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Abstract

Initial drug efficacy in controlling cancerous growth and proliferation often recedes

as cells acquire resistance mechanisms to escape from the inhibitory effects of RTK

(receptor tyrosine kinase)-targeted therapies such as EGFR (epidermal growth factor

receptor)-TKI (tyrosine kinase inhibitor). In addition to secondary mutations in

targeted oncogenes, signalling cross-talk (interactions among signalling pathways) has

been reported to play a vital role as a molecular mechanism of this significant clinical

barrier. Therefore, systematic modelling, identification, and characterisation of puta-

tive signalling cross-talk in demystifying underlying mechanisms of acquired resistance

to EGFR-TKIs in silico has become increasingly urgent. In this thesis, I developed

a framework combining computational modelling with a fully Bayesian statistical

approach to identify perturbations of underlying signalling networks distinguishing

between drug-sensitive and drug-resistant conditions. I inferred data-driven signalling

networks by analysing gene expression datasets of two breast cancer cell-lines: SKBR3

and BT474 in lapatinib (an EGFR/HER2 (human epidermal growth factor receptor

2) dual inhibitor) treated sensitive (parental) and resistant conditions, and inferred

aberrant signalling pairs in resistant-vs-parental conditions using a particular class

of Exponential Random Graph Models (ERGMs), called p1-models. I hypothesised

that such aberrant signalling pairs might possess differential probabilities of appearing

between the data-driven signalling networks from resistant-vs-parental conditions. I

proposed a novel cross-talk categorisation for data-driven signalling networks (Type-I

and Type-II cross-talk) and observed that many compensatory signalling pathways

in SKBR3 and BT474 cell-lines aberrantly cross-talk with EGFR/HER2 signalling
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pathway, which is the primary target of lapatinib. In both SKBR3 and BT474 cell-lines,

pathway enrichment tests of aberrant pairs with known signalling links revealed that

those compensatory pathways from KEGG, Reactome, and WikiPathway databases

were significantly dysregulated in acquired resistance. Moreover, I proposed and anal-

ysed a novel structure of aberrant signalling links, called V-structures, and found

that many genes were dysregulated in resistant-vs-parental conditions when they were

involved in the dependency switch from targeted to bypass signalling events. These

results provide further insights into the bypass mechanisms of acquired resistance

and have potential to be used in designing novel therapeutics to overcome acquired

resistance in cancer.
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Chapter 1

Introduction

‘Cancer’ refers to a group of diseases characterised by uncontrolled cell growth, migra-

tion, survival and differentiation, which is primarily mediated by aberrant activities of

cell signalling pathways [1]. In many cancers, these aberrant signalling pathways are

initiated and maintained through the up-regulation or mutation of various receptor

tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR) and

the human EGFR 2 (HER2, also known as ErbB2), thus inducing various cancer-

related activities [2, 3]. Therapies targeting these aberrant RTKs by small molecule

tyrosine kinase inhibitors (TKIs) have shown great potential in inhibiting cancer cell

growth, and are therefore widely used in clinical trials [4]. However, initial success

of these inhibitors is often followed by tumour relapse due to the acquired resistance

of cancer cells after prolonged treatment. Acquired resistance is thus a significant

barrier to achieving drug efficacy in response to advanced cancer [4, 5]. Understanding

the mechanisms of acquired resistance in RTK targeted therapies is an important

challenge in systems biology in order to facilitate mechanistic insights for developing

sustainable cancer therapeutics. Recently, cross-talk among cell signalling pathways

have been reported as a potential mechanism of acquired resistance in various cancers

[4]. Cross-talk is defined as interactions among signalling pathways where one or more

components of one pathway affect the overall activities of another pathway.
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In oncogenic addiction, cancer cells become dependent upon specific signalling pathways

that are controlled by mutation or over-expression of a single protein for their survival

and/or proliferation [4, 6]. Kinase inhibitors typically target this oncogenic behaviour of

cancer cells [4, 7]. However, the inhibitory effects of such therapies are often transient,

because cancer cells acquire mechanisms to escape targeted TKIs, and thereby return

to their metastatic phenotype. This phenomenon is known as acquired resistance to

TKIs.

There are several known mechanisms of acquired resistance that are reported to date,

including both genetic and non-genetic factors [7, 8]. Some of the genetic mechanisms

of resistance to various TKIs include: 1) secondary mutations of EGFR T790M [9],

HER2 kinase domain [10], BCR-ABL [11, 12], and KIT [13, 14], 2) amplifications

of MET [15, 16], cyclin E [17], ALK [18], BRAF [19, 20], KRAS [20], BCR-ABL

[11, 12], KIT [14], and the androgen receptor gene [21], 3) the loss of PTEN [22, 23],

increased expression of IGF-IR [24] and AXL [25]. The non-genetic mechanisms,

which are less well studied or poorly characterised, involve epigenetics, alternative

RNA (ribonucleic acid) splicing, metabolic changes or specific protein modifications [7].

Evidence supporting such non-genetic mechanisms also includes addiction switching

[26], adaptive reprogramming of signalling networks, feedback loops and cross-talk

among signalling pathways [7].

In receptor targeted therapies, cross-talk among signalling pathways play a significant

role in acquired resistance in various types of cancer. For example, in EGFR family

receptor targeted therapies, cancer cells develop acquired resistance since multiple

compensatory signalling pathways cross-talk with the EGFR signalling pathway at

the receptor, mediator and effector levels [4] (see Chapter 2). The EGFR family of

receptors contain four receptor proteins: EGFR (ErbB1 or HER1), ErbB2 (HER2/c-

neu), ErbB3 (HER3) and ErbB4 (HER4) [27], some of them (EGFR and HER2)

share common downstream signalling components with other alternative RTKs such

as MET, AXL, FGFR, IGF-1R, EphA2 [4]. At the receptor level, the amplifications or

2



altered activations of these alternative RTKs can maintain key signals for cell survival

and/or proliferation to the common downstream signalling components that were

previously blocked by TKIs targeting EGFR/HER2 signalling [15, 28–31]. Again, at

the mediator level, one or more components of two major downstream (of EGFR/HER2

signalling) pathways: RAS/RAF/MEK and PI3K/AKT/mTOR become re-activated

by mutations or deletions of genes that act downstream of the receptors, thereby

activating downstream effectors [4]. Signalling cross-talk at the effector level are more

complex and diverse since there are numerous effectors in RTK signalling pathways.

However, cross-talk at the effector level contribute to acquired resistance to EGFR-

TKIs when signalling pathways triggered by other RTKs cause an altered response

of some critical key effectors (e.g. TSC2, FOXO3) that are involved in cell survival

and proliferation [4]. It has been reported that EGFR/HER2 signalling can cross-talk

with Notch, Wnt/β-catenin, and TNF-α/IKK/NF-κB in order to nullify the inhibitory

effects of EGFR/HER2 targeted therapies [4] (see Chapter 2). Kinome reprogramming

in the signalling network is an alternative mechanism for EGFR-TKI resistance [32]

(see Chapter 2). Recently, Stuhlmiller at al. [32] reported that continued consumption

of lapatinib (an EGFR/HER2 dual inhibitor) induces aberrant signalling activities

through transcriptional up-regulation and altered activation of multiple heterogenous

RTKs (e.g. DDR1, FGFRs, IGF1R, MET) to compensate EGFR/HER2 inhibition in

breast cancer cell-lines [32]. The idea of a dependency switch (addiction switch) of

downstream signalling nodes in acquired resistance was recently studied by Sharifnia et

al. [33] wherein they found that EGFR-dependent status of the downstream signalling

nodes is altered by the transcriptional up-regulation of other redundant kinase-related

genes that share those downstream signalling nodes with EGFR-dependent signalling

[33].

Given the increasingly recognised importance of signalling cross-talk in contributing

to acquired drug resistance to EGFR-TKIs, developing a systematic approach to

comprehensively characterise these cross-talk is urgently required yet poorly studied.
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Moreover, a network model of signalling activities reflecting the system-level perturba-

tions (i.e. signal rewiring) in resistant-vs-parental conditions has tremendous potential

to elucidate the underlying mechanisms of acquired resistance. For example, in cancer

drug resistance, some relationships between gene-pairs may evolve in resistant cell-lines

to compensate the inhibitory effects of drugs used [5, 34] whereas some relationships

that were highly correlated in parental cell-lines may become loosely correlated (or even

independent) in resistant cell-lines. In silico predictions made using computational

modelling of such complex systems can generate biologically plausible hypotheses that

can not only save time and cost relative to in vivo experiments but also be readily

available for validation purposes and for developing novel therapeutics with sustained

efficacy. Therefore, considering all the points discussed above, the main objectives of

this thesis are to:

develop methods to model, identify, and characterise putative signalling cross-talk in

cancer contributing to acquired drug resistance

To achieve these objectives, I employed a statistical modelling approach to characterise

the system-level details of the data-driven networks of signalling activities derived

from high-throughput datasets from both resistant and parental (sensitive) condi-

tions. In constructing signalling network structure, a data-driven approach learns the

relationships among nodes from data by adapting some computational methods. I

hypothesised that, given some single-cell high-throughput datasets (e.g. protein or

gene expression) in resistant and parental conditions, the contrasting behaviour in their

respective data-driven network structures inferred using data observed at signalling

nodes (e.g. proteins, enzymes) may elucidate the potential aberrant signalling activities

that ultimately lead cancer cells to develop acquired resistance to targeted therapies.

A statistical approach is useful for inferring and analysing aberrant signalling activities

within the data-driven signalling network structures [35, 36]. The rationale for applying

a statistical approach here is that data-driven inference of signalling networks (and

other networks) can fail to detect important signalling links or incorrectly identify
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links that are not present [35]. Moreover, high-throughput datasets may be noisy.

Therefore, a statistical approach for analysing the uncertain nature of the data-driven

network models can be used to predict posterior edge probabilities (of appearing in

the network) by formalising them into a Bayesian model [35]. Once aberrant signalling

activities are inferred, computational approaches can identify and characterise putative

cross-talk involved in acquired resistance.

Here, I used a fully Bayesian approach involving the p1-model to quantify uncertainty

about which signalling activities are present in a given cell-line. This approach was

applied to both parental and resistant cell-lines in breast cancer. Using this technique,

I investigated the role of pathway cross-talk among signalling pathways in acquired

resistance to lapatinib. The p1-model is an Exponential Random Graph Model (ERGM)

that was originally introduced by Holland and Leinhardt [37]. In general, ERGMs are

statistical models for which the global structure of the network emerges as a function of

local features called explanatory variables [36]. In the p1-model, the set of explanatory

variables includes two edge-level attributes: degree of reciprocity and global density,

and two node-level attributes: attractiveness and expansiveness (see Chapter 2). This

p1-model was previously used in modelling the human protein-protein interaction

network [35], and other biological systems including metabolic pathways [36] where

the edge probabilities were evaluated by summarising the above topological properties

of the networks (explanatory variables) in a parametric form and associating them

with sufficient statistics [35, 37] (see Chapter 2).

In Chapter 2, I discuss: 1) basic terminologies related to acquired resistance to

EGFR-TKIs in breast cancer cell-lines (SKBR3 and BT474) and 2) background of

modelling signalling rewiring in acquired resistance. In Chapter 3, I propose a possible

categorisation of signalling cross-talk for data-driven models of signalling networks

and compare this to other state-of-the-art categorisations. In Chapter 4, I propose a

computational framework in which I apply the p1-model to infer posterior probabilities

of gene-gene interactions in the networks derived from matched gene expression data
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from breast cancer cell-lines (SKBR3 and BT474) under lapatinib-sensitive (parental)

and lapatinib-resistant conditions. Next, I identify sets of gene-pairs from the KEGG,

Reactome and WikiPathway databases as putative drug-resistant cross-talk, where

each cross-talk is comprised of a gene in the EGFR/ErbB signalling pathway and a

gene from another signalling pathway that appear to be interacting in resistant cells

but not in parental cells. This work has been published in the journal BMC Systems

Biology [34].

Next, I hypothesised that modelling aberrant networks with differential gene-

dependencies occurring in resistant-vs-parental conditions can elucidate signalling

rewiring in acquired resistance. In Chapter 5, I use the p1-model again to model such

rewired networks. This facilitates: 1) identifying dysregulated signalling pathways

in acquired resistance, and 2) exploring all possible types of cross-talk among all

signalling pathways [Chapter 2] involved in drug-resistance; some of which were not

covered in my previous framework [Chapter 4]. I propose a novel V-shaped structure

of aberrant gene-pairs in rewired networks, called a V-Structure, and hypothesised that

it can model a possible mechanism of acquired resistance: the dysregulation of genes in

acquired resistance can be mediated by the dependency switch from targeted signalling

to bypass signalling in resistant-vs-parental conditions. Using the same gene expression

data from two breast cancer cell-lines: SKBR3 and BT474 as above [Chapter 4], the

results indicate that many signalling pathway structures were compromised in acquired

resistance and the V-structures of aberrant signalling were able to provide detailed

insights into the bypass mechanism of targeted inhibition. This work has been accepted

for publication in the journal PLoS ONE.

In addition to my primary research focus, I also collaborated with another PhD student

(Salem A. Alyami) within our research group on several projects related to the structure

and parameter inference of Bayesian network models of biological networks in systems

biology using MCMC methods. These projects yielded several publications, some of

which are already published, and others are in preparation. Moreover, I published
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one book chapter that reviews recent methods that integrates multiple heterogenous

datasets (e.g. gene expression, copy number aberration, methylation, PPI information)

in order to identify cancer modules. All of these additional projects share something

in common with this thesis: namely ‘Inferring Network Structure’, by which more

sophisticated biological hypotheses can be tested to reveal novel signalling activities in

various disease conditions. The publications regarding these additional projects are

listed in Chapter 6.

Since this thesis is aimed to be written in fulfilment of the requirement for ‘Thesis by

Publications’, Chapter 4 and Chapter 5 are comprised of journal articles with their

respective format. In both of these chapters, methodologies were built around the p1-

model in order to infer posterior probabilities of gene-pairs in the data-driven networks

derived from the gene expression data sets of breast cancer cell-lines. Therefore, the

methods sections of these chapters partially overlap. For each chapter, the bibliography

sections are separately included at the end.

In summary, the main objectives of this thesis are to computationally model, identify

and characterise the signalling cross-talk in cancer contributing to acquired drug resis-

tance. To achieve these objectives, I have explored the following research programme:

1. Review literature to gain background knowledge about the roles of signalling cross-

talk and signalling rewiring in acquired resistance to RTK-targeted therapies.

Model the research hypothesis and develop methodological frameworks for the

problem [Chapter 2].

2. Model different types of cross-talk in the signalling networks and compare with

other state-of-the-art categorisations [Chapter 3].

3. Model data-driven gene-gene relationship (GGR) networks for each of the

lapatinib-sensitive (parental) and resistant conditions in breast cancer cell-lines

[Chapter 4 and Chapter 5].
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4. Apply a fully Bayesian approach using the p1-model to infer posterior probabilities

of gene-gene interactions existing in each of the GGR networks [Chapter 4 and

Chapter 5].

5. Predict and characterise the drug resistant signalling cross-talk between

EGFR/ErbB signalling and other signalling pathways that have very high prob-

abilities of interacting in resistant cells, but low probabilities in parental cells

[Chapter 4)].

6. Model signal rewiring with differential posterior probabilities of gene-pairs emu-

lating differential gene-dependencies in resistant-vs-parental conditions in breast

cancer [Chapter 5].

7. Examine the potential of signal rewiring to explain acquired resistance by a)

identifying dysregulated signalling pathways in acquired resistance, and b) charac-

terising additional types of signalling cross-talk contributing to the dysregulation

of crucial genes involved in breast cancer metastasis and/or developing acquired

resistance [Chapter 5].

8. Discuss key findings, issues regarding methodological challenges, and future

works [Chapter 7].
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Chapter 2

Background & Literature Review

2.1 Introduction

This chapter consists of four sections. First, I will introduce: the biological background

of signalling pathways in cancer; therapies targeting the receptor tyrosine kinases

(RTKs) in signalling pathways, especially the EGFR/HER2/neu signalling pathway;

and some of the mechanisms of resistance to those targeted therapies, with a specific

focus on the roles of signalling cross-talk and pathway compensation as potential

mechanisms of acquired resistance. In the second section, I define cross-talking node

(gene) pairs and their different modes of operation among signalling pathways, as

discussed in some state-of-the-art cross-talk modelling approaches. In the third section,

I formulate the research hypothesis discussed in this thesis. Lastly in the fourth

section, I discuss some background regarding the methodologies used in this thesis.

These include some previous approaches used for predicting pathway cross-talk and

dysregulated pathways, discussions about the statistical model (p1-model) used in this

thesis, basics of the Bayesian statistical modelling approach, and MCMC (Markov

chain Monte Carlo) methods for statistical sampling.
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2.2 Some background to cancer biology

2.2.1 Signalling pathways in cancer

Signal transduction is a process that transmits molecular signals from the extracellular

environment to intracellular components as a series of biochemical events along a

pathway in order to perform various activities, such as alteration of cellular metabolism,

transcriptional regulation and cell growth. [1]. In practice, signalling pathways (i.e.

biological processes) are often collected in databases e.g. KEGG [2], Reactome [3],

and WikiPathway [4], where each pathway is annotated as a collection of signalling

proteins. However, none of these databases contain perfect pathway annotations [5, 6],

and therefore, any pathway-based analyses require the involvement of multiple such

databases rather than relying one a single one.

Receptor tyrosine kinases (RTKs) are transmembrane proteins that receive signals

with their extracellular ligand-binding domains and in consequence trigger cascades of

biochemical events through activation of their intracellular tyrosine kinase domains

[7]. RTKs such as epidermal growth factor receptor (EGFR) and EGFR2 (also known

as HER2, neu and ErbB2) [Box 2.2.1] perform essential roles in normal cellular

process. However, development and progression of many cancers are largely driven by

up-regulation and/or alterations of these RTKs [8]. For example, EGFR is often found

mutated or over-expressed in lung, colon, head and neck, brain, pancreas and breast

cancer [9–12], and HER2 is often found over-expressed in breast, gastric, pancreatic,

ovarian and esophageal cancers. [13, 14]. Therefore, alterations in these RTKs trigger

aberrant cell signalling that ultimately induces various cancer related activities such

as cell proliferation, differentiation, and survival [Box 2.2.1].
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Box 2.1.1:

EGFR family of receptors: EGFR family of receptors includes four receptor

proteins: ErbB-1 (also known as EGFR or HER1), ErbB-2 (also known as

HER2/c-neu), ErbB-3 (also known as HER3), and ErbB-4 (also known as

HER4) [15].

Cell Proliferation: Cell proliferation is an increase in cell number as a result of

cell growth and cell division [16].

Cell Differentiation: A cellular process by which a less specialised cell changes

into a more specialised cell type [17].

Cell Survival : The period of cell viability with sustained capacity to perform

certain cellular functions such as metabolism, growth, reproduction, and adapt-

ability [18].

2.2.2 Oncogene addiction & RTK-targeted therapies

Despite numerous genetic alterations and/or epigenetic abnormalities, cancer cell

proliferation and survival often rely on a single oncogenic pathway or oncogene and its

protein products, controlled impairment of which can significantly inhibit the growth

of cancer cells and thereby enhance patient survival [19]. This phenomenon is referred

to as oncogene addiction. This ‘Achilles heel’ of cancer cells offers scope to develop

novel therapeutics, such as EGFR-family receptor targeted therapies [19]. However, to

maintain sustainable efficacy of therapies targeting such oncogenic addiction of cancer

cells requires appropriate identification of biomarkers indicative of such addictions and

selection of patients possessing such biomarkers [7].

Since many cancer cells exhibit oncogenic addiction to RTKs (particularly growth

factor related RTKs) for their proliferation and survival, RTKs possess high potential as

novel therapeutic targets [20]. Monoclonal antibodies (mAbs) and TKIs are two kinds
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of anticancer therapeutics that target growth factor receptors to block the signalling

triggered by RTKs and inhibit growth-related downstream signals [20]. Takeuchi et al.

[20] listed anticancer therapies targeting growth factor receptors in various cancers as

shown in Table 2.1 [20].

Table 2.1: A list of developed therapeutics targeting growth factor receptors in various
cancers. [Source [20]]

Drug type Drug Name Disease Targeted RTKs

Antibody Trastuzumab (Herceptin) Breast cancer HER2

Bevacizumab (Avastin) Metastatic colorectal VEGFR
carcinoma

Cetuximab (Erbitux) EGFR-expressing EGFR
metastatic colorectal
cancer

Panitumumab (Vectibix) Wild-type EGFR
KRAS-expressing
Metastatic
colorectal cancer

Small molecule Gefitinib (Iressa) Metastatic EGFR
inhibitors non-small-cell

lung cancer

Erlotinib (Tarceva) Metastatic EGFR
non-small-cell
lung cancer

Sorafenib (Nexavar) Renal cell cancer VEGFR, PDGFR

Lapatinib (Tykerb) HER2-positive EGFR, HER2
Breast cancer

2.2.3 EGFR-family receptor targeted therapies

Because of the well-studied role of EGFR and HER2 in driving cell proliferation and

survival signals to their downstream signalling nodes, they have been targeted for

designing many therapeutic agents (see Table 2.1). Both mAbs and TKIs have been

examined in either clinical trials or advanced pre-clinical studies [21]. MAbs target

the extracellular domain of receptors to block their activation while TKIs target their
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intracellular ATP-binding sites to inhibit the phosphorylation of the target proteins.

Figure 2.1 demonstrates the basic mechanism of these two types of anti-EGFR drugs.

Figure 2.1: Mechanisms of anti-EGFR and anti-HER2 targeted therapies. Left panel
shows the untreated state of cancer cells where key signals from EGFR/HER2 RTKs
are maintained in order to induce various cancer related activities. Right panel shows
how those key signals are treated with anti-EGFR and anti-HER2 targeted therapies in
order to inhibit the cancer related activities by blocking the pathway.

Trastuzumab (Herceptin)

Trastuzumab (Herceptin) is a humanised recombinant mAb which binds with the

extracellular domain of HER2 receptor [22]. It was approved for clinical use by the

FDA (Food and Drug Administration) in 1998, and has been proven to reduce the risk

of breast cancer recurrence after treatment with adjuvant chemotherapy compared

to patients treated with chemotherapy alone [23–25]. Mechanisms of action (MoA)

of trastuzumab are two-fold: 1) down-regulation of intracellular signalling pathways

via PI3K and MAPK pathway, and 2) activation of immune response via antibody

dependent cell-mediated cytotoxicity (ADCC) [22]. Unfortunately, tumours become
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resistant to trastuzumab within one year of treatment [26]. The mechanisms of

resistance include altered activation of other HER-family receptors (EGFR or HER3),

insulin-like growth factor receptor, re-activation of PI3K/AKT/mTOR pathway, over-

expression of c-MET or loss of PTEN, and up-regulation of src-kinase activities [22].

Lapatinib

Lapatinib is a TKI which targets both EGFR and HER2 receptors. Unlike trastuzumab,

it binds with the intracellular domain (ATP-binding sites) of those receptors and

inhibits the phosphorylation of downstream MAPK and Akt [27]. Lapatinib was

approved by FDA in 2007 for the treatment of metastatic HER2 over-expressed breast

cancer patients in a combination therapy along with other chemotherapeutic agents

[28]. Lapatinib also provided improved efficacy over trastuzumab in terms of inhibiting

cell proliferation in trastuzumab-resistant breast SKBR3 cell-line [29]. However, like

trastuzumab the efficacy of lapatinib is limited since cancer cells acquire resistance to

this drug. Characterisation of the underlying mechanisms of resistance is yet to be

completed [30].

2.2.4 Mechanisms of acquired resistance to receptor tyrosine

kinase-targeted therapies

Resistance: de novo and acquired resistance

There are two types of resistance to inhibitor therapies: de novo and acquired resistance.

De novo resistance occurs when a drug with proven efficacy to inhibit tumour cell

growth fails to induce any significant response due to some intrinsic characteristics of

the cancer [31–33]. In acquired resistance, initial success of inhibitors fails to continue

over time as tumour cells acquire escape mechanisms [31]. It is reported that these

two types of resistance mechanisms are inter-related, since failure to tackle de novo

mechanisms may contribute to acquired resistance [31, 33].
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Genetic and non-genetic mechanisms

Initial efficacy of RTK-targeted inhibitors may decline because cancer cells acquire

genetic alterations of key signalling components which in turn lead to changes in

corresponding pathway activities [34]. Recently, advancements in array-based tech-

nologies provide the potential to profile genomic changes of cancer cells with pre-

or post-treatment effects due to targeted therapies. Secondary mutations, genetic

amplifications and deletions are some of the genetic mechanisms of resistance to various

RTK inhibitors. Some of the examples have already been listed on p. 2 [Chapter 2] of

this thesis.

On the other hand, non-genetic mechanisms of acquired resistance are not driven by

mutations [34]. Some non-genetic mechanisms are the possible role of epigenetics,

alternative RNA splicing, and metabolic changes or post-translational modification of

proteins which are not primarily caused by mutations [34]. Alternative mechanisms

include epithelial-mesenchymal transition (EMT), proliferation of drug-tolerant cancer

stem cells [34], oncogene addiction switching [34, 35], feedback loop and pathway

cross-talk [7, 31, 34], reprogramming of cell signalling circuitry [31, 36, 37], and

alternative up-regulation of compensatory pathways [36, 38, 39]. In this thesis, I

focus on building computational frameworks to elucidate the possible roles of pathway

cross-talk, altered activations of compensatory pathways, oncogene addiction switching,

and the reprogramming of signalling networks (signal rewiring) as possible mechanisms

of acquired resistance to lapatinib.

2.2.5 Signalling cross-talk and pathway compensation in acquired

resistance

Crosstalk

Cross-talk is an important aspect of a network of signalling pathways. It is defined as

the interactions among pathways whereby one or more components of one pathway
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affect(s) the activities of other pathways. For example, the TGF-β/BMP signalling

pathway cross-talk with the MAPK, PI3K/AKT, Wnt, Hedgehog and Notch signalling

pathways [40, 41]. Again, the EGFR signalling pathway cross-talk with other signalling

pathways including insulin, Notch, Wnt and TNFR/IKK/NF-κB pathways, which

contribute to acquired resistance to EGFR-TKIs [7]. The term ‘cross-talk’ is borrowed

from the field of electronic circuit design, where it refers to a design flaw resulting in

unwanted effects or influence in one circuit caused by another [42]. However, biological

cross-talk do not necessarily involve signal interference. Rather, the term refers to

complex signal integration between two or more signalling pathways [40]. Therefore,

it can be summarised as: signalling are events, signalling pathways are molecular

road-maps how that event transmits through their components, and cross-talk among

signalling pathways indicate the interactions among those road-maps.

The role of signalling cross-talk and pathway compensation

Signals initiated at a single RTK transduce through a series of biochemical molecules

including mediator proteins and effector proteins. Both of these may be enzymes

that may result in signal amplification at multiple points along the cascade. In

addition, amplification may occur due to cross-talk between different pathways [7].

More specifically, phosphorylated RTKs at the receptor-level initiate and amplify

the transduced signals by recruiting and phosphorylating multiple target proteins.

Next, kinase proteins at the mediator-level (downstream of RTKs) also phosphorylate

multiple target proteins and amplify the signal by activating or suppressing their

activities. Then, further downstream signalling molecules at the effector-level, such as

transcription factors (TFs) affect the transcription of target gene expression. Thus,

signalling from the single RTK can cross-talk with other signalling pathways at multiple

stages of its propagation.

Signalling cross-talk occur at all three levels of signal transduction: receptor, mediator

and effector-level [7]. Yamaguchi et al. [7] reported that cross-talk at these three levels

may contribute to acquired resistance mechanisms (Figure 2.2). Inhibition of signals
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regarding cell growth, proliferation, and survival by RTK-targeted therapies may fail

since cross-talk may affect the targeted signalling cascades and restore the proliferation

signal independently of the RTK so that the cell relapses into the tumourigenic

phenotype. Cross-talk at the receptor-level contributes to acquired resistance when

other RTKs with the same common downstream components become aberrantly

activated or amplified and compensate for the desired inhibition of those downstream

signalling components. For example, resistance to EGFR/HER2 inhibitors in various

cancers occurs when the up-regulation or activation of alternate RTKs such as MET

(lung [43, 44] and colon [45] cancer), IGF1R (lung [46], breast [47] and colon [48]

cancer), AXL (lung [49, 50] and breast [30] cancer), FGFR (lung [51] cancer) or EphA2

(breast [52] cancer) maintain the key signals for cell growth, proliferation and survival

to downstream RAS/RAF/MEK and PI3K/AKT pathways [7]. At the mediator-level,

mutations or copy number changes of some key kinase-related genes constitutively

activate/inactivate the downstream signalling independently of the target RTKs via

signalling cross-talk [7]. For example, in two of the major downstream mediator

pathways of EGFR/HER2 signalling, the RAS/RAF/MEK and PI3K/AKT pathways,

the mutational activation of K-RAS, B-RAF and PI3K, and the inactivation of PTEN

by mutations or deletion may cause up-regulation of downstream growth signals and

thereby contribute to EGFR TKI resistance in many cancers including colon [53, 54],

lung [55] and breast [56, 57]. Finally, cross-talk at the effector-level plays a role in

acquired resistance when multiple upstream mediators from the same RTK signalling

or other signalling pathways change the activities of the common downstream effectors

that are critical for cancer cell proliferation and survival [7]. For example, the IKK/NF-

κB signalling pathway cross-talk with the EGFR/HER2 signalling pathway at the

effector-level [58–60] by phosphorylating their common downstream targets including

FOXO3 and the TSC complex, thereby playing a critical role in acquired resistance to

EGKR-TKIs [61–64].
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Figure 2.2: Cross-talk events at multiple levels of EGFR/HER2 signalling pathways.
This figure is re-printed from Yamaguchi et al. [7] by permission from Macmillan
Publishers Ltd: ONCOGENE, copyright 2014.

2.2.6 Adaptive signalling rewiring and dependency switch in ac-

quired resistance

Tumour cells respond to kinase-targeted inhibitors by rewiring their signalling network

to escape the inhibitory effects [31, 37]. Such rearrangements in signalling circuitry

may be due to adaptive kinome responses involving altered regulation of various

alternate kinase proteins other than the targeted signalling nodes, such as PI3K, AKT,

mTOR, BRAF and MEK. These kinases are known to control tumour growth and

survival. Recently, Stuhlmiller at al. [37] reported that continued consumption of

lapatinib induces aberrant signalling activities through transcriptional up-regulation

and altered activation of multiple heterogenous RTKs (e.g. DDR1, FGFRs, IGF1R,

MET) to compensate EGFR/HER2 inhibition in breast cancer cell-lines [37]. In other
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words, cancer cells may shift their oncogenic dependencies from the targeted (by the

inhibitors) signalling nodes to alternate up-regulated kinases in order to continue their

proliferation. This bypass mechanism thus provides cancer cells with the necessary

signals to recover their tumourigenic phenotype (e.g. abnormal growth, survival,

differentiation, migration). These cells thereby acquire resistance to the inhibitors.

2.3 Some background to methodologies

2.3.1 Previous studies on inferring pathway cross-talk

There are several methods that identify cross-talk among signalling pathways. Some of

these methods consider cross-talk as part of a broader methodology, but only the cross-

talk identification parts are discussed here. XTalk [65] uses a path-based approach

that enumerates shortest-paths from a predefined list of receptor proteins to a list of

transcription factor proteins. This method defines cross-talk as the shortest-paths that

connect the receptors of one signalling pathway to the transcription factors of another

pathway. After defining a scoring metric for such cross-talk, a novel technique was

developed to evaluate their statistical significance.

Applying a signature-based gene-set co-expression analysis (sGSCA), Wang et al. [66]

inferred a pathway cross-talk network by integrating prior knowledge (e.g. pathway

annotations, molecular interactions) with gene expression datasets. A sparse canonical

correlation analysis (SCCA) was applied in order to measure gene-set co-expression

at the pathway-level, and several important pathway cross-talk that are involved in

cancer were identified.

Recently, Andra et al. [67] analysed the role of cross-talk between Estrogen signalling

and other pathways that influence tamoxifen (a drug used for estrogen positive breast

cancer patients) efficacy in breast cancer. Using gene expression datasets of tamoxifen-

sensitive and tamoxifen-resistant samples, this method identified cross-talk using the
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Jaccard coefficient to quantify pathway overlapping. However, this study considers

only shared components between two pathways as cross-talking points, and lacks direct

interactions between pathways (see Type-I and Type-II cross-talk in our proposed

categorisation). A similar approach to cross-talk definition was also reported by Donato

et al. [68], where they proposed an additional technique for correcting various pathway

analysis methods (e.g. enrichment analysis, functional class scoring, topology-based

methods) which are are affected by pathway cross-talk.

2.3.2 Previous studies on inferring dysregulated pathways

There are many methods available to identify dysregulated pathways in context-specific

phenotypic changes (i.e. case-vs-control, cancer-vs-normal) [69–71]. These methods

include node-centric and edge-centric approaches in order to conduct enrichment

analysis of perturbed components within the pathways of interest. Signalling pathway

impact analysis (SPIA) considers both classical enrichment of differentially expressed

genes and significant perturbation activities in a given signalling pathway topology by

analysing cancer-vs-normal gene expression datasets.

DAVID (Database for Annotation, Visualisation and Integrated Discovery) [72] and

GATHER (Gene Annotation Tool to Help Explain Relationships) [73] use classical

enrichment analysis of differentially expressed genes and thus are applicable to identify

dysregulated signalling pathways.

ESEA (Edge Set Enrichment Analysis) [70] and PAGI (Pathway Analysis based on

Global Influence) [71] are edge-centric methods that use known pathway structures

from popular databases (including KEGG, Reactome, Biocarta). ESEA integrates

pathway structure and differential co-expression among genes in order to identify

dysregulated pathways in cancer-vs-normal conditions [70]. PAGI detects aberrant

pathways by analysing global influences of both intra-pathway and inter-pathway

(cross-talk) effects on differentially expressed genes in cancer-vs-normal conditions [71].
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2.3.3 p1-model: a special class of Exponential Random Graph

Models (ERGMs)

Exponential Random Graph Models (ERGMs)

The Exponential Random Graph Models (ERGMs) or p∗-models are probability

distributions for statistical modelling of various types of network data, where the

global structure of the network is expressed as a function of local structural patterns

[74, 75]. These local structural features can be some of the network statistics such

as edgecount, nodecount, trianglecount and k-star for k = 2, 3, ... [74]. However,

these statistics can be considered as a set of explanatory variables in order to explain

the probability functions of networks [74]. Here, the explanatory variables can be

defined as any function from the observed network to the real numbers [74]. Although

ERGMs have been extensively studied in social network analyses, they provide enough

flexibility and robustness, especially in terms of the number of available local feature

choices and their scalability, so that they become applicable in the statistical modelling

of biological networks as well [74].

Let X be a random matrix (matrix-valued random variable) defined on a state space

G containing networks (e.g. biological networks) where each network is represented as

a g-by-g adjacency matrix. Here each adjacency matrix is a collection of entries with

0’s and 1’s where 1 indicates an edge between two nodes (undirected), and 0 indicates

otherwise. Let u be a generic point of G representing an observed network so that the

realisation of X can be denoted as X = u. Then the probability function, P (X = u)

can be approximated using a log-linear model by summarising all the explanatory

variables (i.e. network statistics) and associating corresponding model parameters

with those variables. This probability function can be stated as follows:

P (X = u) =
e
∑

p θpzp(u)

κ(θ)
(2.3.1)
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where zp(u) is the explanatory variable (i.e. network statistic) of type p, which is

expressed as a function of the observed network u, θp is the model parameter associated

with zp(u), θ is the vector of all model parameters, and κθ is the normalising constant

ensuring the probabilities sum to one.

p1-model

The p1-model is a particular type of ERGM that was originally proposed for directed

graphs by Holland and Leinhardt in 1981 [76]. In a directed graph, the relationship

between any two nodes i and j is called a ‘dyad’ (pair) which can be either mutual

(both ‘i connects to j’ and ‘j connects to i’), or assymetric (‘i connects to j’, or ‘j

connects to i’, but not both), or null (i and j are not connected at all). This study was

primarily based on two empirical observations [76]: the parameters 1) the total number

of mutual relationships in the network and 2) the in-degree (the number of relationships

connected to node ‘i’) were repeatedly found in social networks to be significantly

higher or lower than their expected values [76]. Inspired by these observations and

substantive theoretical predictions, Holland and Leinhardt constructed the p1-model

as follows:

P1(u) = P (X = u) =
eρm+θu+++

∑
i αiui++

∑
j βju+j

κ(ρ, θ, {αi} , {βj})
(2.3.2)

where, m, u++, ui+, and u+j are the values of the number of mutual relationships,

total number of relationships, in-degree of node i and the out-degree of node j (the

number of nodes connected from node j), respectively; all are computed from the

observed network u [76]. The model parameters ρ and θ are two global parameters

which are called the global degree of reciprocity, and the global density parameter,

respectively. The terms αi, and βj are two local parameters (referring to individual

nodes i and j) which are called the expansiveness of node i and the attractiveness of

node j, respectively. The function κ maps the network parameters to a normalising

constant.
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A major limitation of the p1-model is the difficulty of calculating the above normalising

constant, since it is a sum over the entire graph space. Estimating the maximum

likelihood of this model becomes intractable as there are 2g(g−1) possible directed graphs

(or 2
g(g−1)

2 undirected graphs), each having g nodes. A technique called maximum

pseudolikelihood estimation (MPLE) has been developed to address this problem

[77]. This technique employs MCMC methods such as Gibbs or Metropolis-Hastings

sampling algorithms [78]. A detailed derivation of the p1-model for a directed network

is described in Appendix B of Chapter 4.

2.3.4 Bayesian Inference

Conventional statistical methods assume that unknown parameters are fixed and not

described in terms of their probabilities. However, Bayesian methods treat parameters

as random variables and use probabilities to quantify the ‘degree of belief’.

Bayesian inference is a statistical learning procedure where initial prior probability

statements about the parameters can be updated to produce posterior knowledge by

incorporating the prior knowledge with the data using Bayes’ theorem [79]. Let D be

the observed dataset produced by some generative model M, and let the posterior

probability of the parameter θ be P (θ|M) [75]. Bayes’ theorem states:

P (θ|M,D) =
P (D|θ,M)× P (θ|M)

Z (2.3.3)

where P (D|θ,M) is the likelihood function. The marginal likelihood Z can be

expressed as

Z = P (D|M) =

∫
P (D|M, θ)× P (θ|M) dθ, (2.3.4)
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Calculation of this normalising constant Z is often an intractable problem as it is

prone to the curse-of-dimensionality [75, 80]. However, simulation techniques (see the

following section) can be applied without explicit calculation of Z [80].

2.3.5 Markov chain Monte Carlo Methods

In Bayesian statistics, the need to integrate complex and high-dimensional functions

often arises, such as in calculating 1) the normalising constant of proportionality in

Bayes’ theorem, 2) the marginal distribution, and 3) inferences in the form of posterior

expectations [80]. Explicit computations of such complex integrals are often intractable

or at least computationally intensive even with powerful computational resources.

Fortunately, Markov chain Monte Carlo (MCMC) methods offer an alternate to such

complex computation by sampling from the posterior distribution, and estimating

quantities of interest using those samples [80].

Let π(x) be a target probability distribution of a quantity of interest, where x ∈ S and

S is called target state space. If π(x) cannot be sampled directly, then the MCMC

approach is used to construct a Markov chain in the state space S such that its

stationary distribution is equal to the target posterior distribution [80].

A Markov chain is defined as a random process which is a sequence of random variables

H1, H2, ..., Hn with values in a state space S. The key property of a Markov chain

is that Ht+1 is conditionally independent of H1, H2, ..., Ht−1, given Ht. A stationary

distribution for a Markov chain on the target space S is invariant for the transition

function which is the distribution of Ht+1 conditional on Ht.

After running a Markov chain for a sufficient time the chain effectively converges to

its stationary distribution, and the samples drawn from that chain can be considered

as if they were drawn from the target posterior distribution [80]. Then Monte Carlo

integration can be applied to approximate the posterior quantities of interest [81].
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Monte Carlo integration is a useful technique for computing complex integrals. Let
∫ b
a
h(θ)dθ be the integral to be computed. The Monte Carlo technique decomposes

h(θ) into a product of two functions, f(θ) and p(θ), where f(θ) is a function of θ and

p(θ) is a probability density function defined over the interval (a, b). Then the original

integral
∫ b
a
h(θ)dθ can be expressed as the expectation of f(θ) over the density p(θ) as

bellow [81]:

∫ b

a

h(θ)dθ =

∫ b

a

f(θ)p(θ)dθ = Ep(θ) [f(θ)] (2.3.5)

Thus if a large number of random variables, θ1, ..., θn are drawn from the density p(θ),

then the Monte Carlo integration can be represented as bellow [81]:

∫ b

a

h(θ)dθ = Ep(θ)[f(θ)] ' 1

n

n∑

i=1

f(θi) (2.3.6)

There are many MCMC methods available, including the Metropolis-Hastings sampler

[82], Gibbs sampler [83], Hit-and-Run sampler [84], and Neighbourhood sampler [85].

In this thesis, I have used the Gibbs sampling technique for parameter inference in the

p1-model.

Gibbs Sampling

Gibbs sampling [83] is an MCMC method for sampling a multivariate probability

distribution [81]. The key assumption in Gibbs sampling is that for a given multivariate

distribution it is easier to sample from conditional distributions for each parameter

in the model than it is to marginalise a joint distribution by integration [81]. The

joint distribution over all parameters is decomposed into full conditional distributions

for each individual parameter, and these conditionals are sampled sequentially and

iteratively.
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Suppose M samples of θ = (θ1, θ2, ..., θk) (a parameter vector) need to be drawn from

the joint probability distribution p(θ1, θ2, ..., θk). Let the i-th sample be defined as

θ(i) = (θ
(i)
1 , θ

(i)
2 , ..., θ

(i)
k ). The sampling steps are as follows:

1. Begin with i = 0 and set arbitrary initial values of the parameters in the vector,

θ(i) = (θ
(i)
1 , θ

(i)
2 , ..., θ

(i)
k ).

2. For the (i + 1)-th sample, the parameter vector will be defined as θ(i+1) =

(θ
(i+1)
1 , θ

(i+1)
2 , ..., θ

(i+1)
k ). To generate the (i + 1)-th sample, each compo-

nent parameter θ
(i+1)
j is sampled in turn from the distribution specified by

p(θ
(i+1)
j |θ(i+1)

1 , θ
(i+1)
2 , ..., θ

(i+1)
j−1 , θ

(i)
j+1, ..., θ

(i)
k )

3. Repeat step 2 until i = M .

After a period of time known as burn-in, the M samples drawn using the above

algorithm can be considered as if they were sampled from the posterior joint distribution

[81]. Using this sample, Monte Carlo integration can be applied to infer the quantities

of interest [81].

2.3.6 WinBUGS

WinBUGS is a Microsoft Windows based software that is used for Bayesian inference

using Gibbs sampling [86]. This is a high-level software package providing an easy

interface for implementing complex Bayesian models. In WinBUGS, users are freed

from background lower-level programming details, and only have to precisely express

the model, corresponding data, and initial values of model parameters.
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Chapter 3

Cross-talk categorisations in data-

driven models of signalling networks: a

system-level view

Chapter Objectives

In this chapter, I review some state-of-the-art approaches for categorising signalling

cross-talk and argue that they are not suitable for application to data-driven signalling

networks. I propose a novel cross-talk categorisation specific to data-driven network

models which can be mapped to all types of signalling cross-talk defined in other

state-of-the-art approaches. I also provide a simple but intuitive algorithm called

XDaMoSiN (Cross-talks in Data-driven Models of Signalling Networks) to detect all

cross-talk between any two given signalling pathways in a data-driven network.
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Abstract

Background: Data-driven models of signalling networks are becoming
increasingly important in systems biology in order to reflect dynamic patterns of
signalling activities in a context-specific manner. State-of-the-art approaches for
categorising and detecting signalling cross-talks may not be suitable for such
models since they rely on static topologies of cell signalling networks and prior
biological knowledge.

Results: In this article, we review state-of-the-art approaches that categorise all
possible cross-talks in signalling networks, and propose a novel categorisation
specific to data-driven network models. Considering such models as undirected
networks, we propose two categories of signalling cross-talks between any two
given signalling pathways. In a Type-I cross-talk, a signalling link {gi, gj}
connects two signalling pathways, where gi and gj are signalling nodes that
belong to two distinct pathways. In a Type-II cross-talk, two signalling links
{gi, gj} and {gj , gk} meet at the intersection of two signalling pathways at a
shared signalling node gj . We compared our categorisation approach with others,
and find that all the types of cross-talks defined by those approaches can be
mapped to Type-I and Type-II cross-talks when underlying signalling activities are
considered as non-causal relationships. Next, we provided a simple but intuitive
algorithm called XDaMoSiN (Cross-talks in Data-driven Models of Signalling
Networks) to detect both Type-I and Type-II cross-talks between any two given
signalling pathways in a data-driven network model.

Conclusion: By detecting cross-talks in such network models, our approach can
be used to analyse and decipher latent mechanisms of various cell phenotypes,
such as cancer or acquired drug resistance, that may evolve due to the highly
adaptable and dynamic nature of signal transduction networks.

Keywords: signalling cross-talks; data-driven models; signalling network; cancer
signalling; signal re-wiring; acquired drug resistance

Background

A signal transduction network is a collection of all cell signalling pathways where

each pathway is a series of biochemical events, transmitting input signals from

receptor proteins to intracellular target proteins (e.g. transcription factors). The

outcomes mediated by signalling pathways include various cellular activities, such as

cell growth, proliferation, differentiation, migration, adhesion, and apoptosis [1, 2].

Interactions among distinct signalling pathways are called signalling cross-talks and

may also play vital roles in mediating or modulating cellular activities [3] under

different disease-related cell conditions, such as cancer and acquired drug resistance.
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Models of signal transduction networks often take a qualitative approach that

relies on prior biological knowledge obtained from experimental findings in various

cell-lines [4, 5]. However, the pattern of cell signalling activities is not static, and can

vary in different cell-lines [4, 5]. Moreover, different cell-lines for which the under-

lying network architectures of signalling activities are conserved may yield different

responses even in similar experimental settings [5]. In the same cell, different ligands

can produce different signalling connections [5, 6]. Moreover, different drugs and dif-

ferent treatment conditions may also induce different signalling dependencies, and

thus create a dynamic re-wiring in the signalling network topology [6–8]. Therefore,

understanding a signalling network topology demands a data-driven modelling ap-

proach in order to reflect its context-specific nature in a particular cell-type, and a

particular experimental configuration. Here, data-driven models of signalling net-

works are models in which network edges are inferred solely based on signalling data

[4] using machine learning approaches, such as least square regression [9], Bayesian

networks [10–12], and time-lag correlation [13]. In contrast, static models of sig-

nalling networks are based on canonical signalling mechanisms obtained from the

literature [4]. Recent advancements in high-throughput data generation techniques

facilitate the quantification of signalling responses, and thereby produce large vol-

umes of data measuring protein abundances and activities [4].

Detecting signalling cross-talks using data-driven models of signalling networks is

an important task in systems biology since such cross-talks may reveal novel mech-

anistic details underlying perturbed cellular conditions. RTK (Receptor Tyrosine

Kinase) heterodimerisation is one of the forms of signalling cross-talks (also known

as receptor function cross-talks [14]), which has been reported to be involved in

the processes of tumourigenesis and developing acquired drug resistance in many

cancers [6]. Usually, EGFR (Epidermal Growth Factor Receptor) strongly activates

ERK (Extracellular signal-Regulated Kinase) signalling, but it is also a weak acti-

vator of the PI3K (Phosphatidylinositol 3-Kinase) signalling pathway. Interestingly,

when EGFR cross-talks with HER2 (Human Epidermal Growth Factor Receptor 2)

through heterodimerisation it activates both signalling pathways significantly [15],

and thereby contributes to tumourigenesis by stimulating proliferation and prevent-

ing cell death [6]. In another example, the RTK expression of AXL was found to be

a mechanism of acquired resistance to EGFR inhibitors [16], and AXL is found to

be transactivated by EGFR through heterodimerisation (cross-talk) [6].

In this article, we review existing approaches that have been used in the liter-

ature to categorise cross-talks in signalling networks. However, all these methods

are limited in application to static models of signalling networks, and cannot be

used to categorise cross-talks when the types of signalling activities (e.g. reaction,

catalysis, or inhibition) are not known. We therefore introduce a novel cross-talk

categorisation for a single cell model to resolve such issues. We also compare our

categorisation with the existing approaches. Lastly, we present an algorithm to

computationally detect all signalling cross-talks that are included in our proposed

categorisation. Nataranjan et al. [17] report that a global analysis of both known and

novel cross-talks can reveal system-level insights into context-dependent signalling:

many ligand stimuli converge on a relatively small number of signalling molecules

to produce unique responses. Thus, we hypothesise that our approach will be useful
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to elucidate similar novel system-level aspects of signalling networks derived from

context-specific signalling data through the identification of cross-talks.

Existing methods for categorising cross-talks

Only a few studies have attempted to categorise types or modes of cross-talks be-

tween two signalling pathways [6, 14, 18]. In reviewing signalling cross-talks be-

tween TGF-β/BMP (Transforming Growth Factor-β, Bone Morphogenic Protein)

and other signalling pathways, Guo et al. [18] distinguish three different modes

of signalling cross-talks. According to that study, two pathways: pathway1 and

pathway2 cross-talk when 1) some component of pathway1 physically interacts with

some component in pathway2 (Mode-A), 2) some component of pathway2 plays a

role as an enzymatic or transcriptional target of some component in pathway2

(Mode-B), or 3) signals from pathway1 modulate or compete for a key modulator

or mediator protein that is shared between pathway1 and pathway2 (Mode-C).

Donaldson et al. [14] proposed five types of signalling cross-talk between any two

signalling pathways: pathway1 and pathway2. They are as follows:

• Signal-flow cross-talk : An alternative reaction that enhances the signalling in

pathway1 by producing, or catalysing, or inhibiting the production of a protein

mediated by the signalling of pathway2. For example, there exists signal-flow

cross-talk between MAPK (Mitogen-Activated Protein Kinase) and integrin

signalling pathways [19] where the increased rate of activation of some key

protein in the integrin pathway is mediated by signalling through the MAPK

pathway.

• Receptor function cross-talk : An alternative reaction to activate/inhibit the

receptor of pathway1 by some enzyme of pathway2 without the need of a

ligand (a protein that activates a receptor protein). For example, oestrogen

receptor may become activated without the need of oestrogen ligand by other

signalling pathways [20].

• Gene expression cross-talk : A component (typically, a protein) of pathway1 in-

hibits or modifies the transcription or protein production of genes in pathway2.

For example, transcription factor GR (Glucocorticoid Receptor) of hormone

signalling pathways translocates to the nucleus and inhibits the transcrip-

tional activities of the transcription factor NF-κB (Nuclear Factor-κB) that

is activated in response to inflammatory stimuli and environmental stressors

[21].

• Substrate availability cross-talk : pathway1 and pathway2 share a protein (or

a set of proteins) and both of the pathways compete for the activation of

that shared protein(s). For example, two MAPK pathways in the yeast S.

cerevisiae that share MAPKKK (Mitogen-Activated Protein Kinase Kinase

Kinase) protein STE11 (Sterility gene 11) and possess homologous MAPKK

(Mitogen-Activated Protein Kinase Kinase) and MAPK proteins compete for

the activation of the MAPK cascade [22].

• Intracellular communication cross-talk : The gene products of pathway1 act as

ligands for the receptor of pathway2. For example, TGF-β and Wnt (Wingless-

related integration site) signalling regulate the production of ligands of one

another [18].
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Donaldson et al. [14] also reviewed some computational models that deal with

cross-talks between specific pathways including MAPK pathway, AKT pathways,

and PKC (Protein Kinase C) pathways. These models [22–24] use Ordinary Differ-

ential Equations (ODEs) where the notion of the cross-talk was a part of the system

of equations without any explicit way of detecting or categorising them [14].

Kolch et al. [6] describe three types of cross-talks: heterodimerisation between

signalling proteins, node sharing, and competition for nodes. Signalling protein het-

erodimerisation is a biochemical process where a protein complex is formed by

two different macromolecules; and RTK heterodimerisation is a common example

of this type of cross-talk [6]. For example, EGFR heterodimerisation with ErbB2

(Erythroblastic Leukemia Viral Oncogene B2, also known as HER2) or ErbB3 (Ery-

throblastic Leukemia Viral Oncogene B3) (also known as HER3, Human Epidermal

Growth Factor Receptor 3) activates both ERK and PI3K signalling pathways [15],

and thereby mediates proliferation and cell survival signals in tumourigenesis [6].

In another example, the transactivation of AXL (an RTK) is caused by EGFR

heterodimerisation and the expression of AXL was found to be a mechanism of

resistance to EGFR inhibitors [16].

An example of node (i.e. protein) sharing cross-talk is the scaffolding protein (a

protein that binds with multiple members of a signalling pathway) GAB (GRB2-

associated binding partner) which is shared by two signalling pathways: EGFR

and insulin receptor (IR) pathways [25]. Lastly, an example of cross-talk in the

form of competition for nodes (i.e. proteins) was recently identified, consisting of

a switch-like coordination between proliferation and apoptotic signalling through

RAF(Rapidly Accelerated Fibrosarcoma)-ERK signalling and MST2 (Mammalian

STE20-like Protein Kinase) signalling [26]. In mammalian cells, RAF1 (Rapidly Ac-

celerated Fibrosarcoma1) inhibits MST2-induced apoptosis (promotes proliferation)

[27], whereas RASSF1A (Ras association domain-containing protein 1A) activates

MST2 (promotes apoptosis) [28]. Romano et al. [26] showed that this signalling co-

ordination is switch-like, since MST2 binds mutually exclusively with its inhibitor

RAF1 and activator RASSF1A by changing its binding affinities from low to high.

Identifying the above cross-talk categories requires previous biological knowledge

of the nature of signalling links. An essentially static model of signal transduction

networks is thus assumed. However, in data-driven models of signalling networks,

connectivity among signalling nodes may differ from cell to cell [6]. In order to

reveal novel signalling dynamics in cell-specific, ligand-specific or treatment-specific

contextual data, we define a novel cross-talk categorisation in the following section.

Methods
Proposed cross-talk categorisation in data-driven networks

Approaches for inferring data-driven signalling networks

Although our main focus in this article is to propose a cross-talk categorisation, here

we briefly mention some approaches that fit data-driven models of signalling net-

works to quantitative signalling datasets. Some high-throughput proteomics tech-

niques that quantitatively measure phosphorylation activities of phosphoproteins

(signalling proteins) include mass spectrometry, flow-cytometry, RNAi (Ribonu-

cleic Acid Interference) screening, and reverse-phase protein array (RPPA) [13, 29].
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Apart from proteomics data, some approaches use gene expression measurements of

phosphoproteins as a proxy for protein expression (i.e. protein activity) [30–32] in

order to fit data-driven models of signalling networks. However, inference methods

include modelling both causal [9–12, 29, 33] and non-causal (simple correlations)

relationships [13, 34] among phosphoproteins. To identify causal relationships in a

signalling network topology, various approaches have been applied, such as least

square regression [9], various models on Bayesian networks [10–12] and dynamic

Bayesian networks [29], and maximum entropy [33]. Correlation-based approaches

include measuring the simple Pearson correlation [34] and time-lag correlation [13].

The rationale behind applying such simple correlation-based approaches to infer

signalling network structure is that individual signals may co-vary with respect to

one another [4].

Proposed cross-talk categorisation

In order to generalise our cross-talk categorisation for both causal and non-causal

network models, we consider a signalling network as an undirected network. Let

G(V,E) be an undirected graph that represents an entire signalling network con-

taining a set of signalling pathways, where V is a set of n signalling components

(typically proteins or protein complexes, denoted gi, for i = 1, 2, ..., n) and E is

a set of unordered pairs of signalling components of the form {gi, gj} representing

signalling links inferred from data. We propose two types of signalling cross-talks

between any two signalling pathways, denoted pathway1 and pathway2 [Figure 1].

Here a pathway is defined merely as a list of signalling components, usually obtained

from databases such as KEGG [35], Reactome [36], and WikiPathways [37].

Type-I cross-talk: {gi, gj} ∈ E is a Type-I cross-talk between pathway1 and

pathway2 if (gi ∈ pathway1 ∧ gj ∈ pathway2)
∧

(gi /∈ pathway2 ∧ gj /∈ pathway1).

Type-II cross-talk: {gi, gj} ∈ E ∧ {gj , gk} ∈ E is a Type-II cross-talk between

pathway1 and pathway2 if (gi ∈ pathway1∧gj ∈ pathway1)
∧

(gj ∈ pathway2∧gk ∈
pathway2).

An algorithm for detecting proposed cross-talks

In Table 1, we present a simple but intuitive algorithm for identifying Type-I and

Type-II cross-talks in data-driven signalling network models. We refer to our algo-

rithm as XDaMoSiN (Cross-talk in Data-driven Models of Signalling Network). Note

that our approach considers data-driven models of signalling networks as undirected

networks in order to generalise our categorisation for both causal and non-causal

network models. The only assumption we make here is that pathway annotations

of signalling pathways are known from pathway databases, such as KEGG [35],

Reactome [36] and WikiPathways [37]. In these annotations, a pathway is defined

as a list of signalling nodes. Note that the signalling links among these nodes are

modelled using data-driven relationships. Therefore, a data-driven model of a sig-

nalling network is defined as G = (V,E), where V is a list of n signalling nodes, and

E is a list of signalling links {gi, gj} inferred from data. This algorithm takes two

inputs: G (the network) and PathwayDB (a pathway database), and produces two
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outputs: Type I crosstalk and Type II crosstalk, which are two lists containing

all Type-I and Type-II cross-talks [Table 1]. Here, we consider PathwayDB as a

list, where each element in that list is also a list, containing signalling nodes in a

particular pathway, and is indexed by the corresponding pathway ID (typically, the

pathway name).

Table 1 Pseudocode for XDaMoSiN Algorithm

XDaMoSiN (G,PathwayDB)
/ ? Part#1 : Find Type− I crosstalks ? /

1 Type I crosstalk ← ∅
2 for each link {gi, gj} ∈ E
3 Listi ← ∅
4 Listj ← ∅
5 for each pathway id ∈ PathwayDB
6 Listp ← FindList(PathwayDB, pathway id)
7 if gi ∈ Listp
8 Listi ← Listi ∪ {pathway id}
9 end if
10 if gj ∈ Listp
11 Listj ← Listj ∪ {pathway id}
12 end if
13 end for
14 if Listi \ Listj is not ∅ and Listj \ Listi is not ∅
15 Type I crosstalk ← Type I crosstalk ∪ {{gi, gj}}
16 end if
17 end for

/ ? Part#2 : Find Type− II crosstalks ? /
18 Type II crosstalk ← ∅
19 for each gj ∈ V
20 Lj ← ∅
21 for each pathway id ∈ PathwayDB
22 Lp ← FindList(PathwayDB, pathway id)
23 for each gi ∈ Lp

24 if {gi, gj} ∈ E and {gi, gj} ⊂ Lp

25 Lj ← Lj ∪ (pathway id, gi)
26 end if
27 end for
28 end for
29 for each pair (pathway id1, gi) ∈ Lj

30 for each pair (pathway id2, gk) ∈ Lj

31 if pathway id1 is not pathway id2
32 Type II crosstalk ← Type II crosstalk ∪ {{gi, gj} ∧ {gj , gk}}
33 end if
34 end for
35 end for
36 end for

In the first part of the algorithm, we find all the Type-I cross-talks among all the

pathways in PathwayDB. At first, we initialise the list Type I crosstalk, which

collects all such Type-I cross-talks. Then we check each signalling link {gi, gj} ∈
E to determine whether it plays a role as Type-I cross-talk. Here, we loop through

all pathways, and save pathway IDs that contain gi or gj , individually. For this

purpose, we maintain two intermediate lists, called Listi and Listj , respectively.

If Listi contains some pathway IDs that are not in Listj , and vice versa, then we

identify {gi, gj} as a Type-I cross-talk. Note, we assume here that an intermediate

function called FindList(PathwayDB, pathway id) exists, which constructs a list

of signalling nodes in a particular pathway with ID: pathwa id in the PathwayDB.

In the second part of the algorithm, we find all Type-II cross-talks. First, we

examine each signalling node gj individually, to determine whether it is shared

by more than one pathway and has incident signalling link(s) (from E) in those
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pathways. For this purpose, for each signalling node gj , we construct an intermediate

list, called Lj . This list collects ordered pairs of information: each incident signalling

link {gi, gj} ∈ E is contained in a pathway labelled pathway id and the pathway id

itself. Next, for any combination of pairs in the list Lj , such as (pathway id1, gi)

and (pathway id2, gk), if pathway id1 and pathway id2 are different, then we define

{{gi, gj}∧ {gj , gk}} as a Type-II cross-talk between pathway id1 and pathway id2.

Results
Type-I & Type-II cross-talks include cross-talks from other state-of-the-art

categorisations

We compare the cross-talk categorisation approaches, including our proposed meth-

ods, in Table 2. This comparison reveals an interesting aspect of these categorisa-

tions: cross-talks between any two pathways can be identified when their correspond-

ing causal relationships are ignored, i.e. considering the signalling network as an

undirected network only. At the same time, we note that our approach can include

all types of cross-talks defined by other categorisation.

Type-I cross-talks can represent signal-flow cross-talks, receptor function cross-

talks and gene-expression cross-talks from Donaldson et al. [14], Mode-A and Mode-

B cross-talks from Guo et al. [18], and cross-talk of signalling protein heterodimeri-

sation from Kolch et al. [6]. In a cross-talking pair {gi, gj} in each of these cat-

egories, one signalling component gi belongs to one pathway and gj belongs to

another pathway, or vice versa, but mutually exclusively [Table 2]. Again, Type-II

cross-talks represent the cross-talk types of substrate availability and intracellular

communications from Donaldson et el. [14], Mode-C cross-talks from Guo et al. [18],

and Signalling node sharing and Competition for nodes from Kolch et al. [6], since

in all of these categories there exists a shared component between pathway1 and

pathway2 for which the other components of those individual pathways compete

for modification or activation of that shared component [Table 2].

Moreover, Donaldson et al. [14] reported that their categorisation comprehensively

covered all possible types of signalling cross-talks in a single cell model. Since Type-

I and Type-II cross-talks include all cross-talks from Donaldson et al. [Table 2],

we claim that our categorisation is also comprehensive. Moreover, Donaldson et

al. made a claim that their approach can be useful for detecting cross-talks in

data-driven models of signalling networks. However, we note that their proposed

algorithm (see the appendix of [14]) was based on qualitative logic only, and is not

explicit how that could be used for dealing with network models derived from high-

throughput quantitative signalling data, such as mass spectometry and RPPA data.

Moreover, since they used modular architecture of signal propagation (receptor

function, 3-stage cascade, and gene expression [14]) in detecting all signalling cross-

talks, their approach is not suitable for models derived from gene expression data

only. There are some studies [30–32] that attempted to infer signalling network

topology using gene expression as a proxy for signalling protein activities, since

gene expression data is usually cheaper to generate and is possible to produce in

large-scale [32].
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Table 2 Comparative categorisations of signalling cross-talks

Proposed Related Study
Categorisation Donaldson et al. [14] Guo et al. [18] Kolch et al. [6]

1) Type-I cross-talk: 1) Signal-flow cross-talk: 1) Mode-A: 1) Heterodimerisation between
{gi, gj} ∈ E An alternate reaction to Components of one pathway signalling proteins:
s.t. activate a protein ‘Y’ through physically interact with Two different signalling
(gi ∈ pathway1∧ an enzyme ‘X’ components of another proteins from two
gj ∈ pathway2)

∧
pathway different signalling pathways

(gi /∈ pathway2∧ 2) Receptor function cross-talk: bind with each other
gj /∈ pathway1) An alternate reaction to 2) Mode-B:

activate a receptor ‘R’ by Components of one pathway
an enzyme ‘X’ are enzymatic or

transcriptional targets of
3) Gene expression cross-talk: components of
Activate/Inhibit the expression another pathway
of a gene ‘g’ by a protein ‘Y’

2) Type-II cross-talk: 4) Substrate availability cross-talk: 3) Mode-C: 1) Signalling node sharing:
{gi, gj} ∈ E∧ Pathways compete for activation One pathway modulates or A signalling node that
{gj , gk} ∈ E of a shared protein ‘Y’ competes for a key modulator is shared by two
s.t. or mediator of another different signalling pathways.
(gi ∈ pathway1∧ 5) Intra-cellular communication
gj ∈ pathway1)

∧
cross-talk: 2) Competition for nodes:

(gj ∈ pathway2∧ Output of the expression of Competing protein interactions
gk ∈ pathway2) a gene ‘g’ of a pathway acts as coordinately regulate a

ligand of another pathway signalling node mutually
exclusively

Here, gi, gj , gk ∈ V , V and E are the set of signalling components and signalling links, respectively
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Discussion & Conclusion
The data-driven modelling of signalling networks and the detection of cross-talks in

those models provide effective ways to elucidate novel mechanisms of perturbed sig-

nalling activities in various disease conditions, such as cancer and drug resistance. In

this article, we reviewed some state-of-the-art approaches that categorise signalling

cross-talks and identified a limitation of their applicabilities to data-driven models,

since they rely on a static topology of signalling networks. Here, we propose a novel

cross-talk categorisation (Type-I and Type-II) that can not only be applicable to

data-driven models, but also generalises all types of cross-talks defined by other

approaches. We also present a simple but intuitive algorithm for detecting Type-I

and Type-II cross-talks between any two signalling pathways. In combination with

other computational and statistical methodologies, our approach is useful in systems

biology to generate novel but biologically plausible hypotheses in a data-dependent

manner.
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Figure 1 Proposed categorisations of signalling cross-talks, Type-I (A) and Type-II (B). Here,
each of the pathways is a collection of signalling nodes (typically proteins or protein complexes). A
Type-I cross-talk is a signalling link {gi, gj} that connects two signalling pathways where neither
of the two pathways contains both signalling nodes, gi and gj . A Type-II signalling cross-talk is a
pair of signalling links {gi, gj} and {gj , gk} residing at the intersection of two signalling pathways
with a shared node gj .
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Chapter 4

Prediction of signaling cross-talks con-

tributing to acquired drug resistance in

breast cancer cells by Bayesian statisti-

cal modelling

Chapter Objectives

The overall objective of this chapter is to conduct computational experiments to

conduct computational detection and analysis of Type-I cross-talk [Chapter 3] in

data-driven signalling networks derived from gene expression datasets of lapatinib

(an EGFR/HER2 dual inhibitor)-treated sensitive (parental) and resistant cell-lines,

and their roles in acquired drug resistance. To do that, I would like to apply a

fully Bayesian statistical modelling approach with p1-model to elucidate the role of

signalling cross-talk between EGFR and other signalling pathways in acquired lapatinib

resistance. All the supplementary files are added in Appendix B.
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Abstract

Background: Initial success of inhibitors targeting oncogenes is often followed by tumor relapse due to acquired
resistance. In addition to mutations in targeted oncogenes, signaling cross-talks among pathways play a vital role in
such drug inefficacy. These include activation of compensatory pathways and altered activities of key effectors in
other cell survival and growth-associated pathways.

Results: We propose a computational framework using Bayesian modeling to systematically characterize potential
cross-talks among breast cancer signaling pathways. We employed a fully Bayesian approach known as the p1-model
to infer posterior probabilities of gene-pairs in networks derived from the gene expression datasets of ErbB2-positive
breast cancer cell-lines (parental, lapatinib-sensitive cell-line SKBR3 and the lapatinib-resistant cell-line SKBR3-R,
derived from SKBR3). Using this computational framework, we searched for cross-talks between EGFR/ErbB and other
signaling pathways from Reactome, KEGG and WikiPathway databases that contribute to lapatinib resistance. We
identified 104, 188 and 299 gene-pairs as putative drug-resistant cross-talks, respectively, each comprised of a gene in
the EGFR/ErbB signaling pathway and a gene from another signaling pathway, that appear to be interacting in
resistant cells but not in parental cells. In 168 of these (distinct) gene-pairs, both of the interacting partners are
up-regulated in resistant conditions relative to parental conditions. These gene-pairs are prime candidates for novel
cross-talks contributing to lapatinib resistance. They associate EGFR/ErbB signaling with six other signaling pathways:
Notch, Wnt, GPCR, hedgehog, insulin receptor/IGF1R and TGF-β receptor signaling. We conducted a literature survey
to validate these cross-talks, and found evidence supporting a role for many of them in contributing to drug resistance.
We also analyzed an independent study of lapatinib resistance in the BT474 breast cancer cell-line and found the
same signaling pathways making cross-talks with the EGFR/ErbB signaling pathway as in the primary dataset.

Conclusions: Our results indicate that the activation of compensatory pathways can potentially cause up-regulation
of EGFR/ErbB pathway genes (counteracting the inhibiting effect of lapatinib) via signaling cross-talk. Thus, the
up-regulated members of these compensatory pathways along with the members of the EGFR/ErbB signaling
pathway are interesting as potential targets for designing novel anti-cancer therapeutics.

Keywords: Drug resisance, Signaling cross-talk, Bayesian statistical modeling, p1-model, EGFR signaling, Breast
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Background
Cancer development involves a series of events, rang-
ing from tumorigenesis to metastasis, each of which may
be caused by perturbations in crucial signal transduction
pathways. Recently, drugs (inhibitors) specifically target-
ing critical components of signaling pathways known to
be up-regulated in specific cancers have been used in the
clinic. However, success of these inhibitors is limited by
the intrinsic potential of cancer cells to acquire drug resis-
tance. Recent advances in both clinical and laboratory
research have reported that cancer cells may adopt sev-
eral mechanisms against particular treatments including
adjusting the signaling circuitry, activation of alterna-
tive pathways and cross-talks among various pathways to
overcome the effects of inhibitors [1,2]. Resistance to a
particular drug such as EGFR (Epidermal Growth Factor
Receptor) tyrosine kinase inhibitors, may occur not only
due to cross-talks among EGFR-mediated pathways, but
also due to cross-talks with pathways triggered by other
receptors. Therefore, targeting signaling cross-talks may
have the potential to sensitize cancer cells to particular
inhibitors.
Drug resistance is a major obstacle in drug efficacy that

causes cancer cells to be insensitive to targeted inhibitor
therapies and/or conventional chemotherapeutic agents
[1,2]. However, there are two categories of resistance to
inhibitor therapies: de novo and acquired [3]. By defi-
nition, de novo resistance is a phenotypic characteristic
present before drug exposure where drugs with proven
efficacy fail to cause tumor cells to respond with any sig-
nificance [2,4,5]. Acquired resistance refers to a situation
where the initial sensitivity of tumor cells to drugs dis-
continues despite or due to continued consumption [2].
It has been reported that the underlying mechanisms of
both types of resistance are related, often due to mutation,
loss, or up-regulation of some other important signaling
proteins or pathways [2,5]. De novo drug resistance can
be determined by assessing the genetic profiles of tumors
for 1) oncogenic addictions to proteins or pathways and
2) other possible genetic alterations conferring resistance
[2]. Therefore, targeting de novo resistance can enhance
drug efficacy and reduce the chance of acquired resistance
[5]. Recently, characterizing drug-resistant tumors, and
analyzing cell lines that result from the continuous culture
of drug-sensitive cells in the presence of an inhibitor have
been shown to be successful approaches for identifying
changes responsible for acquired resistance [2].
Cross-talk among signaling pathways may play a vital

role in cancer drug resistance, especially in receptor tar-
geted therapies. For example, in EGFR/HER2 signaling
pathways, cross-talk with other signaling pathways may
occur at various levels of signal transduction: recep-
tor level, mediator level and effector level [1]. At the
receptor level, other RTKs (receptor tyrosine kinases)

having common downstream targets of EGFR/HER2 may
become involved in cross-talk with EGFR/HER2 signal-
ing pathways. In many cancers, these alternative RTKs
including MET, IGF1R, FGFR and EphA2 become acti-
vated or amplified in order to maintain the signals
for cell survival and/or proliferation in common down-
stream pathways, thus nullifying the inhibition of EGFR
kinase [6-10]. Cross-talk at mediator level includes the
activation/inactivation of major components of media-
tor pathways by mutation/deletion of oncogenic driver
genes, which eventually activates downstream effectors
[1]. These constitutive activations/inactivations of medi-
ator pathways are independent of receptors. The effect
of signaling cross-talk in drug resistance at effector level
is more complex and diverse since there may be numer-
ous effectors of RTKs signaling pathways. Resistance at
the effector level may occur when some critical effectors
(i.e. TSC, FOXO3) involved in cell survival and prolifera-
tion show an altered phenotype caused by other signaling
pathways via RTK signaling cross-talk [1]. Additionally,
inhibitor sensitivity can be affected by cross-talk between
signaling pathways triggered by the targeted RTK and
other signaling pathways (triggered by other RTKs). For
example, the EGFR/HER2 signaling pathway can cross-
talk with Wnt/β-catenin, Notch, and TNFα/IKK/NF-κB
signaling pathways to affect the EGFR/HER2 inhibitors’
sensitivities [1]. Cross-talk between effector pathways and
feedback inhibition is also responsible for the adaptive
and dynamic response of cancer cells against inhibitor
therapies, for example, compensating the inhibited com-
ponents to maintain key downstream functions, such as
cell survival, proliferation etc. [11].
Lapatinib is a dual tyrosine kinase inhibitor of EGFR and

ErbB2/HER2 receptors [12] that is used in combination
therapy of ErbB2/HER2-positive breast cancer patients
with advanced or metastatic tumors [13]. Several studies
have examined the mechanism underlying lapatinib resis-
tance at themolecular [14-16] and system level [17], active
in HER2-positive breast cancer cell-lines through signal-
ing pathways. Garrett et al. [14] reported over-expression
ofHER2 orHER3 in lapatinib-resistant SKBR3 and BT474
breast cancer cell lines. Over-expression of AXL tyrosine
kinase was found in the BT474 cell-line [16], but interest-
ingly a switched addiction from HER2 to FGFR2 pathway
caused the UACC812/LR cell-line to become resistant to
lapatinib [15]. Moreover, a detailed analysis of the global
cellular network by Komurov et al. [17] revealed that
up-regulation of the glucose deprivation response path-
way compensates for the lapatinib inhibition in SKBR3
cell-line by providing an EGFR/ErbB2-independent mech-
anism of glucose uptake and survival [17]. Thus, the
activation or up-regulation of compensatory pathways
confers poor sensitivity of inhibitors (i.e. lapatinib resis-
tance) in EGFR or ErbB2 targeted therapy [1,2,17]. The

62



Azad et al. BMC Systems Biology  (2015) 9:2 Page 3 of 17

identification and analyses of potential cross-talks among
the signaling pathways may provide deeper insights into
the mechanism of drug resistance, and can facilitate find-
ing a range of compensatory pathways for overcoming
resistance in targeted therapy.
In this study, we collected the gene expression val-

ues of the ErbB2-positive parental SKBR3 cell-line and
the lapatinib-resistant SKBR3-R cell-line, derived from
it, in the presence and absence of lapatinib [17]. Then
we used a fully Bayesian statistical modeling approach to
identify and analyze characteristic drug-resistant cross-
talks between EGFR/ErbB and other signaling pathways.
ln that process, we considered two gene-gene networks
originating from the gene expression matrices of both
parental and resistant conditions, individually. To say a
gene-pair involved in cross-talk between two particular
signaling pathways has high potential of being involved
in acquired drug-resistance, our research hypothesis was
it should have high probability of appearing in the resis-
tant network and low probability in the parental network.
The rationale behind our hypothesis was that in breast
cancer cell lines resistant to tamoxifen, a cross-talk mech-
anism has previously been identified between EGFR and
the IGF1R signaling pathway [18]. The schematic dia-
gram of our proposed framework is shown in Figure 1.
Like other biological processes, cancer signaling pathway
activities and their corresponding network data possess
stochasticity such that some gene-gene relationships (i.e.
network edges) may not always be present or detected,
whereas some other typical relationships may be absent.
The stochastic nature of biological systems can be used
to predict edge probabilities by formalizing them into a
probabilistic model with other network properties [19].
Hill et al. reported a data-driven approach that exploits a
Dynamic Bayesian Network (DBN) model to infer prob-
abilistic relationships between node-pairs in a context-
specific signaling network [20]. This study incorporates
existing signaling biology using an informative prior dis-
tribution on the network, and its weight of contribution
is measured with an empirical Bayes analysis, maximum
marginal likelihood. This study predicts a number of
known and unexpected signaling links through time that
are validated using independent targeted inhibition exper-
iments [20]. Here we have used a fully Bayesian approach
for inferring a probabilistic model: a special class of Expo-
nential Random Graph Model, namely the p1-model. We
used Gibbs sampling for estimating model parameters
with non-informative priors, in order to estimate the
posterior probabilities of edges in gene-gene relationship
networks. These identified cross-talks do not appear in
the parental network but only in the resistant one, because
the signaling network can be ‘rewired’ in a specific con-
text [21,22]. This idea resembles the approach taken by
Hill et al. in that they inferred the probabilities of signaling

links (gene-pairs) varying through time. Thus, these drug-
resistance cross-talks can be informative to elucidate the
complex mechanisms underlying drug-insensitivity and
can help to develop novel therapeutics targeting signaling
pathways.

Materials and method
Dataset
A global gene expression (GE) dataset (GSE38376) from
1) cells sensitive to lapatinib (said to be under "parental
conditions") and 2) cells with acquired resistance to lapa-
tinib was obtained from Komurov et al. [17]. Expression
values were measured using Illumina HumanHT-12 V3.0
expression beadchip (GPL6947). Samples include SKBR3
parental and resistant (SKBR3-R) each under basal condi-
tions and in response to 0.1 μM and 1 μM lapatinib after
24 hours, where the resistant cell line variant (SKBR3-R)
showed 100-fold more resistance to lapatinib treatment
than the parental SKBR3 cell line, as reported by Komurov
et al. [17]. These gene expression datasets used probe-
level annotation, which we converted into gene-level
annotation. To obtain gene-level GE values, probes were
mapped to gene symbols using the corresponding anno-
tation file (GPL6947). While mapping, the average GE
values were calculated across all probes if the same
gene symbol was annotated to multiple probes. Two GE
data matrices were constructed for parental SKBR3 cell
lines and resistant SKBR3-R cell lines, respectively, where
rows were labelled with gene symbols and columns were
labelled with different treatment conditions (0, 0.1 μM
and 1 μM of lapatinib).

Construction of a gene-gene relationship network
We define the gene-gene relationship network as GGR:=
(S,R) for each GE data matrix. Here, S is a set of 370 can-
cer related genes collected from the Cancer Gene Census
[23]. R is defined as the set of pair-wise relationships
among seed genes. A gene pair (genei, genej) is included
in R if the corresponding absolute Pearson Correlation
Coefficient (PCC) is above some threshold, and defined
as a pair-wise relationship. These threshold values were
empirically chosen for parental and resistant conditions
individually, based on the corresponding distributions of
all pairwise absolute PCC values. Note PCC values result-
ing from probes mapped to the same gene were trivially
ignored.

Bayesian statistical modeling ofGGR network
Networkmodel
For statistical modeling of networks, exponential fami-
lies of distributions offer robust and flexible parametric
models [24]. These probabilistic models can be used to
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Figure 1 Schematic diagram of our proposed framework. (A) The framework for finding putative drug-resistant cross-talks. At first two gene
expression data matrices were generated individually from the samples of both parental and resistant conditions. Next, based on pair-wise
correlations of genes’ expression values, two gene-gene relationship networks were derived. Then, a Bayesian statistical model called the p1-model
was applied on those two networks to find posterior probabilities of network edges. These posterior probabilities were used to find gene-pairs
potentially contributing to drug resistance. Next, these gene-pairs were analyzed for overlap with cross-talks between EGFR/ErbB and other
signaling pathways, and thus putative drug-resistant cross-talks were identified. (B) Hierarchical Bayesian model for inferring posterior probabilities
of network parameters. Here, α represents the propensity (expansiveness/attractiveness) of a gene to be connected in an undirected network, and
is dependent on the hyperparameter �; θ is the global density parameter; λij = log

(
nij

)
is the scaling parameter, which is fixed due to the

constraint
∑

k Yijk = 1; the hyperparameter τθ represents precision of the normal prior for the parameter θ .

evaluate the probability that an edge is present in the
network. They can also be used to quantify topological
properties of networks by summarizing them in a para-
metric form and associating sufficient statistics with those
parameters [19,24]. In this study, we use a special class of
exponential family distributions known as ERGM (Expo-
nential Random Graph Models), also known as the p1-
model, which was introduced by Holland and Leinhardt
[24].
A gene-gene relationship network with g genes can

be regarded as a random variable X taking values from

a set G containing all 2g(g−1) possible relationship net-
works [24,25]. Let u be a generic point of G which can
alternatively be denoted as the realization of X by X =
u. Let the binary outcome uij = 1 if genei interacts with
genej, or uij = 0 otherwise. Then u is a binary data
matrix [19]. Let Pr(u) be the probability function on G
given by

Pr(u) = Pr(X = u) = 1
κ (θ)

exp
∑
p

θpzp (u) (1)
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where zp(u) is the network statistic of type p, θp is the
parameter associated with zp(u) and κ(θ) is the normal-
izing constant that ensures Pr(u) is a proper probability
distribution (sums to 1 over all u inG) [26]. The parameter
θ is a vector of model parameters associated with network
statistics and needs to be estimated. See [24] for further
details.
A major limitation of the p1-model is the difficulty of

calculating the normalizing constant, κ(θ), since it is a
sum over the entire graph space. Estimating the maximum
likelihood of this model becomes intractable as there
are 2g(g−1) possible directed graphs (or 2

g(g−1)
2 undirected

graphs), each having g nodes (genes). A technique called
maximum pseudolikelihood estimation has been devel-
oped to address this problem [27]. This technique employs
MCMC methods such as Gibbs or Metropolis-Hastings
sampling algorithms [28].
The construction of the p1-model for a directed network

is described in an Appendix Additional file 1: Appendix
I. For the gene-gene relationship network with undirected
edges, the description of the p1-model can be simplified
by using only two Bernoulli variables Yij0 and Yij1 instead
of four as follows:

Yijk =
{
1 if uij = k,
0 otherwise

The simplified p1-model can then be defined using the
following two equations to predict the probability of an
edge being present between genei and genej:

log
{
Pr

(
Yij1 = 1

)} = λij + θ + αi + αj (2)

log
{
Pr

(
Yij0 = 1

)} = λij (3)

for i < j. Note that λij is chosen to ensure Pr
(
Yij0 = 1

) +
Pr

(
Yij1 = 1

) = 1. In this formulation, the expansiveness
and attractiveness parameters were reduced to a single
parameter, α, which represents the propensity of a gene
to be connected in an undirected network. Hence, the p1-
model seeks to find the probabilities of edge formation in
a network considering its structural features explicitly.

Bayesian modeling
We used a fully Bayesian approach for modeling our
gene-gene relationship network. Parameter estimation is
a crucial step in statistical modeling, for which a classical
approach is maximum likelihood estimation (MLE). How-
ever, unlike MLE, Bayesian techniques involve calculation
of posterior probabilities of model parameters by train-
ing the model with given data. We assume that the data D
follows the generative modelM, and assign a prior proba-
bility P (θ |M) to the parameter vector θ under the model
M. Then Bayes’ rule for calculating posterior probability
is as follows:

Pr (θ |M,D) = Pr (D|θ ,M) × Pr (θ |M)

Z (4)

where Pr (D|θ ,M) is the likelihood function. Now, the
marginal likelihood Z can be expressed as

Z = Pr (D|M) =
∫

Pr (D|M, θ) × P (θ |M)dθ , (5)

Computing the exact solution for the marginal likeli-
hood Z is often intractable since it is prone to the curse
of dimensionality. Fortunately, Markov Chain Monte
Carlo (MCMC) methods such as Gibbs sampling and
Metropolis-Hastings methods do not require Z to be
explicitly computed. In general, MCMC methods are
stochastic simulation techniques which generate samples
from the joint distribution P (M, θ |D) for calculating the
posterior probabilities of parameters. Here we used Gibbs
sampling methods, which sample iteratively, one parame-
ter at a time, from the full conditional distribution given
the current and previous values of all other parameters. To
implement Gibbs sampling, we employed WinBUGS [29],
which is a high-level software package providing an easy
interface for implementing complex Bayesian models. In
WinBUGS, users are free from background lower-level
programming details, and only have to express the model
precisely.
We hypothesized that gene-pairs involved in drug resis-

tance are likely to be found with high probabilities in
the resistant network but low probabilities in the parental
network. Therefore, we built two networks, one from
resistant datasets and the other from parental datasets. In
this Bayesian approach, the model likelihood is defined
in Equations (2) and (3), where Yk is the data matrix cal-
culated from the observed data u. Here we have two Yk
data matrices, namely a gene-gene relationship network
YkR derived from resistant samples and YkP derived from
parental samples.
Our approach is a hierarchical Bayesian model in that

model parameters are in turn dependent on hyperparam-
eters. We assign the density parameter θ in Equation (2)
a normal prior distribution with mean 0 and standard
deviation σθ .

θ ∼ N (
0, σθ

2) (6)

Note, inWinBUGS the parameter τ , called the precision,
replaces the standard deviation parameter σ of the normal
distribution, where, τ = σ−2. For the hyperparameter τθ

we specify a gamma prior distribution as follows, since it
is a conjugate prior for the normal distribution:

τθ ∼ Gamma (a0, b0) (7)

We set a0 = 0.001 and b0 = 0.001 to make the
prior for θ noninformative, making its standard deviation
wide to express large uncertainty [19]. For attractiveness/
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expansiveness parameters αi and αj, we followed the
approach used by Adams et al. [30].(

αR
i

αP
i

)
∼ N

((
0
0

)
,�

)
(8)

�−1 ∼ Wishart
((

1 0
0 1

)
, 2

)
(9)

Here, αR
i and αP

i represent the expansiveness/
attractiveness parameters for the network model of
resistant and parental conditions, respectively.

Drug resistant cross-talk prediction
Since, Lapatinib is an EGFR and ErbB inhibitor, we con-
sidered the cross-talks between the EGFR/ErbB signaling
pathway and other signaling pathways. Here cross-talks
can be defined as any gene-pair (genei, genej) in which
genei ∈ {genes in EGFR/ErbB signaling pathway} and
genej ∈ {genes in other signaling pathways}, or vice versa
[31]. Thus if both genes in any gene-pair were found
in the same signaling pathway, that particular gene-pair
was trivially ignored. For that purpose, we collected 24
signaling pathways from Reactome [32] (downloaded at
19/05/2014), 35 signaling pathways from KEGG [33,34]
(downloaded at 21/10/2014), and 63 signaling path-
ways fromWikiPathway [35] (downloaded at 16/10/2014)
databases. Each signaling pathway downloaded from these
databases was encoded as tab-delimitated lists of gene
symbols.
To determine whether a given gene-pair is involved in

drug resistance, we calculated a simple odds ratio of the
corresponding two posterior probabilities:

odds =
Pr

(
YR
ij1 = 1

)

Pr
(
YP
ij1 = 1

) (10)

where, YR
ij1 and YP

ij1 are gene-gene relationships defined
over resistant and parental networks, respectively, and
the probabilities are estimated using MCMC sampling.
We then selected only those gene-pairs for which the
odds score and Pr

(
uRij = 1

)
are greater than conservative

thresholds, and identified these as the gene-pairs which
are potentially involved in drug-resistance.

Results
Developing the network
For building gene-gene relationship networks, we con-
sidered the genes (nodes) from the Cancer Gene Census
[23] only, since our aim was to find those gene-gene
relationships which could be potential cross-talks among
cancer signaling pathways. In order to identify such gene-
pairs, we applied thresholds on their absolute Pearson
Correlation Coefficient (PCC) values. These thresholds
were 0.545 and 0.54 for parental and resistant conditions,

respectively, which we selected from the corresponding
distributions of all-pair absolute PCC values with the pur-
pose of considering approximately the top 20% gene-pairs
as pairwise relationships only. Applying these thresholds
to the relationship values, 27,865 and 26,865 pair-wise
relationships were identified in parental and resistant data
matrices, respectively.

Bayesian analysis
For the two gene-gene relationship networks YkR and YkP ,
Bayesian inference of the parameters of the p1-model for
an undirected network was applied. We used WinBUGS
for scripting this inference and our scripts were inspired
by Adams et al. [30]. We used 6000 MCMC iterations
for parameter estimation with the first 5000 as ‘burn-in’.
All the parameters in the p1-model appeared to converge
rapidly during the burn-in iterations (data not shown).
With the above settings, we estimated the posterior proba-
bilities of each edge (gene-gene relationship) Pr

(
Yij1 = 1

)
in the two networks YkR and YkP. For each edge, the pro-
portion of the 1000 sampled networks containing the edge
was considered as the posterior probability of that edge
being present in the network.
Next, for each edge we calculated the odds ratio of their

posterior probabilities as defined above. The rationale
behind this calculation was that the edges (gene-pairs)
found with high probabilities in resistant conditions but
lower probabilities in parental conditions are more likely
to be due to acquired resistance in cell lines. Therefore,
we chose only gene-pairs with high odds ratio (≥ 10.0)
and high posterior probabilities (≥ 0.5) of occurring in
resistant conditions. We found 11,515 such gene-pairs
(Additional file 2: Table S1) among all 68,265 [= (370 ×
369) ÷ 2] possibilities.
We then observed whether the above gene-pairs overlap

with the list of potential cross-talks between EGFR/ErbB
signaling and other signaling pathways. Here, we collected
24 signaling pathways from Reactome [32], 35 signaling
pathways from KEGG [33,34], and 63 signaling path-
ways from WikiPathway [35] databases, and respectively
identified 1,083 (841 distinct), 2,179 (1,050 distinct) and
3,084 (876 distinct) gene-pairs (Additional file 3: Table S2,
Additional file 4: Table S3 and Additional file 5: Table S4)
between EGFR/ErbB and other signaling pathways (see
Materials and method). Of the 11,515 gene-pairs identi-
fied above, we found 104 (97 distinct), 188 (99 distinct)
and 299 (96 distinct) gene-pairs overlap with the potential
EGFR cross-talks identified using Reactome, KEGG and
WikiPathway, respectively. Note the number of potential
cross-talks and the number of distinct gene-pairs are dif-
ferent because the same gene-pair can form cross-talks
between multiple pathway-pairs (pathways are overlap-
ping). We consider these overlapping gene-pairs as puta-
tive drug-resistant cross-talks between EGFR/ErbB and
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other signaling pathways. In these 104, 188 and 299 cross-
talks, we found candidate EGFR/ErbB cross-talks with 13,
26 and 51 other signaling pathways, respectively. More-
over, among all 104, 188 and 299 cross-talks from Reac-
tome, KEGG and WikiPathway, respectively, we found 32
distinct gene-pairs in at least two of these sets. Primary
findings and detailed descriptions of all these putative
cross-talks from the analyses of all three pathway sources
are listed in Table 1, and Additional file 6: Table S5,
Additional file 7: Table S6 and Additional file 8: Table S7,
respectively. The network views of all these cross-talk sets
from the analyses of individual pathway sources are shown
in Figure 2.

Netwalker analyses
We conducted further analyses using Netwalker, a net-
work analysis suite for functional genomics [36]. In this
analysis, we observed the changes in GE values for each
gene in the identified list of potential cross-talks. This
was to verify our expectation that, since lapatinib is
an EGFR/ErbB inhibitor, both genes involved in drug-
resistant cross-talks should be up-regulated in resistant
conditions compared to parental conditions, which may
imply that the activation of other compensatory signal-
ing pathways in resistant conditions can play a role in
acquired resistance to inhibitors by activating the targeted
pathway(s) [1,17]. Therefore, for all 67 genes involved in
the above sets of 104, 188 and 299 drug-resistant cross-
talks from Reactome, KEGG and WikiPathway, respec-
tively, we made a heatmap image of GE values from both
conditions (parental and resistant) (Figure 3A). For both
resistant and parental conditions, we first averaged the
gene expression values from the three samples corre-
sponding to the three treatment conditions. Then these
averaged gene expression values were transformed into
z-scores (zero mean, unit standard deviation) and each
z-score was normalized with the maximum of the abso-
lute values of the z-scores across that particular gene.
We observed that in 28 of these 67 genes (involved in
168 cross-talks), gene expression in one or more resis-
tant conditions (0, 0.1 μM and 1 μM of lapatinib) was
up-regulated relative to all the parental conditions (0, 0.1

μM and 1 μM of lapatinib) (Figure 3B) which may signify
the insensitivity of these genes to inhibitors under resis-
tant conditions. Note for Figure 3B only those genes are
depicted for which both genes in some identified cross-
talk had average GE values at resistant conditions greater
than the average GE values at parental conditions.
For these 28 selected genes (168 cross-talks), we

observed the relative changes in GE values (parental vs
resistant conditions) in their candidate signaling path-
ways. First we analyzed EGFR signaling pathway from
Reactome and found that many of the constituent genes
were up-regulated in one (or more) resistant conditions
whereas in all of their corresponding parental conditions
they were down-regulated (Additional file 1: Figure S1).
These 168 selected cross-talks associated EGFR (or ErbB)
signaling pathways with 6 other signaling pathways that
were found in at least two different pathway analyses
(i.e. Reactome and KEGG, or KEGG and WikiPathway,
or Reactome and WikiPathway). In those 6 other signal-
ing pathways, we also observed a similar phenomenon
as above (Additional file 1: Figure S1). These 6 signaling
pathways are Notch signaling (in Reactome, KEGG and
WikiPathway), Wnt signaling (in Reactome, KEGG and
WikiPathway), insulin receptor/IGF1R signaling (in Reac-
tome and WikiPathway), GPCR signaling (in Reactome
and WikiPathway), hedgehog (in KEGG and WikiPath-
way), and TGF-β receptor signaling (in Reactome and
WikiPathway). Again, for many of the constituent genes of
these 6 signaling pathways, expression was up-regulated
in at least one of the resistant conditions whereas in all
the corresponding parental conditions they were down-
regulated. Primary findings regarding these 168 selected
drug-resistant cross-talks are listed in Additional file 9:
Table S8, and the top 50 of those 168 cross-talks (based on
sorted Odds ratio) are shown in Table 2.

Signaling cross-talk between EGFR/ErbB and other
signaling pathways
Cross-talk between EGFR/ErbB and Notch signaling
We investigated literature evidence regarding the putative
cross-talks between EGFR/ErbB signaling and other sig-
naling pathways. We found AKT2:MAML2 (in Reactome

Table 1 Primary findings from the analyses using signaling pathways from Reactome, KEGG andWikiPathway in breast
cancer cell-line: SKBR3 (GSE38376)

Pathway # of signaling Pathway of All Distinct All putative Distinct # of other
source pathways interest Cross-talks gene-pairs§ drug-resistant gene-pairs¶ signaling

of interest cross-talks pathways

REACTOME 23 EGFR 1,083 841 104 97 13

KEGG 35 ErbB 2,179 1,050 188 99 26

WikiPathway 63 ErbB 3,084 876 299 96 51

¶Number of distinct gene-pairs involved in all EGFR/ErbB cross-talks with all other signaling pathways; §Number of distinct gene-pairs commonly involved in all
EGFR/ErbB cross-talks and drug resistance.
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Figure 2 Network view of (A) 104, (B) 188, and (C) 299 putative drug-resistant cross-talks between pathways using Reactome, KEGG, and
WikiPathway pathway databases in Breast Cancer Cell-line: SKBR3 (GSE38376). Nodes are genes, and the edges are the cross-talks. Note, all
the cross-talks here possess posterior probabilities of appearing in resistant network ≥ 0.5 and Odds Ratio ≥ 10.0, which means the posterior
probabilities of that cross-talk for appearing in parental network is ≤ 0.05.
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Figure 3 Heatmap of genes in putative drug-resistant cross-talks in breast cancer cell-line: SKBR3 (GSE38376). Heatmap image of
comparative gene expression changes of parental and resistant conditions in (A) all 67 genes in all 104, 188 and 299 putative drug-resistant cross-
talks using signaling pathways from Reactome, KEGG and WikiPathway database, respectively, and (B) 28 selected genes based on their differential
regulation. Here, for each gene, the expression value at each of the 6 conditions (3 parental conditions, and 3 resistant conditions) is the average
value of 3 sample patients [17]. For each gene, these 6 expression values (each of them is the average of 3 samples) were transformed into z-scores
(zero mean, unit standard deviation) and each z-score was normalized with the maximum absolute value of the z-scores across that particular gene.
Note, (B) includes only those genes which belonged to gene-pairs for which the average of GE values at resistant conditions was greater than the
average of GE values at parental conditions. For both (A) and (B), red and green bars indicate up-regulation and down-regulation, respectively.

and KEGG), AKT2:TP53 (in Reactome), AKT2:MYC (in
Reactome), KIT :MAML2 (in Reactome), KIT :TP53 (in
Reactome),MDM2:MAML2 (in Reactome and WikiPath-
way), MDM2:TP53 (in Reactome), and TP53:MAML2 (in
WikiPathway) gene-pairs as putative cross-talks between

EGFR/ErbB signaling and Notch signaling pathways. Up-
regulation of the Notch signaling pathway inhibits apop-
tosis and thus contributes to breast carcinogenesis [37].
The Notch signaling pathway cross-talks with EGFR/ErbB
signaling at the mediator level [1], e.g. when activated,
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Notch1 contributes to cell growth and survival via Akt-
activation in melanoma [38]. The Notch1 co-activator
complex binds to the HES1 promoter [39] which encodes
a transcription repressor that represses the expression of
PTEN, a PI3K/Akt pathway inhibitor [40] contributing to
tyrosine kinase inhibitor (TKI) resistance. Furthermore,
Notch1 stimulates MYC transcription [41] and this stim-
ulation can lead to the down-regulation of MYC via the
Akt-pathway [42,43]. This putative gene-pair, AKT2:MYC
was also found in our results as a potential drug-resistant
cross-talk between the EGFR/ErbB and TGF-β receptor
signaling pathways. Again, in HER2/neu-mediated resis-
tance toDNA-damaging agents, theAkt pathway becomes
activated which eventually suppresses p53 functions via
enhancing MDM2-mediated ubiquitination [44]. Protein-
protein interaction between MDM2 and p53 is evident as
contributing to various cancer related activities [45,46].

Cross-talk between EGFR/ErbB andWnt signaling
We found MDM2:APC (in Reactome and WikiPath-
way), KIT :CDC73 (in Reactome), MDM2:CDC73
(in Reactome), CBL:APC (in Reactome and KEGG),
PDGFRA:APC (in Reactome), and CBL:CDC73 (in
Reactome), AKT2:APC (in KEGG), AKT2:TP53 (in
KEGG), and TP53:APC (in WikiPathway) as putative
drug-resistant cross-talks between EGFR/ErbB and Wnt
signaling pathways. Deregulation of the Wnt/β-catenin
signaling pathway plays a critical role in various cancers
including breast, colorectal, pancreatic and colon can-
cer [47,48], and its association with drug-resistance has
been studied by several research groups [47-50]. Recently,
it has been reported that resistant cell lines exhibited
increased Wnt signaling in both breast and colon cancer
[49,50]. Loh et al. showed that genes in the Wnt signaling
pathway, in both the β-catenin dependent (AXIN2, MYC,
CSNK1A1) and the independent arms (ROR2, JUN), were
up-regulated in cell lines resistant to tamoxifen com-
pared to the parental MCF7 cell line [49]. Furthermore,
ROR1, a constituent gene of Wnt signaling pathway,
plays a sustainer role in EGFR-mediated prosurvival sig-
naling in lung adenocarcinoma via signaling cross-talk
and was therefore reported to be a potential therapeu-
tic target [51]. APC and MDM2 in the MDM2:APC
cross-talk are both tumor suppressors; they co-regulate
DNA polymerase-β [52,53] which is reported to be
hyper-activated in a cis-diamminedichloroplatinum(II)
resistant P388 murine leukemia cell line [54]. Again,
β-catenin whose stability is negatively regulated by APC
[55], confers resistance to PI3K/Akt inhibitors in colon
cancer [56].

Cross-talk between EGFR/ErbB and GPCR signaling
Between EGFR/ErbB and GPCR signaling pathways,
we found KIT :GNAQ (in Reactome), MDM2:GNAQ (in

Reactome and WikiPathway), CBL:GNAQ (in Reactome),
FGFR2:GNAQ (in Reactome), PDGFRA:GNAQ (in Reac-
tome), KIT :TSHR (in Reactome), MDM2:TSHR (in Reac-
tome), CBL:TSHR (in Reactome), PDGFRA:TSHR (in
Reactome), KIT :GNAS (in Reactome), MDM2:GNAS (in
Reactome and WikiPathway), KIT :SMO (in Reactome),
MDM2:SMO (in Reactome), TP53:GNAQ (in WikiPath-
way), and MYC:GNAQ (in WikiPathway). GPCR-like sig-
naling contributes to acquired drug resistance after being
mediated by Smoothened (SMO) via activating Gli, a
canonical hedgehog (Hh) transcription factor [57]. GPCR
and EGFR/ErbB over-expression often contributes to can-
cer growth. Cross-talk between the two at the receptor
level contributes to HNSCC (head and neck squamous
cell carcinoma) via triggering EGFR/ErbB signaling by
a GPCR ligand [58]. For the MDM2:SMO cross-talk,
found between the EGFR/ErbB and GPCR signaling path-
ways, a SMO-mutant from Hh signal transducer activates
PI3K/Akt/Gli pathway that eventually increases MDM2
phosphorylation [59]. This in turn increases MDM2-
mediated p53 degradation and thus reduces p53-induced
apoptosis [59]. Furthermore, recently it has been reported
that SMO (Hh signal transducer) functions like a G-
protein coupled receptor due to its structural resemblance
to GPCRs [60,61] which may be further evidence for a
drug-resistant cross-talk between hedgehog signaling and
EGFR/ErbB signaling [1].

Cross-talk between EGFR/ErbB and IR (insulin
receptor)/IGF1Rsignaling
Several studies have reported extensive cross-talk
between IR (insulin receptor)/IGF1R (insulin-like growth
factor-1 receptor) and EGFR/ErbB signaling pathways
contributing to acquired drug resistance in various
cancers [62-64]. Loduvini et al. reported significant cor-
relation between worse disease-free survival and high
co-expression of both EGFR/ErbB and IGF1R in NSCLC
(non-small-cell lung cancer) patients [65]. EGFR/ErbB
can physically interact with other non-ErbB family recep-
tors at the cell surface and can form heterodimers with
receptors like IGF1R, PDGFR etc. [62]. Moreover, the
EGFR/ErbB and IGF1R pathways can also cross-talk indi-
rectly via physical interactions between their downstream
shared-components [62]. It has been reported recently
that gefitinib (an EGFR TKI) inhibits the phosphory-
lation of IRS1 by IR, but also triggers the association
between IRS1 and IGF1R which in turn induces drug-
resistance [66]. Knowlden et al. showed the cross-talk
between IGF1R and EGFR signaling pathways occurred
in tamoxifen-resistant MCF7 and T47D breast cancer
cell-lines but not in non-resistant cells [18]. Our find-
ings suggest KIT :STK11 (in Reactome), MDM2:STK11
(in Reactome), MDM2:AKT2 (in WikiPathway), MYC:
AKT2 (in WikiPathway), TP53:AKT2 (in WikiPathway),
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MDM2:CBL (in WikiPathway), MDM2:SOCS1 (in Wiki-
Pathway), and TP53:SOCS1 (in WikiPathway) as puta-
tive drug-resistant cross-talks between the IGF1R/IR
and EGFR/ErbB signaling pathways. For the MDM2 and
STK11 (also known as LKB1) genes, which we identified
as a putative cross-talk between EGFR and IGF1R sig-
naling, we did not find any direct supporting evidence in
the literature. However, this association is plausible in the
resistant conditions given that Yamaguchi et al. suggested
EGFR signaling may cross-talk with the AMPK/LKB
signaling pathway [1]. Moreover, Levine et al. reported
interconnections between p53 and IGF1R/AKT/mTOR
pathways where both LKB1 and MDM2 participate in a
series of pathway cross-talks [67].

Validation of the framework using BT474 cell-line
(GSE16179)
To further illustrate our method, we analysed a second
dataset (GSE16179) containing gene expression profiles
of breast cancer cell-line BT474 under two conditions
(parental and lapatinib resistant) [16]. The reason for
choosing this dataset was that it was obtained using
a similar experimental design to the primary dataset
GSE38376, but with an additional treatment condition
using foretinib (GSK1363089) only and with combined
drug use (lapatinib + foretinib). There were three sam-
ples per treatment condition. However, to adapt simply
and be coherent with the previous experiment, we only
considered expression values of parental conditions (3
samples with basal condition: GSM799168, GSM799169
and GSM799170; 3 samples with 1 μM of lapatinib treat-
ment: GSM79917, GSM799172 and GSM799173), and
the same conditions with lapatinib resistant cells (3 sam-
ples with basal condition: GSM799174, GSM799175 and
GSM799176; 3 samples with 1 μM of lapatinib treatment:
GSM799180, GSM799181 and GSM799182). Among the
375 cancer genes from Cancer Gene Census [23], there
were 357 genes which had gene expression values. We
identified 27,358 and 26,292 pair-wise gene-gene rela-
tionships (undirected edges) in resistant and parental
networks by applying the thresholds 0.71 and 0.81, respec-
tively. Bayesian inference of the p1-model parameters for
an undirected network was applied to these two gene-
gene relationship networks as before. Thereafter, among
all 63,546 [= (357×356)÷2] possibilities, we found 10,811
gene-pairs (Additional file 10: Table S9) with the same
thresholds of odds ratio (≥10.0) as previously, but smaller
posterior probability (≥0.15) of occurring in the resistant
network. With this set of putative drug-resistant gene-
pairs, we also observed the overlap of potential cross-talks
of EGFR/ErbB with other signaling pathways using Reac-
tome, KEGG and WikiPathway databases. We found 83
(72 distinct), 133 (87 distinct) and 277 (81 distinct) cross-
talks between EGFR/ErbB and other signaling pathways

from Reactome, KEGG and WikiPathway (Additional
file 11: Table S10, Additional file 12: Table S11 and Addi-
tional file 13: Table S12), respectively. The numbers of sig-
naling pathways that were involved in those EGFR/ErbB
cross-talks were 10, 18 and 54, respectively. Among the 83,
133 and 277 cross-talks, we found 50 distinct gene-pairs
in at least two of these sets. Table 3 shows the comparative
findings between our primary dataset (SKBR3 cell-line,
GSE38379) and our secondary dataset (BT474 cell-line,
GSE16179). In Table 3, we show that some important sig-
naling pathways that were involved in the EGFR/ErbB
cross-talks (i.e. Notch, WNT, GPCR, IR/IGF1R, TGF-β
signaling pathways) in our primary dataset, have some
overlap with our secondary dataset.
There were 78 genes involved in these sets of 83, 133

and 277 putative cross-talks.We performed a similar Net-
walker analyses with these 78 genes as we did for the
dataset GSE38376, and found 37 genes (involved in 86
cross-talks (Additional file 14: Table S13)) consistent with
our hypothesis that both genes in a particular cross-talk
should be up-regulated in resistant conditions but down-
regulated in parental conditions. In Figure 4, the selected
genes from the secondary dataset exhibit an even clearer
pattern of up-regulation in resistant conditions than the
selected genes from our primary dataset.

Discussion
In this study, we developed a computational framework
to systematically predict signaling cross-talks between
EGFR/ErbB and other signaling pathways that contribute
to lapatinib (an EGFR and ErbB2/HER2 inhibitor) resis-
tance. We hypothesized that gene-pairs (cross-talks) that
can potentially cause drug-resistance have a high proba-
bility of occurring in the resistant condition(s) but a low
probability in parental conditions. We employed a fully
Bayesian statistical model: a special class of Exponen-
tial Random Graph Model known as the p1-model, to
infer the posterior probabilities of such gene-pairs from
corresponding networks inferred using gene expression
values [17] of resistant and parental conditions. In select-
ing gene-pairs as putative cross-talks, threshold values for
two parameters: odds and posterior probabilities of edges
in resistant networks were empirically selected. How-
ever, more robust procedures for the selection of these
two parameters can be made in future studies. All other
parameters in the p1-model discussed above were esti-
mated using Gibbs sampling (see Materials and method).
Our results primarily focus on compensatory signal-

ing pathways i.e. Notch signaling, Wnt signaling, GPCR
signaling, and IR/IGF1R signaling, which cross-talk with
EGFR/ErbB signaling to reduce the inhibiting effect of lap-
atinib. We present additional literature evidence that the
identified cross-talks of the above compensatory signal-
ing pathways with EGFR/ErbB signaling may contribute
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Table 2 Description of top 50 (based on sorted Odds ratio) cross-talks among all 168 potential drug-resistant cross-talks
between EGFR/ErbB signaling and other pathways from all the analyses using Reactome, KEGG andWikiPathway
databases in GSE38376

genei ::genej EGFR/ErbB :: Pr
(
YRij = 1

)
Pr

(
YPij = 1

)
Odds ratio Avg

(
GEPi

)
: Avg

(
GERi

)
:

Signaling pathwayj Avg
(
GEPj

)
Avg

(
GERj

)

AKT2::MAML2§ ,¶ Notch signaling 0.5 0.03 16.67 87.71::76.59 96.84::78.6

MDM2::APC§ ,$ Wnt signaling 0.5 0.03 16.67 76.33::82.43 77.9::86.76

KIT::CDC73§ Wnt signaling 0.5 0.03 16.67 82.14::104.01 82.68::110.88

MDM2::CDC73§ Wnt signaling 0.5 0.03 16.67 76.33::104.01 77.9::110.88

KIT::GNAQ§ GPCR signaling 0.5 0.03 16.67 82.14::130 82.68::139.33

MDM2::GNAQ§ ,$ GPCR signaling 0.5 0.03 16.67 76.33::130 77.9::139.33

KIT::TSHR§ GPCR signaling 0.5 0.03 16.67 82.14::71.32 82.68::71.66

MDM2::TSHR§ GPCR signaling 0.5 0.03 16.67 76.33::71.32 77.9::71.66

AKT2::APC¶ Wnt signaling 0.5 0.03 16.67 87.71::82.43 96.84::86.76

AKT2::APC¶ Hippo signaling 0.5 0.03 16.67 87.71::82.43 96.84::86.76

AKT2::CDH1¶ Hippo signaling 0.5 0.03 16.67 87.71::74.2 96.84::79.8

AKT2::GNAQ¶ Gnrh signaling 0.5 0.03 16.67 87.71::130 96.84::139.33

AKT2::GNAQ¶ Calcium signaling 0.5 0.03 16.67 87.71::130 96.84::139.33

AKT2::MDM2¶ p53 signaling 0.5 0.03 16.67 87.71::76.33 96.84::77.9

MDM2::AKT2$ Regulation of toll-like 0.5 0.03 16.67 76.33::87.71 77.9::96.84

receptor signaling

MDM2::AKT2$ insulin signaling 0.5 0.03 16.67 76.33::87.71 77.9::96.84

MDM2::AKT2$ RANKL/RANK signaling 0.5 0.03 16.67 76.33::87.71 77.9::96.84

MDM2::AKT2$ AMPK signaling 0.5 0.03 16.67 76.33::87.71 77.9::96.84

MDM2::AKT2$ MAPK signaling 0.5 0.03 16.67 76.33::87.71 77.9::96.84

MDM2::AKT2$ Tweak signaling 0.5 0.03 16.67 76.33::87.71 77.9::96.84

MDM2::AKT2$ Toll-like 0.5 0.03 16.67 76.33::87.71 77.9::96.84

receptor signaling

MDM2::APC$ BDNF signaling 0.5 0.03 16.67 76.33::82.43 77.9::86.76

MDM2::APC$ Wnt signaling Netpath 0.5 0.03 16.67 76.33::82.43 77.9::86.76

MDM2::APC$ Wnt signaling 0.5 0.03 16.67 76.33::82.43 77.9::86.76

and Pluripotency

MDM2::COL1A1$ Nanoparticle-mediated 0.5 0.03 16.67 76.33::91.44 77.9::102.54

activation of receptor

signaling

MDM2::COL1A1$ Osteoblast signaling 0.5 0.03 16.67 76.33::91.44 77.9::102.54

MDM2::GNAQ$ TSH signaling 0.5 0.03 16.67 76.33::130 77.9::139.33

MDM2::GNAQ$ Serotonin Receptor 2 0.5 0.03 16.67 76.33::130 77.9::139.33

and STAT3 signaling

MDM2::GNAQ$ Serotonin Receptor 2 0.5 0.03 16.67 76.33::130 77.9::139.33

and ELK-SRF/GATA4

signaling

MDM2::ITK$ T-Cell Receptor and 0.5 0.03 16.67 76.33::89.86 77.9::93.27

Co-stimulatory signaling

MDM2::ITK$ Tcr signaling 0.5 0.03 16.67 76.33::89.86 77.9::93.27

MDM2::KIT$ Kit receptor signaling 0.5 0.03 16.67 76.33::82.14 77.9::82.68
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Table 2 Description of top 50 (based on sorted Odds ratio) cross-talks among all 168 potential drug-resistant cross-talks
between EGFR/ErbB signaling and other pathways from all the analyses using Reactome, KEGG andWikiPathway
databases in GSE38376 (Continued)

MDM2::PAX5$ ID signaling 0.5 0.03 16.67 76.33::68.91 77.9::71.02

MDM2::TSHR$ TSH signaling 0.5 0.03 16.67 76.33::71.32 77.9::71.66

AKT2::TP53§ Notch signaling 0.5 0.04 12.5 87.71::128.73 96.84::155.09

KIT::APC§ Wnt signaling 0.5 0.04 12.5 82.14::82.43 82.68::86.76

KIT::MAML2§ Notch signaling 0.5 0.04 12.5 82.14::76.59 82.68::78.6

KIT::STK11§ IGF1R signaling 0.5 0.04 12.5 82.14::71.97 82.68::74.95

KIT::STK11§ insulin receptor signaling 0.5 0.04 12.5 82.14::71.97 82.68::74.95

KIT::TP53§ Notch signaling 0.5 0.04 12.5 82.14::128.73 82.68::155.09

MDM2::MAML2§ ,$ Notch signaling 0.5 0.04 12.5 76.33::76.59 77.9::78.6

MDM2::STK11§ IGF1R signaling 0.5 0.04 12.5 76.33::71.97 77.9::74.95

MDM2::STK11§ insulin receptor signaling 0.5 0.04 12.5 76.33::71.97 77.9::74.95

MDM2::TP53§ Notch signaling 0.5 0.04 12.5 76.33::128.73 77.9::155.09

AKT2::GNAS¶ Gnrh signaling 0.5 0.04 12.5 87.71::5465.46 96.84::6212.43

AKT2::GNAS¶ Calcium signaling 0.5 0.04 12.5 87.71::5465.46 96.84::6212.43

AKT2::NF2¶ Hippo signaling 0.5 0.04 12.5 87.71::85.75 96.84::87.36

AKT2::TP53¶ P53 signaling 0.5 0.04 12.5 87.71::128.73 96.84::155.09

AKT2::TP53¶ Wnt signaling 0.5 0.04 12.5 87.71::128.73 96.84::155.09

CBL::CDH1¶ RAP1 signaling 0.5 0.04 12.5 194.46::74.2 208.45::79.8

Cross-talks found using signaling pathways from §Reactome, ¶KEGG, and $WikiPathway Databases; Pathwayj is the pathway containing genej ; Pr
(
YRij = 1

)
and

Pr
(
YPij = 1

)
are the posterior probabilities of genei :genej in Resistant and Parental networks, respectively; Avg

(
GEPi

)
is the average GE value of all Parental conditions

(each of which is an average of 3 samples) for genei , Avg
(
GERi

)
is similar but with Resistant conditions, and others are likewise similar.

to drug-resistance by maintaining key cell survival and/or
proliferation signals in common down-stream pathways,
including PI3K/Akt signaling [1].
Komurov et al. [17] hypothesized that cross-talks

between EGFR/ErbB signaling and metabolic pathways
contribute to resistance to lapatinib. More specifically,
they identified that glucose deprivation reduces the
inhibiting effects of lapatinib by up-regulating con-
stituent genes and thus providing an EGFR/ErbB2-
independent mechanism of glucose uptake and cell sur-
vival [17]. Here, by using the same gene expression
datasets, we found MDM2:STK11 cross-talk between
EGFR/ErbB and IGF1R signaling, where STK11 (also
known as LKB1) phosphorylates and activates AMPK in
absence of glucose [67]. Again, in the integrated signal-
ing circuitry of pathways: p53-IGF-1-AKT-TSC2-mTOR,
a positive feedback loop (p53-PTEN AKT-MDM2-p53)
is formed which enhances p53-mediated apoptosis and
senses nutrient deprivation [67]. Thus our results com-
plement the findings of Komurov et al. by finding
signaling cross-talks between EGFR/ErbB and IGF1R
pathways.
In Netwalker analysis of our primary dataset (SKBR3

cell-line, GSE38376),we compared the expression changes

of all the samples in parental conditions (basal, 0.1 μM
and 1.0 μM) with those of all the samples in resistant
conditions (basal, 0.1 μM and 1.0 μM). However, we
conducted another experiment on both of our primary
(SKBR3 cell-line, GSE38376) and secondary datasets
(BT474 cell-line, GSE16179) in which we first identified
genes dysregulated in treatment vs basal conditions in
parental samples and then checked if those genes were
reversely changed in treatment conditions in resistant
samples. To that end, for each sample, first we calcu-
lated the fold-change(s) of parental treatment condition(s)
compared to parental basal condition, and then we cal-
culated the fold-changes of resistant basal and resistant
treatment conditions compared to parental basal condi-
tion (Additional file 1: Figure S2A and S3A). Then, we
chose only those genes for which, in any of the 3 sam-
ples, expressions were dysregulated (up-/down-regulated)
in (all the) parental treatment condition(s) (log2 of fold-
changes were positive/negative), and for that particular
sample, expressions were reversely changed (the fold-
change sign was opposite to that of parental condition)
in all the resistant treatment conditions (Additional file
1: Figure S2B and S3B). This may be a strong indicator
of sensitivity to an inhibitor in parental conditions and
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Table 3 Comparative results betweenprimary dataset (SKBR3 cell-line, GSE38376) and validationdataset (BT474
cell-line, GSE16179)

Pathway name Found in Pathway source Found in Pathway source Common cross-talks in both Studies¶

(GSE38376) (GSE16179)

Notch Signaling Reactome, Reactome, MAP2K4::NOTCH1

KEGG, KEGG,

WikiPathway WikiPathway

GPCR signaling Reactome, Reactome, CBL::TSHR

WikiPathway WikiPathway FGFR1::TSHR

PDGFRA::GNAQ

KIT::TSHR

LCK::TSHR

MDM2::TSHR

PDGFRA::TSHR

WNT Signaling Reactome, Reactome, AKT2::CCND2

KEGG, KEGG, MAP2K4::CCND2

WikiPathway WikiPathway MAP2K4::TP53

MDM2::MAP2K4

Insulin (IGF1R) Signaling Reactome, Reactome, MDM2::MAP2K4

WikiPathway WikiPathway TP53::MAP2K4

TGF-β Signaling Reactome, Reactome, MDM2::TFE3

WikiPathway KEGG, TP53::TFE3

WikiPathway

MAPK signaling KEGG, KEGG, MDM2::MAP2K4

WikiPathway WikiPathway

¶These common cross-talks were found using the primary dataset (104, 188 and 299 cross-talks from Reactome, KEGG and WikiPathway databases, respectively) and
validation datasets (83, 133 and 277 cross-talks from Reactome, KEGG andWikiPathway databases, respectively). Cross-talks mentioned with Bold face are those
consistent with our hypothesis that both genes in the particular cross-talk are up-regulated in resistant conditions but down-regulated in parental conditions.

the development of acquired resistance. Next, we com-
pared these selected genes to cross-talks found in results
from GSE38379 (104, 188 and 299 EGFR/ErbB cross-talks
from Reactome, KEGG and WikiPathway, respectively)
and GSE16179 (83, 133 and 277 EGFR/ErbB cross-talks
from Reactome, KEGG and WikiPathway, respectively).
Although we didn’t find any such cross-talks overlapping
with the results from the primary dataset (GSE38379),
we found 401 from our secondary dataset (GSE16179)
(Additional file 15: Table S14).
Currently, our network modeling only considers undi-

rected edges among genes. In future we would like to
generalise the approach to identify directed and indi-
rect interactions among genes. In network modeling,
a combination of both direct and indirect relation-
ships among gene-pairs was found to provide better
insights into biological systems in our previous stud-
ies [68]. The rationale for combining these two types
of gene-gene relationships in signaling networks is that
EGFR/ErbB and IGF1R can both cross-talk (EGFR/IGF1R

heterodimerization) directly at the receptor level, and
indirectly mediated by GPCR signaling, as reported
by Van der Veeken et al. [62]. Other high-throughput
datasets such as miRNA expression data, copy number
aberration data, and methylation data could also be incor-
porated into our framework to obtain a better under-
standing of gene dependencies. Note that our method-
ology exploits a fully data-driven approach for finding
putative drug-resistant cross-talks, without incorporat-
ing other prior information regarding gene-gene rela-
tionships, such as Protein-Protein Interactions. Hence,
although our data-driven approach may inherently yield
some false-positive predictions, it may also provide the
possibilities of finding novel cross-talks contributing to
drug- resistance.

Conclusions
Our proposed computational framework is able to pre-
dict putative cross-talks among signaling pathways that
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Figure 4 Heatmap of genes in putative drug-resistant cross-talks in breast cancer cell-line: BT474 (GSE16179). Heatmap image of
comparative gene expression changes of parental and resistant conditions in (A) all 78 genes in all 83, 133 and 277 putative drug-resistant
cross-talks using signaling pathways from Reactome, KEGG and WikiPathway database, respectively, and (B) 37 selected genes based on their
differential regulation. Here, for each gene, the expression value at each of the 4 conditions (2 parental conditions, and 2 resistant conditions) is the
average value of 3 sample patients [16]. For each gene, these 4 expression values (each of them is the average of 3 samples) were transformed into
z-scores (zero mean, unit standard deviation) and each z-score was normalized with the maximum absolute value of the z-scores across that
particular gene. For both (A) and (B), red and green bars indicate up-regulation and down-regulation, respectively.

play a role in drug resistance in two breast cancer
cell-lines, SKBR3 and BT474. Our framework could also
be useful for other types of cancer to enhance understand-
ing of the role of signaling cross-talks in drug resistance.
Most importantly, we believe our method can be used to

find a range of compensatory pathways that nullify/reduce
the inhibiting effects of drugs via cross-talk with targeted
pathways. These novel compensatory pathways can be
further considered as novel targets for single or combina-
tion therapies.
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Additional file 2: Table S1. All 11,515 drug-resistant gene-pairs found in
GSE38376.

Additional file 3: Table S2. All 1,083 (841 distinct) cross-talks found
between EGFR and other 23 signaling pathways from Reactome database.

Additional file 4: Table S3. All 2,179 (1,050 distinct) cross-talks found
between ErbB and other 34 signaling pathways from KEGG database.

Additional file 5: Table S4. All 3,084 (876 distinct) cross-talks found
between ErbB and other 62 signaling pathways from WikiPathway
database.

Additional file 6: Table S5. 104 drug-resistant cross-talks found between
EGFR and other 23 signaling pathways from Reactome database
[GSE38376].

Additional file 7: Table S6. 188 drug-resistant cross-talks found between
ErbB and other 34 signaling pathways from KEGG database [GSE38376].

Additional file 8: Table S7. 299 drug-resistant cross-talks found between
ErbB and other 62 signaling pathways from WikiPathway database
[GSE38376].

Additional file 9: Table S8. 168 selected cross-talks which associated
EGFR (or ErbB) signaling pathways with 6 other signaling pathways that
were found in at least two different pathway analyses (i.e. Reactome and
KEGG, or KEGG and WikiPathway, or Reactome and WikiPathway)
[GSE38376].

Additional file 10: Table S9. All 10,811 drug-resistant gene-pairs found in
GSE16179.

Additional file 11: Table S10. 83 drug-resistant cross-talks found
between EGFR and other 23 signaling pathways from Reactome database
[GSE16179].

Additional file 12: Table S11. 133 drug-resistant cross-talks found
between ErbB and other 34 signaling pathways from KEGG database
[GSE16179].

Additional file 13: Table S12. 278 drug-resistant cross-talks found
between ErbB and other 62 signaling pathways from WikiPathway
database [GSE16179].

Additional file 14: Table S13. 86 drug-resistant cross-talks found in all
Reactome, KEGG and WikiPathway analyses where both genes in a
particular cross-talk was up-regulated in resistant conditions but
down-regulated in parental conditions [GSE16179].

Additional file 15: Table S14. 401 cross-talks from Reactome, KEGG and
WikiPathway analyses where the genes are dysregulated in parental
treatment vs parental basal condition, and reversely changed in resistant
basal + resistant treatment vs parental basal condition [GSE16179].
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Chapter 5

Bayesian Model of Signal Rewiring Re-

veals Mechanisms of Gene Dysregula-

tion in Acquired Drug Resistance in

Breast Cancer

Chapter Objectives

In this chapter, I continued to identify signalling cross-talk among signalling pathways

in data-driven networks and explore their roles in acquired drug resistance. In par-

ticular, I build a computational framework to model signalling rewiring in acquired

resistance using the p1-model. After inferring aberrant signalling activities in the

rewired signalling network, I investigate two further research objectives: 1) identifying

dysregulated signalling pathways in acquired resistance, and 2) detecting, analysing

and characterising both Type-I and Type-II cross-talk among all signalling pathways

[Chapter 3] involved in acquired lapatinib resistance. Supplementary files are included

in Appendix C.
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Abstract

Small molecule inhibitors, such as lapatinib, are effective against breast cancer in clinical tri-

als, but tumor cells ultimately acquire resistance to the drug. Maintaining sensitization to

drug action is essential for durable growth inhibition. Recently, adaptive reprogramming of

signaling circuitry has been identified as a major cause of acquired resistance. We devel-

oped a computational framework using a Bayesian statistical approach to model signal

rewiring in acquired resistance. We used the p1-model to infer potential aberrant gene-pairs

with differential posterior probabilities of appearing in resistant-vs-parental networks.

Results were obtained using matched gene expression profiles under resistant and parental

conditions. Using two lapatinib-treated ErbB2-positive breast cancer cell-lines: SKBR3 and

BT474, our method identified similar dysregulated signaling pathways including EGFR-

related pathways as well as other receptor-related pathways, many of which were reported

previously as compensatory pathways of EGFR-inhibition via signaling cross-talk. A manual

literature survey provided strong evidence that aberrant signaling activities in dysregulated

pathways are closely related to acquired resistance in EGFR tyrosine kinase inhibitors. Our

approach predicted literature-supported dysregulated pathways complementary to both

node-centric (SPIA, DAVID, and GATHER) and edge-centric (ESEA and PAGI) methods.

Moreover, by proposing a novel pattern of aberrant signaling called V-structures, we

observed that genes were dysregulated in resistant-vs-sensitive conditions when they were

involved in the switch of dependencies from targeted to bypass signaling events. A literature

survey of some important V-structures suggested they play a role in breast cancer metasta-

sis and/or acquired resistance to EGFR-TKIs, where the mRNA changes of TGFBR2, LEF1

and TP53 in resistant-vs-sensitive conditions were related to the dependency switch from

targeted to bypass signaling links. Our results suggest many signaling pathway structures

are compromised in acquired resistance, and V-structures of aberrant signaling within/

among those pathways may provide further insights into the bypass mechanism of targeted

inhibition.
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Introduction

Cell signaling pathways transduce input signals from extracellular to intracellular environ-

ments and determine various cell activities, including cell growth, proliferation, differentia-

tion, migration, and apoptosis [1, 2]. Perturbation of a signaling network may occur when

there are genetic alterations, such as DNA mutations and/or amplifications/deletions of a

genomic region, or changes in gene expression (GE) [3, 4]. For example, the amplification or

over-expression of the ErbB2 (HER2/neu) oncogene, that enhances various growth-related sig-

naling activities [5] from receptor-level to effector-level [4], is commonly found in about 25%

of breast cancer patients. In the majority of cancers, aberrant activities in signaling pathways

are involved in various stages of tumor progression and metastasis [6–9].

Drugs targeting a signaling network, such as EGFR signaling pathway, often become inef-

fective as acquired resistance develops in cancer cells [10]. Primary reasons for acquired resis-

tance to EGFR family receptor targeted therapies include: secondary mutations of targeted

genes (e.g., the EGFR T790M mutation [11]), transcriptional and post-translational up-regula-

tion of RTKs (Receptor Tyrosine Kinases) both within the receptor-family (e.g. ERBB3/HER3

[12, 13]) and other kinases (i.e. IGF1R, MET, FGFR2, FAK, SRC family kinases [14–16]), the

over-expression of ABC transporters [3], and the re-activation of targeted pathways [5]. More-

over, tumor cells induce adaptive responses to targeted therapies [5] by rewiring in such a way

that the adaptive signaling bypasses the inhibiting effects of initial treatments [4, 10, 17–19].

Therefore, rewiring of signaling networks plays a vital role as a non-genetic mechanism of

acquired resistance [3, 14, 17, 18, 20]; targeting of which has the potential to improve the

response durability of single kinase inhibitors [4, 5, 21]. However, reprogramming of signaling

activities in acquired resistance inherently imposes increased uncertainties in the network

structure when compared with their sensitive counterparts.

The functionality of biological networks is determined by their underlying architecture.

Thus understanding, characterising, and analysing network structures are very important

tasks in the field of systems biology [22]. Statistical modeling approaches offer a great deal of

flexibility in terms of scalability and the number of local features that can be incorporated [22].

Moreover, as in other biological networks, signaling activities predicted using signaling data

may be unreliable, whereas some crucial signaling links may not be predicted [23]. Measure-

ments of the signaling activities often yield noisy data. Therefore, for such data-driven signal-

ing networks a statistical modeling approach such as exponential random graph models
(ERGMs) or p� can be a suitable choice [22, 23]. The p1-model, a special class of ERGMs which

was originally proposed by Holland and Leinhardt [24], models the probability of an edge for-

mation in the observed network based on network statistics (e.g. node degree) and associating

model parameters with those statistics [22, 23].

Measuring the probabilistic nature of pair-wise relationships is an important aspect of

modeling a gene-gene relationship network. Particularly in cancer drug resistance, some rela-

tionships between gene-pairs may evolve in the resistant conditions to compensate for the

inhibiting effects of the drugs used [10, 19]. Some gene-pairs may have higher probabilities of

evolving correlations in resistant conditions than in sensitive conditions. Simultaneously,

some gene-pairs having high correlations in sensitive conditions may become loosely corre-

lated (or even independent) in resistant conditions. For example, Komurov et al. reported that

genes of the glucose-deprivation response network are up-regulated in lapatinib- (an EGFR/

HER2 dual inhibitor) resistant conditions, thus providing an EGFR-independent mechanism

of glucose uptake in cancer cells [19]. ErbB2-positive cancer cells largely depend on EGFR/

ErbB2 signaling for their glucose uptake [19] which was recently reported as a major factor in

oncogenic KRAS pathway mutations [25, 26]. Lapatinib mediates down-regulation of cell

Bayesian model of signal rewiring in acquired drug resistance
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cycle machinery and up-regulation of cell cycle inhibitory complexes that are downstream of

EGFR/ErbB2 signaling [19]. Moreover, the inhibitory effect of lapatinib on EGFR/ErbB2 sig-

naling in the sensitive condition was found to be associated with glucose starvation of cancer

cells, and thus induced cancer cell death [19]. However, in resistant conditions, up-regulation

of activities involved in the glucose deprivation response network (and other hypoglycemic

response networks) played an important role as a compensatory mechanism of glucose uptake

in cancer cells for which tumors ultimately relapsed. Therefore, it can be hypothesized that

genes involved in the process of cell proliferation and survival may evolve, in resistant condi-

tions, to be highly correlated with the genes in the glucose deprivation response network in

order to establish an alternate mechanism of glucose uptake in cancer cells, even though the

inhibiting effects of lapatinib abrogated their dependencies on EGFR/ErbB2 signaling in sensi-

tive conditions (See Fig 1 of [20].) Therefore, studying systematic characterizations of such dif-

ferential dependencies among gene-pairs in resistant-vs-sensitive conditions, and their

combined roles on particular genes’ dysregulations (in resistant-vs-sensitive) may reveal novel

insights into mechanisms of acquired resistance.

Moreover, Komurov et al. [19] suggested that the drug resistance mechanism more likely

occurs downstream of growth factor-mediated signaling pathways, such as Ras signaling,

PI3K/AKT signaling, mTOR signaling, and others. However, an enormous number of diverse

effector pathways may be involved in this process, making the prediction of biologically plausi-

ble hypotheses a challenging task. New computational approaches are needed to resolve such

challenges in identifying the mechanistic underpinnings of acquired resistance.

Gene dysregulation is associated with aberrant signaling activities that are crucial for both

cell growth and apoptosis in breast cancer [27]. For example, dysregulation [28] and/or muta-

tion [28, 29] of apoptosis-related genes may overcome the initial response to apoptotic stimuli,

thereby conferring resistance to apoptosis. Sharifnia et al. recently reported that several kinases

and kinase-related genes from the Src family (e.g. FGFR1, FGFR2 and MOS) can compensate

the loss of EGFR activity across multiple EGFR-dependent models [30]. Using unbiased gene-

expression profiles of cells, their study revealed that over-expression of these EGFR-bypass

genes plays a critical role in EGFR-independent activation of the MEK-ERK and PI3K-AKT

signaling pathways in EGFR-mutant NSCLC cells. Recently, differential dependencies/associa-

tions were used to model rewiring in biological networks [31, 32]. Therefore, we hypothesize

that differential associations between genes identified by modeling network reprogramming in

resistant-vs-sensitive conditions could potentially explain gene dysregulation in acquired

resistance.

In this study, we propose a computational framework to identify dysregulated signaling

pathways in resistant-vs-sensitive conditions, and a possible mechanism of gene dysregulation

in acquired resistance. The schematic diagram of our proposed framework is shown in Fig 1.

We used two breast cancer cell-lines, SKBR3 and BT474, each having gene expression values

measured under matched lapatinib-sensitive (parental) and lapatinib-resistant conditions. A

gene-gene relationship network was constructed for each gene expression dataset by combin-

ing data-driven and protein-protein interaction (PPI) information indicative of both direct

and indirect relationships between gene-pairs. Then we applied a fully Bayesian approach

involving the p1-model to infer gene-pairs with differential posterior probabilities between

these two conditions. Next, statistically significant dysregulated signaling pathways from

KEGG, Reactome, and WikiPathway were identified by enriching putative aberrant pairs

using literature curated signaling links. Finally, by proposing a novel pattern of aberrant pairs,

called a V-structure, we identified possible mechanisms of dysregulation in resistant-vs-sensi-

tive conditions that may be crucial for breast cancer metastasis and/or EGFR-TKI resistance.

Bayesian model of signal rewiring in acquired drug resistance
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We hope such patterns revealed using our framework will lead to further insights into aberrant

signaling activities in acquired resistance.

Results

A framework for identifying putative aberrant gene-pairs in acquired

resistance

We developed a computational framework exploiting Bayesian statistical modeling to identify

putative aberrant signaling links involved in acquired resistance. In this study, we hypothe-

sized that aberrant signaling can be detected as differential probabilities of occurrence of gene-

pairs in resistant-vs-parental conditions. Thus, after building gene-gene relationship networks

individually from both parental and resistant conditions, a comparative study of edge proba-

bilities in those two networks may reveal aberrant relationships due to acquired resistance.

Our framework constructs a gene-gene relationship network, GGR: = (S, R) by combining

GE and PPI datasets, where S is a set of seed genes and R is a set of pair-wise gene relationships

(Fig 1). Table 1 shows primary statistics for the GGR networks of both SKBR3 (GSE38376) and

BT474 (GSE16179) cell-lines. For SKBR3 cell-lines (Parental and Resistant), we selected 897

seed genes comprised of 345 differentially expressed (DE) genes (Bonferroni corrected p-

value� 0.01), 370 genes from the Cancer Gene Census (CGC), and 502 and 479 linker genes

from Resistant and Parental cell-lines, respectively. For BT474 cell-lines, we found 875 distinct

seed genes comprised of 354 DE genes (Bonferroni corrected p-value� 0.05), 357 CGC genes,

and 477 and 489 linker genes from Resistant and Parental cell-lines, respectively. Note that to

find DE genes in SKBR3 and BT474 cell-lines, two different p-value thresholds: 0.01 and 0.05

were used, respectively. This was done for two reasons: firstly, because the computational cost

of using a conventional threshold of 0.05 with SKBR3 was prohibitive, and secondly, to ensure

the numbers of DE genes in the two different cell-lines were comparable, and similarly for the

sizes of the seed gene sets [for details see S1 Text].

Fig 1. Schematic diagram of our proposed framework to identify and analyse aberrant signaling pathways in acquired resistance.

(A) Gene expression datasets of breast cancer cell-lines for both parental and resistant conditions. (B) Two gene-gene relationship networks

(GGR) were built from gene expression datasets of breast cancer cell-lines in Parental and resistant conditions. (C) & (D) A fully Bayesian

approach was applied for detecting putative aberrant gene-pairs involved in acquired resistance. (E) Using the putative aberrant gene-pairs

and a literature-curated signaling network, a statistical test was conducted to identify dysregulated pathways in acquired resistance. (F)

Applying the known aberrant signaling links (from literature), we identify and explain the role of a proposed novel structure of aberrant pairs:

V-structure (VS) in breast cancer metastasis and/or in developing acquired resistance to EGFR-TKIs.

https://doi.org/10.1371/journal.pone.0173331.g001

Table 1. Primary statistics of Gene-Gene Relationship (GGR) network construction for both SKBR3 and BT474 cell-lines.

Cell

Line

Cell

Condition

# of DE

Genes

# of CGC

Genes

# of DE [

CGC

Genes

# of All

Pairs

# of

Linker

Genes

# of Total

Seed

Genes

# of combined

Seed Genes

# of

Direct

Pairs

# of

Indirect

Pairs

# of PPI

Pairs

# of

Total

Links

SKBR3 Resistant 345 370 704 247456 502 1262 897 49492 1440 1757 52560

Parental 479 1245 1393 1758 52510

BT474 Resistant 354 357 698 243253 477 1100 875 48651 1572 1895 51998

Parental 489 1101 1517 1951 51972

https://doi.org/10.1371/journal.pone.0173331.t001
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Our approach constructs a GGR in a series of stages: an initial set of genes is obtained by

combining DE and CGC genes. Edges are added corresponding to direct relationships between

pairs of these genes. We then search for indirect relationships among gene-pairs for which

direct relationships couldn’t be found, and where indirect relationships are found the linker

genes and the edges connecting them are added to the network. For the SKBR3 cell-line, the ini-

tial gene set contained 704 genes obtained by combining 345 DE and 370 CGC genes, whereas

for the BT474 cell-line, the initial gene set contained 698 genes obtained by combining 354 DE

and 357 CGC genes. To define direct relationships among the genes in the initial sets, we chose

the top 20% from the ranked list of all pair-wise absolute Pearson Correlation Coefficients

(PCC). Thus, we identified 49,492 (in both parental and resistant condition) and 48,651 (in

both parental and resistant condition) direct relationships in SKBR3 and BT474 cell-lines,

respectively. We justified this choice of threshold by applying an approach proposed by Elo

et al. which analyses the topological properties of a co-expression network in order to find an

optimal cutoff value [33] [for details see S1 Text]. In searching for indirect relationships, we

found that 502 and 479 linker genes connect 1,440 and 1,393 distinct gene-pairs (for which

direct relationships were not found) with the help of 1,757 and 1,758 distinct PPI links, for

SKBR3 resistant and parental cell-lines, respectively. Similarly, for BT474 Resistant and Parental

cell-lines, 477 and 489 linker genes connect 1,572 and 1,517 distinct indirect gene-pairs along

with 1,895 and 1,951 distinct PPI links, respectively. In both datasets (SKBR3 and BT474), to

build two GGR matrices for resistant and parental conditions with similar sets of genes, we con-

structed the final set of seed genes as an intersection of the two individual seed gene sets for

Resistant and Parental conditions. Hence, 502 and 479 linker genes from SKBR3 resistant and

parental conditions were combined with 704 (DE [ CGC) genes to form 1,262 and 1,245 seed

genes, respectively, and then finding an intersection of these two sets yielded a set of 897 genes.

Similarly, combining 698 (DE [ CGC) with 477 and 489 linker genes from BT474 resistant and

parental genes produced 1100 and 1101 seed genes, respectively, and intersecting these resulted

in a final set of 875 genes. At the end of this process, the SKBR3 resistant and parental GGR net-

works contained 897 distinct seed genes (DE [ CGC[ Linker) with 52,560 and 52,510 gene-

gene relationships (direct [ indirect [ PPI), respectively, and the BT474 Resistant and Parental

GGR network contained 875 distinct seed genes with 51,998 and 51,972 gene-gene relationships,

respectively. Note that for both SKBR3 and BT474 cell-lines, although the total number of final

seed genes is the same for both resistant and parental conditions, their respective GGR networks

may contain different numbers of gene-gene relationships.

After building the GGR networks for both resistant and parental conditions Yk
R and Yk

P

separately, we conducted Bayesian inference of parameters using the p1-model to estimate pos-

terior probabilities of gene-gene relationships in each network. We used a WinBUGS script

used in our previous work [10] for this inference. We ran the MCMC (Markov Chain Monte

Carlo) method for 15,000 iterations, where the first 10,000 iterations were considered as ‘burn-

in’, and the next 5,000 iterations were used for sampling. Time-series plots indicated that all

parameters converged within the first few thousand iterations (data not shown). In both net-

works, the posterior probability of each edge was estimated to be the proportion of the 5,000

sampled networks in which that edge was present.

We identified a gene pair (genei, genej) as putatively aberrant if its posterior probabilities

PrðYR
ij1 ¼ 1Þ and PrðYP

ij1 ¼ 1Þ of appearing in each network (resistant and parental networks,

respectively) are significantly different. To determine which gene-pairs had this characteristic,

we calculated two odds ratios—OddsR and OddsP—as shown in Eqs (3) and (4) for each gene-

pair (genei, genej). Note that since the two posterior probabilities used in these odds ratios may

lie in different ranges, we normalized their values by dividing by their respective maximum
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values over all the gene-pairs in the respective sets. We then used two thresholds to define sig-

nificance: first, we constructed the empirical distribution of odds ratios and chose only those

gene-pairs which had odds ratios among the top 20%. For SKBR3 cell-lines, these threshold

values were 2.53 and 1.66 for resistant and parental conditions, respectively, and for BT474

these values were 12.028 and 2.115, respectively. Next, we constructed empirical distributions

of the posterior probabilities of the previously selected gene-pairs, and chose only those gene-

pairs whose posterior probabilities were in the top 50% in their respective distributions. For

SKBR3 resistant and parental cell-lines, these thresholds of posterior probabilities were 0.212

and 0.252, respectively, and for BT474 cell lines, 0.177 and 0.304, for resistant and parental

conditions, respectively. More detailed explanations regarding these two types of thresholds

are provided in the Supplementary Methods section in S1 Text. Thus, our framework finally

selected 80,372 and 76,476 aberrant gene-pairs for SKBR3 and BT474 cell-lines, respectively,

and we hypothesized that these aberrant gene-pairs have the potential to explain the mecha-

nism of acquired resistance in breast cancer. Lists of all identified putative aberrant gene-pairs

for both SKBR3 and BT474 cell-lines are shown in S1 Table.

Comparing posterior probabilities to correlation coefficients. To investigate the robust-

ness of our approach, we compared the posterior probabilities with the initial PCC (Pearson

Correlation Coefficient) values for each of the putative aberrant gene pairs as shown in Fig 2.

We treated the posterior probabilities of the red gene-pairs [see Methods] as positive values

and the posterior probabilities of the green gene-pairs [see Methods] as negative, and plotted

their sorted values in descending order (Fig 2). Next, we constructed a scatter plot with corre-
sponding absolute PCC values for each of these gene-pairs, sorted based on posterior probabili-

ties. We added a trendline using a moving average with window size 25, to investigate whether

this trendline was in any way similar to the trend observed in the posterior probabilities. Inter-

estingly, for both SKBR3 and BT474 cell-lines, the trendlines of PCC values revealed a visually

similar pattern to that of the corresponding posterior probability values. This confirms our

expectation that our Bayesian analysis is sensitive to a signal in the PCC values that would be

otherwise difficult to detect.

Many crucial signaling pathways are significantly enriched with aberrant

gene-pairs in acquired resistance

To measure the significance of signaling pathways in terms of aberrant signaling activities in

acquired resistance, we conducted a hypergeometric test. In this test, we measured how signifi-

cant was the overlap between the set of literature-supported signaling links [34] found in a par-

ticular signaling pathway with the set of putative aberrant gene-pairs in the same pathway. We

identified all the signaling pathways from KEGG, Reactome, and WikiPathway databases for

which the corresponding q-value (FDR corrected p-value) from the above hypergeometric test

was< 0.05 in both SKBR3 and BT474 cell-lines as is shown in Fig 3. For both SKBR3 and

BT474 cell-lines, 71.11% (32 out of 45), 62.5% (15 out of 24), and 57.38% (35 out of 61) signal-

ing pathways from KEGG, Reactome, and WikiPathways, respectively, were found to be signif-

icantly enriched with aberrant signaling gene-pairs in acquired resistance (Fig 3). Again, for all

corresponding KEGG, Reactome, and WikiPathway databases, such high percentages of

enriched signaling pathways found in both SKBR3 and BT474 cell-lines indicates that our

framework is consistent in terms of finding aberrant gene-pairs in both cell-lines. Complete

enrichment results of this hypergeometric test are reported in S2 Table.

We conducted a literature survey for the putative dysregulated signaling pathways, and

found that the aberrant activities in most of these pathways are strongly associated with

acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) [18]. EGFR (also known
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as HER1, or ErbB1) and EGFR 2 (also known as HER2/neu, or ErbB2) are cell surface trans-

membrane proteins, and members of the HER family of receptors. EGFR (in KEGG, Reac-

tome, and WikiPathway) and ErbB2 (in Reactome) are reported to be frequently mutated and/

or over-expressed in various types of cancer resulting in aberrant activities contributing to

abnormal cell growth, survival, migration, and differentiation [35, 36]. However, over-expres-

sion and secondary mutations of both EGFR [11, 37–39] and ErbB2 [40] are associated with

acquired resistance to EGFR-TKI. Moreover, being key components of cell signaling systems,

these RTKs control major downstream signaling pathways, i.e. Ras/Raf/MAPK (in KEGG and

WikiPathway), PI3K-Akt (in KEGG and Reactome), FoxO (in KEGG), and Jak-STAT (in

KEGG) that are crucial for cancer cell growth and survival [3]. Moreover, as these downstream

signaling pathways further regulate multiple downstream effector pathways (related to cell

growth and survival), aberrant re-activation of those pathways provide a common mechanism

to compensate for inhibition of targeted pathways, thereby conferring acquired resistance to

EGFR-TKIs [4, 41, 42]. Interestingly, these signaling pathways (i.e. Ras, PI3K-Akt, FoxO, Jak-

Stat signaling) were found as the top-most in the list of aberrant signaling pathways in both

datasets (SKBR3 and BT474) based on the above hypergeometric test using KEGG database as

Fig 2. Comparing the posterior probabilities of putative aberrant gene-pairs with corresponding PCC

(Pearson Correlation Coefficient) values that were defined among genes prior to the Bayesian analyses, (A)

for SKBR3 and (B) BT474 cell-lines. The first figures in (A) and (B) show the sorted posterior probability values of the

putative aberrant gene-pairs in descending order, and the second figures of (A) and (B) show the scatter plot of their

corresponding PCC values. Note that for both the graphs in (A) and (B) the rank of ordered aberrant pairs is shown in

X-axis, and the posterior probabilities and PCC values of red gene-pairs are shown in Positive Y-axis and those of

green pairs are shown in Negative Y-axis, correspondingly. A trendline (red or yellow trendlines for the SKBR3 and

BT474 cell-lines, respectively) is drawn for each of the scatter plots (in (A) and (B)) by using a moving average with a

window size set to 25. For both SKBR3 and BT474, these trendlines clearly show the similarity of the signal contained

in the PCC values (defined prior to Bayesian analyses) and the pattern of changes in a posteriori values (resulting from

Bayesian analyses), and demonstrates the robustness of Bayesian statistical modeling for selecting putative aberrant

gene-pairs involved in acquired resistance.

https://doi.org/10.1371/journal.pone.0173331.g002
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shown in Fig 3. For ErbB4 signaling (in Reactome), recently it has been reported that in

ErbB2-positive breast cancer cell-lines, ErbB4 was up-regulated at the protein level in vitro and

re-activated PI3K-Akt signaling in resistant conditions compared to the sensitive condition,

and the knock-down of ErbB4 induced apoptosis in both the lapatinib-resistant and trastuzu-

mab-resistant cell-lines [43]. Rap1 (in KEGG) and ras (in KEGG) signaling are activated by

lung cancer oncogene CRKL whose focal amplification (secondary mutation) was reported to

be associated with acquired resistance to EGFR inhibitor [44]. Again, signals for cell prolifera-

tion and survival from activated AKT may transduce through several phosphorylated tran-

scription factors, such as FoxO (in KEGG) [45], which indicates that the dysregulation of

FoxO signaling pathway (in KEGG) may potentially be associated with resistance to

EGFR-TKIs.

Fig 3. Analysis of dysregulated pathways by conducting pathway enrichment test of aberrant gene-pairs with known signaling links [34] involved

in acquired resistance in SKBR3 and BT474 breast cancer cell-lines. Enrichments of all signaling pathways in (A) KEGG, (B) Reactome, and (C)

WikiPathway.

https://doi.org/10.1371/journal.pone.0173331.g003
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Our previous study found cross-talks between EGFR signaling and pathways triggered by

other types of receptors, e.g. Notch, Wnt, IGF1R, GPCR, etc. which contributed to acquired

resistance to lapatinib (an EGFR/Her2 dual inhibitor) [10]. Here, we also found these pathways

showing significant aberrant activities in acquired resistance to lapatinib [Fig 3]. The activa-

tion of IGF1R signaling (in KEGG, Reactome, and WikiPathway) is commonly reported to

induce acquired resistance to EGFR-TKIs by many studies [46, 47], and its inhibition could

down-regulate PI3K-Akt signaling, eventually inhibiting cell growth, providing co-inhibition

of EGFR and IGF1R signaling a clinical success [3]. Similarly, the Notch signaling pathway (in

KEGG, Reactome, and WikiPathway) cross-talks with EGFR signaling in breast cancer, thus

maintaining the cancer cell growth signal through MAPK and PI3K-Akt signaling [48]. It is

suggested that an improved drug-sensitivity could be achieved by down-regulating the Notch

signaling pathway with specific inhibitors [49, 50]. Again, genes involved in Wnt signaling (in

KEGG, Reactome, and WikiPathway) were up-regulated in the resistant condition in both

breast and colon cancer when compared to the sensitive condition [51, 52], thus contributing

to acquired resistance to EGFR-TKIs [51].

Targeting angiogenesis is another important aspect of anticancer therapies [53], as aberrant

vascularity and hypoxia are directly associated with tumor growth and survival [3]. In our

analysis, we found aberrant angiogenic pathways including signaling by Vascular Endothelial

Growth Factors (VEGFs) (in KEGG), Fibroblast Growth Factors (FGFs), and Platelet-Derived

Growth Factors (PDGFs). It has been reported that the VEGF/VEGFR-2 feed-forward loop

increases VEGF secretion in lung cancer via mTOR-dependent regulation that is required for

the activation of downstream signaling [54], and the over-expression of VEGFR-1 reduces

EGFR-TKIs sensitivity in different human cancer cells [3, 55]. Alternate activation of the

FGFR signaling pathway (in Reactome) through the over-expressions of FGFR1 and FGF2 acts

as a compensating mechanism for EGFR-TKIs [56] by maintaining signals for cell survival and

proliferation in the downstream signaling pathways [4]. Again, it has been recently reported

that, in PDGFR signaling (in Reactome), transcriptional de-repression of PDGFR-β contrib-

uted to compensating for the effects of EGFR-TKIs in EGFR-mutant glioblastoma via an

mTORC1- and extracellular signal regulated kinase-dependent mechanism [21].

The hippo signaling pathway (in KEGG) is associated with cell proliferation, apoptosis,

organ size control, and stem cell self renewal [57]. YAP is a transcription co-activator and

oncoprotein [58], and plays a central role in cancer-related activities of the hippo signaling

pathway [57]. Huang et al. have recently reported that down-regulating YAP expression in var-

ious cell-lines can improve the sensitivity of erlotinib (an EGFR-TKI) and cetuximab (anti-

EGFR drug) [59]. We found the gene-pair AKT2:MYC as a signaling cross-talk between

EGFR/ErbB and the TGF-β signaling pathway (in KEGG, Reactome, and WikiPathway) in our

previous study [10]. Recently, it has been reported that combined inhibition of EGFR-TKIs

(erlotinib) and TGF-β type I receptor inhibitor may improve sensitivity of EGFR-TKIs in lung

cancer without EGFR T790M mutation [60].

For both SKBR3 and BT474 cell-lines, the primary findings in this study with supporting

references are summarized in Tables 2 and 3. In this table, for each aberrant pathway, we also

show what percentages of predicted gene-pairs from Bayesian analysis were previously defined

as direct relationships, indirect relationships, and PPI during the network modeling. It is

apparent that substantial proportions of predicted pairs came from direct and indirect rela-

tionships in both SKBR3 and BT474 cell-lines. This also indicates the robustness of our Bayes-

ian modeling in inferring gene-pair relationships. Note that in the above calculation, if a

predicted pair was defined both as direct and PPI, or both as indirect and PPI, then we counted

that as direct or indirect, respectively, since that prediction for that particular pair was made

by our framework. Again, some of the predicted pairs (by Bayesian modeling) may not be

Bayesian model of signal rewiring in acquired drug resistance

PLOS ONE | https://doi.org/10.1371/journal.pone.0173331 March 13, 2017 10 / 37

90



defined as direct or indirect previously, because the definitions of the terms predicted (based

on posterior probability from Bayesian modeling), direct, and indirect were based on thresholds

calculated from the distributions of corresponding values [see Methods]. Thus, the enrichment

test with literature supported gene-dependencies [34] along with the evidences from the above

literature survey confirm that our framework is able to identify significantly dysregulated sig-

naling pathways that have key associations with acquired resistance in cancer.

Comparing with our previous study. To compare the performances of our current

framework with our previous one [10], we investigated which of the two frameworks identify a

greater number of dysregulated signaling pathways from KEGG, Reactome, and WikiPathway

databases, since we used similar gene expression datasets (SKBR3 and BT474) in both

approaches. We conducted a hypergeometric test to measure the statistical significance of the

overlap between the aberrant pairs and known signaling links [34]. For that purpose, we

defined the aberrant pairs in our previous approach [10] with oddsP and oddsR> 10.0, and pos-

terior probabilities, PrðuP
ij ¼ 1Þ and PrðuR

ij ¼ 1Þ> 0.5. We found that greater percentages of

Table 2. Summary of predicted dysregulated EGFR and its downstream signaling pathways from KEGG, Reactome and WikiPathway databases in

acquired resistance in both SKBR3 and BT474 cell-lines.

Aberrant Pathways in

EGFR-TKIs Resistancek,r,w
% of Direct

Pair(s,b)k,r,w

% of Indirect

Pair(s,b)k,r,w

% of PPI

Pair(s,b)k,r,w

# of Enriched

Pair(s,b)k,r,w

Enrichment q-

value(s,b)k,r,w

Literature

References

EGFR and downstream pathways

EGFR signaling (53.12%,

71.05%)k
(18.75%,

13.16%)k
— (6, 32)k (5.1e-16, 1.5e-94)k [11, 37–39]

(30.43%,

71.57%)r
(8.7%, 6.86%)r (__, 0.49%)r (18, 73)r (3.2e-43, 1.7e-185)r

(56%, 71.79%)w (12%, 7.69%)w (__, 0.85%)w (2, 4)w (1.0e-26, 1.3e-67)w

ErbB2 signaling (33.96%,

74.12%)r
(7.55%, 4.12%)r (__, 0.59%)r (15, 64)r (7.8e-38, 2.5e-168)r [40]

ErbB4 signaling (29.09%,

72.19%)r
(9.09%, 4.73%)r (__, 0.59%)r (17, 65)r (6.6e-44, 7.5e-175)r [43]

Ras signaling (34.62%,

66.05%)k
(11.54%, 6.17%)k (__, 0.62%)k (22, 60)k (6.5e-47, 6.9e-144)k [4, 41–44]

MAPK signaling (35.82%,

60.32%)k
(8.96%, 7.94%)k — (19, 23)k (4.4e-37, 4.2e-48)k [3, 4]

(31.82%,

48.05%)w
(9.09%,

12.99%)w
— (12, 19)w (8.7e-24, 5.1e-43)w

PI3K-Akt signaling (35.27%,

61.85%)k
(10.62%, 5.69%)k (__, 0.95%)k (34, 75)k (5.4e-55, 7.2e-136)k [3, 4]

(26.67%,

73.45%)r
(6.67%, 4.42%)r (__, 0.88%)r (6, 46)r (1.5e-16, 1.4e-137)r

Jak-Stat signaling (25.49%,

71.19%)k
(19.61%,

13.56%)k
(__, 1.69%)k (20, 7)k (6.8e-52, 8.6e-73)k [3, 4]

Rap1 signaling (25%, 61.03%)k (11%, 8.09%)k (1%, 0.74%)k (25, 53)k (4.4e-57, 5.5e-134)k [44]

FoxO signaling (48.15%,

78.45%)k
(7.41%, 2.76%)k (1.85%,

1.1%)k
(12, 54)k (3.1e-32, 2.7e-150)k [45]

k KEGG
r Reactome
w WikiPathway
s SKBR3
b BT474;

https://doi.org/10.1371/journal.pone.0173331.t002
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pathways from KEGG, Reactome, and WikiPathway databases were found as perturbed (dys-

regulated) in acquired resistance when the current approach was used compared to the old

one [Fig 4].

One of the main differences between these two approaches was in the definitions of the set

of edges in GGR network models: the current approach used direct pairs and non-direct pairs

(indirect pairs and PPI pairs), whereas the old approach only used direct pairs [10]. Therefore,

we conducted two experiments to investigate the importance of non-direct pairs in the new

model. First, in aberrant signaling pathways that were detected by our current but not the pre-

vious model, we observed what percentages of enriched links (i.e. aberrant pairs found as

known signaling links) were previously defined as non-direct (indirect and PPI) pairs in our

current model. In both SKBR3 and BT474 cell-lines, we found that all such dysregulated

Table 3. Summary of predicted dysregulated signaling pathways from KEGG, Reactome and WikiPathway databases that plays a role as compen-

satory pathway of EGFR/HER2 inhibition in acquired resistance in both SKBR3 and BT474 cell-lines.

Aberrant Pathways in

EGFR-TKIs Resistancek,r,w
% of Direct

Pair(s,b)k,r,w

% of Indirect

Pair(s,b)k,r,w

% of PPI

Pair(s,b)k,r,w

# of Enriched

Pair(s,b)k,r,w

Enrichment q-

value(s,b)k,r,w

Literature

References

Compensating Pathways of EGFR/

HER2 inhibition

Notch signaling (40%, 75%)k (__, 25%)k — (2, 3)k (8.6e-08, 1.7e-12)k [48–50]

(46.15%,

71.43%)r
(7.69%, 4.76%)r — (5, 7)r (5.2e-17, 3.6e-23)r

(35%, 70.37%)w (__, 7.41%)w — (5, 7)w (3.2e-14, 3.2e-20)w

Wnt signaling (25%, 50%)k (12.5%, 28.57%)k — (6, 8)k (3.4e-16, 3.2e-25)k [51, 52]

(21.88%,

66.67%)r
(3.12%, 3.33%)r — (2, 2)r (2.9e-04, 2.7e-04)r

(25%, 55.56%)w (12.5%,

11.11%)w
— (3, 6)w (1.7e-19, 2.1e-10)w

Insulin Receptor/IGF1R signaling (40%, 70.49%)k (13.33%, 9.84%)k — (6, 25)k (7.9e-16, 3.1e-72)k [3, 10, 46, 47]

(29.41%,

87.93%)r
(5.88%, 3.45%)r — (4, 30)r (1.3e-11, 6.6e-94)r

(35.9%, 80%)w (12.82%,

9.33%)w
(__, 1.33%)w (6, 28)w (4.1e-13, 2.9e-70)w

VEGFR signaling (40%, 81.82%)k (__, 4.55%)k — (1, 15)k (1.9e-03, 3.6e-54)k [3, 55]

FGFR signaling (32.05%,

71.14%)r
(8.97%, 6.97%)r (__, 0.5%)r (18, 72)r (7.6e-43, 1.7e-185)r [4, 56]

PDGFR signaling (40.78%,

71.35%)r
(3.88%, 3.78%)r (__, 0.54%)r (15, 67)r (2.2e-32, 1.9e-171)r [21]

Others

Hippo signaling (41.46%,

72.22%)k
(12.2%, 11.11%)k — (9, 4)k (1.0e-24, 6.7e-12)k [59]

TGF-β signaling (22.22%,

100%)k
(11.11%, __)k — (4, 1)k (1.1e-13, 5.0e-04)k [10, 60]

(50%, 50%)r (25%, __)r — (2, 1)r (4.4e-07, 7.7e-04)r

(54.55%, 30%)w (18.18%, 40%)w — (5, 4)w (1.1e-16, 1.2e-13)w

k KEGG
r Reactome
w WikiPathway
s SKBR3
b BT474;

https://doi.org/10.1371/journal.pone.0173331.t003
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pathways from KEGG, Reactome, and WikiPathway databases contained high percentages of

non-direct (indirect and PPI) enriched links [S3 Table]. Second, in aberrant signaling pathways

that were detected by both of our current and previous models and were ranked (based on

enrichment q-values) high in the current model but low in the previous model, we observed

what percentages of enriched links were previously defined as non-direct in our current model.

Considering the rank difference� 10 (an empirical cutoff threshold), we found that aberrant

pathways from KEGG, Reactome, and WikiPathway databases that showed such behavior in

both SKBR3 and BT474 cell-lines, also contained high percentages of non-direct (indirect and

PPI) enriched links [S4 Table]. Therefore, we claim that our current model demonstrate

enhanced performances in detecting dysregulated signaling pathways in acquired resistance

compared with our previous model.

Comparing with other methods. Next, we compared our framework with other pub-

lished methods in terms of identifying the aberrant signaling pathways, specifically SPIA [61],

DAVID [62], GATHER [63], ESEA [64] and PAGI [65]. The first three methods (i.e. SPIA,

DAVID, and GATHER) are node-centric methods, where the role of differentially expressed

(DE) genes was the key to identifying dysregulated pathways. However, ESEA and PAGI are

edge-centric methods, where topological information regarding pathway structures was signif-

icantly exploited. All of these methods use GE datasets, except DAVID and GATHER which

take a list of DE genes as input and identify aberrant pathways, or pathways enriched with

given DE genes, respectively. For this comparative analysis, we used KEGG signaling pathways

only, and for all the methods default configurations were applied unless specified otherwise.

The SPIA method combines classical enrichment analysis and actual aberrant activities by

analysing Cancer-Vs-Normal GE samples [61], and ranks corresponding signaling pathways

by calculating a global pathway significance p-value, called pG. The global p-value (pG) is

obtained by combining the perturbation probability (p-value: pPERT) and the probability of

over-representation of DE genes (using log fold-change) in a particular pathway (p-value:

Fig 4. Performance comparison between the current model and our previous model [10] in terms of detecting perturbed signaling in acquired

resistance. Percentages of signaling pathways detected as perturbed in acquired resistance by our current and old models in all KEGG, Reactome and

WikiPathway databases: (A) in SKBR3, and (B) in BT474 cell-lines. For both the cell-lines, the performances using KEGG and Reactome pathways are

comparable in both approaches, whereas our current model outperforms the old model for pathways from WikiPathway database.

https://doi.org/10.1371/journal.pone.0173331.g004
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pNDE) by using either Fisher’s method or the normal inversion method [61]. Here, we con-

ducted the same analysis but with Resistant-vs-Parental GE samples aiming to capture the

aberrant activities responsible for acquired resistance. In the case of multi-probe sets for the

same gene, we used the most significant probe to get a single log2 fold-change value per gene.

For SKBR3 cell-lines, we found 5 signaling pathways as significant (raw pG-value� 0.05)

including Ras signaling, PI3K-Akt signaling, Rap1 signaling, hippo signaling, thyroid hormone

signaling, and TGF-β signaling pathways. Interestingly, we found that the significance (−log(q-

values)) of aberrant pathways found by our approach is strongly correlated with the global p-

values (pG) found by SPIA analysis, both for all pathways (-0.4) and for above 5 signaling path-

ways only (-0.928). This indicates, in SKBR3 cell-lines, the signaling pathways from our frame-

work with high enrichment of aberrant gene-pairs in acquired resistance are also consistent

with the results from SPIA in terms of identifying aberrant activities. Again, for BT474, we

found 12 signaling pathways with significant aberration (raw pG-value� 0.05), i.e. hippo, p53,

Ras, Rap1, PI3K-Akt, FoxO, Wnt, neurotrophin, insulin, estrogen, ErbB, and MAPK signaling

pathways. Moreover, among these 12 signaling pathways, the first 6 had FDR-corrected

pG� 0.05, among which hippo signaling pathway had Bonferroni-corrected pG� 0.05, as

shown in Fig 5A. Among these 12 significantly dysregulated pathways in BT474 cell-line, we

chose FoxO signaling to investigate further, since it was found highly perturbed by both SPIA

(pPERT = 0.053) and our methods (enrichment q-value = 2.7 × 10−150). We observed perturba-

tion plots for this signaling pathway (KEGG pathway ID = 04068), in which perturbations of

all genes were plotted as a function of their initial log2 fold-change Fig 5B. Here, non-DE

genes were assigned 0 for their log2 fold-change. However, many genes were identified as DE,

since their absolute log2 fold-change values were mostly *2. Again, compared to the null dis-

tribution of net accumulated perturbation values, the observed value was also found significant

as shown with the red vertical line in Fig 5B. Next, we also drew the network view of the FoxO

signaling pathway, where the nodes were the constituent genes (from KEGG), and the edges

were the known signaling links from the literature [34]. Here, we found 54 known signaling

links that were also identified as aberrant gene-pairs by our method. Next, we plotted the heat-

map of the expression values of the genes in these 54 known aberrant signaling links, where

each expression value was the mean of all three replicates [66], z-transformed, and normalized

with absolute max value (of the z-scores across the particular gene). Here, this heatmap not

only shows the differential expression of the genes in aberrant gene-pairs but also indicates the

similarities of their expression changes within this signaling pathway, which is a marker of

aberrant activities in a modular way. Such differential gene expression in resistant-vs-parental

conditions may indicate that pathway dysregulation within the signaling circuitry can be medi-

ated by the corresponding aberrant gene-pairs.

As DAVID and GATHER both take as input a list of presumably differentially expressed

genes for their pathway enrichments, we used the list of 703 and 683 distinct genes in the list of
aberrant gene-pairs which were found by our framework from SKBR3 and BT474 cell lines,

respectively. To detect statistically significant pathways using DAVID and GATHER we select

those for which the raw p-values of their enrichment were< 0.05. For SKBR3 cell-line,

DAVID and GATHER identified 15 and 5 signaling pathways as statistically significant,

respectively. Again, for BT474 cell-lines they found 13 and 4 pathways as significant,

respectively.

For both ESEA and PAGI analyses, we used our Resistant and Parental GE datasets for both

SKBR3 and BT474 cell-lines. For both analyses, we used the default running parameters,

except for the parameter nperm (the number of permutations) which was set to 1000. Both of

these methods used a built-in set of topological structures of pathways from known pathway

databases including KEGG. After running these methods with our GE datasets, if the identified
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Fig 5. Detection of perturbed pathways with SPIA method. (A) Two-way evidence plot for all 45 KEGG pathways for BT474 cell-line is drawn. Here,

pathways are represented with dots and the pathways with red dots and blue dots correspond to perturbed pathways with FDR-corrected and Bonferroni-

corrected global p-value, pG < 0.05, respectively. (B) Next, the perturbation plot for FoxO signaling pathway (KEGG pathway ID = 04068) was also observed,

since it contains the lowest perturbation p-value among all, pPERT = 0.053. In this plot, perturbation of all genes in the FoxO signaling pathway are shown as

a function of their initial log2 fold-change (lower-left panel), where each dot indicates a gene in the pathway, and non-differentially expressed genes are

assigned 0 as their log2 fold-change value. The null distribution and the observed net accumulated perturbation (red line) are shown in the lower-right panel.

(C) Network view of FoxO signaling pathway for BT474 cell-line, where nodes are the constituent genes and the edges are known links collected from

literature [34]. Here, green and red edges are the aberrant gene-pairs found by our method. (D) The heatmap of the genes’ expression in aberrant gene-pairs

found by our method in FoxO signaling network for BT474 cell-line.

https://doi.org/10.1371/journal.pone.0173331.g005
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signaling pathways had nominal p-value< 0.05, then we considered them as significantly dys-

regulated in resistant-vs-parental conditions. Thus, in the SKBR3 cell-line, we found 4 and 15

significantly dysregulated signaling pathways by ESEA and PAGI methods, respectively. For

the BT474 cell-line, we found 2 and 12 signaling pathways significantly dysregulated by ESEA

and PAGI, respectively.

All the dysregulated KEGG signaling pathways identified by any of these six methods are

listed in Table 4. Some pathways were found consistently as dysregulated in both SKBR3 and

BT474 cell-lines, but none were common to all six methods. However, our method identifies

33 KEGG pathways in both SKBR3 and BT474 cell-lines among which 17 were also identified

by at least one of the other five methods (including both node-centric and edge-centric meth-

ods), for example MAPK, insulin (in DAVID, GATHER, and PAGI), ErbB, Wnt, B-cell recep-

tor, Neurotrophin (in DAVID and PAGI), p53 (in DAVID and ESEA), and Jak-Stat signaling

(in DAVID and GATHER). Moreover, our method identifies some novel dysregulated path-

ways in both SKBR3 and BT474 cell-lines which were not detected by any other methods.

These pathways include Hif-1, AMPK, TNF and calcium signaling, which were reported to be

involved in lapatinib-resistance in ErbB2-positive breast cancer cell-lines [4, 19, 67, 68]. Thus,

the comparative identification of dysregulated pathways in resistant-vs-parental conditions in

both SKBR3 and BT474 cell-lines indicates that our method is not only comparable to others

but also able to detect novel findings which were validated by literature evidence.

V-structures can explain the role of aberrant signaling in acquired

resistance

The importance of V-structures. To investigate the potential of the putative aberrant

gene-pairs to characterise acquired resistance, we hypothesized that genes become dysregulated
in acquired resistance because of the compensating effect of aberrant signaling that evolves in
resistant-vs-parental conditions. In the simplest cases, this will involve both red and green aber-

rant edges incident upon a particular dysregulated gene. To investigate this hypothesis, we

identified all genes with at least two aberrant links to observe which of two possible architec-

ture types are associated with a larger number of dysregulated genes: 1) both red and green
aberrant edges incident upon a gene (forming V-structures—see Methods for the definition),

or 2) only red or only green aberrant edges incident upon a gene. Next, we identified the dysre-

gulated genes among these for which the following was true: a gene is over-/under-expressed

(in any patient sample) in PT-vs-PB conditions, but respectively under-/over-expressed in

both RB-vs-PB and RT-vs-PB conditions, where PB, PT, RB and RT stand for ‘Parental Basal’,

‘Parental Treatment’, ‘Resistant Basal’ and ‘Resistant Treatment’, respectively. The rationale

for using only such combinations is as follows. Both expression datasets of SKBR3 (GSE38376)

[19] and BT474 (GSE16179) [66] cell-lines contain steady-state measurements of signaling

activities, for both parental and resistant conditions. Therefore, we hypothesized that the

expression changes of dysregulated genes in PT-vs-PB conditions may indicate the sensitivity

of Lapatinib drug (EGFR/HER2 dual inhibitor) in the parental (sensitive) conditions whereas

the opposite changes in expressions in both RB-vs-PB and RT-vs-PB conditions may indicate

two things: 1) the cell-line had already became resistant to the drug for which the tumorigenic

phenotype of cancer cells relapsed in the resistant condition (RB-vs-PB), and 2) the resistance

characteristics of the cell-line persisted even with further treatment with lapatinib (RT-vs-PB).

For each comparison, we examined the log2 of fold-change values, and the treatment and basal

doses were 1.0 μM and 0 μM, respectively. We found that, for both SKBR3 and BT474 cell-

lines, higher percentages of dysregulated genes were identified with both green and red aber-

rant signaling links compared to those with only a single type of incident edge (either red or

Bayesian model of signal rewiring in acquired drug resistance

PLOS ONE | https://doi.org/10.1371/journal.pone.0173331 March 13, 2017 16 / 37

96



Table 4. Comparative identification of pathway dysregulation in all 45 KEGG signaling pathways in resistant-vs-parental conditions in both

SKBR3 and BT474 cell-lines. ‘S’ for SKBR3 cell-line, and ‘B’ for BT474 cell-line.

Pathway SPIA DAVID GATHER ESEA PAGI Our Method

MAPK signaling B SB SB SB SB

Insulin signaling B SB SB SB SB

ErbB signaling B SB SB SB

p53 signaling B SB SB B SB

Wnt signaling B SB SB SB

Jak-Stat signaling SB SB SB

B-cell receptor signaling SB SB SB

Neorotrophin signaling B SB SB SB

Ras signaling SB SB

Rap1 signaling SB SB

Chemokine signaling SB S SB

mTOR signaling SB B SB

PI3K-Akt signaling SB SB

TGF-beta signaling S S SB SB

VEGF signaling SB S S SB

Hippo signaling SB SB

Fc epsilon RI signaling SB SB

Calcium signaling SB

NF-kappa B signaling S SB

HIF-1 signaling SB

FoxO signaling B S SB

Phosphatidylinositol SB B

signaling system

Sphingolipid signaling SB

AMPK signaling SB

Notch signaling S B SB

Toll-like receptor signaling SB S B

T-cell receptor signaling B S SB

TNF signaling SB

GnRH signaling B SB

Estrogen signaling B SB

Prolactin signaling SB

Thyroid hormone signaling S SB

Oxytocin signaling SB

Epithelial cell signaling in B

Helicobacter pylori infection

PPAR signaling S

cGMP-PKG signaling B

cAMP signaling B

Adrenergic signaling B

in cardiomyocytes

Hedgehog signaling S

signaling pathways regulating SB

pluripotency of stem cells

NOD-like receptor signaling S S

RIG-I-like receptor signaling S

Adipocytokine signaling B S

Glucagon signaling B

https://doi.org/10.1371/journal.pone.0173331.t004
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green). For SKBR3 and BT474 cell-lines we identified 111 and 108 genes with degree� 2,

respectively. For the SKBR3 cell-line, 90 of the 111 genes had only one type of aberrant signal-

ing link incident upon them, out of which 48 showed dysregulation (53.3%), whereas the

remaining 21 of the 111 genes had both red and green aberrant signaling links, out of which 13

genes were dysregulated (62%). Similarly, for BT474 cell-lines, among the 108 genes with

degree� 2, 78 out of 102 (76%) of genes with only one type of aberrant link and 6 out of 6

(100%) of genes with both types of aberrant signaling links, exhibited dysregulation. These

results suggest that for a dysregulated gene in resistant-vs-parental conditions, the expression

changes that occur upon treatment in parental conditions are likely to be compensated by

aberrant signaling link(s) that evolved in resistant conditions. Therefore, the initial effect of

inhibitors on oncogene(s)/tumor suppressor gene(s) becomes abrogated by restoring their

tumorigenic phenotype once the cell acquires resistance to that inhibitor. This experiment

demonstrates that V-structures can explain an interesting mechanism of acquired resistance in

cell-lines by associating the dysregulated gene(s) with both red and green aberrant signaling

links.

Type-II and Type-III V-structures provide a possible mechanism of gene dysregulation

in acquired resistance. From the list of all putative aberrant gene-pairs (after Bayesian analy-

sis), we enumerated all possible V-structures. We first listed all of the genes in red aberrant

pairs, and separately listed all of the genes in green aberrant pairs. We then identified the genes

common to both lists, which we termed crossing-genes. Next, we aggregated aberrant gene-

pairs incident upon crossing-genes and enumerated all possible pairs of a red and green edge

incident upon that gene. Thus, we found 23,156 distinct Type-I V-structures [see Methods for

Type-I, Type-II and Type-III V-structure definitions] in SKBR3 cell-lines using signaling path-

ways from KEGG, Reactome, and WikiPathway, out of which 53 V-structures were found in

the literature-curated signaling network [34]. Similarly for BT474, there were 5,271 distinct

Type-I V-structures in all KEGG, Reactome, and WikiPathway signaling pathways, and 11 of

them overlapped with the literature-curated network [34]. For Type-II V-structures in SKBR3

and BT474 cell-lines, 1,525 and 263 distinct V-structures were found in all KEGG, Reactome

and WikiPathway databases, respectively, out of which 29 and 4 V-structures were found in

the literature-curated network [34], respectively. For Type-III V-structures in SKBR3 and

BT474 cell-lines, 940 and 376 distinct V-structures were found in all KEGG, Reactome, and

WikiPathway databases, respectively, where 18 and 10 V-structures overlapped with the litera-

ture-curated signaling network [34]. A summary of these results for SKBR3 and BT474 cell-

lines is provided in S5 and S6 Tables, respectively. Note that Type-I and Type-II V-structures

have the potential to explain the role of signaling cross-talks in acquired resistance, but here

we focus on Type-II V-structures only, since we have already investigated the role of signaling

cross-talks in acquired resistance in our previous study [10] which are the similar kind of

Type-I V-structures.

We investigated whether Type-II and Type-III V-structures can provide insights of a possi-

ble mechanism of acquired resistance in cancer cell-lines, focusing on the dysregulations of the

crossing-genes in resistant-vs-parental conditions and its association with the GE changes of

the other two genes in a particular V-structure. Our rationale was that the dysregulation of a

crossing-gene may provide an indication that significant changes evolved in resistant-vs-paren-

tal conditions are associated with acquired resistance of cell-lines to a particular inhibitor.

Moreover, significant GE changes in either of the two other genes (in the V-structure) would

indicate that their differential associations with crossing-gene(s) may disrupt their functional

coherence in signaling activities [30]. Therefore, we considered the above-mentioned 13 and 6

dysregulated genes in SKBR3 and BT474, respectively, for further analyses in which gene-pairs

in corresponding V-structures overlapped with known signaling links [34]. Among the 13
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dysregulated genes in SKBR3 cell-lines, 8 genes (CTNNB1,TP53, MYC, RAC2, LCK, PIK3R1,

PIK3CA, and TGFBR2) were found in 22 (out of 29) literature-supported Type-II V-structures

and 4 genes (CTNNB1, TP53, MYC, and PIK3CA) were found in 9 (out of 18) literature-sup-

ported Type-III V-structures (S5 Table). Similarly, among 6 dysregulated genes in BT474 cell-

lines, 3 genes (CTNNB1, LEF1, and TP53) were found in 4 (out of 4) literature-supported

Type-II V-structures and 4 genes (MET, TP53, CTNNB1, and LEF1) were found in 10 (out of

10) literature-supported Type-III V-structures (S6 Table). In Fig 6A, we show the network-

view of the literature-supported Type-II V-structures incident upon the 8 and 4 dysregulated

genes in SKBR3 and BT474 cell-lines, respectively, along with their annotated signaling path-

ways. Similarly, Fig 6B shows the Type-III literature-supported V-structures in both SKBR3

and BT474 cell-lines. Next, for each of the genes in the selected V-structures in Fig 6 we

observed gene expression differences among all four conditions: PB (Parental Basal: 0 μM), PT

(Parental Treatment: 1.0 μM), RB (Resistant Basal: 0 μM), and RT (Resistant Treatment: 1 μM)

using both two-tailed paired t-tests and one-way ANOVA tests. For these statistical tests we

used the mean expression value of all three replicates. In the t-tests, we compared the mean

expression of all PT, RB and RT conditions with the mean of PB. Additionally, we also com-

pared the mean of the RT condition with the means of the PT and RB conditions to observe 1)

how a gene is behaving differently upon treatment in resistant-vs-parental conditions (RT-vs-

PT), and 2) its expression changes upon treatment from its Resistant basal condition (RT-vs-

RB). Moreover, one-way ANOVA tests (with the mean of PB as the control condition for the

multiple comparison test) may indicate the significance of overall changes in all four groups.

All of these statistical tests were done using GraphPad Prism 6.0 software. Concurrently, we

also surveyed the literature to determine whether the observed significance of expression

changes in resistant-vs-parental conditions were also supported by the literature. We found lit-

erature evidence (Fig 6C) supporting a role in breast cancer metastasis and/or in developing

acquired resistance to EGFR-TKIs for the SMAD4 − TGFBR2 − RPS6KA2 (Type-II) V-struc-

ture in SKBR3, and SMAD4 − LEF1 − CCND2 (Type-II) and PTEN − TP53 −DDB2 (Type-III)

V-structures in BT474 cell lines, respectively. Below we discuss these three V-structures in

more detail.

• SMAD4 − TGFBR2 − RPS6KA2 (in SKBR3): TGFBR2 encodes a transmembrane protein

which has been reported as a potent inhibitor of tumor growth and proliferation in breast

epithelial cells, and loss of its function has also been associated with tumor malignancies

[69]. Moreover, mRNA expression of TGFBR2 was reported to be significantly down-regu-

lated in many tumorigenic cell-lines including SKBR3 and BT474 compared to the non-

tumorigenic MCF-10F cell-lines [69]. This indicates the tumor-suppressing role of the

TGFBR2 gene, and the reduction of its mRNA level may confer a resistance to targeted inhib-

itors by relapsing tumor growth and proliferation. In the GE dataset for the SKBR3 cell-line,

the TGFBR2 gene was down-regulated in PT-vs-PB conditions without significance, but in

resistant conditions it showed significant down-regulation compared to parental conditions

(RB-vs-PB: p-value = 0.0003; RT-vs-PB: p-value = 0.002; RT-vs-PT: p-value = 0.001). A one-

way ANOVA test also found the overall GE changes to be significant: Sidak corrected p-

value = 0.0021. Thus, both literature evidence and GE data suggest an association of mRNA

down-regulation of TGFBR2 gene with lapatinib resistance in SKBR3 cell-lines.

RPS6KA2 (RSK3) encodes one of the members of the ribosomal S6 kinase which mediates

resistance to PI3K pathway inhibitors in breast cancer [70]. RTK (Receptor Tyrosine Kinase)

signaling induces the Ras and PI3K pathways, but upon lapatinib treatment such RTK sig-

naling pathways are disrupted, downstream effectors (e.g. mTOR) are abrogated, and even-

tually Ras and PI3K signaling become inhibited [20]. Over-expression of RSK3 attenuates
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the apoptotic response and up-regulates protein translation, and thus promotes cell survival

and proliferation under conditions of PI3K/mTOR blockade [70]. Moreover, lapatinib

down-regulates the Akt pathway in both SKBR3 and BT474 cell-lines [71]. We observed sig-

nificant and consistent over-expression of RSK3 mRNA in resistant condition compared to

parental conditions in our SKBR3 cell-line dataset (RB-vs-PB: p-value = 0.011; RT-vs-PB: p-

value = 0.0046; RT-vs-PT: p-value = 0.011; RT-vs-RB: p-value = 0.003). Overall expression

changes were also found significant: Sidak corrected p-value = 0.0011. Therefore, both litera-

ture evidence and our experimental data strongly suggest that RSK3 over-expression is asso-

ciated with lapatinib resistance via a PI3K/mTOR signaling blockade.

SMAD4 is a downstream mediator of TGF-β [72] which plays an important role both in

tumor suppression and progression in breast cancer [72, 73]. Liu et al. reported that SMAD4

expression was decreased in breast cancer cells compared to adjacent normal breast epithe-

lial tissue [72]. Moreover, SMAD4 is sensitive to lapatinib according to the COSMIC data-

base [74] with no mutational signature in breast cancer cell-lines. In our GE dataset of

SKBR3 cell-lines, SMAD4 expression was up-regulated in PT-vs-PB, but was down-regulated

in the RB-vs-PB condition, and again up-regulated in the RT-vs-PB condition. Note that

however, that none of these comparisons were statistically significant in t-tests at the 0.05

level, and the one-way ANOVA also did not detect significant differences (Sidak corrected

p-value = 0.101). Interestingly, both SMAD4 and TGFBR2 mRNA expression changes in PT-

vs-PB conditions were non-significant; however, in resistant conditions (RB and RT) both

TGFBR2 and RPS6KA2 showed significant changes in mRNA level compared to parental

conditions (PB and PT). This may indicate the dependency switch of TGFBR2 from SMAD4

to RPS6KA2 in resistant-vs-parental conditions.

TGFBR2 phosphorylates SMAD4 in the TGF-β signaling [34, 75], and both of their mRNA

changes in parental conditions (PT-vs-PB) were non-significant. However, TGFBR2 is an

upstream kinase that phosphorylates RPS6KA2 [34, 75], and both of their mRNA changes in

resistant conditions were very significant compared to parental conditions. Thus, we

hypothesize that the gene dysregulation of TGFBR2 in acquired resistance can be explained

by its significant association with RPS6KA2 which evolved in resistant conditions compared

to parental conditions.

• SMAD4 − LEF1 − CCND2 (in BT474): LEF1 plays an oncogenic role in breast cancer, since

both mRNA and protein expression of this gene were found to be higher in breast cancer

cell-lines compared to normal cells [76]. A high level of LEF1 was also found in HER2

expressing BT474 cell-lines [77], where HER2-activated β-catenin plays a crucial role in pro-

ducing an increase in the downstream target LEF1 [76]. Increased expression of LEF1 drives

cells towards resistance to TGF-β-induced growth inhibitory activities [78]. In our GE

Fig 6. The role of literature-supported Type-II and Type-III V-structures (VSs) in explaining gene dysregulation in acquired

resistance. (A) Network views of Type-II VSs along with their pathway annotations in SKBR3 and BT474 cell-lines. (B) Network

views of Type-III VSs in SKBR3 and BT474 cell-lines. Note that VSs shown here are only those for which the crossing-genes were

found as up- or down-regulated in PT-vs-PB conditions, but oppositely regulated in both RB-vs-PB and RT-vs-PB conditions. Nodes

are genes, and the edges are known signaling links [34] that were also found as aberrant gene-pairs identified by our framework.

Note that the width of edges is proportional to the posterior probability of corresponding pairs. Furthermore, for three VSs shown in

(A) and (B) (right panels), mRNA changes for their constituent genes were found in the literature, implicating their role in breast

cancer metastasis and/or in developing acquired resistance in EGFR-TKIs. (C) Above three VSs with their corresponding posterior

probabilities, odds, and literature references of gene-pair associations for each of the red and green pairs. Statistical significance

tests were done using t-tests and one-way ANOVA with multiple corrections (Sidak method). All the mRNA values were normalized

by corresponding PB expression values in all three replicates. Significance was indicated by * (p-value < 0.05), ** (p-

value < 0.005), and so on.

https://doi.org/10.1371/journal.pone.0173331.g006
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datasets of BT474 cell-lines, LEF1 mRNA expressions were significantly increased in resis-

tant conditions compared to the parental basal condition (RB-vs-PB: p-value = 0.0178; RT-

vs-PB: p-value = 0.003). Interestingly, over-expression of LEF1 was even more significant in

resistant-vs-parental conditions in the presence of lapatinib (RT-vs-PT: p-value< 0.0001).

Moreover, overall expression changes were also proved to be significant by one-way

ANOVA test (Sidak corrected p-value = 0.004). Thus, the experimental data and the litera-

ture evidences support a role of LEF1 gene in lapatinib resistance in the BT474 cell-lines.

CCND2 is involved in the cell cycle process, and is a regulatory subunit of a complex formed

with CDK4 or CDK6 that is required for cell cycle G1/S transition [79]. Although CCND2

over-expression is found in ovarian, testicular [79] and gastric cancer [80], little is known

about its role in breast cancer especially in the presence of lapatinib. In the GE data for the

BT474 cell-line, CCND2 mRNA expression was significantly down-regulated in the PT-vs-

PB condition (p-value = 0.024), and this possibly indicates the association of its mRNA

down-regulation with lapatinib sensitivity in lapatinib-sensitive BT474 cell-lines. We investi-

gated whether this behaviour is coherent with the literature. Schmidt et al. reported that

both mRNA and protein expression of CCND1 and CCND2 were down-regulated when

FOXO3A induced the process of cell cycle arrest [81]. Such inhibition of CCND1 and

CCND2 perturbs CDK4 functionality to inactivate the S-phase repressor Rb [81]. Moreover,

Hegde et al. reports that mRNA expression of FOXO3 and CCND1 were significantly up-

and down-regulated, respectively, in both SKBR3 and BT474 cell-lines (lapatinib-sensitive)

in response to lapatinib treatment [71]. To explain the above-mentioned down-regulation of

CCND2, we observed FOXO3, CCND1 and RB1 mRNA changes in PT-vs-PB conditions (in

BT474 datasets), to determine whether these are coherent with the above literature findings.

In SKBR3 cell-lines, FOXO3 was significantly up-regulated (p-value = 0.0028) and CCND1

was significantly down-regulated (p-value = 0.0029). In BT474 cell-lines, 2 out of 3 replicates

showed a similar pattern of mRNA changes for these two genes (FOXO3 and CCND1) (p-val-
ues = 0.042 and 0.017, respectively) as in SKBR3 cell-lines. In BT474 cell-lines RB1 mRNA

expression was found slightly up-regulated in PT-vs-PB conditions. Moreover, CCND2

mRNA expressions are up-regulated in both resistant conditions (RB-vs-PB and RT-vs-PB)

compared to the parental basal condition. The above experimental data may indicate the

possible reason for CCND2 down-regulation in lapatinib-sensitive BT474 cell-lines with

lapatinib treatment, and its mRNA up-regulation in both resistant conditions (RB-vs-PB

and RT-vs-PB) could possibly be due to acquired resistance of BT474 cell-lines to lapatinib.

SMAD4 expression was reported to be decreased in breast cancer cells [72], and the COS-

MIC database [74] reports SMAD4 as sensitive to lapatinib in the BT474 cell-line along with

other EGFR-TKI, BIBW2992 and erlotinib [74] with IC50 effect = 0.225 (p-value = 0.000014)

and with significant mutational signature in skin cancer, but none in breast cancer cell-lines.

However, in the GE data for the BT474 cell-line, mRNA expression of SMAD4 was up-regu-

lated in PT-vs-PB conditions, but was down-regulated in resistant-vs-parental conditions,

with or without lapatinib treatment (RB-vs-PB and RT-vs-PT), indicating its sensitivity to

lapatinib in parental conditions. Note that we observed no significant changes using a one-

way ANOVA test (Sidak corrected p-value = 0.1212).

SMAD4 binds to LEF1 [82], and the changes in expression of both of their mRNAs indicate

sensitivity to lapatinib treatment in parental conditions (PT-vs-PB). Again, LEF1 regulates

the transcription of CCND2 gene in the Wnt signaling pathway [83], and both genes exhib-

ited up-regulation in resistant conditions compared to parental conditions. Thus, we can

hypothesize that the dysregulation of the LEF1 gene can be explained by its differential asso-

ciations with SMAD4 and CCND2 mRNA changes in resistant-vs-parental conditions.
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• PTEN − TP53 − DDB2 (in BT474): PTEN is one of the most commonly mutated tumor sup-

pressor genes, and the loss of its mRNA and protein expression are found in many metastatic

malignancies including breast cancer [84]. PTEN modulates lapatinib sensitivity [85], and its

loss acts as a marker of poor lapatinib response [58, 86, 87]. In the GE dataset for the BT474

cell-line, no mutation has been detected for PTEN and TP53 in their corresponding DNA

sequences between parental and resistant conditions as reported in the original article associ-

ated with this dataset [66], and PTEN expression was up-regulated even in resistant-vs-

parental conditions with or without lapatinib (RB-vs-PB, and RT-vs-PB), but the overall

mRNA changes were not significant as tested with the one-way ANOVA test (p-

value = 0.264). TP53 is another well known tumor suppressor gene, and its inhibition greatly

inhibits apoptosis as p53 up-regulates several pro-apoptotic gene products including Puma,

Noxa, Apaf-1, and Bax [88]. The loss of p53 is consistently associated with the acquired resis-

tance of EGFR inhibitors cetuximab and erlotinib [89]. However, more experimental evi-

dence is required to claim that p53 loss can be a predictive feature of acquired resistance to

EGFR inhibitors [90]. In the GE dataset for the BT7474 cell-line, TP53 expression was signif-

icantly decreased in both RB-vs-PB (p-value = 0.013) and RT-vs-PB (p-value = 0.025) condi-

tions, and the overall changes were statistically significant (Sidak corrected p-value = 0.01).

For the DDB2 gene, its under-expression is correlated with poor outcome in ovarian cancer

[91]. In breast cancer, although DDB2 showed putative oncogenic behaviour by promoting

cell-cycle progression [92], it was not over-expressed in ER-negative breast cancer cells [92,

93], e.g. SKBR3 [93]. Moreover, DDB2 is down-regulated in lapatinib-resistant cell-lines

[94]. This suppression was induced by the over-expression of the hepatitis B viral-encoded X

protein (HBX) in the p53/lincRNA-p21 axis and IKK-dependent manner [94]. In our GE

dataset for the BT474 cell-line, DDB2 was significantly down-regulated in resistant-vs-paren-

tal conditions (RT-vs-PB: p-value = 0.002) and the over-all changes were significant as well

(Sidak corrected p-value = 0.046).

p53 up-regulates or enhances PTEN transcription [95–97], and we found both genes’ mRNA

changes in parental conditions (PT-vs-PB) to be non-significant. Moreover, p53 transcrip-

tionally regulates DDB2 expression in a cell cycle-dependant manner [98, 99], and both of

their mRNA changes were found to be significant, showing similar phenotypes in resistant-

vs-parental conditions. Thus we can claim that the switch in dependency of TP53 from

PTEN to DDB2 (in PTEN − TP53 −DDB2) can be a possible mechanism of TP53 dysregula-

tion in acquired resistance.

Gene dysregulation plays an important role in developing acquired resistance to EGFR-T-

KIs in breast cancer [28–30, 100]. Here, along with literature-supported gene-gene associations

in V-structures (Fig 6C), we demonstrated that the switch in dependency from the targeted sig-

naling link involving green gene-pair (with the inhibitor) to the bypass signaling link involving

red gene-pair (evolved in resistant conditions) is a possible mechanism mediating the dysregu-

lation of crossing-genes in acquired resistance.

Discussion

In this study, we proposed a computational framework that models signal rewiring by system-

atically characterizing potential aberrant signaling in acquired resistance. We hypothesized

that an aberrant signaling link involved in acquired resistance may have differential probabili-

ties of appearing (either higher, or lower) in resistant-vs-parental networks, where in each net-

work, nodes were genes and the edges were the relationships among genes. In this gene-gene

relationship network, called GGR, we considered both direct and indirect correlations (via

linker genes) among genes for defining the edges that combine both data-driven (from gene
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expression) and topological (from PPI) information about gene-pairs. Note that the PPI edges

in the statistically significant paths [see Methods], defining indirect relationships among gene-

pairs for which direct relationships were not found, were also added to the final edge set

[Table 1]. The rationale for including those PPI edges was: 1) to retain precise information

regarding how indirect relationships were constructed, and 2) to better model the data-driven

signaling networks (resistant and parental GGR networks) for the Bayesian statistical analysis

(using p1-model) of their respective global structure formation. We used a fully Bayesian statis-

tical model: a special class of Exponential Random Graph Model, called p1-model for inferring

aberrant gene-pairs with differential posterior probabilities in resistant-vs-parental GGR net-

works, where these networks were constructed from matched gene expression values of resis-

tant and parental conditions, respectively. When selecting aberrant gene-pairs, we chose the

thresholds for Odds and posterior probabilities from their frequency distributions, sequen-

tially. Firstly, we chose the gene-pairs with top 20% of odd-ratio values from two distribution

individually (oddR and oddP) by ensuring their mutual exclusivity after selection, and termed

them as red and green, respectively. Then, we further filter red and green pairs with top 50% of

their respective posterior probability values. Note that before calculating the Odds values, we

normalized both posterior probabilities (from resistant and parental conditions) with their

corresponding max values over all gene-pairs, individually, in order to achieve same scaling.

All other model parameters in p1-model were estimated with Gibbs sampling [see Methods].

After detecting putative aberrant pairs in resistant-vs-parental conditions, we analyzed

them in two-ways, 1) Identifying potentially dysregulated pathways in acquired resistance, 2)

Identifying their roles in explaining a possible mechanism of acquired resistance via dysregula-

tion of crucial genes. Using two lapatinib-treated breast cancer cell-lines: SKBR3 and BT474,

our method was able to predict similar pathways as dysregulated. The rationale for using these

datasets for our experiments was that—to the best of our knowledge—these are only datasets

available for responsive and resistant lapatinib-treated ERBB2-positive breast cancer cell-lines.

Our results suggested that signal rewiring is a major event in acquired resistance since we

found a range of dysregulated pathways in both SKBR3 and BT474 cell-lines including EGFR-

related pathways (e.g. EGFR, ErbB2, PI3K-Akt, Mapk, Jak-Stat, FoxO signaling, etc.) as well as

other receptor-related pathways (e.g. Notch, Wnt, insulin, PDGFR, FGFR, VEGFR signaling,

etc). Although there may be some false-positives in those results, we found literature evidence

from Huang et al. [3] that aberrant signaling in most of our predicted dysregulated pathways

were actually related with acquired resistance in EGFR-TKIs. Furthermore, our predictions of

network re-adjustment in multiple signaling pathways were also consistent with the results

recently published by Stuhlmiller et al. [5]. Their study suggested that multiple heterogenous

kinases (e.g. DDR1, FGFRs, IGFI1, MET, etc.) compensate for the ErbB2 inhibition by kinome

re-programming induced by lapatinib [5], which provides an indication that aberrant signal-

ing activities in those kinase-related pathways are crucial for such bypass mechanism. Note

that since the pathway annotations are still incomplete, we used three pathway databases here:

KEGG, Reactome, and WikiPathways to define constituent genes of signaling pathways indi-

vidually. However, to maintain the same true-relationship among those constituent genes we

used literature-supported signaling links (collected from online resources of Wang Lab [34])

since it is the largest manually curated human signaling network as reported.

Gene dysregulation plays crucial roles in acquired resistance by mediating both uncon-

trolled cell-growth and disrupted apoptosis [27–29]. Here, to evaluate the potentialities of

identified aberrant signaling, we conducted an analysis which demonstrated that the greater

number of dysregulated genes were found in resistant-vs-parental conditions when they were

incident with both red and green-types of aberrant pairs (V-structures) compared to those with

single type only (either red, or green). Manual literature survey also validated some of the V-
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structures, such as SMAD4 − TGFBR2 − RPS6KA2, SMAD4 − LEF1 − CCND2, and PTEN −
TP53 − DDB2, as consistent with our hypothesis. Thus, we claim that a mechanism of depen-

dency shift from targeted signaling (by inhibitor) towards bypass signaling can potentially cause

dysregulation of shared genes (crossing-genes). Similar idea of dependency switch was recently

reported by Sharifnia et al. [30] that EGFR-dependent status of downstream signaling nodes

can be modified by other over-expressed kinase-related genes that shared them (downstream

signaling nodes) with EGFR-dependant signaling. However, to the best of our knowledge, our

study is the first to emphasise the compensating effects of aberrant signaling upon mRNA

expression changes of crucial genes by examining the dependency switch from targeted signal-

ing to bypass signaling.

We included all the available genes from the Cancer Gene Census (CGC) into the list of

seed genes in our framework for which gene expression data was available (see Methods): 370

and 357 genes in SKBR3 and BT474 cell-lines, respectively. Cancer genes are crucial for medi-

ating various cancer related activities and many are hub genes in mammalian signaling net-

works [101]. Therefore, they are very important in terms of signaling network formation, an

aspect which we examine in this study by statistical models (i.e. p1-model). Note that we com-

bined cancer genes with a set of differentially expressed (DE) genes even though some may not

be differentially expressed. However, cancer genes can still be important in network-based

analyses of studies comparing two conditions (i.e. resistant-vs-parental). For example, in a net-

work-based classification of breast cancer patients, Chuang et al. [102] reported that the sub-

networks which can classify metastatic and non-metastatic patients contain genes playing a

central role connecting DE genes even though those cancer genes were non-DE themselves

[103]. Moreover, we intend to include all CGC genes, not just those ones that are breast cancer

related, since no classifications are perfect, and the census is continuously being updated

[104]. CGC genes are selected based on the mutational profiles of cancer patients [105], hence

their transcriptional profiles may also reveal additional insights into the mechanisms of aber-

rant signaling activities in acquired resistance. To investigate the influence of CGC genes in

our framework, we observed all the genes involved in all the V-Structures (VSs) of aberrant

pairs (Type-I, Type-II and Type-III VSs) found in pathways from KEGG, Reactome and Wiki-

Pathway databases [See S5 Table]. We found that many of the genes involved in VSs over-

lapped with genes from CGC, where most of those cancer genes were not identified as DE

genes during the formation of the seed gene list [see Methods] [S7 Table]. Thus, we claim that

CGC genes were very important in the network-based analyses of our framework.

In this paper, we considered only gene expression values for modeling gene-gene relation-

ship networks (GGR). However, we look forward to adapting other appropriate high-through-

put datasets, such as miRNA expression, methylation, copy number aberration, and

phosphorylation datasets into our framework in order to better model gene-gene dependen-

cies in resistant-vs-parental conditions to reflect greater mechanistic insights. Moreover, the

V-structures we have examined in our current study can be called first-order V-Structures
since they involve only a single aberrant edge of each type (red and green). In future we intend

to examine the role of higher order V-structures in acquired resistance.

Materials and methods

Literature and database search

Our research hypothesis was primarily focused on studying the acquired resistance mecha-

nisms of HER2-positive breast cancer cells to lapatinib (an EGFR/HER2 dual inhibitor).

Therefore, we conducted a literature survey in Pubmed database using keywords: ‘lapatinib’,

‘acquired resistance’, and ‘breast cancer’, which lead us to find two articles: Komurov et al.
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[19] and Liu et al. [66]. Both of these articles studied the resistance mechanisms of HER2-posi-

tive breast cancer cell-lines by analysing gene expression datasets of lapatinib-treated sensitive

(parental) and resistant conditions. To find these gene expression datasets, we also searched

GEO (Gene Expression Omnibus) database with the same keywords as above and found two

data collections with accession IDs: GSE38376 and GSE16179, respectively. Detailed technical

descriptions of cell-line preparation and dataset generation were reported in their respective

original articles. The first dataset (GSE38376) included SKBR3 parental and resistant

(SKBR3-R) cell-lines, and the second dataset (GSE16179) included BT474 parental and resis-

tant (BT474-J4) cell-lines. In both of these datasets, expression values of both parental and

resistant samples were measured first in basal condition (0 μM), and then in treatment condi-

tions (0.1 μM and 1.0 μM for GSE38376; 1.0 μM only for GSE16179). For both GSE38376

(SKBR3) and GSE16179 (BT474), we converted probe-level expression values into gene-level

values using the corresponding annotation files: GPL6947 (Illumina HumanHT-12 V3.0

expression beadchip) and GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array), respec-

tively, which were also collected from GEO database. For some genes, multiple probes were

mapped to a single gene, and we averaged the GE values of such probes to obtain the final GE

values of the corresponding gene. Next, for each collection (GSE38376 and GSE16179) we

built two data matrices, one from the parental and another from the resistant GE dataset,

where rows were labeled with gene symbols and columns were labeled with samples under dif-

ferent treatment conditions. A protein-protein interaction dataset was obtained from Cerami

et al. [106]. For the enrichment analysis, we collected gene sets of all 1) the 24 signaling path-

ways from Reactome [107] (downloaded at 19/05/2014), 2) 45 signaling pathways from KEGG

[83, 108] (downloaded at 12/05/2015), and 3) 61 signaling pathways from WikiPathway [109]

(downloaded at 16/10/2014) databases. Each signaling pathway downloaded from these data-

bases was encoded as tab-delimited lists of gene symbols. For KEGG signaling pathways, we

built a parser program that extracted gene names from the web-responses after making HTTP

web-requests to KEGG server using a list of IDs corresponding to signaling pathways.

Constructing gene-gene relationship network

We denote the gene-gene relationship network as GGR:= (S, R) for each GE data matrix. Here,

S is the set of seed genes, which is the union of a set of differentially expressed (DE) genes, a set

of cancer genes collected from the Cancer Gene Census (CGC) [105], and a set of linker genes
(see below) selected from the PPI network. R is the set of edges defined among the genes in the

set S. The sets S and R were constructed as follows.

Defining S: The seed genes. We built the set S cumulatively; first a set of DE genes was

identified by differential expression analysis of parental and resistant GE data using a two-

tailed pooled Student’s t-test. For this test, significant p-values were identified using the Bon-

ferroni correction method, and genes with such corrected p-values� threshold (see Results)

were selected as differentially expressed. Next, we added CGC genes for which corresponding

GE data was available. The rationale for such inclusion is that CGC genes are well known to be

hub genes in mammalian cellular signaling networks [101] where they play key regulatory

roles in various cancer related activities. In the process of finding indirect relationships among

(DE [ CGC) genes, a set of intermediate genes from the PPI network was identified, which we

defined as linker genes (see next section). The final set of seed genes consisted of

(DE [ CGC[ Linker) genes.

Defining R: The edges. To identify interacting gene pairs, all pair-wise absolute Pearson

Correlation Coefficients (PCCs) were calculated for expression levels of the genes in the

(DE [ CGC) gene set. The value demarcating the top 20% of absolute PCCs was selected as the
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threshold for defining direct relationships among the genes in the above set. That is, for each

gene pair (genei, genej), if the corresponding PCC value was above the threshold then the pair

was considered to have a direct relationship, and hence added into the set of edges, R.

Otherwise, a gene pair was said to have an indirect relationship if there was at least one sta-

tistically significant simple path in the PPI network between genei and genej via an intermediate

gene (called a linker gene). Here, we imposed a path-length threshold of 2 and restricted to

paths in the PPI network, otherwise considering all the remaining genes as possible intermedi-

ates would convert this searching procedure into an NP-hard problem. Simple paths of length

2 [for details see S1 Text] connecting a given pair (genei, genej) in the PPI network were consid-

ered statistically significant if one can reject the following null hypothesis: the geometric mean
of pairwise PCC values of constituent edges in the path is distributed as for paths of length 2
between these genes generated by a randomized procedure. Random paths of the form genei!
linker! genej were generated by replacing linker with any other gene in the network except

genei, genej and any gene on a path of length 2 connecting these genes in the PPI network. To

evaluate the PCC for a random path, we used the same expression values for the genes as in the

observed case. Paths were considered significant if the probability of generating a path using

above randomized procedure with a geometric mean of pairwise PCC values greater than or

equal to that observed for the PPI network was�0.05 (an empirical p-value). PPI edges com-

prising statistically significant simple paths were added to the set R. The set of edges R was

finally composed of direct relationships, indirect relationships, and PPI edges of statistically

significant simple paths, which are used for identifying those indirect relationships [see

Discussion].

Bayesian statistical modeling of GGR network

Exponential Random Graph Models (ERGMs) are parametric probability distributions over

spaces of networks [24] that have been successfully used to evaluate probabilities of the pres-

ence of each edge in a network [23, 24]. Here, in order to infer edge probabilities in a gene-

gene relationship network, we used the p1-model, a special class of ERGM introduced by Hol-

land and Leinhardt [24]. The p1-model has previously been used by Bulashevska et al. [23] to

model human protein-protein interaction networks. In this approach, edge probabilities are

evaluated by summarizing topological properties of networks in a parametric form and associ-

ating them with sufficient statistics [23, 24]. The definition of the p1-model for a directed

graph is contained in the original article [24]. An equivalent log-linear formulation was pro-

posed by Fienberg and Wasserman [110], in which each directed edge was assigned four Ber-

noulli variables Yij00, Yij01, Yij10 and Yij11. Since our GGR network is an undirected graph, the

model can be simplified by using only two Bernoulli variables Yij0 and Yij1 defined as follows:

Yijk ¼

(
1 if uij ¼ k;

0 otherwise

where, the binary outcome uij = 1 if genei interacts with genej in GGR, and uij = 0 otherwise.

Under this simplified model, the posterior probability of an edge connecting genei and genej is

given by:

logfPrðYij1 ¼ 1Þg ¼ lij þ yþ ai þ aj ð1Þ

logfPrðYij0 ¼ 1Þg ¼ lij ð2Þ

for i< j. Here, θ is the global density parameter, αi is the expansiveness/attractiveness of genei,
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and λij is the scaling parameter ensuring
P

k Yijk ¼ 1. We hypothesized that some aberrant

gene-pairs involved in acquired resistance may have unusually high probability of appearing

in Resistant-vs-Parental conditions, whereas other pairs may have unusually low probabilities.

Hence, we used two Yk data matrices, Yk
R and Yk

P, from GGR matrices of Resistant and Paren-

tal samples, respectively. Note that it is possible to replace the expansiveness and attractiveness

parameters by a single parameter α that represents the propensity of a gene to be connected in

an undirected network.

We used a fully Bayesian approach, both for modeling the network parameters and their

estimation. To estimate the model parameters, we used Gibbs sampling, a Markov Chain

Monte Carlo (MCMC) method implemented in WinBUGS [111] which allows users to con-

struct complex Bayesian models in a simple manner. We constructed a hierarchical Bayesian

model in which the model parameters were further defined as dependent upon hyperpara-

meters as follows:

y � N ð0; sy
2Þ

ty � Gammaða0; b0Þ

aR
i

aP
i

 !

� N
0

0

 !

;S

 !

S� 1 �Wishart
1 0

0 1

 !

; 2

 !

a0 ¼ 0:001

b0 ¼ 0:001

We assigned the density parameter θ a normal prior distribution with mean zero and stan-

dard deviation σθ. (In fact, this was implemented in WinBUGS using the precision parameter

ty ¼ sy
� 2). Next, the parameter τθ was assigned a gamma prior distribution with hyperpara-

meters a0 = 0.001 and b0 = 0.001. We set a0 = 0.001 and b0 = 0.001 to express large uncertainty

regarding the value s2
y
, following [23]. For the propensity parameters aR

i and aP
i , we selected

the above prior following Adam et al. [112].

Robust selection of aberrant gene-pairs

One of our primary hypotheses in this study is that aberrant gene-pairs involved in network

re-wiring in drug-resistance are likely to have high probabilities of occurring in one network

(resistant or parental) but low probabilities in the other network. To determine which gene-

pairs exhibit this pattern, we calculated two odds ratios defined in the following equations:

oddsR ¼
PrðYR

ij1 ¼ 1Þ

PrðYP
ij1 ¼ 1Þ

ð3Þ

oddsP ¼
PrðYP

ij1 ¼ 1Þ

PrðYR
ij1 ¼ 1Þ

ð4Þ

where, YR
ij1 and YP

ij1 are defined for resistant and parental networks, respectively, and their cor-

responding posterior probabilities are estimated using MCMC sampling. Before calculating

these ratios, we normalized the posterior probabilities by their respective maximum values

over all gene-pairs, since two values (YR
ij1 and YP

ij1) may not be in the same scale. For the sake of
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brevity we refer to these ratios as odds ratios, but they are more appropriately called normal-
ized odds ratios.

Our intention is to identify gene-pairs for which only one of the two odds ratios (Eqs (3)

and (4)) is very high. Additionally, we require that both posterior probabilities exceed a mini-

mum threshold, since very small denominators can yield high odds ratio scores even if the

edge has low probability in both networks. We therefore defined two thresholds, one for odds

ratio values and another for posterior probabilities. We examined the distributions of all oddsR

and oddsP values and set a threshold demarcating the top 20%. Next, we examined the distribu-

tion of posterior probabilities for gene-pairs exceeding the odds ratio threshold and set a sec-

ond threshold to demarcate the top 50%. Finally, we chose only those gene-pairs that had

posterior probabilities above that threshold, and identified as putative aberrant gene-pairs that

were potentially involved in network rewiring in acquired resistance.

Edges were then grouped into two types: gene-pairs for which the oddsR scores and the

PrðuR
ij ¼ 1Þ were greater than their respective thresholds in Eq (3) were defined as red pairs,

whereas gene-pairs for which the oddsP scores and the PrðuPij ¼ 1Þ were greater than their

respective thresholds in Eq (4) were defined as green pairs.

Enrichment of aberrant gene-pairs using known signaling links

Putative aberrant gene-pairs from the above Bayesian analyses were then further filtered by

comparing them to another set of known (true) signaling links from the literature. For that

purpose, we obtained a signaling network from the online resources of Wang Lab [34], which

is claimed as the largest manually curated signaling network available to date. This network

has more than 6,000 proteins and *63,000 binary relations defined, including activations,

inhibitions and physical interactions. Note that signaling pathways from KEGG, Reactome,

and WikiPathway databases were merely genesets, and to define true signaling links among

the genes within those genesets we considered the signaling links from Wang Lab [34]. Next,

to find dysregulated signaling pathways from KEGG, Reactome, and WikiPathway databases,

we searched for significant overlaps between the set of true signaling links and the set of puta-

tive aberrant gene-pairs, for the genesets in a specific pathway. To this end, we designed a

hypergeometric test as follows:

p ¼ 1 �
Xx� 1

i¼0

jMj
i

 !
N � jMj
jKj � i

 ! !

N
jKj

 ! ð5Þ

where N is the number of distinct gene-pairs contained in all of the signaling pathways (from a

particular pathway database) and all the predicted aberrant gene-pairs, M is the set of all

known signaling links in a given pathway, K is the set of aberrant gene-pairs predicted by our

framework, and x = |M \ K|. After measuring p-values using Eq (5), a False Discovery Rate

(FDR) multiple comparison correction technique was conducted to obtain q-values. Signaling

pathways with q-value<0.05 were considered to be significantly dysregulated in acquired

drug resistance. A similar gene-pair enrichment test, called Edge Set Enrichment Analysis

(ESEA) using the weighted Kolmogorov-Smirnov statistic was recently proposed by Han et el.
for detecting dysregulated pathways in the context of gene expression datasets [113].
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Identifying V-structures

To investigate the role of signaling rewiring in acquired drug resistance, we searched for a con-

figuration of edges that we call a V-structure (Fig 1F). A V-structure consists of three genes

connected by one red edge and one green edge. One gene, called a crossing-gene, is connected

to both of the other genes, to one by a red edge and to the other by a green edge. Thus V-struc-

tures involve both types of aberrant pairs: one gene-pair present only in Resistant conditions,

and another gene-pair present only in Parental conditions, with the crossing-gene common to

both pairs. Our rationale is that the compensatory kinases may switch the oncogenic-addiction

of cancer-related (growth/survival) genes to overcome their dependencies upon their primary

driver kinases (e.g. EGFR/HER2) that were initially targeted in parental conditions with inhib-

itors [19, 30], thereby relapsing into their tumorigenic roles in acquired resistance. We

hypothesise that crossing-genes that are dysregulated restore their metastatic phenotype (i.e.

up- or down-regulation of oncogenes or tumor suppressor genes, respectively) in resistant

conditions by forming a V-structure in the rewired signaling network.

Therefore, we define a V-structure to be a pair of aberrant gene-pairs (gi, gk) and (gj, gk)
such that (gi, gk) are connected by a green edge and (gj, gk) are connected by a red edge. To

identify V-structures, first we identified the set of common genes in the two mutually exclusive

sets of aberrant gene-pairs (red and green gene-pairs). This set of common genes are the cross-
ing-genes (see Fig 1). Next, we observed and enumerated all the gene-pairs (red and green) inci-

dent on each of the crossing-genes, and enumerated all of the possible pairings of one red and

one green edge to form a V-structure.

Pathway configurations of V-structures: Type-I, Type-II, and Type-III configura-

tions. Next, for each V-structure, we identified signaling pathways from KEGG, Reactome,

and WikiPathway databases that contained at least one gene in that V-structure. We classified

V-structures into three sub-types based on their configurations relative to these pathways.

Firstly, Type-I V-structures are those in which all three member genes belong to different sig-

naling pathways. Type-II V-structures are those in which the two aberrant gene-pairs in a par-

ticular V-structure are from two different signaling pathways, with the crossing-gene common

to both pathways. Type-III V-structures are those in which all three genes are from the same

signaling pathway. Note that Type-I and Type-II V-structures may represent signaling path-

way cross-talks that play crucial roles in acquired drug-resistance. In our previous study, we

investigated and explained the concept of Type-I V-structures, their involvement in the cross-

talk between EGFR/ErbB and other signaling pathways, and their contribution to lapatinib

resistance [10]. Type-III V-structures can explain the aberrant co-regulation of genes within a
single pathway. We observed and analysed all the V-structures that overlap with the literature

curated signaling network [34].
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Chapter 6

Inferring Network Structures

6.1 Introduction

During my PhD candidature, I was also involved with some additional projects in

collaboration with another PhD student (Salem A. Alyami) in our research group,

which are not directly related with my main research hypothesis, but have enormous

potential to be used in relevant research problems. These auxiliary works of mine

yielded several publications, some of which have already been published, and others

are in preparation. In this chapter, I list all of these publications with corresponding

abstracts. Full texts of these published articles are included as Appendix D.

6.2 Relevance to my primary research focus

Although these additional projects do not directly fit in the scope of this thesis, they

share with my thesis a common but key component in their frameworks: ‘Inferring

Network Structure’. All the collaborative projects with Salem A. Alyami involve the

structure and parameter inference of Bayesian networks (BNs) by MCMC (Markov

Chain Monte Carlo) sampling methods. BNs are a widely used tool for modelling cell
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signalling networks [1], and MCMC methods are an important statistical technique

for inferring BNs. My book chapter reviews some methods which infer gene-gene

relationship networks [2, 3] by combining multiple heterogenous datasets, such as

gene expression, copy number aberration, methylation, and protein-protein interaction

which may provide some insights into how integrated approaches can be used in

inferring biological networks.

6.3 Articles Published (total: 3)

1) Title: Uniform Sampling of Directed and Undirected Graphs Condi-

tional on Vertex Connectivity [4]

• Article nature: Journal article (peer-reviewed)

• Percentage of contribution: 30% (Implementing the model, analysing the results

and proofreading the manuscript)

• Abstract:

Many applications in graph analysis require a space of graphs or networks to be

sampled uniformly at random. For example, one may need to efficiently draw a

small representative sample of graphs from a particular large target space. We

assume that a uniform distribution f(N,E) = 1/|X| has been defined, where N

is a set of nodes, E is a set of edges, (N,E) is a graph in the target space X

and |X| is the (finite) total number of graphs in the target space. We propose a

new approach to sample graphs at random from such a distribution. The new

approach uses a Markov chain Monte Carlo method called the Neighbourhood

Sampler. We validate the new sampling technique by simulating from feasible

spaces of directed or undirected graphs, and compare its computational efficiency

with the conventional Metropolis-Hastings Sampler. The simulation results

indicate efficient uniform sampling of the target spaces, and more rapid rate of

convergence than Metropolis-Hastings Sampler.
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• Reference:

Alyami, S., Azad, A.K.M., Keith, JM.“Uniform Sampling of Directed and

Undirected Graphs Conditional on Vertex Connectivity.” Electronic Notes in

Discrete Mathematics, 2016, 53:43-55. DOI: 10.1016/j.endm.2016.05.005

2) Title: The Neighborhood MCMC sampler for learning Bayesian net-

works [5]

• Article nature: Conference article (peer-reviewed)

• Percentage of contribution: 30% (Implementing the model, analysing the results

and proofreading the manuscript)

• Abstract:

Getting stuck in local maxima is a problem that arises while learning Bayesian

networks (BNs) structures. In this paper, we studied a recently proposed Markov

chain Monte Carlo (MCMC) sampler, called the Neighbourhood sampler (NS),

and examined how efficiently it can sample BNs when local maxima are present.

We assume that a posterior distribution f(N,E|D) has been defined, where

D represents data relevant to the inference, N and E are the sets of nodes

and directed edges, respectively. We illustrate the new approach by sampling

from such a distribution, and inferring BNs. The simulations conducted in this

paper show that the new learning approach substantially avoids getting stuck in

local modes of the distribution, and achieves a more rapid rate of convergence,

compared to other common algorithms e.g. the MCMC Metropolis-Hastings

sampler.

• Reference:

Alyami, S., Azad, A.K.M., Keith, JM.“The Neighborhood MCMC sampler for

learning Bayesian networks.” Proc. SPIE 10011, First International Workshop

on Pattern Recognition, 2016, 100111K. DOI: 10.1117/12.2242708
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3) Title: Integrating heterogeneous datasets for cancer module identifica-

tion. [6]

• Article nature: Book chapter

• Percentage of contribution: 95% (Concept, collecting data and writing

manuscript)

• Abstract:

The availability of multiple heterogeneous high-throughput datasets provides

an enabling resource for cancer systems biology. Types of data include: Gene

Expression (GE), Copy Number Aberration (CNA), miRNA expression, Methy-

lation, and Protein-Protein Interactions (PPI). One important problem that

can potentially be solved using such data is to determine which of the possible

pair-wise interactions among genes contribute to a range of cancer-related events,

from tumorigenesis to metastasis. It has been shown by various studies that

applying integrated knowledge from multi-omics datasets elucidates such complex

phenomena with higher statistical significance than using a single type of dataset

individually. However, computational methods for processing multiple data types

simultaneously are needed. This chapter reviews some of the computational

methods that use integrated approaches to find cancer-related modules.

• Reference:

Azad, A. K. M.. “Integrating Heterogeneous Datasets for Cancer Module

Identification”, Bioinformatics Volume II: Structure, Function, and Applications,

pages 119-137. Springer New York, New York, NY, 2017.

6.4 Articles in preparation (total: 3)

1) Title: BN-MCMC: a software for inferring Bayesian Network using

MCMC methods
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• Article nature: Journal article

• Target journal: Bioinformatics (peer-reviewed)

• Percentage of contribution: 50% (Contributing to the software modelling, imple-

menting the complete software, and contributing to the result analysis)

• Abstract:

This software article presents a graphical user interface (GUI): BN-MCMC

for sampling Bayesian networks (BNs) using three MCMC sampling methods:

Neighbourhood sampler, Hit-and-Run sampler, and Metropolis-Hastings sampler.

Each of the sampling methods use adaptive techniques of both adjacent graph

selection and function scoring that enables the inference of large-scale BNs. This

interface provides a user-friendly environment with intuitive software design.

For each of the samplers, a set of numerical outputs are saved in local files,

and a set of graphical outputs are depicted in the result panel. All the input

parameters including method and output settings are separated from the result

panel. Given the enormous importance of Bayesian network inference in various

fields of research from social network to systems biology, we hope BN-MCMC

can be significantly useful to a vast community of researchers.

• Reference:

Azad, A.K.M. and Alyami, SA. and Keith, JM. “BN-MCMC: a software for

inferring Bayesian Network using MCMC methods.”

2) Title: Adaptive techniques for large-scale Bayesian network inference

using MCMC methods

• Article nature: Journal article

• Target journal: Bioinformatics (peer-reviewed)

• Percentage of contribution: 40% (Contributing to the methodologies, implement-

ing all the methods, and contributing to the result analysis)
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• Abstract:

Suppose G′ is a neighbouring graph of G such that G′ ∈ NG, where NG is the set

of all possible neighbouring graphs of graph G that can be obtained by adding,

deleting, or reversing a directed edge. We propose two adaptive techniques for

faster learning of Bayesian Networks. The first adaptive technique is developed to

quickly define the next set of neighborhoods NG′ , where G′ ∈ NG. The technique

assigns the set NG′ adaptively based on the obtained NG, not the entire graph

G′. The core idea of the second adaptive technique is as follows. While using the

Dirichlet-Multinomial (DM) model for learning parameters in Bayesian networks,

the conditional probabilities table for each node becomes large when the allowed

number of parents per node grows. Also, calculating the product in Equation

6.4.1 becomes a time-consuming process as the number of nodes increases.

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi|Pa(Xi)), (6.4.1)

where Pa(Xi) is the parent configuration of variable Xi. Suppose G′ is a

neighbouring graph of G such that G′ ∈ NG, where NG is the set of all possible

neighbouring graphs of graph G that can be obtained by adding, deleting, or

reversing a directed edge. After we move from the current graph structure G

to one of its neighborhood G′ by modifying a directed edge Xi → Xj, where

1 ≤ i, j ≤ n, we update only the probability of the affected variable in the

new structure, provided that the probabilities of other variables remain with no

changes.

• Reference:

Alyami, S., Azad, A.K.M., Keith, JM. “Adaptive techniques for large-scale

Bayesian network inference using MCMC methods.”
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3) Title: Discrete Hit-and-Run Markov Chain Algorithm to infer Bayesian

Networks

• Article nature: Journal article

• Target journal: Journal of Statistical Computation and Simulation (peer-

reviewed)

• Percentage of contribution: 50% (Contributing to the methodologies, implement-

ing all the methods, and contributing to the result analysis)

• Abstract:

We propose a new Markov Chain Monte Carlo (MCMC) approach to sample

Bayesian Networks (BNs) from a discrete posterior distribution f(N,E|D) defined

on a finite graph space X , where D represents data-points observed at discrete

times, N is a set of vertices representing variables, and E is a set of directed

edges describing the causal relationships between variables. The new sampler

is related to the Hit-and-Run (HAR) sampler that has been shown to converge

to a target continuous distributions with low probability of getting “stuck” at

local maximum. In this paper, we modify the HAR sampler to generate BNs

from discrete spaces. At iteration t, the next iterated graph gt+1 is defined by

the current graph gt. We use pt and `t to indicate a random path representing a

sequence of adjacent graphs and the length of that path, respectively. That is,

|p| ≥ 1. The notations `t.pt facilitates large movements across the graph-space,

which in principle should produce graphs that are less dependent. Our results

demonstrate that the modified HAR sampler greatly alleviates the problems

caused by local maxima, which in turn facilitates learning the structures of BNs

better than the Metropolis-Hasting MCMC sampler.

• Reference:

Alyami, S., Azad, A.K.M., Keith, JM. “Discrete Hit-and-Run Markov Chain

Algorithm to Sample Connected Bayesian Networks.”
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Chapter 7

Discussions, Conclusion & Future

Works

The main objective of this thesis was to develop computational methods to model and

identify cross-talk among signalling pathways, and to comprehensively characterise

their roles as underlying mechanisms of acquired resistance. I hypothesised that

signalling cross-talk that are potentially contributing to acquired resistance are more

likely to be among ‘aberrant signalling links’ which were defined as signalling depen-

dencies with differential probabilities of appearing in resistant-vs-parental conditions.

Therefore, to infer aberrant signalling links in resistant-vs-parental conditions, I com-

bined both computational and Bayesian statistical modelling (p1-model, a special class

of exponential random graph models) on data-driven signalling networks in resistant

and parental conditions derived from gene-expression datasets of lapatinib-treated

ErbB2-positive breast cancer cell-lines: SKBR3 and BT474. First, I proposed a

novel approach for categorising signalling cross-talk in data-driven signalling networks

and provided pseudocode for detecting those cross-talk among signalling pathways

overlayed on those networks [Chapter 3]. I proposed a categorisation into Type-I

and Type-II cross-talk that - as I showed - can map all types of cross-talk defined

by other state-of-the-art approaches which rely on static topologies of cell signalling
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networks and prior biological knowledge [Chapter 3]. Next, I employed a fully Bayesian

approach exploiting the p1-model to infer aberrant signalling links that have high pos-

terior probabilities of appearing in the resistant network but low posterior probabilities

of appearing in the parental network [Chapter 4]. Thereafter, I identified which of

those aberrant signalling links form Type-I cross-talk between EGFR/ErbB2 signalling

and other signalling pathways from KEGG [1], Reactome [2], and WikiPathway [3]

databases [Chapter 4]. The results suggested that in both SKBR3 and BT474 cell-lines,

Notch, Wnt, GPCR, hedgehog, insulin receptor/IGF1R and TGF-β receptor signalling

play roles as compensatory pathways [Chapter 4], activation of which can potentially

cause up-regulation of EGFR/ErbB2 pathway genes via signalling cross-talk thereby

attenuating the inhibitory effect of lapatinib (an EGFR/HER2 dual inhibitor). I also

applied a similar Bayesian approach but with enhanced data-driven signalling network

models of resistant and parental conditions [Chapter 5] using the same datasets: gene

expression data from SKBR3 and BT474 cell-lines, and inferred potentially aberrant

signalling links with differential posterior probabilities of appearing in resistant-vs-

parental networks [Chapter 5]. Next, I conducted an edge set enrichment analysis

of these aberrant signalling links comparing them to known signalling links [4] to

find dysregulated pathways in acquired resistance [Chapter 5]. The results reported

many but similar signalling pathways as dysregulated in acquired resistance in both

SKBR3 and BT474 cell-lines including EGFR-related pathways and other receptor-

related pathways [Chapter 5], many of which were previously reported as compensatory

pathways [Chapter 4]. Moreover, analysing a novel pattern of aberrant signalling,

called V-structures, I found that dysregulation of crucial genes in resistant-vs-parental

conditions which are crucial for breast cancer metastasis and developing acquired

resistance to EGFR-TKIs are involved in the switch of dependencies from ‘targeted ’ to

‘bypass ’ signalling events [Chapter 5]. These results from analysing putative aberrant

signalling [Chapter 5] may provide further insights into the bypass mechanisms of

targeted inhibition in cancer therapies.
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Signalling rewiring is a significant barrier in maintaining sensitization to drug actions

which is crucial for durable RTK-targeted therapies, and failure to which cause acquired

drug resistance. As described in previous chapters [Chapter 4 and 5], the mechanisms

of signalling rewiring involve transcriptional and post-translational up-regulations of

RTKs, over-expression of ABC transporters, reactivation of targeted pathways, and

gene over-expressions in effector pathways [Chapter 2]. In this thesis, by analysing co-

ordinated differential expression in characterising cross-talk among signalling pathways,

we shed light on above aspects of signal rewiring in acquired resistance. For example,

in Chapter 4, I demonstrated that via aberrant signalling cross-talk, the activation

of compensatory pathways (e.g. Notch, Wnt, GPCR, insulin receptor and TGF-β

signalling pathways) potentially cause up-regulation of EGFR/ErbB pathway genes,

for which the drug resistance occurs. Again, in Chapter 5, I showed that structures of

many signalling pathways are rewired in acquired resistance. Again, by analysing a

novel structure of aberrant signalling, called V-structures within/among those altered

signalling pathways, I highlighted the bypass mechanism of targeted inhibition: mRNA

changes of many crucial genes in resistant-vs-parental conditions were related to the

dependency switch from targeted signalling to bypass signalling links in order to avoid

drug actions.

In this thesis, I adapted simple correlation based approach (Pearson Correlation

Coefficient) to reconstruct the gene-gene relationship (GGR) network which may

only capture linear correlation among genes. Some other approaches such as mutual

information and conditional mutual information can be used for the same purpose

that can capture non-linear correlation as well. However, in this thesis, my main

focus was to develop an approach which can study the statistical aspects of gene-gene

relationship networks that can be reconstructed in any of the available tools.

In general, the levels of noise in the data, heterogeneity of different databases, and the

extent of vagueness underlying different network inference methods, mean that the roles

of genes or gene-gene interactions in drug escape can be very complicated. However, in

129



this thesis I aimed to address those issues by utilising the statistical modelling approach

(i.e. p1-model), which measures the probabilistic nature of pair-wise relationships in a

gene-gene relationship network.

A key point about the p1-model is that dyads in the given network structure are

assumed to be statistically independent [5]. Since X is assumed to be a random matrix

(matrix-valued random variable) defined on a network space G, the consideration of

dyadic independence helped to retain the tractability of the model for larger networks

[5, 6]. More specifically, if dyads Dij = (Xij, Xji) for i < j are statistically independent

then the distribution of X can be specified as their joint distribution [5], where we

only have to specify the distribution of each dyad [see Appendix B of Chapter 4 for

the detailed derivation of the p1-model]. Hence, the p1-model cannot deal with dyadic

dependance such as transitivity, cliquing, and hierarchy [5]. But, biological networks

often show dyadic dependencies: for example, Dougherty et al. [7] and Kolch et al. [8]

reported that transitive signalling dependencies Raf→Akt, Raf→Erk, and Mek→Akt

play important feedback roles in a well known signalling cascade Raf→Mek→Erk→Akt

[9]. Therefore, direct application of the p1-model may not be appropriate for such

networks. However, in this thesis, before applying the p1-models to data-driven models

of signalling networks I defined them in such a way that they contain: 1) all pair-wise

direct [Chapters 4 and 5] and 2) indirect relationships [Chapter 5] through which I may

overcome the above limitation. I hypothesised that the use of data-driven modelling

of networks by exploiting all pair-wise direct relationships (e.g. correlation coefficient

and mutual information) and indirect relationships may implicitly capture the dyadic

dependencies. More specifically, in Chapters 4 and 5 I used all pair-wise correlation

calculations for modelling pair-wise direct relationships and thus I assume that dyadic

dependencies can be implicitly captured in correlated node-pairs. For example, in

the case of transitive dyadic dependencies, suppose A is correlated with B, and B is

correlated with C. Now if A-B and B-C pairs are dependent upon each other (dyadic

dependency [6]), then A and C should be correlated, and thus a dyad could be formed
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in the network as a direct relationship since I explore all pair-wise correlations. Using

the definition of indirect relationships given in Chapter 5, they can also model transitive

dyadic dependencies which involve some intermediate linker nodes. For instance, in the

above example if A and C are not directly correlated (i.e. their correlation value is less

than the threshold [Chapters 4 and 5]), then the search for any indirect relationships

between them by identifying statistically significant simple paths (in PPI network), will

detect some transitive dyadic dependencies involving intermediate linker genes with

the help of PPI information [Chapter 5]. Thus, I overcome a technical limitation of the

p1-model for larger networks with dyadic dependencies while exploiting its simplicity.

The analyses in this thesis open up some future research directions. First, many

approaches including this study use only gene expression data as a proxy for signalling

protein expression (i.e. protein activities) [10–12] in order to model the signalling

pathway activities, whereas, gene expression only reflects the downstream effect of

phosphoprotein (signalling protein) activities and may not directly correlate with

the upstream protein expression [12]. Thus, to have better modelling of signalling

cross-talk in a mechanistic way, protein expressions measuring the signalling activities

of phosphoproteins of upstream signalling pathways need to be considered. In my

future studies, I would like to develop a methodological framework to integrate

phosphoproteomic datasets (i.e. expression of phosphoproteins) with transcriptomic

datasets (i.e. gene expression) to investigate mechanistic details of acquired resistance.

By using this framework, one of the key research questions that I aim to answer is:

how do signalling cross-talk among upstream signalling pathways mediate downstream

differential gene expression, and thereby elucidate novel mechanisms of acquired

resistance to RTK inhibitors?

MCMC sampling approaches such as the Neighbourhood sampler [13], Hit-and-Run

sampler [14], and Metropolis-Hastings sampler [15] can be used for better structural

inference of data-driven signalling networks (i.e. gene-gene relationship networks [see

Chapters 4 and 5]) prior to the application of the p1-model. The approach in this
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thesis constructs such networks using simple pair-wise correlations, considering the

signalling networks as undirected networks. However, signalling activities are better

explained when they are modelled using causal relationships, thus forming a directed

network for which Bayesian Network models are very commonly used [16–18]. Some

of the MCMC sampling methods that I introduced in Chapter 6 can be used in order

to infer the data-driven signalling network structure considering them as Bayesian

Network models. One of the primary challenges in using these techniques is sampling

large-scale networks with high accuracy within feasible time and memory constraints

[for details see original articles mentioned in Chapter 6].

Third, it may be possible to analyse additional local features that help to describe

global network structure, and include them in the probability function (Equation

2.3.1) as additional explanatory variables, modelled by ERGMs (Exponential Random

Graph Models). The rationale is: one of the useful property of ERGMs is that

the probability of a given network structure depends on a set of locally determined

explanatory variables. In these models new explanatory variables can be included,

which can be any graph statistic such as number of triangles or other subgraphs [19].

For example, the results in Chapter 5 suggested that in both SKBR3 and BT474

cell-line, higher percentages of dysregulated genes were incident with V-structures (a

red and a green pairs intersect at a shared node) compared to non V-structures (two

red or two green pairs intersect at a shared node) in structural rewiring of signalling

networks. Hence, this local feature (i.e. the number of V-structures) can be integrated

into the probability function (Equation 2.3.1) as an explanatory variable to influence

the global structure rewiring of a signalling network.

Finally, I would be keen to investigate more how to prioritise these putative findings

from my framework so that it could be followed up by wet-lab experimental validations.

The rationale is that one of the inherent features of data-driven approaches in systems

biology is that they produce lots of putative hits which may require additional pruning

before conducting any further experiments on them.
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In this study, I developed computational frameworks that systematically predict

all possible cross-talk among signalling pathways residing in data-driven signalling

networks by analysing resistant-vs-parental datasets. The results uncovered some novel

pathways as dysregulated and compensatory to targeted inhibition (e.g. EGFR/ErbB2

signalling pathway in cells treated with lapatinib) which may have the potential to

be used as novel drug targets in combination with targeted pathways. Although the

methodological framework is demonstrated here with two lapatinib-treated ErbB2-

positive breast cancer cell-lines: SKBR3 and BT474, this approach is applicable to

other cell-line datasets to elucidate novel mechanisms of acquired resistance to other

RTK inhibitors.
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Appendix A

List of Abbreviations (most commonly used terms)

DAVID : Database for Annotation, Visualisation and Integrated Discovery

EGFR : Epidermal Growth Factor Receptor

ERGM : Exponential Random Graph Model

ESEA : Edge Set Enrichment Analysis

GATHER : Gene Annotation Tool to Help Explain Relationships

GGR : Gene-Gene Relationship

HER2 : Human Epidermal Growth Factor Receptor 2

MCMC : Markov Chain Monte Carlo

MPLE : Maximum Pseudolikelihood Estimation

PAGI : Pathway Analysis based on Global Influence

PPI : Protein-Protein interaction

RTK : Receptor Tyrosine Kinase

SCCA : Sparse Canonical Correlation Analysis

sGSCA : Signature-based Gene-Set Co-expression Analysis

SPIA : Signalling Pathway Impact Analysis

TF : Transcription Factor

TKI : Tyrosine Kinase Inhibitor
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Appendix I: Derivation of p1-model for directed network

Let X be a directed network with n nodes and a realization of of that network is represented as X = u.
Let the binary outcome uij = 1 if genei interacts with genej , or uij = 0 otherwise. Then u is a binary
data matrix [1]. Let Pr(u) be the probability function on G given by

Pr(u) = Pr(X = u) =
1

κ (θ)
exp

∑

p

θpzp (u) (1)

where zp(u) is the network statistic of type p, θp is the parameter associated with zp(u) and κ(θ) is
the normalizing constant that ensures Pr(u) is a proper probability distribution (sums to 1 over all u in
G) [2]. The parameter θ is a vector of model parameters associated with network statistics and needs to
be estimated. See [3] for further details.

Derivation: The p1-model considers the joint distribution of dyads Dij = (uij , uji) with dyadic prob-
abilities

mij = Pr (mutual dyad) = Pr {Dij = (1, 1)} ; ∀ (i < j) , (2)

aij = Pr (asymmetric dyad) = Pr {Dij = (1, 0)} ; ∀ (i 6= j) , (3)

nij = Pr (null dyad) = Pr {Dij = (0, 0)} ; ∀ (i < j) , (4)

and
mij + aij + aji + nij = 1; ∀ (i < j) . (5)

This model finds the probabilities of each type of dyadic relation for each pair of genes. Assuming all
the dyads Dij are statistically independent, the probability distribution of X = u can be specified as the
joint distribution of the dyads (such as, D12, D13, and so on) which may be expressed in the following
way:

Pr (X = u) =
∏

i<j

m
uijuji

ij

∏

i6=j

a
uij(1−uji)
ij

∏

i<j

n
(1−uij)(1−uji)
ij (6)

In order to get an exponential form, the above equation can be reexpressed as follows:

Pr (X = u) = exp




∑

i<j

ρijuijuji +
∑

i6=j

θijuij




∏

i<j

nij , (7)

where

ρij = log

(
mijnij
aijaji

)
; ∀ (i < j) (8)
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and

θij = log

(
aij
nij

)
; ∀ (i 6= j) (9)

Note that we interpret nij = nji for i > j. The parameter ρij is a log-odds ratio which measures the force
of reciprocation of the edge between genei and genej . By doing simple algebra as follows, it can be said
that ρij specifies the log of increase in the odds that uij = 1 given uji = 1

exp (ρij) =

{
Pr (uij = 1|uji = 1)

Pr (uij = 0|uji = 1)

}
/

{
Pr (uij = 1|uji = 0)

Pr (uij = 0|uji = 0)

}
(10)

The parameter θij , is also a log-odds ratio which measures the probability of an asymmetric edge between
genei and genej with uji = 0. This intuition can be explained by the following calculation:

exp (θij) =
Pr (uij = 1|uji = 0)

Pr (uji = 0|uij = 0)
(11)

Equation (7) provides a more general family of distributions for X than Equation (1). However, Equation
(7) contains too many parameters; therefore, restrictions were applied on the parameters, ρij and θij to
obtain Equation (1) from Equation (7). Thus, the original p1-model was postulated as following:

ρij = ρ; ∀ (i < j) , (12)

and
θij = θ + αi + βj ; ∀ (i 6= j) , (13)

Here, ρ indicates the global degree of reciprocity of the entire network; θ is the global density parameter;
αi is a local parameter measuring the expansiveness of genei which is the propensity of genei to send
edges; and βj represents the attractiveness of genej which is the ability of genej to attract edges. Based
on the transformation of parameters in Equations (12) and (13), the distribution formula for the p1-model
can be rewritten as follows:

Pr (X = u) = exp




∑

i<j

ρM + θE +
∑

i

αi4out (i) +
∑

j

βj4in (j)




∏

i<j

nij (14)

The above form of the p1-model equation represents the exponential family of distributions with the
following statistics: M - the number of reciprocated edges, E - total number of edges, and 4out (i)
and 4in (i) - the in- and out-degree of genei. To facilitate Gibbs sampling, an equivalent log-linear
formulation of the p1-model was suggested by Fienberg and Wasserman [4]. In this formulation, a dyad
(uij ,uji) is represented by four Bernoulli variables Yij00, Yij10, Yij01 and Yij11 as follows:

Yijkl =

{
1 if uij = k, uji = l,
0 otherwise

Then, the p1-model can be expressed with four log-linear equations:

log {Pr (Yij10 = 1)} = λij + θ + αi + βj (15)

log {Pr (Yij01 = 1)} = λij + θ + αj + βi (16)

log {Pr (Yij11 = 1)} = λij + 2θ + αi + αj + βi + βj + ρ (17)

log {Pr (Yij00 = 1)} = λij (18)

for i < j. Here, λij = log (nij) is the scaling parameter, which is fixed due to the constraint
∑

k,l Yijkl = 1.
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1 Supplementary Figures

Figure 1. Comparative expression changes in parental and resistant conditions (SKBR3
cell-line, GSE38376) of some constituent genes of EGFR, GPCR, Notch, Wnt and insulin
signaling. Expression of these genes in parental conditions is down-regulated but up-regulated in
resistant conditions which signify the effect of drug resistance on those genes. Here, pathway
annotations are from Reactome database.

143



5

Figure 2. Fold change analysis of gene expressions in both parental and resistant
conditions compared to parental basal condition (0 µM) in our primary dataset (SKBR3
cell-line, GSE38376). (A) Genes depicted here are from 104, 188 and 299 EGFR/ErbB cross-talks
found using signaling pathways from Reactome, KEGG and WikiPathway databases, respectively (B)
List of those genes that are dysregulated in parental treatment vs parental basal condition and reversely
changed in resistant basal + resistant treatment vs parental basal condition. Each column here
represents each condition’s gene expression fold-change of either, one of the parental treatment
conditions (0.1 µM, 1.0 µM), or one of the resistant conditions (0 µM, 0.1 µM, 1.0 µM) compared to
parental basal treatment condition (0 µM).
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Figure 3. Fold change analysis of gene expressions in both parental and resistant
conditions compared to parental basal condition (0 µM) in our validation dataset (BT474
cell-line, GSE16179). (A) Genes depicted here are from 83, 133 and 278 EGFR/ErbB cross-talks
found using signaling pathways from Reactome, KEGG and WikiPathway databases, respectively (B)
List of those genes that are dysregulated in parental treatment vs parental basal condition and reversely
changed in resistant basal + resistant treatment vs parental basal condition. Each column here
represents each condition’s gene expression fold-change of either, one of the parental treatment
conditions (0.1 µM, 1.0 µM), or one of the resistant conditions (0 µM, 0.1 µM, 1.0 µM) compared to
parental basal treatment condition (0 µM).
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Table S1: All 11,515 drug-resistant gene-pairs found in GSE38376.

https://static-content.springer.com/esm/art%3A10.1186%

2Fs12918-014-0135-x/MediaObjects/12918_2014_135_MOESM2_ESM.xlsx

Table S2: All 1,083 (841 distinct) cross-talks found between EGFR and other 23

signaling pathways from Reactome database.

https://static-content.springer.com/esm/art%3A10.1186%

2Fs12918-014-0135-x/MediaObjects/12918_2014_135_MOESM3_ESM.xlsx

Table S3: All 2,179 (1,050 distinct) cross-talks found between ErbB and other 34

signaling pathways from KEGG database.

https://static-content.springer.com/esm/art%3A10.1186%

2Fs12918-014-0135-x/MediaObjects/12918_2014_135_MOESM4_ESM.xlsx

Table S4: All 3,084 (876 distinct) cross-talks found between ErbB and other 62

signaling pathways from WikiPathway database.

https://static-content.springer.com/esm/art%3A10.1186%

2Fs12918-014-0135-x/MediaObjects/12918_2014_135_MOESM5_ESM.xlsx

Table S5: 104 drug-resistant cross-talks found between EGFR and other 23 signaling

pathways from Reactome database [GSE38376].

https://static-content.springer.com/esm/art%3A10.1186%

2Fs12918-014-0135-x/MediaObjects/12918_2014_135_MOESM6_ESM.xlsx

Table S6: 188 drug-resistant cross-talks found between ErbB and other 34 signaling

pathways from KEGG database [GSE38376].

https://static-content.springer.com/esm/art%3A10.1186%

2Fs12918-014-0135-x/MediaObjects/12918_2014_135_MOESM7_ESM.xlsx

Table S7: 299 drug-resistant cross-talks found between ErbB and other 62 signaling

pathways from WikiPathway database [GSE38376].

https://static-content.springer.com/esm/art%3A10.1186%

2Fs12918-014-0135-x/MediaObjects/12918_2014_135_MOESM8_ESM.xlsx
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Table S8: 168 selected cross-talks which associated EGFR (or ErbB) signaling

pathways with 6 other signaling pathways that were found in at least two different

pathway analyses (i.e. Reactome and KEGG, or KEGG and WikiPathway, or

Reactome and WikiPathway) [GSE38376].

https://static-content.springer.com/esm/art%3A10.1186%

2Fs12918-014-0135-x/MediaObjects/12918_2014_135_MOESM9_ESM.xlsx

Table S9: All 10,811 drug-resistant gene-pairs found in GSE16179.

https://static-content.springer.com/esm/art%3A10.1186%

2Fs12918-014-0135-x/MediaObjects/12918_2014_135_MOESM10_ESM.xlsx

Table S10: 83 drug-resistant cross-talks found between EGFR and other 23 signaling

pathways from Reactome database [GSE16179]..

https://static-content.springer.com/esm/art%3A10.1186%

2Fs12918-014-0135-x/MediaObjects/12918_2014_135_MOESM11_ESM.xlsx

Table S11: 133 drug-resistant cross-talks found between ErbB and other 34 signaling

pathways from KEGG database [GSE16179].

https://static-content.springer.com/esm/art%3A10.1186%

2Fs12918-014-0135-x/MediaObjects/12918_2014_135_MOESM12_ESM.xlsx

Table S12: 278 drug-resistant cross-talks found between ErbB and other 62 signaling

pathways from WikiPathway database [GSE16179].

https://static-content.springer.com/esm/art%3A10.1186%

2Fs12918-014-0135-x/MediaObjects/12918_2014_135_MOESM13_ESM.xlsx

Table S13: 86 drug-resistant cross-talks found in all Reactome, KEGG and

WikiPathway analyses where both genes in a particular cross-talk was up-regulated in

resistant conditions but down-regulated in parental conditions [GSE16179].

https://static-content.springer.com/esm/art%3A10.1186%

2Fs12918-014-0135-x/MediaObjects/12918_2014_135_MOESM14_ESM.xlsx
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Table S14: 401 cross-talks from Reactome, KEGG and WikiPathway analyses where

the genes are dysregulated in parental treatment vs parental basal condition, and

reversely changed in resistant basal + resistant treatment vs parental basal condition

[GSE16179].

https://static-content.springer.com/esm/art%3A10.1186%

2Fs12918-014-0135-x/MediaObjects/12918_2014_135_MOESM2_ESM.xlsx

Table S15: All 11,515 drug-resistant gene-pairs found in GSE38376.

https://static-content.springer.com/esm/art%3A10.1186%

2Fs12918-014-0135-x/MediaObjects/12918_2014_135_MOESM15_ESM.xlsx
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Supplementary Methods

Parameter Selection

In this work, we used the following thresholds: corrected p-value thresholds for selecting differentially
expressed genes, threshold for path length in the search of indirect relationships, cutoff thresholds for
selecting direct relationships, odds ratio, and posteriori values. Detailed explanations and justifications
behind these threshold selections are provided bellow. All other thresholds are p-value cutoffs for which
a conventional value of 0.05 was used.

Selecting two different p-value thresholds for detecting differentially expressed genes in
SKBR3 and BT474 cell-lines

For both SKBR3 and BT474 cell-lines, differentially expressed (DE) genes were selected based on Bonferroni-
corrected p-values from a two-tailed pooled Students t-test. Genes that showed differential expression
with corrected p-values ≤ threshold were selected as DE genes. By analysing gene expression datasets
from parental and resistant conditions we identified 345 and 354 DE genes, for SKBR3 and BT474
cell-lines, respectively. The corresponding threshold values for corrected p-values were 0.01 and 0.05,
respectively. It is true this implies SKBR3 DE gene selection was more stringent than that of BT474.
This was done for two reasons: firstly, because the computational cost of using a conventional thresh-
old of 0.05 with SKBR3 was prohibitive, and secondly, to ensure the numbers of DE genes in the two
different cell-lines were comparable, and similarly for the sizes of the seed gene sets. Bayesian inference
of model parameters (i.e. posterior probabilities of network edges) using MCMC sampling was the most
time-consuming step in our whole framework. This step requires a longer period of time (considering the
configurations of MCMC sampling) as the network size grows (i.e. as the number of seed genes increases).
In this study, 0.01 and 0.05 p-value thresholds yielded 345 and 354 DE genes, and eventually 897 and
875 seed genes in total, for SKBR3 and BT474 cell-lines, respectively. We found that with these sizes of
networks (both parental and resistant GGR networks) from SKBR3 and BT474 cell-lines, execution of
the whole Bayesian inference procedure including MCMC sampling for 15,000 iterations and summariz-
ing the monitored parameter (i.e. posterior probabilities of all node-pairs: of which there were 402,753
and 382,375 for SKBR3 and BT474 cell-lines, respectively) required more than one week, individually
[data not shown]. Therefore, we feared that less stringent thresholds for SKBR3 (e.g. 0.05 yielding 135
additional DE genes) would result in an even larger GGR network for which the whole Bayesian inference
step would run even longer. Therefore, we preferred to use the p-value threshold 0.01 for SKBR3 in order
to produce a comparable number of DE genes, and thus a similar number of seed genes, so that we have
the whole Bayesian inference procedure completed within a manageable time frame. Moreover, even after
using a stringent threshold for SKBR3 cell-line our framework was able to identify high percentages of
dysregulated pathways in acquired resistance: 75.56% (34 out of 45), 62.5% (15 out of 24) and 68.85%
(42 out of 61) signalling pathways from KEGG, Reactome, and WikiPathways, respectively [S2 Table].
These results indicate that our framework demonstrated high performances in SKBR3 cell-line even with
a more stringent p-value threshold. Therefore, we hypothesise that including a larger number of DE genes
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by relaxing the threshold would yield little performance increase in terms of detecting aberrant signalling
pathways in acquired resistance.

Selecting threshold for direct pair

Choosing a threshold for a co-expression network is a crucial step in network-based analysis since the
representation of network structure, its functional relevance, and any network-based discoveries depend
on the cutoff that is applied to all pair-wise co-expression values [1]. In this work, we applied a systematic
approach proposed by Elo et al. [1] to identify an optimal cutoff threshold of such co-expression pairs
(that is, direct pairs) by analysing the topological properties of a co-expression network. The approach
is reported to achieve a balance between detecting as many biologically relevant co-expression links as
possible, and controlling the false-negative rates [1]. It compares the clustering coefficient of the observed
co-expression network and that of its randomized counterpart at a particular cutoff threshold point [1].
The clustering coefficient of a network is defined as follows:

C =
1

K

∑

ki>1

Ci (1)

where Ci = 2Ei

ki(ki−1) is the clustering coefficient of the node (gene) i, Ei denotes the number of edges

between ki(> 1) first neighbours of node (gene) i [1]. Elo et al. hypothesised that the co-expression links
omitted from the complete network by increasing the cutoff threshold value are more likely to be noise
as long as the difference between the clustering coefficient of the observed network and its randomised
counterpart is monotonically increasing [1]. Thus, a discrete optimization problem was formulated to
find the optimal threshold C∗ as follows:

C∗ = min
j
{rj : C(rj)− C0(rj) > C(rj+1)− C0(rj+1)} (2)

where the set of thresholds is: r0 < r1 < ... < rJ−1 < rJ , C(r) denotes the clustering coefficient of the
co-expression network generated by applying the co-expression threshold r, and C0(r) is its randomised
counterpart [1]. Here, r0 = 0, rJ = 1, and rj+1 = rj + 1 [1]. Elo et al. applied a configuration model in
order to preserve the original degree distribution of the observed network [for details see Methods section
of [1]]. Thus, the value of C0 was formulated as follows:

C0 =
(k̄2 − k̄)

2

k̄3N
(3)

where k̄ = 1
N

∑N
i=1 ki, k̄2 = 1

N

∑N
i=1 k

2
i , and N = total number of nodes in the network [1]. This

procedure define C∗ to be the first local maxima in the C − C0 curve [1]. In our study, by modelling
signalling rewiring in resistant-vs-parental conditions, we identify system-level perturbations in the resis-
tant condition compared to the parental condition. Consequently, we choose the threshold value for the
parental condition by comparing to a random reference network and use the same number of pairs for
the resistant condition in order to make a fair comparison. For each of the parental gene expression data
sets in SKBR3 and BT474 cell-lines, we applied the above approach to identify an appropriate value of
C∗. The resulting values of C∗ were 0.62 and 0.74, which demarcate approximately the top 20% of pairs
from the respective distributions of co-expression values in both SKBR3 and BT474 cell-lines. Therefore,
we selected the top 20% of pairs to be considered as direct pairs in our analysis for all the GGRs. This
reasoning has been added into the supplementary text.

Selecting thresholds for odds and posteriori

For selecting the thresholds of odds ratios (of posterior probabilities [see Methods in the original text]) of
gene-pairs in all four cases: SKBR3-Parental, SKRB3-Resistant, BT474-Parental, and BT474-Resistant,
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we made frequency distributions of all odds ratio values, respectively, from which we chose the top 20%
gene-pairs, with odds ratio values of 1.66, 2.53, 2.16, 12.03 as cutoff thresholds (‘th odds’), respectively
[Supplementary Figure 2]. Next, we constructed distributions of posteriori values of those selected gene-
pairs, respectively, and chose the top 50% of gene-pairs from them with posteriori values of 0.252, 0.212,
0.304, and 0.177 as cutoff thresholds, respectively (‘th posteriori’) [Supplementary Figure 3]. Although
these two types of thresholds were chosen empirically from their respective distributions, applying them
yielded two important outcomes. Firstly, for both SKBR3 and BT474 cell-lines, two sets of selected
pairs from the top 20% of parental and resistant distributions [Supplementary Figure 2], respectively
were completely disjoint, which is consistent with our methodological requirements that red and green
[for definitions see original texts] aberrant pairs should be mutually exclusive. Secondly, mixtures of two
distributions (assumed to be two clusters: left-cluster shown in green color and right-cluster shown in
violet color) were clearly apparent in all individual scatter plots of ODDs VS posterior probabilities of
gene pairs after applying ‘th odds’ in all four cases: SKBR3-Parental, SKRB3-Resistant, BT474-Parental,
and BT474-Resistant [Supplementary Figure 4], and the top 50% pairs (from their frequency distribution)
were residing in the right cluster (violet color) [Supplementary Figure 4] which is assumed to contain
more important pairs than the left cluster (green color) because the posterior probability values of pairs
in the former distribution are greater than in those of the latter.

Path length threshold in indirect relationships

In the search for indirect pairs for which no direct relationships were found, we applied an approach which
exploits statistically significant PPI paths [see Methods in the original text] for which we constrained
the length of those paths to be 2. We hypothesise that increasing this length threshold would impose
additional computational costs and increase the time-complexity of the framework. We therefore chose
the value of such path lengths to be 2, which is the minimum possible value involving single linker genes
[see Methods in the original text].
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1 Supplementary Figures

Figure 1. Behaviour of clustering coefficients (C) of observed co-expression networks
against their randomized counterparts (C0) at various co-expression value (absolute
correlation), r. For each gene expression dataset, first local maxima in the C − C0 is shown at the
continuous case with red arrow.
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Figure 2. Frequency distributions of odds ratio values of gene-pairs in all four cases:
SKBR3-Parental, SKBR3-Resistant, BT474-Parental, and BT474-Resistant after Bayesian
analysis. In all four cases, selected thresholds of odds ratios, ‘th odds’ are shown with arrows which
demarcated top 20% of pairs in their respective distributions.
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Figure 3. Frequency distributions of posteriori probabilities of gene-pairs that were
selected after applying ‘th odds’ thresholds in all four cases: SKBR3-Parental,
SKBR3-Resistant, BT474-Parental, and BT474-Resistant after Bayesian analysis. In all
four cases, selected thresholds of posterior probabilities, ‘th posteriori’ are shown with arrows which
demarcated top 50% of pairs in their respective distributions.
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Figure 4. Scatter plots of ODDs VS posterior probabilities of gene-pairs that were
selected after applying ‘th odds’ thresholds in all four cases: SKBR3-Parental,
SKBR3-Resistant, BT474-Parental, and BT474-Resistant after Bayesian analysis. In all
four cases: 1) two distinct distributions were shown within two boxes (in green and violet color), 2)
selected thresholds of posterior probabilities, ‘th posteriori’ are shown with arrows which demarcated
top 50% of pairs in their respective frequency distributions [See Supplementary Figure 3]
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Table S1: List of identified putative aberrant gene-pairs (for both SKBR3 and BT474)

cell-lines in acquired resistance.

Table S2: Full results of pathway enrichment tests of identified aberrant gene-pairs

in acquired resistance from KEGG, Reactome, and WikiPathway databases for both

SKBR3 and BT474 cell-lines.

Table S3: Comparing our current model with the previous model by observing the

percentages of non-direct (indirect and PPI pair) enriched links (aberrant pairs as

known signaling links) in the aberrant signaling pathways from KEGG, Reactome,

and WikiPathway databases that were detected by our current but not the previous

model, for both SKBR3 and BT474 cell-lines.

Table S4: Comparing our current model with the previous model by observing the

percentages of non-direct (indirect and PPI pair) enriched links (aberrant pairs as

known signaling links) in the aberrant signaling pathways from KEGG, Reactome,

and WikiPathway databases that were detected by both of our current and previous

models, and were ranked (based on enrichment q-value) high in the current model but

low in the previous model, for both SKBR3 and BT474 cell-lines.

Table S5: Summary of Type-I, Type-II and Type-III enrichment of V-structures in

KEGG, Reactome, and WikiPathway databases in SKBR3 cell-line.

Table S6: Summary of Type-I, Type-II and Type-III enrichment of V-structures in

KEGG, Reactome, and WikiPathway databases in BT474 cell-line.
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Table S7: CGC genes in all the Type-I, Type-II and Type-III V-structures in SKBR3

and BT474 cell-lines.
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Uniform sampling of directed and un-directed
graphs conditional to vertex connectivity
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Abstract—Many applications in graph analysis require sam-
plers to uniformly generate graphs at random over their spaces.
One example task is how to efficiently create a small sample
graphs from a particular huge target space. In this paper, we
propose a new approach to sufficiently sample random graphs
equally likely from their graph space. The new approach uses
a Markov chain Monte Carlo (MCMC) method, called the
Neighborhood Sampler (NS). We validate the new sampling
technique by simulating from feasible spaces of directed and
un-directed graphs. The simulation results show explicit and fast
uniform recovery over the graph spaces we target.

keyword: Graph space, Markov chain Monte Carlo approach,
Neighborhood sampling.

I. BACKGROUND

Random graphs (RGs) is a broad area of research that has
been studied since the early works of [5] and [4]. RGs intend
to combine two different theories, graph and probability. One
area of interest within this broad area is the generation of
random graphs according to some criteria. Two commonly
used approaches to generate random graphs are either by
using a probability distribution, or by using a random process
[2]. One example model is the ErdösRńyi model [4]. It
generates random graphs by referring to a uniform probability
distribution, where the idea is to assign equal probability
to all graphs given a particular number of edges. The latter
model was extended to stochastically start with a particular
number of nodes with no edges and then iteratively add one
new edge sampled uniformly over the set of missing edges
[1]. One aim of this paper is to find an efficient sampler that
is capable to sample graphs that are uniformly distributed. In
particular, we consider directed and un-directed graphs that
their vertices are connected, in order to meet the wide-spread
of their applications.

A graph G is expressed as a pair (N,E), where N is a set of
nodes represents variables and E is a set of edges describes
interactions or resoning between variables X1, X2, . . . , XN .
Figure 1 illustrates some types of graph structures: Connected
directed acyclic graph (CDAG), connected un-directed graph
(CUDG) and connected directed cyclic graph (CDCG).

A B

CD

A B

CD

A B

CD

Fig. 1: From left to right: CDAG, CUDG and CDCG.

In the subsequent sections, we discuss two types of graph
structures: CDAG in I-A and CUDG in I-B. In section II, we
present the mathematical process of carrying out the general
Neighborhood Sampler, followed by describing the technique
of assigning local Neighborhoods for both CUDG structures
in III-A and CDAG structures in III-B. In section IV, we
introduce two graph algorithms used to detect connectivity
in IV-A and cyclicity in IV-B of a particular type of graph. In
section V, we show how to sample different graph structures
uniformly from their graph spaces using the Neighborhood
Sampler. In section VI, we demonstrate the simulations results
at variant settings.

A. Directed acyclic graph

A directed edge between any pair of variables Xi → Xj

indicates the dependency of Xj upon Xi. Typicaly, such cause
and effect relationships are acyclic which contain no loops,
where the starting node on a partcular path of edges is different
from the last end node. In CDAGs, as the number of nodes
grows, the space size would grow exponentially. Table I states
the space sizes of CDAGs at certain numbers of nodes.

Nodes N. CDAGs
3 18
4 446
5 26431

TABLE I: Space sizes at a certain number of nodes of CDAGs.

The space of a CDAG with only 3 nodes is small enough
that the entire probability distribution and the sampler can be
evaluated, see Figure 2.
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Fig. 2: Graph space of a CDAG with 3-node.
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B. Undirected Graphs

CUDG is another broad class of graphs compacts represen-
tation of joint probability distributions. An un-directed edge
between any pair of variables Xi and Xj within graph G
indicates that they are interacted. The spaces of CUDGs are
also dramatically increase as the number of nodes increase.
Table II shows all possible CUDGs at some node numbers.

Nodes N. CUDGs
4 38
5 728
6 26,704

TABLE II: Space sizes at a certain number of nodes of
CUDGs.

From Table II, there are 38 possible CUDGs represent the
entire space of a CUDG with 4 nodes which is tractable
enough to be drawn as shown in Figure 3.
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Fig. 3: The entire graph space of a CUDG with 4-node.

II. NEIGHBORHOOD SAMPLER APPROACH

Neighborhood Sampler (NS) is a recently introduced
Markov chain Monte Carlo (MCMC) method by [6]. It cares
not only about sampling over the local neighbourhoods Nx
of a particular element x, but also reduces sampling from
a complicated distribution to sample uniformly over these
neighborhoods. It takes advantage from running the Markov
chain process to ensure the convergence to a particular tar-
get distribution. For the purpose of this paper, we assume
a Uniform target distribution function f is defined over a
target space X , with a counting measure µ on X . The NS
algorithmically can mitigate the effect of local modes. For
every iterative simulation, the sampler traverses into space
by transiting two elements: from element X to element Y
which is sampled uniformly from NX and then to element Z
which is sampled uniformly from NY . Then, a rejection step
is used to reduce NY until we accept a particular Z. This
means that every rejected element Z is excluded from being

sampled again from the set NY . This would speedily give
a slight chance of moving onto another neighbourhood. To
construct a Neighborhood Sampler, we must assign a unique
neighborhood Nx to each element x ∈ X , provides that
x ∈ Nx for all x ∈ X . Algorithm 1 describes sampling from
an arbitrary distribution f with respect to µ using the NS [6].

Algorithm 1
Given the current state Xt = X:

1) Generate Y ∼ U(NX) where U(NX) is the uniform
distribution (with respect to µ) on NX . Set H = NY.

2) Generate U ∼ U(0, f(x)/µ[NX ]).
3) Generate Z1 ∼ U(H).
4) Set k = 1 and iterate the following steps until

f(Zk)/µ[N (Zk)] > U:
a) Reduce H by excluding Zk while still contain X .
b) Generate Zk+1 ∼ U(H) and set k := k + 1.

5) Set Xt+1 = Zk.

III. ASSIGNING LOCAL NEIGHBORHOOD GRAPHS

A. With connected un-directed graphs

To construct the NX for a particular CUDG X , the sampler
considers all possible edges that can be added or deleted while
preserving the condition of connectivity. All these valid graphs
plus the original graph itself are defined as neighbourhood NX
of graph X , i.e. a one neighbourhood is identified by either
adding an edge, deleting an edge, or do nothing, provides the
graph remains connected. Figure 4 shows how all possible
addable and deletable edges are identified to calculate the
corresponding neighbourhoods after initialising a particular
CUDG. The total number of the local neighbourhoods exist in
NX are referred by µX which is an integer number between
0 and ∞. From Figure 4, µ = 6 because we have 2 addable
edges, 3 deletable edges and the graph itself.
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Fig. 4: From top to bottom: Initial CUDG, all possible addable
edges, and all possible deletable edges.

B. With connected directed acyclic graphs

Given a CDAG, all possible edges that can be added or
deleted provides that the CDAG remains connected and acyclic
plus the given CDAG are defined as its neighbourhood NX .
From Figure 5, µ = 7 because we have 3 addable edges, 3
deletable edges and the graph itself.
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Fig. 5: From top to bottom: Initial CDAG, all possible addable
edges, and all possible deletable edges.

IV. GRAPH ALGORITHMS

A. Detecting acyclicity and paths

Acyclicity is the required restriction to satisfy the criteria
of directed acyclic graph. One possible technique to detect
cycles is depth-first search (DFS) [3]. DFS is an algorithm for
traversing tree or graph data structure using a process called
in-traversal which allows visiting vertices of the graph. The
in-traversal technique aims to navigate the graph to seek how
its vertices are connected to each other and which vertices
can reach from other vertices and so on. In the process of in-
traversal every vertex and every edge is examined. One starts
at arbitrary root and explores as far as possible along each
branch before backtracking i.e. if there is no way to continue
in deep the tree from a particular vertex, then mark this vertex
as visited and backtrack to its parent. It typically takes time
O(|E|) linear in the size of the graph.

B. Detecting connectivity

The connectivity restriction requires all nodes to be con-
nected to at least one other node in the network. This restric-
tion ensures that every node would have at least one incident
edge, so the resulting random network with n nodes must have
at least n − 1 edges. Removing an edge that disconnects the
graph into two sub-graphs is called a bridge. One possible
algorithm to find bridges is the Schmidt’s Bridge Finding
(SBF) algorithm [7]. SBF first converts a given graph into
a spanning tree. A spanning tree is defined as a minimal
set of connected un-directed edges that connect all nodes,
in which adding one more edge to the spanning tree would
create a cycle. Next, the algorithm will start to store the
back-edges and then travels through the back-edges visited
during the algorithm. The algorithm then would make a chain
decomposition of the graph, where a chain is either a cycle
or a path. All edges that are not in a chain are assigned as
bridges.

V. SAMPLING GRAPH SPACE UNIFORMLY

Since we aim to sample RGs uniformly from their graph
space, so we set the target function f(x) in Algorithm 1 to
a Uniform(a, b) distribution. Thus, we should expect from
the sampler to return unbiased frequencies that are uniformly
distributed. Optionally, we can set f(x) = 1. The process
of sampling CUDGs and CDAGs using the Neighbourhood
sampler starts from initialising a candidate graph X(0) at
random. The sampler must first assign local neighbourhoods
NX for the candidate graph X(0) = X . Calculate µX and
then generate a uniform value U from the interval U(0, 1

µX
).

Then, we sample another graph Y uniformly from NX , that is,
Y ∈ U(NX). To sample a neighborhood graph uniformly, we
assign 1/µ probability to each neighborhood in NY . Now,
given NY , we sample another graph Z uniformly, that is,
Z ∈ U(NY ). Having calculated µZ , if 1

µZ
> U , we accept

the graph Z and set X(t+1) = Z. Otherwise, we exclude the
graph Z from NY and generate another Z until the acceptance
ratio is satisfied. Below is pseudocode summarises sampling
CDAGs and CUDGs spaces uniformly with the NS:

Algorithm 2 Sampling CDAGs and CUDGs uniformly

1: Initialise either a CUDG or CDAGs X(0) with t = 0
2: for all t = 0, 1, . . . , n do
3: Given the current graph Xt = X , find NX .
4: Calculate µX .
5: Generate U ∈ U(0, 1

µX
).

6: Sample graph Y ∈ U(NX) and find its NY .
7: for all k = 1, 2, . . . ,m do
8: Sample graph Zk = Z ∈ U(NY ), and find its NZ .
9: Calculate µZ

10: if 1
µZ

> U then
11: set Xt+1 = Zk
12: goto 2
13: else
14: Exclude Zk form NY
15: goto 7
16: end if
17: end for
18: end for

VI. SIMULATIONS

Simulations in this paper were written in C#.net on Acer
(Aspire E1-570) computer with [ 3.40 GHz Intel i5-3337U
]. We set our sampling to some feasible graph spaces of
4, 5 and 6 nodes of both CUDGs and CDACs. To evaluate
convergence rates, we run different numbers of iterations
from 100 up to 50 000 000. We test whether the sampler
is able to explore the entire spaces of particular graph sizes
or not. Also, whether the sampled graphs match the target
uniform distribution we sample from or not.

With regard to the CDAGs, we start the simulation with
4-node graph. There are 446 CDAGs which takes about
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2500 iterations from the sampler to go through. Two more
simulations are run each time to compare how many graphs
are visited by both simulations. Each simulation is run 50
times with 4 nodes and 100 iterations each. The maximum
number of graphs visited in both simulations is 27, average is
14.30. This shows the ability of the sampler to traverse into
the graph space and return a good enough number of graphs.
Figure 6 states the frequencies of graphs sampled by the NS
from a CDAG with 4 nodes at different number of iterations
5000, 50 000, and 500 000. The sampler with a short chain
of 1000 iteration could explore 363 graphs out of 446 CDAGs
which represent 81% of their graph space. The entire graph
space of 4 nodes has being recovered uniformly with 5000
iteration as illustrated in Figure 6. Less than 5000 iteration
i.e. 2500 iteration can also explore the whole graph space but
not always. The uniform distribution we sample from becomes
visible at 50 000 iteration and clear enough with 100 000
iterations.

Fig. 6: From top to bottom: Neighbourhood Sampler (Red)
vs True Distribution (Blue) with 5000, 50 000, and 500 000
iterations, respectively.

Considering a larger but feasible graph space with 5 nodes,
there are 26790 connected DAGs. Running the simulation with
50 000 iterations, it gets through 25723 connected DAGs.
Figure 7 shows that the sampler at iterations of 500 000, 5000
000, and 50 000 000 could successfully cover all the 26790
connected DAGs indexed on the horizontal axis. The graphs
also have been shown to be uniformly distributed along as the
number of iterations increases. The plots in Figure 7 compare
the true frequencies produced by the uniform distribution and
the sampled frequencies produced by the NS.

Fig. 7: From top to bottom: Neighbourhood Sampler (Red) vs
True Distribution (Blue) with 500 000, 5000 000, and 50 000
000 iterations, respectively.

With CUDGs, we start also with a graph of 4 nodes where
its graph space consists of 38 CUDGs. Consistently, the entire
graph space of 4 nodes has being recovered uniformly at
250 iteration. Considering a larger but feasible graph space
with 5 nodes, there are 728 CUDGs. Running the simulation
with 1000 iterations, it gets through 489 CUDGs. The results
also show that the entire graph space of 5-node is being
always explored with only 5000 iterations at the execution time
less than a second. The plots in Figure 8 compare true and
sampled frequencies in which their sum of squared differences
explicitly diminishes as the number of iteration grows.

Fig. 8: From top to bottom: Neighbourhood Sampler (Red) vs
True Distribution (Blue) with 20 000 iterations and 200 000
iterations, respectively.

For more assessing, we test the uniformity of sampling by
exploring a CUDG with 6 nodes, where the size of its graph
space is 26704 as shown in Table II. Figure 9 shows the
exploration of the entire graph space. All sampled graphs are
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indexed on axis X with their frequencies on axis Y , at 500 000
and 5000 000 iteration which demonstrates a faster recovery
of uniform distribution.

Fig. 9: From top to bottom: Neighbourhood Sampler (Red) vs
True Distribution (Blue) with 500 000 iterations and 5 000
000 iterations, respectively.

VII. CONCLUSION

This paper presents a new approach to sampling uniformly
over graph spaces. It covers simulating from different graph
structures include un-directed graph and directed acyclic
graphs. All these types of graph structures are conditional
to vertex connectivity. We use a new Markov chain Monte
Carlo method for carrying out the simulation. The new method
is a new implementation of the Neighborhood sampler into
the context of sampling graph space. One goal is to generate
graphs that are likely equally over their graph spaces. The
outputs demonstrate rapid exploring of the entire graph spaces
for some feasible graph sizes as well as returning graphs’
frequencies that are uniformly distributed.

REFERENCES

[1] B. Bollobas. Random Graphs. Academic Press Inc.,
London Ltd., 1985. 1

[2] B. Bollobas. Random Graphs. Cambridge University
Press, 2nd edition, 2001. 1

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to algorithms. MIT Press and McGraw-Hill,
2nd edition, 2001. 3
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ABSTRACT
Getting stuck in local maxima is a problem that arises while learning Bayesian network (BN) structures. In this
paper, we studied a recently proposed Markov chain Monte Carlo (MCMC) sampler, called the Neighbourhood
sampler (NS), and examined how efficiently it can sample BNs when local maxima are present. We assume that
a posterior distribution f(N,E|D) has been defined, where D represents data relevant to the inference, N and
E are the set of nodes and directed edges, respectively. We illustrate the new approach by sampling from such
a distribution, and inferring some BNs. The simulations conducted in this paper show that the new learning
approach substantially avoids getting stuck in local modes of the distribution, and achieves a more rapid rate of
convergence, compared to the MCMC Metropolis-Hastings sampler and other heuristic algorithms.

Keywords: Directed acyclic graph, structure inference, local maxima, graph space

1. INTRODUCTION
Bayesian Networks (BNs) are directed acyclic graphs (DAGs) that are used as a probabilistic method to visually
represent directed causal relationships between variables, learned from a dataset. Nodes of the graph represent
random variables, and directed edges represent causal relationships. Sampling algorithms in spaces of BNs are
computationally intensive because the number of DAGs dramatically increases with the number of nodes. For
example, there are 543 and 3 781 503 possible Bayesian networks in a graph space with 4 and 6 nodes, respectively.
Learning a BN typically involves two conceptually different elements: structure learning and parameter learning.
Structure learning involves inferring the variables that interact and the causal directions of those interactions; in
other words it is inferring the set of edges connecting a set of candidate nodes. For a fixed structure, parameter
learning involves quantitatively estimating probabilistic dependencies between variables. In practice, structure
and parameter learning may be performed simultaneously. In this paper, both types of learning are explicitly
considered while sampling BNs.

Bayesian network structures have been widely learned by score-based algorithms. This category of algorithms
aim to maximise the pre-assigned score of each Bayesian network using a heuristic search algorithm. One of
the most widely studied heuristic search methods is Greedy Algorithms (GAs).1 GAs typically update a given
Bayesian network by either adding, deleting or reversing a particular directed edge at each step. Among the
most widely used special GAs are Hill-Climbing (HC) algorithm and Tabu Search (TS) algorithm.2,3 The HC
algorithm iteratively starts with an arbitrary Bayesian network, and then applies a local search to its neighbors in
the hope to find a neighboring network with a better score. It repeats this process until no further improvements
can be obtained. The TS algorithm also runs a local search similar to the HC, however, it intentionally enhances
the performance of local search by relaxing its acceptance function i.e. when the search gets stuck at a local
mimimum and no improving move is available, worsening moves can then be accepted. The TS algorithm also
uses a memory structure that describes all visited solutions. If a particular Bayesian network has been previously
visited but not improved the score, it is then marked as "tabu" and not considered again. Heuristic search is
a problem when the immediate neighbours of a network do not provide any better solution. The category of
constraint-based algorithms is another main class has been used to learn Bayesian networks. It aims to analyse
the probabilistic relations entailed by the Markov property of Bayesian networks with conditional independence
tests and then construct a Bayesian network that satisfies the corresponding d-separation statements. One

Corresponding author to Salem A. Alyami.
Salem A. Alyami.: E-mail: salem.alyami@monash.edu, Telephone: 1 505 123 1234

165



common algorithm attributed to this category is the Grow-Shrink (GS).4 The GS approach constructs Bayesian
networks by identifying the Markov blanket for each node, and then connect nodes. This is in order to avoid
producing dense nets or incorrect causal relationships.

Markov chain Monte Carlo (MCMC)5–7 is a subclass of stochastic sampling. It involves simulating a Markov
chain process, which is constructed specifically to converge to the target distribution. Practically, MCMC is
a highly flexible methodology for sampling from complicated target distributions. However, the efficiency of
convergence of an MCMC sampler is often an issue, particularly for very high dimensional distributions. One
technique used in structure learning of BNs is to sample from a posterior distribution over a space of BNs by using
Markov chain Monte Carlo (MCMC) method. This presupposes that a prior distribution and likelihood model
have been defined over graph space, and that Bayes’ rule has been applied to obtain a posterior distribution.
However, MCMC methods e.g. Metropolis-Hastings sampler can be slow to converge when the target distribution
has local maxima.

The main goal of this paper is to examine the potential of a recently proposed MCMC method called the
Neighbourhood MCMC sampler8 to traverse the search space with reduced frequency of getting trapped in local
modes. The general NS is outlined in Appendix A. The sampler possesses a number of unique features. The
sampler has a reduction step in which rejected elements are excluded from being chosen a second time. Another
feature is that each new element is chosen in two steps: starting from an initial element X, a neighbor Y is first
selected, then a neighbor Z of Y is proposed. Another goal is to present a comparison study between the new
approach and the MCMC Metropolis-Hastings (MH) sampler. Another difference is that our algorithm does not
consider graphs obtained by reversing edges, unlike many heuristic algorithms. This is intentionally avoided in
this study to reduce the number of neighbors of a particular graph.

The organisation of this paper is as follows. Section 2 describes the methods used to learn Bayesian Networks.
This includes parameter learning using the Bayesian approach in 2.1, and structure learning using the new MCMC
Neighborhood Sampler in 2.2. Using the MCMC MH is also outlined in 2.3. Section 2.4 discusses a range of
constraints that may be imposed to reduce the size of a graph space. Section 3 reports all simulation results as
follows: A comparison study between the new MCMC NS and MCMC MH is addressed in 3.1. Section 3.2 applies
the Neighborhood Sampler to a popular application and compares the outputs with other common samplers.

2. METHODS
2.1 Parameter learning with Dirichlet-Multinomiall distribution
Learning the parameters of a BN corresponds to learning the local conditional probabilities among the variables
encoded. Given data D and fixed graph G, we first define the probability distribution P (Xi|Pa(Xi)) for each
variable Xi given its parents Pa(Xi). We write P (Xi = k|Pa(Xi) = j) = θijk, where θijk is the probability of
each bin k within each variable Xi, given that its parents are in configuration j. The multinomial distribution is
the likelihood function for relating these parameters to observational data.9 To complete the Bayesian model, we
also need to assign prior probabilities to parameter values. Here, we use the conjugate prior of the multinomial
model, which is the Dirichlet distribution. The ultimate formula of the Dirichlet-Multinomial posterior model is
expressed in Equation 1:9

P (D|G) =
n∏

i=1

qi∏

j=1

Γ(αij)
Γ(αij +Nij)

ri∏

k=1

Γ(αijk +Nijk)
Γ(αijk)

(1)

where Nijk is the number of observations in bin k of node i corresponding to a parent configuration j, ri is the
number of possible state values (bins) for a particular variable Xi, qi is the total number of configurations of
parent state values of Xi, Nij =

∑ri
k=1 Nijk, and αijk are the hyper-parameters (hyper-conditional probabilities),

αij =
∑ri

k=1 αijk. Expression 1 is useful in that it gives the likelihood of a set of data in terms of the structure
only, without reference to the parameters associated with each node. In this paper, the Dirichlet priors have
been assigned as αijk = α/qi.ri, where α is the total imaginary counts for the Dirichlet prior. The posterior
probability distribution of the graph G given data D can now be constructed as:

P (G|D) = P (D|G)P (G)
P (D) (2)
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To sample from 2 using MCMC, we need only consider the numerator, since the denominator does not depend
on G and will cancel out. We also assume a uniform prior on the graph P (G). Note that equivalent graphs have
the same prior probabilities, likelihoods and posterior probabilities. Consequently, equivalence classes of graphs
have prior and posterior probabilities proportional to the number of equivalent graphs in that class. This is
possibly undesirable, as there is no obvious reason why larger equivalence classes should be preferred a priori. In
principle, this effect could be counteracted by assigning a prior probability to each graph G inversely proportional
to the size of its equivalence class. However, for simplicity we have retained the uniform prior in what follows.
A practical issue that arises when working with 1 is the very high values that result from multiplying several
gamma functions together. The solution is to work with the log of these values wherever possible.

2.2 Structure learning with the new MCMC Neighborhood Sampler
In this secion, we particularise the NS in Algorithm 2 in Appendix A to learn BN structures. In what follows,
G(t) denotes a graph sampled at iteration t of the Neighborhood Sampler (NS). The process of learning BN
structures using the NS begins by selecting an arbitrary graph G(0) = G. Since we are interested in sampling
Bayesian networks, every generated graph must be directed and acyclic. We also require that all sampled graphs
must be connected. This is an appropriate requirement to reduce the size of graph space. Next, the sampler
requires assigning a set of local neighborhoods denoted by NG for each candidate graph G in the search space.
The set NG consists of the graph G itself, all graphs that can be obtained by adding a directed edge, provided
the graph remains acyclic, and all graphs that can be obtained by deleting an edge, provided the graph remains
connected. Let µG be the total number of graphs in NG i.e. all possible addable and deletable edges, which may
be any strictly positive integer. For example, in Figure 1, µG = 7 because we have 3 addable edges, 3 deletable
edges and the graph itself. Given the value of µG and the probability f(G) calculated for a particular graph
G(t) = G, we generate a uniform value U by sampling uniformly U from the interval (0, f(G)

µG
). Then a new graph

H1 is sampled uniformly from the set NG such that H1 ∈ U(NG). Each graph in NG has a probability of 1/µG
to be sampled. Find NH1 and again sample graph H2 uniformly, such that H2 ∈ U(NH1). Having calculated µH2

and its probability f(H2), the graph H2 is accepted if f(H2)
µH2

) ⩾ U ∈ U(0, f(G)
µG

), then we set G(t+1) = H2 and go
to the next iteration. Otherwise, we exclude the graph H2 from NH1 and sample another H2 until the acceptance
ratio is satisfied. The pseudocode in Algorithm 1 summarises the entire process of learning BNs using the NS.

Algorithm 1 Learning BNs with the NS
1: Initialise graph G(0).
2: for all t = 0, 1, . . . , n do
3: Given the current graph G(t) = G, find NG.
4: Calculate µG and f(G).
5: Generate u ∈ U(0, f(G)

µG
).

6: Sample graph H1 ∈ U(NH1) and identify neighbor-
hood NH1 .

7: for all k = 1, 2, . . . , |NH1 | do
8: Sample graph H2 ∈ U(NH1).
9: Calculate µH2 and f(H2)

10: if f(H2)
µH2

⩾ u then
11: set G(t+1) = H2, goto 2
12: else
13: Exclude H2 from NH1 , goto 7
14: end if
15: end for
16: end for
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Figure 1: From top to bottom: Initial network, all
possible addable edges, and all possible deletable edges.

2.3 Structure learning with the MCMC Metropolis-Hastings Sampler
The Metropolis-Hastings (MH) sampler was first presented in.10 Like other MCMC methods, the MH algo-
rithm generates a Markov process which asymptotically reaches a unique stationary distribution.11 Several other
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MCMC methods, including the Metropolis algorithm,12 Metropolised independence sampler10 and Gibbs sam-
pling,13 are special cases of MH.14 To sample DAGs with MH, we must first define a proposal distribution. To
ensure it is comparable in terms of computational effort with the NS, we set the proposal to the uniform distri-
bution over the same neighbourhoods. Given the current graph G(t) = G, where f(G) > 0, we draw a connected
DAG H ∈ NG in accordance with the uniform proposal q(H|G) = 1/µG. Also, we find q(G|H) = 1/µH . Then,
we draw a Uniform (0,1) random value U . If f(H)

f(G) .
µG
µH

⩾ U, then set G(t+1) = H, otherwise G(t+1) = G.

2.4 Detecting structural constraints of BNs: Acyclicity, connectivity and node degree
Adding justifiable additional restrictions on a very large DAG space is a sound technique that we use here to
reduce its cardinality. We use four restrictions that are appropriate in many applications: connectivity, acyclicity,
and limiting in-degree and out-degree.

The connectivity restriction requires all the nodes to be connected to at least one other node in the network,
so the resulting random network with n nodes must have at least n − 1 edges. For any edge (Xi, Xj) to be
deleted in order to find a neighbour graph, we observe the connectivity of the resulting graph. In doing so, at
first we delete that edge and apply the Breadth-First-Search (BFS) algorithm to detect if the graph becomes
disconnected, or not. This indicates, one or more nodes loose connectivity with the remaining set of nodes in
the graph when it becomes disconnected. Simply, after removing that particular edge (Xi, Xj), we checked if the
exist any simple path from all other nodes in the graph to the node Xi (, or node Xj). Here, the BFS algorithm
is exploited to find such simple path(s). BFS starts at any arbitrary node and explores all it’s neighbourhood
nodes before observing others. Thus, if there exist any such simple path(s) that ensures the resulting graph
would be connected even if we remove the edge (Xi, Xj). Therefore, the edge (Xi, Xj) will be considered as
a deletable edge. Once the connectivity checking is done, we restore back the edge (Xi, Xj) that we deleted
previously. Note, for the of DAG connectivity, we do not consider the directions of edges as important here.

Acyclicity is a required restriction for a Bayesian network. We use the Depth-First-Search (DFS) algorithm
to detect cycles for DAGs only. Before adding any edge (Xi → Xj) into a particular graph to find its neighbour,
we observe if we can find any cycle in the resulting graph. That means, we first added that edge (Xi → Xj)
in that graph and run DFS algorithm if any cycle evolves in the resulting graph or not. If not, we considered
that edge to be an addable edge in the graph in finding it’s neighbour, otherwise not. DFS is an algorithm for
traversing tree or graph data structures. One starts at an arbitrary root and explores as far as possible along
each branch before backtracking. Next, we remove back the edge (Xi → Xj) that we added before.

In-degree and out-degree are integer numbers that respectively represent the number of head and tail end-
points incident on a node, or equivalently the respective numbers of parents and children that a particular node
possesses. Setting a maximum number of parents or children for each node can dramatically reduce the size of
graph space where there is reliable prior knowledge about these parameters.

3. RESULTS
In this section, we use the Neighbourhood MCMC Sampler to infer Bayesian networks. We respectively describe
the sampling processes of the NS from a feasible graph space subject to the posterior Dirichlet-Multinomial
distribution. The efficiency of the sampler to learn structures and explore the entire posterior is also assessed
by comparing it with other adopted samplers. All simulations in this paper were written in C#.net on an Acer
(Aspire E1-570) computer with 3.40 GHz Intel i5-3337U and 8 GB RAM.

3.1 Neighborhood Sampler vs Metropolis-Hastings
It is notable that in principle a single iteration of MH requires less computation than an iteration of NS. We
mention two aspects of comparison between the NS and MH. First, there are two nested for-loops involved in the
NS: the first loop determines the number of iterations and the second selects a new graph H2 ∈ NH1 by rejection
sampling. The inner nested loop produces one accepted graph per iteration of the outer loop, and may involve a
number of rejected graphs (0 up to (µH2 − 1) rejections). The MH, on the other hand, has only one loop, which
also returns one new graph per iteration but is more likely than NS to repeat the same graph. Second, at every
iteration with the NS, we sample H1 given G, then sample H2 given H1, whereas MH samples H given G only.
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Figure 8 in Appendix B illustrates how the mediator graph H1 in the NS enables a larger number of graphs to be
reached within one iteration, providing a better chance to move to a new graph. Thus an advantageous property
of the NS is that it is less likely than MH to get stuck in a local maxima for some number of iterations.

3.1.1 Application 1: Exploring posterior distribution
There are only 18 connected DAGs in the entire space of Bayesian networks with 3 nodes. This space is sufficiently
small that the posterior probability can feasibly be calculated for every such graph, and it thus provides a good
test environment for investigating the behaviour of MCMC methods. The series plots in Figure 2 show the
proportions in which each graph has been sampled after 100, 500, 1000 and 5000 iterations of the NS and MH,
compared to the actual posterior distribution. No burn-in samples have been discarded for these plots. The
sampled proportions produced by the NS in Figure 2a are adequate estimates of the true posterior probabilities
for most purposes after about 1000 iterations. In particular, note that the NS has sampled equivalent graphs
with approximately equal probabilities, as it should. Figure 2b shows that the MH sampler does not explore the
entire sample space. Instead, it repeatedly samples only one of the 6 equivalent graphs that possess the same
highest probability 0.1667. It is effectively stuck at a single point in the space.
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Figure 2: From top to bottom, left to right: Exploring true distribution (TD) of Dirichlet-Multinomial with 3-nodes by
the NS and MH at 100, 500, 1000, and 5000 iterations, respectively

3.1.2 Application 2: Mendel’s Peas Network
This network was designed by Norsys Software Corp in 1998 and includes six variables. The two variables P1
and P2 are mated to produce another variable C. Each of these variables represents a plant genotype and has
three possible state values RR, Rr and rr, where R is the allele for red and r is the allele for white. These three
variables probabilistically determine an additional three variables: the observed colours of P1, P2 and C. Each
of these colour variables has two possible state values: red and white. Using the conditional probabilities shown
in Appendix C, 5000 data-points were simulated, with each data-point including values for all six variables. The
graph space was reduced by imposing a maximum of three parents and three children for each node. We ran the
NS and MH with four chains at the fixed random initial graphs shown in Figure 3 of 1000 iterations each.
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Figure 3: Four initial graphs for running four Markov chains with lengths of 1000 iterations each using the NS and MH.
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Table 1 summarises the outputs of these latter simulations produced by the NS and MH. Unlike the MH,
reasonable results were obtained with the NS for 1000 iterations, with all four chains sampling the true network
as shown in columns 5 and 6 of Table 1, where the ranking of graphs is according to sampling frequencies. The
number of total sampled graphs in column 7 of Table 1 is more consistent and more fully explores the search
space with the NS than the MH. Although, the MH sampled the true graph in the first chain, the last three
chains have not even sampled the true graph. It is likely that the first chain was stuck in a local mode containing
the true graph, and all other chains were stuck in other local modes.

MCMC
Sampler

Chain
Number

Initial
Graph

Highest
Frequency

True Graph
Frequency

True Graph
Ranking

Total Sampled
Graphs

NS

1 Figure 3a 59 16 11 185
2 Figure 3b 70 5 60 158
3 Figure 3c 81 19 11 145
4 Figure 3d 44 44 1 183

MH

1 Figure 3a 69 46 3 102
2 Figure 3b 223 NA NA 8
3 Figure 3c 874 NA NA 11
4 Figure 3d 308 NA NA 32

Table 1: Outputs of three Markov chains with 1000 iterations sampled by the NS and MH.

Gelman and Rubin diagnostic15 is a reliable convergence test measures the difference between the within-
chain variance and the between-chain variance using a value called the “scale reduction factor”. It requires
simulating multiple chains (m ⩾ 2) each of length 2t, where t is the number of iterations, with overdisperse
starting values. The first t samples in each chain are then discarded, and the within-chain and between-chain
variances are evaluated. A weighted sum W of the within-chain and between-chain variances is then used to
calculate the potential scale reduction factor R̂ = V̂ ar(x)

W . The output consists of the 50% and 97.5% quantiles of
the distributions of scale reduction factors. If these quantiles are both less than 1.2, the chains may be considered
to be sampling from the same distribution, and then the number of iteration t needs no to be increased.

The scale reduction factors for the 50% and 97.5% quantiles produced by the four chains in Table 1 using NS
are 1.02 and 1.02, respectively, and using MH are 321 and 623, respectively. This suggests that convergence has
occurred after 1000 iterations with the NS as in Figure 4a where its reduction factors are less than 1.1, which
was not the case with MH as shown in Figure 4b.
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Figure 4: MCMC diagnostic tests for chains of size 1000 iteration

One more graphical diagnostic we consider is the time-series plot of the log-likelihood at each iteration, which
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can be used to judge the point at which burn-in has occurred. The log likelihood functions of three Markov
chains generated by the NS are plotted with1000 iterations each as shown in Figure 4c which indicate that the
sampler has a short burn-in period of approximately 100 iterations.

We generated a longer chain of 5000 iterations and discarded the first 100 iterations. Then, we report the
estimated posterior probability for each individual edge by determining the proportion of sampled graphs in
which that edge is present. This is a useful way to summarise an MCMC sample. The posterior probability of
inclusion was then estimated for each edge after discarding the first 100 graph. For simplicity, we assigned the
numbers 1, 2, 3, 4, 5, and 6 to the variables P1, P2, Colour P1, Colour P2, C, and Colour C, respectively. We also
let pij , i, j = 1, . . . , 6 stand for the proportion of sampled graphs that contain a directed edge i→ j. The matrix
of sampled proportions for each edge is illustrated in Figure 5 which also plots the edges that have posterior
probabilities > 50%, and they exactly correspond to the edges in the true network.




p11 = 0 p12 = 0 p13 = 0.63 p14 = 0.06 p15 = 1 p16 = 0.24
p21 = 0 p22 = 0 p23 = 0.03 p24 = 0.76 p25 = 1 p26 = 0.18

p31 = 0.37 p32 = 0 p33 = 0 p34 = 0.13 p35 = 0.05 p36 = 0.31
p41 = 0 p42 = 0.24 p43 = 0.08 p44 = 0 p45 = 0.07 p46 = 0.23
p51 = 0 p52 = 0 p53 = 0.18 p54 = 0.20 p55 = 0 p56 = 0.99
p61 = 0 p62 = 0 p63 = 0.21 p64 = 0.26 p65 = 0.01 p66 = 0
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Figure 5: Mean posterior graph at a threshold > 50%.

3.2 Comparing NS with non MCMC algorithms
The Diagnostic Chest Clinic Network is a popular Bayes net example in the medical domain.16 The network
aims to represent the risks of a patient having tuberculosis, lung cancer or bronchitis based on several factors,
including whether or not a patient is a smoker or has traveled to Asia recently. Each variavle takes a binary
values, either 0 or 1 to respectively indicate the absence or presence of a particular risk. We assume that the
network is connected and that the number of parents of each node can never be greater than four. These
restrictions reduce the number of graphs in the graph space and the computational time required to sample from
the posterior distribution.

We simulated 10000 data points, each consisting of a value for each of the eight variables, based on the
conditional probabilities presented in Appendix D. We investigated the short term behaviour of the NS for this
data, by running simulations in which the number of iterations ranged from 50 to 5000, starting with random
initial graphs. We found that the true network was rarely sampled in simulations shorter than 1000 iterations,
which is thus a lower limit on the length of the burn-in phase. We also ran a long simulation using 30 0000
iterations, starting from a randomly selected initial graph. The matrix of the resulting posterior probability for
each edge, and the highest eight proportions and their corresponding edges are illustrated and plotted in Figure
6.




0 0.02 0.40 0.05 0.01 0.16 0.03 0
0.05 0 0.09 0.62 0.67 0.13 0 0
0.49 0.05 0 0.19 0.02 0.86 0.29 0
0.08 0.34 0.18 0 0 0.89 0.3 0
0.05 0.33 0.05 0 0 0.09 0 1
0.04 0.01 0.14 0.11 0 0 0.88 1
0.03 0 0.02 0.02 0 0.04 0 0
0.01 0 0.01 0 0 0 0 0
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Figure 6: The highest eight proportions at a threshold > 40.
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Most of the edges that belong to the true graph have higher proportions. For example, the two edges of
“Bronchitis” → “Dyspnea” and “Tuberculosis or Cancer” → “Dyspnea” have been sampled with a posterior
probability of 100%. It is noted that the direction between the pair of nodes “World Travel” and “Tuberculosis”
is not sampled in the correct direction, and it returned a posterior probability of 49%. If we consider the highest
nine proportions, we will obtain the correct direction between the “World Travel” and “Tuberculosis” with a
posterior probability of 40%. There are two possible factors for this slight error that might explain this incorrect
direction. First, the expected number of individuals who have both travelled and have Tuberculosis is only 5
out of 10000, and thus the actual number of such individuals simulated has high proportional variation. Second,
this network is equivalent to the true network, and should in principle have the same posterior probability.

We compared the posterior structure obtained by the NS in Figure 6 (also introduced in Figure 7f) with the
structures resulting from using GS, HC and TS algorithms. We used the bnlearn R package to apply these three
algorithms to our 10 000 simulated data points generated using the conditional probabilities in Appendix D. To
make them comparable with our simulation settings, initially all algorithms were run for 30 000 iterations using
the multinomial log-likelihood score, with a maximum of four parents for each node. All learned structures are
shown in Figure 7, and comparable with the true graph in Figure 7a. Even though we increased the number
of iterations for the HC and TS algorithms up to 100 000 using different values of tabu at 10, 50 and 100, no
solutions better than those shown in Figures 7b and 7c were obtained. It has been also noted that the structures
learned by the HC and TS are identical whether one uses the Akaike (AIC) score model, or the multinomial
log-likelihood (Log-Lik) score. For this reason it was sufficient to run the HC with the AIC score and the TS
with the Log-Lik score. The GS with both the asymptotic χ2 test and a Monte Carlo permutation test (mc-x2)
has shown a better solution in Figure 7e compared to the GS nonparametric in Figure 7d. However, Figure 7e
still has one missing edge and two undirected edges.

Travel Smoking

Tuberculosis Cancer Bronchitis

TbOrCa

XRay

Dyspnea

(a) True Graph

Travel

Smoking

Tuberculosis

Cancer

Bronchitis

TbOrCa

XRay

Dyspnea

(b) Hill-Climbing (Log-Lik model)

Travel Smoking

Tuberculosis

Cancer Bronchitis

TbOrCa

XRay Dyspnea

(c) Tabu Search (AIC model)

Travel Smoking Tuberculosis Cancer

Bronchitis TbOrCa

XRayDyspnea

(d) Grow-Shrink (nonparametric)

Travel

SmokingTuberculosis Cancer

BronchitisTbOrCa

XRay Dyspnea

(e) Grow-Shrink (parametric mc-x2)

Travel

Smoking

Tuberculosis Cancer Bronchitis

TbOrCa

XRay

Dyspnea

(f) MCMC NS

Figure 7: Diagnostic Chest Clinic Network learned by samplers using 5000 simulated data points
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4. CONCLUSION
This paper presents practical instances of the Neighbourhood MCMC sampler, which is a new sophisticated
Markov chain Monte Carlo algorithm. The sampler promisingly provides a new candidate MCMC approach
to sampling Bayesian networks. This has been combined with using the Dirichlet-Multinomial distribution to
learn the conditional probabilities among discrete variables. The primary simulations conducted in this paper
have shown the effectiveness of the sampler to explore spaces of Bayesian networks and rapidly converge to the
high probability density region. The correctness of our implementation of the sampler has been validated using
some Bayesian networks. The computational efficiency of the sampler has been assessed by comparing it to
the Metropolis-Hastings Markov chain Monte Carlo Sampler, and other widely used score-based and constraint-
based algorithms. Unlike the Metropolis-Hastings, the Neighbourhood MCMC sampler substantially avoids the
problem of getting stuck at a local maximum graph. In future work, we aim to apply the new approach to
solve larger Bayesian network problems using a new developed adaptive technique for faster graph-neighborhood
assigning to reduce the time complexity required by some graph algorithms to detect cycles and connectivity.

APPENDIX A. THE GENERAL MCMC NEIGHBORHOOD SAMPLER
NS assumes a density f has been defined on some measure space (X ,Σ, µ), where X is a target space, Σ is
a σ-algebra and µ is a reference measure. NS is constructed by assigning a unique neighborhood Nx to each
element x ∈ X that conditionally involves x ∈ Nx for all x ∈ X . In relation to the counting measure µ over Nx,
it must take a positive real number, that is, 0 < µ(Nx) <∞ for all x ∈ X . Algorithm 2 in Appendix A performs
iteratively the general NS to sample from an arbitrary distribution having density f with respect to µ.8 Step
4(a) in Algorithm 2 suggests reducing Ny by excluding elements from H(x, y, z1, z2, . . . , zk) until satisfying the
acceptance ratio f(Zk)/µ[N (Zk)] ⩾ U. Definitely the acceptance ratio will be satisfied at least by its equality
with the element x that still belongs to Ny.

Algorithm 2 The Neighbourhood Sampler: Given the current state Xt = x:

1. Generate Y ∼ U(Nx) where U(Nx) is the uniform distribution (with respect to µ) on Nx. Set H = NY.

2. Generate U ∼ U(0, f(x)/µ[Nx]).

3. Generate Z1 ∼ U(H).

4. Set k = 1 and iterate the following steps until f(Zk)/µ[N (Zk)] ⩾ U:

(a) Reduce H by excluding Zk while still containing x.
(b) Generate Zk+1 ∼ U(H) and set k := k + 1.

5. Set Xt+1 = Zk.

APPENDIX B. ASSIGNING NEIGHBORING GRAPHS IN ONE ITERATION
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A
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A
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Figure 8: 3 possible graphs if we apply the MH and 7 possible graphs (after excluding similar graphs) if we apply the NS.
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APPENDIX C. CONDITIONAL PROBABILITIES TO SIMULATE DATA FOR
MENDEL’S PEAS NETWORK

P1
P (P1 = RR) P (P1 = Rr) P (P1 = rr)

0.25 0.50 0.25

P2
P (P2 = RR) P (P2 = Rr) P (P2 = rr)

0.25 0.50 0.25

Color P1
P1 P (Color P1 = red) P (Color P1 = white)
RR 1 0
Rr 1 0
rr 0 1

C
P1 P2 P (C = RR) P (C = Rr) P (C = rr)
RR RR 1 0 0
RR Rr 0.50 0.50 0
RR rr 0 1 0
Rr RR 0.50 0.50 0
Rr Rr 0.25 0.50 0.25
Rr rr 0 0.50 0.50
rr RR 0 1 0
rr Rr 0 0.50 0.50
rr rr 0 0 1

Color P2
P1 P (Color P1 = red) P (Color P1 = white)
RR 1 0
Rr 1 0
rr 0 1

Color C
C P (Color C = red) P (Color C = white)

RR 1 0
Rr 1 0
rr 0 1

Table 2: The conditional probabilities used to simulate 5000 datapoints.

APPENDIX D. CONDITIONAL PROBABILITIES TO SIMULATE DATA FOR THE
DIAGNOSTIC CHEST CLINIC NETWORK

Smoking
P (Smoking = T ) P (Smoking = F )

0.50 0.50

Travel
P (Travel = yes) P (Travel = no)

0.01 0.99

Lung Cancer
Smoking P (Lung Cancer = present) P (Lung Cancer = absent)
smoker 0.10 0.90

non smoker 0.01 0.99

Tuberculosis
Travel P (Tuberculosis = present) P (Tuberculosis = absent)

yes 0.05 0.95
no 0.01 0.99

Bronchitis
Smoking P (Bronchitis = present) P (Bronchitis = absent)
smoker 0.60 0.40

non smoker 0.30 0.70

Tuberculosis or Cancer
Tuberculosis Lung Cancer P (TbOrCa = true) P (TbOrCa = false)

present present 1 0
present absent 1 0
absent present 1 0
absent absent 0 1

Dyspnea
TbOrCa Bronchitis P (Dyspnea = present) P (Dyspnea = absent)

true present 0.90 0.10
true absent 0.70 0.30
false present 0.80 0.20
false absent 0.10 0.90

XRay Results
Tuberculosis or Cancer P (XRay = abnormal) P (XRay = normal)

true 0.98 0.02
false 0.05 0.95

Table 3: The conditional probabilities used to simulate 10000 datapoints.

ACKNOWLEDGMENTS
We thank our colleagues from the School of Mathematical Sciences at Monash University who provided insight
and expertise that greatly assisted the research.

174



REFERENCES
[1] Chickering, D. M., Geiger, D., and Heckerman, D., “Learning Bayesian networks: search methods and

experimental results. In Learning from Data: Artificial Intelligence and Statistics V (eds Fisher, D. and
Lenz, H.-J.),” Lecture Notes in Statistics 112, 112–128 (1996).

[2] Glover, F., “Tabu Search - Part 1,” ORSA Journal on Computing 1(2), 190–206 (1989).
[3] Glover, F., “Tabu Search - Part 2,” ORSA Journal on Computing 2(1), 4–32 (1990).
[4] Margaritis, D. and Thrun, S., “Bayesian network induction via local neighborhoods,” technical report, DTIC

Document (2000).
[5] Hrycej, T., “Gibbs sampling in Bayesian networks,” Artificial Intelligence 46(3), 351–364 (1990).
[6] Riggelsen, C., “MCMC learning of Bayesian network models by Markov blanket decomposition,” in [Proceed-

ings of the 16th European Conference on Machine Learning ], ECML’05, 329–340, Springer-Verlag, Berlin,
Heidelberg (2005).

[7] Ram, R. and Chetty, M., “MCMC based Bayesian inference for modeling gene networks,” in [Proceedings
of the 4th IAPR International Conference on Pattern Recognition in Bioinformatics ], PRIB ’09, 293–306,
Springer-Verlag, Berlin, Heidelberg (2009).

[8] Keith, J. M., Sofronov, G. Y., and Kroese, D. P., “The generalised gibbs sampler and the neighborhood
sampler. in Monte Carlo and Quasi-Monte Carlo Methods 2006,” Springer Berlin Heidelberg 31, 537–547
(2008).

[9] Heckerman, D., Geiger, D., and Chickering, D. M., “Learning Bayesian networks: the combination of
knowledge and statistical data,” Machine Learning 20(3), 197–243 (1995).

[10] Hastings, W. K., “Monte Carlo sampling methods using Markov chains and their applications,”
Biometrika 57(1), 97–109 (1970).

[11] Robert, C. P. and Casella, G., [Monte Carlo statistical methods ], Springer (2004).
[12] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E., “Equations of state

calculations by fast computing machines,” Journal of Chemical Physics 21(6), 1087–1092 (1953).
[13] Casella, G. and George, E., “Explaining the gibbs sampler,” The American Statistician 46(3), 167–174

(1992).
[14] Gelman, A., “Iterative and non-iterative simulation algorithms,” Technical Report 347, University of Cali-

fornia, Dept. of Statistics (1992).
[15] Brooks, S. P. and Gelman, A., “General methods for monitoring convergence of iterative simulations,”

Journal of Computational and Graphical Statistics 7, 434–455 (1997).
[16] Lauritzen, S. L. and Spiegelhalter, D. J., “Local computations with probabilities on graphical structures

and their application to expert systems,” Journal of the Royal Statistical Society, Series B (Methodologi-
cal) 50(2), 15224 (1988).

175



Integrating heterogeneous datasets for cancer module
identification

A. K. M. Azad
PhD student

Monash University
School of Mathematical Sciences

Clayton campus, Wellington Road, Clayton, Victoria 3800, Australia

mailto:a.azad@monash.edu

176



2

Abstract

The availability of multiple heterogeneous high-throughput datasets provides
an enabling resource for cancer systems biology. Types of data include: Gene
Expression (GE), Copy Number Aberration (CNA), miRNA expression, Methy-
lation, and Protein-Protein Interactions (PPI). One important problem that can
potentially be solved using such data is to determine which of the possible pair-
wise interactions among genes contribute to a range of cancer-related events, from
tumorigenesis to metastasis. It has been shown by various studies that applying in-
tegrated knowledge from multi-omics datasets elucidates such complex phenomena
with higher statistical significance than using a single type of dataset individually.
However, computational methods for processing multiple data types simultaneously
are needed. This chapter reviews some of the computational methods that use in-
tegrated approaches to find cancer-related modules.

1 Introduction

Cancer is a common genetic disease involving a range of factors. Genomic, epigenomic,
and differential gene expression aberrations all play vital roles in a cancer’s initiation,
development and malignance [1]. It has been reported by various studies that cancer
related activities including cell proliferation, angiogenesis, and metastasis are associated
with abrupt changes in regulatory and signaling pathways [2–6]. Mutations involving
somatic and copy number aberrations of some genes can either directly affect some key
pathways, or have a cumulative effect when they occur across network modules repre-
senting common functional activities in cancer [7, 8]. Consequently, identifying cancer
modules is of primary importance to the effective diagnosis and treatment of cancer
patients.

One of the core steps of cancer module identification involves modeling gene-gene
relationships in a network. Many algorithms have been developed for this purpose, but
most apply only to homogeneous datasets, that is, data of only one type, usually GE data
or PPI information [9–15]. Most of the methods relying only on GE data apply differential
expression analysis but it is often hard to determine whether such variations in expression
are causative or merely an effect of complex diseases [16]. Differential expression analysis
can produce false negatives and false positives: some important genes in cancer related
pathways may not be identified as differentially expressed, whereas some differentially
expressed genes may not be relevant to cancer [17]. Typically CNA regions identified by
some approaches [18–20] using only CNA datasets are spatially extensive, which makes
it difficult to identify a specific gene causing genomic aberration [21]. PPI can provide
important information in characterizing topological properties of the network involving
cancer genes [7]. However, PPI information for multiple cell types and developmental
stages is still incomplete, which limits its usefulness in developing methods for cancer
module identification.

Recent studies have demonstrated the ‘genomic footprint’ of driver mutations on gene
expression [21–23]. This happens when somatic mutations and copy number aberrations
affect a genes’ transcriptional changes directly or indirectly [24] and thus perturb some
core pathways relevant to cancer growth and malignance [1]. Research carried out for The
Cancer Genome Atlas on both glioblastoma [25] and ovarian carcinoma [26] demonstrated
the simultaneous occurrences of mutations, copy number aberrations, and gene expression
changes in a significant number of patients in the core components of some key pathways
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[see Note 1]. In this chapter we discuss some methods that find cancer related modules
by integrating multiple heterogeneous datasets.

This chapter is organized as follows. We first briefly introduce some of the main
sources of data that can be used and the required preprocessing steps essential for sub-
sequent integrated analysis. Then, we describe methods that integrate information from
heterogeneous data sources to find cancer related modules/sub-networks [see Note 1].
Finally, we address some approaches for validating identified modules.

2 Data Sources

Gene Expression data from cancer samples can be primarily found in the database
GEO (Gene Expression Omnibus) [27]. It is a database of gene expression values mea-
sured using high throughput hybridization arrays (also known as chips or microarrays).
Sample values are reposited both in raw and normalized versions. Another comprehensive
collection of gene expression data from various cancer samples is the The Cancer Genome
Atlas (TCGA) [28]. There are three different levels of datasets available in TCGA: Level
1 consists of low-level (not normalized) data for a single sample probe, Level 2 consists of
normalized single sample probe data, and Level 3 consists of aggregated gene-level data
(grouped by mapped probes with gene symbols). Mutation, Copy number aber-
ration, DNA methylation, and miRNA expression datasets can also be found in
TCGA data portal.

Preprocessing is an important step in data integration, especially when paired samples
are used [see Note 2]. Preprocessing of GE values includes scale transformation, imputing
missing values, handling redundancies, pattern standardization (i.e. normalising to a zero
mean and unit standard deviation), and other transformations [29]. Preprocessing of CNA
data in microarray chips is typically more complex than that of GE data, and can include
quantile normalization, imputing missing values, summarizing multiple probes at a single
locus (with mean or median), segmentation of genomic regions, and mapping segmented
CNA values in genomic regions into corresponding gene symbols [17, 30]. Probe level
methylation data from CpG sites can be normalized between 0 and 1 by finding the
following ratio [31] :

βi =
max(Mi, 0)

(max(Mi, 0) +max(Ui, 0) + α)
(1)

where βi is the Beta-value for an ith interrogated CpG site, and Mi and Ui are the
intensities measured by the ith methylated and unmethylated probes. After background
adjustment, intensities (Mi and Ui) may become negative, but in the above definition
those negative values are reset to 0. Again, when both Mi and Ui intensities are very
low, a constant offset α (default value = 100) is added to the denominator to regularize
Beta-value, as suggested by Illumina [31].

3 Methods for integrating heterogeneous datasets

Figure 1 generalizes a possible approach that integrates multiple heterogenous datasets
in order to find cancer related modules in a gene-gene network. The gene-gene network
can be modeled either by exploiting combined knowledge from multiple datasets or by
merging individual networks built upon corresponding datasets. In these networks, nodes
represent genes and the edges can be modeled as the relationships (i.e. directed and/or
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undirected) among them. PPI information can be useful at various stages of network-
modeling. After modeling the integrated network various module detection techniques
such as, optimization models, hierarchical clustering, etc. can be applied to find cancer
related modules. The following sections describe some of the methods that use integrated
approaches for cancer module identification.

Figure 1. Schematic diagram of a possible integrated approach for cancer
module identification. Each input dataset contains both caner and normal samples.
In network modeling, genes are identified based on differential information in the
two-conditional studies (cancer vs normal), and edges can be defined according to
pair-wise correlation.

3.1 iMCMC

A method known as iMCMC (identify Mutated Core Module in Cancer) [32] was de-
veloped for the simultaneous analysis of three heterogeneous datasets: Gene Expression
(GE), Copy Number Aberration (CNA) and sequence mutations. These are combined
to infer a network in which core cancer modules are identified [see Note 3]. The method
involves an optimisation model followed by statistical significance tests. This method
initially starts with building two different networks, one generated from GE data and
the other by combining somatic mutations with CNAs over common samples. These two
networks are then combined to construct an integrated network.
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First, a binary matrix A0 is constructed in which the columns represent the paired
samples containing somatic mutations and CNAs, and the rows represent genes that
the samples have in common. Each entry in A0 is set to 1 if a mutation occurs in
the corresponding gene and sample, or if there is a statistically significant copy number
variation detected; otherwise the entry is set to 0. Genes that are mutated in the same
samples in A0 are combined into larger metagenes, and thus a new matrix A called
the mutation matrix is obtained. Another data matrix, B is built from the expression
values. Its entries are real values representing the relative expression of a given gene
in a particular sample. The following two paragraphs explain the methodologies for
constructing the Expression Network (EN) and Mutation Network (MN) from the data
matrices B and A, respectively.

Constructing the Expression Network: The Expression Network is based on the
gene expression dataset. In this network, both nodes and edges are weighted. Nodes
represent genes and their corresponding weights reflect the extent to which a mutation
in that gene affects the expression levels of other genes. Each edge weight is defined as
the absolute correlation between the expression levels of the two corresponding genes.

The definition of nodes in the EN depends on both data matrices A and B. New
sets of genes and samples are defined as: G

′
= GA ∩ GB and S

′
= SA ∩ SB, where

(GA, SA) and (GB, SB) are the sets of genes and samples in the two data matrices A and
B, respectively. For each gene gi ∈ G

′
, the corresponding samples in S

′
are classified

into two groups, based on that gene’s mutation status in A. The numbers of samples in
each group are denoted n

(1)
i and n

(2)
i . Then, for each gi, a mutation-correlated expression

vector ei =
(
e
(1)
i , e

(2)
i

)
is constructed, where e

(1)
i and e

(2)
i are defined as follows:

e
(1)
i =

{
bki : aki = 1, k ∈ S ′}

,

e
(2)
i =

{
bki : aki = 0, k ∈ S ′}

.
(2)

Here aki and bki denote the entries for the i-th gene and k-th sample in the data matrices
A and B, respectively. To determine whether there are significant differences between
the expression levels in e

(1)
i and e

(2)
i , p-values are calculated using mattest in MATLAB.

A small p-value indicates that mutations in the gene in question affect the expression
levels of other genes. Since there should be a minimum of two samples in each group for
conducting this test, the set of nodes G in the EN is defined as follows:

G =
{
gi ∈ G

′
: n

(1)
i ≥ 2, n

(2)
i ≥ 2

}
. (3)

And the weight of each node in EN is defined as follows:

fi = 1− 1

d

d∑

r=1

pr, ∀gi ∈ G (4)

where d is the total number of genes in GB and pr is the p-value calculated for gene gr
as described above. The weight uij of any edge in G is defined as the absolute Pearson
correlation between two mutation-correlated expression vectors ei and ej, among the
samples in S

′
. In the case of metagenes, node and edge weights are defined as the

averages of the corresponding values of their constituent genes.
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Constructing the Mutation Network To build the Mutation Network (MN) from
the mutation matrix A, the same gene set G is used as for the network EN. The weight
of any node (or gene), gi ∈ G is defined as follows:

hi =
mi

m
, (5)

where m is the total number of samples in A and mi is the total number of mutations
occurring in the samples of A for a particular gene gi. The weight vij of any edge between
genes (gi, gj) in MN is defined as the ratio of the number of samples in which exactly one
of the gene pair is mutated to the number of samples in which at least one of the gene
pair is mutated in A.

The Integrative Network: An integrative network M is constructed by combining
the expression network EN with the mutation network MN. It is necessary to first adjust
the weights of nodes and edges in EN and MN so that they become comparable. Two
balancing terms, ξ and η, are defined for the networks EN and MN respectively as
follows:

ξ = u
f
, η = v

h
, (6)

where f = max (fi) and u = max (uij) in EN, and h = max (hi) and v = max (vij) in
MN. Now, if F = {fi} and U = {uij} then the edge weights U and node weights ξF
are said to have balanced values in EN. Similarly, if H = {hi} and V = {vij} then the
edge weights V and node weights ηH have balanced values in MN. A relative importance
term can also be introduced to modify the relative impact of the two networks EN and
MN on the integrated network. Let k denote the relative importance of MN relative to
EN and set δ ·

(
u
v

)
= k, so δ = k · v

u
. In the remainder of this description, we set k = 1.

Thus, node weights ci and edge weights wij can be defined as follows:

wij = δ · uij + vij,
ci = δξ · fi + hi,

(7)

where, i, j = 1, ..., n. Here, n is the total number of genes in G.

An optimization model for identifying core cancer pathways: The final step of
this approach is to identify some core modules in the integrative networkM, where each
such module contains genes with both high node-weights and high edge-weights. For this
purpose, an optimization model (previously reported by Wang et al. [33]) is employed.
The optimisation problem is stated as follows:

max
∑

i

∑
j wijxixj + λcixi,

s.t. xβ1 + xβ2 + ...+ xβn = 1,
xi ≥ 0, i = 1, ..., n,

(8)

where the non-negative vector x = (x1, x2, ..., xn) contains the degrees of each node in
a particular module (sub-network). The first term in the objective function states the
inter-connectivity within the module, whereas the second term specifies the degree of
association between the nodes and the module. The role of the positive parameter λ here
is to balance these two terms [see Note 4]. In this model, the regularization constraint
over the variable x = (x1, x2, ..., xn) controls the number of nodes to be selected in the
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module and the parameter β adjusts the strength of this regularization. Here we set β=1
to find small-sized core modules.

The following iterative algorithm [33] provides an easy solution of the above opti-
mization model by finding a local maximum in the vicinity of a predetermined initial
approximate solution:

xt+1
i =

(
xti

2(WX)i + λci
2XTWX + λ

∑
i cix

t
i

) 1
β

, (9)

where W = {wij} is the n×n edge weight matrix, and X = (xt1, x
t
2, ..., x

t
n)
T

is the solution
vector at the t-th iteration. The non-zero entries in solution vector x define a particular
module (sub-network) where in practice the entries are defined as zero if they are less
than 0.1. Once a locally optimal solution is obtained, corresponding nodes are removed
from the network and the whole process is repeated again to find additional modules.

3.2 Wen et al.

The method of Wen et al. integrates DNA methylation, gene expression and protein-
protein interaction datasets to identify causal network modules in colorectal cancer [34].
The method starts with collecting a set of candidate causal genes. This collection is
the union of a set of differentially methylated genes and a common subset of known
cancer genes from DNA methylation chips, the Cancer Gene Census (CGC) [35], and
tumor associated genes in the TAG database. Employing a minimum multi-set cover
strategy due to Kim et al. [36], a gene is determined to be differentially methylated if
its comparative β value (a measurement of DNA methylation level) between tumor and
paired non-tumor samples is ≥ 0.2 [37,38].

Next, a comprehensive protein-protein interaction (PPI) network is developed in-
tegrating five curated human PPI databases: HPRD [39], BioGrid [40], IntAct [41],
MINT [42], and Reactome [43]. Only those interactions that are found in at least three of
these databases are considered. The resulting network contained 7001 nodes and 19,188
edges, where each edge e is assigned a weight calculated as follows:

w (e) = 1− |cor (x, y)| = 1−

∣∣∣∣∣∣

∑m
i=1 (xi − x) (yi − y)√∑m

i=1 (xi − x)2
√∑m

i=1 (yi − y)2

∣∣∣∣∣∣
. (10)

Here x = (x1, ..., xm) and y = (y1, ..., ym) are expression profiles of the two nodes in an
edge e, and x and y are mean values of x and y, respectively. This PPI network is further
decomposed into network modules by applying the Markov Clustering algorithm [44], but
only those modules are selected which contain at least one candidate causal gene. The
activities of each network module Mi in sample Sj are calculated as follows:

Mij =

∑
gm∈{CGC∩Mi}

∑
(gm,gn)∈E(gm)

gmj+gnk
2√∑

gm∈{CGC∩Mi}# (E (gm))
, (11)

where E (gm) is the set of edges belongs to the candidate causal gene gm in module Mi,
# (E (gm)) represents the total number of edges in E (gm), and gmj is the normalized
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gene expression value of the gene gm in sample Sj. Next, a classifier is built for selecting
the causal modules as follows:

∥∥S − Scontrol
∥∥2
2
−
∥∥S − Scase

∥∥2
2
< 0, for S ∈ Scontrol ,∥∥S − Scase

∥∥2
2
−
∥∥S − Scontrol

∥∥2
2
< 0, for S ∈ Scase ,

(12)

where S, Scontrol, Scase, Scontrol, and Scase are the sample, the set of non-tumor samples,
tumor samples, the center of non-tumor samples, and the center of tumor samples set,
respectively. These classifier conditions can be furthur simplified as follows (for details,
see supplementary texts of original article):

C · (x1, x2, ..., xk)T ≤ 0, (13)

where xi is an indicator variable having value 1 if module Mi is selected, and 0 otherwise;
and C is a matrix that is defined as a function of Mij as follows:

C :=

〈(
M1i −

M11 + ...+M1n

n

)2

, ...,

(
Mki −

Mk1 + ...+Mkn

n

)2
〉

(14)

Here, any element Cij of the above matrix C represents the contribution of the module
Mj to the ith sample condition. The objectives of this classifier are two-fold: 1) classifying
tumor and non-tumor samples, 2) identifying a small number of modules. This module
identification problem is modelled as a binary integer linear programming problem as
follows:

minx1,x2,...,xk
∑k

j=1 xj + λ
∑s

i=1

∑k
j=1Cij · xj

s.t. C · (x1, x2, ..., xk)T ≤ 0∑k
i=1 xi ≥ 1, xi = 0, 1, i ∈ {1, 2, ..., k} ,

(15)

where s is the number of samples. In this objective function, the first term encourages a
small number of modules to be found whereas the second term implies the maximization of
the classification abilities of modules by minimizing C·(x1, x2, ..., xk)T . λ is the controlling
parameter which balances the trade off between those two terms. However, this binary
integer linear programming model for module identification is computationally extensive.
Therefore, this problem is further resolved by reformulating the model to a simple linear
programming model where the binary variables xi ∈ {0, 1} are relaxed to a continuous
variables xi ∈ [0, 1]. For further detail, see Note 5.

3.3 Cerami et al.

The method of Cerami et al. [45] is an integrated approach for identifying core pathways
altered in glioblastoma. It combines sequence mutation, Copy Number Aberration (CNA)
and Protein-Protein Interaction (PPI) datasets. The first step of this method is to con-
struct a global Human Interaction Network (HIN) from literature curated data sources
only. To cover more interaction information, the HIN is constructed based on the union of
a) interactions obtained from the HPRD website (http://www.hhprd.org/) and b) vari-
ous signaling pathway databases, specifically Reactome, NCI/Nature Pathway Interaction
DB, and MSKCC Cancer Cell Map from Pathway Common (http://www.pathwaycommons.org).
Information from the last of these pathway sources was in BioPAX format, which is rep-
resented as subgraphs of biochemical networks. A set of rules was defined to map these
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subgraphs into binary interaction data. After removing all redundancies and self-directed
interactions, the HIN contained 9,264 genes and 68,111 interactions.

Sequence mutation and copy number datasets of Glioblastoma Multiforme (GBM) for
paired samples were collected from TCGA data portal (https://tcga-data.nci.nih.gov/tcga/).
Copy number aberration data was analyzed using the RAE algorithm [19] which dis-
cretizes all isoforms of autosomal genes into multiple putative aberration states, and
finds statistically aberrant regions with q-values. Next, the statistical significance of each
gene’s aberration is defined as the minimum of the q-values of all the spanning regions
over the corresponding gene’s coding locus. A set of altered genes is identified, where
a gene is defined as altered if it has a validated non-synonymous somatic nucleotide
substitution, or a homozygous deletion, or a multi-copy amplification only.

Next, a GBM-specific network was constructed in which the node set is the union of
the set of altered genes and a set of linker genes. For each gene in the altered gene set, the
corresponding neighbour genes are identified in the HIN. Neighbour genes having degree
one are trivially ignored, as they are connected to exactly one altered gene. The remaining
neighbour genes with degree ≥ 2 have the potential to connect two or more altered genes,
and are thus considered to be candidate linker genes. Only linker genes that are found
to be statistically significant by a hypergeometric test among all other candidate linker
genes are further assessed. The null hypothesis is: the linker genes connect the observed
number of altered genes in HIN only by chance. P-values from the statistical assessment of
this hypothesis are further corrected using the Benjamini-Hochberg procedure [46] giving
corresponding q-values, and the genes having q-values ≤ 0.05 are selected as a final list
of linker genes. The final network contained six linker genes connecting 66 GBM altered
genes, and their corresponding PPI interactions in the HIN.

To find network modules in the resulting GBM-specific network, the edge-betweenness
algorithm was applied. Originally proposed by Girvan and Newman [47], this algo-
rithm applies a divisive approach where at each iteration an edge with the highest edge-
betweenness score among all other edges is identified and removed from the network in
order to reveal modular structure. The edge-betweenness score of a particular edge is de-
fined as the number of shortest paths between pairs of nodes that traverse that edge [47].
More specifically, the shortest paths between all pairs of vertices are identified, and then
for each edge the number of shortest paths that include that edge is counted and con-
sidered as the edge-betweenness score for that particular edge. After each edge removal,
the edge-betweenness scores of the edges of the updated network are recalculated. (Only
those edges which are affected by the particular edge removal require recalculation of
this score.) To obtain a partition yielding the best modular structure, network modu-
larity [48] is also calculated after each edge removal. This process continues until there
are no remaining edges. The maximum network modularity score obtained during this
process indicates the optimal number of edges to be removed. The network modularity
score is defined as follows:

M =

NM∑

s=1

[
ls
L
−
(
ds
2L

)2
]
, (16)

where NM is the number of modules, ls is the number of edges within module s, L is the
total number of edges in the network, and ds is the summation of the degrees of all the
edges within module s. Modularity quantifies the fraction of network edges connecting the
nodes within modules minus the expected number of network edges obtained by forming
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random connections among the nodes within the module, subject to the same modular
divisions. A value of M close to 0 indicates that the number of within-module edges is
consistent with random formation, whereas a value close to 1 indicates stronger modular
structure. This procedure results in a set of modules extracted from the GBM-specific
network.

3.4 VToD

VToD [17] integrates Gene Expression (GE), Copy Number Aberration (CNA) and PPI
(Protein-Protein Interaction) datasets in order to find cancer related modules in glioblas-
toma and ovarian cancer patients. The GE and CNA data matrices are obtained from
TCGA data portal [28]; both are Level 3 datasets. The PPI dataset is obtained from
Cerami et al. [45]. This method provides an integrated framework that infers pair-wise re-
lationships between genes based on both data-driven and topological properties [see Note
3]. A data-driven property of a pair of genes is a correlation observed between the data
obtained for those genes. These correlations may be of three types: GE-GE, GE-CNA,
or CNA-CNA correlations. Data-driven properties also include the indirect relationships
discussed below. Topological properties are connections observed in PPI networks.

Constructing a Gene-Gene Relationship Network: The method starts with a
set of seed genes S, thought to be related to cancer progression and malignance. This
set is a union of a set of differentially expressed and a set of significantly altered genes.
Differential expression is identified using a two-tailed pooled t-test, and the corresponding
p-values are corrected using the Bonferonni correction. A set of significantly altered genes
is found by mapping gene symbols to the collected focal aberrant regions [25,26] identified
by GISTIC [18] and RAE [19] algorithms. Next, the Gene-Gene Relationship Network
(GGR), a weighted undirected network, is defined. Nodes of this network represent the
seed genes and edges represent direct or indirect pair-wise relationships among genes. The
absolute value of the Pearson correlational coefficient (PCC) is used to identify pair-wise
relationships between genes, and as a weight on each edge.

For any gene-pair (genei,genej), all three types of absolute PCC value (GE-GE, GE-
CNA and CNA-CNA) are calculated, depending on data availability. The maximum of
these is defined as the data-driven property of that particular gene-pair and termed its
r value. For the gene-pairs (genei, genei) this r value is considered to be 0. If an r value
is greater than some threshold then a direct relationship is defined for that particular gene-
pair. The gene-pairs for which a direct relationship is not found may still be connected
if an indirect relationship is identified. An indirect relationship between two particular
genes is a statistically significant simple path joining those two genes in the PPI network
[see Note 6]. To identify such statistically significant paths, the observed paths between
particular gene-pairs are compared with the path in a random PPI network, which is
generated in such a way that gene interactions are randomly assigned while the network
topology and gene expression values are the same as those in the observed PPI network.
In other words, the random PPI network has the same number of interactions (edges)
as the observed one, but the genes (nodes) of the observed PPI network are shuffled in
the random PPI network. The null hypothesis for this statistical significance test is: the
geometric mean of r values of the simple path found in random PPI network is greater
or equal to that of the observed path. In order to reduce the time complexity, a heuristic
search is applied only for those gene-pairs for which there is a connection in the PPI
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network [see Note 6]. All the simple paths between two genes with a fixed path length
are identified using a Breadth First Search (BFS) algorithm. Furthermore, only those
simple paths are selected in which all the constituent genes have either GE, or CNA, or
both datasets available. Since there can be multiple such paths found, a path P ∗ with
maximum average PPI connectivity is selected:

P ∗ = max
P

{
1

n

n∑

l=1

norm deg(genei)

}
(17)

where norm deg(genei) is the degree of connectivity for genei normalised by the global
maximum connectivity in the PPI network, and n is the number of genes along the
path. The statistical significance of the path P ∗ is measured as above, and is selected
if its corresponding p-value is bellow 0.05. For the gene-pairs for which a statistically
significant path is found, an edge is added to the GGR network, where the edge weight
is the average of all the pair-wise r values of gene-pairs along the path P ∗.

Module Detection: Next, a Voting based module detection algorithm identifies
overlapping modules in the GGR network by combining Topological and Data-driven
properties. The name of the method - VToD - is an acronym for this procedure. First, a
pairwise score (vote) is calculated for every pair {g,m} ∈ S using the following equation:

vote(g,m) =
norm deg(m)

SPL(g,m)
+ r value(g,m) (18)

where above norm deg(m) is the degree of connectivity of m normalised by the global
maximum PPI connectivity, SPL(g,m) is the shortest path length between the two
genes in the PPI network, and r value(g,m) is the relationship value calculated for the
constructed network GGR. This definition states how much vote-score a gene m can
get from another gene g, for any pair {g,m} ∈ S. Note, the vote(g,m) score in the
above equation is not a symmetrical measure because of the definition of the topological
property (norm deg(m) in above equation). A high score indicates either i) a gene-pair
{g,m} has high data-driven relationship r values, or ii) any gene g is interacting with a
gene m with a high topological value in the PPI network. Note, the shortest path length
SPL is constrained by a user-defined threshold to control the compactness of the module.
If any of the shortest paths has length above that threshold, that path is ignored.

Next, for any gene g ∈ S, corresponding vote-scores with all the genes m ∈ S (includ-
ing g) are stored in a table. Here, vote(g, g) is defined with the norm deg(g) only, since
r value(g, g) = 0, and SPL(g, g) is not defined for the PPI network as it doesn’t contain
any self-loop. Next, the table for the gene g containing vote-scores of all the genes m ∈ S
is sorted in descending order of vote-score. In that sorted table, the ranking of each gene
m is defined as its local rank. Then, in that sorted table, the cumulated vote-score from
the top-ranked vote-scores of the m (∈ S) genes is calculated. If the cumulated vote-score
of the top-ranked m gene(s) is(are) within the top k% (a user-defined threshold) of total
cumulative vote-score in that particular table (for gene g), then that(those) top-ranked m
gene(s) are considered as candidate representative gene(s) of that particular gene g. Next,
if the vote(g,m) score(s) of this(these) top-ranked m gene(s) are within top vote th% (a
user-defined threshold) of the distribution of all pair-wise vote-scores (considered as the
global rank of the gene m), then this(these) m gene(s) are finally selected as a represen-
tative gene(s) of the particular gene g. Thus, this technique makes it possible to find
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overlapping modules in the network by allowing multiple representative m genes to be
selected for a particular gene g. More importantly, this method can select a gene m ∈ S
(i.e. a hub-gene in PPI network) as a representative gene for multiple g ∈ S genes, thus
revealing a modular structure. Next, these modular structures, called ‘pre-modules’, are
formed, each with a representative gene m in the centre and aggregating all the genes g
that chose m. A pre-module is defined as the initial state of a module before merging it
with other pre-modules to get the final module. After removing redundancies and small
pre-modules (typically with ≤ 3 genes), a module merging algorithm is conducted. Two
pre-modules merge if their pair-wise members are closely connected in the PPI network
(topological property) or highly related in GGR (data-driven property). For this pur-
pose, a pair-wise merging value MV (Ci, Cj) between any two pre-modules Ci and Cj is
calculated as follows:

MV (Ci, Cj) =
IC(Ci, Cj)

ni
+

1

ni × nj
∑

gk∈Ci

∑

gl∈Cj
r value(gk, gl) (19)

where ni and nj are the sizes of two pre-modules Ci and Cj, respectively, and ni ≤ nj
(Note, here it is assumed that, Ci is bigger than Cj). Inter-connectivity IC(Ci, Cj) is a
kind of topological property relating Ci to Cj: it is the proportion of genes in Ci having
at least one PPI partner in Cj. The second term in the above equation denotes the data-
driven property for the pair Ci and Cj: it is the average of the gene-gene relationship
values over all pairs of a gene in Ci with a gene in Cj. At each iteration of the module
merging procedure, two pre-modules with the highest pair-wise merging value (calculated
using the above equation) are merged together and replaced by the newly merged module.
This merging process continues until the highest pair-wise merging value at some iteration
becomes less than some threshold merging th (for the details of this threshold selection,
see supplementary method of original article).

4 Validating cancer sub-networks

There are several ways to validate cancer modules identified by the above procedures.
Most of them involve statistical hypothesis testing and are specific to the methodology
used to identify modules. However, there are a few general techniques that can be used
to validate modules, as follows:

4.1 Topological validation

Ideally, a modular network is expected to have dense intra-module connections but sparse
inter-module connections. Therefore, proposed networks can be assessed for both high
density of connections within modules and high separability of component modules.
Equation 16 states the modularity measurement [48] which compares the connection-
density of a particular module with that of a module formed by making random con-
nections among its constituent genes. Similarly, the following equation quantifies the
separability of modules [48].

seperationScore =

NM∑

s=1

[
1−

(
2ls
ds

)2
]

(20)
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where NM is the number of modules, ls is the number of edges within module s, and ds
is the summation of the degrees of all the edges within module s. Both ‘Modularity’ and
‘Separability’ scores can be calculated using above equations (Equation 16, and Equation
20, respectively) where higher ‘Modularity’ value indicates stronger modular structure,
and higher ‘Separability’ score indicates a particular module is more easily separable from
the original network topology by deleting some edges, respectively.

4.2 Enrichment analysis

f-measure: Modules can also be validated using a quantity known as an f -measure [48].
This quantity evaluates the accuracy of identified modules by comparing them with known
reference modules such as: GO functional categories, known biological pathways, and
others. f -measure can be calculated using the following equation:

f −measure =
2× Precision×Recall
Precision+Recall

(21)

where, Precision = |M∩Fi|
|M | and Recall = |M∩Fi|

|Fi| are the true positive rate and positive
predictive value, respectively. Here, M is a particular module and Fi is a known functional
module. For example, a Module M (typically, a set of genes) is mapped to a known
functional category Fi: ‘Cell Cycle’, then the Precision and the Recall are the fractions
of genes common to both M and Fi to the size of M , and to the size of Fi, respectively.
Bigger modules will have higher Recall values, whereas smaller modules will have higher
Precision values. Therefore, the accuracy of any identified module M can be measured
by calculating the harmonic mean of these two values as f −measure.
Hypergeometric analysis: A hypergeometric test can also be used to assess modules
statistically [48]. P -values can be calculated using the hypergeometric distribution to
indicate the significance of correspondence between a module and a known functional
category.

p− value = 1−
k−1∑

i=0

((
|X|
i

)(
|V | − |X|
n− i

))

(
|V |
n

) (22)

where |V | is the total number of genes (i.e. all the genes in human genome), |X| is the
number of genes in a known functional category (such as a GO term or known pathway),
n is the number of genes in an identified module, and k is the number of genes in the
intersection of that particular module with the known functional category. Here, a low
p-value indicates that the identified module is significantly enriched in known functions
or pathways. For example, a ‘dhyper’ function in a built-in R-package called ‘stats’ can
be used to calculate p-values of the hypergeometric test [49].

5 Notes

1. In general, most of the integrative approaches that aim to find cancer related mod-
ules are based on a common hypothesis: tumors are characterised by aberrations in
specific biological modules that are critical in terms of cancer initiation and malig-
nance. There are two major steps in such methods, 1) building the network model,
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and 2) identifying modules (sub-networks). In defining gene dependencies in net-
work models, some methods rely on PPI information only [15, 45], some on data-
driven information only [32,50–52] and some on both of those properties [13, 17].

2. In any integrated approach, higher statistical significance is achieved by using paired
sample data rather than unpaired data. Moreover, pair-wise relationships between
genes obtained by integrative approaches applied to unpaired sample data may
produce false positive results [24]. Here, paired data indicates using various hetero-
geneous data types (eg. GE, CNA, methylation, miRNA) measured on the same
samples. However, appropriate data normalization and standardization techniques
are crucial to obtain correct inferences using paired data.

3. Integrating as many heterogeneous datasets as possible can improve characteriza-
tions of driver genes and cancer modules. Zhang et al. found that the integration of
three heterogeneous datasets (GE + CNA + mutation) provides additional useful
information and can produce statistically significant core modules in both glioblas-
toma and ovarian cancer compared to the integration of two heterogeneous datasets
(GE + mutation, or CNA + mutation) [32]. Similarly, Azad et al. showed that
modules found by combining topological and data-driven properties (PPI + GE +
CNA) of gene-pairs result in better functional enrichment than those found by using
only topological (PPI), or only data-driven (GE + CNA) properties [17]. Akavia
et al. reported that combining CNA and GE provides greater sensitivity for iden-
tifying RAB27A as a novel driver gene in a melanoma dataset. They also showed
that this gene would not be selected based on CNA alone [21].

4. The parameters of the iMCMC method for integrating somatic mutation, CNA and
GE datasets are set in such a way that the method can balance the influence of
different data sources on the network, and on the vertex and edge weights. [32].

5. The problem of module identification in Wen et al is formulated as a binary Integer
Linear Programming (ILP) problem, which is NP-hard. To resolve this issue, the
binary variables xi ∈ {0, 1} are relaxed to continuous variables xi ∈ [0, 1]. The
problem is then solved using a simple linear programming algorithm. To choose the
penalty parameter λ, the classification ability of the identified modules is defined
as follows:

CP = max
(
C · (x1, x2, ...., xk)T

)
(23)

where the term on the right-hand side is the maximum element of the vector. The
ILP is then solved for each value of λ between 0 and 1, in increments of 0.01, and
the value of λ that produces the smallest value of CP is selected. The justification
for this is the observation that smaller values of the elements of C · (x1, x2, ..., xk)T
indicate a greater ability to distinguish between cancer and normal samples.

6. VToD combines GE, CNA and PPI information among gene pairs to find cancer
related modules. In searching for indirect relationships among gene-pairs, VToD
considers the sub-network (with the genes for which pair-wise direct relationships
are not defined) as fully-connected. Therefore, to find a statistically significant
indirect relationship considering a set of intermediate genes is an NP-hard problem.
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This problem is solved heuristically by restricting pair-wise adjacency among gene-
pairs employing PPI information only, and converting that problem into finding a
statistically significant simple path between gene-pairs. However, a threshold for
the length of a simple path is a crucial parameter for handling time-complexity in
this regard.
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