsumption relationship between all pairs of atomic concepts. For
highly expressive Description Logics, the complexity of core reasoning tasks (also known
as inference problems) which include concept satisfiability, concept subsumption, classi-
fication and consistency checking (Baader & Nutt, 2003), is very high (NP-complete,
PSpace-complete, ExpTime-complete and even more) (Donini, 2003; Kazakov, 2008).
Example 1.2.1 illustrates the usefulness of DL reasoning.

Example 1.2.1. Extending the ontology Opizza in Examples 1.1.1 and 1.1.2, ontology
engineers want to define the concept MixedToppingPizza, which should be a sub-concept
of a pizza that has some meat, fish, and vegetables as toppings in Opizza. However, they
define MixedToppingPizza in axiom A9, which is incorrect.

MixedToppingPizza ⊑ VegetarianPizza ⊓ MeatFishPizza (A9)

From axioms A1 and A2, it shows that VegetableTopping and MeatTopping are dis-
joint and VegetableTopping and FishTopping are disjoint. Thus, ontology reasoning can
infer that VegetarianPizza and MeatFishPizza are disjoint in Opizza since MeatFishPizza
can have either MeatTopping or FishTopping as toppings but VegetarianPizza can have
only VegetableTopping as toppings. Due to this inference, ontology reasoning can discover
an error that MixedToppingPizza, which is subsumed by both VegetarianPizza and Meat-
FishPizza, is unsatisfiable. Axiom A9 should be modified as follows to correctly model
MixedToppingPizza.

MixedToppingPizza ⊑ ∃hasTopping.VegetableTopping ⊓ MeatFishPizza (A10)

In addition, with concrete domains and aggregations (A5-A8), we can ask whether
MeatFishPizza is HealthyPizza (i.e., MeatFishPizza ⊑ HealthyPizza, which is true.

Significant research has been devoted to investigating algorithms to effectively reason
over Description Logics. DL reasoning can be viewed as an AND-OR search problem on
directed graphs (Donini, 2003). The tableau-based algorithms (Schmidt-Schauß & Smolka,
1991) are the main approach employed with many optimisation techniques for expressive
Description Logics (Horrocks, 2003; Motik, Shearer, & Horrocks, 2007b, 2007a, 2009).
Such algorithms attempt to construct a model of an ontology as a search graph where a
branch is terminated by logical contradictions. These algorithms have been implemented
in many state-of-the-art DL reasoners such as FaCT++ (Tsarkov & Horrocks, 2006),
Pellet (Sirin, Parsia, Grau, Kalyanpur, & Katz, 2007), and Konclude (Steigmiller, Liebig,
& Glimm, 2014). HermiT (Shearer, Motik, & Horrocks, 2008; Glimm, Horrocks, Motik,
Stoilos, & Wang, 2014) uses the hypertableaux calculus (Motik et al., 2007b, 2007a, 2009).
However, the efficiency of tableau-based algorithms is still a bottleneck for large and
complex ontologies. The major sources of this inefficiency are:

1.2. REASONING IN DESCRIPTION LOGICS 5

• OR-search (OR-branching) (Donini, 2003) is due to the presence of disjunctions. It
may cause the evaluation of an exponential number of different candidate models
when we want to find a model for the ontology.

• AND-search (AND-branching) (Donini, 2003) is due to the presence of existential
restrictions. The exponential behaviour occurs because of the combination of exis-
tential and universal restrictions. It may result in a candidate model exponential in
the size of an ontology when we want to find a clash.

• Complex role constructs, such as role inclusion, that may cause exponential blowup
in the size of RBox (Kazakov, 2008).

• The combination of nominals and other language constructs such as qualified number
restrictions and unqualified number restrictions (Motik et al., 2009; Zuo & Haarslev,
2013).

A further limitation of these algorithms is that any extension of the language typi-
cally requires significant re-engineering of the reasoning algorithm. Due to these limita-
tions, only a few implementations exist for extensions such as concrete numerical domains.
The tableau-based algorithm was proposed for DLs with concrete domain and aggrega-
tions (Baader & Sattler, 2003). However, no reasoning support had been implemented for
aggregation.

Efficient completion-based algorithms have been developed for less expressive Descrip-
tion Logics such as the EL family (Brandt, 2004; Baader, Lutz, & Suntisrivaraporn, 2005).
These algorithms have been implemented in many state-of-the-art DL reasoners such as
CEL (Baader, Lutz, & Suntisrivaraporn, 2006) and ELK (Kazakov, Krötzsch, & Simancik,
2014). These algorithms are also extended to support EL with concrete domains (Baader,
Brandt, & Lutz, 2005). Such algorithms have also been used for the inference problem of
expressive DLs through syntactic approximation (Thomas, Pan, & Ren, 2010), which is
incomplete. Consequently, reasoning on large and complex ontologies is still a computa-
tionally challenging problem and efficient reasoning procedures for expressive Description
Logics are still required (Kang, Li, & Krishnaswamy, 2012; Samwald, 2013; Kang, Pan,
Krishnaswamy, Sawangphol, & Li, 2014; Kang, Krishnaswamy, & Li, 2015).

Constraint programming (CP) is a powerful approach for solving combinatorial prob-
lems and it offers efficient techniques in a wide range of domains and applications such
as scheduling, planning, vehicle routing, computer networks, and bioinformatics. (Rossi,
van Beek, & Walsh, 2006). Further application areas include data mining (Guns, Dries,
Tack, Nijssen, & De Raedt, 2013; Métivier, Loudni, & Charnois, 2013), robotics (Jaulin,
2016), and sensor networks (Bijarbooneh, Pathak, Pearson, Issarny, & Jonsson, 2014). CP
supports many forms of constraints such as numerical constraints, Boolean constraints,
and linear constraints.

A combinatorial problem consists of a set of decision variables and a set of constraints
that model relations among the decision variables. Such a combinatorial problem is called
Constraint Satisfaction Problem (CSP). The goal of constraint programming is to find a
solution that satisfies all constraints by assigning a value to each variable. In general, the
complexity of solving the constraint satisfaction problem is NP-complete (Feder & Hell,
2006).

In addition, in the last twenty years, we have witnessed an impressive improvement of
the efficiency of CP-based techniques, which have been implemented in constraint solvers
(CP solvers). There are many freely available CP solvers such as G12 solvers1 (Stuckey et

1http://www.minizinc.org/software.html

6 CHAPTER 1. INTRODUCTION

al., 2005), Gecode2 (Tack, 2009), Opturion CPX3, and Chuffed4 (Chu, 2011). Most modern
constraint solvers implement a well-known constraint solving technique called Constraint
Propagation (Fruhwirth & Abdennadher, 2006). The main idea of constraint propaga-
tion is to reduce the size of a problem by reducing the size of domains of the variables
until all variables have only one value (solution), which satisfies all constraints (Bessiere,
2006; Fruhwirth & Abdennadher, 2006). However, constraint propagation is not complete.
Therefore, it has to be interleaved with search algorithms to achieve completeness.

The needs from real-world applications have motivated significant research on solv-
ing techniques and constraint modelling languages. An advanced CP solving approach,
Lazy Clause Generation (LCG), has been proposed (Ohrimenko, Stuckey, & Codish, 2007;
Feydy & Stuckey, 2009). LCG combines the advantages of SAT solving such as efficient
nogoods learning and backjumping with the advantages of CP solving such as efficient
constraint propagation, and simple and powerful modelling. LCG has been implemented
in CP solvers such as Opturion CPX and Chuffed. In addition, CP offers search heuristic
techniques, which give an order of decision variables to be assigned, in order to improve
the solving performance.

Additionally, Constraint Programming offers a simple but powerful modelling lan-
guage, MiniZinc (Nethercote et al., 2007). MiniZinc is a medium-level declarative mod-
elling language. In addition, MiniZinc has been developed as a standard modelling lan-
guage for Constraint Programming problems. It is also high-level and expressive enough
to express most CP problems.

As can be seen, the long-standing research in Constraint Programming (CP) (Rossi,
Beek, & Walsh, 2006) has made tremendous progress. Constraint Programming (CP),
which has been developed to handle numerical constraints and offer powerful search and
reasoning techniques that can reduce the search space efficiently. In Description Logic,
the concept constructs of concrete domain and aggregations can be considered as numer-
ical constraints, where concrete domain is number. Therefore, we believe we can leverage
CP-based techniques to tackle some sources of inefficiency of Description Logic reasoning,
especially OR-search, and create reasoning support for Description Logics with concrete
domains and aggregations. For example, a disjunction (cause of OR-search) can be en-
coded into a set union constraint. The underlying constraint solver decomposes the set
union constraint into disjunctions of Boolean variables. The clause learning in LCG solvers
such as Chuffed (Chu, 2011) can handle these disjunctions very efficiently.

Goal 2. Our second goal is to develop new techniques for reasoning in Description Log-
ics, especially to support reasoning in concrete domain and aggregations. We achieve
this through encoding Description Logic inference problems as Constraint Programming
problems. We aim at exploiting the capabilities of modern CP solving techniques as an
alternative to the traditional tableau-based algorithms. With this approach, advances of
CP solving techniques will be freely available for reasoning of Description Logics. Our
work investigated the efficiency and feasibility of encoding different reasoning services in
Description Logics with and without concrete domain and aggregations using a CP-based
approach. We defined a formal encoding for ALC and ELU (¬)(f,Σ) with acyclic TBoxes
and proved its soundness and completeness. We conducted evaluation of our CP-based
reasoning framework on benchmarks and compare the performance with state-of-the-art
reasoners for DL reasoning. Particularly, we started from the most well-known Descrip-
tion Logic ALC, and then we moved to the Description Logic with concrete domain and

2http://www.gecode.org/
3http://www.opturion.com/cpx
4https://github.com/geoffchu/chuffed

http://www.gecode.org/
http://www.opturion.com/cpx
https://github.com/geoffchu/chuffed

1.3. CONTRIBUTIONS 7

aggregations. We also demonstrates the effectiveness of some CP optimisation techniques
in improving reasoning efficiency.

1.3 Contributions
In this thesis, we propose a novel Description Logic with concrete domain and aggregations,
and new reasoning techniques for Description Logics. In more detail:

1. We have developed a novel description logic namely, ELU (¬)(f,Σ), which includes
functional features and aggregations on concrete domain (the concrete domain we
consider is natural numbers). In addition, we have shown that our Description
Logic ELU (¬)(f,Σ) is decidable. This is achieved through some reasonable syntactic
restrictions on ELU (¬)(f,Σ). We also have shown that the complexity of reason-
ing tasks, concept satisfiability, consistency checking, and concept subsumption, of
ELU (¬)(f,Σ) are NP-complete. This contribution addresses Goal 1.

2. We have developed an alternative approach to ontology reasoning by exploiting mod-
ern CP techniques. Ontologies are encoded into MiniZinc models in a direct and
succinct way. Existing CP solvers can then be readily applied to perform ontol-
ogy reasoning without modification. We illustrate our CP-based reasoning approach
through the encoding of ALC and its sub logic. Our empirical evaluation on on-
tologies in the expressive DL ALC shows that our approach is competitive against
existing ontology reasoners, outperforming some state-of-the-art tableau-based rea-
soners, sometimes by several orders of magnitude.

3. We have developed CP-based approach, which is the first and only implementation
for any Description Logic with aggregations over concrete domains. In this thesis,
ELU (¬)(f,Σ) is used as a sample of Description Logic with such features. Moreover,
we have shown that our encoding approach is sound and complete.We also demon-
strate that, with some simple model-level optimisation, our approach is feasible for
supporting concrete domain and aggregation reasoning in ELU (¬)(f,Σ).

The second and the third contributions address Goal 2.

1.4 Thesis Outline
The thesis consists of eight chapters including this one. The thesis is divided in two main
parts. The first part, consisting of Chapters 2, 3 and 4, gives the necessary background
and the state-of-the-art in Description Logics, reasoning algorithms, and Constraint Pro-
gramming for the rest of the thesis. The second part, consisting of Chapters 5, 6 and 7,
describes the theoretical, technical and practical results achieved of the new Description
Logic and the encoding for Description Logics with and without concrete domain and
aggregations, as the original contributions of this thesis. The rest of the chapters are
structured as follows:

• Chapter 2 provides the necessary background information of Description Logics. In
detail, we define notation that is used in this thesis. Then we provide the common
syntax and semantics of Descriptions Logic together with some Description Logic
families. In addition, we present the main reasoning services.

• Chapter 3 provides an overview of the state-of-the-art reasoning algorithms. In par-
ticular, we present the main notions of the tableau-based algorithms for Description
Logics with and without concrete domain and aggregations. In addition, we present
the main notions of the completion-based algorithms.

8 CHAPTER 1. INTRODUCTION

• Chapter 4 provides the main notions of Constraint Programming. In particular,
we present Constraint Propagation, the modelling language MiniZinc, and some
advanced solving and modelling techniques such as Lazy Clause Generation.

• In Chapter 5, we present a novel set-encoding in order to tackle the problem of
consistency checking, concept satisfiability, and concept subsumption in ALC with
respect to acyclic TBoxes. In addition, we present the soundness and completeness
proofs of our encoding and the evaluation comparing with the state-of-the-art DL
reasoners.

• In Chapter 6, we present a novel Description Logic with concrete domain and aggre-
gations ELU (¬)(f,Σ) together with examples of applications. In addition, we present
inference problems that arise from this Description Logic. The decidability result is
also presented.

• In Chapter 7, we present a novel set-encoding in order to tackle the problem of
consistency checking, concept satisfiability, and limited concept subsumption in
ELU (¬)(f,Σ) with respect to acyclic TBoxes. In addition, we present the sound-
ness and completeness proofs of our encoding and some optimisation to improve the
performance of reasoning together with the evaluations.

• The last chapter concludes the overall contribution of this thesis, and suggests some
future research directions.

1.5 Publications
This section reports accepted and submitted papers arising from this thesis. Our paper
accepted in the 15th International Workshop on Constraint Modelling and Reformulation
(ModRef 2016) presents the CP-based reasoning framework.

• Sawangphol W., Li Y.-F., & Tack G. (2016), CP4DL: Constraint-based Reasoning
for Expressive Description Logic. In the 15th International Workshop on Constraint
Modelling and Reformulation (ModRef 2016) Toulouse, France.

In addition, the following paper submitted to the 26th International Joint Conference on
Artificial Intelligence (IJCAI-17) describes our novel Description Logic ELU (¬)(f,Σ), its
decidability, and associated reasoning tasks and their complexity.

• Sawangphol W., Li Y.-F., & Tack G. (2017), Revisiting Description Logics with
Concrete Domains and Aggregation. Submitted to: the 26th International Joint
Conference on Artificial Intelligence (IJCAI-17). Melbourne, Australia. 19 August
– 25 August 2017

Chapter 2

Description Logics

In this chapter, the essential background of Description Logics (DLs), which is the main
domain of our research is provided. Firstly, the overview of the ideas underlying De-
scription Logics and their use and relationship in knowledge representation is described.
Secondly, the syntax and the semantics of a variety of Description Logics used in this
thesis is presented. Thirdly, some main reasoning services are discussed. Finally, we close
this chapter with a discussion on Description Logic families.

2.1 Knowledge Representation and Description Logic
Generally, Knowledge Representation (KR) is the approach to expressing knowledge in a
computer-interpretable form about a specific domain. KR has played an important role
in the fields of artificial intelligence. The fundamental goal of KR and reasoning is to
represent knowledge and draw new conclusions from expressed knowledge.

Description Logics (DLs) are a successful family of knowledge representation languages,
which provide semantics to model of relationships between objects in particular domains in
a logical manner (Baader & Nutt, 2003). In Description Logics, many language constructs
have been defined. For many years, researchers have studied the effects of defining and
combining these language constructs on the complexity and the expressive power of the
different Description Logics obtained. A wide range of Description Logics, which have low
expressive power to high expressive power, are the results of their research. As their name
indicates, DLs are logics equipped with formal logical semantics. The semantics allow hu-
mans and computer systems to exchange knowledge without ambiguity. In addition, DLs
have been more important since the advent of the Semantic Web, where Description Logics
play an important role as the main knowledge representation formalism, which provides
the underpinnings for the Web Ontology Language (OWL) (Horrocks et al., 2003) and
its extension OWL 2 (Grau et al., 2008). DLs are used to define three types of entities,
which are concepts representing sets of individuals, roles representing binary relationship
between individuals, and individuals representing specific objects, in a specific domain.
Moreover, DLs consist of a set of statements, or axioms. Axioms are used to capture
partial knowledge of a particular domain. There are three main groups of axioms. Termi-
nological axioms (TBox) capture general knowledge about concepts. Assertional axioms
(ABox) describe knowledge about atomic individuals, such as a relationship between two
individuals via a role and membership of an individual in a concept. Role characteristics
(RBox) describe knowledge about roles.

For example, an ontology about the domain of student and university relationships may
use concepts such as Student and University to represent set of students and universities, a
role such as studyAt to represent the (binary) relationship between students and universi-
ties, and individuals such as wudhichart and monash to represent the student and university

9

10 CHAPTER 2. DESCRIPTION LOGICS

respectively. The ontology may have TBox axioms such as Student ≡ ∃studyAt.University
to state that Student are those students that study at University and ABox axioms such
as Student(wudhichart) to assert that Wudhichart is a Student.

One of the important properties of Description Logics is the computation of inferences
(a.k.a. reasoning). The formal semantics, which DLs are equipped, enables reasoning
services to deduce implicit knowledge from explicit knowledge. There are four key rea-
soning services, which are consistency, concept satisfiability, concept subsumption, and
classification. In a KR system, since it needs to ensure that it should always answer
user queries in acceptable time, the main goal of Description Logics design has been to
maintain a balance between expressivity and complexity of Description Logics. Therefore,
most DLs developed are decidable. In general, for very expressive DLs, reasoning can be
unfortunately very hard (NP-complete, PSpace-complete, ExpTime-complete and
more) (Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2003).

For Description Logics, many language constructs have been developed to model con-
cepts of domains, and objects and relationships among them. Different combinations of
these language constructs yield different Description Logics. In addition, the combination
of these language constructs can influence the decidability, the expressive power and the
complexity of the reasoning problem. On the one hand, expressive DLs can express many
phenomena but inference problems are of high complexity. On the other hand, weak DLs
with low complexity may not be expressive enough to describe important concepts in some
application domains. Therefore, the investigation to balance between the expressive power
of Description Logic and the complexity of inference problems has been one of the most
important topics in DL research.

2.2 Syntax, Notation and Semantics
In this section, we formally introduce syntax and semantics of some Description Logics
(DLs).

An ontology O (or knowledge base) based on DLs consists of three components. The
first one is the terminological component (TBox), which is the schema of the ontology in-
cluding concept expressions and role expressions. The second component is the assertional
component (ABox), which is an instantiation of the schema of the ontology. The third
component is the role characteristic component (RBox) (Krötzsch, Simancik, & Horrocks,
2012), which describes properties of roles. Note that we only focus on ontologies that
consists of TBox and ABox in this thesis. The presence of one or all of these three compo-
nents also can effect the complexity of inference problems. In addition, the characteristics
of TBox can influence the complexity of inference problems. For example, a cyclic or
non-cyclic TBox may have different complexity.

Some well-known Description Logics are EL (Baader, 2003), ALC (Schmidt-Schauß &
Smolka, 1991), SHOIQ (Horrocks & Sattler, 2005), and SROIQ (Horrocks et al., 2006).

2.2.1 Syntax and Notation

In this section, the syntax and notation of Description Logic are formally introduced.
The common language constructs that many Description Logics are equiped with are

listed in Table 2.1. Formally, concepts descriptions in a Description Logic are defined
through the fixed set of vocabulary N , which consists of non-empty sets NA of concept
names (or atomic concept), NR of atomic roles, and NI of individual names. All complex
concepts and roles are recursively defined through the language constructs in Table 2.1
In this research, we use the letter A,B,C,Ci, D,Di, E, .. to represent atomic concepts,
whereas the letter X,Xi, Y, Yi, .. or the notation Ĉ, D̂, ... are used to represent complex

2.2. SYNTAX, NOTATION AND SEMANTICS 11

concept descriptions. In addition, we use the letters R,S, .. to represent atomic roles, while
the individual names are represented by the lowercase letters a, b, c,

Terminology axioms (TBox) T in Description Logic are a finite set of concept axioms
and role characteristics, which are defined through axiom constructs. The axiom con-
structs are defined from the set of concepts and roles. The main axiom constructs of
Description Logics are listed in Table 2.2. Note that a concept equivalence axiom Ĉ ≡ D̂
abbreviates the two concept inclusions Ĉ ⊑ D̂ and D̂ ⊑ Ĉ. Similarly, a role equivalence
axiom R ≡ S is used. Axioms in Description Logic that involve individuals are namely
assertional axioms (ABox). An ABox is a finite set of concepts and role assertions. Role
inclusions and compositions are called complex role inclusions. Another type of axiom is
called role axioms(RBox) (Krötzsch et al., 2012). A RBox presents role characteristics,
i.e., the properties of roles. The size of O, denoted as |O| is the number of axioms in O.
Note that the language construct listed in Table 2.1 and axioms listed in Table 2.2 are
allowed in the Description Logic SROIQ (Horrocks et al., 2006). There are other con-
cept constructs such as concrete domain, which will be introduce in Section 2.5. Concrete
domain is one of the constructs that we focus on in this work.

Let us consider the types of TBox. In general, concept inclusions, defined in Table 2.2,
are the main components of a TBox. Given a TBox T , if there are no cyclic dependencies
among concept descriptions or names in the axioms in T , then T is called acyclic or
unfoldable (Baader, Horrocks, & Sattler, 2008). In other words, T is said to be acyclic
if concepts are neither defined by themselves nor other concepts that refer to them. In
addition, only one concept definition A ≡ Ĉ or primitive concept definition A ⊑ Ĉ, which
is a special type of concept inclusion can be defined, for some concepts A in T . If a TBox
T contains only concept definitions, such a TBox T is called definitorial. If this is not the
case, T is said to be a general TBox (or cyclic), which is made up of a set of axioms of the
form Ĉ ≡ D̂ and Ĉ ⊑ D̂ , where Ĉ and D̂ are concept descriptions. This form of axioms
Ĉ ⊑ D̂ is called general concept inclusions (GCIs).

An ABox A consists of expressions of the forms C(a) and R(a, b), where a and b are
individuals. C(a) is called a concept assertion and R(a, b) is called a role assertion.

2.2.2 Semantics

The semantics of an ontology O (including TBox and ABox) is defined in terms of in-
terpretations. An interpretation I consists of a nonempty set ∆I , namely the domain of
I, and an interpretation function ·I that maps each atomic concept (or concept name)
A ∈ NC to a set AI ⊆ ∆I , each atomic role (or role name) R ∈ NR to a binary relation
RI ⊆ ∆I×∆I , and each individual name a ∈ NI to the corresponding individual aI ∈ ∆I .
The extensions of ·I to complex concepts and roles are defined in the Semantics column
in Table 2.1, where (a, b) ∈ RI means that an individual b in ∆I is a RI-successor of a.

If the corresponding condition in the Semantics column in Table 2.2 holds for an
interpretation I, I satisfyies an axiom ∝, denoted as I ⊨∝. I is a model of O, denoted
as I ⊨ O, if I satisfies all axioms in O. An ontology is said to be consistent if there exists
at least one model. Otherwise, it is inconsistent. A concept A is said to be satisfiable
w.r.t. O if and only if there exists a model I of O such that AI ̸= ∅. Otherwise, A is
unsatisfiable w.r.t. O. An axiom ∝ is said to be a consequence of an ontology O (or O
entails ∝, denoted as O ⊨∝) if every model of O satisfies ∝. A concept A is subsumed by
B w.r.t. O if and only if O ⊨ A ⊑ B. An individual a is an element of A w.r.t. O if and
only if O ⊨ A(a).

12 CHAPTER 2. DESCRIPTION LOGICS

Table 2.1: The syntax and semantics of DL constructs.

Concepts Syntax Semantics
top concept ⊤ ∆I

bottom concept ⊥ ∅
atomic concept A AI

concept negation A AI

conjunction Ĉ ⊓ D̂ ĈI ∩ D̂I

disjunction Ĉ ⊓ D̂ ĈI ∩ D̂I

existential restriction ∃R.Ĉ
{a ∈ ∆I | there exists b ∈
∆I such that (a, b) ∈ RI and y ∈ ĈI}

universal restriction ∀R.Ĉ
{a ∈ ∆I | for all b ∈ ∆I such that (a, b) ∈
RI then y ∈ ĈI}

at-least restriction ≥ nR.Ĉ {a ∈ ∆I | |{b ∈ ĈI |(a, b) ∈ RI | ≥ n}
at-most restriction ≤ mR.Ĉ {a ∈ ∆I | |{b ∈ ĈI |(a, b) ∈ RI | ≤ m}
local reflexivity ∃R.Self {a ∈ ∆I | (a, a) ∈ RI}
nominal {a} {aI}
Roles Syntax Semantics
atomic role R RI ⊆ ∆I ×∆I

inverse role R− {(a, b)|(b, a) ∈ RI}
Individuals Syntax Semantics
individual name a aI ∈ ∆I

Table 2.2: The syntax and semantics of some DL axioms.

TBox Syntax Semantics
concept inclusion Ĉ ⊑ D̂ ĈI ⊆ D̂I

concept equivalence Ĉ ≡ D̂ ĈI = D̂I

ABox Syntax Semantics
concept assertion Ĉ(a) aI ∈ ĈI

role assertion R(a, b) (aI , bI) ∈ RI

individual equality a ≈ b aI = bI

individual inequality a ̸≈ b aI ̸= bI

RBox Syntax Semantics
role inclusion R ⊑ S RI ⊆ SI

role composition R1 ◦R2 ⊑ S (x, y) ∈ RI
1 ∧ (y, z) ∈ RI

2 → (x, z) ∈ SI

transitive role transitive(R) (x, y) ∈ RI ∧ (y, z) ∈ RI → (x, z) ∈ RI

reflexive role reflexive(R) (x, x) ∈ RI for all x ∈ ∆I

irreflexive role irreflexive(R) (x, x) /∈ RI for all x ∈ ∆I

symmetric role symmetric(R) (x, y) ∈ RI → (y, x) ∈ RI

asymmetric role asymmetric(R)(x, y) ∈ RI → (y, x) /∈ RI

disjoint roles disjoint(R,S) RI ∩ SI = ∅

2.3 Reasoning Services

Reasoning services are one of the main purposes of Description Logic. Reasoning is the task
that makes certain implicit knowledge explicit in an ontology (or knowledge base) (Baader
& Nutt, 2003). As mentioned above, ontologies are given semantics by Description Logics.

2.3. REASONING SERVICES 13

Various reasoning services have been defined in Description Logics. Some of them are
considered as fundamental of every DL. In general, core reasoning services are commonly
supported by all state-of-the-art reasoners. These services are normally called standard
reasoning services.

The main reasoning tasks described in this section are concept satisfiability, concept
subsumption, classification, consistency checking, and instance checking (Baader & Nutt,
2003; Suntisrivaraporn, 2009; Turhan, 2010). The first two tasks are performed on specific
concepts with respect to terminological axioms in a particular ontology. In contrast, the
third and fourth tasks are performed on all concepts with respect to terminological axioms
in the ontology. The last task is performed on assertional axioms.

We give the formal definition of these reasoning tasks. First of all, given ontology O,
The first four tasks are performed on T and the last task is performed on A.

Concept Satisfiability

The concept satisfiability task is to ensure that a particular concept is satisfiable w.r.t T ,
where T is consistent. A concept description Ĉ is satisfiable w.r.t T if there exists a model
I of T such that CI is not empty. In other words, there exists an individual a ∈ ∆I ,
which is an instance of Ĉ (a ∈ ĈI). Otherwise, concept description Ĉ is not satisfiable.
Note that concept satisfiability is sometimes considered with empty TBox, i.e., the concept
description alone is considered. In such a case, an arbitrary interpretation that makes Ĉ
non-empty is considered. In addition, T is consistent if there exists a model I of all axioms
in T . Otherwise, T is not consistent. Nevertheless, this task is trivial for DLs that do not
allow negative concept in particular EL DL family because every concept is satisfiable.

Concept Subsumption

Rather than concept satisfiability, concept subsumption checking is used to check whether
some concept is more general than another one. A concept description Ĉ is subsumed by
a concept description D̂ w.r.t T if ĈI ⊆ D̂I is true for all models I of T . In this case,
a concept description Ĉ is subsumed by a concept description D̂ w.r.t T can be written
by Ĉ ⊑T D̂ or T |= Ĉ ⊑ D̂. We call Ĉ a subsumee, subconcept, or subclass, and D̂ a
subsumer, superconcept, or superclass. In some DLs without negation such as EL, concept
satisfiability is not interesting. However, having the bottom concept in DLs, concept
satisfiability can be reduced to concept subsumption checking. A concept description Ĉ
is unsatisfiable w.r.t. T if and only if Ĉ ⊑T ⊥.

Classification

The classification task is to determine subsumption relationship between all pairs of con-
cept names occurring in T . For example, for all A,B ∈ NC , where NC is the set of
concept names in T , the classification task determines whether A ⊑T B or B ⊑T A.

Consistency Checking

The consistency checking task is used to determine whether a given ontology is consistent.
A TBox T is consistent if and only if there exists a model I for T . If this is not the case,
T is said to be inconsistent. An interpretation I is a model for a given T if and only if I
satisfies all axioms in T .

14 CHAPTER 2. DESCRIPTION LOGICS

Instance Checking

The instance checking is the task to decide whether a given individual is an instance of
a given concept and a given pair of individuals is an instance of a given role. Formally,
given a TBox T , a concept A, and a role R in T , a given individual a is an instance of A
if and only if aI ∈ AI for every model I of T . Similarly, a given pair of individuals (a, b)
is an instance of R if and only if (aI , bI) ∈ RI for every model I of T .

2.4 Description Logic Families

Description Logics are named by the language constructs and axioms they allow. For
example, the core Description Logic ALC (Schmidt-Schauß & Smolka, 1991) is a fragment
of SROIQ. ALC only allows the language constructs top concept, bottom concept,
concept name, conjunction, disjunction, existential restriction, universal restriction, and
concept inclusion axioms. The syntax of ALC concepts is defined as follows:

Ĉ := ⊤ | ⊥ | A | ¬Ĉ | Ĉ ⊓ D̂ | Ĉ ⊔ D̂ | ∃R.Ĉ | ∀R.Ĉ

The Description Logic ALC extended by transitive roles is denoted by the letter
S (Horrocks, Sattler, & Tobies, 1999). Generally, the names of Description Logic with
additional letters identify a particular language constructs or axioms allowed in those De-
scription Logics, such as unqualified number restrictions denoted by N , qualified number
restrictions denoted by Q, role inclusions denoted by H, inverse roles denoted by I, and
nominals denoted by O. For example, the DL ALCQ (Hollunder & Baader, 1991) extends
ALC with qualified number restrictions. Commonly, the combination of complex role in-
clusions, role characteristics, and local reflexivity is denoted by the letter R. Table 2.3
summarises this naming scheme.

Table 2.3: Summary of the Description Logic naming scheme.

Notation Description
A Atomic concept

AL Top concept, Bottom concept, conjunction, uni-
versal restriction

U Disjunction
C Negation
E existential restriction
S ALC extended with transitive roles
N Unqualified number restriction
Q Qualified number restriction
O Nominals
(D) Data types
D Concrete domains
H Role hierarchies
I Inverse roles
R Complex role inclusions, i.e., R ◦ S ⊑ R

Next, we provide a formal introduction to the syntax and semantics of some Description
Logics (DLs), starting from a simple DL EL and a well-known DL ALC. Finally, two
Description Logics ALC and EL extended with concrete domain and aggregations are
formally presented.

2.4. DESCRIPTION LOGIC FAMILIES 15

2.4.1 Light-Weight Description Logics

Since the reasoning services of most of Description Logics are intractable, a lot of research
has been investigated to define tractable Description Logics. Note that tractability means
that the reasoning complexity is PTime-complete. This is in contrast to the trend of the
last two decade, in which most research has focused on investigating increasing expressive
power of Description Logics.

The Description Logic EL was designed to be tractable (Baader, 2003), while being
expressive enough to represent knowledge in several large and widely-used biomedical
ontologies that mainly consist of terminological axioms, such as GALEN (Rector, Rogers,
& Pole, 1996), Gene ontology (GO, see Figure 2.1) (Ashburner et al., 2000), and SNOMED
CT (Stearns et al., 2001). Besides the Description Logic EL, many other extensions of EL
have been investigated such as EL+ and EL++ (Baader, Brandt, & Lutz, 2005; Baader,
Lutz, & Brandt, 2008).

DomainCategory ⊑ TopCategory
GeneralisedStructure ⊑ DomainCategory

AbstractStructure ⊑ GeneralisedStructure
DiabetogenicStructure ≡ GeneralisedStructure ⊓ ∃ IsCausallyLinkedTo.Diabetes

Figure 2.1: A fragment of Gene Ontology (GO).

In more details, the concept descriptions in EL are defined through the constructors
in the upper half of Table 2.4. Let A,B, ... represent concept names, Ĉ, D̂, . . . represent
(anonymous) concept descriptions, and R,S, ... represent role names. We use NC to rep-
resent a non-empty set of concept names and NR to represent a non-empty set of role
names. An EL TBox (terminology box or ontoloogy) T is a finite set of axioms as defined
in the lower part of Table 2.4.

Table 2.4: The syntax and semantics of EL.

Concepts Syntax Semantics
top concept ⊤ ∆I

atomic concept A AI

conjunction Ĉ ⊓ D̂ ĈI ∩ D̂I

existential restriction ∃R.Ĉ
{x ∈ ∆I | there exists y ∈ ∆I such that (x, y) ∈
RI and y ∈ ĈI}

Axioms Syntax Semantics
concept inclusion (subsumption) Ĉ ⊑ D̂ ĈI ⊆ D̂I

concept equivalence Ĉ ≡ D̂ ĈI = D̂I

Importantly, concept subsumption and classification w.r.t. general TBoxes of EL can
be performed in polynomial time (Baader, Brandt, & Lutz, 2005; Baader, Lutz, & Brandt,
2008). The other reasoning services, concept satisfiability and consistency checking, can
be polynomially reduced to each others. However, concept satisfiability and consistency
checking are not interesting for EL since EL does not allow the language constructs, which
can cause logical contradictions.

16 CHAPTER 2. DESCRIPTION LOGICS

An EL Normal Form

Given an EL TBox T , we use BNT to represent the set of basic concept of T . BNT is the
smallest set of concepts containing: (i) the top concept (⊤); (ii) all concept names A of T
in NC . Then we restrict our attention to those EL TBoxes in which all axioms are in the
following normal forms:

A ⊑ B

A1 ⊓A2 ⊑ B A ⊑ B1 ⊓B2

∃R.A ⊑ B A ⊑ ∃R.B

where A,A1, A2, B,B1, B2 ∈ BNT , R ∈ NR.
Any given TBox T can be transformed into an equivalent normalised TBox T ′. A

TBox T ′ is a conservative extension of the TBox T if every model of T ′ is a model of T
and every model of T can be extended to a model of T ′ by defining the interpretation
for the additional concept names. The normalisation of T can be done in linear time by
applying exhaustively the following normalisation rules (NR) (Suntisrivaraporn, 2009):

Ĉ ≡ D̂ ⇝ Ĉ ⊑ D̂, D̂ ⊑ Ĉ (NR1)
Ĉ ⊑ D̂ ⇝ Ĉ ⊑ E,E ⊑ F, F ⊑ D̂ (NR2)

A ⊓ Ĉ ⊑ B ⇝ A ⊓ E ⊑ B, Ĉ ⊑ E (NR3)
A ⊑ B ⊓ D̂ ⇝ A ⊑ B ⊓ E,E ⊑ D̂ (NR4)
∃R.Ĉ ⊑ B ⇝ ∃R.E ⊑ B, Ĉ ⊑ E (NR5)
A ⊑ ∃R.D̂ ⇝ A ⊑ ∃R.E,E ⊑ D̂ (NR6)

where A,B ∈ BNT , Ĉ, D̂ /∈ BNT , and E,F are fresh concept names introduced to define
complex concept descriptions.

Additionally, we can transform n-ary conjunctions of concept names, which is repre-
sented as ⊓iAi by applying the following equivalence transformation to the axiom:

A ⊑ B1 ⊓ ... ⊓Bn ⇝ A ⊑ B1, ..., A ⊑ Bn (NR7)

Therefore, we can remove the right-hand side conjunctions. The following is the re-
sulting normal form:

A ⊑ B ⊓iAi ⊑ B

A ⊑ ∃R.B ∃R.A ⊑ B

where A,Ai, B are concept names.
EL can be extended in several ways ways. On one hand, it has been extended by adding

new concept constructs to obtain more expressivity in describing the abstract domain
(concepts). For example, the resulting DL is EL++ (Baader, Brandt, & Lutz, 2005; Baader,
Lutz, & Brandt, 2008). We use the well-known DL ALC to describe such extensions in
Section 2.4.2. On the other hand, it can be extended to obtain more expressivity by adding
support for concrete domains (e.g., natural numbers). We illustrate such an extension with
DL ELU (¬)(f,Σ) in Chapter 6.

2.4. DESCRIPTION LOGIC FAMILIES 17

2.4.2 Core Description Logic ALC

One of the most well-known descriptions logics is ALC (Schmidt-Schauß & Smolka, 1991).
While it predates EL, logically it can be seen as an extension of it. In addition to the
constructs supported by EL, ALC contains the bottom concept (⊥), concept disjunctions
(⊔), universal restrictions (∀), and concept negation (¬). The concept descriptions in
ALC are defined through the concept constructs listed in Table 2.5. In fact, ALC provide
complete propositional reasoning since it allows negation, disjunction, and conjunction.
Additionally, ALC offers reasoning about individuals , through existential and universal
restrictions. Unfortunately, the complexity of reasoning services of ALC is not tractable.
The concept satisfiability and concept subsumption of ALC w.r.t. empty and acyclic
TBoxes are PSpace-complete (Schmidt-Schauß & Smolka, 1991). The complexity of
these reasoning services becomes ExpTime-complete for general TBoxes (Baader et al.,
2003).

The semantics of ALC is defined the same as the semantics of EL presented in Section
2.4.1.

Table 2.5: The syntax and semantics of ALC.

Concepts Syntax Semantics
top concept ⊤ ∆I

bottom concept ⊥ ∅
atomic concept A AI

concept negation ¬Ĉ ∆I \ ĈI

conjunction Ĉ ⊓ D̂ ĈI ∩ D̂I

disjunction Ĉ ⊔ D̂ ĈI ∪ D̂I

existential restriction ∃R.Ĉ
{a ∈ ∆I | there exists b ∈ ∆I such that (a, b) ∈
RI and b ∈ ĈI}

universal restriction ∀R.Ĉ
{a ∈ ∆I | for all b ∈ ∆I such that (a, b) ∈
RI then b ∈ ĈI}

Axioms Syntax Semantics
concept inclusion (subsumption) Ĉ ⊑ D̂ ĈI ⊆ D̂I

concept equivalence Ĉ ≡ D̂ ĈI = D̂I

An ALC Normal Form

Wlog., we assume that all the ALC concept description is in negative normal form (NNF).

Definition 2.4.1. (Negation Normal Form (NNF)) A concept description is said to be in
NNF if the negation (¬) is only in front of concept names. NNF of concept descriptions
can be obtained by pushing negations into concept descriptions (Horrocks, 2003).

From a concept description Ĉ, it is possible to obtain an equivalent concept description
in NNF by applying the following transformations (Schmidt-Schauß & Smolka, 1991).
Note that the conversion to NNF is polynomial.

18 CHAPTER 2. DESCRIPTION LOGICS

¬¬Ĉ ⇝ Ĉ (TR1)
¬⊤⇝ ⊥ (TR2)
¬⊥⇝ ⊤ (TR3)

¬(Ĉ ⊓ D̂)⇝ ¬Ĉ ⊔ ¬D̂ (TR4)
¬(Ĉ ⊔ D̂)⇝ ¬Ĉ ⊓ ¬D̂ (TR5)

¬∃R.Ĉ ⇝ ∀R.¬Ĉ (TR6)
¬∀R.Ĉ ⇝ ∃R.¬Ĉ (TR7)

Then we restrict our attention to those ALC TBoxes in normal form, where all axioms
are of the following forms:

A ⊑ B

A1 ⊓A2 ⊑ B A ⊑ B1 ⊓B2

A1 ⊔A2 ⊑ B A ⊑ B1 ⊔B2

∃R.A ⊑ B A ⊑ ∃R.B

∀R.A ⊑ B A ⊑ ∀R.B

where A,A1, A2, B,B1, B2 ∈ BNT , R ∈ NR.
The normalisation of ALC TBox T can be done in linear time by applying (NR1) -

(NR7) above and the following additional normalisation rules:

A ⊔ Ĉ ⊑ B ⇝ A ⊔ E ⊑ B, Ĉ ⊑ E (NR8)
A ⊑ B ⊔ D̂ ⇝ A ⊑ B ⊔ E,E ⊑ D̂ (NR9)
∀R.Ĉ ⊑ B ⇝ ∀R.E ⊑ B, Ĉ ⊑ E (NR10)
A ⊑ ∀R.D̂ ⇝ A ⊑ ∀R.E,E ⊑ D̂ (NR11)

where A,B ∈ BNT , Ĉ, D̂ /∈ BNT , and E,F are fresh concept names introduced to define
complex concept description.

In addition, we can transform n-ary disjunctions of concept names, which is represented
as ⊔iAi by applying the following equivalence transformation to the axiom:

A1 ⊔ ... ⊔An ⊑ B ⇝ A1 ⊑ B, ..., An ⊑ B (NR12)

Therefore, we can remove the left-hand side disjunctions. The following is the resulting
normal form:

A ⊑ B

⊓iAi ⊑ B A ⊑ ⊔iBi

A ⊑ ∃R.B ∃R.A ⊑ B

A ⊑ ∀R.B ∀R.A ⊑ B

2.5. DESCRIPTION LOGICS WITH CONCRETE DOMAINS AND AGGREGATIONS19

where A,Ai, B,Bi are concept names.

2.5 Description Logics with Concrete Domains and Aggre-
gations

As can be seen, most of the Description Logics have been developed to improve expressiv-
ity for defining knowledge on the abstract logical level. In many applications, knowledge
needs to be defined over concrete domains and predicates in domains. Concrete domains
and predicates first were introduced as an extension of ALC, where concrete domains are
integers, reals, sets of temporal intervals, or sets of spatial regions, and predicates include
equality, temporal overlapping, and spatial disconnectedness, resulting the Description
Logic ALC(D) (Baader & Hanschke, 1991). The integration of concrete domains in De-
scription Logics has been found interesting in a number of applications such as mechanical
engineering (Baader & Hanschke, 1992), reasoning with physical laws (Kamp & Wache,
1996), and temporal and spatial reasoning (Haarslev, Lutz, & Möller, 1999). Moreover,
some extensions, such as feature (dis) agreement (Lutz, 2002) and database-like key con-
straint (Lutz et al., 2003), of Description Logics with concrete domains have been studied.

In addition, aggregation functions (e.g., sum and count) are fundamental and use-
ful mechanism available in database systems. Aggregations was first introduced as an
extension of ALC(D) (Baader & Hanschke, 1991), resulting in the Description Logic
ALC(Σ) (Baader & Sattler, 2003).

2.5.1 Concrete Domains
We first illustrate the use of concrete domains in knowledge representation with an exam-
ple. Using concrete domains constructs presented in (Baader & Hanschke, 1992), we can
define a treadmills fitness machine as follows:

Treadmill ⊓ ∃runningsurface.RunningSurface ⊓
=120 .(powerrequired) ⊓ > .(width, (runningsurface width))

This concept expresses a treadmill fitness machine with a required power of 120 watts
and the width of the machine is greater than the width of its running surface. As can
be seen, the third and fourth conjuncts are represented using concrete domain constructs.
Precisely, runningsurface is an abstract feature, which is interpreted as a partial func-
tion from the abstract domain ∆I to the abstract domain ∆I , whereas powerrequired
and width are called concrete features, which are interpreted as a partial function from
the abstract domain ∆I to the concrete domain (e.g., the natural numbers). The ex-
pression (runningsurface width) is a chain of features, which represents the width of the
runningsurface-successor and > is a predicate from the concrete domain. Let us now present
concrete domain formally.

Definition 2.5.1. A concrete domain D is a pair of (∆D,ΦD), where ∆D is a domain and
ΦD is a set of predicate names. For each predicate name P in ΦD, P is associated with
an arity n and an n-ary predicate PD ⊆ ∆D

n . Let V denote a set of variables. A predicate
conjunction is of the form

c =
∧
i<k

Pi(x
(i)
1 , ..., x(i)ni

)

where Pi is an ni-ary predicate name for i < k, k is a number of predicate names, and x
(i)
j

are variables in V . Such a conjunction is said to be consistent if and only if there exists

20 CHAPTER 2. DESCRIPTION LOGICS

an assignment of elements in ∆D to the variables such that the conjunction is true in D.
Such an assignment is called a solution of c.

Hereafter, we use D-consistency to refer to the consistency of finite conjunction of
predicates from concrete domain D. In the following, we introduce ALC(D), the well-
known Description Logic ALC extended with concrete domain D (Baader & Hanschke,
1991).

The syntax of ALC(D) is defined as follows. Let NC be a set of concepts, NR be a
set of roles, and NF is a set of features. NC , NR, and NF are disjoint. A feature chain
u is a non-empty sequence of feature fi, i.e., u = f1, ..., fm. Let D be a concrete domain.
ALC(D) is extended from ALC by allowing the use of the concrete domain construct
P (u1, ..., un), where u1, ..., um are feature chains and P ∈ ΦD is a predicate with arity
n. In addition, ALC(D) disallows top concept (⊤) and bottom concept (⊥). Then we
introduce the semantics of the additional construct of concrete domain.

The semantics of ALC(D) is defined as follows. The semantics of the basic com-
ponents (i.e., concepts and roles) of ALC(D) is the same as those of ALC. We only
present the additional components, which are feature and concrete domain construct
P (u1, ..., un) here. Every feature f is mapped to a partial function fI from ∆I to
∆I ∪ ∆D. The semantic P (u1, ..., un)

I of the concrete domain construct P (u1, ..., un)
is {a ∈ ∆I | ∃xi such that uIi (a) = xi and (xi, ..., xn) ∈ PD}. Note that existential re-
strictions and universal restrictions are also defined for features. For a chain of features
u = f1f2...fn, we can use notations ∃u.C, which is abbreviation for ∃f1.∃f2....∃fn.C, and
∀u.C, which is abbreviation for ∀f1.∀f2....∀fn.C. The semantics of these are defined in
the same way as those of existential quantification and universal quantification for roles
in Table 2.1.

The satisfiability of ALC(D) is decidable if the concrete domain D is admissible (Baader
& Hanschke, 1991). The admissibility of concrete domain is essential for devising general
decision procedures. Let us formally introduce the admissibility of concrete domains.

Definition 2.5.2. A concrete domain is called admissible if and only if

1. its set of predicate names ΦD is closed under negation, i.e., ΦD contains an n-ary
predicate name P̄ such that P̄D = ∆D

n \PD for each n-ary predicate name P in ΦD,

2. its set of predicate names ΦD contains a name for ∆D,

3. the satisfiability of finite conjunctions over ΦD, i.e., the satisfiability of the predicate
conjunctions in Definition 2.5.1, is decidable.

The Description Logic ALC(D) is the first carefully considered treatment of concrete
domain. There are a number of studies of Description Logic with concrete domain as
follows:

1. A Description Logic with expressive concrete domain CTL was developed to over-
come the shortcomings of DL system w.r.t. system of (in)equality (Kamp & Wache,
1996). CTL was successfully developed by a combination of Description Logic as
base logic and Constraint Logic Programming (CLP) as decision procedures. This
logic is useful as a powerful tool for reasoning about technical devices (Kamp &
Wache, 1996).

2. Many studies focus on combining general TBoxes with restricted forms of concrete
domains. The Description Logic SHOQ(D) allows only concrete datatypes and
unary concrete domain predicates in a very expressive Description Logic (Horrocks
& Sattler, 2001). For example, SHOQ(D) can express the concept Student ⊓

2.5. DESCRIPTION LOGICS WITH CONCRETE DOMAINS AND AGGREGATIONS21

∃ scores.(min70), where (min70) is a concrete datatype. In addition, (min70) can
be interpreted as a unary concrete domain predicate P≥70. In (Pan, 2007), the De-
scription Logic SHOQ(G) was mainly developed to support user-defined data type
and data type predicates in ontology applications. For example, the due date of
assignment on 13/03/2017 can be defined as earlier than 13/03/2017, where earlier
than 13/03/2017 is a user-predefined data type predicate. In (Haarslev, Möller,
& Wessel, 2001), the combination of concrete domain without feature chains and
Description Logics with role hierarchies, transitive roles and qualified number re-
strictions was studied resulting in the Description Logic ALCNHR+(D)−. However,
predicates of arbitrary arity are admitted The resulting logic was claimed that it is
useful for solving configuration problems. In (Lutz & Milicic, 2007), the combination
of Description Logic with concrete domain and general TBoxes was studied result-
ing in the Description Logic ALC(C). The concrete domain used in this research is
based on the RCC-8 relation, which is used to describe relations between regions
in topological spaces. As can be seen, the above mentioned approaches basically
restrict the expressivity of concrete domains to combine them with very expressive
Description Logics.

3. A number of studies focus on combining expressive Description Logics with un-
restricted concrete domains. The Description Logic ALCF(D) is an extension of
ALC(D) by adding feature (dis)agreements (Lutz, 2002). The complexity of ALCF(D)-
concept satisfiability is PSpace-complete if D-consistency is PSpace-complete (Lutz,
2002). This logic is said to be useful in modelling for the application domain of dis-
aster management (Kullmann, de Beuvron, & Rousselot, 2000). In addition, the
Description Logic with concrete domain was extended by one of database-like con-
straints, concrete key constraint, namely ALCK(D) (Lutz et al., 2003). With this
key constraint, it allows to express a uniqueness of an abject such as id of stu-
dents. It turned out that integrating concrete key constraints to Description Logics
with concrete domain can dramatically increase the complexity of reasoning and
may lead to undecidability. Therefore, the use of concrete key constraints is re-
stricted by allowing only Boolean combinations of concept names in concrete key con-
straint to retain decidability. The complexity of satisfiability of ALCK(D)-concept
is NExpTime-complete for very simple concrete domains such as bit vectors. In
addition to concrete key constraints, functional dependencies were studied as an
extension of Description Logic with concrete domain, namely ALC(D)FD (Lutz &
Milicic, 2004). Functional dependencies allow to express that a set of properties can
decide the value of a property. For example, all employees with the same depart-
ment id work in the same department. It turns out that the Description Logic with
concrete domain and full functional dependencies lead to undecidability. To retain
decidability, functional dependencies are restricted, where the concepts inside func-
tional dependencies cannot have a subconcept defined by concrete domain constructs.
The complexity of ALC(D)FD-concept satisfiability is NExpTime-complete for a
simple concrete domain, where {0, 1} ∈ ∆D and only unary predicates are consid-
ered.

A summary of these studies is presented in Table 2.6.

2.5.2 Aggregations in Description Logics

We firstly demonstrate the use of aggregations in knowledge representation with Descrip-
tion Logics, using the language constructs presented in (Baader & Sattler, 2003). For
example, we can define a concept of healthy person, where we compare calories taken and

22 CHAPTER 2. DESCRIPTION LOGICS

Table 2.6: Summary of some Description Logics with concrete domains.

Description Logics Studies

CTL (Kamp & Wache, 1996) Combination of Description Logic as base logic
and Constraint Logic Programming (CLP)

SHOQ(D) (Horrocks & Sattler, 2001) Concrete datatypes and unary concrete domain
predicates

SHOQ(G) (Pan, 2007) User-defined data type and data type predicates

ALCNHR+(D)− (Haarslev et al., 2001)

The combination of concrete domain without
feature chains and Description Logics with role
hierarchies, transitive roles and qualified num-
ber restrictions

ALC(C) (Lutz & Milicic, 2007)
The combination of Description Logic with con-
crete domain, the RCC-8 relation, and general
TBoxes

ALCF(D) (Lutz, 2002) Description Logic with concrete domain and fea-
ture (dis)agreements

ALCK(D) (Lutz et al., 2003) Description Logic with concrete domain and
concrete key constraint

ALC(D)FD (Lutz & Milicic, 2004) Description Logic with concrete domain and
functional dependencies

calories burnt for each week as follows:

∃week. ≤ (sum(day ◦ caloriestaken), sum(day ◦ caloriesburnt))

Intuitively, this concept expresses a healthy person who takes calories less than calories
burnt in some weeks. The aggregations are used to sum up weekly calories consumed and
burnt. More precisely, week and day are role names, while caloriestaken and caloriesburnt are
concrete features. The aggregation sum(day◦caloriestaken) expresses a mapping individual
related to the sum over all caloriestaken-values over day.

For example, in Figure 2.2, given a person, Wud, who takes calories less than or equal
to calories that he burns everyday. Calories taken and burnt of a whole week can be known
by considering the sum over all days of that week. Rectangle boxes represent individuals
in the abstract domain, and circles represent individuals in a concrete domain, which is
natural numbers in this case. The green rectangle illustrates the sum of concrete domain
individuals for calories taken. The orange rectangle illustrates the sum of concrete domain
individuals for calories burnt.

In order to describe the idea of aggregation and introduce the Description Logic
ALC(Σ), we need to introduce the notion of multisets. In a multiset, an individual can
appear more than once. For example, the multiset J10K is different from the multisetJ10, 10, 10K. Note that we use the symbol “JK” to represent multisets for the rest of this
thesis.

Definition 2.5.3. (Multisets) (Baader & Sattler, 2003) Let S be a set. A multiset M
over S is a mapping M : S → N, where M(s) represents the number of occurrences of s in
M , where s ∈ S. The set of all multisets of S is denoted by MS(S). A multiset M over
S is said to be finite if and only if {s | M(s) ̸= 0} is a finite set.

For multisets M,M ′ over S, M ⊆ M ′ is used to represent M(s) ≤ M ′(s) for each
s ∈ S, and s ∈ M is used to represent M(s) ≥ 1. M ′ \M is used to denote the multiset
with (M ′ \M)(s) := M ′(s)−M(s) for all s ∈ S.

2.5. DESCRIPTION LOGICS WITH CONCRETE DOMAINS AND AGGREGATIONS23

Wud

Week1 Week2

Day1

Day2

Day7

1,000

1,800

1,200

1,400

1,100

1,000

7,200

7,800

week week

day

day

day

…

caloriestaken

caloriesbrunt

caloriestaken
caloriesbrunt

caloriestaken caloriesbrunt

sum

sum

…

…

sum(day ◦ caloriestaken)

sum
(day ◦ caloriesburnt)

Figure 2.2: Example of aggregation.

In order to define aggregations, the notion of concrete domain and concrete features
in concrete domains construct are extended as follows:

Definition 2.5.4. (Syntax of ALC(Σ)) (Baader & Sattler, 2003) The notion of a concrete
domain D as presented in Definition 2.5.1 is extended with a set of aggregations agg(D),
where each Γ ∈ agg(D) is associated with a partial function ΓD from the set of multisets
of ∆D to ∆D. The concrete domain extended with aggregations is denoted as Σ. The set
of concrete features is defined as follows:

F := f | f1...fn | f1...fnΓ(R ◦ f)

• Each feature name (atomic feature) f ∈ NF is a concrete feature,

• a feature chain f1...fn is a concrete feature,

• an aggregation feature f1...fnΓ(R ◦ f) is a concrete feature, where f, f1, ..., fn are
feature names, R is a role name, and Γ ∈ agg(D) is an aggregation function.

Then the syntax of ALC(Σ)-concepts is obtained from ALC(D)-concepts by allowing
the additional use of concrete features in the concrete domain construct P (f1, ..., fn).

At this point, the syntax of ALC(Σ) has been defined. The rest is to define the
semantics of ALC(Σ) to support the new concrete feature, i.e., the aggregation feature.

24 CHAPTER 2. DESCRIPTION LOGICS

Definition 2.5.5. (Semantics of ALC(Σ)) (Baader & Sattler, 2003) An ALC(Σ)-interpretation
is extended from an ALC(D)-interpretation to interprets the new aggregation features.
Note that the interpretation is restricted to be finite. In order to define the semantics of
aggregation features, the multiset MR◦f

a , which maps each elecment z ∈ ∆Σ to the number
of R-successors of a that have z as f -successors, is defined as follows:

MR◦f
a (z) := #{b ∈ ∆I | (a, b) ∈ RI and fI(b) = z}

Now, the semantics of aggregation feature can be defined as follows:

(f1...fnΓ(R ◦ f))I(a) :=

{
ΓΣ(M

(R◦f)
a′), if (f1...fn)I(a) = a′ ∧ a′ ∈ ∆I

undefined, (f1...fn)
I(a) /∈ ∆I

and ΓΣ(M
(R◦f)
a′) is called the (f1...fnΓ(R ◦ f))-successor of a.

There are two consequences of this definition that might not be obvious:

a An R-successor b of a with an abstract f -successor has no influence on MR◦f
a . MR◦f

a

is defined to handle R ◦ f -successors of a in the concrete domain ∆D.

b M
(R◦f)
a′ needs to be a finite multiset because ∆I is finite. However, (f1...fnΓ(R ◦

f))I(a) might be undefined by two reasons: (1) there is no f1...fn-successors a′ of a
in ∆I and (2) aggregation functions can be partial. For example, the aggregation
min over an empty set is undefined.

In the following, we will define the aggregation functions sum, count, max, and min
using the multiset definition (Baader & Sattler, 2003). For finite multisets M over rational
numbers, we can define the above aggregations as follows:

sum(M) =
∑
x∈M

M(x) · x

count(M) =
∑
x∈M

M(x)

max(M) =

{
m, if there exists m ∈ M such that n ≤ m for all n ∈ M

undefined, if no such m exists

min(M) =

{
m, if there exists m ∈ M such that n ≥ m for all n ∈ M

undefined, if no such m exists

By now, the syntax and semantics of ALC(Σ) are defined. However, reasoning of
ALC(Σ) is undecidable (Baader & Sattler, 2003). In order to retain decidability, three
approaches were studied in (Baader & Sattler, 2003):

1. Decidability can be retained by disallowing universal restrictions of ALC(Σ), result-
ing in the Description Logic EL(Σ).

2. Decidability can be retained by disallowing the interaction between aggregation func-
tions and value restrictions, i.e., existential and universal restrictions.

2.5. DESCRIPTION LOGICS WITH CONCRETE DOMAINS AND AGGREGATIONS25

3. Decidability can be retained by restricting aggregation functions to contain only min
and max.

In the following, we introduce EL(Σ) (Baader & Sattler, 2003) in detail since the
logic considered in this thesis is based on this logic. EL(Σ) is obtained from ALC(Σ) by
disallowing universal restrictions and restricting the use of negation to concept names. An
EL(Σ)-concept can be defined through the language constructs listed in the upper part
of Table 2.7, and the lower part of Table 2.7 presents feature constructs. Note that the
existential restriction is defined not only for roles, but also features.

Table 2.7: The syntax and semantics of EL(Σ).

Concepts Syntax Semantics
atomic concept A AI

atomic negation ¬A ∆I \AI

conjunction Ĉ ⊓ D̂ ĈI ∩ D̂I

disjunction Ĉ ⊔ D̂ ĈI ∪ D̂I

existential restriction ∃R.Ĉ
{a ∈ ∆I | there exists b ∈ ∆I such that (a, b) ∈
RI and b ∈ ĈI}

existential feature restriction ∃f.Ĉ {a ∈ ∆I | there exists b ∈ ∆I such that (a, b) ∈
fI and b ∈ ĈI}

concrete domain P (u1, ..., un)
{a ∈ ∆I | ∃xi such that uIi (a) =
xi and (xi, ..., xn) ∈ PΣ}

Features Syntax Semantics
atomic feature f ∆I � ∆I ∪∆Σ

feature chain f1...fn fI
n (f

I
n−1(...(f

I
1 (a)...) ∧ a ∈ ∆I

aggregation Γ(R ◦ f)
{
ΓΣ(M

(R◦f)I
a), if M (R◦f)I

a is a multiset
undefined, otherwise

The reasoning service considered for EL(Σ) is concept satisfiability without a TBox.
In general, the decidability of concept satisfiability of EL(Σ) depends on the decidability
of concrete domains Σ. Concept satisfiability of EL(Σ) is decidable if and only if the
consistency of concrete domains Σ (Σ-consistency) is decidable. Concept satisfiability of
EL(Σ) was proven decidable, where ∆Σ is the set of non-negative integers, integers, or
rational numbers and all of them involving only the aggregation functions min, max, and
count.

Using aggregations as concept constructs is the main focus of this thesis. There are a
number of related studies about aggregations in conjunctive query answering:

1. Aggregations were investigated for query answering for the ontology language DL−
LiteA (Calvanese, Kharlamov, Nutt, & Thorne, 2008). The syntax and semantics
were proposed for (conditional) epistemic aggregate queries over ontologies and query
answering for max, min, count, cntd (count distinct), sum, and avg (average) was
studied. This allows us to use aggregation query over ontologies.

2. Some research focused on the aggregation count. The semantics for answering count-
ing aggregate queries, which are queries that use count and cntd (count distinct) were
studied further (Kostylev & Reutter, 2013). The aim of this approach is to find the

26 CHAPTER 2. DESCRIPTION LOGICS

maximal information in the answers of these queries for all the models of a knowl-
edge base. This research concentrated on query answering for ontology languages
DL − Litecore and DL − LiteR (Kostylev & Reutter, 2013). In addition, the com-
plexity of counting aggregate queries for such ontology languages was studied. It
turned out that the complexity is coNP-complete. The need and relationship of
different interpretation of count distinct aggregation were studied (Kostov & Kře-
men, 2013). There are four different interpretations, which are basic count, semantic
count, epistemic count, semantic tuple count, were studied.

3. Aggregations were studied for real-time analytics that need to aggregates distributed
streaming and static data (Kharlamov et al., 2016). In particular, this research aimed
at supporting common analytical tasks for Siemens turbine diagnostics, which need
to deal with streaming data produced by up to 2,000 sensors. The ontology language
DL−Liteagg

A (Kharlamov et al., 2016), which extends DL−LiteA with aggregations
as first class citizen (concepts that are based on aggregation of attribute values), was
proposed.

As can be seen, most of recent studies mainly focus on aggregations in conjunctive
query answering. It is interesting to revisit and investigate the aggregations as concept
construct further since the ability to express aggregation over concrete domains is useful in
many domains and situations such as fitness tracking application as shown in Figure 2.2.

2.6 Relationship to OWL
Ontology has different meanings in different areas. For example, generally, ontology is a
vocabulary which can represent conceptualisation in particular domain (Chandrasekaran,
Josephson, & Benjamins, 1999). In the perspective of Semantic Web, ontologies are build-
ing blocks of knowledge (Heflin, 2004) and it is used to help automated processes to access
information. For example, ontologies could be used to facilitate negotiation between buy-
ing and selling agents in e-commerce (Tamma, Phelps, Dickinson, & Wooldridge, 2005)
or it can be used to find pages that contain semantically similar words and phrases (Lei,
Uren, & Motta, 2006). In general, ontologies are used to represent classes, relationship
between classes, and properties, that those classes may have. Importantly, ontologies
needs to have appropriate structure. As a result, W3C Recommendation recommends
Web Ontology Language (OWL) for building ontologies in Semantic Web.

OWL 1 was introduced as a new language for modelling ontologies in Semantic Web (Horrocks
et al., 2003). The Description Logic SHOIN with data type feature (D), which is denoted
as SHOIN (D) (Horrocks & Patel-Schneider, 2004), provides the underpinning semantics
for OWL 1 (Grau et al., 2008). In addition, as RDF extension, OWL 1 has fact-stating fea-
ture of RDF (Cyganiak, Wood, & Lanthaler, 2014) and the class- and property-structuring
capability of RDF Schema (RDFS). For example, OWL 1 can declare classes and supports
subsumption of classes, and it can declare properties and supports subproperty of prop-
erties (Horrocks et al., 2003). In addition, OWL 1 extends the capability of RDFS in
crucial ways. For example, OWL 1 supports class declaration as logical combinations such
as intersections, unions, and complements (Horrocks et al., 2003). OWL 1 also supports
characteristics of a property such as transitive and functional.

There are three sublanguages of OWL 1, which are OWL 1 Full, OWL 1 DL, and OWL
1 Lite (McGuinness & van Harmelen, 2004). Furthermore, each sublanguage is developed
for specific applications. OWL Full fully supports capability of RDF and RDFS and all
RDF graphs are allowed. OWL 1 Full is undecidable and difficult to implement (Grau
et al., 2008). On the other hand, OWL DL only allows certain language constructs and
combinations of language constructs are limited. OWL 1 DL is developed as variant of

2.6. RELATIONSHIP TO OWL 27

the Description Logic SHOIN (D). Therefore, the syntax of OWL 1 DL is very close to
that of SHOIN (D). OWL 1 DL is for applications that consider decidable inference and
friendly syntax as importances. However, OWL 1 DL is sometimes difficult for naive users
and SHOIN (D) is difficult to reason about as its complexity is NExpTime-complete.
As as result, OWL 1 Lite is proposed as a syntactic subset of OWL 1 DL. OWL Lite
disallows unions, complements, individuals to show up in descriptions or class axioms.
In addition, it restricts intersections to the implicit intersections in the frame-like class
axioms and cardinalities to 0 or 1. Due to these restrictions, OWL 1 Lite is very close
to the Description Logic SHIF(D) with the complexity of ExpTime-complete (Tobies,
2001). In addition, there are practical optimised algorithms for reasoning about OWL
1 Lite such as the algorithm underlying the Description Logic system FaCT (Horrocks,
1998).

OWL 1 has many limitations, such as expressivity limitations and syntax issues, as
summarised in (Grau et al., 2008). It has several expressivity limitations such as the lack of
qualified cardinality restrictions, weak relationship expressivity and datatype expressivity
limitations. For example, considering qualified cardinality restrictions, OWL 1 does not
allow user to express a cat with at least four children which are kittens. Additionally, OWL
1 has several syntax issues. OWL 1 comes with two normative syntaxes: (1) the Abstract
Syntax (Patel-Schneider, Hayes, & Horrocks, 2004) and (2) OWL 1 RDF (Bechhofer et al.,
2004). The Abstract Syntax is inspired by the tradition of frame-based ontology languages.
With this syntax, the relationship between class declaration and axiom declaration is a
major source of confusion (Grau et al., 2008). Another issues is alignment with DL
constructs. Although OWL 1 is based on DLs, the constructs of OWL 1 is not related to
the constructs of DLs. For OWL 1 RDF syntax, it is difficult to represent relationship of
object in RDF without introducing new objects (Grau et al., 2008). Due to this reason,
OWL 1 syntaxes are difficult to read and not practical. In addition, the scalability of
OWL 1 systems is limited.

Due to limitations of OWL 1, OWL 2 is introduced as the extension of OWL 1 with
more expressive power (Grau et al., 2008). Likewise, OWL 2 is based on the most ex-
pressive DL, SROIQ(D) (Horrocks et al., 2006). In addition, OWL 2 use Meta-Object
Facility (MOF) metamodel to specify its structure to overcome OWL 1 syntax issues.
Accordingly, this helps OWL 2 to have more readable syntax than that of OWL 1. In
addition to MOF, Functional-Style Syntax is introduced to be a simple syntax for OWL 2.
Although, the basic DL of OWL 2 is the decidable SROIQ(D), reasoning complexity of
OWL 2 is high, N2ExpTime-complete. As a result, the OWL Working group considers
that it is crucial to define fragments of OWL 2, which have lower complexity and are easier
to use. For this purpose, the OWL Working group defines three profiles of OWL 2, which
are OWL 2 EL, OWL 2 QL and OWL 2 RL (Motik et al., 2012). Accordingly, each profile
provides different expressive power and focuses on different applications. Table 2.8 shows
a summary of specification and complexity of main reasoning tasks of OWL 2 profiles
and OWL 2 DL. The complexity here is the combination between taxonomic complexity,
data complexity, and query complexity. The reasoning services considered are consistency
checking, concept satisfiability, concept subsumption, and instance checking.

There are two styles of formal semantics of OWL: (1) Direct Semantics (Horrocks,
Parsia, & Sattler, 2012) based on DLs and (2) RDF-Based Semantics (Carroll, Herman,
& Patel-Schneider, 2012). The Direct Semantics of OWL is only defined for a certain
fragment of OWL, which is called OWL DL (or OWL 2 DL). For OWL Full, it can be
interpreted under the RDF-Based Semantics.

The OWL standard provides a number of syntactic forms that can be used to express
OWL ontologies such as RDF/XML, Manchester, and Functional-style syntax. The most

28 CHAPTER 2. DESCRIPTION LOGICS

Table 2.8: Summary of specification and complexity of main reasoning tasks of OWL 2
profile (Motik et al., 2012).

Profile Description
Logic

Description Complexity

OWL 2 DL SROIQ(D)
(Horrocks et al.,
2006)

The most expressive OWL
2 profile.

N2ExpTime-complete

OWL 2 EL EL++(Baader,
Brandt, & Lutz,
2005)

This profile is designed
for large ontologies, which
have large number of
classes and have tractable
reasoning complexity.

PTime-complete

OWL 2 QL DL-LiteHcore
(Artale,
Calvanese,
Kontchakov,
& Zakharyaschev,
2009)

This profile is designed
to support applications,
which have large amount of
data.

NLogSpace-complete

OWL 2 RL DLP (Grosof,
Horrocks, Volz, &
Decker, 2003)

This profile is designed for
applications, which need
scalable rule-based reason-
ing without losing expres-
sive power.

coNP-complete

important one is RDF/XML since this syntax style is well-known and most OWL tools
support. In contrast, the Functional-style syntax is the most readable.

Chapter 3

Reasoning Algorithms for
Description Logics

The reasoning services that this thesis focus on are terminological reasoning (TBox reason-
ing) including concept satisfiability, concept subsumption, and consistency checking. These
reasoning services are described in Section 2.3.

Over the years, in order to conduct reasoning for Description Logics, the algorithm
called Structural Subsumption Algorithm was used in the early days (Baader & Nutt, 2003).
This algorithm compares the syntactic structure of concept in order to check concept sub-
sumption of some Description Logics. However, these algorithms are not complete for
Description Logics with (full) negation and disjunction. At the present time, two broad
types of the-state-of-the-art algorithms have been proposed. The first group of algorithms
is called Tableau-based Algorithms (Schmidt-Schauß & Smolka, 1991), which are based
on tableau calculi, and can overcome the incompleteness of the structural subsumption
algorithms (Baader & Nutt, 2003). In addition, these algorithms have turned out to
be useful for solving concept satisfiability and concept subsumption (Schmidt-Schauß &
Smolka, 1991; Hollunder & Baader, 1991; Baader, 1991; Hollunder, Nutt, & Schmidt-
Schauß, 1990) over highly expressive Description Logics. For light weight Description
Logics such as EL (Baader, 2003), the tableau-based algorithms are not optimal. Thus,
the second group of algorithms called Polynomial-Time Subsumption (Classification) Al-
gorithms (Brandt, 2004; Baader, Lutz, & Suntisrivaraporn, 2005) have been proposed.
These algorithms can simultaneously compute the subsumption relationships between all
pairs of concept names.

In this chapter, we provide an overview of the tableau-based algorithms and polynomial-
time subsumption (classification) algorithms. In addition, some examples of both algo-
rithms are provided.

3.1 Tableau-based Algorithms
The first tableau-based algorithm was introduced in (Schmidt-Schauß & Smolka, 1991) as a
solution to the concept satisfiability problem of the description logic ALC. Given a concept
Ĉ, the tableau-based algorithms test the satisfiability of the concept Ĉ by attempting to
construct a model of Ĉ as a tree structure where the branches are closed by conflicts. We
use the constraint notation (Hollunder, 1990) to describe the tableau algorithm. A model
of Ĉ is represented as a completion constraint system A. Using the constraint notation,
individuals in A are represented by lower case letters. For each individual a, if there is an
axiom a : C of a concept C in A, it means that the individual corresponding with a is in
the interpretation of C in the model. For each pair (a, b), if there is an axiom (a, b) : R of a
role name R in A, it means that the pair corresponding with (a, b) is in the interpretation

29

30 CHAPTER 3. REASONING ALGORITHMS FOR DESCRIPTION LOGICS

of R in the model. A letter b is called R-successor of a if there exists an axiom (a, b) : R
in A.

The tableau algorithm starts from the root individual a0 such that A = {a0 : Ĉ}.
The algorithm terminates either when the constraint system is complete (no expansion
rules can be applied further), or when an obvious contradiction (or a clash), i.e., {a : C, a :
¬C} ⊆ A), is detected in all branches. The tableau algorithm transforms an input concept
to Negation Normal Form (NNF) (see Definition 2.4.1). For example, ¬∃R.(A ⊓ ¬B) can
be transformed to ∀R.(¬A ⊔ B), where A and B are atomic concept and R is a role
name. After that, the tableau algorithm applies expansion rules to construct a model
of the concept. The expansion rules are rules used to expand the search tree to find a
contradiction. The expansion rules can be found in Figure 3.1. (see (Baader & Sattler,
2001) for details). If there is no contradiction, the concept is satisfiable. The expansion
rules can be deterministic and non-deterministic. Since the disjunction is handled by non-
deterministic rules, they can cause branching during the reasoning process exponentially
and thus decrease the performance of this type of algorithms. The application of non-
deterministic rules can be considered as OR-search which is one of the major sources of
inefficiency of tableau-based algorithms (Motik et al., 2007b, 2007a, 2009).

⊓-rule :if 1.a : (C1 ⊓ C2) ∈ A, and
2.{a : C1, a : C2} ̸⊆ A,

then A′ := A ∪ {a : C1, a : C2}
⊔-rule :if 1.a : (C1 ⊔ C2) ∈ A, and

2.{a : C1, a : C2} ∩ A = ∅,
then A′ := A ∪ {a : C1} or A′′ := A ∪ {a : C2}

∃-rule :if 1.a : (∃R.C) ∈ A, and
2.there is no b such that (a, b) : R ∈ A and b : C ∈ A,

then create a new individual b with A′ := A ∪ {(a, b) : R, b : C}
∀-rule :if 1.a : (∀R.C) ∈ A, and

2.there is some b such that (a, b) : R ∈ A and b : C /∈ A,

then A′ := A ∪ {b : C}

Figure 3.1: Tableau expansion rules for ALC.

Now, we will introduce each tableau expansion rule. The conjunction rule (⊓-rule) is
applied to an individual a, where it is a member of a concept definition C1 ⊓C2, which is
a conjunction. However, the rule is not applied to an individual a if a is already asserted
to be a member of all of the conjuncts of C1⊓C2 (i.e., {a : C1, a : C2} ⊆ A). The result of
the conjunction rule is the individual a being asserted as a member of each conjunct (e.g.
A∪{a : C1, a : C2}). The disjunction rule (⊔-rule) is applied to an individual a, where it is
a member of a concept definition C1 ⊔C2, which is a disjunction. However, the rule is not
applied to an individual a if a is already asserted to be a member of any of the disjuncts of
C1 ⊔C2 (i.e., {a : C1, a : C2} ∩A ̸= ∅). The result of the disjunction rule is the individual
a being asserted as a member of one of the disjuncts (e.g. A ∪ {a : C1} or A ∪ {a : C2}).
The existential restriction rule (∃-rule) is applied to an individual a, where it is a member
of a concept definition ∃R.C, which is an existential restriction. However, the rule is not
applied to an individual a if a has an R-successor b, where b is asserted as a member of
the concept C (i.e., (a, b) : R ∈ A and b : C ∈ A). The result of the existential restriction
expansion rule is an individual b is created as an R-successor of the individual a and the

3.1. TABLEAU-BASED ALGORITHMS 31

individual b being asserted as a member of the concept C (e.g. A ∪ {(a, b) : R, b : C}).
The universal restriction rule (∀-rule) is applied to an individual a, where it is a member
of a concept definition ∀R.C, which is an universal restriction. However, the rule is only
applied to an individual a, when a has at least one R-successor b, where b is not asserted
as a member of the concept name C and b is connected to the individual a via the role R
(i.e., (a, b) : R ∈ A and b : C /∈ A). The result of the universal restriction expansion rule
is all R-successors b of the individual a being asserted as members if the concept name C
(e.g. A ∪ {b : C}).

These algorithms then have been extended to support sound and complete reasoning
for concept satisfiability checking on the general TBox (Baader & Sattler, 2001; Baader &
Nutt, 2003), and to handle consistency checking of ABoxes (Baader, Horrocks, & Sattler,
2008) respectively. The tableau algorithms are widely used for highly expressive DLs such
as ALC with extensions such as qualified number restriction and concrete domains (Baader
& Sattler, 2001).

Over the years, a number of optimisation techniques have been proposed. The ap-
plication of expansion rules on qualified number restriction can increase the search space
exponentially (Baader, Horrocks, & Sattler, 2008). For some highly expressive Descrip-
tion Logic with general TBox, a technique called blocking (Buchheit, Donini, & Schaerf,
1993) is used to ensure that the tableau algorithm terminates. These algorithms have been
implemented in many state-of-the-art reasoners such as FaCT++ (Tsarkov & Horrocks,
2006), Pellet (Sirin et al., 2007), and Konclude (Steigmiller et al., 2014). Absorption,
which is a rewriting technique used to reduce the number of GCIs, have been developed
to improve the performance of these algorithms.

Several researchers also introduced a novel reasoning algorithm called Hyper-tableau
Algorithm (Motik et al., 2007b, 2007a, 2009). This algorithm is based on hyperresolution
with anywhere blocking. This algorithm has been implemented in an ontology reasoner
called HermiT (Shearer et al., 2008; Glimm et al., 2014).

Nonetheless, these algorithms still have difficulties in handling highly expressive DLs
and the inefficiencies of this type of algorithms still remain when they are used to perform
reasoning on large and complex ontologies, which contain many disjunctions, GCIs, quali-
fied number restrictions, and concrete domains, such as Basic Call System (BCS) (Areces,
Bouma, & de Rijke, 1999) and the Genomic CDS ontology (Kang et al., 2012, 2014, 2015).

3.1.1 Tableau-based Algorithms for Concrete Domain
In order to handle concrete domain constructs (P (u1, ..., un)) of Description Logic ALC(D)
that we described in Section 2.5.1, One more rule (shown in Figure 3.2) was added
in (Baader & Hanschke, 1991). Note that we call this rule is called P -rule in this thesis.
Let us describe how to extend the constraint system explained above. We need to recall
some notations. Let f represent a feature name, a, b, c, .. represent abstract individuals in
∆I , x, y, ... represent concrete individuals in ∆D.

For feature chains ui = fi1...fimi , we use an axiom (a, b) : f or (a, x) : f for each f ,
where b ∈ ∆I and x ∈ ∆D. Either (a, b) or (a, x) is in the interpretation of f . Individuals
b and x are f -successors of a if there exists axioms (a, b) : f or (a, x) : f in A respectively.
An axiom (x1, ..., xn) : P means that the tuple corresponding with (x1, ..., xn) is in the
interpretation of a predicate P . If A contains a pair of axioms (a, b) : f and (a, c) : f ,
or (a, x) : f and (a, y) : f , such a pair of axioms is called a fork in A. Such a fork
means that b and c, or x and y have to be interpreted as the same individual since f is
interpreted as a partial function. Therefore, a fork (a, b) : f and (a, c) : f , or (a, x) : f
and (a, y) : f can be deleted by replacing all occurrences of c in A by b, or replacing all
occurrences of y in A by x. After applying the P -rule, a constraint system A is generated
with the corresponding conjunction cA =

∧
i<k Pi(x

(i)
1 , ..., x

(i)
ni). Note that since existential

32 CHAPTER 3. REASONING ALGORITHMS FOR DESCRIPTION LOGICS

and universal restrictions can be used with a feature name, the ∃ and ∀ rules in Figure 3.1
can be applied where a feature name f is considered instead of a role name R.

P -rule :if 1.a : P (u1, ..., un) ∈ A, and
2. for feature chain ui = fi1...fimi , there is no bi1, ...bimi−1 ∈ ∆I and
xi ∈ ∆D such that {(a, bi1) : fi1, ..., (bimi−1, xi) : fimi} ̸⊂ A and (x1, ..., xn) : P /∈ A,

then for the feature chain ui = fi1...fimi ,

creating new individuals bi1, ...bimi−1 ∈ ∆I and xi ∈ ∆D,

A′ := A ∪ {(a, bi1) : fi1, ..., (bimi−1, xi) : fimi}
Finally, A′ := A ∪ {(x1, ..., xn) : P}

Figure 3.2: Tableau expansion rules for concrete domains.

The constraint system A for ALC(D) is satisfiable if and only if cA is consistent (D-
consistency). The constraint system A for ALC(D) contains a clash if and only if one of
the following situations occurs in A:

1. {(a, b) : f, (a, x) : f} ⊆ A. This is an obvious contradiction since the concrete
individual should not be related to the same feature name as the abstract individual.

2. {(a, x) : f, a : ∀f.C} ⊆ A. This is an obvious contradiction since a concrete individ-
ual cannot be an element of a concept

3. {a : C, a : ¬C} ⊆ A. This is an obvious contradiction since an individual cannot be
in both a concept and its complement.

4. {(x(1)1 , ..., x
(1)
n1) : P1, ..., (x

(k)
1 , ..., x

(k)
nk) : Pk} ⊆ A and the corresponding conjunction∧

i<k Pi(x
(i)
1 , ..., x

(i)
ni) is not satisfiable in D.

If A does not contain a clash, A is said to be clash-free.
Let us use Example 3.1.1 to illustrate the tableau algorithm for concrete domains.

Example 3.1.1. Let concept description C be defined as follow:

C := Treadmill ⊓ ∃runningsurface.RunningSurface ⊓
=120 .(powerrequired) ⊓ > .(width, (runningsurface width))

After applying the tableau expansion rules in Figure 3.1, we obtain the following
constraint system A:

A ={a : Treadmill, a : ∃runningsurface.RunningSurface, (a, b) : runningsurface,
b : RunningSurface, a :=120 .(powerrequired), a :> .(width, (runningsurface width))}

Considering a :=120 .(powerrequired), If we apply the P -rule to this assertion, the P -
rule will introduce powerrequired-successor x. Then assertions (a, x) : powerrequired and
(x) :=120 are added to A and the conjunction of D-consistency AD is generated with the
first constraint =120 (x) as shown below:

A′ = A ∪ {(a, x) : powerrequired, (x) :=120}
AD = (=120 (x))

3.1. TABLEAU-BASED ALGORITHMS 33

Considering a :> .(width, (runningsurface width)), If we apply the P -rule to this asser-
tion, the P -rule will introduce width-successor y and (runningsurface width)-successor z.
Then assertions (a, y) : width, (a, z) : (runningsurface width), and (y, z) :> are added to A′

and the constraint > (y, z) is added to AD as shown below:

A′′ = A′ ∪ {(a, y) : width, (a, z) : (runningsurface width), (y, z) :>}
A′

D = (=120 (x)) ∧ (> (y, z))

Since there is no clash in A′′ and A′
D is consistent, the concept C is satisfiable.

3.1.2 Tableau-based Algorithms for Aggregations
Moreover, the tableau algorithm was extended to support aggregation mentioned in Sec-
tion 2.5.2 (Baader & Sattler, 2003) for EL(Σ). The main idea of this tableau algorithm
is to check a model for the abstract domain using expansion rules and then check the
consistency of the conjunction of constraints of the concrete domain. Now, let us describe
the tableau algorithm for the Description Logic EL(Σ) in Section 2.5.2. The tableau ex-
pansion rule for concrete domain P -rule in Figure 3.2 and ∃-rule in Figure 3.1 need to
be modified, as shown in Figure 3.3. The modified rules are referred as MP -rule and
M∃-rule respectively. The modified rule MP -rule is used to handle concrete domain and
aggregations Γ(R ◦ f). In addition to the rule modifications, one more rule, called E-rule,
needs to be added to assert elements in a multiset. This rule is used to ensure that if a
R-successor b of a has f -successor z and (a,X) : (R ◦ f) ∈ A, the f -successor z needs
to be in the multiset X. Before we describe the new expansion rules, let us give some
technical definitions. Let ∆I represent a set of abstract individuals, ∆D represent a set of
concrete individuals, agg(D) be a set of aggregation functions, agg(MS) represent the set
of aggregated variables, {Γ(X) | Γ ∈ agg(D) and X ∈ MS}, ∆Σ denote ∆D that provides
aggregations, and MS = {X,Y, Z, ...} represents a set of multiset variables. Three new
types of constraint axioms were introduced to handle aggregation as follows:

1. (a, Y) : (R ◦ f) for a ∈ ∆I , R ∈ NR, f ∈ NF , Y ∈ MS,

2. (α1, ..., αn) : P for αi ∈ ∆Σ, and

3. x : Y for x ∈ ∆D, Y ∈ MS

An aggregated variable Γ(X) is said to be an f1...fnΓ(R ◦ f)-successor of a in A if
and only if there exists an f1...fn-successor b of a in A and (b,X) : (R ◦ f) ∈ A. The
constraint axiom (α1, ..., αn) : P is the same as the constraint axiom (x1, ..., xn) : P ,
except that the domain of α is ∆Σ but the domain of x is ∆D. The constraint axiom x : Y
means that the individual x is in the interpretation of the multiset Y . αi can be either a
concrete individual or an aggregated variable Γ(X). If αi = Γ(X), then αi is the result of
aggregation Γ over multiset X. If A contains the axioms (a,X) : (R◦f) and (a, Y) : (R◦f),
such a pair of axioms is called a fork in A. This fork can be eliminated by replacing each
occurrence of X by Y . The constraint system A is satisfiable if and only if the consistency
of concrete domains Σ (Σ-consistency) is consistent. Σ-consistency consists of two types of
Σ-constraints (α1, ..., αn) : P and x : Y . In order to check Σ-consistency, the conjunction
AΣ is generated as follow:

AΣ :=
∧

(α1,...,αn):P∈A

P (α1, ..., αn)∧∧
Y occurs in A

Jxi | xi : Y ∈ AK ⊆ Y

34 CHAPTER 3. REASONING ALGORITHMS FOR DESCRIPTION LOGICS

M∃-rule :if 1.a : (∃R.C) ∈ A
2. for a role name R, {b1, ..., bn} are all R-successors of a and bi : C /∈ A for all bi

then Ai := A ∪ {bi : C}
An+1 := A ∪ {(a, b) : R, b : C} for a new individual b

MP -rule :if 1.a : P (u1, ..., un) ∈ A, and
2. for the feature chain ui, there is no ui-successor αi of a and
(α1, ..., αn) : P /∈ A,

then for each feature chain ui,

Ai :=


{(a, bi1) : fi1, ..., (bimi−1, xi) : fimi},

if ui = fi1...fimi

{(a, bi1) : fi1, ..., (bim−1, bimi) : fimi , (bimi , Xi) : (Ri ◦ fi)},
if ui = fi1...fimiΓi(Ri ◦ fi)

for new individuals bij ∈ ∆I , xi ∈ ∆Σ and multiset variable Xi ∈ MS.
Let αi be the ui-successor of a in Ai, where αi can be either xi or Γ(Xi)

Finally, A′ := A ∪ {(α1, ..., αn) : P} ∪
∪

1≤i≤n

Ai

E-rule :if 1.{(a, b) : R, (b, z) : f, (a,X) : (R ◦ f)} ⊆ A, and
2.z : X /∈ A

then A′ := A ∪ {z : X}

Figure 3.3: Tableau expansion rules for aggregations.

The Σ-consistency constraint AΣ is consistent if and only if AΣ has a solution. In
addition to the fork condition previously mentioned, a constraint system A contains a
fork if and only if {(a,X) : (R ◦ f), (a, Y) : (R ◦ f)} ∈ A for two distinct multisets
X,Y ∈ MS. The fork can be eliminated by replacing all occurrences of X by Y .

The ∃-rule need to be modified since the original ∃-rule in Figure 3.1 would cause
incomplete constraint systems. Let us use Example 3.1.2 to illustrate this problem.

Example 3.1.2. Considering the aggregation count, given a concept C as follow:

C := (∃R.P≥2(f)) ⊓ (∃R.P=2(f)) ⊓ P≤1(count(R ◦ f))

Applying the original ∃-rule in Figure 3.1, for an individual a : C, there are two
R-successors, b, c generated for ∃R.P≥2(f) and ∃R.P=2(f) respectively. Then two R ◦ f -
successors, x, y, are generated for b and c respectively and added to a multiset Y after
applying the MP -rule and E-rule. The Σ-consistency cannot be established since the
conjunction of Σ-consistency constraints, which has Jx, yK ⊆ Y ∧ (count(Y) ≤ 1), is in-
consistent. This is because the number of elements in Y is actually 2, which contradicts
the constraint count(Y) ≤ 1. In order to take this into account, the modified ∃-rule,
M∃-rule in Figure 3.3 tries to reuse all R-successors generated before generating a new
one. Applying the M∃-rule, for an individual a : C, the algorithm first generates one
new R-successor, b, for ∃R.P≥2(f), then one R ◦ f -successor, x, with f -value more than
or equal to 2 for b. Next, the algorithm tries to reuse b with x for ∃R.P=2(f) instead of
generating a new R-successor. Since the f -value of x is more than or equal to 2, it satisfies
both P≥2(f) and P=2(f). As a result, the conjunction of Σ-consistency constraints has

3.2. POLYNOMIAL-TIME SUBSUMPTION (CLASSIFICATION) ALGORITHMS 35

JxK ⊆ Y ∧ (count(Y) ≤ 1) and it is consistent. However, if this reuse is not possible
and x does not satisfy P=2(f), the algorithm will try to introduce a new R-successor for
∃R.P=2(f). This makes the M∃-rule non-deterministic.

3.2 Polynomial-Time Subsumption (Classification) Algorithms
For light weight Description Logic such as EL, a polynomial-time, completion-based sub-
sumption algorithm has been proposed (Brandt, 2004). In addition, this algorithm has
been extended to support EL+ and EL++ (Baader, Lutz, & Suntisrivaraporn, 2005). This
section will give an overview of the polynomial-time subsumption algorithm for EL.

The Description Logic EL does not allow negation. Therefore, concept subsumption
checking becomes the main problem of the EL family. The algorithm will perform the
following four steps in order to check subsumption relationships of all concepts in a given
TBox (Turhan, 2010).

1. Normalise a given TBox

2. Map the normalised TBox to completion sets

3. Apply completion rules to the completion sets

4. Read subsumption relationships in the completion sets

3.2.1 Normalisation
Given a TBox T , the purpose of the algorithm is to find subsumption relationships of
concepts and roles in T and to classify T (Baader, Brandt, & Lutz, 2005). Firstly, the
algorithm normalises T to a normalised TBox T ′ by creating new concept names according
to normalisation rules as described in Section 2.4.1 in linear time. Let us recall the
normalisation rule as shown below:

Ĉ ≡ D̂ ⇝ Ĉ ⊑ D̂, D̂ ⊑ Ĉ (NR1)
Ĉ ⊑ D̂ ⇝ Ĉ ⊑ E,E ⊑ F, F ⊑ D̂ (NR2)

A ⊓ Ĉ ⊑ B ⇝ A ⊓ E ⊑ B, Ĉ ⊑ E (NR3)
A ⊑ B ⊓ D̂ ⇝ A ⊑ B ⊓ E,E ⊑ D̂ (NR4)
∃R.Ĉ ⊑ B ⇝ ∃R.E ⊑ B, Ĉ ⊑ E (NR5)
A ⊑ ∃R.D̂ ⇝ A ⊑ ∃R.E,E ⊑ D̂ (NR6)

where A,B ∈ BNT , Ĉ, D̂ /∈ BNT , and E,F are fresh concept names introduced to define
complex concept description. Note that BNT , as described in Section 2.4.1, is the smallest
set of concepts containing: (i) the top concept (⊤); (ii) all concept names A of T in NC .

In addition, we can transform n-ary conjunctions of concept names, which is repre-
sented as ⊓iAi by applying the following equivalence transformation to the axiom:

Then T ′ consists of GCIs in the following forms:

A ⊑ B ⊓iAi ⊑ B

A ⊑ ∃R.B ∃R.A ⊑ B

where A,Ai, B are concept names.

36 CHAPTER 3. REASONING ALGORITHMS FOR DESCRIPTION LOGICS

3.2.2 Completion Rules
This algorithm works on a data structure called completion sets (Baader, Brandt, & Lutz,
2005; Turhan, 2010). Secondly, the algorithm will map T ′ to completion sets. There are
two types of completion sets used in this algorithm:

• S(A) for each concept name A appearing in T ′

• R(R) for each role name R appearing in T ′

In the algorithm, both types of completion sets are initialised as the following:

• S(A) := {A,⊤} for each concept name A appearing in T ′

• R(R) := ∅ for each role name R appearing in T ′

Thirdly, the algorithm applies the completion rules in Figure 3.4 to the completion sets
until no more rule can be applied. Finally, the algorithm reads subsumption relationships.

Rules Expression
CR1 If A1, ..., An ∈ S(C),⊓(A1, ..., An) ⊑ B ∈ T , and B /∈

S(C) then S(C) := S(C) ∪ {B}

CR2 If A ∈ S(C), A ⊑ ∃R.B ∈ T , and (C,B) /∈ R(R) then
R(R) := R(R) ∪ {(C,B)}

CR3 If (C,D) ∈ R(R), A ∈ S(D),∃R.A ⊑ B ∈ T , and
B /∈ S(C) then S(C) := S(C) ∪ {B}

Figure 3.4: Completion rules for EL (Suntisrivaraporn, 2009).

The rule CR1 is used to handle GCIs in the forms of A ⊑ B and ⊓iAi ⊑ B. The rule
CR1 ensures that if a concept A implies B w.r.t. T ′ and A is in the completion set of
any concept, B has to be in those completion sets as well. Similarly, if a conjunction ⊓iAi

implies B w.r.t. T ′ and the conjuncts Ai are in the completion set of any concept C, B
has to be in those completion sets. The rule CR2 is used to handle GCIs in the from of
A ⊑ ∃R.B. The rule CR2 ensures that if a concept A implies an existential restriction
w.r.t. T ′ and A is in the completion sets of any concept C, then C implies the existential
restriction. The rule CR3 is used to handle GCIs in the from of ∃R.A ⊑ B. The rule
CR3 ensures that if an existential restriction ∃R.A implies a concept B w.r.t. T ′, A is in
the completion set of any concept D, and C ⊑T ′ ∃R.D, then B has to be in the completion
set of C. This is because an existential restriction ∃R.A implies a concept B w.r.t. T ′ and
A is in the completion set of any concept D implies ∃R.D ⊑T ′ ∃R.A and ∃R.D ⊑T ′ B.
Then we have C ⊑T ′ ∃R.D and ∃R.D ⊑T ′ B. Therefore, C ⊑T ′ B.

The intuition is that these completion rules make implicit subsumption relationships
explicit in the following sense (Baader, Lutz, & Suntisrivaraporn, 2005; Turhan, 2010):

• B ∈ S(A) implies that A ⊑T ′ B

• (A,B) ∈ R(R) implies that A ⊑T ′ ∃R.B

In addition, it can be said that S(A) contains subsumers or super concepts of A and
R(R) contains only concept names, which subsumes A with existential restriction of R.
The algorithm is terminated after a polynomial number of steps. Then the subsumption

3.2. POLYNOMIAL-TIME SUBSUMPTION (CLASSIFICATION) ALGORITHMS 37

relationship between concept names A and B can be checked whether B ∈ S(A). The
algorithm can be done in polynomial time (Brandt, 2004).

As a result, it can be seen clearly that the polynomial-time subsumption algorithm is
more effective for EL than the tableau-based algorithms because of the high worst-case
complexity of the tableau-based algorithms. Moreover, the polynomial-time subsumption
algorithm does not need to transform subsumption to disjunction, which is the source of
high complexity.

At first, the algorithm has been implemented in the CEL ontology reasoner ini-
tially (Baader et al., 2006). CEL is reintroduced as an OWL 2 EL reasoner (Mendez &
Suntisrivaraporn, 2009). Over the years, this type of algorithms has been further studied
and improved. One of the results of this study is consequence-based procedures (Kazakov
et al., 2014). This procedure is implemented in the ELK reasoner (Kazakov et al., 2014).
This procedure applies the completion rules in a goal-directed way, which means that
it avoids redundant inferences. This makes this procedure more efficient than the origi-
nal procedure. This procedure also has several distinguished properties such as optimal
worst-case complexity and determinism, which means that this does not make choices or
backtracking. In addition, this procedure has been improved to support ALC (Simancik,
Kazakov, & Horrocks, 2011) and Horn-SHIQ (Kazakov, 2009). The improvements and
extensions of this procedure can be found in (Kazakov, Krötzsch, & Simancík, 2011; Kaza-
kov, Krötzsch, & Simancik, 2011; Kazakov, Kroetzsch, & Simancik, 2012; Kazakov &
Klinov, 2014a, 2014b).

38 CHAPTER 3. REASONING ALGORITHMS FOR DESCRIPTION LOGICS

Chapter 4

Constraint Programming

The long-standing research in Constraint Programming (CP) (Rossi, Beek, & Walsh, 2006)
has made tremendous progress. Implementations of CP-based techniques are referred as
Constraint Solvers. Constraint Programming can support very generic forms of problems
because Constraint Programming supports a wide range of constraints defined over fi-
nite domains such as numerical constraints, linear constraints, and Boolean constraints.
One of the advantages of Constraint Programming is model (problem) and solver are
clearly separated. The problem that we want to solve is defined declaratively, consisting
of variables and constraints, in a high-level way. Then this high-level model is solved
by a constraint solver. Advanced techniques such as Constraint Propagation (Bessiere,
2006) in CP have increased the number of problems that can be handled dramatically.
Constraint Propagation can highly prune the search tree by maintaining consistencies dur-
ing the search. Recently, a new approach to CP solving called Lazy Clause Generation
(LCG) (Ohrimenko et al., 2007) has been presented. The main idea of this approach is
to combine the advantages of Boolean Satisfiability (SAT) (Biere, Heule, van Maaren, &
Walsh, 2009) and CP together to make a powerful solver. Gathering from the idea of the
LCG approach, we believe that the powerful search and reasoning techniques offered by
CP can be exploited to tackle the sources of inefficiency of tableau-based algorithms and
improve the performance of ontology reasoning significantly.

In this chapter, the basic background notions of CP techniques, which are the baseline
of the novel approach for reasoning about Description Logic in this thesis, are described.
However, we do not go into the detail of specific theories of CP techniques. The main
techniques and technologies of Constraint Programming that we have exploited in this
work are described instead. In addition, the background of modelling that we exploited is
provided.

Firstly, we start by providing the basic notations of Constraint Programming. Then we
introduce some basic solving techniques for Constraint Programming such as Search (van
Beek, 2006) and Constraint Propagation (Bessiere, 2006; Fruhwirth & Abdennadher,
2006), which is a well-known approach used in Constraint Programming. Next, we move
to the modelling language called MiniZinc (Nethercote et al., 2007), which we use to
model Description Logic to be able to solve it using CP. Finally, we close this chapter by
explaining some advanced modelling and solving techniques that we exploited.

4.1 Basics on Search and Constraint Propagation
Constraint programming is a powerful approach for solving combinatorial problems and
it offers efficient techniques in a wide range of domains and applications such as schedul-
ing, planning, vehicle routing, computer networks, and bioinformatics (Rossi, van Beek,
& Walsh, 2006). CP supports many forms of constraints such as numerical constraints,

39

40 CHAPTER 4. CONSTRAINT PROGRAMMING

Boolean constraints, and constraints defined over finite domains. The basic idea of con-
straint programming is to solve a problem by satisfying given constraints in that problem.
A combinatorial problem consists of a set of decision variables and a set of constraints,
which are relations among the decision variables. Such a combinational problem is called
Constraint Satisfaction Problem (CSP) (Freuder & Mackworth, 2006). The goal of Con-
straint Programming is to find a solution to a CSP that satisfies all constraints by assigning
a value to each variable.

Generally, a Constraint Solver is any procedure that is able to solve such a prob-
lem. Most constraint solvers implement a well-known constraint solving algorithm that
is so-called Constraint Propagation. However, Constraint Propagation is not complete.
Therefore, it has to be interleaved with a search algorithm to achieve completeness. The
first search algorithm was introduced for Boolean Satisfiability (SAT) problems (Davis,
Logemann, & Loveland, 1962). Subsequently, the search algorithm has been extended to
handle generic forms of problems.

4.1.1 Basics on CP and Notation
In this section, the Constraint Satisfaction Problem (CSP) (Freuder & Mackworth, 2006),
which is the main problem of CP, is defined. The constraint satisfaction problem consists
of:

• a finite set of variables

• for each variable, a domain, which is a finite set of possible values

• and a set of constraints, each of which is a relation over a set of variables.

Then let us formally define the constraint satisfaction problem.

Definition 4.1.1. Let X be a finite set of variables, i.e., {x1, x2, ..., xn}, V be a finite set
of values, i.e., {v1, v2, ..., vm}. D is a set of domains {D(x1), D(x2), ..., D(xn)} for X such
that D(xi) ⊆ V . D(xi) is the set of possible values of xi. A domain D(xi) is stronger than
a domain D′(xi) if D(xi) ⊆ D′(xi) for all xi ∈ V . It can be written as D(xi) ⊑ D′(xi).
C is a set of constraints {c1, c2, ..., ct}. A constraint ci is a pair (scope(ci), rel(ci)), where
scope(ci) = {xi, x2, ..., xs} is the constraint scope, which is an ordered subset of X, and
rel(ci) is the constraint relation, which is a subset of the Cartesian product of the domains
of variables in scope(ci)D(x1)×D(x2)×...×D(xs) that specifies the allowable combinations
of values of the variables in scope(ci).

A Constraint Satisfaction Problem (CSP) is a triple P = ⟨X,D,C⟩. A solution of
CSP P is a n-tuple sol(P) = ⟨a1, a2, ..., an⟩ such that ai ∈ D(xi) and each constraint ci
is satisfied in the relation rel(ci), which is the projection of sol(P) onto scope(ci). An
assignment is written as xi = vi, which means that a variable xi is assigned to a value
vi. Let l = {xi1 = vi1 , xi2 = vi2 , ..., xip = vip} be a set of assignments and scope(l) =
{xi1 , xi2 , ..., xip} be the set of variables involved in l. A complete assignment is an l
such that scope(l) = X. A constraint ci is satisfied by a set of assignments l such that
scope(ci) ⊆ scope(l) if l specifies an allowable combination of values that the variables in
scope(ci) can be assigned. Therefore, a solution sol(P) of CSP P is a complete assignment
such that all constraints are satisfied.

Next, we will use Example 4.1.1 to illustrate a CSP instance.

Example 4.1.1. Given a CSP P as follows:

• the set of variables X = {x1, x2, x3}

• domains D(x1) = {1, 2}, D(x2) = {0, 1, 2, 3}, D(x3) = {2, 3}

4.1. BASICS ON SEARCH AND CONSTRAINT PROPAGATION 41

• the set of constraints C = {x1 ̸= x2 ̸= x3, x1 > x2, x1 + x2 = x3}

This CSP P has 3 variables: x1, x2, and x3. In addition, each variable xi is associated
with D(xi). There are three constraints. The first constraint x1 ̸= x2 ≠ x3 states that all
variables must have different values. The second constraint x1 > x2 states that the value
of x1 must be greater than the value of x2. The third constraint x1 + x2 = x3 states that
adding the value of x1 to the value of x2 must be equal to the value of x3. One possible
solution of this CSP is the set of assignments {x1 = 2, x2 = 1, x3 = 3}.

Generally, the complexity of solving the constraint satisfaction problem is NP-complete (Feder
& Hell, 2006). This means it is unlikely that there exists an algorithm to find a solution
in polynomial time.

4.1.2 Search
After a CSP is modelled, there are many techniques that can be used to solve it (Freuder &
Mackworth, 2006). A backtracking (BT) search is the most common algorithm that is used
to solve CSP systematically (van Beek, 2006). A backtracking search algorithm performs
a depth-first traversal of a search tree to find a solution to a CSP. In a simple formal
backtracking search, each node of the search tree is corresponding to variable assignment
decision. The search tree is generated as the search progresses. When a node in the search
tree is visited, branches are built. Each branch represents alternative choices that may
need to be examined in order to find a solution. The method of generating a node of the
search tree is usually called branching strategy (van Beek, 2006), and several alternatives
have been proposed and examined in the literature. After a node is generated, constraints
are used to check whether that node may lead to a solution of the CSP and to prune
subtrees that do not lead to a solution. If a node in the search tree does not lead to
a solution, that node is called a dead-end. Backtracking search algorithms are typically
complete search methods for constraint satisfaction problems. They guarantee that a
solution will be found if there exists one, or show that there is no solution for a CSP.

More precisely, basic backtracking search tries to build a partial solution by assigning
values to variables until it reaches a dead-end. This means that that partial solution cannot
be further extended consistently. Since there is branching during search process, when it
reaches a dead-end, it cancels the last decision and tries another branch. This search is
done systematically in order to guarantee that all possible branches will be tried. The
search also checks whether a new choice (candidate solution) made satisfies the respective
constraints one by one instead of checking after a complete assignment is generated for all
variables.

Generally, in a simple formal backtracking search, the representation of the backtrack-
ing search process is a search tree, where each node after the root node represents an
assignment of a value to a variable and each branch represents a candidate partial so-
lution. If a partial solution is found to be unextended, a subtree corresponding to that
partial solution can be pruned. When a node is visited during the backtracking search pro-
cess, only constraints that have variables instantiated (constraints that have the current
decision variable and the past variables along a branch) are checked at that node. If con-
straints are not satisfiable, the next choice of value of the current variable is tried. If there
are no values of the current variable left that can satisfy all constraints, the backtracking
search backtracks to the most recently instantiated variable. When the last variable is
instantiated and all constraints are satisfied, a solution is found.

Let us use Example 4.1.1 to illustrate a search tree built by the backtracking search
algorithm as shown in Figure 4.1. Recall that the problem in Example 4.1.1 requires
a complete assignment of three variables x1, x2, x3, where their domains are D(x1) =
{1, 2}, D(x2) = {0, 1, 2, 3}, D(x3) = {2, 3} to satisfy the constraints x1 ̸= x2 ̸= x3, x1 >

42 CHAPTER 4. CONSTRAINT PROGRAMMING

x2, x1 + x2 = x3. As shown in Figure 4.1, the root node at level 0 is the empty set of
assignments and a node at level i is a set of assignments x1 = v1, .., xi = vi. When the
backtracking search reaches a dead-end (the red node in the search tree), that means the
current assignments do not satisfy the constraints and the subtrees are pruned. Then
the backtracking search backtracks and tries the next value of the current varaible. For
example, at level 2, when assignments x1 = 1, x2 = 1 do not satisfy the constraint x1 > x2,
a backtracking process occurs and the next value, which is 2 is tried. Note that this search
tree performed under the assumption that the instantiation is in a static order, where
variable xi is always selected at level i in the search tree and values are assigned to the
variables in the order of domain of each variable xi.

level 0

x1 = 1 x1 = 2 level 1

x2 = 0 x2 = 1 x2 = 2 x2 = 3

x3 = 2 x3 = 3

x2 = 0 x2 = 1 level 2

x3 = 2 x3 = 3

x3 = 2 x3 = 3 level 3

Figure 4.1: A search tree of backtracking search of Example 4.1.1.

A more general version of backtracking search does not only assign values to variables
on each node, but also can split a problem into two subproblems by adding constraints on
branches. For example, given a CSP P = ⟨X,D,C⟩ from Example 4.1.1, a backtracking
search can split P into two subproblems P1 = ⟨X,D,C ∪ {x = 1}⟩ on one branch and
P1 = ⟨X,D,C ∪{x ̸= 1}⟩ on another branch. Then the search algorithm explores P1 until
a solution is found. If there is no solution to P1, the search then backtracks to P2. If there
is no solution to either P1 or P2, P has no solution.

The main drawback of backtracking search is thrashing. A dead-end is reached due
to the same reason multiple times since backtracking search does not identify the real
reason of the conflict. As can be seen from Figure 4.1, the branches, {x1 = 1, x2 = 1},
{x1 = 1, x2 = 2}, and {x1 = 1, x2 = 3}, reach a dead-end because of the constraint
x1 > x2, which states that a value of x1 must be greater than a value of x2. In addition,
backtracking search may not terminate within polynomial time. Due to these reasons,
backtracking search has been improved in order to maximise its practical efficiency.

One of the improvements is Backjumping (BJ) (Gaschnig, 1979). The main differ-
ence between backtracking algorithm and backjumping algorithm is that if backjumping
algorithm finds an inconsistency, it identifies the source of inconsistency by analysing the
situation. It uses the unsatisfiable constraints to find the conflicting variable. Then it
will backjump to the most recent conflicting variable. In addition, the improvement has
been done by equipping backtracking search with constraint propagation (Bessiere, 2006)
techniques to remove inconsistent values at the early state of the search, or making use of

4.1. BASICS ON SEARCH AND CONSTRAINT PROPAGATION 43

search heuristics to guide search effectively (van Beek, 2006). The techniques are not al-
ways independent and the search can be improved significantly by combining two or more
techniques. Robust backtracking search algorithms, which can solve large and challenging
practical problems, can be obtained by the best combinations of these techniques.

4.1.3 Constraint Propagation
Thrashing behaviour always happens when backtracking search algorithms are used to
solve CSP problems (Bobrow & Raphael, 1974; Freuder & Mackworth, 2006). In order
to minimise thrashing behaviour, Constraint Propagation (Bessiere, 2006; Fruhwirth &
Abdennadher, 2006) is used. Constraint propagation is a technique used to maintain
Local Consistency (Bessiere, 2006), which can identify and eliminate thrashing behaviour,
during backtracking search. Constraint propagation makes implicit constraints explicit
and propagates information contained in that constraint to the other constraints. This
can dramatically reduce the search space that need to be searched by removing many
dead-ends.

For Constraint Propagation (Bessiere, 2006; Fruhwirth & Abdennadher, 2006), the
main idea is to reduce the size of a problem by reducing the size of domains of the vari-
ables until all variables have only one value (solution), which satisfies all constraints. As
mentioned earlier, Constraint propagation is incomplete. Therefore, Constraint propaga-
tion has to be combined with search to provide a complete solution procedure. Constraint
propagation propagates the information contained in one constraint to the neighbouring
constraints. The information is domain changes of each variable of the constraint. It
removes the inconsistent values from the domains of the variables of the constraints. This
process is performed repeatedly until there is no domain change. This means that Con-
straint propagation reaches a fixed-point. The process of this technique aims to transform
a CSP problem into an equivalent one that may be easier to solve without loosing solu-
tions of the problem. The entities that perform constraint propagation on a constraint are
called propagators. A propagator f is a monotonically decreasing function from domains
to domains: f(D(xi)) ⊑ D(xi).

Local Consistency is a property that needs to be maintained on the constraints of a
problem in order to detect and eliminate inconsistent partial assignments. Local consis-
tencies are typically combined with backtracking search algorithms in order to remove
some but not all incompatible values from domains of variables. The simplest consistency
technique that can be used on a CSP is called Node Consistency (NC) (Bessiere, 2006).
This consistency technique only supports unary constraints. A CSP is node consistent if
and only if all values in a domain of a variable satisfy the unary constraints of that vari-
able. If a domain of a variable contains a value that does not satisfy the unary constraints
on that variable, the instantiation of that variable always lead to an immediate failure.
In easy words, solutions do not have that value. Therefore, the node consistency can be
obtained by removing those values from the domain of that variable that do not satisfy
the unary constraints. For example, given a CSP that contains the constraint c1 : x < 10,
the domain of x is D(x) = [1..20]. x is not node consistent with respect to c1. As a result,
the propagation of c1 will remove values [10..20] from D(x).

The most common and popular local consistency is Arc Consistency (AC) (Mackworth,
1977a; Bessiere, 2006). In contrast to node consistency, arc consistency is used to guarantee
consistency of binary constraints. The main idea of arc consistency aims to ensure that all
values in a domain are consistent with respect to every constraint. In a constraint graph,
binary constraints are considered as arcs (directed edges). A binary constraint is a relation
on two variables. An arc (xi, xj) is arc consistent if and only if for every value vi in the
domain of xi, which satisfies the constraints on xi, there exists some values vj in the domain
of xj such that xi = vi and xj = vj are permitted by the binary constraint between xi and

44 CHAPTER 4. CONSTRAINT PROGRAMMING

xj . Since an arc is considered as a directed edge in constraint graph, if an arc (xi, xj) is
arc consistent, it does not mean that an arc (xj , xi) is consistent. A CSP is arc consistent
if and only if every arc (xi, xj) in its constraint graph is arc consistent. Currently, modern
constraint solvers use non-binary constraints, such as linear constraints or all different,
and that the notion of arc consistency can be easily generalised to the non-binary case.
This is called Generalised Arc Consistency (GAC) (Mackworth, 1977b; Bessiere, 2006).
In addition, many propagators for constraints (e.g. for linear constraints) do not actually
perform arc consistency but Bound Consistency (J. Puget, 1998).

Let us use Example 4.1.1 to illustrate a search tree built by the backtracking search
algorithm combined with Constraint propagation as shown in Figure 4.2. Recall that the
problem in Example 4.1.1 requires a complete assignment of three variables x1, x2, x3,
where their domains are D(x1) = {1, 2}, D(x2) = {0, 1, 2, 3}, D(x3) = {2, 3} to satisfy the
constraints x1 ̸= x2 ̸= x3, x1 > x2, x1+x2 = x3. At level 1 of the search tree in Figure 4.2,
the variable x1 is assigned to 1. The values 1, 2, and 3 are removed from D(x2) of variable
x2 according to the constraint x1 > x2. In addition, the values 2 and 3 are removed from
from D(x3) of variable x3 due to the constraint x1 + x2 = x3. As can be seen, since the
domain D(x3) is empty, the search tree reaches a dead-end and the next value of variable
x1 will be tried. Next, the variable x1 is assigned to 2. The values 2 and 3 are removed
from D(x2) of variable x2 according to the constraint x1 > x2. The value 2 is removed
from D(x3) of variable x3 due to the constraint x1 ̸= x2 ̸= x3. Then the value 0 is removed
from D(x2) of variable x2 according to the constraint x1 + x2 = x3. Then there is only
one value in the domains of each variables. As a result, this is a solution. Note that this
search tree performed under the assumption that the instantiation is in a static order,
where variable xi is always selected at level i in the search tree and values are assigned
to the variables in the order of domain of each variable xi. Considering the search trees
in Figure 4.1 and Figure 4.2, the number of fails is reduced from 8 (the search tree of
backtracking search without constraint propagation) to 1 (the search tree of backtracking
search with constraint propagation). This means that Constraint propagation can improve
the efficiency of the backtracking search.

level 0

x1 = 1 x1 = 2 level 1

x2 = 1 level 2

x3 = 3 level 3

Figure 4.2: A search tree of backtracking search combined with constraint propagation of
Example 4.1.1.

4.2. MINIZINC MODELLING LANGUAGE 45

As can be seen, there are many techniques that we can exploit to improve the perfor-
mance of DL reasoning especially dealing with OR-branching. Let us use Example 4.1.2
to illustrate the advantage of CP techniques comparing to tableau-based algorithm.

Example 4.1.2. Given a concept C := A ⊔ B ⊔ D, where A, B, and C are atomic
concepts. Let A be a constraint system and a is an individual. Then we will use the
tableau-based algorithm described in Section 3.1 and CP techniques to solve concept
satisfiability problem.

Figure 4.3 shows that there are 3 branches, when the tableau-baed algorithm is applied
to C. Then the tableau-baed algorithm needs to check every branch in order to check
concept satisfiability of C. On the other hand, from Figure 4.4, CP starts by assigning
A to be true. Then CP can find a solution, where C is satisfiable, using constraint
propagation. One of solutions is A = true,B = true, C = true. CP do not perform
branching and checking all branches in order to check concept satisfiability of C. In this
case, CP use constraint propagation to deal with disjunction. As a result, CP can check
concept satisfiability faster than the tableau-baed algorithm in this case.

a A = {A ⊔B ⊔ C}

a A = A ∪ {B}a A = A ∪ {A} a A = A ∪ {C}

Figure 4.3: Solving concept satisfiability in Example 4.1.2 using tableau-based algorithm.

A ⊔B ⊔ C

B = true, C = true

A = true

Figure 4.4: Solving concept satisfiability in Example 4.1.2 using CP techniques.

4.2 MiniZinc Modelling Language
As mentioned in Section 2.3, we normally use the word model for the interpretation that
satisfies a concept or TBox in Description Logic. Therefore, the model for Constraint
Programming that we will describe in this thesis is stated as constraint model. In order
to solve a problem using Constraint Programming, the problem needs to be defined as
a constraint model. There are many different modelling languages since each constraint
solver is compatible with different modelling languages (Nethercote et al., 2007). This
is very difficult to constraint modellers, who would like to conduct experiments using
different solvers since they may need to learn new modelling languages.

Therefore, the modelling language that we exploited in this work is MiniZinc (Nethercote
et al., 2007). MiniZinc is a medium-level declarative modelling language. In addition,

46 CHAPTER 4. CONSTRAINT PROGRAMMING

MiniZinc has been developed as a standard modelling language for modelling Constraint
Programming problems. It is also high-level and expressive enough to express most CP
problems. As a standard modelling language, MiniZinc is solver-independent. This means
that once the problem is modelled in MiniZinc constraint model of the problem can be
solved by different constraint solvers. MiniZinc has been found useful in a number of ap-
plications such as Middleware for Adaptation of Web Service Compositions (Lu & Tosic,
2010), Portfolio Selection in finance and economics (de la Barra et al., 2013), and Data
Mining (Guns et al., 2013).

Firstly, the basic specification that we exploited of MiniZinc such as types and expres-
sions is provided. Then an example of how the specification of MiniZinc is close to the
syntax and semantics of Description Logic is described.

4.2.1 Basic Specification of MiniZinc

Generally, a MiniZinc problem has two components. The first component is constraint
model, which describes the structure of a class of problems. The second component is
data, which specifies a particular problem within that class. In this thesis, only constraint
models are considered. All specifications here are gathered from (Nethercote et al., 2007).

There are three scalar types: Booleans (specified as bool), integers (specified as int),
and floats (specified as float), supported by MiniZinc. In addition, MiniZinc supports
two compound types: sets (specified as set) and arrays (specified as array). In addition
to types, MiniZinc supports two different instantiations (inst) of variables. A variable can
be defined as either parameter (specified as par), which is a variable in the model that
is fixed to a known value, or decision variable (specified as var), which is a variable with
unknown value.

Those three scalar types, Booleans, integers, and floats, can be either parameter or
decision variable. For instance, var int:x;, bool:y;, and par float:z; are variable of
types, integers, Booleans, and floats respectively. Note that if the inst is omitted, the
default is par. Any par variable can be initialised in MiniZinc constraint models. For
example, int:x = 1..5; is an integer variable that needs one value in a range of 1 to 5.

Sets of integers can be either par or var. The other sets must be par. In addition, sets
can contain only scalars which are par. For example, the declaration of the set variable s1,
var set of 1..5:s1;, is allowed. However, the declarations of set variables s2 and s3,
var set of {true, false}:s2; and var set of 1.5..5.5:s3;, are not allowed since
y and z are not integers.

Arrays can be only par variable with fixed length. As normal arrays in other program-
ming language, they can have multi-dimension. Each dimension is defined by a contiguous
range of integers. Arrays can contain par or var scalars or sets of integers. For exam-
ple, array[0..5,0..5] of var set of 1..5:a is a 2-dimension array of integer decision
variables.

In addition, set ranges, set literals, and par set variables can be used as types of
variable. The types of variables is the same type of declared set and the value of variable
is constrained to a member in the set. For example,

1. 0..5:x1; means that the type of variable x1 is integer and the value of x1 is between
0 to 5,

2. var {2,4,6}:x2; means that the type pf variable x2 is integer and the value of x2
is in {2,4,6},

3. var 0.2..1.5:x3; means that the type pf variable x3 is float and the value of x3
is between 0.1 to 1.5.

4.2. MINIZINC MODELLING LANGUAGE 47

There are several kinds of expressions that are supported by MiniZinc. Variable names
are expressions and they can be written using alphabets and number, e.g. x1 and x2.
Scalar literals are written as usual such as 0, 1.5, and true. Sets are stated using set liter-
als or set comprehensions. For example: {0,1,2} or {i+j | i,j in 1..5 where i == j}.
Multiple variables per generator, multiple generators are allowed in set comprehensions.
A filtering where clause is allowed in generators.

Similarly, Arrays are stated using array literals or array comprehensions. For example:
[0,1,2] or [i | i in 1..5]. If-then-else expressions are allowed. For instance, we can
use if i > 0 then i = 1 else i = 0 endif in a MiniZinc constraint model. Another
important expression for this work is functions since they can be used to support aggre-
gation (see Section 7). A function can be called as usual, e.g. even(x). The function can
be called with combining an array comprehensions. A generator call P(Gs)(E) is same
as P([E|Gs]). Note that the parentheses around the E are compulsory to avoid possible
ambiguity, where the generator call is part of large expression. For example, the function
sum can be used as sum(i,j in 1..5)(d[i,j]) or sum([d[i,j] | i,j in 1..5]).

MiniZinc supports many useful built-in operations. The operations that are important
for this work include comparisons (e.g. ==, >=), arithmetic operations (e.g. sum, min),
logical operations (e.g. \/, forall), set operations (e.g. intersect, union, subset), and
coercions (e.g. bool2int). These operations work with parameters and decision variables.

Now, we have presented all variable types, expressions and operations that are neces-
sary for this work. Next, the relationship between MiniZinc and Description Logic will be
presented.

4.2.2 MiniZinc and Description Logic
This section presents the relationship between Description Logics and CP models by en-
coding the Description Logic EL presented in Section 2.4.1 into MiniZinc. Regarding the
specification in Section 4.2.1, we now show how the Description Logic EL can be translated
to MiniZinc as follows:

• Individuals a, b are translated to integers, i.e., 1, 2.

• The top concept ⊤ is translated to a set variable of integers T. T denotes the abstract
domain or universe (a set of all individuals in the domain).

• A concept A is easily translated to a set variable of integers A.

• For concept conjunction A ⊓ B, the concept name A and B are translated to set
variables of integers A and B respectively. Then the conjunction ⊓ is translated to
set operation intersect. As a result, the concept conjunction A ⊓ B is translated
to A intersect B.

• For existential restriction ∃R.B, the concept name B is translated to a set variable
of integers B. The role R is translated to an array variable of set variables of in-
tegers R, where indexes of R are predecessor individuals and individuals in the set
are R-successors. For example, for an array R = [{2,3},{4,5}], this means that
individuals 2, 3 are R-successors of the individual 1 and individuals 4, 5 are R-
successors of the individual 2. On the other hand, the individual 1 is predecessor
of individuals 2, 3 and the individual 2 is predecessor of individuals 4, 5. The se-
mantics of existential restriction is that there exists at least one R-successor, which
is an element in B. As a result, the existential restriction can be translated to either

{i | i in T where exists(R[i] intersect B)}

or

48 CHAPTER 4. CONSTRAINT PROGRAMMING

{i | i in T where card(R[i] intersect B)>=1}

where exists is an operation to check existence of elements in a set, card is an
operation to get cardinality of a set, and i is an individual.
As can be seen, there are two way to translate the existential restriction. Based on
our preliminary experience, the encoding based on the exists function is more effi-
cient than using the card function. However, a more detailed evaluation of different
encodings should be performed as future work.

• The concept inclusion A ⊑ B is translated to A subset B using the subset opera-
tion.

• The concept equivalence A ≡ B is translated to A = B.

Let us use the following example to illustrate how to encode an EL TBox to a MiniZinc
constraint model.

Example 4.2.1. Given an EL TBox T containing the following axioms:

GeneralisedStructure ⊑ DomainCategory
AbstractStructure ⊑ GeneralisedStructure

DiabetogenicStructure ≡ GeneralisedStructure ⊓
∃ IsCausallyLinkedTo.Diabetes

Before we encode this TBox, we need to normalise T to the following TBox T ′ as
described in Section 2.4.1:

GeneralisedStructure ⊑ DomainCategory
AbstractStructure ⊑ GeneralisedStructure

DiabetogenicStructure ≡ GeneralisedStructure ⊓A

A ⊑ ∃ IsCausallyLinkedTo.Diabetes

A is a fresh introduced concept name. Then we can encode T ′ to the following MiniZinc
constraint model:

GeneralisedStructure subset DomainCategory
AbstractStructure subset GeneralisedStructure
DiabetogenicStructure = GeneralisedStructure intersect A
A subset {i | i in T where
card(IsCausallyLinkedTo[i] intersect Diabetes) >= 1}

Note that we do not need to normalise the equivalence to subsumption since the equiv-
alence can be translated directly to =.

A summary of MiniZinc syntax of EL is presented in Table 4.1. In Table 4.1, due to
the presentation, we will use some symbols that are very close to MiniZinc syntax instead
of the actual MiniZinc syntax. For example, the intersect operation is represented as ∩.

The semantics of EL (and other DLs) is normally defined in terms of interpretations
as described in Section 2.4.1. In order to explain the relationship between MiniZinc and
Description Logic, we will describe the semantics using Set Theory.

The semantics of MiniZinc is defined in terms of solutions. MiniZinc is used to solve
CSPs, for which solutions are well defined (Freuder & Mackworth, 2006). A solution S
consists of a nonempty set TS , namely the domain of S, and a solution function ·S that

4.2. MINIZINC MODELLING LANGUAGE 49

Table 4.1: The MiniZinc syntax of EL.

Concepts Syntax MiniZinc Syntax
top concept ⊤ T
atomic concept A A
conjunction Ĉ ⊓ D̂ Ĉ ∩ D̂

existential restric-
tion

∃R.Ĉ
{i | i in T where exists(R[i] ∩ Ĉ)}
or
{i | i in T where card(R[i] ∩ Ĉ)>=1}

Axioms Syntax MiniZinc Syntax
concept inclusion
(subsumption)

Ĉ ⊑ D̂ Ĉ ⊆ D̂

concept equiva-
lence

Ĉ ≡ D̂ Ĉ = D̂

maps each set variable of atomic concept (or concept name) A to a set AS ⊆ TS , each array
variable of atomic role (or role name) R to a set of pairs of individuals RS ⊆ TS × TS , and
each integer of individual name a to the corresponding element aS ∈ TS . The extensions of
·S to complex concepts and roles are defined in the Semantics column in Table 4.2, where
(a, b) ∈ RS means that an individual b in TS is a RS-successor of a. A concept description
Ĉ is defined through the concept constructs listed at the top of Table 2.4. For example,
Ĉ = A ⊓ B ⊓ C is encoded into Ĉ = A ∩ B ∩ C. Then the semantics of Ĉ is defined as
ĈS = AS ∩ BS ∩ CS .

Table 4.2: The syntax and semantics of EL in terms of sets.

Concepts MiniZinc Syntax Semantics
top concept T TS
atomic concept A AS

conjunction Ĉ ∩ D̂ ĈS ∩ DŜ

existential restric-
tion

{a | a in T where
exists(R[a] ∩ Ĉ)}
or
{a | a in T where
card(R[a] ∩ Ĉ)>=1}

{a ∈ TS |∃b : (a, b) ∈ RS ∧ b ∈ ĈS}

Axioms MiniZinc Syntax Semantics
concept inclusion
(subsumption)

Ĉ ⊆ D̂ ĈS ⊆ DŜ

concept equiva-
lence

Ĉ = D̂ ĈS = DŜ

The semantics in terms of sets is shown in Table 4.2. In Table 4.2, the intersect
operation is represented as ∩ due to presentation reason.

In this section, the simple translation from Description Logic to MiniZinc is presented
in order to give an idea about the relation between MiniZinc and Description Logic. With
this MiniZinc translation, we can perform the reasoning services, consistency checking,
concept satisfiability, and concept subsumption, as described in Section 2.3. More details
of this translation will be given in Chapter 5 and 7.

50 CHAPTER 4. CONSTRAINT PROGRAMMING

4.3 Advanced Modelling and Solving Techniques
This section introduces some advanced modelling and solving techniques that we exploited.
The first technique is called Lazy Clause Generation (LCG) (Ohrimenko et al., 2007). This
technique is a CP advanced solving technique, which takes strength of SAT solving and
CP solving techniques. The second technique is Symmetry Breaking (J.-F. Puget, 1993).
This technique enables us to reduce symmetry (J.-F. Puget, 2005) in constraint models.
The issue of symmetry is that it may require redundant search to solve constraint models.
The final technique is Search Heuristic (van Beek, 2006). Since an ordering of decisions
of variables in solving CSP, this technique helps us to improve the solving process.

4.3.1 Lazy Clause Generation

Recently, a new approach for CP solving has been proposed. This approach is called
Lazy Clause Generation (LCG) (Ohrimenko et al., 2007). This approach combines the
advantages of SAT solving such as efficient nogood learning and backjumping with the
advantages of CP solving such as efficient constraint propagation and simple and powerful
modelling. This leads to the development of an efficient learning CP solver. In the original
model of Lazy Clause Generation (Ohrimenko et al., 2007), the constraint propagation
engine (finite domain (FD) propagation) is built inside a SAT solver. That means a
search is controlled by SAT and a constraint propagation engine is considered as a clause
generator for SAT. The advantages of SAT solvers are:

• Unit Propagation: The propagation of SAT solvers is specialised for Boolean vari-
ables, with clausal constraints of the form l1 ∨ l2 ∨ ... ∨ ln where li is a literal. A
literal is a Boolean variable or its negation. Unit propagation can detect a conflict
and simplify a clause regarding literals efficiently using watch literals.

• Conflict Analysis analyses the structure of unit propagation and generates new learnt
clauses (nogoods) to ensure that the conflict will not happen again.

The original Lazy Clause Generation works as follows. The search is started and
controlled by the SAT engine. After a decision is made, unit propagation is performed
until it reaches a unit propagation fixpoint with a partial assignment. A domain D(xi)
is generated from fixed literals in the assignment. Then an appropriate propagator is
performed. If the domain generated by propagators f(D(xi)) is different from the original
domain D(xi), constraint propagators act as clause generators for a SAT solver. The
constraint propagators generate clauses that explain the changes in domains instead of
performing propagation to domains to obtain new domains. Each clause generated is
added to the SAT solver. Then a new round of unit propagation is started. This continues
until fixpoint when the next SAT decision is made. When a conflict is detected, an
explanation of the conflict is constructed. If the explanation of failure is added to SAT
engine, it will force SAT to fail and start nogood construction. After that, it backjumps
to where the nogood would first propagate and the the domain D(xi) is reset back to its
previous state.

The integer variables of the finite domain problem need to be represented as Boolean
variables in order to achieve this. The integer variables x with D(x) = [l..u], where [l..u] is
the range {d ∈ Z|l ≤ d ≤ u}, can be represented as the Boolean variables [[x = l]], ..., [[x =
u]] and [[x ≤ l]], ..., [[x ≤ u− 1]]. The variable [[x = d]] is true if the value d is taken by x.
Otherwise, it is false. Similarly, the variable [[x ≤ d]] is true if a value less than or equal
to d is taken by x. Otherwise, it is false. For integer variables with D(x) = [0..1], they
can be considered as a Boolean variable. In order to maintain consistency of domains, for

4.3. ADVANCED MODELLING AND SOLVING TECHNIQUES 51

any integer variable x, the clauses DOM(x) that encode [[x ≤ d]] → [[x ≤ d + 1]], where
l ≤ d ≤ u− 1 and [[x = d]] ↔ [[x ≤ d]] ∧ ¬[[x ≤ d− 1]] are added to the SAT solver.

Next, let us use Examples 4.3.1 and 4.3.2 to illustrate how the original lazy clause
generation works.

Example 4.3.1. Consider a constraint c = x0 ↔ x1 + 1 ≤ x2 and the current domains
are D(x0) = [0..1], D(x1) = [1..10], D(x2) = [−2..6]. Assuming that unit propagation
determine that ¬[[x ≤ 7]], this changes D(x1) = [1..10] to D′(x1) = [8..10]. Then the
propagator f for c is performed to the domain D′. It obtains f(D′(x0)) = 0. The
clausal explanation of the change in domain of x1 is ¬[[x1 ≤ 7]] ∧ [[x2 ≤ 6]] → ¬x0.
This explanation is added to the SAT solver as [[x1 ≤ 7]] ∨ ¬[[x2 ≤ 6]] ∨ ¬x0. Domain
D′′(x0) = {0} is created due to this. Then the propagator f needs to be re-examined.

Example 4.3.2. Consider constraints C = {x0 ≤ x1, x0 = x2 + x3, x2 ≥ 4 ∨ x3 ≥ 5} and
the current domains are D(x0) = [1..10], D(x1) = [1..10], D(x2) = [2..5], D(x3) = [3..5].
Assume that the search adds the new clause x1 ≤ 5, which can be represented by [[x1 ≤ 5]].
The upper bound of x0 is changed to 5 ([[x0 ≤ 5]]) with explanation [[x1 ≤ 5]] → [[x0 ≤ 5]]
due to the constraint x0 ≤ x1. The upper bound of x2 is changed to 2 ([[x2 ≤ 2]]),
and x3 to 3 ([[x3 ≤ 3]]) with explanations [[x0 ≤ 5]] ∧ ¬[[x3 ≤ 2]] → [[x2 ≤ 2]] and
[[x0 ≤ 5]] ∧ ¬[[x2 ≤ 1]] → [[x3 ≤ 3]] due to the constraint x0 = x2 + x3. The constraint
x2 ≥ 4 ∨ x3 ≥ 5, which can be encoded to a clause ¬[[x2 ≤ 3]] ∨ ¬[[x3 ≤ 4]], makes
¬[[x3 ≤ 4]] true. However, by the domain constraint, it makes [[x3 ≤ 3]] → [[x3 ≤ 4]] false.
The explanation of this conflict (nogood) is ¬[[x3 ≤ 2]] ∧ ¬[[x2 ≤ 1]] ∧ [[x0 ≤ 5]] → false.
This explanation is constructed using the first unique implication point (1UIP) (Zhang,
Madigan, Moskewicz, & Malik, 2001).

However, the drawback of the original model is the search is not programmable and
flexible. Therefore, the lazy clause generation has been re-engineered (Feydy & Stuckey,
2009). In the new model, a CP solver is a master solver and a SAT solver is considered as
a global propagator constructed inside the CP solver. The advantages of the new model
are the search is programmable, search strategies can be specified for a particular problem
and it is more flexible than the original model. The evaluation of the new model also shows
significant improvement. This technique has been implemented in CP solvers, Opturion
CPX1 and Chuffed2.

4.3.2 Symmetry Breaking
A Symmetry of a CSP is a mapping of the CSP onto itself that preserves its structure or its
solutions (J.-F. Puget, 2005). Symmetries occur naturally in many problems. In addition,
symmetries may be introduced when a problem is modelled. Symmetry is considered
a fundamental issue in constraint satisfaction since the symmetry may require a large
amount of redundant search to solve a problem.

Solution symmetry (Cohen, Jeavons, Jefferson, Petrie, & Smith, 2006) is a permutation
of the set of assignments that preserves the set of solutions. In other words, a symmetry
is a bijection on the set of assignments that maps solutions to solutions and non-solutions
to non-solutions. Therefore, for any solution symmetry σ, all assignments A ∈ sol(P) if
and only if σ(A) ∈ sol(P).

We then introduce some common classes of symmetries, which are considered as special
cases of solution symmetry (Gent, Petrie, & Puget, 2006). The first class is variable
symmetry, which is a permutation on the variables that preserves solutions (J.-F. Puget,
2005). Therefore, if {xi = vi|i ≤ i ≤ n} is a solution, then {xσ(i) = vi|i ≤ i ≤ n} is a

1http://www.opturion.com/cpx
2https://github.com/geoffchu/chuffed

http://www.opturion.com/cpx
https://github.com/geoffchu/chuffed

52 CHAPTER 4. CONSTRAINT PROGRAMMING

solution. The second class is value symmetry, which is is a permutation on the values that
preserves solutions (J.-F. Puget, 2005). Therefore, if {xi = vi|i ≤ i ≤ n} is a solution,
then {xi = σ(vi)|i ≤ i ≤ n} is a solution. Let us use Examples 4.3.3 and 4.3.4 to illustrate
the variable symmetry and value symmetry respectively.

Example 4.3.3. Given a list of exams and time slots, we would like to assign time slots to
exams. Each exam is taken by the same group of students. Therefore, two exams cannot
be taken at the same time slot. The exams are considered as variables, i.e., exam1 is v1,
and the time slots are considered as values. Note that we only consider three exams in
this example. Then we can formulate a CSP P = (X,D,C) as follows:

• the set of variable X = {x1, x2, x3}

• the domains D(x1) = D(x2) = D(x3) = {1, 2, 3}

• the set of constraints C = {x1 ̸= x2 ̸= x3}

One solution of this problem is S = {x1 = 2, x2 = 1, x3 = 3}. Let us define the permutation
p such that p(x1 = i) = (x3 = i), p(x2 = i) = (x1 = i), and p(x3 = i) = (x2 = i) that
interchanges the assignments involving varaibles x1, x2, and x3. One of the permutation
is p(S) = {x1 = 1, x2 = 3, x3 = 2}. This permutation is a variable solution symmetry of
P because this permutation maps solution to solution and it acts on the variables.

Example 4.3.4. Given a graph with 4 nodes as can be seen in Figure 4.5. We would like
to colour the graph with three colours red, green, and blue. A condition is that no two
adjacent nodes have the same colour. The nodes in the graph are considered as variables.
The colours are considered as values. Then we can formulate a CSP P = (X,D,C) as
follows:

• the set of variable X = {x1, x2, x3, x4}

• the domains D(x1) = D(x2) = D(x3) = {red, green, blue}

• the set of constraint C = {x1 ̸= x2, x1 ̸= x3, x2 ̸= x3, x3 ̸= x4}

One solution of this problem is S = {x1 = red, x2 = green, x3 = blue, x4 = green}. Let us
define the permutation p such that p(xi = red) = (xi = blue), p(xi = green) = (xi = red),
and p(xi = blue) = (xi = green) that interchanges the assignments involving values red,
green, and blue. The permutation is p(S) = {x1 = blue, x2 = red, x3 = green, x4 =
red}. This permutation is a value solution symmetry of P because this permutation maps
solution to solution and it acts on the values.

x1

x2 x3 x4

Figure 4.5: A graph with 4 nodes.

As described, symmetry is a fundamental issue of solving constraint satisfaction prob-
lems. It can increase the size of the search space. On the other hand, the symmetry
can be used to reduce the size of the search for solutions of problems if the symmetry
is eliminated. This is because a symmetry causes some subtrees of the search space to

4.3. ADVANCED MODELLING AND SOLVING TECHNIQUES 53

x1

x2 x3 x4

(a) A solution of graph with 4 nodes.
x1

x2 x3 x4

(b) The value symmetry.

Figure 4.6: Solutions of colouring of the graph with 4 nodes.

be equivalent. For example, if one subtree has a solution, any symmetric subtree also
has a solution. Similarly, if there is no solution in one subtree, there is no solution in
any symmetric subtree. Thus, only one subtree needs to be explored if two subtrees are
symmetrically equivalent.

Symmetry Breaking is an approach to reduce search effort by avoiding the exploration
of redundant subtrees in the search space that are caused by symmetries. The purpose of
symmetry breaking is to find a set of solutions where there is no other set of solutions,
which is symmetrically equivalent. It has been proven that symmetries can be eliminated
by adding constraints, which are so-called symmetry breaking constraints, to the original
problem (J.-F. Puget, 1993). The modified problem can be solved more efficiently than the
original problem. The symmetry breaking constraints are added to the problem before
starting the search. These constraints prevent the exploration of some, or all of the
redundant regions of the search space.

The most common technique to break variable symmetries was introduced by Crawford,
Ginsberg, Luks, and Roy (1996). This technique is called lex-leader. Although the lex-
leader technique is proposed for breaking variable symmetries, it can be used to break value
symmetries as well (Petrie & Smith, 2003). The main idea of the lex-leader technique is to
predefine one solution among the equivalence class of solutions under symmetry to be the
canonical solution by adding constraints before starting search (Gent et al., 2006). These
constraints are satisfied by only the canonical solutions. Regarding the lex-leader tech-
nique, variable symmetries can be eliminated by posting the constraint for each variable
symmetry σ in order to ensure they are in lexicographic ordering. The constraint is in the
following form:

[x1, ..., xn] ≤lex [xσ(1), ..., xσ(n)]

where x1 to xn is any fixed ordering on the variables. The lexicographic ordering is defined
exactly as is standard in computer science. For example, [x1, x2] ≤lex [xσ(1), xσ(2)] if and
only if either x1 < xσ(1) or x1 = xσ(1) and x2 ≤ xσ(2).

Let us use Example 4.3.3 to illustrate the lex-leader technique. Recall that the problem
in Example 4.3.3 requires a complete exam scheduling. Each exam is taken by the same
group of students. Therefore, two exams cannot be taken at the same time slot. We can
formulate this problem as shown in Example 4.3.3.

54 CHAPTER 4. CONSTRAINT PROGRAMMING

For this problem, there are 6 permutations (symmetries) on variables including the
identity. We need to post 6 lex-leader constraints to break symmetries regarding the
lex-leader technique as follows:

[x1, x2, x3] ≤lex [x1, x2, x3] (C1)
[x1, x2, x3] ≤lex [x1, x3, x2] (C2)
[x1, x2, x3] ≤lex [x2, x1, x3] (C3)
[x1, x2, x3] ≤lex [x2, x3, x1] (C4)
[x1, x2, x3] ≤lex [x3, x1, x2] (C5)
[x1, x2, x3] ≤lex [x3, x2, x1] (C6)

The set of lex-leader constraints can be simplified in order to remove redundant con-
straints without losing their power (Crawford et al., 1996; Luks & Roy, 2004). Let us
demonstrate the simplification of the above set of lex-leader constraints. The constraint C1
can be immediately removed since it is always true. Considering the constraint C2, the
first variable x1 can be removed since it is clear that x1 = x1. Then we are left with
[x2, x3] ≤lex [x3, x2]. It can be written to x2 < x3 ∨ (x2 = x3 ∧ (x3 ≤ x2)). Next, x3 ≤ x2
can be removed since x3 ≤ x2 is always true if x2 = x3. As a result, the constraint C2 can
be simplified to the constraint SC2 : [x2] ≤lex [x3] (x2 ≤ x3). Similarly, the constraint C3
can be simplified in the same way as the constraint C2 to the constraint SC3 : [x1] ≤lex [x2]
(x1 ≤ x2).

Then let us consider the constraint C4. The constraint C4 can be written to x1 <
x2 ∨ (x1 = x2 ∧ (x2 < x3 ∨ (x2 = x3 ∧ x3 ≤ x1))). This constraint can be immediately
simplified to x1 < x2 ∨ (x1 = x2 ∧ (x2 < x3 ∨ x2 = x3)) since x3 ≤ x1 is always true
if x1 = x2 = x3 and then it can be further simplified to x1 < x2 ∨ x1 = x2 due to the
constraint SC2 : [x2] ≤lex [x3]. Since x1 < x2 ∨x1 = x2 is same as the constraint SC3, the
constraint C4 can be removed.

Considering the constraint C5, x3 ≤ x2 can be removed because x3 ≤ x2 is always
true if x2 = x3. Then it can be further simplified by removing x2 ≤ x3 because of the
constraint SC2. Since ≤lex is transitive, [x1] ≤lex [x3] can be implied by the constraints SC2
and SC3. As a result, the constraint C5 can be removed. Similarly, the constraint C6
can be removed according to the procedure described above. The final set of lex-leader
constraints is as follows:

[x2] ≤lex [x3] (SC2)
[x1] ≤lex [x2] (SC3)

With these lex-leader constraints, the only solution that satisfies these constraints is
{x1 = 1, x2 = 2, x3 = 3}. The other permutations are excluded.

Some research has been done on the special case of row and column permutations
in matrix models (Frisch, Jefferson, & Miguel, 2003). The lexicographical ordering has
been shown that it can be used to break a subset of row or column symmetries of a
matrix model (Flener et al., 2002). Moreover, some research has focused on symmetry
breaking constraints using lexicographical ordering for handling symmetries on sets and
other variables such as graph variables (Walsh, 2006).

4.3.3 Search Heuristics

A sequence of decisions (assignments) of which variable to be instantiated or branched and
of which value to be assigned to the variable needs to be made, when a CSP is solved by
backtracking search. Generally, these decisions are called variable and value ordering (van

4.3. ADVANCED MODELLING AND SOLVING TECHNIQUES 55

Beek, 2006). The choice of variable and value ordering has been shown to be important
for effectively solving many CSP problems (Ginsberg, Frank, Halpin, & Torrance, 1990;
Bacchus & Van Run, 1995; Gent, MacIntyre, Presser, Smith, & Walsh, 1996). For example,
Figure 4.1 shows the search of the problem in Example 4.1.1. It shows that there is no
solution when the variable x1 is assigned to 1. If the search was to try x2 = 1 before
x1 = 1, then the solution would be found faster.

A variable or value ordering can be either static, where the order of variable or values
is determined before the search starts and it is not changed thereafter, or dynamic, where
the order of variable or values is determined at any point in the search process. If the
ordering selected finds a solution or shows that there is no solution, where the fewest
number of nodes are visited during the search, over all possible orderings, this variable or
values ordering is said to be optimal.

Many variable orderings have been proposed. They can be classified into two groups:
(1) heuristics that are based on the domain sizes of the variables and (2) heuristics that
are based on the structure of the CSP.

Static variable ordering heuristics use only structural information of a problem as
initially stated to determine the ordering. However, static variable ordering heuristics are
considered weak since they miss valuable information and significant changes that occur
during the search. Therefore, they are rarely used in practice. The known static variable
ordering heuristics are the min width heuristic, which selects an ordering that has the
minimum width over all ordering of the constraint graph (Freuder, 1982), and the min
bandwidth heuristic, which selects an ordering that has the minimum bandwidth over all
orderings of the constraint graph (Zabih, 1990). The bandwidth is the maximum distance
(of edges) between two vertices. Another important static variable ordering heuristic is a
simple input order. This heuristic allows us to specify an ordering of variables that need
to be assigned with values.

The most common dynamic variable ordering heuristics is based on the fail-first prin-
ciple (Haralick & Elliott, 1980), which is explained as “To succeed, try first where you are
most likely to fail”. Dynamic variable ordering heuristics consider the size of the domains
of variables in order to determine which variable is the next one to be instantiated. The
order of variable will be changed from one branch to another regarding the size of the
domains since the backtracking search interleaved with constraint propagation prunes the
size of the domains of variables from one branch to another according to the constraints.
The first heuristic introduced by Golomb and Baumert in (Golomb & Baumert, 1965) and
popularised by Haralick and Elliott in (Haralick & Elliott, 1980) is called dom or mini-
mum domain heuristics. The main idea of dom is to select the next variable that has the
smallest number of values remaining in its domain. This heuristic was shown that it work
effectively with the forward checking algorithm (Haralick & Elliott, 1980). However, the
main drawback of the simple dom heuristic is that the order of variables is rarely changed
since variables often have the same size of domains in many problems at the beginning of
the search.

In order to overcome the drawback mentioned above, the heuristic dom/deg is pro-
posed (Bessiere & Régin, 1996). This heuristic selects a variable regarding the ratio of
domain size of a variable over the degree of the variable, where the degree of the variable
is the number of constraints, which involve the variable and at least one other unassigned
variable. This heuristic selects the variable that has the minimal ratio.

The variable ordering heuristics dom/wdeg, which is one of the most efficient modern
heuristics in Constraint Programming, is introduced and is shown to work well on many
various problems (Boussemart, Hemery, Lecoutre, & Sais, 2004). In this heuristic, each
constraint is associated with a weight, initially set to one. The associated weight is in-
cremented when that constraint reaches a dead-end. Each variable is associated with a

56 CHAPTER 4. CONSTRAINT PROGRAMMING

weighted degree (wdeg), which is the sum of the weights of all constraints that involve
the variable and at least one other unassigned variable. Then the heuristic dom/wdeg se-
lects the variable with the minimum ratio of the size of the domain of the variable over
the weighted degree of the variable. Interestingly, the constraint propagation together
with the heuristic dom/deg or dom/wdeg can reduce the need of backjumping on some
problems (Boussemart et al., 2004; Lecoutre, Boussemart, & Hemery, 2004). Another im-
portant dynamic variable ordering heuristic is Variable State Independent Decaying Sum
(VSIDS) (Moskewicz, Madigan, Zhao, Zhang, & Malik, 2001). This heuristic is used in
SAT solvers and also in LCG solvers. In this heuristic, each variable is associated with
a counter, which is initialised as 0. The counters of variable are incremented when a
new clause that contains that variable, is added. At each decision point, a variable with
the highest counter is selected to be assigned. Periodically, all counters are divided by a
constant.

Once the decision to instantiate a variable is made, the values need to be examined.
There are many value ordering heuristics. The static value ordering heuristic, which
determines an order regarding an approximation of the number of solutions found by
generating a tree relaxation of a problem is introduced (Dechter & Pearl, 1987). The
heuristic, which selects the value that maximises the summation of the remaining domain
sizes is proposed by Frost, Dechter, et al. (1995). However, Geelen (1992) claims that
choosing the value that maximises the product of the remaining domain sizes is more
effective since the value is likely to participate in a solution. Generally, the succeed-fist
principle (Smith, 1996) suggests an idea that a value selected should be likely to be part
of a solution.

Most modern constraint programming solvers such as Gecode3, Opturion CPX4, and
Chuffed5 provide several common variable ordering heuristics such as input order and first
fail, and several value ordering heuristics such as ascending order, descending order or
middle-out order. The variable ordering heuristics take a list of variables to be assigned
during the search as parameter. The variables are assigned with values in the order
that they are specified using input order heuristic. For instance, if the variables are
[x1, x2, ..., xn], then x1 is assigned first, then x2, and so on. The first fail heuristic assigns
values to variables that have the smallest size of domains. The size of domains is calculated
during the search and constraint propagation. Some solvers also offer an option that user
can customise an ordering of variables and values to suit the specific problem.

3http://www.gecode.org/
4http://www.opturion.com/cpx
5https://github.com/geoffchu/chuffed

http://www.gecode.org/
http://www.opturion.com/cpx
https://github.com/geoffchu/chuffed

Chapter 5

Encoding Reasoning Problems
into MiniZinc

As described in Chapter 4, CP offers efficient search techniques and it supports a wide
range of forms of constraints. These techniques have potentials to handle the main sources
of inefficiency of the tableau-based algorithm such as disjunctions (OR-search). One ap-
proach to utilise the powerful search techniques of CP is to translate Description Logics
to forms of constraints (formulas) that are supported by CP. Therefore, we propose an
encoding scheme to encode Description Logics to MiniZinc models, which can be solved
by CP. Our evaluations provides an evidence that our approach is competitive or even
better than the dedicated tableau-based reasoners for some cases in benchmarks.

In the first step of our work, we start investigating the idea to encode the reasoning
problems of ALC to MiniZinc models. Then we can exploit state-of-the-art CP solvers.
We propose an efficient encoding approach and test it on an extensive set of benchmarks,
comparing against the main state-of-the-art DL reasoners available. Our encoding scheme
translates concepts, roles and features in Table 2.4 and 2.5, in a direct and succinct way,
to set and array variables in MiniZinc respectively.

The rest of this chapter is structured as follows. In Section 5.1, we define our novel
encoding scheme to encode ALC into CP problems. Then we prove that our encoding
scheme is sound and complete in Section 5.2. Finally, we close this chapter by describing
our evaluation setup and discussing the results in Section 5.3.

5.1 The Encoding of ALC and its sub-logics
In this chapter, we start exploring the idea of solving reasoning problem in Description
Logics by translating them to MiniZinc models. Then such models can be handled by the
modern CP solvers. We begin our investigation from the consistency checking problem in
ALC. In addition, concept satisfiability and concept subsumption can be reduced to the
consistency checking problem (Baader & Nutt, 2003).

5.1.1 ALC to MiniZinc
This section presents the MiniZinc syntax and description. We will explain how MiniZinc
syntax is close to the semantic of ALC regarding Table 2.5.

In our encoding scheme, individuals are encoded as positive integers. Moreover, we
encode the top concept ⊤ (the superclass of all concepts) and a concept A as set variables
of individuals T and A respectively. The set variable T contains all individuals in encoding.
Hence, A is always a subset of T for all concepts A. The bottom concept ⊥ can be encoded
to empty set ({}). A role R is a binary relation that maps individuals of one concept

57

58 CHAPTER 5. ENCODING REASONING PROBLEMS INTO MINIZINC

(set) to individuals (successors) of another concept (set). It is encoded as an array of
sets R, where indices i are individuals in one set and the set R[i] contains R-successors of
individuals i.

In Section 4.2.2, the MiniZinc encoding for the Description Logic EL is presented. EL
allows concept name, conjunctions, and existential restrictions. The Description Logic
ALC is an extension of EL. ALC allows three more constructs: (1) negation, (2) disjunc-
tion, and (3) universal restriction. In more details, we borrow the set notion to explain
how MiniZinc models are closely related to the semantics of ALC. Let us explain MiniZinc
syntax regarding the ALC language constructs. We have described the MiniZinc syntax
for the top concept (⊤), the bottom concept (⊥), an atomic concept (A), conjunctions
(Ĉ ⊓ D̂), and existential restrictions (∃R.Ĉ) in Section 4.2.2. Therefore, we will go
through the remaining language constructs as follows:

• Concept negation (¬Ĉ): regarding the semantics of concept negation, the top con-
cept (⊤) is a set of all individuals in the domain (∆I). Concept negation is thus a
set difference between ⊤ and Ĉ. Then the concept negation can be encoded to T -
Ĉ.

• Disjunction (Ĉ ⊔ D̂): the disjunction can be interpreted as a set union between
Ĉ and D̂. There is a set operation union in MiniZinc, which is equivalent to ⊔ in
ALC. Hence, the disjunction can be encoded to Ĉ union D.̂

• Universal restriction (∀R.Ĉ): the universal restriction means that if there exist R-
successors, those R-successors need to be member of a set Ĉ. In other words, a
set R[i] is a subset of Ĉ. In MiniZinc, there is a set operation subset, which is
equivalent to ⊑ in ALC. Regarding the encoding of role R, the universal restriction
can be encoded to {i | i in T where R[i] subset Ĉ)} for an individual i.

All concept construct encodings have been described above. The only components left
are axioms. The axioms can be encoded as follows:

• Concept inclusion (subsumption) (Ĉ ⊑ D̂): the concept inclusion can be interpreted
as a set Ĉ being a subset of a set D̂. As mentioned, there is a set operation subset
in MiniZinc. Therefore, the concept inclusion can be encoded to Ĉ subset D.̂

• Concept equivalence (Ĉ ≡ D̂): the concept equivalence can be interpreted as a set
Ĉ being equivalent to a set D̂. Thus, the concept equivalence can be encoded to
Ĉ = D.̂

Table 5.1 presents the summary of ALC syntax together with MiniZinc syntax. Due to
the presentation, we will use some symbols that are very close to MiniZinc syntax instead
of the actual MiniZinc syntax. For example, the symbol ⊆ is used to represent the subset
operation.

Our encoding scheme closely follows the semantics of Description Logics. For example,
the semantics of the existential restriction (∃R.B) in Table 2.5 states that there exists some
R-successor of an individual i and the R-successor is a member of B. The existential
restriction is encoded into {i | i in T where card(R[i] intersect B)>=1} , which
means that there exists at least one individual in the intersection of B and the set of
R-successors of individual i. Note that MiniZinc offers the function exists, which has
the same meaning as existential restriction. Therefore, existential restriction (∃R.B) can
be encoded to {i | i in T where exists(R[i] intersect B)} as well. We will explain
this in detail later. Our encoding approach only supports acyclic TBoxes, where there are
no cyclic dependencies between its concept names, i.e., concept names are neither defined

5.1. THE ENCODING OF ALC AND ITS SUB-LOGICS 59

Table 5.1: Summary of syntax of ALC and MiniZinc syntax.

Concepts Syntax MiniZinc Syntax
top concept ⊤ T
bottom concept ⊥ {}
atomic concept A A
concept negation ¬Ĉ T - Ĉ
conjunction Ĉ ⊓ D̂ Ĉ ∩ D̂
disjunction Ĉ ⊔ D̂ Ĉ ∪ D̂

existential restric-
tion

∃R.Ĉ
{i | i in T where exists(R[i] ∩ Ĉ)}
or
{i | i in T where card(R[i] ∩ Ĉ)>=1}

universal restriction ∀R.Ĉ {i | i in T where R[i] ⊆ Ĉ)}
Axioms Syntax MiniZinc Syntax
concept inclusion
(subsumption)

Ĉ ⊑ D̂ Ĉ ⊆ D̂

concept equivalence Ĉ ≡ D̂ Ĉ = D̂

directly or indirectly in terms of themselves through axioms in a TBox T (Baader & Nutt,
2003), hence blocking is not necessary. Next, let us firstly define MiniZinc encoding for
ALC and its sub-logics (Definition 5.1.1) formally.

Definition 5.1.1. ALC2MiniZinc (MiniZinc Encoding : Set-based Encoding) Let T be
an acyclic ALC TBox in normal form. Before we describe the encoding scheme, we will
introduce some notations:

• T is a set of all individuals of T (∆I)

• A is a set of individuals of a concept A

• R is an array of set of individuals that are related to R

• A and B are atomic concepts

• i is an individual

• φT is a set of constraints

The encoding scheme is defined as follows:

ALC-ER1 For every axiom Â ⊑ B̂ (i.e.,⊓nAn ⊑ ⊔mBm) ∈ T ,

((
∩
n

An) ⊆ (
∪
m

Bm)) ∈ φT (5.1.1)

ALC-ER2 For every axiom A ⊑ ∃R.B ∈ T ,

A ⊆ {i | ∀i ∈ T ∧ card(R[i] ∩ B) ≥ 1} ∈ φT (5.1.2)

ALC-ER3 For every axiom ∃R.A ⊑ B ∈ T ,

{i | ∀i ∈ T ∧ card(R[i] ∩ A) ≥ 1} ⊆ B ∈ φT (5.1.3)

60 CHAPTER 5. ENCODING REASONING PROBLEMS INTO MINIZINC

ALC-ER4 For every axiom A ⊑ ∀R.B ∈ T ,

A ⊆ {i | ∀i ∈ T ∧ R[i] ⊆ B} ∈ φT (5.1.4)

ALC-ER5 For every axiom ∀R.A ⊑ B ∈ T ,

{i | ∀i ∈ T ∧ R[i] ⊆ A} ⊆ B ∈ φT (5.1.5)

ALC-ER6 For every concept name A for which we want to check satisfiability,

(A ̸= ∅) ∈ φT (5.1.6)

Note that the negative concept name (¬A) can be translated to (T - A), where ”-” is set
difference.

Next, we present the intuition of our encoding. This encoding is straightforward re-
garding the semantics of ALC in Table 2.5. We assume that an acyclic ALC TBox T in
normal form as described in Section 2.4.2. T can be encoded by applying the encoding
rules in Definition 5.1.1. Let i be an individual, n,m be non-negative integers, T be a set
of all individuals in the domain and φT be a set of MiniZinc constraints. Axioms in T are
encoded as follows, and added to φT :

• For every axiom Â ⊑ B̂ (i.e.,⊓nAn ⊑ ⊔mBm), the ALC-ER1 rule is applied on
this axiom to obtain the constraint of type (5.1.1). This rule is straightforward since
the conjunction and disjunction can be easily translated to the intersect operation
of sets Ai and the union operation of sets Bi respectively, and the subsumption ⊑
can be translated into the subset operation in MiniZinc.

• For every axiom A ⊑ ∃R.B, the ALC-ER2 rule is applied on this axiom to obtain
the constraint of type (5.1.2). The subsumption ⊑ is encoded into the subset op-
eration. This constraint means that A is subset of a set of individuals i such that
∀i ∈ ∆I and the cardinality of the intersection of a set of R-successors of i and B is
greater than 1. As can be seen, the meaning of this constraint is very close to the
semantics of ∃R.B in Table 2.5.

• For every axiom ∃R.A ⊑ B, the ALC-ER3 rule is applied on this axiom to obtain
the constraint of type (5.1.3). This constraint means that a set of individuals i such
that ∀i ∈ ∆I and the cardinality of the intersection of a set of R-successors of i and
A is greater than 1 is a subset of B.

• For every axiom A ⊑ ∀R.B, the ALC-ER4 rule is applied on this axiom to obtain
the constraint of type (5.1.4). This constraint means that A is subset of a set of
individuals i such that ∀i ∈ ∆I and a set of all R-successors of i is a subset of B. As
can be seen, the meaning of this constraint is very close to the semantics of ∀R.B in
Table 2.5.

• For every axiom ∀R.A ⊑ B, the ALC-ER5 rule is applied on this axiom to obtain
the constraint of type (5.1.5). This constraint means that a set of individuals i, such
that ∀i ∈ ∆I and a set of all R-successors of i is a subset of A, is a subset of B.

• To check the satisfiability of concept A, a constraint A ̸= ∅ is added (Rule ALC-
ER6). This constraint means that a set A is not empty. If this constraint is satisfiable
w.r.t. all constraints in φT , then the concept A is satisfiable.

5.1. THE ENCODING OF ALC AND ITS SUB-LOGICS 61

• To check subsumption of A ⊑ B, this can be done by adding a constraint A ∩
(T - B) ̸= ∅. If this constraint is unsatisfiable w.r.t. all constraints in φT , then
T ⊨ A ⊑ B.

As can be seen, the syntax of MiniZinc is quite similar to the syntax of ALC. In
addition, it is easy to encode ontologies in ALC to MiniZinc models.

5.1.2 Finiteness of MiniZinc Models
Since inference in CP requires a finite and known size of the universe, we need to calculate
the number of individuals needed for the MiniZinc model. This number needs to be big
enough to guarantee the completeness of our CP-based reasoning approach, i.e., if the
solver returns unsatisfiable for a MiniZinc model, the corresponding ontology is indeed
inconsistent.

The number of necessary individuals to satisfy all axioms in a TBox T in normal form
is calculated by the following rules. Let us represent an individual uniquely by its label σ.
A label σ can be a non-zero number or σ′.R.n, where σ′ denotes another label, R denotes
a role, and n ≥ 1. Let βI be a set of individuals and ∆C be a set of individuals of concept
C.

INV1 Initialisation: {1} ⊂ βI and {1} ⊂ ∆Ci where ⊓iCi ⊑ D̂ ∈ T

INV2 If σ ∈ βI , ⊓iCi ⊑ ⊔jDj ∈ T , σ ∈ ∆Ci , then

{σ} ⊂ ∆Dj

INV3 If σ ∈ βI , σ ∈ ∆C , and C ⊑ ∃R.D ∈ T , then

{σ.R.i} ⊂ βI

{σ.R.i} ⊂ ∆D

INV4 If σ ∈ βI , σ ∈ ∆¬C , and ∀R.D ⊑ C ∈ T , then

{σ.R.i} ⊂ βI

{σ.R.i} ⊂ ∆¬D

INV5 If σ ∈ βI , σ ∈ ∆C , and C ⊑ ∀R.D ∈ T , then

{σ.R.i | σ.R.i ∈ βI} ⊂ ∆D

INV6 If σ ∈ βI , σ ∈ ∆¬C , and ∃R.D ⊑ C ∈ T , then

{σ.R.i | σ.R.i ∈ βI} ⊂ ∆¬D

These rules are applied exhaustively on T until no more rules can be applied. The
rules are triggered with respect to individuals assigned to the left-hand side of axioms.
Since we only consider acyclic TBoxes, the application of rules terminates. Finally, the
number of required individuals is the size of βI .

Note that this algorithm only calculates the number of required individuals for MiniZinc
models. In other words, we are only interested in the size of βI , but not the individuals
assigned to concepts. This algorithm gives a safe bound for soundness and completeness
of the reasoning approach, i.e., if T has a model, the bound calculated will be larger than
the size of the smallest model.

62 CHAPTER 5. ENCODING REASONING PROBLEMS INTO MINIZINC

Intuitively, the number of individuals is determined with respect to the structure of
TBox. The initialisation rule INV1 assigns the root node 1 to the left-hand side of every
axiom in T . Rule INV2 handles the axiom ⊓iCi ⊑ ⊔jDj . If an individual σ is in ∆Ci , it
is added to ∆Dj . Rule INV3 handles the axiom C ⊑ ∃R.D. If an individual σ is in ∆C , it
is added to ∆∃R.D and then a new individual σ.R.i, which is a member of ∆D, is generated
to satisfy R. In addition, the new individual σ.R.i is added to βI . Rule INV4 handles
the axiom ∀R.D ⊑ C. This axiom can be transformed to ¬C ⊑ ∃R.¬D. The idea of this
rule is similar to INV3. If an individual σ is in ∆¬C , it is added to ∆∃R.¬D and then a
new individual σ.R.i, which is a member of ∆¬D, is generated to satisfy R. In addition,
the new individual σ.R.i is added to βI . Rule INV5 handles the axiom C ⊑ ∀R.D. If an
individual σ is in ∆C , all its R-successors need to be added to ∆D. Rule INV6 handles
the axiom ∃R.D ⊑ C. This axiom can be transformed to ¬C ⊑ ∀R.¬D. The idea of this
rule is similar to INV5. If an individual σ is in ∆¬C , it is added to ∆∀R.¬D and then all
R-successors need to be added to ∆¬D.

The number of individuals calculated by this algorithm is correct since the application
of these rules is similar to that of the tableau algorithm as described above. Individuals are
generated to satisfy existential restrictions by rules INV3 and INV4. When the tableau
algorithm generates individuals, this algorithm generates individuals as well. This is the
reason why the algorithm calculates the bound universe as big as the model generated by
the tableau algorithm. Note that the number of individuals calculated by this algorithm
may not be the smallest number, hence may not be optimal. As can be easily seen, the
number of individuals is exponential to the nesting depth of restrictions.

Let us use Example 5.1.1 to illustrate the application of these rules.

Example 5.1.1. Given a TBox T containing an axiom C ⊑ ∃R.A ⊓ ∃R.B ⊓ ∀R.(∃R.A ⊓
∃R.B), we start by normalising T to T ′ as follows:

C ⊑ ∃R.A C ⊑ ∃R.B

C ⊑ ∀R.D D ⊑ ∃R.A

D ⊑ ∃R.B

where D is a new concept name.
Firstly, we apply INV1 to T ′. An individual 1, is added to C, D, and ∆I . Then we

apply INV2 to C ⊑ ∃R.A for each individual in C. A new individual 1.R.1 will be gener-
ated and added to A and ∆I . Next, we apply INV2 to C ⊑ ∃R.B for each individual in
C. A new individual 1.R.2 will be generated and added to B and ∆I . Now, ∆I contains
three individuals 1, 1.R.1, 1.R.2. Then we apply INV5 to C ⊑ ∀R.D for each individual
in C. The individuals 1.R.1 and 1.R.2 will be added to D. Now, D contains individuals,
1, 1.R.1, 1.R.2. Next, we apply INV3 to D ⊑ ∃R.A for each individual in D. This will gen-
erate three more individuals 1.R.3, 1.R.1.R.1, 1.R.2.R.1, added to A and ∆I . Then we ap-
ply INV3 to D ⊑ ∃R.B for each individual in D. This will generate three more individuals
1.R.4, 1.R.1.R.2, 1.R.2.R.2, added to B and ∆I . Finally, there is no more rule to be applied
and ∆I contains individuals 1, 1.R.1, 1.R.2, 1.R.3, 1.R.1.R.1, 1.R.2.R.1, 1.R.4, 1.R.1.R.2, 1.R.2.R.2.
As a result, the number of individuals is 9.

As can be seen, an ALC ontology can be encoded into a MiniZinc model in linear
time. However, there is a blow up in the size of the encoding due to the number of
individuals required for a MiniZinc model, when the MiniZinc model is flattened into
FlatZinc for solving. FlatZinc is a solver input language that is supported by a wide range
of solvers (Becket, 2014).

Regarding this procedure, the process of calculating the number of individuals will be
an overhead of our approach, especially in the case of an ontology that requires a large

5.1. THE ENCODING OF ALC AND ITS SUB-LOGICS 63

number of individuals. The pre-calculation of the number of individuals is also where
we may add blocking techniques to our approach. The following is a sketch how such
a blocking approach would keep track of axioms for which the algorithm already added
new individuals to the domain of superclasses, as well as of superclasses and subclasses of
axioms. When a new individual is added to the domain of superclasses, it will trigger the
pre-calculation rules from above, where superclasses become subclasses of other axioms. If
the subclasses and axioms have already been considered by the pre-calculation before, the
process can be blocked. Since we only focus on acyclic TBoxes, we leave the full discussion
and implementation of these ideas for future work.

5.1.3 Encoding Rules Implementation
In this section, we present the implementation of the encoding rules defined in Defini-
tion 5.1.1. We will show how can we translate each constraint into the actual MiniZinc
syntax. Some of them can be mapped directly the actual MiniZinc syntax. For example,
⊆ can be translated to a subset operation or an implication (->). For equivalence (≡),
it can be translated into either = or <->. The implementation is presented as follows:

• For the rule ALC-ER1, the constraint (
∩

n An) ⊆ (
∪

m Bm) of type (5.1.1) is imple-
mented as

constraint (A1 intersect ... An subset B1 union ... Bm) (5.1.3.1)

⊆ is implemented as the subset operation. The conjunctions ∩ and disjunctions ∪
are implemented as the intersect and union operations respectively. Ai and Bi are
implemented as set variables.

• For the rule ALC-ER2, the constraint A ⊆ {i | ∀i ∈ T ∧ card(R[i] ∩ B) ≥ 1} of
type (5.1.2) is implemented as

constraint forall (i in A) (card(R[i] intersect B) >= 1) (5.1.3.2)

For efficiency, ⊆ is implemented as an implication implicitly. This constraint means
that if an individual i is in A, then the cardinality of the intersection of R-successors
of i and B is greater than 1.

• For the rule ALC-ER3, the constraint {i | ∀i ∈ T ∧ card(R[i] ∩ A) ≥ 1} ⊆ B of
type (5.1.3) is implemented as

constraint forall (i in T)
((card(R[i] intersect A) >= 1) -> i in B) (5.1.3.3)

In this case, ⊆ is implemented as an implication -> explicitly. This constraint means
that for all individuals i in the domain, if the cardinality of the intersection of R-
successors of i and A is greater than 1, then the individual i is in B.

• For the rule ALC-ER4, the constraint A ⊆ {i | ∀i ∈ T ∧ card(R[i] ⊆ B} of type
(5.1.4) is implemented as

constraint forall (i in A) (R[i] subset B) (5.1.3.4)

Similar to the rule ALC-ER2, the first ⊆ is implemented as an implication implic-
itly. This constraint means that if an individual i is in A, then the R-successors of
i is a subset of B.

• For the rule ALC-ER5, the constraint {i | ∀i ∈ T ∧ card(R[i] ⊆ A} ⊆ B of type
(5.1.5) is implemented as

64 CHAPTER 5. ENCODING REASONING PROBLEMS INTO MINIZINC

constraint forall (i in T)
((R[i] subset A) -> i in B) (5.1.3.5)

This constraint means that for all individuals i in the domain, if the R-successors
of i is a subset of A, then an individual i are in B.

• For the rule ALC-ER6, the constraint A ̸= ∅ of type (5.1.6) is implemented as
card(A) != 0, which means that the cardinality of A is not equal to zero.

5.2 Correctness and Completeness of the Encoding
In this section, we conduct proofs to prove the soundness and completeness of our encoding
approach. The proof proceeds by model construction, which yields an interpretation from a
given MiniZinc solution (for soundness) as well as the reverse direction (for completeness).
We are going to ignore the fact that we need to know the size of domain in the MiniZinc
encoding, assuming that we know the size of domain, which may be potentially large.

Theorem 5.2.1. Given an acyclic ALC TBox T in normal form and the MiniZinc encod-
ing, the concept A is satisfiable w.r.t. T if and only if the MiniZinc formula φT ∧(SA ̸= ∅)
is satisfiable.

Proof. It is a direct consequence of the following Lemmas.

Lemma 5.2.2. (Soundness) Given an acyclic ALC TBox T in normal form and the
MiniZinc encoding, if the MiniZinc formula φT ∧ (A ̸= ∅) is satisfiable then the concept A
is satisfiable w.r.t. T .

The main proof idea is to construct an interpretation I from a solution of the MiniZinc
formula φT ∧ (A ̸= ∅), and then show by a straightforward inductive argument that I is a
model for T and has a non-empty concept A.

Proof. Let φT be the MiniZinc formula of T . S = (TS , SC , SR) is a tuple of assignments
to variables in the MiniZinc formula, where TS represents the set of individuals appearing
in the encoding, SC represents a set of assignments of concept name variables AS , SR

represents a set of assignments of role variables RS and S is a solution of φT . ∆I denotes
the domain of I. Let a, b be individuals. We must prove that there also exists a model for
T . From S, we define an interpretation I as follows:

∆I = TS , (5.2.1)

AI = AS , (5.2.2)

RI = {(a, b) | a, b ∈ ∆I and b ∈ RS[a]}, (5.2.3)

For non-name concepts, we define I such that:

(⊓iAi)
I = {a | a ∈ ∆I and a ∈ (

∩
i

Ai)S} (5.2.4)

(⊔jBj)
I = {a | a ∈ ∆I and a ∈ (

∪
j

Bj)S} (5.2.5)

5.2. CORRECTNESS AND COMPLETENESS OF THE ENCODING 65

We prove by induction over the structure of T that I is semantically consistent and
it is a model of T . For this purpose, for every axiom Ĉ ⊑ D̂ ∈ T in normal form and
every individual a, we must prove that I satisfies the following condition: if a ∈ ĈI then
a ∈ D̂I (i.e. ĈI ⊆ D̂I , respecting the semantics of the axiom Ĉ ⊑ D̂). When we talk
about the semantic of concepts, we always refer to Table 2.5.

The condition trivially follows from point 1-5 of Definition 5.1.1. Let us consider the
following cases of axioms: (1) A ⊑ B, (2) ⊓iAi ⊑ B, (3) A ⊑ ⊔jBj , (4) A ⊑ ∃R.B, (5)
∃R.A ⊑ B, (6) A ⊑ ∀R.B, and (7) ∀R.A ⊑ B. Any axiom of T in normal form is a
sub-case of one among (1)-(7).

(1) By hypothesis, we have a ∈ AI . Thus, a ∈ AS by definition of I (5.2.2). Since A is
in φT , (ALC-ER1) φT contains the constraint (A ⊆ B) of type (5.1.1). It follows a ∈ BS
since φT is satisfiable. Therefore, a ∈ BI by (5.2.2).

(2) By hypothesis, we have a ∈ (⊓iAi)
I . Then a ∈ (

∩
i Ai)S by definition of I (5.2.4).

Since
∩

i Ai is in φT , (ALC-ER1) φT contains the constraint ((
∩

i Ai) ⊆ B) of type (5.1.1).
It follows that a ∈ BS because φT is satisfiable. Thus, a ∈ BI by definition of I (5.2.2).

(3) By hypothesis, we have a ∈ AI . Then a ∈ AS by definition of I (5.2.2). Since A is
in φT , (ALC-ER1) φT contains the constraint (A ⊆ (

∩
i Bj)) of type (5.1.1). It follows

that a ∈ (
∩

i Bj)S because φT is satisfiable. Thus, a ∈ (⊔jBj)
I by definition of I (5.2.5).

(4) By hypothesis, we have a ∈ AI . Therefore, a ∈ AS by definition of I (5.2.2). Since A
is in φT , (ALC-ER2) φT contains the constraint A ⊆ {a | ∀a ∈ T ∧ card(R[a] ∩ B) ≥ 1}
of type (5.1.2). Due to this constraint, φT can be satisfiable only if a ∈ {a | ∀a ∈
T ∧ card(R[a] ∩ B) ≥ 1} is true. Thus, there exists at least one individual b such that
b ∈ TS , b ∈ RS[a] and b ∈ BS because φT is satisfiable. By definitions of I (5.2.3) and
(5.2.2), (a, b) ∈ RI and b ∈ BI . As a result, a ∈ (∃R.B)I .

(5) By hypothesis, we have a ∈ (∃R.A)I . Therefore, there exists at least one individual
b such that b ∈ TS , b ∈ RS[a] and b ∈ AS by definitions of I (5.2.3) and (5.2.2). Since
{a | ∀a ∈ T ∧ card(R[a] ∩ A) ≥ 1} is in φT , (ALC-ER3) φT contains the constraint
{a | ∀a ∈ T ∧ card(R[a] ∩ A) ≥ 1} ⊆ B of type (5.1.3). It follows a ∈ BS since φT is
satisfiable. Therefore, a ∈ BI by (5.2.2).

(6) By hypothesis, we have a ∈ AI . Therefore, a ∈ AS by definition of I (5.2.2). Since
A is in φT , (ALC-ER4) φT contains the constraint A ⊆ {a | ∀a ∈ T ∧ R[a] ⊆ B} of type
(5.1.4). Due to this constraint, φT can be satisfiable only if a ∈ {a | ∀a ∈ T∧ R[a] ⊆ B} is
true. Thus, all individuals b, such that b ∈ TS and b ∈ RS[a], are subset of BS because φT

is satisfiable. By definitions of I (5.2.3) and (5.2.2), (a, b) ∈ RI and b ∈ BI . As a result,
a ∈ (∀R.B)I .

(7) By hypothesis, we have a ∈ (∀R.A)I . Therefore, all individuals b, such that b ∈ TS
and b ∈ RS[a], are subset of AS by definitions of I (5.2.3) and (5.2.2). Since {a | ∀a ∈
T∧R[a] ⊆ A} is in φT , (ALC-ER6) φT contains the constraint {a | ∀a ∈ T∧R[a] ⊆ A} ⊆ B
of type (5.1.5). It follows a ∈ BS since φT is satisfiable. Therefore, a ∈ BI by (5.2.2).

For ¬B, by hypothesis, let a ∈ (¬B)I . By definition of (5.2.2), a ∈ ∆I and a ∈ TS−BS .
It follows a /∈ BI . Thus, a ∈ ∆I \BI .

Finally, we prove that if φT ∧ (A ̸= ∅) is satisfiable, then there exists an interpretation
I, such that I is a model for T and AI ̸= ∅. φT ∧ (A ̸= ∅) is satisfiable if and only if φT is

66 CHAPTER 5. ENCODING REASONING PROBLEMS INTO MINIZINC

satisfiable. Since φT ∧ (A ̸= ∅) is satisfiable, there exists an individual a such that a ∈ AS .
By definition (5.2.2), we have a ∈ AI . Thus, the concept A is satisfiable w.r.t. T .

Lemma 5.2.3. (Completeness) Given an acyclic ALC TBox T in normal form and the
MiniZinc encoding, if the concept A is satisfiable w.r.t. T then the MiniZinc formula
φT ∧ (A ̸= ∅) is satisfiable.

The main idea of this proof is to construct a solution S from a model I of T such that
AI ̸= ∅, and then show that S is a solution of φT ∧ (A ̸= ∅). We assume that a model I
is constructed by the completion rules in (Baader & Nutt, 2003).

Proof. Given that the concept A is satisfiable w.r.t. T , there exists a model I for T such
that AI ̸= ∅. The completion rules in (Baader & Nutt, 2003) are sound, complete and
terminating. Therefore, we can construct a model I for T , and from I build a solution S
for φT .

S = (TS , SC , SR) is a solution tuple of a MiniZinc formula φT as introduced above.
∆I denotes the domain of I. Let a, b be individuals. From I, we can define the solution
S as follows:

TS = ∆I (5.2.6)
AS = AI (5.2.7)

RS[a] = {b | a, b ∈ TS and (a, b) ∈ RI} (5.2.8)

Now, we must prove that S satisfies all the constraints of φT such that a ∈ ∆I for
every type of constraint from (5.1.1) to (5.1.5).

Constraints of type (5.1.1) represent the MiniZinc encoding of an axiom Â ⊑ B̂ (⊓nAn ⊑
⊔mBm). We can distinguish two cases:

1. An axiom A1 ⊓ A2 ⊑ B, where A1, A2 and B are basic concepts, is encoded to
A1 ∩ A2 ⊆ B. Since a ∈ ∆I and I is a model of T , it holds (A1 ⊓ A2)

I ⊆ BI . Thus,
if a ∈ AI

1 ∩ AI
2 , then a ∈ BI . This follows by 5.2.7 that a ∈ AS1 , a ∈ AS1 and a ∈ BS .

Hence, the constraint is satisfied.

2. An axiom A ⊑ B1 ⊔ B2, where A, B1 and B2 are basic concepts, is encoded to
A ⊆ B1 ∪ B2. Since a ∈ ∆I and I is a model of T , it holds AI ⊆ (B1 ⊔ B2)

I . Thus,
if a ∈ AI , then a ∈ BI

1 ∪BI
2 . This follows by 5.2.7 that a ∈ AS and either a ∈ BS1 or

a ∈ BS2 . Hence, the constraint is satisfied.

Constraints of type (5.1.2) represent the MiniZinc encoding of an axiom A ⊑ ∃R.B.
We must show that the constraint A ⊆ {a | ∀a ∈ T ∧ card(R[a] ∩ B) ≥ 1} of type (5.1.2)
is satisfied. Since a ∈ ∆I and I is a model of T , it holds AI ⊆ (∃R.B)I . Thus, if a ∈ AI ,
then a ∈ (∃R.B)I . Since a ∈ (∃R.B)I , (a, b) ∈ RI and b ∈ BI such that b ∈ ∆I . By
definition of S (5.2.7) and (5.2.8), we have a ∈ AS , b ∈ RS[a], and b ∈ BS . As a result,
the constraint is satisfied.

Constraints of type (5.1.3) represent the MiniZinc encoding of an axiom ∃R.A ⊑ B.
We must show that the constraint {a | ∀a ∈ T ∧ card(R[a] ∩ A) ≥ 1} ⊆ B of type (5.1.2)
is satisfied. Since a ∈ ∆I and I is a model of T , it holds (∃R.A)I ⊆ BI . Thus, if
a ∈ (∃R.A)I , then a ∈ BI . Since a ∈ (∃R.A)I , (a, b) ∈ RI and b ∈ AI such that b ∈ ∆I .

5.3. EMPIRICAL EVALUATION 67

By definition of S (5.2.7) and (5.2.8), we have b ∈ RS[a], b ∈ AS , and a ∈ BS . Hence, the
constraint is satisfied.

Constraints of type (5.1.4) represent the MiniZinc encoding of an axiom A ⊑ ∀R.B.
We must show that the constraint A ⊆ {a | ∀a ∈ T ∧ card(R[a] ⊆ B} of type (5.1.4) is
satisfied. Since a ∈ ∆I and I is a model of T , it holds AI ⊆ (∀R.B)I . Thus, if a ∈ AI ,
then a ∈ (∀R.B)I . Since a ∈ (∀R.B)I , for all (a, b) ∈ RI , b ∈ BI such that b ∈ ∆I . By
definition of S (5.2.7) and (5.2.8), we have a ∈ AS , b ∈ RS[a], and b ∈ BS . As a result,
the constraint is satisfied.

Constraints of type (5.1.5) represent the MiniZinc encoding of an axiom ∀R.A ⊑ B.
We must show that the constraint {a | ∀a ∈ T ∧ card(R[a] ⊆ A} ⊆ B of type (5.1.5)
is satisfied. Since a ∈ ∆I and I is a model of T , it holds (∀R.A)I ⊆ BI . Thus, if
a ∈ (∀R.A)I , then a ∈ BI . Since a ∈ (∀R.A)I , for all (a, b) ∈ RI , b ∈ AI such that
b ∈ ∆I . By definition of S (5.2.7) and (5.2.8), we have b ∈ RS[a], b ∈ AS , and a ∈ BS .
Hence, the constraint is satisfied.

For ¬A, let a ∈ (¬A)I . By definition of (5.2.7), a ∈ ST and a ∈ ∆I \ AI . It follows
a /∈ AI . Thus, a ∈ TS − BS .

Finally, since there exists a model I for T such that AI ̸= ∅, there exists an individual
a ∈ ∆I such that a ∈ AI . By definition 5.2.7, we have a ∈ AS . Hence, the MiniZinc
formula φT ∧ (A ̸= ∅) is satisfiable.

5.3 Empirical Evaluation
In order to verify empirically the effectiveness of our approach, we conducted an evaluation
with about 500 ontologies from an extensive set of benchmarks. This evaluation is to show
that our approach is competitive with tableau reasoners. For this evaluation, we performed
consistency checking on ALC ontologies to evaluate our approach against two of the fastest
reasoners, HermiT (Shearer et al., 2008; Glimm et al., 2014) and Konclude (Steigmiller et
al., 2014), and the intelligent tableau reasoner, Light (Zuo & Haarslev, 2013). The reason
for our focus on consistency checking is that all other related works mentioned focused on
this task (Meissner, 2011; Haarslev, Sebastiani, & Vescovi, 2011; Zuo & Haarslev, 2013).
We leave the other reasoning tasks as future work.

We have implemented the encoder ALC2MiniZinc in Java to encode an ontology into a
MiniZinc model. In combination with ALC2MiniZinc, we have selected several CP solvers
to use with our approach. We generated MiniZinc models using our ALC2MiniZinc, and
then solved the models using Opturion CPX (ocpx)1 (v. 1.0.2) and chuffed2, which are
lazy clause generation CP solvers, and Gecode3 (v. 4.4.0). We compare the runtimes
of our system with those of tableau-based reasoners HermiT4 (v. 1.3.8), Konclude5 (v.
0.6.2), and Light6 (v. 0.2).

A runtime limit of 300 seconds was used for the first evaluation. We limited a runtime
of 100 seconds for the second evaluation. All results presented in this section have been
obtained on a 64bit quad-core Intel Core i5 3.2GHz machine, with 8GB of RAM under

1http://www.opturion.com/#!cpx/ch52y
2https://github.com/geoffchu/chuffed
3http://www.gecode.org/
4http://www.hermit-reasoner.com/
5http://www.derivo.de/en/products/konclude.html
6http://www.lightreasoner.co.nf/

http://www.opturion.com/#!cpx/ch52y
https://github.com/geoffchu/chuffed
http://www.gecode.org/
http://www.hermit-reasoner.com/
http://www.derivo.de/en/products/konclude.html
http://www.lightreasoner.co.nf/

68 CHAPTER 5. ENCODING REASONING PROBLEMS INTO MINIZINC

ubuntu 16.04. We used MiniZinc version 2.1.37. Note that the results presented in this
section include time taken by preprocessing including the pre-calculation of number of
individuals and normalisation, encoding (taken by ALC2MiniZinc), flattening (translating
form MiniZinc to FlatZinc), and solving. FlatZinc is a solver input language that is
supported by a wide range of solvers (Becket, 2014).

5.3.1 Evaluation Description

We used three different sets of benchmarks to test our encoding. The first set is a set of
acyclic ALC ontologies, which come from ORE2014 Reasoner Competition8. This bench-
mark data set is collected from the MOWLCorp (Manchester OWL Corpus), which was
obtained through a Web Crawl, Google Custom Search API and user submissions, the
Oxford Ontology Library, and a BioPortal Snapshot (June 2014). The ontologies in this
data set have various structure. Note that the ORE2014 data set contains many ontologies
that have different expressivity, but we have implemented a filter to retain only ALC on-
tologies from the dataset. The second set (JNH (Hoos, 2011)) was used as an extreme case
to demonstrate poor performance of tableau-based reasoners (Zuo & Haarslev, 2013). It
has been generated by converting SAT benchmarks (Hoos, 2011) into OWL syntax. This
benchmark data set is used to test DL reasoners for dealing with ontologies, that con-
tain a lot of disjunctions and demonstrates how constructs such as chains of disjunctions
can lead to inefficiencies in tableau-based reasoners. The third set of benchmarks come
from Tableaux’98 (Horrocks & Patel-Schneider, 1998). This data set demonstrates how
existential quantification can lead to inefficiencies in tableau-based reasoners. Table 5.2
contains some statistics for all three benchmark sets, including the number of chains of
disjunctions in super-concepts (SUPDCHN), (2) the number of disjunctions in the on-
tologies (DISJ) and (3) the number of existential quantifications (EF) (Kang et al., 2012,
2014). Since our encoding need the number of individuals in order to be complete, the
number of individuals is calculated using the rules in Section 5.1.2.

Table 5.2: Simple ontology details for evaluation of ALC.

Ontology # axioms # concepts # roles SUPDCHN DISJ EF
k_d4_sat_09.owl 722 721 1 0 0 453
k_d4_sat_10.owl 842 841 1 0 0 543
k_d4_unsat_09.owl 533 532 1 0 0 363
k_d4_unsat_10.owl 627 626 1 0 0 438
k_d4_unsat_12.owl 836 835 1 0 0 609
k_d4_unsat_13.owl 951 950 1 0 0 705
k_poly_sat_09.owl 764 763 1 0 0 520
k_poly_sat_10.owl 848 847 1 0 0 587
k_poly_sat_12.owl 1124 1123 1 0 0 812
k_poly_sat_13.owl 1328 1327 1 0 0 982
k_poly_unsat_09.owl 724 723 1 0 0 488
k_poly_unsat_10.owl 892 891 1 0 0 622
k_poly_unsat_15.owl 1606 1605 1 0 0 1217
k_poly_unsat_16.owl 1846 1845 1 0 0 1423
sat-jnh204.owl 800 100 0 77 741 0
sat-jnh212.owl 800 100 0 71 746 0
sat-jnh220.owl 800 100 0 76 747 0
unsat-jnh16.owl 850 100 0 77 795 0

7http://www.MiniZinc.org
8https://zenodo.org/record/10791#.V8ZhLJN95E4

http://www.MiniZinc.org
https://zenodo.org/record/10791#.V8ZhLJN95E4

5.3. EMPIRICAL EVALUATION 69

5.3.2 Results of the Evaluation
This section presents the results of this evaluation. We proceed with the comparison of
our approach w.r.t. our encoder with three selected solvers above against the dedicated
ontology reasoners listed above.

Results for ORE2014 benchmark

The overview results on the ORE2014 benchmark are summarised graphically in Fig-
ure 5.1. The boxplot has been used to present these results since it can easily show the
summary of the results and compare the performance of our approach and the other rea-
soners. The boxplot is a standardised way to present the distribution of data. It summaries
five numbers: maximum, third quartile, median, first quartile, and minimum of the re-
sults. Each boxplot in Figure 5.1 uses the top line to represent maximum, the bottom line
to represent minimum, the box to represent the 50% of the results (Inter-quartile range),
the top line of box to represent third quartile, the middle line of box to represent median,
and the bottom line of box to represent first quartile. The circles above the maximum
line is called outlier, which is the data that seem to differ by a substantial amount from
the other data. Normally, the outlier can states uncommon phenomena of the results,
which we may investigate further to understand why they differ. The outlier is generally
calculated as follows (Dawson, 2011):

1. Firstly, we need to determine the first quartile (Q1) and the third (Q3).

2. Then we calculate the interquartile range IQR = Q3 −Q1.

3. Next, we calculate the lower (LIF) and upper inner fences (UIF), LIF = Q1 −
1.5× IQR and UIF = Q3 + 1.5× IQR.

4. The data points, which are below LIF or above UIF , are called outliers.

Note that the boxplots in Figures 5.1, 5.2, 5.3, 5.4, and 5.5 provided are based on log
scale in second (s.) since the range of data is large.

As can be seen, Figure 5.1 shows that the distributions of the data for each reasoner
and solver are not large. In addition, the box of each reasoner and solver shows that
the maximum of reasoning time taken of each reasoner and solver is less than 1 second.
This means the ontologies in this data set are easily reasoned by all reasoners and solvers.
In other words, our approach is efficient for reasoning about this data set. There are
some outliers of each reasoner and solver. The outliers of Konclude are not interesting
since they are less than 3 seconds. However, the outliers of gecode, chuffed, and ocpx are
interesting since the range of reasoning time taken by these three solvers are small, but
some outliers are very high (more than 10 seconds). We investigated this further. We
found that the solving time is very fast at less than 1 seconds. However, most of time
taken is for flattening from MiniZinc to FlatZinc. Similarly, the outliers of HermiT are
also interesting since most of reasoning time taken by HermiT is less than 1 second and
the range of the results is small. We investigated those ontologies that make HermiT
difficult to reason about. We found that those ontologies have high number of existential
quantifications, which are one of the sources of inefficiency of tableau-based reasoners.

Moreover, Figure 5.1 shows that the performance of all solvers is similar. Interestingly,
we can compare the performance of our approach against Konclude and HermiT. As can
be seen, the medians of Konclude and our approach (gecode, chuffed, and ocpx) are very
low at less than 0.1 second. The spread of the results of our approach and Konclude is
similar. The median of HermiT is the highest one, which means that for most benchmarks,
the reasoning time taken of HermiT is longer than the others.

70 CHAPTER 5. ENCODING REASONING PROBLEMS INTO MINIZINC

In conclusion, our approach presented is competitive with the dedicated ontology rea-
soner, Konclude. Moreover, it clearly outperforms the tableau-based reasoner, HermiT.
We cannot get the results from Light and the SAT approach for ORE2014 dataset since
Light and the SAT approach cannot read the ontologies in this dataset.

Ti
m

e
(L

og
 s

ca
le

 in
 s

.)

0.01

0.1

1

10

100

1000

Reasoner
Konclude HermiT gecode chuffed ocpx

Figure 5.1: Overview of ontology consistency checking time on ORE2014.

Results for JNH benchmark

The next data set is JNH. The overview results on the JNH benchmark are summarised
graphically in Figure 5.2. As described, this benchmark contains ontologies containing
many disjunctions, which is one of the sources of inefficiency of the tableau-based reasoner.
From Figure 5.2, it can be seen that the distributions of the results of Konclude, gecode,
chuffed, and ocpx are very narrow. This evaluation is very straightforward. Our approach
is much faster than Konclude and HermiT especially for the unsatisfiable ontologies (as
shown in Figure 5.3). Konclude is times out for most of unsatisfiable ontologies and
HermiT is almost 100 times slower than our approach on those ontologies. However,
Konclude can finish reasoning on some satisfiable ontologies in this data set, but the
reasoning time taken is very long and slower than our approach as shown in Figure 5.4. We
further investigated the structure of the difficult ontologies in this data set. We found that
all of the difficult ontologies contain numerous disjunctions and chains of disjunctions. It
follows what we expected in the first place since the disjunction is difficult for the tableau-
based reasoners to handle. Interestingly, it seems that the learning solvers (such as chuffed
and ocpx) demonstrate their advantages on this data set.

Our approach is still a bit slower than the Light reasoner. We investigated this fur-
ther. We found that the reason is our approach has overheads, which are encoding (from
reading OWL ontology and encoding it to MiniZinc) and flattening (converting MiniZinc
to FlatZinc) an ontology, which is around 66% of the reasoning time as shown in Table 5.4
because our parsers are standard parsers (i.e., OWLAPI and mzn2fzn). mzn2fzn is the
translator for translating MiniZinc to FlatZinc. On the other hand, we believe that the
main advantage of Light is pre-processing time, which is faster than our approach since
Light has a more efficient parser. As mentioned, our encoding is linear time so the encod-
ing time is linear regarding the size of ontologies. It can be seen from Table 5.4 that the
encoding time and flattening time are almost constant since the size of ontologies are the

5.3. EMPIRICAL EVALUATION 71

same. If we only consider the solving time, the performance of our approach is competi-
tive with that of Light. In addition, for some ontologies, our approach is even faster than
Light. We believe that if the parser is optimised, the performance of our approach will
be similar to that of Light or even better. For example, we may implement an efficient
parser, which can read an OWL ontology efficiently and encode it to FlatZinc directly.
Therefore, we may get rid of these overheads.

Ti
m

e
(L

og
 s

ca
le

 in
 s

.)

0.01

0.1

1

10

100

1000

Reasoner
Konclude HermiT Light gecode chuffed ocpx

Figure 5.2: Overview of ontology consistency checking time on JNH.

Ti
m

e
(L

og
 s

ca
le

 in
 s

.)

0.01

0.1

1

10

100

1000

Reasoner
Konclude HermiT Light gecode chuffed ocpx

Figure 5.3: Overview of ontology consistency checking time on JNH: UNSAT ontologies.

Results for Tableaux’98 benchmark

The evaluation of the Tableaux’98 benchmark is a very good lesson for us. Only a few
ontologies can be solved by our approach since the MiniZinc models of the ontologies in
this benchmark require extremely high number of individuals due to the ultimately high
number of chains of existential restrictions in the ontologies and the number of chains of

72 CHAPTER 5. ENCODING REASONING PROBLEMS INTO MINIZINC

Ti
m

e
(L

og
 s

ca
le

 in
 s

.)

0.01

0.1

1

10

100

1000

Reasoner
Konclude HermiT Light gecode chuffed ocpx

Figure 5.4: Overview of ontology consistency checking time on JNH: SAT ontologies.

Table 5.3: Details of hardest ontologies for tableau-based reasoners in JNH.

Ontology SUPDCHN DISJ EF CONJ SAT?
sat-jnh204.owl 77 741 0 0 Y
unsat-jnh219.owl 78 724 0 0 N
unsat-jnh11.owl 81 782 0 0 N
unsat-jnh19.owl 77 788 0 0 N
sat-jnh207.owl 67 742 0 0 Y
unsat-jnh9.owl 74 790 0 0 N
unsat-jnh308.owl 78 833 0 0 N
unsat-jnh16.owl 82 795 0 0 N
unsat-jnh306.owl 79 837 0 0 N
sat-jnh212.owl 67 746 0 0 Y

existential restrictions. Table 5.5 shows samples of the number of individuals generated
for the MiniZinc models of the the ontologies in this benchmark. We found that if the
number of individuals of MiniZinc models is greater than 10,000, those MiniZinc models
cannot be flattened from MiniZinc to FlatZinc by MiniZinc translator (mzn2fzn). Even
though the number of individuals of MiniZinc models that is less then 10,000 is accepted
by MiniZinc translator, it takes extremely long time to translate MiniZinc to FlatZinc.
We found that the number of individuals of which MiniZinc models can be translated to
FlatZinc and the translating time is acceptable, is less than 200.

In sprite of the problem with the number of individuals, we restrict the number of
individuals for all satisfiable ontologies to 100. Our approach is sound for this benchmark
in the sense that if our approach returns satisfiable, an ontology is satisfiable.

The results on the satisfiable ontologies in the Tableaux’98 benchmark are summarised
graphically in Figure 5.5. As described, this benchmark contains ontologies containing
many existential restrictions, which is one of the sources of inefficiency of the tableau-based
reasoner. As can be seen, Figure 5.5 shows that the distributions of Konclude, HermiT,
and Light are large. On the other hand, the distributions of our approach (gecode, chuffed,
and ocpx) are small. Since the maximum, minimum, and median of gecode, chuffed, and
ocpx are similar, we will explain them together as our approach. We found that the

5.3. EMPIRICAL EVALUATION 73

Table 5.4: Performance comparison between Chuffed and Light.

chuffed Light
Encoding Flattening Solving Total Time

sat-jnh1.owl 0.17 0.111 0.033 0.314 0.020
sat-jnh201.owl 0.11 0.111 0.089 0.310 0.018
sat-jnh220.owl 0.17 0.084 0.033 0.287 0.022
sat-jnh7.owl 0.17 0.105 0.023 0.298 0.019
unsat-jnh16.owl 0.15 0.106 0.056 0.312 0.253
unsat-jnh305.owl 0.11 0.110 0.081 0.301 0.402
unsat-jnh306.owl 0.16 0.111 0.043 0.314 0.029
unsat-jnh308.owl 0.15 0.113 0.040 0.303 0.020
unsat-jnh309.owl 0.15 0.109 0.047 0.306 0.027
unsat-jnh310.owl 0.12 0.086 0.096 0.302 0.023

Table 5.5: Sample number of individuals for evaluation of ALC.

Ontology EF # individuals
k_d4_sat_09.owl 453 18782
k_d4_sat_10.owl 543 25614
k_d4_unsat_09.owl 363 9304
k_d4_unsat_10.owl 438 13041
k_d4_unsat_12.owl 609 23709
k_d4_unsat_13.owl 705 30980
k_poly_sat_09.owl 520 6901
k_poly_sat_10.owl 587 8183
k_poly_sat_12.owl 812 12949
k_poly_sat_13.owl 982 16973
k_poly_unsat_09.owl 488 6313
k_poly_unsat_10.owl 622 8879
k_poly_unsat_15.owl 1217 23068
k_poly_unsat_16.owl 1423 28874

combination of conjunctions and existential restrictions is difficult for the tableau-based
reasoners (Konclude and HermiT) to perform reasoning for most cases. There are some
outliers of each solver. We investigated this further. Then we found that the outliers of
our approach are interesting since the range of reasoning time taken by these three solvers
are small, but some outliers are very high (some of them are 300 seconds). It seems that
this is because the combination of conjunctions and existential restrictions also has an
affect on our approach for some cases.

In addition, the performance of our approach is similar to that of Light as displayed
in Figure 5.5. Obviously, HermiT has very poor reasoning performance for this data set
since the median is equal to the maximum data. As can be seen from Figure 5.5, the
median of our approach is lower than that of Konclude. This means that the reasoning
time taken by our approach on most of ontologies is faster than that of Konclude.

Now, we have presented the overall results of Tableau’98 evaluation on the satisfiable
ontologies. Next, we are going to present the results in more details. We present the
results in Figure 5.6 using a scatter plot. This scatter plot is ordered by the reasoning
time taken by Konclude. From Figure 5.6, it can be seen that the reasoning time taken
by our approach (gecode (green circle), chuffed (red circle), and ocpx (blue circle)) is
pretty stable. In addition, our approach can easily reason about the ontologies that are

74 CHAPTER 5. ENCODING REASONING PROBLEMS INTO MINIZINC

Ti
m

e
(L

og
 s

ca
le

 in
 s

.)

0.001

0.01

0.1

1

10

100

1000

Reasoner
Konclude HermiT Light gecode chuffed ocpx

Figure 5.5: Overview of ontology consistency checking time on Tableaux’98: SAT ontolo-
gies.

hard for Konclude (orange circle) and HermiT (pink circle). Then we investigated the
structure of the hard ontologies for Konclude and HermiT. We found that those hard
ontologies contain a lot of existential restrictions (EF) and conjunctions (CONJ) as shown
in Table 5.6. Table 5.6 presents the details of the top 6 most difficult ontologies. It follows
what we expected in the first place since the combination of existential restrictions and
conjunctions is hard for the tableau-based reasoners to deal with.

chuffed
ocpx

gecode
Light

Konclude
HermiT

Ti
m

e
(L

og
 s

ca
le

 in
 s

.)

0.001

0.01

0.1

1

10

100

1000

Ontology
0 10 20 30 40 50 60 70

Figure 5.6: Scatter plot of ontology consistency checking time on Tableaux’98: SAT on-
tologies.

In conclusion, the results of this evaluation show that the approach presented in this
thesis (gecode, chuffed, and ocpx) clearly outperforms the dedicated ontology reasoners. In
addition, our approach is competitive with Light reasoner. This shows that for ontologies

5.4. RELATED WORKS 75

Table 5.6: Details of hardest ontologies for tableau-based reasoners in Tableau’98: SAT
ontologies.

Ontology SUPDCHN DISJ EF CONJ SAT?
k_poly_sat_16.owl 0 0 1370 337 Y
k_poly_sat_17.owl 0 0 1588 365 Y
k_poly_sat_18.owl 0 0 1703 379 Y
k_poly_sat_19.owl 0 0 1945 407 Y
k_poly_sat_20.owl 0 0 2072 421 Y
k_poly_sat_21.owl 0 0 2338 449 Y

with a significant number of existential restrictions, tableau-based reasoners struggle to
perform well. On the other hand, CP-based techniques, especially those based on clause
learning (such as chuffed and ocpx) can demonstrate their advantages. Unfortunately, our
approach is not completed for this benchmark. As can be seen, with restriction of number
of individuals, our approach can efficiently perform reasoning on the satisfiable ontologies
in this benchmark. This shows that the approach that we used to calculate the number
of individuals is not efficient and MiniZinc models may not require very high number of
individuals. It is interesting to further investigate the approach to tighten the number of
individuals that MiniZinc models need.

While this set of benchmarks is by no means exhaustive, it demonstrates that our
approach is feasible and effective, and that clause learning solvers are crucial for achieving
high reasoning performance on difficult ontologies.

5.4 Related Works

Over the years, Description Logics have played an important role in many applications in
numerous areas of computer science, semantic web, and ontologies. Due to this reason,
the automated reasoning problem has been investigated (Schmidt-Schauß & Smolka, 1991;
Baader, 2000; Horrocks & Sattler, 2007; Motik et al., 2009). Many approaches have been
proposed for efficiently reasoning about Description Logics, starting from the concept
satisfiability checking problem of the core Description Logic ALC. The main algorithm is
the Tableau-based Algorithm. This algorithm is based on tableau calculi (Baader & Nutt,
2003).

The tableau-based algorithms attempt to construct a model of an ontology as a tree
structure where the branches are close by logical contradictions. These algorithms trans-
form an input ontology to Negation Normal Form (NNF). For example, ¬∃R.(A⊓¬B) can
be transformed to ∀R.(¬A⊔B), where A and B are atomic concept and R is a role. After
that, the algorithms apply expansion rules to construct a model of the ontology. The
expansion rules are used to expand the search tree to find a contradiction (see (Baader &
Sattler, 2001) for details). If there is no contradiction, the ontology is consistent. They
can be deterministic and non-deterministic. Since disjunction and general concept inclu-
sion (GCI) are handled by non-deterministic rules, they can cause a lot of OR-branchings
during the reasoning process and thus decrease the performance of this type of algorithms.
The application of non-deterministic rules can be considered as OR-search which is one of
the major sources of inefficiency of tableau-based algorithms (Motik et al., 2007b, 2007a,
2009). The application of expansion rules on qualified number restriction and concrete
domains can also increase the search space exponentially (Baader, Horrocks, & Sattler,
2008). Our approach is an alternative approach, which uses the idea to leverage the
power of Constraint Programming (CP). Since CP is good at dealing with OR-search, our

76 CHAPTER 5. ENCODING REASONING PROBLEMS INTO MINIZINC

approach uses these advantages to minimise the inefficiency of the tableau-based reason-
ers. The evaluation in Section 5.3 is an evidence to support this idea since our approach
outperforms the dedicated tableau-based reasoner.

Another interesting decision procedure for satisfiability checking is Resolution-based
method (Bachmair & Ganzinger, 1997). Basically, ALC is a syntactic variant of modal
logic (Schild, 1991). Therefore, resolution-based methods for modal logics can be used to
check satisfiability of ALC. There are many studies about resolution-based methods for
modal logics (Hustadt, de Nivelle, & Schmidt, 2000; Schmidt, 2006; Schmidt & Hustadt,
2013). The widely used approach to develop resolution-based method for modal logic is
to translate modal logic into first-order logic and then first-order resolution provers can
be used (Hustadt et al., 2000; Schmidt, 2006; Schmidt & Hustadt, 2013). The translation
from modal logic into first-order logic is straightforward, and can be obtained in time
O(n log n). In addition, first-order resolution can be refined to support modal logic effec-
tively (Hustadt et al., 2000; Schmidt, 2006; Schmidt & Hustadt, 2013). Most refinements
are based on ordered resolution and selection-based resolution. Since the resolution-based
method is efficient for certain logics, the tableau based approach is currently the most
widely used technique for reasoning in DLs (Baader, Horrocks, & Sattler, 2008).

Since the reasoning techniques offered by SAT are powerful and effective, several ap-
proaches have been proposed to exploit the advantages of SAT-style solving for DL reason-
ing. The first approach is Extended Backjumping (Steigmiller, Liebig, & Glimm, 2012).
It uses a SAT-like technique to improve Dependency Directed Backtracking (Horrocks,
2003), which is a well-known optimisation for ontology reasoning. Moreover, Extended
Backjumping exploits an unsatisfiability caching that caches sets of concepts, which are
unsatisfiable, and Backtracking to reduce more of the non-deterministic branching than
the original optimisation. This approach uses Backtracking to collect concepts that cause
a clash and their dependencies on the same node, where the clash has occurred to generate
unsatisfiability caches. Then the approach learns from the unsatisfiability caches to prune
non-deterministic branching. As a result, from their experiments, this approach can re-
duce the number of the non-deterministic branching by two-fold compared to the original
Dependency Direct Backtracking.

The second approach is an encoding approach that exploits the advantages of SAT
solvers. In order to use SAT solvers, a SAT encoding approach for an ontology based
on the Description Logic ALCN has been proposed (Meissner, 2011). This approach
transforms an ontology in negation normal form (NNF) to propositional logic formulas
in Conjunctive Normal Form (CNF). CNF is a conjunction of clauses. After that, they
use a SAT solver to check satisfiability of the propositional logic formulas. The drawback
of this approach is that it can lead to an exponential number of clauses in CNF due to
the presence of number restrictions. Another encoding approach has been proposed for
the Description Logic ALCQ (Haarslev et al., 2011). The main point of this approach is
to encode an ontology based on the Description Logic ALCQ into a Satisfiability Modulo
the Theory of Costs (SMT(C)) formula (Cimatti, Franzén, Griggio, Sebastiani, & Stenico,
2010). The Theory of Cost is used to handle qualified number restriction. After the
transformation of the ontology is completed, the formula is sent to the SMT(C) solver to
check satisfiability. If the solution is satisfiable, that means the ontology is consistenct.
The issue of this approach is the large number of individuals generated regarding the
at-least restrictions. However, this work also provides a technique, which is called Smart
Partitioning to tackle the issue. As can be seen, this approach takes the advantages of the
SAT and SMT solvers directly by transforming the Description Logics to propositional
logic formulas, which are accepted by the solvers. For some large ontologies that contain
nested qualified number restrictions and nested subsumption relationships, this approach
however takes a long time to encode such ontologies to propositional logic formulas. In

5.4. RELATED WORKS 77

addition, it can be seen clearly that the encoding approach used to reduce DL problems
to SAT problems has an exponential behaviour that may be not suitable for real-world
DL applications. Our approach is inspired by this approach. The differences are: (1) we
improve the encoding process, which is now linear time and space, and creates succinct
and small MiniZinc constraint models and (2) we use CP, which can help us to extend
the encoding approach to support reasoning for concrete domain and aggregations. Our
approach can be easily extended to support reasoning for ALCQ. However, since we focus
on supporting reasoning on concrete domain and aggregations in this research, we leave
the reasoning for ALCQ to future work for now.

The third approach is called Intelligent Tableau Algorithm for DL Reasoning (Zuo &
Haarslev, 2013). This approach introduced a new normal form namely Description Logic
Normal Form (DLNF). A TBox T is in DLNF if and only if it can be divided into three
sets which are (1) Tg that contains axioms in form ⊤ ⊑ C where C is a disjunction of unary
literals. However, if “⊤ ⊑” is ignored, Tg can be viewed as propositional logic conjunctive
normal form (PCNF) or the ground logic, (2) Tue that contains axioms in form A ⊑ ∃R.C
and (3) Tua that contains axioms in form A ⊑ ∀R.C, where A is an atomic concept, R is
an atomic role and C is a concept. This approach is implemented in an ontology reasoner,
namely LIGHT.

The main idea of this approach is conducting reasoning in tableau algorithm style but
using a Quantified Boolean Formulas (QBF) solver to lead the expansion of the search
tree regarding the answer (aka model) from the solver. If there are concepts in the model
that are the same as the concepts of the left-hand side of the axioms in Tue and Tua,
the search tree is expanded and the concept of the right-hand side of the axioms in Tue
and Tua are added to Tg of a newly created node. This approach also uses the solver to
deal with the sources of inefficiency of the tableau-based algorithm such as disjunction
(Tg set) effectively. Moreover, this approach is integrated with global learning including
Unsat-learning, Sat-learning and Unknown-learning. This global learning can dramatically
reduce the search space. Their evaluation also shows the significant improvement over
previous approaches. Nonetheless, this approach supports only ALC and it solves only
the top concept satisfiability problem. Another issue in this approach is the way that this
approach feeds propositional logic formulas to the QBF solver. LIGHT needs to feed a
whole set of new propositional logic formulas to the QBF solver each time. This means
the learned clauses do not survive to be used in subsequent invocations of the QBF solver.
Our approach translates the entire ontology into a single constraint model, so that learning
solvers can take advantage of a more global perspective.

78 CHAPTER 5. ENCODING REASONING PROBLEMS INTO MINIZINC

Chapter 6

A Novel Description Logic
ELU (¬)(f,Σ)

Description logics (DLs) (Baader & Nutt, 2003) are a family of logic-based knowledge rep-
resentation formalisms that provide underlying semantics for modern ontology languages
such as OWL 2 (Grau et al., 2008). Many extensions/variations have been proposed for
the prototypical DL ALC (Schmidt-Schauß & Smolka, 1991), mostly in the abstract logical
level. In many applications, concrete domains (Lutz et al., 2003) such as natural numbers
and predicates would be useful to define concepts. For example, if we want to define
students with grade high distinction, it might require an additional property to express
that such students should have a score of at least 80. Hence, we need to introduce a
new feature score, and define HDStudent by a concept desctipiton Student ⊓ ≥ .(score, 80),
where ≥ .(score, 80) means that any instance that has score greater than or equal to 80.
Existing uses of concrete domain such as SHOIN+(D) (Horrocks & Patel-Schneider,
2003) and SHOQ(G) (Pan, 2007) are limited in their expressivity in the concrete do-
main. SHOIN+(D) uses the concrete domain as built-in data types such as xsd:integer.
SHOQ(G) uses the concrete domain as user-defined data type and data type predicates
in ontology applications. For example, the due date of assignment on 13/03/2017 can be
defined as earlier than 13/03/2017, where earlier than 13/03/2017 is a user-predefined
data type predicate.

Aggregation on concrete domains, such as the sum or minimum of all feature values
of an individual’s successors, allows more complex phenomena to be expressed. However,
extensions on concrete domains (Lutz et al., 2003) with aggregations (Baader & Sattler,
2003) have not received much attention. Adding aggregation to a DL has been proposed
in the logic EL(Σ) (Baader & Sattler, 2003). However, no reasoning support has been
implemented for this logic. We conjecture that this is partly due to the lack of complexity
results, and partly (and more importantly) due to the difficulty of extending existing,
highly-optimised tableau-based algorithms.

The ability to express aggregation over concrete domains is useful in many domains
and situations. For example, recently, an ontology has been used in the STAR-CITY sys-
tem (Lécué et al., 2014), which supports semantic traffic analytics and reasoning. A main
contribution of STAR-CITY is the ability to explain causes of traffic congestions. Adding
support for concrete domain and aggregation reasoning could make an ontology model
more precise and direct. For example, in a traffic ontology like STAR-CITY, concrete
domains with aggregation could allow us to directly model the relationship between the
number of cars on a road and the level of congestion of the road, and to reason about
this relationship. Without them such relationships can only be modelled externally to the
ontology and in an abstract way.

79

80 CHAPTER 6. A NOVEL DESCRIPTION LOGIC ELU (¬)(F,Σ)

In this work, we develop a novel Description Logic to support concrete domain and
aggregations in TBoxes. We then explore the use of modern constraint solving technologies
for reasoning with this new Description Logic.

The rest of this chapter is structured as follows. In Section 6.1, we formally define
the syntax and semantics of our novel Description Logic ELU (¬)(f,Σ). Then we present
extensions of the OWL functional syntax, which support ELU (¬)(f,Σ). In Section 6.3, we
present the terminological reasoning problems in ELU (¬)(f,Σ) together with some exam-
ples to illustrate each reasoning problem. Next, we prove that ELU (¬)(f,Σ) is decidable.
Finally, we close this chapter by discussing some related works.

6.1 ELU (¬)(f,Σ) Syntax and Semantics
We have developed a novel Description Logic with concrete domain and aggregations
named ELU (¬)(f,Σ), with some syntactic restrictions on EL(Σ) (Baader & Sattler, 2003).
The main differences between ELU (¬)(f,Σ) and EL(Σ) are listed as follows:

1. EL(Σ) does not allow TBoxes (Baader & Sattler, 2003). However, ELU (¬)(f,Σ)
allows acyclic TBoxes since the TBox is useful in many applications. This also
enable more interesting reasoning services such as ontology consistency checking
and and subsumption checking,

2. ELU (¬)(f,Σ) extends EL(Σ) by including the aggregation sum,

3. The considered concrete domain of ELU (¬)(f,Σ) is restricted to natural numbers,

4. Feature chains are disallowed in ELU (¬)(f,Σ)

The Description Logic ELU (¬)(f,Σ) is a variation of EL(Σ) described in Section 2.5.2.
ELU (¬)(f,Σ) provides aggregation functions min, max, sum and count. In addition, con-
crete domains are restricted to so-called admissible concrete domains (Baader & Hanschke,
1991), which is defined in Section 2.5.1.

Let A and B represent concept names, Ĉ, D̂, . . . represent (anonymous) concept de-
scriptions, R represents a role, and F1, F2 be features. The notation “J K” is used to
represent a multiset. Concept descriptions in ELU (¬)(f,Σ) are defined through the con-
cept constructs in Table 6.1, where f represents a (functional) atomic feature and ▷◁
represents a relational operator (a binary predicate) over the concrete domain. Features
in ELU (¬)(f,Σ) are defined through the feature constructs in the middle of the Table 6.1.
The semantics of aggregation functions is defined using multisets (Baader & Sattler, 2003).
An ELU (¬)(f,Σ) terminology (TBox) T is a finite set of axioms as defined in Table 6.1.
For our work, we consider the concrete domain to be a domain of natural number. There-
fore, we denote the concrete domain with aggregations as N. It is interesting to investigate
integers in the future.

The semantics of ELU (¬)(f,Σ) is defined in the usual way, in terms of interpretations
I = (∆I ,∆N, ·I), where ∆I (resp. ∆N) is the abstract (resp. concrete) domain of I, and
·I is an interpretation function, which maps each concept name (atomic concept) A to a
set AI ⊆ ∆I , each role name R to a binary relation RI ⊆ ∆I ×∆I . In addition to the
usual mappings, ·I maps every atomic feature f to a partial function f I : ∆I � ∆N. To
define the semantics of aggregation, the mapping M

(R◦f)I
x : ∆N → ∆N is used. Γ(R ◦ f)

and aggregation variable Γ(X), where X is a multiset, are defined in the same way as
one in Definition 2.5.5 in Section 2.5.2. Multiset can contain an individual more than
once. For example, the concept description = .(100, sum(exercise ◦ steps)) means that
any individual in this concept needs to have exactly 100 equal to the sum of steps-values
of exercise-successors. The multiset exercise ◦ steps is J40, 40, 20K, where there are three

6.1. ELU (¬)(F,Σ) SYNTAX AND SEMANTICS 81

Table 6.1: The syntax and semantics of ELU (¬)(f,Σ).

Concepts Syntax Semantics
top concept ⊤ ∆I

concept negation ¬A ∆I \AI

atomic concept A AI

conjunction Ĉ ⊓ D̂ ĈI ∩ D̂I

disjunction Ĉ ⊔ D̂ ĈI ∪ D̂I

existential restriction ∃R.Ĉ {x ∈ ∆I |∃y : (x, y) ∈ RI ∧ y ∈ ĈI}

concrete domain ▷◁ .(F1, F2)
{x ∈ ∆I |∃d1, d2 ∈ ∆N : (x, d1) ∈ F I

1 ∧
(x, d2) ∈ F I

2 ∧ (d1, d2) ∈▷◁N}, where ▷◁∈
{≥, <,≤, >,=, ̸=} and ▷◁N⊆ ∆N ×∆N

Features Syntax Semantics
atomic feature f ∆I � ∆N

natural number d dN

aggregation Γ(R ◦ f)

{
ΓN(M

(R◦f)I
x), if M (R◦f)I

x is a multiset
undefined, otherwise

where M
(R◦f)I
x = Jd|∃y : (x, y) ∈ RI ∧

fI(y) = dK and Γ ∈ {sum, count, min,
max}

Axioms Syntax Semantics
concept inclusion A ⊑ D̂ AI ⊆ D̂I

concept definition A ≡ D̂ AI = D̂I

exercise-successors and each successor has steps-value 40, 40, and 20 respectively. Thus,
the sum value of the multiset exercise ◦ steps (sum(exercise ◦ steps)) is 100.

In order to retain decidability of ontology consistency checking, some syntactic restric-
tions are placed on ELU (¬)(f,Σ). The syntactic restrictions are:

1. The TBox must be acyclic (see Definition 6.1.1).

2. Negation is only allowed in front of atomic concepts on the right-hand side of sub-
sumption axioms. Moreover, existentially constrained concepts cannot be negated.
For example, ¬A is not allowed if A ⊑ ∃R.B is in the TBox.

3. Each feature needs to have a finite and known range of values. E.g., for a feature
weight, 0 ≤ weightI(x) ≤ d for any individual x, where d ∈ N is a constant. It can
be expressed as ⊤ ⊑≤ .(0,weight) ⊓ ≤ .(weight, d)

4. For each role R involved in some aggregation, the number of R-successors need to be
bounded. It can be expressed as ⊤ ⊑≤ .(count(R ◦ f), d), where d ∈ N is a constant
and f is an arbitrary feature.

5. The top concept (⊤) can be only used as shown in Restrictions 3 and 4.

Restriction 1 helps ensure that the number of necessary individuals for the abstract
part is finite. Another reason of Restriction 1 is that ELU (¬)(f,Σ) cannot allow negation
to occur in front of atomic concepts on the left-hand side of axioms, because this could
be used to force universal restrictions on feature values. For example, the TBox A ⊑≥

82 CHAPTER 6. A NOVEL DESCRIPTION LOGIC ELU (¬)(F,Σ)

.(f, 5),¬A ⊑≥ .(f, 5) forces all f -values to be at least 5, which would not be part of the
procedure checking for consistency of the concrete domain. With the axiom syntax defined
in Table 6.1, where negation cannot be on the left-hand side of axioms, new R◦f -successors
can be safely added outside any named concepts, where they cannot affect satisfiability of
any of the axioms. For example, consider the following TBox.

A ⊑≥ .(f, 5)

B ⊑≥ .(f, 5)

¬A ⊑ B

C ⊑ ∃R.(= .(f, 5)) ⊓ = .(sum(R ◦ f), 6)

Now, to check TBox consistency, we need to put all concepts on the left-hand side to
the right-hand side of axioms. Then combining them together as follow:

⊤ ⊑ (A ⊔B) ⊓ (¬A ⊔ ≥ .(f, 5)) ⊓ (¬B ⊔ ≥ .(f, 5)) ⊓ (¬C ⊔ (∃R.(= .(f, 5)) ⊓ = .(sum(R ◦ f), 6))

Then we can check TBox consistency by checking whether ⊤ is satisfiable. Accord-
ing to the concept ∃R.(= .(f, 5)), there is one R-successor with f -value of 5. In order
to satisfy the concept = .(sum(R ◦ f), 6), one additional R-successor with f -value of 1
(R ◦ f -successor) is needed. However, the f -value of the additional R-successor can be
only greater than or equal to 5 since the additional R-successor need to belong to either
A or B because ¬A ⊑ B. Since the idea of checking the TBox consistency is to conduct
abstract domain reasoning and then switch to concrete domain reasoning once, the incon-
sistency may not be detected. ELU (¬)(f,Σ) disallows the axiom ¬A ⊑ B. As a result,
the additional R ◦ f -successor can be safely added. Restriction 2 prevents occurrences of
universal quantification, which is not supported in ELU (¬)(f,Σ). Restrictions 3 and 4 en-
sure that all features and roles have finite domains, which enables us to show decidability
in Lemma 6.4.4.

Definition 6.1.1. A TBox T is called acyclic if

1. there are no cyclic dependencies between its concept names, i.e., concept names are
neither defined directly or indirectly in terms of themselves through axioms in T .

2. T only contains axioms of the form A ⊑ D̂ and A ≡ D̂, where A is a concept name
and D̂ is a concept description.

3. for any axiom A ≡ D̂, T cannot contain any other definition for A.

Now, let us use Example 6.1.1 to shows a simple TBox in ELU (¬)(f,Σ).

Example 6.1.1. From Figure 6.1, let HouseA, HouseB, and StreetA be concept names.
has represents a role name and numberofhouses and numberofcars represent feature names.

This example presents knowledge about house and street in term of number of cars
and number of houses. HouseA is a house that has 1 - 3 cars and HouseB is a house that
has 4 - 6 cars, defined using the concrete domain concept description. Consider the axiom
HouseA ≡≥ .(numberofcars, 1) ⊓ ≤ .(numberofcars, 3), ≥ .(numberofcars, 1) means that the
number of cars is at least 1.

Moreover, StreetA is a street that has HouseA and HouseB, the number of houses on
this street is between 2 and 10, and the number of cars on this street is 9. Here, the
concrete domain construct is used to define the concepts = .(numberofhouses, count(has ◦
numberofcars)), which defines the number of houses on StreetA, and = .(numberofcars, sum(has◦
numberofcars)), which defines the number of cars on StreetA, regarding has-successors that
have numberofcars-value. Let us assume that there are two has-successors; one is for HouseA

6.1. ELU (¬)(F,Σ) SYNTAX AND SEMANTICS 83

with numberofcars-value of 3 and another is for HouseB with numberofcars-value of 6. Thus,
the multiset has◦numberofcars is J3, 6K. Regarding concepts = .(numberofhouses, count(has◦
numberofcars)) and = .(numberofcars, sum(has ◦ numberofcars)), the number of houses is 2
and the number of cars is 9 respectively.

HouseA ≡ ≥ .(numberofcars, 1) ⊓ ≤ .(numberofcars, 3)
HouseB ≡ ≥ .(numberofcars, 4) ⊓ ≤ .(numberofcars, 6)
StreetA ≡ ∃ has.HouseA ⊓ ∃ has.HouseB
StreetA ≡ = .(numberofhouses, count(has ◦ numberofcars)) ⊓

≥ .(count(has ◦ numberofcars), 2) ⊓
≤ .(count(has ◦ numberofcars), 10)

StreetA ≡ = .(numberofcars, sum(has ◦ numberofcars)) ⊓
= .(sum(has ◦ numberofcars), 9)

Figure 6.1: An example ontology about house and street

Remark 6.1.1. Since the concrete domain is finite, it is possible to emulate concrete
values and their aggregations using new concept names. However, we aim to develop ef-
fective modelling and reasoning support, and such an emulation may lead to an inefficient,
exponential-size encoding of the original TBox, in particular when emulating aggregation.
Let us use the following axioms (part of Figure 6.1) as an example.

HouseA ≡ ≥ .(numberofcars, 1) ⊓ ≤ .(numberofcars, 3)
HouseB ≡ ≥ .(numberofcars, 4) ⊓ ≤ .(numberofcars, 6)
StreetA ≡ ∃ has.HouseA ⊓ ∃ has.HouseB
StreetA ≡ = .(numberofcars, sum(has ◦ numberofcars))

For the axioms HouseA ≡≥ .(numberofcars, 1) ⊓ ≤ .(numberofcars, 3) and HouseB ≡≥
.(numberofcars, 4) ⊓ ≤ .(numberofcars, 6), the concrete domain constructs in the axioms
can be emulated to the following axioms:

HouseA ≡ HouseANumberofCarEqualTo1 ⊔ HouseANumberofCarEqualTo2 ⊔
HouseANumberofCarEqualTo3

HouseB ≡ HouseBNumberofCarEqualTo4 ⊔ HouseBNumberofCarEqualTo5 ⊔
HouseBNumberofCarEqualTo6

where HouseANumberofCarEqualToX is an unique concept name for each feature value X.

84 CHAPTER 6. A NOVEL DESCRIPTION LOGIC ELU (¬)(F,Σ)

Then we need to create new concept names regarding the number of combinations of
number of cars of each house to handle the aggregation sum(has◦numberofcars) as follows:

Sum14 ≡ HouseANumberofCarEqualTo1 ⊓ HouseBNumberofCarEqualTo4
Sum15 ≡ HouseANumberofCarEqualTo1 ⊓ HouseBNumberofCarEqualTo5
Sum16 ≡ HouseANumberofCarEqualTo1 ⊓ HouseBNumberofCarEqualTo6
Sum24 ≡ HouseANumberofCarEqualTo2 ⊓ HouseBNumberofCarEqualTo4
Sum25 ≡ HouseANumberofCarEqualTo2 ⊓ HouseBNumberofCarEqualTo5
Sum26 ≡ HouseANumberofCarEqualTo2 ⊓ HouseBNumberofCarEqualTo6
Sum34 ≡ HouseANumberofCarEqualTo3 ⊓ HouseBNumberofCarEqualTo4
Sum35 ≡ HouseANumberofCarEqualTo3 ⊓ HouseBNumberofCarEqualTo5
Sum36 ≡ HouseANumberofCarEqualTo3 ⊓ HouseBNumberofCarEqualTo6

StreetA ≡ ∃ has.HouseA ⊓ ∃ has.HouseB ⊓
(Sum14 ⊔ Sum15 ⊔ Sum16 ⊔
Sum24 ⊔ Sum25 ⊔ Sum26 ⊔
Sum34 ⊔ Sum35 ⊔ Sum36)

where SumXY is the sum of number of cars X of HouseA and Y of HouseB.
As can be seen, the emulation makes TBox very large. Such emulations are tedious,

inelegant, and expensive.

6.1.1 An ELU (¬)(f,Σ) Normal Form

An ELU (¬)(f,Σ) concept description is in negative normal form (NNF) when negation
appears only in front of concept names. A concept description Ĉ can be in NNF by
applying the transformation TR1, TR4, and TR5 in Section 2.4.2 and the normalisation
NR4, NR6, NR7, and NR9 in Section 2.4.1 and 2.4.2. For a concrete domain concept
description (▷◁ .(F1, F2)), it is possible to obtain an equivalent NNF concept by negating
predicate, i.e., ¬(= .(F1, F2)) ⇝̸= .(F1, F2). Since only acyclic TBox defined is allowed, it
is sufficient to leave the concept definition as it is.

Then we restrict our attention to those ELU (¬)(f,Σ) TBoxes in normal form, where
all axioms are of the following forms:

A ⊑ B

A ⊑ ⊔iBi A ⊑ ∃R.B

A ⊑▷◁ .(F1, F2) A ≡ ⊓iBi

A ≡ ⊔iBi A ≡ ∃R.B

A ≡▷◁ .(F1, F2)

where A,Ai, B,Bi are concept names. Note that only B can be concept negation, but not
A according to the axiom syntax defined in Table 6.2.

6.2 OWL Functional Syntax Extension for ELU (¬)(f,Σ)

In this section, we will present the functional syntax extension of OWL to support our
logic ELU (¬)(f,Σ), presented in Table 6.2. The syntax of top concept, concept negation,
conjunction, disjunction, existential quantification, and role are the same as the standard

6.2. OWL FUNCTIONAL SYNTAX EXTENSION FOR ELU (¬)(F,Σ) 85

OWL functional syntax. The concrete domain and aggregation tie with ClassExpression in
the the standard OWL functional syntax.

We extend the OWL functional syntax to support concrete domain, feature, and aggre-
gation. The OWL functional syntax of concrete domain is 'ConcreteDomain' '(' Predicate
FeatureExpression FeatureExpression ')'. The Predicate is defined as follows:

Predicate :='GreaterThanOrEqual' | 'GreaterThan' | 'LessThanOrEqual' | 'LessThan' | 'Equal' |
'NotEqual'

The meaning of predicate is vary straightforward. Each predicate is corresponding to
arithmetic operators. For example, GreaterThanOrEqual means ≥.

The FeatureExpression can be atomic feature, natural number, or aggregation. It is
defined as follows:

FeatureExpression := Feature | NaturalNumber | Aggregation

An atomic feature can be expressed using Feature. A natural number can be expressed
using NaturalNumber. The syntax of Aggregation is

'Aggregation' '(' Function ObjectPropertyExpression Feature ')'

The aggregation consists of an aggregation function (Function), a role (ObjectPropertyExpression),
and an atomic feature (Feature). The Function can be sum, count, max, or min.

Function := 'sum' | 'count' | 'max' | 'min'

Table 6.2: OWL functional syntax of ELU (¬)(f,Σ).

Concepts Syntax OWL Functional Syntax
top concept ⊤ owl:Thing
concept negation ¬A 'ObjectComplementOf' '(' Class ')'
atomic concept A Class

conjunction C ⊓D
'ObjectIntersectionOf' '(' ClassExpression
ClassExpression {ClassExpression} ')'

disjunction C ⊔D
'ObjectUnionOf' '(' ClassExpression
ClassExpression {ClassExpression} ')'

existential quantification ∃R.C
'ObjectSomeValuesFrom' '('
ObjectPropertyExpression ClassExpression ')'

concrete domain ▷◁ .(F1, F2)
'ConcreteDomain' '(' Predicate FeatureExpression
FeatureExpression ')'

Role & Features Syntax OWL Functional Syntax
role R ObjectPropertyExpression
atomic feature f Feature
natural number n any natural number

aggregation Γ(R ◦ f) 'Aggregation' '(' Function ObjectPropertyExpression
Feature ')'

Let us illustrate an example inspired by (Lécué, 2012) with the extended OWL func-
tional syntax.

86 CHAPTER 6. A NOVEL DESCRIPTION LOGIC ELU (¬)(F,Σ)

⊤ ⊑ ≥ .(numberofcars, 1) ⊓ ≤ .(numberofcars, 1000) ⊓
≤ .(count(intersectWith ◦ numberofcars), 3) (A1)

RoadA ⊑ = .(numberofcars, 100) (A2)
RoadB ⊑ = .(numberofcars, 200) (A3)
RoadC ⊑ = .(numberofcars, 300) (A4)

JammedRoad ⊑ ≥ .(numberofcars, 500) (A5)
RoadD ⊑ ∃ intersectWith.RoadA ⊓ ∃ intersectWith.RoadB ⊓

∃ intersectWith.RoadC ⊓ ≤ .(numberofcars, 600) ⊓
= .(numberofcars, sum(intersectWith ◦ numberofcars)) (A6)

Figure 6.2: An ontology about the intersection of 4 roads in DL syntax.

The ontology in Figure 6.2 represents a knowledge base about the intersection of 4
roads (RoadA, RoadB, RoadC, and RoadD) and the number of cars on a road, represented
by the feature numberofcars. RoadA is a road with 100 cars on it. The number of cars on
RoadB is 200. RoadC is a road with 300 cars on it. RoadD intersects with RoadA, RoadB,
and RoadC. In addition, the number of cars on RoadD is the sum of the numbers of cars
on RoadA, RoadB, and RoadC, and is equal to 600. JammedRoad is a road that has more
than 500 cars. We can express it in the extended OWL functional syntax as shown in
Figure 6.3.

Concepts and roles are declared as usual. However, regarding Restriction 3, the range
of feature needs to be finite. Therefore, features need to be declared with their minimum
value and maximum value. Features are declared using the following syntax:

'Declaration' '(' 'ObjectFeature' '(' Feature NaturalNumber NaturalNumber ')' ')'

where the first natural number is minimum value and the second natural number is max-
imum value.

Declaration(ObjectFeature(numberofcars 1 1000))

SubClassOf(owl:Thing ConcreteDomain(LessThanOrEqual Aggregation(sum intersectWith numberofcars) 3)
SubClassOf(RoadA ConcreteDomain(Equal numberofcars 100)

SubClassOf(RoadB ConcreteDomain(Equal numberofcars 200)

SubClassOf(RoadC ConcreteDomain(Equal numberofcars 300)

SubClassOf(JammedRoad ConcreteDomain(GreaterThanOrEqual numberofcars 500)

SubClassOf(RoadD ObjectIntersectionOf(ObjectSomeValuesFrom(intersectWith RoadA)
ObjectSomeValuesFrom(intersectWith RoadB)
ObjectSomeValuesFrom(intersectWith RoadC)
ConcreteDomain(LessThanOrEqual numberofcars 600)
ConcreteDomain(Equal numberofcars Aggregation(sum intersectWith numberofcars)))

Figure 6.3: OWL functional syntax of the ontology about the intersection of 4 roads.

6.3. ELU (¬)(F,Σ) TERMINOLOGICAL REASONING 87

6.3 ELU (¬)(f,Σ) Terminological Reasoning
The key TBox reasoning services for Description Logic are concept satisfiability checking,
ontology consistency checking, and concept subsumption checking. The definition of these
tasks is described in Section 2.3. This section presents concept satisfiability, ontology
consistency checking, and concept subsumption checking that arise from ELU (¬)(f,Σ).

6.3.1 Concept Satisfiability Checking
Given an ELU (¬)(f,Σ) TBox T , the concept satisfiability task is to ensure that a particular
concept is satisfiable w.r.t T , where T is consistent. A concept description Ĉ is satisfiable
w.r.t T if there exists a model I of T such that CI is not empty. Note that concept
satisfiability is sometimes considered with empty TBox, i.e., the concept description alone
is considered. In such a case, an arbitrary interpretation that makes Ĉ non-empty is
considered. Let us use Example 6.3.1 to illustrate concept satisfiability in ELU (¬)(f,Σ).
Example 6.3.1. The example ontology in Figure 6.2 helps to presents an inference prob-
lem, concept satisfiability. Let us now reason about the satisfiability of concept RoadD.
Assume that RoadD intersects with each RoadA, RoadB, and RoadC once. Under this
assumption, in order to check the satisfiability of concept RoadD, we can check the satis-
fiability of concept

∃ intersectWith.RoadA ⊓ ∃ intersectWith.RoadB ⊓ ∃ intersectWith.RoadC ⊓
≤ .(numberofcars, 600) ⊓ = .(numberofcars, sum(intersectWith ◦ numberofcars))

in A7. We need to calculate the sum of the numbers of cars on each road intersected with
RoadD. Since the sum of the numbers of cars on RoadA, RoadB, and RoadC is 600 (100 +
200 + 300), the concept ≤ .(numberofcars, 600), which states that the number of cars on
RoadD is less than or equal to 600, is satisfiable. Thus, concept RoadD is satisfiable.

Alternatively, if we change axiom the concept ≤ .(numberofcars, 600) in the right-hand
side of A6 to ≤ .(numberofcars, 400), which states that the number of cars on RoadD is less
than or equal to 400, it is easy to see that the sum of the numbers of cars on RoadA, RoadB,
and RoadC is greater than 400. Therefore, concept RoadD would be unsatisfiable.

6.3.2 Limited Concept Subsumption Checking
Generally, concept subsumption checking is used to check whether some concept is more
general than another one. Given an ELU (¬)(f,Σ) TBox T , a concept description Ĉ is
subsumed by a concept description D̂ w.r.t T if ĈI ⊆ D̂I is true for all models I of T .
In this case, a concept description Ĉ is subsumed by a concept description D̂ w.r.t T can
be written by Ĉ ⊑T D̂ or T |= Ĉ ⊑ D̂. Concept subsumption of Ĉ ⊑ D̂ w.r.t. T can be
reduced to concept satisfiability of its negation Ĉ ⊓ ¬D̂ w.r.t. T . Ĉ ⊑T D̂ if and only if
Ĉ ⊓ ¬D̂ is unsatisfiable w.r.t. T .

Since ELU (¬)(f,Σ) is not closed under negation, we can only perform limited concept
subsumption checking. The restrictions in Section 6.1 are not applied for the concepts that
we need to check subsumption. One additional restriction is that the right-hand side of
axiom (D̂) cannot contain the existential quantification (∃) because concept subsumption
checking is performed by checking the satisfiability of Ĉ ⊓ ¬D̂.

The following example ontology about daily fitness in Figure 6.4 and 6.5 helps to
illustrate the language constructs of ELU (¬)(f,Σ) and motivates an inference problem,
limited concept subsumption checking, that arises from ELU (¬)(f,Σ).
Example 6.3.2. In this example, we consider a situation where there is a static ontology
(Figure 6.4), which defines the details about exercise machines (Treadmill, FlexStrider,

88 CHAPTER 6. A NOVEL DESCRIPTION LOGIC ELU (¬)(F,Σ)

and CrossTrainer) and the goal (GoalState) that a person wants to achieve. For example,
Treadmill is an exercise machine that a person may use for one hour (represented by feature
hours) to get 4,000 steps (represented by feature steps) and 800 calories burnt (represented
by feature calburn). FlexStrider is an exercise machine that a person may use for one hour
to get 3,000 steps and 700 calories burnt. CrossTrainer is an exercise machine that a person
may use for one hour to get 3,000 steps and 750 calories burnt. The goal (GoalState) of a
person is a state that a person spends time to exercise between 3 and 5 hours, gets more
than 10,000 steps, burns more than 2,000 calories, and achieves a maximum heart rate
(represented by feature HR) of has-successors of at least 128 per minute. Axiom A1 is
used to restrict the range of features and limit the number of R-successors of each R that
is involved in aggregations (i.e., sum) for restrictions 3 and 4 discussed above.

Suppose a dynamic ontology is used to sync a person’s fitness activities in a streaming
fashion, for instance using a wearable fitness tracking device. The dynamic ontology is
then combined with the static base ontology and inference is performed to decide whether
the daily exercise goal is achieved. In this example, we fix a window size of synced activities
to 3 (i.e., three fitness activities per day).

⊤ ⊑ ≥ .(hours, 1) ⊓ ≤ .(hours, 10) ⊓ ≥ .(steps, 1) ⊓ ≤ .(steps, 20) ⊓
≥ .(calburn, 100) ⊓ ≤ .(calburn, 5000) ⊓ ≥ .(HR, 100) ⊓ ≤ .(HR, 170) ⊓
≤ .(count(has ◦ hours), 3) ⊓ ≤ .(count(exercise ◦ hours), 5) (A1)

Treadmill ≡ = .(hours, 1) ⊓ ≥ .(steps, 4) ⊓ ≥ .(calburn, 800) (A2)
FlexStrider ≡ = .(hours, 1) ⊓ ≥ .(steps, 3) ⊓ ≥ .(calburn, 700) (A3)

CrossTrainer ≡ = .(hours, 1) ⊓ ≥ .(steps, 3) ⊓ ≥ .(calburn, 750) (A4)
GoalState ≡ ≥ .(hours, 3) ⊓ ≤ .(hours, 5) ⊓

≥ .(steps, 10) ⊓ ≥ .(calburn, 2000) ⊓
= .(HR,max(has ◦ HR)) ⊓ ≥ .(max(has ◦ HR), 128) ⊓
= .(count(has ◦ HR), 3) (A5)

Figure 6.4: A static ELU (¬)(f,Σ) ontology about daily fitness that describes basic knowl-
edge of the fitness exercises.

The stream ontology (Figure 6.5) contains three activities (StateA, StateB, and StateC)
and the daily aggregation (DailyAggregate), which combines the three sub activities. The
id feature is used to identify the activity. StateA, for instance, is an activity that a person
has exercised using Treadmill with a heart rate of 100. When an hour is spent, the steps
and calories burnt are equal to the sum of those values given in Treadmill.

We can now reason about whether a person achieves her goal, i.e., whether the com-
bined ontology entails DailyAggregate ⊑ GoalState. Assuming that an individual in
DailyAggregate has only one of each StateA, StateB, and StateC, it can be easily seen
that axioms A2–A9 are satisfiable. In order to check the subsumption, we test whether it
is possible that this individual is not contained in GoalState. Calculating the total hours
spent, the total calories burnt, the total number of steps, and the maximum heart rate of
the day (DailyAggregate), we obtain 3 hours, 2,250 calories burnt, 10,000 steps, and heart
rate 128, respectively. It is therefore impossible that an individual in DailyAggregate is
not a GoalState, and therefore DailyAggregate ⊑ GoalState.

More generally, in order to check subsumption Ĉ ⊑ D̂, we can check satisfiability of
its negation Ĉ ⊓¬D̂. This requires the negation of D̂. Concept satisfiability w.r.t. acyclic
TBox can be done without the TBox since we can unfold a concept that we want to check

6.3. ELU (¬)(F,Σ) TERMINOLOGICAL REASONING 89

StateA ⊑ ∃ exercise.Treadmill ⊓ = .(id, 1) ⊓ = .(HR, 100) ⊓
= .(hours, sum(exercise ◦ hours)) ⊓ = .(calburn, sum(exercise ◦ calburn)) ⊓
= .(steps, sum(exercise ◦ steps)) ⊓ = .(count(exercise ◦ steps), 1) ⊓
= .(count(exercise ◦ hours), 1) ⊓ = .(count(exercise ◦ calburn), 1) (A6)

StateB ⊑ ∃ exercise.FlexStrider ⊓ = .(id, 2) ⊓ = .(HR, 110) ⊓
= .(hours, sum(exercise ◦ hours)) ⊓ = .(calburn, sum(exercise ◦ calburn)) ⊓
= .(steps, sum(exercise ◦ steps)) ⊓
= .(count(exercise ◦ hours), 1) ⊓ = .(count(exercise ◦ calburn), 1) ⊓
= .(count(exercise ◦ steps), 1) (A7)

StateC ⊑ ∃ exercise.CrossTrainer ⊓ = .(id, 3) ⊓ = .(HR, 128) ⊓
= .(hours, sum(exercise ◦ hours)) ⊓ = .(calburn, sum(exercise ◦ calburn)) ⊓
= .(steps, sum(exercise ◦ steps)) ⊓
= .(count(exercise ◦ hours), 1) ⊓ = .(count(exercise ◦ calburn), 1) ⊓
= .(count(exercise ◦ steps), 1) (A8)

DailyAggregate ≡ ∃ has.StateA ⊓ ∃ has.StateB ⊓ ∃ has.StateC ⊓
= .(hours, sum(has ◦ hours)) ⊓ = .(calburn, sum(has ◦ calburn)) ⊓
= .(steps, sum(has ◦ steps)) ⊓ = .(HR,max(has ◦ HR)) ⊓
= .(count(has ◦ hours), 3) ⊓ = .(count(has ◦ calburn), 3) ⊓
= .(count(has ◦ steps), 3) ⊓ = .(count(has ◦ HR), 3) (A9)

Figure 6.5: A stream ontology recording daily fitness activities.

satisfiability using unfolding (Horrocks, 2003) to eliminate the TBox. Since ELU (¬)(f,Σ)
is not closed under negation, we can only perform limited subsumption checking, where
D̂ is restricted to formulas that do not contain any existential restriction (directly or
indirectly), such as GoalState.

6.3.3 Consistency Checking

Given an ELU (¬)(f,Σ) TBox T , the consistency checking task is used to determine whether
T is consistent. T is consistent if and only if there exists a model I for T . If this is not
the case, T is said to be inconsistent. An interpretation I is a model for a given T if
and only if I satisfies all axioms in T . Consistency checking can be reduced to concept
satisfiability of ⊤. Let us use Example 6.3.3 to presents an inference problem, consistency
checking.

90 CHAPTER 6. A NOVEL DESCRIPTION LOGIC ELU (¬)(F,Σ)

Example 6.3.3. Given an example ontology in Figure 6.2, we can reason about this
ontology by transforming all axioms to one axiom, where the concept ⊤ is on the left-
hand side of that axiom as follow:

⊤ ⊑ (¬RoadA ⊔ = .(numberofcars, 100)) ⊓
(¬RoadB ⊔ = .(numberofcars, 200)) ⊓
(¬RoadC ⊔ = .(numberofcars, 300)) ⊓
(¬JammedRoad ⊔ ≥ .(numberofcars, 500) ⊓
(¬RoadD ⊔ (∃ intersectWith.RoadA ⊓ ∃ intersectWith.RoadB ⊓
∃ intersectWith.RoadC ⊓ ≤ .(numberofcars, 600) ⊓
= .(numberofcars, sum(intersectWith ◦ numberofcars))))

Then we can check whether the concept ⊤ is satisfiable. Since our logic ELU (¬)(f,Σ) allows
only acyclic TBoxes, it is sufficient to check the concept description on the left-hand side of
this axiom. We need to calculate the sum of number of cars of each intersectWith-successors
and check that the sum is less than or equal to 600. In this case, the intersectWith-
successors belong to each concept RoadA, RoadB, and RoadC. Therefore, the sum of
number of cars is 600 (100 + 200 + 300). Hence, the concept ⊤ is satisfiable and the
example ontology in Figure 6.2 is consistency.

6.4 Decidability of ELU (¬)(f,Σ)

Our logic is a restriction of the logic EL(Σ) introduced in Section 2.5.2, however we consider
reasoning over ontologies with a TBox whereas EL(Σ) does not. The differences between
our logic ELU (¬)(f,Σ) and EL(Σ) are described in Section 6.1. This section shows how the
proof that concept satisfiability is decidable in (Baader & Sattler, 2003) can be adapted
to ELU (¬)(f,Σ) with TBox, under the restrictions introduced in Section 6.1.

The decision procedure in (Baader & Sattler, 2003) (referred to as EL(Σ)-DP hereafter)
has two steps. It first constructs (non-deterministically) an interpretation that is consistent
with the abstract domain using completion rules, and then checks that this interpretation
is consistent with the concrete domain as well. The main theorem states that this is a
decision procedure if consistency of the concrete domain (i.e., Σ-consistency) is decidable.
The proof relies on the fact that even though we may have to introduce additional R ◦ f -
successors when checking consistency of the concrete domain, we can always do so without
them affecting the decidability of the abstract domain part, since the logic EL(Σ) does
not permit universal quantification (Remark 16 in (Baader & Sattler, 2003)).

As mentioned in Section 2.5.2, since the logic EL(Σ) only supports concept satisfiability
checking, Remark 16 from (Baader & Sattler, 2003) is sufficient only for aggregations count.
If we add TBox to EL(Σ), Remark 16 is still sufficient for aggregation count even if TBox
consistency checking is considered. However, it does not hold for the aggregations sum, min
and max for TBox consistency checking. Intuitively, using negated concepts in a concept
description, we can easily achieve the effect of universal restrictions on feature values
without allowing universal restrictions in the logic itself. The aggregations sum, min and
max may force the introduction of additional individuals with particular feature values,
which may contradict the universally quantified value. Therefore, the EL(Σ)-DP does not
support EL(Σ) with TBoxes. We will show this through the following lemmas 6.4.1, 6.4.2,
and 6.4.3.

Lemma 6.4.1. EL(Σ)-DP in (Baader & Sattler, 2003) does not work for TBox consistency
checking, where the aggregation count is replaced by sum or the aggregation includes sum.

6.4. DECIDABILITY OF ELU (¬)(F,Σ) 91

Proof. We prove the lemma through a counterexample. The following TBox in 6.4.1 below
will be considered satisfiable by EL(Σ)-DP as it will check constraints in the abstract
domain first, and then check the concrete domain, without switching back to abstract
domain reasoning. In order to check TBox consistency of the following TBox in 6.4.1, we
can easily check whether the concept ⊤ is satisfiable.

⊤ ⊑ (A ⊔ P≥5(f)) ⊓ (¬A ⊔ P≥5(f))︸ ︷︷ ︸
(L1.1)

⊓ (∃R.(P=5(f)))︸ ︷︷ ︸
(L1.2)

⊓ (P=6(sum(R ◦ f)))︸ ︷︷ ︸
(L1.3)

(6.4.1)

It is sufficient to check the left-hand side of axiom of TBox in 6.4.1. Concept description
(L1.1) forces all f -values to be at least 5. Concept description (L1.2) states that there
exists a R-successor with f -value equal to 5. Finally, concept description (L1.3) introduces
an additional R◦f -successor with f -value equal to 1 to satisfy the sum constraint (that the
sum must be 6). This contradicts (L1.1), hence the concept ⊤ is unsatisfiable and TBox
in 6.4.1 is inconsistent. However, EL(Σ)-DP in (Baader & Sattler, 2003) is not able to
identify this contradiction as it does not check the constraints on this new R ◦ f -successor
again (as it does not switch back to abstract domain reasoning).

Lemma 6.4.2. EL(Σ)-DP in (Baader & Sattler, 2003) does not work for TBox consistency
checking, where the aggregation includes min.

Proof. We prove the lemma through a counterexample. The following TBox in 6.4.2 below
will be considered satisfiable by EL(Σ)-DP as it will check constraints in the abstract
domain first, and then check the concrete domain, without switching back to abstract
domain reasoning. In order to check TBox consistency of the following TBox in 6.4.2, we
can easily check whether the concept ⊤ is satisfiable.

⊤ ⊑ (A ⊔ P≥5(f)) ⊓ (¬A ⊔ P≥5(f))︸ ︷︷ ︸
(L1.1)

⊓ (∃R.(P=5(f)))︸ ︷︷ ︸
(L1.2)

⊓ (P=4(min(R ◦ f)))︸ ︷︷ ︸
(L1.3)

(6.4.2)

It is sufficient to check the left-hand side of axiom of TBox in 6.4.2.Concept description
(L1.1) forces all f -values to be at least 5. Concept description (L1.2) states that there
exists a R-successor with f -value equal to 5. Finally, concept description (L1.3) introduces
an additional R ◦ f -successor with f value equal to 4 to satisfy the min constraint (that
the minimum must be 4). This contradicts (L1.1), hence the concept ⊤ is unsatisfiable
and TBox in 6.4.2 is inconsistent. However, EL(Σ)-DP in (Baader & Sattler, 2003) is
not able to identify this contradiction as it does not check the constraints on this new
R ◦ f -successor again (as it does not switch back to abstract domain reasoning).

Lemma 6.4.3. EL(Σ)-DP in (Baader & Sattler, 2003) does not work for TBox consistency
checking, where the aggregation includes max.

Proof. We prove the lemma through a counterexample. The following TBox in 6.4.3 below
will be considered satisfiable by EL(Σ)-DP as it will check constraints in the abstract
domain first, and then check the concrete domain, without switching back to abstract
domain reasoning. In order to check TBox consistency of the following TBox in 6.4.3, we
can easily check whether the concept ⊤ is satisfiable.

⊤ ⊑ (A ⊔ P≤5(f)) ⊓ (¬A ⊔ P≤5(f))︸ ︷︷ ︸
(L1.1)

⊓ (∃R.(P=5(f)))︸ ︷︷ ︸
(L1.2)

⊓ (P=6(max(R ◦ f)))︸ ︷︷ ︸
(L1.3)

(6.4.3)

92 CHAPTER 6. A NOVEL DESCRIPTION LOGIC ELU (¬)(F,Σ)

It is sufficient to check the left-hand side of axiom of TBox in 6.4.3. Concept description
(L1.1) forces all f -values to be at most 5. Concept description (L1.2) states that there
exists a R-successor with f -value equal to 5. Finally, concept description (L1.3) introduces
an additional R ◦ f -successor with f -value equal to 6 to satisfy the max constraint (that
the maximum must be 6). This contradicts (L1.1), hence the concept ⊤ is unsatisfiable
and TBox in 6.4.3 is inconsistent. However, EL(Σ)-DP in (Baader & Sattler, 2003) is
not able to identify this contradiction as it does not check the constraints on this new
R ◦ f -successor again (as it does not switch back to abstract domain reasoning).

With the axiom syntax defined in Table 6.2, negated concepts are not allowed on
the left hand side of subclass axioms in ELU (¬)(f,Σ). Therefore, the effect of universal
restriction does not manifest here. That way, new R ◦ f -successors can be safely added
outside any named concepts, where they cannot affect satisfiability of any of the axioms of
abstract domain. What remains to be shown is that consistency of our concrete domain,
which includes aggregations min, max, count, sum w.r.t. acyclic TBox, is decidable.

Before we show the decidability proof, we will introduce the proof technique from (Baader
& Sattler, 2003). Since the behaviour of aggregation functions is axiomatised, aggregation
variables Γ(Y) can be replaced by individual variables yΓ. For ∆N the set of natural num-
bers, the relational operators ≥, <,≤, >,=, and ̸= are defined as usual. The constraint
system in EL(Σ)-DP (Baader & Sattler, 2003) is generated with the conjunction of N-
constraints. Since the proof is for N-consistency, which is a special case of Σ–consistency
where the concrete domain is natural numbers, the conjunction of N-constraints is trans-
formed to the set of linear (in)equalities. Then the Boolean combination of linear in-
equalities is added as constraints in order to handle interactions between aggregations
sum, count,max, and min.

Lemma 6.4.4. If N is a concrete domain such that

• ∆N is the set of natural numbers

• ▷◁ (N) = {≥, <,≤, >,=, ̸=}

• Σ(N) = {min,max, count, sum}

with Restriction 3 in Section 6.1, then N-consistency is decidable.

Proof. This proof is adapted from the proof of lemma 24 in (Baader & Sattler, 2003).
The approach for proving decidability in (Baader & Sattler, 2003) is to transform a con-
straint system into an equisatisfiable set of linear (in)equalities without aggregation func-
tions. Aggregation functions are replaced by newly introduced variables plus additional
(in)equalities that implement consistency constraints between the new variables. The only
difference is that aggregated multiset variables involving sum are replaced by individual
variable ysum. Let A be a constraint system, AN be the conjunction of N-constraints in A,
σ be a set of multiset variables, Y be a multiset. Let DA be a set of linear (in)equalities
without aggregation that is satisfiable iff AN is satisfiable. In order to handle sum, the
Boolean combination of linear inequalities Dysum are added to DA for aggregated multiset
sum(Y). Every max(Y), min(Y), count(Y), and sum(Y) is replaced by ymax, ymin, ycount
and ysum respectively.

Let a set DA be obtained from D′
A by replacing constraints by (in)equalities. Precisely,

D′
A is the set of all concrete predicates ▷◁ (d1, d2), where d1, d2 are feature values, in AN

where each occurrence of max(Y), min(Y), count(Y), and sum(Y) is replaced by ymax,
ymin, ycount and ysum respectively. Then DA is obtained from D′

A by replacing constraints
with (in)equalities and adding axioms to handle the interactions between max(Y), min(Y),
count(Y), and z : Y fro each Y . The sets D′

A and DA is defined as follows:

6.4. DECIDABILITY OF ELU (¬)(F,Σ) 93

D′
A := AN[max(Y)/ymax for Y ∈ σ][min(Y)/ymin for Y ∈ σ][count(Y)/ycount for Y ∈ σ]

[sum(Y)/ysum for Y ∈ σ]

DA :={ymin ≤ ymax|ymin or ymax occurs in D′
A} ∪

{ymin ≤ z|ymin occurs in D′
A and (z : Y) ∈ AN} ∪

{ymax ≥ z|ymax occurs in D′
A and (z : Y) ∈ AN} ∪

{x ▷◁ y| ▷◁∈ {>,≥, <,≤,=, ̸=} and ▷◁ .(x, y) ∈ D′
A} ∪

{Dycount |ycount occurs in D′
A}

Let xY := {x|x : Y ∈ C}, xcount
Y be the cardinality of xY , and xsum

Y be the sum of xY .
Then Dycount is defined as follows:

Dycount :=

((
xcount
Y = ycount ∧

∨
x∈xY

x = ymin ∧
∨

x∈xY

x = ymax
)
∨ (DC1)(

xcount
Y = ycount − 1 ∧

∨
x∈xY

(x = ymin ∨ x = ymax)
)
∨ (DC2)

(
xcount
Y ≤ ycount − 2

))
∧ (DC3)

ycount ∈ N ∧ ycount ≥ 0

The disjunctions above are important since we need to consider the presence of min-
imum and maximum values in the multiset. The first disjunct (DC1) handles the case,
where both minimum and maximum values are in the multiset. The second disjunct (DC2)
handles the case, where either minimum or maximum value is not in the multiset. There-
fore, the result of aggregation count is the number of elements in the multiset plus one.
The third disjunct (DC3) handles the case where both minimum and maximum values are
not in the multiset. As a consequence, the result of aggregation count is the number of
elements in the multiset plus two. In order to handle the interactions between max(Y),
min(Y), count(Y), and sum(Y), Dsum

A is obtained by replacing boolean combination Dysum
for each ysum in DA. Then Dsum

A is defined as follows:

Dsum
A := DA ∪

∪
ysum occurs in DA

Dysum ,

Then Dysum is defined as follows:

Dysum := ysum ≥ ymin × ycount ∧
ysum ≤ ymax × ycount ∧((

xsum
Y = ysum ∧

∨
x∈xY

x = ymin ∧
∨

x∈xY

x = ymax
)
∨ (DS1)

(
xsum
Y = ysum − ymax ∧

∨
x∈xY

x = ymin ∧ ymax /∈ xY
)
∨ (DS2)

(
xsum
Y = ysum − ymin ∧

∨
x∈xY

x = ymax ∧ ymin /∈ xY
)
∨ (DS3)

(
xsum
Y ≤ ysum − ymax − ymin

))
∧ (DS4)

ysum ∈ N

94 CHAPTER 6. A NOVEL DESCRIPTION LOGIC ELU (¬)(F,Σ)

Similar to the aggregation count, the disjunctions are used to handle a presence of
minimum and maximum values in the multiset. The first disjunct (DS1) handles the case,
where both minimum and maximum values are in the multiset. The second disjunct (DS2)
handles the case, where the maximum value is not in the multiset. Therefore, the result
of aggregation sum is the sum of elements in the multiset plus the maximum value. The
third disjunct (DS3) handles the case, where the minimum value is not in the multiset.
Therefore, the result of aggregation sum is the sum of elements in the multiset plus the
minimum value. The forth disjunct (DS4) handles the case, where both minimum and
maximum values are not in the multiset. As a consequence, the result of aggregation sum
is the sum of elements in the multiset plus both minimum and maximum values.

This conjunction of ysum ≥ ymin×ycount and ysum ≤ ymax×ycount is necessary because it
is used to handle the interactions between all aggregations. Intuitively, the average of each
element in Y needs to be between the min value and the max value. The first conjunct
(ysum ≥ ymin × ycount) ensures that the average of each element in Y is more than or equal
to min value. The second conjunct (ysum ≤ ymax × ycount) ensures that the average of each
element in Y is less than or equal to max value. Finally, since the concrete domain is
always finite due to Restriction 3, the satisfiability of Dsum

A can be decided using linear,
integer or mixed programming techniques.

6.5 Related Works

Concrete domains in Description Logics represent concrete qualities, such as size, weight,
temperature, via feature. Concrete domains have first been proposed as an extension
of ALC in ALC(D) (Baader & Hanschke, 1991). ALC(D) allows concrete feature, which
relates (abstract) individuals to concrete values and abstract feature, which relates individ-
uals to each other in the abstract domain. It also supports feature chains (e.g., f1 · · · fn). It
has been shown (Lutz, 2002) that the complexity of concept satisfiability and subsumption
of ALC(D) is PSapce-complete. Concrete domains have since been further developed
in several directions.

The Description Logic ALCF(D) extends ALC(D) by adding feature agreements and
feature disagreements (Lutz, 2002). The complexity of concept satisfiability and subsump-
tion checking in ALCF(D) is PSapce-complete. Functional dependencies in ALC(D)FD (Lutz
& Milicic, 2004) allows one to express that a set of properties can decide the value of a
property. For example, all employees with the same department id work in the same
department. ALC(D)FD is in general undecidable. Decidability of ALC(D)FD is retained
by allowing only safe key boxes. The complexity of concept satisfiability of ALC(D)FD

with safe key boxes is NExpTime-hard. Note that the complexity depends on concrete
doamain.

Aggregation over concrete domains was originally proposed in ALC(Σ) (Baader &
Sattler, 2003). ALC(Σ) allows all ALC concept constructs and aggregations. However,
this leads to undecidability of concept satisfiability and subsumption. Decidability of
concept satisfiability is retained by disallowing universal quantification and restricting the
use of negation to named concepts for certain concrete domains and aggregations, resulting
in the logic EL(Σ) (Baader & Sattler, 2003). A set of completion rules was proposed for
concept satisfiability of EL(Σ), for reasoning on the abstract domain and for creating
conjunctions of aggregations, features, and predicates as constraints (concrete domain
reasoning). These conjunctions can be subsequently decided by techniques such as linear
or mixed integer programming. However, no reasoning support has been implemented for
this logic. The DL ELU (¬)(f,Σ) is a restriction of EL(Σ) (Baader & Sattler, 2003). On the
other hand, the DL ELU (¬)(f,Σ) is equiped with TBox and aggregation sum, which allow
us to express interesting knowledge such as the example in Figure 6.2. In this work we

6.5. RELATED WORKS 95

also show that our logic ELU (¬)(f,Σ) is decidable for a certain concrete domain. Our logic
is designed to allow us to perform reasoning tasks that require a TBox such as ontology
consistency and concept subsumption checking in addition to concept satisfiability.

96 CHAPTER 6. A NOVEL DESCRIPTION LOGIC ELU (¬)(F,Σ)

Chapter 7

Encoding ELU (¬)(f,Σ) into
MiniZinc

As described in Chapter 6, extending Description Logics with concrete domains with
aggregations, such as sums, counting, or min/max, allows us to model ontologies that are
useful and interesting in many domains (we used the fitness tracker example in Chapter 6).
Aggregation is a very natural extension, since it allows individuals to be organised by their
physical attribute values. However, reasoning support for aggregations has not received
much attention, and proves challenging. Even though one tableau-based algorithm was
proposed to support concept satisfiability (see Section 3.1.2), it has not been implemented.
Therefore, it is difficult to show the effectiveness of this algorithm.

In Chapter 4, we show that Constraint Programming (CP) offers powerful search and
modelling techniques. On the one hand, modelling languages such as MiniZinc support
modelling for many types of constraints, including numerical constraint. In addition, CP
offers modelling techniques such as symmetry breaking, which can reduce search during
the solving process. On the other hand, CP provides mature solving techniques. CP can
highly prune the search tree by maintaining consistencies during the search – this technique
is called Constraint Propagation. CP is also good at handling numerical constraints.
Moreover, recent advanced CP techniques such as Lazy Clause Generation can combine the
advantages of CP techniques and SAT techniques, resulting in powerful learning solvers.
Constraint Programming is also an active research area, resulting in new solvers and
techniques being continuously proposed with ongoing improvements in performance.

Chapter 5 has shown that it is possible to efficiently perform reasoning in Description
Logic (i.e., ALC) by encoding it into a CP problem (i.e., constraint model). Particularly, it
has been shown that CP techniques are able to deal with one of the sources of inefficiency
of tableau-based algorithms, OR-search. Considering the experiences gained and results
of the evaluations in Chapter 5, in this chapter we show that CP techniques and solvers
can be very powerful and suitable tools to reason about Description Logic with concrete
domain and aggregations. In our case, we consider reasoning support for ELU (¬)(f,Σ).

We start our research from an encoding of concept satisfiability in ELU (¬)(f,Σ) w.r.t.
acyclic TBoxes into MiniZinc models. Then we further investigate this idea for TBox
consistency checking and limited concept subsumption checking (see Section 6.3). We
chose to deal with only acyclic TBoxes and postponed the issue of introducing blocking
techniques to handle cyclicity to future work.

The rest of this chapter is structured as follows. In Section 7.1, we define our novel
encoding scheme to encode ELU (¬)(f,Σ) into CP problems. Then we prove that our en-
coding scheme is sound and complete, and show the complexity of the resulting reasoning
problems in ELU (¬)(f,Σ) in Section 7.2. Next, in Section 7.3, we discuss symmetry break-
ing and search heuristic in MiniZinc constraint models, which are important optimisation

97

98 CHAPTER 7. ENCODING ELU (¬)(F,Σ) INTO MINIZINC

techniques that improve the performance of our approach. Finally, we close this chapter
with an empirical evaluation, describing the setup and discussing the results in Section 7.4.

7.1 Concept Satisfiability and Limited Subsumption Check-
ing

In this section, we extend our previous encoding of ALC into MiniZinc in order to support
reasoning over concrete domain and aggregations in ELU (¬)(f,Σ).

7.1.1 ELU (¬)(f,Σ) to MiniZinc

This section presents the close relation of MiniZinc syntax with the semantics of ELU (¬)(f,Σ)
as defined in Table 6.1.

Let us recall some basic definitions. Individuals are encoded as positive integers. More-
over, we encode the top concept ⊤ (the superclass of all concepts) and a concept A as
set variables of individuals T and A respectively. T is a set of all abstract individuals in
encoding. Hence, A is always a subset of T for all concepts A. The bottom concept ⊥ can
be encoded to the empty set ({}). A role R is encoded as an array of sets R, where indices
i are individuals in one set and the set R[i] contains R-successors of individual i.

Let us now look at the new syntactic constructs in ELU (¬)(f,Σ). A (functional) feature
f maps an abstract individual to a natural number. It is encoded as an array of natural
numbers f, whose indices i are individuals in its domain, and the natural number f[i] is
the f -value (f -successor) of individual i.

In Sections 4.2.2 and 5.1, the MiniZinc encodings for the Description Logics EL and
ALC are presented. ELU (¬)(f,Σ) allows concept name, conjunctions, disjunctions, atomic
negations, and existential restrictions, which are the same as language constructs in ALC.
The only one language construct left to be explained is concrete domain concept construct.
This concept construct can be encoded as follows:

Concrete domain (▷◁ .(F1, F2)) is the set of individuals that have F1-successor and F2-
successor, and F1-successor and F2-successor satisfy ▷◁. Therefore, it can be encoded to
F1 ▷◁ F2, where ▷◁∈ {≥, <,≤, >,=, ̸=}, and expressions F (such as F1 and F2) are encoded
as the following three cases:

• If F is an atomic feature f , it is encoded as an array of natural numbers f[i], whose
indices i are individuals in its domain, and the natural number f[i] is the f -value
(f -successor) of individual i.

• If F is a natural number d, it is encoded as natural number d.

• If F is an aggregation Γ(R ◦ f), where Γ ∈ {sum, count, min, max}, the basic idea
is to encode it as an aggregation over R ◦ f -successors. For example, sum(R ◦ f) is
translated into an expression similar to sum(j in R[i])(f[j]). The full encoding
of aggregations is more complex and will be explained below.

Let us now use an example to illustrate the encoding of concrete domain constructs.
Given a concept = .(weight, sum(has ◦ weight)), this concept defines a set of individuals
whose weight is equal to the sum of the weights of their has-successors. It can be encoded
into weight[i] = sum(j in has[i])(weight[j]), where i and j are individuals.

We can now formally define the encoding rules of ELU (¬)(f,Σ).

Definition 7.1.1. ELU (¬)(f,Σ)2MiniZinc (MiniZinc Encoding : Set-based Encoding)
Let T be an acyclic ELU (¬)(f,Σ) TBox in normal form. The encoding scheme uses the
following notation:

7.1. CONCEPT SATISFIABILITY AND LIMITED SUBSUMPTION CHECKING 99

• T is a set of all abstract individuals of T (∆I)

• A is a set of abstract individuals of a concept A

• R is an array of sets of abstract individuals that are related via R

• f is an array of concrete individuals that are related via f

• A and B are atomic concepts

• i, j are abstract individuals

• n,m, k are non-negative integers

• xR◦f
Γ is an array of natural numbers of each aggregation, where Γ ∈ {sum, count,max,min}

• sxR◦f
Γ is an array of natural numbers of each aggregation count and sum, where

Γ ∈ {sum, count}

• bxR◦f
Γ is an array of boolean variables for each aggregation max and min, where

Γ ∈ {max,min}. The value for each array index will be true if the value of xR◦f
Γ is

in its multiset. Otherwise, the value will be false.

• bool2int is the MiniZinc function to convert Booleans to integers, i.e., true = 1 and
false = 0

• ub_array is the MiniZinc function to get the maximum of all upper bounds of the
elements in an array

• φT is a set of constraints

The encoding scheme is defined with the following rules:

ELU-ER1 Initialisation: for every R and f , introducing xR◦f
Γ , sxR◦f

Γ , bxR◦f
Γ , and

(∀i ∈ T : xR◦f
count[i] =card(R[i]) + sxR◦f

count[i] + bool2int(bxR◦f
max [i])

+ bool2int(bxR◦f
min [i])) ∈ φT (7.1.1)

(∀i ∈ T : xR◦f
sum [i] =sum(j ∈ R[i])(if j ∈ R[i] then f[j] else 0 endif)

+ sxR◦f
sum [i]) ∈ φT (7.1.2)

(∀i ∈ T : (xR◦f
min [i] = min(j ∈ R[i])(if j ∈ R[i] then f[j] else ub_array(f)

+ 1 endif)) ∨ ((xR◦f
min [i] < min(j ∈ R[i])(if j ∈ R[i] then f[j] else ub_array(f)

+ 1 endif)) ∧ bxR◦f
min [i])) ∈ φT (7.1.3)

(∀i ∈ T : (xR◦f
max [i] = max(j ∈ R[i])(if j ∈ R[i] then f[j] else 0 endif))∨

((xR◦f
max [i] > max(j ∈ R[i])(if j ∈ R[i] then f[j] else 0 endif)) ∧ bxR◦f

min [i])) ∈ φT

(7.1.4)

(∀i ∈ T : sxR◦f
sum [i] ≥ xR◦f

min [i] × sxR◦f
count[i]) ∈ φT (7.1.5)

100 CHAPTER 7. ENCODING ELU (¬)(F,Σ) INTO MINIZINC

(∀i ∈ T : sxR◦f
sum [i] ≤ xR◦f

max [i] × sxR◦f
count[i]) ∈ φT (7.1.6)

(∀i ∈ T : xR◦f
min [i] ≤ xR◦f

max [i]) ∈ φT (7.1.7)

ELU-ER2 For every axiom A ⊑ ⊔mBm ∈ T ,

(A ⊆ (
∪
m

Bm)) ∈ φT (7.1.8)

ELU-ER3 For every axiom A ⊑ ∃R.B ∈ T ,

A ⊆ {i | ∀i ∈ T ∧ card(R[i] ∩ B) ≥ 1} ∈ φT (7.1.9)

ELU-ER4 For every axiom A ≡ ⊓mBm ∈ T ,

(A = (
∩
m

Bm)) ∈ φT (7.1.10)

ELU-ER5 For every axiom A ⊑ ▷◁ .(F1, F2) ∈ T ,

A ⊆ {i | ∀i ∈ T ∧ tran(F1) ▷◁ tran(F2)} ∈ φT , where ▷◁∈ {≥, <,≤, >,=, ̸=}
(7.1.11)

where

• If Fk = f , then
tran(Fk) = f[i]

• If Fk = d (constant natural number), then

tran(Fk) = d

• If Fk = Σ(R ◦ f), then
tran(Fk) = xR◦f

Γ [i]

where xR◦f
Γ is an array of natural numbers

ELU-ER6 For the concept name A for which we want to check satisfiability,

(A ̸= ∅) ∈ φT (7.1.12)

Note that a concept definition can be easily encoded by changing ⊆ to =. A negated
concept name (¬B) can be translated to (T - B), where ”-” is set difference.

Next, we present the intuition of our encoding. This encoding directly follows the
semantics of ELU (¬)(f,Σ) in Table 6.1. We assume that an ELU (¬)(f,Σ) TBox T in
negation normal form contains only axioms of the forms: (1) A ⊑ B, (2) A ⊑ ⊔jBj , (3)
A ⊑ ∃R.B, (4) A ⊑ ▷◁ .(F1, F2), (5) A ≡ ⊓iBi, (6) A ≡ ⊔iBi, (7) A ≡ ∃R.B, and (8)
A ≡ ▷◁ .(F1, F2). Let i be an individual, n,m, k be non-negative integers, and φT be a
set of MiniZinc constraints. Axioms in T are then encoded by executing the above rules
as follows, building up the set of constraints φT :

• For every axiom A ⊑ ⊔mBm, rule ELU-ER2 is applied to obtain a constraint of
type (7.1.8). This rule is straightforward since the disjunction of concept names can

7.1. CONCEPT SATISFIABILITY AND LIMITED SUBSUMPTION CHECKING 101

be easily translated into a union operation of sets Bi, and the subclass relation ⊑
can be translated into a subset constraint in MiniZinc.

• For every axiom A ⊑ ∃R.B, rule ELU-ER3 is applied to obtain a constraint of
type (7.1.9). The subsumption ⊑ is encoded into a subset operation. This constraint
means that A is a subset of a set of individuals i such that ∀i ∈ ∆I and the cardinality
of the intersection of R-successors of i and B is greater than 1. As can be seen, the
meaning of this constraint is very close to the semantics of ∃R.B in Table 6.1.

• For every axiom A ≡ ⊓mBm, rule ELU-ER4 is applied to obtain a constraint of
type (7.1.10). This rule is straightforward since a conjunction of concept names
can be easily translated into an intersection operation of sets Bi, and the equivalent
relation ≡ can be translated into the = constraint in MiniZinc.

In the following we describe the encoding rules for ELU-ER1 and ELU-ER5, which
involve concrete domains, features, and aggregations.

• For every role R, feature f , and aggregation Γ ∈ {sum, count,max,min}, rule ELU-
ER1 is applied to obtain constraints of type (7.1.1)-(7.1.7).

• For every axiom A ⊑ ▷◁ .(F1, F2), rule ELU-ER5 is applied to obtain a constraint
of type (7.1.11). ▷◁∈ {≥, <,≤, >,=, ̸=}, and the function tran(Fk) is defined as
follows

tran(Fk) =


f[i] (i) if Fk = f (Fk is a feature)
d (ii) if Fk = d (Fk is an integer value)
xR◦f
Γ [i] (iii) if Fk = Γ(R ◦ f) (Fk is an aggregation)

Let us consider each case of aggregation as follows:
(i) A functional feature f is translated into an array mapping abstract individuals to

integers f. Therefore, tran(F) is encoded into f[i].
(ii) A natural number d is directly translated into a natural number. Therefore,

tran(F) is encoded into d such that d is a natural number.
(iii) An aggregation Γ(R ◦ f) is translated into the corresponding MiniZinc array.

The array aggregates (with aggregation function Γ ∈ {sum, count,max,min}) the feature
values of the abstract domain individuals (indices of the array). Each aggregation function
is translated directly to MiniZinc arithmetic operations sum, max, min, and set operation
card (for count).

However, the aggregation over abstract domain R-successors may not be enough, and
sometimes additional R◦f -successors need to be introduced to satisfy the concrete domain
constraints. To account for this additional contribution to an aggregation, slack variables,
encoded as sxR◦f

Γ [i], are introduced to hold the aggregated value of all these additional
successors, without actually introducing abstract individuals. A slack variable thereby
corresponds to the slack value that is left in the concrete domain constraints introduced
by (Baader & Sattler, 2003).

For case (iii) where tran(F) is encoded into xR◦f
Γ [i], we next consider each aggregation

as follows.
count: It is encoded into a constraint 7.1.1. The first part of the constraint card(R[i])

counts actual elements in the multiset of abstract individuals. sxR◦f
count[i] is a number of

additional R◦f -successors (i.e., slack) to satisfy the concrete domain constraints. bxR◦f
min [i]

(resp. bxR◦f
max [i]) represents an additional R ◦ f -successor that may be required to satisfy

the min (resp. max) constraint.

102 CHAPTER 7. ENCODING ELU (¬)(F,Σ) INTO MINIZINC

sum: It is encoded into a constraint 7.1.2. The first part of the expression
sum(j ∈ R[i])(if j ∈ R[i] then f[j] else 0 endif) sums the values of elements in the
multiset of abstract individuals. sxR◦f

sum [i] is the sum of additional R ◦ f -successors to
satisfy the concrete domain constraints.

min: It is encoded into a constraint 7.1.3. The first disjunct is the case that the result
of the min function is in the multiset of abstract individuals. Then xR◦f

min [i] is simply
assigned to the minimum value of the multiset. The second disjunct is the case that the
result of the min function is not in the multiset. Then xR◦f

min [i] is assigned to a natural
number that is less than the result of the min function over the actual individuals in the
multiset and bxR◦f

min [i] is a flag that is used in the calculation of count, since the count has
to take into account the extra element when bxR◦f

min [i] is true.
max: It is encoded into a constraint 7.1.4. Similar to min, the first disjunct is the

case that the result of max is in the multiset. Then xR◦f
max [i] is assigned to the maximum

value of the multiset. The second disjunct is the case that the result of max is not in the
multiset. Then xR◦f

max [i] is assigned to a natural number that is greater than the result of
max over the actual individuals in the multiset and bxR◦f

max [i] is a flag that is used in the
calculation of count, since count has to count the extra element when bxR◦f

max [i] is true.
To maintain the consistency between count and sum, and max and min, constraints 7.1.5–

7.1.7 need to be added.
count and sum: Constraints 7.1.5 and 7.1.6 ensure that the average value of the elements

in the multiset is between min and max.
min and max: Constraint 7.1.7 ensures that the minimum value is less than or equal

to the maximum value.
To check the satisfiability of concept A, a constraint A ̸= ∅ is added (Rule ELU-ER6),

ensuring that the set A is not empty. If this constraint is satisfiable w.r.t. all constraints
in φT , then the concept A is satisfiable.

To check subsumption of A ⊑ B, we can add a constraint A ∩ (T - B) ̸= ∅. If this
constraint is unsatisfiable w.r.t. all constraints in φT , then T ⊨ A ⊑ B. The following
example illustrates how to encode an ontology.

Example 7.1.1. Let us use the ontology in Figures 6.4 and 6.5 for this example. Figure 7.1
shows the constraints generated for the MiniZinc encoding of the ontology from Figure 6.4
and Figure 7.2 shows some sample constraints generated for the MiniZinc encoding of the
ontology from Figure 6.5.

The axioms A2–A5 are easily encoded into the constraints C1–C4 respectively. Let us
consider C5, which states that for all StateA, for example, their feature hours is equal
to the sum of all hours values of exercise-successors. Since there may be not enough
abstract domain exercise-successors, we may have to account for extra successors using
the slack variable s_sum_hours. The other states (StateB and StateC) and DailyAggregate
are encoded in a similar way as StateA. The full encoding of the stream ontology in
Figure 6.5 is shown in Appendix A.

Finally, in order to check whether DailyAggregate ⊑ GoalState, the constraint below is
added to the constraint model.

constraint card(DailyAggregate ∩ ¬ GoalState) > 0

This constraint requires the DailyAggregate ∩ ¬ GoalState concept to be non-empty.
The constraint model will therefore be unsatisfiable if and only if the concept subsumption
DailyAggregate ⊑ GoalState holds.

7.1. CONCEPT SATISFIABILITY AND LIMITED SUBSUMPTION CHECKING 103

constraint forall(i in T)(
i in Treadmill <-> ((hours[i] = 1) ∧ (steps[i] = 4) ∧

(calburn[i] = 800))); (C1)
constraint forall(i in T)(

i in FlexStrider <-> ((hours[i] = 1) ∧ (steps[i] = 3) ∧
(calburn[i] = 700))); (C2)

constraint forall(i in T)(
i in CrossTrainer <-> ((hours[i] = 1) ∧ (steps[i] = 3) ∧

(calburn[i] = 750))); (C3)
constraint forall(i in T)(

i in GoalState <->
((hours[i] >= 3) ∧ (hours[i] <= 5) ∧

(steps[i] >= 10) ∧ (calburn[i] >= 2000) ∧
(HR[i] >= 128) ∧
(card(has[i]) + s_count_has_HR[i] +

bool2int(b_max_has_HR[i]) +
bool2int(b_min_has_HR[i]) = 3)); (C4)

Figure 7.1: MiniZinc constraints of the ontology in Figure 6.4.

7.1.2 Finiteness of MiniZinc Models

Since CP solvers only work with finite domains, our CP-based encoding requires a bounded
universe. We therefore need to calculate an upper bound on the number of individ-
uals needed for the encoding to be complete. The following argument shows that for
ELU (¬)(f,Σ), one root individual plus one individual per existential restriction are suffi-
cient for the abstract part of the encoding.

The main proof idea is to show that, given an interpretation I that satisfies the abstract
domain part of an ELU (¬)(f,Σ) concept Ĉ in the context of an acyclic ELU (¬)(f,Σ) TBox
T, and which has been constructed using the completion rules from (Baader & Sattler,
2003), we can construct an interpretation I ′ that has at most n+1 individuals, and which
also satisfies the abstract domain part of Ĉ. The reason that this is possible is that any two
individuals that are introduced because of the same existential restriction in the original
TBox have the same concept restrictions placed on them, which means that they can be
shared.

Example 7.1.2. Given a TBox T that contains an axiom A ≡ ∃R.B and a concept
description Ĉ := A ⊓ ∃R.A, the concept Ĉ can be unfolded to Ĉ ′ := ∃R.B ⊓ ∃R.(∃R.B).
As can be seen, both ∃R.B concepts in Ĉ ′ are from the same axiom in T . Let A be a
constraint system, a be the root individual, A(a) be a set of concepts that the individual a
belongs to, i.e., A(a) = {A,B,A⊓B, ∃R.(Ĉ ⊔ D̂)...}. A is generated for Ĉ ′ by performing
the completion rules in (Baader & Sattler, 2003). Then an individual b is introduced for
B of the first conjunct ∃R.B and individuals c, d are introduced for ∃R.B and B in the
second conjunct respectively. Considering individuals b and d, they are introduced for
the existential restrictions that were unfolded from the same axiom A ≡ ∃R.B. Due to
the absence of universal restriction, no other concept can be added to A(b) = {B} and
A(d) = {B}. As a consequence, the individuals b and d are indistinguishable and can be
shared. In other words, the individual d can be replaced by the individual b. An upper
bound on the number of individuals required for complete reasoning is therefore 3 (one
root individual, one for ∃R.A, one for ∃R.B).

104 CHAPTER 7. ENCODING ELU (¬)(F,Σ) INTO MINIZINC

constraint forall(i in StateA)(
card(excercise[i] ∩ Treadmill) >= 1 ∧ (id[i] = 1) ∧ (HR[i] = 100)
hours[i] = s_sum_hours[i] +

sum (j in exercise[i]) (hours[i]) ∧
calburn[i] = s_sum_calburn[i] +

sum (j in exercise[i]) (calburn[i]) ∧
steps[i] = s_sum_steps[i] +

sum (j in exercise[i]) (steps[i]) ∧
(card(has[i]) + s_count_has_hours[i] +

bool2int(b_max_has_hours[i]) +
bool2int(b_min_has_hours[i]) = 1) ∧

(card(has[i]) + s_count_has_calburn[i] +
bool2int(b_max_has_calburn[i]) +
bool2int(b_min_has_calburn[i]) = 1) ∧

(card(has[i]) + s_count_has_steps[i] +
bool2int(b_max_has_steps[i]) +
bool2int(b_min_has_steps[i]) = 1)); (C5)

constraint forall(i in T)(
i in DailyAggregate <->
(card(has[i] ∩ StateA) >= 1 ∧

card(has[i] ∩ StateB) >= 1 ∧
card(has[i] ∩ StateC) >= 1 ∧
HR[i] = max (j in has[i]) (HR[j]) ∧
hours[i] = s_sum_hours[i] +

sum (j in exercise[i]) (hours[i]) ∧
calburn[i] = s_sum_calburn[i] +

sum (j in exercise[i]) (calburn[i]) ∧
steps[i] = s_sum_steps[i] +

sum (j in exercise[i]) (steps[i]) ∧
(card(has[i]) + s_count_has_hours[i] +

bool2int(b_max_has_hours[i]) +
bool2int(b_min_has_hours[i]) = 3) ∧

(card(has[i]) + s_count_has_calburn[i] +
bool2int(b_max_has_calburn[i]) +
bool2int(b_min_has_calburn[i]) = 3) ∧

(card(has[i]) + s_count_has_steps[i] +
bool2int(b_max_has_steps[i]) +
bool2int(b_min_has_steps[i]) = 3)); (C8)

Figure 7.2: Sample of MiniZinc constraints of the ontology in Figure 6.5.

Theorem 7.1.1. Given an acyclic ELU (¬)(f,Σ) TBox T in normal form as described in
Section 6.1.1 and an ELU (¬)(f,Σ) concept description Ĉ such that the abstract part of
Ĉ is satisfiable, then there exists an interpretation I ′ with at most n+ 1 individuals that
satisfies the abstract part of Ĉ, where n is the number of existential restrictions occurring
in T and 1 is for the root individual.

Proof. Let A be a constraint system, b be an individual, P1, ..., Pi, ...Pn be new fresh
concept names. Since we only focus on the abstract part of the concept description Ĉ,
we first replace each concrete domain concept occurring in Ĉ by a distinct Pi to obtain
a TBox T ′. T ′ is logically equivalent to T , where only the abstract part is considered.

7.2. CORRECTNESS AND COMPLETENESS OF THE ENCODING 105

Then we assume that the concept description Ĉ is unfolded in order to get rid of T ′ and
normalised into negative normal form, and the constraint system A is generated for Ĉ by
the completion rules in (Baader & Sattler, 2003).

Now, we have an interpretation I that satisfies the abstract part of Ĉ from A. Regard-
ing the completion rules, it can be seen that individuals are only introduced by existential
restrictions. According to the concept Ĉ unfolding, the number of existential restrictions
may increase exponentially. Therefore, the interpretation I may have an exponential
number of individuals. However, from the interpretation I, it can be seen that any two
individuals introduced for the same syntactic existential restriction from the original TBox
have exactly the same constraints imposed on them, i.e., they need to satisfy exactly the
same concepts. This is true since, in the absence of universal restrictions, only the con-
cepts in the body of the existential restriction constrain any introduced individuals. As a
result, individuals introduced because of the same existential restriction cannot be forced
to be different. Therefore, these individuals can be shared. As a consequence, we can
construct a smaller interpretation I ′ of Ĉ, which has at most n + 1 individuals, where n
is the number of existential restrictions occurring in T , and 1 is for the root individual.
The interpretation I satisfies the abstract part of Ĉ if and only if I ′ does.

7.2 Correctness and Completeness of the Encoding

In this section, we show that our encoding scheme of ELU (¬)(f,Σ) is sound and complete.
In addition, we show that concept satisfiability and consistency checking of ELU (¬)(f,Σ)
is NP-complete, and limited concept subsumption checking of ELU (¬)(f,Σ) is coNP-
complete.

Theorem 7.2.1. Given an acyclic ELU (¬)(f,Σ) TBox T in normal form and the MiniZinc
encoding, the concept A is satisfiable w.r.t. T if and only if the MiniZinc formula φT ∧(A ̸=
∅) is satisfiable.

Proof. It is a direct consequence of the following Lemmas.

Lemma 7.2.2. (Soundness) Given an acyclic ELU (¬)(f,Σ) TBox T in normal form and
the MiniZinc encoding, if the MiniZinc formula φT ∧ (A ̸= ∅) is satisfiable then the concept
A is satisfiable w.r.t. T .

The main proof idea is to construct an interpretation I from a solution of the MiniZinc
formula φT ∧ (A ̸= ∅), and then show by a straightforward inductive argument that I is a
model for T and has a non-empty concept A.

The only argument in the proof that requires explanation is that for each slack vari-
able, we can add a corresponding number of new individuals to I without affecting the
satisfiability of any of the axioms in T . This can be achieved easily by creating these new
individuals such that they are not an instance of any concept name. Because ELU (¬)(f,Σ)
disallows negation to be on the left-hand side of axioms, such individuals trivially satisfy
all axioms.

Proof. Let φT be the MiniZinc formula of T , NR be a set of roles in T , and Nf be a set of
features in T . S = (TS , SC , SR, Sf , SX) is a solution tuple of the MiniZinc formula, where
TS represents the set of actual individuals appearing in the encoding, SC represents a set
of assignments of concept name variables AS , SR represents a set of assignments of role
variables RS , Sf represents a set of assignments of feature variables fS , and SX represents
a set of assignments of slack variables (sxR◦f

Γ)S , which is the value of aggregation over

106 CHAPTER 7. ENCODING ELU (¬)(F,Σ) INTO MINIZINC

lacking R ◦ f -successors. N represents the set of natural numbers. We must prove that
there also exists a model for T . From S, we define an interpretation I as follows:

∆I = {a | a ∈ TS} ∪
∪

R∈NR,f∈Nf ,a∈TS
{sRfa

i |i ∈ 1...(sxR◦f
count[a])S}, (7.2.1)

∆N = {d | d ∈ N}, (7.2.2)

AI = AS , (7.2.3)

RI = {(a, b) | a, b ∈ ∆I and b ∈ R[a] ∪
∪

f∈Nf ,a∈TS
{(a, sRfa

i)|i ∈ 1...(sxR◦f
count[a])S},

(7.2.4)

F I = fI ∪ (Γ(R ◦ f))I (7.2.5)

fI ={(a, d) | a ∈ ∆I , d ∈ ∆N and (d = f[a] or d is constant natural number)}

∪
∪

R∈NR,a∈TS
{(sRfa

i , dRfa
i) | i ∈ 1...(sxR◦f

count[a])S and dRfa
i ∈ ∆N}, (7.2.6)

fI(a) =


d if (a, d) ∈ fI

dRfai if (a, dRfa
i) ∈ fI

undefined otherwise
, (7.2.7)

(R ◦ f)I = {(a, Y R◦f
a) | a ∈ ∆I and Y R◦f

a = Jd | b ∈ ∆I , (a, b) ∈ RI , (b, d) ∈ fIK}.
(7.2.8)

(Γ(R ◦ f))I ={(a, e) | a ∈ ∆I , e = Γ(Y R◦f
a) and (a, Y R◦f

a) ∈ (R ◦ f)I}, (7.2.9)

▷◁D={(d1, d2) | d1, d2 ∈ ∆N, (a, d1) ∈ F I
1 , (a, d2) ∈ F I

2 and d1 ▷◁ d2 is true}
where ▷◁∈ {≥, <,≤, >,=, ̸=} (7.2.10)

For non-named concepts, we define I such that:

(⊓iAi)
I = {a | a ∈ ∆I and a ∈

∩
i

Ai} (7.2.11)

(⊔jBj)
I = {a | a ∈ ∆I and a ∈

∪
j

Bj} (7.2.12)

We prove by induction over the structure of T that I is semantically consistent and it
is a model of T . For this purpose, for every axiom Ĉ ⊑ D̂ ∈ T in normal form and every
individual a, we must prove that I satisfies the following condition: if a ∈ ĈI then a ∈ D̂I

7.2. CORRECTNESS AND COMPLETENESS OF THE ENCODING 107

(i.e. ĈI ⊆ D̂I , respecting the semantics of the axiom Ĉ ⊑ D̂) When we talk about the
semantics of concepts, we always refer to Table 6.1.

The condition trivially follows from point 2, 3 and 4 of Definition 7.1.1. Let us consider
the following cases of axioms: (1) A ⊑ B, (2) A ⊑ ⊔jBj , (3) A ⊑ ∃R.B, (4) A ⊑ ▷◁
.(F1, F2), (5) A ≡ ⊓jBj , (6) A ≡ ⊔jBj , (7) A ≡ ∃R.B, and (8) A ≡ ▷◁ .(F1, F2). With
respect to the axiom syntax defined in Table 6.2, where negation cannot be on the left-
hand side of axioms, only B can be either B or ¬B. Any axiom of T in normal form is a
sub-case of one among (1)–(8). The proof below is for (1)–(5).

(1) By hypothesis, we have a ∈ AI . Thus, a ∈ AS by definition of I (7.2.3). Since A
is in φT , (ELU-ER2) φT contains the clause (A ⊆ B) of type (7.1.8). It follows a ∈ BS
since φT is satisfiable. Therefore, a ∈ BI by (7.2.3).

(2) By hypothesis, we have a ∈ AI . Then a ∈ AS by definition of I (7.2.3). Since A is
in φT , (ELU-ER2) φT contains the clause (A ⊆ (

∪
j Bj)) of type (7.1.8). It follows that

a ∈
∪

j Bj because φT is satisfiable. Thus, a ∈ (⊔jBj)
I by definition of I (7.2.12).

(3) By hypothesis, we have a ∈ AI . Therefore, a ∈ AS by definition of I (7.2.3). Since
A is in φT , (ELU-ER3) φT contains the constraint A ⊆ {a | ∀a ∈ T∧card(R[a]∩B) ≥ 1}
of type (7.1.9). Due to this constraint, φT can be satisfiable only if a ∈ {a | ∀a ∈
T ∧ card(R[a] ∩ B) ≥ 1} is true. Thus, there exists at least one individual b such that
b ∈ TS , b ∈ RS[a] and b ∈ BS because φT is satisfiable. By definitions of I (7.2.4) and
(7.2.3), (a, b) ∈ RI and b ∈ BI . As a result, a ∈ (∃r.B)I .

(4) By hypothesis, we have a ∈ AI . Therefore, a ∈ AS by definition of I (7.2.3). Since
A is in φT , (ELU-ER5) φT contains the constraint A ⊆ {a | ∀a ∈ T∧ tran(F1) ▷◁ tran(F2)}
of type (7.1.11). Due to this constraint, φT can be satisfiable only if a ∈ {a | ∀a ∈
T ∧ tran(F1) ▷◁ tran(F2)} is true. Because φT is satisfiable, let us consider the following
cases of features: (i) F = f , (ii) F = d, and (iii) F = Γ(R ◦ f). There is a tran function
for each case (ELU-ER5). Due to restriction 3, the concrete domain is always finite.
Basically, we have d1 as a value for F1 and d2 as a value for F2. For simplification, we will
use d instead of d1 and d2 in this proof.

Let Γ(Y R◦f
a) be the result of aggregation over a multiset Y R◦f

a , where Y R◦f
a = Jei|∀bi ∈

∆I , (a, bi) ∈ RI , (bi, ei) ∈ fIK, and (a, Y R◦f
a) ∈ (R ◦ f)I . For simplification, we use

Γ(Y R◦f
a) to represent the constraint that is used to calculate the result of aggregations.

For example, Γ(Y R◦f
a) represents sum(j ∈ R[i])(if j ∈ R[i] then f[j] else 0 endif),

where Γ is sum. Now we consider all possible aggregations.

(i) Since a ∈ AS , tran(F) = f[a], and {f[a]} ⊆ N, there exists one concrete domain
individual d such that d = f[a] and d ∈ N. By definition of I (7.2.6) and (7.2.5),
(a, d) ∈ fI and (a, d) ∈ F I

(ii) Since a ∈ AS , tran(F) = d, and {d} ⊆ N, there exists one concrete domain individ-
ual d such that d = d and d ∈ N. By definition of I (7.2.6) and (7.2.5), (a, d) ∈ fI and
(a, d) ∈ F I .

(iii) Since a ∈ AS , tran(F) = xR◦f
Γ [a], there exists one concrete domain individual d

such that d = xR◦f
Γ [a] and d ∈ N. However, an abstract individual a may not have enough

R-successors that have an f -successor as required by the solution for Γ(Y R◦f
a). Due to the

absence of universal qualification, we can add R-successors sRfai for a and fI(sRfai) to

108 CHAPTER 7. ENCODING ELU (¬)(F,Σ) INTO MINIZINC

Y R◦f
a . By definition of I (7.2.7), (7.2.9) and (7.2.5), (a, d) ∈ (Γ(R ◦ f))I and (a, d) ∈ F I .

Note that, this proof is correct if the value of all aggregations is consistent.

min : Since Γ is min, (ELU-ER1) φT contains a constraint of type (7.1.3). φT can
be satisfiable only if either xR◦f

Γ [a] = Γ(Y R◦f
a) is true or xR◦f

Γ [a] < Γ(Y R◦f
a) ∧ bxR◦f

Γ [a]
is true. If xR◦f

Γ [a] < Γ(Y R◦f
a) ∧ bxR◦f

Γ [a] is true, xR◦f
Γ [a] < Γ(Y R◦f

a) is true, bxR◦f
Γ [a]

is true and the minimum value is not in the multiset Y R◦f
a . Then bxR◦f

Γ [a] will be used
to calculate count function.

max : Since Γ is max, (ELU-ER1) φT contains a constraint of type (7.1.4). φT can
be satisfiable only if either xR◦f

Γ [a] = Γ(Y R◦f
a) is true or xR◦f

Γ [a] > Γ(Y R◦f
a) ∧ bxR◦f

Γ [a]
is true. If xR◦f

Γ [a] > Γ(Y R◦f
a) ∧ bxR◦f

Γ [a] is true, xR◦f
Γ [a] > Γ(Y R◦f

a) is true, bxR◦f
Γ [a]

is true and the maximum value is not in the multiset Y R◦f
a . Then bxR◦f

Γ [a] will be used
to calculate count function.

min and max : Since the value of min is always less than that of max, (ELU-ER1) φT

contains a clause of type (7.1.7).

count : Since Γ is count, (ELU-ER1) φT contains a clause of type (7.1.1). φT can be
satisfiable only if xR◦f

Γ [a] = Γ(Y R◦f
a)+sxR◦f

Γ [a]+bool2int(bxR◦f
max [a])+bool2int(bxR◦f

min [a])
is true. As mentioned in the previous cases, bxR◦f

max [a] and bxR◦f
min [a] are used to count

whether the minimum and/or maximum are present in the multiset, and therefore need to
be taken into account to calculate the count function. Since bxR◦f

max [a] and bxR◦f
min [a] are

Boolean variables, they can be converted to natural numbers using the bool2int func-
tion. Therefore, if either bxR◦f

max [a] or bxR◦f
min [a] is true, the value of bool2int(bxR◦f

max [a])
or bool2int(bxR◦f

min [a]) will be 1, otherwise it will be 0. This will happen when the
minimum or maximum value is not in the multiset Y . sxR◦f

Γ [a] is a so-called slack vari-
able, which holds the number of individuals added to TS to satisfy xR◦f

Γ [a] = Γ(Y R◦f
a) +

sxR◦f
Γ [a] + bool2int(bxR◦f

max [a]) + bool2int(bxR◦f
min [a]) when an individual a has less

R-successors than required.

sum : Since Γ is sum, (ELU-ER1) φT contains a clause of type (7.1.2). φT can be sat-
isfiable only if xR◦f

Γ [a] = Γ(Y R◦f
a)+sxR◦f

Γ [a] is true. sxR◦f
Γ [a] is a slack variable, which

is a natural number used to satisfy xR◦f
Γ [a] = Γ(Y R◦f

a) + sxR◦f
Γ [a] when an individual a

has less R-successors than required.

count and sum : Since the values of count and sum need to be consistent, (ELU-ER1)
φT contains clauses of type (7.1.5) and (7.1.6) to ensure the average of each element in Y
is between the max value and min value.

By definition of I (7.2.10), (d1, d2) ∈▷◁D. Thus, a ∈ (▷◁ .(F1, F2))
I

(5) By hypothesis, we have a ∈ AI . Then a ∈ AS by definition of I (7.2.3). Since A
is in φT , (ELU-ER4) φT contains a constraint (A = (

∩
j Bj)) of type (7.1.10). It follows

that a ∈
∩

j Bj because φT is satisfiable. Thus, a ∈ (⊓jBj)
I by definition of I (7.2.11).

For ¬B, by hypothesis, let a ∈ (¬B)I . By definition of (7.2.3), a ∈ ∆I and a ∈ TS−BS .
It follows a /∈ BI . Thus, a ∈ ∆I \ BI . For axioms (6)–(8), the lemma is easy to prove

7.2. CORRECTNESS AND COMPLETENESS OF THE ENCODING 109

by using the same approach as (2)–(4). The only difference is to change subset ⊆ to
equivalence =.

Finally, we prove that if φT ∧ (A ̸= ∅) is satisfiable, then there exists an interpretation
I, such that I is a model for T and AI ̸= ∅. φT ∧ (A ̸= ∅) is satisfiable if and only if φT

is satisfiable. Since φT is satisfiable, there exists an individual a such that a ∈ AS . By
definition (7.2.3), we have a ∈ AI . Thus, the concept A is satisfiable w.r.t. T .

Lemma 7.2.3. (Completeness) Given an acyclic ELU (¬)(f,Σ) TBox T in normal form
and the MiniZinc encoding, if the concept A is satisfiable w.r.t. T then the MiniZinc
formula φT ∧ (A ̸= ∅) is satisfiable.

The main idea of this proof is to construct a solution S from a model I of T such
that AI ̸= ∅, and then show that S is a solution of φT ∧ (A ̸= ∅). We assume that an
interpretation I ′ is constructed by the completion rules in (Baader & Sattler, 2003) to
satisfy the abstract part of T . However, certain individuals in I ′ may not have enough
R-successors that have a f -successor to satisfy the aggregations. Thus, the lacking R ◦ f -
successors of individual a (a R−→ b

f−→ d), which are composite successors of R and f , need
to be added to satisfy the concrete domain part of T . Finally, a model I is obtained by
adding additional individuals to satisfy the concrete domain part to I ′. Without loss of
generality we can assume that I is chosen such that these lacking successors do not affect
the abstract domain, because of the absence of universal quantification and the axiom
syntax defined in Table 6.2, where negation cannot be on the left-hand side of axioms.

In the MiniZinc model, the result of each aggregation Γ of the lacking R ◦ f -successors
of individual a is represented by a slack variable sxR◦f

Γ [a]. It represents the number of
fresh lacking R ◦ f -successors that need to be added to satisfy φT when Γ is count. When
Γ is sum, sxR◦f

Γ [a] is the sum of fresh lacking R ◦ f -successors that need to be added.
Additionally, for each individual a, bxR◦f

Γ [a] is a Boolean variable that represents the
absence of the min (or max) value over the multiset of R ◦ f successors of a, giving rise to
the need to add one lacking R ◦ f -successor.

Proof. Given that the concept A is satisfiable w.r.t. T , there exists a model I for T
such that AI ̸= ∅. For each individual a ∈ ∆I , let Y R◦f

a be the multiset of R ◦ f -
successors generated by the completion rules, XR◦f

a ⊇ Y R◦f
a be the multiset of all R ◦ f -

successors, including the additional ones required to satisfy the concrete domain axioms,
dRfa
i ∈ XR◦f

a \ Y R◦f
a be the ith lacking R ◦ f -successor, and bRfa

i be the ith R-successor
connecting a and dRfa

i (i.e., a R−→ bRfa
i

f−→ dRfa
i). bool2int is a function mapping Boolean

values to {0, 1}, i.e., bool2int(true) = 1, and bool2int(false) = 0. The completion rules
in (Baader & Sattler, 2003) are sound, complete and terminating. Therefore, we can
construct a model I for T , and from I build a solution S for φT .

S = (TS , SC , SR, Sf , SX) is a solution tuple of a MiniZinc formula as introduced above.
From I, we define the solution S as follows:

110 CHAPTER 7. ENCODING ELU (¬)(F,Σ) INTO MINIZINC

TS = ∆I\ (7.2.13)∪
(a,XR◦f

a)∈(R◦f)I
{bRfa

i |dRfa
i ∈ XR◦f

a \ Y R◦f
a }

AS = AI (7.2.14)
RS[a] = {b | a, b ∈ TS and (a, b) ∈ RI} (7.2.15)

fS[a] =


d if (a, d) ∈ fI

dc if (a, dc) ∈ fI ∧ dc ∈ N
undefined otherwise

(7.2.16)

(sxR◦f
Γ [a])S = Γ(XR◦f

a \ Y R◦f
a) (7.2.17)

Now, we must prove that S satisfies all the constraints of φT such that a ∈ ∆I for
every type of constraint from (7.1.1) to (7.1.11).

Constraints of type (7.1.8) represent the encoding of axioms A ⊑ ⊔mBm. Let us
consider the binary case A ⊑ B1 ⊔B2, where A, B1 and B2 are concept names (the proof
is easily generalised). The axiom is encoded to A ⊆ B1∪B2. Since a ∈ ∆I and I is a model
of T , it holds AI ⊆ (B1 ⊔ B2)

I . Thus, if a ∈ AI , then a ∈ BI
1 ∪ BI

2 . It follows by 7.2.14
that a ∈ AS and either a ∈ BS1 or a ∈ BS2 . Hence, the constraint is satisfied.

Constraints of type (7.1.9) represent the encoding of axioms A ⊑ ∃R.B. We must
show that the clause A ⊆ {a | ∀a ∈ T ∧ card(R[a] ∩ B) ≥ 1} of type (7.1.9) is satisfied.
Since a ∈ ∆I and I is a model of T , it holds AI ⊆ (∃R.B)I . Thus, if a ∈ AI , then
a ∈ (∃R.B)I . Since a ∈ (∃R.B)I , (a, b) ∈ RI and b ∈ BI such that b ∈ ∆I . By definition
of S (7.2.14) and (7.2.15), we have a ∈ AS , b ∈ RS[a], and b ∈ BS . As a result, the
constraint is satisfied.

Constraints of type (7.1.10) represent the encoding of axioms A ≡ ⊓mBm). Again,
consider the binary case A ≡ B1 ⊓ B2, where A, B1 and B2 are basic concepts, which is
encoded to A = B1 ∩ B2. Since a ∈ ∆I and I is a model of T , it holds AI = (B1 ⊓ B2)

I .
Thus, if a ∈ AI , then a ∈ BI

1 ∩ BI
2 . This follows by 7.2.14 that a ∈ AS and a ∈ BS1 and

a ∈ BS2 . Hence, the constraint is satisfied.

For the concrete domain part, the constraint of type (7.1.11) A ⊆ {a | ∀a ∈ T ∧
tran(F1) ▷◁ tran(F2)} represents the encoding of an axiom A ⊑ ▷◁ .(F1, F2). Since I is a
model of T , it holds that AI ⊆ (▷◁ .(F1, F2))

I . Thus, if a ∈ AI , then a ∈ (▷◁ .(F1, F2))
I .

Let us consider the following cases of features F (F1 or F2): (i) F = f , (ii) F = d, and
(iii) F = Γ(R ◦ f). tran is an encoding function for each case. Due to restriction 3 in
Section 6.1, the concrete domain is always finite. Basically, we have d1 as a value for F1

and d2 as a value for F2. For simplicity, we will use c instead of d1 and d2 in this proof.

(i) Since a ∈ AI , tran(F) = f[a], there exists one concrete domain individual c such
that (a, c) : f and c ∈ N. By definition (7.2.16), fS[a] = c.

(ii) Since a ∈ AI , tran(F) = d, there exists one concrete domain individual c such that
(a, c) : f and c ∈ N. By definition (7.2.16), dS = c.

(iii) Since a ∈ AI , tran(F) = xR◦f
Γ [a], there exists one concrete domain individual

c such that c is the value of aggregating over XR◦f
a for Γ. In the case that an abstract

7.2. CORRECTNESS AND COMPLETENESS OF THE ENCODING 111

individual a does not have enough R◦f -successors required by the solution for XR◦f
a , new

R◦f -successors need to be added and the aggregation result over these new R◦f -successors
will be recorded in a slack variable sxR◦f

Γ [a].

Let Γ(Y R◦f
a) be the result of aggregation over Y R◦f

a , where Y R◦f
a = Jei|∀bi ∈ ∆I , (a, bi) ∈

RI , (bi, ei) ∈ fIK, and (a, Y R◦f
a) ∈ (R◦f)I . For simplification, we use Γ(Y R◦f

a) to represent
the constraint that is used to calculate the result of aggregations. For example, Γ(Y R◦f

a)
represents sum(j ∈ R[i])(if j ∈ R[i] then f[j] else 0 endif), where Γ is sum. Now
we consider all possible aggregations.

min: Since Γ is min, we must prove that the constraint xR◦f
Γ [a] = Γ(Y R◦f

a)∨(xR◦f
Γ [a] <

Γ(Y R◦f
a) ∧ bxR◦f

Γ [a]) is satisfied. The first disjunct is for the case where no additional
R ◦ f -successors are required: since (a,XR◦f

a) ∈ (R ◦ f)I , xR◦f
Γ [a] = Γ(Y R◦f

a) is true. The
second disjunct is necessary for the case where a lacking R ◦ f -successor is added because
the minimum value is not in Y R◦f

a , i.e., xR◦f
Γ [a] < Γ(Y R◦f

a) is true. The Boolean variable
bxR◦f

Γ [a]) signals that the minimum value is not in the multiset Y R◦f
a .

max: Since Γ is max, we must prove that the constraint xR◦f
Γ [a] = Γ(Y R◦f

a) ∨
(xR◦f

Γ [a] > Γ(Y R◦f
a) ∧ bxR◦f

Γ [a]) is satisfied. The first disjunct is for the case where no
additional R ◦ f -successors are required: since (a,XR◦f

a) ∈ (R ◦ f)I , xR◦f
Γ [a] = Γ(Y R◦f

a)
is true. The second disjunct is necessary for the case where a lacking R ◦ f -successor is
added because the maximum value is not in Y R◦f

a , i.e., xR◦f
Γ [a] > Γ(Y R◦f

a) is true. The
Boolean variable bxR◦f

Γ [a]) signals that the minimum value is not in the multiset Y R◦f
a .

min and max: Since the value of min is always no greater than max in I, the constraint
min(XR◦f

a) ≤ max(XR◦f
a) is trivially satisfied.

count: Since Γ is count, we must prove that the clause xR◦f
Γ [a] = Γ(Y R◦f

a)+sxR◦f
Γ [a]+

bool2int(bxR◦f
max [a]) + bool2int(bxR◦f

min [a]) is satisfied. Γ(Y R◦f
a) represents the number

of actual R ◦ f -successors in I, bool2int(bxR◦f
min [a]) (resp. bool2int(bxR◦f

max [a])) represents
the one additional lacking R ◦ f -successor that may be required to satisfy the min (resp.
max) constraint. sxR◦f

Γ [a] is the slack variable that represents the number of additional
lacking R◦f -successors. Thus, since (a,XR◦f

a) ∈ (R◦f)I , xR◦f
Γ [a] = Γ(Y R◦f

a)+sxR◦f
Γ [a]+

bool2int(bxR◦f
max [a]) + bool2int(bxR◦f

min [a]) is true.

sum: Since Γ is sum, we must prove that the clause xR◦f
Γ [a] = Γ(Y R◦f

a) + sxR◦f
Γ [a] is

satisfied. The slack variable sxR◦f
Γ [a] records the sum of the lacking R◦f -successor values

that may be required to satisfy the solution for XR◦f
a . Thus, since (a,XR◦f

a) ∈ (R ◦ f)I ,
xR◦f
Γ [a] = Γ(Y R◦f

a) + sxR◦f
Γ [a] is true.

count and sum: To maintain the D-consistency of the concrete domain (Lemma 6.4.4),
especially between count and sum, the average value of elements in XR◦f

a needs to be
between min and max.

Then we obtain the values of tran(F1) and tran(F2) from I. Given that AI ⊆ (▷◁
.(F1, F2))

I is true in I, the constraint A ⊆ {a | ∀a ∈ T ∧ tran(F1) ▷◁ tran(F2)} is satisfied.
Regarding the axiom syntax defined in Table 6.2, where negation cannot be on the

left-hand side of axioms, ¬A can only occur on the right-hand of axioms. Let a ∈ (¬A)I .

112 CHAPTER 7. ENCODING ELU (¬)(F,Σ) INTO MINIZINC

By definition of (7.2.14), a ∈ TS and a ∈ ∆I \ AI . It follows a /∈ AI . Thus, a ∈ TS − AS .
For the equivalence (≡), the lemma is easy to prove by using the same approach as ⊑.

Finally, since there exists a model I for T such that AI ̸= ∅, there exists an individual
a ∈ ∆I such that a ∈ AI . By definition 7.2.14, we have a ∈ AS . Hence, the MiniZinc
formula φT ∧ (A ̸= ∅) is satisfiable.

With the above syntactic restrictions in Section 2.2, we can show that concept satis-
fiability for ELU (¬)(f,Σ) is non-trivial. The proof is through a straightforward reduction
from 3-SAT, which is known to be NP-hard, as shown in Theorem 7.2.4.

Theorem 7.2.4. The concept satisfiability of ELU (¬)(f,Σ) is NP-hard.

Proof. For a 3-SAT formula in CNF C = c1 ∧ c2 ∧ . . . ∧ cn, where ci is a disjunction of 3
literals, drawn from x1, x2, ..., xm and their negations, ¬x1,¬x2, ...,¬xm. We can encode
this formula into an ELU (¬)(f,Σ) concept L as follows.

For each variable xi in C, we create a corresponding named concept cxi . Each positive
(resp. negative) literal is encoded as the corresponding positive (resp. negated) named
concept. Each clause ci is encoded as a disjunctive concept expression of the three (pos-
itive or negated) concepts corresponding to the literals in that clause. Next, the formula
C is encoded as a conjunction of the above disjunctive concept expressions, and this con-
junction is our concept L. Hence, checking the satisfiability of C is reduced to checking
the satisfiability of L.

From Theorem 7.2.1 and 7.2.4, we can show that concept satisfiability and consistency
checking are NP-complete, and limited concept subsumption is coNP-complete.

Corollary 7.2.5. The concept satisfiability problem of ELU (¬)(f,Σ) is NP-complete.

Proof. Since we show that the algorithm for encoding the concept satisfiability of ELU (¬)(f,Σ)
into MiniZinc is sound, complete and polynomial in size and time, and the constraint sat-
isfaction problem (i.e., MiniZinc) is NP-complete (Feder & Hell, 2006), the concept
satisfiability problem of ELU (¬)(f,Σ) is in fact NP-complete.

Corollary 7.2.6. The consistency checking problem of ELU (¬)(f,Σ) is NP-complete.

Proof. The consistency checking problem can be reduced to the concept satisfiability prob-
lem in polynomial size and time. Since concept satisfiability of ELU (¬)(f,Σ) is NP-
complete, consistency checking of ELU (¬)(f,Σ) is also NP-complete.

Corollary 7.2.7. The limited concept subsumption checking problem of ELU (¬)(f,Σ) is
coNP-complete.

Proof. The limited concept subsumption checking problem can be reduced to the con-
cept satisfiability problem in polynomial size and time. Since concept satisfiability of
ELU (¬)(f,Σ) is NP-complete, limited concept subsumption checking of ELU (¬)(f,Σ) is
also NP-complete.

7.3 Optimisations
The encodings presented above translate each syntactic construct of a DL into a corre-
sponding MiniZinc construct. In conjunction with a suitable encoding of the reasoning
task, we can therefore use the readily available MiniZinc solvers as ontology reasoners.

One of the drawbacks of the encoding ELU (¬)(f,Σ)2MiniZinc is that the MiniZinc
model contains symmetries, which may require CP solvers to explore essentially identical

7.3. OPTIMISATIONS 113

subtrees multiple times, leading to a large increase in runtime required for solving the
model. In addition, the choice of variable and value ordering has been shown to have a
large effect on the size of the search tree, and thus to be important for effectively solving
many CSP problems (Ginsberg et al., 1990; Bacchus & Van Run, 1995; Gent et al., 1996).
In this section, we propose techniques to address these two issues in order to reduce the
size of the search space for encoded DL problems.

7.3.1 The Need for Symmetry Breaking and Search Heuristics

For a CP expert, it will be quite obvious that the encoding in Definition 7.1.1 introduces
symmetries by identifying abstract individuals with natural numbers. In any solution to
the MiniZinc model, we can swap the names (i.e., the natural numbers identifying the
individuals) of any pair of individuals to produce again a solution, as long as we take care
and also swap all of their feature values.

The encoding can therefore be extended with symmetry breaking constraints, avoiding
the unnecessary exploration of symmetric states by the constraint solvers. The general
idea of symmetry breaking was described in Section 4.3.2. In our case, the concept names
are encoded to set-valued variables. In general, breaking value symmetries like this one
can be achieved by imposing a lexicographic order

[i in A, i in B, i in C, ...] >= [i+1 in A, i+1 in B, i+1 in C, ...]

where i ranges over the possible set elements and A,B,C,... are the set-valued variables.
The choice of search heuristics for the encoding ELU (¬)(f,Σ)2MiniZinc may be equally

important. The general idea of search heuristics was described in Section 4.3.3. If the CP
solver selects the wrong concepts to start search with, it may explore the search space
that does not lead to any solution. In order to help the CP solvers, in general, the search
heuristic is imposed to make a better choice of concepts.

7.3.2 Symmetry Breaking Constraints

In order to break some symmetries in the MiniZinc model from the encoding ELU (¬)(f,Σ)2MiniZinc,
we propose static symmetry breaking constraints as follows. Assume that a TBox T is
encoded to a MiniZinc model M and M is satisfiable.

SB1 Testing satisfiability of a concept: In order to check the satisfiability of a concept
A in T , the constraint card(A) > 0 is added to M, resulting in a model M′. This
constraint means that the cardinality of A must be greater than 0. The concept
A is satisfiable if and only if there is a solution for M′, which is satisfiable only
if card(A) > 0 is satisfiable. Regarding this constraint, if there are n individu-
als in M′, the CP solver may need to try adding each of these n individuals, or
any combination of these, to A. Instead of the constraint card(A) > 0, we can
force individual 1 to be in A (i.e., 1 in A) without loss of generality, because all
individuals are symmetric. In this case, the CP solver does not need to try n in-
dividuals, it needs to try only the individual 1. In addition, we can enforce that
forall (i in 2..n) (i in A -> i-1 in A), since all individuals except 1 are
also symmetric.

SB2 Testing concept subsumption: If we want to check concept subsumption of A ⊑ B,
the constraint card(A intersect (T diff B)) > 0 is added to M, resulting in M′.
We reduce concept subsumption to concept unsatisfiability checking, i.e., checking
A ⊑ B is reduced to checking unsatisfiability of A ⊓ ¬B. T |= A ⊑ B if and
only if there is no solution for M′. M′ has no solution only if the constraint card(A

114 CHAPTER 7. ENCODING ELU (¬)(F,Σ) INTO MINIZINC

intersect (T diff B)) > 0 is unsatisfiable. Since we prove subsumption by test-
ing unsatisfiability of card(A intersect (T diff B)) > 0, we can use the same
symmetry breaking constraints as above since A cannot be empty. In addition, we
know that individual 1 cannot be in B, so we can add that constraint. Furthermore,
we can add the constraint 2 in B \/ card(B)=0, since all other individuals are still
symmetric.

SB3 Lexicographical Ordering on Individuals: We can view the assignments of individuals
to concepts as a matrix of Boolean values (i.e., 1 and 0), where the columns of the
matrix are the individual names (1, 2, 3, ...) and the rows of the matrix are set
variables corresponding to the concept names (A, B, C, ...) as shown in Figure 7.3. The
value 1 in the matrix represents the presence of an individual in the corresponding
set variable. As mentioned, all individuals are symmetric. The symmetry can be
broken by ordering the columns of the matrix lexicographically from left to right.
The intuition is that the small individuals are always assigned to the set variables
before the large individuals, i.e., the individual 1 is always assigned to a concept
before the individual 2.

Now, we treat columns as vectors. Let vi be the vector of 0s and 1s of column
i. For example, in Figure 7.3a, the value of v1 is [1, 0, 0]. Then we can post the
lexicographical ordering constraint vi >=lex vi+1 >=lex vi+2 >=lex ... >=lex vn, where
n is the number of columns (the number of individuals), to ensure that the small
individuals are always assigned to the set variables first. Let us describe this through
an example.

Example 7.3.1. Given a TBox T that contains the axioms A ⊑ ∃R.B and B ⊑
∃R.C, let us check whether the concept A is satisfiable. We encode T using the en-
coding ELU (¬)(f,Σ)2MiniZinc to a MiniZinc model M. This example has 3 concepts
A,B,C, which are encoded to set variables A, B, C, and 3 individuals 1, 2, 3, which are
encoded to natural numbers 1, 2, 3. Figure 7.3 shows the matrices of three solutions
of this example. In Figure 7.3a, the individuals 1, 2, and 3 are assigned to the set
variables A, B, and C respectively. If we now flip the solution 1 horizontally, we will
get another solution 2 of M, where the individuals 3, 2, and 1 are assigned to the set
variables A, B, and C respectively. Solution 2 is a symmetric version of Solution 1.

To eliminate the symmetric solutions, as mentioned above, the columns are ordered
lexicographically by posting a lexicographical ordering constraint v1 >=lex v2 >=lex
v3. Considering Figure 7.3a, v1 = [1, 0, 0], v2 = [0, 1, 0], and v3 = [0, 0, 1]. As can be
seen, with the lexicographical ordering constraint, only Solution 1 remains a solution
of M since it satisfies the constraint v1 >=lex v2 >=lex v3. However, Solution 2 does
not satisfy the constraint v1 >=lex v2 >=lex v3 because the vector v1 of Solution 2 is
[0, 1, 1] is not lexicographically greater than the vector v2, which is [0, 1, 0]. Hence,
Solution 2 is eliminated and the CP solver does not need to explore this solution.
Regarding Figure 7.3c, if the individual 1 cannot be assigned to the set variable A,
the set variable A is empty and the individual 1 can be assigned to the set variable
B. Conversely, if the set variable A needs an individual, the individual 1 is always
the first choice.

7.3. OPTIMISATIONS 115

1 2 3
A 1 0 0
B 0 1 0
C 0 0 1

(a) Solution 1

1 2 3
A 0 0 1
B 0 1 0
C 1 0 0

(b) Solution 2

1 2 3
A 0 0 0
B 1 0 0
C 0 1 0

(c) A is empty

Figure 7.3: Assignment of individuals to concepts.

SB4 Upper Triangular matrix of Roles: As described, we encode a binary relation R (role)
into an array of set-valued variables R. R can also be viewed as matrix of Boolean
values, where rows and columns are individual names. Figure 7.4 shows an example
where the individual 1 is R-related to the individual 2. In other words, the indi-
vidual 2 is an R-successor of the individual 1. Considering that the individuals are
introduced according to the number of existential restrictions (∃) and each individ-
ual needs at most one R-successor to satisfy an existential restriction, we always can
find a solution where a smaller individual is not a R-successor of larger individual,
i.e., if a solution states that the individual 1 is an R-successor of the individual 2,
we always can find another solution where the individual 2 is an R-successor of the
individual 1 since all individuals are symmetric. Therefore, we can post a symmetry
breaking constraint that restricts the matrix to upper triangular form and the main
diagonal is zero for every role. Let us describe this through an example.

1 2 3
1 0 1 0
2 0 0 0
3 0 0 0

Figure 7.4: Matrix of role R.

Example 7.3.2. Given a TBox T with axioms A ⊑ ∃R.B and B ⊑ ∃R.C, let us
check whether the concept A is satisfiable. We now encode T using the encoding
ELU (¬)(f,Σ)2MiniZinc to a MiniZinc model M. This example has 3 concepts A,B,C,
which are encoded to set variables A, B, C. Since there are 2 existential restrictions,
we introduce 3 individuals (1 root individual and 2 individuals for existential restric-
tions), which are encoded into natural numbers 1, 2, 3. Figure 7.5 shows Solution 1
of M, where the individuals 1, 2, and 3 are assigned to the set variables A, B, and
C respectively, the individual 2 is an R-successor of the individual 1, and the indi-
vidual 3 is an R-successor of the individual 2. If we now flip the concept matrix in
Figure 7.5a horizontally, we will get Solution 2 in Figure 7.6. Here the individuals 3,
2, and 1 are assigned to the set variables A, B, and C respectively, and the individual
2 is an R-successor of the individual 3 and the individual 1 is an R-successor of the
individual 2. Solution 2 is a symmetric variant of Solution 1.

In order to remove such symmetric solutions, the symmetry breaking constraint that
restricts the matrix to upper triangular form and the main diagonal to zero can be
added to obtain only Solution 1.

116 CHAPTER 7. ENCODING ELU (¬)(F,Σ) INTO MINIZINC

1 2 3
A 1 0 0
B 0 1 0
C 0 0 1

(a) Concept matrix.

1 2 3
1 0 1 0
2 0 0 1
3 0 0 0

(b) Role R matrix.

Figure 7.5: Solution 1.

1 2 3
A 0 0 1
B 0 1 0
C 1 0 0

(a) Concept matrix.

1 2 3
1 0 0 0
2 1 0 0
3 0 1 0

(b) Role R matrix.

Figure 7.6: Solution 2.

The symmetry breaking constraints SB1, SB2, SB3 and SB4 can be combined safely
to improve the performance of CP solvers since they are mutually independent and do
not interact with each other, except for the combination of SB3 and SB4. As can be
seen from Figure 7.5 and Figure 7.6, the assignments of the role matrix depend on the
assignments of the concept matrix. Therefore, the ordering of rows of the concept matrix
is important.

Example 7.3.3. Let us use the TBox in Example 7.3.2. As mentioned, one of the solutions
is shown in Figure 7.5. If we swap rows between the set variables A and B as shown in
Figure 7.7a, we will get an assignment as shown in Figure 7.7. Then if we consider only
the symmetry breaking constraint SB3, this assignment would be a solution since this
assignment satisfies the constraint SB3. In contrast, it is not a solution because it does
not satisfy the symmetry breaking constraint SB4.

1 2 3
B 1 0 0
A 0 1 0
C 0 0 1

(a) Concept matrix.

1 2 3
1 0 0 1
2 1 0 0
3 0 0 0

(b) Role R matrix.

Figure 7.7: The problem of the combination between SB3 and SB4.

In order to handle this problem, the ordering of rows of the concept matrix can be
determined by the ordering of subsumption between concepts and existential restrictions.
This is possible since ELU (¬)(f,Σ) TBoxes are required to be acyclic and there is no
universal restriction in ELU (¬)(f,Σ). For example, let us again use the TBox containing
axioms A ⊑ ∃R.B and B ⊑ ∃R.C in Example 7.3.2. The ordering of rows of the concept
matrix is A, B, and C. The solution is given in Figure 7.5.

The experiments in Section 7.4 show that these symmetry breaking constraints have a
dramatic effect on the performance of CP solvers.

7.3.3 Search Heuristics
CP solvers, as well as the MiniZinc modelling language, support the declaration of search
heuristics, suggesting an order in which the solvers should try assigning variables during

7.4. EMPIRICAL EVALUATION 117

the search. The structure of ontologies suggests a search heuristic that attempts to add
one individual at a time to each concept in turn (rather than trying to “fill up” a concept
before adding individuals to another concept). In addition, care has to be taken if the
search heuristic is combined with symmetry breaking constraints for some cases.

The search heuristic can be determined by the concepts that are important for the
problem that we are solving. For example, if we want to check the satisfiability of a
concept A, the solvers should start assigning the values to the set variable A first.

In the case of testing subsumption A ⊑ B, we post the symmetry breaking con-
straints SB1 and SB2. The constraint SB1 assigns the individual 1 to the set variable
A of the concept A. We know that B must either be empty or contain the individual 2
since it cannot contain 1 and all other individuals are symmetric. We can therefore use
a search heuristic where the solver starts assigning the individual 2 to the set variable B
first. This heuristic will first try to add 2 to B, and in the case of failure the symmetry
breaking constraint will force B to be empty. CP solvers thus do not need to try other
individuals for B.

Example 7.3.4. Given a TBox T containing axioms A ⊑ ∃R.B and B ⊑ ∃R.C, let us
check whether A ⊑ B. We encode T into a MiniZinc model M. Then we add a con-
straint card(A intersect (T diff B)) > 0 for A ⊑ B together with the symmetry
breaking constraints SB1 and SB2, resulting in model M′. Since there are two existen-
tial restrictions, we introduce three individuals (one root individual and two individuals
for existential restrictions). Because of SB1, CP solvers will assign the individual 1 to
A. Because of SB2, B can either be empty or contain the individual 2 since all individ-
uals are symmetric. Then the solver will try assigning the individual 2 to B according
to the search heuristic above. The solver will easily find that the constraint card(A
intersect (T diff B)) > 0 is satisfiable and thus A ̸⊑ B. If we do not have this search
heuristic, the solver may start exploring assignments for the set variable C of the concept
C first, which is irrelevant for the satisfiability of this problem.

The experiments in Section 7.4 show that this search heuristic can improve the per-
formance of the CP solvers dramatically for some cases.

7.4 Empirical Evaluation
The following evaluation demonstrates the feasibility of our CP-based approach for han-
dling concrete domain and aggregation in ELU (¬)(f,Σ). To the best of our knowledge,
this is the first implementation of reasoning support for any DL with concrete domains
and aggregation, thus no benchmark dataset nor baseline reasoner is available. Hence,
evaluation is performed on synthetic ELU (¬)(f,Σ) ontologies.

The reasoning task evaluated here is Limited Concept Subsumption Checking, i.e., for
a given ontology and two concepts A and B, check whether A is a subclass of B. To check
this, as discussed in Section 7.1, we add the negation of the subsumption as an axiom and
prove unsatisfiability. The negation is encoded as the constraint card(A intersect (T diff B)) > 0.

We have implemented the encoder ELUS2MiniZinc in Java to encode an ELU (¬)(f,Σ)
ontology in (extended) OWL functional syntax into a MiniZinc model. In combination
with ELUS2MiniZinc, we have selected chuffed1 as CP solver in this evaluation since
the evaluation in Section 5.3 showed that chuffed outperformed all other solvers. We
generated MiniZinc models using ELUS2MiniZinc, and then solved the MiniZinc models
using chuffed. We compare the runtimes of our system over different types of MiniZinc
models, with and without symmetry breaking and search heuristic.

1https://github.com/geoffchu/chuffed

https://github.com/geoffchu/chuffed

118 CHAPTER 7. ENCODING ELU (¬)(F,Σ) INTO MINIZINC

A runtime limit of 100 seconds was used. All results presented in this section have
been obtained on a 64bit quad-core Intel Core i5 3.2GHz machine, with 8GB of RAM
under ubuntu 16.04. We used MiniZinc version 2.1.32. Note that the results presented
in this section include time taken by preprocessing, encoding (taken by ELUS2MiniZinc),
flattening (translating form MiniZinc to FlatZinc), and solving.

7.4.1 Evaluation Description

Our case study models a hypothetical fitness tracking scenario. It consists of two parts:
the first part, a static ontology, defines concepts for three basic types of activities, and
the second part, a dynamic ontology, simulates the incoming stream of fitness activity
information as shown in Figures 6.4 and 6.5.

We generated 3000 ELU (¬)(f,Σ) ontologies to evaluate our approach. These ontologies
are similar to the ontology in Figures 6.4 and 6.5, with randomised HR-values of the
concepts StateA, StateB and StateC, and randomised hours-value, steps-value and calburn-
value of Treadmill, FlexStrider and CrossTrainer. The set of ontologies is divided into three
subsets. Each subset has different numbers of states of the stream ontology, which are
3, 5, and 7. We vary the number of activities to test the scalability and feasibility of
our approach in handling different numbers of concepts involving concrete domain and
aggregations in the stream ontologies. Subsumption checking is performed for each of the
3,000 ontologies.

The random values for HR are between 100 and 220 (a normal range for somebody who
is exercising). The random values for hours range from 1 to 3. The steps are calculated
from the hours, where the average steps is 4000 per hour. Finally, the calburn is calculated
from steps, where the average calories burned is 0.05 per step. The generated test set of
3-states consists of 762 satisfiable ontologies and 238 unsatisfiable ontologies. The 5-states
test set consists of 618 satisfiable ontologies and 382 unsatisfiable ontologies. The 7-states
test set consists of 562 satisfiable ontologies and 438 unsatisfiable ontologies.

The baseline for our evaluations is (1) a basic model which is simply the result
of the ELUS2MiniZinc encoding, without any symmetry breaking constraints or search
heuristics. We compare the performance of this basic model with (2) the basic model
plus simple symmetry breaking constraints (SB1 and SB2), (3) the basic model plus
symmetry breaking constraints (SB1, SB2, SB3, and SB4), (4) the basic model plus
search heuristic, and (5) the basic model plus both simple symmetry breaking constraints
(SB1 and SB2) and search heuristic (as discussed in Section 7.3). The boxplots for this
evaluation contain five series: 1. “basic” shows the results of the basic model, 2. “sb”
shows the results of the model with SB1 and SB2, 3. “sb-lex” shows the results of the
model with SB1, SB2, SB3, and SB4, 4. “s” shows the results of the model with search
heuristic, and 5. “ssb” shows the results of the model with search heuristic, SB1 and
SB2.

For each pair of ontology and model, the average reasoning time of 100 subsumption
checkings was recorded. Hence, for 6 models and 1,000 ontologies per model, a total of
600,000 tests were performed.

7.4.2 Results of the Evaluation

This section presents the results of the evaluation. We compare the performance of our
approach ELU2MiniZinc+chuffed over the different constraint models described above.
The results on all test cases are shown as boxplots, as described in Section 5.3.2.

2http://www.MiniZinc.org

http://www.MiniZinc.org

7.4. EMPIRICAL EVALUATION 119

Results for 3-states ontologies

The overview results on the 3-states ontology test cases are summarised graphically in
Figure 7.8. Figure 7.8 shows that all test cases can be solved by our approach within the
runtime limitation. The runtime for solving the basic model (basic) is up to 10 seconds.
However, the runtime for solving the model with symmetry breaking constraints (sb and
sb-lex) is up to 5 seconds. As can be seen, this shows that symmetry breaking constraints
have a dramatic effect on the performance of solving.

If we distinguish the test cases with respect to their satisfiability results, we can see
that symmetry breaking has a high effect on the performance for unsatisfiable instances
as shown in Figure 7.10. On the other hand, symmetry breaking has lesser effect on the
performance for satisfiable instances as shown in Figure 7.9. The result of the model with
search heuristic (s) is less than 0.5 seconds (Figure 7.8). This shows that search heuristic
also has a dramatic impact on the performance of solving, especially for satisfiable in-
stances as shown in Figure 7.9. The performance of search heuristics is even better than
the performance of symmetry breaking for satisfiable instances. The search heuristic is
crucial for performance, while symmetry breaking has a lesser effect. However, for unsat-
isfiable instances (Figure 7.10), we get the opposite picture: symmetry breaking speeds
up the reasoning dramatically, while the search heuristic alone does not have any clear
positive effect. Accordingly, the version with both symmetry breaking and search heuris-
tic (ssb) is the clear winner, and shows almost constant, low runtime. The combination
of the two techniques seems crucial to achieve robust performance across satisfiable and
unsatisfiable instances.

As can be seen in the results (Figures 7.8, 7.9, and 7.10), interestingly, if we add the
symmetry breaking constraints, we get a huge benefit especially in unsatisfiable cases, but
not much in satisfiable cases. For the satisfiable cases, we can do something similar. Since
B is usually not empty in most satisfiable cases, we try to add any individual to B first using
the search heuristic. The search heuristic works very well in those satisfiable cases, but not
in the unsatisfiable cases. However, if we use both together, the results are significantly
improved because we can get benefit from both. The empirical evaluation confirms that
the symmetry breaking and search heuristic make our approach more effective.

Ti
m

e
(s

.)

0

2

4

6

8

10

12

14

16

18

Model
basic sb sb-lex s ssb

Figure 7.8: Comparison of models with Chuffed: all 3-states ontologies.

We can analyse these experiments further using the number of conflicts in the solving
process of chuffed. The number of conflicts is the number of failures occurring in the
solving process. It also can imply the size of search tree. If the number of conflicts is high,

120 CHAPTER 7. ENCODING ELU (¬)(F,Σ) INTO MINIZINC

Ti
m

e
(s

.)

0

1

2

3

4

5

6

7

8

9

10

Model
basic sb sb-lex s ssb

Figure 7.9: Comparison of models with Chuffed: 3-states SAT ontologies.

Ti
m

e
(s

.)

0

2

4

6

8

10

12

14

16

18

Model
basic sb sb-lex s ssb

Figure 7.10: Comparison of models with Chuffed: 3-states UNSAT ontologies.

the size of search tree is large. Conversely, if the number of conflicts is low, the size of
search tree is small.

Figure 7.11 shows the summary of the number of conflicts of this evaluation. This also
shows the reason why the performance of the model with symmetry breaking constraints,
the model with search heuristic, and the model with both is better than that of the basic
model. As can be seen, the median of the number of conflicts of the model with symmetry
breaking constraints is half of the median of the number of conflicts of the basic model.
This means that the size of the search tree that the solver need to explore for the model with
symmetry breaking constraints is much smaller than that of the basic model. As a result,
the performance of the solver over the model with symmetry breaking constraints is better
than that of the basic model. The number of conflicts of the model with search heuristic
and the model with both symmetry breaking and search heuristic are even lower than that
of the model with symmetry breaking, and almost constant. Figures 7.12 and 7.13 show
that the number of conflicts of unsatisfiable cases is lower than that of satisfiable cases in
general. Again, with this measurement, we get huge advantages especially in unsatisfiable
cases, but not much in satisfiable cases if we add the symmetry breaking constraints. For

7.4. EMPIRICAL EVALUATION 121

unsatisfiable cases (Figure 7.13), the symmetry breaking significantly reduces the search
tree size that needs to be explored (six times lower than the number of conflicts of the basic
model). This means that symmetry breaking manages to get rid of a lot of symmetric
sub search trees. On the other hand, for satisfiable cases (Figure 7.12), the number of
conflicts of the model with search heuristic is very low and almost constant since the
search heuristic guides the solver with the appropriate variable order. Again, the version
with both symmetry breaking and search heuristic is the clear winner. It significantly
reduces the size of the search tree for both satisfiable and unsatisfiable cases.

In conclusion, the runtime and number of conflicts have a positive correlation. For the
3-states ontology test cases, the model with both symmetry breaking and search heuristic
obtains the best performance among the other models since we can get benefits from both
symmetry breaking and search heuristic.

N
um

be
r o

f C
on

fli
ct

s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Model
basic sb sb-lex s ssb

Figure 7.11: Number of conflicts comparison of models with Chuffed: all 3-states ontolo-
gies.

N
um

be
r o

f C
on

fli
ct

s

0

500

1000

1500

2000

2500

3000

3500

Model
basic sb sb-lex s ssb

Figure 7.12: Number of conflicts comparison of models with Chuffed: 3-states SAT on-
tologies.

122 CHAPTER 7. ENCODING ELU (¬)(F,Σ) INTO MINIZINC

N
um

be
r o

f C
on

fli
ct

s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Model
basic sb sb-lex s ssb

Figure 7.13: Number of conflicts comparison of models with Chuffed: 3-states UNSAT
ontologies.

Results for 5-states ontologies

The overview results on the 5-states ontology test cases are summarised graphically in
Figure 7.14. Figure 7.14 shows that all test cases can be solved by our approach within
the runtime limitation. The runtime for solving the basic model (basic) is up to 80 seconds.
The runtime for solving the model with symmetry breaking constraints (sb) is up to 15
seconds. The runtime for solving the model with lexicographical ordering constraints (sb-
lex) is up to 10 seconds. As can be seen, this shows that symmetry breaking constraints
have a large effect on the performance of solving. The results of the evaluation also
show that the sb and sb-lex models outperform the other models for both satisfiable and
unsatisfiable cases (Figure 7.15 and 7.16).

Now, if we consider the test cases with respect to their satisfiability results separately,
it can be seen that symmetry breaking has a big effect on the performance for both unsat-
isfiable instances as shown in Figure 7.16 and satisfiable instances as shown in Figure 7.16.
Considering the median of each the model, the versions sb and sb-lex are almost 45 times
faster than the basic model for both satisfiable and unsatisfiable cases. On the other hand,
the models with search heuristic (s), as well as symmetry breaking combined with search
heuristic (ssb), do not work effectively for either satisfiable or unsatisfiable cases. This
is because the search heuristic that we used may guide the solver with an inappropriate
variable ordering or contradict the symmetry breaking constraints. This leads the solver
far from the solution. All of the unsatisfiable cases time out in this case.

Next, we analyse this evaluation using the number of conflicts occurring in the solving
process. Figure 7.17 shows the summary of the number of conflicts of the evaluation of
the 5-states ontology test cases. As can be seen, the distributions of number of conflicts of
the models sb and sb-lex are much smaller than those of the basic model. The maximum
numbers of conflicts of the models sb and sb-lex are almost seven times lower than the
maximum number of conflicts of the basic model. This means that the sizes of the search
trees that the solver needs to explore for the models sb and sb-lex are smaller than that of
the basic model. As a result, the performance of the solver over the models sb and sb-lex
is better than that of the basic model. In contrast, the number of conflicts of the model
with search heuristic and the model with both symmetry breaking and search heuristic
are very high. Note that the numbers of conflicts of the models s and ssb are assumed as

7.4. EMPIRICAL EVALUATION 123

Ti
m

e
(s

.)

0

10

20

30

40

50

60

70

80

90

100

110

Model
basic sb sb-lex s ssb

Figure 7.14: Comparison of models with Chuffed: all 5-states ontologies.

Ti
m

e
(s

.)

0

10

20

30

40

50

60

70

80

90

100

110

Model
basic sb sb-lex s ssb

Figure 7.15: Comparison of models with Chuffed: 5-states SAT ontologies.

the highest number (48,000) of all test cases since these two models time out. The actual
numbers of conflicts of the model s and ssb may be much higher than these.

Figures 7.18 and 7.19 show that the number of conflicts of unsatisfiable cases (the
median number is around 19,000 conflicts for the basic model) is higher than that of
satisfiable cases (the median number is around 6,000 conflicts for the basic model) in
general. With this measurement, we get large advantages from symmetry breaking in
both satisfiable and unsatisfiable cases. For unsatisfiable cases (Figure 7.19), considering
the median of the number of conflicts, the symmetry breaking significantly reduces the size
of the search tree that needs to be explored (ten times lower than the number of conflicts
of the basic model). This means that symmetry breaking eliminates a lot of symmetric sub
search trees. Similarly, for satisfiable cases (Figure 7.18), the median number of conflicts
of the models sb and sb-lex are twice as low as that of the basic model. The numbers of
conflicts of the models s and ssb are very high compared to that of the basic model for
both satisfiable and unsatisfiable cases.

124 CHAPTER 7. ENCODING ELU (¬)(F,Σ) INTO MINIZINC

Ti
m

e
(s

.)

0

10

20

30

40

50

60

70

80

90

100

110

Model
basic sb sb-lex s ssb

Figure 7.16: Comparison of models with Chuffed: 5-states UNSAT ontologies.

In conclusion, the runtime and number of conflicts have a positive correlation. For
the 5-states ontology test cases, the model sb-lex obtains the best performance since the
lexicographical ordering constraints significantly reduce the size of search tree.

N
um

be
r o

f C
on

fli
ct

s

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

Model
basic sb sb-lex s ssb

Figure 7.17: Number of conflicts comparison of models with Chuffed: all 5-states ontolo-
gies.

Results for 7-states ontologies

The overview results on the 7-states ontology test cases are summarised graphically in
Figure 7.20. It shows that the most of the models, basic, s, and ssb, time out since these
test cases contain many concepts involving concrete domain and aggregations. However,
the models with symmetry breaking constraints (sb and sb-lex) are still solvable within the
time limit. As can be seen, this shows that the symmetry breaking constraints, especially
the lexicographical ordering constraints, have a dramatic effect on the performance of

7.4. EMPIRICAL EVALUATION 125

N
um

be
r o

f C
on

fli
ct

s

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

Model
basic sb sb-lex s ssb

Figure 7.18: Number of conflicts comparison of models with Chuffed: 5-states SAT on-
tologies.

N
um

be
r o

f C
on

fli
ct

s

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

Model
basic sb sb-lex s ssb

Figure 7.19: Number of conflicts comparison of models with Chuffed: 5-states UNSAT
ontologies.

solving. In addition, the results of the evaluation show that the sb-lex model outperforms
the other models for both satisfiable and unsatisfiable cases (Figure 7.21 and 7.22).

Next, if we consider the test cases with respect to their satisfiability results separately,
it can be seen that the lexicographical ordering symmetry breaking still has a high effect
on the performance for both unsatisfiable instances as shown in Figure 7.22 and satisfiable
instances as shown in Figure 7.22. Considering the median of each the model, the runtime
of the sb-lex version is almost 4 times faster than the basic model for both satisfiable
and unsatisfiable cases. The runtime of the sb model is a bit faster than the basic model
for satisfiable cases. On the other hand, the models with search heuristic (s), and both
symmetry breaking and search heuristic (ssb) do not work effectively for both satisfiable
and unsatisfiable cases. The reason is similar to the one of the 5-states ontology test
cases. The search heuristic that we used may guide the solver with an inappropriate

126 CHAPTER 7. ENCODING ELU (¬)(F,Σ) INTO MINIZINC

variable ordering or contradict the symmetry breaking constraints. All s and ssb model
test cases time out.

Ti
m

e
(s

.)

0

20

40

60

80

100

Model
basic sb sb-lex s ssb

Figure 7.20: Comparison of models with Chuffed: all 7-states ontologies.

Ti
m

e
(s

.)

0

20

40

60

80

100

Model
basic sb sb-lex s ssb

Figure 7.21: Comparison of models with Chuffed: 7-states SAT ontologies.

Next, we analyse this evaluation using the number of conflicts occurring in the solving
process. Figure 7.23 shows the summary of the number of conflicts of the evaluation of
the 7-states ontology test cases. As can be seen, the distribution of number of conflicts
of the model sb-lex is much smaller than that of the basic model. The maximum number
of conflicts of the model sb-lex is almost 4 times lower than the maximum number of
conflicts of the basic model. This means that the size of the search tree that the solver
needs to explore for the model sb-lex is smaller than that of the basic model. Thus, the
performance of the solver over the model sb-lex is better than that of the basic model.
In contrast, the number of conflicts of the models, sb, s, and ssb, are very high. Note
that some numbers of conflicts of the models, sb, s, and ssb, are assumed as the highest
number (69,000) of all test cases since the runtimes of these three models are beyond the
time limit. The actual numbers of conflicts of the models, sb, s, and ssb, may be much
higher than these for some cases.

7.4. EMPIRICAL EVALUATION 127

Ti
m

e
(s

.)

0

20

40

60

80

100

Model
basic sb sb-lex s ssb

Figure 7.22: Comparison of models with Chuffed: 7-states UNSAT ontologies.

Figures 7.24 and 7.25 show that the numbers of conflicts of unsatisfiable cases of the
models sb and sb-lex are lower than those of satisfiable cases in general. With this mea-
surement, we get a huge advantage from the lexicographical ordering symmetry breaking in
both satisfiable and unsatisfiable cases. For unsatisfiable cases (Figure 7.25), considering
the median of the number of conflicts, the lexicographical ordering constraints significantly
reduce the size of the search tree (5 times lower than the number of conflicts of the basic
model). This means that the lexicographical ordering gets rid of a lot of symmetric sub
search trees. Similarly, for satisfiable cases (Figure 7.24), the median number of conflicts
of the model sb-lex is 7 times as low as that of the basic model. The numbers of conflicts of
the models s and ssb are very high compared to that of the basic model for both satisfiable
and unsatisfiable cases.

N
um

be
r o

f C
on

fli
ct

s

0

10000

20000

30000

40000

50000

60000

70000

Model
basic sb sb-lex s ssb

Figure 7.23: Number of conflicts comparison of models with Chuffed: all 7-states ontolo-
gies.

128 CHAPTER 7. ENCODING ELU (¬)(F,Σ) INTO MINIZINC

N
um

be
r o

f C
on

fli
ct

s

0

10000

20000

30000

40000

50000

60000

70000

Model
basic sb sb-lex s ssb

Figure 7.24: Number of conflicts comparison of models with Chuffed: 7-states SAT on-
tologies.

N
um

be
r o

f C
on

fli
ct

s

10000

20000

30000

40000

50000

60000

70000

Model
basic sb sb-lex s ssb

Figure 7.25: Number of conflicts comparison of models with Chuffed: 7-states UNSAT
ontologies.

Summary of the results

Then we analyse this evaluation using the ratio of the runtime of the models sb, s, ssb,
and basic to the runtime of the model sb-lex. Figure 7.26 shows the runtime ratio for all
ontologies (including 3-states, 5-states, and 7-states) where the model sb-lex is the base
line. The runtime ratio is presented as log scale since the range of data is large. It can
be clearly seen that the lexicographical ordering symmetry breaking constraint helps the
solver to perform solving faster than the other models for most of ontologies. The outliers
also show that the runtime ratio of the other models to sb-lex is very high (around 100)
for some ontologies. As a consequence, in general, the lexicographical ordering symmetry
breaking constraint (model sb-lex) works very well for most of ontologies. For some on-
tologies, the runtime ratio of models s and ssb is lower than 1 since the search heuristic
(model s) and the combination of symmetry breaking and search heuristic (model ssb)
work very well for the ontologies with a small number of states.

7.4. EMPIRICAL EVALUATION 129

R
un

tim
e

R
at

io
 (L

og
 s

ca
le

)

0.01

0.1

1

10

100

Model
sb-lex basic sb s ssb

Figure 7.26: Runtime ratio for all ontologies.

We further analyse the ratio of the runtime of the models sb, s, ssb, and basic to the
runtime of the model sb-lex using geometric mean as shown in Table 7.1. The geometric
mean indicates the central tendency of the set of numbers by using their product. Since
we deal with ratio, the geometric mean is reasonable measurement to use. Considering the
geometric mean of the runtime ratio for all ontologies, it can be seen that the runtime of
model sb-lex is 4 times faster than that of the basic model. The runtime of model sb-lex
is around 2 times faster than that of models sb and ssb. The runtime of model sb-lex
is around 3 times faster than that of model s. This is evidence that the lexicographical
ordering constraint can help to improve our approach effectively.

Table 7.1: Geometric mean of runtime ratio for all ontologies.

sb-lex basic sb s ssb
1 4.180 2.132 3.225 2.852

Now, we analyse this evaluation using the ratio of the number of conflicts of the models
sb, s, ssb, and basic to the number of conflicts of the model sb-lex. The number of conflicts
ratio for all ontologies, where the model sb-lex is the base line, is presented in Figure 7.27.
The number of conflicts ratio is presented as log scale since the range of data is large. It
can be easily seen that the lexicographical ordering symmetry breaking constraint helps
the solver to reduce the search space more than the other models for most of ontologies.
The outliers also show that the number of conflicts ratio of the other models to sb-lex is
very high (almost 100) for some ontologies. For some test cases, the number of conflicts
ratio of models s and ssb is lower than 1 because the search heuristic (model s) and the
combination of symmetry breaking and search heuristic (model ssb) work very well for the
ontologies with a small number of states.

Table 7.2 shows the geometric mean of the ratio of the number of conflicts of the models
sb, s, ssb, and basic to the runtime of the model sb-lex. From The table shows that the
number of conflicts of model sb-lex is almost 5 times lower than that of the basic model.
The number of conflicts of model sb-lex is around 2 times lower than that of models sb, s
, and ssb. This confirms that the lexicographical ordering constraint can help to improve
our approach effectively in general.

In summary, the results of all our test case sets show that symmetry breaking is more
powerful than the given search heuristic in general for our problems. Symmetry breaking

130 CHAPTER 7. ENCODING ELU (¬)(F,Σ) INTO MINIZINC

N
um

be
r o

f C
on

fli
ct

s
R

at
io

 (L
og

 s
ca

le
)

0.001

0.01

0.1

1

10

100

Model
sb-lex basic sb s ssb

Figure 7.27: Number of conflicts ratio for all ontologies.

Table 7.2: Geometric mean of number of conflicts ratio for all ontologies.

sb-lex basic sb s ssb
1 4.913 2.078 2.371 2.098

can dramatically reduce the size of search tree and improve the solving process. It is
interesting to investigate further which search heuristic may be useful for our problems
and exploit more symmetry breaking constraints.

From the evaluation in Sections 5.3 and 7.4, if we carefully analyse the structure of
the dataset, we can find that the size of ontologies does not affect the performance of
our approach. However, if ontologies contain many concepts involving aggregations, the
performance of our approach is affected. This confirms that our approach is efficient for
the existing DLs, i.e, ALC and it is feasible and effective for our logic ELU (¬)(f,Σ). Most
of the ELU (¬)(f,Σ) ontologies in the test case are solvable by our approach.

Chapter 8

Conclusions

Description Logics with concrete domains and aggregation can be used to provide precise
definitions of knowledge involving actual numeric values. Despite their usefulness, devel-
opment of such Description Logics has been very limited, mainly due to the difficulty in
balancing decidability and expressivity, and difficulty in extending existing tableau-based
algorithms.

The first goal of this thesis aims at developing a novel Description Logic ELU (¬)(f,Σ)
that supports concrete domains, aggregations for modelling knowledge base (ontology).
In addition, we have shown that concept satisfiability of ELU (¬)(f,Σ) is NP-complete.
This is achieved through some reasonable syntactic restrictions on ELU (¬)(f,Σ).

The second goal of this thesis aims at developing new techniques for reasoning in
Description Logics based on a sound and complete encoding into MiniZinc, which allows
us to exploit efficient Constraint Programming technology, for ALC and ELU (¬)(f,Σ).
To the best of our knowledge this is the first implementation of reasoning support for a
Description Logic with concrete domains and aggregation. Our empirical analysis shows
that our approach is efficient for some ALC ontologies and it is feasible and effective for
ELU (¬)(f,Σ) ontologies.

This chapter presents a summary of the contributions and some further research ques-
tions that are worth exploring.

8.1 Summary and Main Contributions

Addressing the first goal, we investigated language constructs of Description Logics in or-
der to obtain a decidable Description Logic ELU (¬)(f,Σ) that supports concrete domains
and aggregations for modelling knowledge bases. We defined the syntax (including the
extended OWL functional syntax) and semantics of ELU (¬)(f,Σ). We presented infer-
ence problems, concept satisfiability, limited concept subsumption, and consistency check-
ing, that can arise from ELU (¬)(f,Σ). We proved that ELU (¬)(f,Σ) is decidable and
the concept satisfiability, limited concept subsumption, and consistency checking tasks of
ELU (¬)(f,Σ) are NP-complete.

Addressing the second goal, the second part of this thesis presented an approach that
exploits CP techniques in automated reasoning for Description Logics.

We have proposed the set-based encoding scheme in order to translate ontologies into
MiniZinc constraint models in a very high-level and succinct way for the most well-known
Description Logic ALC and our Description Logic ELU (¬)(f,Σ). Such constraint models
can be solved by modern CP solvers, supporting reasoning services concept satisfiability,
limited concept subsumption, and consistency checking. In addition, we investigated some
optimisation techniques in order to improve the efficiency of our encoding approach. These

131

132 CHAPTER 8. CONCLUSIONS

optimisation techniques includes symmetry breaking, especially lexicographical ordering
symmetry breaking constraints, and search heuristic.

We have developed two different prototype tools, which implement the above proposed
encoding scheme. These tools were evaluated in our extensive empirical analysis. We have
shown that the performance of our approach is competitive to and sometimes better than
that of the state-of-the-art tableau-based reasoners for some ALC ontologies, especially
ontologies that contain a lot of disjunctions. However, our approach does not perform very
well on ontologies that contain long chains of existential restrictions (i.e., the Tableaux’98
benchmark). Furthermore, we have shown that our approach is able to effectively handle
reasoning tasks for ELU (¬)(f,Σ). We also show that a number of techniques proposed
by CP research can be easily reused and adapted for solving DL reasoning problems,
significantly improving reasoning performance. In addition, our approach allows us to
take advantages of current and future improvements in CP solvers for free without much
additional effort or modification in particular for concrete domain and aggregations.

8.2 Future Research
The work presented in this thesis can be further explored and extended in a number of
possible directions.

Extending ELU (¬)(f,Σ). The novel Description Logic ELU (¬)(f,Σ) proposed in this
thesis retains decidability due to some syntactic restrictions. The feasibility of relaxing
certain syntactic restrictions on the logic without sacrificing reasoning efficiency is one
direction to be further investigated. In addition, it is interesting to extend this logic with
some additional language constructs such as qualified number restrictions and universal
restrictions. Moreover, it is interesting to investigate integers as concrete domain.

Tightening a bounded universe. As can be seen from the evaluation, the perfor-
mance of our approach depends on the number of individuals for MiniZinc models. The
performance of our approach is poor for some cases since the number of individuals cal-
culated is very large. It is interesting to investigate an approach to tighten the number of
individuals for MiniZinc models.

Extending the Encoding Scheme. The encoding scheme proposed in this thesis
supports ALC and its sub-logics, and ELU (¬)(f,Σ) with respect to acyclic TBoxes. It
is possible to extend this approach to support more expressive Description Logics such
as Description Logics with qualified number restrictions (e.g., ALCQ) and Description
Logics with role characteristics (i.e., role hierarchies and transitive role). In addition, this
approach can be investigated further to support general TBoxes.

Extending Optimisation Techniques. As shown in the evaluation, symmetry
breaking, especially lexicographical ordering symmetry breaking constraints and search
heuristic help to improve the performance of our approach significantly. It is interesting
to study CP solving and optimisation techniques to improve efficiency and scalability.
For example, symmetry breaking can be further investigated. In addition, an appropriate
search heuristic can be further studied. Moreover, blocking techniques are worth to be
studied and added to the pre-calculation of number of individuals in order to support
cyclic TBoxes.

Extending Support for Reasoning Services. We have shown that our approach
can support the reasoning services consistency checking, concept satisfiability, and concept
subsumption checking. It is possible to extend our approach to support more reasoning
services such as classification and instance checking.

Appendix A

MiniZinc constraints of the stream
ontology in Figure 6.5

This appendix presents the complete MiniZinc constraint model of the stream ontology in
Figure 6.5 in Section 6.3.2.

constraint forall(i in StateA)(
card(excercise[i] ∩ Treadmill) >= 1 ∧ (id[i] = 1) ∧ (HR[i] = 100)
hours[i] = s_sum_hours[i] +

sum (j in exercise[i]) (hours[i]) ∧
calburn[i] = s_sum_calburn[i] +

sum (j in exercise[i]) (calburn[i]) ∧
steps[i] = s_sum_steps[i] +

sum (j in exercise[i]) (steps[i]) ∧
(card(has[i]) + s_count_has_hours[i] +

bool2int(b_max_has_hours[i]) +
bool2int(b_min_has_hours[i]) = 1) ∧

(card(has[i]) + s_count_has_calburn[i] +
bool2int(b_max_has_calburn[i]) +
bool2int(b_min_has_calburn[i]) = 1) ∧

(card(has[i]) + s_count_has_steps[i] +
bool2int(b_max_has_steps[i]) +
bool2int(b_min_has_steps[i]) = 1)); (C5)

constraint forall(i in StateB)(
card(excercise[i] ∩ Treadmill) >= 1 ∧ (id[i] = 2) ∧ (HR[i] = 110)
hours[i] = s_sum_hours[i] +

sum (j in exercise[i]) (hours[i]) ∧
calburn[i] = s_sum_calburn[i] +

sum (j in exercise[i]) (calburn[i]) ∧
steps[i] = s_sum_steps[i] +

sum (j in exercise[i]) (steps[i]) ∧
(card(has[i]) + s_count_has_hours[i] +

bool2int(b_max_has_hours[i]) +
bool2int(b_min_has_hours[i]) = 1) ∧

(card(has[i]) + s_count_has_calburn[i] +
bool2int(b_max_has_calburn[i]) +
bool2int(b_min_has_calburn[i]) = 1) ∧

(card(has[i]) + s_count_has_steps[i] +
bool2int(b_max_has_steps[i]) +
bool2int(b_min_has_steps[i]) = 1)); (C6)

133

134APPENDIX A. MINIZINC CONSTRAINTS OF THE STREAM ONTOLOGY IN FIGURE ??

constraint forall(i in StateC)(
card(excercise[i] ∩ Treadmill) >= 1 ∧ (id[i] = 3) ∧ (HR[i] = 128)
hours[i] = s_sum_hours[i] +

sum (j in exercise[i]) (hours[i]) ∧
calburn[i] = s_sum_calburn[i] +

sum (j in exercise[i]) (calburn[i]) ∧
steps[i] = s_sum_steps[i] +

sum (j in exercise[i]) (steps[i]) ∧
(card(has[i]) + s_count_has_hours[i] +

bool2int(b_max_has_hours[i]) +
bool2int(b_min_has_hours[i]) = 1) ∧

(card(has[i]) + s_count_has_calburn[i] +
bool2int(b_max_has_calburn[i]) +
bool2int(b_min_has_calburn[i]) = 1) ∧

(card(has[i]) + s_count_has_steps[i] +
bool2int(b_max_has_steps[i]) +
bool2int(b_min_has_steps[i]) = 1)); (C7)

constraint forall(i in T)(
i in DailyAggregate <->
(card(has[i] ∩ StateA) >= 1 ∧

card(has[i] ∩ StateB) >= 1 ∧
card(has[i] ∩ StateC) >= 1 ∧
HR[i] = max (j in has[i]) (HR[j]) ∧
hours[i] = s_sum_hours[i] +

sum (j in exercise[i]) (hours[i]) ∧
calburn[i] = s_sum_calburn[i] +

sum (j in exercise[i]) (calburn[i]) ∧
steps[i] = s_sum_steps[i] +

sum (j in exercise[i]) (steps[i]) ∧
(card(has[i]) + s_count_has_hours[i] +

bool2int(b_max_has_hours[i]) +
bool2int(b_min_has_hours[i]) = 3) ∧

(card(has[i]) + s_count_has_calburn[i] +
bool2int(b_max_has_calburn[i]) +
bool2int(b_min_has_calburn[i]) = 3) ∧

(card(has[i]) + s_count_has_steps[i] +
bool2int(b_max_has_steps[i]) +
bool2int(b_min_has_steps[i]) = 3)); (C8)

Vita

Publications arising from this thesis include:

Sawangphol, W., Li, Y.-F., and Tack, G. (2016), CP4DL: Constraint-based Reason-
ing for Expressive Description Logics. In The fifteenth International Workshop on
Constraint Modelling and Reformulation (ModRef 2016). Toulouse, France.

Permanent Address: Faculty of Information Technology
Monash University
Australia

This thesis was typeset with LATEX 2ε1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this thesis were written by Glenn
Maughan and modified by Dean Thompson and David Squire of Monash University.

135

136 VITA

References

Areces, C., Bouma, W., & de Rijke, M. (1999). Description Logics and Feature Interaction.
In Proceedings of the 1999 International Workshop on Description Logics (DL’99),
Linköping, Sweden, July 30 - August 1, 1999. Retrieved from http://ceur-ws.org/
Vol-22/areces.ps

Artale, A., Calvanese, D., Kontchakov, R., & Zakharyaschev, M. (2009). The dl-lite
family and relations. J. Artif. Intell. Res. (JAIR), 36, 1–69. Retrieved from http://
dx.doi.org/10.1613/jair.2820 doi: 10.1613/jair.2820

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., …
Sherlock, G. (2000, May 01). Gene ontology: tool for the unification of biology.
The Gene Ontology Consortium. Nature genetics, 25(1), 25–29. Retrieved from
http://dx.doi.org/10.1038/75556 doi: 10.1038/75556

Baader, F. (1991). Augmenting concept languages by transitive closure of roles: an al-
ternative to terminological cycles. In Proceedings of the 12th international joint
conference on artificial intelligence - volume 1 (pp. 446–451). San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc. Retrieved from http://dl.acm.org/
citation.cfm?id=1631171.1631238

Baader, F. (2000). Tableau Algorithms for Description Logics. In Automated Reasoning
with Analytic Tableaux and Related Methods, International Conference, TABLEAUX
2000, St Andrews, Scotland, UK, July 3-7, 2000, Proceedings (pp. 1–18). Retrieved
from http://dx.doi.org/10.1007/10722086_1 doi: 10.1007/10722086_1

Baader, F. (2003). Terminological Cycles in a Description Logic with Existential Restric-
tions. In IJCAI-03, Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003 (pp. 325–330). Retrieved
from http://ijcai.org/Proceedings/03/Papers/048.pdf

Baader, F., Brandt, S., & Lutz, C. (2005). Pushing the EL Envelope. In IJCAI-05, Pro-
ceedings of the Nineteenth International Joint Conference on Artificial Intelligence,
Edinburgh, Scotland, UK, July 30 - August 5, 2005 (pp. 364–369). Retrieved from
http://ijcai.org/Proceedings/05/Papers/0372.pdf

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. F. (Eds.).
(2003). The Description Logic Handbook: Theory, Implementation, and Applications.
New York, NY, USA: Cambridge University Press.

Baader, F., & Hanschke, P. (1991). A Scheme for Integrating Concrete Domains into
Concept Languages. In Proceedings of the 12th International Joint Conference on
Artificial Intelligence - Volume 1 (pp. 452–457). San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc. Retrieved from http://dl.acm.org/citation.cfm?id=
1631171.1631239

Baader, F., & Hanschke, P. (1992). Extensions of Concept Languages for a Mechanical
Engineering Application. In GWAI-92: Advances in Artificial Intelligence, 16th Ger-
man Conference on Artificial Intelligence, Bonn, Germany, August 31 - September
3, 1992, Proceedings (pp. 132–143). Retrieved from http://dx.doi.org/10.1007/
BFb0018999 doi: 10.1007/BFb0018999

137

http://ceur-ws.org/Vol-22/areces.ps
http://ceur-ws.org/Vol-22/areces.ps
http://dx.doi.org/10.1613/jair.2820
http://dx.doi.org/10.1613/jair.2820
http://dx.doi.org/10.1038/75556
http://dl.acm.org/citation.cfm?id=1631171.1631238
http://dl.acm.org/citation.cfm?id=1631171.1631238
http://dx.doi.org/10.1007/10722086_1
http://ijcai.org/Proceedings/03/Papers/048.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://dl.acm.org/citation.cfm?id=1631171.1631239
http://dl.acm.org/citation.cfm?id=1631171.1631239
http://dx.doi.org/10.1007/BFb0018999
http://dx.doi.org/10.1007/BFb0018999

138 References

Baader, F., Horrocks, I., & Sattler, U. (2008). Description Logics. In F. van Harmelen,
V. Lifschitz, & B. Porter (Eds.), Handbook of knowledge representation (pp. 135–
180). Elsevier. Retrieved from download/2007/BaHS07a.pdf

Baader, F., Lutz, C., & Brandt, S. (2008). Pushing the EL Envelope Further. In Proceed-
ings of the Fourth OWLED Workshop on OWL: Experiences and Directions, Wash-
ington, DC, USA, 1-2 April 2008. Retrieved from http://ceur-ws.org/Vol-496/
owled2008dc_paper_3.pdf

Baader, F., Lutz, C., & Suntisrivaraporn, B. (2005). Is tractable reasoning in extensions of
the description logic EL useful in practice. In Proceedings of the 2005 International
Workshop on Methods for Modalities (M4M-05).

Baader, F., Lutz, C., & Suntisrivaraporn, B. (2006). CEL—a polynomial-time reasoner
for life science ontologies. In U. Furbach & N. Shankar (Eds.), Proceedings of the
3rd international joint conference on automated reasoning (IJCAR’06) (Vol. 4130,
pp. 287–291). Springer-Verlag.

Baader, F., & Nutt, W. (2003). Basic Description Logics. In F. Baader, D. Calvanese,
D. L. McGuinness, D. Nardi, & P. F. Patel-Schneider (Eds.), The Description Logic
Handbook: Theory, Implementation and Applications (p. 43-95). New York, NY,
USA: Cambridge University Press. Retrieved from http://dl.acm.org/citation
.cfm?id=885746.885749

Baader, F., & Sattler, U. (2001). An overview of tableau algorithms for description
logics. Studia Logica, 69(1), 5–40. Retrieved from http://dx.doi.org/10.1023/
A:1013882326814 doi: 10.1023/A:1013882326814

Baader, F., & Sattler, U. (2003). Description logics with aggregates and concrete domains.
Information Systems, 28(8), 979–1004.

Bacchus, F., & Van Run, P. (1995). Dynamic variable ordering in csps. In International
conference on principles and practice of constraint programming (pp. 258–275).

Bachmair, L., & Ganzinger, H. (1997). A theory of resolution.
Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-

Schneider, P. F., & Stein, L. A. (2004, February). OWL Web Ontology Language
Reference. W3C Recommendation. Retrieved from https://www.w3.org/TR/owl
-ref/

Becket, R. (2014). Specification of FlatZinc-Version 1.6. NICTA, Victoria Research Lab,
Melbourne, Australia.

Bessiere, C. (2006). Constraint propagation. In Handbook of constraint programming
(Vol. 2, p. 29 - 83). Elsevier.

Bessiere, C., & Régin, J.-C. (1996). MAC and combined heuristics: Two reasons to
forsake FC (and CBJ?) on hard problems. In International conference on principles
and practice of constraint programming (pp. 61–75).

Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.). (2009). Handbook of satisfiability
(Vol. 185). IOS Press.

Bijarbooneh, F. H., Pathak, A., Pearson, J., Issarny, V., & Jonsson, B. (2014). A Con-
straint Programming Approach for Managing End-to-end Requirements in Sensor
Network Macroprogramming. In SENSORNETS 2014 - Proceedings of the 3rd In-
ternational Conference on Sensor Networks, Lisbon, Portugal, 7 - 9 January, 2014
(pp. 28–40). Retrieved from http://dx.doi.org/10.5220/0004715200280040 doi:
10.5220/0004715200280040

Bobrow, D. G., & Raphael, B. (1974, September). New programming languages
for artificial intelligence research. ACM Comput. Surv., 6(3), 153–174. Re-
trieved from http://doi.acm.org.ezproxy.lib.monash.edu.au/10.1145/356631
.356632 doi: 10.1145/356631.356632

Boussemart, F., Hemery, F., Lecoutre, C., & Sais, L. (2004). Boosting systematic search

download/2007/BaHS07a.pdf
http://ceur-ws.org/Vol-496/owled2008dc_paper_3.pdf
http://ceur-ws.org/Vol-496/owled2008dc_paper_3.pdf
http://dl.acm.org/citation.cfm?id=885746.885749
http://dl.acm.org/citation.cfm?id=885746.885749
http://dx.doi.org/10.1023/A:1013882326814
http://dx.doi.org/10.1023/A:1013882326814
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/owl-ref/
http://dx.doi.org/10.5220/0004715200280040
http://doi.acm.org.ezproxy.lib.monash.edu.au/10.1145/356631.356632
http://doi.acm.org.ezproxy.lib.monash.edu.au/10.1145/356631.356632

References 139

by weighting constraints. In ECAI (Vol. 16, p. 146).
Brandt, S. (2004). Polynomial Time Reasoning in a Description Logic with Existential

Restrictions, GCI Axioms, and—What Else? In R. L. de Mantáras & L. Saitta
(Eds.), Proceedings of the 16th European Conference on Artificial Intelligence (ECAI-
2004) (pp. 298–302). IOS Press.

Buchheit, M., Donini, F. M., & Schaerf, A. (1993, December). Decidable reasoning in
terminological knowledge representation systems. J. Artif. Int. Res., 1(1), 109–138.
Retrieved from http://dl.acm.org/citation.cfm?id=1618595.1618601

Calvanese, D., Kharlamov, E., Nutt, W., & Thorne, C. (2008). Aggregate queries over
ontologies. In Proceedings of the 2nd international workshop on ontologies and
information systems for the semantic web (pp. 97–104).

Carroll, J., Herman, I., & Patel-Schneider, P. F. (2012, December). OWL 2 Web On-
tology Language RDF-Based Semantics (Second Edition). W3C Recommendation.
Retrieved from https://www.w3.org/TR/owl2-rdf-based-semantics/

Chandrasekaran, B., Josephson, J. R., & Benjamins, R. V. (1999, January). What are
Ontologies and why do we need them? IEEE Intelligent Systems, 20–26.

Chen, H., Perich, F., Finin, T. W., & Joshi, A. (2004). SOUPA: Standard Ontology
for Ubiquitous and Pervasive Applications. In 1st Annual International Conference
on Mobile and Ubiquitous Systems (MobiQuitous 2004), Networking and Services,
22-25 August 2004, Cambridge, MA, USA (pp. 258–267). Retrieved from http://
dx.doi.org/10.1109/MOBIQ.2004.1331732 doi: 10.1109/MOBIQ.2004.1331732

Chu, G. G. (2011). Improving combinatorial optimization (Unpublished doctoral disser-
tation). The University of Melbourne.

Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., & Stenico, C. (2010). Satisfia-
bility Modulo the Theory of Costs: Foundations and Applications. In J. Esparza
& R. Majumdar (Eds.), Tools and algorithms for the construction and analysis of
systems (Vol. 6015, p. 99-113). Springer Berlin Heidelberg.

Cohen, D. A., Jeavons, P., Jefferson, C., Petrie, K. E., & Smith, B. M. (2006).
Symmetry definitions for constraint satisfaction problems. Constraints, 11(2-3),
115–137. Retrieved from http://dx.doi.org/10.1007/s10601-006-8059-8 doi:
10.1007/s10601-006-8059-8

Crawford, J. M., Ginsberg, M. L., Luks, E. M., & Roy, A. (1996). Symmetry-Breaking
Predicates for Search Problems. In Proceedings of the Fifth International Conference
on Principles of Knowledge Representation and Reasoning (KR’96), Cambridge,
Massachusetts, USA, November 5-8, 1996. (pp. 148–159).

Cyganiak, R., Wood, D., & Lanthaler, M. (Eds.). (2014, February). RDF 1.1 Concepts and
Abstract Syntax. W3C Recommendation. Retrieved from https://www.w3.org/TR/
2014/REC-rdf11-concepts-20140225/

Davis, M., Logemann, G., & Loveland, D. W. (1962). A machine program for theorem-
proving. Commun. ACM , 5(7), 394–397. Retrieved from http://doi.acm.org/
10.1145/368273.368557 doi: 10.1145/368273.368557

Dawson, R. (2011). How significant is a boxplot outlier. Journal of Statistics Education,
19(2), 1–12.

Dechter, R., & Pearl, J. (1987). Network-based heuristics for constraint-satisfaction
problems. Artificial Intelligence, 34(1), 1–38.

de la Barra, C. L., Soto, R., Crawford, B., Allendes, C., Berendsen, H., & Monfroy, E.
(2013). Modeling the portfolio selection problem with constraint programming. In
International conference on human-computer interaction (pp. 645–649).

Donini, F. M. (2003). Complexity of reasoning. In F. Baader, D. Calvanese, D. L. McGuin-
ness, D. Nardi, & P. F. Patel-Schneider (Eds.), The Description Logic Handbook:

http://dl.acm.org/citation.cfm?id=1618595.1618601
https://www.w3.org/TR/owl2-rdf-based-semantics/
http://dx.doi.org/10.1109/MOBIQ.2004.1331732
http://dx.doi.org/10.1109/MOBIQ.2004.1331732
http://dx.doi.org/10.1007/s10601-006-8059-8
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://doi.acm.org/10.1145/368273.368557
http://doi.acm.org/10.1145/368273.368557

140 References

Theory, Implementation and Applications (pp. 96–136). New York, NY, USA: Cam-
bridge University Press. Retrieved from http://dl.acm.org/citation.cfm?id=
885746.885750

Drummond, N., Horridge, M., Stevens, R., Wroe, C., & Sampaio, S. (2007). Pizza
ontology. The University of Manchester, 2.

Feder, T., & Hell, P. (2006). Full constraint satisfaction problems. SIAM Journal on
Computing, 36(1), 230–246.

Feydy, T., & Stuckey, P. J. (2009). Lazy clause generation reengineered. In Proceed-
ings of the 15th international conference on principles and practice of constraint
programming (pp. 352–366). Berlin, Heidelberg: Springer-Verlag. Retrieved from
http://dl.acm.org/citation.cfm?id=1788994.1789026

Flener, P., Frisch, A. M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., & Walsh, T.
(2002). Breaking Row and Column Symmetries in Matrix Models. In Principles
and Practice of Constraint Programming - CP 2002, 8th International Conference,
CP 2002, Ithaca, NY, USA, September 9-13, 2002, Proceedings (pp. 462–476). Re-
trieved from http://link.springer.de/link/service/series/0558/bibs/2470/
24700462.htm

Freuder, E. C. (1982). A sufficient condition for backtrack-free search. Journal of the
ACM (JACM), 29(1), 24–32.

Freuder, E. C., & Mackworth, A. K. (2006). Constraint satisfaction: An emerg-
ing paradigm. In Handbook of constraint programming (pp. 13–27). Retrieved
from http://dx.doi.org/10.1016/S1574-6526(06)80006-4 doi: 10.1016/S1574
-6526(06)80006-4

Frisch, A. M., Jefferson, C., & Miguel, I. (2003). Constraints for Breaking More Row
and Column Symmetries. In Principles and Practice of Constraint Programming -
CP 2003, 9th International Conference, CP 2003, Kinsale, Ireland, September 29 -
October 3, 2003, Proceedings (pp. 318–332). Retrieved from http://dx.doi.org/
10.1007/978-3-540-45193-8_22 doi: 10.1007/978-3-540-45193-8_22

Frost, D., Dechter, R., et al. (1995). Look-ahead value ordering for constraint satisfaction
problems. In IJCAI (1) (pp. 572–578).

Fruhwirth, T., & Abdennadher, S. (2006). Principles of constraint systems and constraint
solvers. Archives of Control Sciences, 16(2), 131.

Gaschnig, J. G. (1979). Performance measurement and analysis of certain search algo-
rithms. (Unpublished doctoral dissertation). Pittsburgh, PA, USA. (AAI7925014)

Geelen, P. A. (1992). Dual viewpoint heuristics for binary constraint satisfaction problems.
In Proceedings of the 10th european conference on artificial intelligence (pp. 31–35).
New York, NY, USA: John Wiley & Sons, Inc. Retrieved from http://dl.acm.org/
citation.cfm?id=145448.145491

Gent, I. P., MacIntyre, E., Presser, P., Smith, B. M., & Walsh, T. (1996). An empirical
study of dynamic variable ordering heuristics for the constraint satisfaction problem.
In International conference on principles and practice of constraint programming (pp.
179–193).

Gent, I. P., Petrie, K. E., & Puget, J. (2006). Symmetry in constraint programming. In
Handbook of constraint programming (pp. 329–376). Retrieved from http://dx.doi
.org/10.1016/S1574-6526(06)80014-3 doi: 10.1016/S1574-6526(06)80014-3

Ginsberg, M. L., Frank, M., Halpin, M. P., & Torrance, M. C. (1990). Search Lessons
Learned from Crossword Puzzles. In AAAI (Vol. 90, pp. 210–215).

Glimm, B., Horrocks, I., Motik, B., Stoilos, G., & Wang, Z. (2014). HermiT: an OWL 2
reasoner. Journal of Automated Reasoning, 53(3), 245–269.

Golbeck, J., Fragoso, G., Hartel, F., Hendler, J., Oberthaler, J., & Parsia, B. (2003).
The national cancer institute’s thesaurus and ontology. Web Semantics: Science,

http://dl.acm.org/citation.cfm?id=885746.885750
http://dl.acm.org/citation.cfm?id=885746.885750
http://dl.acm.org/citation.cfm?id=1788994.1789026
http://link.springer.de/link/service/series/0558/bibs/2470/24700462.htm
http://link.springer.de/link/service/series/0558/bibs/2470/24700462.htm
http://dx.doi.org/10.1016/S1574-6526(06)80006-4
http://dx.doi.org/10.1007/978-3-540-45193-8_22
http://dx.doi.org/10.1007/978-3-540-45193-8_22
http://dl.acm.org/citation.cfm?id=145448.145491
http://dl.acm.org/citation.cfm?id=145448.145491
http://dx.doi.org/10.1016/S1574-6526(06)80014-3
http://dx.doi.org/10.1016/S1574-6526(06)80014-3

References 141

Services and Agents on the World Wide Web, 1(1). Retrieved from http://imap
.websemanticsjournal.org/index.php/ps/article/view/27

Golomb, S. W., & Baumert, L. D. (1965). Backtrack programming. Journal of the ACM
(JACM), 12(4), 516–524.

Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P. F., & Sattler, U.
(2008). OWL 2: The next step for OWL. J. Web Sem., 6(4), 309–322. Re-
trieved from http://dx.doi.org/10.1016/j.websem.2008.05.001 doi: 10.1016/
j.websem.2008.05.001

Grosof, B. N., Horrocks, I., Volz, R., & Decker, S. (2003). Description Logic Programs:
Combining Logic Programs with Description Logic. In Proceedings of the twelfth in-
ternational world wide web conference, WWW 2003, budapest, hungary, may 20-24,
2003 (pp. 48–57). Retrieved from http://doi.acm.org/10.1145/775152.775160
doi: 10.1145/775152.775160

Guns, T., Dries, A., Tack, G., Nijssen, S., & De Raedt, L. (2013). Miningzinc: A
modeling language for constraint-based mining. In Proceedings of the twenty-third
international joint conference on artificial intelligence (pp. 1365–1372).

Haarslev, V., Lutz, C., & Möller, R. (1999). A description logic with concrete domains
and a role-forming predicate operator. Journal of Logic and Computation, 9(3),
351–384.

Haarslev, V., Möller, R., & Wessel, M. (2001). The Description Logic ALCNHR+

Extended with Concrete Domains: A Practically Motivated Approach. In Pro-
ceedings of the first international joint conference on automated reasoning (pp.
29–44). London, UK, UK: Springer-Verlag. Retrieved from http://dl.acm.org/
citation.cfm?id=648237.753934

Haarslev, V., Sebastiani, R., & Vescovi, M. (2011). Automated Reasoning in ALCQ via
SMT. In N. Bjørner & V. Sofronie-Stokkermans (Eds.), Automated Deduction –
CADE-23 (Vol. 6803, p. 283-298). Springer Berlin Heidelberg.

Haralick, R. M., & Elliott, G. L. (1980). Increasing tree search efficiency for constraint
satisfaction problems. Artificial intelligence, 14(3), 263–313.

Heflin, J. (Ed.). (2004, February 10). OWL Web Ontology Language Use Cases
and Requirements. W3C Recommendation. Retrieved from http://www.w3.org/
TR/webont-req/#onto-def ([online] http://www.w3.org/TR/webont-req/#onto
-def)

Hollunder, B. (1990). Hybrid Inferences in KL-ONE-Based Knowledge Representation
Systems. In Proceedings of the 14th German Workshop on Artificial Intelligence (pp.
38–47). London, UK, UK: Springer-Verlag. Retrieved from http://dl.acm.org/
citation.cfm?id=647610.733481

Hollunder, B., & Baader, F. (1991). Qualifying number restrictions in concept languages
(Tech. Rep.). Postfach 151141, 66041 Saarbrücken: Saarländische Universitäts-
und Landesbibliothek. Retrieved from http://scidok.sulb.uni-saarland.de/
volltexte/2011/3562

Hollunder, B., Nutt, W., & Schmidt-Schauß, M. (1990). Subsumption algorithms for
concept description languages. In ECAI (pp. 348–353).

Hoos, H. H. (2011). Satlib - benchmark problems. Retrieved March, 2014, from http://
www.cs.ubc.ca/~hoos/SATLIB/benchm.html

Horrocks, I. (1998). Using an Expressive Description Logic: FaCT or Fiction? In Proc. of
the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’98)
(pp. 636–647). Retrieved from download/1998/kr98.pdf

Horrocks, I. (2003). Implementation and optimization techniques. In F. Baader, D. Cal-
vanese, D. L. McGuinness, D. Nardi, & P. F. Patel-Schneider (Eds.), The Descrip-
tion Logic Handbook: Theory, Implementation and Applications (pp. 306–346). New

http://imap.websemanticsjournal.org/index.php/ps/article/view/27
http://imap.websemanticsjournal.org/index.php/ps/article/view/27
http://dx.doi.org/10.1016/j.websem.2008.05.001
http://doi.acm.org/10.1145/775152.775160
http://dl.acm.org/citation.cfm?id=648237.753934
http://dl.acm.org/citation.cfm?id=648237.753934
http://www.w3.org/TR/webont-req/#onto-def
http://www.w3.org/TR/webont-req/#onto-def
http://www.w3.org/TR/webont-req/#onto-def
http://www.w3.org/TR/webont-req/#onto-def
http://dl.acm.org/citation.cfm?id=647610.733481
http://dl.acm.org/citation.cfm?id=647610.733481
http://scidok.sulb.uni-saarland.de/volltexte/2011/3562
http://scidok.sulb.uni-saarland.de/volltexte/2011/3562
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
download/1998/kr98.pdf

142 References

York, NY, USA: Cambridge University Press. Retrieved from http://dl.acm.org/
citation.cfm?id=885746.885756

Horrocks, I., Kutz, O., & Sattler, U. (2006). The Even More Irresistible SROIQ. In
Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2006) (pp. 57–67). AAAI Press. Retrieved from download/2006/HoKS06a.pdf

Horrocks, I., Parsia, B., & Sattler, U. (2012, December). OWL 2 Web Ontology Lan-
guage Direct Semantics (Second Edition). W3C Recommendation. Retrieved from
https://www.w3.org/TR/owl2-direct-semantics/

Horrocks, I., & Patel-Schneider, P. F. (2004). Reducing OWL entailment to description
logic satisfiability. J. Web Sem., 1(4), 345–357. Retrieved from http://dx.doi.org/
10.1016/j.websem.2004.06.003 doi: 10.1016/j.websem.2004.06.003

Horrocks, I., & Patel-Schneider, P. F. (1998). DL systems comparison. In Proc. of the
1998 Description Logic Workshop (DL’98) (Vol. 11, pp. 55–57).

Horrocks, I., & Patel-Schneider, P. F. (2003). Reducing owl entailment to description
logic satisfiability. In International semantic web conference (pp. 17–29).

Horrocks, I., Patel-Schneider, P. F., & van Harmelen, F. (2003). From SHIQ and RDF to
OWL: The Making of a Web Ontology Language. J. of Web Semantics, 1(1), 7–26.
Retrieved from download/2003/HoPH03a.pdf

Horrocks, I., & Sattler, U. (2001). Ontology Reasoning in the SHOQ(D) Description
Logic. In Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence, IJCAI 2001, Seattle, Washington, USA, August 4-10, 2001 (pp. 199–
204).

Horrocks, I., & Sattler, U. (2005). A Tableaux Decision Procedure for SHOIQ. In
IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005 (pp. 448–453).
Retrieved from http://ijcai.org/Proceedings/05/Papers/0759.pdf

Horrocks, I., & Sattler, U. (2007). A tableau decision procedure for SHOIQ. J. of
Automated Reasoning, 39(3), 249–276. Retrieved from download/2007/HoSa07a
.pdf doi: 10.1007/s10817-007-9079-9

Horrocks, I., Sattler, U., & Tobies, S. (1999). Practical Reasoning for Expressive De-
scription Logics. In H. Ganzinger, D. Mcallester, & A. Voronkov (Eds.), Pro-
ceedings of the 6th international conference on logic for programming and au-
tomated reasoning (LPAR’99) (pp. 161–180). Springer-Verlag. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.5145

Hustadt, U., de Nivelle, H., & Schmidt, R. A. (2000). Resolution-Based Methods for
Modal Logics. Logic Journal of the IGPL, 8(3), 265–292. Retrieved from https://
doi.org/10.1093/jigpal/8.3.265 doi: 10.1093/jigpal/8.3.265

Jaulin, L. (2016). Range-only slam with indistinguishable landmarks; a constraint
programming approach. Constraints, 21(4), 557–576. Retrieved from http://
dx.doi.org/10.1007/s10601-015-9231-9 doi: 10.1007/s10601-015-9231-9

Kamp, G., & Wache, H. (1996). CTL : a description logic with expressive concrete domains
(Tech. Rep.). Postfach 151141, 66041 Saarbrücken: Saarländische Universitäts-
und Landesbibliothek. Retrieved from http://scidok.sulb.uni-saarland.de/
volltexte/2011/3903

Kang, Y.-B., Krishnaswamy, S., & Li, Y.-F. (2015). R2O2: an efficient ranking-based
reasoner for OWL ontologies. In The Semantic Web - ISWC 2015 - 14th Inter-
national Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015,
Proceedings, Part I (pp. 322–338). Retrieved from http://dx.doi.org/10.1007/
978-3-319-25007-6_19 doi: 10.1007/978-3-319-25007-6_19

Kang, Y.-B., Li, Y.-F., & Krishnaswamy, S. (2012). Predicting reasoning performance
using ontology metrics. In The Semantic Web–ISWC 2012 (pp. 198–214). Springer.

http://dl.acm.org/citation.cfm?id=885746.885756
http://dl.acm.org/citation.cfm?id=885746.885756
download/2006/HoKS06a.pdf
https://www.w3.org/TR/owl2-direct-semantics/
http://dx.doi.org/10.1016/j.websem.2004.06.003
http://dx.doi.org/10.1016/j.websem.2004.06.003
download/2003/HoPH03a.pdf
http://ijcai.org/Proceedings/05/Papers/0759.pdf
download/2007/HoSa07a.pdf
download/2007/HoSa07a.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.5145
https://doi.org/10.1093/jigpal/8.3.265
https://doi.org/10.1093/jigpal/8.3.265
http://dx.doi.org/10.1007/s10601-015-9231-9
http://dx.doi.org/10.1007/s10601-015-9231-9
http://scidok.sulb.uni-saarland.de/volltexte/2011/3903
http://scidok.sulb.uni-saarland.de/volltexte/2011/3903
http://dx.doi.org/10.1007/978-3-319-25007-6_19
http://dx.doi.org/10.1007/978-3-319-25007-6_19

References 143

Kang, Y.-B., Pan, J. Z., Krishnaswamy, S., Sawangphol, W., & Li, Y.-F. (2014). How long
will it take? accurate prediction of ontology reasoning performance. In Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014,
Québec City, Québec, Canada. (pp. 80–86). Retrieved from http://www.aaai.org/
ocs/index.php/AAAI/AAAI14/paper/view/8305

Kazakov, Y. (2008). RIQ and SROIQ are harder than SHOIQ. In Principles of
Knowledge Representation and Reasoning: Proceedings of the Eleventh International
Conference, KR 2008, Sydney, Australia, September 16-19, 2008 (pp. 274–284).
Retrieved from http://www.aaai.org/Library/KR/2008/kr08-027.php

Kazakov, Y. (2009). Consequence-driven reasoning for horn SHIQ ontologies. In IJCAI
2009, Proceedings of the 21st International Joint Conference on Artificial Intelli-
gence, Pasadena, California, USA, July 11-17, 2009 (pp. 2040–2045). Retrieved
from http://ijcai.org/Proceedings/09/Papers/336.pdf

Kazakov, Y., & Klinov, P. (2014a). Bridging the Gap between Tableau and Consequence-
Based Reasoning. In Informal Proceedings of the 27th International Workshop on
Description Logics, Vienna, Austria, July 17-20, 2014. (pp. 579–590). Retrieved
from http://ceur-ws.org/Vol-1193/paper_10.pdf

Kazakov, Y., & Klinov, P. (2014b). Goal-Directed Tracing of Inferences in EL Ontologies.
In The Semantic Web - ISWC 2014 - 13th International Semantic Web Confer-
ence, Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part II (pp. 196–
211). Retrieved from http://dx.doi.org/10.1007/978-3-319-11915-1_13 doi:
10.1007/978-3-319-11915-1_13

Kazakov, Y., Kroetzsch, M., & Simancik, F. (2012). Practical Reasoning with Nominals in
the EL Family of Description Logics. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome,
Italy, June 10-14, 2012. Retrieved from http://www.aaai.org/ocs/index.php/
KR/KR12/paper/view/4540

Kazakov, Y., Krötzsch, M., & Simancík, F. (2011). Concurrent classification of EL
ontologies. In Proceedings of the 10th international conference on the semantic web
- volume part i (pp. 305–320). Berlin, Heidelberg: Springer-Verlag. Retrieved from
http://dl.acm.org/citation.cfm?id=2063016.2063037

Kazakov, Y., Krötzsch, M., & Simancik, F. (2011). Unchain My EL Reasoner. In
Proceedings of the 24th International Workshop on Description Logics (DL 2011),
Barcelona, Spain, July 13-16, 2011. Retrieved from http://ceur-ws.org/Vol-745/
paper_54.pdf

Kazakov, Y., Krötzsch, M., & Simancik, F. (2014). The incredible ELK - from polynomial
procedures to efficient reasoning with EL ontologies. J. Autom. Reasoning, 53(1),
1–61. Retrieved from http://dx.doi.org/10.1007/s10817-013-9296-3 doi: 10
.1007/s10817-013-9296-3

Kharlamov, E., Kotidis, Y., Mailis, T., Neuenstadt, C., Nikolaou, C., Özçep, Ö. L., …
Möller, R. (2016). Towards analytics aware ontology based access to static and
streaming data (extended version). CoRR, abs/1607.05351. Retrieved from http://
arxiv.org/abs/1607.05351

Kostov, B., & Křemen, P. (2013). Count aggregation in semantic queries. In Proceedings of
the 9th International Conference on Scalable Semantic Web Knowledge Base Systems-
Volume 1046 (pp. 1–16).

Kostylev, E. V., & Reutter, J. L. (2013). Answering Counting Aggregate Queries over
Ontologies of the DL-Lite Family. In AAAI.

Krötzsch, M., Simancik, F., & Horrocks, I. (2012). A description logic primer. CoRR,
abs/1201.4089.

Kullmann, M., de Beuvron, F. d. B., & Rousselot, F. (2000). A description logic model

http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8305
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8305
http://www.aaai.org/Library/KR/2008/kr08-027.php
http://ijcai.org/Proceedings/09/Papers/336.pdf
http://ceur-ws.org/Vol-1193/paper_10.pdf
http://dx.doi.org/10.1007/978-3-319-11915-1_13
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4540
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4540
http://dl.acm.org/citation.cfm?id=2063016.2063037
http://ceur-ws.org/Vol-745/paper_54.pdf
http://ceur-ws.org/Vol-745/paper_54.pdf
http://dx.doi.org/10.1007/s10817-013-9296-3
http://arxiv.org/abs/1607.05351
http://arxiv.org/abs/1607.05351

144 References

for reacting in a dynamic environment. In Proceedings of the 2000 International
Workshop in Description Logics (DL2000), number 33 in CEUR-WS.

Lecoutre, C., Boussemart, F., & Hemery, F. (2004). Backjump-based techniques versus
conflict-directed heuristics. In Tools with Artificial Intelligence, 2004. ICTAI 2004.
16th IEEE International Conference on (pp. 549–557).

Lécué, F. (2012). Diagnosing Changes in An Ontology Stream: A DL Reasoning Approach.
In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July
22-26, 2012, Toronto, Ontario, Canada. Retrieved from http://www.aaai.org/
ocs/index.php/AAAI/AAAI12/paper/view/4988

Lécué, F., Tallevi-Diotallevi, S., Hayes, J., Tucker, R., Bicer, V., Sbodio, M. L., & Tom-
masi, P. (2014). Star-city: semantic traffic analytics and reasoning for city. In
Proceedings of the 19th international conference on Intelligent User Interfaces (pp.
179–188).

Lei, Y., Uren, V. S., & Motta, E. (2006). SemSearch: A Search Engine for the Semantic
Web. In Managing Knowledge in a World of Networks, 15th International Con-
ference, EKAW 2006, Podebrady, Czech Republic, October 2-6, 2006, Proceedings
(pp. 238–245). Retrieved from http://dx.doi.org/10.1007/11891451_22 doi:
10.1007/11891451_22

Lu, Q., & Tosic, V. (2010). Minimasc+ minizinc: An autonomic business-driven deci-
sion making middleware for adaptation of web service compositions. In Ubiquitous
intelligence & computing and 7th international conference on autonomic & trusted
computing (uic/atc), 2010 7th international conference on (pp. 474–477).

Luks, E. M., & Roy, A. (2004). The complexity of symmetry-breaking formulas. Ann.
Math. Artif. Intell., 41(1), 19–45. Retrieved from http://dx.doi.org/10.1023/B:
AMAI.0000018578.92398.10 doi: 10.1023/B:AMAI.0000018578.92398.10

Lutz, C. (2002). PSpace reasoning with the description logic ALCF(D). Logic Journal
of IGPL, 10(5), 535–568.

Lutz, C., Areces, C., Horrocks, I., & Sattler, U. (2003). Keys, nominals, and concrete
domains. In IJCAI-03, Proceedings of the Eighteenth International Joint Conference
on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003 (pp. 349–354).

Lutz, C., & Milicic, M. (2004). Description logics with concrete domains and functional
dependencies. In ECAI (Vol. 16, p. 378).

Lutz, C., & Milicic, M. (2007). A Tableau Algorithm for Description Logics with Concrete
Domains and General TBoxes. J. Autom. Reasoning, 38(1-3), 227–259. Retrieved
from http://dx.doi.org/10.1007/s10817-006-9049-7 doi: 10.1007/s10817-006
-9049-7

Mackworth, A. K. (1977a). Consistency in networks of relations. Artif. Intell., 8(1), 99–
118. Retrieved from http://dx.doi.org/10.1016/0004-3702(77)90007-8 doi:
10.1016/0004-3702(77)90007-8

Mackworth, A. K. (1977b). On Reading Sketch Maps. In Proceedings of the 5th Inter-
national Joint Conference on Artificial Intelligence. Cambridge, MA, USA, August
22-25, 1977 (pp. 598–606). Retrieved from http://ijcai.org/Proceedings/77-2/
Papers/006.pdf

McBride, S., Lawley, M., Leroux, H., & Gibson, S. (2012). Using Australian Medicines Ter-
minology (AMT) and SNOMED CT-AU to better support clinical research. Studies
in health technology and informatics, 178, 144–149.

McGuinness, D. L., & van Harmelen, F. (Eds.). (2004, February). OWL Web Ontology
Language Overview. W3C Recommendation. Retrieved from https://www.w3.org/
TR/owl-features/

Meissner, A. (2011). The ALCN description logic concept satisfiability as a sat problem.
In R. Katarzyniak, T.-F. Chiu, C.-F. Hong, & N. Nguyen (Eds.), Semantic methods

http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4988
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4988
http://dx.doi.org/10.1007/11891451_22
http://dx.doi.org/10.1023/B:AMAI.0000018578.92398.10
http://dx.doi.org/10.1023/B:AMAI.0000018578.92398.10
http://dx.doi.org/10.1007/s10817-006-9049-7
http://dx.doi.org/10.1016/0004-3702(77)90007-8
http://ijcai.org/Proceedings/77-2/Papers/006.pdf
http://ijcai.org/Proceedings/77-2/Papers/006.pdf
https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/owl-features/

References 145

for knowledge management and communication (Vol. 381, p. 253-263). Springer
Berlin Heidelberg.

Mendez, J., & Suntisrivaraporn, B. (2009). Reintroducing CEL as an OWL 2 EL reasoner.
In B. C. Grau, I. Horrocks, B. Motik, & U. Sattler (Eds.), Proceedings of the 22nd
International Workshop on Description Logics (DL 2009), Oxford, UK, July 27-30,
2009 (Vol. 477). CEUR-WS.org.

Métivier, J., Loudni, S., & Charnois, T. (2013). A constraint programming approach for
mining sequential patterns in a sequence database. CoRR, abs/1311.6907 . Retrieved
from http://arxiv.org/abs/1311.6907

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engi-
neering an Efficient SAT Solver. In Proceedings of the 38th Design Automation Con-
ference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001 (pp. 530–535). Retrieved
from http://doi.acm.org/10.1145/378239.379017 doi: 10.1145/378239.379017

Motik, B., Grau, B. C., Horrocks, I., Wu, Z., Fokoue, A., & Lutz, C. (Eds.). (2012,
December 11). OWL 2 Web Ontology Language Profiles. W3C Recommendation.
Retrieved from http://www.w3.org/TR/owl-profiles/ ([online] http://www.w3
.org/TR/owl-profiles/)

Motik, B., Shearer, R., & Horrocks, I. (2007a). A Hypertableau Calculus for SHIQ. In
Proc. of the 2007 Description Logic Workshop (DL 2007) (Vol. 250). Retrieved from
download/2007/MoSH07b.pdf

Motik, B., Shearer, R., & Horrocks, I. (2007b). Optimized Reasoning in Description
Logics using Hypertableaux. In Proc. of the 21st Int. Conf. on Automated Deduction
(CADE-21) (Vol. 4603, pp. 67–83). Springer. Retrieved from download/2007/
MoSH07a.pdf

Motik, B., Shearer, R., & Horrocks, I. (2009). Hypertableau reasoning for description
logics. J. of Artificial Intelligence Research, 36, 165–228. Retrieved from download/
2009/MoSH09a.pdf

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., & Tack, G. (2007).
MiniZinc: Towards a standard CP modelling language. In C. Bessière (Ed.), Prin-
ciples and Practice of Constraint Programming – CP 2007 (Vol. 4741, p. 529-543).
Springer Berlin Heidelberg.

Ohrimenko, O., Stuckey, P., & Codish, M. (2007). Propagation = Lazy Clause Generation.
In C. Bessière (Ed.), Principles and Practice of Constraint Programming – CP 2007
(Vol. 4741, p. 544-558). Springer Berlin Heidelberg. Retrieved from http://dx.doi
.org/10.1007/978-3-540-74970-7_39 doi: 10.1007/978-3-540-74970-7_39

Osumi-Sutherland, D., Reeve, S., Mungall, C. J., Neuhaus, F., Ruttenberg, A., Jefferis,
G. S. X. E., & Armstrong, J. D. (2012). A strategy for building neuroanatomy
ontologies. Bioinformatics, 28(9), 1262–1269. Retrieved from http://dx.doi.org/
10.1093/bioinformatics/bts113 doi: 10.1093/bioinformatics/bts113

Pan, J. Z. (2007). A flexible ontology reasoning architecture for the semantic web. Knowl-
edge and Data Engineering, IEEE Transactions on, 19(2), 246–260.

Patel-Schneider, P. F., Hayes, P., & Horrocks, I. (Eds.). (2004, February). OWL Web On-
tology Language Semantics and Abstract Syntax. W3C Recommendation. Retrieved
from https://www.w3.org/TR/owl-semantics/

Petrie, K. E., & Smith, B. M. (2003). Symmetry Breaking in Graceful Graphs. In
Principles and Practice of Constraint Programming - CP 2003, 9th International
Conference, CP 2003, Kinsale, Ireland, September 29 - October 3, 2003, Proceedings
(pp. 930–934). Retrieved from http://dx.doi.org/10.1007/978-3-540-45193-8
_81 doi: 10.1007/978-3-540-45193-8_81

Puget, J. (1998). A Fast Algorithm for the Bound Consistency of alldiff Constraints.
In Proceedings of the Fifteenth National Conference on Artificial Intelligence and

http://arxiv.org/abs/1311.6907
http://doi.acm.org/10.1145/378239.379017
http://www.w3.org/TR/owl-profiles/
http://www.w3.org/TR/owl-profiles/
http://www.w3.org/TR/owl-profiles/
download/2007/MoSH07b.pdf
download/2007/MoSH07a.pdf
download/2007/MoSH07a.pdf
download/2009/MoSH09a.pdf
download/2009/MoSH09a.pdf
http://dx.doi.org/10.1007/978-3-540-74970-7_39
http://dx.doi.org/10.1007/978-3-540-74970-7_39
http://dx.doi.org/10.1093/bioinformatics/bts113
http://dx.doi.org/10.1093/bioinformatics/bts113
https://www.w3.org/TR/owl-semantics/
http://dx.doi.org/10.1007/978-3-540-45193-8_81
http://dx.doi.org/10.1007/978-3-540-45193-8_81

146 References

Tenth Innovative Applications of Artificial Intelligence Conference, AAAI 98, IAAI
98, July 26-30, 1998, Madison, Wisconsin, USA. (pp. 359–366). Retrieved from
http://www.aaai.org/Library/AAAI/1998/aaai98-051.php

Puget, J.-F. (1993). On the satisfiability of symmetrical constrained satisfaction problems.
In Proceedings of the 7th international symposium on methodologies for intelligent
systems (pp. 350–361). London, UK, UK: Springer-Verlag. Retrieved from http://
dl.acm.org/citation.cfm?id=646354.688961

Puget, J.-F. (2005). Symmetry breaking revisited. Constraints, 10(1), 23–46.
Rector, A. L., Rogers, J. E., & Pole, P. A. (1996, January). The GALEN High Level

Ontology. Proceedings MIE 96, 174–178.
Rossi, F., Beek, P. v., & Walsh, T. (2006). Handbook of Constraint Programming. Elsevier.
Rossi, F., van Beek, P., & Walsh, T. (2006). Introduction. In P. v. B. Francesca Rossi

& T. Walsh (Eds.), Handbook of constraint programming (Vol. 2, p. 3 - 12). El-
sevier. Retrieved from http://www.sciencedirect.com/science/article/pii/
S1574652606800052 doi: http://dx.doi.org/10.1016/S1574-6526(06)80005-2

Samwald, M. (2013). Genomic CDS: an example of a complex ontology for pharmaco-
genetics and clinical decision support. In 2nd OWL Reasoner Evaluation Workshop
(ORE 2013) (p. 128).

Schild, K. (1991). A Correspondence Theory for Terminological Logics: Preliminary
Report. In Proceedings of the 12th International Joint Conference on Artificial
Intelligence. Sydney, Australia, August 24-30, 1991 (pp. 466–471). Retrieved from
http://ijcai.org/Proceedings/91-1/Papers/072.pdf

Schmidt, R. A. (2006). Developing Modal Tableaux and Resolution Methods via First-
Order Resolution. In Advances in Modal Logic 6, papers from the sixth confer-
ence on ”Advances in Modal Logic,” held in Noosa, Queensland, Australia, on 25-
28 September 2006 (pp. 1–26). Retrieved from http://www.aiml.net/volumes/
volume6/Schmidt.ps

Schmidt, R. A., & Hustadt, U. (2013). First-Order Resolution Methods for Modal Logics.
In Programming Logics - Essays in Memory of Harald Ganzinger (pp. 345–391).
Retrieved from https://doi.org/10.1007/978-3-642-37651-1_15 doi: 10.1007/
978-3-642-37651-1_15

Schmidt-Schauß, M., & Smolka, G. (1991). Attributive concept descriptions with com-
plements,. Artificial Intelligence, 48, 1–26.

Shearer, R., Motik, B., & Horrocks, I. (2008, October 26–27). HermiT: A Highly-Efficient
OWL Reasoner. In A. Ruttenberg, U. Sattler, & C. Dolbear (Eds.), Proc. of the 5th
Int. Workshop on OWL: Experiences and Directions (OWLED 2008 EU). Karlsruhe,
Germany.

Sidhu, A. S., Dillon, T. S., Chang, E., & Sidhu, B. S. (2005). Protein Ontology Devel-
opment using OWL. In Proceedings of the OWLED*05 Workshop on OWL: Ex-
periences and Directions, Galway, Ireland, November 11-12, 2005. Retrieved from
http://ceur-ws.org/Vol-188/sub35.pdf

Simancik, F., Kazakov, Y., & Horrocks, I. (2011). Consequence-Based Reasoning beyond
Horn Ontologies. In IJCAI 2011, Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011 (pp.
1093–1098). Retrieved from http://dx.doi.org/10.5591/978-1-57735-516-8/
IJCAI11-187 doi: 10.5591/978-1-57735-516-8/IJCAI11-187

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical
OWL-DL reasoner. Web Semantics: Science, Services and Agents on the World Wide
Web, 5(2), 51 - 53. Retrieved from http://www.sciencedirect.com/science/
article/pii/S1570826807000169 (Software Engineering and the Semantic Web)
doi: http://dx.doi.org/10.1016/j.websem.2007.03.004

http://www.aaai.org/Library/AAAI/1998/aaai98-051.php
http://dl.acm.org/citation.cfm?id=646354.688961
http://dl.acm.org/citation.cfm?id=646354.688961
http://www.sciencedirect.com/science/article/pii/S1574652606800052
http://www.sciencedirect.com/science/article/pii/S1574652606800052
http://ijcai.org/Proceedings/91-1/Papers/072.pdf
http://www.aiml.net/volumes/volume6/Schmidt.ps
http://www.aiml.net/volumes/volume6/Schmidt.ps
https://doi.org/10.1007/978-3-642-37651-1_15
http://ceur-ws.org/Vol-188/sub35.pdf
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-187
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-187
http://www.sciencedirect.com/science/article/pii/S1570826807000169
http://www.sciencedirect.com/science/article/pii/S1570826807000169

References 147

Smith, B. M. (1996). Succeed-first or fail-first: A case study in variable and value ordering.
In Proceedings of The Third International Conference on the Practical Applications
of Constraint Technology (PACT’97). Practical Applications Company, Blackpool,
UK (pp. 321–330). Citeseer.

Stearns, M. Q., Price, C., Spackman, K. A., & Wang, A. Y. (2001). SNOMED clinical
terms: overview of the development process and project status. In Proceedings of
the AMIA Symposium (p. 662).

Steigmiller, A., Liebig, T., & Glimm, B. (2012). Extended caching, backjumping and
merging for expressive description logics. In B. Gramlich, D. Miller, & U. Sattler
(Eds.), Automated reasoning (Vol. 7364, p. 514-529). Springer Berlin Heidelberg.

Steigmiller, A., Liebig, T., & Glimm, B. (2014). Konclude: System description. Journal
of Web Semantics (JWS), 27 , 78–85.

Stuckey, P. J., de la Banda, M. J. G., Maher, M. J., Marriott, K., Slaney, J. K., Somogyi,
Z., … Walsh, T. (2005). The G12 Project: Mapping Solver Independent Models
to Efficient Solutions. In Principles and Practice of Constraint Programming - CP
2005, 11th International Conference, CP 2005, Sitges, Spain, October 1-5, 2005,
Proceedings (pp. 13–16). Retrieved from http://dx.doi.org/10.1007/11564751_4
doi: 10.1007/11564751_4

Suntisrivaraporn, B. (2009). Polynomial-Time Reasoning Support for Design and Main-
tenance of Large-Scale Biomedical Ontologies (Doctoral dissertation, Dresden Uni-
versity of Technology, Germany). Retrieved from http://hsss.slub-dresden.de/
deds-access/hsss.urlmapping.MappingServlet?id=1233830966436-5928

Tack, G. (2009). Constraint Propagation - Models, Techniques, Implementation (Doctoral
dissertation, Saarland University, Germany). Retrieved from http://www.gecode
.org/paper.html?id=Tack:PhD:2009

Tamma, V. A. M., Phelps, S., Dickinson, I., & Wooldridge, M. (2005). Ontolo-
gies for supporting negotiation in e-commerce. Eng. Appl. of AI , 18(2), 223–
236. Retrieved from http://dx.doi.org/10.1016/j.engappai.2004.11.011 doi:
10.1016/j.engappai.2004.11.011

Thomas, E., Pan, J. Z., & Ren, Y. (2010). TrOWL: Tractable OWL 2 reasoning infras-
tructure. In The Semantic Web: Research and Applications (pp. 431–435). Springer.

Tobies, S. (2001). Complexity results and practical algorithms for logics in knowl-
edge representation (Doctoral dissertation, RWTH Aachen University, Germany).
Retrieved from http://sylvester.bth.rwth-aachen.de/dissertationen/2001/
082/01_082.pdf

Tsarkov, D., & Horrocks, I. (2006). FaCT++ Description Logic Reasoner: System De-
scription. In U. Furbach & N. Shankar (Eds.), Automated reasoning (Vol. 4130, pp.
292–297). Berlin, Heidelberg: Springer Berlin Heidelberg.

Turhan, A.-Y. (2010). Reasoning and explanation in EL and in expressive description
logics. In Proceedings of the 6th international conference on semantic technologies
for software engineering (pp. 1–27). Berlin, Heidelberg: Springer-Verlag. Retrieved
from http://dl.acm.org/citation.cfm?id=1886135.1886136

van Beek, P. (2006). Chapter 4 - backtracking search algorithms. In
P. v. B. Francesca Rossi & T. Walsh (Eds.), Handbook of constraint programming
(Vol. 2, p. 85 - 134). Elsevier. Retrieved from http://www.sciencedirect.com/
science/article/pii/S1574652606800088 doi: http://dx.doi.org/10.1016/S1574
-6526(06)80008-8

Walsh, T. (2006). General Symmetry Breaking Constraints. In Principles and Practice
of Constraint Programming - CP 2006, 12th International Conference, CP 2006,
Nantes, France, September 25-29, 2006, Proceedings (pp. 650–664). Retrieved from
http://dx.doi.org/10.1007/11889205_46 doi: 10.1007/11889205_46

http://dx.doi.org/10.1007/11564751_4
http://hsss.slub-dresden.de/deds-access/hsss.urlmapping.MappingServlet?id=1233830966436-5928
http://hsss.slub-dresden.de/deds-access/hsss.urlmapping.MappingServlet?id=1233830966436-5928
http://www.gecode.org/paper.html?id=Tack:PhD:2009
http://www.gecode.org/paper.html?id=Tack:PhD:2009
http://dx.doi.org/10.1016/j.engappai.2004.11.011
http://sylvester.bth.rwth-aachen.de/dissertationen/2001/082/01_082.pdf
http://sylvester.bth.rwth-aachen.de/dissertationen/2001/082/01_082.pdf
http://dl.acm.org/citation.cfm?id=1886135.1886136
http://www.sciencedirect.com/science/article/pii/S1574652606800088
http://www.sciencedirect.com/science/article/pii/S1574652606800088
http://dx.doi.org/10.1007/11889205_46

148 References

Wang, X., Zhang, D., Gu, T., & Pung, H. K. (2004). Ontology Based Context Model-
ing and Reasoning using OWL. In 2nd IEEE Conference on Pervasive Computing
and Communications Workshops (PerCom 2004 Workshops), 14-17 March 2004,
Orlando, FL, USA (pp. 18–22). Retrieved from http://dx.doi.org/10.1109/
PERCOMW.2004.1276898 doi: 10.1109/PERCOMW.2004.1276898

Zabih, R. (1990). Some Applications of Graph Bandwidth to Constraint Satisfaction
Problems. In AAAI (pp. 46–51).

Zhang, L., Madigan, C. F., Moskewicz, M. H., & Malik, S. (2001). Efficient conflict driven
learning in a boolean satisfiability solver. In Proceedings of the 2001 IEEE/ACM
international conference on Computer-aided design (pp. 279–285).

Zuo, M., & Haarslev, V. (2013). Intelligent Tableau Algorithm for DL Reasoning. In
Automated Reasoning with Analytic Tableaux and Related Methods (pp. 273–287).
Springer.

http://dx.doi.org/10.1109/PERCOMW.2004.1276898
http://dx.doi.org/10.1109/PERCOMW.2004.1276898

	List of Tables
	List of Figures
	Abstract
	Acknowledgments
	Introduction
	Description Logics with concrete domains and aggregations
	Reasoning in Description Logics
	Contributions
	Thesis Outline
	Publications

	Description Logics
	Knowledge Representation and Description Logic
	Syntax, Notation and Semantics
	Syntax and Notation
	Semantics

	Reasoning Services
	Description Logic Families
	Light-Weight Description Logics
	Core Description Logic ALC

	Description Logics with Concrete Domains and Aggregations
	Concrete Domains
	Aggregations in Description Logics

	Relationship to OWL

	Reasoning Algorithms for Description Logics
	Tableau-based Algorithms
	Tableau-based Algorithms for Concrete Domain
	Tableau-based Algorithms for Aggregations

	Polynomial-Time Subsumption (Classification) Algorithms
	Normalisation
	Completion Rules

	Constraint Programming
	Basics on Search and Constraint Propagation
	Basics on CP and Notation
	Search
	Constraint Propagation

	MiniZinc Modelling Language
	Basic Specification of MiniZinc
	MiniZinc and Description Logic

	Advanced Modelling and Solving Techniques
	Lazy Clause Generation
	Symmetry Breaking
	Search Heuristics

	Encoding Reasoning Problems into MiniZinc
	The Encoding of ALC and its sub-logics
	ALC to MiniZinc
	Finiteness of MiniZinc Models
	Encoding Rules Implementation

	Correctness and Completeness of the Encoding
	Empirical Evaluation
	Evaluation Description
	Results of the Evaluation

	Related Works

	A Novel Description Logic ELU()(f,)
	ELU()(f,) Syntax and Semantics
	An ELU()(f,) Normal Form

	OWL Functional Syntax Extension for ELU()(f,)
	ELU()(f,) Terminological Reasoning
	Concept Satisfiability Checking
	Limited Concept Subsumption Checking
	Consistency Checking

	Decidability of ELU()(f,)
	Related Works

	Encoding ELU()(f,) into MiniZinc
	Concept Satisfiability and Limited Subsumption Checking
	ELU()(f,) to MiniZinc
	Finiteness of MiniZinc Models

	Correctness and Completeness of the Encoding
	Optimisations
	The Need for Symmetry Breaking and Search Heuristics
	Symmetry Breaking Constraints
	Search Heuristics

	Empirical Evaluation
	Evaluation Description
	Results of the Evaluation

	Conclusions
	Summary and Main Contributions
	Future Research

	Appendix A MiniZinc constraints of the stream ontology in Figure 6.5
	Vita
	References

