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Abstract

This research explored the efficacy of using a Smoothed Particle Hydrodynamics (SPH) model
as a technique for predicting the motion of a floating tethered body when interacting with a
number of wave types, including a rogue wave.

First, a preliminary study established the parameter values required for the SPH model to ac-
curately represent fluid boundaries. This was done by exploring the optimal fluid boundary
representations using SPH near a free surface and an object boundary. This was followed by an
investigation on the use of a forcing region to generate surface waves.

These preliminary studies were then used to address the following research questions:

• Can SPH accurately model the interaction between surface waves and a floating tethered
body, and what is the order of magnitude of the errors?

• How accurately can SPH model a rogue wave?

• What are the physical consequences of a rogue wave impact on a floating tethered body?

The findings of the preliminary studies revealed that an SPH model yielded a high level of agree-
ment between its simulated results with actual experimental measurements, when a sufficient
resolution for particle spacing was used.

After confidence in the SPH model was obtained, it was used to model the impact of a large-
scale rogue wave on a tethered floating object (in this study, a moored ship). The mass of
the ship and the stiffness of the cables were varied to determine what effect these have on the
response of the ship to a rogue wave. Pressure sensors were placed on the ship to determine the
magnitude of the impact forces at various locations. In additional simulations, it was found that
increasing the mass of the ship also increased the risk of green water on the ship’s deck. It was
also found that the tethering cable’s stiffness had little influence in an impact since the tension
forces were an order of magnitude smaller than the buoyancy forces. Finally, the wavelength
and height of the rogue wave was varied to investigate the effect these had on the moored ship.
It was found that the ship could respond adequately to both of these changed conditions without
significant green water on the deck. These simulations indicated that SPH modelling is a viable
technique for assisting in the design of offshore vessels, with a high level of accuracy.
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Chapter 1

Introduction

Extreme ocean conditions pose significant risk to manmade offshore structures. In the Gulf
of Mexico, approximately 10 tropical storms occur each year (Landsea, 2013), subjecting the
many offshore vessels, platforms and other structures to extreme weather events, placing them
at severe risk of damage. During the year of September 2004 to September 2005, 126 offshore
structures were destroyed and another 183 were severely damaged during the hurricanes Ivan,
Katrina and Rita (Kaiser et al., 2009).

During these tropical storms, extremely large waves, called rogue waves (or freak or extreme
waves) can form. These waves can exert considerable loads on offshore structures, causing
significant damage. However, these rogue waves are not limited to tropical storms and can
seemingly appear in any weather conditions.

One such rogue wave occurred on February 14, 1982, and impacted the semi-submersible
Ocean Ranger. The vessel was drilling in the Hibernia Field (about 166 miles east of New-
foundland, Canada) when a storm linked to a major Atlantic hurricane approached. During the
stormy conditions, a rogue wave developed and impacted the vessel, causing severe damage and
flooding that ultimately led to the vessel’s capsize and loss of all 84 crew members (Kjeldsen,
1997).

More recently, an offshore drilling rig in the North Sea was damaged when a rogue wave hit
it in December 2015, leaving one person dead and two more injured (Fouche and Adomaitis,
2015). These incidents are just some of the many examples that highlight the need for thorough
and accurate design processes when building offshore structures - to ensure the safety of the
people on-board and to avoid costly economic implications.

Offshore structure design is, therefore, complex. Designers need to ensure that the vessel can
perform its primary function as well as being capable of surviving extreme conditions. How-
ever, the response of the structure to extreme conditions cannot be predicted by simple models.
This leaves the designer either over engineering the vessel or using sophisticated computational
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methods to do such modelling.

Wave impacts have traditionally been analysed by conducting experiments that use scaled mod-
els. This process involves manufacturing a scale prototype of a structure and testing it in a
wave-making facility to ensure that its design will survive conditions representative of those it
would face in the ocean. Provided that the correct scaling was accurate for the key parameters
(particularly the Froude number), the experimental analysis provided a good representation of
the design’s ability to withstand ocean conditions in the actual structure.

The traditional experimental procedure involves a number of design iterations by building scale
prototypes and testing each one. These iterations optimise the design and prevents the structure
from being over-engineered, and thus more costly to build. However, after a number of itera-
tions the financial and time cost of additional prototypes can outweigh the savings the improved
design offers. Consequently, a small number of iterations is preferred.

The complementary approach to experimental methodology is to use Computational Fluid Dy-
namics (CFD) simulations. This can predict loadings that can be then used in Finite Element
Analysis (FEA) software. With computational power rapidly improving and becoming cheaper
each year, simulations are becoming more viable as a design technique. Simulations enable de-
signers to test many iterations without the need for expensive prototype construction. They also
avoid the need for intrusive measurement equipment, and measurements can be made anywhere
on the model. A simulation tool capable of modelling rogue wave impacts on a floating vessel,
therefore, would be a valuable asset to offshore structure designers.

However, the non-linear nature and potential for wave-breaking, render simple computational
techniques that model surface elevation, such as the Shallow Wave equations, inadequate. Thus
a method that fully models the fluid domain is required. The problem is further complicated by
the interaction of the free surface with a free moving dynamic object. The modelling technique
needs to be able to handle these complex fluid boundary deformations as the waves impact on
the floating object.

Many traditional computational methods rely on representing the fluid domain with a mesh
(commonly called mesh-based models); however, the generation of the mesh is computationally
expensive, so it is not well suited to constantly deforming domains. Consequently, methods that
are capable of modelling deforming domains without the need for traditional mesh computa-
tions are ideal. The Smoothed Particle Hydrodynamics (SPH) technique is capable of modelling
these scenarios.

One of the strengths of the SPH model is the natural modelling of fluid boundaries. The tech-
nique has been utilised for modelling dam-breaking problems (Cummins et al., 2012), sloshing
problems (Souto-Iglesias et al., 2006), breaking surface waves (Khayyer et al., 2008, 2009), and
many others (Doring et al., 2004; Bouscasse et al., 2013; Bašić et al., 2014). This is due to its
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meshless Lagrangian formulation that inherently models the fluid boundaries without the need
for any special treatment or remeshing (which a traditional mesh-based model would require).
However, the use of SPH to model rogue waves is limited to a small number of studies and each
has its limitations.

Campbell and Vignjevic (2012) modelled a large wave interaction with a floating buoy, but their
simulations did not agree with the experimental results. Rudman and Cleary (2013) modelled
a large wave, which they described as a rogue wave, that impacted on a Tension-Leg Platform;
however, their method of generating the wave was unrealistic.

Presently, it is unknown how well SPH is able to accurately model a rogue wave impact on a
floating vessel. Additionally, there is substantial debate in the oceanography community about
how rogue waves are generated, and many theories have been proposed (Laird, 2006). One the-
ory claims “that rogue waves could be related to [solutions] of the underlying evolution equa-
tions” (Chabchoub et al., 2011, p. 1), which can be modelled by the Non-Linear Schrödinger
equations (NLS). These equations have successfully been used to experimentally model rogue
waves (Karjanto and Van Groesen, 2010; Chabchoub et al., 2012a, b). The NLS equations
model the surface elevation of the sea state so they cannot be directly used to model the im-
pact of the wave on a vessel. However, they can be coupled with the SPH model to model the
generation of a representative rogue wave that then impacts the vessel.

This thesis describes a sequence of studies aimed at verifying the use of SPH in modelling
both wave interactions with a floating tethered object, as well as the modelling of a rogue wave
and its impact on a floating tethered object. A review of the current literature in wave models
(particularly rogue waves), numerical studies of wave impacts, and of SPH will demonstrate the
need for validation of the SPH model in modelling rogue wave impacts. Physical experiments
performed in the Monash University Wave Tank will be used to provide data of two cases:
wave interactions with a floating tethered body, and the generation of rogue waves using the
NLS to describe the generation mechanism. The data from these experimental cases will then
be used to determine the capabilities and requirements for SPH to accurately model these cases.
The SPH model will be used to model a tethered vessel when it is impacted by a rogue wave,
again described by the NLS, under a number of different design conditions. The results of these
simulations will answer the question of how well the SPH model is able to model rogue wave
impacts on a floating vessel. They will also provide guidance on the conditions and parameters
required to ensure that the results of the simulations are valid.
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Chapter 2

Literature review

2.1 Rogue waves

Rogue waves, also known as extreme or freak waves, are giant ocean waves that often occur
unexpectedly and have been observed in water of any depth. In contrast to tsunamis, where the
generation mechanism is well understood (Haugen et al., 2005), oceanographers are uncertain as
to how rogue waves are formed. Rogue waves are non-linear in nature, and often break, making
analysis of their generation and their effects difficult to assess in a purely theoretical manner.
They are therefore typically analysed using small-scale experimental work or by numerical
simulations.

Different definitions of rogue waves have been used in a number of studies; however, it is
generally considered that the ratio between the rogue wave height (H), measured from peak to
trough, and the significant wave height (Hs), H ′ = H/Hs, should be greater than a specific
value. In a particular sea state, the significant wave height was defined as the mean wave height
of the largest third of waves (with individual wave heights measured from crest to trough).
However, there is little agreement in the literature of what value of H ′ constitutes a rogue wave.
Faulkner (2000) suggested that a rogue wave should be defined by having H ′ ≥ 2.4, while
Clauss (2002) used H ′ ≥ 2 as their definition. Wolfram et al. (2000) defined rogue waves as
having H ′ ≥ 2.3 but also added the condition that a rogue wave should be 50% steeper than
the significant steepness of the sea state (defined similarly to the significant wave height). The
value of steepness used in Wolfram et al. (2000) was defined as the gradient of the wave face.
Recently, however, the wave crest criteria, Hcrest > 1.3Hs, has become the favoured definition
in the rogue wave community (Fernandez et al., 2016).
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Figure 2.1: Measured wave elevation during the Draupner (or New Year wave) wave, seen at
approximately 260 seconds. Reprinted from Clauss (2002), with permission from Elsevier.

2.1.1 Observations of rogue waves

Draper (1964, 1971) provided accounts of a number of rogue wave observations by sailors. One
such account was the Weather Reporter that recorded a wave on September 12, 1961, which
exceeded the measurement capabilities of 60 ft (18.3 m). The wave was later (conservatively)
estimated to measure 67 ft (20.4 m) from crest to trough.

Faulkner and Buckley (1997) described substantial damage to the liners RMS Queen Mary and
RMS Queen Elizabeth caused by rogue waves in 1942 and 1943 respectively. While transporting
United States troops from New York to Great Britain, RMS Queen Mary was on the brink of
capsizing after it reportedly encountered a steep rogue wave in the north east Atlantic. RMS

Queen Elizabeth was hit by a breaking rogue wave after it had dipped in the trough that preceded
this wave, and was then hit by a second wave. The impact broke the bridge windows that was 90
ft (27.5 m) above the normal water level and caused significant damage to the foredeck. While
these waves were not measured, and cannot be confirmed to be rogue waves, their heights were
greatly beyond those expected to be encountered, even in stormy conditions.

In 1982, a rogue wave in rough seas struck the semi-submersible Ocean Ranger (Kjeldsen,
1997). The rogue wave damaged a portlight and flooded the ballast control room, which was
located 8.5 metres above the mean sea level. With the portlight compromised, the subsequent
waves were able to cause further flooding to the control room, leading to the eventual sinking
of the vessel.

It was not until January 1, 1995, that a rogue wave was detected by a measuring instrument
for the first time, with a wave height of almost 26 metres (Haver and Andersen, 2000). This
rogue wave impacted the Draupner platform in the North Sea off the coast of Norway, causing
substantial damage to the platform. The wave has since come to be known as the Draupner
wave or New Year wave. The wave elevation record is shown in Figure 2.1, with the rogue
wave event occurring at approximately 260 seconds.

In December 2000, the European Union launched the MaxWAVE project to investigate ship and
platform accidents due to severe weather conditions, and to suggest improved design and safety
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measures. Rosenthal and Lehner (2005) and Lehner and Rosenthal (2006) stated, on pages 2
and 754 respectively, that “the main tasks performed within the project were

• to confirm the existence of rogue waves and their risk of an encounter. Existing mea-
surements and hindcast modelling were used to better understand the shape and impacts
of extreme waves during ship/offshore accidents. Modern measurement techniques were
employed to recognise extreme individual waves and their regional probability of occur-
rence;

• to implement the improved knowledge of freak waves to modern ship design, by involving
the two marine communities of marine design and oceanography;

• to develop forecast criteria for rogue waves with the aid of physical, mathematical, sta-
tistical and deterministic wave model tests and by that, to improve security for human
life;

• to disseminate and exploit the project results by the project members, covering the ma-
rine design/operation side, the wave science community, system providers and certifying
institutions.”

The project utilised data from the European Space Agency’s satellites, and identified more than
ten individual rogue waves in a three week period. This result not only confirmed the exis-
tence of rogue waves, but also indicated that rogue waves occurred more often than previously
thought. However, neither paper by Lehner and Rosenthal discussed the results in terms of the
other goals of the project. Instead they stated that a large step had been taken by the MaxWAVE
project in developing a warning criterion against rogue waves for offshore structures (Rosenthal
and Lehner, 2005).

2.1.2 Theories of generation

In order to effectively model rogue waves, either experimentally or numerically, an understand-
ing of the generation mechanism is necessary to ensure that accurate models are developed.
Laird (2006) outlined three theories of rogue wave generation:

1. constructive interference in a linear superposition of many small waves;

2. the interaction between strong current and an opposing wind field; and,

3. current focusing.

At the time of Laird’s thesis, most attention had been given to the current focusing theory that
was first suggested by Peregrine (1976). White and Fornberg (1998) summarised this theory
as “in areas of strong current, such as the Agulhas, abnormally large waves could be produced
when wave action is concentrated by refraction into a caustic region” (p. 113). That is, the
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refraction of waves over a long distance can result in local focusing of wave energy to create a
giant peak or trough. White and Fornberg (1998) showed that the theory accurately described
the distribution of focus points. This demonstrated that the theory could be used to explain the
formation of rogue waves in regions of strong current.

In other regions where strong currents did not occur, linear superposition was the most widely
accepted theory. Theoretical techniques for predicting wave amplitudes, particularly rogue
waves, from superposition are discussed in Baldock et al. (1996), Kharif and Pelinovsky (2003)
(2003), and Kharif et al. (2009). However, non-linearities or breaking were known to influence
the actual amplitudes, and this caused them to differ from those predicted by linear superposi-
tion.

Another theory, suggested by Henderson et al. (1999), was that the excitation of breather-like
solutions of the NLS could trigger the formation of rogue waves. This theory was supported by
several studies (Osborne et al., 2000; Calini and Schober, 2002; Karjanto, 2006; Schober, 2006)
and has become a commonly proposed mechanism for rogue wave generation.

The Peregrine breather solutions (Peregrine, 1983; Akhmedieva et al., 1985) to the NLS have
been used experimentally to model rogue waves. Karjanto and Van Groesen (2010); Chabchoub
et al. (2011); Onorato et al. (2013a) all found that the resulting rogue waves closely resembled
the measurements in the real ocean. However, modulation instability (the underlying generation
mechanism modelled by the breather solution of the NLS (Benjamin and Feir, 1967)), has been
shown not to be relevant for real ocean rogue waves (Fedele et al., 2016). Despite this, the
Peregrine breather wave theory remains a satisfactory model because the rogue waves produced
are representative of real rogue waves (Onorato et al., 2013a). Since this study will be concerned
with modelling rogue waves, rather than the fundamental generation mechanisms, the Peregrine
breather wave theory is used with confidence that the model waves produced are representative
of actual rogue waves.

2.1.3 Peregrine breather wave theory

The NLS are a non-linear variant of the Schrödinger equation for describing classical and quan-
tum mechanics. Unlike the original Schrödinger equation, they do not describe quantum states.
Peregrine (1983) presented explicit solutions for the NLS, concluding that they provided ac-
curate representations of wave groups, and could produce rogue waves with H ′ and Hcrest

values as large as 3 and 1.5 respectively, satisfying both rogue wave conditions described in
Section 2.1.

To describe the evolution of a rogue wave, the NLS (Zakharov, 1968) can be written as

i

(
∂a

∂t
+

ω0

2k0

∂a

∂x

)
− ω0

8k2
0

∂2a

∂x2
− ω0k

2
0

2
|a|2 a = 0 (2.1)
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where ω0 and k0 denote the angular frequency and wave number of the carrier wave respec-
tively, i =

√
−1, and a is the mean-to-peak amplitude. Often it is more convenient to use the

dimensionless form of the NLS:

iψT + ψXX + 2 |ψ|2 ψ = 0 (2.2)

which is obtained from Eq. (2.1) by rescaling the variables:

T = − |ψ0|2
ω0

8
t, X =

(
xk0 −

ω

2
t
)
|ψ0| , ψ0 =

√
2k0a0 (2.3)

Using these rescaled variables, Eq. (2.2) can be solved to give a class of solutions that satisfy
the conditions for a rogue wave. The jth order solution, also known as the jth Akhmediev-
Peregrine solution, is written in the general form

ψj (X,T ) = a0

[
(−1)j +

Gj + iHj

Dj

]
e2iT (2.4)

where Gj , Hj , and Dj are polynomials of X and T . The function ψj describes the amplitude
and phase dynamics of the rogue wave and the amplitude amplification of the rogue wave is
2j + 1. For j = 1 the polynomials are (Peregrine, 1983)

G1(X,T ) = 4, H1 = 16T, D = 1 + 4X2 + 16T 2 (2.5)

and for j = 2 they are (Akhmedieva et al., 1985)

G2(X,T ) = 3/4−
(
X2 + 4T 2 + 0.75

) (
X2 + 20T 2 + 3/4

)
(2.6a)

H2(X,T ) = 2T
(

3X2 − 4T 2 − 2
(
X2 + 4T 2

)2 − 15/8
)

(2.6b)

D2(X,T ) =
(X2 + 4T 2)

3

3
+

(X2 − 12T 2)
2

4
+

3 (12X + 176T 2 + 1)

64
(2.6c)

These solutions generate a rogue wave that has maximum amplitude at x = 0 when t = 0. The
surface elevation η is given by:

η(x, t) = Real
{
ψje

i(k0x−ω0t)
}

(2.7)

The complex phase dynamics of ψj results in a phase shift in η. In practice, this causes the wave
envelope to grow at X = 0, borrowing energy from the surrounding waves, until the peak rogue
wave occurs at T = 0. After which, the extra energy is dispersed back to the surrounding waves.
This is shown in Figure 2.2. The shape of the wave envelope over time appears to “breathe in”
to form the rogue wave, and then “breathe out” after the rogue wave, giving rise to the “breather
wave” name.
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Figure 2.2: The envelope for a Peregrine breather wave of first order.

2.2 Previous studies on the generation and prediction of
rogue waves

Rogue waves have been studied using physical experiments, as well as with numerical simula-
tions. A number of experimental studies in which rogue waves were generated have been per-
formed by Clauss and colleagues, who used a wave maker-feedback system to generate rogue
waves in their wave tanks (Clauss, 2002; Clauss et al., 2003; Clauss and Schmittner, 2007;
Fonseca et al., 2010). They used two wave tanks to perform their experiments: a small wave
tank (15 m length, 0.3m width, 0.4 m water depth) with a paddle wave maker, and a large wave
tank (80 m length, 4 m width, 1.5 m depth) with a piston type wave maker. They were able to
demonstrate that a rogue wave could be generated using the wave superposition technique. The
wave could then be used to experimentally analyse the interaction of a rogue wave on a scale
model (Clauss, 2002). This experimental technique was able to generate data for the interac-
tions of a rogue wave with a floating production, storage and offloading (FPSO) unit (Fonseca
et al., 2010). Fonseca et al. (2010) found that the interaction could be numerically modelled
with an adequate degree of accuracy using an unspecified in-house code.

The NLS have been used to experimentally model a number of Peregrine-type breather rogue
waves, initially observed in the field of optics (Kibler et al., 2010), and then for surface waves
(Chabchoub et al., 2011, 2012a, b, 2015). In Chabchoub et al. (2011), a first order Peregrine
breather wave was observed – this had previously only been observed in optical fibres and not
in surface waves. Their 2012b paper reported on experimentally modelled Peregrine waves up
to the fifth order, where the rogue wave height was eleven times larger than the wave height
of the carrier wave. Perić et al. (2015) also used the NLS method to model breaking first
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order Peregrine waves (the critical steepness factor of 0.15 was exceeded in these cases). They
compared these to simulations using a 2D Volume of Fluid (VOF) method. The simulation
and experimental results agreed remarkably well, but they reported that the simulations took 4
weeks to complete when running parallel on a 16 core cluster.

The experimental setup of Clauss (2002) was used to generate Peregrine breather type rogue
waves by Onorato et al. (2013a). In their experiments, they subjected a scale model of a chem-
ical tanker to a first order Peregrine wave in a sea state equivalent to 10 m wave heights and a
rogue wave of nearly 30 metres. The results provided valuable insight into the impact of a rogue
wave on a ship. Furthermore, they showed that using NLS breather solitons was an appropriate
method for studying the impact of a rogue wave. Numerical simulations of Peregrine breather
waves were also performed by Ten and Tomita (2006), who used a Boundary Element Method
to model the waves in a numerical wave tank with a high degree of accuracy. They then used
the numerical method to study the interaction between the breather waves and random waves,
comparing it to the interaction between a soliton and random waves. They concluded that the
interaction of the breathers and random waves produced some rogue waves, while the solitons
passed through the irregular waves with minimal effect on the soliton envelope profile.

Rogue waves were also generated in a numerical wave tank using a focused wave approach by
Fochesato et al. (2007). They used a 3D fully non-linear potential flow model (Brandini and
Grilli, 2001; Grilli et al., 2001) that was based on a high-order boundary element method. Un-
like Higher Order Spectral (HOS) or Bousinesq models, their model did not break down when
the wave overturned. A snake piston wave maker was used to create waves along the piston
that would focus at a point to create a single large focused wave. In their study, a comparison
with Stokes waves of identical height and wavelength was performed. It was found that the
Stokes wave predictions of wave kinematics were less accurate than their method. As Stokes
waves were often used to predict rogue waves in the offshore industry, these findings may lead
to more accurate methods being adopted and thus improving the design procedures of offshore
structures (Corte and Grilli, 2006).

Rogue wave kinematics can also be modelled using a double Fourier series solution, as was
shown by Smith and Swan (2002). The method was proposed by Baldock and Swan (1994) and
was used by Smith and Swan to model rogue waves, which were then compared to laboratory
data. Their findings showed that the method was able to accurately model rogue waves. They
then compared the double Fourier series method to a number of known solutions, including
Stokes 5th order solutions and linear random wave theory, finding the method provided more
accurate predictions of wave kinematics. Using the method, they established that the nonlinear
wave-wave interactions were important, and that the waves were highly dependent on the depth.

The HOS technique, originally proposed by West et al. (1987) and Dommermuth and Yue
(1987), was also used by Ducrozet et al. (2007) to predict the grouping of rogue waves in
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a sea state. They were able to numerically produce a large number of 2D rogue waves. They
found that certain locations were subjected to multiple rogue wave events while others observed
few or no rogue waves. While the method is promising for developing a generation theory for
rogue waves, it is less practical for modelling an object floating on the surface, as the object
will disrupt the potential function used.

Schellin et al. (2011) showed that a Reynolds-Averaged Navier-Stokes based numerical model
could be used for analysing rogue waves, particularly in load analysis. They used an undisclosed
mesh-based CFD technique (which solved the Reynolds-Averaged Navier-Stokes equations)
to simulate a rogue wave impacting on a Jack-Up platform. They found that the technique
predicted overturning moments when the platform was subject to critical wave impact loads.
Their results were verified against the experimental studies reported by El Moctar et al. (2004)
and Schellin and El Moctar (2007). The method was reported to achieve accurate predictions
of wave loads from a rogue wave, and in very reasonable time frames. However, it should be
noted that the Jack-Up platform model was assumed to remain rigid, since pillars attached it
to the ocean floor, so there was no domain deformation. For a floating platform that is able to
move, the method may not be appropriate and may require significant modifications.

Westphalen et al. (2012) investigated the stability of two numerical techniques for modelling
rogue waves: a finite volume method and a control volume finite element method. They studied
the capabilities of each technique in modelling wave-wave interactions, and wave interactions
with a horizontal or vertical cylinder, comparing the model projections to experimental mea-
surements in each case. Both numerical methods were able to accurately model the surface
elevations of the waves, as well as the forces on the cylinders. The researchers drew no conclu-
sions about which method was superior; rather they stated that the methods were powerful tools
for design, especially when run in parallel, and were able to predict highly non-linear wave
interactions.

Zhao and Hu (2012) and Zhao et al. (2014) developed a 2D Constrained Interpolation Profile
(CIP)-based method for modelling a rogue wave impact on a floating structure, and experimen-
tally validated their code. In the experiments, they observed an inverted T-shaped object with 3
degrees of freedom under the impact of a rogue wave. They replicated the experiment numer-
ically in 2D, finding that the CIP-based method was able to model the impact with reasonable
accuracy.

Birkholz et al. (2015) sought to study the predictability of rogue wave events to determine if an
advanced warning model could be developed. They analysed time series data for a number of
observed rogue wave events in optics, and in the ocean. Firstly, they looked at the spatial profile
of a laser beam reported by Birkholz et al. (2013) and then a rogue wave measured at the output
of a fiber supercontinuum (Solli et al., 2012). Finally, they analysed surface height recordings
by the Draupner oil platform on January 1 and January 19 in 1995 (Haver and Karunakaran,
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1998; Haver, 2004). They found “the predictability of rogue waves is [limited] and may only
suffice for last-second warnings” (p. 4).

The studies discussed here highlight that generating a rogue wave for anaylsis purposes is within
the capabilities of researchers. However, the impact of a rogue wave on a floating object has
only been performed experimentally, or in 2D simulations. To study these rogue wave impacts
numerically, the numerical techniques presented here need to be improved, or an alternative
modelling technique needs to be developed.

A number of numerical studies of rogue waves have been performed; however, modelling a
deforming boundary, such as a breaking free surface or when an object moves through the do-
main, is still a challenging problem that occurs when studying rogue wave impacts. One method
that is able to model the wave and boundary interactions is Smoothed Particle Hydrodynamics
(SPH).

2.3 Smoothed Particle Hydrodynamics (SPH)

SPH is a meshless Lagrangian method that models problems using moving interpolation points,
called particles. These particles are able to move separately from each other so they can be used
to naturally model complex boundary deformations. The method was first proposed by Gingold
and Monaghan (1977) for modelling astrophysical problems. Monaghan (1994) then adapted
SPH for use in fluid dynamics studies. An overview of this method is presented here.

2.3.1 Equations of motion for SPH

The formulation of SPH (Monaghan, 2005; Cummins et al., 2012) begins with the Dirac delta
identity:

f (r) =

∫
Ω

f (r′) δ (r − r′) dr′ (2.8)

where f(r) is a function of the position vector r, and δ(r − r′) is the Dirac delta function. If
the function f represents a property of the fluid, then this identity can be used to interpolate
a continuous fluid from the particles. However, since SPH is a discrete method, this identity
cannot be used for such a purpose. Replacing δ with a smoothing function approximation,
W (r − r′, h), where h is the support dimension, or smoothing length, then Eq. (2.8) becomes:

f (r) ≈
∫

Ω

f (r′)W (r − r′, h) dr′ (2.9)

The functionW is usually chosen to be an even function and it is required to satisfy a number of
conditions: the unity condition, the Delta function property, and the compact condition. These
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conditions are expressed as:∫
Ω

W (r − r′) dr′ = 1 (2.10a)

lim
h→0

W (r − r′, h) = δ (r − r′) (2.10b)

W (r − r′, h) = 0 when |r − r′| > 2h (2.10c)

A problem arises with Eq. (2.9) in that it requires the property function f to be known over the
entire support region of W (where W is non-zero). Since SPH uses particles to represent the
fluid, the function f is known only at the discrete particle locations. If the sub-domain around a
particle j (denoted Ωj) is considered, the function f (r′) and W (r − r′, h) can be replaced by
fj = f(rj) and W (r − rj, h) over the entire sub-domain. If this is done for the sub-domains
around all of the particles then Eq. (2.9) becomes

f (r) ≈
∑
j

∫
Ωj

fjW (r − rj, h) dr′

=
∑
j

fjW (r − rj, h)

∫
Ωj

dr′

=
∑
j

VjfjW (r − rj, h) (2.11)

where Vj is the volume represented by particle j. The volume is calculated from the mass and
density, Vj = mj/ρj , giving the value of the property function as

f (r) =
∑
j

mj

ρj
fjW (r − rj, h) (2.12)

Note that the approximation notation has been dropped in Eq. (2.12). The gradient of the prop-
erty f can be approximated by taking the gradient of Eq. (2.12), yielding:

∇f (r) =
∑
j

mj

ρj
fj∇W (r − rj, h) (2.13)

A number of kernels are available, but in this project the Wendland (1995) kernel will be used.
Preliminary simulations using other kernels showed that “particle clumping” occasionally oc-
curred where two particles would move close together (within 0.5δx) and remain close for long
periods of time. It has been reported that the Wendland kernel eliminates this particle clumping
(Capone et al., 2007; Robinson, 2009). The Wendland kernel is defined as:

W (r − r′, h) =
7

85.336πh3


(

2− r

h

)4
(

1 +
2r

h

)
r

h
≤ 2

0
r

h
> 2

(2.14)
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where r = |r − r′|, h = hfδx, δx is the mean particle separation, and hf = 1.2 is used in this
study based on the results of Cummins et al. (2012).

In a fluid free surface, a density discontinuity exists at the free surface in reality. However,
using Eq. (2.12) to update the density of a particle in the simulations would lead to a smoothed
density that drops from the fluid density to zero across the interface. To avoid this, Monaghan
(1994) instead used a mass continuity equation (written in SPH as Eq. (2.15c)) in the equations
of motion:

dri
dt

= (1− ε)vi + ε
∑
j

mj

ρj
vjW (ri − rj, h) (2.15a)

dvi
dt

= Fi −
∑
j

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

+ Πij

)
∇W (ri − rj, h) (2.15b)

dρi
dt

=
∑
j

mj(vi − vj) · ∇W (ri − rj, h) (2.15c)

where 0 ≤ ε ≤ 1 is the XSPH term introduced by Monaghan (1992). This keeps the particles
orderly in the absence of viscosity and is chosen as 0.5 in this research. Fi is the sum of the
external forces on particle i, Pi is the pressure of particle i, and Πij is the viscous term given by

Πij =
ξ

ρiρj
· 4µiµj
µi + µj

· (vi − vj) · (ri − rj)

|ri − rj|2 + β2
(2.16)

where ξ = 5.75 for the Wendland kernel, and β is a small parameter that ensures singularities
are avoided when |ri − rj| = 0 (typically β = 0.01δx). The pressure terms (Pi and Pj) in
Eq. (2.15b) are given by the weakly compressible equation of state:

Pi = P0

[(
ρi
ρ0

)γ
− 1

]
(2.17)

where γ is chosen to equal 7 (Cleary, 1998), ρ0 is the reference density (chosen as 1000 kg/m3

for water), and P0 is the overall dynamic pressure scale given by

γP0

ρ0

= c2
s (2.18)

where cs is the speed of sound. The value of the speed of sound also influences the time step by

δt =
CFL · h
cs + 2εµ

hρ

(2.19)
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where CFL is the Courant-Friedrichs-Lewy condition, chosen to be 0.5 (Cummins et al., 2012).
The speed of sound in Eq. (2.18) is chosen to be at least ten times larger than the maximum
characteristic speed in the simulation, ensuring that the relative density fluctuations are small
(< 1%) and the fluid is close to incompressible (Monaghan, 1994).

2.3.2 Studies of deforming fluid free surfaces using SPH

The SPH technique has been used by a number of researchers for analysing wave motions. For
example, Lo and Shao (2002) simulated a solitary wave running up onto a shoreline using the
SPH technique, coupled with a turbulence model based on the Smagorinsky (1963) eddy viscos-
ity. They reported adequate results prior to wave break, though they stated that the turbulence
model required further improvements.

SPH has also been used to simulate fluid-structure interactions by Doring et al. (2004) and
Oger et al. (2006), who performed a number of water entry simulations of various shapes.
Their simulations gave good agreement with experimental results and they concluded that SPH
was able to satisfactorily model their water entry tests. The technique has also been used for
modelling sloshing inside a tank (Souto-Iglesias et al., 2006), as well as dam-break impacts
(Cummins et al., 2012). All of these studies demonstrate the ability of SPH to model complex
free surface profiles, even when the wave or surface is interacting with an obstacle or moving
body.

The Monaghan method is also referred to as the “Weakly Compressible SPH” method since
small variations in the fluid density are permitted. A fully incompressible version of the SPH
method, called Incompressible SPH (ISPH), was proposed by Cummins and Rudman (1999).
They found that the ISPH method modelled incompressible flows more accurately and effi-
ciently than the SPH method. However, they found error accumulation in the density field due
to the angular momentum not being conserved, which limited the viability of their version of
the ISPH method.

Despite this, the ISPH method was used by Khayyer et al. (2008) to model the water surface in
breaking waves. In their method, they revised the formulation of viscosity to conserve angular
momentum exactly, and they used a correction matrix to guarantee that the gradient of the
velocity field was correct. They found that the new technique was able to more accurately
model the water surface during a number of different breaking waves than previous iterations of
the ISPH method. The technique with revised viscosity formulation was then used by Khayyer
et al. (2009) to model the pressures during a number of wave impacts. They found that their
variant of the SPH technique could accurately predict the pressure during a wave impact on
vertical walls. This technique was again used by Gotoh et al. (2014) to model violent sloshing
flows, and they found that the conservation of angular momentum enhancements made to the
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ISPH method produced more accurate predictions of the sloshing induced impact pressures.

Sloshing problems have also been investigated by Rafiee et al. (2012), who compared the normal
SPH method, ISPH, and a Gogunov-type SPH method (GSPH). In their study, they compared
three SPH methods to experimental results and demonstrated the capabilities of the methods to
predict the impact pressures during sloshing. The SPH and ISPH methods were shown to pos-
sess significant high-frequency oscillations, however the SPH method possessed significantly
more noise. In contrast, the GSPH method had considerably less noise in the measured pres-
sures, but the peak force was under-predicted by 30% to 40%. They also performed a con-
vergence study on the three methods, finding that the GSPH method possessed the greatest
convergence rate. However, in their report, they did not make any general recommendations
from this finding.

SPH has also been used to model green water effects and ship flooding by Le Touzé et al.
(2010). In their study, they observed the green water effects on a scale model FPSO (length
3.5156 m, width 0.7188 m, weight 649 kg) with a series of waves, and compared the deck water
height predicted from both 2D and 3D SPH to an experimental case (Yang et al., 2007). The
ship’s motion in simulations was prescribed to match the recorded motion in the experiments.
In 2D, the predicted deck water height was comparable to that observed in the experiments;
however, in 3D, the water height was predicted to be up to a factor of 2 times larger than in
the experiments. The researchers attributed this discrepancy to the 50% larger particle spacing
used in the 3D simulation. In addition to this error, it was likely that the prescribed ship’s
motion would differ from how the ship would respond if its motion were allowed to respond
to a dynamic sea state. Furthermore, the draught of the ship was 77% of the ship’s moulded
depth. This is much larger than the typical draught for an FPSO, and consequently, this ship
was highly susceptible to green water effects.

Researchers at the Ecole Centrale de Nantes have been working on models using SPH (Shadloo
et al., 2015). Of particular note is the work of Guilcher et al. (2013) on modelling the impact
of breaking waves on a rigid wall. Guilcher and colleagues found that these types of violent
impacts often induce large forces on the wall or structure due to air entrapment or cavitation
effects, both of which can be difficult to numerically model. In their work, they found that a
two-phase fluid compressible SPH model was able to reasonably estimate the forces due to the
breaking wave impact. Le Touzé et al. (2013) investigated the pressure distributions in the stan-
dard SPH model, finding that the commonly reported high-frequency pressure oscillations were
linked to the fluid domain eigenfrequencies. To reduce these pressure oscillations they imple-
mented a higher order SPH model, which yielded improvements in the pressure field accuracy,
but also increased the CPU costs and the conservation of energy was no longer intrinsically
guaranteed.

Rogue waves have also been studied using SPH in a small number of studies. Patel et al.
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(2009) and Campbell and Vignjevic (2012) utilised the SPH technique for studying the effect of
rogue waves on structures in the ocean. Both studies reported on a number of validation tests
involving object equilibrium orientation and rising cylinder cases. In each case comparing their
results to the Volume of Fluid numerical results presented in Fekken (2004). They showed that
the simulations were able to predict the overall equilibrium position of the objects; however,
the errors in the amplitudes and periods of oscillation were not discussed. Additionally, the
researchers of both studies discussed an impacting case of a helicopter sub-floor structure on
a body of water. The results of which were significantly different to experimental data. The
researchers explained that direct comparisons were difficult as the experimental model was not
fully rigid, and that air was not modelled in the simulations. They explained that the differences
they observed were consistent with the behaviour observed in other studies, citing the thesis
of de Vuyst (2003) for justification; however, more accurate simulations are required before
confidence in their method can be achieved.

The application of the rogue waves are where the papers of Patel et al. (2009) and Campbell
and Vignjevic (2012) differed. Patel et al. (2009) simulated a rogue wave impact on a simplified
ocean tanker, reporting that the SPH technique had potential for determining ship performance
under the effect of rogue waves or high wave sea states. Campbell and Vignjevic (2012) anal-
ysed the impact of a rogue wave on a buoy that was moored to the sea bed. They reported that
the SPH technique could be extended to model the wave loading of floating structures under
extreme waves. Both the Patel et al. (2009) and Campbell and Vignjevic (2012) studies were
limited to a single processor as their solver method was not implemented for parallel process-
ing. Consequently, the resolution in their studies was restricted so the simulations could be
completed without excessive runtimes. At such coarse resolutions, it was difficult to determine
whether the poor results were due to the SPH technique or to the coarse resolution.

Rudman and Cleary (2013, 2016) also performed an analysis of a rogue wave impact on a
Tension Leg Platform (TLP). The results they obtained highlighted the potential for SPH to
be utilised in platform design. However, to generate their rogue wave they used a momentum
source that moved through the domain at a prescribed speed, and was then switched off shortly
before the TLP. This resulted in a released bulk of water impacting the TLP which is not rep-
resentative of a real wave. The subsequent platform motions did appear to be well predicted,
and information on the motion and mooring cable tensions were obtained. However, due to the
unrealistic wave used, caution must be taken when using these results.

The studies of SPH presented in this chapter highlight a key strength of the method: that SPH
is capable of modelling complex free surfaces, as well as fluid interactions with moving bound-
aries and objects. When studying a rogue wave impact on a floating tethered body, both the
free surface and its interaction with a potentially moving boundary are important. Therefore,
SPH is a promising method for accurately modelling these kinds of impacts. However, the SPH
method has not specifically been verified for modelling a rogue wave. Since these waves are
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complex in nature, it is important to ensure that they can be modelled accurately. Furthermore,
the study of a floating object interacting with a free surface using SPH has only been verified
to be accurate for 2D flows, and not 3D flows. When designing a vessel or offshore structure
to survive a rogue wave impact, a 2D interaction would not be sufficient. As such, the SPH
method needs to be verified for 3D interactions.

2.4 Summary and research questions

From the review of the literature presented here, it is clear that rogue waves are a serious threat
to ships, vessels and other offshore structures operating at sea. Rogue waves have been studied
both experimentally and numerically; however, only experimental and 2D numerical studies
have been used to model a rogue wave impact on a vessel. The 3D numerical models that have
been studied have only been used to predict the generation of a rogue wave, but the methods
were not used for predicting an impact.

A review of studies using SPH found that it was clearly capable of modelling complex free
surface waves, as well as their interaction with both solid and moving rigid objects. However,
SPH has only been proven to be capable of modelling wave and floating object interactions
in 2D. Further research is needed to explore the accurate modelling of wave interactions in
3D. In addition, the studies that modelled a rogue wave impact using SPH were limited, either
by poor resolution or generation methods that were not realistic. Therefore, the SPH method
needs further investigation into its efficacy of accurately modelling both the interaction between
surface waves and floating objects and a rogue wave.

The literature on rogue waves revealed that there were a number of possible generation mecha-
nisms for these waves. However, a representative wave could be used for modelling the impact
on a vessel without introducing significant errors. The NLS were shown to be capable of pro-
ducing waves that were representative of a unidirectional rogue wave, making them a viable
option for modelling rogue waves both experimentally and by SPH modelling.

Further research is also needed to explore if SPH is capable of accurately modelling a rogue
wave impact on an offshore structure. This research aims to answer the following questions:

1. Can SPH accurately model the interaction between surface waves and a floating tethered
body, and what is the order of magnitude of the errors?

2. How accurately can SPH model a rogue wave described by the NLS?

3. What are the physical consequences of a rogue wave impact on a floating tethered body
(in particular, a moored ship)?

The following chapters now address these research questions.
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Chapter 3

Methodology

The main aim of this study is to investigate the efficacy and accuracy of an SPH model for
predicting the interaction between a floating tethered body (a moored ship in this study) and
a rogue wave. A review of the literature showed that little or no quantitative experimental
data was available on the interaction between fluid free surfaces and floating tethered bodies.
Furthermore, the SPH method has not previously been used to simulate Peregrine breather type
rogue waves. Therefore, rigorous validation against experimental results is required before
confidence in the method can be found. This study uses the following methodology to validate
this confidence.

A set of three initial experiments will investigate the efficacy and accuracy of SPH in modelling:

• the oscillation of a tethered, spherical buoy on the surface of a body of water;

• the motion response of the same buoy to a sinusoidal wave train; and,

• the generation of first and second order rogue waves.

The SPH results from these three experiments will be compared to experimental data. This can
then be used to verify the confidence of the SPH method for specific situations. These experi-
ments not only indicate the factors and parameters required to obtain accurate simulations, but
could also provide confidence in the results of other similar simulations without experimental
comparisons.

If confidence in the SPH model is established, then it will be used to model a rogue wave
impacting a floating tethered ship. The advantage of performing simulations at full scale is that
the accuracy of real-world dimensionless numbers (such as Reynolds and Froude numbers) is
guaranteed.

If the SPH model is verified as an accurate numerical method for modelling both rogue waves
and wave-structure interactions, an offshore structural designer could gain greater confidence
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Figure 3.1: Schematic of the Wave Tank used. This section view is along the central plane of
the tank. The red dot and axes represent the position of the coordinate system origin. Not to
scale.

that the physics were being modelled just as accurately as it were in the experimental method;
and in real-life scenarios.

3.1 Experimental equipment

This section presents the experimental equipment that were used in the various experiments of
this study.

3.1.1 Monash Wave Tank

The experiments performed in this study were conducted in the Monash Wave Tank. The tank
is a 1 m wide flume that extends for approximately 35 m. A side view schematic is presented
in Figure 3.1. A hydraulically driven, piston-type wave generator is present at the left end of
the tank, which moves parallel to a 30◦ sloped floor. Following the piston region, the tank floor
inclines upwards by 0.4 m over 6 metres. The tank floor is then flat for the next 20.5 m of the
tank. This is the working section of the tank. A porous, wave damping beach in placed into the
tank, commencing at the end of the working section. The beach extends upwards at an angle of
18◦ and the end wall of the tank is located shortly after the beach has risen 2 metres above the
floor.

For all of the experiments and simulations, the x-coordinate is defined in the lengthwise direc-
tion of the tank (toward the beach and away from the piston), the y-coordinate in the upwards
vertical direction, and the z-coordinate across the tank (‘out of the page’ with respect to Fig-
ure 3.1). The origin of the coordinate system is set so that x = 0 is at the start of the working
section, y = 0 is at the floor of the working section, and z = 0 is at the mid-plane of the tank
(z = ±0.5 corresponds to the side walls). The coordinate system origin is shown in Figure 3.1
by the red axes. A water depth of 80 cm, measured in the working section, was used in each of
the test experiments.

20



(a) Cross section schematic of the buoy. The buoy
and steel disk are cylindrically symmetric about
the vertical line of symmetry. (b) The octant pattern painted on the buoy

Figure 3.2: The spherical buoy used in the experiments

3.1.2 Tethered buoy

A spherical tethered buoy was used in the experiments performed in this study. It was con-
structed to have a mass of 1.745 kg and radius of 101.5 mm. The buoy was made from a hollow
sphere of high density expanded polystyrene (density of 29.5 kg/m3) with 40 mm thickness.
To ensure that the centre of mass was located below the centroid (guaranteeing a stable sitting
orientation in the water) a 38 mm thick steel disk of 40 mm radius was placed in the lower half
of the buoy, shown in Figure 3.2a. This steel disk provided the majority of the mass to the buoy
and offset the centre of mass to 27.0 mm below the centroid. The moment of inertia matrix
about the centre of mass was calculated using a CAD (SolidWorks) software representation of
the buoy to be:

I =

 1.735209 0 0

0 1.776363 0

0 0 1.735209

× 10−3kg ·m2 (3.1)

The buoy was painted with a black and white octant (Figure 3.2b) pattern to improve visibility
in the motion capture process. Additional markers were added to the white sections to provide
more tracking points, and thus more reliable processing, and is discussed in Section 3.1.4.

Offshore structures in deep water can be tethered by cables that, due to their length, are notice-
ably elastic. In order to represent a similar scenario, the buoy was tethered to the tank floor
using a cable (1 mm diameter) and spring (stiffness k = 30.88 N/m) system shown in Fig-
ure 3.3. A coil spring was required at the laboratory scale as the cable length is not sufficient
to be noticeably elastic. The coil spring, however, could create significant additional damping
when expanding or contracting while underwater, making it potentially difficult to incorporate
into the SPH model. Consequently, a pulley system was used near the tank floor that allowed
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Figure 3.3: Schematic of the experimental setup with the floating tethered buoy at its resting
position Note that the figure is not to scale.

the spring to be located above the water. The length of the cable and spring pre-tension were
set so the resting position of the buoy is half-submerged.

3.1.3 Wave gauges

Four gauges were used in the experiments to measure the surface profiles as a function of time
at four locations. The gauges consisted of a pair of vertical wires that varied in resistance as
they became more or less submerged. The signal measured from the gauges was recorded and
converted to a wave height. The gauges were calibrated before each test to ensure that the con-
version from electrical signal to surface elevation was accurate. Each calibration gave a linear
relationship between the signal and wave height, though the offset varied between calibrations.
This was due to the different ambient conditions between experiments, and difficulty in placing
the gauges in the water at exactly the same height as previous experiments.

3.1.4 Motion capture

Motion capture software was used to measure the trajectory of the buoy in the experiments.
The software, SwiMCap (developed at CSIRO), utilised multiple synchronised camera views to
determine the 3D location of an object in the fields of view.

In the experiments, the cameras were located above the water surface and looked down at the
buoy. In this way, no refraction effects were present except for lens distortion. To take this
into account, the camera calibration for such cases were performed ex-situ. Each camera used
in the experiment was calibrated using OpenCV to determine the intrinsic parameters (such
as the focal length, principal point, and distortion factors). A chessboard pattern, shown in
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Figure 3.4: Camera views from the four cameras used to record the buoy motion. The red light
used to synchronise timing is seen in each image at the end of the pole.

Figure 3.5, was used to perform this calibration. The intrinsic parameters were then combined
with landmarks in the view to determine the cameras extrinsic properties (i.e., location and
orientation) precisely.

3.1.4.1 Cameras

Four Sony HDR-CX220E video cameras were used to record the buoy motion in the experi-
ments. The cameras were placed at four locations around the buoy to allow a motion tracking
technique to be used to determine the 3D coordinates of the buoy’s centroid. For the experi-
ments, all cameras were set to the same quality settings, including a frame rate of 50 frames
per second. The shortest period of oscillation observed through the experiments was 0.6 s, or
30 frames, so the frame rate was deemed to be satisfactory. During the experiments, a red light
(see Figure 3.4) was flashed in the field of view of all cameras, allowing the cameras to be
synchronised during post-processing.

3.1.4.2 Camera calibrations

For each camera, the intrinsic and extrinsic properties that described the transformation from
laboratory coordinates (xl, yl, zl) to pixel coordinates (u, v) needed to be known to provide
estimates of the marker’s position. The transformation between laboratory and pixel coordinates
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Figure 3.5: In the calibration method a chessboard pattern is moved in front of the camera in a
range of positions and orientations. The calibration software used the distortion of the pattern
to determine the intrinsic properties of the camera.

is given by the following:  uw

vw

w

 = C


xl

yl

zl

1

 (3.2)

where w is a scaling factor, C = A [R T ],A is the 3×3 intrinsic parameter matrix (camera, lens,
and other distortions), and R and T are the extrinsic parameters describing the rotational and
translational transformations between laboratory coordinates and 3D camera coordinates. A
checkerboard pattern calibration was used to determine the values for matrix A of each camera.
The checkerboard was placed in front of the camera at different positions and slopes, and each
image was inputted into an OpenCV calibration application. Example images of this process
are shown in Figure 3.5.

Once camera calibration was complete, mapping of the wave tank was undertaken. Numerous
landmarks were marked on the walls of the tank. Their laboratory coordinates were known ex-
actly. The cameras were placed so that there were as many landmarks in the view as possible to
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Figure 3.6: Locating the landmarks in the field of view. The vertices of the pink lines indicate
the location of the landmark on the screen. The green lines are a reprojection of the pink lines,
giving a visual indication whether the calibration is accurate or not. A zoomed view has been
edited into this image showing a landmark at (x, y, z) = (0.864, 1.107,−0.5).

ensure the extrinsic properties were more accurately obtained. The landmarks were then iden-
tified in the camera view and used to determine the [R T ] matrix using the OpenCV calibration
application. Figure 3.6 shows the locations of some of the landmarks. These are identified by
the inside corners of the L shapes for landmarks partway up the wall, and by the edge between
the red and yellow tape at the top of the wall.

In the motion capture process, the pixel coordinates of a point can be known for a single view,
but this single view is not sufficient to determine the point’s laboratory coordinates. This is
because C is a 3×4 matrix and so it cannot be inverted, thus finding (xw, yw, zw) from a sin-
gle known pixel coordinate using Eq. (3.2) is impossible. In fact, an infinitely long line of
points will satisfy the equation for that camera since there are fewer data points than there are
unknowns.

To identify the location of a particular marker, it must be visible in at least two camera views
so that the lines of possible points intersect. However, potential errors can be introduced in
the calibration process, such as human error for example, when the user identifies the (u,v)
coordinates (i.e., inaccurate clicking on the markers in the software). Therefore, a least squares
method was used to estimate the laboratory coordinates of the point that was closest to the
lines of possible solutions. The full derivation of the least squares algorithm used is included
in Appendix A. If the lines of possible solutions are parallel, or close to parallel, then the least
squares method can fail to find an accurate solution, if one is found at all. In practice, if more
than two cameras can view the marker then an estimate can be validated. If only two cameras
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Figure 3.7: Identification of the markers on the surface of the buoy. Six of the 11 markers are
visible in this frame and are marked with a circle. The crosses represent the estimated marker
location based on this camera and other cameras where the marker was visible and are included
in views where the marker was not present (e.g. the yellow marker is not visible in this view
but its estimate is included here). Only 8 identifier colours were available, so blue, green and
red are repeated.

viewed the marker, then an estimate could be found if the marker was sufficiently far from the
other camera in both views.

3.1.4.3 Tracking the buoy

A total of 11 markers on the upper hemisphere of the buoy were tracked during the experiments:
3 markers in each of the white octants, and the 5 intersections of black and white octants.
Figure 3.7 shows an example view of the buoy in one of the experiments, with 6 markers present
in the particular view. Since the markers are on the surface of a sphere of known radius, RT ,
the location of the sphere’s centroid can be calculated by defining a function:

fE (x) =
∑
i

(|x− xi| −RT )2 (3.3)

where xi is the calculated position of marker i. The function fE essentially tries to fit a sphere
of radius RT , centred at x, to the set of marker locations and returns an estimate of the error.
The MATLAB function fminsearch was then used to find the location of the centroid x that
minimised the error of the sphere fit.
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3.2 Smoothed Particle Hydrodynamics method

This section presents the mathematical formulation of the SPH methodology used in this study.

3.2.1 Time stepping scheme

The equations of motion (Eq. (2.15)) were integrated in time using a predictor-corrector scheme.
In this scheme, the predictor step utilises a standard Euler scheme to project a time step using
the current time step’s rates of change. This is summarised by:

vn+1 = vn + δtan (3.4a)

rn+1 = rn + δtvn (3.4b)

ρn+1 = ρn + δtDn (3.4c)

where a and D denote the rates of change of velocity and density in Eq. (2.15b) and Eq. (2.15c)
respectively. The superscript n refers to the time step, while the overbar denotes the predicted
next time step values. The predicted rates of change of velocity and density at the next time step
(an+1 and D

n+1
) are calculated via Equations (2.15b) and (2.15c) using vn+1, rn+1 and ρn+1.

The predicted values are then corrected by

vn+1 = vn + δtan+1 (3.5a)

rn+1 = rn + δtvn+1 (3.5b)

ρn+1 = ρn + δtD
n+1

(3.5c)

3.2.2 Particle searching optimisation

The kernel function has a compact support region of 2h, meaning that if the distance between
particles i and j is more than 2h then W will equal 0. When the domain contains a large
number of particles farther than 2h apart, then the summations in the equations of motion will
perform a large number of unnecessary calculations. Performing these meaningless calculations
is time-consuming, so a searching algorithm was employed to check whether a particle could
potentially have an influence. The entire domain was divided into a grid of cells of width 2h,
with an integer number of cells in each dimension.

Figure 3.8 shows an example particle in a particular cell with its radius 2h. This particle may
only influence other particles in neighbouring cells that fall within this radius. At each time step,
the cell that each particle is contained in is determined, then the summations in the equations of
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Figure 3.8: SPH domain subdivision cells. A particle may only be influenced by a particle in a
neighbouring cell, so particle summations ignore particles in cells more than one step away

motion only refer to particles that are in a 3× 3 (in 2D) or 3× 3× 3 (in 3D) neighbouring grid.
In Figure 3.8, the red particle in cell 7 has a compact support region (the dashed circle) that can
potentially reach the neighbouring cells, but cannot reach cells 1, 5, or 9 so the particles in these
cells were not included in calculations.

3.2.3 Parallelisation

All of the simulations performed in this thesis were conducted on the CSIRO Accelerator Clus-
ter, also known as the Bragg cluster. The cluster consisted of 128 Dual Xeon 8-core E5-2650
Compute Nodes (i.e., a total of 2048 compute cores) with 128 GB of RAM, 500 GB SATA
storage and FDR10 InfiniBand interconnect. The cluster also had GPU capabilities, however,
the SPH code used in this thesis was not constructed for use on GPUs, so only CPUs on the
cluster were used. However, the SPH code used is a shared memory code, so it was limited to
using a single node, or a maximum of 16 cores.

To take advantage of the multiple cores available on each node, an OpenMP implementation
was used in the code. This was because it was simple to implement from an original serial
code base and did not require complex domain decomposition. An internal study conducted
by CSIRO on the speedup effects had been performed (Cummins, private communication), and
is shown in Figure 3.9. The study made use of a 3D Dam Break with 770,000 particles. The
speedup, S, was defined by taking the ratio between the wall time for a single processor and the
wall time for multiple processors:
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(a) Speedup of individual components of the code (b) Speedup of the full code

Figure 3.9: Speedup from performing the SPH code using multiple processors in parallel. Fig-
ures provided by Cummins (obtained with permission via private communication).

S =
time(Np = 1)

time(Np)
(3.6)

The time here discounts the time spent in the setup and completion phases of the simulation.
Note that this study was performed on an older cluster which had 12-core nodes, and no data
was available for the speedup of 16 cores on which the majority of simulations in this study
were actually run.

The study found that the particle interactions had the greatest speedup when implemented in
parallel (shown in Figure 3.9a). This was useful since approximately 70% of the wall clock
time was spent calculating the interactions between SPH particles when a serial SPH code was
used. Conversely, the calculation of the rates of change had the least speedup but only 3.5% of
the wall clock time was spent performing these calculations.

Figure 3.9b shows the speed up effects for the entire code when implemented in parallel. A spe-
cial code where only the particle interactions are performed in parallel was also included in this
plot and was shown to have significantly less speedup for large numbers of processors. When
12 processors were used, parallelising the interactions only yielded a speedup of approximately
3, but if all components were parallelised then the speedup was approximately 8.

The speedup curves all indicated that further improvements could be made if more than 12 cores
were used. However, for smaller simulations (i.e., significantly fewer particles) the speedup
obtained by using more cores decreased due to the overheads of the parallelisation becoming
proportionally more significant. For these types of simulations, the maximum number of cores
on the Bragg cluster was not used. Where fewer than 16 cores were used in the simulations
performed in this thesis, the number of cores used will be explicitly stated.

29



1 2

3
C1 C2

Figure 3.10: The boundary normal implementation for modelling boundaries in SPH. Each of
the boundary normals exerts a repulsive force on the fluid particles (white) preventing them from
penetrating the layer of boundary particles. Corners C1 and C2 are modelled using multiple
normals.

3.2.4 Boundary model

3.2.4.1 Boundary model

One of the strengths of SPH is the natural modelling of the interaction between fluid particles
and boundaries, such as objects and walls. SPH models these boundaries by using both particles
and the equations of motion that provide the interaction between the particles. However, there
are a number of boundary treatments that could be used. Cummins et al. (2012) discussed two
of these methods in some detail: boundary normals and ghost particles. Although the ghost
particle boundary treatment showed improved wave reflection modelling, the boundary normal
treatment was used in this study for two reasons. Firstly, it was difficult to set up ghost particles
for complex geometries, such as acute corners. Secondly, it was straightforward to determine
the normal and tangential components of the force on the objects.

The boundary normal method models the boundaries by defining a vector at each particle that is
perpendicular to the boundary surface. The boundary is modelled as a single layer of particles
and exerts a repulsive force on the fluid particles that approach the boundary particles in the
direction of the boundary normals, preventing the fluid particles from penetrating the boundary.
Figure 3.10 shows the black boundary particles with their normals represented as arrows, and
the fluid particles as the white filled circles. The normal force acting on the fluid particle i from
boundary particle k takes the form of:

Fik =
0.01c2

smi

h
B(r‖)S(r⊥)n̂k (3.7)
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where r⊥ represents the perpendicular distance between the particles parallel to the normal
vector n̂k (i.e. perpendicular to the boundary surface), and r‖ is the distance between the
fluid and boundary particle parallel to the boundary surface. The boundary potential term S is
written:

S(q) =



[(
sd

s+ 2

)
1

q

]s
0 ≤ q ≤

(
sd

s+ 2

)
(
s+ 2

2d

)2

(q − d)2

(
sd

s+ 2

)
≤ q ≤ d

0 otherwise

(3.8)

where q = r⊥ · n̂k/h, s is typically set to 8, and d determines how far away from the wall
boundaries the wall force was felt. This value was typically chosen to be 1. The function B
smooths the force tangentially to ensure a constant total force from the boundary particles on a
fluid particle as it travels parallel to a row of boundary particles:

B(r‖) =


1−

∣∣r‖∣∣
δx

0 ≤
∣∣r‖∣∣ ≤ δx

0
∣∣r‖∣∣ > δx

(3.9)

Note that S is 0 if the fluid particle is behind the boundary normal (for example, particles 1 and 3
to the dashed and solid normals respectively in Figure 3.10). Consequently, the corner boundary
particles (C1 and C2 in Figure 3.10) require an extra normal to prevent fluid particles from
getting too close to the boundary particle. For example, without extra normals fluid particle 3
in Figure 3.10 could approach C2 from the lower right direction and the solid normal would
not repel the particle. If the particle is very close to the corner when it passes the boundary and
begins to observe the normal force, the value of q would be very small resulting in a large and
unrealistic value of S. Using the extra normal prevents the particle from approaching the corner
boundary particle. When a particle is “in-front” of multiple normals to the same boundary
particle, such as particle 2 to corner particle C2, the normal is converted to a single effective
normal that points directly toward the fluid particle.

3.2.4.2 Boundary offset

The smoothed particle nature of SPH introduces some uncertainty when determining the exact
edge of a boundary, be it an object or wall boundary or fluid domain boundary. The most
intuitive method is to define boundary particles on the physical boundary. However, a particle
represents a region of mass centred at the particle’s location with radius of approximately δx/2,
so for the fluid very close to the physical boundary to be represented, the fluid particle should
be able to approach within one particle spacing of the boundary. The boundary potential term,
Eq. (3.8), becomes nonzero when a particle is within a distance dh from the boundary particle
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offset = boff × δx
δx

(a)

δx

(b) offset= 0.2δx (c) offset= 0.8δx

Figure 3.11: The boff parameter is used to alter the distance r⊥. (b) Smaller values of boff force
fluid particles (blue) away from the boundary particles (red) sooner, while (c) larger values
allow the fluid particles to get closer to the boundary particles.

(dh = 1.2δx in this study) and results in the fluid particles remaining approximately one particle
spacing away from the boundary under most circumstances.

To allow the fluid particles to approach within one particle spacing of the boundary, an offset
is applied to where r⊥ is measured from. This effectively pushes the boundary particles back
into the body. The boundary offset is controlled by a parameter, boff , that allows the offset to be
modified. The offset is determined by setting:

r∗⊥ = r′⊥ + boffδxn̂k (3.10)

where r′⊥ is the perpendicular distance to the original boundary particle location and r∗⊥ is the
perpendicular distance used for defining q in Eq. (3.8).

Some examples of the effect of boff are shown in Figure 3.11, where the offset boundary is
represented by a red dotted line below the red boundary particles, and the blue fluid particles
are kept approximately one particle spacing from the offset boundary. A detailed study on the
effect of boff is presented in Section 4.1.

3.2.5 Calculating the location of the fluid surface

As mentioned in Section 3.2.4.2, there is some uncertainty in determining the location of the
fluid surface, so an approximation is required. The approximation uses the particle density at a
location, ξ(r), which is defined by:

ξ(r) =
∑
i

mi

ρi
W (|r − ri|, h) (3.11)
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and assumes that the fluid surface is located where the particle density equals a specified num-
ber, ξt.

To determine the location where the number density equals ξt, ξ is calculated at r = (xl, η, zl)

where xl and zl are the x and z coordinates of the location where the user wishes to measure
the surface elevation, and η is the y-coordinate at the top of the SPH domain. If ξ is less than
ξt, 0.1δx is subtracted from η and ξ is recalculated. When ξ is greater or equal to ξt, linear
interpolation with the previous point is employed to obtain an estimate of the fluid surface
location.

3.2.6 Cables in SPH

The cable and spring system is modelled in SPH by defining a force which mimics a linear
spring acting at a specific point on the buoy. The ends of the cable are specified: one in the local
coordinates of the object, and another in the global coordinates. The initial length of the cable
and a spring stiffness are also specified. During the simulation, the distance between the two
points is calculated, and a force is exerted on the object. This force is based on the stiffness of
the cable and its extension from the cable’s initial length. When the distance between the points
is equal to or less than the initial length of the cable, no force is applied.

Since the force is calculated based on the two end points, there is no need for the pulley system.
The end of the cable that should attach to the pulley is defined with an endpoint directly below
the centre of the buoy (when at equilibrium) and 9 cm above the floor (equivalent to where the
cable touches the front pulley in the experiments).
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Chapter 4

Using SPH for modelling surface waves

There are two major technical issues in the SPH method that have implications for the under-
taking and interpretation of the results. An investigation into these is required before the main
body of simulation work can be done. This chapter discusses these the investigations into these
issues.

Some uncertainty exists in the exact location of the boundaries of the fluid domain. This is
due to the kernel estimation used by SPH to model the sphere of influence of each particle. A
number of assumptions can be made about how these locations are modelled. For example, one
such assumption was the boundary offset discussed in Section 3.2.4.2. In the first section of this
chapter, the effect that these modelling assumptions may have when determining the location
of the fluid surface and solid boundaries are investigated.

In the main body of simulations, surface waves will be produced using SPH and compared to
experimentally produced waves. However, replicating the entire domain in SPH requires an
infeasibly large number of particles, that include modelling parts of the domain that are not
critical to the experiments undertaken in this study. In the second section of this chapter, an
alternative method of generating surface waves is investigated to reduce the required domain
size and the number of particles.

4.1 Investigating the boundary and free surface models

The particle nature of SPH allows the method to naturally model deforming fluid domains,
but it also introduces uncertainty in the location of fluid boundaries. These uncertainties arise
because an SPH particle represents a non-uniform distribution of mass around its centre that
has influence on a region of radius 2h. Consequently, a density gradient is observed at fluid
boundaries rather than the discontinuity that exists in reality. For the fluid free surface, the
uncertainty in fluid boundary means that the free surface location is approximate.
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boff = 0.0 boff = 0.5 boff = 1.0

Figure 4.1: Effect of boff on where boundary forces are applied from. The solid black dots are
the object particles that are located on the desired boundary. The dashed lines indicate where
the offset boundary is, and thus where the boundary forces on the blue fluid particles are applied
from.

In this section, the boundary normals and method for calculating the free surface are investigated
to determine how to accurately model physical boundaries. To do this, an untethered spherical
object that matches the buoy described in Section 3.1.2 is simulated in a tank of water with
various values for boff (introduced in Section 3.2.4.2). When boff is changed, the effective size
of the sphere will change too, since the forcing on the fluid particles is measured from different
locations. Figure 4.1 shows the boundary offset for three different values of boff . The dashed
lines indicate the offset forcing locations. The forcing on the hollow blue fluid particles keeps
them approximately one particle spacing away from these forcing locations. A boff of 0.0 keeps
the fluid particles farther away from the boundary than when boff is 1.0, and consequently the
apparent size of the object is larger when the forcing is not offset. Since the buoyancy force
is related to the volume of displaced fluid, these changes in apparent object size will cause
variation in its buoyancy.

Each simulation was run until the untethered buoy came to rest at its equilibrium position. Two
mean fluid particle spacings (5 and 10 mm) and three mean boundary particle spacings (2.5, 5,
and 10 mm) were tested. Cases where the boundary particle spacing was greater than the fluid
particle spacing were not tested because the fluid particles in these cases were finer than the
boundary particles and could leak in to the buoy resulting in non-physical results.

4.1.1 Determining the effect of boundary offset on a partially submerged
buoy

The first boundary offset test simulated a spherical buoy floating partially submerged in a body
of water. SPH particles were defined on the surface of a sphere of radius 0.1015 m to match the
buoy used in the experiments. To ensure that the buoy was half submerged when at equilibrium,
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α

R

Figure 4.2: A partially submerged buoy. The dashed line indicates the height of the buoy
centroid and α is the vertical distance to the surface from the centroid.

the mass of the buoy was set to be equal to the mass of water that half the buoy would displace
(2.19 kg).

The simulated tank of water was 0.4m wide in the x and z directions, and 0.2 m deep (y). These
tank dimensions allowed at least 10 particle spacings between the edge of the buoy and the
tank wall or floor. For each combination of fluid and boundary particle spacings tested, boff was
varied between 0.0 and 0.6. By varying boff , the effective radius of the buoy was increased or
decreased, changing the buoyancy force on the buoy and thus the height that the buoy sat in the
water when at equilibrium.

When the buoy was partially submerged, the volume of displaced water is given by the volume
integral:

V (R,α) =

∫ α

−R
π
(√

R2 − x′2
)2

dx′

=
π

3

(
2R3 + 3R2α− α3

) (4.1)

where R is the radius of the sphere, and α is the distance of the fluid surface above the sphere
centroid (negative when the surface is below the centre of the buoy). The surface location was
calculated using the method described in Section 3.2.5 at 8 points surrounding the sphere and
then averaged. Knowing the submerged volume as a function of α and R, the buoyancy force
can be calculated as:

B(R,α) = ρgV (R,α)

=
ρgπ

3

(
2R3 + 3R2α− α3

) (4.2)

The buoyancy and weight forcers were the only two forces acting on the buoy at equilibrium, so
the buoyancy should equal B0 = 21.4839 N. In the simulations, the surface height and vertical
position of the sphere could be calculated, allowing α to be easily calculated. Consequently, the
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Figure 4.3: The distance of the surface above the sphere centroid (α), with mean boundary
and fluid particle spacings of 10 mm. The initial disturbance was due to the fluid particles
distributing themselves into a minimal energy state.

effective radius, Re, can be calculated by solving:

B(Re, α)−B0 =
ρgπ

3

(
2R3

e + 3R2
eα− α3

)
−B0

= 0
(4.3)

The effective radius can then be compared to the ‘true’ radius,RT = 0.1015, to obtain a measure
of the error:

εR =
Re −RT

δx
(4.4)

This value of εR represents how much larger than expected the buoy was as a fraction of δx.
Scaling by δx was chosen because boff influenced the size of the buoy in proportion to δx.

A typical example is shown in Figure 4.3, with 10 mm mean boundary and fluid particle spac-
ings. After a transient period, the results settled to a statistically stationary value after 10 sec-
onds, so α was calculated by taking the average after this time. Eq. (4.3) was then used to
determine the effective radius, Re, and Eq. (4.4) was used to determine the radius error for each
curve.

The values of εR as a function of boff are plotted in Figure 4.4. The plot shows that using boff of
approximately 0 gives an effective radius equal to the true buoy radius. This value indicates that
no boundary force offset from the object particles should be set. Furthermore, the relationship
between boff and εR was 1 to 1, which was expected from the mathematical definitions of boff

and εR. The spread of the lines was quite consistent, with only the 10 mm boundary spacing
simulation deviating significantly from the rest. This was likely due to insufficient resolution to
accurately model the spherical nature of the buoy.
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Figure 4.4: Radius error of the half submerged buoy compared to the boundary offset

4.1.2 Determining the effect of boundary offset on a fully submerged buoy

In the second set of simulations, the buoy was attached to a stiff spring to keep it fully sub-
merged. A water depth of 0.4 m was used, and the buoy centroid was initially located 0.2 m
above the tank floor. The spring stiffness and length were defined to theoretically keep the buoy
at its initial height. As the buoy was no longer partially submerged, the volume and effective
radius were easier to calculate. The buoyancy force is related to the object radius by:

B = ρgV =
4ρgπR3

3
(4.5)

To obtain a value for the effective radius, only the buoyancy force needed to be determined from
the simulation. Eq. (4.5) was then used to determine the effective radius of the buoy.

Figures 4.5 and 4.6 respectively show the trajectory and buoyancy forces on the fully submerged
buoy with mean boundary and fluid particle spacings of 10 mm. The buoy trajectories shown in
Figure 4.5 reached an equilibrium position around the 5 second mark. As before, the calculated
effective radius was then used to determine the radius error εR. The radius error was plotted
against boff in Figure 4.7 for the fully submerged cases. The plot shows that boff = 0.5 is the
optimal value, which contradicts the results from the half submerged case where boff = 0.0 was
optimal.

An important difference between the two sets of simulations was that in the half-submerged
case, the fluid surface played an important role in determining the effective radius of the buoy,
while in the fully submerged case it was not required to be calculated. In the half submerged
case with boff = 0.0, the centroid of the sphere was predicted to be at the same height as the
fluid surface. Figure 4.8a shows that in the boff = 0.0 test, the fluid surface was just above
the top layer of particles. However, since there was some uncertainty in the calculation of the
surface location, the fully submerged cases were more reliable. If, indeed, a boff of 0.5 should be
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Figure 4.5: Height of the fully submerged buoy above the tank floor, with mean boundary and
fluid particle spacings of 10 mm.
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Figure 4.6: Buoyancy forces on the fully submerged buoy with mean boundary and fluid particle
spacings of 10 mm.

used, then the calculation of the fluid surface location would be inaccurate. Figure 4.8b shows
that when boff = 0.6 the centroid sits slightly lower in the water than when boff = 0.5. This
indicates that the surface height was below the top few layers of particles. However, since the
later studies will involve objects on the surface of the water, the uncertainty in the free surface
location needed to be investigated to ensure that the surface was calculated correctly, and that
any errors associated with the calculation were quantified.

4.1.3 Calculating the free surface location

In the method used to estimate the surface height (introduced in Section 3.2.5), the value of the
particle density target, ξt, was arbitrarily to be 0.4. By changing its value, the estimate of the
fluid surface location can be modified. Consequently, a short study was performed to determine
the value of ξt that ensured that the optimal boff for both the half and fully submerged cases
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Figure 4.7: Radius error of the fully submerged buoy compared to the boundary offset.

(a) boff = 0.0 (b) boff = 0.6

Figure 4.8: The fluid surface compared to the buoy centroid with boundary and particle spacings
of 10 mm. The red line indicates the height of the centroid.

were in agreement. The half-submerged cases were repeated, using boff = 0.5 because that was
predicted in the fully submerged case. Thus, the value of ξt used to predict the fluid surface
location was varied to estimate which value provided the best agreement.

As in the half submerged cases, the effective radius was calculated from α using Eq. (4.3)
and the radius error was determined. The variation in εR with ξt is shown in Figure 4.9 for
particle spacings of 5 and 10 mm, with boff = 0.5. It was observed that the two curves with
boff = 0.5 both gave zero radius error when ξt was approximately 0.8, irrespective of the particle
resolution. From this, it was determined that a value of 0.8 should be used for ξt, rather than the
default value described in Section 3.2.5.
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4.2 Generating free surface waves using SPH

Generating surface waves in a wave tank simulation can be performed in a number of ways.
Experimentally a piston can be used to displace the fluid at one end of the wave tank which
creates surface waves that propagate along the tank. It is a simple task to replicate this piston
generation method in SPH by simulating the entire tank. However, a common modelling issue
is the number of particles required to perform the simulation can cause the simulation to become
computationally expensive to resolve. To model the entire wave tank used in the experiments
in 3D SPH would require approximately 32 million particles at a coarse particle spacing of
10 mm, and over 250 million particles at 5 mm particle spacing. Furthermore, there is nothing
of interest at the end of the tank far from the piston, so resources are wasted modelling the full
tank.

To reduce the number of particles, the length of the SPH domain can be shortened to cut out
the unimportant regions, and artificial damping zones can be introduced to prevent reflected
waves from influencing the results. However, the development region between the piston and
the analysis section still needed to be modelled, and the damping zone length should be greater
than the wavelengths of the waves generated (approximately 8 m for a wave with a 3 second
period). This indicates that the smaller domain would still require 16 m of the tank to be
modelled (a reduction of 60%), which still requires a large number of particles in 3D SPH.

An alternate method of wave generation is to utilise a spatially varying momentum source, or
wave maker region. In this region, a velocity field is specified and a force applied to SPH
particles inside that is a function of the deviation from the desired velocity. Since a piston is
not required, it is possible to allow the end walls of the domain to be periodic and the waves
to continually re-enter the domain. To ensure a continuous wave train across the domain, the
length of the domain must be an integer number of wavelengths. This has the added benefit
that waves entering the wave maker region will be in phase, so that the fluid particles will have
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Lw

Figure 4.10: The wave maker region shown as purple and the periodic boundaries by dashed
lines. The wave maker region length, Lw, is an input parameter. Note that the figure is not to
scale.

velocities close to the specified velocity field, and require little or no artificial forcing. However,
it does require the velocity field to be known analytically so it is not suitable for all types of
waves (for example the NLS breather solutions discussed in Section 2.1.3 cannot be produced
using this wave maker region).

In the simulations, the length of the forcing region, Lw, does not span the entire x domain
because it must leave a space for the waves to freely interact with any floating objects that were
to be studied. This region was also not set to span the entire y domain, rather it started at a short
distance above the floor and stopped at the mean surface level (see Figure 4.10). This was to
ensure that the particles near the floor or free surface crests were not forced normally to either
the floor layer or the surface.

4.2.1 Wave generation algorithm

The general methodology for wave generation was given in Rudman and Cleary (2016), and a
brief description of the method is included in this section. To generate the waves a velocity field
of the fluid is required. The velocity field chosen here is given by the intermediate depth linear
water wave solution (Young, 1999):

vx =
agk

ω

cosh ky

cosh kd
cosψ (4.6a)

vy =
agk

ω

sinh ky

cosh kd
sinψ (4.6b)

vz = 0 (4.6c)

where a is the wave amplitude (mean-to-peak), g is gravitational acceleration, k is the wave
number (= 2π/λ), ω is the angular frequency (= 2π/τ ), d is the depth to the mean surface
level, and ψ = kx− ωt.
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The wave maker region aims to force the fluid particles within it toward a velocity given by
Eq. (4.6). To do this, a force is applied to the particles in the region that is proportional to the
difference between the specified velocity, vc = (vx, vy, vz), and the particle velocity, vi:

F = 10κµi
vc − vi
ρi

(4.7)

where κ represents the forcing factor of the wave maker region (an input parameter) that de-
termines how strongly the fluid particles are controlled to match the specified velocity field. In
practice, the period, τ , is specified and the wave number, k, (and hence the wavelength λ) is
calculated using the dispersion relationship:

ω2 = gk tanh kd (4.8)

In this study, the period was the desired input variable, so Eq. (4.8) was solved for k using
the Newton-Raphson root-finding technique, and the length of the SPH domain is set to be an
integer multiple of the corresponding wavelength. Consequently, for waves of different desired
periods, SPH simulations with different domains were required.

4.2.2 Determining the particle spacing

An issue with using a periodic domain arises from the particle searching algorithm described in
Section 3.2.2. The length of the domain in the periodic domain, denoted in this section as L, is
required to be divided into an integer number of cells, n:

L = n · 2h = 2n · hf · δx (4.9)

Furthermore to ensure fluid continuity over the periodic boundary the length must also be an
integer number of particle spacings, m:

L = m · δx (4.10)

Combining Eq. (4.9) and Eq. (4.10) gives:

m = 2n · hf (4.11)

In this study, hf = 1.2, thus m = 2.4n.

To ensure that m was an integer, in Eq. (4.11) n must be a multiple of 5 (n = 5p, p ∈ N).
Therefore, from Eq. (4.9), L = 10p · hf · δx. Given that L was set to be an integer number of
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wavelengths and pwas also an integer, δx needed to be specially calculated by first determining:

p =

⌊
L

10 · hf · δx∗

⌋
(4.12)

where δx∗ is the desired particle separation and the b c brackets indicate the floor/round-down
operation. The exact particle spacing δx could then be calculated as:

δx =
L

10 · p · hf
(4.13)

4.2.3 Wave generation calibration

The waves generated in Rudman and Cleary (2016) were created by moving the wave generator
region through the domain, adding momentum to the fluid particles so that they matched the
region’s velocity. The region was then disabled, which released the collected particles as a large
wave to crash over their structure. Although the method here is similar to Rudman and Cleary’s,
it is different in two aspects.

Firstly, the region here is not moving, and secondly we prescribed a velocity field that varied
over time. Previously, the linear water wave solutions have not been used in SPH to define a
velocity field, and there was a need to ensure that the approach generated waves that agreed
with the desired waves.

If the forcing region was implemented appropriately then the imposed velocity field should,
in theory, provide a wave of exactly the amplitude and period specified. However, the effect
that the input parameters (forcing factor, κ, and the region length, Lw), and the specified wave
amplitude and period, have on the generated wave needed to be understood. Consequently, a
number of simple calibration tests were performed to test the sensitivity of the generated waves
to the four inputs.

These tests were performed using 2D SPH simulations of a wave tank, with water depth of
0.8 m. A period of either 1 or 3 seconds was used for the wave generation throughout these
simulations. For the 1 s waves the SPH domain was 4.67 m long (three wavelengths), while for
the 3 s waves, the domain length was 7.90 m (one wavelength). The desired particle spacing
was 10 mm, but was modified by the process in Section 4.2.2 to be 10.24 mm for the 1 second
period tests, and 10.13 mm for the 3 second period tests.

The first case performed here investigated how well the wave maker approach was able to
generate waves for different input amplitudes. A forcing factor of 6.5 was used and the wave
maker region was 1 m long. Three input amplitudes of 7, 9, and 11 cm were simulated for
each of the two periods (1 and 3 seconds). Figures 4.11 shows the free surface elevation for the
different input amplitudes in the case of the 1 second wave, while Figure 4.12 shows the same
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Figure 4.11: Comparison of waves produced with various input amplitudes at a period of 1
second. The legend indicates the specified input amplitude, a, for the simulation.
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Figure 4.12: Comparison of waves produced with various input amplitudes at a period of 1 sec-
ond, relative to the desired wave amplitudes. The legend indicates the specified input amplitude,
a, for the simulation.

waves relative to the specified amplitude. Figure 4.13 shows similar results for the 3 second
period wave, although the amplitudes are closer to the desired amplitude. From the plots, it
could be observed that all of the waves have smaller resulting amplitudes in SPH simulations
than those specified by the input amplitude, and the amplitude of the resulting wave was linearly
related to the desired amplitude.

In SPH, the fluid particle spacing was an important parameter that influenced the accuracy
of the simulation. To observe the effect that the particle spacing had on the generated wave,
additional simulations were performed for each wave period using a particle spacing of 5 mm,
and specified wave amplitude of 7 cm. After modification, the final particle spacings were
5.05 mm and 5.03 mm for the 1 and 3 second periods respectively. Figures 4.14 and 4.15
indicate that the amplitude of waves generated in a 5 mm particle spacing fluid domain do not
differ significantly from the waves generated in a 10 mm particle spacing domain for either
the 1 or 3 second period waves. There is, however, some noise in the 10 mm particle spacing
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Figure 4.13: Comparison of waves produced with various input amplitudes at a period of 3
seconds. The legend indicates the specified input amplitude, a, for the simulation.
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Figure 4.14: Comparison of waves produced at different particle spacings. The waves here have
a specified wave amplitude of 7 cm and period of 1 second. The legend indicates the particle
spacing.

simulations that was less prevalent in the 5 mm particle spacing simulations.

The forcing parameter, κ, was assigned a value of 6.5 by default. Larger values amplified
the magnitude of the forces in the wave maker region, causing the fluid particles to match the
specified velocity field more quickly. Figure 4.16 shows the surface elevation of a number of
wave trains generated with an amplitude of 7 cm and period of 1 second at a particle spacing
of 10 mm, but with varying values of κ. For larger κ values, the amplitudes of the generated
waves exceeded the desired amplitude. Additionally, large values of κ increased the magnitude
of the forces applied to the fluid particles, which could result in smaller time-steps and longer
simulation runtimes.

Finally, a number of simulations were performed to investigate the effect of the length of the
wave maker region on the amplitude of the generated waves. The generated waves were speci-
fied to have an amplitude of 7 cm and period of 1 s, and a forcing factor of 6.5. Three simulations
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Figure 4.15: Comparison of waves produced at different particle spacings. The waves here have
a specified wave amplitude of 7 cm and period of 3 second. The legend indicates the particle
spacing.
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Figure 4.16: Comparison of waves produced with different forcing factors. The waves here have
a specified wave amplitude of 7 cm and period of 1 second. The legend indicates the forcing
factor used, and the horizontal dashed lines indicate the desired limits of the surface elevation
(i.e., amplitude of 7 cm).

using wave maker lengths of 1.0, 1.5 and 2 m were compared, and the results are shown in Fig-
ure 4.17. The waves produced by the longer wave makers were slightly larger in amplitude.
This could be attributed to the additional time that the waves spent in the wave maker region.

From these simulations, it was clear that the specified size of the wave maker and forcing factor
have an influence on the waves generated. Ideally, longer wavemaker regions should be used so
larger forcing factors are not needed. In summary, the forcing factor appeared to have a more
significant influence on the amplitude of the generated waves than the wave maker length.
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Figure 4.17: Comparison of waves produced with different wave maker region lengths. The
waves here have a specified wave amplitude of 7 cm and period of 1 second. The legend
indicates the length of the wave maker region, and the horizontal dashed lines indicate the
desired limits of the surface elevation (i.e., amplitude of 7 cm).

4.3 Summary

In summary, two investigations on the two major technical issues in SPH have been presented
and discussed. The first investigation explored the key parameters for determining object bound-
aries and free surface locations, and the second explored an alternate method for producing free
surface waves. Regarding the boundary and free surface models, the optimal boundary offset
value, boff , for object and wall boundaries was found to be 0.5 (equivalent to half a particle
spacing) and the free surface location was the point where the number density, ξt, was 0.8.

When producing surface waves using a forcing region, the length of the region and its degree
of control have the most significant influence on the waves produced. In future work, it is
recommended that a forcing factor of κ = 7.0 be used, and the maximum allowable length of
the wave maker region is used.

The primary limitation of this method of generating free surface waves was that it required
the velocity field to be known as a function of time and space. For simple sinusoidal wave
trains, the velocity field is well known, and this method is able to accurately generate surface
waves, but for more complex waves, additional measurements or calculations may be required
to obtain the velocity field. Later in this study, a Peregrine breather wave will be considered;
however, only the surface elevation will be defined and the velocity field is not explicitly known.
Consequently, the forcing region method described here cannot be used to model those types of
waves. Instead, these waves must be modelled using a similar to experiments, such as using a
piston to generate the waves.
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Chapter 5

Modelling the interaction between a buoy
and a free surface

A number of SPH studies have investigated free surface interactions with a boundary. Of these,
only a few explored wave interactions with floating tethered bodies. One such study explored
the interaction of a large wave on a tethered body Rudman and Cleary (2013, 2016), but they
did not provide any comparisons to experimental data to verify their results. Other studies by
Patel et al. (2009) and Campbell and Vignjevic (2012) simulated a floating body in a series of
waves using SPH. While both studies provided verification of their method, the comparisons
were done with 2D simulations, and therefore cannot be readily applied to 3D models without
further research.

The existing validation work on SPH in other applications (i.e., sloshing or dam break problems)
provides some support for the validity of using SPH to model a tethered buoy. However, the
data required for validation tests at larger scales, such as full scale offshore structures, is difficult
or impossible to obtain. Validation tests of these applications at smaller scales would provide
better evidence to support simulations at large scales and can give an estimate of the errors.

In this chapter, two validation cases will be explored, comparing experiments to matching SPH
simulations. In the first, a tethered spherical buoy is displaced from rest in one of two directions
(vertically underneath the fluid surface, or horizontally along the surface) and is then allowed
to return to its equilibrium position. For the second case, the tethered buoy is impacted by
a wave train. These simple validation studies provide an understanding of the requirements
needed to produce an accurate prediction of a floating tethered object interacting with a free
surface. Additionally, they will provide an estimate of the degree of accuracy associated with the
simulation. This will allow rules-of-thumb to be obtained that relate this estimate of accuracy
to particle spacing (and other input parameters).

49



Cable

Wedge

Figure 5.1: The release mechanism for the Vertical Oscillation tests. The red mark on the cable
is pressed against the point of the wedge to ensure that the release height remains consistent
between repetitions.

5.1 Oscillatory motion of a spherical buoy

The first validation case investigated the vertical and horizontal oscillations of a tethered spheri-
cal buoy (described in Section 3.1.2) when released from a non-equilibrium. These experiments
were then reproduced in SPH simulation to investigate the capability of SPH to predict the buoy-
ancy, drag, and spring forces on the buoy, and to understand what is required to obtain accurate
results.

5.1.1 Vertical oscillation of the buoy

Using the setup described in Section 3.1.2, the spherical buoy was pulled under the surface,
completely submerged, and then released to return to a rest position. The cable was pulled
and pressed against a fixed wedge above the tank, as shown in Figure 5.1. A mark on the
cable (shown in the figure as a red mark) identified the location where it would be pressed
against by the point of the wedge. This ensured a consistent release position in each run of
the experiments. The cable was then released and the resulting vertical oscillation trajectory
of the buoy was measured using the motion tracking method (discussed in Section 3.1.4). The
experiment was repeated six times and the results were averaged.

The trajectories of the six runs are shown in Figure 5.2 to be very consistent. For the first
oscillation, the six experiments were nearly identical, and slight differences could be seen at the
troughs of each oscillation. After the third trough, the differences became more noticeable.

The differences from the mean trajectory (see Figure 5.3) show that the individual trajectories
were all within 3 mm of the mean until after the fourth peak. Compared to the range of the
initial oscillation, each experiment repetition had a maximum error of less than 3% of the initial
peak motion.

Since the buoy was oscillating through the surface, the submerged frontal drag area was con-
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Figure 5.2: Experimental trajectories of the vertically oscillating buoy
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Figure 5.3: Difference of experimental trajectories of the vertically oscillating buoy from the
mean trajectory

stantly changing as the buoy moved, so estimating a natural frequency using simple theories
was difficult. To obtain an estimate of the natural frequency of oscillation the period between
the peaks of the buoy’s trajectory was measured. A mean period of 0.6 seconds was measured
from the peaks in Figure 5.2, which was equivalent to a natural frequency of 1.67 Hz.

The experiments were reproduced using SPH simulations with different particle spacings:
10 mm, 5 mm, and 2.5 mm, equivalent to approximately 20, 40, and 80 particle spacings across
the buoy diameter. The buoy was placed at the same initial depth as the experiments with the
same spring stiffness and initial extension. The simulations were performed in a 1 m× m wide
tank in order to reduce the total number of particles, and hence computational expense.

Figure 5.4 shows a comparison between the vertical trajectories of these simulations and the
experimental mean. With a particle spacing of 10 mm the agreement was poor. The amplitude
of the first oscillation was in error by 35%, and the period had approximately 15% error.

A time sequence of images from the first oscillation are shown in Figure 5.5, where a side view
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Figure 5.4: The vertical trajectories of a vertically oscillating buoy.

of the experiments are provided on the left, and a slice through the 10 mm particle spacing
simulations was taken at z = 0 (with slice thickness of 10 mm). The frame at t = 0.2 s was
the closest to when the buoy is half submerged in the initial rise, the frame at t = 0.4 s was the
closest frame to the buoy’s peak position, and the frame at t = 0.7 s was the closest frame to
when the buoy is at the first trough of its motion. The buoy’s position from t = 0.0 to 0.4 s
shows reasonable agreement between the experiments and simulations, but at 0.7 s the buoy had
penetrated deeper into the water in the experiments. Some fluid particles were observed to still
be on top of the buoy at 0.2 s, and at 0.4 s the simulation predicted that there was a crest against
the bottom of the buoy that was absent in the experiment.

Refining the particle spacing to 5 mm (also shown in Figure 5.4) improved the period agree-
ment significantly (to within the experimental variation expectations) and the amplitude error
decreased to 15%. Further refinement to 2.5 mm showed that the amplitude was within 2% and
the period remained within experimental variation. However, each of the simulations showed
amplified damping of the motion beyond the first oscillation. This was greater than expected.

An internal report by CSIRO has shown that particle disorder in the vicinity of an oscillating
object can dissipate significant amounts of energy (Cleary, private communication) and that this
was the most likely cause of the additional damping observed in these simulations.

It was clear that improving the particle resolution gave significantly better results. However, the
2.5 mm particle spacing simulation (the buoy diameter was approximately 80 particles) required
in excess of 50 million particles for this small test case. However, this simulation required over
11 weeks of wall-time using 12 processors and 48 GB of memory. The computational expense at
such resolution was infeasible for most applications, and larger simulations become impractical
even for research purposes until computing hardware developments have been made or massive
parallel versions of the code are developed.
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t = 0.0 s

t = 0.2 s

t = 0.4 s

t = 0.7 s

Figure 5.5: A visual comparison between the experiments (left) and simulations with 10 mm
particle spacing (right) for the Vertical Oscillation tests. The simulation particles have been
coloured based on velocity magnitude (blue is 0 m/s, red is greater than 0.25 m/s).
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5.1.2 Horizontal oscillation of the buoy

A second oscillation test case was performed, displacing the buoy horizontally rather than ver-
tically. Using the same setup, the buoy was pulled approximately 0.5 m horizontally across the
surface of the water. The buoy was then released and allowed to freely return to its equilibrium
position. The point of release was, however, inconsistent as no apparatus for ensuring consis-
tency was developed, resulting in a mean starting position of 50.8±2.0 cm from its equilibrium
position. As in the vertical oscillation tests, the mean trajectory of the buoy was measured across
6 runs. The variance of the starting position caused the amplitude of oscillation to increase or
decrease according to how far the buoy was initially offset, but negligible effect was observed
on the period of oscillation.

Two SPH simulations were performed, one with 10 mm particle spacing, and another with 5 mm
particle spacing. In these simulations, a domain of length 2 m, width 1 m, and fluid depth of
0.8 m was modelled. Since the domain had been doubled compared to the vertical oscillation
tests, there were double the number of particles. Furthermore, these tests required simulation
times of at least 12 seconds (nearly 5 times as long), so these simulations required approxi-
mately 10 times as much wall-time to sufficiently complete. For these reasons, the 2.5 mm
particle spacing was omitted from this test case as it was infeasible given the conputational
constraints.

The mean trajectory in the experiments, and the simulated trajectories using SPH are shown
in Figure 5.6. For a mean particle spacing of 10 mm, the motion was quickly damped out,
indicating that, like the vertical tests, the damping was over predicted by SPH. For the 5 mm
particle spacing simulation, the amplitude of the initial oscillation was in very good agreement,
but the amplitude of the first peak was approximately 15% in error. This magnitude of error,
resulting from the damping, was consistent with the errors observed in the vertical oscillation
tests for the same particle spacing. If the 2.5 mm particle spacing simulations were feasible to
perform, it could be hypothesised that the errors would improve to 2%, as was observed in the
vertical oscillation case.

The time to the first peak was in good agreement for all of the tests performed. However, the
numerical damping in the SPH simulations caused the following troughs and peaks to become
out of phase. Again, it could be hypothesised that the period of oscillation would improve
at finer resolutions. As in the vertical case, the time between the peaks of the experimental
trajectory, as well as the time between troughs, were measured. The average period was found
to be 5.2 seconds, corresponding to a frequency of oscillation of 0.19 Hz.
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Figure 5.6: Buoy displacement in the horizontal direction for the horizontal oscillation test.

5.1.3 Summary

In the two oscillation cases explored here, it was apparent that additional numerical damping
was present in the simulations. At finer particle resolutions, the numerical damping decreased
significantly. For the coarsest resolution test, where the particle spacing was 1/20th of the buoy
diameter, the amplitude of the initial oscillation was approximately 35% in error in both di-
rections of motion. When the particle spacing was reduced to 1/40th of the diameter, this error
decreased to 15%. At the finest resolution tested, 1/80th of the diameter, the amplitude error was
only 2%, however, this test was only conducted for the vertical oscillation. The computational
expense involved in the 1/80th test is significant, and this, therefore, limits its feasibility for
using this resolution in future applications. In summary, coarser particle spacings can be used
in future simulations as long as the magnitude of error for these spacings are duly considered in
the analysis of the simulations. A particle spacing of 1/40th of the body diameter appears to be
a reasonable compromise between accuracy and computational expense, and leads to errors of
the order of 15%.

5.2 Wave Train cases

While the simple oscillation tests were useful for determining how well SPH can model the
interaction with the fluid surface, the final goal of modelling a rogue wave interaction with a
tethered ship requires that the interaction between simple waves and the buoy be validated. To
perform these validations and interactions with the buoy, the Monash Wave Tank was used to
generate single frequency wave trains with periods of either 1, 2, or 3 seconds in water of 80 cm
depth. The experimental results are then compared with SPH simulations. The 1 second period
wave was chosen as it provided waves that were classified as deep water waves (kd > π), while
the 2 and 3 second period waves provided intermediate depth waves (π/10 < kd ≤ π). A
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shallow water wave would require a wavelength of 16 m, or a period of 5.8 seconds, and this
would require very long stroke lengths of the piston in the experiments. Additionally waves of
this length need a 16 metre long SPH domain, which was currently infeasible (as discussed in
Section 4.2). Consequently, the 3 second period wave is the longest wavelength used here, and
it provided kd ≈ π/5, which was reasonably close to a shallow wave.

The wave trains interacted with the buoy setup (Figure 3.3), located 1.5 metres from the piston
end of the working section (see Figure 3.1). The same spring was used as in the previous
experiments (with stiffness of 30.88 N/s), and the untensioned length was set to ensure that the
buoy was half submerged when at rest. The motion tracking technique was applied to measure
the response of the buoy to the waves.

5.2.1 Non-dimensionalisation

Young (1999) gave the following formula for the trajectory of fluid particles in lear waves based
on linear wave theory. The position of a fluid particle, (χ, ζ), measured from the mean position
(x, y) was given by:

χ =
agk

ω2

cosh ky

cosh kd
cos(kx− ωt) (5.1a)

ζ =
agk

ω2

sinh ky

cosh kd
sin(kx− ωt) (5.1b)

where a is the mean-to-peak wave amplitude. Using the dispersion relationship, ω2 =

gk tanh kd, and measuring particles on the surface (i.e., kd = ky), these equations became:

χ =
a

tanh kd
cos(kx− ωt) (5.2a)

ζ = a sin(kx− ωt) (5.2b)

For small values of kd, tanh kd ≈ kd = 2πd/λ. Consequently, we choose to non-
dimensionalise the measured trajectories by the coefficients of cos and sin in Eq. (5.2):

x∗ =
(x− xe)d

aλ
y∗ =

y − ye
a

t∗ =
t− t0
τ

(5.3)

where (xe, ye) is the resting position of the buoy, a is the amplitude of the incident wave train, τ
is the wave period, and t0 is the time that the first fully developed crest reaches the buoy. There
is no motion in the z direction, and thus it is not considered.

56



-0.4

 0

 0.4

 0.8

-1 -0.5  0  0.5  1  1.5  2  2.5  3

y
∗

t
∗

1s,a=3.2cm
1s,a=5.8cm

2s,a=2.1cm
2s,a=4.0cm

3s,a=4.7cm
3s,a=7.1cm
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periments. The legend indicates the period and amplitude of the incident wave trains.

5.2.2 Experimental trajectories of the buoy

Figure 5.7 shows the non-dimensionalised heave (y∗) trajectories of the sphere under the influ-
ence of each of the wave trains. The trajectories for different periods match reasonably well in
the time domain, and this was expected due to the time scaling in Eq. (5.3). After time 0 (where
all of the waves were at their first full-sized peak), the amplitude of the buoy trajectories were
within 10% of each other, indicating that the non-dimensionalised heave motion was insensitive
to the period and amplitude of the waves. However, the troughs of the 3 second period exper-
iment with 7.1 cm amplitude have some disturbances. This may have been due to the larger
displacement of the buoy resulting in the spring becoming unloaded and allowing the cable to
become slack.

The corresponding non-dimensionalised surge (x∗) trajectories for the sphere are shown in Fig-
ure 5.8. The non-dimensionalised trajectories in the 2 and 3 second period waves were in close
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Figure 5.9: Surge trajectories of the sphere centroid in the 1 second period wave train experi-
ments for (a) both amplitudes over an extended time period, and (b) the 5.8 cm amplitude case
for the entire recorded time.

agreement with each other, however, the 1 second period cases revealed a large offset motion
that resulted in poorly matched amplitudes compared to those of the 2 and 3 second period
cases, especially for the 5.8 cm higher amplitude. Figure 5.9a shows the 1 second cases over a
longer time frame, indicating that the offset motion was due to a low frequency modulation. To
understand the cause of this motion, the full time series of the 5.8 cm amplitude case, shown
in Figure 5.9b, was analysed. The buoy trajectory showed that this modulation significantly
reduces in amplitude after a few oscillations, indicating that the modulation was a transient
start-up effect, or initial transient motion.

In addition to the modulation, the surge position of the buoy did not average to zero. Since
x∗ = 0 corresponds to when the buoy was at the resting position, this indicates that there was
a mean constant force on the buoy that was offsetting it. For the 5.8 cm amplitude wave case,
the buoy’s mean position was located at x∗ = 0.5, which corresponded to a net displacement of
8.86 cm and a cable angle of approximately 7◦ from the vertical. The tension in the cable at this
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position was 4.535 N with 0.566 N in the horizontal component. Since the buoy typically moves
in the direction of the wave when ascending up the front of an incoming wave, and opposite to
the wave when descending down the back, it experiences the frontal slope of the wave for the
majority of the interaction. This slope causes the buoyancy force on the buoy to not be just
vertical, and since the buoy endures the front slope more than the back slope there will be a net
horizontal buoyancy force on the buoy. Given that the vertical buoyancy force on the buoy was
21.48 N, a net horizontal buoyancy of 0.566 N was reasonable.

This offset was only significant for the 1 s period case, and was negligible or not present in the
2 and 3 s cases. This was most likely due to two factors. First, the waves in the 2 and 3 s cases
were not as steep as in the 1 s case, thus the buoyancy force on the buoy will have a smaller
horizontal component. Secondly, while the buoy may still endure the frontal slope of the wave
for the majority of the time, proportionally it endures the frontal slope for a smaller amount of
time than in the 1 s case.

A frequency analysis of the 1 second period case with 5.8 cm amplitude was performed over
the full time series and is shown in Figure 5.10. The surge frequency spectra, shown in Fig-
ure 5.10a, shows a large peak at 1 Hz, corresponding to the frequency of the incident wave
train. There was also a peak at approximately 0.19 Hz, which was the natural frequency of os-
cillation that was observed in the horizontal oscillation tests that were performed earlier (shown
as the vertical dashed blue line in the figure). This result indicates that the modulation was an
initial transient motion of the buoy, caused by the initial few waves displacing the buoy horizon-
tally, and then the motion came from the buoy attempting to return to equilibrium. The heave
frequency spectra, in Figure 5.10b, shows the same large peak at the wave train frequency, how-
ever, there was no peak at the natural frequency of oscillation. Small peaks were also observed
at 2 and 3 Hz in both frequency spectra, however, these are resonance frequencies of the wave
train.

5.2.3 Simulated buoy interactions with a wave train

The wave train and buoy interactions were replicated using SPH. As discussed in Section 4.2,
the SPH domain needed to be reduced so that a feasible number of particles were used and the
non-critical regions of the domain located far from the buoy are not modelled. Earlier, it was
recommended that the length of the wave-making region should be as long as possible. For a
period of 1 second, the buoy was observed to have a maximum displacement of 0.45 m in the
5.8 cm amplitude experiment. So, to ensure that the simulated buoy did not cross the periodic
boundary, nor did it enter the forcing region, its centroid must be located at least 0.6 m from
both (accounting for the radius of the buoy). As the tank length needed to be an integer multiple
of the wavelength, 1.56 m for a 1 s period, the tank length was set to 4.67 m to ensure that a
long enough wave maker could be included, while also leaving sufficient length of space for the
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Figure 5.10: Frequency spectra of the 1s wavetrain case with amplitude 5.8 cm in the (a) surge
direction and (b) heave direction. The vertical dashed blue lines indicates the respective natural
frequency obtained from the oscillation tests performed in Section 5.1.

buoy to oscillate in without interfering with the wave maker.

For the 1s wave period case, the buoy was placed at x = 3.8 m and the wave maker length was
set to 3 m allowing 1.6 m for the buoy to oscillate. The SPH domains for the 2 and 3 second
cases were determined similarly, but the tank length was set to be a single wavelength long. The
lengths used are summarised in Table 5.1. In all of the simulations performed in this section,
the forcing factor used in the wave maker region, κ, was set to 7.0 (refer to Section 4.2.3).

The first wave train case discussed here is the 1 second period case, where a simulated amplitude

Table 5.1: Wave maker lengths used

Period (s) Tank Length/λ Tank Length (m) Wave maker length (m)

1 3 4.67 3.0
2 1 4.85 3.5
3 1 7.90 6.0
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Figure 5.11: Non-dimensionalised heave motion of the buoy in the experiments and simulations
with a 1 second period wave train.

of 5.8 cm was specified and compared to the 5.8 cm amplitude experiment. Two numerical
wavetanks of length 4.669 m, width 1 m, and depth 0.8 m were set up for a mean particle
spacing of 10 mm (requiring 3.87 million particles), and for a mean particle spacing of 5 mm
(approximately 30 million particles).

Figures 5.11 and 5.12 show the heave and surge motion comparisons respectively. The am-
plitude parameter in the wave maker region was set to 5.8 cm, and the resulting waves had
amplitudes of approximately 5.5 cm. The non-dimensionalisation in Eq. (5.3) used the actual
amplitude of the waves and not the specified amplitude.

For the heave motion in Figure 5.11, the amplitude of the simulated motion with 10 mm particle
spacing was under-predicted by 15% over the first two periods, increasing to 25% afterwards.
Additionally, after t∗ ≈ 4 there was a phase error of 16% introduced. For the 5 mm simulation,
the amplitude of motion was in better agreement with the experiments.

In the surge motion, the initial transient motion was present in both simulations though its
amplitude in the 10 mm simulation was about half that of the experiment. This transient motion
was more heavily damped in the SPH simulations, and this was consistent with the excessive
damping observed in the horizontal oscillation cases. In the 5 mm simulations, the damping
of these motions was less, and as shown in Figure 5.12, the transient motion was in better
agreement with the experiments, with an error of approximately 10%.

Consequently, the differences between SPH and experimental results is believed to be due to
the damping that was observed earlier. A visualisation of the simulation with 10 mm particle
spacing is show in Figure 5.13, with the fluid particles coloured by vx and pressure. The buoy
is shown at times t∗ = 0.1, 0.9 s, and 1.5.

Since there is only a single period of the transient motion available, a traditional Fourier analysis
of the data is not feasible. Instead, a short time Fourier transform (STFT) was used to perform a
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Figure 5.12: Non-dimensionalised surge motion of the buoy in the experiments and simulations
with a 1 second period wave train.

frequency analysis of the 10 mm simulation, using the spectrogram function available in MAT-
LAB specifically. The 5 mm simulation was not included as there was not enough data for the
STFT to provide meaningful results. Although the small amount of time data limited the resolu-
tion of the analysis, the surge frequencies in Figure 5.14 clearly revealed two peaks that almost
matched the wave frequency and the natural frequency of oscillation. The heave frequencies
in Figure 5.15 show that, like in the experiments, the only peak was near the frequency of the
waves.

The wave trains with periods of 2 seconds were similarly simulated using a mean particle spac-
ing of 10 mm. Due to the excessive number of particles required in the 5 mm case, an excessive
wall time was required, so this resolution was not used for wave train of this period or longer.
The amplitude was set at 4 cm to match the amplitude of the larger experimental case, but the
simulated waves were approximately 3.8 cm in amplitude. Figures 5.16 and 5.17 show the surge
and heave motion of the buoy in response to this simulated wave in comparison to the experi-
mentally measured trajectories. The amplitude of the surge motion was under-predicted by 25%
with a 5% phase error, while the heave motion was in closer agreement with the experiments
having an amplitude error of 15% and a phase error of 2%.

Finally, waves with a period of 3 seconds were simulated by SPH and compared to the ex-
perimental results. An amplitude of 7.1 cm was specified in the wave maker region, and the
resulting waves had an amplitude of 6.8 cm. The amplitude of the surge motion, shown in Fig-
ure 5.18, was under-predicted by 21%, and the trajectory was out of phase by 12%. Conversely,
the heave motion, shown in Figure 5.19, was more accurately predicted, with an error of 12%
in amplitude and less than 1% error in phase.

The simulated wave train interactions with the spherical buoy indicated that the buoy’s heave
trajectory was more accurately predicted by SPH than the surge trajectory. The primary force
that determines the vertical position is the buoyancy and weight of the buoy, which, as seen in
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Figure 5.13: Visualisation of the simulated buoy in a 1 s wave train with 10 mm particle spacing.
The figures show a slice through the midplane of the tank. The particles on the left have been
coloured by their speed in the x-direction, and the particles on the right have been coloured by
their pressure.

Section 4.1, can be accurately modelled using SPH. In the surge motion, the force on the buoy is
the drag from the fluid particles. The first wave that interacts with the buoy imposes a transient
response from the buoy as it is offset from the equilibrium position. The horizontal oscilla-
tion case showed that SPH does not accurately predict the transient motion at coarse particle
spacings, and the surge trajectories of the buoy responding to the 2 and 3 second period waves
also shows that the first peak is smaller than the following oscillations. For the 1 second period
case, the initial transient motion is more accurately predicted when a finer resolution of 5 mm
particle spacing is used although the transient motion is under-predicted. Consequently, it can
be concluded that the particle spacing in SPH plays an important role in accurately predicting
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Figure 5.14: Short time frequency spectrum of the surge motion of the simulation with 1 sec-
ond period and 10 mm particle spacing. The vertical grey line indicates the horizontal natural
frequency obtained from the oscillation tests performed in Section 5.1.
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Figure 5.15: Short time frequency spectrum of the heave motion of the simulation with 1 sec-
ond period and 10 mm particle spacing. The vertical grey line indicates the vertical natural
frequency obtained from the oscillation tests performed in Section 5.1.
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Figure 5.16: Non-dimensionalised surge motion of the buoy in the experiments and simulations
with a 2 second period wave train.
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Figure 5.17: Non-dimensionalised heave motion of the buoy in the experiments and simulations
with a 2 second period wave train.
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Figure 5.18: Non-dimensionalised surge motion of the buoy in the experiments and simulations
with a 3 second period wave train.
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Figure 5.19: Non-dimensionalised heave motion of the buoy in the experiments and simulations
with a 3 second period wave train.
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the initial transience of the buoy. At a particle spacing of 5 mm, or 1/40th of the buoy diameter,
the transient motion is reasonably predicted (within 10% error); however, if a coarser particle
spacing of 10 mm, or 1/20th of the buoy diameter must be used then errors of up to 35% can be
expected in the transient motion of the buoy.

5.2.4 Cause of the heavy damping

Throughout the wave train cases, the transient motion of the buoy in the horizontal direction
has been under-predicted by SPH. The surge oscillation case revealed that the surge motion was
heavily damped, however, the heave motion was not subjected to such severe damping (although
it was still present). As discussed earlier, energy was significantly dissipated in the vicinity of
an oscillating object.

A key difference between these cases was the forces that were driving the motion, and restoring
it to the equilibrium position. In the heave motion, the buoyancy was the primary force on the
buoy (21 N at equilibrium), followed by the buoy’s weight (17 N), and finally the tension in the
cable (4 N). However, in the surge motion, the only force restoring it to equilibrium was the
tension force in the cable, which had a maximum horizontal component of approximately 1 N.
The energy dissipation discussed earlier effectively applied a drag force on the object. When
the buoy was oscillating vertically, the dissipation was competing with an average net restoring
force of approximately 17 N, while for the horizontally oscillating buoy it was competing with
a maximum restoring force of 1 N. Consequently, the heave motion was less susceptible to the
energy dissipation since the restoring forces in that direction were an order of magnitude greater
than in the surge direction.

5.2.5 Stokes wave theory

To improve the accuracy of the motion predicted by SPH, refining the particle resolution was
the most effective means of improving results. However, refining the particle spacing resulted in
an excessively large number of particles that required infeasibly large computational resources
to resolve. If the wave maker region generated waves with velocity fields that have higher order
of accuracy, then the coarser resolution simulations could provide more accurate results. The
waves simulated earlier were generated using Airy linear wave theory, but other theories (such
as Stokes 2nd or 3rd order, cnoidal theory, or stream function theory) could potentially be more
appropriate for generating the desired waves.

Figure 5.20 shows a plot of regions of wave theory validity for nondimensionalised depths
and wave heights, based on data reported by Le Méhauté (1976). Crosses have been added to
the plot to indicate the positions of the six wave train experiments discussed earlier, and are
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Figure 5.20: Regions where different theories of periodic waves apply. The crosses indicate
the waves used in the experiments (green for 1 s period, blue 2 s, and red 3 s). (The figure
is adapted under the Creative Commons Attribution-Share Alike 3.0 Unported license from
Kraainnest (2012), which was based on a similar diagram from Le Méhauté (1976))

coloured based on the period used. The 1 s period waves are indicated by green crosses, 2 s by
blue crosses, and 3 s by red crosses. All of the waves fall outside the region where linear wave
theory was theoretically valid. This indicated that the waves produced for the simulations may
not be sufficiently representative. The waves fell within the region where Stokes 2nd order wave
theory was most appropriate, except for the 1 second period waves with the largest amplitudes,
where 3rd order would be the appropriate theory.

In Stokes 2nd order wave theory, the velocity field is given by:

vx =
agk

ω

cosh ky

cosh kd
cosψ +

3a2kω

4

cosh 2ky

sinh4 kd
cos 2ψ (5.4a)

vy =
agk

ω

sinh ky

cosh kd
sinψ +

3a2kω

4

sinh 2ky

sinh4 kd
sin 2ψ (5.4b)

Comparing these equations with those for the Airy linear wave theory in Equations (4.6), the
2nd order Stokes terms can be expressed as:

vx,2 =
3a2kω

4

cosh 2ky

sinh4 kd
cos 2ψ and vy,2 =

3a2kω

4

sinh 2ky

sinh4 kd
sin 2ψ (5.5)

The 1st order terms vx,1 and vy,1 are the same as the velocity terms given in Equations (4.6).

67



By setting the cos and sin terms containing ψ be equal to 1, and y equal to the depth d, a
comparison could be drawn about the influence of the 2nd order terms. Table 5.2 below shows a
comparison between the magnitude of the coefficients of the cos and sin terms for the maximum
amplitude wave for each period.

For the 3 second period waves, the magnitude of the 2nd order Stokes terms was approximately
1% of the magnitude of the linear terms in the vertical direction, and only 0.4% in the horizontal
direction. For 2 second period waves, the 2nd order terms were smaller, 0.05% and 0.02% of the
vertical and horizontal velocity terms respectively. The waves with a 1 second period, which
from Figure 5.20 are theoretically meant to have significant 3rd order terms, have 2nd order terms
that were 2×10-8% smaller than the linear velocity terms. The 3rd order terms were smaller in
magnitude than the 2nd order terms, which were already negligible. Consequently, the Stokes
terms could only be expected to have a small influence on the shape of the wave, and for the
1 second period case there was no noticeable effect of the higher order velocity terms.

The wave train simulations were repeated using the 2nd order Stokes wave velocity field, but
only for the 2 and 3 second wave cases since the 2nd order terms of the 1 second period case were
negligible. Figures 5.21 and 5.22 show the comparison of the x∗ and y∗ trajectories between the
different wave generation schemes with a 2 second period wave. The amplitude of these waves
was set to 4 cm to match the largest amplitude in the experiments. The range of oscillation is
slightly improved by the Stokes waves, but the initial peak of the surge motion still indicated
that the initial transient motion was not well predicted by SPH.

Figures 5.23 and 5.24 similarly show the comparison of the x∗ and y∗ trajectories for the 3
second waves. The amplitude of these waves was specified to be 0.071 m, matching the largest
amplitude in the experiments. The differences here were slightly more pronounced than in
the 2 second case, with the Stokes wave providing better agreement with the experiments (in
particular the surfe motions), as well as a smoother curve. This was due to the difference
between the first and second order velocity terms being only 2 orders of magnitude (rather than
3 orders in the 2 second period case), and consequently, the forcing region with 2nd order terms
generated more realistic waves.

The differences in the trajectories shown in Figures 5.21 to 5.24 indicate that the small dif-
ferences in the velocity terms of the linear and 2nd order Stokes theories could cause some

Table 5.2: 1st and 2nd order velocity terms in the Stokes wave velocity fields for the largest
amplitude waves performed in the experiments.

τ (s) a (cm) λ (m)
vx,2
vx,1

(%)
vy,2
vy,1

(%)

1 5.8 1.556 2.14E-08 2.30E-08
2 4.0 4.849 0.02 0.05
3 7.1 7.901 0.39 1.02
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Figure 5.21: Non-dimensionalised surge motion of the buoy in the experiments and simulations
with 2 second period wave trains generated by linear or 2nd order Stokes waves.
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Figure 5.22: Non-dimensionalised heave motion of the buoy in the experiments and simulations
with 2 second period wave trains generated by linear or 2nd order Stokes waves.
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Figure 5.23: Non-dimensionalised surge motion of the buoy in the experiments and simulations
with 3 second period wave trains generated by linear or 2nd order Stokes waves.
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Figure 5.24: Non-dimensionalised heave motion of the buoy in the experiments and simulations
with 3 second period wave trains generated by linear or 2nd order Stokes waves.

differences in the trajectory of the buoy. The difference in magnitude of the velocity fields in
these cases was between 2 orders of magnitude (for the 3 second case) and 4 orders of mag-
nitude (for the 2 second period case). For the later though, the difference in trajectory was
small. For a 1 second period wave, it was shown in Table 5.2 that the difference between the 2nd

order terms and the linear terms was nearly 10 orders of magnitude. Given that the trajectory
differences were small when the velocity differences were 4 orders of magnitude, the trajectory
differences were indistinguishable in the 1 second period case. Le Méhauté’s wave theory plot
(Figure 5.20) suggested that 3rd order Stokes wave theory was most appropriate for the 1 second
period cases; however, the 3rd order terms were smaller in magnitude than the 2nd order ones,
so their influence on the generated wave would also be insignificant.

5.3 Summary

The vertical and horizontal oscillation tests show that, with sufficient resolution (particle spac-
ing of 1/80th of the buoy’s diameter), SPH simulations can model the buoy’s initial motion to
within 2% error. However, the simulations were observed possess additional damping of the
motion that was determined to be due to energy dissipation of the fluid particles around the
buoy as it moved. At finer resolutions, the motion of the buoy was found to be more accurate
and the energy dissipation was smaller, although still present.

When observing the buoy’s response to a wave train, a large amplitude transient motion in the
surge trajectory was observed for the 1 second period case, but not in the 2 or 3 second period
cases. This transient motion was under-predicted by the SPH simulations that had particle
spacings of 10 mm, but a finer 5 mm particle spacing simulation was able to better predict the
transient motion. The smaller amplitude of the modulation in SPH simulations indicated that
the simulations were insensitive to these initial transient motions, and this was apparent in the
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2 and 3 second period cases, where the first surge peak was under-predicted. For the 2 and 3
second period cases, the amplitude of the surge motion was under-predicted by up to 25% and
there was a phase error of up to 12%. In both cases, the heave motions were more accurate with
a maximum error of 15%.

In an attempt to improve the SPH predictions without refining the particle spacing, the velocity
field was modified to follow 2nd order Stokes theory. This change was observed to make small
improvements to the amplitude of the predicted motion, particularly in the 3 second period
case, but no significant improvement of the phase error was noticed. For the 2 second period
case, the second order terms was 4 orders of magnitude smaller than the first order terms, and
the observed predictions were only marginally closer to the experiments. The 1 second period
cases had second order velocity terms 10 orders of magnitude smaller than the first order, so
Stokes wave velocity theory makes no noticeable difference. Consequently, the 1 second period
simulation cases were omitted from the study.

All of the simulations conducted in this chapter have indicated that the SPH predictions were
within 20% error of the buoy’s heave motion. As the heave motion was dominated by the weight
and buoyancy forces on the buoy, the simulations indicated that SPH could almost accurately
model the buoyancy forces. In contrast, the surge motion of the buoy was not as well predicted
by SPH, with errors of up to 35% regarding the transient motion of the buoy when the particle
spacing was 1/20th of the buoy’s diameter. The horizontal motion in the oscillation tests, the
under-predicted initial peaks in wave train cases, and the under-predicted modulation in the
1 second wave train case, all indicated that SPH had not predicted the transient motion of the
buoy particularly well. At a finer resolution of 5 mm, or 1/40th of the buoy’s diameter, the error
in the surge motion of the buoy was reduced to approximately 10% in the wave train case.

The cause of the errors in the surge motion was primarily due to the energy dissipation of fluid
particles near the object, which creates additional drag on the buoy. At finer particle spacings,
the dissipation was lessened, but still present. It was found that a particle spacing of 1/40th of
the object’s diameter or width gives an error of the order of 10%. If a coarser resolution is
required, a particle spacing of 1/20th of the diameter gives an error of approximately 35%.
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Chapter 6

Modelling Peregrine breather rogue waves
with SPH

Three studies have previously attempted to produce a rogue wave using SPH: Patel et al. (2009);
Campbell and Vignjevic (2012); and Rudman and Cleary (2013, 2016). Although the first
two of these studies claimed that an extreme wave was generated, no discussion on how it
was modelled was offered. In Rudman13 and Cleary’s studies, a porous medium was dragged
through the fluid domain, transferring momentum to the fluid to build up a large wave of water
that then collided with a model Tension Leg Platform (TLP). This resulted in a bulk movement
of water that impacted the TLP, which is not a realistic representation of a rogue wave.

The three studies also did not provide or refer to the validitiy of SPH in accurately modelling
a rogue wave. This chapter sets out to do just that by experimentally generating a rogue wave
and replicating the experiment using SPH, and investigating the accuracy of the simulation.

If SPH can be verified as a feasible methodology for simulating a rogue wave, then it could
be confidently used to explore the impact of a rogue wave on a floating tethered object (i.e., a
moored ship).

6.1 2D rogue wave simulation

The NLS model and Peregrine breather rogue waves were discussed in Section 2.1.3. These
have been shown to be capable of experimentally modelling rogue waves. In this section, exper-
imentally generated first and second order Peregrine breather type rogue waves are compared
to equivalent waves simulated using SPH. The ability to accurately model rogue waves on a
laboratory scale will provide greater confidence in results when simulations are later used to
generate larger scale rogue waves.
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Chabchoub et al. (2012b) described a carrier wave threshold steepness beyond which a rogue
wave will break before it has reached its maximum height. This threshold steepness value, εb,
is given by:

εb = a0k0 (6.1)

where a0 is the mean-to-peak amplitude of the carrier wave, and k0 is its wave number, (see
Section 2.1.3 for further detail). For a first order wave, the threshold steepness is 0.12, and for
a second order wave, it is 0.06. Consequently, the properties of the waves to be produced were
determined by setting a desired a0 and steepness, and then k0 could be calculated from Eq. (6.1)
and the angular frequency, ω0, from the deep water dispersion relationship:

ω2 = gk (6.2)

However, the NLS assumes that the waves are classified as deep water waves (i.e., k0d > π).
Thus, the values chosen for a0 and εb are such that the deep water wave condition is met. The
values of these properties are provided in Table 6.1.

In the experiments we desire the rogue wave to be at a maximum height at the start of the testing
region (x = 0 in Figure 3.1), which corresponds to a distance of 6.24 m to the mean position
of the piston wavemaker. As the transfer function between the input signal and the surface
elevation of the water is linear, the input signal is generated by linearly scaling the desired
surface elevation at the piston, η(−6.24, t), described by Eq. (2.7). Since the flow is essentially
two-dimensional, the SPH simulations can be performed in 2D without introducing significant
error.

However, since the velocity field of the fluid under a Peregrine breather wave is not explicitly
known, the methodology of Rudman and Cleary (2016) cannot be used to model the rogue
waves. Instead, the piston will need to be modelled with a damping region at the end of the
tank to prevent reflections from interfering with the results. The motion of this piston is taken
from the time history of the experimental piston, and interpolated using a cubic spline method
to ensure a smooth motion since the simulated time step is smaller than the measurement time
steps.

Table 6.1: Properties of the rogue waves generated in experiments

Order of the wave (j) a0 (m) steepness k0 (m−1) ω0 (s−1) k0d
1 0.01 0.06 6 7.6720 4.8
2 0.01 0.05 5 7.0036 4.0
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6.1.1 1st order rogue waves

The simulations for the first and second order rogue waves include the piston, the development
region and 9 m of the testing region. To reduce the number of particles in the simulation, the
depth of the wave tank was set to 0.6 m, which is still sufficient to satisfy the deep water wave
conditions required (kd > π). With these parameters, the simulations required a total of 414,528
particles when using a mean particle spacing of 5 mm, and would require 8 days of wall-time
on 12 cores. At this resolution the carrier wave has a wave height of just four particles (peak-
to-peak). The final 5 m of the testing region consisted of a region that damped the horizontal
motion of the fluid particles, and served to damp out the waves and reduce reflections from the
vertical wall at the end of the domain.

Figure 6.1 shows the surface elevation of the experimental and simulated rogue waves at a
distance of 6.24 m from the mean position of the piston. The surface elevations were measured
as a difference from the still water level in centimetres. The time axis is shifted so that the first
large crest (the crest that is more than twice the wave height of the background wave) occurs
at time t = 0. Considering that the background wave was just four particles in height, the
simulation matches the experiment reasonably well, although the amplitude of the rogue wave
event was smaller than the experimental one. In the physical experiment, the rogue wave had
an amplitude of a factor of 3 larger than the carrier wave, yet the simulation only produced an
amplitude a factor of 2 larger; a 33% error. Despite this, the specific phase-shift dynamics that
characterised the breather evolution appeared to be well represented.

Figure 6.2 shows the surface elevation at the other three measurement points at times close to
the rogue wave event. These plots used the same zero-time reference as Figure 6.1 (that is,
t = 0 corresponded to the first large peak at 6.24 m from the piston). The plots show a clear
progression of the rogue wave; however, at more distant positions from the wave maker, it is
clear that the simulated waves arrived at the measurement points earlier than in the experiments,
indicating that the waves simulated by SPH are travelling faster than the experiments. Knowing
the distance between measurement points, the SPH waves were calculated to be travelling at
approximately 0.71 m/s; 11% faster than the experimental waves of 0.64 m/s. Despite this,
the phase shift dynamics at each position appeared to still be well predicted. Furthermore, the
amplitude of the carrier wave did not decrease over the length of the tank in either the physical
experiment or simulation, indicating that there was little or no dissipation of the waves.

The simulation results can be expected to be improved by refining the mean particle spacing, but
modifications to the simulation domain are required to use fewer particles so the computational
time is not infeasible. The same piston is considered in a smaller domain with the water depth
reduced to 35 cm, length to 7.5 m, and the lower boundary set to allow free slip. The final 3 m
of this domain is set as the damping region to reduce the wave reflections from the end wall.
The piston is located 2 m from the peak rogue wave location and the start-up time is reduced to
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Figure 6.1: Comparison of the experimental (black line) and simulated (red line) surface ele-
vations for the 1st order rogue wave at a distance of 6.24 m from the wave maker. The bottom
plot is a magnified view of the top.

20 s before the rogue wave event. Since the location of the piston has changed relative to the
rogue wave location, a different piston motion is required. The piston motion used is instead a
scalar multiple of η(−2, t).

However, the reduced depth meant that the waves were no longer classified as deep water waves,
so the breather solution was theoretically no longer valid. To ensure that the results were not
adversely affected (such as a decreased rogue wave or background wave height), the reduced
domain was tested using the same particle spacing as previously. At this particle spacing, only
110,087 particles were required, and the simulation was completed within 2 days of wall-time
on 4 cores.

Figure 6.3 compared the surface elevations of the simulations at the peak rogue wave location
(2 m from the piston in the reduced domain). The resulting rogue wave in the reduced domain
was shown to not be adversely affected despite the reduction in domain. The background waves
were equal in height, but the rogue wave itself appeared to possess a larger height in the reduced
domain case. This indicated that the reduced domain was acceptable for modelling the rogue
waves, despite the breather solutions no longer being theoretically valid.

Using the reduced domain, a rogue wave could be simulated with a refined particle spacing of
2 mm. The 2 mm resolution domain used 705,453 particles, and the rogue wave event could
be produced within 2 weeks of wall-time using 12 cores. Figure 6.4 shows the comparison
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Figure 6.2: 1st Order Rogue Wave at various distances form the wavemaker. Top 7.10 m from
the piston, middle 7.94 m, and bottom 8.79 m.

between the experiments and the 2 mm resolution cases. Again, the amplitude of the waves im-
mediately before the rogue wave event was smaller than in the physical experiments; however,
the amplitude of the rogue wave event itself was in much better agreement with the experiments
than the 5 mm case. As in the 5 mm case, the complex phase characteristics of the rogue wave
were again well predicted by SPH. Additionally, the wave speeds of the 2 mm simulation were
calculated to be 0.645 m/s, only 1% faster than in the experiments.

The simulations here indicate that a Peregrine breather rogue wave of first order can be ac-
curately modelled using SPH, provided that the amplitude of the carrier waves is equal to or
greater than 5 times the mean particle spacing. At coarser resolutions, the height of the simu-
lated rogue waves is not only under-predicted, but the wave speed is predicted to be faster than
in reality.
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Figure 6.3: Using a refined domain with 5 mm particle separation to produce a 1st order rogue
wave.
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Figure 6.4: Comparison of the surface elevations for the 1st order rogue wave at a distance of
6.24 m from the wave maker for the experiments (black line) and 2 mm resolution simulation
in a refined domain (green dashed line).

The velocity field of the water has been represented visually for the 2 mm simulation in Fig-
ure 6.5, with vx shown in the top and vy in the bottom of each subfigure. Previous studies
observing these types of waves have only looked at the surface elevation of the wave, and have
not considered the velocity field of the water. This velocity field data was simple to obtain from
SPH, whereas in physical experiments Particle Image Velocimetry or another imaging technique
would be required and thus may not be as simple to obtain.
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−15 15

Colour Scale (m/s)

(a) vx, vy at t = −6.0 s, when the background wave before the rogue wave arrives.

(b) vx, vy at t = −2.1 s, when the amplitude trough before the rogue wave arrives.

(c) vx, vy at t = 0.0 s, when the rogue wave was at its maximum amplitude.

Figure 6.5: Velocity contours of the simulated first order rogue wave with 2 mm particle spac-
ing. The top contour in each subfigure shows vx and the bottom figure shows vy. Red particles
have a velocity of 0.15 m/s or greater, and the blue particles have a velocity of -0.15 m/s. The
positive directions are right (for vx) and up (for vy). The black marks above the waves indicate
the location of x = 0, or where the rogue wave was at its maximum.
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Figure 6.6: Comparison of the experimental (black line) and simulated (red line) surface eleva-
tions for the 2nd order rogue wave at a distance of 6.24 m from the wave maker. The bottom
plot is a magnified view of the top

6.1.2 2nd order rogue wave

This section investigates the efficacy of SPH in modelling a second order rogue wave. This
wave has an amplitude five times larger than the background wave. The full numerical values
and setup of the wave tank from the first test were used; however, the depth was increased to
0.7 m to ensure the waves were in deep water. A particle spacing of 5 mm was again used (total
of 474,548 particles), resulting in a background wave of just 4 particles peak-to-peak. This
simulation was able to generate the rogue wave within 10 days of wall-time on 12 cores.

Figure 6.6 shows the surface elevation at a distance of 6.24 m from the piston. Similar to the
previous test, the simulation predicted the shape of the wave reasonably well and the period
between the simulated crests and troughs closely matched those of the physical experiments.
However, the amplitude of the rogue wave was again under-predicted. The experiments pro-
duced a rogue wave height 5 times larger than the background wave, but the simulation only
predicted an amplification factor of approximately 3 (40% error). The phase dynamics of the
rogue wave again appeared to be well represented. At positions farther from the wave maker,
the background waves were noticed to be more out of phase with the experiments, similar to the
1st order case, and are shown in Figure 6.7. However, the peaks of the rogue wave remained
in phase with the experiments, suggesting the group velocity of the rogue wave is accurate for
this order solution, although the phase speeds were not. The background waves were calculated
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Figure 6.7: 2nd order rogue wave at various distances form the wave maker. Top 7.10 m from
the piston, middle 7.94 m, and bottom 8.79 m.

to be travelling at approximately 0.77 m/s in the experiments, and 0.82 m/s in the simulations
(approximately 6% faster).

In the first order case, the reduced domain with 2 mm particle spacing provided significantly
improved predictions of the rogue wave, so the same reduced domain was used to model the
second order rogue wave. Figure 6.8 shows the comparison between the experiments and the
2 mm resolution simulations. The agreement with the background wave was similar to the
5 mm case, but the amplitude of the rogue wave event was closer to the experimental values.
Additionally, the complex phase dynamics were well modelled and the wave speeds had less
than 1% error, as in the first order case. Again, a particle spacing 1/5th of the carrier wave
amplitude appeared to provide good agreement with the experiments.
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Figure 6.8: Comparison of the surface elevations for the 2nd order rogue wave at a distance of
6.24 m from the wave maker for the experiments (black line) and 2 mm resolution simulation
in a refined domain (green dashed line).

6.1.3 Summary

Two Peregrine breather-type rogue waves, orders 1 and 2, were generated experimentally and
replicated using SPH in 2D. For each order wave, an SPH simulation at a coarse resolution
(1/2 of the background wave amplitude) and a fine resolution (1/5 of the background wave
amplitude) were performed. It was found that at a coarse resolution the rogue wave height
had an error of up to 40% and wave speed errors of up to 11%, but SPH was still able to
model the complex phase shifts of the waves reasonably well. A reduced domain with depth of
0.35 m and free slip boundaries was tested to allow finer resolution simulations to be performed.
The reduced domain had no detrimental influence on the quality of the generated rogue wave,
despite the solution no longer being theoretically valid. Using the reduced domain, an improved
resolution simulation was able to be performed, finding that the height of the predicted rogue
wave matched the experimental values very well, with a wave speed error of only 1%.

From these studies, it can be concluded that SPH is able to accurately model the generation of a
Peregrine breather type rogue wave, including the complex phase dynamics that are inherent to
these types of rogue waves. To do this, the particle spacing should be 1/5th of the carrier wave
amplitude, a0, or finer. Additionally, the number of particles can be reduced by using a depth
satisfying kd = 1.75. This was equivalent to a depth of 175 particle spacings. Although this
depth makes the deep water conditions required by the Peregrine breather waves theoretically
no longer valid, it was found that there was no negative effect on the rogue wave produced.

6.2 Ocean Scale Rogue Wave Impacts

The ultimate goal of this study is to explore the efficacy of using SPH for modelling the im-
pact of a rogue wave on a floating tethered body. In so doing, the capabilities of SPH can be
validated.
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Centre of Mass Cables

40.4m

70m

259.2m

31.6m

Figure 6.9: Arrangement of the three tethering cables on the ship model. The bow of the ship is
located on the right of the image.

This section presents the findings and analysis of using SPH to model a variety of impacts be-
tween rogue waves and a full scale moored ship. Since not all rogue wave impacts are identical,
a number of different scenarios are modelled. These investigated the effect that the mooring
cable stiffness, ship mass, wavelength, and rogue wave height have on the impact.

A theoretical ship, measuring 259.2 m in length and 31.6 m in width, was used. The ship had a
moulded depth of 23.5 m, and has a draught of 12.0 m when sitting in still water. It had a mass
of 52,196 tonnes, and its centre of mass was located on the mid-plane, 12.6 m from the hull
and 152.1 m from the bow. It was tethered by three cables attached to the midline of the hull,
40 m from the bow, and reached to the ocean floor, 175 m below the free surface. The mooring
points of the cables on the floor formed an equilateral triangle with side-length of 70 m (see
Figure 6.9). The cables have a spring-stiffness of 1.7×106 N/m and an un-tensioned length of
157.1 m. When the ship is at equilibrium, the cables have a tension of approximately 13.6 MN.

A 3D numerical wave tank was simulated. It was 700 m in length and 72 m wide with periodic
lateral boundaries, as shown in Figure 6.10. A piston (not shown in the figure) was located at
the front-left end of the tank and a vertical wall was at the far end. Numerical damping was
applied in front of the wall to reduce wave reflections. The centre of mass of the ship was
located 330 m from the piston, with the bow of the ship pointing toward the piston. Although
the ship’s width was 44% of the width of the tank, the overall blockage ratio was below 5%.
The ship does not adhere to the periodic boundaries, so ideally a wider domain should be used
to ensure that the ship does not cross the boundaries. However, due to the already significant
computational expense of these simulations, a wider tank was not a viable option. Also, due to
the symmetry of the ship, any net side force or torque about the y-axis would be minimal and
should not impart sway or yaw motion.

The piston motion was chosen to generate a 9 m background sea state, with the Peregrine
breather rogue wave appearing at 200 m from the piston (shown in Figure 6.10 by the transparent
yellow plane) 300 seconds after the start of the simulation to provide sufficient build up time.
The wave elevation was 150 m from the piston, or 27.9 m in front of the bow of the ship - this is
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Figure 6.10: The domain used for the large scale rogue wave impacts. The transparent yel-
low plane is located where the rogue wave will be at its maximum amplitude. Note that the
coordinate axes is not centred at the origin.
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Figure 6.11: Elevation of the wave heights relative to the still water height

shown in Figure 6.11. The background waves were approximately 9 m in height and the rogue
wave height was 26.1 m. Since the surface elevation in this figure was measured ahead of the
ship, it has not yet reached the peak rogue wave location, so the rogue wave would be greater
when it interacts with the ship. The yellow highlighted times represents the region of impact
time (or, more simply, when the ship interacts with the largest waves in the simulation).

The ship model had a boundary particle spacing of 1 m, and this value was also used as the
mean particle spacing for these simulations. At this particle spacing, the background wave had
an amplitude of 4.5 particle spacings, which was close to the ratio of 1:5 that was recommended
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in Section 6.1 for accurately modelling rogue waves. Additionally, this particle spacing has a
δx:d ratio of 1:175 that ensured the deep water wave conditions were approximated correctly.
The simulation used 8.3 million particles and required over 8 weeks of wall-time to complete
the simulation. The ratio of the particle spacing to the width of the object was 1:31.6, which
was less than the 1:40 ratio that was recommended in Chapter 5. Therefore, errors of the order
of 15 to 20% could be expected.

It must be noted that no special consideration was given to any turbulence modelling in these
simulations. Studies have been performed showing that turbulence modelling can be done with
SPH (Shao and Gotoh, 2005; Violeau and Issa, 2007), although no validated turbulence model
was available for this study. Despite this, Khayyer et al. (2008) suggested that “the effect
of turbulence in macroscopic behaviour of hydrodynamic flows does not seem to be significant
(Gotoh et al., 2005)” (p. 22), so the overall results obtained here were unlikely to be significantly
altered by the introduction of a turbulence model.

6.2.1 1st order rogue wave impact

The first rogue wave impact to be studied will be used as the base case, against which, all of
the following cases will be compared. The ship will face into the wave, so the rogue wave will
directly impact the ship’s bow. The key aspects of the impact that will be calculated are:

• the trajectory of the ship’s centre of mass (CoM);

• the pressures at points on the surface of the ship along the bow; and,

• the total tension in each cable.

6.2.1.1 Ship motion

A visualisation of the ship’s motion is shown in Figure 6.12, showing the ship’s interaction
with the waves at various times. In (a), the ship was interacting with the background wave in
a regular motion, while in (b), the ship was ascending the first large wave in the impact time.
The rogue wave was at its maximum in (c), where the bow of the ship can be seen to nearly be
completely out of the water, and in (d) the bow is almost completely submerged.

The trajectories of the ship’s CoM are shown in Figure 6.13. The range of the heave motion was
only a few metres in the background waves, but it peaked at 13 m during the rogue wave impact
time. The surge motion, however, had an initial transient motion similar to what was observed
with the buoy in sinusoidal waves in Section 5.2. Two transient motions were observed in the
surge motion of the ship; when the background waves first interacted with the ship, and when
the rogue wave impacted the ship. The first of these transient motions had a small amplitude and
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(a) t = 150.0 s (b) t = 281.0 s

(c) t = 300.0 s (d) t = 310.0 s

Figure 6.12: The ship in a rogue wave. (a) The ship at its lowest point in the background wave.
(b) The ship is climbing the wave that precedes the rogue wave. (c) The rogue wave is at its
peak amplitude. (d) The ship plunging into the wave following the rogue wave, where the risk
of green water on deck is greatest.

had almost completely dissipated when the rogue wave impacted the ship. This was due to the
long time frame for the motion to dissipate, and also due to the waves having small amplitudes
shortly before the rogue wave impact. The amplitude of the transient motion from the rogue
wave was larger than that in the previous transient motion; however, there was insufficient data
to determine the long term behaviour of the motion after the rogue wave impact.

The pitch of the ship was also analysed in Figure 6.14. During the impact time, the pitch of the
ship achieved a maximum of 6◦. As the ship was 260 m long, even small pitch angles could
cause the bow and stern to move significantly. The effect this had on the heights of the top of
the bow and stern is shown in Figure 6.15. In the background waves, the bow and stern of the
ship have a range of motion of approximately 10 m; however, when the rogue wave impacted
the ship the largest height change was 24.9 m for the bow and 28.8 m for the stern, both of
which occurred over a time period of approximately 7.5 seconds.
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Figure 6.13: Displacement of the ship in the surge (x) and heave (y) directions.
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Figure 6.14: Trajectory of the ship’s roll and pitch motions.
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Figure 6.15: Trajectory of the ship’s bow and stern vertical motions, relative to the still water
height.

6.2.1.2 Pressure readings

The impact forces on any vessel are of significant importance for its safe design. Previous stud-
ies (Cummins et al., 2012; Rafiee et al., 2012) have shown that the SPH method was capable of
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Figure 6.16: Locations of the pressure sensors on the ship.

modelling these impact forces if the high frequency fluctuations were removed. Consequently,
the pressure on the ship could be calculated using the equation of state, Eq. (2.17), with confi-
dence that realistic results would be obtained if the high frequency fluctuations are addressed.

A number of locations on the midplane near the bow of the ship were chosen to measure the
pressure. These are shown in Figure 6.16. Other locations farther along the hull of the ship
were measured, but they did not reveal any additional information than what was measured by
the four points shown. Table 6.2 shows the exact locations of the sensors, relative to the centre
of mass of the ship (with positive x towards the bow of the ship).

Pressure readings are shown in Figure 6.17. To remove the high frequency fluctuations in
pressure, the data has been smoothed using the mean of the surrounding 0.3 seconds of data.
Müller et al. (2005) claimed that vessels were typically designed for a maximum pressure of
150 kPa, and pressures exceeding 300 kPa may cause them to be compromised. The pressure
plots show that the peak pressure was 274.4 kPa, and this is within the limit set by Müller et al.

The pressures at point 1 are constantly 0, indicating that this point was never submerged. This
was supported in Figure 6.12d, showing that the bow was not submerged when the ship entered
the trough after the rogue wave passed. Thus, the ship in this case avoided any green water
on the deck. If the amplitude of the waves were larger, or the ship was heavier, then the ship
may dip into the following wave and be subjected to green water effects. It can be observed
that the pressures at points 2 and 4 have larger peaks during the rogue wave impact than they

Table 6.2: Locations of the pressure sensors

Sensor number x (m) y (m)
1 152.1 11.9
2 144.5 0.0
3 138.3 -12.4
4 114.2 -12.3
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Figure 6.17: Pressures at each of the sensor locations

do during the background wave. However, the pressure at point 3 had larger peaks which were
of similar size throughout the entire simulation, and they were only marginally larger during
the rogue wave impact. This may have been due to the main source of the pressure at this
point coming from the constant interaction of the ship’s bow with the oncoming waves (this
was not as significant or present for points 2 and 4). The larger rogue wave appeared to have
only a small influence on the magnitude of these pressures. During the impact, the pressures at
point 3 were also observed to be at their lowest, particularly just after the peak rogue wave and
following wave had passed the bow. This low pressure was due to the bow of the ship rising to
nearly be completely out of the water (see Figure 6.12c), and thus the hydrostatic pressure on it
was low. It could be expected that slamming loads at point 3 would be larger after interacting
with the larger rogue wave, but these were not shown in the simulations. This was likely to be
due to the lack of resolution needed to model the mechanics of such violent impacts that could
produce the large impulse pressures (such as cavitation and air entrainment). However, the
already costly nature of the simulations prohibited further refinement of the simulations which
would be required to study slamming loads.

6.2.1.3 Cable Tensions

The cable tensions are shown in Figure 6.18. Due to the symmetry of forcing, there was negligi-
ble motion of the attachment point in the z direction, so the tensions in the two side cables were
nearly identical at all times, and therefore only one is shown in the figure. During the impact, it
was observed that the side cables had 0 tension, or the cables had become slack. The maximum
tension in the cables while in the carrier wave was 23.3 MN, but when the rogue wave impacted
the maximum tension reached 30.0 MN.
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Figure 6.18: Tensions in the ship’s cables during a rogue wave impact.

6.2.1.4 Summary

SPH was used to model the impact of a 27 m high rogue wave on a ship - a scenario for which
experimental data is unavailable. In this study, there was found to be no green water on the deck
of the ship as the heave and pitch of the ship allowed the deck to remain above water. However,
the bow and stern of the ship both had large vertical displacements during the rogue wave. The
stern moved nearly 29 m over 7.5 seconds. During the rogue wave impact, a maximum pressure
of approximately 275 kPa was predicted on the hull of the ship, near the bow. Allowing for
a safety factor of 1.1 in the model, this pressure was greater than the 300 kPa limit that was
suggested by Müller et al.

While the pressure was measured only at four points on the ship, it is possible for the pressure
to be measured at many locations. Doing so would allow a pressure map on the ship to be
generated that could then be used in a Finite Element Analysis to determine the effect those
pressures would have on the hull. However, the coarse resolution used in this study meant that
the phenomena that cause high impulse pressures during slamming could not be well modelled.
Therefore, the peak pressures may be much higher than what was observed in the simulations.
Unfortunately, the already high costs of performing the simulations prevent finer resolutions
being used to more accurately model slamming loads at the present time.

The scenario modelled here is just one of many possible scenarios that are likely to occur in
reality. How the ship is tethered can influence the results, as can the mass (or load) of the ship.
Additionally, the rogue wave that was generated is just one of many possible waves. Waves with
larger amplitudes or with longer or shorter wavelengths are possible, and the effects of which
are unknown. It is important to understand how the ship responds to many different conditions.
Some of these difference scenarios were investigated, and this work is reported in the following
sections.
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6.2.2 Effect of using a higher cable stiffness

In the previous simulation, the ship was observed to have a range of motion large enough for it
to avoid any green water effects. For some vessels, such as drilling vessels, this range of motion
may be too large and thus stiffer cables are desired to limit the range of motion. In these cases
it is important to understand the effects that the different cable stiffnesses have on the impact of
a rogue wave, and particularly if there is any green water on deck.

To determine these effects, the ship in a 1st order rogue wave is modelled with the cable stiff-
nesses increased to 3×106 N/m (a 76% increase), and the untensioned length increased so that
the tension at equilibrium is unchanged. In order to reduce computational time, a snapshot taken
10 seconds before the rogue wave impact (i.e., at t = 265 s) is saved and commenced from then
with the modifications to the cables made.

The comparison between the overall tension in the cables are shown in Figure 6.19. The stiffer
cables were observed to have larger peak tensions, with the maximum tension being 36 MN
in the side cables. Despite the increase in tension, the motion of the ship in response to the
rogue wave impact was nearly identical to the base case. The only difference was a marginally
smaller period of oscillation for the transient motion in the surge direction due to an increase in
natural frequency. As a result of the motion remaining the same, there was no difference in the
pressures at the four measured points.

Finding that the spring stiffness had an insignificant effect on the overall motion of the ship
was not surprising when the overall buoyancy forces were considered. Figure 6.20 shows the
peak buoyancy force was approximately 600 MN, a factor of 17 times larger than the maxi-
mum tension in the cable, indicating that the influence of the cable stiffness was small unless
significantly stiffer cables were used.

6.2.3 Effect of additional load

The original simulation was performed using the ship without any cargo, which, if the ship
were an FPSO, would be equivalent to when the vessel had been unloaded or had yet to com-
mence production. Heavier ships are more at risk of green water effects as they have higher
draughts. Consequently, two additional simulations were performed that model a ship that was
carrying cargo equal to 30% and 100% of the ship’s gross tonnage. As with the higher stiffness
simulation, the simulations were restarted from a snapshot at t = 265 s.

The ship with 30% additional mass was observed to typically sit approximately 2 m lower in the
water in Figure 6.21a, while the ship with 100% additional mass sat 7 m lower. The relationship
between additional mass and the change in heave position was approximately linear, with the
ship sitting 0.137 m lower in the water for each 1,000 tonnes of cargo. This linear relationship
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Figure 6.19: Tensions in the forward pointing cable (top figure) and side cables (bottom figure)
for the case with higher stiffness cables attached to the ship.
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Figure 6.20: Buoyancy forces on the ship during a rogue wave impact.

was expected as the cross-sectional area of the ship remained approximately constant from the
original waterline up to the ship deck.

Given the increase of inertia, the heavier ships’ surge motions has slightly smaller amplitudes, as
shown in Figure 6.21b. For the ship with 100% extra mass, the transient motion was also shown
to have a longer period of oscillation, and the ship with 30% extra mass only had a slightly
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(a) Heave motion.
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(b) Surge motion.

Figure 6.21: Heave and surge motion of the heavier ships during the rogue wave impact.

longer period of oscillation. Since this oscillation was previously determined to oscillate at the
natural frequency of the system, these results indicated that the mass of the ship can have a
significant influence on the natural frequency of oscillation.

The pressures on the ships increased by approximately 20 kPa and 70 kPa for the 30% and
100% additional mass cargo cases. This corresponded to the change in hydrostatic pressures
that the points were expected to observe. However, the pressure at point 1 (at the top of the
bow) in Figure 6.22 showed that the 100% additional mass ship experienced significant non-
zero pressures, indicating that the waves were impacting the deck and causing green water
events. The 30% additional mass ship also showed some non-zero pressures at 308 seconds.
These pressures are small in magnitude, which indicated that the surface of the water was very
close to the bow and may be subject to green water if additional cargo were to be carried.
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Figure 6.22: Pressure at point 1 (top of the bow) on the heavier ships during a rogue wave.

6.2.4 Coarser resolution

Computational resource constraints meant that not all of the simulations could be restarted
from t = 0 s at a particle spacing of 1 m. Although some simulations could be restarted from
a snapshot at t = 265 s, such as the higher stiffness or increased mass simulations, changes to
the nature of the wave could not since the fluid particles in the snapshot would not have the
correct waveform, and therefore these simulations must be started at t = 0 s. To allow for these
simulations to be performed within the resource constraints, a coarser particle spacing of 2 m
was used.

This section quantifies the discrepancies between the original simulation and a new simulation
with a coarser resolution. For a particle spacing of 2 m, the time taken for the simulations to
resolve was a factor of 7 less than with a 1 m particle spacing.

In this comparative case, a particle spacing of 2 m corresponded to a background wave that
is slightly larger than 2 particles in amplitude. This was shown in Section 6.1 to result in a
rogue wave that was smaller in amplitude than expected. Figure 6.23 showed that the surface
elevation of the rogue wave with the coarser resolution was surprisingly similar to the original
1 m particle spacing case. This consistency between the 1 m and 2 m particle spacings indicated
that a 2 m particle spacing was adequate for modelling this rogue wave.

The heave and pitch motions were not significantly influenced by the coarser resolution. The
surge motion had some differences between the simulations, and these are shown in Figure 6.24.
In particular, the transient motion in the 2 m particle spacing case was under-predicted. This
was similar to the 1 second period wave train cases (see Section 5.2.3). The background wave
oscillations were actually similar to the 1 m particle spacing simulation.

As a consequence of the small differences in the surge trajectories, some differences were ob-
served in the cable tensions (see Figure 6.25). The peak tension was under-predicted by 10%
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Figure 6.23: Surface elevation of the rogue wave with a mean particle spacing of 2 m.
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Figure 6.24: Surge trajectory of the ship in a rogue wave with a mean particle spacing of 2 m.

compared to the 1 m simulations, but the tensions when the ship was in the background sea state
appeared to be slightly over-predicted.

Although the coarser resolution simulations cannot accurately model slamming pressures, the
pressures at points 1, 2, and 4 were found to have approximately the same magnitude as the
pressures at the same points in the 1 m case. However, the amplitude of the pressure oscilla-
tions at point 3 with a 2 m particle spacing was approximately half that of the 1 m case (see
Figure 6.26). This suggested that the 1 m particle spacing case was modelling some slamming
loads.

The magnitude of the pressures in the 2 m particle spacing case were approximately equivalent
to the hydrostatic pressure expected at point 3’s location at that time. Given that there was
uncertainty about the accuracy of the slamming pressures in the 1 m particle spacing case, the
coarser 2 m mean particle spacing was certainly inadequate for calculating the pressures on the
front of the ship from slamming. However, since the cable tensions were predicted to be within
10% error for the coarser resolution, the 2 m particle spacing case can still be used for designing
the cables and predicting the ship’s trajectory.
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Figure 6.25: Tensions in the forward (top figure) and side (bottom figure) cables in a rogue
wave impact for the simulation with 2 m mean particle spacing.
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Figure 6.26: Comparison of pressures at sensor 3 for the 1 m and 2 m particle spacing cases.

6.2.5 Increasing the wavelength of the rogue wave

Many types of waves are possible in the ocean, not only with larger amplitudes, but also with
longer wavelengths. To test the effect of this, a simulation was performed with an increased
wavelength. Since this simulations was required to start at t = 0 s, the coarser resolution of 2 m
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Figure 6.27: Surface elevation of a rogue wave with a longer wavelength.

particle spacing was used.

The wavelength of the background waves were doubled without changing their amplitude. This
resulted in waves with half the steepness as was in the base case. The surface elevation of the
longer wavelength rogue wave (see Figure 6.27) was shown to have a longer period between
crests (due to the longer wavelength), but the overall amplitude of the waves was unchanged.

The heave response of the ship to the longer wavelength rogue wave (see Figure 6.28) was not
significantly different, with the period of oscillation in the background wave different due to
the changed wavelength. The surge motion, however, did differ with the change in wavelength.
The transient motion in the background wave was damped, and this was due to the coarser
particle spacing and increased period (as seen in Section 5.2.3). However, the transient motion
in response to the rogue wave impact was seen to have a larger amplitude than the previous
simulations.

Finally, the pressures on the ship were observed to remain reasonably similar to the original
wave (with 2 m particle spacing). Since the pressures, when a particle spacing of 2 m was
used, were known to incur an error, a direct comparison with the original 1 m particle spacing
case was not useful. Instead, Figure 6.29 shows a comparison of the pressures between the
longer wavelength rogue wave and the original test performed with 2 m particle spacing. The
pressures were shown to fluctuate with similar amplitudes throughout the simulation, indicating
that the change in wavelength had no effect on the pressures. Thus, if this simulation were to
be performed with a particle spacing of 1 m, then pressures similar to the original case can be
expected.
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Figure 6.28: Trajectory of the ship in the heave (top figure) and surge (bottom figure) directions
in response to the longer wavelength rogue wave impact.
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Figure 6.29: Pressure at sensor 3 during the longer wavelength rogue wave.

6.2.6 Simulating the impact of a 2nd order rogue wave

The first order rogue wave used in the previous cases measured at approximately 27 m wave
height when it was at its maximum. However, the impact of a larger rogue wave will likely have
more dire consequences. To investigate this, a second order rogue wave, with an amplification
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Figure 6.30: Surface elevation of the simulated first and second order rogue waves.

factor of 5, was simulated impacting the ship. This rogue wave had a height of nearly 45 m when
the same background wave state was used. To simulate these waves, a 2 m particle spacing was
used, and the wavelength was doubled compared to the base case in order to ensure that the
maximum wave steepness (εb = 0.06) for a second order wave was not exceeded.

Figure 6.30 shows the surface elevation of the second order rogue wave at a position of 27.9 m
ahead of the bow of the ship, where the original simulation measured the surface elevation.
It can be seen that the front face of the rogue wave has a height of 42 m, and the back face is
39.1 m high. This position was 50 m ahead of the rogue wave’s theoretical peak height location,
and the peak wave was expected to be larger than these heights.

Despite the very large wave height of the second order rogue wave, the ship was not subjected
to significant green water effects. A visualisation of the ship in the rogue wave is shown in
Figure 6.31 at the times where the ship was most at risk of green water effects. Although the
bow of this ship dips into the waves, the penetration was not deep enough for significant water
to remain on the deck of the ship. Compared to Figure 6.12d, where the ship was at its greatest
risk of green water on deck, it could be seen that for this second order wave the bow was closer
to the surface of the waves. Consequently, the ship was at greater risk here than it was in the
original simulation.

The motion of the ship in response to the impact of the second order rogue wave is shown in
Figure 6.32. The range of the heave motion was larger during the rogue wave impact than it was
in the base case, and this was expected as the rogue wave was much larger. The surge motion
showed a small amount of transient motion in the background waves, but during the rogue wave
impact the range of motion was approximately double that of the base case. This was due to the
longer wavelength of the waves and the larger amplitude of the rogue wave providing a larger
initial transient displacement.

Due to the reduced range of motion during the background wave, the tension in the mooring
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(a) t = 294 s

(b) t = 308 s

Figure 6.31: Visualisation of the ship responding to a second order rogue wave.

cables did not have as large fluctuations as in the original case. This is shown for the side cables
in Figure 6.33. The forward cable again did not have greater maximum tension than the side
cables, so only the tensions of the side cables were considered. However, during the rogue wave
the motion of the ship caused the maximum tension in the cables to exceed 40 MN.

The pressure at sensor point 3 is shown in Figure 6.34, compared with the first order case with
a 2 m particle spacing. The magnitude of the pressure fluctuations were similar between the
first and second order cases, only differing during the rogue wave impact where the waves were
larger for the second order case. Previously, the 2 m particle spacing was shown to poorly model
the slamming pressures, so the pressures observed here were primarily the hydrostatic pressures,
hence the similarity between the two cases was not surprising. Since the amplitudes of motion
were larger for the second order case, it could be expected that the slamming pressures would
be larger. However, simulations at finer resolutions are required to determine these slamming
loads.
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Figure 6.32: Trajectory of the ship in the heave (top figure) and surge (bottom figure) directions
in response to the second order rogue wave impact.
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Figure 6.33: Tension of the side cables during the second order rogue wave impact, compared
to the first order wave impact with particle spacing of 1 m

6.3 Summary

In this chapter, the efficacy of SPH was verified for modelling Peregrine breather type rogue
waves of orders 1 and 2. Upon this verification, SPH was then used to simulate the impact of
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Figure 6.34: Pressure at sensor 3 during the second order rogue wave impact, compared to the
first order wave impact with a particle spacing of 2 m.

these types of waves on a floating tethered body (i.e., a moored ship in this study) under varying
conditions.

In the first section, Peregrine breather type rogue waves were experimentally generated and then
replicated using 2D SPH simulations. This validated the efficacy of SPH to model these types of
waves to a reasonable degree of accuracy. These simulations revealed that a minimum particle
spacing to the background wave amplitude ratio of 1:5 was required for producing accurate
breather waves. Furthermore, a simulated depth of at least 35 cm, equivalent to kd = 1.75 in
the second order rogue wave case, with free slip boundaries was required to ensure that the
rogue waves were accurately modelled.

Simulations of a large scale rogue wave impacting on a tethered ship were then performed using
3D SPH. A particle spacing of 1 m was used in the simulation, and a rogue wave nearly 27 m
in height was generated. The impact on the ship showed that the hull near the bow experienced
large pressure peaks due to slamming into the waves, and the slamming pressures were smaller
in amplitude the farther they were from the bow. Since the particle spacing was inadequate to
model the typical mechanisms that caused large slamming pressures, there was uncertainty in
the accuracy of the slamming pressures predicted. However, they were nevertheless present in
the SPH simulations, suggesting that finer resolutions would be capable of accurately modelling
those pressures.

A number of different tests were performed and compared to the base simulation to determine
the effect of a different ship or wave properties. Firstly, the stiffness of the cables used to tether
the ship was increased. It was found that increasing the stiffness had insignificant influence on
the overall response of the ship to the rogue wave impact. This was likely due to the buoyancy
forces on the ship being an order of magnitude greater than the tension forces in the cables. To
obtain tension forces of the same order of magnitude as the buoyancy, then significantly higher
stiffness values were required.
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Next, the mass of the ship was increased. This had the effect of causing the ship to sit lower
in the water, and the risk of green water effects was increased. Additionally, the amplitudes of
motion were reduced as the ship’s inertia was increased.

In order to reduce the computational effort required, the rogue wave impact was repeated using
a coarser resolution of a 2 m mean particle spacing. It was found that the cable tensions were
within 10% of the fine resolution case and the surface elevation was well modelled, however, the
pressure predictions were poor along the front of the ship, and only modelling the hydrostatic
pressures. Additionally, the transient surge motion of the ship was under-predicted, similar to
the coarser resolution validation cases performed in earlier studies.

The wavelength of the waves was then doubled. It was found that the longer wavelength had
little influence on the impact with the exception of inducing a larger amplitude transient motion
in the surge direction. The order of the rogue wave was then increased, resulting in a wave that
was over 42 m in height. Although this wave height is likely to be unrealistic, there was no
significant green water effects observed on the ship. As was expected by the larger wave height,
the ship’s range of motion was increased in both the heave and surge directions.
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Chapter 7

Conclusions

Designing an offshore vessel to survive a rogue wave impact is a difficult process as experimen-
tal data is difficult to obtain. To provide designers with a technique to assist in predicting the
effect of a rogue wave impact, the aim of this research was to show the efficacy of Smoothed
Particle Hydrodynamics in modelling such rogue wave impacts. To do this, this research cov-
ered a sequence of progressively more complex studies that validated SPH for modelling rogue
waves and their interactions with a floating tethered body. Once validated, the SPH method was
used to predict the effects of a rogue wave impact on a full scale moored ship.

In the first stage of the research, two preliminary studies were performed. The first of these
aimed to determine the important parameters for calculating object boundaries and free surface
locations using SPH. Due to the particle nature of SPH, exactly where the object and free surface
boundaries were located was not clearly defined. In the boundary normal method, it was found
that offsetting the boundaries by half a particle spacing yielded the most accurate representation
for actual size of the buoy. However, when the object penetrated the surface of the fluid, the
exact location of the free surface was needed to determine the correct proportion of the object
that was submerged. The free surface location was estimated to be at the location where the
particle density (or fraction of fluid in the vicinity) equalled a specific value, ξt. It was found
that the free surface location was correct when the particle density was 80%, or ξt = 0.8.

Given the significant computational expense in running particular simulations, the second of
the preliminary studies aimed to reduce computational cost. To do this, the number of particles
required to perform the simulation was reduced. This was achieved by using a forcing region
to generate the surface waves and periodic boundaries that allowed for the waves to re-enter the
domain. In studying the forcing region method, it was found that the forcing factor, κ, was the
most influential controlling parameter for generating waves of the desired amplitude, producing
the most accurate wave amplitudes when κ = 0.7.

The next study in the research was to determine the accuracy of SPH when modelling the

103



interaction between surface waves and a floating tethered body in 3D. In a review of the SPH
literature, there were few validation studies of SPH when modelling these scenarios. In addition,
these studies considered only 2D SPH, or modelled untethered objects. To provide validation
data for SPH for use in this research, experiments were performed in which measurements were
made for the motion of a moored spherical buoy interacting with the free surface in a number
of scenarios: oscillating vertically or horizontally across a still surface, or interacting with a
sinusoidal wave train. The results of these experiments were then compared to predictions from
the SPH method to determine the accuracy of SPH when modelling the moored buoy. It was
found that a particle spacing equal to approximately 1/40th of the width or diameter of the object
resulted in errors in the trajectory of less than 10% when compared to the experimental data.
When a coarser particle spacing of 10 mm, or 1/20th of the buoy diameter was used, the error
in the buoy motion increased to as high as approximately 35%. From these studies, it was
determined that SPH could be used to accurately model the interaction of a floating tethered
body on a free surface, provided that a particle spacing of order 1/40th of the width of the object
is used.

The ability of SPH to model a rogue wave was then investigated by generating a rogue wave
in experiments and using the experimental results to verify SPH simulations. Experimental
studies had previously shown that Peregrine breather type waves could generate a rogue wave.
However, a common criticism of using the Peregrine breather solution to model a rogue wave is
that the fundamental generation mechanism (the Benjamin-Fier instability) does not occur in the
ocean. Despite this, the resulting rogue wave is considered satisfactory, and these types of waves
have not previously been modelled using SPH. Furthermore, the other proposed generation
mechanisms are difficult or impossible to implement in SPH. Two Peregrine breather type rogue
waves were generated experimentally in this study: a first order rogue wave that was three times
larger than the background waves, and a second order rogue wave that was five times larger than
the background wave. SPH was then used to model these two waves.

It was found that SPH was capable of accurately modelling these rogue waves when sufficient
particle spacing was used. Unsurprisingly, the prediction of the rogue wave was poor when the
particle spacing was 1/2 of the wave amplitude; however, refining the particle spacing to 1/5th of
the amplitude gave a rogue wave height prediction that was within 5% error when compared to
experimentally measured rogue waves. To reduce the number of particles required to simulate
the wave, the depth of the water was varied, and it was found that using a depth condition of
kd = 1.75 or greater allowed the deep water conditions to be approximated closely enough to
have no negative effect on the generated rogue wave. Thus, the SPH method has been shown to
be capable of modelling a rogue wave to reasonable accuracy.

Finally, SPH was used to model a variety of impacts between rogue waves and a moored ship.
A 27 m high Peregrine breather rogue wave was generated and its impact on an ocean scale
moored floating ship was analysed. From the previously conducted studies in this research, the
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magnitude of the errors was known and no experimental comparison was required. The tension
in the mooring cables, the pressure at four points along the bow and hull, and the trajectory of
the ship were all calculated in the simulation. It was found that SPH was capable of predicting
the effect of the impact of a rogue wave on the ship. For this wave, the cable tension was
found to be greater in the side cables, with a maximum tension of 30.0 MN. Additionally,
a peak pressure on the hull of the ship of 275 kPa was observed. Although only 4 pressure
measurement points were included in the simulation, using many more points would allow for a
pressure map to be generated that can be used for Finite Element Analysis on the ship. It must be
noted, however, that the particle spacing was too coarse to properly model the pressures during
slamming, although some slamming events were predicted. Further refinement of the particle
spacing is needed to obtain an accurate slamming model, but these simulations are currently too
expensive to perform. Methods of reducing the computational time, such as variable resolution
or more efficient computational resources, are an important area of research that will enable the
use of SPH to predict the slamming loads on large scale vessels.

Additional simulations were then performed to investigate the effect of stiffer mooring cables,
and the effect of additional mass (or additional cargo) on the ship when impacted by a rogue
wave. The tension forces were found to have little influence on the motion of the ship since the
buoyancy forces were an order of magnitude greater than the tension forces. For the heavier
ship simulations, it was found that with 30% increased mass there were no green water effects,
but when the mass was increased to double the original mass, then green water effects were
observed. This result is unsurprising as heavier ships will sit lower in the water and so larger
waves are more likely to crash onto the deck.

The original SPH simulation of the 27 m high Peregrine breather rogue wave had a long run-
time. To reduce the computation expense, a coarser particle spacing was tested where the parti-
cle spacing was doubled, reducing the runtime by a factor of 8. It was found that the rogue wave
was still well modelled (despite the particle spacing only being 1/2 of the carrier wave ampli-
tude) and that the response of the ship was similar. However, the pressures on the ship were
detrimentally affected by the resolution change, appearing only to capture the hydrostatic pres-
sure and not any additional pressure from the waves crashing into the ship. Overall, the coarser
resolution is acceptable, provided that the pressure measurements be treated with caution.

The coarser resolution was then used to model the impact of two different rogue waves: a first
order rogue wave of 27 m height but with a longer wavelength, and a second order rogue wave
with a maximum height of 42 m. Increasing the wavelength of the waves was found not to
introduce green water effects since reduced steepness decreased the risk of the bow plunging
into the waves. The second order wave was also found not to introduce any green water effects.
This result was unexpected since the wave height was large. However, a visualisation of the
impact showed that the bow of the ship was closer to the surface and thus the ship was more at
risk of green water on deck than the original simulation. In both simulations, no conclusions
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could be drawn about the effect on the pressures due to the reduced accuracy at this resolution.

From this research, it can be concluded that the efficacy of SPH has been established and that
it is a viable method for modelling a rogue wave impact on a floating tethered body in the
ocean. Coarser resolution studies can be used to model some aspects of the impact on the
ship design, such as the tensions in the cable, but finer resolutions are required to accurately
model the impact pressures on the ship. Furthermore, the validation work performed provided
experimental data that will be useful in future studies to verify other simulation methods that
attempt to simulate either the motion of a buoy interacting with a free surface, or the generation
of a Peregrine breather rogue wave.

During this research, it was evident that to obtain very accurate simulations, fine resolution and
long runtimes were required. While perhaps acceptable for research purposes, for industrial
applications the lengthy runtimes are likely to be too expensive or time-consuming. Reducing
the runtimes of the simulations would be a valuable improvement on the implementation of SPH
that was used in this research. This can be done by performing the simulations on computational
nodes with the capability for more massive parallel simulations, depending on the hardware
used for the simulations. An alternative option is to enable the SPH simulations to be performed
on GPUs, which are capable of significantly greater parallelisation per node than traditional
CPUs.

If these long runtimes can be improved, the SPH method will become a valuable technique for
industrial design applications in oceanography.
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Appendix A

Motion capture algorithm

A.1 Determining a ray of solutions

The coordinate transformation matrix given in Eq. (3.2) written as a set of equations is:

uw = c11x+ c12y + c13z + c14 (A.1)

uw = c21x+ c22y + c23z + c24 (A.2)

w = c31x+ c32y + c33z + c34 (A.3)

where the transformation matrix C is

C =

 c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

 (A.4)

substituting w into equations A.1 and A.2 gives:

u(c31x+ c32y + c33z + c34) = c11x+ c12y + c13z + c14 (A.5)

v(c31x+ c32y + c33z + c34) = c21x+ c22y + c23z + c24 (A.6)

which simplify to

(uc31 − c11)x+ (uc32 − c12)y + (uc33 − c13)z = c14 − uc34 (A.7)

(vc31 − c21)x+ (vc32 − c22)y + (vc33 − c23)z = c24 − vc34 (A.8)

107



or in matrix form:

[
uc31 − c11 uc32 − c12 uc33 − c13

vc31 − c21 vc32 − c22 vc33 − c23

]
︸ ︷︷ ︸

B

 x

y

z


︸ ︷︷ ︸

X

=

[
c14 − uc34

c24 − vc34

]
︸ ︷︷ ︸

b

(A.9)

This is an underdetermined system with two equations and three unknowns, so there are infinite
solutions. The general solution is given by:

X = Xhomogeneous + Xparticular (A.10)

The homogeneous solution is found from solving:

BXhomogeneous = 0 (A.11)

where Xhomogeneous is in the nullspace of B. Let a non-trivial vector associated with this
nullspace be r = (rx, ry, rz). The particular solution, which is re-labelled to p = (px, py, pz), is
any possible solution to Eq. (A.9). One solution can be found using the pseudo inverse method:

p = BT (BBT )−1b (A.12)

Thus the general solution of global coordinates is:

X = t · r + p, t ∈ R (A.13)

A.2 Determining a global coordinate from many rays

Due to the infinite number of solutions that can be obtained from a single camera view, a second
view was required to obtain a single unique solution. Realistically, there will be some error in
either the cameras, or the human identification of the pixel-coordinates of a point. Figure A.1
shows an example of a three camera view where the errors prevent a unique solution from
forming. Consequently, a least squares method approach was adopted to determine the closest
solution to the lines of solutions from the cameras, by minimising the distances from the point
to the lines (see Figure A.2).
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Figure A.1: The errors in the rays of the three camera view prevent a single global coordinate
being agreed upon.

Figure A.2: Distance of a point to a line for camera i.

The shortest distance of the point to the line is given by:

di =|X − pi − kir̂i| (A.14)

= |X − pi ((X − pi) · r̂i) r̂i| (A.15)

d2
i = (x− pix − ((X − pi) · r̂i) r̂ix)2 + (y − piy − ((X − pi) · r̂i) r̂iy)2 (A.16)

+ (z − piz − ((X − pi) · r̂i) r̂iz)2
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The total error is then defined as:

E =
∑
i

d2
i (A.17)

=
∑
i

(x− pix − ((X − pi) · r̂i) r̂ix)2 + (y − piy − ((X − pi) · r̂i) r̂iy)2 (A.18)

+ (z − piz − ((X − pi) · r̂i) r̂iz)2

=
∑
i

(x− pix + (pi · r̂i)r̂ix − (xr̂ix + yr̂iy + zr̂iz)r̂ix)
2 (A.19)

+ (y − piy + (pi · r̂i)r̂iy − (xr̂ix + yr̂iy + zr̂iz)r̂iy)
2

+ (z − piz + (pi · r̂i)r̂iz − (xr̂ix + yr̂iy + zr̂iz)r̂iz)
2

=
∑
i

(x(1− r̂ixr̂ix) + y(−r̂ixr̂iy) + z(−r̂ixr̂iz) + (−pix + (p · r̂i)r̂ix))2 (A.20)

+ (x(r̂ixr̂iy) + y(1− r̂iyr̂iy) + z(−r̂iyr̂iz) + (−piy + (p · r̂i)r̂iy))2

+ (x(r̂ixr̂iz) + y(−r̂iyr̂iz) + z(1− r̂zxr̂iz) + (−piz + (p · r̂i)r̂iz))2

The optimisation of E has a solution when the derivatives of E are 0. The derivatives are given
by:

∂E

∂x
=
∑
i

x [(1− r̂ixr̂ix)(1− r̂ixr̂ix) + (−r̂ixr̂iy)(−r̂ixr̂iy) + (−r̂ixr̂iz)(−r̂ixr̂iz)] (A.21)

+ y [(−r̂ixr̂iy)(1− r̂ixr̂ix) + (1− r̂iyr̂iy)(−r̂ixr̂iy) + (−r̂iyr̂iz)(−r̂ixr̂iz)]

+ z [(−r̂ixr̂iz)(1− r̂ixr̂ix) + (−r̂iyr̂iz)(−r̂ixr̂iy) + (1− r̂iz r̂iz)(−r̂ixr̂iz)]

+ [(−pix + (pi · r̂i)r̂ix)(1− r̂ixr̂ix) + (−piy + (pi · r̂i)r̂iy)(−r̂ixr̂iy)

+ (−piz + (pi · r̂i)r̂iz)(−r̂ixr̂iz)]
∂E

∂y
=
∑
i

x [(1− r̂ixr̂ix)(−r̂ixr̂iy) + (−r̂ixr̂iy)(1− r̂iyr̂iy) + (−r̂ixr̂iz)(−r̂iyr̂iz)] (A.22)

+ y [(−r̂ixr̂iy)(−r̂ixr̂iy) + (1− r̂iyr̂iy)(1− r̂iyr̂iy) + (−r̂iyr̂iz)(−r̂iyr̂iz)]

+ z [(−r̂ixr̂iy)(−r̂ixr̂iy) + (−r̂iyr̂iz)(1− r̂iyr̂iy) + (1− r̂iz r̂iz)(−r̂iyr̂iz)]

+ [(−pix + (pi · r̂i)r̂ix)(−r̂ixr̂iy) + (−piy + (pi · r̂i)r̂iy)(1− r̂iyr̂iy)

+ (−piz + (pi · r̂i)r̂iz)(−r̂ixr̂iz)]
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∂E

∂z
=
∑
i

x [(1− r̂ixr̂ix)(−r̂ixr̂iz) + (−r̂ixr̂iy)(−r̂iyr̂iz) + (−r̂ixr̂iz)(1− r̂iz r̂iz)] (A.23)

+ y [(−r̂ixr̂iy)(−r̂ixr̂iz) + (1− r̂iyr̂iy)(−r̂iyr̂iz) + (−r̂iyr̂iz)(1− r̂iz r̂iz)]

+ z [(−r̂ixr̂iy)(−r̂ixr̂iz) + (−r̂iyr̂iz)(−r̂iyr̂iz) + (1− r̂iz r̂iz)(1− r̂iz r̂iz)]

+ [(−pix + (pi · r̂i)r̂ix)(−r̂ixr̂iz) + (−piy + (pi · r̂i)r̂iy)(−r̂iyr̂iz)

+ (−piz + (pi · r̂i)r̂iz)(1− r̂iz r̂iz)]

These derivatives can be simplified algebraically:

∂E

∂x
=
∑
i

αixx+ βixy + γixz + bix (A.24)

= x
∑
i

αix + y
∑
i

βix + z
∑
i

γix +
∑
i

bix

= αxx+ βxy + γxz + bx = 0

∂E

∂y
=
∑
i

αiyx+ βiyy + γiyz + biy (A.25)

= x
∑
i

αiy + y
∑
i

βiy + z
∑
i

γiy +
∑
i

biy

= αyx+ βyy + γyz + by = 0

∂E

∂z
=
∑
i

αizx+ βizy + γizz + biz (A.26)

= x
∑
i

αiz + y
∑
i

βiz + z
∑
i

γiz +
∑
i

biz

= αzx+ βzy + γzz + bz = 0

which provides a linear system of equations, αx βx γx

αy βy γy

αz βz γz


 x

y

z

 =

 −bx−by
−bz

 (A.27)

that can be solved to obtain the global coordinates of the point, as required. However, if all
of the rays are parallel, there will be an infinite number of solutions. With three or more well
located cameras this scenario is highly unlikely to occur, and with two camera views it only
occurs when the point being tracked is on or near the line between the two cameras.
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G. Ducrozet, F. Bonnefoy, D. Le Touzé, and P. Ferrant. 3-D HOS simulations of extreme waves
in open seas. Natural Hazards and Earth System Science, 7(1):109–122, 2007.

O. El Moctar, A. Brehm, and T. E. Schellin. Prediction of slamming loads for ship structural
design using potential flow and rrans codes. In Proceedings of the 25th Symposium on Naval

Hydrodynamics, 2004. St. John’s.

D. Faulkner. Rogue waves: Defining their characteristics for marine design, Rogue Waves
2000. In Proceedings of a Workshop, 2000.

D. Faulkner and W. H. Buckley. Critical survival conditions for ship design. In RINA Inter-

national Conference: Design and Operation for Abnormal Conditions, Glasgow, Scotland,
1997.

F. Fedele, J. Brennan, S. P. De León, J. Dudley, and F. Dias. Real world ocean rogue waves
explained without the modulational instability. Scientific reports, 6, 2016.

G. Fekken. Numerical Simulation of Free-Surface Flow with Moving Rigid Bodies. Master’s
thesis, University of Groningen, Groningen, Netherlands, 2004.

L. Fernandez, M. Onorato, J. Monbaliu, and A. Toffoli. Occurrence of extreme waves in finite
water depth. In Extreme Ocean Waves, pages 45–62. Springer, 2016.

C. Fochesato, S. Grilli, and F. Dias. Numerical modeling of extreme rogue waves generated by
directional energy focusing. Wave Motion, 44(5):395–416, 2007.

N. Fonseca, R. Pascoal, C. Guedes Soares, G. F. Clauss, and C. Schmittner. Numerical and ex-
perimental analysis of extreme wave induced vertical bending moments on a FPSO. Applied

Ocean Research, 32:374–390, 2010.

G. Fouche and N. Adomaitis. North Sea Storm Forces Oil Platform Evacuations, Output
Shutdown. REUTERS, December 2015. URL http://www.reuters.com/article/
us-weather-northsea-idUSKBN0UE0OR20151231. [accessed 23 May, 2016].

114

http://www.reuters.com/article/us-weather-northsea-idUSKBN0UE0OR20151231
http://www.reuters.com/article/us-weather-northsea-idUSKBN0UE0OR20151231


R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory and application
to non-spherical stars. Mon. Not. R. Astr. Soc., 181:375–389, 1977.

H. Gotoh, H. Ikari, T. Memita, and T. Sakai. Lagrangian particle method for simulation of wave
overtopping on a vertical seawall. Coastal Engineering Journal, 47(2 & 3):157–181, 2005.

H. Gotoh, A. Khayyer, H. Ikari, T. Arikawa, and K. Shimosako. On enhancement of incom-
pressible sph method for simulation of violent sloshing flows. Applied Ocean Research, 46:
104–115, 2014.

S. T. Grilli, P. Guyenne, and F. Dias. A fully non-linear model for three-dimensional overturning
waves over an arbitrary bottom. International Journal for Numerical Methods in Fluids, 35
(7):829–867, 2001.

P.-M. Guilcher, N. Couty, L. Brosset, D. Le Touzé, et al. Simulations of breaking wave im-
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assessment in sloshing type problems with smooth particle hydrodynamics. Ocean Engineer-

ing, 33(11–12):1462–1484, August 2006.

I. Ten and H. Tomita. Simulation of the ocean waves and appearance of freak waves. In Reports

of RIAM Symposium, number 17SP1-2, March 10–11 2006. Fukuoka, Japan.

D. Violeau and R. Issa. Numerical modelling of complex turbulent free-surface flows with the
sph method: an overview. International Journal for Numerical Methods in Fluids, 53(2):
277–304, 2007.

H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions
of minimal degree. Advances in Computational Mathematics, 4(1):389–396, 1995.

B. J. West, K. A. Brueckner, R. S. Janda, D. M. Milder, and R. L. Milton. A new numerical
method for surface hydrodynamics. J. Geophys. Res, 92(11):803–824, 1987.

J. Westphalen, D. M. Greaves, C. J. K. Williams, A. C. Hunt-Raby, and J. Zang. Focused waves
and wave-structure interaction in a numerical wave tank. Ocean Engineering, 45:9–21, 2012.

B. S. White and B. Fornberg. On the chance of freak waves at sea. Journal of Fluid Mechanics,
355:113–138, 1998.

118



J. Wolfram, B. Linfoot, and P. Stansell. Long-and short-term extreme wave statistics in the
north sea: 1994-1998. Rogue Waves, 2000.
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