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Abstract

Cosmology provides some compelling reasons to expect physics beyond the
Standard Model on top of theoretical concerns such as the hierarchy problem and
grand unification. In this thesis I explore some of the intersection between particle
physics and cosmology with an emphasis on electroweak baryogenesis. I will
present original work on whether the relaxion mechanism solves the hierarchy
problem, a pedagogical review of electroweak baryogenesis and present research
on computational and phenomenological aspects of electroweak baryogenesis and
cosmic phase transitions including gravitational wave signals. I also present a new
testable paradigm for producing the baryon asymmetry of the Universe as well as a
an application of effective field theory to directly use experimental constraints to put
bounds on CP violating operators.
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Chapter 1

Introduction

Motivated by the hierarchy problem, theorists have proposed a landscape of models
predicting new physics at the weak, or TeV, scale [1, 2, 3, 4, 5]. At the high energy
frontier experiments will continue to probe weak and TeV scale physics both at
the Large Hadron Collider (LHC) and, hopefully, at higher energy colliders [6].
The Standard Model has thus far survived incredible examination, well beyond the
expectations of many. This can lead one to ask if any of the proposed solutions to the
hierarchy problem are correct. A no answer would, surprisingly, shatter our notion
of the naturalness of our Universe. Whereas a yes answer could lead to one of the
richest discovery periods in the history of particle physics.

On the other hand, cosmological data is already decisive in its rejection of
the Standard Model. Of the four major pillars of particle cosmology - the baryon
asymmetry, dark matter, dark energy and inflation - not one can be explained within
the Standard Model. From a certain perspective, the Universe and everything in
it including our existence is the data from a "particle accelerator" that reached
energies one can never achieve here on Earth. The results are striking! The vast
majority of the universe is made up of a combination of dark energy and dark
matter - neither of which are accommodated within the Standard Model. Even the
abundance of baryonic matter presents a puzzle [7]. The Universe is far more flat
and the cosmic microwave background (CMB) is far too isothermal than one would
expect and as such inflation has been proposed as necessary ingredient in our cosmic
history [8]. However, inflation will washout any initial baryon asymmetry and the
Standard Model Cabibbo–Kobayashi–Maskawa (CKM) matrix provides too feeble
CP violation and the mass of the Higgs is too heavy to produce the baryon asymmetry
of the Universe.

To solve these puzzles, particle physics and cosmology have developed a rich
dialogue of late. Electroweak precision studies at both the energy and precision
frontier are beginning to make a dent in the parameter space where extra scalar fields
can catalyze a strongly first order electroweak phase transition - a key ingredient
in electroweak baryogenesis - and a 100 TeV collider might decisively answer this
question [9]. Experiments that search for permanent electric dipole moments have
improved in their sensitivity very rapidly and all but rule out some popular models
of electroweak baryogenesis. Even gravitational waves at eLISA and aLIGO are
probing the possibility of electroweak phase transition being strongly first order or
multi-step [10, 11, 12].
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For dark matter, gravitational lensing in the CMB[13] as well as studies of
bullet clusters [14] indeed point to a particle solution to the dark matter problem.
The DAMA experiment gives a striking signal [15] whereas the LUX and PANDA
experiments are nearing the neutrino background in their search for WIMPs [16, 17].
As to inflation, searches for B modes in the CMB probe inflation, while improved
precision in such searches will be able to probe physics at the inflaton scale by
examining correlations in density fluctuations. Remarkably particle cosmology
might even give insight to physics at the Grand Unification Theory (GUT) scale!
[18]

Finally, the precision frontier is also starting to give promising hints - from the
flavour anomalies in LHCb and Belle [19, 20, 21, 22] to the anomalous results in g−2
experiments and perhaps these intriguing signals are cracks in the Standard Model
[23]. If these cracks widen they could also shed some light into our cosmological
history. In other words just about every signal or negative search in any fundamental
physical experiment has consequences for the interplay between particle physics
and cosmology. It is a young field where many type of research whether it is formal
progress, model building, phenomenology or numerical tool is possible.

In this thesis I will look at particular aspects of the interplay between particle
physics and cosmology with an emphasis on electroweak baryogenesis. I will begin
with a review of the Standard Model and the hierarchy problem in chapter 2 and
its most popular solution - supersymmetry - before discussing a particle cosmology
inspired solution known as the relaxion method where I will present some of my
work (a copyright agreement limits how much I can put into this thesis). I will
then focus more closely on baryogenesis in chapter 3 presenting an overview of the
subject including the review given in my book before discussing some technical
and phenomenological work I have done. Specifically, I will present some work
on how to analytically solve sets of coupled transport equations in chapter 4 before
applying these techniques to calculating bubble wall profiles in chapter 5. I will then
shift gears to focus more exclusively on phenomenology analysing the compatibility
of the collider constraints on the NMSSM with particle cosmology constraints in
chapter 6 and then in chapter 7 I look at gravitational wave signatures at aLIGO due
to high scale phase transitions and how they are physically motivated by vacuum
stability. I explore the use of effective field theory in baryogenesis in chpater 8 before
concluding in chapter 9
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Chapter 2

The Standard Model, the hierachy
problem and cosmology

The Standard Model of particle physics is perhaps the most successful physical
model ever tested [24]. It is of course known to be incomplete as it does not describe
gravity. This fact requires the Standard Model to be modified at energy levels where
gravitational effects become important; the so called “Plank scale". Unfortunately,
physics at the Plank scale is potentially well beyond anything that can feasibly be
tested on Earth in the foreseeable future. On the other hand, there is some evidence
that the Standard Model may be incomplete at energies much lower than the plank
scale. For example, numerous observations show that the Universe is much more
massive than the (directly) observable matter of the Universe would suggest [25],
the energy scale of the electroweak force in the Standard Model is in a region that
requires incredible fine tuning [26], there is more matter than anti-matter in the
Universe, and finally there is evidence that the Universe began with a period of
incredibly rapid expansion known as "inflation" [8]. There was once hope that
the Standard Model could explain the matter/antimatter asymmetry in the universe.
However, the recent discover of a Higgs particle at 125 GeV is far too heavy for
electroweak baryogenesis to be viable in the Standard Model. Further, there is little
hope that any of the other problems can be solved within the Standard Model.

2.1 The Standard Model

For the sake of completeness, let us briefly review the Standard Model before
commenting on aspects of its incompleteness. (I will ignore in this thesis the strong
CP problem, the existence of neutrino masses, dark energy, quantum gravity and a
number of intriguing hints in experimental data). The components of the Standard
Model are fermions, scalar fields and gauge bosons which facilitate forces as well
as interactions between the scalar and fermionic sectors. The fermions come in two
varieties, quarks with non-zero baryon number and leptons with non-zero lepton
number. Each fermion has three generations or flavours.
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2.1.1 Gauge symmetry
The Standard Model is most conveniently formulated in such a way where one
introduces redundant degrees of freedom. Physically equivalent states are then
related through gauge transformations. The simplest example of this is quantum
electrodynamics (QED) where for example it can be convenient to express the electric
field as the gradient of a scalar field as well as representing the magnetic field as the
curl of a vector field. The cost of this is that one has introduced a redundancy in the
theory. For the QED case, the theory is redundant under local phase transformations
where fields transform

ψ(x)→ eiα(x)ψ(x) . (2.1)

The generalization of this is to consider replacing such a local phase transformation
with a general set of local transformations belonging to a Lie group.

Lie groups and the exponential map

In general a continuous symmetry of Nature is described by a Lie group - a group
that is also a smooth manifold. The smooth nature of the manifold ensures that the
group indeed describes a continuous transformation. Using the fact that

eX = 1 +X +
X2

2
+ ... (2.2)

and
det[eX ] = eTr[X] (2.3)

for X being any square matrix, one can generate elements of a group from the
properties of the group. For example, special groups require that the determinant
of all members of the group is equal to one. From the above equation I see that this
is achieved for the set of matrices, X ∈ τ , that are traceless. It is well known that
orthogonal groups have the property that the transpose of a matrix is its inverse. A
member of the orthogonal group is generated by the exponential of an antisymmetric
matrix. Here, the set τ is known as the “Lie algebra" which generates the Lie
group by the exponential map. Unfortunately the exponential of τ does not generate
the entire group. However one can observe that the commutator between any two
elements of a Lie algebra is itself a member of the algebra. For example, for a
unitary group whose Lie algebra is the set of antihermitian matrices (or equivalently
i multiplied by a hermitian matrix as is convention amongst physicists) one can see
that

let A = [X1, X2] (2.4)
A† = (X1X2)† − (X2X1)† (2.5)

= X†2X
†
1 −X†1X†2 (2.6)

= X2X1 −X1X2 = −[X1, X2] = −A ∈ τ. (2.7)

Next we make use of the Barker-Campbell-Herstoff theorem, which states that

eAeB = exp[A+B +
1

2
[A,B] + ....] (2.8)

where all terms in the unwritten sum are just functions of the commutators between
A and B. Therefore if exp[A] and exp[B] are members of the Lie group, G then
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exp[A]× exp[B] ∈ G. One can then use the set exp[αA] where A ∈ τ to completely
map a finite region of the group around the identity. It is customary for α to be
infinitesimal and this region to therefore also be infinitesimal but this need not be the
case. If one can completely cover a region around the identity then one can use a
series of products to generate the entire connected region of the group. The proof of
this will not be repeated here. For an example consider the case of SU(2) which is
one of the gauge groups of the Standard Model. Since it is a special group the Lie
algebra generators must be traceless and Hermitian (since I will include a factor of
i in the exponential). The 2 in SU(2) implies that the generating matrix are 2 × 2
matrices. Specifically they are the Pauli matrices

σi =

[(
0 1
1 0

)
,

(
0 i
−i 0

)
,

(
1 0
0 −1

)]
. (2.9)

It is easy to see that these matrices obey the commutation relations

[σi, σj] = 2iεijkσk . (2.10)

Therefore the product of two elements of the SU(2) group is also an element of the
group.

2.1.2 Symmetry breaking and the Higgs sector

The Standard Model gauge product group is SU(3)C×SU(2)L×U(1)Y , and its terms
are known as colour, weak isospin and hypercharge group, respectively. It is difficult
to give Standard Model particles a tree level mass without violating gauge symmetry.
One mechanism to do this though is known as the Anderson-Higgs mechanism
[27, 28] where a scalar field with gauge symmetries SU(2)L and U(1)Y acquires
a vacuum expectation value (vev). Specifically, if the Higgs field has an effective
potential

V (H) = −µ2|H2|+ λ|H|4 (2.11)

with H = (H+, H0)T, the potential has a minimum that is not invariant under
SU(2)L and U(1)Y transformations. I am free to choose the direction of the vev
within the Higgs internal space. Let us choose the vev v such that

H =

(
H+

(hr + hI + v)/
√

2

)
. (2.12)

Fermions acquire masses through Yukawa interactions where the Yukawa coupling
times the vev are an effective mass term. Three linear combinations of gauge bosons
acquire a mass through the kinetic term in the Lagrangian. Specifically, these
particles are the W±, and Z bosons.

2.1.3 Standard Model Lagrangian

I now have all the necessary pieces to form the Standard Model Lagrangian

LSM = LKinetic + Lgauge + LYukawa + V (H) (2.13)
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where V (H) is given in equation (2.11). The kinetic terms are given by

LKinetic ≡
∑

f

f̄ /Df +DµHD
µH (2.14)

with Dµ ≡ ∂µ + igτaAaµ is the covariant derivative for the gauge group with Lie
generators τa. The covariant derivatives for the Higgs and left handed fermions
contain gauge bosons for weak isospin (SU(2)L) whereas right handed fermions do
not. The covariant derivative of all Standard Model fermions and the Higgs boson
include gauge bosons for hypercharge (U(1)Y ) and finally the covariant derivative of
both left and right handed quark fields have gauge bosons for colour (SU(3)C). The
full set of fermions are three generations of quark doubles ((ULi, DLi)

T ) and their
right handed counter parts as well as three generations of Lepton doublets ((νLi, eLi))
and the right handed partner of the three generations of the electrons (eRi). The
gauge sector terms have the form

Lgauge ≡
1

4
Tr[Ga

µνG
a,µν ] +

1

4
Tr[Ba

µνB
a,µν ] +

1

4
YµνY

µν (2.15)

with Gµν , Bµν and Yµν being the field strength tensors for the Standard Model gauge
groups SU(3)C , SU(2)L and U(1)Y respectively. Generically the field strength tensors
have the form

τaGa
µν =

1

gs
[Dµ, Dν ] (2.16)

and similarly for the other gauge groups. Finally the Yukawa terms have the form

LYukawa ≡ YuŪLURH0 − YuD̄LURφ
− + YdŪLDRφ

+ + YdD̄LDRφ0 (2.17)

where Yd and Yu are 3× 3 matrices in flavour space.

2.1.4 The hierachy problem
The Higgs boson should receive corrections to its mass from any new physics
particles via radiative corrections. Suppose new physics appears at some scale Λ
and couples to the Standard Model with some coupling gf,b, the mass of the Higgs
acquires quadratic corrections of the form

∆m2
H = cf,b

g2
f,b

16π2
Λ2 + · · · (2.18)

where cf,b = (−2, 1) for fermions and bosons respectively [26]. One does have a
tree level bare mass term to cancel against the quadratic corrections. However, if the
scale of new physics is n orders of magnitude above the weak scale, the first ∼ 2n
decimal places must cancel the loop corrections in order for the mass to be weak
scale. There is expected to be new physics at the Planck scale – a full 17 orders of
magnitude higher than the weak scale! Aside from the stability of the Higgs mass,
the weak scale value of the vacuum expectation value is also unstable because it
receives tree level corrections from any other scalar particles that might acquire a
vacuum expectation value. For example, suppose there is an additional scalar field,
S, that is a singlet under the Standard Model gauge group. In principle there can
be many such scalar particles each with a vev at an arbitrary scale. Such a particle
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couples to the Higgs via portal couplings ghsH2S2. Replacing S with its vev, this
portal coupling because an effective correction to µ2. Again, it requires a fine tuned
cancellation for the Higgs vev to be weak scale (of course it is also possible that no
new scalar singlets exist).

2.1.5 Some cosmological shortcomings of the Standard
Model

Outside the hierachy problem some of the most convincing reasons to look beyond
the Standard Model are cosmological. Of particular interest to particle physicists are
inflation, dark matter and baryogenesis.

Inflation

One of the strongest pieces of evidence for the Big Bang cosmological model is that
it correctly predicts cosmic microwave background radiation (CMB). However, mea-
surements of the CMBR show that the universe is very much in thermal equilibrium.
The troubling aspect of this is that in the expansion of the universe regions of the
universe which one observes to be in thermal equilibrium are causally disconnected.
This is known as the horizon problem. A solution was proposed by Alan Guth who
noted that as the Universe expands, the Higgs field undergoes a phase transition as it
cools [8]. If the Higgs field supercools, in a process similar to the supercooling of
water, the Higgs field will not undergo the phase transition when the temperature
falls below the critical temperature at which the change of phase normally occurs.
During the phase of supercooling a large negative pressure drives the universe to
expand exponentially fast. Then, once the phase transition occurs, latent heat is
released into the Universe. This solves the horizon problem by allowing the Universe
to obtain thermal equilibrium before the period of inflation occurs. Unfortunately,
there are many problems with using the Higgs field as the driver of inflation. This
motivates the need to look beyond the Standard Model to facilitate inflation.

Dark matter

It was first observed by Zwicky [29] that velocity dispersions in the Coma and
Virgo galaxy clusters large than expected based on their visible mass. Later, Rubin
and others confirmed the missing mass [30, 31, 32]. This has traditionally inspired
two explanations: some modification of Newtons law at large distance, or some
new form of matter that does not interact with light commonly referred to as dark
matter. Several observations contribute substantially to the popularity of the dark
matter explanation. First the behaviour of two colliding galaxy clusters known as the
Bullet cluster is consistent with dark matter but inconsistent with the most popular
modified gravity models. Second the scale of angular fluctuations in the CMB has
a spectrum consisting of a peak for baryonic matter followed by successive peaks.
This is predicted by dark matter but difficult to explain through modified gravity
[33]. Finally there is the circumstantial evidence known as the so called "WIMP
miracle" where if one assumes that the dark matter particle has a weak scale mass
the right dark matter relic abundance is achieved for a weak scale cross section [34].
The Standard Model does not have a viable dark matter candidate so to explain this
part of cosmology one needs to go beyond the Standard Model. Furthermore the
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simplest extension of the Standard Model, massive neutrinos, can be a component of
dark matter. However, they will not have enough mass density to explain all of dark
matter.

Baryogenesis

If one has a cosmic history that includes inflation, then one cannot have an asymme-
try between baryons and anti-baryons as an initial condition as any initial baryon
asymmetry would be washed out by inflation. Therefore one must produce it dy-
namically.1 I will be primarily interested in electroweak baryogenesis which occurs
during the electroweak phase transition [35]. As I will explain in later chapters the
Standard Model fails to provide an explanation for this observed asymmetry.

2.2 Supersymmetry
The Higgs sector of the Standard Model is unique in that it describes the dynamics of
a scalar quantum field. The superficial degree of divergence of a scalar field theory
with a quartic interaction term is quadratic in the momentum cutoff which is a much
more dramatic divergence than the rest of the Standard Model which diverges only
logarthmically. However, since the masses of the weak gauge bosons (as well as the
Higgs mass itself) depend upon the quadratically divergent Higgs mass, their masses
should be of the order of the square of the momentum cutoff. Not only would this
give masses well outside what is observed experimentally, the weak scale masses
are strongly constrained to within about an order of magnitude of what is observed
by the "unitarity bound" and the "perturbativity bound". The Standard Model is
inconsistent outside this region. Strictly speaking it is actually possible within the
Standard Model to achieve renormalized masses within these bounds as one has a
free parameter, the bare mass, which one can fine tune to get the required values
[26].

Much like the fact that once upon a time Geocentric models of the Universe
needed to be fine tuned in order to be consistent with observation was actually a hint
of new physics, the fine tuning required in the Standard Model may gave us hints at
how to extend it [36]

That the superficial degree of divergence is worse than logarithmic for a quartic
scalar field theory is not unique. Quantum electrodynamics, for example, superficially
diverges worse than logarithmically. However, both Lorentz and gauge symmetries
conspire to reduce the actual degree of divergence. The fact that the Higgs field
does not have a local gauge symmetry in essence means that the actual degree of
divergence remains quadratic [24]. Naturally, if one could find a new symmetry of
nature one could reduce the degree of divergence. Historically, there were many
attempts to extend the Poincare group, in particular to find a symmetry group that
would contain space time symmetries and internal symmetries in a single group.
Ultimately all of these failed and in 1967, Coleman and Mandula proved a “no go”
theorem that showed that you cannot extend the symmetries of the Standard Model
in a non-trivial way [37]. The theorem was flawed however as it failed to take into
account the spinor like nature of quantum particles [38]. Even still, through this

1Note that with arbitrarily large fine tuning one can evade this claim.
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came the realization that there is only one unique extension to spacetime, the theory
now known as "supersymmetry".

2.2.1 Superspace

Graded Lie groups and a violation of the Coleman-Mandula theorem

The symmetry that describes supersymmetry is in fact not a Lie group but a “graded”
Lie group [39]. A graded Lie group differs from a Lie group in that its associated Lie
algebra is closed under anti-commutation rather than commutation. The full graded
group is semi-simple and is described by the set of charges {Pµ,Mµν , Q}. These
charges obey the following relations

[Pµ, Pν ] = 0, (2.19)
[Mµν , Pλ] = i (ηνλPµ − ηλµPν) , (2.20)

[Mµν ,Mνρ] = i (ηνρMµσ − ηνσMµρ−
ηνρMησ + ηνσMνρ) , (2.21)

{Qa, Qb} = {Q†a, Q†b} = 0, (2.22)

{Qa, Q
†
b} = σµabPµ, (2.23)

[Qa, Pµ] = [Q†a, Pµ] = 0, (2.24)
[Qa,Mµν ] = (σµν)

b
aQb . (2.25)

From the above equations one can see that the entire algebra is closed under commuta-
tion and anti commutation. I therefore consider a set of infinitesimal supersymmetry
transformations generated by the exponential of the Lie algebra to follow the same
recipes as for Lie groups

eiᾱQ ≈ 1 + iᾱQ . (2.26)

Although the charges Qa obey anticommutation relations, I can still use the Baker
Campbell Horstoff theorem if the infinitesimal parameter that they are multiplied
by, ᾱ, is a Grassmann valued number. Therefore if I can completely cover a region
around the identity I can use products of infinitesimal transformations to map the
entire connected region of the graded Lie group. Since ᾱ is Grassmann and I
“begin” around the identity, the entire space that these transformations connect is
a Grassmann valued space. Here and in Eq. (2.23) one sees the radical nature of
supersymmetry. A supersymmetric transformation is something like the square root
of a space time translation! Supersymmetry is something like a spinorial extension to
space time such that one now has the usual 3+1 space time dimensions, xµ as well as
four extra quantum dimensions, θi. Even stranger, the dimensions θi are Grassmann
numbers that anticommute with each other and commute with ordinary numbers.
It appears occasionally in the literature that “Superspace” is just a mathematical
trick. However, as shown in the discussion above, if Eqs. (2.19-2.25) are the
generators of the symmetries that describe our world then our world literally has
four extra Grassmann valued dimensions. Of course I cannot directly observe these
anti-commuting variables. However, one is convinced of curved space time because
general relativity works and if supersymmetry works I will be convinced of anti
commuting dimensions. Supersymmetry is a radical idea!
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2.2.2 Non Interacting Supersymmetric Theories
In quantum field theory, one considers functions of the ordinary space time variables,
xµ. However, if the world is supersymmetric then I must consider functions of
both the space time and the Grassmann coordinates. I begin with a scalar superfield
(where by superfield I mean a function of xµ and θi). Any product of θ’s that contains
more than four terms is then by definition zero. I can therefore write the most general
scalar function as the sum

Φ̂(x, θ) = S − i
√

2θ̄γ5ψ −
i

2
(θ̄γ5θ)M+

1

2
(θ̄θ)N

+
1

2
(θ̄γ5γµθ)V

µ + i(θ̄γ5θ)[θ̄(λ+
i√
2
/∂ψ)]

− 1

4
(θ̄γ5θ)

2[D − 1

2
�S]. (2.27)

If Φ̂ transforms like a scalar and Qa transforms like a spinor then QΦ̂ transforms as
a spinor. Clearly a transformation that multiplies or removes a θ to each term in Φ̂
satisfies this condition. That is

e[iᾱQ] ≈ 1 + iᾱQ

= 1 + i

(
ᾱ
∂

∂θ̄
+ iᾱ/∂θ

)
. (2.28)

This set of transformations completely covers the Lie group around the identity
and all other transformations that obey the correct transformation properties can be
expressed as product of such infinitesimal transformations. Therefore Eq. (2.28) is
sufficient to generate the entire set of supersymmetric transformations. Applying Q
to Eq. (2.27) I can match powers of θ to get the following set of transformations for
the components of the superfield

δS = i
√

2ᾱγ5ψ , (2.29)

δψ = −αM√
2
− iγ5αN√

2
− iγµαV

µ

√
2
− γ5/∂Sα√

2
, (2.30)

δM = ᾱ
(
λ+ i

√
2/∂ψ

)
, (2.31)

δN = iᾱγ5

(
λ+ i

√
2/∂ψ

)
, (2.32)

δV µ = −iᾱγµλ+
√

2ᾱ∂µψ , (2.33)

δλ = −iγ5αD −
1

2
[/∂, γµ]V µα , (2.34)

δD = ᾱ/∂γ5λ . (2.35)

In order to create a supersymmetric theory the action must be invariant under su-
persymmetric transformations. As seen in the earlier discussion it is sufficient for a
theory to be invariant under infinitesimal supersymmetry transformations. Since I
integrate our Lagrangian density over all space, a theory is still supersymmetric if
the Lagrangian density transforms as a total derivative under supersymmetry trans-
formations. Consider Eq. (2.35). One sees that the D term of any Lagrangian, that
is, the coefficient of (θ̄γ5θ)

2, will transform the correct way. Setting λ = D = 0 in
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Eqs. (2.29-2.35) I see that the coefficient of the termM+ iM also transforms as a
total derivative. Such a field one calls a left chiral superfield for reasons that will not
be explained here and these coefficients are called “F” terms. The product of any left
chiral superfields will also give a left chiral superfield that also has an F term. This
is obvious from the additivity of the left chiral derivative (which again will not be
explained here). I can project out F terms and D terms by integrating over two and
four Grassmann variables respectively. I can also limit the types of F terms and D
terms that can appear in the Lagrangian if I insist that our theory is renormalizable.
A general noninteracting supersymmetric theory can then be written as

S =

∫
d4xd4θLD +

∫
d4xd2θLF (2.36)

and from renormalizability one finds that the most general form of LD is

LD =
N∑

n=1

Ŝ†i Ŝi (2.37)

whereas the most general form of LF is

LF = −i
∑

i

∂f

∂Ŝi

∣∣∣∣
Ŝ=S
Fi −

1

2

∑

i,j

∂2f

∂Ŝi∂Ŝj

∣∣∣∣∣
Ŝ=S

ψ̄iPLψj

+ i
∑

i

∂f

∂Ŝi

∣∣∣∣
Ŝ=S
F †i −

1

2

∑

i,j

∂2f

∂Ŝi∂Ŝj

†
∣∣∣∣∣
Ŝ=S

ψ̄iPRψj .

(2.38)

This master Lagrangian gives us an interesting phenomelogical prediction of su-
persymmetry. Consider LD for the case of a single superfield. The D term can be
evaluated to be

∫
d4θŜ†LŜL = ∂µS†∂µS +

1

2
ψ̄ /∂ψ + F †F . (2.39)

I see that every particle has a corresponding superpartner! It turns out that this feature
is how the quadratic divergences of the higgs masses are cancelled out. This justifies
our motivation for supersymmetry in the first place.

2.2.3 Examples of supersymmetric theories
Our master Lagrangian is still missing some key features of a theory that can plausibly
describe anything to do with the real world. Such a theory would need spontaneous
symmetry breaking to give particles a mass, they would also need supersymmetry
breaking terms to ensure that the supersymmetric partners of Standard Model do
not have the same mass as Standard Model particles (someone would have observed
them otherwise!) and of course the fields in the theory would need to interact. Recall
that to create an interacting theory in standard quantum field theories one makes the
fields invariant under a space time dependent “gauge transformation”. To general-
ize this to supersymmetric theories one needs to make the gauge transformations
superspace-time dependent. The result of this is that every gauge boson has a fermion
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superpartner called a “gaugino” [39]. In order to make the masses of the superpart-
ners much greater than their Standard Model partners I need to add mass terms to the
Lagrangian for the superpartners. However, doing so breaks supersymmetry. Even
though supersymmetry is a broken symmetry of nature in any theory that describes
the real world, nonetheless the quadratic divergences that plagued the Standard
Model are still canceled out if one merely adds mass terms to the Lagrangian [40].
Finally, electroweak symmetry breaking is done the same way as in the Standard
Model, however, I have the added complication that to get a supersymmetric theory I
require at least two Higgs bosons. This is another prediction of supersymmetry.

A theory that is just like the Standard Model, save for the fact that it has two Higgs
bosons and every particle has a heavier superpartner, is known as the “minimally
supersymmetric Standard Model" (or MSSM). The second Higgs doublet is necessary
for anomaly cancellation. Another model I will consider is the NMSSM to which
the Lagrangian contains the superpotential [41]

W = λŜĤ1 · Ĥ2 +
κ

3
Ŝ3

+ yuQ̂ · Ĥ2Û
c + ydQ̂ · Ĥ1D̂

c + yeL̂ · Ĥ1Ê
c (2.40)

where Ŝ is a singlet under SU(3) × SU(2) × U(1), Ĥi are the superfields that
generate the two higgs fields, Q̂ corresponds to your quark doublet, L̂ corresponds
to the lepton doublet and ÛC , D̂C and ÊC correspond to the right handed fermion
singlets. The 125 GeV Higgs mass is difficult to reproduce in the MSSM with
light superpartners [42, 43, 44, 45, 46], consequently the baryogenesis window is
extremely narrow in the MSSM [47]. I will therefore in this research be considering
the NMSSM.

I conclude with a comment on the large non conservation of baryon number in
supersymmetric models which tends to sharply contradict observation due to strict
bounds on the violation baryon and lepton number conservation. This is solved by
proposing a new Z2 symmetry known as R parity which forbids tree level baryon
and lepton number violation. Specifically, R parity is defined by

PR = (−1)3B−L+2s (2.41)

where B,L and s are the baryon number, lepton number and spin respectively. All
Standard Model particles has R parity of +1 whereas the super partners have R
parity of −1. The result of this is that any interaction must conserve the number of
supersymmetric particles. This means that the lightest supersymmetric partner is
completely stable.

2.2.4 A brief summary of supersymmetric cosmology
Supersymmetry has incredible cosmological benefits. There are many new flat scalar
directions in field space which can facilitate inflation [48, 49, 50, 51, 52, 53, 54, 55].
Under R parity the lightest supersymmetric partner is completely stable which
provides a very good dark matter candidate [34, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65].
As for baryogenesis, supersymmetry naturally provides two mechanisms: during
inflation one has the Affleck-Dine mechanism [66] which won’t be reviewed here
(but is reviewed in my book). The other mechanism is electroweak baryogenesis.
Supersymmetry facilitates this in a number of ways. First the presence of coloured
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scalar particles (stops) in the plasma provides a strong source of friction that slows
the expansion of bubble walls [67] – which is ideal for baryogenesis. Second the
presence of new scalar particles that interact with the Higgs potentially catalyse a
strongly first order phase transition in contrast with the Standard Model [25]. Finally
there are many new sources of CP violation through new coupling terms. I will
examine how well electroweak baryogenesis is supported by simple supersymmetric
models in later chapters.

2.3 The relaxion mechanism: another solution
to the hierarchy problem

I previously discussed a dichotomy of explanations to explain fine tuning - the
anthropic principle can be invoked if there is an anthropic reason why an observable
is fine tuned otherwise one needs new physics. If the anthropic principle is invoked
then one is conceding that something about our world cannot be explained by
examining current local physics. There has been another very clever category of
explanation that has been proposed recently where the anthropic principle is not
invoked to explain the hierarchy problem but still the explanation is not found in
current local physics as the explanation is cosmological. This proposal is known as
the relaxion mechanism [5] where the Higgs couples to an axion field with a periodic
potential. These periodic barriers form at the same time when electroweak symmetry
breaking occurs and large Hubble friction during inflation prevents the Higgs vev
from rolling past the first minimum.

To determine whether this is indeed a solution to the hierarchy problem I invoke
a rigorous Bayesian model comparison framework. The Bayesian framework has
a fine tuning penalty and Occam’s razor automatically built in to the formalism. I
find that, unfortunately, the simplest versions of relaxion method do not solve the
hierarchy problem since one requires an unnaturally small Hubble parameter during
inflation to allow periodic barriers to form. Remarkably this problem is so acute
that the Standard Model turns out to be less fine tuned. Nonetheless relaxion is an
interesting scenario and perhaps more exotic inflationary scenarios can overcome
this difficulty.

2.3.1 Declaration for thesis chapter 2

Declaration by candidate
In the case of the paper present contained in chapter 7, the nature and extent of my
contribution was as follows:

Publication Nature of contribution Extent of contribution

2
Worked on analytic derivations throughout.
Wrote a number of sections and edited all sec-
tions. Contributed to discussions throughout.

25%

The following coauthors contributed to the work. If the coauthor is a student at
Monash, their percentage contribution is given:
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Csaba Balazs
Involved in conceptual development and con-
tributed to discussions throughout

Andrew Fowlie

Developed the concept, worked on analytic deriva-
tions and implemented numerical scan. Wrote
and edited sections. Contributed to discussions
throughout

Luca Marzola
Heavily responsible for conceptual development.
Involved heavily in writeup. Contributed to dis-
cussions throughout.

Martti Raidal Contributed to discussions throughout.
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1 Introduction

Graham et al. [1] recently proposed a relaxation mechanism [2–4] that solves the hierarchy

problem [5–8] by utilising the dynamics of an axion-like field, dubbed the relaxion. In the

Standard Model (SM), the hierarchy problem originates from quadratic corrections to the

weak scale. Whereas supersymmetry cancels them with new quadratic corrections involv-

ing supersymmetric particles [9], the relaxion mechanism cancels them with the vacuum

expectation value (VEV) of a relaxion field.

The ingenuity of the relaxion mechanism is that the dynamics of the relaxion field

ensure a precise cancellation without patent fine-tuning of parameters or initial conditions.

Within the relaxion paradigm, interactions between a complex Higgs doublet, h, and an

axion-like field, φ, govern the weak scale via the scalar potential [1]

V =
(
µ2 − κ〈a〉φ

)
h2 −m3

b〈h〉 cos

(
φ

f

)
−m2〈a〉φ+ λh4, (1.1)

where, because of quadratic corrections, we expect that the masses should be close to the

cut-off Λ, i.e., µ2 ∼ m2 ∼ Λ2, mb and f are coupling constants of dimension mass, 〈a〉 is
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the VEV of a spurion field that breaks a shift symmetry φ→ φ+ 2πf , κ is a dimensionless

coupling, and 〈h〉 is the VEV of the Higgs field, which is a function of the relaxion field φ.

Let us label the co-efficient of h2 in the relaxion potential

m2
h(φ) ≡ µ2 − κ〈a〉φ, (1.2)

for convenience, such that the Higgs VEV may be written

〈h〉 =





√
−m2

h(φ)

2λ m2
h(φ) < 0,

0 otherwise.
(1.3)

If the Higgs VEV is non-zero, the cosine term provides a periodic barrier for the relaxion

field with barriers separated by 2πf . In the unbroken phase in which 〈h〉 = 0, the barrier is

down and the relaxion field slowly rolls down a linear potential. Once m2
h(φ) < 0, however,

the potential is such that the Higgs field acquires a VEV, 〈h〉 6= 0, breaking electroweak

symmetry (EWSB) and raising the periodic barrier. The now-raised periodic barrier traps

the relaxion field in a minimum. If the relaxion field cannot roll past a local minimum, it

results in a weak scale of about

〈h〉 & f
m2〈a〉
m3
b

. (1.4)

Thus this mechanism could result in 〈h〉 �MP.

We require, inter alia, that the relaxion field dissipates energy as it rolls or else it would

have sufficient kinetic energy to surmount the periodic barriers. In the relaxion paradigm,

this is ensured by Hubble friction — a term analogous to a friction term in the Euler-

Lagrange equation for the relaxion field originating from the expansion of the Universe see

e.g. ref. [10]:

φ̈+ 3Hφ̇+
∂V

∂φ
= 0, (1.5)

where H is the Hubble parameter. If Hubble friction is substantial, the relaxion field could

be in a slow-roll regime in which the acceleration φ̈ can be neglected.

Ostensibly, the relaxion mechanism ameliorates fine-tuning associated with the weak

scale, but Raidal et al. [11] stress that it could require a fine-tuned inflationary sector if

the relaxion is the QCD axion because of constraints upon the Hubble parameter during

inflation. Unfortunately, there is no consensus in high-energy physics on the appropriate

measure of fine-tuning or about the logical foundations of fine-tuning arguments, despite

their prominence. In earlier work to judge fine-tuning in relaxion models, Jaeckel et al. [12]

developed a new formalism based on their intuition, whereas Raidal et al. [11] utilised

common Barbieri-Giudice style measures [13, 14]. In section 2, we critique Jaeckel’s ap-

proach and instead advocate a Bayesian methodology, discussed numerous times over the

last decade in the context of fine-tuning in supersymmetric models [15–22]. In this method-

ology, in light of experimental data about the weak scale and inflation, we update our belief

in a model with a Bayesian evidence. We further analyse the relaxion potential in section 3.

We describe our models — minimal relaxion models and the SM augmented by scalar-field

inflation — in section 4 and calculate their Bayesian evidences in section 5. This is the

– 2 –



J
H
E
P
0
8
(
2
0
1
6
)
1
0
0

first statistical analysis of a relaxion model. We close in section 6 with a brief discussion

of our findings.

2 Bayesian fine-tuning

Bayesian statistics provides a logical framework for updating beliefs in scientific theories in

light of data see e.g. ref. [23–25]. This methodology is becoming increasingly common in

high-energy physics see e.g. ref. [26–69] and cosmology see e.g. ref. [70–72], and arguably

captures the essence of the hierarchy problem [15–22] and the principle of Occam’s razor

see e.g. ref. [73]. We briefly recapitulate the essential details.

The Bayesian framework enables one to assign numerical measures to degrees of belief.

To assess two models, Ma and Mb, one begins by quantifying one’s relative degree of belief

in the models, prior to considering any experimental data. This is known as the prior odds,

Prior odds ≡ P (Ma)

P (Mb)
, (2.1)

where P (M) is one’s prior belief in a model M . From the prior odds, we can calculate the

posterior odds — one’s relative degree of belief in the models updated with experimental

data,

Posterior odds ≡ P (Ma |D)

P (Mb |D)
, (2.2)

where D represents experimental data e.g., in this work data from BICEP/Planck. The

prior odds and the posterior odds are related by a so-called Bayes-factor:

Posterior odds = Bayes-factor × Prior odds. (2.3)

By applying Bayes’ theorem, it can be readily shown that the Bayes-factor is a ratio of

probability densities,

Bayes-factor ≡ p(D |Ma)

p(D |Mb)
, (2.4)

where the probability densities in question are known as Bayesian evidences or just evi-

dences. The evidence for a model M can be calculated by Bayes’ theorem and marginali-

sation,

Z ≡ p(D |M) =

∫
p(D |M,p) · p(p |M)

∏
dp (2.5)

where p are the model’s parameters, p(D |M,p) is a so-called likelihood function — the

probability density of our observed data given parameters p — and p(p |M) is our prior

density for the model’s parameters p.

The likelihood function is uncontroversial as its form is dictated by the nature of an

experiment and it is a critical ingredient in Bayesian and frequentist statistics. The role and

form of the prior density, however, remain contentious issues. In as much as it is possible,

we pick objective priors that reflect our knowledge or ignorance about a parameter and

respect rational constraints from e.g., symmetries.
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We calculate Bayes-factors for the SM augmented with scalar-field inflation (SM + σ)

versus relaxion models. The final step — that of updating one’s prior odds with a Bayes-

factor to find one’s posterior odds — is left to the reader. That is not to say that a

Bayes-factor is independent of any prior choices — it is in fact a functional of the priors

for the parameters of the models in question.

Before closing, we briefly discuss attempts to quantify fine-tuning in a relaxion model

by Jaeckel et al. [12] and by Raidal et al. [11]. Raidal et al. employed Barbieri-Giudice style

measures of fine-tuning [13, 14]. Whilst intuitive, such measures lack a logical foundation,

though emerge in intermediate steps in a calculation of the Bayesian evidence [15–22].

Jaeckel et al. developed a novel measure of electroweak fine-tuning, F , based on the fraction

of a model’s parameter space, p, that predicts a weak scale less than that observed:

1

F
≡
Vv(p)≤v

V
=

∫
θ(v − v(p))

∏
dp∫ ∏

dp
. (2.6)

This measure contrasts with Barbieri-Giudice measures in that it considers a model’s entire

parameter space rather than a single point in it. Jaeckel’s measure, however, depends on

one’s choice of parameterisation or measure for the parameter space.1

Curiously, Jaeckel’s measure in eq. (2.6) is reminiscent of the Bayesian evidence if one

considers measurements of the weak scale, especially if one writes (unnecessary) normali-

sation factors for the priors,

Z =

∫
p(v |M,p) · p(p |M)

∏
dp∫

p(p |M)
∏

dp
vs.

1

F
=

∫
θ(v − v(p))

∏
dp∫ ∏

dp
. (2.7)

The differences are that Jaeckel et al. pick a step-function for the likelihood for the weak

scale, v, and omit a measure for the volume of parameter space, i.e., a prior. In other words,

by following their noses and attempting to formulate fine-tuning in a logical manner, Jaeckel

et al. create an ersatz Bayesian evidence.

3 Analysis of relaxion potential

Let us further analyse the relaxion potential in eq. (1.1),

V =
(
µ2 − κ〈a〉φ

)
h2 −m3

b〈h〉 cos

(
φ

f

)
−m2〈a〉φ+ λh4.

As in ref. [74], for simplicity we consider only linear terms in the relaxion field φ. The

equations ∂V/∂φ = 0 and ∂V/∂h = 0 result in a transcendental equation,

sin(φ/f) =
fκ〈a〉
m3
b

(
m2/κ+ 〈h〉2

〈h〉

)
. (3.1)

By graphing as in figure 1, one finds that if there is a solution, it lies in the interval

〈h〉min ≤ 〈h〉 ≤ 〈h〉max where

〈h〉min =
m3
b −

√
m6
b − 4κm2〈a〉2f2

2κ〈a〉f and 〈h〉max =

√
−µ2 + κ〈a〉〈φ〉max

2λ
, (3.2)

1However, Jaeckel et al. [12] includes a general discussion of parameterisation in the context of fine-

tuning.
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−3π −2π −π 0 π 2π 3π 4π
φ/f shifted by arbitrary amount

−2

−1

0

1

2

3

4

5

6

Correct |θQCD| ≤ 10−10

Critical value of relaxion field m2
h(φ) < 0

sin(φ/f )

fκ〈a〉
m3
b

(
m2/κ+〈h〉2
〈h〉

)

Lower limit from quadratic root when sin(φ/f ) = 1, 〈φ〉min

First solution, 〈φ〉
Upper limit from next sin(φ/f ) = 1, 〈φ〉max

Figure 1. Graphing the left-hand side (blue line) and right-hand side (green line) of the transcen-

dental equation in eq. (3.1). The solution (red star) lies in the interval in eq. (3.2), marked by a

brown pentagon and a green diamond. In unusual cases, the second point at which the right-hand

side equals plus one (not shown) may be a sharper bound. The φ/f -axis is shifted such that correct

|θQCD| occurs at small multiples of 2π (vertical brown dashed lines) close to the solution. EWSB

is broken once the critical value of the relaxion field is surpassed (vertical red dot-dashed line).

and

〈φ〉min =
2λ〈h〉2min + µ2

κ〈a〉 and 〈φ〉max = (2n+ 1/2)πf (3.3)

where n is the smallest integer such that 〈φ〉max > 〈φ〉min. If the square-root is imaginary,

there are no solutions, otherwise, there are zero to four solutions inside the interval, which

must be identified numerically. The interval results from recognising that a solution must

lie between the point at which the right-hand side of eq. (3.1) equals plus one, matching

the maximum of the left-hand side, and the subsequent point at which the latter is again

maximal. If required, one can improve this interval with piece-wise expressions by graphing.

In some cases, the positive quadratic root, similar to that for 〈h〉min, is a sharper bound for

〈h〉max. If the barrier height is substantial, the lower bound reduces to the approximation

for 〈h〉 in eq. (1.2), that is,

〈h〉min ≈ f
m2〈a〉
m3
b

if
4κm2〈a〉2f2

m6
b

� 1. (3.4)

This implies that κ〈a〉 � m3
b/(4f〈h〉). A necessary (though not sufficient) condition for

solutions to the transcendental equation is that the root in eq. (3.2) must be real,

4κm2〈a〉2f2
m6
b

≤ 1. (3.5)

In other words, the relaxion mechanism ensures that the weak scale is independent

of quadratic corrections to the Higgs mass from a cut-off or unknown high-scale physics,
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solving the hierarchy problem. In fact, the Higgs VEV is bounded by an expression that

is independent of the Higgs mass,

〈h〉min ≤ 〈h〉 ≤ 〈h〉max ≤
√
〈h〉2min + κ〈a〉fπ/λ. (3.6)

The Higgs mass µ2 and any corrections affect the position of 〈h〉 inside this interval, but

not the interval itself. The width of this interval is typically small such that numerically

solving for the VEV of the Higgs field inside the interval may be unnecessary.

Unfortunately, if the relaxion is the QCD axion, we expect that barrier height m3
b is

connected to QCD, such that mb ∼ ΛQCD, resulting in

〈a〉 . 〈h〉 × 10−18 ' 10−16 GeV, (3.7)

where we impose an experimental limit on the QCD decay constant, f & 109 GeV, and

pick m ' 1 TeV in eq. (3.4). Thus achieving a small weak scale requires a tiny spurion

VEV, 〈a〉≪MP. Such a small coupling may be natural as it breaks a shift-symmetry see

e.g. ref. [75]; however, there may be issues due to the gauge symmetry at the basis of the

construction [76, 77].

3.1 |θQCD| in relaxion models

Let us investigate whether a relaxion model might resolve the strong-CP problem [78] by

explaining |θQCD| . 10−10 [79]. Prima facie, the expression for |θQCD| is simple see e.g.

ref. [80],

|θQCD| = |〈φ〉/f on −π to π| . (3.8)

Numerically, however, this cannot be used for calculating |θQCD|— as 〈φ〉/f is substantial,

there is a breakdown in numerical precision in expressions such as 〈φ〉/f mod 2π. Instead,

we find the principal solution for |θQCD|,

|θQCD| = arcsin

∣∣∣∣
fκ〈a〉
m3
b

(
m2/κ+ 〈h〉2

〈h〉

)∣∣∣∣ , (3.9)

by utilising eq. (3.1).

The minimum |θQCD| obtainable occurs at the minimum of the right-hand side of

eq. (3.1), such that, if there is a solution at that point, sin(φ/f) is as close to zero as

possible. Thus we find that

min |θQCD| =





arcsin
∣∣∣2〈a〉fm

√
κ

m3
b

∣∣∣ if 〈h〉minima ≤ 〈h〉max,

arcsin
∣∣∣1− κ〈a〉fπ

2λ〈h〉2min
+ · · ·

∣∣∣ = π/2−
√

2ε+ · · · otherwise,

(3.10)

where 〈h〉minima = m/
√
κ which minimises the right-hand side of eq. (3.1) and the second

line is never less than the first line. The terms represented by the ellipses are higher powers

of η and ε,

〈h〉max ≈ 〈h〉min(1 + ε) where ε ≡ κ〈a〉fπ
2λ〈h〉2min

� 1 and η ≡ κ〈h〉2min

m2
� 1. (3.11)
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We expand to first order in ε and neglect all powers of η. Eq. (3.10) originates from

considering that the minimum possible |θQCD| would occur at the minimum of the right-

hand side of eq. (3.1) if that minima occurred at φ/f ≈ 2nπ and not φ/f ≈ (2n + 1)π,

such that |θQCD| ≈ 0 and not |θQCD| ≈ π. If that minima occurs, however, outside the

interval for the possible solutions for 〈h〉, it is impossible. In that case, the right-hand

side of eq. (3.1) is monotonic inside the interval for the possible solutions for 〈h〉 and we

consider the right-hand side evaluated at 〈h〉max from eq. (3.6). As the general expression

is rather complicated, we apply the approximations in eq. (3.11), which are reasonable for

phenomenologically viable points. In fact, phenomenologically viable points are always in

the second regime in which 〈h〉minima = m/
√
κ� 〈h〉max, such that min |θQCD| ≈ arcsin 1 =

π/2. This is confirmed in our numerical analysis.

3.2 Finite-temperature effects

In this paper and in the literature so far, the relaxion mechanism was analysed at zero

temperature.2 Finite-temperature effects could, however, non-trivially affect the relaxion

potential in eq. (1.1):

• Non-perturbative effects responsible for the induced effective potential of the relaxion

are temperature dependent [82]. However, since this affects only the heights of the

barriers and not their spacing and since Hubble friction during inflation is typically

substantial, it is unclear whether finite-temperature effects would impact the viability

of the relaxion mechanism.

• Finite-temperature corrections to the effective potential would alter the shape of

the potential (increasing the gradients of the slopes), possibly delaying the onset

of EWSB [83]. If EWSB is delayed until a late time (corresponding to a lower

temperature after reheating), it could constrain when inflation must start through

the requirement that it lasts at least 50 e-folds after EWSB. Furthermore, the flat

regions of the zero-temperature inflaton potential are strongly modified by finite-

temperature effects.

• We find that the reheating temperature in our relaxion models is typically of or-

der 1010 GeV. At such a high temperature, electroweak symmetry could be easily

restored, with the effect of further hindering the viability of the model.

Clearly all the mentioned finite-temperature effects have the potential to impose further

constraints on the relaxion model parameter space, to an extent that will be quantified in

following projects.

3.3 Baryon asymmetry

We observe a significant baryon asymmetry in our Universe. Sakharov [84] demonstrated

that generating this asymmetry — baryogenesis — would require a departure from thermal

2We note, however, that ref. [81] considers finite-temperature effects in an alternative relaxion mecha-

nism.
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equilibrium, C and CP violation, and baryon number violation. In the relaxion paradigm,

however, the final 50 or so e-folds of inflation occur during or immediately after EWSB

and inevitably wash-out any potential net baryon number generated in this process see e.g.

ref. [85]. Novel mechanisms that invoke multi-step phase transitions are also ruled out since

the fields must be in the final SM vacuum at the end of inflation.3 Scenarios in which the

inflaton itself could generate the required baryon asymmetry see e.g. ref. [86, 87] also appear

to be incompatible with the relaxion mechanism because of the further constraints implied

by the already heavily constrained dynamics of the inflaton. Finally weak sphalerons

are also exponentially VEV suppressed [88] after the electroweak phase transition which

means that any subsequent baryogenesis scenario would have to rely on a different source

of baryon and lepton number violation. As we shall see, these difficulties would strengthen

our conclusions about the viability of inflation in the present framework.

4 Description of models

We apply Bayesian model comparison to three models: the SM augmented with single-field

scalar-field inflation (SM + σ), a QCD relaxion model and a general relaxion model. For

other relaxion models, see e.g., ref. [74, 89–96]. Ultimately, we wish to find whether the

relaxion mechanism ensures that a relaxion model is favoured by the Bayesian evidence

versus the SM. In each model, all scalar-fields receive quadratic corrections to their masses

from a cut-off, Λ, which lies close to the Planck scale.

4.1 The Standard Model with scalar-field inflation

The SM Higgs sector is described by two bare Lagrangian parameters — µ2 and λ — in

the SM Higgs potential,

Vh = µ2|h|2 + λ|h|4, (4.1)

and a cut-off at which the bare parameters are specified, Λ. We augment the SM with

mixed inflation, a canonical model of scalar-field inflation see e.g. ref. [97]. Mixed inflation

is described by an inflaton mass, m2
σ, and quartic coupling, λσ, in a potential

Vσ =
1

2
m2
σσ

2 + λσσ
4 (4.2)

and the number of e-folds, Ne-fold. We denote this model by SM + σ.

Note that in the SM +σ model, the evidence approximately factorises into a factor for

the weak scale and a factor for the inflationary observables, r, ns and As,

Z = p(MZ , r, ns, As | SM + σ)

≈ p(MZ | SM + σ) · p(r, ns, As | SM + σ)

= p(MZ | SM) · p(r, ns, As |σ)

(4.3)

as the measurements are independent and model parameters that affect inflationary ob-

servables do not affect the weak scale and vice-versa, with the exception of the cut-off, Λ,

which results in quadratic corrections to the inflaton mass and the Higgs mass.

3One could in principle have a multi-step phase transition that departed from the SM vacuum for

baryogenesis and later returned to it but this somewhat undermines the motivation for relaxion models.
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4.1.1 Calculation of observables

For comparison with measurements from Planck in our statistical analysis, we calculate

inflationary observables via the so-called slow-roll parameters [98]:

ε(σ) ≡ M2
P

16π

(
V ′(σ)

V (σ)

)2

and η(σ) ≡ M2
P

8π

V ′′(σ)

V (σ)
(4.4)

where a prime indicates a derivative with respect to the inflaton field σ. Inflation finishes

once the inflaton field reaches a value σf such that ε(σf ) = 1. The number of e-folds

desired before inflation ends (and in the case of the relaxion, after EWSB),

Ne-fold '
−8π

M2
P

∫ σf

σi

V (σ)

V ′(σ)
dσ, (4.5)

determines the inflaton field at the beginning of inflation, σi. The number of e-folds

desired should be Ne-fold & 50. The spectral index, ns, and the ratio of scalar to tensor

perturbations, r, may be written to first order in the slow-roll parameters as see e.g. ref. [99]

ns = 1− 6ε(σi) + 2η(σi) and r = 4πε(σi). (4.6)

The normalisation of the potential governs the amplitude of scalar perturbations and the

Hubble parameter,

As =
1

M6
P

128π

3

V (σi)
3

|V ′(σi)|2
, (4.7)

H =

√
V (σi)

3M2
P

, (4.8)

but cannot affect r or ns. The normalisation of the scalar perturbations is arbitrary and

varies in the literature. For comparison with Planck data, we pick that of the Planck

experiment see e.g. ref. [100]. We include a quadratic correction to the inflaton mass —

to include a dominant quantum contribution to fine-tuning — but otherwise our formulas

are tree-level. We solve for the inflaton field at the beginning and end of inflation, σi and

σf , with numerical methods.

The mass of the Z boson — which represents the weak scale — is calculated in the

usual manner,

M2
Z =

−g2
2λ

(
µ2 + βΛ2

)
, (4.9)

where β is a loop factor. The QCD phase is an input parameter.

4.2 Relaxion models

We consider two relaxion models described by the potential in eq. (1.1). In the first model,

we do not identify the relaxion with the Peccei-Quinn axion that solves the strong CP

problem [78], whereas in the second model, the relaxion is indeed the Peccei-Quinn axion.
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For a necessary epoch of low-scale inflation after the relaxion mechanism, we extend

the relaxion potential in eq. (1.1) by the most general renormalisable single-field inflaton

potential see e.g. ref. [11] with an inflaton field σ,

V = m3
3σ +

1

2
m2

2σ
2 +

1

3
m1σ

3 +
1

4
λσσ

4. (4.10)

We suppose that pre-inflation multi-field dynamics dictate that inflation begins at the

origin, σ = 0, as in Raidal et al. [11]. This introduces only four parameters: four couplings

in the potential — the desired number of e-folds, Ne-fold, is not an input parameter. We,

furthermore, tune a dressed vacuum energy, ρ, such that the cosmological constant vanishes

in the vacuum, i.e., V (〈σ〉, . . .)+ρ = 0. Thus, low-scale inflation with H ≪MP is achieved

provided V (σ = 0) = ρ ≪ M4
P. This implies that the potential must be fine-tuned such

that |V (〈σ〉)|≪M4
P.

The cosmological constant poses an infamous fine-tuning problem see e.g. ref. [101].

In almost all known models, agreement with measurements of the cosmological constant

requires extreme fine-tuning between a bare cosmological constant in the Lagrangian,

ρ0, quantum corrections and contributions from spontaneous symmetry breaking i.e.,

V (〈σ〉, . . .). Because all models that we consider suffer from this fine-tuning problem,

fine-tuning penalties from the cosmological constant would approximately cancel in ra-

tios of Bayesian evidences. We ensure that the second epoch of inflation cannot spoil the

relaxion mechanism by applying conditions on the Hubble parameter during inflation.

4.2.1 Relaxion physicality conditions

There are parameter points for which the back-reaction to EWSB fails to trap the relaxion

field in a minimum. If that were the case, the relaxion mechanism would fail and the point

would be in severe disagreement with observations. Graham et al. list conditions required

for a successful relaxion mechanism [1]:

H2M2
P >

µ2m2

κ
(vacuum energy) (4.11)

H < mb (barriers form) (4.12)

H3 < m2〈a〉 (classical beats quantum) (4.13)

We assign zero likelihood to a point that violates the resulting condition,

√
µ2m2

κ
< MP min(mb,m

2/3〈a〉1/3). (4.14)

Graham et al. also list the conditions

Ne-fold &
H2

κ〈a〉2 (inflation lasts long enough) (4.15)

κ〈a〉µ2f ∼ m3
b〈h〉 (barrier heights) (4.16)

We assume that a first epoch of inflation is provided by the slow-rolling relaxion fields, and

cosmological constant later cancelled when the Higgs and relaxion fields acquire VEVs, and
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that this epoch provides an acceptable Hubble parameter, as described in ref. [11]. The

latter condition is unnecessary as we solve the potential with numerical methods, checking

whether a solution exists. To avoid destroying the periodic barriers, the second epoch of

inflation must, however, satisfy,

H < mb (4.17)

where, as before, mb is related to the height of the periodic barriers. The barriers result

from a phase-transition to a QCD condensate (or a condensate associated with similar non-

QCD dynamics). A Hubble parameter H > mb would reverse that transition, destroying

the barriers see e.g. ref. [1].

4.2.2 Calculation of (electroweak and QCD) observables

We calculated the VEVs of the Higgs and relaxion fields with numerical methods based on

bisecting the interval in eq. (3.2), from which we calculated the mass of the Z-boson,

MZ = g〈h〉 (4.18)

and |θQCD| (see section 3.1). In the non-QCD relaxion model, |θQCD| is an input parameter.

The calculations for the inflationary observables were identical to those in the SM+σ model.

5 Bayesian analysis

We calculated Bayesian evidences for our SM + σ model and relaxion models with (Py)-

MultiNest [102–105], which utilises the nested sampling algorithm [106, 107] for Monte-

Carlo integration in Bayesian evidences in eq. (2.5) (though delta-functions were first inte-

grated by hand).4 This requires two ingredients: a likelihood function and a set of priors.

Our likelihood function, summarised in table 1, was a product of at most five factors:

• weak-scale: a likelihood function for measurements of the mass of the Z-boson [79].

In the SM, this is approximated by a delta-function and integrated by hand. In a

relaxion model, this is impossible, as there is no analytic expression for the Z-boson

mass as a function of the Lagrangian parameters.

• conditions: if a relaxion model (i.e., a point in a relaxion model’s parameter space)

violates physicality conditions in section 4.2.1, we assign a likelihood of zero, since it

would be in stark disagreement with observations.

• decay: a likelihood function for the experimental lower-limit on fa, the axion decay

constant, approximated by a step-function see e.g. ref. [108].

• theta: a likelihood function for the experimental upper-limit on |θQCD|, approxi-

mated by a step-function [79].

4We utilised importance sampling, picked 1000 live points and a stopping criteria of 0.01 in MultiNest.
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Parameter Measurement Likelihood function

weak-scale

MZ 91.1876± 0.0021 GeV [79] Dirac in SM, Gaussian in relaxion

decay

fa fa & 109 GeV [108] Step-function

theta

|θQCD| |θQCD| . 10−10 [79] Step-function

inflation

r r < 0.12 at 95% [109] Step-function

ns 0.9645± 0.0049 [110] Gaussian

ln(1010As) 3.094± 0.034 [110] Gaussian

Table 1. Likelihoods included in our Bayesian evidences for the scale of electroweak symme-

try breaking, the axion decay constant, |θQCD| and BICEP/Planck measurements of inflationary

observables. Note that we neglect statistical correlations in Planck measurements of inflationary

observables.

• inflation: a likelihood for the spectral index, ns, the ratio of scalar to tensor

perturbations, r, and the amplitude of scalar perturbations, As, from Planck and

BICEP measurements [109, 110]. For simplicity, we neglect correlations amongst

Planck measurements and impose an upper-limit for the scalar-to-tensor ratio.

We applied the likelihoods incrementally in five calculations per model: only weak-scale;

adding conditions; adding a lower-bound on the axion decay constant, decay; adding

an upper bound on |θQCD|, theta; and finally adding BICEP/Planck measurements in

inflation. This enabled us to assess the individual impacts of the constraints.

We picked uninformative scale-invariant priors for the dimensionful Lagrangian param-

eters and cut-off because we are ignorant of their scale, a linear prior for |θQCD|, reflecting

a shift-symmetry, and a linear prior for Ne-fold because the number of e-folds is already a

logarithmic quantity. Our prior ranges are summarised in table 2. All massive parameters

— µ2 and m2 and inflaton masses — receive quadratic corrections from a cut-off, such that

we expect that without fine-tuning µ2 ∼ m2 ∼ Λ2. The main difference between the priors

for our QCD relaxion model and general relaxion model is that in the former, the barrier

height is related to the QCD scale, whilst in the latter, it is no greater than about the weak

scale. Furthermore, we assigned zero prior weight to corners of parameter space in which

a relaxion Lagrangian parameter with dimension mass exceeded the cut-off scale, Λ, as in

an effective field theory such corners may be considered inconsistent or implausible. This

eliminated approximately 18% of the prior volume in table 2.

By picking scale-invariant priors for the Lagrangian parameters, we implicitly acknowl-

edge our lack of information about a possible UV theory that might generate them. If there

were sufficient reason to believe that a particular mechanism might generate them, imprint-
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Parameter Prior

SM + σ

µ2 Log 10−40, 1

λ Log 10−4, 4π

Λ2 Log 10−4, 1

m2
σ Log 10−40, 1

λσ Log 10−20, 4π

Ne-fold Linear 50, 500

|θQCD| Linear 0, π

QCD relaxion

µ2 Log 10−40, 1

λ Log 10−4, 4π

Λ2 Log 10−4, 1

κ Log 10−4, 4π

〈a〉 Log 10−50, 1

mb Log 10−1ΛQCD, 10ΛQCD

m2 Log 10−40, 1

f Log 10−50, 1

m1 Log 10−100, 1

m2
2 Log 10−100, 1

m3
3 Log 10−100, 1

λσ Log 10−40, 4π

Non-QCD relaxion, as for QCD relaxion except

mb Log 10−6〈h〉, 10−1〈h〉
|θQCD| Linear 0, π

Table 2. Priors for parameters in SM augmented with scalar-field inflation (SM + σ) and re-

laxion models. Masses are in Planck units. Furthermore, regions in parameter space in which a

dimensionful relaxion Lagrangian parameter exceeded a cut-off were assigned zero prior weight.

ing distinguishing correlations between parameters, it should be reflected in one’s choice

of priors. In supersymmetric models, for instance, the knowledge of particular breaking

mechanisms such as minimal supergravity (mSUGRA) results in relations between La-

grangian parameters at the GUT scale that must be acknowledged in the choice of suitable

priors. Likewise, the identification of a UV-completion of the relaxion model could, in

principle, ameliorate the fine-tuning of the scenario as the Bayes-factor is a functional of

the priors, however, to-date we know of no compelling reason to pick anything other than

scale-invariant priors.
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5.1 Evidences

The evidences and Bayes-factors for the SM + σ and relaxion models are summarised in

table 3. We find that, considering only a measurement of the weak scale (i.e., weak-scale),

relaxion models are favoured by colossal Bayes-factors of about 1030. This is similar to

findings for the constrained minimal supersymmetric SM versus the SM [17], and was

expected, as the SM with a Planck-scale cut-off makes an egregious generic prediction for

the weak scale.

The physicality conditions (conditions in section 4.2.1) dramatically impact the pref-

erence for relaxion models. The conditions wipe-out a fraction of the relaxion models’

parameter spaces and shrink the Bayes-factors by about 10−28. The preference for relaxion

models versus the SM almost entirely disappears. In other words, despite their success

in solving the hierarchy problem, relaxion models are hamstrung by severe fine-tuning

associated with their physicality conditions.

The preference for the QCD relaxion model is further damaged by measurements of the

axion decay constant, decay, and the |θQCD|, theta. The latter results in approximately

zero preference for the QCD relaxion model as it predicts that |θQCD| ≈ π/2 (see eq. (3.10)).

The preference of about 102 for a non-QCD relaxion model versus the SM is unaffected by

decay and theta.

The final data-set of inflationary observables (inflation) also impairs the credibility

of the considered relaxion models. Low-scale inflation, required in the relaxion paradigm,

suffers severe fine-tuning as it requires a light scalar, and thus results in partial Bayes-

factors of about 10−30 for relaxion models versus the SM. Thus, all data considered, the

SM +σ model is favoured by a Bayes-factor of at least about 1025. We note that eq. (4.14)

results in an approximate limit of µ2 ∼ m2 . (108 GeV)2, such that by chance

µ2

βM2
P

m2

βM2
P

∼ M2
Z

βM2
P

. (5.1)

The factors are in fact approximately the fractions of parameter space in which a scalar

mass is fine-tuned to be so light versus a cut-off, MP. Thus tuning two scalar masses — µ2

and m2 — in a relaxion model to be µ2 ∼ m2 ∼ (108 GeV)2 results in a similar fine-tuning

penalty as tuning a single scalar mass such that MZ ∼ 100 GeV. This, in essence, explains

why the evidence for the SM and relaxion models are similar, if one considers only weak

+ conditions. Note that lowering the quadratic corrections by supersymmetrizing the

SM and relaxion models see e.g. ref. [94] could favour relaxion models, as from eq. (5.1) a

Bayes-factor might scale as the cut-off squared. Lowering the Planck mass, on the other

hand, might help slightly less, as it would lower the bounds on scalar masses from eq. (4.14).

To further investigate this issue, we relaxed the Planck-scale cut-off, plotting evidence

as a function of the cut-off in the SM and our QCD relaxion model in figure 2. By doing

so, we wish to confirm that our QCD relaxion model would be favoured versus the SM,

were the cut-off much lower than the Planck scale. We find in figure 2 that, although we

previously found that the relaxion model was not favoured versus the SM with a Planck-

scale cut-off, if the cut-off were lowered in each model to about 108 GeV, the relaxion

– 14 –



J
H
E
P
0
8
(
2
0
1
6
)
1
0
0

0 2 4 6 8 10
log10 Λ (GeV)

0.0

0.1

0.2

0.3

0.4

0.5
E

vi
d

en
ce

,
Z

Standard Model
Evidence, Z

(a) SM.

0 4 8 12 16 20
log10 Λ (GeV)

0.00

0.08

0.16

0.24

0.32

0.40

E
vi

d
en

ce
,
Z

QCD relaxion Model
Evidence, Z

(b) Relaxion.

Figure 2. The evidence as a function of the cut-off, Λ, in (a) the SM and (b) a relaxion model.

The evidence includes weak-scale and conditions. This illustrates that a relaxion model could

be significantly favoured if the cut-off were lowered from the Planck scale to about 108 GeV e.g.,

by supersymmetrizing the SM and relaxion model. The evidences are plotted in arbitrary units.

model could be significantly favoured. In other words, the relaxion mechanism may solve

the little-hierarchy problem in a supersymmetric model with soft-breaking masses at about

108 GeV, but not the hierarchy problem by itself. Hence, in isolation, our QCD relaxion

model cannot improve fine-tuning compared to the SM.

With a cut-off allowed to be as low as 10 TeV, considering weak-scale, conditions

and decay, the Bayes-factor favours our QCD relaxion model by 106 versus the SM and

about 1031 versus the SM with Planck-scale quadratic corrections. Including low-scale

inflation in e.g., a supersymmetrized relaxion model, however, might necessitate an inflaton

mass mσ � MSUSY. This little-hierarchy problem could scotch the Bayes-factor of 106 in

favour of the supersymmetrized relaxion model.

5.2 Observables

To illustrate the resolution of the hierarchy problem, in figure 3 we plot the priors for the

Z-boson mass in the SM and our QCD relaxion model that result from the non-informative

priors for Lagrangian parameters in table 2, that is,

p(logMZ |M) =

∫
δ(logMZ − logMZ(p)) p(p |M)

∏
dp. (5.2)

This illustrates their generic predictions for the weak scale. This would be numerically

equivalent to the Bayesian evidence if our data were logMZ and we approximated our

measurement with a Dirac function. Whereas the SM favours a weak scale close to the

Planck scale, the relaxion model results in considerable probability mass at scales much

less than the Planck scale, resolving the hierarchy problem. We find that if the relaxion is

the QCD axion, the posterior probability that |θQCD| . 10−10 is negligible, confirming our

expectations.
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Data-set weak-scale +=conditions +=decay +=theta +=inflation

Z (SM + σ) ·GeV 10−34 10−45 10−53

Z (relaxion) ·GeV 10−4 10−32 10−42 10−77

Z (QCD relaxion) ·GeV 10−4 10−34 10−39 ≪ 10−39 ≪ 10−81

B(relaxion/SM + σ) 1030 102 102 10−25

B(QCD relaxion/SM + σ) 1030 1 10−5 ≪ 105 ≪ 10−28

B(QCD relaxion/relaxion) 1 10−2 10−7 ≪ 103 ≪ 10−3

P (relaxion/SM + σ) 10−28 1 10−27

P (QCD relaxion/SM + σ) 10−30 10−6 ≪ 1 10−33

P (QCD relaxion/relaxion) 10−2 10−6 ≪ 1 10−6

Table 3. Evidences, Z, Bayes-factors, B and partial Bayes-factors, P , for the SM augmented with

scalar-field inflation (SM +σ), a relaxion toy-model and a QCD relaxion toy-model. We apply data

incrementally in five data-sets: (i) the Z-boson mass (weak-scale), (ii) physicality conditions in

relaxion models (conditions), (iii) constraints on the axion decay constant (decay), (iv) |θQCD|
(theta) and (v) BICEP/Planck measurements of inflationary observables (inflation). A Bayes-

factor is a ratio of evidences, indicating the change in relative plausibility of two models in light

of all data considered thus far. A partial Bayes-factor is a ratio of Bayes-factors, indicating the

change in relative plausibility of two models in light of incrementing the data by a single data-set.

A ratio of greater than one indicates that a relaxion toy-model is favoured. We highlight our most

important findings in blue: that relaxion toy-models are favoured by about 1030 by the Z-boson

mass, but that once all constaints are included, that preference is reversed to about 10−25 against

relaxion toy-models.
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Figure 3. Prior distribution of log10 of the Z-boson mass in (a) the SM and (b) a QCD relaxion

model including no data. The density at the correct weak scale in the relaxion model is much

greater than that in the SM. This illustrates that the relaxion mechanism improves fine-tuning of

the weak scale with respect to the SM. The densities are plotted in arbitrary units.
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Figure 4. Posterior distribution for the Hubble parameter, H, for a general renormalisable in-

flationary potential (eq. (4.10)). In (a), the constraint that the Hubble parameter is less than the

height of the periodic barriers, H < mb (eq. (4.17)), is not applied; whereas in (b), it is applied.

Both plots include Planck/BICEP measurements of r, ns and As.

To illustrate the fine-tuning required in the second epoch of inflation in a relaxion

scenario, in figure 4 we plot the posterior distribution of the Hubble parameter H with

and without constraint that the Hubble parameter is less than the height of the periodic

barriers, H < mb (eq. (4.17)), but with Planck/BICEP measurements of r, ns and As.

In the unconstrained case in figure 4a, the posterior shows preference for H ≫ mb, as

expected, resulting in a tiny evidence once H < mb is applied. Consequently, the Bayes-

factor significantly favours inflation in the SM + σ model.

This can be understood analytically. As discussed in section 4.2, for H ≪ MP, we

must have that V (〈σ〉) ≪ M4
P, where the potential is an order-four polynomial. The

mass-squared term is typically Planckian as it received a quadratic correction. The general

solution involves roots of a cubic equation. For simplicity, instead consider that m3
3 =

m1 = 0. By dimensional analysis, the result must be that V (〈σ〉) = f(λ)m4
2 ∼ M4

P . In

fact, the result is that V (〈σ〉) = m4
2/(4λσ). Other than by extreme fine-tuning of the

mass-squared (which might not agree with Planck/BICEP measurements of r, ns and As),

there is no chance that H ≪ mb. On the other hand, consider that all dimensional

parameters are equal to the mass-squared term, |m1| = |m2| = |m3|. Again, it must be

that V (〈σ〉) = f(λ)m4
2 ∼M4

P , though in this case the function f is rather complicated. In

any case, one must still require fine-tuning such that V (〈σ〉) ∼M4
P is avoided.

6 Discussion and conclusions

We constructed models that utilised a relaxation mechanism recently proposed by Graham

et al. to solve the hierarchy problem. Unfortunately, finding the weak scale in relaxion

models involves solving a transcendental equation with numerical methods. We presented
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an analytic expression for an interval bounding the weak scale and an analytic expression

for a lower bound on |θQCD|, confirming that |θQCD| ≈ π/2 if the relaxion is the QCD axion.

We performed the first statistical analysis of a relaxion model by scanning relaxion

models’ parameter spaces with the nested sampling algorithm, considering data from mea-

surements of the weak scale, the axion decay constant, |θQCD| and BICEP/Planck mea-

surements of inflationary observables r, ns and As. This resulted in so-called Bayesian

evidences for our relaxion models augmented with scalar-field inflation. In a similar man-

ner, we calculated Bayesian evidences for the SM augmented with scalar-field inflation.

We found that the Bayes-factors — ratios of Bayesian evidences that indicate how

one ought to update one’s relative prior belief in two models — favoured relaxion models

versus the SM by a colossal factor of about 1030 if one considered only the weak scale. Once

we included physicality conditions upon inflation during relaxation, however, the Bayes-

factors were decimated to about 100 for the non-QCD relaxion model and about 1 for the

QCD relaxion model. The physicality condition on the energy density during the relaxion

mechanism results, in fact, in a fine-tuning penalty similar to that for the hierarchy problem

in the SM, as demonstrated in eq. (5.1). The resulting Bayes-factors are then of order unity.

Constraints upon the QCD relaxion decay constant and |θQCD| severely impair the

plausibility of the QCD relaxion model, whereas inflationary observables measured by

BICEP/Planck demolish that of the surviving, non-QCD relaxion model. In this regard,

we find that the SM augmented with scalar-field inflation is favoured by a Bayes-factor of

about 1025 with respect to the non-QCD relaxion model. This stems from a constraint

upon the Hubble parameter during inflation: within the relaxion framework the Hubble

parameter must be fine-tuned to H ≪ MP, in order to prevent inflation from destroying

the periodic barriers in the relaxion potential. In contrast, the polynomial inflationary

potentials supported by current observations generically predict that H .MP, as explained

in figure 4 and the accompanying discussion.

Thus, whilst the analysed relaxion models indeed solve the hierarchy problem lead-

ing to Bayes-factors of about 1030 in their favour, the same Bayes-factors are scotched by

constraints upon parameters in the relaxion potential and the Hubble parameter during

inflation, ultimately leading to a Bayes-factor of about 1025 in favour of the SM augmented

with scalar-field inflation. We anticipate, furthermore, that detailed consideration of baryo-

genesis and thermal effects (including the disastrous possibility of reheating restoring elec-

troweak symmetry) would further damage the plausibility of relaxion models and conclude

that the required unconventional cosmology is the Achilles’ heel of the relaxion mechanism.

To conclude, we also remark that our results stand in the absence of a clear UV-

completion for the considered relaxion models and that the lack of information regarding

the origins of the parameters in the relaxion Lagrangian was encoded in the adopted un-

informative priors. If such a UV-completion were available, it would possibly dictate a

different choice of priors that could re-establish the plausibility of the relaxion framework.
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Chapter 3

Baryogenesis

I have argued that particle cosmology provides some of the most compelling reasons
to believe that there is physics beyond the Standard Model. Baryonic matter makes
up a small fraction 4.9% of the Universe’s energy budget meaning that 95% of the
Universe is made up of stuff everyone is yet to understand [33]. However, as I
will argue, from a cosmological perspective no one even understands the baryonic
component. So 100% of the Universe is unexplained! Indeed, the three pillars of
the Standard Model of particle cosmology – inflation, the production of dark matter
and the generation of a baryon asymmetry – all require physics beyond the Standard
Model. That being said, some striking confirmations of the Standard Model of
cosmology gives a strong argument that its the Standard Model of particle physics
that needs modification rather than cosmology.

The cosmic baryon abundance can be measured through two completely indepen-
dent methods. First through baryon acoustic oscillations in the cosmic microwave
background and second through the Deuterium abundance which is very sensitive to
the baryon abundance. It is convenient to express the cosmic baryon abundance as
a fraction of the entropy density as this gives a number that does not change as the
Universe expands [68]

YB =
nB
s

= 8.59± 0.11 . (3.1)

This agreement is a triumph of modern cosmology as it is highly non-trivial for two
independent measures to agree. One sees very few anti-baryons in the Universe.
The few experiments observe is consistent with secondary production [69]. This
baryon asymmetry is much too large to be a consequences of some initial condition
as inflation will dilute any initial asymmetry. Specifically if one has a Planckian
energy density pre-inflation, the maximum baryon asymmetry one can have assuming
constant entropy is about five orders of magnitude too small.

3.1 Sakharov Conditions
Well before all this was known, it was shown by Sakharov that any mechanism that
spontaneously produced the BAU would have to satisfy three conditions [70, 71]

• Violation of baryon (and lepton) number conservation,

• C and CP violation,
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• Departure from equilibrium.

The first condition can be satisfied either through electroweak sphalerons, explicit B
violation occurring in grand unified theories or through anomalous currents in Cherns
Simons gravity. Electroweak sphalerons have the added advantage of converting
P violating electroweak processes into C violating processes. This in conjunction
with CP violating three body couplings (Yukawa or tri-scalar) can satisfy the second
Sakharov condition. Satisfying the third option is where there has been the most
variety in suggestions – from inflation, to the decay of heavy particles to a cosmic
phase transition. One can mix and match different mechanisms for satisfying these
three conditions and arrive at the major paradigms for generating the BAU. For
example combining heavy particle decay (heavy neutrinos) mixed with electroweak
sphalerons and neutrino sector CP violation is the essential ingredients of leptogene-
sis. I will focus our attention on electroweak baryogenesis which utilizes electroweak
sphalerons during the electroweak phase transition. Electroweak baryogenesis has
the significant advantage of being testable as the new physics it requires is generally
weak scale.

The Standard Model in principle has all three ingredients – electroweak spha-
lerons provide a source of baryon number violation at high temperature, the CKM
matrix is a source of CP violation and as the Universe cools the Higgs field acquires
a vev in the electroweak phase transition. However, on a quantitative level the
Standard Model fails to fulfil the last two Sakharov conditions. For a Higgs mass of
125 GeV, the electroweak phase transition does not proceed by bubble nucleation so
the departure from equilibrium is not dramatic enough to facilitate enough baryon
production. Furthermore the CKM matrix provides too feeble a source of CP
violation.

3.2 Introductory remarks for published
material in thesis chapter 3

Electroweak baryogenesis is a subject that has lacked a comprehensive reference
that is self contained and includes everything (although some very fine reviews exist
that include some very useful information see [72, 73]). As such I wrote a book
that covers enough to take one from a graduate level to being able to perform state
of art calculations focusing on the vev insertion approach.1. I partially include this
book here. Unfortunately IOP does not give permission for more than two chapters
to be shared so I will also presented abbreviated summary of some of the content
throughout this section focusing on the background most needed for later chapters in
this thesis. This review contains a self contained summary on the baryon number
violation in the Standard Model, finite temperature quantum field theory, phase
transitions in quantum field theory, the derivation and solution to transport equations
using the closed time path formalism, details of relevant thermal parameters such as
thermal masses, widths, diffusion coefficients etc., and electric dipole moments.

1for a nice explanation of the WKB approach see [74, 75] and the references therein
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3.3 Declaration for thesis chapter 3
Declaration by candidate
In the case of the paper present contained in chapter 3, the nature and extent of my
contribution was as follows:

Publication Nature of contribution Extent of contribution
3 Single author paper 100%

The undersigned hereby certify that the above declaration correctly reflects the
nature and extent of the candidate and co-authors’ contributions to this work.
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Preface

We present a mostly self-contained pedagogical review of the theoretical back-
ground to electroweak baryogenesis as well as a brief summary of some of the other
prevailing mechanisms for producing the asymmetry between matter and antimatter
using the minimal supersymmetric Standard Model as a pedagogical tool whenever
appropriate. This book covers an in-depth look at baryon number violation in the
Standard Model, the necessary background in finite temperature field theory,
plasma dynamics, and how to calculate the out-of-equilibrium evolution of particle
number densities throughout a phase transition.
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Chapter 1

Introduction

The origin of the baryon asymmetry of the Universe (BAU) is one of the deepest
short-comings of our understanding of particle physics, as it cannot be explained
within the Standard Model. For instance, one cannot simply set the baryon
asymmetry as an initial condition as this would be washed out by inflation1. On
the other hand, coinciding estimates of the baryon asymmetry using different
techniques are a triumph of modern cosmology. The baryon asymmetry can be
estimated by the deuterium abundance and from the cosmic microwave background
(CMB), where the relative sizes of Doppler peaks in the temperature anisotropy are
sensitive to the BAU. These two methods give the overlapping estimates of the
baryon to entropy ratio2 [2–4]

= − ¯ ≈ =
± ×

± ×
± ×

−
−

−

⎧
⎨⎪

⎩⎪
Y

n n
s

n
s

(7.3 2.5) 10 , BBN

(9.2 1.1) 10 , WMAP

(8.59 0.11) 10 , Planck.

(1.1)B
B B B

11

11

11

This remarkable overlap in the estimates of the BAU from light element abundances
(particularly deuterium) and baryon acoustic oscillations are shown in figure 1.1 and
figure 1.2 respectively. Reproducing this estimate using particle physics makes one of
the three pillars of the Standard Model of particle cosmology, the other two being
inflation [5] and dark matter [6]. Like inflation and dark matter, it requires at least
some additions to the Standard Model. Furthermore, like the other two pillars of the
Standard Model of particle cosmology, there are a very large variety of models to
explain this peculiar fact about our Universe. Two of the most elegant explanations

1For a recent attempted exception to this, albeit a fine-tuned one, see [1].
2 Sometimes the baryon asymmetry is compared to the photon density, ≈γn n Y/ 7.04B B, rather than the
entropy. However during the early Universe many particles are expected to be in thermal equilibrium making
YB more convenient.
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are leptogenesis [9] and the Affleck–Dine mechanism [10]. Unfortunately both tend
to be well out of reach of the particle colliders of today and of the foreseeable future.

The focus of this review will be electroweak baryogenesis, which is the term for
any mechanism that produces the matter–antimatter asymmetry during the electro-
weak phase transition. Such a scenario requires physics beyond the Standard Model
that must couple relatively strongly to Standard Model particles and have masses
that are not too far above the weak scale. Therefore, unlike Affleck–Dine baryo-
genesis or leptogenesis, electroweak baryogenesis has the tantalizing prospect of
being tested, at least indirectly, by weak and TeV scale searches at the large hadron
collider (LHC).

Apart from testability, electroweak baryogenesis has the attractive feature that
coincides the breaking of the symmetry between particles and anti-particles with the
spontaneous breaking of the one symmetry we know to be broken—electroweak
symmetry. Unfortunately the literature on this exciting subject is somewhat opaque
to newcomers. There are some very nice pedagogical introductions to small parts of
the theoretical foundations of baryogenesis scattered throughout the literature if one
digs hard enough3. However, the study of baryogenesis is arguably too decoupled

Figure 1.1. The abundances predicted by the Standard Model of Big Bang nucleosynthesis (BBN) [7] for
4He, D, 3He, and 7Li. Here the bands show the range for the 95% confidence level and the boxes indicate
the light element abundances—the smaller boxes show σ2.75 statistical errors; the larger boxes σ2.75 statistical
and systematic errors. The wide band indicates the BBN concordance range, whereas the vertical narrow
band indicates the baryon asymmetry measured via the CMB given at the 95% confidence level. Reproduced
from [2].

3 For recent reviews see [11–14].
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from the rest of high energy physics given its promising phenomenological
implications and the fundamental nature of the question it attempts to answer.
Furthermore, the techniques one needs to learn to research in the field of electro-
weak baryogenesis have a large cross-over with other calculations in particle
cosmology—including other models of producing the baryon asymmetry such as
leptogenesis.

This primer will therefore give a mostly self-contained introduction to the field of
electroweak baryogenesis, assuming the reader has a graduate level knowledge of

Figure 1.2. Ω − ΩΛM constraints due to CMB, baryon acoustic oscillations, and Supernova Cosmology
Project Union2.1 SN constraints including SN systematic errors. Reproduced from [8].
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particle physics, including dimensional regularization, some basic path integral
techniques, the computation of amplitudes at tree and loop level, the Standard
Model Lagrangian, and Big Bang cosmology, as well as a rudimentary knowledge of
effective field theory and the minimal supersymmetric Standard Model (MSSM),4

which we will use as a pedagogical tool where appropriate. There are of course many
candidates for producing the BAU, but it is my hope that the theoretical foundations
given in this book should make learning such mechanisms significantly more
tractable.
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Chapter 3

Baryon number violation in the Standard Model

The baryon number is a classically conserved quantity in the Standard Model as can
be demonstrated by Noether’s theorem or even a cursory look at the available
interactions. This intuition breaks down when one quantizes the Standard Model,
due to so-called anomalous processes, which will be described in this chapter. That
some fundamental symmetries may not survive the process of quantization is highly
counter-intuitive. This is not just a feature of field theory. It was shown in [1, 2]
that even standard quantum mechanics with certain potentials—specifically a
delta function or a r1/ 2 potential—have anomalous violations of conservation
laws. The key anomaly of interest is the so-called chiral or axial anomaly. This
anomaly, combined with the fact that the SU(2) gauge symmetry is a symmetry of
left-handed particles only, will conspire to fulfil Sakharov’s baryon number
violation condition.

3.1 The axial anomaly
Let us warm up, however, by considering the simplest possible fermionic field
theory, a single massless, free fermion field with a U(1) gauge symmetry. Such a
theory has a global phase symmetry. Less obvious is that such a model’s Lagrangian
is also invariant under the following transformation

ψ → θγe . (3.1)i 5

From these symmetries we can of course use Neother’s theorem to derive conserved
currents. The Noether currents associated with these two symmetries are

ψγ ψ= ¯μ μJ (3.2)

ψγ γ ψ= ¯μ μJ , (3.3)5 5
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which implies Ward identities ∂ =μ
μJ 0 and ∂ =μ

μJ 05 . Obviously we expect the
product of conserved currents to also be a conserved quantity. Therefore we should
not even need to bother to calculate the divergence of the following quantity:

− Γ = 〈 ∣ ∣ 〉μνλ μ ν λ( )x x x T J x J x J xi ( , , ) 0 ( ) ( ) ( ) 0 . (3.4)1 2 3 5 3 1 2

Amazingly this quantity is not zero. This remarkable result is known as the ‘triangle
anomaly’ [3, 4] due to the fact that the Feynman diagram related to this amplitude
has three vertices, as shown in figure 3.1. In the author’s opinion the most effective
way to learn the axial anomaly is through direct calculation. We present a review of
what we believe is probably the simplest derivation in the literature using operator
methods with dimensional regularization, followed by the Fujikawa method which
is a path integral derivation.

3.1.1 Dimensional regularization

Let us calculate this example using the ever-familiar dimensional regularization. A
potential ambiguity that can arise in such a calculation is that there is no clear way
to generalize the matrix γ5 to ϵ−4 2 dimensions although various proposals exist [5].
We follow the approach of [6], which demonstrated that no knowledge of any of γ5
properties is needed to calculate the triangle anomaly1. The axial current to one-loop
order due to the triangle anomaly is given by

M∫ π π
= = +μ

ν λ
μνλ·J x

p k
A p A k q k p0 ( ) 0

d
(2 )

d
(2 )

e ( ) ( ) , . (3.5)
D

D

D

D
q x

5
i

The above amplitude relates to the two diagrams in figure 3.1, and the second
diagram is obtained from the first by merely interchanging νp( , ) and λk( , ). Hence,
it suffices to compute one diagram

M ∫ π
γ γ

ϵ
γ

ϵ
γ

ϵ
= − −

− + +
+

+ +
μνλ μ λ ν

⎧⎨⎩
⎫⎬⎭k p

l l k
l k

l
l

l p

l p
( , ) ie

d
(2 ) ( ) i i ( ) i

, (3.6)
D

D(1)
2

5 2 2 2

Figure 3.1. The famous triangle diagram responsible for anomalous quantum violations of classical chiral
symmetry. The circle denotes a γ5 on the vertex.

1 Part of this calculation has some cross-over with the calculation in [7].
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where the curly brackets denote a trace operation and the photon momenta are
on-shell. Although we introduced this section stating that we are considering a
massless fermion model, we will use a mass to regularize the integrals and take the
limit →m 02 at the end. Let us integrate over loop momentum and contract with qμ.
The result we can write as the sum of two terms

M A B= +μ
μνλ νλ νλq k p k pi ( , ) ( , ), (3.7)(1)

where

A ∫ ∫π ϵ μ

γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ

= − Δ

× + − − + −
× − −

νλ

α λ
α

ν

λ α ν
α

α λ ν
α

− ⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

{
}

( ) ( )
( )

k p x y

q x k y p q y p x k

q y p x k

( , )
ie

32
d d

1
ln

(1 ) (1 )
(3.8)

x2

2 0

1

0

1

2

5 5

5

and

B ∫ ∫π
γ γ γ

= −

× − − − + −
Δ

νλ

λ ν

−

{ }( ) ( ) ( )

k p x y

q x k y p x k y p x k y p

( , )
ie

16
d d

( 1) (1 )
.

(3.9)

x2

2 0

1

0

1

5

In the above we have defined the parameters

ϵ ϵ
γ πΔ = − + = − +q xy m ,

1 1
ln 4 . (3.10)2 2

The tensor Aνλ contains a divergent piece. If we employ the identities

γ γ γ ϵ γ γ γ γ γ γ γ γ γ ϵγ γ γ= − + = − +α μ
α

μ α μ λ ν
α

ν λ μ μ λ ν( 2 2 ) , 2 2 (3.11)

along with the cyclic property of traces, we can reduce this tensor to the form

A
π ϵ

γ γ γ γ γ γ γ γ

γ γ

= − − +
+ −

νλ λ ν ν λ ν λ λ ν

νλ

⎡⎣
⎤⎦

{ } { }

{ }

p q k q p q k q

g k p p k

ie
96

4 { } 4 2 2 { }

2 .
(3.12)

div.

2

2 5 5 5 5

5 5

So all traces with four Dirac matrices have already canceled and we are left with a
series of terms that are zero in four dimensions. However, we need not make an
assumption about the value of these traces. The term multiplying ϵ1/ is anti-
symmetric under the interchange νp( , ) and λk( , ) so it cancels when the two
diagrams are added, giving

A A+ =νλ λνk p p k( , ) ( , ) 0. (3.13)div. div.

A Pedagogical Introduction to Electroweak Baryogenesis

3-3



The finite part ofAνλ comes from theO ϵ( ) part of equation (3.11) and the Δln part in
equation (3.8). The result in the massless limit reads

A A
π

ϵ+ =
ϵ→

νλ λν λναβ
α β=

⎡⎣ ⎤⎦k p p k p klim ( , ) ( , )
e

6
. (3.14)

0 m 0

2

2

Note that the above tensor is infrared finite, so the inclusion of a mass regulator was
a convenient calculation tool. Moving to Bνλ k p( , ), we find that the potentially
singular terms cancel identically so we can take the limit →D 4 and write

B B
π

ϵ+ =
ϵ→

νλ λν λναβ
α β=k p p k p klim [ ( , ) ( , )]

e
3

. (3.15)
0

m 0

2

2

Putting everything together yields the well-known, but non-zero result

∫π
ϵ

π π
∂ · = μναβ

ν λ α β
·J

p k
A p A k p k0 0

e
2

d
(2 )

d
(2 )

e ( ) ( ) . (3.16)
D

D

D

D
q x

5

2

2
i

Thus we have have found by explicit calculation the anomalous violation of chiral
current conservation. We have chosen a particular way of performing the calcu-
lation that makes it maximally clear that the anomaly is not some ill effect of how we
regulate our integrals. Indeed the anomaly is experimentally demonstrated in
predicting the correct rate for pion decay π γγ→0 . Furthermore, as remarked in
the previous section, it has been shown to happen in ordinary quantum mechanics
and the above calculation has been repeated with multiple different regularization
schemes. Nonetheless we present one more derivation in the next subsection, since it
naturally organizes the anomalies in the Standard Model such that it is straightfor-
ward to show that lepton and baryon currents have anomalous currents.

3.1.2 The Fujikawa method

Since the anomaly is independent of the regularization scheme we will calculate the
anomalies using the path integral method with a hard cutoff regularization scheme.
The regularization free nature of the anomaly is more opaque in this scheme, so I
will assume that the reader understood the results of the previous section where
things were more clear. The cost of this opaqueness will be justified by the simplicity
of the calculation that follows. Let us begin by returning to the anomalous chiral
current

ψγ γ ψ= ¯μ μJ . (3.17)5
5

As in the previous section, the triangle diagram anomalously violates the classical
conservation law derived through Noether’s theorem. This time our fermions
interact with Standard Model gauge bosons. Path integral techniques are far more
efficient and systematic than trying to find all anomalous operators and hoping you
have not missed any. The path integral’s approach begins with simply adding the
current to the Lagrangian [8, 9]
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∫ ψ ψ= ¯ ∫
μ λ

− μ
μ⎡⎣ ⎤⎦W a A, [d ][d ]e . (3.18)c x a Ji d4

QCD 5

We then vary W with respect to aμ by an infinitesimal function β∂μ in order to test
whether W is invariant under such a change. Using the definition of functional
derivatives

∫
∫

∫

δ β

δ
δ

β

δ β

= − ∂ −
= −
= ¯ ∂
= − ∂ ¯

μ μ μ μ μ

μ

μ
μ

μ
μ

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦( ) ( )W W a A W a A

x
W

a

xJ

W x J x

[ln ] ln , ln ,

d
ln

i d

[ln ] i d ( ).

(3.19)

b b

4

4
5

4
5

So if δ =W[ln ] 0, ∂ =μ
μJ 05 and the chiral current is conserved. To test for an

anomaly one determines if the statement

β− ∂ =μ μ λ μ λ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦W a A W a A, , (3.20)c c

holds true. Let us begin by seeing if there is a change of variables that takes our
primed Lagrangian back to the original form. That is

ψ ψ ψ ψ β ψ ψ′ ′ ¯ ′ ≡ ′ ¯ ′ − ∂ → ¯μ μ μ
μ

μ( ) ( ) ( )( )L A L A J L A, , , , , , . (3.21)a a a
QCD QCD 5 QCD

The appropriate set of transformations is

ψ βγ ψ ψ′ = − ∼ βγ−( )1 i e (3.22)5
i 5

ψ ψ βγ ψ¯ ′ = ¯ − ∼ ¯ βγ−( )1 i e . (3.23)5
i 5

This can be verified by direct substitution in which one ignores all terms O β( )2 and
uses the anti-commutivity of the gamma matrices. The only other modification to
make to our function W is the measure

ψ ψ ψ ψ¯ → ′ ¯ ′[d ][d ] [d ][d ] (3.24)

in which we will pick up a Jacobian determinant J . We will later verify that J is
independent of ψ and ψ̄ so we can take it out of the integral

∫
∫

β ψ ψ

ψ ψ

− ∂ = ′ ¯ ′
= ′ ¯ ′
=

∫

∫
μ μ μ

μ μ

−

−

μ
μ

μ
μ

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

W a A J

J

JW a A

, [d ][d ] e

[d ][d ]e

, .

(3.25)

a xL a J

xL a J

a

i d

i d

4
QCD 5

4
QCD 5
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Therefore we can write the variation of Wln exclusively in terms of the Jacobian

J
J

δ β= − ∂ −
= −
=

μ μ μ μ μ

μ μ μ μ

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

( ) ( )
( ) ( )

W W a A W a A

W a A W a A

[ln ] ln , ln ,

ln , ln ,

ln .

(3.26)

a a

a a

Our Jacobian is of Grassman valued functions so it is given by the inverse of the
functional determinant of our transformations

J = βγ βγ −Det [e e ] . (3.27)i i 15 5

We can use a simple identity, =C CDet exp[Tr ln ], to write this determinant in
terms of a trace

J = βγ−e . (3.28)2iTr 5

This determinant diverges so we need to introduce a regulator. Let us first separate
the divergent part of the trace

∫βγ βγ= ′ x xTr Tr d , (3.29)5
4

5

where the primed trace is over internal degrees of freedom. To regularize the integral
we rewrite it as

∫βγ βγ= ′
→∞

−⎜ ⎟⎛
⎝

⎞
⎠x x xTr lim Tr d e . (3.30)

M

D
M

5
4

5

2

The square in the regulator can be expanded

λ σ σ= ∂ ∂ + ≡ + ·μ
μ μν

μν
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )D

M M
g F

M
D g F

1 1
4

1
. (3.31)a a

2

2 3 2
2

3

Here the definition of σ · F is given implicitly. To calculate the trace of the regulator
we introduce the complete set of states

∫
∫
∫

βγ
π π

βγ

π
βγ

π
βγ

= ′ ′ ∣ 〈 ∣ ∣ ′〉 ′∣

= ′

= ′

→∞

→∞

→∞

σ

σ

−

− + + ·

− + · + ·

μ μ

⎜ ⎟⎛
⎝

⎞
⎠

)( )

x
p p

x p p p p x

x
p

x
p

Tr lim Tr d
d

(2 )
d

(2 )
e

lim Tr d
d

(2 )
e

lim Tr d
d

(2 )
e e .

(3.32)

( )

M

M

M

d

d

d

d

D
M

d

d

p D g F M

d

d
p M D g F ip D M

5
4

2 2 5

4
5

i

4
5

2

2

2
3

2

2 2 2
3

2

We will now Taylor expand the right-hand side up toO M(1/ )4 keeping in mind that
each factor of p2 is of order O M( )2
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∫

∫

βγ
π

βγ σ

σ

σ σ

σ

βγ
π

σ

σ σ

= ′ − + ·

+ + · − · +

× · · + · + · + · ·

+ + · · · + ·

= ′ × − ·

+ · + + ·

→∞

→∞

μ ν μ μ

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜ ⎡⎣ ⎤⎦ ⎡⎣ ⎡⎣ ⎤⎦⎤⎦⎞

⎠⎟
⎤
⎦⎥

( { }
)

( )
{ }

{ }

{ }

( )x
p

M
D g F

M
D g F p D

M

p Dp D D g F p D D g F p D

D g F p Dp D
M

p D

x
iM g F

M

M
g F D D D D F

Tr lim Tr d
d

(2 )
e 1

1

1
2

4
2

3

4
( )

lim Tr i d
(4 )

1

1 1
2

( )
1

12
,

1
6

, , .

(3.33)

M

M

d

d

p
M5

4
5 2

2
3

4
2

3
2

6

2
3

2
3

2
3 8

4

4
5

4

2
3

2

4 3
2 2

2

2

The only trace that survives is the one with a product of two σ. Recalling that

γ σ σ ϵ= −μν αβ μναβTr 4i , (3.34)5

it is then easy to take the trace over the internal degrees of freedom to show that

J ∫ β α
π

= − ˜μν
μν

⎡
⎣⎢

⎤
⎦⎥x

S
F Fexp i d

3
8

. (3.35)4

We therefore have

α
π

∂ = ˜μ
μ μν

μνJ F F
3
8

. (3.36)s
5

This effective operator generates the amplitude given in equation (3.15) which was
derived using operator techniques and dimensional regularization.

3.1.3 Baryon and lepton number violation

At this stage we have rederived the chiral anomaly using functional techniques and
taking into account the gauge symmetries of the Standard Model. The SU(2) gauge
bosons couple only to left-handed particles so the chiral anomaly interferes with
lepton and baryon number conservation. Consider the classically conserved currents

ψγ γ ψ= ¯ ∓μ μ( )J
1
2

1 . (3.37)L R,
5

Let us first couple the left-handed current to the Standard Model. Following the
procedure as before we consider the term β+ ∂μ μ μ μ μW a A B G[ , , , ] where

β= + + ∂μ μ
μL L a J( ) LSM . This can be related to the term μ μ μ μW a A B G[ , , , ] by the

transformations

ψ βγ ψ ψ′ = − ∼ βγ−( )1 i e (3.38)5
i 5
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ψ ψ βγ ψ¯ ′ = ¯ − ∼ ¯ βγ−( )1 i e . (3.39)5
i 5

We then can use the method outlined before to derive an expression for ∂μ
μJL

with associated regulator γ∂ + + ′ + ≡μ μ μ μ
μgA g B g G M D Mexp{[( ) ] / } exp[ / ]s L

2 2 2 2 .
Similarly we can couple the right-handed current to our Lagrangian. The trans-
formation required to bring us back to our original W function is

ψ βγ ψ ψ′ = + ∼ βγ+( )1 i e (3.40)5
i 5

ψ ψ βγ ψ¯ ′ = ¯ + ∼ ¯ βγ+( )1 i e . (3.41)5
i 5

Our Jacobian will acquire an extra minus sign. This time the associated regulator is
γ∂ + + ≡μ μ μ

μgA g G M D Mexp{[( ) ] / } exp[ / ]s R
2 2 2 2 . Following the previous calculation

one finds for quarks

α
π

∂ − ≡ ∂ = ˜μ
μ μ

μ
μ μν

μνJ J J G G[ ]
3
8

(3.42)L R
S

5

α
π

∂ = ˜μ
μ μν

μνJ B B
3
8

. (3.43)L
W

When one performs the calculation for leptons there is only the anomalous left-
handed current which is equal to one third the above equation since one does not
perform a trace over colour. Noting that the baryon number of a quark is 1/3 we can
write the exact symmetry

∂ = ∂μ
μ

μ
μB L . (3.44)

3.2 The Chern–Simons form, baryon number violation,
and the winding number

We have now demonstrated that both lepton and baryon number are violated in the
Standard Model through these strange anomalous currents. In this subsection we
will try and find the sort of field configuration that violates baryon and lepton
number. This is one part of the background theory which can quickly get
unnecessarily formal, so we will be taking an approach to make things only as
formal as is useful to understanding the subject at the level needed to do research in
this field2. Let us first make some manipulations to our effective action. Recall that

2We do not follow any particular reference as they often lack details in the areas we need and are too formal or
too detailed in areas orthogonal to this analysis. Nonetheless, some useful resources for more information are
[10–12].

A Pedagogical Introduction to Electroweak Baryogenesis

3-8



∫
∫

∫

∫
∫

π
ϵ

π
ϵ

π
ϵ

ϵ ν

π
ϵ

π

∂ = ∂ =

= ∂ ∂ − ∂ +
× ∂ − ∂ +

= ∂ ∂ −

+

= ∂ ∂ −

= ∧ + ∧ ∧

μ
μ

μ
μ μναβ

μν αβ

μναβ
μ μ ν ν μ μ ν

α β β α α

μναβ
μ ν α β ν α β

μναβ
μ α β

μναβ
μ ν α β ν α β

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

⎡⎣⎡⎣ ⎤⎦⎡⎣ ⎤⎦⎤⎦
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

L B
g

x F F

g
x A A f A A

A A f A A eta

g
x A A A A A

f f A A A A

g
x A A A A A

g
A A A A A

32
d Tr

32
d Tr

8
d Tr

2i
3

Tr ,

8
d Tr

2i
3

8
Tr d

1
3

.

(3.45)

a a abc b c

a ade d
b

e

abc ade a b d e

S

2

2
4

2

2
4

2

2
4

2

2
4

2

2 3

Note we used the Jacobi identity in the above derivation. Also in the last line we
have used the divergence theorem and wrote the result in a compact notation using
wedge products. If you are unfamiliar with this notation rest assured we will use
them sparingly. The integrand here is known as the ‘Chern–Simons action’ as it is
the surface integral of the Chern–Simons form [13]. The field configurations that will
be relevant are finite-energy solutions, so we require them to be well-behaved at
infinity

O→ ∂ +μ μ
− ⎛

⎝⎜
⎞
⎠⎟A g g

r
i

1
. (3.46)1

2

That is, we require that in some gauge the field vanishes at a rate faster than r1/ 2 up
to ‘pure gauge’ contributions. Field configurations that do not satisfy the finite-
energy condition make no contribution to the functional integral so they can be
ignored. We note that the integral of the Chern–Simons form is the volume integral
of a total divergence. We can then use Gauss’ divergence theorem to turn this into an
integral over the surface at spatial infinity. If we enter the pure gauge part into
equation (3.45) we obtain

∫
∫
∫
∫

π
ϵ

π
ϵ

π
ϵ

π
ϵ

∂ = ∂ ∂ ∂ − ∂ ∂ ∂

= − ∂ ∂ ∂ − ∂ ∂ ∂

= ∂ ∂ ∂ − ∂ ∂ ∂

= ∂ ∂ ∂

μ
μ

μ
μναβ

ν α β μ α β

μ
μναβ

ν α β μ α β

μ
μναβ

μ α β μ α β

μ
μναβ

μ α β

− − − − −

− − − − − −

− − − − − −

− − −

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦

( )

( )

L
g

S g g g g g g g g g g

g
S g g g gg g g g g g g g

g
S g g g g g g g g g g g g

g
S g g g g g g

8
d Tr i

2i
3

8
d Tr ( )

2
3

8
d Tr

2
3

24
d Tr ,

(3.47)

2

2
2 1 1

4
1 1 1

2

2
1 1 1 1 1 1

2

2
1 1 1 1 1 1

2

2
1 1 1
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where in the second line we used the identity

∂ = = ∂ = ∂ + ∂− − −( ) ( ) ( )gg g g g g1 0 . (3.48)x x x x
1 1 1

The form of this is very interesting. Consider the volume element for the internal
group

∫π
Ω = ∧ ∧− − −⎡⎣ ⎤⎦( ) ( ) ( )gg gg ggd

1
24

Tr d d d . (3.49)V 2
1 1 1

So the particle current divergence is proportional to the volume integral over the
internal group pulled back onto Euclidean space–time. In other words it is propor-
tional to the number of times the field winds around the group at the three-
dimensional surface at spatial infinity. If the integral of the Chern–Simons form is
non-zero we therefore denote it with a ‘non-zero’ Chern–Simons number due to the
connection with the winding number.

3.3 Winding number and non-abelian gauge groups
The kind of field configuration that violates baryon number conservation is one with
a non-zero ‘Chern–Simons number’, which we argued in the previous section is
satisfied if the winding number is non-zero. In this section we will make things a little
more concrete. The winding number is a concept from topology. As we only need
surface level understanding of the concept we will only give a few examples to build
intuition toward the subject. First consider the case where the internal space of a
gauge field is a simple circle. Now consider the following mapping:

θ =ν νθg ( ) e . (3.50)(i )

The winding number is defined as how often this function winds around the circle. It
is easy to show that the following equation is the winding number:

∫π
θ θ

π −g
i

2
d d /d . (3.51)

0

2
1

What is obvious also from explicit calculation is that the product of two mappings
gives a winding number that is the sum of the winding numbers of each mapping.
That is, if the winding number of one function, θf ( ) is ν1 and the winding number of

θg( ) is ν2, then the winding number of θ θf g( ) ( ) is ν ν+1 2. This just follows from the
properties of exponential functions. However, let us prove this in a way that may
seem needlessly complicated for this simple example, but will be useful for the more
complicated case we are interested in. First we consider a small change in the
winding number

δ δλ=g i( ). (3.52)
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It is easy to show that δν = 0,

∫
∫
∫

ν δν
π

θ δ
δ

θ
θ

ν
π

δ
θ

δλ
θ

ν
π

θ δλ
θ

ν

+ = + −

= + −

= +
=

π

π

π

−

− −⎛
⎝⎜

⎞
⎠⎟

( ) ( )
g g

g g

g
g g

i
2

d
d

d
d

1
2

d
d

i
d

d

1
2

d
d
d

.

(3.53)

0

2 1

0

2 1 1

0

2

Thus we have shown that the winding number is invariant under continuous
transformations. So we see that the winding number of the product of two functions
is just the sum of the two winding numbers. Now consider the case where the gauge
field has a local SU(2) symmetry. In the previous section we claimed that the
winding number for this group is given by

∫ν
π

ϵ= ∂ ∂ ∂ν
νμαβ

μ α β
− − −⎡⎣ ⎤⎦S g g g g g g

1
24

d Tr , (3.54)
2

1 1 1

which we will prove to be the winding number in a way completely analogous to the
case of a circle. It is straightforward by direct substitution to take a configuration
with winding number of unity, σ= ·g rx/ (where of course σ = 14

2), and show that it
indeed gives one when inserted into the above equation. So we can prove it is the
winding numbing by demonstrating that winding number of two maps is the sum of
their individual winding numbers using the same techniques we used for the circle.
Once again we begin with considering a small change in the winding number. Recall
the identity that

∂ = − ∂− −( )g g g g( ) , (3.55)x x
1 1

which we can use to write

∫δν σ ϵ δλ τ= ∂ ∂ ∂ν
νμαβ

μ α β
−⎡⎣ ⎤⎦g g xd Tr ( ) . (3.56)a a1

This vanishes upon integration by parts. It is then trivial to see that our expression
for ν is indeed the winding number as one can then continuously deform our
expression for g such that it is equal to one for the upper part of the hypersphere, and
deform another mapping of winding number one such that it is equal to one for the
lower part of the hypersphere. The winding number of the product of these two
mappings is then 2. A similar process can produce a mapping gν with winding
number ν. So what does this mean? If we consider the SU(2) gauge fields in four
dimensional Euclidean space and track their value as we walk around spatial
infinity, if the field winds around its internal group at least once in this walk then
baryon and lepton number is violated. So to understand the process of baryon
number violation we will then seek to understand these topologically interesting
processes. Specifically we will find in the following sections that we are interested in
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lumps of field, from the perspective of four-dimensional Euclidean space, called
instantons, and unstable temporally localized lumps called sphalerons.

3.4 Solitons and instantons
In the previous sections we demonstrated that field configurations that violate
baryon or lepton number must be topologically non-trivial—that is they must have
non-zero Chern–Simons number. In this section we will demonstrate that topolog-
ically interesting field configurations generically are associated with quasi-particles.

Let us begin with the simplest example. Consider a simple scalar field in 1 + 1
dimensions with degenerate minima. For simplicity and clarity we will set a bunch of
parameters in this theory to one to avoid them cluttering our equations as we only
wish to discuss some qualitative features of the theory. The ‘uncluttered’ version of
the Lagrangian for 1 + 1-dimensional scalar field theory is

ϕ ϕ ϕ= − − −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

t x
1
2

d
d

1
2

d
d

1
4

1 . (3.57)
2 2

2 2

Now consider finite-energy solutions to the action that are stationary in time (that is
we set the ϕ td /d term to zero). Without putting pen to paper we can already make
remarks about the types of solutions we will find. The key to this is knowing that if
the solution is finite then the field must take the value of one of the minima at plus
and minus spatial infinity. This gives us two types of solution, a field that has the
same minima at ±∞ and a field that goes from one minimum at −∞ to another at
+∞. The second class of solutions is topologically non-trivial. Consider a specific
example of the second type of solution to the classical equations of motion

ϕ = ± −⎡⎣ ⎤⎦x x x( ) tanh ( ) 2 . (3.58)0

The energy profile of this solution is a highly localized lump of field. This can be seen
if we write the energy density of the solution

ϵ = −⎡⎣ ⎤⎦x x x( )
1
2

sech ( ) 2 (3.59)2
0

which we depict in figure 3.2. This is known as a classical lump or a soliton. It is a
quasi-particle whose existence derives from a degeneracy in the ground state.
Although the solution given above is stationary, we can easily boost to a moving
frame to obtain moving soliton solutions. Recalling that under a Lorentz trans-
formation, ϕ ϕ→ Λx x( ) ( ), we can write the following class of moving solitons

ϕ = − −
−

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦
⎥⎥x t

x x vt

u
( , ) tanh

1

2

( )

1
. (3.60)0

2

In the Standard Model we have a very large degeneracy in the ground state since one
can have different winding numbers. Field configurations that are topologically
interesting in an analogous way to the soliton described above will also look like
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localized lumps in the field except in all four Euclidean dimensions. These lumps are
known as instantons since they are localized in time. If you reverse the Wick
rotation, returning to 3 + 1 dimensions, these instantons look like tunneling
processes [14]. Having more dimensions and a more complicated degeneracy means
we cannot immediately write down the instanton solution as we did with the soliton.
In the case where we have SU(2) gauge symmetry, it helps to first show that the
instanton is a solution to the classical equations of motion—it is a local minimum of
the action. First take the field strength tensor and make use of the trivial identity

∫ ∫
∫

= ˜ ˜

⩾ ˜
μν

μν
μν

μν
αβ

αβ

μν
μν

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦

x F F x F F F F

x F F

d Tr d Tr

d Tr .
(3.61)

4 4

4

This means that

∫ π ν⩾μν
μνx F F

g
d Tr

8
(3.62)4

2

2

with the equality being satisfied for = ˜F F . To construct an ansatz for an instanton
we have the conditions that the winding number is 1, the configuration is finite-
energy and the solution is a local extrema of the action. For simplicity let us ignore
the gauge coupling constant by setting it to 1 and write the ansatz

= ∂μ μ
−( )A f r g x g xi ( ) ( ), (3.63)2 1

where f is a radial function that goes to 1 as → ∞r faster than r1/ 2. We can
substitute this ansatz into the classical equations of motion (or equivalently the
equation = ˜F F ) to find

− = − ′( ) ( ) ( )f r f r r f r , (3.64)2 2 2 2 2

Figure 3.2. Depiction of a soliton in a single spatial dimension for the simple case of two degenerate minima at
±1. The energy profile is highly localized which justifies its status as a quasi-particle.
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which is satisfied for

ρ
= +( )f r

r
r

. (3.65)2
2

2 2

The instanton is then [15, 16]

ρ

ϕ ρ

= − ∂ − −
− +

= + −

μ μ
− ⎡⎣ ⎤⎦A x g x a g x a

x a
x a

x
x a

( ) ( ) ( )
( )

( )

( ) 1
( )

.
(3.66)

1
2

2 2

2

2

That μA x( ) winds around the group once is clear from the fact that it is a radial
function times the pure gauge form for the ν = 1 gauge configuration. This can also
be seen by explicitly putting the above solution into the Chern–Simons form (3.47).
The above instanton tunnels between two neighboring vacua and in the process
produces three leptons and three baryons. If all particles are Standard Model this
means nine quarks and three leptons. Calculating the energy density of this solution
once again shows a clump of field highly localized in space and time, as can been
seen in figure 3.3.

The amplitude for an instanton rate at zero temperature can be found by simply
inserting the instanton solution into the path integral and making a saddle-point
approximation. Doing so one finds that the instanton amplitude is proportional to

π− ∼ −gexp[ 8 / ] 102 2 173 [14] which is an incredible suppression! So at zero temper-
ature it cannot possibly be important to explain the baryon asymmetry. Finally let
us see how the ground state of the Standard Model can be thought of as a periodic
potential [17–19]. Let an eigenstate of definite winding number be denoted by ∣ 〉n .

Figure 3.3. The energy profile of an instanton as a function of r2 is also highly localized. This is the motivation
behind thinking of the instanton as a quasi-particle in Euclidean space. Here the parameter ρ = 1.
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The conjugate variable to n will then be a phase variable. An eigenstate of phase can
be written as

∑θ =
=−∞

∞
θ ne . (3.67)

n

ni

Let us consider the term θ θ〈 ′∣ − ∣ 〉HTexp [ ] . We of course have calculated the term
π〈 + ∣ − ∣ 〉 − 〈 + ∣ ∣ 〉 ≈ −n HT n n HT n AT g1 exp [ ] 1 exp[ 8 / ]2 2 . We can make the

approximation where we ignore multiple tunneling events and consider only single
tunneling transitions. Defining θ δ θ θ θ θ− ′ = 〈 ′∣ ∣ 〉E H( ) ( ) we have

θ π θ= − −⎡
⎣⎢

⎤
⎦⎥E E A

g
( ) 2 exp

8
cos . (3.68)0

2

2

The ground state can be approximated as a periodic potential with a potential height
proportional to the tunneling amplitude as depicted in figure 3.4.

Let us conclude the section by summarizing what we have learned so far about
baryon number violation in the Standard Model:

• Classical conservation laws can be anomalously broken.
• Triangle anomalies in the Standard Model result in an anomalous violation
of both baryon and lepton number conservation.

• The field configurations that anomalously violate baryon/lepton number are
ones with a non-zero Chern–Simons number. This means they wrap around
the internal space at the surface at spatial infinity in Euclidean space.

• Fields with integer winding number at infinity are solutions to the classical
equations of motion.

• Fields with integer winding number look like localized lumps in Euclidean
space.

3.5 The sphaleron
Let us now try and bootstrap another topologically interesting quasi-particle that is
a good candidate for baryon number violation. Specifically, the quasi-particle we
will discuss is the sphaleron whose etymology is from the Greek word that means to
‘go down’, because it is an unstable particle [20, 21]. In the previous section we
presented the instanton with a winding and Chern–Simons number of 1. It turns out

Figure 3.4. Standard Model ground state is actually periodic with a potential height of Esph. Each degenerate
minimum corresponds to a different Chern–Simons number. A shift to the right from one minimum to another
is the instanton, whereas the local maxima are the sphalerons. Each degenerate ground state has a different
Chern–Simons number, NCS. Instantons move one to the right from one ground state to another with a higher
Chern–Simons number whereas anti-instantons move one to the left.
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that the instanton is less important than the sphaleron for our purposes because
sphaleron rates become unsuppressed at high temperatures. As such we give it far
closer attention. Physically, the instanton corresponds to tunneling through a barrier
whereas a sphaleron corresponds to classically passing over the barrier. A sphaleron
is an unstable particle corresponding to an instantaneous moment in time and is a
solution to the classical equations of motion. It is due to its importance in the logical
framework of this field that we give it such deep attention. It should be noted that we
only focus on the lowest energy electroweak sphaleron before touching on the SU(3)
sphaleron, since the lowest energy sphaleron will dominate. Of course we note that
there is no formal proof that we are aware of that the sphaleron we present is indeed
the lowest energy but it is widely believed to be so. To begin our bootstrap let us start
with insisting that the Higgs field, which is an SU(2)L doublet, is well-behaved at
infinity. Well-behaved in this case means the covariant derivative must vanish

ϕ → → ∞μD r0 as . (3.69)

This gives the condition

ϕ τ ϕ∂ =μ μ∞ ∞ ∞igA . (3.70)a a

In this case we keep the gauge coupling constant as we will eventually calculate the
sphaleron rate. We want ϕ∂ ∂ =t/ 0 and we want a topologically non-trivial solution.
So let us set ∣∞A0 to zero along with ϕ ∣∞td /d and map the space–time surface onto
the internal space by setting ∞Ai to be proportional to the right invariant one form—
also called the Maurer–Cartan form

ϕ = Ω∞ ⎛
⎝⎜

⎞
⎠⎟v

0
2

(3.71)

and

= − ∂ Ω Ω∞ −A
g
i
( ) . (3.72)i i

1

We will use Ω instead of g here and throughout for an element of the gauge group to
avoid confusion with the coupling constant. The Hermitian conjugate of the above is
a solution. Both of these solutions can be verified by direct substitution.

This is the first requirement of a sphaleron: that it reduce to the Maurer–Cartan
form at infinity in order to be a finite-energy solution. Fields with integer winding
number are known to be (multi-)instantons. The only other topologically interesting
cases that can potentially violate baryon number are the cases where we have a non-
integer and non-zero Chern–Simons number. It will turn out that sphalerons have a
Chern–Simons number of 1/2. However, the Chern–Simons number was shown in
the previous section to be related to the winding number, which is forced to be
an integer. So it is something of a surprise that a non-integer Chern–Simons number
is possible given its close relationship to the winding number. Indeed the
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Chern–Simons number of any vacuum state must be an integer so a non-integer
Chern–Simons number means it must continuously deform from one vacuum state
to another.

To complete our bootstrap we explicitly make use of the Pauli matrices and make
our fields cover the internal group as we cover the spatial sphere at = ∞r while
passing through zero somewhere in space via use of a radial function. Therefore a
suitable ansatz is

ϕ = Ω∞ ⎛
⎝⎜

⎞
⎠⎟h r

v
( )

0
2

(3.73)

and

= − ∂ Ω Ω∞ −A
f r
g

i ( )
( ) (3.74)i i

1

with

σΩ = · x
r

. (3.75)

Also ≡f f r( ) and h(r) are radial functions chosen to solve the equations of motion
subject to the boundary conditions = =h f(0) (0) 0 and ∞ = ∞ =h f( ) ( ) 1. Let us
now complete the motivation for studying closely this quasi-particle over the
instanton, by demonstrating that these processes become unsuppressed when
electroweak symmetry is restored at high temperature. We apologize to the reader
for slightly skipping ahead in the flow of our logical argument by using a small
amount of finite temperature field theory from the later parts of this primer. The
reader should regard the form of the next few equations as divinely given and then
return to this section after reading the later sections on finite temperature quantum
field theory (QFT). The sphaleron rate can be found by substituting the above
solution into the finite temperature version of the path integral. The high temper-
ature sphaleron rate is given by

N Nω
π

κΓ = − ΔV V
2

( ) ( ) e , (3.76)E T
sph rot tr

sph

where ϕΔ =E T S/ ( )sph 3 sph , where

∫ϕ ϕ ϕ= + +⎡⎣ ⎤⎦S
T

x D W W V
1

d
1
4

( ). (3.77)i ij
a

ij
a

3 sph
3 2

Here Wij are the field strength tensors for Ai, ≡ ∂ − ∂W A Aij i j j i. With some effort we
can reduce this to

ϕ π λ≡ Δ =⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟S

E

T
v T
gT

B
g

4 ( )
(3.78)3 sph

sph

2
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with

∫λ

λ

= + −

+ − + −

∞⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( )

B
g

r
f
r r

f f

r h
r

h f
g

r h

d 4
d
d

8
(1 )

2
d
d

(1 )
1
4

1 ,

(3.79)
2 0

2

2
2 2

2 2
2 2

2
2 2 2

where ≡ ∣ ∣r gv T x( ) 2. Note that when =v T( ) 0 the rate is no longer exponentially
suppressed. We will show in later chapters that electroweak symmetry is indeed
restored at very high temperatures, meaning that at some stage in our cosmic history
sphalerons, and therefore baryon number violation, were unsuppressed! This is the
key feature of sphalerons which makes them attractive as a source of baryon number
violation at very high temperature when electroweak symmetry is restored. There is
one remaining thing we have to show to conclude our discussion of sphalerons in
terms of showing that we indeed have a non-zero Chern–Simons number. Recall
that the Chern–Simons form is

∧ + ∧ ∧⎡
⎣⎢

⎤
⎦⎥W W W W WTr d

2
3

(3.80)

where for =A 00 , the above can be written

ϵ ϵ

ϵ ϵ

∧ = ∂ − ∂ = − ∂ − ∂
∧ ∧ = −

( ) ( )W W W W W W W W

W W W W W W

Tr [ d ]

Tr [ ]
(3.81)

ijk i j k j j ijk i j j i k

ijk abc i
a

j
b

k
c

and the Chern–Simons number for the sphaleron is

∫π
=

=
Q

g
xK(Sphaleron)

32
d , (3.82)

t t

2

2
3 0

0

where K0 is the Chern–Simons form. Recall our field configuration,

σ = − Ω Ω−W
f

g
2i

d (3.83)a a
i

1

where Ω is given above and Ωd is the external derivative ∂Ω
∂ xd
xi

i. Remarkably the

form of f will not affect the Chern–Simons number as long as the boundary
conditions given above are met. It is easy to see that the above equation reduces to

ϵ= −W x
f
g

xd
2

. (3.84)a
i iab bi

We cannot calculate the Chern–Simons number in this form as the derivation of the
Chern–Simons number assumes that our field goes to zero faster than r1/ . Let us
therefore perform a gauge transformation σ= Θ ·U rexp[ ( ) ]x

r
i
2

, where Θ r( ) is a
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radial function that goes to zero at the spatial origin. Recall that a gauge
transformation for non-abelian fields has the form

σ ϵ σ→ − + ∂† −⎛
⎝⎜

⎞
⎠⎟ ( )gW U

f
r

x U U U
2

i . (3.85)a
a aik k ai 2 i

1

It is straightforward to show that in this gauge the sphaleron solution looks like

A B Cϵ δ= + − + Θ′ ≡ + +( )gW A x B r x x
x x
r

, (3.86)i
a

iab b ia i a
i a

ai ai ai
2

2

where the prime denotes a radial derivative and

≡ = − Θ −

≡ = − Θ

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( )

( )

A A r
r

f r

B B r
r

f r

( )
1

1 2 ( ) cos( ) 1 and

( )
1

1 2 ( ) sin( ) .
(3.87)

2

3

Such abbreviations may be disorientating but we will continue to use them
throughout because it becomes far too cumbersome to write out every term
explicitly. The sphaleron now has the correct asymptotic behavior. Since Wa

i is
spherically symmetric the integral over angular variables in the calculation is trivial
allowing us to rewrite the Chern–Simons number of the sphaleron as

∫π
=

=
Q

g
r rK(Sphaleron)

8
d . (3.88)

t t

2
2 0

0

Using above equations and verifying this with equation (3.45) we can write

ϵ ϵ ϵ= − +⎛
⎝⎜

⎞
⎠⎟K F W

g
W W W

2
3

. (3.89)ijk ij
a

k
a

ijk abc i
a

j
b

k
c0

Let us first calculate the first term in the Chern–Simons density. Due to our gauge
transformation it consists of three terms

ϵ ≡ + +F W A B C W( ) , (3.90)ijk ij
a

k
a

ak ak ak k
a

which in turn are defined by the three terms we defined before Aia, Bia and Cia as
follows

A Aϵ≡ ∂ − ∂⎡⎣ ⎤⎦A etc. (3.91)ak ijk i ja j ia

With a bit of effort one can simplify the expressions for A B C( , , )ak ak ak , reducing
them down to the simple form

δ δ

ϵ

= − ′ +
= ′ +

gA
r

r x x A A

gB x B r B

2
[ ] 4

2 [ 3 ]
(3.92)ak ka k a ka

ak iak i

2
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ϵ= − Θ′gC x2 . (3.93)ak iak
i

We now contract the above with Wa
k which gives a sum of nine terms It is easy to

show that these terms are

A B C

A B C
A B C

= = ′
+ = Θ′

= − ′ + = =
= Θ′ = =

g A
g A BA r

ABr
g A A

g B B r B Ar g B g B

g C A r g C g C

0
4

8
4

4[ 3 ] 0 0

4 0 0.

(3.94)
ka ka

ka ka
ka ka

ka ka ka ka ka ka

ka ka ka ka ka ka

2
2 3

2
2

2 2 2 2

2 2 2 2

So we have, in summary, the first term in the Chern–Simons density calculated as

π
ϵ

π π π π
= ′ + + ′ + + Θ′g r

F W BA r ABr r A B r B A r
8

1
2

1 1
2

[ 3 ]
1

. (3.95)ijk ij
a

k
a

2 2
5 4 4 4

Next we have the term ϵ ϵg W W Wijk abc i
a

j
b

k
c2 . Let us first calculate the product of two

sphalerons contracted with the permutation symbols

A B C A B Cϵ ϵ ϵ ϵ= + + + +⎡⎣ ⎤⎦W W [ ] . (3.96)ijk abc i
a

j
b

abc ijk ai ai ai bj bj bj

It is useful to organize the terms into a matrix

A A A B A C
B A B B B C
C A C B C C

ϵ ϵ

ϵ
δ

ϵ δ
=

−Θ′
Θ′ −

−Θ′ Θ′ −
≡

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
( )

( )

g

x x A A x

x x B r B r x x

A x B r x x

M

2 0

0 2

0

.

(3.97)

ijk abc

ai bj ai bj ai bj

ai bj ai bj ai bj

ai bj ai bj ai bj

k c kbc b

k c kc k c

kbc b kc k c

2

2

2 2 2

2

Contracting the last sphaleron gives the following

A B C
A B C

ϵ ϵ

μ ν τ

= + + +
× + +

= + + + +

g W W W M M M M[( ) ( ) 2( ) 2( ) ]

[ ]
[ ][ ],

(3.98)
ijk abc i

a
j
b

k
c

kc kc kc kc

kc kc kc

kc kc kc kc kc kc

2
11 22 23 13

where we have again used the abbreviation

μ ν τ≡ + ≡ ≡M M M M{( ) ( ) }, 2( ) , 2( ) . (3.99)kc kc kc kc kc kc kc11 22 23 13
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We then have

A B C
A C C
A B C

μ μ μ
ν ν ν
τ τ τ

=
Θ′ +

Θ′
Θ′

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎡⎣ ⎤⎦⎞

⎠

⎟⎟⎟
r A r B

B r
A r

0 0 2

0 4 0
4 0 0

, (3.100)
kc kc kc kc kc kc

kc kc kc kc kc kc

kc kc kc kc kc kc

2 2 2 2

2 4

2 2

so we can therefore write

π
ϵ ϵ

π π
= Θ′ + Θ′g r

W W W r A r B
24

1
4

1
4

. (3.101)ijk abc i
a

j
b

k
c

2 2
4 2 6 2

In total we have

∫π
= − ′ + − ′ +

=
⎡⎣Q r BA r ABr r A B r B

1
4

d 2 4 2 [ 3 ] (3.102)
t t

5 4 4

0

+ Θ′ + Θ′ + Θ′⎤⎦A r r A r B4 2 2 .2 4 2 6 2

Simplifying the above equation we can then can the following solvable integral for
the Chern–Simons number

∫π
= Θ Θ − Θ

=
Θ

Θ ∞
Q(sphaleron)

1
2

d [ cos ]

1
2

(3.103)(0)

( )

as required.
So let us summarize. The sphaleron is an unstable quasi-particle due to local-

ization in time and it must continuously go between vacuum states. It is a finite-
energy solution so it is well-behaved at the spatial boundary. The simplest solution is
then derived by mapping the external space onto the internal space and coupling to a
radial function that gives the desired properties and is determined by insisting that
the sphaleron be a solution to the classical equations of motion. Such a sphaleron
would be a local extremum of the action for any gauge group with an SU(2)
subgroup. It has the nice property that the sphaleron rate is unsuppressed when
electroweak symmetry is restored. It also has the unusual property that the Chern–
Simons number is fractional and shown to be to equal 1/2. That it is non-zero means
it facilitates baryon number non-conservation.
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3.5 A brief review of thermal field theory
In this section I give a brief review of finite temperature quantum field theory referring
the reader to my book for a more in depth discussion. It is inappropriate to use zero
temperature quantum field theory in a far from equilibrium setting of cosmic phase
transition. I begin by deriving the closed time path contour [76, 77, 78, 79, 80, 81].
Recall the equilibrium density matrix of a quantum system [82]

ρ(0) =
e−βH

Tre−βH
. (3.2)

Here the null argument of the density matrix refers to some time t after which the
system departs from equilibrium. Time dependence can be introduced in the same
way as ordinary quantum mechanics

ρ(t) = U(t, 0)ρ(0)U †(t, 0) (3.3)

with the time evolution operator defined as

U(t, t′) = T
(
e−i

∫ t
t′ dt

′′H(t′′)
)
. (3.4)

Note then that the density matrix itself can be written in terms of unitary operators

ρ(0) =
U(T − iβ, T )

TrU(T − iβ, T )
. (3.5)

The time dependent evolution of an operator is then

〈A(t)〉 =
TrU(t, 0)U(T − iβ, T )U(0, t)A

TrU(T − iβ, T )
(3.6)

=
TrU(T − iβ, T )U(T, T ′)U(T ′, t)AU(t, T )

TrU(T − iβ, T )U(T, T ′)U(T ′, T )
(3.7)

This suggests that for a finite temperature out of equilibrium system I should use
the generating functional of the form

Z[β,JC ] = TrUJC (T − iβ, T )UJC (T, T ′)UJC (T ′, T ) . (3.8)

Let us take T →∞. The above equation then implies that I take a time contour from
−∞ to the time t infinitesimally above the real axis, drop infinitesimally below the
real axis and then travel back to −∞ before making a trip perpendicular to the real
line by an amount iβ. The result when calculating two point propagators is that there
are now twice as many. One can have both fields on the top half of the time contour,
both on the bottom, or one on each. Using causality, hermiticity and unitarity [83],
one can constrain the form of these propagators. For example, scalar propagators
take the form
(

∆T (p) ∆<(p)

∆<(p) ∆T̄ (p)

)
=

( 1
p2−M2+iε

0

0 1
p2−M2−iε

)

−2πi

[
nB(|p0|)

(
1 1
1 1

)
+

(
0 Θ(−p0)

Θ(p0) 0

)]

(3.9)
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whereas the fermion propagators are

(
ST (p) S<(p)

S<(p) ST̄ (p)

)
=

(
/p+m

p2−M2+iε
0

0 /p+m

p2−M2−iε

)

−2πi(/p+m)

[
nF (|p0|)

(
1 1
1 1

)
+

(
0 −Θ(−p0)

−Θ(p0) 0

)]
.

(3.10)

For our purposes it is enough to know just the form of these propagators.

3.6 The effective potential at finite temperature
The Higgs potential receives temperature corrections which eventually lead to the
deepest minimum being one where electroweak symmetry is intact [84]. It is at this
temperature where there is an electroweak phase transition. In this brief section I
apply what I just derived for describing finite temperature field theory to derive the
finite temperature corrections to a simple scalar theory

V =
m2

2
φ2 +

λ

4!
φ4. (3.11)

It is easiest to calculate the derivative of the effective potential at one loop with
respect the mass [85, 86, 87]. This means calculating a single diagram and I can
insert our finite temperature propagators. In fact there is only one propagator to
consider since the external legs must be on the positive time contour

∂∆V

∂m2(φ)
=

1

2

∫
d4p

(2π)4

[
i

p2 −m2(φ) + iε
+ 2πnB(ωp)δ(p

2 −m2)

]
. (3.12)

The key observation here is that the one loop correction to the effective potential is a
sum of the usual zero temperature piece and the finite temperature piece. Integrating
over the delta function I can write the finite temperature piece I have

∂∆VT
∂m2(φ)

=

∫
d3p

(2π)3

1

2ω
nB(ω) . (3.13)

The above equation can be integrated to give the thermal bosonic corrections to
the effective potential in terms of the bosonic thermal function JB (forthcoming).
Similarly the thermal corrections to the effective potential due to fermions can be
written in terms of the fermionic thermal function JF . In total the thermal correction
to the effective potential to one loop is

∆VT =
∑

f

T 4

2π2
JF

(
m2
f

T 2

)
+
∑

b

T 4

2π2
JB

(
m2
b

T 2

)
, (3.14)

with

JB(z2) =

∫ ∞

0

dxx2 ln
(

1− e−
√
x2+z2

)
, (3.15)

JF (z2) =

∫ ∞

0

dxx2 ln
(

1 + e−
√
x2+z2

)
. (3.16)
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These thermal functions have a high temperature expansion

JB(z2) ≈ −π
4

45
+
π2z2

12
− πz3

6
,

JF (z2) ≈ 7π4

360
− π2z2

24
. (3.17)

So finite temperature effectively give a temperature dependence to quadratic and
cubic couplings in the effective potential. If the parameters are chosen right, the
Higgs potential could evolve such that there remains a barrier between the true
and false vacua as the Universe cools. In such a situation the phase transition
would proceed through bubble nucleation [88, 89, 90, 91]. This is precisely the far
from equilibrium setting one needs to catalyse baryon production in the EWBG
mechanism.

3.6.1 Bubble nucleation
The phase transition occurs when a 1/e fraction of the Hubble volume is in the
new phase. This is known as the nucleation temperature. If I denote the tunneling
probability as p(t) then via dimensional analysis I can write the relation

p(t)t4 ∼ 1 . (3.18)

I can also write the temperature dependent tunneling probability as follows

p(T ) ≈ T 4e−SE/T (3.19)

where SE is the three dimensional Euclidean action which, assuming spherical
symmetry, has the form

SE = 4π

∫ ∞

0

r2dr

[∑

i

1

2

(
∂φi
∂r

)2

+ V ({φi})
]
. (3.20)

Assuming the false vacuum is located at the origin in field space, the bounce satisfies
the boundary conditions

dφi
dr

= 0, φi(∞) = 0 (3.21)

and of course is the solution to the classical equations of motion

∂2φi
∂r2

+
2

r

∂φi
∂r

=
∂V

∂φi
. (3.22)

Using the relation between time and temperature

T 2t =

√
45

16π3

Mp√
g∗

(3.23)

one can derive the condition for the nucleation temperature

SE
TN

= 170− 4 ln

[
TN

1GeV

]
− 2 ln g∗ (3.24)

which for the electroweak phase transition satisfies SE/TN ≈ 140.
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3.6.2 Transport equations
Within the closed time path formalism, divergences of particle number currents can
be related to the same particles self energies through the manipulation of Dyson–
Schwinger equations. Systematically doing so results in a network of coupled
transport equations which have the general form [92, 93, 94]

∂µJ
µ
i = −

∑

j

Γijµi + SCPi . (3.25)

Let us begin with the Dyson-Schwinger equations

G̃(x, y) = G̃0(x, z) +

∫
d4w

∫
d4zG̃0(x,w)Σ̃(w, z)G̃(z, y),

G̃(x, y) = G̃0(x, z) +

∫
d4w

∫
d4zG̃(x,w)Σ̃(w, z)G̃0(z, y), (3.26)

where Σ̃(·) is a matrix of self energies. To make use of these equations I hit both
equations with the Klein Gordon operators �x and �y respectively. I then subtract
each equation from the other taking the limit of x→ y. The left hand side gives ∂µJµ

whereas the right hand side gives a matrix where all the elements are equivalent. The
result is

∂µJ
µ = −

∫ x0

−∞
dz0

∫
d3zTr [Σ>(x, z)G<(z, x)−G<(x, z)Σ(z, x)

− Σ>(x, z)G<(z, x) +G>(x, z)Σ<(z, x)] . (3.27)
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Chapter 4

Solving transport equations
during a cosmic phase

transitions

4.1 Introductory remarks
The behaviour of particle densities during a cosmic phase transition is described
by a series of quantum transport equations which are a set of coupled non-linear
inhomogeneous differential equations. These equations are generally either numer-
ically solved or they are approximately solved using an assumption where certain
interactions occur sufficiently fast that these interactions are in local equilibrium.
However, it has been demonstrated that using this approximation can yield a baryon
asymmetry two orders of magnitude different to the value acquired numerically
[93]. As such there is ample motivation for a more reliable analytic approach. In
this work I take the strategy of approximating the transport equations by a set of
coupled linear differential equations solved in two regions. These linear differential
equations are solved (semi-)analytically and then these solutions are matched at
the phase boundary such that they satisfy continuity conditions. One can then take
this solution and add a perturbation to give the true solution. Expanding everything
in the transport equations to first order one can then derive a new set of coupled
linear inhomogeneous differential equations which can also be solved. This sets up a
perturbative series. I compare our results to a purely numeric calculation from [95].

4.2 Declaration for thesis chapter 4
Declaration by candidate
In the case of the paper present contained in chapter 4, the nature and extent of my
contribution was as follows:

Publication Nature of contribution Extent of contribution
4 Single author 100%

The undersigned hereby certify that the above declaration correctly reflects the
nature and extent of the candidate and co-authors’ contributions to this work.
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4.3 Published material for Chapter 4: General
analytic methods for solving coupled
transport equations: From cosmology to
beyond
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General analytic methods for solving coupled transport equations: From
cosmology to beyond
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We propose a general method to analytically solve transport equations during a phase transition without
making approximations based on the assumption that any transport coefficient is large. Using a cosmic
phase transition in the minimal supersymmetric standard model as a pedagogical example, we derive the
solutions to a set of 3 transport equations derived under the assumption of supergauge equilibrium and the
diffusion approximation. The result is then rederived efficiently using a technique we present involving a
parametrized ansatz which turns the process of deriving a solution into an almost elementary problem. We
then show how both the derivation and the parametrized ansatz technique can be generalized to solve an
arbitrary number of transport equations. Finally we derive a perturbative series that relaxes the usual
approximation that inactivates vacuum-expectation-value dependent relaxation and CP-violating source
terms at the bubble wall and through the symmetric phase. Our analytical methods are able to reproduce a
numerical calculation in the literature.

DOI: 10.1103/PhysRevD.93.043504

I. INTRODUCTION

The phase history of our Universe is unknown as it
depends on the full content of the scalar potential [1]. The
many possibilities have inspired a multitude of mechanisms
to produce the observed asymmetry between particles and
antiparticles during a phase transition [2–5]. The observed
baryogenesis of the universe (BAU) is estimated to be [6]

YB ¼ nB
s

¼
� ð7.3� 2.5Þ × 10−11; BBN

ð9.2� 1.1Þ × 10−11; WMAP
: ð1Þ

Although the methods derived in this work have general
application, we will be working most closely with the
electroweak-baryogenesis picture. In the electroweak bar-
yogenesis picture, the BAU is produced during the electro-
weak phase transition [7]. To avoid electroweak sphalerons
from washing out any produced electroweak baryogenesis
one requires this phase transition to be strongly first order
[8]. The particle dynamics become non-Markovian during
the far-from-equilibrium conditions that occur during a
cosmic phase transition, rendering equilibrium quantum
field theory inadequate as a tool to analyze the behavior of
particle number densities throughout. One instead is
required to use the closed time path (CTP) formalism
[9–14]. The usual treatment involves deriving a set of
coupled quantum transport equations (QTE) involving CP-
conserving relaxation terms and CP-violating sources
derived from scattering amplitudes evaluated using the
CTP formalism [15,16]. There are in general as many QTEs

as there are particle species in a given model so one may be
left with a daunting number of coupled inhomogeneous
differential equations to solve. Therefore one usually
proceeds either by solving the system numerically or by
using a set of approximations to reduce the number of
QTEs to a single one which is then solved in two regions
with the solutions matched at the phase boundary. The
former method is very cumbersome and the latter method
involves using a set of fast rate approximations to reduce
the set of coupled transport equations down to one [see e.g.,
[16,17] and the references therein for this treatment in the
minimal supersymmetric standard model (MSSM)].
However, recently it has been shown that in the case of
the MSSM with R-parity conservation, the assumption of
fast Yukawa and triscalar rates is infrequently justified [18].
Furthermore, the practice of solving the equations in two
regions effectively approximates the VEV profile with a
step function and ignores any effects of a thick bubble wall,
an assumption we refer to in this paper as the “ultrathin wall
approximation.” In this work we show how to analytically
go beyond these approximations by deriving an exact
solution to a general set of QTEs. We begin by considering
the set of QTEs that govern the MSSM during an
electroweak phase transition derived under the assumption
of local supergauge equilibrium and null number densities
for weak bosons. This is admittedly not an exact system to
begin with but it is useful as an example before we
generalizing our method to larger systems of coupled
transport equations with multiple CP-violating source
terms. We also show how to analytically derive an
expansion that goes beyond the ultrathin wall approxima-
tion. Moreover, we show that once one knows the form of
the solution—which has a general form—one can more*graham.white@monash.edu
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quickly derive the solution using a parametrized ansatz
whose parameters are determined by direct substitution.
The layout of our paper is as follows. In Sec. II we use
MSSM under supergauge equilibrium as an illustrative
example of how to derive an analytic solution to a set of
QTEs without using a fast rate approximation. In Sec. III
we show how to rederive this solution quickly using a
parametrized ansatz. We then generalize our methods to an,
in principle, arbitrary set of transport equations with
multiple CP-violating sources in Sec. IV, before showing
how to go beyond the ultrathin wall approximation in
Sec. V. Finally in Sec. VI we compare our analytic solution
to what one might get using the fast rate approximation for
one set of parameters as well as by numerically calculating
the lowest-order correction to the ultrathin wall regime; our
conclusions are then presented in Sec. VII.

II. THE MSSM: AN ILLUSTRATIVE EXAMPLE

The transport equations for the MSSM under the
assumption of supergauge equilibrium [19] as well the
assumption that μþW � ≈0 have been derived many times
before (see for instance [16] and the references therein).
Furthermore, under supergauge equilibrium, the transport
equations have the same structure as a 2 Higgs doublet
model up to wino-Higgsino-vacuum interactions. Thus, we
just quote the result here. Under the assumption of super-
gauge equilibrium we only need to write coupled transport
equation for the following number densities:

Q ¼ ntL þ nbL þ n~tL þ n ~bL

T ¼ ntR þ n~tR
H ¼ nHþ

u
þ nH0

u
− nH−

d
− nH0

d

n ~Hþ
u
þ n ~H0

u
− n ~H−

d
− n ~H0

d
: ð2Þ

The set of coupled differential equations are

∂μTμ ¼ Γþ
M

�
T
kT

þ Q
kQ

�
− Γ−

M

�
T
kT

−
Q
kQ

�

− ΓY

�
T
kT

−
H
kH

−
Q
kQ

�

þ ΓSS

�
2Q
kQ

−
T
kT

þ 9ðQþ TÞ
kB

�
þ SC=P~t ð3Þ

∂μQμ ¼ −Γþ
M

�
T
kT

þ Q
kQ

�
− Γþ

M

�
T
kT

−
Q
kQ

�

þ ΓY

�
T
kT

−
H
kH

−
Q
kQ

�

− 2ΓSS

�
2Q
kQ

−
T
kT

þ 9ðQþ TÞ
kB

�
− SC=P~t ð4Þ

∂μHμ ¼ −ΓH
H
kH

þ ΓY

�
T
kT

−
Q
kQ

−
H
kH

�
þ SC=P~H

: ð5Þ

Our strategy will involve writing the above equation in
what we call “cascading form” where the first equation is a
function of just two number densities, the second a function
of three and the third also a function of three number
densities as well as theCP-violating source. In our example
it is easy to write this set of equations in such a form, the
only complication being the existence of two space-time-
dependent source terms. To overcome this, notice that both
sources have the same space-time dependence up to a
overall constant of proportionality

SC=P~t ¼ 1

2a
SC=P~H

: ð6Þ

It is therefore straightforward to take a set of linear
combinations that are in cascading form by taking the
combinations ð3Þ þ ð4Þ, ð1þaÞ× ð3Þþð1−aÞ× ð4Þþð5Þ
and 2 × ð3Þ þ ð4Þ þ ð5Þ. If we use the standard diffusion
approximation

∂μJμ ¼ vW _n −Dn∇2n ð7Þ

and make an assumption about the geometry of the bubble
wall, we can reduce the problem to a one-dimensional one.
Shifting to the bubble wall rest frame using the variable
z≡ jvwt − xj, we can write the set of coupled transport
equations as a set of differential equations in z. A strategy
for a solution becomes immediately apparent when the
equations are written in cascade form. The first equation is
a differential operator acting on T and Q which can be
solved for T (or equivalently Q) by treating Q and its
derivatives as a inhomogeneous source. Thus we can write
the second equation in terms of H and Q which can also be
solved in a similar way so that H is a function of Q. The
third and final equation is then an equation for Q and the
CP-violating source which can be solved via the usual
methods.

A. Deriving the analytic solution

Let us rewrite our linear combinations of transport
equations in terms of implicitly defined coefficients aiXj
where X ∈ fQ; T;Hg is the field index, j ∈ f1; 2; 3g is the
equation number and i ∈ f0; 1; 2g is the power of the
derivative in z,

aiQ1∂iQþ aiT1∂iT ¼ 0 ð8Þ

aiQ2∂iQþ aiT2∂iT þ aiH2∂iH ¼ 0 ð9Þ

aiQ3∂iQþ aiT3∂iT þ aiH3∂iH ¼ ΔðzÞ: ð10Þ
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In the above equation and throughout this paper we of
course use Einstein’s summation convention for repeated
indices. The first equation can be used to solve for T in
terms of Q if one uses the method of variable coefficients
and treats the part of the equation involving Q and its
derivatives as an inhomogeneous source for T. The result of
this is

T ¼ 1

a2T1

X
�

1

κ∓ − κ�
eκ�z

�Z
z
e−κ�y

�
aiQ1

∂iQ
∂yi

�
dy − βi

�

ð11Þ

where the integration constants have to be zero as explained
in Appendix B. We neglect them for the rest of the
derivation as they clutter notation and detract from the
main derivation. The above equation has the problem that if
we used it to eliminate T in subsequent equations we would
be left with a set of equations that are a mixture of an
integral and differential equations. We wish to have a pure
differential equation at the end. To achieve this we use a
series of variable changes. The derivation is somewhat
nontrivial so we give extra detail in Appendix A. Here we
sketch out the main points of the calculation. We begin with
the following change of variables:

h� ¼
Z

z
e−κ�yQdy ð12Þ

from which we can eliminate the integral and the exponent
in Eq. (11) at the cost of having T now defined in terms of
two functions. These functions are related via the identity

h0þ ¼ eðκ−−κþÞzh0−: ð13Þ

To remove the exponential outside of the former integral we
use an additional change of variables

j� ¼ eκ�zh�: ð14Þ

We are not quite done; we would like to now write
everything in terms of a single variable. This can be
achieved by either of the following variables:

k ¼ eκ∓z
Z

z
e−κ∓yj�dy; ð15Þ

from which we can relate both j� to k through the equation

j� ¼ k0 − κ∓k: ð16Þ

We now have a single variable k and it is straightforward to
derive expressions relating T and Q to derivatives in k. For
the sake of convenience let us rescale k to remove the
denominator and write

T ¼ −aiQ1∂ik ð17Þ

Q ¼ aiT1∂ik: ð18Þ

It is a trivial check to verify that these solutions indeed
solve the first transport equation. Substituting these equa-
tions into Eq. (8) we have a differential equation that is now
a function of k and H only, which means we can use the
same tricks,

0 ¼ aiQ2∂iQþ aiT2∂iT þ aiH2∂iH ð19Þ

¼ ðaiQ2a
j
T1 − aiT2a

j
Q1Þ∂iþjkþ aiH2∂iH: ð20Þ

The solution for H is of course

H¼ 1

a2H2

X
�

eκ�z

κ∓−κ�

Z
z
e−κ�y

�
aiQ2a

j
T1−aiT2a

j
Q1

∂iþjk
∂yi

�
dy:

ð21Þ

We can make the exact same changes of variables as before
to solve this in terms of l (which is analogous to k in the
solution to the first equation),

H ¼ −
X4
n¼0

δiþj−nðaiQ2a
j
T1 − aiT2a

j
Q1Þ∂nl ð22Þ

k ¼ aiH2∂il ð23Þ

where the Kronecker delta was added to make the structure
of the solution more transparent and we include the sum
over n to make its limits obvious. Subbing our solution for
k into the equations for Q and T gives

H ¼ −
X4
n¼0

δiþj−nðaiQ2a
j
T1 − aiT2a

j
Q1Þ∂nl

T ¼ −
X4
n¼0

δiþj−naiQ1a
j
H2∂nl

Q ¼
X4
n¼0

δiþj−naiT1a
j
H2∂nl: ð24Þ

Equation (10) is now defined completely in terms of l and
the source,
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ΔðzÞ ¼
X6
n¼0

δiþjþk−nðaiT1ajH2a
k
Q3 − aiQ1a

j
H2a

k
T3

− aiT1a
j
Q2a

k
H3 þ aiQ1a

j
T2a

k
H3Þ∂nl

¼
X6
n¼0

δiþjþk−nϵ
abcaiTaa

j
Hba

k
Qc∂nl

≡X6
n¼0

anl ∂nl: ð25Þ

The use of the permutation symbol arises from the fact that
aiH1 ¼ 0. The above is a straightforward inhomogeneous
differential equation which can be solved using the stan-
dard method of variable constants. The solution is

l ¼
X6
i¼1

xieαiz
�Z

z
e−αiyΔðyÞdy − βi

�
ð26Þ

in the broken phase and

l ¼
X6
i¼1

yieγiz ð27Þ

in the symmetric phase. Here the exponents αi and γi are
the roots of the equations

X6
n¼0

anl α
n ¼ 0

X6
n¼0

anl γ
n ¼ 0; ð28Þ

for the broken and symmetric phase respectively; the values
xi can be derived from the equation

~x ¼ M−1~d: ð29Þ

The matrixM is given byMij≡ αj−1i where j doubles as an
exponent and an index which both go from 1 to 6 and
~d≡ ½0;…; 1=a6l �T. Finally the integration constants βi and
yi are determined by the boundary conditions as follows.
Since we began with a set of three second-order differential
equations for three densities we require that each of these
number densities be continuous at the bubble wall along
with their derivative. We also require the number densities
to vanish at �∞. All exponents therefore have to be
positive definite in the symmetric phase. Therefore

yi ¼ 0 ∀ γi ≤ 0: ð30Þ

To ensure number densities go to zero in the broken phase
we have a condition on all positive definite exponents

xiβi ¼ xi

Z
∞

0

dye−αiyΔðyÞ≡ Ii ∀ αi ≥ 0: ð31Þ

Finally our continuity conditions need to be met. The
continuity conditions are not met by requiring l and its
derivatives to be continuous at the phase boundary even
though this will give the right number of conditions. Instead
we require that H; T;Q;H0; T 0 and Q0 are continuous at
z ¼ 0. As an example consider the case when the last three
γi exponents are greater than 0 as well as the first three αi
exponents. The continuity conditions can be met when the
following equation is satisfied:

ð x4β4 x5β5 x6β6 x1β1 x2β2 x3β3 y1 y2 y3

�
T

¼

0
BBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

AQðα4Þ AQðα5Þ AQðα6Þ AQðα1Þ AQðα2Þ AQðα3Þ AQðγ1Þ AQðγ2Þ AQðγ3Þ
α4AQðα4Þ α5AQðα5Þ α6AQðα6Þ α1AQðα1Þ α2AQðα2Þ α3AQðα3Þ γ1AQðγ1Þ γ2AQðγ2Þ γ3AQðγ3Þ
ATðα4Þ ATðα5Þ ATðα6Þ ATðα1Þ ATðα2Þ ATðα3Þ ATðγ1Þ ATðγ2Þ ATðγ3Þ
α4ATðα4Þ α5ATðα5Þ α6ATðα6Þ α1ATðα1Þ α2ATðα2Þ α3ATðα3Þ γ1ATðγ1Þ γ2ATðγ2Þ γ3ATðγ3Þ
AHðα4Þ AHðα5Þ AHðα6Þ AHðα1Þ AHðα2Þ AHðα3Þ AHðγ1Þ AHðγ2Þ AHðγ3Þ
α4AHðα4Þ α5AHðα5Þ α6AHðα6Þ α1AHðα1Þ α2AHðα2Þ α3AHðα3Þ γ1AHðγ1Þ γ2AHðγ2Þ γ3AHðγ3Þ

1
CCCCCCCCCCCCCCCCA

−10
BBBBBBBBBBBBBBBB@

I1
I2
I3
0

0

0

0

0

0

1
CCCCCCCCCCCCCCCCA

≡

0
BB@

13×3 0

~AXðαÞ ~AXðγÞ
~ðαAÞXðαÞ ~ðαAÞXðγÞ

1
CCA

−1
0
BBB@

I1
I2
I3
0

1
CCCA: ð32Þ
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It is now straightforward to derive the solutions to T, H
and Q

H ¼
X6
i¼1

AHðαiÞxieαiz
�Z

z
e−αiyΔðyÞdy − βi

�

T ¼
X6
i¼1

ATðαiÞxieαiz
�Z

z
e−αiyΔðyÞdy − βi

�

Q ¼
X6
i¼1

AQðαiÞxieαiz
�Z

z
e−αiyΔðyÞdy − βi

�
ð33Þ

with known functions

AH ¼ −
X4
n¼0

δiþj−nðaiQ2a
j
T1 − aiT2a

j
Q1Þαn

AT ¼ −
X4
n¼0

δiþj−naiQ1a
j
H2α

n

AQ ¼
X4
n¼0

δiþj−naiT1a
j
H2α

n: ð34Þ

III. FAST REDERIVATION WITH A
PARAMATERIZED ANSATZ

The above derivation was cumbersome even for the
simple example we used and yet the solution was relatively
simple. Now that we know the form of the solution, it is far
more efficient to start with this form of the solution as a
parametrized ansatz and use the differential equations to
work out the parameters of the ansatz. This is achieved by
the following simple steps. Let the ansatz for number
density X that solves the homogeneous version of our
differential equations be X ¼ AxðαÞeαz. To find these
functions, Ax, as well as α do the following:

(i) To determine the functions AxðαÞ substitute our
solutions into the first two equations to get relations
between these functions. Doing so gives

AT ¼ −aiQ1α
i

ajT1α
j
AQ

AH ¼ −ðaiQ2α
iAQ þ aiT2α

iATÞ
ajH2α

j
: ð35Þ

This differs from our earlier expression. However
this just amounts to a rescaling of xi in our final
expression. It is a trivial exercise to reverse this
rescaling and verify that the expressions AX are the
same as before.

(ii) Substitute our functions AxðαÞeαz into the third
equation with the CP-violating source switched
off. The result is a rational polynomial which can

be turned into a polynomial by multiplying through
with the denominators

0 ¼ aiQ3∂iQþ ATðαÞaiT3∂iT þ AHðαÞaiH3∂iH

↦
X6
n¼0

δiþjþk−nðaiT1ajH2a
k
Q3 − aiQ1a

j
H2a

k
T3

− aiT1a
j
Q2a

k
H3 þ aiQ1a

j
T2a

k
H3Þ∂neαz

≡X6
n¼0

anl ∂neαz

0 ¼ anl α
n: ð36Þ

Solving this gives the set of homogeneous solutions.
Repeating the above steps in the symmetric phase
with ansatz X ¼ AxðγÞeγz gives the solutions in
that phase.

(iii) Finally, solve the inhomogeneous equation

0 ¼
X6
n¼0

δiþjþk−nðaiT1ajH2a
k
Q3 − aiQ1a

j
H2a

k
T3

− aiT1a
j
Q2a

k
H3 þ aiQ1a

j
T2a

k
H3Þ∂nlðzÞ: ð37Þ

The inhomogeneous solution is then trivially found to be

X ¼
X6
i¼1

AXðαiÞxieαiz
�Z

z
e−αiyΔðyÞdy − βi

�
ð38Þ

in the broken phase and

X ¼
X6
i¼1

AXðγiÞyieγiz ð39Þ

in the symmetric phase as before. The values for xi can be
found by substituting Eq. (38) into the inhomogeneous
equation and insisting that the coefficients of any deriva-
tives ofΔðzÞ are zero and the coefficient ofΔðzÞ on the left-
hand side is 1. This gives the familiar expression

~x ¼ M−1~d ð40Þ

with Mij ¼ αj−1i and ~dT ¼ ½0;…; 0; 1=a6l as before. The
integration constants yi and βi can be found as above by
insisting that Q, T and H are well behaved at �∞ and all
three functions as well as their derivatives are continuous at
the bubble wall. The solutions for βi and yi are the same as
in the previous section so we do not repeat it here.
Remarkably, the above method of solving the set of
differential equations analytically is at least as fast as using
an approximation that assumes the strong sphaleron and
Yukawa rates are fast in order to reduce our set of transport

GENERAL ANALYTIC METHODS FOR SOLVING COUPLED … PHYSICAL REVIEW D 93, 043504 (2016)

043504-5



equations to a single differential equation which one then
solves.

IV. GENERALIZATIONS

In this section we discuss how far generalizations of the
above procedure can go. The generalization of our pro-
cedure is trivial to any case where one has only one CP-
violating source and one can manipulate the transport
equations into the cascading form

D1½X1; X2� ¼ 0

D2½X1; X2; X3� ¼ 0 ð41Þ

..

.

DN−1½X1; X2; X3 � � �XN � ¼ 0

DN−1½X1; X2; X3 � � �XN � ¼ ΔðzÞ: ð42Þ

One can just use the parametrized ansatz approach defined
in the previous section to very quickly derive the solution.
Much more daunting are the cases where one either has
multipleCP-violating sources or one cannot manipulate the
transport equations into the above form. Fortunately in this
section we will show that in principle an analytical solution
can always be found even in the presence of such
complications and the parametrized ansatz approach gen-
erally reduces the difficulty of problems greatly.

A. Multiple CP-violating sources

In the MSSM there are several CP-violating sources.
Handling the extra CP-violating sources, however, was
done by simply noting that they are all proportional to
vðxÞ2 _βðxÞ. This situation becomes far more nontrivial in the
case where there are numerous CP-violating source terms
proportional to different functions of z. For example the
NMSSM has source terms that are a function of the
singlet’s VEV profile, vSðzÞ, as well as the Higgs profiles
vuðzÞ and vdðzÞ. Consider the set of transport equations
from the previous section with an extra CP-violating term,

aiQ1∂iQþ aiT1∂iT ¼ 0 ð43Þ

aiQ2∂iQþ aiT2∂iT þ aiH2∂iH ¼ Δ1ðzÞ ð44Þ

aiQ3∂iQþ aiT3∂iT þ aiH3∂iH ¼ Δ2ðzÞ: ð45Þ

If we solve the first transport equation as before the second
equation becomes

Δ1ðzÞ ¼ ðaiQ2a
j
T1 − aiQ1a

j
T2Þ∂iþjlþ aiH2∂iH

¼ ail2∂ilþ aiH2∂iH: ð46Þ

The solution to this equation is of course

H ¼ −ail2∂imþ 1

a2H2

X
�

1

κ∓ − κ�
eκ�z

×

�Z
z
e−κ�yΔ1ðyÞdy − β1�

�
; ð47Þ

with β� ¼ 0 for reasons given in Appendix B. This solution
feeds into the third equation which obtains a more
complicated inhomogeneity as a result,

aim3∂imþ fðΔ1Þ ¼ Δ2; ð48Þ

with

fðΔ1Þ¼
X
�

ða2HÞ−1
κ∓− κ�

�
aiH3κ

i
�e

κ�z
�Z

z
e−κ�yΔ1ðyÞdy−β1�

�

þaiþ1
H3 κ

i
�Δ1ðzÞþa2H3Δ0

1ðzÞ
�
: ð49Þ

The solution now has a very similar structure to before,

m ¼
X
i

xieαiz
�Z

z
e−αiy½Δ2ðyÞ − fðΔ1Þ�dy − βi

�
ð50Þ

with xi, αi, AXðαiÞ and βi determined as before. Thus in
principle one can use the parametrized ansatz approach to
simplify the problem here as well so long as one is careful
in deriving what to replace ΔðzÞ with.

B. Other equation structures

The equation structures that we encountered in the
MSSM were not the only possible structures that could
arise. In this brief subsection we would like to briefly
consider other possible equation structures. Consider an
equation where the linear terms are missing,

a11j
∂X1

∂z þ a11j
∂2X1

∂z2 þ a12j
∂X2

∂z þ a12j
∂2X2

∂z2 ¼ 0: ð51Þ

The procedure is subtly different from before. The first step
is the same as before where we solve for X1 by treating the
derivatives of X2 as inhomogeneous source,

X1 ¼ −
e
−
a1
j1

a2
j1

z

a21j

Z
z
e

a1
1j

a2
1j

y
�
a12j

∂X2

∂z þ a12j
∂2X2

∂z2
�
: ð52Þ

Just as before we aim to remove the exponentials and the
integral using a series of changes of variables. This time,
though, our variables changes are
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hðzÞ ¼
Z

z
e

a1
1j

a2
1j

y dX2

dy
dy ð53Þ

jðzÞ ¼
Z

z
e
−
a1
1j

a2
1j

y
hðyÞ ð54Þ

which leaves us with a very similar form for the solution
(after a suitable rescaling),

X1 ¼ a12jj
0 þ a12jj

00 ð55Þ

X2 ¼ −a11jj0 − a11jj
00: ð56Þ

Another important extension is to consider the case where
we cannot reduce the first equation to a differential
equation involving only two number densities. In the
simplest case our first equation is a differential operator
acting on three number densities,

ai1j∂iX1 þ ai2j∂iX2 þ ai3j∂iX3 ¼ 0 ð57Þ

in which case we can reduce this to an equation involving
only two number density by defining auxillary functions
fðzÞ and gðzÞ as follows:

X1ðzÞ ¼ g12X2ðzÞ þ g13ðzÞX3 þ fðzÞ ð58Þ

X2ðzÞ ¼ g23X3ðzÞ þ gðzÞ ð59Þ

if a0kj ≠ 0 and

X1ðzÞ ¼ g13ðzÞX3 þ fðzÞ ð60Þ

X2ðzÞ ¼ g23X3ðzÞ þ gðzÞ ð61Þ

otherwise. One can then choose gij such that they cancel the
terms ai3j∂iX3 in the above transport equation. We therefore
have two techniques to convert a set of transport equations
to cascading form—taking linear combinations of equa-
tions and using the method as described immediately
above.

C. Arbitrary number of equations

Consider the case where we have N transport equations
and a single CP-violating source. In general there are
3
2
ðN − 1ÞðN − 2Þ conditions to satisfy to reorganize the

equations into a cascading form. The most general exten-
sion of the use of auxiliary functions is to define the
following:

X1 ¼
XN
j¼2

g1jXj þ f1

..

. ¼ ..
.

Xi ¼
XN
j¼iþ1

gijXj þ fi

..

. ¼ ..
.

XN−1 ¼ gN−1;NXN þ fN−1: ð62Þ

This gives us a total of 1
2
NðN − 1Þ parameters to use. We

can also take linear combinations of the N − 1 transport
equations that do not contain the CP-violating source to
meet another 1

2
NðN − 1Þ condition. Unfortunately this

brings us short of the required 3
2
ðN − 1ÞðN − 2Þ conditions.

In reality this analysis is probably unrealistically pessi-
mistic for two reasons. First, while the initial set of
transport equations indeed can have all N fields appearing
in the relaxation terms of all equations, there are only two
derivative terms initially in each transport equation. Thus it
may be possible to make careful manipulations that evade
the arguments given above. Second, the equations tend to
have a lot more structure than our naive analysis lets on. For
example a number of equations might have the same
relaxation term on the right-hand side so the combination
of two transport equations with this term might remove
many coefficients, a0ij, for the price of one. Nevertheless it
is useful to consider an unrealistically pessimistic scenario
where all conditions need to be met. The lowest number of
densities that are not guaranteed a path that converts our
QTEs into a cascading form in this overly pessimistic
scenario is 5. We then have the transport equations

akji∂kXj ¼ 0 ∀ i ≤ 4 ð63Þ

akj5∂kXj ¼ Δ ð64Þ

with akij ≠ 0∀ i; j and k. We will now sketch out how a
solution can be derived. Let us define

X3ðzÞ ¼ g34X4ðzÞ þ g35ðzÞX5 þ f31ðzÞ ð65Þ

X4ðzÞ ¼ g45X5ðzÞ þ f41ðzÞ ð66Þ

in such a way as to remove X5 from the first equation.
Throughout this argument the subscript on f will denote the
number of times a variable has been changed and the
superscript will denote the original field that was replaced.
Repeating this process to remove f41 and then the resulting
f32 allows us to write the first equation in terms of two linear
combinations of number densities which can be denoted f13
and f23. We can then solve this equation to write both in
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terms of the variable k following the same steps as outlined
in previous sections. The second through fifth equations
now involve four variables only. One can again use the
same trick to eliminate one number density from the second
equation leaving us with something in the form (and we are
only interested in a general form as we will use a para-
metrized ansatz approach shortly)

ai2l∂ikþ ai
2fð34Þ∂if34 þ ai

2fð44Þ∂if44 ¼ 0: ð67Þ

One can then define the following changes in variables:

f34 ¼ g034lkþ g134lk0 þ g234lk
00 þ f35 ð68Þ

f44 ¼ g044lkþ g144lk0 þ g244lk
00 þ f45 ð69Þ

to cancel the second equation’s dependence on l (actually
this gives us a couple too many parameters so we can set
these to 1). This equation then can also be solved with the
usual techniques to write f35 and f45 in terms of a new
variable l. The remaining three equations are a function of
k, l and f35 only. We can use a similar trick to remove the
dependency on l in the third equation with the variables

f35 ¼ g053llþ g153ll
0 þ g053kl

00 þ f45 ð70Þ

k ¼ gkllþ f1k: ð71Þ

The remaining equations are now in cascading form and
can be solved using the methods described above. The
derivation of the solution to this overly pessimistic case
sketched above is very cumbersome. However, even in this
case the solution is identical to what one would get if one
used a parametrized ansatz from the start. Using the
parametrized ansatz method we can write down the
solutions immediately without setting pen to paper,

Xj ¼
X10
i¼0

xiAjðαiÞeαiz
�Z

z
e−αiyΔðyÞ − βi

�
ð72Þ

with αi being the 10 roots to the equation

X5
j¼1

AjðαÞakj5αki ð73Þ

with A1ðαÞ ¼ 1 and

A2 ¼
−1
ai21α

i

X
j≠2

AjðαÞaij1αi

A3 ¼
−1
ai32α

i

X
j≠3

AjðαÞaij2αi

A4 ¼
−1
ai43α

i

X
j≠4

AjðαÞaij3αi

A5 ¼
−1
ai54α

i

X
j≠5

AjðαÞaij4αi; ð74Þ

which can be rewritten as a matrix equation

0
BBB@

A2

A3

A4

A5

1
CCCA¼ −

0
BBB@

ai21α
i ai31α

i ai41α
i ai51α

i

ai22α
i ai32α

i ai42α
i ai52α

i

ai23α
i ai33α

i ai43α
i ai53α

i

ai24α
i ai34α

i ai44α
i ai54α

i

1
CCCA

−10
BBB@

ai11α
i

ai12α
i

ai13α
i

ai14α
i

1
CCCA:

ð75Þ

Inverting these equations and rescaling by multiplying
through by the denominators gives the very simple
structure

A1ðαiÞ ¼
X8
n¼0

ϵbcdeai2ba
j
3ca

k
4da

l
5eδiþjþkþl−nα

n
i

A2ðαiÞ ¼ −
X8
n¼0

ϵbcdeai1ba
j
3ca

k
4da

l
5eδiþjþkþl−nα

n
i

A3ðαiÞ ¼
X8
n¼0

ϵbcdeai1ba
j
2ca

k
4da

l
5eδiþjþkþl−nα

n
i

A4ðαiÞ ¼ −
X8
n¼0

ϵbcdeai1ba
j
2ca

k
3da

l
5eδiþjþkþl−nα

n
i

A5ðαiÞ ¼
X8
n¼0

ϵbcdeai1ba
j
2ca

k
3da

l
4eδiþjþkþl−nα

n
i : ð76Þ

The analogous functions in the MSSM also have this form,
although using a permutation symbol in that case is
probably overkill since there would only be two terms
contracted with it and one of those terms is zero two out of
three times. Nevertheless this seems to be the standard
form. The coefficients xi are determined as before by the
equation

~x ¼ ½αj−1i �−1~d ð77Þ

with ~d ¼ ½0;…; 0; 1=ða105mÞ�T with a105m being the coefficient
of α10 in the fifth equation once AjðαiÞ has been substituted
in. The boundary conditions are determined by insisting
each field is well behaved at �∞ and Xj as well as X0

j are
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all continuous at the bubble wall, which means inverting
the equations

yi ¼ ∀ γi ≤ 0

βi ¼
Z

∞

0

dye−αiyΔðyÞ ∀ αi ≥ 0

0 ¼
X
i;j

AjðαiÞβi þ
X
n

yn

0 ¼
X
i;j

αiAjðαiÞβi þ
X
n

γnyn: ð78Þ

That such a cumbersome problem was reduced to an
elementary one shows the power of the parametrized ansatz
method. If we had multiple CP-violating source terms we
would then simply replace ΔðzÞ for f½Δ1ðzÞ;Δ2ðzÞ � � �� and
solve as before.

V. BEYOND AN ULTRATHIN
WALL APPROXIMATION

Consider the earlier example given in Sec. II. There are
VEV-dependent relaxation and source terms in the third
transport equation that are assumed to switch off in the
unbroken phase. For a thick-walled VEV profile this
approximation might become a poor one. We would like
to derive an analytical method to go beyond step-function
VEVs. The second transport equation (9) has VEV-
dependent relaxation terms proportional to a. For now
let us simplify the situation by assuming that a is very small
so we only need to seek corrections to the thin-wall
approximation in Eq. (10). We will return to the more
general case later. To do so we define a series of error
functions,

ΔðzÞ ¼ ΘðzÞΔðzÞ þ ð1 − ΘðzÞÞΔðzÞ≡ Δ0ðzÞ þ ϵðzÞ
a0l3ðzÞ≡ a0l3ðzÞΘðzÞ þ a0l3ðzÞΘð−zÞ

¼ a0l3ðzmaxÞ − ½a0l3ðzmaxÞ − a0l3ðzÞ� þ a0l3ðzÞΘð−zÞ
¼ a0l3 þ δa0l3ðzÞ

lðzÞ ¼ l0ðzÞ þ δ1lðzÞ þ δ2lðzÞ þ…: ð79Þ

Here l0ðzÞ solves the original transport equations in the
ultrathin wall regime and δil is a correction of order i. We
will take advantage of the fact that these error functions are
finite for all z. This allows the possibility of a perturbative
expansion. Our third transport equation can be written in
terms of the error functions,

ail3∂il0 þ ail3∂iðδ1lþ δ2lþ…Þ
þ δa0l3ðzÞðl0 þ δ1lþ δ2lþ…Þ ¼ ΔðzÞ þ ϵðzÞ: ð80Þ

The corrections to m can be found order by order,

δ1l ¼
X6
i¼0

eαizxi

�Z
z
e−αiy½ϵ − l0δa0l3ðzÞ� − δ1βi

�

δ2l ¼
X6
i¼0

eαizxi

�Z
z
e−αiy½−δ1lδa0l3ðzÞ� − δ2βi

�
ð81Þ

and so forth. Let us now turn our attention to the slightly
more complicated case where we no longer assume a is
small. The equation structure we will be left with is very
similar to the case when there are multiple CP-violating
source terms that are not proportional to each other that we
considered in Sec. IV. Let us define a series of error
functions as before. The corrections to the densities are

H ¼ H0 þ δ1H þ δ2H þ…

T ¼ T0 þ δ1T þ δ2T þ…

Q ¼ Q0 þ δ1Qþ δ2Qþ…; ð82Þ

where H0, Q0 and T0 solve the QTEs in the ultrathin wall
approximation. We can then look at terms that are first
order only to set up a perturbative expansion. Using the fact
that Q0; H0 and T0 solve the original set of QTEs we can
write QTEs purely in terms of their error functions,

aiT1∂iδ1T þ aiQ1∂iδ1Q ¼ 0

δa0H2ðzÞH0 þ δa0Q2ðzÞQ0 þ δa0T2ðzÞT0

þaiH2∂iδ1H þ aiQ2∂iδ1Qþ aiT2∂iδ1T ¼ 0

δa0H3ðzÞH0 þ δa0Q3ðzÞQ0 þ δa0T3ðzÞT0

þaiH3∂iδ1H þ aiQ3∂iδ1Qþ aiT3∂iδ1T ¼ ϵðzÞ: ð83Þ

This can be rewritten in the exact same form as the system
we solved in Sec. IV with two CP-violating sources [i.e.
Eqs. (45)],

aiT1∂iδ1T þ aiQ1∂iδ1Q ¼ 0

aiH2∂iδ1H þ aiQ2∂iδ1Qþ aiT2∂iδ1T ¼ Δ1ðzÞ
aiH3∂iδ1H þ aiQ3∂iδ1Qþ aiT3∂iδ1T ¼ Δ2ðzÞ: ð84Þ

VI. A NUMERICAL COMPARISON

In this section we look at how large an error in the
baryogenesis is caused by taking the fast rate approxima-
tion and the ultrathin wall approximation. We also look to
reproduce a numerical result in the literature as a check of
our method. Corrections ofOð1=ΓYÞwere discussed in [18]
which found that the corrections to the baryon asymmetry
could be of Oð1Þ in the case where ΓY and Γ−

M were similar
size in the broken phase. Since a numerical analysis on the
effects of equilibrating top Yukawa and stop triscalar terms
have already been studied in detail we mostly look at fast
rate corrections as a check. We are more interested in
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determining whether corrections that go beyond the ultra-
thin wall approximation are large. In Table I we give the set
of parameters we use for our numerical analysis. We also
need to define an appropriate space-time-dependent VEV
profile,

vðxÞ ¼ 0.5v

�
1 − tanh

�
3x
Lw

��

βðxÞ ¼ 1 − 0.5Δβ
�
1þ tanh

�
3x
Lw

��

ΔðxÞ ¼ 0.025β0ðxÞvðxÞ2: ð85Þ
We can then calculate numerical solutions to the
densities Q, T and H which allow us to calculate nL ¼
QþQ1L þQ2L ¼ 5Qþ 4T. This density, nLðzÞ, acts as a
seed for the baryon density which satisfies the equation
[20,21]

Dqρ
00 − vwρ0B −RðzÞρB ¼ ΓwsðzÞ

nF
2
nLðzÞ ð86Þ

with nF the number of fermion families, where the
relaxation term is given by

RðzÞ ¼ ΓwsðzÞ
�
9

4

�
1þ nsq

6

�
−1

þ 3

2

�
ð87Þ

and nsq is the number of squark flavors. Not much is lost
treating the weak sphaleron rate profile as a step function—
that is compared to treating the VEV profile as a step
function when calculating source and relaxation terms—
although in principle one could use the same techniques as
in Sec. V to derive corrections to this equation as well. Our
sphaleron rates then have the form [22–24]

Γws ¼ 120Tα5wΘð−zÞ ð88Þ

and Γss ¼ ð128=3ÞTα4S [23] respectively. The baryon
asymmetry is then

ρB ¼ −
nFΓws

2vW

Z
0

−∞
nLðxÞexR=vWdx: ð89Þ

As a point of comparison, we would like to compare our
solutions with the analytic solution derived under the fast
rate approximation in the ultrathin wall regime. The
solution for nLðzÞ and ultimately the baryon number is

well known and can be found in Ref. [16], so we do not
repeat it here. We find that our exact solution in the ultrathin
wall approximation, ρEB, differs from the approximate
solution, ρAB by a factor

���� ρ
E
B − ρAB

ρEB þ ρAB

���� ≈ 0.58 ð90Þ

which is consistent with the size of corrections found in
[18]. The first-order corrections to the baryon asymmetry
arising from deviations from the ultrathin wall regime
are typically moderate to small.
In Fig. 1 we show the correction to the density nL for

several values for the bubble wall thickness. Even though
the baryon asymmetry is weakly dependent on LW in the
ultrathin wall regime, for the very large values of LW we
consider this dependency becomes important. The typical
correction for our set of parameters is typically small but
nontrivial and grows monotonically with LW as expected,
which is shown in Table II. Indeed recent work has shown
that bubble wall width for the electroweak phase transition
in the NMSSM can have a large range of values [25]. As a
check on our calculations we find that the correction indeed
goes to zero as Lw ↦ 0 although the absolute minimum is
numerically very difficult to take as it involves evaluating
numerical integrals of very sharply peaked functions.

FIG. 1. The density nL in the symmetric phase near the bubble
wall as a function of z. The exact solution with first-order
corrections to the ultrathin wall approximation is given by the
magenta line and the solution without such corrections is given in
blue. The parameters used to calculate nLðZÞ are LW ¼ 250=T
(top left), LW ¼ 100=T (top right), LW ¼ 25=T (bottom left) and
LW ¼ 10=T (bottom right).

TABLE I. The base set of parameters used for our numerical
study. The diffusion constants are taken from Ref. [27] and Δβ is
taken from Ref. [28].

DT 6=T DQ 6=100 DH 110=T

a 0.05 Γ−
MðxÞ 0.5vðxÞ2=T2 ΓHðxÞ 2aΓ−

M
ΓY 1 vw 0.05 Lw 100=T
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2u þ v2d

p
100 T 100 Δβ 0.015

TABLE II. Table of thick wall corrections to the baryon
asymmetry.

LW 250=T 100=T 25=T 10=T 2.5=T

δρEB=ρ
E
B 0.18 0.15 0.14 0.14 0.12
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Finally for the sake of safety we would like a direct
comparison to a numerical calculation. We use the para-
metrized ansatz approach to solve Eqs. (23) in Ref. [26] in
order to produce their Fig. 3. This is shown in Fig. 2 where
we are able to reproduce almost an almost identical plot (we
remove the sum of densities to reduce clutter as little new
information is given by this function). The small error can
probably be attributed to our use of an ultrathin wall
approximation.

VII. CONCLUSION

In this work we have sketched out a method to derive
exact solutions to quantum transport equations in a variety
of cases including large sets of QTEs and situations where
there are multiple CP-violating sources with nontrivially
different space-time dependency. We have also produced a
very quick and powerful method using a parametrized
ansatz to derive the same solution. This method was found
to turn cases which are cumbersome to the point of being
almost intractable by standard methods to an elementary
problem. Furthermore a general structure of the solution
was made manifest when solving for large systems of
equations. The third result of this paper was to sketch out a
way of going beyond the ultrathin wall approximation. Our
numerical analysis demonstrated that the correction to the
baryon asymmetry coming from the smallest correction to
the ultrathin wall regime can be small to moderate but
nonetheless nontrivial even for moderately thick walls. It
would interesting to see if other models have larger
corrections from thick bubble walls. Our numerical results
analyzing corrections to the fast rate approximation were
consistent with those found in [18] which found that these
corrections can be very large. Our method ensures that
these corrections are taken into account while still keeping
to a largely analytical framework.
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APPENDIX A: EXTRA DETAILS IN DERIVING
THE SOLUTION

In this appendix we give extra details for how to solve the
equation

aiQ1∂iQþ aiT1∂iT ¼ 0: ðA1Þ

We can write T as a function ofQ, using the usual methods
to write

T ¼ 1

a2T1

X
�

1

κ∓ − κ�
eκ�z

�Z
z
e−κ�y

�
aiQ1

∂iQ
∂yi

�
dy − βi

�
:

ðA2Þ

The first change of variables we use is of course

h0� ¼ e−κ�Q ðA3Þ

which leads to the following identities:

Q ¼ eκ�zh0�
Q0 ¼ ðκ�h0� þ h00�Þeκ�z
Q00 ¼ ðκ2�h0� þ 2κ�h00� þ h000�Þeκ�z: ðA4Þ

This allows us to write the integrand for T in terms of h�
and remove the integral,

T ¼ 1

a2T1

X
�

eκ�z

κ∓ − κ�

Z
z
e−κ�y

× ½ða0Q1 þ κ�a1Q1 þ κ2�a
2
Q1Þh0�

þ ða1Q1 þ 2a2Q1κ�Þh00� þ a2Q1h
000
��

¼ 1

a2T1

X
�

eκ�z

κ∓ − κ�

× ½ða0Q1 þ κ�a1Q1 þ κ2�a
2
Q1Þh�

þ ða1Q1 þ 2a2Q1κ�Þh0� þ a2Q1h
00
��: ðA5Þ

To remove the exponents we use the change of variables

j� ¼ eκ�zh� ðA6Þ

from which we can derive the usual identities

FIG. 2. Reproducing Winslow and Tulin’s purely numerical
calculation. Here the blue, magenta and golden lines correspond
to the densities nQ3

, nu3 and nH respectively.
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h� ¼ e−κ�zj�
h0� ¼ ðj0� − κ�j�Þe−κ�z
h00� ¼ ðj00� − 2κ�j0� þ κ2�j�Þe−κ�z: ðA7Þ

We can also use the second line in the above equation to
derive an identity that relates Q to both new variables j�
and its derivative,

Q ¼ j0� − κ�j�: ðA8Þ

Our expression for T is now free of any exponentials,

T ¼ 1

a2T1

X
�

1

κ∓ − κ�
½a0Q1j� þ a1Q1j

0
� þ a2Q1j

00
��: ðA9Þ

We would like to write both T and Q in terms of a single
variable. This task is achieved by the choice

k ¼ eκ∓z
Z

z
e−κ∓yj�dy ðA10Þ

which can be inverted to write

j� ¼ k0 − κ∓k: ðA11Þ

Both expressions for Q are now satisfied,

Q ¼ j0þ − κþjþ
¼ ðk00 − κ−k0Þ − κþðk0 − κ−kÞ
¼ k00 − ðκþ þ κ−Þk0 þ κþκ−k ðA12Þ

and

Q ¼ j0− − κþj−
¼ ðk00 − κþk0Þ − κ−ðk0 − κþkÞ
¼ k00 − ðκþ þ κ−Þk0 þ κþκ−k: ðA13Þ

We would like to write κ� in terms of the coefficients aX1;i

κ� ¼ −a1T1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1T1Þ2

p
− 4a0T1a

2
T1

2a2T1
ðA14Þ

which leads to the identities

κþ þ κ− ¼ −
a1T1
a2T1

κþκ− ¼ a0T1
a2T1

: ðA15Þ

Rescaling k we get

Q ¼ a2T1k
00 þ a1T1k

0 þ a0T1k ðA16Þ

as before. Finally, substituting in our rescaled expression
for k we get

T ¼
X
�

1

κ∓ − κ�
½a2Q1k

000 þ ða1Q1 − κ∓a2Q1Þk00

× ða0Q1 − κ∓a1Q1Þk0 − a0Q1κ∓k�
¼ −a2Q1k

00 − a1Q1k
0 − a0Q1k ðA17Þ

as required.

APPENDIX B: A NOTE ON EXTRA
INTEGRATION CONSTANTS

Throughout this work we have ignored extra integration
constants that are produced in the process of reducing a set
of QTEs down to a single differential equation. The
contexts in which we have ignored these constants vary
but throughout we reference this appendix since the reason
is the same. To demonstrate this let us consider the simplest
nontrivial example. Let us have a system which can be
described by the following set of QTEs:

ai11∂iX1 þ ai21∂iX2 ¼ 0

ai12∂iX1 þ ai22∂iX2 ¼ ΔðzÞ: ðB1Þ

Solving the first equation for X1 after using the usual tricks
we have

X1 ¼ −ai21∂ikþ 1

a211

X
�

eκ�z

κ∓ − κ�
e−κ�zβ�

↦ −ai21∂ikþ
X
�
eκ�zβ�

X2 ¼ ai11∂ik: ðB2Þ

The extra integration coefficients β� should immediately
rouse suspicion since the system we started with was a set
of two coupled second-order differential equations and
such a system is completely specified by four boundary
conditions for every region it is solved in. Therefore
solving the equations including the use of variable changes
should not introduce the need for more initial conditions.
As an analogy we could make a strange change of variables
that shifts Q by a constant c. If we solve the system we
should find that consistency demands that c ¼ 0 (rather
than another condition being produced that specifies c) or
that c is redundant. These are the same requirements that
will be imposed on β�. Before we demonstrate that the
β� ¼ 0 let us first show that they can be removed by
another variable change. Specifically one can take

k ¼ k2 þ f ðB3Þ
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where f is any function that satisfies the equations

−ai21∂if ¼ −
X
�
eκ�zβ�

ai11∂if ¼ 0: ðB4Þ

The solution is then

f ¼
X
�
A�eκ� ðB5Þ

with

A� ¼ β�
ai21κ

i
�
: ðB6Þ

One can then just substitute the functions Q and T in terms
of k2 into the second equation and derive the usual solution.
For completeness we nonetheless consider the case where
we keep β� in the set of equations. Substituting these
solutions into the second equation gives

ðai22aj11−ai12a
j
21Þ∂iþjkþ

X
�
ðai12κi�Þeκ�zβ�¼ΔðzÞ

↦ ðai22aj11−ai12a
j
21Þ∂iþjkþ

X
�
B�eκ�zβ�¼ΔðzÞ: ðB7Þ

Treating the term proportional to exp κ�z as a inhomoge-
neity one could naively write

k ¼
X4
i¼0

xieαiz
�Z

z
dye−αiy½ΔðyÞ − B�β�eκ�y� − βi

�
:

ðB8Þ

We can immediately see that κþð−Þ ¼ 0 in the broken
(symmetric) phase in order to have a well-behaved function
at infinity. As for the β− term let us try and derive the
coefficients xi; we will find an inconsistency unless β− ¼ 0
(we expect such an inconsistency due to the arguments
given earlier). We demand that the coefficients of

Δ0ðzÞ;Δ00ðzÞ and Δ00 are null while the coefficient of
ΔðzÞ is unity. This gives

X
i

xi ¼ 0

X
i

αixi ¼ 0

X
i

α2i xi ¼ 0

X
i

α3i xi ¼ ða211a222 − a212a
2
21Þ−1; ðB9Þ

as in the usual case. However, we now have the additional
condition that the coefficient of exp κ−z ¼ β−B−; this gives
the extra condition

X
i

xi
κ− − αi

ðak22aj11 − aj12a
k
21Þκiþj

− ¼ 1 ðB10Þ

which gives an overdetermined set of equations unless
β− ¼ 0. Alternatively we could make use of the last line in
Eq. (B9) to write

k ¼
X4
i¼0

xieαiz
�Z

z
dye−αiy½ΔðyÞ − AiB�β�eκ�y� − βi

�

ðB11Þ

with

Ai ¼ αiðκ− − αiÞai12aj21
κiþj

a212a
2
21 − a211a

2
22

: ðB12Þ

Upon substituting this solution back into Eq. (B7) we
indeed get that the equation is satisfied. However, X1 and
X2 are now independent of eκ−z. So, depending on the
treatment of β−, it is either zero for self-consistency or
irrelevant in that it is a redundancy in the theory with now
physical consequences. For our purposes it is most con-
venient to set it to zero.
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Chapter 5

Solving bubble wall profiles

5.1 Introductory remarks

To calculate the rate a false vacuum decays, one is required to calculate a solution to
the classical equations of motion known as the bounce. The bounce is the solution
where the field starts near the false vacuum and asymptotes to the true vacuum.
Finding the bounce is necessary if one wishes to examine both phase transitions and
vacuum stability [96, 97, 98, 99, 100, 101, 102, 103, 104]. Unfortunately, the bounce
solution is notoriously difficult to calculate. Although solving a set of coupled non
linear inhomogeneous equations numerically is typically a moderate but nonetheless
tractable challenge, the situation is complicated by the fact that there is an easily
found trivial solution where the field stays in one vacuum or the other. For a lot
of numerical methods this means that the trivial solution is a powerful basin of
attraction making the bounce solution difficult to find [105].

I provide a new method for performing such a calculation by first curve fitting
the bounce solution in the entire parameter space of the most general renormalizable
tree level potential of a single field. I then propose, similarly to another algorithm
[106], that the bounce solution of a multifield problem can be approximated by the
solution to a single field problem which I have in analytic form. Specifically the
solution to the multifield problem is the one dimensional ansatz plus some arbitrary
function which I refer to as a perturbation. The perturbation is then given by the
solution to a set of linearized differential equations due to similar methods given in
the previous chapter. This sets up a fast converging perturbative series. I test our
method against a known result.

5.2 Declaration for thesis chapter 5
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Abstract We present semi-analytic techniques for find-
ing bubble wall profiles during first order phase transitions
with multiple scalar fields. Our method involves reducing the
problem to an equation with a single field, finding an approx-
imate analytic solution and perturbing around it. The pertur-
bations can be written in a semi-analytic form. We assert that
our technique lacks convergence problems and demonstrate
the speed of convergence on an example potential.

1 Introduction

The decay of a false vacuum is a complex problem with
numerous applications in cosmology [1–6] and is particularly
important in the study of baryogenesis [7–26] (although there
are mechanisms for producing the baryon asymmetry that do
not require calculating the decay of the false vacuum [27–
33]). Calculating tunneling rates is also an important problem
in the study of vacuum stability [34–40].

While the physics of the tunneling process is qualitatively
well understood [41], quantitatively it is a complicated prob-
lem that involves solving a set of highly nonlinear coupled
differential equations usually requiring a numerical solution.
The two techniques that are most commonly used to solving
the tunneling problem are path deformation [42,43] and min-
imizing the integral of the squared equations of motion for a
set of parametrized functions [44,45], although other meth-
ods also exist [46]. Exact solutions only exist for specialized
cases [47,48].

In this paper we offer a new approach by solving the tun-
neling problem semi-analytically. First, we give an analytic

a e-mail: sujeet.akula@coepp.org.au
b e-mail: csaba.balazs@monash.edu
c e-mail: graham.white@monash.edu

solution to an ansatz for an arbitrary potential. Since the
ansatz is only an approximate solution, in the next step we
derive a perturbative expansion that converges to the exact
solution. For each term in the perturbative series we provide
a semi-analytic solution. Since our starting potential is arbi-
trary, and because the convergence of the perturbative expan-
sion is independent of the potential, our method is completely
general.

To derive the ansatz we take advantage of the fact that the
multi-field problem can be approximated by finding the solu-
tion to a single-field potential. The approximate tunneling
solution can be found along the field direction that connects
the true and false vacua. This single-field potential can be
solved in terms of a single parameter. To improve the initial
ansatz we compute correction functions to the ansatz in a
manner analogous to Newton’s method of finding roots. The
result is a perturbative series of corrections that are expected
to converge quadratically.

The differential equations that define these corrections
can be solved analytically in terms of eigenvalues of the
mass matrix and a function of the initial ansatz. In doing
so we use techniques that were recently employed to ana-
lytically solve number densities across a bubble wall [49].
Although the technique has elements in common with New-
ton’s method it does not share its trouble with null derivatives
giving divergent corrections or oscillations around the solu-
tion. We also argue that the other problems with Newton’s
method are generically not relevant to our method.

The layout of this paper is as follows. In Sect. 2 we give
a brief overview of the false vacuum problem. In Sect. 3 we
develop an ansatz form that approximately solves a general
variety of multi-field potentials with a false vacuum, where
the potential is specified by a single parameter. In Sect. 4 we
derive the perturbative corrections to the ansatz forms and
discuss the convergence. In Sect. 5 we use this method to
solve a problem which can be directly compared with the
literature. Concluding remarks are given in Sect. 6.
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2 Fate of the false vacuum

Consider a potential of multiple scalar fields V (φi ) with at
least two minima. The trivial solution to the classical equa-
tions of motion is stationary extremizing the potential. This
solution typically gives the field a non-zero vacuum expecta-
tion value and is responsible for giving standard model par-
ticles their mass via electroweak symmetry breaking. The
other, less obvious solution is one where the fields continu-
ously vary from one minimum to another. In this case, the
false vacuum decays into the true vacuum via tunneling pro-
cesses, and is termed the ‘bounce solution’ [41]. If this is
achieved within a first order phase transition, regions of the
new vacuum appear and expand as bubbles in space. In this
paper we are interested in calculating the profile of the bub-
ble, that is, the spacetime dependence of the bubble nucle-
ation.

The spatial bubble profile is obtained by extremizing the
Euclidean action

SE =
∫

dd x

[
1

2

(
∂μϕi

)2 + V (ϕi )

]
(1)

where d = 4 for zero temperature tunneling and d = 3 for
finite temperature tunneling relevant to cosmological phase
transitions. The nucleation rate per unit volume is

� = A(T )e− SE
T (2)

where A(T ) is a temperature dependent prefactor propor-
tional to the fluctuation determinant, T is the temperature and
SE is the euclidean action for the bounce solution which sat-
isfies the classical equations of motion. In the case of a spher-
ically symmetric bubble the classical equations of motion are

∂2ϕi

∂ρ2 + 2

ρ

∂ϕi

∂ρ
− ∂V

∂ϕi
= 0 (3)

and the bounce solution satisfies the conditions ϕi (0) ≈ vtrue
i ,

ϕi (∞) = vfalse
i and ϕ′

i (0) = 0.1 Here ρ is the ordinary 3D
spherical coordinate, as we are considering finite tempera-
ture, and vtrue

i and vfalse
i are the vacuum expectation values

of the field ϕi in the true and false vacua, respectively. The
equations of motion resemble the classical solution of a ball
rolling in a landscape of shape-V with ρ playing the role of
time, but including a ρ-dependent friction term.

1 The first is not a boundary condition unlike the other two. It is instead
the condition that differentiates the bounce from a trivial solution.

3 Approximate solution to the multi-field potential

3.1 Reducing to a single-field potential

The bounce solution can be approximated by the bounce
solution of a single differential equation as follows [42,43].
First make a shift of fields such that the false vacuum is
at the origin in field space. The true vacuum is then at
vφ̂1 where φ̂1 is a unit vector that points in the direction
of the true vacuum. Then define a complete set of unit
vectors orthogonal to φ̂1 and rewrite the potential in the
rotated basis V (ϕ1, ϕ2, . . .) �→ V (φ1, φ2, . . .). Then con-
sider the potential only in the φ̂1 direction between the min-
ima, V (φ1, 0, . . .). One can then solve the single equation of
motion

∂2φ1

∂ρ2 + (d − 1)

ρ

∂φ1

∂ρ
− ∂V (φ1, 0, . . .)

∂φ1
= 0 (4)

to derive an initial ansatz that approximately solves the full
classical equations of motion. Let us therefore turn our atten-
tion to the most general renormalizable tree level potential
with a single field,

V (ϕ) = M2ϕ2 + bϕ3 + λϕ4. (5)

An approximate expression for the effective action of a simi-
lar potential was found in Ref. [50]. The above potential can
be rescaled φ = ϕminϕ where ϕmin is the global minimum of
the above potential. Then the rescaled potential has a global
minimum at φ = 1. To ensure that the effective action is
unaffected by this rescaling, we also make the replacement
ρ �→ ϕminρ. We paramatrize the rescaled potential as2

V (φ) = (4α − 3)

2
Eφ2 + Eφ3 − αEφ4. (6)

Tunneling between two vacua requires the existence of a
potential barrier or “bump” separating the two minima. As
parametrized in Eq. (6), this type of barrier can only exist
if E < 0 and α ∈ (0.5, 0.75).3 To illustrate this point, we
present in Fig. 1 the potential in φ given in Eq. (6) for both
the edge choices of α and the mean allowed choice, using
several choices of E . One can see that, for α = 1

2 , we have
exactly the Mexican hat potential (albeit shifted to φ = 0.5)
with degenerate minima, and for α = 3

4 , there is no potential
barrier between false and true minima.

2 This definition of α differs from that of [50] but the physical principles
are the same.
3 This is assuming the three turning points are in the positive φ direction
with the local minimum at the origin. The rest of potentials with three
turning points are covered by this analysis simply by making combina-
tions of the transformations φ �→ φ + a and φ �→ −φ.
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Fig. 1 We present our rescaled scalar potential parametrized by E and
α given in Eq. (6). Each panel displays −E = 1, 2, 5, 10, 20. The top
and bottom panels are the edge choices of α, with α = 1

2 on top and

α = 3
4 on the bottom. The middle panel has the mean value of α = 5

8

3.2 Developing ansatz solutions

In deriving an approximate solution to the potential in Eq. (6),
we first note that the effective potential is proportional to E .

Thus, one can factor |E | out of the equations of motion by
further rescalingρ �→ ρ/

√|E |. Then the equations of motion
only depend on α.

Under the scaling we have introduced,
⎧⎨
⎩

ϕ �→ φ = ϕminϕ

ρ �→ ϕmin√|E |ρ
(7)

the Euclidean action becomes

SE = 4π
φ3
m√|E |

∫
dρ ρ2

[(
∂φ

∂ρ

)2

− Ṽ (φ)

]
(8)

where4 Ṽ ≡ V/|E |, and we have integrated over the angular
variables assuming isotropy. The integral in Eq. (8) must only
depend on α, as in

SE = 4π
φ3
m√|E | f (α). (9)

Meanwhile, we will approximate the rescaled field itself with
the well-known “kink” solution [44,45]

φ ≈ 1

2

(
1 − tanh

[
ρ − δ(α)

Lw(α)

])
(10)

parametrized by the offset δ and the bubble wall width Lw.
Thus it remains to determine the α-dependent functions δ(α),
Lw(α) from the kink solution, and f (α) in the Euclidean
action.

We first evenly sample values of α within (0.5, 0.75), then
numerically solve the full bubble profile using conventional
techniques. Next, for each value of α, we fit the kink solution
given in Eq. (10) to the full solution, extracting Lw and δ.
Lastly, we numerically integrate to find f in the Euclidean
action. This results in a tabulation of values for Lw, δ, and
f , for each value of α. Using the apparent α dependence
and intuition from our parametrization of the potential, we
find ansatz functional forms in terms of α for each of these
parameters.

The offset δ should diverge at the boundaries α = 0.5
and α = 0.75, and is found to be quite small otherwise. It
also appears to have approximate odd parity about the mean
allowed value of α = 0.625. We modeled this with odd
powers of non-removable poles at the boundaries of α, along
with an offset and a linear correction about the mean:

δ(α) ≈ δ0+k

(
α − 5

8

)
+

2∑
n=1

an

⎡
⎣ α − 5

8(
α − 1

2

) (
α − 3

4

)
⎤
⎦

(2n−1)

.

(11)

We then fit these parameters using the tabulated values.

4 Ṽ does not have any dependence on |E |.
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Table 1 The fitted values for the parameters that define the approximate
ansatz functions for f which is used in the Euclidean action, the bubble
wall width Lw , and the offset δ from the kink solution

f (α) Lw(α) δ(α)

Parameter Value Parameter Value Parameter Value

f0 0.0871 �0 1.4833 δ0 2.2807

p 1.8335 c 0.4653 k −4.6187

q 3.1416 r 18.0000 a1 0.5211

s 0.7035 a2 × 105 7.8756

The bubble wall width Lw is dominated by two asymp-
totes. It diverges at α = 3

4 , and become small as α → 1
2 . We

used this form to model the asymptotic behavior,

Lw(α) ≈ �0

[(
α − 1

2

)r

+ c∣∣α − 3
4

∣∣s
]

. (12)

As before, the normalization �0, the two exponents r and s,
and the coefficient c are fit using the tabulated values from
the full numerical calculation. Interestingly, we find almost
exactly that r = 18. (The full fitted parameters are given in
Table 1.)

The Euclidean action determined by f (α) diverges at α =
1
2 and is zero at α = 3

4 . This is modeled by

f (α) = f0

∣∣α − 3
4

∣∣p∣∣α − 1
2

∣∣q (13)

where only a normalization parameter and exponents need
to be fitted.

In Table 1 we present all the fitted values that go into these
ansatz approximate forms. The numerical values computed
for these functions as well as the resulting fits are given in
Fig. 2. We did not estimate uncertainties in the full numerical
calculations nor in the fitted parameters, though in principle
this could be done. Thus we are not able to compute rigorous
measures of the goodness of fits. As these fits are only used to
form a base ansatz solution which then receives perturbative
corrections, such an undertaking lies outside the scope of
this work. We do, however, provide in Fig. 2 the residuals
between the fitted curves and tabulated values.

We note that |E | scales as |bφ3| so SE/T scales as
φm
T

√
φm
b , where b is the cubic coupling of the unscaled field,

as in Eq. (5). Also b controls the height of the barrier sepa-
rating the two minima.

4 Perturbative solution

In the previous section, we developed fitted curves to esti-
mate the parameters of the well known kink solution. In this
section, we will take advantage of rescaling to compute con-

Fig. 2 We present the fits to the offset δ (top panel) and the bubble
wall width Lw (middle panel) of the kink solution, and the integral
f (bottom panel) appearing in the Euclidean action. The numerically
computed values are presented along with the fitted curves, as well as
the residuals

vergent perturbative corrections. The process is largely anal-
ogous to Newton’s method for finding roots of functions.
Here, we iteratively determine functional corrections to the
ansatz form.

4.1 Perturbative corrections to the ansatz

We first note that along the trajectory in field space from the
false vacuum to the true vacuum, the magnitude of any of
the fields in φ = {φi (ρ)} generically does not exceed the
distance between the two minima. That is,
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|φi (ρ)| � |vtrue − vfalse|. (14)

If we rescale our fields as described in Sect. 3, the distance
between the ansatz and the actual solution is bounded by 1,
but is usually much smaller than 1. (This is illustrated with
the concrete example presented in Sect. 5.) Let us call the
ansatz to φi , Ai with correction εi , so that φi = Ai + εi .
Applying this to Eq. (3) yields

∂2Ai

∂ρ2 + ∂2εi

∂ρ2 + 2

ρ

∂Ai

∂ρ
+ 2

ρ

∂εi

∂ρ

= ∂V (φ)

∂φi

∣∣∣∣
A

+
∑
j

∂2V (φ)

∂φi∂φ j

∣∣∣∣
A

ε j (15)

where A ≡ {Ai }. We can then rearrange the above to separate
terms that depend only on the ansatz forms from those involv-
ing the unknown correction functions, εi . This leaves us with
a set of coupled inhomogeneous differential equations for εi :

∂2εi

∂ρ2 + 2

ρ

∂εi

∂ρ
− ∂2V (φ)

∂φi∂φ j

∣∣∣∣
A

ε j = Bi (ρ). (16)

Here the functions Bi (ρ) are the inhomogeneous part of the
differential equations for εi , and they are given by

Bi (ρ) ≡ ∂V (φ)

∂φi

∣∣∣∣
A
− ∂2Ai

∂ρ2 − 2

ρ

∂Ai

∂ρ
. (17)

One can see that the value of the functions Bi represents how
well the ansatz forms solve the equations of motion. This
can be seen not only as the definition of Bi are the equa-
tions of motion where the fields are taken to be Ai , but also
because if Bi were zero, then the differential equations for
the corrections to the ansatz εi would become homogeneous.

We can linearize and approximately solve these differen-
tial equations analytically by approximating the mass matrix
by a series of step functions with a correction which we will
use to form the convergent series of perturbations. Consider-
ing only the homogeneous case (Bi = 0), Eq. (16) is solved
by introducing ε of the form

ε ∼ zeλρ

ρ
. (18)

This will reduce the equation to an eigenvalue problem in the
mass matrix. It is therefore convenient to define the homo-
geneous solutions with the notation

εhik = zikeλkρ

ρ
(19)

where the index i refers to field φi , and the index k will
run over the n eigenvalues of the mass matrix, and k is not
summed over. Substituting εhik for εi in Eq. (16) with Bi = 0
yields
∑
j

Mi j z jk = λ2
k zik (20)

where M is the mass matrix

Mi j = ∂2V (φ)

∂φi∂φ j

∣∣∣∣
A

. (21)

In this way, zik is the i th element of the eigenvector of M that
has eigenvalue λ2

k . It is necessary, however, to use both posi-
tive and negative roots, ±λk . Thus we must further introduce
λ̃ j and z̃i j with

λ̃1 = λ1, λ̃2 = −λ1, λ̃3 = λ2, . . . (22)

z̃i1 = zi1, z̃i2 = zi1, z̃i3 = zi2, z̃i4 = zi2, . . . (23)

so that in λ̃ j and z̃i j , the index j = 1, 2, . . . , 2n. Finally, we
use the techniques described in [49] to arrive at the particular
solution,

ε
≶
i =

2n∑
j=1

n∑
k=1

z̃i j
eλ̃ j ρ

ρ

(∫ ρ

0
te−λ̃ j t h jk B

≶
k (t) dt − β

≶
j

)
.

(24)

In the above, the functions Bk are defined in Eq. (17), and

the constants β
≶
j are determined by boundary and matching

conditions. The constants h j k that appear in the integrand
are determined by the 2n2 constraint equations

2n∑
j=1

z̃i j h jk λ̃ j = δik, (25)

2n∑
j=1

z̃i j hik = 0 . (26)

Each of the above equations aren×n matrix equations, giving
2n2 total constraints.

To account for the corrections to the mass matrix we rela-
bel the solution we found ε0

i , substitute into the differential
equations εi = ε0

i +δεi + . . . and restore ηi j (ρ) in the differ-
ential equations. Keeping only terms to first order we write

∂2εi

∂ρ2 + 2

ρ

∂εi

∂ρ
− ∂2V (φ)

∂φi∂φ j

∣∣∣∣∣
A

ε j = Bi (ρ),

∂2δεi + ε0
i

∂ρ2 + 2

ρ

∂δεi + ε0
i

∂ρ
−

(
δε j + ε0

j

) (
M̄i j + ηi j

) = Bi (ρ).

(27)

Since ε0
i solve the initial differential equations in terms of

M̄i j by definition we can make an immediate simplification.
Keeping only terms up to first order in our expansion we then
write

∂2δεi

∂ρ2 + 2

ρ

∂δεi

∂ρ
− δε j M̄i j − ηi jε

0
j = 0,

∂2δεi

∂ρ2 + 2

ρ

∂δεi

∂ρ
− δε j M̄i j = ηi jε

0
j . (28)
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This once again is a set of coupled linear differential equa-
tions which has the same form as the original set of differ-
ential equations. So the solution is the same as before with
ηi jε

0
j replacing Bi . One then finds the series of δεk up to a

desired tolerance to find each value of εi . This process con-
tinues until the equations of motion are satisfied up to the
desired tolerance.

4.2 Observations on convergence

Newton’s method is well known to have four major issues.
In our analogous form, these issues would be:

1. If the initial ansatz function is too far from the true func-
tion, convergence will be slow.

2. Oscillating solutions where ε(n)(ρ) ≈ −ε(n+1)(ρ).
3. Divergent corrections that arise in Newton’s method if

the function’s derivative becomes undefined or zero. The
equivalent issue will be discussed in detail below.

4. Being in the wrong basin of attraction and converging to
the wrong function.

We will demonstrate that our method as applied here does
not suffer from these problems with the exception of issue
4, where in principle a local minimum could be closer to
the initial ansatz than the closest bounce-like extrema. This,
however, is a limitation of all other known algorithms for
finding bubble wall profiles. Meanwhile, we have already
demonstrated in Sect. 4.1, our that our algorithm is free from
the first problem as the guess of the initial ansatz ensures that
the error functions are generically bounded by 1 (but should
be much less than 1). For the remaining two issues, a little
more care is needed.

Let us examine the issue of oscillating solutions. Let the
updated function be

A(n)
i = A(0)

i +
n−1∑
k=1

ε
(k)
i , (29)

where A(0)
i is the initial ansatz and ε

(k)
i are the correction

functions. Suppose that, for field φi , the successive cor-
rection functions begin oscillating at iteration n, so that
ε
(n)
i = −ε

(n+1)
i . But this means that the equations of motion

for A(n+2)
i = A(n)

i + ε
(n)
i + ε

(n+1)
i can be written before

Taylor expanding as

∂2[A(n)
i + ε

(n)
i + ε

(n+1)
i ]

∂ρ2 + 2

ρ

∂[A(n)
i + ε

(n)
i + ε

(n+1)
i ]

∂ρ

+ ∂V (φ)

∂φi

∣∣∣∣{
A(n)
k +ε

(n)
k +ε

(n+1)
k

}

Fig. 3 The tunneling trajectory in the space of the x and y fields at the
level of the base ansatz (solid straight line), and including the first three
iterative corrections (solid curved lines). Also included is the numerical
result, independent of our semi-analytic method, from Ref. [43] (dashed
curve)

= ∂2A(n)
i

∂ρ2 + 2

ρ

∂A(n)
i

∂ρ
+ ∂V

∂φi

∣∣∣∣{
A(n+2)

1 ,...,A(n)
i ,A(n+2)

i1
,...

} = 0.

(30)

Thus, in the case of a single field, an oscillating solution
means that corrected field at the order where oscillation
begins has solved the equations of motion exactly. In the
multi-field case, as the fields φ j �=i converge without oscillat-
ing corrections, the changes to the derivative of the poten-
tial energy will diminish and thus will resemble the single-
field case. In the case that more than one field has begun to
receive oscillating corrections, this could prevent a rapid con-
vergence but does not necessarily preclude it as the equations
for the fields are still coupled.

In Newton’s method of finding roots, a major issue is when
the derivative of the function becomes zero or undefined. The
closest analogy to our method is the case where the mass

matrix ∂2V (φ)
∂φiφ j

∣∣∣
A(n)

becomes zero or singular. In fact this is

not an issue, as we can demonstrate. In the case that the mass
matrix is zero, the differential equations become

∂2εi

∂ρ2 + 2

ρ

∂εi

∂ρ
= Bi (ρ). (31)

This is easily solved as

εi = β0 + β−1

ρ
+

∫ ρ

0

dy

y2

∫ y

0
x2B(x) dx (32)

where β0 and β−1 are both zero if the mass is zero every-
where. The case to consider is when the mass matrix is sin-
gular. This in fact does arise quite typically at some spatial
points, but this is not a problem because the matrix inverse
is not needed, and zero eigenvalues can be treated easily by
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Fig. 4 The base ansatz form, first three iterations of corrections and
the full numerical result of the x and y fields are presented in the top left
and top right panels, respectively. The first three iterative corrections

to the ansatz form of the x and y fields are given in the bottom left and
bottom right panels, respectively

using singular value decomposition or strategic placement of
the step functions. Also, this issue is avoided if the full inho-
mogeneous differential equation is directly solved numeri-
cally.

5 Comparison with a solved example

We apply our method with the sample potential given in [43]

V (x, y) = (x2 + y2)
[
1.8(x − 1)2 + 0.2(y − 1)2 − δ

]
.

(33)

For δ = 0.4 the potential deforms quite dramatically from
the initial Ansatz so the convergence will be slower than for a
typical case. We make a rotation in field basis (x, y) �→ (u, v)

such that u traces a straight line path from the origin to the
global minimum and v is of course orthogonal to u. Our one
dimensional potential is then given writing the potential in
the rotated basis and setting v to zero. We then rescale such

that the minimum is at u = 1 and then we divide by |E | to
get

V (u, 0)

|E | = 0.36u2 − u3 + 0.57u4. (34)

We then use our analytic formulas to write the ansatz and
make the appropriate rescalings to u(ρ) and ρ such that the
ansatz is the solution to the original 1D potential. In the (x, y)
basis the ansatz is

x(ρ) = 1.046

(
1 − tanh

[
ρ − 0.437

1

])
, (35)

y(ρ) = 1.663

(
1 − tanh

[
ρ − 0.437

1

])
. (36)

Note that the wall width is only equal to 1 due to the rescaling.
We have to sanitize our initial ansatz to set the derivative to
zero as ρ �→ 0 or the correction diverges due to the φ′/t term
in the differential equations. To achieve this we subtract from
our initial ansatz
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Fig. 5 The error function, B, of the ansatz solution x0 when applied to the field equations, and the same for the ansatz solution including the first
three perturbative corrections denoted by x (n) = x (n−1) + ε(n)

δx(ρ) = ∂x

∂ρ

∣∣∣∣
ρ=0

exp

[
− ∂x

∂ρ

∣∣∣∣
ρ=0

ρ

]
, (37)

δy(ρ) = ∂y

∂ρ

∣∣∣∣
ρ=0

exp

[
− ∂y

∂ρ

∣∣∣∣
ρ=0

ρ

]
. (38)

If one uses a small amount of step functions to approximate
the spacetime dependent mass matrix one can find that the
corrections δεi are slowly converging. In particular it is use-
ful to have step functions for regions where m12(ρ) = 0 and
m2

i < 0 as the functional form of the solutions changes in
these regions. In the former the differential equations decou-
ple for a region, for the latter, some of the exponents αi are
imaginary (but the εi (ρ) remains real).

In Fig. 3 we show each iteration of the trajectory in the
(x(ρ), y(ρ)) field space, along with the numerical trajectory
as derived in [43]. The algorithm essentially converges after
3 perturbations. In Fig. 4 we show the x and y fields starting
with the base ansatz forms x (0) and y0, and then including
the first three perturbative corrections, denoted by

φ(n)(ρ) = φ(n−1)(ρ) + ε
(n)
φ (ρ), with φ = x, y. (39)

Figure 4 also includes the error functions ε
(n)
φ (ρ) to illustrate

the overall and diminishing magnitude of corrections to the
fields in successive perturbations.

In Fig. 5 we show the error function to the ansatz for the
x field, Bx (ρ), which arises from the inhomogeneous part of
Eq. (16). The error function is given for the bare ansatz solu-
tion of x(ρ) and the first three perturbative corrections. We
point out that the magnitude of the error is reduced by roughly
a factor of 5–10 from each perturbative correction, and that
the error function for x (3)(ρ) has reduced in magnitude by a
factor of 300 compared to that of x (0)(ρ).

6 Conclusion

In this work we presented a new method to calculate the
bubble profile in a bounce solution for a multi-field poten-
tial with a false vacuum. The method uses fitted functions
to estimate the parameters of the single-field kink solution
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which is used as an ansatz form. It then applies this form
to the full multi-field potential, which receive perturbative
correction functions that are reduced to elementary numeri-
cal integrals. We have argued that the perturbative series of
corrections should converge quadratically, and is immune to
the issues of the analogous Newton’s method. This method is
shown to be effective in solving a toy model with two scalar
fields.
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Chapter 6

Particle cosmology in the NMSSM

6.1 Introductory remarks

The discovery of a Higgs boson of 125 GeV [107, 108] was the completion of the
Standard Model and one of the most remarkable discoveries of the last century. It
also makes electroweak baryogenesis difficult in the MSSM [47] and impossible in
the Standard Model [109]. For the Standard Model the issue is that the electroweak
phase transition is not strongly first order for a Higgs mass heavier than ∼ 40 GeV.
Finally the Standard Model has no dark matter candidate and it is difficult for the
Higgs to catalyze inflation.

For the MSSM such a heavy Higgs requires some amount of fine tuning – this
is known as the little hierarchy problem [110]. Furthermore the MSSM requires
light stops to catalyze a strongly first order electroweak phase transition which is
virtually incompatible with collider searches. The NMSSM can catalyse a strongly
first order phase transition through a weak scale singlet. Furthermore, the LSP
provides a good dark matter candidate and there are many flat directions which can
be exploited to catalyze inflation. In this work I explore the parameter space to
verify the compatibility of the NMSSM these three pillars of particle cosmology –
electroweak baryogenesis, dark matter and inflation.
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1 Introduction

Beyond the Standard Model (BSM) particle physics should aspire to include the following

three cosmological cornerstones.

1. Inflation can explain the current temperature anisotropy in the cosmic microwave

background (CMB) radiation measured by the Planck satellite [1]. Since inflation

dilutes matter, the end of inflation must excite all the relevant Standard Model (SM)

degrees of freedom without any excess of dark matter and dark radiation, along

with the seed initial perturbations for the structure formation. This can be achieved

minimally by embedding inflation within a visible sector of BSM, such as the Minimal

Supersymmetric Standard Model (MSSM) [2–4]. For a review on inflation, see [5].

2. Dark matter is required to form the observed large scale structures of the Universe [6].

The lightest supersymmetric particle (LSP) is an ideal dark matter candidate since it

is a weakly interacting massive particle (WIMP), and its interactions with the super-

partners are sufficient to keep them in thermal bath until they decouple due to the

expansion of the Universe and their abundance freezes out [7]. The thermal WIMP

scenario is attractive due to its predictive power in estimating the abundance of the

dark matter and potential link to the weak scale. Within the MSSM the neutralino

plays this role of dark matter ideally. For reviews on dark matter, see [8, 9].

– 1 –
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3. Baryon asymmetry, at the observed level of one part in about 1010, is necessary to

realize Big Bang nucleosynthesis [10]. This asymmetry can be achieved by satisfying

the three Sakharov conditions [11]: baryon number (B) violation, charge (C) and/or

charge-parity (CP ) violation, and the out-of-equilibrium condition. These ingredients

are present within the SM, but with a 126 GeV Higgs the model lacks sufficiently

strong first order phase transition to keep the baryon asymmetry intact. For a review

on baryon asymmetry, see [12].

The MSSM provides all three ingredients, however the electroweak baryogenesis in its

context is becoming more and more constrained by the LHC data. In the simplest MSSM

electroweak baryogenesis scenario (where the CP-violating phases catalyzing the asymme-

try reside in the gaugino sector) it is getting hard, if not impossible, to generate enough

asymmetry with a 126 GeV standard-like Higgs boson in a natural manner [13]. So we

turn our attention to the electroweak baryogenesis in the Next to Minimal Supersymmet-

ric Standard Model (NMSSM). (For a review on the NMSSM, see [14].) The NMSSM has

more flexibility as it introduces a new Standard Model gauge singlet which helps achieving

a strongly first order electroweak phase transition, since the order parameter is now deter-

mined by the singlet sector and becomes essentially independent of the Standard Model-like

Higgs mass.

In this work, we present a highly efficient algorithm to delineate regions of the NMSSM

with strongly first order phase transition. After finding these regions we reject model points

where the neutralino relic abundance exceeds the upper limit imposed by Planck by more

than 3σ. Some of the dark matter particles, in particular those with high singlino fraction,

tend to escape the most stringent bounds given by the XENON100 [15] and TEXONO [16]

direct detection experiments, but they fall close to the regions where tantalizing positive

signals from DAMA [17, 18], CoGeNT [19], CRESST-II [20] and CDMS [21] could be

potentially explained by dedicated search of light DM. The NMSSM singlet sector can

also affect other properties of dark matter. With a sizable singlino fraction the lightest

neutralino can be very light even in the presence of heavy super-partners [22, 23].

The joint parameter space for satisfactory neutralino dark matter and first order elec-

troweak phase transition has been studied in [24]. Here we supersede that study by a new

algorithm for finding regions where electroweak baryogenesis can be successful, by consid-

ering the parameter space for neutralino dark mater and successful inflation driven by the

MSSM squarks, and updating all experimental constraints, especially the vital Higgs limits

from the LHC [25, 26].

In the next section we briefly summarize the relevant features of the NMSSM. In

section 3 we examine the baryon washout condition and derive an algorithm to find regions

of its parameter space satisfying a strongly first order electroweak phase transition. In

section 4 we summarize the constraints applied to the theory, and in 4.1 we show model

points jointly satisfying inflation, baryogenesis, and dark matter abundance. We discuss

implications on inflation in 5 and finally conclude.
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2 The next-to-minimal supersymmetric standard model

In this work we consider the Z3 conserving, scale invariant, version of the the Next-to-

Minimal Supersymmetric Standard Model [27, 28] which is defined by the superpotential

(see, for instance, ref. [14])

W = WMSSM|µ=0 + λŜĤuĤd +
1

3
κŜ3. (2.1)

Above WMSSM|µ=0 is the MSSM superpotential without the µ term (as defined in ref. [29])

and Ĥu,d (Ŝ) are SU(2) doublet (singlet) Higgs superfields: Ĥu = (Ĥ+
1 , Ĥ

0
1 )T , Ĥd =

(Ĥ0
2 , Ĥ

+
2 )T . The superscript in Ĥ±,0i denotes the electric charge of the component. The

corresponding soft supersymmetry breaking scalar potential

Vsoft = V MSSM
soft |B=0 + V NMSSM

soft (2.2)

contains the MSSM soft terms with B set to zero [29] and

V NMSSM
soft = m2

s|S|2 − λAλSHuHd +
1

3
κAκS

3 + h.c. (2.3)

Here Hu,d and S denote the scalar components of the neutral Higgs superfields. During

electroweak symmetry breaking the neutral components of these will acquire a non-zero

vacuum expectation value.1 The MSSM terms above are [29]

V MSSM
soft |B=0 = V MSSM

softH + Vscalar + Vgaugino + Vtri. (2.4)

It is important for electroweak baryogenesis that the Higgs potential

V = VD + V MSSM
softH + V NMSSM

soft + V NMSSM
H , (2.5)

receives contributions both from the MSSM

VD =
g2

1 + g2
2

8
(H2

u −H2
d)

2, (2.6)

V MSSM
softH = m2

Hu |Hu|2 +m2
Hd
|Hd|2, (2.7)

and the NMSSM

V NMSSM
H = λ2|S|2(|Hu|2 + |Hd|2) + λ2|HuHd|2 + κ2|S|4

+ κλS2H∗uH
∗
d + h.c. (2.8)

While λ is a free parameter, perturbativity up to the Grand Unification Theory scale

restricts it below 0.7. In this work we respect this limit and do not take λ higher. The

cubic singlet coupling κ breaks the global U(1) Peccei-Quinn symmetry [34], and when κ

1In this version of the NMSSM the formation of cosmological domain walls during electroweak symmetry

breaking is a concern. The solution of the domain wall problem has been discussed, amongst others, in

refs. [30–33]. It has been shown by Panagiotakopoulos and Tamvakis that the cosmological domain wall

problem is eliminated after imposing a Z2 R-symmetry on the non-renormalizable sector of the NMSSM.

– 3 –
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vanishes this symmetry is restored. For simplicity, in this work we consider the limit where

κ is small, that is the Peccei-Quinn limit. This limit is also motivated by the desire to

obtain a light dark matter candidate, as indicated in the next paragraph.

In this work we the lightest neutralino is the dark matter candidate. Neutralinos in the

NMSSM are admixtures of the fermionic components of five superfields: the U(1)Y gauge

boson B̂, the neutral component of the SU(2)L gauge boson Ŵ3, the neutral components

of each Higgs doublet Ĥu and Ĥd, and the singlet Ŝ. The mass of the lightest neutralino

originates from soft supersymmetry breaking

Vgaugino =
1

2
(M1

¯̃BB̃ +M2
¯̃WiW̃i +M3

¯̃GaG̃a), (2.9)

where the fields above are the fermionic components of the vector superfields. The admix-

ture of the lightest neutralino is controlled by the neutralino mass matrix which, in the

(−iB̃,−iW̃3, H̃d, H̃u, S̃) basis, is given by the symmetric matrix [14]

Mχ̃ =




M1 0 −g1〈Hd〉√
2

g1〈Hu〉√
2

0

M2
g2〈Hd〉√

2
−g2〈Hu〉√

2
0

0 −λ〈S〉 −λ〈Hu〉
0 −λ〈Hd〉

κ〈S〉




. (2.10)

Here g1,2 are the U(1)Y and SU(2)L gauge couplings, and 〈X〉 denote vacuum expectation

values. To obtain the mass eigenstates, we have to diagonalize the neutralino mass matrix.

This can be done with the help of a unitary matrix Nij whose entries provide the mixing

amongst gauginos, higgsinos and the singlino. The lightest neutralino, for example, is

given by:

χ̃0
1 = N11B̃ +N12W̃

0 +N13H̃
0
d +N14H̃

0
u +N15S̃, (2.11)

where |N11|2 gives the bino, |N12|2 the wino, |N13|2 + |N14|2 the higgsino and |N15|2 the

singlino fraction. When, for example, κ〈S〉 is the smallest entry of the mass matrix, the

lightest neutralino tends to be singlino dominated. Alternatively, a small M1 entry can

render the lightest neutralino to acquire mostly bino admixture.

3 Baryon asymmetry

As mentioned above, three conditions have to be met to generate baryon asymmetry: B

violation, C and/or CP violation, and departure from thermal equilibrium. Remarkably,

these conditions can be met in the Standard Model of particle physics. The difference of

the baryon and lepton numbers, B − L, is an exactly conserved quantity in the SM (and

within NMSSM). While at low temperatures B and L are individually conserved with a

good approximation, at very high temperatures baryon number violation in unsuppressed

through sphaleron processes [12, 35]. Unfortunately, there is not enough CP violation in

the standard CKM matrix to generate the observed baryon asymmetry. In the NMSSM,

– 4 –
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sufficient amount of CP violation can be added to the gaugino and singlino sectors. Pro-

vided that the third Sakharov condition is met, it is possible to generate the observed

asymmetry in the NMSSM. In this paper we focus on the latter: where in the NMSSM

parameter space a strong first order electroweak phase transition can be achieved?

At very high temperatures electroweak symmetry is restored [36]. As the Universe

cools, the electroweak symmetry is broken during the phase transition. If the phase tran-

sition is first order, the electroweak symmetry is broken through tunneling processes. This

occurs when the effective potential has degenerate minima {0, ϕc}, where ϕ denotes the

Higgs vacuum expectation value (VEV). In such a case bubbles of broken phase grow in

the otherwise symmetric vacuum, until the phase transition is complete and symmetry

is broken everywhere in the Universe. Within the symmetric phase sphaleron processes,

and therefore baryon violating processes are unsuppressed whereas they are exponentially

dampened within the broken phase. The C and CP violating processes near the bubble

walls can create a large baryon asymmetry. If the phase transition is strongly first order

the baryon asymmetry will be preserved [12]. To this end we require [37–47]

Tc
ϕc
≡ γ . 1, (3.1)

where Tc is the temperature at which the effective potential obtains degenerate minima.

This is known as the baryon washout condition. Equation (3.1) only approximately quan-

tifies the baryon washout. A more precise condition can be obtained in the gauge invariant

formalism of electroweak baryogenesis [48, 49]. The Standard Model cannot satisfy the

baryon washout condition for a Higgs like particle of mass about 125 GeV [50–52]. This

experimental constraint also all but rules out electroweak baryogenesis in the MSSM [53].

Recent work however has suggested that the NMSSM is compatible with a strongly first or-

der phase transition and the observed Higgs mass [54]. As noted before the baryon washout

condition is not the only hurdle that prevents the Standard Model from being consistent

with electroweak baryogenesis, there is also the issue of insufficient CP violation. Here

we focus on the baryon washout condition and postpone the detailed investigation of the

relevant CP violating phases in the NMSSM to a later work.

3.1 The scalar potential at high temperature

Previous analysis of the electroweak phase transition within the NMSSM near the Peccei-

Quinn limit found that the parameter space that satisfies the baryon washout condition

is heavily constrained [54]. Seeing as we also wish to satisfy other, in some cases rather

strict, experimental and cosmological constraints, we are motivated to find a numerically

efficient way of finding regions of parameter space that allow for a strongly first order

phase transition. In a prior analysis, Wagner et al. considered a toy model which included

the tree level effective potential of the NMSSM at the Peccei-Quinn limit with the largest

temperature corrections. Our strategy will be to derive a semi-analytic solution to the toy

model from ref. [54] and consider higher order temperature corrections, loop corrections

and small deviations from the so called Peccei-Quinn limit as perturbations to the toy

model solution. If we only scan regions of parameter space where our approximations hold,

– 5 –
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it is numerically efficient to produce a very large volume of points that easily satisfy all of

our cosmological and experimental constraints.

The one loop temperature corrections to the effective potential are:

V (T,m± 1) = g± ∓
T 4

2π2

∫ ∞

0
dxx2 log

(
1± e−

√
x2+

m(φ)2

T2

)
, (3.2)

where g± is the number of fermionic or bosonic degrees of freedom respectively. Similarly

the argument is + for fermions and − for bosons. The high temperature expansion is up

to an overall temperature dependent constant [55]

V (T,m,+1) ∼ g+m
2(φ)T 2

24
− g+[m(φ)2]3/2(φ)T

12π
− g+m(φ)4

64π2
log

(
m(φ)2

abT 2

)

≡ g+m
2(φ)T 2

24
− g+[m(φ)2]3/2(φ)T

12π
+ ∆VT ,

(3.3)

for bosons, and

V (T,m,−1) ∼ g−m2(φ)T 2

48
+
g−m(φ)4

64π2
log

(
m(φ)2

afT 2

)

≡ g−m2(φ)T 2

48
+ ∆VT , (3.4)

for fermions. Here ab = (4πe−γE )2 and af = (πe−γE )2. We have also identified the log term

as ∆VT to highlight that these terms will be treated as a perturbation. To keep notation

compact, all small temperature corrections that are not included in our toy model (i.e. the

ones that we treat as a perturbation) and their sum we denote as ∆VT . It should be noted

that the high temperature approximation for the one loop temperature corrections cannot

be assumed to be valid. Indeed it is only valid when m(φ)/T . 2.2 and 1.9 for bosons

and fermions respectively. Our numerical scans stay away from this limit, we generally

have m(φ)/T . 1.5. The temperature dependent effective potential is a function of the

Higgs field and the singlet field which we denote ϕS . (We also use the short hand that

ϕ ≡
√
H2
u +H2

d .) Within one loop accuracy under the high temperature expansion, it is

given by

V (ϕ,ϕs, T ) = V T + ∆VS + ∆Vloop + ∆VT . (3.5)

Here we have defined ∆Vloop as the loop corrections, ∆VS as the terms that violate the

Peccei-Quinn limit (which is approximately κAκϕ
3
s/3). The term V T is the toy model

effective potential from ref. [24], which is given by

V T = M2ϕ2 + cT 2ϕ2 − ETϕ3 +m2
sϕ

2
s + λ2ϕ2

sϕ
2 − 2ãϕ2ϕs +

λ̃

2
ϕ4 , (3.6)

– 6 –
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where

M2 = m2
Hu cos2 β +m2

Hd
sin2 β,

ã = λAλ sinβ cosβ,

λ̃

2
=
g2

1 + g2
2

8

(
cos2 β − sin2 β

)2
+ λ2 sin2 β cos2 β +

δλ̃

2
. (3.7)

In the last equation the parameter δλ̃ acquires large loop corrections from the stop mass.

Note that we have not included any temperature corrections to the bare mass of the singlet.

Therefore our scheme is valid in the region where

λϕs
γϕc

& 1.9 . (3.8)

In the region where temperature corrections to the bare singlet mass become important it

is possible for a first order phase transition to occur when m2
s < 0. These points however

are relatively rare and we lose little in ignoring them.

We recall that at the critical temperature the effective potential obtains degenerate

minima with one minima at ϕ = 0. It is easy to see that V (0, 0, T ) = V T(0, 0, T ) = 0. Let

the critical temperature and the non zero VEV at this temperature for our toy model be

denoted by Tc and ϕc, respectively. It is also useful to define γ̃ = T/ϕ for T 6= Tc. Note

that V can be written as a function of ϕ, ϕS and γ̃. We will denote the fields, ϕx, away from

the respective minima as ϕ̃x. Let us assume that V is continuous in its three arguments

near the critical temperature. It is then apparent that V (ϕc + δϕc, ϕ̃s + δϕs, γ + δγ) = 0,

where the non trivial VEV of the full temperature dependent potential at the critical

temperature is a small perturbation to the tree level critical VEV, ϕc + δϕc. Similarly, the

singlet VEV at the critical and the inverse order parameter both obtain small corrections,

δϕs, δγ, respectively. From the small change formula in three variables, we can write:

V (ϕc + δϕc, ϕ̃s + δϕ̃s, γ + δγ)

≈ V T(ϕc, ϕ̃s, γ) + (∆VT + ∆Vloop + ∆VS)|ϕc,ϕ̃s,γ

+
∂V T

∂ϕ̃

∣∣∣∣
ϕc,ϕs,γ

δϕc +
∂V T

∂ϕ̃s

∣∣∣∣
ϕc,ϕs,γ

δϕs +
∂V T

∂γ̃

∣∣∣∣
ϕc,ϕs,γ

δγ . (3.9)

The first term on the right hand side of the above equation is identical to zero for the

reasons discussed above. Furthermore, the derivative of our toy model effective Lagrangian

with respect to either ϕ or ϕc is also zero by definition when the derivative is evaluated

at its minimum. Setting the left hand side of the above equation to zero and defining

∆V ≡ ∆T + ∆S + ∆loop, we can then write:

δγ = −∆V

/
∂V T

∂γ̃

∣∣∣∣
ϕc,ϕs,γ

. (3.10)

Noting that ∂ϕ/∂γ̃ = −ϕ/γ̃, we can write

∂V

∂γ̃
=

2Gϕ2

γ̃
− 2cγ̃ϕ4 − 2λ̃ϕ4

γ̃
+ 3Eϕ4 +

ã2ϕ4(4m2
s + 2λ2ϕ2)

γ̃(m2
s + λ2ϕ2)2

. (3.11)

– 7 –



J
H
E
P
0
1
(
2
0
1
4
)
0
7
3

Finally we solve our toy model. We begin this calculation by insisting that the zero

temperature VEV is v = 174 GeV. This gives us the relation:

−M2 = v2

(
λ̃− ã2(2m2

s + λ2v2)

(m2
s + λ2v2)2

)
≡ G . (3.12)

Using the condition of degenerate minima occurring at a critical temperature, it is easy to

derive the following equation

0 = − λ̃
2

+ γE − cγ2 +

√
ã2(λ̃− γE)
√

2ms

+
λ2G

−m2
s +

√
2ã2m2

s

λ̃−γE

≡ F (γ) . (3.13)

The details of this calculation are given in the appendix. Note that, apart from γ, this

equation is a function of only four parameters: {ms, λ, Aλ, tanβ}. We therefore calculate

δγ for values of {ms, λ, Aλ, tanβ} such that F (γ + δγ) is significantly smaller than any

of its five components. We ensure that all components of ∆V are small compared to the

derivative of V T with respect to gamma evaluated at the vev at the critical temperature.

Finally we insist that δγ . 0.4. The baryon washout condition is satisfied for γ + δγ . 1.

4 Constraints applied

To find regions consistent with experiment we used micrOMEGAs2.4 [56–58] coupled to

NMSSMTools [59] to calculate observables and performed a scan over NMSSM parameter

ranges shown in table 2. Most importantly, we require the dark matter relic abundance to

be consistent with Planck along with the constraint of strongly first order electroweak phase

transition of eq. (3.13). Additionally, we impose current limits from various experiments,

as we enumerate them below.

• Relic abundance: we require that model points satisfy an upper limit on dark matter

relic abundance observed by the Planck satellite, i.e. Ωχ̃0
1
h2 < 0.128 [1]. We find that

in large part of the parameter space the lightest neutralino is not enough to account

for the total Planck measured value, and multi-component dark matter should be

considered. The points which pass the Planck constraint within 3σ CL i.e. 0.1118 <

Ωχ̃0
1
h2 < 0.128 [1] are highlighted.

• Higgs mass: we impose the LHC bound on the Higgs boson mass by taking the

combined theoretical and experimental uncertainties within the following range, i.e.

121.5 < mh < 129.5 GeV.

• Direct dark matter detection: we illustrate the bounds on a neutralino-nucleon inter-

action cross-section as measured by the XENON100 experiment [15] and CRESST-

II [20]. We also consider the projected bounds of XENON1T [60] and LUX [61].

These bounds are derived using standard assumptions, i.e. dark matter density in

the Galactic halo ρχ̃0
1

= 0.3 GeV/cm3, the circular velocity v = 220 km/s and the

Galactic escape velocity vesc = 544 km/s [62].
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Quantity Value Source

Ωχ̃0
1
h2 < 0.128 [1]

mh 125.5± 4 GeV [25, 26]

(mχ̃0
1

+mχ̃0
2
) > 209 GeV [14, 68]

B(Bs → µ+µ−)
(
3.2+1.5
−1.2

)
× 10−9 [63]

B(b→ sγ) (3.43± 0.22)× 10−4 [64]

δaµ (−2.4 : 4.5)× 10−9 [65]

ΓZ→χ̃0
1χ̃

0
1

< 3MeV [69]

mχ̃+
1

> 103.5 GeV [66]

Table 1. List of the experimental constraints which we imposed in our NMSSM scan.

• Flavour physics: we enforce limits on the branching ratios of flavour violating decays,

B(Bs → µ+µ−) =
(
3.2+1.5
−1.2

)
× 10−9 [63] and B(b → sγ) = (3.55 ± 0.26) × 10−4 [64].

Baryogenesis does not conflict with these constraints, since these processes are en-

hanced for large values of tanβ while electroweak baryogenesis in the NMSSM has a

preference for moderate tanβ values [24].

• Muon anomalous magnetic moment : we require the supersymmetric contribution to

gµ − 2 to be in the range: −2.4× 10−9 < δaSUSYµ < 4.5× 10−9 [65].

• Chargino mass: we take the lower LEP bound on a mass of chargino to be mχ̃+
1
>

103.5 GeV [66].2 A null result in LEP searches on a process e+e− → χ̃1χ̃j with j > 1,

sets an upper bound on the neutralino production cross-section σ(e+e− → χ̃1χ̃j) .
10−2pb [14], which can be translated into (mχ̃0

1
+ mχ̃0

2
) > 209 GeV [68]. This limits

the mass of the lightest neutralino from below.

• Invisible Z boson decay width: in the light neutralino regions where mχ̃0
1
< MZ/2,

one has to take into account of the invisible decay width of Z boson into neutralinos.

Analytical expression for this process is given by [14]:

ΓZ→χ̃0
1χ̃

0
1

=
M3
ZGF

12
√

2π
(N2

13 +N2
14)2

(
1−

4m2
χ̃0

1

M2
Z

)3/2

, (4.1)

where N2
13 and N2

14 are Higgsino fractions coming from eq. (2.11). This relationship

is derived assuming three massless neutrinos. In order to satisfy this constraint the

lightest neutralino must mostly be either a bino, a wino, or a singlino with minimal

or no admixture from higgsinos.

Our constrains are summarized in table 1.

2We used a general limit on the chargino mass, however for possible caveats, see ref. [67].
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Parameter Range

λ [0 : 0.7]

Aλ [0:10000] GeV

tanβ [1:65]

µ [0 : Aλ cosβ sinβ] GeV

Aκ · κ [0 : 0.01] GeV

M1 [10:3000] GeV

M2 [10:4000] GeV

M3 [800:6000] GeV

mẽL = mµ̃L = mτ̃L 6000 GeV

mẽR = mµ̃R = mτ̃R 6000 GeV

m
Q̃1L

= m
Q̃2L

6000 GeV

m
Q̃3L

3300 GeV

mũR = mc̃R 6000 GeV

mt̃R
4000 GeV

m
d̃R

= ms̃R = m
b̃R

6000 GeV

At -5000 GeV

Aτ -2500 GeV

Ab -2500 GeV

Table 2. Scan ranges and fixed values of the NMSSM parameters. The upper bound on µ comes

from our requirement for m2
s to be positive. The first four parameters are constrained by the

strongly first order phase transition. We vary the gaugino masses in order to explore the dark

matter phenomenology and inflation, which we shall discuss below.

4.1 Scanning the parameter space for dark matter and first order phase tran-

sition

Table 2 shows the parameter ranges of our scan. We fixed the first and second genera-

tion sfermionic masses to high values in order to avoid large potential suspersymmetric

contributions to electron and nuclear electric dipole moments [70]. The masses of left and

right handed stops are adjusted to yield the measured value of the Higgs boson mass. We

varied the electroweak gaugino masses in a wide range to explore dark matter phenomenol-

ogy. Varying the gluino mass is important to determine the running of the ũd̃d̃ inflaton.

The selected ranges also guarantee that our spectrum does not conflict with the LEP [71],

ATLAS [72] and CMS [73] bounds on squarks and sleptons.

Figure 1 shows the bino (green dots), wino (red stars), higgsino (blue squares), and

singlino (pink diamonds) fractions of the lightest neutralino. We restrict the relic density

of the lightest neutralino below ΩCDMh
2 < 0.128 which is the upper value on the dark

matter abundance set by Planck at 3σ confidence level. As mentioned above, neutralinos

– 10 –
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Figure 1. Bino (green dots), wino (red stars), higgsino (blue squares), and singlino (pink diamonds)

components of the lightest neutralino for scanned model points. All points shown satisfy the

condition of the strongly first order electroweak phase transition and pass all constraints listed in

section 4. On the right hand panel we only show the points that fall within 3σ of the Planck central

value for the relic abundance of dark matter: 0.1118 < Ωχ̃0
1
h2 < 0.128 [1].

with masses mχ̃0
1
< mZ/2 have to have small higgsino fraction due to strict limits on the

invisible Z boson decay (from eq. (4.1)) and the mass of the lightest chargino. Also, light

dark matter regions are very fine tuned and require separate detailed analysis and more

sophisticated scanning techniques, see for instance, ref. [23].

The heavier neutralino can have a larger higgsino fraction. This is also connected to

the fact that the positivity of m2
s sets an upper bound on the parameter µ < Aλ cosβ sinβ,

which allows larger higgsino fraction in the lightest neutralino. As we shall argue in the next

paragraph this opens up more annihilation channels to satisfy the relic density constraint.

In figure 2, we show the dark matter relic density dependence on mχ̃0
1
. We only show

points for which the dark matter relic density to falls below the upper limit from Planck,

that is to satisfy Ωχ̃0
1
h2 < 0.128 at 3σ confidence level [1]. The peculiar clustering of the

points in this plot is understood as follows. The first, smaller group around mχ̃0
1
≈ 63 GeV

is due to neutralino annihilation through the 126 GeV Higgs. This resonant annihilation

depletes the neutralino abundance making it possible to satisfy the Planck bound. The

second, larger group of points originate from the lightest neutralinos with an enhanced

higgsino component coupling to Z boson. As this, and the previous, figure shows our model

points also have the potential to explain the origin of the 130 GeV γ-ray line observed from

the Galactic Centre in terms of the annihilation of a 130 GeV neutralino [74].

In figure 3, we show how spin independent dark matter-nucleon scattering experiments

probe the scenarios with the constraints listed in table 1 and F (γ) = 0, see eq. (3.13). The

points that are circled in black fall within the range 0.1118 < Ωχ̃0
1
h2 < 0.128 set by

Planck. It is interesting to note that quite a few points lie in the regions where LSP is

relatively light and dedicated searches for light neutralino DM potentially could explain

excess interactions in background detected by DAMA/LIBRA [17, 18], CRESST-II [20],

CoGeNT [19] and CDMS [21]. All the points with the smallest mχ̃0
1

have a large singlino

fraction, and are ruled out by XENON100 experiment. We also show the projected bounds

from the XENON1T and LUX experiments. These bounds are based on the assumptions

already mentioned in the 4 section.
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Figure 2. Relic abundance versus the mass of the dark matter particle for our scan. The blue lines

indicate the bounds on dark matter density implied by the Planck satellite: 0.1118 < Ωχ̃0
1
h2 < 0.128.

All the points satisfy the condition for a first order electroweak phase transition, as indicated by

eq. (3.13). They also pass all the constraints listed in section 4.

Figure 3. Spin independent direct detection cross section vs. mass of the neutralino in our scan.

The current bounds from XENON100 and the 2σ signal region from CRESST-II are shown. We

also show projected bounds for XENON1T and LUX experiments. The points where neutralino

relic abundance accounts for the full dark mattter content of the Universe measured by Planck

within 3σ, i.e. 0.1118 < Ωχ̃0
1
h2 < 0.128, are highlighted in black circles.
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Figure 4. Distribution of the parameters which are relevant for baryogenesis in our scan.

Since in most of the cases that we have found the relic abundance is significantly lower

than the set limits by the direct detection experiments, we need to lower the cross section

σSI by a factor (Ωχ̃0
1
/Ωobserved). Here we take the Planck central value Ωobserved = 0.1199.

As we see, most of the points that fall below XENON100 will be tested very soon by LUX

and XENON1T experiments.

In figure 4, we show how the relevant parameters that enter eq. (3.13) are distributed

in the scans. In the top left panel we can see that tanβ tend to cluster around lower values.

This is not because a higher tanβ is inconsistent with the baryon washout condition, just

that our approximations break down for the large tanβ so we avoided scanning those.

The breakdown is due to terms in ∆V that are tanβ dependent and for large tanβ can

make ∆V too large so that our assumption of ∆V being small is violated. Similarly the

upper bound on Aλ and λ is a relic of our approximations rather than any real difficulty

in satisfying the baryon washout condition in that parameter range. The lower bound on

λ, however, originates from baryogenesis since the low κ and low λ region is the MSSM

limit and it is difficult to satisfy the baryon washout condition in the MSSM for a Higgs

mass of 125 GeV [13]. We kept At = −5000 GeV fixed to be able to satisfy the Higgs

mass bound more easily. Values of µ are mainly within a 100-200 GeV range because, as

mentioned above, large values are constrained by the requirement of m2
s being positive.

This translates into upper bound, lower than Aλ cosβ sinβ, for a particular tanβ. Lower

µ values are constrained because of the invisible Z decay and the chargino mass, which
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set bounds on the higgsino component of the neutralino which is directly related to low µ.

Since Aλ enters eq. (A.8) through ã, in order to satisfy condition F (γ) = 0 there needs to

be some tuning between fourth and fifth terms. This fine tuning increases with increasing

Aλ, and so condition A.8 is much easier met at low values.

5 Gauge invariant inflaton

Within the MSSM there are nearly 300 gauge-invariant F - and D-flat directions, for a

review see [75]. Out of these flat directions, we will be interested in studying ũd̃d̃ as an

inflaton [2–4], where ũ, d̃ correspond to the right handed squarks. In fact within the

MSSM, L̃L̃ẽ [2, 3] and HuHd [76] could also be good inflaton candidates. All the inflaton

candidates provide inflection point in their respective potentials [77, 78], where inflation

can be driven for sufficiently large e-foldings of inflation to explain the current Universe

and explain the seed perturbations for the temperature anisotropy in the CMB, which has

been confirmed by the recent Planck data [79, 80].

Within the NMSSM with the introduction of a singlet it becomes necessary to include

the dynamics of a singlet field. Since the singlet here is not gauged there will be contribu-

tions to the SHuHd potential which would potentially ruin the flatness and therefore the

success of inflation driven solely by the gauge invariant inflaton [5]. While L̃L̃ẽ could still

be a good inflaton candidate in our current scenario, but in our analysis slepton masses

are not constrained by the dark matter and the baryogenesis constraints, therefore we only

concentrate on ũd̃d̃ as an inflaton for this study.

Previous studies on MSSM inflation only considered the overlap between the parameter

space for a successful inflation and the neutralino as the dark matter, which satisfies the

relic abundance [81–83]. In this paper, we will consider one further step and we wish to

constrain primordial inflation along with neutralino dark matter and condition for sufficient

baryogenesis.

5.1 Brief review of inflation

The ũd̃d̃ flat direction is lifted by a higher order superpotential term of the following

form [75],

W ⊃ y

6

Φ6

M3
p

, (5.1)

where y ∼ O(1), and the scalar component of the superfield Φ is given by:

φ =
ũ+ d̃+ d̃√

3
. (5.2)

After minimizing the potential along the angular direction θ (Φ = φeiθ), we can consider

the real part of φ , for which the scalar potential is then given by [2, 4]

V (φ) =
1

2
m2
φ φ

2 −Ay
φ6

6M6
p

+
φ10

M6
p

, (5.3)
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where mφ and A are the soft breaking mass and the Ay-term respectively (Ay is a positive

quantity since its phase is absorbed by a redefinition of θ during the process). The mass

for ũd̃d̃ is given by:

m2
φ =

m2
ũ +m2

d̃
+m2

d̃

3
. (5.4)

Note that the masses are now VEV dependent, i.e. m2(φ). The inflationary perturbations

will be able to constrain the inflaton mass only at the scale of inflation, i.e. φ0, while

LHC will be able to constrain the masses at the LHC scale. However both the physical

quantities are related to each other via renormalization group equations (RGEs), as we

shall discuss below.

For [4]
A2
y

40m2
φ

≡ 1 + 4α2 , (5.5)

where α2 � 1, there exists a point of inflection (φ0) in V (φ), where

φ0 =

(
mφM

3
p

λ
√

10

)1/4

+O(α2) , (5.6)

V ′′(φ0) = 0 , (5.7)

at which

V (φ0) =
4

15
m2
φφ

2
0 +O(α2) , (5.8)

V ′(φ0) = 4α2m2
φφ0 +O(α4) , (5.9)

V ′′′(φ0) = 32
m2
φ

φ0
+O(α2) . (5.10)

The Hubble expansion rate during inflation is given by [2, 4]

Hinf '
1√
45

mφφ0

Mp
. (5.11)

The amplitude of the initial perturbations and the spectral tilt are given by:

δH =
8√
5π

mφMp

φ2
0

1

∆2
sin2[NCOBE

√
∆2] , (5.12)

and

ns = 1− 4
√

∆2 cot[NCOBE

√
∆2], (5.13)

respectively, where

∆2 ≡ 900α2N−2
COBE

(
Mp

φ0

)4

. (5.14)

In the above, NCOBE is the number of e-foldings between the time when the observation-

ally relevant perturbations are generated till the end of inflation and follows: NCOBE '

– 15 –



J
H
E
P
0
1
(
2
0
1
4
)
0
7
3

Figure 5. Blue region depicts the parameter space for inflation where it yields the right amplitude

of density perturbations in the CMB, i.e. Pζ = 2.196× 10−9 and the ±1σ variance of the spectral

tilt, ns = 0.9606 ± 0.0073. The brown lines show the running of the inflaton mass, where they

intersect with the blue region depict the correct relic abundance, 0.1118 < Ωχ̃0
1
h2 < 0.128 [1], and

strongly first order phase transition. From these intersections, a, b, c, d we can determine the masses

of the inflaton at the inflationary scale φ0. The running of the inflaton mass is mainly determined

by the bino and gluino masses, see table 2.

66.9 + (1/4)ln(V (φ0)/M4
p ) ∼ 50. Since inflaton is made up of squarks, reheating and ther-

malisation happens instantly as showed in ref. [84]. The reheat temperature at which all the

degrees of freedom are in thermal equilibrium (kinetic and chemical equilibrium) is given

by Trh =
(
120/15π2g∗

)1/4√
mφφ0, where g∗ = 231.5 is the relativistic degrees of freedom

present within NMSSM. Since all the physical parameters are fixed in this model once we

determine the soft SUSY breaking mass, mφ, the estimation of the reheat temperature can

be made rather accurately.

5.2 Parameter space for inflation, dark matter and baryogenesis

Since the requirement for a successful baryogenesis implicitly constraints the right handed

squark, i.e. ũ3, we can assign the flat direction combination to be: ũid̃j d̃k, where i = 3 and

i 6= j 6= k.

We can then use the RGEs for the ũd̃d̃ flat direction, in order to relate the low energy

physics that we can probe at the LHC with the high energy inflation, which is constrained

by the Planck data. The RGEs for the inflaton mass and the Ay-term are given by [4]:

µ̂
dm2

φ

dµ̂
= − 1

6π2

(
4M2

3 g
2
3 +

2

5
M2

1 g
2
1

)
,

µ̂
dAy
dµ̂

= − 1

4π2

(
16

3
M3g

2
3 +

8

5
M1g

2
1

)
,

(5.15)
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Parameter a b c d Constrained by

λ 0.06405 0.06520 0.10418 0.02906 1st order phase transition

Aλ(GeV) 1127 524 772 796 1st order phase transition

tanβ 2.659 2.042 2.276 2.123 1st order phase transition

µeff(GeV) 165.214 142.985 176.515 137.963 1st order phase transition

Ωχ̃0
1
h2 0.119 0.112 0.124 0.112 Dark Matter abundance

mχ̃0
1(GeV) 61.17 119.2 59.8 126.3 Dark Matter abundance

M1(GeV) 2151 2006 1375 1084 Inflaton RGE

M3(GeV) 5269 4986 4281 861 Inflaton RGE

φ0[×1014](GeV) 3.5− 3.8 4.2− 4.6 5.3− 5.7 6.6− 7.3 CMB temperature anisotropy

mφ(GeV) 1425 2120 3279 5349 CMB temperature anisotropy

Table 3. We show the benchmark points that are depicted in figure 5. The gaugino masses

which enter in the RG equations are mainly sensitive due to different M1 and M3. The parameters

λ,Aλ, tanβ, µeff are constrained from baryogenesis point of view, and this in turn uniquely determine

the mass of the lightest stop which sets the mass for ũ3d̃id̃j inflaton candidate (3 6= i 6= j). Once

again we reiterate that without our approximation scheme, the constraints on baryogenesis would

be significantly less strict. The mass of the inflaton is given at the inflationary scale φ0.

where µ̂ = µ̂0 = φ0 is the VEV at which inflation occurs, M1 and M3 are U(1) and SU(3)

gaugino masses, and g1 and g3 are the associated couplings.

To solve these equations, we need to take into account of the running of the gaugino

masses and coupling constants which are given by, see [4]:

β(gi) = αig
3
i β

(
Mi

g2
i

)
= 0, (5.16)

with α1 = 11/16π2 and α3 = −3/16π2. Since from eq. (5.4), we know the mass of the

inflaton at the electroweak scale, by using the RGEs we are able to evolve it to the high

scale φ0, where inflation can happen. This can be seen in figure 5. The blue region shows

the parameter of ũ3d̃j d̃k as an inflaton for j 6= k 6= 3. It includes central value of density

perturbations together with ±1σ variation in spectral tilt ns. The brown lines show the

mass of the inflaton at a particular scale and its running from high scale to low scale is

determined by the RGEs, and it is mostly sensitive to bino and gluino masses.

In figure 5, we show the four benchmark points, a, b, c, d, which satisfy the condition

for a successful baryogenesis, eq. (3.13), and also accommodate neutralino as a dark matter

which satisfies the relic abundance constraint 0.1118 < Ωχ̃0
1
h2 < 0.128. In table 3, we

summarise the relevant parameters for NMSSM required to explain the Universe beyond

the Standard Model.
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6 Conclusions

In this work we examined inflation, baryogenesis and dark matter in the context of Next-

to-Minimal Supersymmetric Standard Model. We have found that these three important

cosmological requirements can be simultaneously accommodated by the theory. In par-

ticular, we have shown that a strongly first order phase transition can be easily achieved

even with recent LHC constrains applied. Then we demonstrated that an abundance of

lightest neutralinos can be generated thermally which satisfies the present dark matter

density limits. Part of these model points also pass the most stringent dark matter direct

detection constraints. Finally, we have shown that the presented scenario is fully consistent

with inflation, where the inflaton is a D-flat direction and it is made up of right handed

squarks. The visible sector inflation would explain not only the temperature anisotropy of

the CMB, but also all the relevant matter required for baryogeneis and dark matter.
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A Solving the toy model

The first derivative with respect to ϕ2
c is

ϕ2 ∂V

∂ϕ2

∣∣∣∣
ϕc,Tc

= M2(T )ϕ2
c −

3TcE

2
ϕ3 + λ̃ϕ4

c

− ã
2ϕ4(2m2

s + λ2ϕ2
c)

(m2
s + λ2ϕ2)2

. (A.1)

Using the condition that the potential at the critical VEV is equal to the potential at

ϕ = 0 we have a second equation

M2(Tc)ϕ
2
c − TcEϕ3

c +
λ̃

2
ϕ4
c −

ã2ϕ4
c

m2
s + λϕ2

c

= 0 . (A.2)

We can then use eq. (A.1) and set it to 3/2 times eq. (A.2) to get

cT 2
c +M2 =

ϕ2
c

2

(
λ̃− 2ã2m2

s

(m2
s + λ2ϕ2

c)
2

)
+

λ2ã2ϕ4
c

(m2
s + λ2ϕ2

c)
2

(A.3)

Finally we can set eq. (A.1) equal to eq. (A.2) to get a second equation

ETcϕ
3
c = λ̃ϕ4

c −
2ã2m2

sϕ
4
c

(m2
s + λ2ϕ2

c)
2
. (A.4)
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We can then divide both sides of the above equation to obtain

Eγ = λ̃− 2ã2m2
s

(m2
s + λ2ϕ2

c)
2
. (A.5)

To solve this we use the ansatz ϕ2
c = 1

λ2 (−m2
s + δ) and it is straight forward to show that

ϕ2
c =

1

λ2

(
−m2

s +

√
2
ã2m2

s

λ̃− γE

)
. (A.6)

Consider the first term on the right hand side of eq. (A.3). It is proportional to γ. Using

this and dividing both sides by ϕ2
c we have

cγ2 =
G

ϕ2
c

+
γE

2
+

λ2ã2ϕ2
c

(m2
s + λ2ϕ2

c)
2
. (A.7)

We then use eq. (A.6) to get the following equation

0 = − λ̃
2

+ γE − cγ2 +

√
ã2(λ̃− γE)
√

2ms

+
λ2G

−m2
s +

√
2ã2m2

s

λ̃−γE
≡ F (γ) (A.8)

as required.
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Chapter 7

Gravitational waves as a probe of
vacuum stability via high scale

phase transitions

7.1 Introductory remarks

The recent discovery of gravitational waves [111] has led to a surge in interest in
this new way of gaining information about the Universe [112, 113, 114, 115, 116,
117, 118, 119]. Of particular relevance to particle cosmology are gravitational wave
signatures left by cosmic phase transitions [120, 121, 122]. There are proposed
gravitational wave detectors that are sensitive to cosmic phase transitions, LISA
and aLIGO. If the electroweak phase transition was strongly first order this will
leave a stochastic gravitational background at a frequency and amplitude that can
be detected by LISA. In contrast, aLIGO is insensitive to phase transitions at the
weakscale and is instead sensitive to phase transitions occurring at a much higher
scale, T between about 106 and 108 GeV [12]. Unfortunately the time-frame of LISA
is several decades in the future in contrast to aLIGO. It is therefore of more pressing
interest whether there are physical motivations for their to be a phase transition
occuring at a temperature that could leave relic gravitational wave backgrounds
visible to aLIGO.

In this paper I consider the problem of vacuum stability in the Standard Model and
note the coincidence of scales between the sensitivity of aLIGO and the instability
scale in the Standard Model. Adding a gauge single to the Standard Model is arguably
the simplest method to improve its stability. This can occur through improved running
or through a threshold correction to the Higgs self coupling. Such a gauge singlet
can also acquire a vacuum expectation value at some time during the history of the
Universe. If it does so through a strongly first order phase transition then it will
contribute to the relic gravitational wave background.

I present three bench mark points where the Higgs self coupling remains positive
up to the GUT scale, O(1016) GeV, as well as having a strongly first order phase
transition, fast enough bubble nucleation for the phase transition to proceed, peak
frequency and amplitude that is potentially visible to aLGIO and acceptable zero
temperature phenomenology. I also present a scan with slightly weaker criteria
where there is a moderate to large threshold correction to the Higgs self coupling
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and a strongly first order singlet phase transition occurs at the right temperature. To
our knowledge this is the first paper that gives a physical motivation for a phase
transition that leaves a relic visible to aLIGO.

7.2 Declaration for thesis chapter 7
Declaration by candidate
In the case of the paper present contained in chapter 7, the nature and extent of my
contribution was as follows:

Publication Nature of contribution Extent of contribution

6

Found the hole in the literature about physical mo-
tivations for phase transitions potentially visible
to aLIGO and suggested this direction. Calcu-
lated the high scale phase transition and its ther-
mal properties. Analysed bench marks in detail
calculating the gravitational wave amplitude and
frequency, the nucleation temperature. Calculated
the running of each of the bench marks. Worked
on producing multiple plots. Worked substantially
on the draft writing many sections and editing all
others. Contributed to discussions throughout.

60%

The following coauthors contributed to the work. If the coauthor is a student at
Monash, their percentage contribution is given:

Author Nature of contribution Extent of contribution

Csaba Balazs

Digitized the plot for aLIGO sensitivity and super-
imposed our data on top. Wrote the introduction
and was heavily involved in editing. Contributed
to discussions throughout.

Andrew Fowlie

Set up scan to verify zero temperature phe-
nomenology is correct and implemented the com-
munication with my code. Wrote several sections
and edited all others. Substantially expanded un-
derstanding of vacuum stability. Contributed to
discussions throughout.

Anupam Mazumdar
Wrote a section. Contributed to discussions
throughout.

The undersigned hereby certify that the above declaration correctly reflects the
nature and extent of the candidate and co-authors’ contributions to this work.

164





7.3 Published material for chapter 7:
Gravitational waves at aLIGO and vacuum
stability with a scalar singlet extension of
the Standard Model

Begins overleaf
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Gravitational waves at aLIGO and vacuum stability with a scalar singlet
extension of the standard model
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A new gauge singlet scalar field can undergo a strongly first-order phase transition (PT) leading to
gravitational waves (GW) potentially observable at aLIGO and stabilizes the electroweak vacuum at the
same time by ensuring that the Higgs quartic coupling remains positive up to at least the grand unification
(GUT) scale. aLIGO (O5) is potentially sensitive to cosmological PTs at 107–108 GeV, which coincides
with the requirement that the singlet scale is less than the standard model (SM) vacuum instability scale,
which is between 108 GeV and 1014 GeV. After sampling its parameter space, we identify three
benchmark points with a PT at about T ≈ 107 GeV in a gauge singlet extension of the SM. We calculate
the nucleation temperature, order parameter, characteristic time scale, and peak amplitude and frequency of
GW from bubble collisions during the PT for the benchmarks and find that, in an optimistic scenario, GW
from such a PT may be in reach of aLIGO (O5). We confirm that the singlet stabilizes the electroweak
vacuum while remaining consistent with zero-temperature phenomenology as well. Thus, this scenario
presents an intriguing possibility that aLIGO may detect traces of fundamental physics motivated by
vacuum stability at an energy scale that is well above the reach of any other experiment.

DOI: 10.1103/PhysRevD.95.043505

I. INTRODUCTION

The recent detection of gravitational waves (GW) by the
LIGO Collaboration opened a new observational window
for the early Universe [1]. Among the most exciting
prospects is the observation of GW from cosmological
events that happened well before the first observable
photons were created [2]. Not limited by recombination,
GW can be used to directly probe fundamental physics,
reaching to considerably higher energies than any other
existing experiments. There are potentially several known
sources of observable GW, which can be split into three
categories [3]: (i) binary black hole mergers, mergers of
binary neutron stars or a neutron star and a black hole, or
supernova core collapse, with a duration between a milli-
second and several hours; (ii) long duration signals, i.e.,
from spinning neutron stars; and (iii) stochastic background
arising from the superposition of unresolved astrophysical
sources. The latter can be a stochastic background of GW
which can also arise from cosmological events, such
as during primordial inflation [4–6], resonant preheating

[7–11], fragmentation of the inflaton or any scalar con-
densate [12–14], cosmic strings [15,16], or a cosmological
phase transition (PT) accompanying either the breakdown of
a fundamental symmetry or a scalar field acquiring a vacuum
expectation value (VEV). If this PT is first order, then GW
are created by violent collisions between expanding bubble
walls of the new vacuum (see, e.g., Refs. [3,17–46]), which
can be potentially constrained by the current and future GW
observatories, such as the future space mission eLISA
[47,48], and also possibly by aLIGOwithin the next 5 years
[49]. Recently, it has been shown that these GW are
detectable by BBO or DECIGO [50–54].
In the present work, we explore the detectability of GW

originating from fundamental physics at the upgraded
LIGO detector, aLIGO, in the near future (2020–2022)
[55–58]. It is known that the frequency of GW from the
electroweak PT is too low to be detected at aLIGO [21,22].
Therefore, our main emphasis here is to seek GW accom-
panying an earlier PT with physics beyond the Standard
Model (BSM). In search of detectable primordial GW at
aLIGO (LIGO run phase O5), we provide a simple but
concrete particle physics model which can yield the
observed amplitude and peak frequency for GW which
have been recently proposed in Ref. [49]. In the current
paper we analyze a framework which is an extension of the
standard model (SM) of elementary particles with a gauge
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singlet scalar (SSM) (see, e.g., Refs. [59,60]). Indeed, this
is the simplest example of BSM physics that could enhance
electroweak vacuum stability [61–63]. Besides this, such a
simple choice for physics beyond the SM could also help
us understand primordial inflation [64–66] (for a review
see Ref. [67]).
As noticed before in Ref. [49], aLIGO is potentially

sensitive to cosmological PTs occurring at scales 107 GeV
to 108 GeV, which raises the question of whether such a
new scale emerges in BSM physics. It is a well-established
result that the observed values of the top-quark mass, Higgs
mass and strong coupling drive the SM Higgs quartic
coupling, via renormalization evolution, to negative values
at aboutΛI ∼ 1010 GeV. The latter is known as the Higgs or
vacuum instability scale [68–72]. The SM scalar potential
is believed to be metastable; although we live in a false
vacuum, the probability of tunneling to the true vacuum is
negligible, and for a heavy Higgs boson, mh ≳ 130 GeV,
the Higgs potential would be stable [70].
In this paper we show two important results, which we

can summarize below:
(i) It is possible to realize a successful strong first-order

PT in the singlet direction with the nucleation temper-
ature within the range of 107–108 GeV, which would
give rise to a GW signal within the frequency range
of aLIGO, i.e., 10–100 Hz. We will establish this
by taking into account finite-temperature corrections,
first incorporated in Ref. [73] in the context of the
next-to-minimal supersymmetric SM.

(ii) We carefully compute the running of the couplings
in the SSM at two loops, and conclude that for the
range of parameters we have scanned, parameters
that yield a strong first-order PT could also amelio-
rate the SM Higgs metastability. In this paper we
shall provide three benchmark points, where the
scale of BSM physics would leave an undeniable
footprint in the GW signal, potentially within the
range of aLIGO (O5).

Our paper is organized as follows. In Sec. II, we first
explain the SSM model. In Sec. III, we discuss what range
of parameters of the singlet can yield strong first-order
PT, and what are the conditions to be fulfilled. In Sec. IV,
we briefly discuss GW amplitude and frequency from the
first-order PT. In Sec. V, we discuss the Higgs vacuum
stability in the presence of a singlet-Higgs interaction,
and in Sec. VI we discuss our numerical results. In Sec. VII,
we conclude with our results and discuss briefly future
directions.

II. SINGLET EXTENSION OF THE
STANDARD MODEL

We consider the SM plus a real scalar (see, e.g.,
Refs. [59,60]) that is a singlet under the SM gauge groups
and carries no, e.g., discrete charges. Thus, our model is
described by the tree-level scalar potential

V0ðH; SÞ ¼ μ2jHj2 þ 1

2
λjHj4 þ 1

2
M2

SS
2 þ 1

3
κS3 þ 1

2
λSS4

þ κ1SjHj2 þ 1

2
κ2S2jHj2; ð1Þ

where MS is the mass parameter of the singlet, κ is a
dimensionful coupling, λS is the singlet quartic coupling,
and κ1;2 are singlet-Higgs couplings. The above potential
is the most general gauge invariant, renormalizable scalar
potential with the considered particle content. The linear
operator m3S is removed by a shift in the singlet field
without loss of generality.
To account for changing field properties during cosmo-

logical PTs, we consider a one-loop effective potential with
finite-temperature corrections (i.e., a free energy). As the
Universe cools the free energy develops a deeper minimum
in the singlet direction, there is a PT to a new ground state
and the singlet acquires a VEV, although no symmetries are
broken. If there is a discontinuity in the order parameter

γ ≡ hSi=T;
i.e., the PT is first order, bubbles spontaneously emerge in
the Universe in which the singlet VEV is nonvanishing
hSi ≠ 0. Wewill scan over the Lagrangian parameters at the
high scale; guarantee that a strongly first-order PToccurs at a
critical temperature in the range ð107; 108Þ GeV by solving
for Lagrangian parameters; and impose the constraints on
weak-scale parameters by requiring that the Higgs mass be
125� 1 GeV and that the VEV be 246 GeV. This typically
requires dimensionful parameters to be OðTCÞ and dimen-
sionless parameters to be Oð1Þ at the high scale. GW from
high-energy PTs were considered in Ref. [74].
A fraction of the latent heat from the PT could ultimately

be released in collisions between bubbles, which result
in striking GW signatures. This occurs at the bubble
nucleation temperature, TN , which is typically similar to
the critical temperature, TN ≲ TC, i.e., the temperature at
which the original ground state and emerging ground state
are degenerate. We will calculate the nucleation temper-
ature in order to calculate the peak frequency and the
amplitude of the GW resulting from the singlet PT.

III. PHASE TRANSITIONS IN A TEMPERATURE
IMPROVED POTENTIAL

In this section we investigate whether the SM extended
with a singlet can produce GW at a strongly first-order PT
which could be detected by aLIGO. Acceptable low-energy
phenomenology, including standard Higgs properties and
vacuum stability, is imposed. To achieve such a scenario we
require the following cosmological history.
(1) Higgs and singlet fields are in true, stable vacuum at

the origin at high temperature.
(2) At T ≈ TN ≈ TC ∈ ð107; 108Þ GeV, the singlet

acquires a VEV in a strongly first-order PT gen-
erating GW, potentially in reach of aLIGO. [The
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temperature was chosen to coincide with the peak
frequency sensitivity in aLIGO (O5).]

(3) At low temperature, the Higgs acquires a VEV,
hHi ≈ 246 GeV, resulting in the correct weak scale,
Higgs mass, and satisfying constraints on Higgs-
singlet mixing.

We will calculate the critical and nucleation temperatures
numerically as functions of the Lagrangian parameters.
This is needed to calculate the frequency and amplitude
of GW originating from bubble collisions. The first step
is to include finite-temperature corrections to the effective
potential. The one-loop finite-temperature corrections to
the scalar potential have the form [75,76]

ΔVT ¼ T4

2π2

�X
b

JB

�
m2

b

T2

�
þ
X
f

JF

�
m2

f

T2

��
; ð2Þ

whereJB andJF are thermal bosonic and fermionic functions,
respectively, and the sums are over field-dependent boson
and fermionmass eigenvalues.We also add zero-temperature
one-loop Coleman-Weinberg corrections [75,76],

ΔVCW ¼
X
i

gim2
i

64π2

�
log

�
m2

i

μ2

�
− ni

�
; ð3Þ

summed over massive particles, where μ is the renormaliza-
tion scale, chosen to minimize large logarithms;mi is a field-
dependent mass eigenvalue; gi is the number of degrees of
freedom associated with the massive particle; and ni ¼ 3=2
for scalars and fermions and 5=6 for massive gauge bosons
(up to an overall sign for fermions).
Note that when one considers a PT in the singlet

direction the only relevant masses are field-dependent mass
eigenvalues of both the CP even and CP odd scalar mass
matrices as well as the charged Higgs. Also, there are no
issues with gauge dependence. The final corrections to the
finite-temperature effective potential are the Debye masses
ΔVD which result in the Lagrangian bare mass terms
obtaining corrections of the form Δm2

T ∝ T2 [77]. Thus,
we consider the one-loop finite-temperature potential

V ¼ V0 þ ΔVD þ ΔVT þ ΔVCW: ð4Þ
The conditions for a strongly first-order PT generating

GW are that
(1) There are at least two minima,

∂V
∂S

����
F
¼ ∂V

∂S
����
T
¼ 0: ð5Þ

The calligraphic subscripts indicate the expression
should be evaluated in the true (T ) and false
(F ) vacua.1

(2) There exists a critical temperature, TC, at which the
two minima are degenerate,

VjF ¼ VjT : ð6Þ
This is illustrated in Fig. 1 for a benchmark point
tabulated in Table I by SSM I.

(3) The order parameter at the critical temperature

γ ≡ hSi
TC

; ð7Þ

must be substantial [i.e., Oð1Þ] in order to yield a
strong first-order PT. The fact that S is a gauge singlet
means that we do not need to concern ourselves with
subtleties involving gauge invariance [75].

(4) Bubbles form, expand, dominate the Universe and
violently collide.

For the first-order PT generating GW, we fix the critical
temperature and order parameter, and solve for Lagrangian
parameters at the high scale such that the conditions hold.
The peak frequency and peak amplitude of the resulting

GW are controlled by the nucleation temperature, TN ,
which is the temperature at which a 1=e volume fraction
(given by the Guth-Tye formula [78]) of the Universe is in
the true vacua. By dimensional analysis, this approximately
occurs once

pðtÞt4 ≈ 1; ð8Þ
where pðtÞ is the probability per unit time per unit volume
that a critical bubble forms. As a function of temperature,

pðTÞ ≈ T4e
−SEðT;Sbðr;TÞÞ

T ; ð9Þ

where SEðT; Sbðr;TÞÞ is the Euclidean action evaluated
along a so-called bounce solution. The Euclidean action is
defined as

FIG. 1. The effective potential (i.e., free energy) for benchmark
SSM II, shown above, below and at the critical temperature, TC,
at which the minima are degenerate, and at the nucleation
temperature, TN .

1The vacua are degenerate at the critical temperature. We,
however, always refer to the deepest minimum at zero temper-
ature as the true minimum.
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SE ¼ 4π

Z
∞

0

r2dr

��
dSðrÞ
dr

�
2

þ VðS; TÞ
�
; ð10Þ

and is a functional of the singlet field, SðrÞ. A bounce
solution is a solution to the classical equation of motion for
the singlet [79]. That is, we must solve

∂2S
∂r2 þ

2

r
∂S
∂r ¼ ∂VðS; TÞ

∂S ;

S0ð0Þ ¼ 0; Sð∞Þ ¼ 0; ð11Þ
for Sbðr;TÞ, where the effective potential is defined in
Eq. (4). In a radiation dominated Universe, temperature and
time are related by

T2t ¼
ffiffiffiffiffiffiffiffiffiffi
45

16π3

r
MPffiffiffiffiffi
g⋆

p ; ð12Þ

where g⋆ ≈ 100 is the number of relativistic degrees of
freedom and MP is the Planck mass. Combining Eqs. (8),
(9) and (12) results in the condition that the Euclidean
action satisfies

SEðTN ; Sbðr;TNÞÞ
TN

≈ 170 − 4 ln

�
TN

1 GeV

�
− 2 ln g⋆: ð13Þ

We solve for the nucleation temperature TN in Eq. (13) by
bisection, finding the bounce solution and the resulting
Euclidean action for every trial temperature. To find a
bounce solution, we approximate the bounce solution by
perturbing about an approximate kink solution [80].

IV. GRAVITATIONAL WAVES

The amplitude of GW from a first-order PT depends on
the wall velocity of a bubble, vw; the latent heat released in
the transition between the true and false vacuum, Δρ; the
efficiency of the conversion of latent heat to GW; and the
duration of the transition. The latter is parametrized by

β≡ −
dS4

dt

����
tN

¼ HN

�
dlnSE=T
d lnT

�
SE

T

����
TN

ð14Þ

where S4 ¼ SE=T is the four-dimensional Euclidean action
for a bounce solution to the equations of motion, tN is the
nucleation time and H ¼ − _T=T. The characteristic time
scale of the PT is 1=β. We can approximate the time scale
by [81,82]

β

HN
≈
SEðTNÞ
TN

; ð15Þ

up to an Oð1Þ factor. We solved the right-hand side in
Eq. (13). We attempt to calculate β by numerical differ-
entiation of the action with respect to temperature in
Eq. (14); however, to reflect uncertainties in our calcu-
lation, we furthermore present results from varying the time
scale of the PT in the range 1 ≤ β=HN ≤ 200. The lower
bound is from causality [83]—the characteristic size of a
bubble cannot exceed a horizon—and the upper bound is
slightly greater than the approximation in Eq. (15).
The latent heat is parametrized by

α≡ Δρ
ρN

where ρN ≡ π2g⋆T4
N

30
: ð16Þ

The denominator ρN is the energy density of the false
vacuum and g⋆ ¼ 107.75 is the number of relativistic
degrees of freedom at the nucleation temperature TN .
The numerator, Δρ, is the latent heat in the transition
between the true and false vacuum,

Δρ ¼
�
V −

dV
dT

TN

�
F
−
�
V −

dV
dT

TN

�
T
; ð17Þ

evaluated at the nucleation temperature, where V is the
temperature improved scalar potential (i.e., free energy)
and subscripts indicate true (T ) and false (F ) vacua.
The bubble wall velocity—a factor that influences the

amplitude of GW—is slowed by friction terms arising from
interactions with particles in the plasma. In the high-scale
PT that we are considering, because there are fewer friction
terms than in the electroweak phase transition (EWPT) in
the SM, we expect that vw ≈ 1 in general.2 The efficiency of
converting latent heat into GW—the final factor affecting
GW—is denoted by ϵ. Because in our scenario γ ≳ 1.75
(i.e., we consider a very strongly first-order PT), one finds
that ϵ ≈ 1. We take ϵ ¼ 1 throughout.
Combining all the factors, from numerical simulations

using the so-called envelope approximation (see, e.g.,

TABLE I. Benchmark points, at the scale Q ¼ 250 GeV, that exhibit GW potentially in reach of aLIGO (O5), vacuum stability, and
acceptable low-energy phenomenology. The peak amplitudes were calculated numerically for β=HN from Eq. (14).

Point M2
SðGeV2Þ λS κðGeVÞ κ1ðGeVÞ κ2 λ mSðGeVÞ γ TCðGeVÞ TN=TC β=HN ΩGW

SSM I 4.2 × 1014 0.064 2.1 × 107 −4.9 × 105 0.14 0.53 4.5 × 107 2.8 3.7 × 107 0.44 118 1.3 × 10−9

SSM II 6.9 × 1014 0.073 2.8 × 107 −7.3 × 105 0.15 0.51 5.5 × 107 2.9 4.2 × 107 0.45 110 1.3 × 10−9

SSM III 1.3 × 1015 0.13 7.4 × 107 −1.4 × 106 0.09 0.40 1.3 × 108 2.3 8.2 × 107 0.35 45 6 × 10−9

2In supersymmetric models, the wall velocity of bubbles in an
EWPT tends to be heavily suppressed by strongly interacting
scalars [84]. In the SM, the wall velocity in an EWPT is
significantly higher without these friction terms. Thus, for a
high-scale PT in the SSM, with even fewer friction terms, we
expect vw ≃ 1.
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Ref. [85] for an analytic calculation), the peak amplitude
of the GW strength, defined as the energy density per
logarithmic frequency interval in units of the critical energy
density of the Universe, due to bubble collisions measured
today, is given by

ΩGW ≃ 10−9 ×

�
31.6HN

β

�
2
�

α

αþ 1

�
2

ϵ2
�

4v3w
0.43þ v2w

�

×

�
100

g⋆

�1
3

; ð18Þ

where g⋆ ¼ 107.75 in our model. The factors areOð1Þ for a
PT at a nucleation temperature 107 GeV≲ TN ≲ 108 GeV.
The peak amplitude is Oð10−9Þ for α≃ 1 and γ ≃ 2. The
aLIGO experiment, LIGO running phase O5, should be
sensitive to amplitudes greater than about ΩGW≳5×10−10

at about Oð10Þ–Oð100Þ Hz [58,86].
The peak amplitude observable today occurs at the peak

frequency

f0 ≃ 16.5 Hz ×
�
fN
HN

��
TN

108 GeV

��
g⋆
100

�
1=6

ð19Þ

where fN is the peak frequency at the nucleation time,

fN ¼ 0.62β
1.8 − 0.1vw þ v2w

: ð20Þ

The peak frequency of GW from a PT coincides with
aLIGO’s maximum sensitivity at about 20 Hz if the nucle-
ation temperature is about 107GeV≲TN≲108GeV [49].

V. VACUUM STABILITY

After the discovery of the Higgs boson, and subsequent
determinations of its mass, the stability of the SM vacuum
was reexamined [68–72]. At large-field values, the SM
effective potential is approximately

VeffðhÞ ¼
1

2
λðμ ≈ hÞh4; ð21Þ

and for stability it is sufficient to ensure that, given an initial
value of the quartic coupling at low energy, the renorm-
alization group (RG) evolution is such that the quartic
coupling is positive at least until the Planck scale.
The result is sensitive to low-energy data—notably the

top-quark mass, Higgs mass and strong coupling—in the
quartic coupling’s renormalization group equation (RGE).
With present experimental data, however, it is believed that
the quartic coupling turns negative at aboutΛI ≃ 1010 GeV,
referred to as the SMHiggs instability scale. The SMHiggs
potential is believed to be metastable; although we live in a
false vacuum, the probability of tunneling to the true vacuum
is negligible [70].
This instability can be remedied in simple extensions of

the SM, including the SSM, which could alleviate it by

modifying the beta function for the quartic coupling (at one
loop by a fish diagram) or by negative corrections to the
Higgs mass. The latter implies that a Higgs mass of about
125GeV, as required by experiments, could be achievedwith
a quartic coupling larger than that in the SM, and could
be realized by tree-level mixing which should result in a
negative correction, as eigenvalues are repelled by mixing
[62,63]. A quartic coupling sufficiently greater than that
in the SM could ensure that the quartic coupling remains
positive until the Planck scale, though it should remain
perturbative until that scale.
There are, however, additional stability conditions in the

SSM, such as

λ ≥ 0; λS ≥ 0; and κ2 ≥ −2
ffiffiffiffiffiffiffi
λSλ

p
; ð22Þ

that result from considering large-field behavior in the
H ¼ 0, S ¼ 0 and λH4 ¼ λSS4 directions in field space.
Note that if κ2 is negative, the latter condition is equivalent to
λSM ≥ 0, that is, the SM vacuum stability condition. In this
case, stability cannot be improved by a threshold correction,
though it could be improved by modified RGEs (see the
Appendix). Thus,we consider κ2 > 0. To ensure perturbative
unitarity, we followed Ref. [87]. Because in our solutions the
Higgs and singlet are approximately decoupled, it resulted
in a constraint that λS ≲ 4.2 below the GUT scale.
We ensure that the mixing angle between the doublet

and singlet is negligible, such that our model agrees with
experimental measurements indicating that the Higgs is
SM-like. There is, however, a residual threshold correction
to the SM quartic. After eliminating the mass squared terms
by tadpole conditions, the tree-level mass-squared matrix
in the basis ðh; sÞ reads

M2 ¼
�

λv2 κ1 þ κ2vS
κ1vþ κ2vSv ð4λSvS þ κÞvS − 1

2
v
vS
κ1v

�
: ð23Þ

The off-diagonal elements lead to mixing between mass
and interaction eigenstates, described by a mixing angle

tan θ ≈ −
κ1 þ κ2vS
4λSvS þ κ

v
vS

þO
�
v3

v3S

�
: ð24Þ

As the mixing is small, we use the same notation for mass
and interaction eigenstates. The mass eigenvalues are
approximately

m2
h ≈

�
λ −

ðκ1 þ κ2vSÞ2
vSð4λSvS þ κÞ

�
v2; ð25Þ

m2
S ≈ vSð4λSvS þ κÞ − 1

2

v2

vS

�
κ1 −

2ðκ1 þ κ2vSÞ2
κ þ 4λSvS

�
; ð26Þ

neglecting termsOðv4=v2SÞ. As stressed in Refs. [62,63], in
the limit v=vS → 0, the singlet only partially decouples.
While the mixing vanishes (tan θ → 0), a negative tree-
level contribution to the Higgs mass survives:
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m2
h ¼

�
λ −

ðκ1 þ κ2vSÞ2
vSð4λSvS þ κÞ

�
v2 ≤ λv2: ð27Þ

Thus, the quartic coupling in the SM plus a singlet that
achieves mh ≈ 125 GeV is greater than that in the SM (or
equivalently, there is a threshold correction to the quartic
coupling in an effective theory in which the singlet is
integrated out from the SM plus singlet), which improves
the stability of the Higgs potential. That is,

Δλ ¼ ðκ1 þ κ2vSÞ2
vSð4λSvS þ κÞ ≥ 0: ð28Þ

If κ → 0 and κ1 → 0, Δλ → κ22=4λS, reproducing the
expression in Refs. [62,63]. Substantial κ1 in the numerator
or cancellations involving κ in the denominator could,
however, help generate a sizable threshold correction.
There are, however, subtleties: the conditions in Eq. (22)

were necessary, but insufficient for stability. For example,
in Ref. [62] it was shown that for a Z2 symmetric potential
and renormalization scales μ≲MS, if κ2 > 0, the SM
vacuum stability condition,

λSM ≡ λ − Δλ ≥ 0; ð29Þ
is required to avoid deeper minima in the S ¼ 0 direction.
We thus require μ ≲MS ≲ ΛI, that is, that the singlet scale
is less than the SM instability scale. This ensures that
although there is an instability scale at which the SM
vacuum stability condition is broken,

λSMðμ ¼ ΛI ≳MSÞ < 0; ð30Þ
the vacuum may in fact be stable, as we may violate the SM
vacuum stability condition at scales μ ≳MS. We trust that
lessons from the Z2 symmetric case are applicable to our
general potential in Eq. (1). Thus, in this paper, we describe
our model as stable if the couplings satisfy the large-field
conditions on vacuum stability in Eq. (22) and the SM
vacuum stability condition in Eq. (29) for μ≲MS ≲ ΛI.
We leave a detailed analysis to a future work.

VI. NUMERICAL RESULTS

As well as generating GW potentially within reach of
aLIGO and improving vacuum stability, our models must
satisfy low-energy experimental constraints on the weak
scale (i.e., the Z-boson mass), the Higgs mass and Higgs-
singlet mixing, and be free from Landau poles below the
GUT scale. We fixed an order parameter, 1.75≲ γ ≲ 5, and
a critical temperature of 107 GeV≲ TC ≲ 108 GeV.
We included low-energy constraints by building two-loop

RGEs in SARAH-4.8.2 [88] by modifying the SSM model
and constructing a tree-level spectrum generator by finding
consistent solutions to the tree-level tadpole equations and
diagonalizing the weak-scale mass matrix. Our spectrum
generator guaranteed the correct weak scale by tuning the

Higgs mass parameter in the tree-level tadpole equations.
To approximately satisfy limits on Higgs-singlet mixing
from hadron colliders (see, e.g., Ref. [89]), we required
a tiny mixing angle between Higgs and singlet scalars,
tan θ ≤ 10−6. We tuned the Higgs mass by bisection in
the Higgs quartic such that mh ¼ 125� 1 GeV. We found
simultaneous solutions to the low-energy constraints and
GW requirements by iterating between the weak scale and
the critical temperature.
In Table I we present three benchmark points with GW

amplitudes potentially within the reach of aLIGO (O5),
acceptable zero-temperature phenomenology and a sub-
stantial threshold correction to the tree-level Higgs quartic
for improved vacuum stability. The running of the Higgs

FIG. 2. Running of the Higgs quartic λ in the SM and for our
solutions in the SSM. All lines correspond to mh ≃ 125 GeV.

FIG. 3. Peak amplitudes and frequencies of GW for our SSM
benchmark points from our approximate numerical calculation of
β=HN (squares), with uncertainty represented by varying between
β=HN ¼ 1 and β=HN ¼ 200 (lines). The shaded regions indicate
LIGO sensitivities during various phases of running [58,86]. All
lines intersect the sensitivity of aLIGO (LIGO running phase O5).
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quartic for our three benchmarks and in the SM is shown in
Fig. 2, demonstrating that for our benchmarks, the quartic
coupling remains positive below the Planck scale, unlike in
the SM. Note that the running of the Higgs quartic coupling
is sensitive to the precise values of the top Yukawa, yt, and
the strong coupling, g3. The experimental measurements for
yt and g3 were boundary conditions at Q ≈ 107 GeV; this
introduced an error of up to about 3% in their weak-scale
values for our benchmarks. As such the running for SSM III
is pessimistic; its quartic running is probably steeper. For
benchmark SSM I, the quartic coupling hits a Landau pole
above the GUT scale. We illustrate that our benchmark
points result in peak amplitudes and frequencies of GW
potentially within reach of aLIGO (O5) in Fig. 3. However,
note that here we have varied 1 ≤ β=HN ≤ 200.
We selected our benchmarks from thousands of solutions

found by Monte Carlo (MC) sampling SSM parameters at
the GW scale, Q ¼ TC, from the intervals

10−8 GeV ≤ jκ1j ≤ 108 GeV

10−8 ≤ κ2 ≤ 2

1012 GeV2 ≤ M2
S ≤ 1018 GeV2

107 GeV ≤ TC ≤ 108 GeV

2.3 ≤ γ ≤ 3: ð31Þ

We traded the Lagrangian parameters κ and λS for TC and γ
by solving Eqs. (5) and (6), and λ and μ2 by requiring
correct Higgs and Z-boson masses. A substantial fraction of
our MC solutions could exhibit GW in reach of aLIGO;
however, calculating the amplitude of GW accurately
requires a thorough lattice simulation.
When selecting our benchmarks, however, we found that

if γ ≳ 3, the rate of tunneling is sometimes too slow for a
PT to dominate the Universe, with this being the case more
often as γ approaches 5. That is, it is impossible to satisfy

FIG. 4. Scatter plots of solutions in the SSM that exhibit strongly first-order PT at TC ∈ ð107; 108Þ GeV, acceptable weak-scale
phenomenology, and no Landau poles below the GUT scale. For the benchmark points shown, in addition, we checked that the PT
results in GW signatures are potentially within reach of aLIGO (O5).
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condition Eq. (13) for any temperature. This is consistent
with Ref. [90], in which no solutions with γ > 5 were
found. Since we desire a completed PT, we discarded
solutions with an order parameter γ ≳ 5. This may, in fact,
be optimistic, as Ref. [90] indicates that completed PTs
with γ ≈ 5 are rare and as we require a lower value of SE=T
since the nucleation temperature is 5 orders of magnitude
higher than the EW scale [see Eq. (13)]. On the other hand,
if the order parameter γ ≲ 2.3, the amplitude of GWmay be
too far below aLIGO (O5) sensitivity for all but the most
optimistic estimate of the peak amplitude. There is there-
fore a “Goldilocks region” for the strength of the PT,
2.3≲ γ ≲ 3, for which GW could be observed at aLIGO.
Thus, to roughly select GW amplitudes in reach of aLIGO,
we sampled from 2.3≲ γ ≲ 3.
We scatter our MC solutions in Fig. 4. We find that

moderate Higgs quartics of λ ∼ 0.35 are common, although
there are outliers at λ≳ 0.4. We see in Fig. 4(a) that the
dimensionless singlet-Higgs coupling is moderate, κ2 ≲ 0.1.
We find, unsurprisingly, in Figs. 4(b) and 4(c) that dimen-
sionful parameters are similar to the critical temperature,
mS ∼ κ1 ∼ TC ∼ 107 GeV. The Higgs-singlet couplings
appear correlated in Fig. 4(d). This is likely due to the
fact that the Higgs-singlet mixing angle is reduced for
κ1 ∼ −2κ2vs. The sizes of the Higgs-singlet couplings are
related to the threshold correction in Eq. (28), which we
require to be moderate. There exist points with a Higgs
quartic larger than in the benchmark SSM I that may suffer
fromLandau poles in theHiggs quartic below theGUT scale.

VII. DISCUSSION AND CONCLUSIONS

GW detectors, such as LIGO, are a novel way of probing
new physics. In this work, we studied the detectability of
primordial GW in the context of the SM augmented with a
single real scalar field that is a singlet under all SM gauge
groups. The scale of the scalar singlet (its mass and VEV)
was motivated by vacuum stability to be 107–108 GeV. We
have shown that, with this scale, the singlet dynamics leads
to a strongly first-order PT that generates GW potentially
within reach of aLIGO (LIGO run phase O5). Selected
from a wide sample over the parameter space, we presented
three benchmark points with detailed calculations of the
peak GW frequency and amplitude, demonstrating that for
an optimistic estimate of the peak frequency and amplitude,
they lie within aLIGO sensitivity. The most optimistic
scenario, of course, arises for β=HN ∼Oð1Þ.
While it is known that eLISA is able to probe PTs at or

near the EW scale, to our knowledge this work is the first to
discuss a physical motivation for a PT to leave a relic
background potentially detectable by aLIGO. Our result is
due to the coincidence of aLIGO sensitivity with the EW

instability scale. Indeed, the original analysis that proposed
the existence of a heavy singlet leading to a tree-level boost
in the Higgs quartic coupling promoted the case where the
mass of the singlet was 107–108 GeV [62]. This is precisely
in the region where the stochastic background is visible at
aLIGO. It should be stressed, though, that it is also possible
to boost the stability of the vacuum with a lighter singlet.
With planned LIGO running phases sensitive to GW

amplitudes below 10−9, it is interesting to consider moti-
vations for a PT at 107–108 GeV, which, on a logarithmic
scale, lies about halfway between the EW and the grand
unification scales. One exotic possibility is EW baryo-
genesis through a multistep PT with the first transition
at around 107–108 GeV as proposed in Ref. [91]. This
presents another intriguing possibility about physically
motivated PTs occurring at such a high scale. This and
other scenarios we leave to future work.
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APPENDIX: SSM β FUNCTIONS

We generated beta functions from our modified SSM
model in SARAH-4.8.2 [88]. The beta functions for λS
and κ2 were such that the quartics remained positive. The
former is positive at one loop,

16π2β1LλS ¼ κ22 þ 36λ2S; ðA1Þ
though there are negative terms at two loops, and the latter
is proportional to κ2 at one loop,

16π2β1Lκ2 ¼ 1

10
κ2ð−9g21 − 45g22 þ 60λ

þ 60y2t þ 40κ2 þ 120λSÞ; ðA2Þ
and at two loops. Thus at two loops it cannot change sign.
There is, furthermore, an additional contribution to the beta
function of the SM quartic,

16π2β1Lλ ¼ 27

100
g41 þ

9

10
g21g

2
2 þ

9

4
g42 −

9

5
g21λ

− 9g22λþ 12λ2 þ 12λy2t − 12y4t þ κ22; ðA3Þ
which could improve vacuum stability.
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Chapter 8

Effective field theory, electric
dipole moments and electroweak

baryogenesis

8.1 Introductory remarks

Effective field theory allows to build physics models from bottom-up by including
higher and higher dimensional interactions in the Lagrangian approximating better
and better an ultraviolet complete theory. This technique is also used to make the
scope of experimental constraints more model independent [123, 124, 125]. They
have been used for example in applying dark matter direct and indirect detection
constraints [126]. Unfortunately, some of these effective operators were used outside
the range of validity of effective field theory [127]. This motivated the use of
simplified models which minimally extend the Standard Model particle content [128,
129, 130, 131, 132, 133]. (Simplified models can also be viewed as a lowest order
effective field theory that, by adding more effective operators, begins to asymptote
the complete model.) There has been little done on effective field theory in the study
of electroweak baryogenesis. As such one needs to explore the basic framework
before discussing questions of the range of validity and ultraviolet completion.

The strength of the experimental constraints on CP violating effective operators
due mostly to negative searches for permanent electric dipole moments is impressive
– constraining some operators up to the multi TeV level [134, 135, 136, 137]. This
motivates an effective field theory approach that attempts to broaden the scope on
these limits. However, successful electroweak baryogenesis requires not only new
sources of CP violation, but new weak scale physics to catalyse a phase transition.
In principle, these two conditions could have a unified explanation – say one extra
particle. I consider the more general case where they are unrelated. In this case,
the many possibilities that could catalyse a strongly first order electroweak phase
transition is a peripheral concern and it is more practical to sweep such details under
the rug and instead parametrize the details of the phase transition.

When I calculate the baryogenesis produced by some test operators I find that
surprisingly, the scale of CP violation can be quite high if the conditions of the
phase transition are ideal (generally a very strongly first order phase transition, a
thin bubble wall propagating at a slow speed). A second surprising finding is that
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when one sweeps details of the physics that leads to a strongly first order phase
transition under a rug, the degeneracy of certain dimension 6 operators is lifted. For
such claims to be verified one will eventually need to look at the UV completion of
such operators to see if one can avoid contributions from the heavy physics from
becoming Boltzmann suppressed. With these issues in mind I nonetheless present
a rigorous step toward linking EDM constraints to baryogenesis calculations in a
model independent way.

8.2 Declaration for thesis chapter 8
Declaration by candidate
In the case of the paper present contained in chapter 8, the nature and extent of my
contribution was as follows:

Publication Nature of contribution Extent of contribution

8

Came up with idea, numerical implementation,
analytic demonstration of key concepts in the pa-
per, wrote large parts of the paper and contributed
to discussions throughout.

50%

The following coauthors contributed to the work. If the coauthor is a student at
Monash, their percentage contribution is given:

Author Nature of contribution Extent of contribution

Csaba Balazs
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8.3 Published material for chapter 8: Effective
field theory, electric dipole moments and
electroweak baryogenesis

Begins overleaf
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1 Introduction

The Higgs boson discovered at the Large Hadron Collider (LHC) [1, 2] closely resembles

that of the Standard Model (SM). This rules out the mechanism of electroweak baryogenesis

(cf. [3] and references therein for a pedagogical review) within the SM because with a Higgs

mass of 125 GeV [4] the electroweak phase transition (EWPT) does not provide a sufficient

departure from equilibrium [5]. The SM also falls short in the amount of charge (C) and

charge-parity (CP) violation to generate the observed baryon asymmetry of the universe

(BAU) [6, 7]. These two facts alone are enough to motivate the existence of new physics

responsible for baryon asymmetry.

Physics models entailing new particles or interactions can introduce charge-parity vio-

lating (CPV) phases to assist explaining the observed BAU [8] via electroweak baryogenesis.

The use of effective field theories (EFTs) allows one to test a large class of models without

adhering to a specific model or framework. This greatly facilitates the connection with

experimental constraints. Under this motivation, we consider an extension of the Standard

Model by effective dimension six operators. To achieve electroweak baryogenesis, one typ-

ically utilises two such higher dimensional operators1 to simultaneously generate enough

1For an approach where EWBG is achieved without adding particle content to the SM nor invoking

higher dimensional operators, see [9].

– 1 –



J
H
E
P
0
3
(
2
0
1
7
)
0
3
0

CP violation and a strongly first order phase transition (SFOPT) at the electroweak scale

(cf. [10–12] and references therein). Considerable amount of literature have been devoted

to generate sufficient CPV via dimension six operators [13–16], whilst evading ever tighter

constraints from searches for permanent electric dipole moments (EDMs). Similarly, stud-

ies of a SFOPT catalysed by dimension six operators [17, 18] (particularly applied to

top-Higgs sector [19, 20]) place a bound of Λ . 800 GeV on the scale of new physics that

could boost the strength of the phase transition [21].

In this work, we argue that it possible to build a relatively direct bridge between the

EDM constraints on a higher dimensional operator and the maximal baryon asymmetry

produced by such an operator by assuming a strongly first order phase transition (which is

parametrised by the bubble wall width, velocity, etc.) [22–25]. This bridge can be used to

then classify the UV completion(s) corresponding to the EFT (for some examples see [26–

29]).2 While building the above bridge, we point out that the degeneracy between certain

higher dimensional operators is lifted. Usually, derivative operators are traded to non-

derivative ones via the classical equations of motion. However, such degeneracy may be

broken in BAU calculations since the CPV sources corresponding to these operators have

different dependencies on the assumed profile of the space-time varying vacuum. It is

necessary then to extend the higher dimensional CP violating operator basis (cf. e.g. [31–

33]) that is capable of generating the baryon asymmetry.

The most promising operators for BAU generation are those that contain at least one

Higgs field to accommodate CP violating interactions with a space-time varying bubble

wall as well as a strongly coupled SM field, i.e. a top quark or a gauge boson. The resonant

enhancement of such interaction during the electroweak phase transition becomes the most

efficient mode for baryogensis. Consequently, two qualitatively different operators are

chosen within the new catalogue of the operators presented in this paper to demonstrate

the aforementioned bridge. One of the operators chosen is normally considered redundant

due to the equations of motion. It involves a derivative coupling to the Higgs and the

result is an increased sensitivity to the width of the electroweak bubble wall. The respective

baryon asymmetries are calculated show that current EDM measurements can meaningfully

constrain the available parameter space.

The structure of this paper is outlined as follows. In section 2 we demonstrate that the

redundancy between various operators is lost during the electroweak phase transition. We

then catalogue the full set of CP violating dimension six operators that are candidates for

producing the BAU via the electroweak mechanism in section 3. The CP violating sources

are calculated using the closed time path formalism in section 4, with their respective

EDM constraints derived subsequently in section 5. We present resulting BAU in section 6

before briefly discussing the possibility of space-time varying masses of heavy particles in

section 6.1. Finally we conclude with section 7.

2See [30] for an approach of connecting EFTs and UV complete models in the context of Higgs flavour

violation.
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2 Removing redundancies of operators with derivative coupling to the

Higgs

A successful explanation of the BAU necessarily fulfils the three Sakharov conditions [34]:

(1) baryon number violation,

(2) charge and charge-parity violation, and

(3) departure from thermal equilibrium.

In electroweak baryogenesis, the SU(2) sphalerons are responsible for meeting the first

condition as the anomalous baryon number violating processes become unsuppressed at

high temperature. In the SM, the second condition is met through a CP violating phase

in the Cabibbo-Kobayashi-Maskawa (CKM) matrix, but it is too feeble to provide enough

baryon asymmetry. The third condition also fails in the SM as the Higgs mass is too heavy

to catalyse a strongly first order electroweak phase transition.

The second and third conditions can be satisfied within the SMEFT framework by

adding higher dimensional operators to the SM Lagrangian

L = LSM +
cCPV
Λ2
CPV

OD=6,CPV +
∑

n,m∈N

cn,m
Λnm
O(m)

∆V,D=4+n, (2.1)

where OD=6,CPV is an operator3 contributing to both the BAU as well as EDMs, and

the set of operators O(m)
∆V,D=4+n ensure that the EWPT is strongly first order (see for

example [10, 11]). In general, the OD=6,CPV operator may contain derivatives, and there

can be a single or several O(m)
∆V,D=4+n operators, each possibly with a different cutoff scales.

Usually, the classical equations of motion are used to eliminate derivative operators as

redundant. However, we will show in this section qualitatively (numerically in a subsequent

section) that one should exercise caution when eliminating derivative operators with EOMs

for baryon asymmetry calculations within the EFT framework. The reason for this is be-

cause the Sakharov conditions are met only if both the operators O(m)
∆V,D=4+n and OD=6,CPV

exist. For a concrete example consider an example operator of the class OD=6,CPV

ODD = QLtRDµD
µH . (2.2)

The derivatives on the Higgs in the above operator can be typically eliminated by making

use of the field equations

DµD
µH = −∂LSM

∂H†
+O

(
1

Λ

)
. (2.3)

Explicitly, one can use the classical equations of motion to rewrite ODD as

1

Λ2
ODD =

1

Λ2
QLtRDµD

µH

→ 1

Λ2
QLtR

(
∂LSM

∂H†
+

∂

∂H†
∑

n,m

cn,m
Λnm
O(m)

∆V,D=4+n + · · ·
)
. (2.4)

3We note that one can in principle have many such operators. The approach we adopt here is to inspect

each one separately as a sole source of CPV (in addition to the CKM phase).
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After substituting in the SM Lagrangian and evaluating the derivatives, the operator ODD
reads

ODD = QLHtR

(
µ2 − λH†H

)
−
(
QLtR

)
i
εij
(
LYeeR

)
j

−
(
QLtR

)
i
εij
(
uRY

†
uQ
)
j
−
(
QLtR

)
i
εij
(
QiY

†
d dR

)
j

+O
(

1

Λ2

)
.

(2.5)

In EDM calculations, operators suppressed by Λ−n can be safely neglected in eq. (2.4).

The use of the equations of motion to relate different operators is justified in this context

since a hierarchy of scale is established between the constant Higgs vacuum expectation

value (vev), 〈H(x)〉 = v, and the cutoff Λ.

In BAU calculations, however, the CP violating sources typically depend on the deriva-

tive of the space-time varying vacuum during the phase transition. For example, for the

supposedly degenerate operators shown in eq. (2.4), one can derive the CP violating sources

to lowest order in the inverse cutoff:4

S��CP
ODD ∼

1

Λ2
[v(x)∂t (∂µ∂

µv(x))− ∂tv(x) (∂µ∂
µv(x))] ,

S��CP
O∂V/∂H ∼

1

Λ2

[
v(x)∂t

(
∂VSM

∂H

∣∣∣∣
v(x)

)
− ∂tv(x)

(
∂VSM

∂H

∣∣∣∣
v(x)

)]
+O

(
1

Λ4

)
. (2.6)

One can immediately see that the two expressions do not agree in general. This is made

explicit when a specific form for the Higgs profile of v(x) is introduced to describe bubble

formation during the electroweak phase transition. The profile is a stationary field con-

figuration in the finite temperature effective action which interpolates the false vacuum to

the true vacuum. Assuming an O(3) symmetry, the bounce solution takes the form:

v(z) ≈ v(T )

2

[
1 + tanh

(
z

Lw

)]
. (2.7)

Here, Lw measures the width of the bubble wall and z parametrises the distance perpen-

dicular to the wall. With both Lw and v(T ) determined by the operators O(m)
∆V,D=4+n,

there are no free parameters left in eq. (2.7). Using eq. (2.7) in eq. (2.6) does not yield the

same result, not even approximately. This is due to the fact that S��CP
ODD and S��CP

O∂V/∂H have

different dependencies on Lw and v(T ). Specifically, the CPV source resulting from the

operator with derivative coupling to the Higgs, ODD, has a cubic sensitivity to the bub-

ble wall width whereas the non-derivative operator has a quartic sensitivity to the value

of v(T ). The strength of the CPV source due to the CPV operators then become very

sensitive to the exact structure of the set of operators O(m)
∆V,D=4+n rather than the O(Λ−4)

sensitivity that occurs in EDM calculations.

For each OD=6,CPV, one could in principle consider every single possibility for the set

O(m)
∆V,D=4+n and their Wilson coefficients to calculate Lw and v(T ). However, by ignoring

the precise structure of O(m)
∆V,D=4+n and instead leaving Lw and v(T ) as free parameters,

we can then draw as direct a bridge as possible between BAU calculations and EDM limit.

4The reader is referred to (4.8) for the explicit form of the sources.
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The result is that redundancy between derivative and non-derivative operators is lifted.

This is due to the sensitivity of CP violating sources to O(m)
∆V,D=4+n being much sharper

than the expected Λ−4 sensitivity. This behaviour is attributed to the derivative structure

of the operators and the changing the profile of the vev during the EWPT as controlled by

Lw and v(T ).

3 Operators classification

In this section, we classify and count the operators involving derivative couplings with Higgs

which can no longer be considered redundant. In electroweak barogenesis, the SM fields

whose contribution to the BAU are suppressed by small Yukawa couplings can be neglected.

This means that only the left handed third generation quark doublet, the right-handed top,

the Higgs and gauge bosons need be considered. With the symbolic meanings of ψ, D, F

and H applied to fermions, derivative operators, (dual) field strength tensors and Higgs

operators respectively, one should obtain 12 operator classes, 8 of which involve the Higgs

H6, H4D2, H2D4, FH2D2, ψ2H3, F 2H2, ψ2H2D, ψ2HD2, ψ2HF,

F 2D2, ψ4, ψ2DF, F 3.
(3.1)

In order for the contributions to the BAU be resonantly enhanced, a CP violating operator

must involve at least one space-time varying Higgs operator and one other field. Terms

with single H cannot appear without a ψ2 combination to cancel the SU(2) charge. There-

fore, terms such as FD2H should not appear. Under these constraints the possible classes

of operators are

H4D2, H2D4, ψ2H3, FH2D2, F 2H2, ψ2H2D, ψ2HD2, ψ2HF. (3.2)

We take the CP -odd operators from [31], while the CP -even analogue is given in [32] (see

also [33, 35].) We list in table 1 the operators satisfying the above constraints. We find 34

in total that fulfil all of our constraints, including 19 with higher derivative couplings that

are usually considered redundant. We considered operators with DµD
2 and not DµD

2 as

the latter can be formed by taking the sum of the first operator and an operator involving

the field strength tensor. We will select two qualitatively different operators for an ex-

tensive study — one with a second derivative coupling, ODD, and one with no derivative

couplings Ot1.

4 Electroweak baryogenesis with higher dimensional operators

4.1 Constructing new CPV sources with higher dimensional operators

When the Higgs field develops a space-time varying vacuum expectation value, v(x), there

are operators which interfere with the standard top quark vev insertion diagram to give

exotic new sources of CP violation. We use the closed time path (CTP) formalism [37–

41] to calculate CP violating source terms for two operators which facilitate resonantly

enhanced CP violating interactions with the bubble wall.
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H2D4 H4D2

O(1)
H2D4

(
D4H†

)
H O(1a)

H4D2 (H†H)H†D2H

O(2)
H2D4

(
D2DµH

†)DµH O(2a)
H4D2 (H†H)DµH†DµH

O(3a)
H2D4 (D2H†)(D2H) O(2b)

H4D2 (H†
↔
DµH)(H†

↔
DµH)

O(3b)
H2D4 (DµDνH†)(DµDνH)

ψ2H3 ψ2H2D ψ2HD2

Ot1
(
H†H

) (
QLH̃tR

)
O(1)
Hq

(
H†i

↔
DµH

)(
QLγ

µQL
)

OσDD
(
QLσ

µνtR
)
DµDνH̃

O(3)
Hq

(
H†i

↔
Di
µH

)(
QLγ

µτ iQL
)
OσDD

(
QLσ

µν
↔
DµtR

)
DνH̃

OHt
(
H†i

↔
DµH

)(
tRγ

µtR
)

ODD
(
QLtR

)
DµDµH̃

ODtDH
(
QL
↔
DµtR

)
DµH̃

F 2H2 ψ2HF FH2D2

OHG
(
H†H

)
GaµνG

aµν OtG
(
QLσ

µνT atR
)
H̃Gaµν O(1)

D2HW W i
µν(DµH†)τ i(DνH)

OHG̃
(
H†H

)
GaµνG̃

aµν OtW
(
QLσ

µντ itR
)
H̃W i

µν O(2)
D2HW DµW i

µν(H†
↔
Di,νH)

OHW
(
H†H

)
W i
µνW

iµν OtB
(
QLσ

µνtR
)
H̃Bµν O(1)

D2HW̃
W̃ i
µν(DµH†)τ i(DνH)

OHW̃
(
H†H

)
W i
µνW̃

iµν O(2)

D2HW̃
DµW̃ i

µν(H†
↔
Di,νH)

OHB
(
H†H

)
BµνB

µν O(1)
D2BH Bµν(DµH†)(DνH)

OHB̃
(
H†H

)
BµνB̃

µν O(2)
D2BH DµBµν(H†

↔
DνH)

OHWB

(
H†τ iH

)
W i
µνB

µν O(1)

D2B̃H
B̃µν(DµH†)(DνH)

OHW̃B

(
H†τ iH

)
W̃ i
µνB

µν O(2)

D2B̃H
DµB̃µν(H†

↔
DνH)

Table 1. List of dimension six operators based on [36] involving at least one Higgs and one

other field that is either a Standard Model gauge boson or a top quark. Since redundancies

due to the equations of motion are no long applicable, one has to be cautious with the classes

involving (i) two derivatives acting a Higgs field and (ii) one derivative acting on either gauge

field or fermion field. Here we follow the definition that H†i
↔
DµH := iH†(Dµ −

←
Dµ)H and

H†i
↔
Di
µH := iH†(τ iDµ −

←
Dµτ

i)H.
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We also use the vev-insertion approximation (VIA) where the BAU production is

dominated by physics in front of the advancing bubble wall. THis is valid when the vev is

small compared to both the nucleation temperature and the mass splitting of particles that

produce the resonant CPV sources.The effective degrees of freedom are then those belonging

in the mass eigenbasis of the symmetric (unbroken) phase. Their interactions with the

space-time varying vevs are treated perturbatively under such approximation. One could

perform a resummation to all orders in the vevs following the techniques in [42, 43]. As a

simplification, we ignore the hole modes in the quark plasma [44–46]. The effects of mixing

with multiparticle states in the thermal bath as well as resummation will also be left to a

later, more precise numerical study. Under these assumptions, the quark propagator reads

Sλ(x− y) =

∫
d4k

(2π)4
e−ik·(x−y)gλF (k0, µtL/R)ρ(k0, k)(�k +m), (4.1)

where ρ(k0, k) is the density of states and

g>F (x) = 1− nF (x),

g<F (x) = −nF (x),
(4.2)

with nF (x) = (eβx + 1)−1.

We will consider two exotic operators, Ot11 and ODD. The first can be treated in the

usual way by defining the self energy as

Σtot(x, y) =
(
ytv(x) +

ci
Λ2
v(x)3

)(
y∗t v(y) +

c∗i
Λ2
v(y)3

)
StR(x, y) , (4.3)

whereas the ODD term has a derivative coupling. For simplicity we will ignore interactions

with gauge bosons. Making the replacements H(x)→ v(x), the self energy is

Σtot(x, y) =
(
ytv(x) +

ci
Λ2
∂µ∂

µv(x)
)(

y∗t v(y) +
c∗i
Λ2
∂µ∂

µv(y)

)
StR(x, y). (4.4)

The CP conserving term to lowest order in Λ−1 for both operators is just the usual

resonant relaxation term arising from interactions between the top and the space-time

varying vacuum. The term v(x)v(y) is then expanded near y = x taking the lowest order

term. In this case the lowest order is the zeroth order and we find

Γt = NC
|yt|2
2π2T

v(x)2

∫ ∞

0

k2dk

ωLωR
Im

[
(
ELER + k2

)(hF (EL) + hF (ER)

EL + ER

)

−
(
ELE∗R − k2

)(hF (EL) + hF (E∗R)

E∗R − EL

)]
.

(4.5)

4.2 Contributions from Ot1 vertices

The CP conserving relaxation term up to O(Λ−2) just produces the following correction

to the Standard Model

Γt 7→
(

1 +
∣∣∣ ci
Λ2

∣∣∣ v(x)2
)

Γt . (4.6)
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For the new CP violating source we expand to first order in z = x. The result is

Im

[
ciy
∗
t

Λ2

] [
v(x)3v(y)− v(x)v(y)3

]
7→ Im

[
ciy
∗
t

Λ2

]
(z − x)µv(x)3∂µv(x) . (4.7)

Only the zeroth component contributes under the assumption of spatial isotropy. Let

us also ignore the bubble wall curvature and work in the rest frame of the bubble wall

z = |vwt− x|. The time derivative of the vev profile is then a spatial derivative times the

wall velocity. In line with the VIA, we assume that the variation of bubble wall with respect

to z is sufficiently gentle near the phase boundary [47]. Solving the contour integrals we find

S��CP
ODD = 2

vwNC

π2
Im

[
ciy
∗
t

Λ2

]
v(x)3v′(x)

∫ ∞

0

k2dk

ωLωR
Im

[
(
ELER + k2

)(nf (EL)− nF (−ER)

(EL + ER)2

)

+
(
ELE∗R − k2

)(nf (EL)− nF (E∗R)

(E∗R − EL)2

)]

= 2
vwNC

π2
Im

[
ciy
∗
t

Λ2

]
v(x)3v′(x)I [mtL ,mtR ,ΓtR ,ΓtL ,Λ] , (4.8)

where we have implicitly defined the function I[·] for notational convenience.

4.3 Contributions from ODD vertices

The ODD operator requires some care since it involves a derivative coupling to the Higgs.

Once again, we replace the Higgs field with a space-time varying vacuum and expanding

the vacuum near z = x. The correction to the SM CP conserving relaxation term comes

from the zeroth order term in the expansion

Γt 7→
(

1 +

∣∣∣∣
ci

Λ2v(x)

∣∣∣∣ v′′(x)

)
Γt . (4.9)

Note that the correction to the relaxation term involves the second derivative of the vev.

The usual practice in solving these transport equations is to linearise the differential equa-

tions which means assuming the relaxation terms are a constant value in the broken phase.

There are some ambiguity in this procedure in that the correction to the above relaxation

term varies quite rapidly with x when x . Lw before going to zero. We therefore linearise

the transport equations by setting this correction to its average value between [0, Lw]. This

will be a somewhat a conservative assumption as this correction will not relax the number

densities at all far from the bubble wall.

The CP violating source term, involving the third derivative of the Higgs coming from

the next to leading order expansion around z = x, is given by

S��CP
ODD =

vwNC

π2
Im

[
ciy
∗
t

Λ2

] [
v′′′(x)v(x)− v′′(x)v′(x)

]
I [mtL ,mtR ,ΓtR ,ΓtL ,Λ] . (4.10)

The derivative coupling causes the operator to be much more sensitive to the bubble width

than the CP violating sources arising from Ot1, or two Higgs doublet models which all have

the CP violating source controlled by the first derivative of the vev. We note that there is
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a danger that the VIA approximation becomes cruder for derivative couplings particularly

when the bubble wall becomes very thin. Nonetheless, we expect the qualitative result that

the source has an increased sensitivity to the wall width to be true even if one uses Wigner

functional methods, as it comes from the derivative coupling to the space-time varying vev

itself, rather than our approximation scheme.

4.4 Calculating the baryon asymmetry

When calculating the BAU, we make the usual assumption that gauge interactions are

very fast and that in the VIA the chemical potential for the W± bosons vanishes as in

the symmetric phase. We ignore interactions with particle species whose interactions are

suppressed by small coupling constants. Specifically, the number densities we consider are

the following linear combinations

Q = ntL + nbL ,

T = ntR ,

H = nH+ + nH0 .

(4.11)

Systematically calculating the sources for each self energy term involving the above particle

species leads to a network of coupled transport equations. Using the usual relationship

ni = kiµiT
2/6 we can then relate the chemical potentials to the number densities. For

operator OX with X ∈ {DD, t1} these are

∂µQ
µ = ΓM

(
T

kT
− Q

kQ

)
+ ΓY

(
T

kT
− Q

kQ
− H

kH

)
− 2ΓSSU5 − S��CP

OX ,

∂µT
µ = −ΓM

(
T

kT
− Q

kQ

)
− ΓY

(
T

kT
− Q

kQ
− H

kH

)
+ ΓSSU5 + S��CP

OX ,

∂µH
µ = ΓY

(
T

kT
− Q

kQ
− H

kH

)
,

(4.12)

where

U5 =

(
2Q

kQ
− T

kT
+

9(Q+ T )

kB

)
, (4.13)

and the three body Yukawa rates, ΓY , are derived in reference [48]. Neglecting the bubble

wall curvature we can reduce the problem to a one dimensional one by changing variables

to the rest frame of the bubble wall z = |vwt−x|. We then use the diffusion approximation

to write ∇ · J = ∇2n thus reducing the problem to a set of coupled differential equations

in a single space-time variable. We do not use the usual simplification that the strong

sphaleron and three body Yukawa rates are fast compared to a diffusion time as it has

been shown that this assumption can cause an underestimate of the baryon asymmetry

in an example model (the MSSM) by a factor of O(100). While such an analysis has not

been done in the SM+X, we consider it worth solving the transport analytically using the

techniques in [49]. In the broken phase the solution is

X(z) =

6∑

i=1

x1AX(αi)e
−αiz

(∫ z

0
dy, e−αiyS��CP

OX (y)

)
, (4.14)
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and in the symmetric phase we have

X(z) =
6∑

i=1

AX,sy1e
γiz, (4.15)

where X ∈ {Q,T,H}. The procedure for how to derive αi, βi, xi, yi and AX(αi) is given

in [49]. From these solutions one can then define the left handed number density nL(z) =

Q1L+Q2L+Q3L = 5Q+4T . The baryon number density, ρB, satisfies the equation [50, 51]

DQρ
′′
B(z)− vwρ′B(z)−Θ(−z)RρB = Θ(−z)

nF
2

ΓwsnL(z), (4.16)

where nF is the number of fermion families. The relaxation parameter is given by

R =
15

4
Γws, (4.17)

where Γws ≈ 120α5
WT [52–54]. The baryon asymmetry of the universe, YB is then given

by

YB = − nFΓws
2κ+DQS

∫ 0

−∞
e−κ−x nL(x) dx, (4.18)

where

κ± =
vw ±

√
v2
w + 4DQR

2DQ
, (4.19)

and the entropy density is

s =
2π2

45
g∗T 3. (4.20)

5 EDM constraints

New sources of CP -violation in the Higgs sector are necessary to realise electroweak baryo-

genesis. These sources, however, are severely constrained via their contributions to the

electric dipole moments (EDMs) of electron, neutron, molecules and atoms. A direct con-

nection between EDMs and electroweak baryogenesis have been suggested in [22, 23]. The

sensitivity of these low energy observables owes to contributions from operator mixing and

threshold corrections as high scale physics is run down and integrated out. The present

experimental constraints are summarised in table 2, showing that the electron EDM gives

the most stringent bound since it is weakly sensitive to hadronic uncertainties. This bound

is obtained from measurements using polar molecule thorium monoxide (ThO) [55]. We

therefore focus on contributions to electron EDMs (eEDM) and delay a more compre-

hensive and systematic treatment to a future study that will include other dimension six

operators (cf. e.g. [16, 19, 20, 56, 57]).

The dipole moment dψ corresponding to a charged fermion ψ is identified as the coef-

ficient of the five dimensional operator in the effective Lagrangian

LEDM = −idfψγ5σµνψFµν . (5.1)

As argued before, one is led to focus on the top-Higgs sector in electroweak baryogenesis
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Type Molecule/Atom Bounds

Paramagnetic 205Tl |dTl| < 1.6× 10−27 e cm [58]

Diamagnetic 199Hg |dHg| < 6.2× 10−30 e cm [59]

Neutron n |dn| < 3.0× 10−26 e cm [60, 61]

Electron (ThO) e |de| < 8.7× 10−29 e cm [55]

Table 2. Current limits on electric dipole moments of the electron (e), neutron (n), mercury

(199Hg) and thallium (205Tl) atoms at 90% C.L.

f

h

γ

t

γ

Figure 1. Two-loop Barr-Zee diagrams contributing to the electron EDM.

due to the O(1) coupling. At the non-derivative level, CP violation interactions of this

sort are encoded in
L ⊃ −mttLtR −

yt√
2
eiξhtLtR + h.c.,

= −mttLtR −
yt√

2
tth
(
cos ξ + iγ5 sin ξ

)
,

(5.2)

where tL, tR, h are assumed to be in their mass eigenstate and mt = 173 GeV is the physical

top mass. In addition, yt parametrises the magnitude of the top-Higgs coupling, and ξ its

CP phase. In the SM one has yt = ySMt :=
√

2mt/v and ξ = 0. If there is CP violation in

the top-Higgs coupling (ξ 6= 0) it induces contributions to de via two-loop Barr-Zee type

diagram [62] as shown figure 1. Such contribution is given by5

de
e

=
16

3

α

(4π)3

me

ySMt ySMe v2

[
ySe y

P
t f1

(
m2
t

m2
h

)
+ yPe y

S
t f2

(
m2
t

m2
h

)]
, (5.3)

where the loop functions f1,2 are defined in [16, 65]. We add that other degrees of freedom

(not present in our analysis), e.g. charged Higgs boson, may interact with the top quark to

give sizable contribution to the EDM via the same the Barr-Zee type diagram. This have

been studied in detail in the context of two Higgs doublet models [66–69].

Firstly we discuss how the Ot1 operator leads to CP violating top-Higgs coupling of

the form (5.2) by expansion of the H operator around its vev. With H = 1√
2
(0, v + h)T ,

5See [63] (based on [64]) for a more pedagogical discussion of the derivation.
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this leads to

L ⊃ −
(
α+

ct1
Λ2
H†H

)
QLH̃tR + h.c.

= − 1√
2

(
α+ ct1

v2

Λ2

)
v

︸ ︷︷ ︸
mteiξm

tLtR −
(
α+ 3ct1

v2

Λ2

)

︸ ︷︷ ︸
yteiξt

h√
2
tLtR + h.c.. (5.4)

These operators are brought into their mass basis by a field redefinition tR 7→ e−iξmtR. In

such case, the physical CP phase can be identified with ξt − ξm.

In case of the ODD operator, the top-Higgs interaction contains a derivative. In prin-

ciple, this contributes to de through the same two-loop diagram, shown in figure 1, and

one can derive an analogue of (5.3) with the momentum dependent top-Higgs vertex. Dif-

fering from the discussion of the baryon production during the EWPT, the Higgs vev here

corresponds to the one well after the EWPT and is hence not space-time dependent. It is

valid then to use classical EOMs to recast ODD in terms of derivative free operators as in

equation (2.5).

The dominant constraints on ODD come from from the first term of (2.5), since four-

fermion operators to do not lead to sensitive observables [20]. Following the previous steps,

one obtains

L ⊃ −
[
α+

cDD
Λ2

(µ2 − λH†H)
]
QLH̃tR + h.c. (5.5)

= − 1√
2

(
α+

cDD
Λ2

(
µ2 − 1

2
λv2

))
v

︸ ︷︷ ︸
mteiξm

tLtR −
[
α+

cDD
Λ2

(
µ2 − 3

2
λv2

)]

︸ ︷︷ ︸
yteiξt

h√
2
tLtR + h.c..

In both of these cases, one assumes a generic coefficient α ∈ C for the dimension-

four top Yukawa coupling QLH̃tR. Making the assumption that CP -violation comes only

from the d = 6 operators and that the scale of the operator is set by the cutoff, one

sets Im (α) = 0 and cDD,t1 = eiφCP . The value of α is chosen to absorb the effects of

the ODD,t1 and to reproduce mt = 173 GeV. Currently, we take µ2 = m2
h and µ2 = λv2

but we note that this relation can be modified by pure Higgs effective operators such as(
H†H

)3
. Figure 2 shows the contributions of the Ot1 and ODD operators to the electron

EDM as a function of the cutoff scale Λ. For the former, operator a strong dependence

on the CP phase of the higher dimensional operator is observed. Particularly, a cutoff of

Λ & 3600 GeV is required to remain consistent with the current constraints φCP = π/2,

but is relaxed to Λ & 3000 GeV for φCP = π/4. The electron EDM bound on the latter

operator is weaker, with the cutoff scale roughly required to be Λ & 1 TeV for both CP

phases. One should keep in mind that when interpreting these results, one assumes a

pure scalar electron Yukawa coupling with its SM value (cf. [70] and references therein for

discussions on experimental constraints of such coupling).

6 Numerical results and discussion

We plot the BAU produced by the new CP violating sources resulting from the operators

ODD and Ot1 in figure 3 and figure 4 respectively. We set the nucleation temperature to

– 12 –
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Figure 2. Two loop contribution to the electron electric dipole moment via a top quark due to

the Ot1 and ODD operators. Here φCP denotes the phase cDD,t1 = eiφCP of the Wilson coefficient

appearing in front of the operator. The horizontal line corresponds to the experimental limit.

Tn = 100 GeV and the CP violating phase φCP = π/2 such that new coupling constants

are cDD,t1 = i (cf. section 5). We then set the value of the vev deep within the broken

phase to obtain two different values of the order parameter γ := v(T )/T . The first value

is the minimal value of unity — since this is the approximate condition for a strongly first

order phases transition necessary to sufficiently suppress sphaleron interactions deep in the

broken phase thereby preserving the baryon number. The higher value is γ = 2 since this is

an approximate maximum value for γ during the electroweak phase transition for a critical

temperature Tc ≥ 100 [71]. Generically, a smaller value of the wall velocity produces a larger
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Figure 3. The baryon asymmetry due to the CP violating operator Ot1 in the plane of the bubble

wall width vs. cutoff (Lw,Λ). The dependence on Lw is relatively gentle.

BAU as does a larger value of γ which is expected given that the CP violating sources

are all proportional to γ to some power. One should note that the Standard Model with

a light Higgs has a larger wall velocity. The wall velocity can be suppressed by additional

particles in the plasma which might also be heavy enough to justify an effective field theory

approach. Therefore, we can once again parametrise our ignorance of such particles just

by keeping the wall velocity as a free parameter and setting it to values 0.05 and 0.1. As

explained in section 5, the minimum cutoff for the operator ODD is about a TeV whereas

the minimum cutoff for the Ot1 operator is significantly higher, about 3.5 TeV, due to its

effect on the top quark Yukawa.

As expected, the baryon asymmetry due to the operator ODD is very sensitive to the

bubble wall width. In both cases, a thin bubble wall is favoured with a large proportion of
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Figure 4. The baryon asymmetry due to the CP violating operator ODD in the plane of the

bubble wall width vs. cutoff (Lw,Λ). The dependence on Lw is quite steep.

the parameter space already ruled out. However, the baryon asymmetry diverges quickly

for very small values of Lw for the operator ODD. It would be very interesting to see how

strongly this effect persists when one goes beyond the VIA by using techniques described

in [42, 43].

Remarkably the BAU can be produced by the Ot1 operator with extremely large values

of the cutoff if the wall width and velocity are small but the order parameter γ is large. This

is due to the fact that the CP violating source scales as v(T )4/Λ2 so the suppression due

to the cutoff is not as severe as it is for the ODD operator. This also means that the BAU

for operator Ot1 is more sensitive to the value of v(T ). However, explaining the baryon

asymmetry with the Ot1 operator is not viable with about a 6-fold increase in the minimal

value of Λ (or equivalently Λ/|ci|). This means that this operator may be completely ruled
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out as a sole explanation to the BAU in the foreseeable future if EDM searches improve

in sensitivity by about an order of magnitude or measurements of the top quark Yukawa

coupling become moderately more accurate. There is of course the caveat that the baryon

asymmetry has some moderate dependence on the nucleation temperature.

Not all baryon number produced during the electroweak phase transition is preserved

until the phase transition is finished. The fraction that is preserved has a double exponential

dependence on the strength of the order parameter v(Tc)/Tc. So for an order parameter

of v(Tc)/Tc ≈ 0.75 one might need to produce as much as 10 times of the observed baryon

asymmetry [72]. Including the effects of washout, with detailed calculations of the sphaleron

energy, we leave to an interesting future project.

6.1 Space-time dependent cutoff

Within the approach of effective field theory, we approximate the propagators of heavy

particles by the inverse of their mass squared. If a particle acquires some of its mass via

symmetry breaking, the mass of the heavy particle inherits a space-time dependence via

the vev of the other field such that

1

Λ2
→ 1

Λ2
0(T ) + ∆Λ2(x)

:=
κ(x)

Λ2
0(T ) + v2(x)

. (6.1)

Here κ(x) is a space-time dependent function absorbing the effects of heavy physics which

the EFT is ignorant of. An example for such situation is an EFT for sparticles in super-

symmetry that have a soft mass but acquire some contribution to their masses from the

vacuum expectation value of the Higgs.

In this section, we argue that a space-time dependent cutoff is not necessarily fatal for

an effective field theory, although we do not claim that our treatment is comprehensive. For

example, we do not discuss any subtleties that may arise from the fact that the space-time

varying cutoff is defined within a particular frame of reference (although comfort ourselves

with the fact that temperature is also defined within a particular reference frame). For the

effective field theory to remain valid Λ0 has to be high enough to justify the new physics

it represents to be heavy enough. Since CPV source terms generically will depend on the

derivative of Λ, one could ask if it is in principle possible that such a term can boost the

baryon asymmetry. The answer is typically no in the case where Λ0(T ) is large enough as

corrections to the CP violating source will be of the order

1

Λ4(x)

∂

∂x

[
∆Λ2(x)

]
. (6.2)

Finally, we briefly consider the case where we definitely do not expect effective field

theory to work when Λ0(T )→ 0. Using intuition about the generic behaviour of space-time

varying functions during the electroweak phase transition (such as CPV phases, vevs and

variation of the ratio of vevs β(x)) we can make an ansatz to parametrise our ignorance of

the new physics

κ(x) = κ0 +
∆κ

2

[
1 + tanh

(
x

Lw

)]
. (6.3)
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Suppose we have the case where our D = 6 operator that we test is Ot1 which is acquired

by integrating out a heavy Higgs in a two Higgs doublet model. If we set Λ0 to zero6 the

CP violating source we get is

S��CP
Ot1 = v2(x)κ̇(x)Im[ytc

∗
i ]I (mtL ,mtR ,ΓtL ,ΓtR ,Λ(xi)) . (6.4)

Here Λ(xi) is the cutoff evaluated at a single space-time point for simplicity. This is, of

course, the most ambiguous part of this discussion. We can compare the above to the two

Higgs doublet model where one gets

S��CP
2HDM = v2(x)β̇(x)Im[yt1y

∗
t2 ]I (mtL ,mtR ,ΓtL ,ΓtR) . (6.5)

Remarkably, the effective field theory framework reproduces much of the structure of the

UV complete theory in a case where we had no right to expect this.

One should not, however, take the comparisons between the above two CPV sources

too literally. If we replaced the cutoff with the mass of the second Higgs doublet we would

acquire coefficients with complicated dependence on parameters beyond the SM. This is

expected since the heavy physics that produces Ot1 is not unique and the EFT framework

is necessarily somewhat ignorant of the UV completion. What is remarkable here is that

the EFT framework produces the correct dependence on the masses and thermal widths of

the top quark, including resonance effects, the correct dependence on the vev profiles, the

top Yukawa coupling as well as the variation of the space-time dependence of the heavy

physics all in a scenario where the EFT framework is expected to be crude. While this may

be coincidental, it would be interesting for future work to ascertain how well the effective

field theory works in calculating the BAU for a variety of models where Λ0(T ) is small.

7 Conclusions

The growing sensitivity of electric dipole moment searches is increasingly constraining

the parameter space of baryogenesis models. Consequently, in the near future various

electroweak baryogenesis models will be either confirmed or ruled out by EDM searches.

The number of baryogenesis models, however, is rendering the application of experimental

bounds (including EDM limits) on each model impractical. This necessitates a model

independent, direct connection between EDM constraints and BAU calculations. In this

work, we studied such a connection using the framework of an effective field theory.

Examining the connection between dimension six effective operators and the BAU, we

found that the conventional degeneracy is broken between operators containing derivatives

of the Higgs field and their counterparts related by the equation of motion. According to the

näıve CPV analysis, higher order contributions which arises when derivative operators are

traded to non-derivative ones, can be safely neglected since they are suppressed by the cutoff

scale. When calculating the BAU, however, operators containing a derivative of the Higgs

filed yield a CPV contribution to baryogenesis that involves the derivative of the Higgs vev.

If one trades these operators to non-derivative ones then one completely changes the nature

6This is physically unrealistic as there is always a thermal mass mass but done for illustrative purposes.
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of the CPV contribution to baryogenesis. The removal of O(m)
∆V,D=4+n due to power-counting

arguments in the EOMs when relating OD=6,CPV with SM operators is problematic as a

rapidly varying Higgs wall profile destabilises the hierarchy between the vev and cutoff scale.

After re-classifying dimension six effective operators, we selected two simple dimension

six operators (one containing a derivative and the other not) and calculated the respective

baryon asymmetry. We also subjected these operators to EDM constrains, thereby directly

connecting the effect of the EDM constraints to the amount of baryon asymmetry these

operators can yield. Finally, we discussed the possibility of the effective cutoff being space-

time dependent and showed that the effective field theory approach captures the bulk of

the correct physics even when we expect it to be a crude approximation.

We stress that the baryon asymmetry calculated from the normally neglected dimen-

sion six operators involving derivative coupling to the Higgs is more sensitive to the bubble

dynamics of the EWPT. The approach we suggest does not apply to more complicated

scenarios such as multistep phase transitions (cf. e.g. [73]). Also, more work needs to

be done analysing these operators using the full Wigner functional approach presented

in references [74]. Nonetheless, we have made a step toward a more general test of the

electroweak baryogenesis paradigm.
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Chapter 9

Conclusions and future work

Electroweak baryogenesis is a field where there is a large amount of work to be
done. There is only one numerical toolkit available publicly which only covers a
few of the calculations need [106]. There has been limited work on multistep phase
transitions [11]. There is also much work to be done on examining the baryogenesis
compatible parameter space of popular BSM models. Very little work has been done
in the context of effective field theory to directly use experimental limits to confine
higher dimensional CP violating operators. This in particular is a sub-field in its
infancy as the validity range and scope of EFT requires study. The scale of new
physics in preliminary studies was found to be surprisingly high. Nonetheless if
these theoretical questions can be answered it presents an exciting opportunity to
directly link EDM constraints to baryogenesis calculations. Finally, gravitational
waves provide an exciting new direction to test physics at energy not otherwise
accessible on Earth through colliders.

In this thesis I have focused energy on each of these directions with an eye to
the bigger picture of particle cosmology. Having said that, there is much work to
be done in each of these directions. On the effective field theory front, one needs to
thoroughly examine the validity limits of effective field theory as has been done for
dark matter. Furthermore the fate of operator degeneracies needs to be understood
on a deeper level. Finally there needs to be a systematic study of all CP violating
higher dimensional operators in the Standard Model and in the case of extended
scalar sectors.

In the case of testing baryogenesis within existing particle physics models, in
some soon to be published work, I examine the charged transport dynamics during
the electroweak phase transition in the NMSSM. In this work I find that the baryon
asymmetry can be very different if the singlet acquires a vacuum expectation value
before or during the electroweak phase transition. Furthermore, others [97] have
found that the parameter ∆β, which the baryon asymmetry is proportional to, can be
an order of magnitude higher in the NMSSM compared to its MSSM value. There is
ample motivation to perform a scan where the transport dynamics and the properties
of the phase transition are examined simultaneously. Such a work naturally ties into
the need for better numerical tools. I am in the process with several collaberators
of developing a numerical toolkit that has enough flexibility to perform mutiple
baryogenesis calculations: from phase transitions, to EDMs, to deriving and solving
coupled transport equations.
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In the case of extending the vanilla electroweak baryogenesis scenario to multi-
step phase transitions, again, very little has been done before this thesis. I have some
soon to be published work where I look at the case where SU(3)C is spontaneously
broken and then restored through the addition of leptoquark scalars. I demonstrate
that this is still a testable framework and secondly that the baryon asymmetry can be
produced during the colour break phase transition. A nice extension to the work done
here would be to explore the experimental signatures more deeply. For instance, two
step phase transitions can leave relic charge asymmetries. In the case I test the charge
asymmetry is many orders of magnitude lower than current observational bounds.
Perhaps there is a scenario where this asymmetry is large enough to be testable in the
near future. Secondly anomalous violation of lepton flavour violation was recently
explained through the leptoquark representation I used [138]. Understanding the
impact on flavour physics of the colour breaking paradigm would be a rich extension
to our project and there is already evidence that such a leptoquark might exist.

Finally gravitational wave detectors provide a useful avenue to test the whole
multistep paradigm. This is particularly important as the key phase transition that
catalyzes the production of a baryon asymmetry might involve scalar particles far
too heavy to be seen by either this or the next generations of particle colliders but
might be detectable through gravitational wave detectors. Ligo is sensitive to cosmic
phase transitions at an unusual energy scale but it is expected to be sensitive to
relic gravitational backgrounds from cosmic phase transitions many decades earlier.
I have written the first work outlining a physical motivation for a cosmic phase
transition at such a scale but if there are other physical motivations that would be
worth exploring.
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