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Abstract

The particle-physics experiments at the Large Hadron Collider at CERN have en-
tered the second long phase of data collection. Consequently, the precision of mea-
surements rises, as does the demand for accurate and fast tools to provide theory
predictions to accompany the decreasing experimental uncertainties. Monte Carlo
event generators make use of random numbers to simulate realistic final states of
high-energy collider experiments, making them a crucial tool to extract conclu-
sions from experimental measurements, to analyze data, or provide comparisons
between theoretical calculations and data.

This thesis focuses on new models and improvement strategies for different parts
of such simulations. A very important element of the event generation is the par-
ton shower, which models the cascade of bremsstrahlung radiation emerging in
collider events. The parton shower resums effects of higher-order corrections by
using approximations to radiation patterns. Different approaches exist for improv-
ing the shower approximation with perturbatively calculable transition probabili-
ties. The ansatz used in this thesis corrects the functions driving the radiation in the
parton shower by applying a correction factor based on transition probabilities and
the radiation functions themselves. The rather simple correction algorithm is sub-
sequently improved, making it more complex, but allowing more control over the
calculation and an improved data description. The correction process constitutes
a fairly large fraction of the computing time in the simulation of event generators.
To speed up the correction, a particle property called helicity is used, which is nor-
mally not touched in the event generation. By assigning explicit helicities to par-
ticles in the parton shower, the time needed for the correcting the parton-shower
approximation is decreased.

The fragmentation step in the event generation transforms the elementary parti-
cles into hadrons, composite objects observed in the experiments. A new model
for obtaining the momentum of hadrons is developed, based on thermodynami-
cal considerations. Additions to the fragmentation increase the flexibility of the
model even further. A confrontation of the new model with data shows potential
improvements and weaknesses, compared to the conventional model.
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1
Introduction

Particle physicists study the smallest, fundamental building blocks of nature and
the forces that act between them. Classical mechanics uses physical laws to describe
the motion of macroscopic objects and how they interact under the influence of
forces. However, it reaches the limits of validity for very small resolution measures,
that is if high velocities close to the speed of light are reached at short-distance
scales such as the radius of an atomic nucleus. Much like a microscope would be
used instead of the human eye to resolve small structures, quantum field theory
comes into play at small resolutions to replace classical mechanics. It provides a
theoretical framework for the construction of models that describe subatomic par-
ticles and their movement and interactions. In quantum field theory, particles are
represented by fields, similar to how the photon is the quantum manifestation of
the electromagnetic field.

The Standard Model of particle physics is the very elegant and fascinating quantum
field theory which describes all currently known elementary particles and their in-
teractions. It has been very successful at describing a large range of quantities mea-
sured by particle physics experiments and is therefore well established by now.
The discovery of the last missing piece of the Standard Model, the so-called Higgs
particle, was announced in July 2012 by ATLAS [1] and CMS [2], two experiments
of the Large Hadron Collider, or LHC in short. The LHC at CERN in Geneva is
the world’s largest and most powerful particle collider and allows physicists to
explore the highest energies and smallest distances ever probed in a laboratory set-
ting. Two high-energy proton beams are accelerated until their velocities are close
to the speed of light before they are brought together to collide. The LHC is part of
a whole series of high-energy colliders that investigate the collision between protons
and (anti)protons, electrons and positrons or protons and electrons at various en-
ergies. Following fundamental laws of nature, other particles can be created from
the energy provided by the colliding objects. These newly created outgoing parti-
cles can themselves be initiators for the production of additional particles through
decays or emission. Following the collision, detectors make use of the knowledge
how different particles behave in the LHC’s electromagnetic fields or interact with
surrounding matter to identify particles and measure quantities such as their en-
ergy. The information is then analyzed and the result can be compared to expecta-
tions based on theoretical considerations.
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The energy of the incoming beams at the LHC is high enough to resolve the sub-
structure of the proton, whose constituents are quarks, antiquarks, and gluons, col-
lectively referred to as partons. The theory describing the partons is called strong
force or Quantum Chromodynamics, QCD in short. Just as in electromagnetism, in
QCD there is a fundamental charge that the partons carry, called colour, with anti-
colour being the equivalent to a negative electric charge. However, unlike in elec-
tromagnetism, three different kinds of this colour-charge exist. The accelerated
colour-charges involved in the collision initiate a cascade of additional radiation,
similar to the concept of bremsstrahlung. During the cascade, quarks and anti-
quarks can emit gluons, gluons can split into quark-antiquark pairs, and gluons can
emit other gluons. This last process is one of the properties that makes QCD truly
different from Quantum Electrodynamics, where photons do not interact directly
among themselves. This is caused by photons being electrically neutral, whereas
gluons do carry charges of the strong force. Another discriminating property is
the observation that the potential energy increases with larger distances between
colour- and anticolour-charges. As a consequence, partons are never observed as
free states in nature, but rather manifest themselves as bound states, the hadrons,
which contain either two or three quarks. Hadrons are observed as collimated
sprays of particles, called jets. As a wide range of physics analyses uses jets, the
description of their properties and substructure with high precision is an impor-
tant task.

Key players in the particle-physics community are Monte Carlo event generators for
high-energy collisions, which make repeated use of random numbers to obtain nu-
merical results. The primary goal of event generators is to provide an as detailed
and precise picture as possible of the complete final-state dynamics. In other words,
they attempt to simulate entire collider events from the incoming particles down
to the observed hadrons. The lack of analytic solutions to describe the complex
high-energy particle collisions requires the simulation to be factorized into differ-
ent steps. The so-called hard process is the calculation of the transition probability
for the basic, short-distance scattering. It is based on fixed-order perturbation the-
ory, folded with the probability for finding a parton inside the proton. As discussed
previously, additional radiation is produced by the incoming and, if present, outgo-
ing partons of the hard process. The requirement for this parton shower is the prob-
abilistic description of QCD bremsstrahlung. The radiation patterns follow simple,
iteratively applied functions that approximate transition probabilities by describ-
ing the radiation without explicitly taking into account the underlying hard pro-
cess. Parton showers are formulated as an evolution from short to long distances,
originally based on evolution equations for single partons [3–5]. Most modern par-
ton showers are based on the dipole-antenna picture of QCD [6–11], where multi-
parton states are regarded as composed of charge-anticharge pairs rather than a set
of (unconnected) charges and anticharges. After the showering, the coloured par-
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tons are transformed into primary hadrons, which may then decay further. This
hadronization or fragmentation can not be calculated from first principles. Different
QCD-inspired phenomenological models are used to describe the process, with the
string and cluster model being the most common ones [12–14].

In nature, the outgoing particles at the end of the collision interact with the detec-
tor, producing even more particles. Therefore, Monte Carlo events can be processed
through a detector simulation for comparisons to data. As this is a rather compu-
tationally expensive task, the usual procedure is to correct the measurements for
detector effects, allowing a direct comparison between the corrected data and event
generator output. This comparison makes event generators crucial for the theoreti-
cal understanding of collider physics and builds the link between experiments and
theoretical calculations. Besides investigating the Standard Model and particularly
the strong force, the information provided by event generators can also be used in
searches for new physics. Event generators can supply an accurate modelling of
potential new particles and the respective backgrounds needed to disentangle the
new-physics signals from Standard-Model-initiated ones. Faster and more precise
tools to provide theoretical predictions are needed to accompany the ever increas-
ing precision of measurements reported by the experiments. The aim of this thesis
to provide new models and improvements for different parts of the event genera-
tion, in particular the parton-shower process and fragmentation.

This thesis is organized as follows: in chap. 2 the foundations of the Standard
Model are reviewed, with an emphasis on the strong force. The basic elements of
Monte Carlo event generators are introduced in chap. 3, focusing on the parts that
are relevant later on. The following chapters present published work. The VINCIA

antenna shower has so far only been able to describe radiation off outgoing partons.
In chap. 4 the shower of VINCIA is extended to cover radiation associated with the
incoming partons, as is the method to improve the precision of the parton-shower
approximation. This method is revised and improved in chap. 5, where an alterna-
tive approach is considered in addition. To increase the speed of the calculations
performed in VINCIA, chap. 6 discusses the use of helicities, the projection of the
particle spin onto the direction of momentum, in the parton shower. The presen-
tation of new LHC data led to some rethinking of the fragmentation process. In
chap. 7 a new model is developed that has the capability of replacing part of Lund
string fragmentation model. Finally, chap. 8 contains a summary and concluding
remarks.
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2
Quantum Chromodynamics and
the Standard Model

The Standard Model of Particle Physics (SM) successfully describes the fundamental
particles and three out of the four fundamental forces discovered in nature. The
SM is based on a relativistic quantum field theory with the gauge group

SU(3)C × SU(2)L ×U(1)Y . (2.1)

It contains the strong force, described by SU(3)C, and the electromagnetic and weak
forces, united in the electroweak sector with the gauge group SU(2)L × U(1)Y. The
force not included in the SM is gravity. The particles are described as field rep-
resentations of the gauge groups. The quantized degrees of freedom, like spin
and charge, give the particle character to the fields. Two groups of particles exist:
fermions and bosons. In the SM fermions carry Spin 1/2 and bosons are character-
ized as Spin 0 or 1 particles.

Quantum Chromodynamics (QCD) is the theory behind the strong interactions. Al-
though QCD is not exactly solvable except numerically on a discrete space-time
lattice, the event generation discussed in chap. 3 strongly relies on the theory be-
hind the strong force. With the proton as a composite object bound by QCD, effects
of the latter are visible everywhere at the LHC. The thesis is centered around QCD
phenomena; either based on perturbation theory or on QCD-inspired phenomeno-
logical models, both of which are encoded in the concepts of sec. 2.1, where QCD
is introduced. A description of the characteristics of the strong coupling follows in
sec. 2.2. Some more details of the SM are given in sec. 2.3. The chapter is closed in
sec. 2.4 with a brief discussion of the cross section, as one of the key observables
measured at colliders. Most of the material covered in this chapter can be found in
text books, such as [15–18].

2.1 Quantum Chromodynamics

The strength of the interactions between SM particles is defined by the coupling con-
stants. As the QCD coupling gs is relatively large compared to the other couplings
present in the SM, the QCD sector is named strong. The gauge group is SU(3)C,
where the C denotes the quantum number colour. The fermions influenced by
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QCD are called quarks and the gauge bosons gluons, collectively referred to as par-
tons. The six different quark flavours are represented by the fields Ψf with masses
mf and carry a colour charge (one out of the three possible, r = red, g = green, and
b = blue). Their antiparticle, the antiquark, carries an anticolour. The gluons are
described by fields Gaµ (a = 1...8) with eight independent colour states, the colour
octet. For a respresentation of the colour wave-functions see e.g. [19]. Note that
gluon singlets with a colour wave-function ∝ (rr̄ + bb̄ + gḡ) do not exist as they
would be unconfined, see also sec. 2.2. The QCD Lagrangian provides the informa-
tion that is required to calculate transition probabilities. It reads

LQCD =
∑

f=u,d,...

Ψ̄f (i γµDµ −mf ) Ψf −
1

4
Gaµν Gaµν . (2.2)

Here, the covariant derivative is

Dµ = ∂µ − i gs T aGaµ (2.3)

and the field strength tensors are

Gaµν = ∂µG
a
ν − ∂νGaµ + gs f

abcGbµG
c
ν . (2.4)

With Gµ = Gaµ T
a the eight gauge fields correspond to the eight SU(3)C generators

T a. The Lie algebra
[
T a, T b

]
= i fabc T c (2.5)

defines the structure constants fabc. The generators are the Gell-Mann matrices λ in
the fundamental representation for the SU(3)C gauge group, T aij = λaij/2 .

The first term in eq. (2.2) contains the fermionic mass terms 1 mf Ψ̄fΨf and kine-
matic parts Ψ̄f γ

µ ∂µ Ψf . The coupling term describes the interaction between a
quark, antiquark, and a gluon, gs Ψ̄f γ

µGµ Ψf , and is proportional to the strong
coupling gs. The non-abelian nature of the SU(3)C gauge group manifests itself in
the self-interactions of the gluons,

Lg = − 1

4
Gaµν Gaµν

= − 1

2
Tr
(

(∂µGν − ∂νGµ)2
)

+
1

2
g2
s Tr

(
[Gµ, Gν ]2

)

+ i gs Tr
(

((∂µGν − ∂νGµ) [Gµ, Gν ])2
)
. (2.6)

The first term is the kinetic part, and the second and third term represent the four-
point and three-point gluon self-interaction respectively.

1These terms can only be introduced as QCD is treated as a separate theory. In the SM, where
QCD is combined with the electroweak theory, such mass terms break symmetries and can therefore
not be used.
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The quantization of the gluon fields within the path integral formalism requires
some modifications of the QCD Lagrangian,

LQCD → LQCD + Lfix + Lghost . (2.7)

As the integration is performed over all possible gauge transformations, the func-
tional integral is not well-defined. Faddeev and Popov introduced a gauge fixing
term

Lfix = − 1

2ξ
(∂µG

aµ)2 (2.8)

to remove the divergent part, see [18]. Non-Abelian gauge theories like QCD need
an additional term in the Lagrangian,

Lghost = ∂µ η̄
a ∂µ ηa + gs f

abc ∂µ ηcGbµ η
a , (2.9)

to correct the unphysical timelike and longitudinal degrees of freedom of the gauge
bosons. The additional fields η are called ghost fields.

2.2 Asymptotic Freedom and Confinement

The strong coupling αs = g2
s/4π changes as a function of energy; it becomes small

at high energies or short distances. This scale dependence, known as asymptotic
freedom [20, 21], allows the application of perturbative methods to calculate QCD
transition probabilities at large momentum transfers. In the limit of infinitely large
energy scales, quarks and gluons appear to be almost free particles.

The running of the strong coupling with the energy scale Q is described in terms of
the beta function

β(αs) = Q2 ∂αs
∂Q2

=
∂αs

∂ lnQ2
. (2.10)

The beta function, derived from higher-order calculations, can be expanded in
powers of αs

β(αs) = −α2
s

(
b0 + b1αs +O

(
α2
s

))
, (2.11)

with the leading-order (LO) [20, 21] and next-to-leading-order (NLO) coefficients
[22, 23]

b0 =
33− 2nf

12π
and b1 =

153− 19nf
24π2

. (2.12)

The number of quark flavours is denoted by nf , which is in turn dependent on
the energy, as only the quark flavours with masses . Q are active at scales ≤ Q

and therefore contribute to the running of αs. As the total number of observed
quark flavours is six, the beta function is of negative sign and the coupling αs(Q2)

decreases with increasing energy.
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Solving eq. (2.10) yields the result

αs(Q
2) =

αs(µ
2)

1 + b0αs(µ2) ln (Q2/µ2) +O (α2
s)
. (2.13)

A typical choice for the reference scale µ is the mass of the Z boson where the
coupling has been measured to be αs(m2

Z) ≈ 0.118. The coupling at an arbitrary
scale Q is obtained by evolving the coupling from the reference scale to Q. The
running coupling in eq. (2.13) can be rewritten as

αs(Q
2) =

1

b0 ln
(
Q2/Λ2

QCD

) with Λ2
QCD = µ2 exp

(
− 1

b0αs(µ2)

)
. (2.14)

This illustrates that the coupling diverges for small enough energies (large enough
distances). The scale at which αs nominally becomes infinite and perturbation the-
ory breaks down is ΛQCD ≈ 200 MeV. This is the energy where a phenomenon
called colour confinement takes place: coloured QCD particles produced in a scat-
tering are not observed as free states in nature. For large distances of ∼ 1/ΛQCD ≈
1 fm the QCD force field between two colour charges is compressed into a narrow
tube due to the gluon self-interactions. The further the charges move apart, the
more energy will be stored in the tube. It will eventually become energetically
favourable to create additional partons, which, together with the original partons,
form hadrons. More discussion on this will follow in sec. 3.5. In collider experi-
ments, the manifestation of confinement is the observation of collimated sprays of
hadrons, called jets.

2.3 Standard Model

The SM combines the theory of QCD with that of electroweak interactions. The sub-
scripts of the electroweak gauge group, SU(2)L×U(1)Y, denote the left-handedness
L and hypercharge Y.

The particle content of the SM is shown in tab. 2.1. The quarks, introduced in
sec. 2.1, and the leptons are both arranged in three generations,

(
νe

e

)
,

(
νµ

µ

)
,

(
ντ

τ

)
and

(
u

d

)
,

(
c

s

)
,

(
t

b

)
.

The fundamental representation of the SU(2)L gauge group are the left-chiral pro-
jections of the fermion fields, ΨL = 1

2(1 − γ5)Ψ. The left-handed quarks QL =

(uL, dL)T and leptons L = (νL, eL)T are doublets under the SU(2)L gauge group.
Right-chiral projections ΨR = 1

2(1 + γ5)Ψ of quarks QR = (uR, dR)T and leptons
eR are singlets under SU(2)L. Note that neutrinos do not appear righthanded 2 and
are assumed to be massless in the SM. Besides the fermions and the eight gluons,

2 The Goldhaber experiment (1957) showed that neutrinos only appear lefthanded in nature.
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Charge Mass Spin Charge Mass Spin

Fermions:
up u 2/3 2.2 MeV 1/2 electron e− - 1 511 keV 1/2

down d - 1/3 4.7 MeV 1/2 muon µ− - 1 106 MeV 1/2

charm c 2/3 1.3 GeV 1/2 tau τ− - 1 1.8 GeV 1/2

strange s - 1/3 96 MeV 1/2 e neutrino νe 0 < 2.2 eV 1/2

top t 2/3 173 GeV 1/2 µ neutrino νµ 0 < 170 keV 1/2

bottom b - 1/3 4.2 GeV 1/2 τ neutrino ντ 0 < 16 MeV 1/2

Bosons:
gluon g 0 0 1

photon γ 0 0 1

Z boson Z 0 91.2 GeV 1

W boson W± ±1 80.4 GeV 1

Higgs H 0 125 GeV 0

Table 2.1: List of all particles in the Standard Model, together with their short-
hand notation, electric charge, mass, and spin values. The u/d/s-quark masses are
estimates of so-called “current-quark masses” in a mass-independent subtraction
scheme such as MS [24] at a scale ≈ 2 GeV. The masses of the c/b quark are “run-
ning” masses in the MS scheme. The t-mass is measured directly. Note that the
neutrinos are assumed to be massless in the SM, but are still listed here with the
upper limit on their masses. Values taken from [25].

the QCD gauge bosons introduced in sec. 2.1, the SM includes the photon γ, W and
Z bosons of the electroweak theory, as well as the Higgs boson

g1, ..., g8 and γ, W+, W−, Z0 and H .

A pictorial representation including all particles and their interactions is shown in
fig. 2.1.

The Lagrangian of the SM can be divided into four parts, plus the gauge-fixing and
ghost terms of eqs. (2.8) and (2.9),

LSM = Lboson + Lfermion + LHiggs + LYukawa + Lfix + Lghost . (2.15)

The bosonic part of the Lagrangian contains the kinetic terms of all bosons as well
as the gluon self-interactions, see also sec. 2.1,

Lboson = −1

4
Gaµν Gaµν −

1

4
Bµν Bµν −

1

4
W i µνW i

µν (2.16)
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Quarks
u, c, t

d, s, b

q

Gluonsg

Higgs BosonH

Photonγ

W± and Z
Bosons

Z

W
Leptons
νe, νµ, ντ

e, µ, τ

ν

`

Figure 2.1: The Standard Model of particle physics, with lines indicating interac-
tions. Electrically charged particles exchange photons; leptons and quarks inter-
act weakly through W and Z boson exchange; W bosons interact with themselves
(thick grey lines). QCD interactions include quarks exchanging gluons and gluons
interacting with themselves (double lines). Every massive particle interacts with
the Higgs field (black lines).

The U(1)Y gauge field is denoted by Bµ and the three SU(2)L fields by W i
µ (i =

1, 2, 3). The fermionic part includes a sum over all left- and right-handed fermions
and can be subdivided into a kinetic and an interaction part,

Lfermion =
∑

ΨL/R

Ψ̄L/R i γ
µ ∂µ ΨL/R +

∑

ΨL/R

Ψ̄L/R γ
µ
(
gs IsGµ + g Iw σ

iW i
µ + g′YBµ

)
ΨL/R . (2.17)

The interaction with gluons is determined by the strong coupling gs and the strong
isospin Is, which is unity for quarks and zero for all other fermions. The quantum
number of SU(2)L is the weak isospin Iw, a half for left- and zero for right-handed
fermions. Together with the dimensionless coupling g it determines the interaction
between fermions and the SU(2)L gauge bosons. The last term represents the cou-
pling of all fermions to the U(1)Y boson, which is determined by the coupling g′

and the quantum number hypercharge. The latter is Y = Qem− I3
w, with the electric

charge Qem and the third component of the weak isospin I3
w.
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The last two terms of the SM Lagrangian in eq. (2.15) involve the Higgs boson. The
kinetic part of the Higgs doublet Φ, its coupling to the other gauge bosons, and the
Higgs potential are

LHiggs =

∣∣∣∣
(
∂µ −

i

2
g′Bµ −

i

2
g σiW i

µ

)
Φ

∣∣∣∣
2

− µ2 Φ†Φ− λ
(

Φ†Φ
)2

. (2.18)

With µ2 < 0, the potential is constructed such that it implies a non-vanishing vac-
uum expectation value, which is conveniently chosen to be 〈Φ〉 = (0, v/

√
2)T . In

this way, the SU(2)L × U(1)Y symmetry is broken spontaneously, where a residual
U(1)em symmetry is retained. The mechanism of spontaneous symmetry break-
ing (SSB) generates mass terms for two complex and one real linear combination
of the Bµ and W i

µ fields, which correspond to the physical W± and Z bosons. The
other linear combination corresponds to the unbroken U(1)em symmetry. It remains
massless and is identified as the photon.

Finally, the last term in eq. (2.15) denotes the coupling of the fermions to the Higgs
doublet

LYukawa =−
∑

leptons

Ge

(
Ψ̄L Φ ΨR + Ψ̄R Φ†ΨL

)

−
∑

quarks

λijd Q̄
i
L Ψ djR + i λiju Q̄

i
L τ2 Ψ∗ ujR + h.c. . (2.19)

The first term is the Yukawa coupling of the leptons with the dimensionless cou-
pling constant Ge and generates mass terms of the form −me(ēL eR + ēR eL). The
second term sums over the three quark generations with the complex mixing ma-
trices λ. The non-diagonal matrices parameterize the difference between the mass
and interaction eigenstates of the quark generations QiL, diR, and uiR. For the origi-
nal work on SSB and the Higgs mechanism see [26, 27].

2.4 Cross Sections and Matrix Elements

Collider experiments like the LHC or LEP are counting the occurrence of of specific
events; detectors therefore measure cross sections, the probability for certain scatter-
ing processes to happen. The luminosity L connects the cross section σ to the event
rate R = σ ·L (with units of s−1 = m2 ·m−2 s−1). The cross section for proton A and
proton B with momenta pA and pB to produce a specific n-particle final state is

σ(A+B → n) =
∑

a,b

∫ 1

0
dxa fa(xa, µ

2
F )

∫ 1

0
dxb fb(xb, µ

2
F ) σ̂(a+ b→ n) . (2.20)

This hadronic cross section factorizes into the partonic cross section σ̂n(a + b → n),
calculable in perturbation theory, and the hadronic part, given by the so-called par-
ton distribution functions (PDFs) f(x, µ2). See [28–30] for the factorization ansatz.
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As the incoming particles are composed of partons, all possibilities to arrive at the
final state n need to be summed and integrated over. Thus, the sum contains all
proton constituents, which are extracted with momentum pa/b = xa/b pA/B , where
xa/b is called the momentum fraction. As a first approximation, the PDFs parame-
terize the probability for the extraction of a parton of flavour a/b and momentum
fraction xa/b from the proton A/B. The PDFs depend on the factorization scale µF ,
at which the physics of short and long distances is separated, i.e. factorized. As
PDFs describe the properties of hadronic bound states, they can not be calculated
in perturbation theory, but are extracted from measurements.

The factorization into a partonic cross section and universal PDFs is not normally
an exact result, but rather only an approximation. For the Drell-Yan process how-
ever, [31] presented an explicit proof. On the final state, a similar factorization exits
that splits the cross section into a short-distance part and fragmentation functions,
which correspond to the probability for a parton to decay into a hadron. For the
inclusive decay of a highly off-shell photon to n hadrons, γ∗ → H1 . . . Hn + X , the
factorization has been proven in [32].

The hadronic cross section in eq. (2.20) is inclusive, in the sense that it is the cross
section for the production of the (n+X)-particle final state, as the PDFs account for
everything that could happen at scales below the factorization scale. In contrast, an
exclusive quantity refers to a n- and only n-particle final state.

The most general form of the partonic cross section, i.e. including all orders in
perturbation theory, is

σ̂(a+ b→ n) =
∞∑

k=0

∫
Fab

∣∣∣∣∣
∞∑

l=0

M(l)(a+ b→ n+ k)

∣∣∣∣∣

2

dΦ(a+ b→ n+ k) . (2.21)

The flux factor Fab is related to the relative velocities and the energies of the incom-
ing partons and reads

Fab =
1

4
√

(pa · pb)2 −m2
am

2
b

. (2.22)

M(l)(a + b → n + k) is the amplitude for the n-particle final state plus k additional
external legs and l additional loops. The partonic cross section in eq. (2.21) includes
the sum over all possible legs and loops. The squared matrix element (ME), |∑M|2,
and flux factor are finally integrated over the Lorentz-invariant phase-space

dΦ(a+ b→ n+ k) = (2π)4 δ(4)

(
pa + pb −

n+k∑

i=1

pi

)
n+k∏

i=1

d3pi
(2π)2 2Ei

. (2.23)

In practise, the perturbative series is truncated at a fixed order in the coupling as
the calculation becomes too cumbersome for large numbers of legs and/or loops.
The LO partonic cross section, also referred to as Born, is

σ̂LO(a+ b→ n) =

∫
Fab

∣∣∣M(0)(a+ b→ n)
∣∣∣
2

dΦ(a+ b→ n) . (2.24)
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space

time

e−

e+

γ g

q̄

q

Figure 2.2: Diagrammatic representation of the
annihilation amplitude of the process e+e− →
γ → qgq̄. Fermions are drawn with light grey
lines and antifermions with dark grey lines.
The photon is represented by the wavy line and
the gluon by the curly line. The black dots rep-
resent vertices.

Higher-order terms correspond to real (additional legs) and virtual (additional
loops) corrections. For instance the NLO cross section for the production of n par-
ticles, i.e. k + l ≤ 1, is

σ̂NLO(a+ b→ n) = σ̂LO(a+ b→ n) + σ̂real(a+ b→ n) + σ̂virt(a+ b→ n)

=

∫
Fab

∣∣∣M(0)(a+ b→ n)
∣∣∣
2

dΦ(a+ b→ n)

+

∫
Fab

∣∣∣M (0)(a+ b→ n+ 1)
∣∣∣
2

dΦ(a+ b→ n+ 1)

+

∫
Fab 2 Re

[
M(1)(a+ b→ n)M(0) ∗(a+ b→ n)

]
dΦ(a+ b→ n) (2.25)

with the Born cross section σ̂LO , real correction σ̂real , and virtual correction σ̂virt. In-
tegrating over the full phase-space dΦ(ab→ n+k) in eq. (2.21) leads to divergences
in the real corrections. Divergences in the virtual corrections are caused by the inte-
gration over the loop momentum (not explicitly shown in eq. (2.21)). By the virtue
of unitarity, adding the contributions makes eq. (2.25) finite as the singularities can-
cel each other order by order. This is guaranteed by the KLN theorem [33, 34] and
its generalization to QCD [35, 36].

The MEs are calculated with the help of Feynman rules, see for instance [37, 38], a
set of propagator factors for internal particles, wave functions for external parti-
cles, and vertex factors for the interaction points, which can be derived from the
Lagrangian introduced in this chapter. Each amplitude in eq. (2.21) can be repre-
sented graphically with a Feynman diagram, see fig. 2.2 for an example. Every line
and point is associated with the corresponding Feynman rule, multiplied in the
right order, gives an analytic expression for the amplitude. By summing over all
possible diagrams and squaring the result, one obtains the ME. Those calculations
are automatised by ME generators like MADGRAPH [39], such that particles with
momenta distributed according to the cross section are produced at the push of a
button.
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3
Monte Carlo Event Generators

Monte Carlo event generators (MCEGs) allow the prediction of the full final-state
kinematics in high-energy collisions, thereby playing an essential role in testing
theory models by comparing their predictions to data. The tasks performed by
MCEGs are highly non-trivial due to the larger number of particles with momenta
ranging over many orders of magnitudes. The simulation of particle collisions is
treated in a divide-and-conquer fashion: as a first step a subprocess at the highest
energy scale of the event is computed in perturbation theory. This subprocess is the
input to the parton shower, which evolves the partons downwards in scale by emit-
ting additional radiation. As the energy scales becomes smaller and smaller, per-
turbation theory finally breaks down and hadronization takes over to form hadrons
out of the partons. As a last step, unstable hadrons decay into the observed parti-
cles. This chapter aims at giving a basic overview of the physics behind MCEGs.

3.1 Hard Process

The first step in MCEGs is the calculation of the elementary hard process, the scat-
tering process of fundamental particles. The calculation is based on fixed-order
perturbation theory and convoluted with PDFs for hadronic initial states as in
eq. (2.20). A large range of 2 → {1, 2, 3} processes are included in multi-purpose
MCEGs like PYTHIA 8 [40,41] or HERWIG++ [42]. These processes are traditionally
implemented at LO perturbation theory. However, a lot of processes are nowa-
days available at NLO or even NNLO and therefore require a well-conceived com-
bination with the parton shower, which is referred to as matching and merging.
SHERPA [43], a MCEG originated in matching and merging studies, provides its
own ME generator called COMIX [44]. For MCEGs to make use of the results pro-
vided by ME generators such as MADEVENT/MADGRAPH [39] or more dedicated
amplitude providers like VBFNLO [45] or MCFM [46, 47], the Les Houches Accord
interface [48, 49] specifies a standard format for the exchange of data. In HER-
WIG++, direct interfaces of MATCHBOX [50] to different tree-level and one-loop
amplitude providers allows to set up the full calculation of LO and NLO cross sec-
tions.

To assign specific colours (and/or anticolours) to the partons of the hard process,
MCEGs neglect 1/NC contributions in QCD diagrams. In this limit, the colour
structure of an arbitrarily complicated parton system can be decomposed as a
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colour flow, represented by a set of colour lines, each connecting two partons. A
colour flow F is chosen according to the relative weights

∣∣MLC(F )
∣∣2
/∑

f

∣∣MLC(f)
∣∣2 , (3.1)

where the denominator sums over the leading-colour (LC) ME of all possible colour
structures. Together with the kinematics and energy scale of the particles of the
hard process, the colour flow acts as input for the generation of additional QCD
radiation in the initial- and final-state showers.

3.2 Multi-Parton Interactions

The hard process leaves behind what is left of the incoming beam particles. For
hadronic initial states, the remaining beam remnants allow the possibility of multiple
partonic interactions (MPIs) to occur. They manifest themselves for instance in jets
and their substructure, jet shapes [51], event shapes [52], or in an enhanced activity
in the region that is transverse to the direction of the hardest jet in the event [53,54].

In PYTHIA 8 and SHERPA MPIs are ordered in transverse momentum and the PDFs
for each successive interaction are constructed such that the sum of x-fractions can
never be greater than unity. In HERWIG++ an initial guess for the number of MPIs
is used. This might eventually lead to a violation of energy-momentum conserva-
tion in the sense that the sum of the energy of the incoming partons exceeds the
hadronic beam energy. If so, the generation of MPIs stops and the last interaction,
which caused the violation, is removed from consideration. In the PYTHIA 8 MCEG
MPIs are interleaved with the initial- and final-state showering of the hard process,
whereas in HERWIG++ and SHERPA they are handled in a separate step. The MPIs
themselves will be showered as well, similar to the hard process.

3.3 Parton Shower

The hard process is typically calculated according to the lowest-order ME. One pos-
sibility of obtaining higher accuracy is to extend the calculation such that higher
perturbative orders of the strong coupling αs are included. However, these correc-
tions become more difficult to calculate with increasing order of αs. Furthermore,
while inclusive cross sections describe the momenta of the outgoing jets well, they
do not give an exclusive picture of the process. To describe a collider event prop-
erly, including the substructure of jets and the characteristics of the accompanying
particles, any fixed order is not sufficient.

Cross sections are enhanced for certain phase-space regions. If QCD particles are
present, the ME has enhancements for two kinematic configurations:

1. The emission of a low-energy gluon (E → 0, soft singularity).
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Initial state: Final state: Splitting kernel:

Pq→qg(z) = CF
1 + z2

1− z

Pq→gq(z) = Pq→qg(1− z)

Pg→gg(z) = CA
(1− z(1− z))2

z(1− z)

Pg→qq̄(z) = TR [z2 + (1− z)2]

Figure 3.1: The different branching types in a QCD parton shower. Initial state
branchings are shown in the left column, final state branchings in the middle col-
umn, and the corresponding DGLAP splitting kernels are shown in the right col-
umn. The grey blobs represent the hard process.

2. The splitting into two partons close in angle (θ → 0, collinear singularity).

Gauge theory amplitudes factorize in the soft and collinear limits of QCD [55–57].
As a result, the cross section σn+1 for an arbitrary configuration with n particles,
accompanied by an additional emission, can be calculated with the help of the n-
particle cross section σn and a universal, i.e. process independent, splitting function
(or splitting kernel). This approximation 1 is used by parton shower algorithms to
generate emissions iteratively. While the parton kinematics and colour flow of the
hard process act as input to the parton shower, additional emissions are generated
independently of whether e.g. a Higgs or Z boson was present in the underlying
n-particle process. As the factorization is only valid for soft and collinear emis-
sions, a parton shower is effectively resumming the large logarithms appearing in
those phase-space regions for higher orders. The parton shower is able to generate
an arbitrary number of additional emissions and therefore acts as an all-orders ap-
proximation. The algorithm is typically formulated as an evolution in momentum
transfer from the high scale associated with the hard process down to lower scales.

3.3.1 Parton Branching in the Collinear Limit

Consider the splitting a → bc. of a final-state parton a into two partons b and c .
The relevant QCD branchings for final-state legs are shown in the middle column
of fig. 3.1: a quark emitting a gluon, a gluon emitting a gluon, and a gluon splitting
into a quark-antiquark pair. After the splitting, parton b carries the energy fraction

1The factorization is only correct in the soft and collinear limits and therefore an approximation
away from these limits.
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z of the mother parton a, Eb = z Ea , which leaves the energy of parton c to be
Ec = (1 − z)Ea due to energy conservation. In the collinear limit, i.e. where the
angle θbc between partons b and c is small, the amplitude factorizes and can be
written as

|Mn+1|2 θbc→ 0
8παs

Pa→bc(z)
Q2

|Mn|2 . (3.2)

Pa→bc(z) denote the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) splitting
kernels [3–5], listed on the right side of fig. 3.1. Each kernel contains a colour factor,
where CA = NC = 3, CF = 4/3, and TR = 1/2. The propagator of the parent parton
a,

1

Q2
=

1

2 pb · pc
=

1

(pb + pc)2 −m2
b −m2

c

, (3.3)

goes on-shell in the collinear limit. This causes a singularity in the ME |Mn+1|2.
With eq. (3.2) the factorization of the cross section for a process accompanied by an
additional parton yields

σn+1
θbc→0

σn
∑

b,c

∫ Q2
max

Q2
min

dQ2

Q2

αs
2π

∫ zmax

zmin

dz Pa→bc(z) . (3.4)

The 1-particle phase space is expressed in terms of Q2 and z,

dΦ+1 =
1

16π2
dQ2 dz

dφ

2π
, (3.5)

with the generic integration boundaries Q2
min/max and zmin/max. The integration

over the angle φ has already been carried out,

∫ 2π

0

dφ

2π
= 1 . (3.6)

The Q2 integration in eq. (3.4) yields a term of the form ln
(
Q2

max/Q
2
min

)
(leaving a

potential Q2-dependence of αs aside). This terms becomes large for Q2
max � Q2

min,
which is precisely the limit that parton showers aim to describe. Therefore, shower
algorithms effectively resum large logarithms.

Due to energy-momentum conservation, a 1 → 2 branching can not occur with
all partons being on-shell. Therefore, some re-shuffling of momentum is needed,
whose form depends on the chosen recoil strategy or kinematics map. In a DGLAP-
based parton shower, the recoiler can either be a single parton as or a system of
partons.

For hadronic beams the incoming partons can emit radiation before entering the
hard process. This initial-state radiation is formulated as a backwards evolu-
tion [60], where the incoming partons are evolved from large scales down to the
low scale associated with the beam hadron, while emitting successive radiation.
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d

d log(Q2)
=

2nf∑
i=1

∫
1

x

dz

z

αs
2π

+

∫
1

x

dz

z

αs
2π

fg(x,Q
2) fq(x/z,Q

2) fg(x/z,Q
2)

Pq→gq(z) Pg→gg(z)

d

d log(Q2)
=

∫
1

x

dz

z

αs
2π

+

∫
1

x

dz

z

αs
2π

fq(x,Q
2) fq(x/z,Q

2) fg(x/z,Q
2)

Pq→qg(z) Pg→qq̄(z)

Figure 3.2: Schematical representation of the DGLAP evolution of PDFs. The grey
blobs represent the hard process and the white squares represent the incoming
hadron. Inspired by [58] and [59].

The factorization in the collinear limit allows to derive the DGLAP evolution equa-
tions [3–5], which determine the behaviour of the PDFs as a function of the scale,

Q2 dfb(x,Q
2)

dQ2
=

∑

a∈{q,g}

αs
2π

∫ 1

x

dz

z
Pa→bc(z) fa(x/z,Q

2) . (3.7)

A pictorial representation of the evolution equation is shown in fig. 3.2. Parton b,
present in the beam hadron with the energy fraction x, may have been produced
by parton a with the energy fraction x/z while emitting parton c into the final
state. All possibilities how parton b could have been produced are summed over in
eq. (3.7). As for final-state radiation, a recoiler (system) is needed to ensure energy-
momentum conservation. Initial-state parton showers make use of eq. (3.7) to con-
vert the inclusive prediction for finding parton b in the beam hadron in eq. (2.20)
into an exclusive prediction for a and a specific set of additional partons, resolved
at smaller scales.

3.3.2 Coherent Branching

As discussed at the beginning of sec. 3.3 MEs are not only enhanced in the collinear,
but also in the soft regions of phase space. If a low-energy gluon j is emitted by
two final state colour-connected partons I and K, IK → ijk, the gauge theory
amplitude factorization reads

|Mn+1|2 Ej→0
4παs C Sijk |Mn|2 . (3.8)

Here, C is the colour factor 2 and Sijk the universal soft eikonal factor, expressed in
terms of invariants sxy = 2 px · py and masses m2,

Sijk =
2sik
sijsjk

− m2
i

s2
ij

−
m2
j

s2
jk

. (3.9)

The propagators of both parent partons, I and K, go on-shell simultaneously in
the limit where the energy of the gluon is vanishing and thereby causing the soft

2C = CA for an emission off gluons and C = 2CF for an emission off quarks.
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singularity in the ME. Similar to eq. (3.4) for the collinear factorization, the cross
section for a configuration with one soft gluon is

σn+1
Ej→0

σn

∫
dsij dsjk

sij + sjk + sik

αs
4π
C Sijk . (3.10)

The lorentz-invariant 1-particle phase space is

dΦ+1 =
1

16π2

dsij dsjk
sij + sjk + sik

dφ

2π
. (3.11)

A transformation from the invariants (sij , sjk) to (Q2, z) connects eq. (3.5) to
eq. (3.11). As before, the integration over the angle has already been carried out
and the remaining integration boundaries are left unspecified.

The soft eikonal factor in eq. (3.9) can be rewritten as

Sijk ≡ S (i)
ijk + S

(k)
ijk =

(
1

sij
− m2

i

s2
ij

+
sik − sij
sijsjk

)
+

(
1

sjk
−
m2
j

s2
jk

+
sik − sjk
sijsjk

)
, (3.12)

where S (i)
ijk is singular only for the gluon being collinear to parton i and may natu-

rally be associated with the emission off parton i. Averaging over azimuthal emis-
sion angles in the limit of massless partons gives [61]

〈S (i)
ijk〉 = Θ(θIK − θij)

2

Ej (1− cos θij)
, (3.13)

with θxy the angle between partons x and y. The contribution from S
(i)
ijk is thus

limited to a cone around parton I with opening angle 2 θIK (similarly for S (k)
ijk ).

As a result, the opening angle of the emissions can be used as the shower order-
ing variable to describe the coherence property of QCD. Consider a gluon that has
been produced in the hard process and emitted a hard, but collinear gluon. When
calculating the probability that this process is accompanied by a soft, wide-angle
gluon, two diagrams have to be summed up according to the soft factorization. As
shown on the left side of fig. 3.3, each diagram corresponds to the soft gluon being
radiated off either of the collinear gluons. It appears that in the region in which
the softer gluon is at a larger angle than the harder one, as shown in the figure, the
interference is largely destructive. One can therefore think of the wide-angle gluon
as being emitted before the collinear one, pictorially shown on the right-hand side
of fig. 3.3. This coherence effect [7,62–64] is similar to the Chudakov effect in QED,
where wide-angle emissions off e+e− pairs are absent. The reason for that is that
the emission can only see the total charge of the pair, which is zero. In the QCD
case the wide-angle gluon can not resolve the colour structure of the collinear glu-
ons and therefore only sees the total colour charge of the system of partons to which
it is attached.

In summary, soft gluon emission can correctly be taken into account by a parton
shower based on collinear factorization if the opening angle is used as an evolu-
tion variable to order successive emissions. This implemented for instance in the
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Figure 3.3: Illustration of QCD coherence. A hard, collinear gluon pair (dark grey)
with a soft, wide-angle gluon (light grey), attached to any of the external partons
(left). The contributions interfere destructively such that it appears as if the soft
gluon were emitted before the smaller-angle harder gluon (right). The pictures do
not represent Feynman diagrams, but rather serve the purpose of illustration.

angular-ordered parton shower in HERWIG++ [65]. Instead of choosing a specific
evolution variable coherence can be included by imposing a veto on non-angular-
ordered emissions [66]. In the following two subsections, alternative implementa-
tions of colour coherence are discussed, based on colour-connected parton pairs.

3.3.3 The Antenna Model for Shower Algorithms

As an alternative to the evolution of single partons in the DGLAP picture, emissions
off parton pairs are the basis of the antenna model, discussed in this section, as well
as the CS-dipole model, discussed in the next section. The foundation of both mod-
els is the large-NC limit, characterized by infinitely many colours. As discussed in
sec. 3.1, 1/NC contributions in QCD diagrams are neglected and the colour struc-
ture is decomposed as a colour flow, where every colour line has a different colour.
Thus, the interference between colour lines can be neglected and they can emit
radiation independently of each other. So-called colour dipoles [6] are formed by
colour-connected parton pairs during the hard process and provide the input for
the antenna shower. Colour dipoles are also known as antennae in the context of
fixed-order subtraction schemes [7–9]. This makes both names, dipole and antenna
shower, to be used customarily to describe the same model. The antenna functions,
which act as splitting kernels, are taken over from fixed-order calculations and ex-
plicitly incorporate all single-unresolved, i.e. soft and collinear, limits. They are
coherent in the sense that they sum up the radiation from two sides of the leading-
NC dipole coherently, at the amplitude level. The antenna picture as a shower al-
gorithm was first implemented in the ARIADNE program [6,67], which successfully
describes the properties of final-state radiation. Instead of a backwards evolution
for initial-state radiation, dipoles are spanned between the hadron remnants and
the partons of the hard interactions [63]. In chap. 4 a paper is presented, where the
final-state antenna shower of VINCIA [68] is extended to initial-state radiation.

In contrast to a conventional DGLAP-based parton-shower model, which evolves
a single parton as emitter with one (or more) other partons acting as the recoiler
(system), the antenna model treats the colour dipole as a single entity. There is
no traditional role of a radiator, but rather both partons produce emissions to-
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gether. Radiation with non-vanishing transverse momentum off gluon-antennae
leads to recoil that also affects the neighbouring colour dipoles since gluons carry
two colour lines. The radiation is driven by a single antenna function and a single
recoil strategy, exactly factorizing the on-shell (n + 1)-parton phase space into the
n-parton and the (2→ 3) antenna phase space.

3.3.4 The CS-Dipole Model for Shower Algorithms

The original dipole picture, discussed in the previous section, refers to a colour-
connected parton pair emitting radiation together as an entity without the dis-
tinction of the radiator and recoiler role. A Catani-Seymour (CS) partitioned
dipole [10,11] corresponds, roughly speaking, to a partial-fractioning of an antenna
or colour dipole into two pieces. Each partitioned dipole has a distinct radiator and
recoiler. Many shower algorithms in present-day generators are based on the CS-
dipole model, e.g. [69–71], and are often referred to simply as dipole shower (how-
ever, not to be confused with the dipole/antenna picture of the previous section).
CS-dipole showers are naturally ordered in transverse momentum 3 as the dipole
approximation is based on the limit in which the scale associated with the parent
colour line is much larger than the transverse momentum of the emission.

3.3.5 Constructing the Algorithm

In the DGLAP picture, the differential probability for a final-state parton a to per-
form a branching is, following eq. (3.2),

dPbranch, a

dQ2
=
αs
2π

1

Q2

∫ zmax

zmin

dz
∑

b,c

Pa→bc(z) , (3.14)

with a similar equation for an initial state parton b,

dPbranch, b

dQ2
=
αs
2π

1

Q2

∫ 1

x

dz

z

∑

a,c

fa(x/z,Q
2)

fb(x,Q2)
Pa→bc(z) , (3.15)

that can be calculated from eq. (3.7). To construct the probability distribution of a
branching, the no-emission probability, denoted by the symbol Π, is derived. It rep-
resents the probability that the parton does not undergo any branching at scales
larger than q2, given a maximum possible scale of Q2

max. Due to probability conser-
vation the no-emission probability plus the probability that the parton does radiate
have to equal unity. When changing q2 by a small amount, the probability for the
parton to not emit radiation can only change by the branching probability dPbranch

if there are no branchings above q2. With this in mind, the differential equation for
the no-emission probability is

d
(
1−Π(Q2

max, q
2)
)

dq2
= −d Π(Q2

max, q
2)

dq2
= Π(Q2

max, q
2)

dPbranch

dq2
. (3.16)

3 Transverse in the sense of relative to the axis defined by the parent colour line.
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The solutions are

Π(Q2
max, q

2) = exp

(
−
∫

dP branch

)

=





exp

(
−
∫ Q2

max

q2

αs
2π

dQ2

Q2

∫ 1

x

dz

z

∑

a,c

fa(x/z,Q
2)

fb(x,Q2)
Pa→bc(z)

)
ISR

exp


−

∫ Q2
max

q2

αs
2π

dQ2

Q2

∫ zmax

zmin

dz
∑

b,c

Pa→bc(z)


 FSR

(3.17)

for initial-state (ISR) and final-state radiation (FSR). With this result at hand, the
steps that are performed in a parton shower are the following:

• The emissions are generated according to the probability distribution given
by the derivative of the no-emission probability. For that purpose, its integral,
the no-emission probability itself, needs to be inverted. Therefore, the equa-
tion Π(Q2

max, q
2) = R with R being a random number in the interval [0, 1] is

solved for q2, the scale of the next emission. As the branching probability P
is too complicated to be inverted directly, a simpler function P̂ , which over-
estimates P , is used to generate q2. The excess probability is then removed by
accepting the scale with the probability P/P̂ .

• Given the singular nature of the radiation kernels and the strong coupling, it
is not possible for the parton shower to describe the behaviour at arbitrarily
small scale. Therefore, some lower parton shower cutoff µc is needed, which is
typically around 1 GeV. If the scale q2 generated in the previous step is below
the shower cutoff, the event is passed over to the hadronization.

• If the branching has been accepted the flavours, colours, and kinematics of
the post-branching partons have to be determined. The first two depend only
on the parent parton(s) and the type of branching, while the latter depends
on the recoil strategy.

• After the branching has been performed, the daughter partons are now in
turn considered as new parent partons to undergo further branchings. The
procedure is repeated until no more branchings can be performed above µc.

To investigate how the shower acts on the input cross section of eq. (2.20), the Su-
dakov form factor, a purely perturbative object, is introduced

∆(Q2
max, q

2) = exp


−

∫ Q2
max

q2

αs
2π

dQ2

Q2

∫ zmax

zmin

dz
∑

a,b,c

Pa→bc(z)


 . (3.18)

Its relation to the no-emission probability is [55]

Π(Q2
max, q

2) =
f(x, q2)

f(x,Q2
max)

∆(Q2
max, q

2) . (3.19)
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For final-state radiation the Sudakov factor equals the no-emission probability,
whereas for the initial-state case eq. (3.19) affirms that the shower is an evolution
of the PDFs. Note that eq. (3.19) is not exact, unless the shower evolution equation
corresponds to the DGLAP equation (3.7), i.e. the shower uses the same splitting
kernels, couplings, and scales with which the PDFs have been fitted. The shower
evolution equation is nevertheless consistent with the DGLAP equation, provided
that the splitting kernels have the correct (DGLAP-kernel) behaviour close to z = 1,
as has been shown in [71].

A specific phase-space point of the input cross section, calculated at LO, reads

dσB = f0(x0, µ
2
F ) |M0|2 F0 dx0 dΦ0 . (3.20)

Here, one PDF factor has been suppressed for the sake of simplicity and readability.
The subscript zero emphasizes that flavour and energy fraction correspond to the
Born state Φ0; subscript one will then correspond to the Born+1 state and so on. To
take the parton shower into account an evolution operator S, acting on the differential
cross section in eq. (3.20), is introduced as

S
(
µ2
F , µ

2
c

)
[ dσB ] . (3.21)

It acts between the factorization scale µF , characterizing the Born process, and the
shower cutoff µc. The shower operator turns the inclusive prediction into an exclu-
sive one. Considering all possible outcomes reads

S
(
µ2
F , µ

2
c

) [
dσB

]
=

Π(µ2
F , µ

2
c) f0(x0, µ

2
F ) |M0|2 F0 dx0 dΦ0︸ ︷︷ ︸

exclusive Born+0 at the cutoff

+ Π(Q2
1, µ

2
c)αs

f1(x1, Q
2
1)

f0(x0, Q2
1)

P (z1)

Q2
1

Π(µ2
F , Q

2
1) f0(x0, µ

2
F ) |M0|2 F1 dx1 dΦ1

︸ ︷︷ ︸
exclusive Born+1 at the cutoff

+ S
(
Q2

2, µ
2
c

)
[
αs

f2(x2, Q
2
2)

f1(x1, Q2
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P (z2)

Q2
2

Π(Q2
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2
2)αs

f1(x1, Q
2
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f0(x0, Q2
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P (z1)
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1

Π(µ2
F , Q

2
1)

f0(x0, µ
2
F ) |M0|2 F2 dx2 dΦ2

]

︸ ︷︷ ︸
inclusive Born+2

.

(3.22)

The shower operator has been applied iteratively to construct all terms. The first
line corresponds to not having any branching above the shower cutoff, represented
by the no-emission probability between the shower starting and cutoff scale. The
result is an exclusive Born configuration. In the next line one branching at the scale
Q2

1 occurred with no other branching above the cutoff, which results in an exclu-
sive Born+1 configuration. The last line corresponds to having two branchings at
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the scales Q2
1 and Q2

2, with no emissions inbetween. This is an inclusive Born+2
configuration, as the evolution has been stopped at scale Q2

2 and no further no-
emission probabilities have been generated. The shower operator will act on this
state again, for further distinguishing between the exclusive Born+2 and inclusive
Born+3 configurations.

Finally, eq. (3.19) is applied to transform the no-emission probabilities into Sudakov
factors. This gives the final result, which shows how the parton shower evolves the
PDFs down to the scale of the cutoff,

S
(
µ2
F , µ

2
c

)
[ dσB ] =

f0(x0, µ
2
c) ∆(µ2

F , µ
2
c) |M0|2 F0 dx0 dΦ0

+ f1(x1, µ
2
c) ∆(Q2

1, µ
2
c)αs P (z1)/Q2

1 ∆(µ2
F , Q

2
1) |M0|2 F1 dx1 dΦ1

+ S
(
Q2

2, µ
2
c

) [
f2(x2, Q

2
2)αs P (z2)/Q2

2 ∆(Q2
1, Q

2
2)αs P (z1)/Q2

1 ∆(µ2
F , Q

2
1) |M0|2

F2 dx2 dΦ2

]
. (3.23)

3.4 Combining Matrix Elements and Parton Showers

An active field of MCEG development is the combination of the parton shower with
higher-order MEs. While fixed-order calculations are well suited to describe hard,
well-separated jets, the main strength of parton showers is to capture the soft and
collinear radiation by resumming large logarithms. To illustrate one of the main
difficulties in combining the parton shower and MEs with different parton multi-
plicities, consider, as an example, the production of Z and Z + 1 at LO. Since the
ME for Z + 1 is divergent, it is restricted to cover only the phase-space region with
at least one hard resolved parton, which can for instance be defined by requiring
a minimum transverse momentum. Simply combining a LO cross-section calcu-
lation for Z and Z + 1 production and showering both leads to double counting of
emissions. The shower off the Z state can populate the same hard region of phase
space as the Z + 1 state.

Diagrams, as the ones shown in fig. 3.4, are used to describe the accuracy obtained
by combining the parton shower with MEs. Each box represents a set of amplitudes
for a process with n final-state particles plus a specific number of additional legs k
and loops l, as introduced in eq. (2.21). The ME entering the calculation of the Born
cross section is represented by the bottom-left box, |M(0)

n |2, with additional legs
along the horizontal axis and loops along the vertical axis. Light-grey shaded boxes
indicate that the ME is used in the calculation and dark grey represents the use of
the shower approximation. The top left diagram in fig. 3.4 shows the accuracy
of a pure parton shower, started off the LO cross section. In the following a few
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Figure 3.4: Coefficients of the perturbative series, see eq. (2.21). Loop contributions
are abbreviated by M(l1)

m M(l2)
m = 2 Re

[
M(l1)

m M(l2) ∗
m

]
. Boxes shaded in light grey

indicate that the ME calculation is included, whereas dark boxes are populated
by the pure shower. The accuracy obtained by i) a pure shower, ii) MECs and iii)
merging for the first two emission, and iv) a NLO matched calculation are shown.

methods for combining the shower with higher-order calculations are described
briefly, with focus on the methods that are used in later chapters of the thesis.

To combine several LO calculations mainly two methods exist: merging is based
on the concept of phase-space slicing, while matrix-element corrections (MECs) make
use of unitarity. In the slicing approach the phase space is separated by the merging
scale into two regions: a mostly hard part above the merging scale, described by the
ME, and a mostly soft and collinear part below the merging scale, populated by the
shower. This approach was first used in HERWIG++ to include a ME-correct first
hard emission off the Born process [72, 73]. It has been generalized to include an
arbitrary number of additional emissions, with CKKW [74], CKKW-L [75, 76], and
MLM [77, 78] being the most well-known approaches to multileg merging. The bot-
tom left diagram in fig. 3.4 shows the accuracy obtained when merging calculations
for the Born process plus up to two additional emissions. In this case event samples
for Born, Born+1, and Born+2 states are obtained with a ME generator. Each sam-
ple is dressed with Sudakov factors, whereby it is made sure that the samples do
not produce overlap with each other. For instance a Born event, where the shower
is generating an emission above the merging scale, is vetoed, as this phase-space
point is present in the higher-multiplicity ME samples.
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In the MECs method the all-orders approximation of the shower is used as a start-
ing point. A finite multiplicative correction factor, namely the ratio of the ME to
the shower approximation, is applied order by order in perturbation theory as the
shower evolves. This leads to advantages over other LO merging schemes: no
need for combining event samples with different multiplicities and improved no-
emission probabilities as the correction factor is applied during the Sudakov veto
algorithm. The top right diagram in fig. 3.4 shows the accuracy obtained when
MECs are applied for the first two emission off the Born process 4. The MECs ap-
proach, originally only used for the first emission beyond the hard process [66, 79]
has been extended in VINCIA to include an arbitrary number of additional final
state emissions [80]. In chap. 4 a paper is presented, where the method has suc-
cessfully been used for initial state radiation. An alternative strategy for MECs is
investigate in chap. 5 and combined with CKKW-L merging.

The two traditional, subtraction-based, matching approaches for obtaining NLO ac-
curacy for the hard process are MC@NLO [81, 82] and POWHEG [83], shown in the
bottom right diagram of fig. 3.4. Combining several NLO calculations with the
shower in a consistent way is referred to as NLO (multileg) merging, see e.g. [84–86].
In fairly recent efforts even NNLO calculations matched to the shower have been
presented [87–90].

3.5 Hadronization Models

Due to colour confinement (see also sec. 2.2), quarks and gluons do not exist as
physically free states in nature, but are bound in colourless states, called hadrons.
In the context of MCEGs hadronization or fragmentation denotes the process by
which the partons at the end of the showering are transformed into a set of pri-
mary hadrons, which may decay further. By construction, this process happens
at the cutoff scale of the shower, which is typically around 1 GeV. Hadronization
can therefore not be described with perturbation theory. Instead, non-perturbative
phenomenological models are deployed. The three most important models are de-
scribed briefly in the following.

The oldest and simplest hadronization model, originally formulated by Field and
Feynman [91, 92], is called independent fragmentation 5. As the name implies, the
model assumes that the partons fragment independently of each other. In a first
step, all gluons in the final state are split into quark-antiquark pairs which act, to-
gether with the other quarks in the event, as input to the fragmentation. To form
hadrons, new pairs of quarks or diquarks are created out of the vacuum, with
a transverse-momentum distribution according to a Gaussian. The fragmenting

4A infrared cutoff or regulator is typically used for the last corrected emission for higher orders.
This is not shown in the diagram.

5A previous study by Artru and Mennessier [93] was the first model, but passed mostly unnoticed.
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Figure 3.5: The dynamics of a string in space-
time coordinates. As the qq̄ pair moves apart
the string (grey colour) is stretched between
them, with the energy of the string being pro-
portional to its length. Several string breaks oc-
cur via the creation of additional qiq̄i pairs.

quark is combined with the new (di)quark into a hadron, which leaves a (di)quark
with less energy behind, that in turn will now fragment. The fragmentation stops
once the leftover energy falls below a cutoff. The remainder of this process is a
free (di)quark for every chain of fragmenting initial quarks. This, as well as the
violation of momentum conservation are the two main weaknesses of the model.
Nevertheless, independent fragmentation has been used quite successfully in de-
scribing the broad features of two- and three-jet final states in e+e− annihilation at
moderate energies [55].

The underlying idea of the string model of hadronization is an important result of
lattice QCD known as linear confinement, see for instance [94–96]: the potential of
the field between the colour- and anticolour-charge of a singlet state grows linearly
with the separation of the charges, for distances larger than about a femtometer.
The field lines are believed to be compressed into tubelike regions, the strings, as
observed by lattice QCD [97–101]. The potential of the flux tubes is V (r) = κ r,
where the short-distance Coulomb term proportional to 1/r is neglected. The string
constant κ, i.e. the amount of energy per unit length of the tube, is known to be
κ ≈ 1 GeV/fm ≈ 0.2 GeV2. As a consequence, if the two colour-charges of a sin-
glet state move apart, the energy stored in the string increases constantly. With
enough energy in the string, it will eventually be energetically favourable that the
string breaks. As before, investigations in lattice QCD support the string model
of hadronization [102–110]. Among several other hadronization models based on
strings the so-called Lund model [12,13] is most widely used. In this picture gluons
build kinks on the strings, which leads to the absorbance of very soft gluons. For
the formation of hadrons, a phenomenological model based on a tunneling analogy
provides fluctuations in the string in terms of gluons splitting into (di)quark pairs.
Those break the sting by absorbing energy from it, see fig. 3.5. As in the indepen-
dent fragmentation, the break-up pairs receive a transverse-momentum contribu-
tion according to a Gaussian distribution. String fragmentation is carried out itera-
tively from both string ends inwards to the center of the string, where the fragmen-
tation off the two different sides is alternated randomly. In chap. 7 a publication is
presented which deals with an extension to the conventional string fragmentation
model.

A property of parton showers called preconfinement [111] is the basis of the cluster
model of hadronization. For scales much smaller than the scale of the hard process,
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clusters are formed from colour singlet combinations of partons. The invariant
mass distribution of the clusters is universal, i.e. depends only on the current scale
of the parton shower and not on the hard process. The distribution has a maximum
at low masses of some GeV and falls fast for higher masses. Similar to indepen-
dent fragmentation, the gluons in the final state are split into (di)quark pairs before
forming the primary clusters from colour-connected parton pairs. Clusters with
very high masses decay into lighter clusters, before decaying into hadrons. The
cluster hadronization model is for instance used in HERWIG++ [14].
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4
Antenna Showers and
Matrix-Element Corrections

Combining higher-order QCD effects with the parton-shower framework has been
the focus of attention in the development of MCEGs during the last decade(s): the
matching of NLO calculations to the parton shower [50, 81, 83, 112–117] and the
merging of LO [74, 75, 118–125] and NLO [85, 126–130] matched results for various
jet multiplicities. Therefore, the development on the parton-shower side is rather
manageable [68–70, 131, 132].

The traditional parton-shower approaches implemented in HERWIG++ [133, 134],
PYTHIA 8 [60, 135], and SHERPA [136, 137] have been supplemented or replaced by
CS-dipole- or antenna-based shower algorithms [68–70, 131, 132]. As those shower
algorithms are based on dipole or antenna factorization respectively, the combina-
tion with higher-order QCD calculations becomes somewhat more feasible. An-
other intrinsic feature of those algorithms is the description of QCD coherence, see
sec. 3.3.2.

The basis of the VINCIA parton shower is the colour-dipole picture in the large-NC

limit, introduced in sec. 3.3.3. The repeated factorization of two quantities permits
to maintain a probabilistic description of emissions in the QCD antenna picture: the
exact factorization of the emission phase space in terms of 2 → 3 branchings and
the approximate factorization of amplitudes around the soft and collinear limits.
This allows a treatment of QCD radiation that is separated from the remainder of
the event. The VINCIA antenna shower has so far only been available for final-state
radiation. One of the major complications when going from leptonic to hadronic
initial states is the composite nature of the beams, which is accounted for by the
PDFs introduced in sec. 2.4. PDFs are extracted from experimental data at relatively
low scales, typically of the order of a few GeV, and evolved to higher scales with the
help of DGLAP kernels. A direct inversion of the PDF evolution would therefore
require the application of a DGLAP-based parton shower. However, as the antenna
functions reproduce the DGLAP limits, the hadronic nature of the beams is still
properly reflected in each evolution step by the presence of PDF ratios in the no-
emission probability.

The state-of-the-art LO merging methods combine event samples with different
parton multiplicities with the parton shower and remove the overlap between the
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samples. As discussed in sec. 3.4, LO merging is based on phase-space slicing and
therefore introduces a dependence on the merging scale. Consequently, the emis-
sion pattern of the shower is only corrected in the hard part of phase space. The
no-emission probabilities are not altered by the LO merging. The iterative MECs
method, introduced in sec. 3.4, corrects the emission as well as the no-emission
patterns over the whole phase space in a single chain of evolution.

In the publication presented in sec. 4.1 we extend the antenna shower and iterated
MECs method of VINCIA to hadronic initial states. More details of the VINCIA

antenna shower algorithm for the initial state are given: the different steps to con-
struct a branching are given in sec. 4.2, followed by details for initial-initial and
initial-final antennae in secs. 4.3 and 4.4. The additional information is of a rather
technical nature and is not required to follow the publication. Note that some infor-
mation contained in the publication is repeated to achieve a mostly self-consistent
write-up.
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Abstract We present the first public implementation of
antenna-based QCD initial- and final-state showers. The
shower kernels are 2 → 3 antenna functions, which cap-
ture not only the collinear dynamics but also the leading soft
(coherent) singularities of QCD matrix elements. We define
the evolution measure to be inversely proportional to the lead-
ing poles, hence gluon emissions are evolved in a p⊥ measure
inversely proportional to the eikonal, while processes that
only contain a single pole (e.g., g → qq̄) are evolved in vir-
tuality. Non-ordered emissions are allowed, suppressed by an
additional power of 1/Q2. Recoils and kinematics are gov-
erned by exact on-shell 2 → 3 phase-space factorisations.
This first implementation is limited to massless QCD par-
tons and colourless resonances. Tree-level matrix-element
corrections are included for QCD up to O(α4

s ) (4 jets), and
for Drell–Yan and Higgs production up to O(α3

s ) (V/H + 3
jets). The resulting algorithm has been made publicly avail-
able in Vincia 2.0.
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1 Introduction

The basic differential equations governing renormalisation-
group-improved (resummed) perturbation theory for initial-
state partons were derived in the 1970s [1–3]. The result-
ing DGLAP1 equations remain a cornerstone of high-energy
phenomenology, underpinning our understanding of pertur-
bative corrections and scaling in many contexts, in particular
the structure of QCD jets, parton distribution functions, and
fragmentation functions.

In the context of event generators [4], DGLAP splitting
kernels are still at the heart of several present-day parton
showers (including, e.g., [5–9]). Although the DGLAP ker-
nels themselves are derived in the collinear (small-angle)
limit of QCD, which is dominated by radiation off a sin-
gle hard parton, the destructive-interference effects [10]
which dominate for wide-angle soft-gluon emission can also
be approximately accounted for in this formalism; either
by choosing the shower evolution variable to be a mea-
sure of energy times angle [11] or by imposing a veto on
non-angular-ordered emissions [12]. The resulting parton-
shower algorithms are called coherent. A third alternative,
increasingly popular and also adopted in this work, is to
replace the parton-based DGLAP picture by so-called colour
dipoles [13] (known as antennae in the context of fixed-order
subtraction schemes [14–18]),2 which incorporate all single-
unresolved (i.e., both soft and collinear) limits explicitly. In
the context of shower algorithms, this approach was origi-
nally pioneered by the Ariadne program [13,21] and is now
widely used [22–30]. We note that the word “coherence” is
used in different contexts, such as angular ordering. When we
use coherence in the context of antenna functions, we define
it at the lowest level, as follows: antenna functions sum up the
radiation from two sides of the leading-NC dipole coherently,
at the amplitude level; see also Ref. [27].

In addition, shower algorithms rely on several further
improvements that go beyond the LO DGLAP picture,
including: exact momentum conservation (related to the
choice of recoil strategy), colour-flow tracing (in the leading-
NC limit, related to coherence at both the perturbative and
non-perturbative levels), and higher-order-improved scale
choices (including the use of μR = p⊥ for gluon emissions
and the so-called CMW scheme translation which applies
in the soft limit [31,32]). Each of these are associated with
ambiguities, with Sect. 2 containing the details of our choices
and motivations.

1 Dokshitzer–Gribov–Lipatov–Altarelli–Parisi. We mourn the recent
passing of Guido Altarelli (1941–2015), a founder of this field and a
great inspirer.
2 Note that a “Catani–Seymour” dipole [19,20] corresponds roughly
speaking to a partial-fractioning of an antenna or Lund colour dipole
into two pieces.

Finally, in the context of initial-state parton showers, the
evolution from a high factorisation scale to a low one cor-
responds to an evolution in spacelike (negative) virtualities,
“backwards” towards lower resolution. The correct equations
for backwards parton-shower evolution were first derived
by Sjöstrand [33]; in particular it is essential to multiply
the evolution kernels by ratios of parton distribution func-
tions (PDFs), to recover the correct low-scale structure of
the incoming beam hadrons. We shall use a generalisation of
backwards evolution to the case of simultaneous evolution
of the two incoming-hadron PDFs, similar to that presented
in [26].

The merits of different shower algorithms is a frequent
topic of debate, with individual approaches differing by
which compromises are made and by the effective higher-
order terms that are generated. We emphasise the following
three attractive properties of antenna showers:

• They are intrinsically coherent, in the sense that the
correct eikonal structure is generated for each single-
unresolved soft gluon, up to corrections suppressed by at
least 1/N 2

C . Especially for initial–final antennae, where
gluon emission off initial- and final-state legs interfere,
has some challenges.3 In the final–final case which was
already testable with previous Vincia versions, a recent
OPAL study of 4-jet events [37] found good agree-
ment between Vincia and several recently proposed
coherence-sensitive observables [38].

• They are extremely simple, relying on local and univer-
sal 2 → 3 phase-space maps which represent an exact
factorisation of the n-particle phase spaces not only in
the soft and collinear regions but over all of phase space.
This makes for highly tractable analytical expansions on
which our accompanying matrix-element correction for-
malism is based [39]. The pure shower is in some sense
merely a skeleton for generating the leading singulari-
ties, with corrections for both hard and soft emissions
regarded as an intrinsic part of the formalism, restoring

3 Older parton-shower models often treat initial-state (ISR) and final-
state (FSR) evolution in disjoint sequences. In this case, it is chal-
lenging to ensure that FSR evolution from the enlarged and changed
parton ensemble after ISR evolution recovers the coherent features.
Implementations of a combined simultaneous evolution chain for ISR
and FSR may also be challenging. The current p⊥-ordered showers
in Pythia 8 [8,34,35] do, for example, not account for the coherence
structure of the hardest gluon emission in t t̄ events [36]. In contrast, we
suspect that due to the fact that physical output states (parsed through
hadronisation) are only constructed at the end of the evolution, the
angular-ordered algorithms of Herwig [6] and Herwig++ [7] produce
coherent sequences of emission angles in IF configurations correctly.
This assessment relies on the assumption that the algorithms ensure that
the angular constraints on final-state emission variables are unchanged
by the ISR shower evolution, and vice versa.
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the emission patterns to at least LO accuracy up to the
matched orders.

• There is a close correspondence with the antenna-
subtraction formalism used in fixed-order calculations
[16–18], which is based on the same subtraction terms
and phase-space maps. This property was already utilised
in [40] to implement a simple and highly efficient pro-
cedure for NLO corrections to gluon emission off a
qq̄ antenna. Highly non-trivial fixed-order results which
have recently been obtained within the antenna formalism
include NNLO calculations for Z + jet [41], H + jet [42]
(for mt → ∞), gg → gg [43], and leading-colour
qq̄ → t t̄ [44] production at hadron colliders. While it
is (far) beyond the scope of the present work to con-
nect directly with these calculations, their feasibility is
encouraging to us, and provides a strong motivation for
future developments of the antenna-shower formalism.

The aim with this work is to present the first full-fledged
and publicly available antenna shower for hadron colliders,
extending from previous work on final-state antenna showers
developed in [23,39] and building on the proof-of-concept
studies for hadronic initial states reported in [29,45]. The
model is implemented in—and defines—version 2.0 of the
Vincia plug-in to the Pythia 8 event generator [34]. This
article is also intended to serve as the first physics man-
ual for Vincia 2.0. It is accompanied by a more techni-
cal HTML User Reference documenting each of the user-
modifiable parameters and switches at the technical level [46]
and an author’s compendium documenting more detailed
algorithmic aspects [47]; both of these auxiliary documents
are included with the code package, which is publicly avail-
able via the HepForge repository at http://vincia.hepforge.
org.

In Sect. 2 we introduce the basic antenna-shower for-
malism, including our notation and conventions. We mainly
focus on initial–initial and initial–final configurations and
summarise final–final configurations only briefly, as a more
extensive description is available in [23,39]. Our conventions
for colour flow are specified in Sect. 2.6. These are intended
to maximise information on coherence while simultaneously
generating a state in which all colour tags obey the index-
based treatment of subleading-colour correlations proposed
in [48,49]. By assigning these indices after each branching
and tracing them through the shower evolution, rather than
statistically assigning them at the end of the evolution as was
done in [49], we remove the risk of accidentally generating
unphysical colour flows.4 We therefore believe the procedure
proposed here represents an improvement on the one in [49].

4 E.g., in our treatment the case illustrated by [49, Fig. 19b] cannot
occur: Z → qggq̄ with the two gluons collinear to each other, non-
collinear to any of the quarks, and in a singlet state.

The extension of Vincia ’s automated treatment of perturba-
tive shower uncertainties to hadron collisions is documented
in Sect. 2.7.

In Sect. 3, we present the extension of the GKS5 matrix-
element-correction (MEC) formalism [39] to initial-state par-
tons, starting with the case of a basic process accompanied
by one or more jets whose scales are nominally harder than
that of the basic process in Sect. 3.1. In Sect. 3.2, we present
some basic numerical comparisons between tree-level matrix
elements and our shower formalism expanded to the equiv-
alent level (i.e., setting all Sudakov factors and coupling
constants to unity), to validate that combinations of 2 → 3
antenna branchings do produce a reasonable agreement with
the full n-parton matrix elements. We discuss our extension
of “smooth ordering” [39] to reach non-ordered parts of phase
space in Sect. 3.3, again focusing on the initial-state context.
Section 3.5 summarises the application of smooth ordering
to the specific case of hard jets in QCD processes. In Sect.
3.6 we extend and document Vincia ’s existing use of Mad-
Graph 4 [50] matrix elements.

The set of numerical parameters which define the default
“tune” of Vincia 2.0 is documented in Sect. 4, including
our preferred convention choice for αs , the most important
parameter of any shower algorithm. A set of comparisons to
a selection of salient experimentally measured distributions
for hadronic Z decays, Drell–Yan, and QCD jet production
are included to document and validate the performance of
the shower algorithm with these parameters.

Finally, in Sect. 5, we summarise and give an outlook.
Additional material, as referred to in the text, is collected in
the Appendices.

2 VINCIA ’s Antenna showers

A QCD antenna represents a colour-connected parton pair
which undergoes a (coherent) 2 → 3 branching process [13–
16,51]. In contrast to conventional shower models (includ-
ing both DGLAP and Catani–Seymour dipole ones) which
single out one parton as the “emitter” with one (or more)
other partons acting as “recoiler(s)”, the antenna formalism
treats the two pre-branching “parent” partons as a single
entity, with a single radiation kernel (an antenna function)
driving the amount of radiation and a single “kinematics
map” governing the exact relation between the pre-branching
and post-branching momenta. Formally, the antenna func-
tion represents the approximate (to leading order in the van-
ishing invariant(s)) factorisation between the pre- and post-
branching squared amplitudes, while the kinematics map
encapsulates the exact on-shell factorisation of the (n + 1)-

5 Giele–Kosower–Skands [39].
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parton phase space into the n-parton one and the (2 → 3)

antenna phase space.
Note that for branching processes involving flavour

changes of the parent partons, such as g → qq̄ , a distinc-
tion between “emitter” and “recoiler” and thus a treatment
independent of the above description is possible. However,
this is not compulsory and we are therefore still using the
same (2 → 3) antenna phase-space and kinematics map as
in the case of gluon emission. Moreover, applying a 2 → 3
branching amounts to using the lowest number of involved
partons which admit an on-shell to on-shell mapping.

In this section we briefly review the notation and conven-
tions that will be used throughout this paper (Sect. 2.1), fol-
lowed by definitions for all of the phase-space convolutions
or factorisations, respectively, antenna functions, and evolu-
tion variables on which Vincia ’s treatment of initial–initial,
initial–final, and final–final configurations are based (Sects.
2.2, 2.3, and 2.4). The expressions for final–final configu-
rations are unchanged relative to those in [23,39], with the
default antenna functions chosen to be those of [52] averaged
over helicities. Some further details on the explicit kinematics
constructions are collected in Appendix A. The explicit form
of the shower-generation algorithm is presented in Sect. 2.5.
Finally, we round off in Sect. 2.8 with comments on some
features of earlier incarnations of Vincia which have not
(yet) been made available in Vincia 2.0.

2.1 Notation and conventions

We use the following notation for labelling partons: capital
letters for pre-branching (parent) and lower-case letters for
post-branching (daughter) partons. We label incoming par-
tons with the first letters of the alphabet, a, b, and outgoing
ones with i , j , k. Thus, for example, a branching occurring in
an initial–final antenna (a colour antenna spanned between an
initial–state parton and a final–state one) would be labelled
AK → ajk. This is consistent with the conventions used
in the most recent Vincia papers [29,39].6 The recoiler or
recoiling system will be denoted by R and r respectively
(compared with R′ and R in [29]).

We restrict our discussion to massless partons and denote
the Lorentz-invariant momentum four-product between two
partons 1 and 2 by

s12 ≡ 2pμ
1 p2μ = (p1 + p2)

2, (1)

which is always positive regardless of whether the partons
involved are in the initial or final state. Momentum conser-
vation then yields

6 The earliest Vincia paper on final–final antennae [23] used an alter-
native convention: â + b̂ → a + r + b.

FF : sI K = si j + s jk + sik, (2)

IF : sAK = sak + saj − s jk, (3)

II : sAB = sab − saj − s jb, (4)

for final–final (FF), initial–final (IF), and initial–initial (II)
branchings, respectively.

The evolution variable, which we denote t , is evaluated
on the post-branching partons, hence, e.g., tFF = t (si j , s jk).
It serves as a dynamic factorisation scale for the shower,
separating resolved from unresolved regions. As such, it must
vanish for singular configurations. Generally, we define the
evolution variable for each branching type to vanish with
the same power of the momentum invariants as the leading
poles of the corresponding antenna functions, see below. The
complementary phase-space variable will be denoted ζ .

ColourFactorsC We use the following convention: for gluon
emission the colour factors are C = CA = 3 for gluon-only
antennae, C = 2CF = 8/3 for quark-only antennae, and the
mean, C = (CA + 2CF )/2, for quark-gluon antennae. For
gluon splitting the colour factor is C = 2 TR = 1. Note that
symmetry factors, taking into account that gluons contribute
to two antennae, are included in the antenna functions.

Shower Basics A shower algorithm is based on the probabil-
ity that no branching occurs between two scales tn and tn+1,
with tn > tn+1. (For an introduction to conventional show-
ers, see, e.g., [53, Chp. 40] or [4]. For antenna showers more
specifically, see [39,40]). In the case of initial-state radiation
in the antenna picture the no-emission probability is

�n(tn, tn+1) = exp

(
−

∑
i

∈ {n → n + 1}
∫ tn

tn+1

d�ant 4παs(t) C āi (t, ζ ) Rpdf i

)
, (5)

with the colour- and coupling-stripped antenna function ā
and the (double) ratio of PDFs,

Rpdf = fa(xa, t)

f A(xA, t)

fb(xb, t)

fB(xB, t)
. (6)

Note that although the integral over d�ant in Eq. (5) is three-
dimensional, we only explicitly wrote down the boundaries
in the evolution variable t , with integration over the comple-
mentary invariant, ζ , and over the azimuth angle, φ, implied.
Given specific choices for t and ζ as functions of the phase-
space invariants, the boundaries of the ζ integral are derived
from energy-momentum conservation, as usual for shower
algorithms (see, [4,23,47,54]). This generates modifications
to the LL structure which—since (E, p) conservation is a
genuine physical effect—is expected to improve the shower
approximation at the subleading level. (We are not aware of
a rigorous proof of this statement, however.)
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Initial-Initial Antenna Branching

A B
R →

a b

r

j

(a) Before (b)After

Fig. 1 Illustration of pre-branching (left) and post-branching (right)
on-shell momenta, for an initial–initial antenna branching, emphasis-
ing the transverse kick imparted to the hard system, R, which consists
of all particles produced in the collision A+B → R. The hard system is
treated as a rigid body (i.e., any internal invariants are not modified) by

the branching. It is subjected to a single overall Lorentz transformation,
R → r , equivalent to a frame reinterpretation required to orient the new
incoming partons along the z axis. Note that we define our kinematics
maps to preserve not only the invariant mass but also the rapidity of the
recoiling system: m2

r = m2
R and yr = yR , cf. Appendix A.1

The sum in Eq. (5) runs over all possible (n + 1)-parton
states that can be created from the n-parton state, and will be
implicit from here on. d�ant is the antenna phase space, pro-
viding a mapping from two to three on-shell partons while
preserving energy and momentum. The specific form for
the two configurations, initial–initial and initial–final, are
defined below, along with the specific forms of the evolu-
tion variable.

We define the Sudakov factor as

�n(tn, tn+1) = exp

⎛
⎝−

∑
i∈{n→n+1}

∫ tn

tn+1

d�ant
xA xB
xa xb

4παs(t) C āi (t, ζ )

⎞
⎠ . (7)

This object does not depend on parton distribution functions
or other non-perturbative input and may thus be regarded
as a purely perturbative object. Following the arguments of
[30], we define the no-emission probability in terms of the
Sudakov factor, as follows (generalised from [55]):

�n(tn, tn+1) = f A(xA, tn+1)

f A(xA, tn)

fB(xB, tn+1)

fB(xB, tn)
�n(tn, tn+1).

(8)

This in turn implicitly defines the evolution equation for the
antenna shower, which, as shown in [30], is consistent with
the DGLAP equation, provided the antenna functions used
in Vincia have the correct (AP-kernel) behaviour close to
z = 1, where z is an energy-sharing variable.7 This is shown
in Appendix A.2, in which the collinear limits of all antenna
functions used in this work are given. Note that a similar
strategy of using Eq. (8) as a definition was also used when

7 The resulting evolution equation will contain objects that are very
close to the unintegrated parton densities of [56,57].

defining perturbative states in [58]. For final–final configu-
rations, Eq. (8) simplifies to �n(tn, tn+1) = �n(tn, tn+1).

2.2 Initial–initial configurations

We denote the pre- and post-branching partons participating
in an initial–initial branching by AB → abj and the (system
of) particles produced by the collision by R → r , cf. the
illustrations in Fig. 1. In the following, we specify the phase-
space convolution, antenna functions, evolution variables and
the resulting no-emission probability.

Phase space The phase-space convolution reads∫
dxa
xa

	(1−xa)
dxb
xb

	(1 − xb) d�2(pa, pb → p j , pr )

=
∫

dxA
xA

	(1−xA)
dxB
xB

	(1−xB)d�1(pA, pB→pR) d�II
ant

(9)

with the antenna phase space

d�II
ant = 1

16π2

sAB
s2
ab

	(xa − xA)	(xb − xB) dsaj ds jb
dφ

2π
.

(10)

See Appendix A.1 for the explicit construction of the post-
branching momenta.

Antenna functions The gluon-emission antenna functions
are

āII
qq̄ g = ā(aq , bq̄ , jg) = 1

sAB

(
2
sabsAB
saj s jb

+ s jb
saj

+ saj
s jb

)
,

(11)

āII
gg g = ā(ag, bg, jg)

= 1

sAB

(
2
sabsAB
saj s jb

+ 2
s jb
saj

sab
sAB

+ 2
s jb
saj

sAB
sab + saj

+ 2
saj
s jb

sab
sAB

+ 2
saj
s jb

sAB
sab + s jb

)
, (12)
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Fig. 2 Contours of constant
gluon-emission evolution
variable for a initial–initial and
b initial–final configurations.
For a the recoiler is chosen to be
a Higgs boson, sAB = m2

H , and
for b sAK = 10500 GeV2 and
xA = 0.3. For both cases, the
total hadronic

√
s = 7 TeV

(a) Phase Space for Initial-Initial Antennae (b) Phase Space for Initial-Final Antennae
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sAB
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. (13)

The antenna function for a gluon evolving backwards to a
quark (and similarly to an antiquark) is

āII
qx q = ā(aq , bx , jq) = 1

2saj

s2
jb+s2

ab

s2
AB

, (14)

and for a quark evolving backwards into a gluon

āII
gx q̄ = ā(ag, bx , jq̄) = 1

sAB

(
−2

s jbsAB
saj (sab−saj )

+ sab
saj

)
. (15)

In Appendix A.2 we show that the antenna functions correctly
reproduce the DGLAP splitting kernels in the collinear limit.

Evolution variables We evolve gluon emission in the phys-
ical transverse momentum of the emission (relative to the
pa–pb–axis),

temit
II = p2⊥ II = saj s jb

sab
, (16)

which exhibits the same “antenna-like” a ↔ b symmetry
as the leading (double) poles of the corresponding antenna
functions, Eqs. (11)–(13) above. The upper phase-space limit
for this variable is p2⊥ II ≤ (s− sAB)2/(4 s), where s denotes
the hadronic centre-of-mass energy squared.

Figure 2a shows constant contours of p2⊥ II, as a function
of the two branching invariants saj and s jb. As the phase
space is symmetric in saj and s jb it has a triangular shape
whose hypotenuse is defined by the upper phase-space bound
sAB + saj + s jb ≤ s. For branchings with flavour changes in
the initial state (gluon evolving backwards to a quark or vice
versa) for which the antenna functions only contain single
poles, cf. Eqs. (14)–(15) above, we use the corresponding
invariant, saj or s jb, respectively,

tconv
II = Q2

II =
{
saj for a converting to/from a gluon
s jb for b converting to/from a gluon

,

(17)

where the phase-space limit is sx j ≤ s − sAB . Note that
the conversion measure is equivalent to the Mandelstam |t |
variable for the relevant diagrams. Since only one parton
can convert at a time—either A or B—these diagrams are
unique, with no interferences, as is also reflected by the corre-
sponding antenna functions containing only single (collinear)
poles.

No-emission probability With the definitions given above
(5) for initial–initial configurations reads

�n(tn, tn+1) = exp

(
−

∫ saj n

saj n+1

dsaj 	(xa − xA)

×
∫ s jbn

s jbn+1

ds jb 	(xb − xB)

∫ 2π

0

dφ

2π

× αs(t)

4π

sAB
s2
ab

C ā(saj , s jb, sAB)
fa(xa, t)

f A(xA, t)

× fb(xb, t)

fB(xB, t)

)
, (18)

with t = tII(saj , s jb, sab). The subscript of the saj and s jb
integration limits indicates the association with the branching
scales tn and tn+1, respectively.

2.3 Initial–final configurations

In traditional (DGLAP-based) parton-shower formulations,
the radiation emitted by a colour line flowing from the initial
to the final state is handled by two separate algorithms, one
for ISR and one for FSR. Coherence can still be imposed
by letting these algorithms share information on the angles
between colour-connected partons and limiting radiation to
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Fig. 3 Illustration of
pre-branching (left) and
post-branching (right) on-shell
momenta, for an initial–final
(IF) antenna branching,
emphasising that the momenta
of the spectators B and R are
unchanged: pb = pB and
pr = pR , cf. Appendix A.1

Initial-Final Antenna Branching

RA B

K

→
ba r

k j

(a) Before (b)After

the corresponding coherent radiation cones. But even so, sev-
eral subtleties can arise in the context of specific processes
or corners of phase space. Examples of problems encoun-
tered in the literature involving Pythia’s p⊥-ordered show-
ers include how radiation in dipoles stretched to the beam
remnant is treated [59], whether the combined ISR+FSR evo-
lution is interleaved or not [60] and whether/how coherence
is imposed on the first emission [36].

In the context of antenna showers, the radiation off initial–
final (IF) colour flows is generated by IF antennae, which
are coherent ab initio. We therefore expect the treatment
of wide-angle radiation to be more reliable and plagued by
fewer subtleties. The main issue one faces instead is tech-
nical. Denoting the pre- and post-branching partons partic-
ipating in an IF branching by AK → ak j , the choice of
kinematics map specifying the global orientation of the ak j
system with respect to the AK one is equivalent to specifying
the Lorentz transformation that connects the pre-branching
frame, in which A is incoming along the z axis with momen-
tum fraction xA, to the post-branching one, in which a is
incoming along the z axis with momentum fraction xa . For a
general choice of kinematics map, this can result in boosted
angles entering in the relation between xa and the branching
invariants, producing highly non-trivial expressions, and the
phase-space boundaries can likewise become very compli-
cated. To retain a simple structure for this first implementa-
tion, and since we anyway intend our shower as a baseline to
be improved upon with matrix-element corrections, the algo-
rithm we present in this paper is based on the simplest possi-
ble kinematics map, in which momentum is conserved locally
within the antenna, pa − p j − pk = pA − pK . This implies
that the momentum of the hard system, R, is left unchanged,
meaning IF branchings doe not produce a transverse recoil in
the hard system. This is indicated by the unchanged momenta
of the other incoming parton B and the final-state R, cf. the
illustrations in Fig. 3.

Though we do perceive of this as artificial (e.g., a parton
emitting near-collinear radiation will only generate recoil to
the hard system if its colour partner happens to be in the initial
state) and presumably a weak point of the physics generated
by the IF algorithm [61], it is nevertheless worth pointing out
that:

• Even in cases where there is only one original II antenna
(as e.g., in Drell–Yan), it is not true that recoil can only
be generated by the first emission. In particular, if the
first branching is a (sea) quark evolving backwards to
a gluon, that gluon will participate in a new II antenna,
which will generate added recoil according to the above
prescription for the II case. For cases with more than one
II antenna (e.g., gg → H ), the number of possible p⊥
kicks of course increases accordingly.

• In Vincia matrix-element corrections (MECs) are
regarded as an integral component of the evolution.
Up to the first several orders (typically three powers
of αs) we therefore expect to be able to apply MECs
which will change the relative weighting of branching
events in phase space, emphasising those regions which
would have benefited most from large recoils and de-
emphasising complementary ones. Matrix-element cor-
rections will ensure that the emission pattern is cor-
rectly described with fixed-order precision. The all-
orders resummation of non-LL configurations (e.g., con-
figurations with balancing soft emissions), is, however,
not formally improved, meaning a residual effect of the
recoil strategy remains. Note that the MECs will nonethe-
less attribute a sensible lowest-order weight to hard
configurations that are usually out of reach of strongly
ordered parton showers.

• As already pointed out above and illustrated by [29, Figs.
3, 4], the IF radiation patterns remain coherent, in the
sense that large colour opening angles are a prerequisite
for wide-angle radiation. This is a non-trivial and impor-
tant property of the antenna-shower formalism, which is
preserved independently of the recoil strategy.

Given these arguments, we regard the maintained simplicity
of the resulting formalism as the primary goal at this stage,
which has the added benefit of producing faster, more effi-
cient algorithms. For completeness, we note that the strategy
adopted in [27] for “finite recoils” would not be applicable to
Vincia since it does not cover all of phase space and hence
could not be used as the starting point for our matrix-element
correction strategy.
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In the following, we describe the phase-space convolution,
antenna functions and resulting no-emission probability used
for initial–final evolution.

Phase space The phase-space convolution reads∫
dxa
xa

	(1 − xa)
dxB
xB

	(1 − xB) d�3(pa,

pB → pR, p j , pk)

=
∫

dxA
xA

	(1 − xA)
dxB
xB

	(1 − xB) d�2(pA,

pB → pR, pK ) d�IF
ant (19)

with the antenna phase space

d�IF
ant = 1

16π2

sAK
(sAK + s jk)2 	(xa − xA) dsaj ds jk

dφ

2π
.

(20)

See Appendix A.1 for the explicit construction of the post-
branching momenta.

Antenna functions The gluon-emission antenna functions
are

āIF
qq g = ā(aq , kq , jg) = 1

sAK

(
2
saksAK
saj s jk

+ s jk
saj

+ saj
s jk

)
,

(21)

āIF
gg g = ā(ag, kg, jg) = 1

sAK

(
2
saksAK
saj s jk

+ 2
s jk
saj

sak
sAK

+ 2
s jksAK

saj (sAK + s jk)
+ saj

s jk

sak
sAK

)
, (22)

āIF
qg g = ā(aq , kg, jg)

= 1

sAK

(
2
saksAK
saj s jk

+ s jk
saj

+ saj
s jk

sak
sAK

)
, (23)

āIF
gq g = ā(ag, kq , jg) = 1

sAK

(
2
saksAK
saj s jk

+ 2
s jk
saj

sak
sAK

+ 2
s jksAK

saj (sAK + s jk)
+ saj

s jk

)
. (24)

The antenna function for a gluon evolving backwards to a
quark (and similarly to an antiquark) is

āIF
qx q = ā(aq , kx , jq) = 1

2saj

s2
jk + s2

ak

s2
AK

, (25)

for a quark evolving backwards to a gluon

āIF
gx q̄ = ā(ag, kx , jq̄)

= 1

sAK

(
−2

s jk(sAK − saj )

saj (sAK + s jk)
+ sak

saj

)
,

(26)

and for a final-state gluon splitting

āIF
xq q̄ = ā(ax , kq , jq̄) = 1

2s jk

s2
aj+s2

ak

s2
AK

. (27)

In Appendix A.2 we show that the antenna functions cor-
rectly reproduce the DGLAP splitting kernels in the collinear
limit.

Evolution variables We evolve gluon emission in the trans-
verse momentum of the emission, defined as

temit
IF = p2⊥ IF = saj s jk

sAK + s jk
= saj s jk

saj + sak
, (28)

with the phase-space limit p2⊥ IF ≤ sAK (1 − xA)/xA. Figure
2b shows constant contours of p2⊥ IF, as a function of the two
branching invariants saj and s jk . Note that the phase space
is limited by s jk ≤ sAK (1 − xA)/xA and saj ≤ sAK + s jk .

For branchings with flavour changes in the initial or final
state we use the corresponding invariant, saj or s jk , respec-
tively,

tconv
IF = Q2

IF =
{
saj for a converting to/from a gluon
s jk for K → qq̄

, (29)

with the phase-space limits saj ≤ sAK /xA and s jk ≤
sAK (1 − xA)/xA.

No-emission probability With the definitions given above
(5) for initial–final configurations reads

�n(tn, tn+1) = exp

(
−

∫ saj n

saj n+1

dsaj

∫ s jk n

s jk n+1

ds jk

∫ 2π

0

dφ

2π

× αs(t)

4π

sAK
(sAK + s jk)2 C ā(saj , s jk, sAK )

× fa(xa, t)

f A(xA, t)

)
, (30)

with t = tIF(saj , s jk, sak). The subscript of the saj and s jk
integration limits indicates the association with the branching
scales tn and tn+1, respectively.

2.4 Final–final configurations

We denote the pre- and post-branching partons participating
in a final–final branching by I K → i jk, with no recoils out-
side the antenna. In the following, we specify the phase-space
factorisation, antenna functions, evolution variables and the
resulting no-emission probability. More extensive descrip-
tions of Vincia ’s final-state antenna-shower formalism can
be found in [23,39].

Phase space The phase-space factorisation reads

d�3(P → pi , p j , pk) = d�2(P → pI , pK ) d�FF
ant (31)
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with the antenna phase space

d�FF
ant = 1

16π2

1

s2
I K

dsi j ds jk
dφ

2π
. (32)

See Appendix A.1 for the explicit construction of the post-
branching momenta.

Antenna functionsThe default final–final antenna functions
are chosen to be the ones of [52] averaged over helicities. For
gluon-emission antennae, these are

āFF
qq̄ g = ā(iq , kq̄ , jg) = 1

sI K

(
2
siksI K
si j s jk

+ s jk
si j

+ si j
s jk

+ 1

)
,

(33)

āFF
gg g = ā(ig, kg, jg)

= 1

sI K

(
2
siksI K
saj s jb

+ s jk
si j

+ si j
s jk

− s2
jk

si j sI K

− s2
i j

s jksI K
+ 3

2
+ si j + s jk

2 sI K

)
, (34)

āFF
qg g = ā(iq , kg, jg) = 1

sI K

(
2
siksI K
saj s jb

+ s jk
si j

+ si j
s jk

− s2
i j

s jksI K
+ 3

2

)
. (35)

For a final-state gluon splitting, the default is

āFF
xq q̄ = ā(ix , kq , jq̄) = 1

2s jk

s2
i j + s2

ik

s2
I K

+ 1

2

s jk
s2
I K

+ sik
s2
I K

.

(36)

In Appendix A.2 we show that the antenna functions correctly
reproduce the DGLAP splitting kernels in the collinear limit.

Evolution variables We evolve gluon emission either in
transverse momentum, which is the default choice, or in the
antenna mass,

temit
FF =

{
p2⊥ FF = 4

si j s jk
sI K

m2
A FF = 2 min(si j , s jk)

. (37)

The upper phase-space limit is the parent antenna mass,
temit
FF ≤ sI K . Gluon splittings are evolved in the invariant

mass of the quark-antiquark pair,

tconv
FF = Q2

FF =
{
si j for i being the gluon
s jk for k being the gluon

, (38)

with the same phase-space limit as before.

No-emission probability With the definitions given above
(5) for final–final configurations reads

�n(tn, tn+1) = �n(tn, tn+1) (39)

= exp

(
−

∫ si j n

si j n+1

dsi j

∫ si j n

s jk n+1

ds jk

×
∫ 2π

0

dφ

2π

αs(t)

4π

1

s2
I K

C ā(si j , s jk, sI K )

)
,

(40)

with t = tFF(si j , s jk, sI K ). The subscript of the si j and s jk
integration limits indicates the association with the branching
scales tn and tn+1, respectively.

2.5 The shower generator

We now illustrate how the shower algorithm generates
branchings, starting from trial branchings generated accord-
ing to a simplified version of the no-emission probability
in Eq. (5). For definiteness we consider the specific exam-
ple of initial–initial antennae, initial–final ones being han-
dled in much the same way, with a PDF ratio that only
involves one of the beams, and final–final ones not involv-
ing any PDF ratios at all. The full antenna-shower evolution
(II+IF+FF) is combined with Pythia’s p⊥-ordered multiple-
parton-interactions (MPI) model, in a common interleaved
sequence of evolution steps [8].

With the explicit form of the antenna phase space the no-
emission probability reads

�n(tstart, tn+1) = exp

(
−

∫ tstart

tn+1

dsaj ds jb
αs(t) C

4π

× sAB
s2
ab

ā(saj , s jb, sAB) Rpdf

)

= exp

(
−

∫ tstart

tn+1

dsajds jba(saj , s jb, sAB) Rpdf

)
,

(41)

where the integral is written in terms of the invariants saj
and s jb and we have suppressed the trivial integration over
φ. In the second line, colour and coupling factors, as well
as leftover factors coming from the antenna phase space are
absorbed into a redefined antenna function, a(saj , s jb, sAB).
To impose the evolution measure, we first change the inte-
gration variables from saj and s jb to t and ζ , where t has
dimension GeV2 and ζ is dimensionless. The definition of ζ

is in somewhat arbitrary, as long as it is linearly independent
of t and there exists a one-to-one map back and forth between
(saj , s jb) and (t, ζ ). Generally, the freedom to choose ζ can
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be utilised to make the (t, ζ ) integrands and phase-space
boundaries as simple and efficient as possible. Transformed
to arbitrary (t, ζ ), Eq. (41) now reads

�n(tstart, tn+1)

= exp

(
−

∫ tstart

tn+1

dt dζ |J | a(saj , s jb, sAB) Rpdf

)
, (42)

with the Jacobian |J | associated with the transformation from
(saj , s jb) to (t, ζ ). Rather than solving the exact expression,
we make three simplifications, the effects of which we will
later cancel by use of the veto algorithm:

• Instead of the physical antenna functions, a, we use sim-
pler (trial) overestimates, â(saj , s jb, sAB). For instance
the trial antenna function for gluon emission off an initial-
state quark–antiquark pair is chosen to be

âII
qq̄ g = 2

s2
ab

sABsaj s jb
. (43)

• Instead of the PDF ratio, Rpdf, we use the overestimate

R̂pdf =
(
xA
xa

xB
xb

)α fa(xA, tmin)

f A(xA, tmin)

fb(xB, tmin)

fB(xB, tmin)
, (44)

where tmin is the lower limit of the range of evolution vari-
able under consideration and α a parameter, whose value
is, wherever possible, chosen differently, depending on
the type of branching, to give a good performance.

• In cases where the physical ζ boundaries depend on the
evolution variable t , we allow trial branchings to be gen-
erated in a larger hull encompassing the physical phase
space, with ζ boundaries that only depend on the t inte-
gration limits.

Having the trial no-emission probability, �̂n(tstart, tn+1), at
hand we solve

�̂n(tstart, tn+1) = R with R ∈ [0, 1] (45)

for tn+1 to obtain the scale of the next branching. Due to
the simplifications discussed above, this can be done analyti-
cally. We then generate another uniformly distributed random
number, Rζ , from which we obtain a trial ζ value by solving
(again analytically),

Rζ = Îζ (ζ̂min, ζ )

Îζ (ζ̂min, ˆζmax)
(46)

where Î is the integral over all ζ dependence in �̂n(tstart, tn+1).
Finally, a uniformly distributed trial φ = 2πRφ can be

generated, furnishing the last branching variable. We now
make use of the veto algorithm to recover the exact integral

in Eq. (42), as shown in [62]. First, any trial branching out-
side the physical phase space is rejected. Each physical trial
branching is then accepted with the probability

O(t̂, tn+1) P
shower = O(t̂, tn+1)

a(saj , s jb, sAB)

â(saj , s jb, sAB)

Rpdf

R̂pdf
,

(47)

where O(t̂, tn+1) represents the ordering condition with
respect to some scale t̂ . In traditional, strongly ordered show-
ers this scale is equal to the scale of the last branching tn and
the ordering condition therefore is

O(t̂, tn+1) = O(tn, tn+1) = 	(tn − tn+1). (48)

For more details on the algorithm see Appendix A.3 and the
Vincia compendium distributed alongside with the code.

2.6 Colour coherence and colour indices

When assigning colour indices to represent colour flow after a
branching, we adopt a set of conventions that are designed to
approximately capture correlations between partons that are
not LC-connected, based on the arguments presented in [49].
Specifically, we let the last digit of the ”Les Houches (LH)
colour tag” [63,64] run between 1 and 9, and refer to this digit
as the ”colour index”. LC-connected partons have matching
LH colour tags and therefore also matching colour/anticolour
indices, while colours that are in a relative octet state are
assigned non-identical colour/anticolour indices. Hence the
last digit of a gluon colour tag will never have the same
value as that of its anticolour tag. This does not change the
LC structure of the cascade; if using only the LH tags them-
selves to decide between which partons string pieces should
be formed, the extra information is effectively just ignored. It
does, however, open for the possibility of allowing strings to
form between non-LC-connected partons that ”accidentally”
end up with matching indices, in a way that at least statisti-
cally gives a more faithful representation of the full SU(3)
group weights than the strict-LC one [49].

The new aspect we introduce here is to assign colour
indices after each branching, whereas the model in [49] oper-
ated at the purely non-perturbative stage just before hadroni-
sation. Furthermore, for gluon emissions, we choose to let the
colour tag of the parent antenna be inherited by the daughter
antenna with the largest invariant mass, while the one with
the smaller invariant mass is assigned a new colour tag (sub-
ject to the rules described above). This is intended to preserve
the coherence structure as seen by the rest of the event, so
that, for instance, the new colour created in a near-collinear
branching is attributed to the new small antenna, while the
colour tag of the parent antenna continues on as the tag of
the larger of the daughters. An advantage of this approach is
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string stringg∗
12

q1 q̄2

g13 g32

q3–q̄3

q1 q̄2

g13 g32

(a) (b)

Fig. 4 Illustration of colour flow in Z → qggq̄ , using subscripts to
denote colour indices. Note that both x and y axes illustrate spatial
dimensions, with time indicated roughly by the distance from the loca-
tion of the original Z , denoted by bullet symbol. Two Feynman diagrams
contribute to the same leading-colour string topology

q3 q̄3

q1 q̄1

g13 g31

q3 q̄3

q1 q̄1

g13 g31

(c) (d)

Fig. 5 With a probability suppressed by 1/N 2
C , the same colour index

may occur twice in the diagram shown in Fig. 4b, illustrated here in the
left-hand pane. When this occurs, the string topology shown in the right-
hand pane is also possible (The model of [49] invokes a string-length
minimisation argument to decide which is realised)

that the octet nature of intermediate gluons, e.g. in collinear
g → gg branchings, is preserved by our treatment, which is
not the case in the implementation of [49].

In Figs. 4 and 5 we illustrate our approach, and the ambi-
guity it addresses. For definiteness, and for simplicity, we
consider the specific case of Z → qggq̄, but the arguments
are general. The two diagrams in Fig. 4 show the outgo-
ing partons, produced by a Z boson decaying at the point
denoted by •. Both axes correspond to spatial dimensions,
hence time is indicated roughly by the radial distance from
the Z decay point. Examples of the colour indices defined
above are indicated by subscripts, hence e.g., g13 denotes a
gluon carrying anticolour index 1 and colour index 3. Due to
our selection rule, the type of assignment represented by Fig.
4a is always selected when mgg is small, sgg < sqg , while
the one represented by Fig. 4b is selected when sqg < sgg
(when the second emission occurs in the q − g antenna, and
completely analogously when it occurs in the g − q̄ one).
The subleading-colour ambiguity illustrated by Fig. 5 can
only occur for the latter type of assignment, hence will be
absent in our treatment for collinear g → gg branchings
(where the flow represented by Fig. 4a dominates), in agree-
ment with the collinearly branching gluon having to be an
octet. We regard this as an improvement on the treatment in
[49], in which there was no mechanism to prevent collinear

gluons from ending up in an overall singlet state; see also the
remarks accompanying [49, Fig. 15].

As a last point, we remark that this new assignment of
colour tags is currently left without impact, but is imple-
mented in order to enable future studies, such as colour recon-
nection within Vincia .

2.7 Uncertainty estimations

Traditionally, shower uncertainties are evaluated by system-
atic up/down variations of each model parameter, which man-
dates the generation of multiple event sets, one for each
variation. To avoid this time-consuming procedure, Vin-
cia instead generates a vector of variation weights for each
event [39], where each of the weights corresponds to varying
a different parameter. A separate publication details the for-
mal proof of the validity of the method [65], which we have
here extended to cover both the initial- and final-state showers
in Vincia . (Note added in proof: during the publication of
this manuscript, two further papers appeared reporting sim-
ilar implementations in Herwig and Sherpa, see [66,67].)
In this section, we only give a brief overview of the imple-
mentation, referring to [39,65] for details and illustrations.
Technical specifications for how to switch the uncertainty
bands on and off in the code, and how to access them, are
provided in Vincia ’s HTML User Reference [46].

During the shower step, in which a trial branching gets
accepted with the probability Pdef given in Eq. (47), the prob-
ability of the same branching to occur with a variation in e.g.
the choice of renormalisation scale or antenna function is
calculated,

Pvar = VAR

DEF
Pdef (49)

where DEF and VAR are symbols representing the default
and variation choice, respectively. In the case of an accepted
branching the variation weight of the event gets simply mul-
tiplied with Pvar/Pdef, and for rejected branchings with

1 − Pvar

1 − Pdef
(50)

to correctly take the no-emission probability into account.
The variations currently implemented in Vincia are the

following:

• Vincia ’s default settings, with default antenna functions,
scale choices and colour factors.

• Variation of the renormalisation scale. Using αs(t/kμ)

and αs(t kμ), with a user-specifiable value of the addi-
tional scaling factor kμ.

• Variation of the antenna functions. Using antenna sets
with large and small nonsingular terms, representing
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unknown (but finite) process-dependent LO matrix-
element terms. Note that these are cancelled by LO MECs
(up to the matched orders).

• αs-suppressed counterparts of the finite-term variations
above8 which are not cancelled by (LO) MECs.

• Variation of the colour factors. All gluon emissions use
the colour factor of either CA = 3 or 2CF = 8/3.

• Modified Pimp factor,

P ′
imp = t̂2

t̂2 + t2
. (51)

Note that, except for the first one, the variations are taken with
respect to the user-defined settings. All of these variations are
applied in the shower and the MECs, and they are limited to
branchings in the hard system, i.e. they are for instance not
applied in the showering of multi-parton interactions.

2.8 Limitations

For completeness, we note that a few options and extensions
of the existing Vincia final-state shower have not yet been
implemented in Vincia 2.0. These will remain available in
earlier versions of the code (limited to pure final-state radi-
ation hence mostly of interest for e+e− studies) and may
reappear in future versions, subject to interest and available
manpower. Briefly summarised, this concerns the following
features:

• Sector showers [28]: a variant of the antenna-shower for-
malism in which a single term is responsible for gener-
ating all contributions to each phase-space point. It has
some interesting and unique properties including being
one-to-one invertible and producing fewer (one) term at
each order of GKS matrix-element corrections leading to
the numerically fastest matching algorithm we are aware
of (see [28]), at the price of requiring more complicated
antenna functions with more complicated phase-space
boundaries. For the initial-state extension of Vincia we
have so far focussed on the technically simpler case of
“global” (as opposed to sector) antennae.

• One-loop matrix-element corrections. The specific case
of one-loop corrections for hadronic Z decays up to and
including 3 jets was studied in detail by HLS [40]. The
extension of this method to hadronic initial states, and
a more systematic approach to one-loop corrections in
Vincia in general, will be a major goal of future efforts.

• Helicity dependence [52]. The shower and matrix-
element-correction algorithms described in this paper

8 Up to and including Vincia 2.001, these variations were erroneously
applied by multiplying or dividing the antenna functions by (1 + αs),
which is degenerate with the renormalisation-scale variations.

pertain to unpolarised partons. Although this is fully
consistent with the unpolarised nature of the initial-
state partons obtained from conventional parton distri-
bution functions (PDFs), we note that an extension to
a helicity-dependent formalism could nonetheless be
a relatively simple future development. Moreover, we
expect this would provide useful speed gains for the GKS
matrix-element correction algorithm equivalent to those
observed for the final-state algorithm [52].

• Full-fledged fermion mass effects [68]. Our treatment of
mass effects for initial-state partons is so far limited to
one parallelling the simplest treatment in conventional
PDFs, the “zero-mass-variable-flavour-number (ZMVF)
scheme”. In this scheme, heavy-quark PDFs are set to
zero below the corresponding mass threshold(s) and are
radiatively generated above them by g → QQ̄ split-
tings, with mQ formally set to zero in those splittings
and for the subsequent heavy-quark evolution. Thus, in
Vincia 2.0, all partons are assigned massless kinematics,
but g → QQ̄ splittings are switched off (also in the final
state) below the physical mass thresholds. This only gives
a very rough approximation of mass effects [69,70] but at
least avoids generating unphysical singularities. Beyond
the strict ZMVF scheme, optionally and for final-state
branchings only, we allow for a set of universal antenna
mass corrections to be applied and/or for tighter phase-
space constraints to be imposed, with the latter obtained
from the would-be massive phase-space boundaries. We
note that a mixed treatment similar to the one currently
employed by Pythia, with massive/massless kinemat-
ics for outgoing/incoming partons, respectively, would
not be straightforward to adopt in Vincia as it would
be inconsistent with the application of on-shell matrix-
element corrections.

• The so-called “Ariadne factor” [21] for gluon splitting
antennae

PAri = 2sN
sN + sP

, (52)

with SN the invariant mass squared of the colour neigh-
bour on the other side of the splitting gluon and sP the
invariant mass squared of the parent (splitting) antenna
is limited to its original purpose, that of improving the
description of 4-jet observables in Z decay, and is not
applied outside that context.

3 Matrix-element corrections

In this section we focus on the MEC formalism in Vincia
and discuss our strategy for reaching the non-ordered parts
of phase space, both with respect to the factorisation scale in
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the case of the first branching and with respect to previous
branching scales.

Note that in this paper all matrix elements are generated
with MadGraph [50,71]. The output is suitably modified
to extract the leading-colour matrix element, i.e. to not sum
over colour permutations, but pick the (diagonal) entry in
MadGraph’s colour matrix that corresponds to the colour
order of interest. All plots shown in this paper are based on
leading-colour matrix elements.

3.1 Hard jets in non-QCD processes

In this section we describe our formalism to combine events
which are accompanied by at least one very hard jet, with the
ones which are not. We emphasise that the considerations are
general and apply to any processes that do not exhibit QCD
jets at the Born level.

We first consider the Born inclusive cross section, differ-
ential in the Born phase space,

dσ incl
B (tfac) = f0(x0, tfac) |MB |2 d�B, (53)

where tfac is the factorisation scale, subscript zero emphasises
that flavour and energy fraction correspond to the state �B

(subscript one will then correspond to the state �B+1 and so
on), and the second PDF factor has been dropped for the sake
of readability.

Since the ISR shower formally corresponds to a “back-
wards” evolution of the PDFs [33], the factorisation scale
represents the natural upper bound (starting scale) for the
initial-state shower evolution. This implies that any phase-
space points with t > tfac will not be populated by the shower,
potentially leaving a “dead zone” for high-t emissions. In
principle, the freedom in choosing the evolution variable can
be exploited to define t in such a way that the entire physi-
cal phase space becomes associated with scales t < tfac [30],
including points with physical p2⊥ � tfac. Here, however, we
wish to maintain a close correspondence between the evolu-
tion variable and the physical (kinematic) p⊥, requiring the
development of a different strategy.

The approach used internally in Pythia is that of “power
showers” (with [72] or without [73] matrix-element correc-
tions): starting the shower from a scale tstart that is higher
than the factorisation scale. This method has been criticised
for producing too hard jet emission spectra and violating the
factorisation ansatz. Though the improved power showers
defined in [74,75] are better behaved (dampening the LL
1/p2⊥ kernels to explicitly subleading Q2/p4⊥ ones for emis-
sions above the Q scale of the basic process), shortcomings
are still present. Consider, for example, the Born exclusive

cross section at an arbitrary shower cutoff, differential in the
Born phase space, scale tcut,

dσ excl
B (tcut) = �0(tstart, tcut) f0(x0, tfac) |MB |2 d�B (54)

= f0(x0, tfac)

f0(x0, tstart)
f0(x0, tcut) �0(tstart, tcut) |MB |2 d�B .

(55)

Unless tstart = tfac, there appears an undesired PDF ratio,
which reflects the difference in the factorisation and shower
starting scale. To avoid this problem, we introduce two sep-
arate event samples, both initiated by the same matrix ele-
ment with the same factorisation scale, as in Eq. (53). They
are generated simultaneously, producing a single stream of
ordinary randomly mixed, weighted events, with no need for
external recipes to combine them. The first sample creates
events that do not have a hard jet, by starting the shower
at the factorisation scale (hence leaving the region t > tfac

unpopulated). The second event sample is responsible for all
events with at least one jet with scale t > tfac. This sample is
initialised by first reweighting the Born-level events such that
the (temporary) factorisation scale is set to the phase-space
maximum, tmax, and the shower algorithm is started from
that scale. Events that do not produce at least one branching
before the original (Born-level) factorisation scale is reached
are vetoed, resulting in a total contribution to the inclusive
cross section in Eq. (53) of

f0(x0, tmax)

f0(x0, tfac)
f0(x0, tfac) (1 − �0(tmax, tfac)) |MB |2 d�B .

(56)

Adding the two event samples together yields the new inclu-
sive cross section,

dσ incl
B (tfac) = f0(x0, tfac) |MB |2 d�B + f0(x0, tstart) (1

− �0(tstart, tfac)) |MB |2 d�B

= f0(x0, tfac) |MB |2 d�B

+
tstart∫
tfac

dt f1(x1, t)A(t)�0(tstart, t) |MB |2 d�B,

(57)

where A(t) contains all antenna functions, coupling and
colour factors. By virtue of adding and subtracting f0(x0,

tfac) |MB |2 d�B�0(tstart, tfac) and using the DGLAP equation

f0(x0, tstart) = f0(x0, tfac)�0(tstart, tfac)

+
tstart∫
tfac

dt f1(x1, t)A(t)�0(tstart, t) (58)

this becomes
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dσ incl
B (tfac) = f0(x0, tstart) |MB |2 d�B

+ f0(x0, tfac) (1−�0(tstart, tfac))|MB |2 d�B .

(59)

Expanding (57) to O(αs) yields

dσ incl
B (tfac) = f0(x0, tfac) |MB |2 d�B

+
∫ tstart

tfac

dt f1(x1, t)A(t) |MB |2 d�B . (60)

Expanding (59) instead yields

dσ incl
B (tfac) = f0(x0, tstart) |MB |2 d�B

+ f0(x0, tfac)

∫ tstart

tfac

dt A(t) |MB |2 d�B,

(61)

which is seemingly at odds with (60). The problem is that
both (60) and (61) have been derived by expanding, so that
their relation through the DGLAP equation is lost. The cru-
cial point—which is obscured after expanding—is already
contained in (57): the inclusive cross section is calculated
with a sensible factorisation scale tfac, while all branchings
with scales t > tfac contribute, in a controlled way, at higher
orders. Section 4 contains some illustrations of the effects of
these corrections for physical observables such as the dilep-
ton rapidity and p⊥ spectra in Drell–Yan processes.

The inclusive cross section obtained from Eq. (57) does
not reduce to the zero-parton Born cross section, the changes
being only due to hard emissions which have not been incor-
porated in the first term in (57). This differs from cross section
changes in CKKW-inspired merging prescriptions [76,77],
which arise from real–virtual mismatches at the merging
scale,9 or from the definition of the inclusive cross section in
unitarised merging schemes [78,79]. In the latter, the inclu-
sive cross section is almost entirely given by the first term in
(57), and only changed by ”incomplete” states which cannot
be associated with valid parton-shower histories. The defi-
nition of what is deemed an ”incomplete state” is not con-
ventional and thus may depend on the details of a particular
implementation. Note, however, that [78–80] do not advocate
including the factors ”�0” when reweighting ”incomplete”
states. This could lead to interesting differences in observ-
ables relying on very boosted Z -boson momenta.

We note that, although the described method of adding
hard jets in non-QCD processes is the default choice in
Vincia , we include the possibility to perform an ordinary
shower, starting off the factorisation scale tfac. This is the
recommended option when combiningVincia ’s shower with
external matching and merging schemes.

9 The value of merging scales is typically well below tfac.
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In Fig. 6 we show the relative contribution of the two event
samples in Z production, as a function of the Z mass,

σZ j

σZ
(mZ ) = f0(x0, s)

(
1 − �0(s,m2

Z )
) ∣∣MZ j

∣∣2
�Z j

f0(x0,m2
Z ) |MZ |2 �Z

,

(62)

with
√
s = 7 GeV (black) and

√
s = 14 GeV (orange). As

expected, the contribution of events with at least one hard jets
is larger for decreasing Z masses and increasing centre-of-
mass energies. For both values of

√
s the Born event sample

eventually dominates for Z masses above O (10 GeV).

3.2 Strong ordering compared with tree-level matrix
elements

To validate the quality of the antenna shower, we use large
samples of pp → Z j j phase-space points, generated with
Rambo [81] (an implementation of which is included in
Vincia ). We cluster all of the phase-space points back to
the corresponding pp → Z phase-space point, using the
exact inverse of the 2 → 3 recoil prescription used in the
shower as a clustering algorithm; see Appendix A for the
kinematics map used here. This allows one to reconstruct all
possible ways in which the shower could have populated a
certain phase-space point, analogously to the study carried
out for final-state radiation in [39] (see also [82]). Compar-
ing the shower approximation with the LO matrix element
for q1q̄2 → Zg3g4 yields the tree-level PS-to-ME ratio

R4 ≡ 	(t 4̂3 − t3)Cqg g āIF
qg g(1, 4, 3)Cqq̄ g āII

qq̄ g(1̂3, 2, 4̂3) |MZ (Z)|2∣∣MZgg(1, 2; Z , 3, 4)
∣∣2
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+ 	(t 3̂4 − t4)Cq̄g g āIF
q̄g g(2, 3, 4) Cqq̄ g āII

qq̄ g(1, 2̂4, 3̂4) |MZ (Z)|2∣∣MZgg(1, 2; Z , 3, 4)
∣∣2

(63)

where the strong-ordering condition is incorporated by the
	 step functions and the hatted variables â j denote clus-
tered momenta. The two terms correspond to the two pos-
sible shower histories—obtained from starting by clustering
either gluon 3 or 4, respectively—with the sequential clus-
tering scales

t3 = p2⊥ IF(g3) and t 4̂3 = p2⊥ II(g 4̂3), (64)

t4 = p2⊥ IF(g4) and t 3̂4 = p2⊥ II(g 3̂4). (65)

R4 therefore gives a measure of how much the shower
under- or overcounts the tree-level matrix element. With the
first emission already corrected10 Eq. (63) reduces to

R4 = 	(t 4̂3 − t3) Cqg g āIF
qg g(1, 4, 3)

∣∣MZg(1̂3, 2, 4̂3)
∣∣2

∣∣MZgg(1, 2; Z , 3, 4)
∣∣2

+ 	(t 3̂4 − t4) Cq̄g g āIF
q̄g g(2, 3, 4)

∣∣MZg(1, 2̂4, 3̂4)
∣∣2

∣∣MZgg(1, 2; Z , 3, 4)
∣∣2 .

(66)

Higher-order PS-to-ME ratios are constructed in a similar
way.

Histograms showing the logarithmic distribution of the
PS-to-ME ratios for qq̄ → Zgg and qq̄ → Zggg, in a flat
scan over the full phase space, comparing a strongly ordered

10 This is trivial for qq̄ → Zgg as the corresponding antenna function
already is the ratio of the LO matrix elements.

shower with the LO amplitude squared, are shown in Fig. 7.
The spike on the very left of the histograms corresponds to
the part of phase space where there are no ordered shower
histories. Note that about 35 % of the whole phase space in a
flat scan of qq̄ → Zgg does not have an ordered shower path,
a significantly higher fraction than the roughly 2 % found for
the final-state phase spaces in [39]. We interpret this as due
to the significantly larger size of the initial-state phase space,
which is not limited by the original antenna invariant mass
but only by the hadronic CM energy. The binning of the
histogram is chosen such that the two bins around 0 (marked
with a grey dashed line) correspond to the shower having less
than 10 % deviation to the tree-level matrix element. For the
shower with strong ordering about 10 % of the total number
of phase-space points, corresponding to about 15 % of the
phase space with at least one ordered path, populate these
two bins.

To gain an understanding of where in phase space sig-
nificant deviations between the shower approximation and
the LO amplitudes squared occur, we consider the 2D dis-
tributions presented in Figs. 8 and 9. For all plots, the x
axes represent the degree of ordering of the first (Z → Zg)
emission, while the y axis represents the degree of ordering
of the second (Zg → Zgg) emission, defined more pre-
cisely below. Note that, since the phase spaces have more
than 2 dimensions, each bin still represents an average of
different phase-space points with the same x and y coor-
dinates. Since the ratios on the axis are plotted logarithmi-
cally, zero denotes the border between ordered and unordered
paths. The black-framed box in the lower left-hand corner of
the plots highlights the strongly ordered region defined by
p2⊥ IF � p2⊥ II � m2

Z , in which any (coherent) LL shower
approximation is expected to give reasonable results. In the
left-hand panes, grey colours signify less than 20 % devia-
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Fig. 8 The value of 〈R4〉 (left) and dev(R4) (right), differentially over the 4-parton phase space, with p2⊥ ratios characterizing the first and second
emissions on the x- and y axis, respectively. Strong ordering in the shower, with gluon emission only
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Fig. 9 The value of 〈R4〉 (left) and dev(R4) (right), differentially over the 4-parton phase space, with p2⊥ ratios characterizing the first and second
emissions on the x- and y axis, respectively. No ordering in the shower, with gluon emission only

tion from a ratio unity (with the middle shade corresponding
to less than 10 % deviation, corresponding to near-perfect
agreement). Red shades signify increasingly large devia-
tions, with contours at 2, 5, and 10. Blue contours extend
to 1/2, 1/5, and 1/10, while black indicates regions where
the shower answer is less than one tenth of the matrix-element
answer. In the right-hand panes, the same colour scale is used
to show a measure of the width of the R4 distribution in each
bin, defined below. These plots are intended to ensure that an
average good agreement in the left-hand pane is not merely
accidental, but also corresponds to a narrow distribution.

In Fig. 8, the left-hand pane provides a clear illustration of
the dead zone for the process qq̄ → Zgg in a strongly p2⊥-

ordered antenna shower. Each bin of the two-dimensional his-
togram shows the average of the value of R4 in Eq. (66) over
all phase-space points populating that bin. For every phase-
space point there are two possible (not necessarily ordered)
shower histories, with different scales for the first branching,
p2⊥ II, and second one, p2⊥ IF. The combination of scales that
correspond to the path with the smaller scale of the second
branching is used to characterise the phase-space point. The
black region in Fig. 8 for strong ordering corresponds to the
spike in Fig. 7. Since there are two shower histories, there is
in principle the possibility that the second history (which was
not used to characterise the phase-space point) contributes as
an ordered history, but this does not appear to happen any-
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Fig. 10 Illustration of the phase-space coverage of p⊥-ordered dipole/antenna showers with a strong and b smooth ordering, in the “origami”
plane of ln p⊥ vs. rapidity

where in the region classified as unordered. The plot on the
right shows the deviation within each bin, which we define
to be

dev(R4) = 10

√
〈log2

10(R4)〉−〈log10(R4)〉2
, (67)

since the distribution of R4 is naturally a logarithmic one. We
assign a deviation of 10 to the dead zone, since the log would
otherwise not be defined. As mentioned above, the deviation
is intended to illustrate whether an average value in the left
plot is achieved by a broad or a narrow distribution.

One could force the dead zone to disappear by simply
removing the ordering condition and starting the shower at
the phase-space maximum for each antenna. However, as can
be seen from Fig. 9, this would highly overcount the matrix
element in the unordered region, again parallelling the obser-
vations for the equivalent case of final-state radiation in [39].
The strong-ordering condition is clearly a better approxi-
mation to QCD, even if it does not fill all of phase space.
To improve the shower, we will therefore need to allow the
shower to access the whole phase space while suppressing
the overcounting in the unordered region.

3.3 Smooth ordering compared with tree-level matrix
elements

As we saw in the previous section, a strongly ordered shower
has a significant dead zone for hard emissions, especially
in the initial-state sector. We now want to focus on how
to remove them by generalising Vincia ’s “smooth order-
ing” [39] to initial-state phase spaces. Reference [39] shows
that replacing the step function of an ordered shower with
a smooth suppression factor leads to a surprisingly good
description of the unordered region in Z decay. Based on
this study, an improved version of the shower accept prob-
ability in Eq. (47), which allows one to take “unordered”
branchings into account is

O(t̂, t) Pshower = Pimp Pshower = t̂

t̂ + t
Pshower, (68)

where t is the scale of the trial branching at hand and t̂ is the
reference scale.

The difference between conventional strong ordering and
Vincia ’s Pimp-suppressed smooth ordering can be illustrated
by considering so-called origami diagrams [83–85], in which
the antenna (or, equivalently, dipole) phase space is depicted
in terms of ln(p2⊥) versus rapidity. Defining these by our
gluon-emission evolution variable, p2⊥ = m2

12m
2
23/m

2 and
by y = 1

2 ln(m2
12/m

2
23), respectively, for an antenna with

total invariant mass m splitting into two smaller antennae
with masses m12 and m23, the leading (double-logarithmic)
contribution to the branching probability is transformed to
just a constant over the antenna phase space,

dP ∼ Cαs

2π
d ln p2⊥ dy, (69)

where C is the colour factor normalised so that C → NC

in the leading-colour limit. The phase-space boundary for
gluon emissions with p⊥ � m is determined by ymax(p⊥) =
1
2 ln(m2/p2⊥), so that the rapidity range available for emis-
sions at a given p⊥ defines a triangular region,

�y(p⊥) = ln(m2/p2⊥) = ln(m2) − ln(p2⊥), (70)

corresponding to the outer hulls of the diagrams shown in
Fig. 10.

For an emission at any given value of p2⊥1 = m2
12m

2
23/m

2,
the total rapidity range (at that p⊥ value) is unchanged by
the branching,

�y(p⊥1) = ln(m2) − ln(p2⊥1)︸ ︷︷ ︸
pre-branching

= ln(m2
12) − ln(p2⊥1) + ln(m2

23) − ln(p2⊥1)︸ ︷︷ ︸
post-branching

, (71)
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cf. the dashed line at ln(p⊥) = ln(p⊥1) in the figure. For soft
emissions, however, say at a reference value of p⊥ = 1 GeV,
the post-branching configuration covers a total rapidity range
which is larger by

�y(1 GeV)post − �y(1 GeV)pre

= ln(m2
12) + ln(m2

23) − ln(m2) = ln(p2⊥). (72)

The additional phase space “opened up” by the branching
can hence be represented by adding a double-sided isoce-
les right triangle to the origami diagram, with side lengths
ln(p⊥1), which—for lack of a better direction—is drawn
pointing out of the original plane. Restricting the subse-
quent shower evolution to populate only the region below
the p⊥1 scale produces a strongly ordered shower, illustrated
in Fig. 10a with the blue and red shaded regions representing
the phase space accessible to a second and third branching,
respectively. The case of smooth ordering is illustrated in Fig.
10b for the same sequence of branchings. In this case, each
of the antennae produced by the first branching are allowed
to evolve over their full phase spaces, and their respective
full phase-space triangles are therefore now included in the
diagram, using solid black lines for the first branching and
red dotted lines for the phase-space limits after the second
branching. The suppression of the branching probability near
and above the branching scale is illustrated by reducing the
amount of shading of the corresponding regions. Compar-
ing the figures, one can see that we expect no change in the
total range or integrated rate of soft emissions (at the bottom
of the diagrams). The only effects occur near and above the
branching scale where the strongly ordered (LL) shower for-
malism is anyway unpredictive. In Sect. 3.4 below, we show
explicitly that the leading-logarithmic structure of smoothly
ordered showers is identical to that of strongly ordered ones,
but for the remainder of this section we constrain our atten-
tion to comparisons with fixed-order matrix elements.

A further point that must be addressed in the context of
the ordering criterion is that our matrix-element-correction
formalism, discussed below, requires a Markovian (history-
independent) definition of the t̂ variable in the Pimp factor in
Eq. (68). Rather than using the scale of the preceding branch-
ing directly (which depends on the shower path and hence
would be history-dependent), we therefore compute this scale
in a Markovian way as follows: Given a n-parton state we
determine the values of the evolution variable correspond-
ing to all branchings the shower could have performed to get
from any (n − 1)- to the given n-parton state. The reference
scale t̂ is then taken as the minimum of those scales. The
dead zone, equivalent to the unordered region, is now popu-
lated by allowing branchings of a restricted set of antennae
to govern the full relevant phase space. Such antennae are
called unordered, while other antennae are called ordered. It
is in principle permissible to treat all antennae in an event
as unordered. To mimic the structure of effective 2→4 and

higher branchings, we, however, only tag those antennae
which are connected to partons that partook in the branching
that gave rise to the chosen value for t̂ as unordered. Branch-
ings of ordered antennae may then contribute below the scale
t̂ .

For example, consider the case of a gluon emission being
associated with the smallest value of the evolution variable.
In this case the gluon as well as the two partons playing the
role of the parent antenna that emitted the gluon, are marked
for unordering and therefore all antennae in which these three
partons participate are allowed to restart the evolution at their
phase-space limits. This limited unordering reflects that no
genuinely new region of phase space would be opened up
by allowing partons/antennae completely unrelated to the
“last branching” to be unordered, as these will already have
explored their full accessible phase spaces during the prior
evolution.

We note that for the final state the available phase space
reduces for each successive branching, limiting the effect of
the smooth ordering. In [40] it is shown that, for final-state
radiation, the damping factor in Eq. (68) does not modify the
LL 1/t behaviour and only generates explicitly subleading
t̂/t2 corrections in the strongly unordered limit, t � t̂ . For
the initial state, the phase-space boundaries are governed by
the hadronic centre-of-mass energy leading to possibly large
unordered regions and therefore a rather large effect of the
smooth ordering. As the main purpose of the smooth ordering
is to fill all available phase space for the MECs, we restrict it
to the ME corrected branchings by default and keep all fol-
lowing shower emissions strongly ordered. In this case, all
damping factors get replaced by the MEC weight, see Sect.
3.6, by virtue of the Sudakov veto algorithm.

We compare the logarithmic distributions of the ratio of
the shower approximation to the matrix element for qq̄ →
Zgg and qq̄ → Zggg for both strong and smooth ordering in
Fig. 11. When applying smooth ordering, the distribution gets
narrower on the side where the shower overcounts the tree-
level matrix element, and that the dead-zone spike is replaced
by an extended tail towards low ratios on the other side. This
tail is due to configurations that look like a hard-QCD pro-
cess accompanied with a radiated Z . Such phase-space points
should in principle be populated by an electroweak shower,
such as the one presented in [86]; not having developed the
required formalism in the antenna context yet, however, we
still allow our QCD shower to populate this region of phase
space; it will in any case be corrected with matrix elements,
see Sect. 3. To focus on the improvement in the QCD regions
of phase space we apply a cut on the transverse mass of the Z
boson and require it to be larger than the branching scale of
the path that has been chosen to characterise the phase-space
point,

p2⊥ IF < m2⊥ Z = k2⊥ Z + m2
Z . (73)
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Fig. 12 The value of 〈R4〉 (left) and dev(R4) (right), differentially over the 4-parton phase space, with p2⊥ ratios characterising the first and second
emissions on the x and y axis, respectively. Smooth ordering in the shower, with gluon emission only

We define k2⊥ Z to be the minimum of all possible

k2⊥ Z q = min(E2
Z , E2

q)(1 − cos θZq). (74)

The resulting distributions are shown in red in Fig. 11.
Applying the cut leads to a removal of the part of phase
space where the Z should have been generated as an emission
rather than as part of the hard process. The distribution is
now dominated by QCD and the smoothly ordered shower
produces a narrower as well as more symmetric distribution,
compared to the strongly ordered shower.

Similarly we repeat the two-dimensional histograms for
the smoothly ordered antenna shower in Fig. 12 without and
in Fig. 13 with the cut on m2⊥ Z . As expected, we obtain an

improved description as compared to both the strong and
unordered showers, Figs. 8 and 9 respectively. Due to the
form of the improvement factor in Eq. (68) we get a factor
of 0.5 at the green line, around where the scales of the two
branchings coincide, leading to a better description already
of this region. Once again these plots show that the shower
undercounts the region where the Z boson is very soft and
should have been generated with a weak shower, represent-
ing a path that is not available in Vincia yet. The strongly
unordered region remains somewhat overcounted, though by
less than a factor 2, far better and with narrower distributions
than was the case for the fully unordered shower, Fig. 9.

An extended set of plots, including Higgs production pro-
cesses, can be found in Appendix B.
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Fig. 13 The value of 〈R4〉 (left) and dev(R4) (right), differentially over the 4-parton phase space, with p2⊥ ratios characterizing the first and second
emissions on the x and y axis, respectively. Smooth ordering in the shower, with a cut on m2⊥ Z and gluon emission only

3.4 Smooth ordering vs. strong ordering

This section presents a comparison of strong and smooth
ordering, first in terms of their analytical leading-logarithmic
structures, and then using jet clustering scales, investigating
the processes e+e− → jets as well as pp → Z+jets. The
analyses are adapted from the code used in [30], originally
written by Höche. In order to focus on the shower properties
we present parton-level distributions, with MECs switched
off, a fixed strong coupling with αs(mZ ) = 0.13, and a very
low cutoff, 10−3 GeV for e+e− → jets and 10−2 GeV for
pp → Z+jets. To furthermore put the magnitude of the
differences between smooth and strong ordering into per-
spective, an αs(mZ )-variation band for the strongly ordered
result is included in Figs. 14 and 15.

We emphasise that, even leaving the αs and cutoff settings
aside, the distributions in this section are meant for valida-
tion only. The event generation modus used below does not
make use of Vincia ’s matrix-element correction features.
When using MECs, the main purpose of the smooth order-
ing is to fill the available phase space with non-vanishing
weight, which allows a reweighting to reproduce the correct
LO matrix-element result. Keeping this disclaimer in mind,
it is still useful to investigate how the phase space is filled
before MECs are applied.

Leading logarithms

As discussed in the preceding section, the leading (double-
pole) behaviour of the gluon-emission antenna functions is
just a constant over phase space when expressed in terms of
the origami variables ln(p⊥) and y. We begin by considering

a conventional strongly ordered antenna shower, such as that
of Ariadne [13,21] (or Vincia with strong ordering). The
leading contribution to the Sudakov factor �(Q2⊥, p2⊥) rep-
resenting the no-branching probability between two resolu-
tion scales Q2⊥ > p2⊥ (e.g., following a preceding branching
which happened at the scale Q⊥), is then, cf. Eq. (70),

− ln �strong
LL∼ Cαs

2π

∫ ln Q2⊥

ln p2⊥
d ln q2⊥

∫ ln(m/q⊥)

− ln(m/q⊥)

dy

= Cαs

2π

∫ ln Q2⊥

ln p2⊥
d ln q2⊥ ln

[
m2

q2⊥

]
(75)

= Cαs

2π

(
1

2
ln2

[
Q2⊥
p2⊥

]
+ ln

[
Q2⊥
p2⊥

]
ln

[
m2

Q2⊥

])
, (76)

for a final–final antenna11 with invariant mass m and assum-
ing p2⊥ � m2. This agrees with the LL limit for dipole show-
ers derived in [30]. We note that the second term is absent
from [87, Eq. (8)] due to a phase-space restriction placed
in Eq. (2) of that paper, which we believe is appropriate to
remove double-counting of soft emissions in showers based
on DGLAP kernels. In the context of antenna showers, how-
ever, the antenna functions already have the correct (eikonal)
soft limits, and the imposition of this additional phase-space
constraint would have the (undesired) effect of removing
the added rapidity range corresponding to the extra origami
fold discussed in Sect. 3.3, producing an “undercounting”

11 For initial–initial antennae, replace m in the phase-space limit on
the rapidity integral in Eq. (75) by

√
s = √

sAB/(xAxB), assuming
xAxB � 1. For initial–final antennae, replace it by

√
sAK /xA assuming

xA � 1.
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Fig. 14 Logarithmic distributions of differential jet resolutions and
their ratios for heavy Z decays (mZ = 1000 GeV). Predictions of Vin-
cia 2.0 with strong (smooth) ordering are shown in solid red (dotted

green) lines. The red band shows an αs variation with αs(mZ ) = 0.12
and αs(mZ ) = 0.14

of soft emissions. We therefore regard the expression above,
Eq. (76), as the reference expression which an LL-correct
antenna shower should reproduce.

A counter-example, illustrating an incorrect LL behaviour,
can be furnished by considering a so-called “power shower”
[73] in which the upper boundary of the integral above is
replaced by m2 rather than Q2⊥ (e.g., letting newly created
antennae evolve over their full phase spaces, irrespective of
the ordering scale, and without any suppression). This pro-
duces an extra logarithm which is not present in the strongly
ordered case:

− ln �pwr
LL∼ Cαs

2π

(
1

2
ln2

[
Q2⊥
p2⊥

]

+ ln

[
Q2⊥
p2⊥

]
ln

[
m2

Q2⊥

]
+ 1

2
ln2

[
m2

Q2⊥

])
, (77)

where we have rewritten the 1
2 ln2(m2/p2⊥) result to make the

two first terms identical to the ones produced in the strongly
ordered case, so that the third term, highlighted in red, rep-
resents the difference.

For smooth ordering, with the Pimp suppression factor
defined in Eq. (68), the relevant integral is

∫ m2

p2⊥

1

1 + q2⊥
Q2⊥

dq2⊥
q2⊥

ln

[
m2

q2⊥

]
, (78)
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Fig. 15 Logarithmic distributions of differential jet resolutions and their ratios for Z+jets events. Predictions of Vincia 2.0 with strong (smooth)
ordering are shown in solid red (dotted green) lines. The red band shows an αs variation with αs(mZ ) = 0.12 and αs(mZ ) = 0.14

which after a bit of algebra can be cast in the following form:

1

2
ln2

[
Q2⊥
p2⊥

]
+ ln

[
Q2⊥
p2⊥

]
ln

[
m2

Q2⊥

]
+ ln

[
1 + p2⊥

Q2⊥

]
ln

[
m2

p2⊥

]

−Li2

[
−Q2⊥
m2

]
− Li2

[
−p2⊥
Q2⊥

]
− π2

6
, (79)

where the two first terms are again identical to those of Eq.
(76). In the third term, ln(1 + p2⊥/Q2⊥) → 0 for p2⊥/Q2⊥ →
0, and the fourth and fifth terms are bounded by −π2/12 <

Li2(−x) < 0 (with 0 corresponding to the limit x → 0
and −π2/12 for x → 1). We thus conclude that the LL
properties of the antenna shower are not spoiled by changing
from strong to smooth ordering.

Hadronic Z decays

To increase the available phase space we used a heavy Z with
mZ = 1000 GeV which decays hadronically. In Fig. 14 we
present the parton-level result for four successive jet resolu-
tion measures, ym m+1 (withm ∈ {2, 3, 4, 5}), and their ratios
ym m+1/ym−1m , using the Durham jet algorithm. Jet resolu-
tion scales exhibit a Sudakov suppression for low values, and
exhibit fixed-order behaviour for large values. We note that
in realistic calculations (and in experimental data), low-scale
values are typically strongly affected by hadronisation cor-
rections, which are absent here since we are at parton level,
with a fixed αs . We also exclude values of ym m+1 correspond-
ing to scales below the shower cutoff. Small values of the
ratios ym m+1/ym−1m highlight the modelling in the region
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of large scale separation, i.e. where effects of resummation
become relevant. Large values of ym m+1/ym−1m are associ-
ated with the region of validity of fixed-order calculations.

In the distributions of the jet resolution scales them-
selves we observe moderate differences between the different
ordering modes, up to O(20 %). Smooth ordering generates
more events with larger ym m+1 separation and, consequently,
fewer events with small separation, compared to strong order-
ing.

While the prediction with smooth ordering lies below the
strongly ordered one for small values of the y34/y23 ratio, it
eventually slightly exceeds the strong ordering in the y56/y45

ratio. This behaviour is a combination of two effects: Smooth
ordering allows more phase-space coverage, while at the
same time, the Markovian restart scale means that emissions
from “ordered” antennae have more stringent phase-space
restrictions than in the strongly ordered case. Thus, if more
ordered antennae are present, which is only the case after
several branchings, the Markovian restarting scale may lead
to a softer multi-emission pattern than in the strongly ordered
case. However, recall that MECs are an essential ingredient
in the evolution, and that, for emissions beyond the highest
ME multiplicity, no smooth ordering is applied. This means
that, for lower multiplicities, the effect of smooth ordering
is effectively removed and replaced by the full fixed-order
result. For higher multiplicities, the shape change due to the
Markovian restart scale is also absent, since smooth order-
ing is not applied. This suggests that smooth ordering of the
entire cascade, and without MECs, exhibits some undesirable
features. However, it is worth noting that the differences are
largest in the soft region, where non-perturbative physics and
tuning are expected to have large impact, as e.g. exemplified
by a large dependence on the value of αs(mZ ). Finally we
note that the prediction with smooth ordering lie well within
the αs(mZ )-variation band of the strong ordering.

Drell–Yan

The parton-level results for Z+jets events are presented in
Fig. 15: four successive jet resolution measures, dm m+1 (with
m ∈ {0, 3}), and their ratios dm m+1/dm−1m , using the lon-
gitudinally invariant k⊥ jet algorithm with R = 0.4. As
before, jet resolution scales show a fixed-order behaviour
for large values, a Sudakov suppression and potentially
large non-perturbative corrections for low values. The ratios
ym m+1/ym−1m are used to more clearly reveal the successive
scale hierarchies.

The observations for both, the jet resolution scales, and
their rations, are qualitatively similar to the e+e− → jets
case, though quantitatively the effects here are larger. We
notice the same turn-over when going from d12/d01 to
d34/d23 we saw for Z decays, with the explanation being
very similar to the case before. Smooth ordering will allow

additional phase-space regions to be filled with harder emis-
sion (cf. Fig. 10). Due to the unitarity of the parton-shower
algorithm, this naively means that fewer soft emissions occur.
This is counter-acted by the Markovian restart scale, which
means that the smoothly ordered shower yields softer emis-
sions from “ordered” antennae. At low multiplicity, the for-
mer dominates, as all antennae are allowed to fill their avail-
able phase space, while at higher multiplicity, the latter drives
the differences. Figure 15 shows trends in d01 and d12 simi-
lar to the ones visible in Figs. 10 and 20 of [87]. Note again
that the additional, compensating effect of the Markovian
restarting scale starts playing an important role for higher
multiplicities.

3.5 Hard jets in QCD processes

We already discussed our strategy to include hard branch-
ings in non-QCD processes in Sect. 3.1. For processes with
QCD jets in the final state we apply a different formalism, as
the Born process already comes with a QCD scale. The first
branching is allowed to populate all of phase space; however,
the region with scales above the factorisation scale, t > tfac,
is treated with smooth ordering, as described in Sect. 3.3. In
Fig. 16 we show the PS-to-ME ratios for gg → ggg and
qq̄ → ggg where the factorisation scale is chosen to be the
transverse momentum of the final-state partons in the Born
2 → 2 process. We show a comparison of strong ordering,
i.e. not including t > tfac, smooth ordering with t̂ = tfac

in the Pimp factor, and no ordering, which corresponds to
adding an event sample with t > tfac. The plots indicate that
the smooth ordering is preferred over adding hard jets as a
separate event sample. Note that the asymmetric distribution
of the PS-to-ME ratio for gg → ggg is the result of combin-
ing the distributions of different colour flows.

One could imagine applying the same treatment to non-
QCD processes as well. However, this is not done in Vincia
as the factorisation scale in these processes is not a QCD
scale and therefore not suited to enter the Pimp factor.

3.6 Matrix-element corrections with MadGraph 4

In this section we review the GKS procedure for iterative
matrix-element corrections (MECs) [39]. To first order, the
formalism is equivalent to that by Bengtsson and Sjöstrand
in Refs. [5,12], and to the approach used for real corrections
in Powheg [88,89]. In the context of final-state showers,
the approach was generalised to multiple emissions in [39]
where it was successfully used to include MECs through
O(α4

s ) for hadronic Z decays. A generalisation at the one-
loop level has also been developed [40], though so far limited
to O(α2

s ). Here, we focus on tree-level corrections only.
Matrix-element corrections take the all-orders approxima-

tion of the shower as their starting point, and apply ME-based
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Fig. 16 Antenna shower, compared to matrix elements: distribution of
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of the Born process. Contents normalised to the number of generated
points. Gluon emission only

corrections to this structure order by order in perturbation
theory. At tree level, the following multiplicative correction
factor is applied to each antenna function for matching to
leading-colour matrix elements,

Ci āi → Ci āi PME
n with PME

n = |Mn|2∑
j C j ā j |Mn−1|2 ,

(80)

with the n-particle matrix element squared |Mn|2, see Eqs.
(81) and (82) for more details on colour ordering. Given
Vincia ’s invertible kinematics maps and the explicit forms
of the physical antenna functions defined in Sect. 2, the
denominator is exactly calculable (taking the smooth order-
ing Pimp factors defined in the previous section into account).
The numerator is obtained by using amplitudes derived from
MadGraph 4 [50], stored in Vincia ’s interfaces/MG4
subdirectory. Minor extensions were required to include pro-
cesses with initial-state coloured partons, and several new
matrix-element routines were added in the context of this
work. The F77 syntax for calling a Vincia -modified MG4
matrix element is (using the specific example of a bb̄ →
Hggg matrix element):

SUBROUTINE Sbbx2gggh(MCMODE,ICOL,P1,
HEL1,ANS)

where

• INTEGER MCMODE selects between Leading Colour
(0), Vincia Colour (1), and Full Colour (2), as defined
below,

• INTEGER ICOL selects which colour ordering is
desired for MCMODE=0,1,

• DOUBLE PRECISION P1(0:3,NEXTERNAL) the
momenta of the particles (in this example NEXTERNAL
=6),

• INTEGER HEL1(4) holding up to 4 helicity config-
urations to be summed over, sufficient to average over
an unpolarised initial 2-parton state or decaying vector
boson, with specified final-state helicities. The enumera-
tion of helicity configurations followsMadGraph’s nor-
mal helicity-counting convention.

• The requested matrix element squared is saved in the
double-precision ANS variable, which in Vincia always
has only a single element.

From within Vincia these matrix elements are accessed
via C++ wrappers accessible via the VinciaPlugin::
mgInterface.ME2() methods, with definitions con-
tained in theMG4interface.h andMG4interface.cc
files. The input is a number of particles with partons being
colour ordered, i.e. ordered in colour chains such as q − g−
g−q̄, where initial partons are crossed into the final state. The
diagonal entry in MadGraph’s colour matrix, CMG

i i , associ-
ated with the given colour order, is chosen with ICOL. Using
the more recent convention of MadGraph 5 [90]12 we define
the leading-colour matrix element as

|Mn|2 = CMG
i i

∣∣∣J (i)
n

∣∣∣2
, (81)

with the colour-stripped n-particle amplitude J (i)
n corre-

sponding directly to a JAMP in MadGraph’s nomenclature.

12 In MadGraph 4 the colour matrix for amplitudes with multiple
quark pairs is more complicated and required a decomposition by hand
to separate the leading- from the subleading-colour parts, as is now done
automatically by MadGraph 5.
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Full-colour matrix-element corrections: The full matrix
element contains contributions that cannot be associated with
a single colour ordering, i.e. the off-diagonal entries of the
colour matrix, representing interferences between different
colour orderings. To include those subleading-colour con-
tributions while remaining within a formalism that provides
strictly positive-definite correction factors, we use the fol-
lowing prescription [39] (Vincia colour):

|Mn|2 = CMG
i i

∣∣∣J (i)
n

∣∣∣2

→ CMG
i i

∣∣∣J (i)
n

∣∣∣2
∑

j,k CMG
jk J ( j)

n J (k) ∗
n∑

j CMG
j j

∣∣∣J ( j)
n

∣∣∣2 . (82)

The matrix element for each colour structure gets a correc-
tion from the subleading-colour part of the full matrix ele-
ment that is proportional to the relative weight of that colour
structure such that the sum over all colour flows reproduces
the full-colour-summed matrix element norm squared.

Note that, though we show all matrix-element compar-
isons with leading colour, the conclusions do not change
when replacing leading with full colour.

Interference between different Born-level processes: In
previous versions of Vincia the interference contributions
from different Born-level processes were ignored; e.g., the
interference between Z → dd̄(g → uū) and Z → uū(g →
dd̄) contributing to Z → dd̄uū was not included. As those
interferences can become fairly large and are already present
for the first branching, e.g., qg → qgg can arise from
gg → gg or qg → qg Born-level processes, we developed a
more general formalism capable of handling these cases. Yet
more interesting and illustrative are the interferences between
gg → H and QQ̄ → H Born processes, which both con-
tribute to Qg → QH (with Q a heavy quark) but involve
completely different types and orders of couplings. For this
special case of Higgs production and decay we provide an
option to allow/disallow such interferences.

Impact of matrix-element corrections: In Fig. 17 we
show parton-level predictions of Vincia in Z produc-
tion events, i.e. multi-parton-interactions and hadronisa-
tion turned off, to focus solely on the shower properties
and the impact of successive MECs. Comparisons to data

including multi-parton-interactions and hadronisation will be
presented in the section Sect. 4. We compare Vincia with

increasing orders of MECs included to ATLAS [91] and
CMS [92] data. The inclusive cross section and the azimuthal
angle between the reconstructed Z boson and the hardest jet
(shown in the upper panel of Fig. 17) clearly highlight that
MECs improve the description of data sensitive to multiple
hard emissions. The progressive improvements that are intro-
duced through iterated MECs is particularly obvious in the
inclusive jet multiplicity. It is worthwhile mentioning that
jet multiplicities beyond the third jet are only described by
the approximate shower result. However, the combination
of MECs up to third order seems to yield a good starting
point for the shower, such that also high jet multiplicities are
well described. Note that correcting only the hardest emis-
sion leads only to a modest improvement, since Vincia ’s
antenna functions already provide a good approximation of
the Z + jet matrix element. The lower panel of Fig. 17 shows
the jet transverse momentum in exclusive Z+jet events. This
observable should be dominated by the MEC of the hardest
emission. Indeed, the description improves over plain show-
ering, and is very stable upon iteratively including MECs to
higher multiplicities. This showcases that MECs to higher-
multiplicity states do not degrade the quality of the descrip-
tion of lower-multiplicity observables.

4 Preliminary results and tuning

4.1 The strong coupling

All components of Vincia (i.e., both matrix-element cor-
rections and showers) use a single reference value for strong
coupling constant, with the default value αMS

s (MZ ) = 0.118,
in agreement with the current world average [53,93]. By
default, we use two-loop running expressions, with the num-
ber of active flavours changing at each quark-mass thresh-
old (including at mt ), though options for one-loop running
or even fixed αs values are provided as well. The inclusion
of three-loop running effects is not relevant at the present
(LO+LL) level of precision of the shower. In the infrared,
the behaviour of αs is regulated by allowing to evaluate it
at a slightly displaced scale, αs(μ) → αs(μ + μ0) and by
imposing an upper bound αs < αmax

s . The set of default
parameter values are:

Vincia:alphaSvalue = 0.118 ! Default alphaS(mZ) MSbar
Vincia:alphaSorder = 2 ! Default is two-loop running
Vincia:alphaSmuFreeze = 0.4 ! mu0 scale in alphaS argument, in GeV
Vincia:alphaSmax = 1.2 ! max numerical value of alphaS

Within the context of an LO+LL calculation, however,
the value αs(MZ ) = 0.118 produces a poor agreement with
collider measurements; direct “tunings” at the LO+LL level
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Fig. 17 Inclusive cross section for the Drell–Yan lepton pair plus ≥ N
jets (top left), distribution of the azimuthal angle between the Z boson
and the hardest jet (top right), and jet p⊥ in Z + 1 jet events (bottom).

Parton-level predictions of Vincia 2.0 for increasing order of MECs
included, compared to ATLAS data from [91] and CMS data from [92]

typically find effective values closer to αs(MZ ) = 0.140, see
e.g. [39,94]. To permit analogous tunings of Vincia , a user-
specifiable prefactor is applied to the renormalisation-scale
argument for each branching type,

Gluon Emission : αs(p⊥) → αs(kμ p⊥), (83)

Gluon Splitting : αs(mqq) → αs(k
split
μ mqq), (84)

with equivalent parameters for splittings involving initial-
state partons. The kμ and ksplit

μ parameters provide the same
range of tuning possibilities for the effective coupling con-
stant as in other parton-shower models, while they are simul-
taneously straightforward to interpret e.g. in the context of
NLO matrix-element merging schemes.

The Vincia shower algorithms do nonetheless incorpo-
rate a translation (on by default) between the MS value given
above and the so-called CMW (or MC) scheme which is

appropriate for soft-gluon emission in coherent parton show-
ers [32]. Since this translation is only rigorously defined in
the limit of vanishing gluon energy, there is an ambiguity as
to precisely how it should be applied to finite gluon energies.
We address this by applying the CMW translation only to the
coupling constant accompanying the eikonal (double-pole)
term of the gluon-emission antenna functions,

αMS
s aEmit = αMS

s (aeik + acoll + ahard) (85)

→ αCMW
s aeik + αMS

s (acoll + ahard) , (86)

with a few different options provided for how the eikonal
term should be extrapolated to finite gluon energies. In a
future study we shall aim to bring these ambiguities under
better control by systematic application of one-loop corrected
antenna functions, but this is still (far) beyond the scope of
the present work.
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4.2 Vincia 2.0 default tune

Two main tools were used to perform the analyses: Vin-
cia ’s own ROOT-based analysis tool,VinciaRoot [39], and
Rivet [95]. For the hadron-collider distributions, we com-
pare Vincia 2.0 with Pythia 8.2. For the e+e− → hadrons
analyses, we also include Vincia 1.2, since this version
included NLO corrections to e+e− → 3 jets which have
not yet been migrated to Vincia 2.0. Note, however, that
even without the NLO corrections the two Vincia versions
are not exactly identical due to a slightly revised definition
of the smooth-ordering criterion, to make it truly Markovian.

We note that these tunings were done manually (by “eye”),
rather than by automated minimisation of χ2 or equivalent
measures. The latter is not as straightforward as it may sound,
due to correlations between measurements and the influence
of regions of low theoretical accuracy. These issues can be at
least partially addressed by combining global knowledge and
experience to (subjectively) choose binwise weighting fac-
tors. Nevertheless, manual and automated approaches may be
considered complementary, with the former certainly com-
petitive for the purpose of determining a set of “reasonable
default values”, which is our principal aim here.

Hadronic Z decays

The final-state showering and hadronisation parameters are
constrained using hadronic Z decays, mainly from the LEP
experiments. In the context of Vincia 2.0, the rates of pertur-
bative final-state branchings depend on the effective renor-
malisation scheme and scale choice, cf. Eq. (83), for which
we have chosen the default values:

Vincia:CMWtypeFF = 2 ! CMW rescaling for FF antennae
Vincia:alphaSkMuF = 0.6 ! muR prefactor for gluon emissions
Vincia:alphaSkMuSplitF = 0.5 ! muR prefactor for gluon splittings

! (g -> qqbar)

Figure 18 shows the event-shape observables13 that were
used as the primary tuning constraints, compared with light-
flavour tagged data from the L3 experiment [96]. In the main
(top) plot panes, experimental data is represented by black
square symbols, with 1-σ and 2-σ uncertainties represented
by black vertical error bars and light-grey extensions, respec-

13 For definitions, see e.g. [96].

tively. In the ratio panes, the inner (green) bands indicate the
1-σ uncertainties on the data; outer (yellow) bands represent
2 σ .

Note that, since Vincia 2.0 does not incorporate the NLO
corrections to Z → 3 jets internally (unlikeVincia 1.2 [40]),
we have chosen to allow the default tune to undershoot the
reference data slightly in regions dominated by hard, resolved
3-jet events. This hopefully produces a more universal global
tuning which should also be appropriate for use with the NLO
merging strategies that are available within Pythia, notably
UNLOPS [97].

The Lund string model [98–100] is used for hadronisation,
with parameters (re)optimised for use with Vincia ’s shower
model. The main parameters are the shower IR cutoff, the
Lund fragmentation-function a and b parameters—which are
defined by

f (z) ∝ (1 − z)a

z
exp

(
−bm2⊥

z

)
, (87)

with z = Ehadron/Eparton and m2⊥ = m2 + p2⊥—and the
transverse-momentum broadening in string breaks, expressed
as a Gaussian with width σ⊥ ∼ O(QCD). The default Vin-
cia 2.001 hadronisation-parameter values are,

Vincia:cutoffScaleFF = 0.9 ! Cutoff value in GeV for FF antennae
StringZ:aLund = 0.5 ! Lund a parameter
StringZ:bLund = 1.15 ! Lund b parameter
StringZ:aExtraDiquark= 1.12 ! (extra for diquarks)
StringPT:sigma = 0.295 ! Soft pT in string breaks

The inclusive charged-particle multiplicity distribution
and momentum (xp = 2|p|/Ecm) spectrum is shown in
Fig. 19, again compared with light-flavour tagged L3 data
from [96].

Finally, we show the rates for identified light-flavour
mesons and baryons in Fig. 20; these hardly change between
the Pythia, Vincia 1, and Vincia 2 defaults. Note that we

here compare to the reference measurement values derived
for the Monash tune [94] of Pythia 8, which are not identi-
cal to the corresponding PDG values in particular for some
of the baryon rates, see [94].

The corresponding full set of default parameter values are:
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Fig. 18 Event-shape variables compared with measurements performed by the L3 experiment

! * String breakup flavour parameters
StringFlav:probStoUD = 0.21 ! Strangeness-to-UD ratio
StringFlav:mesonUDvector = 0.45 ! Light-flavour vector suppression
StringFlav:mesonSvector = 0.555 ! Strange vector-meson suppression
StringFlav:mesonCvector = 1.03 ! Charm vector-meson suppression
StringFlav:mesonBvector = 2.2 ! Bottom vector-meson suppression
StringFlav:probQQtoQ = 0.077 ! Diquark rate (for baryon production)
StringFlav:probSQtoQQ = 1.0 ! Optional Strange diquark suppression
StringFlav:probQQ1toQQ0 = 0.027 ! Vector diquark suppression
StringFlav:etaSup = 0.53 ! Eta suppression
StringFlav:etaPrimeSup = 0.105 ! Eta’ suppression
StringFlav:decupletSup = 1.0 ! Optional Spin-3/2 Baryon Suppression
StringFlav:popcornSpair = 0.9 ! Popcorn
StringFlav:popcornSmeson = 0.5 ! Popcorn
StringZ:rFactC = 1.60 ! Bowler parameter for c quarks
StringZ:rFactB = 1.1 ! Bowler parameter for b quarks
StringZ:useNonstandardB = true ! Special treatment for b quarks
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Fig. 19 Charged-track multiplicity and momentum spectra, compared with measurements performed by the L3 experiment
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Fig. 20 Identified-particle rates (expressed as fractions of the charged-particle multiplicity, or as indicated by R symbols), compared with the
Monash 2013 reference values

StringZ:aNonstandardB = 0.82 ! a parameter for b quarks
StringZ:bNonstandardB = 1.4 ! b parameter for b quarks

Note that the last 6 parameters govern c- and particularly
b-quark fragmentation. Since massive-quark effects are not
explicitly addressed in this version of Vincia , these param-
eters have been chosen merely on a “best-effort” basis. We
plan to return to this in a future update. A minimal set of
checks on the level of agreement with heavy-quark spec-
tra can be carried out using the vincia03-root and
vincia05-root example programs included with the

code. The former includes cross checks on the g → cc̄ and
g → bb̄ rates as well as a D∗ spectrum, sensitive to c-quark
fragmentation, while the latter focuses on constraints from
b-tagged events. For completeness, the D∗ and B-hadron
spectra produced by these example programs are reproduced
in Fig. 21.

For the SLD xB spectrum, be advised that the current dis-
tribution of Vincia (version 2.001) contains the spectrum
obtained from the HepData archive [104] at the time of writ-
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Fig. 21 Distributions sensitive to heavy-quark fragmentation. Left
the energy-fraction spectrum of charged D∗ mesons compared with
ALEPH data [101]. Center and right the momentum-fraction spec-

trum of weakly decaying B hadrons compared to measurements by
SLD [102] and DELPHI [103], respectively

ing. However, the corrections contained in an erratum sub-
sequently published by SLD [102] were missing from this
table. The figure we show here contains the updated values
(from the erratum). The updated table will be included in the
next public release of Vincia , with corresponding updates
expected in the HepData archive in due course.

Drell–Yan

In Figs. 22, 23 and 24 we show a set of observables in Drell–
Yan events with ATLAS data from [105] and [106] and CMS
data from [92] and [107]. We show predictions of default
Vincia 2.0 in red, Vincia 2.0 wimpy (representing an ordi-
nary shower, starting at the factorisation scale, i.e. no hard
jets, no MECs, and strong ordering) in green, and Pythia 8.2
in blue. TheVincia 2.001 results correspond to the following
default parameter choices:

# Perturbative shower parameters
Vincia:CMWtypeII = 2 ! CMW rescaling of Lambda for II antennae
Vincia:CMWtypeIF = 2 ! CMW rescaling of Lambda for IF antennae
Vincia:alphaSkMuI = 0.75 ! Renormalisation-scale prefactor for ISR

! emissions
Vincia:alphaSkMuSplitI = 0.7 ! -"- for g->qq splittings
Vincia:alphaSkMuConv = 0.7 ! -"- for ISR conversions

# Shower IR cutoff and primordial kT
Vincia:cutoffScaleII = 1.0 ! Cutoff value (in GeV) for II antennae
Vincia:cutoffScaleIF = 0.9 ! Cutoff value (in GeV) for IF antennae
BeamRemnants:primordialKThard = 1.05 ! Primordial kT for hard interactions
BeamRemnants:primordialKTsoft = 0.7 ! Primordial kT for soft interactions

Figure 22 shows angular correlations and the transverse-
momentum spectrum of the Drell–Yan lepton pair. As one

would expect the spectrum of Vincia 2.0 wimpy dies out at
the Z mass. The prediction of default Vincia 2.0 shows too
much activity in the hard tail of the spectrum which is caused
by the reweighting of the event sample that includes high-
p⊥ jets, see Sect. 3.1. The tuning of the renormalisation-scale
prefactors was chosen to produce as good a compromise as
possible between the regions above and below p⊥ ∼ mZ/2.

Figure 23 shows the improved predictions when MECs
are included. The left plot shows the relative azimuthal angle
between the Z boson and the hardest jet, �φ(Z, J1), where
multiple shower emissions are required to obtain values
below π . This plots shows that although Pythia’s power
shower is matrix-element corrected for the first emission and
results in a very good description of the Z transverse momen-
tum, its prediction for �φ(Z, J1) is worse than that of Vin-
cia 2.0 wimpy. For this observable as well as for the thrust
in the right plot in Fig. 23 default Vincia 2.0 agrees well
with the data.

Figure 24 shows the inclusive cross section for the Drell–
Yan lepton pair plus ≥ N jets, the transverse-momentum
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Fig. 22 Angular correlations (left) and the transverse-momentum spectrum (right) of the Drell–Yan lepton pair. Predictions of default Vincia 2.0
in red, Vincia 2.0 wimpy in green, and Pythia 8.2 in blue, compared to ATLAS data from [105] and [106]

Fig. 23 Distribution of the azimuthal angle between the Z boson and the hardest jet (left) and thrust (right). Predictions of default Vincia 2.0 in
red, Vincia 2.0 wimpy in green, and Pythia 8.2 in blue, compared to CMS data from [92]

and the pseudorapidity spectrum of the leading jet. For all
observables we find default Vincia 2.0 to produce a fairly
good description of the data. As expected,Vincia 2.0 wimpy
is not able to produce enough jets and cannot populate the
full spectrum of the transverse momentum of the hardest jet.

Underlying event

Although soft-inclusive QCD physics is not the main focus
of this version of Vincia , it is nonetheless relevant to verify

that a reasonable description of the underlying event (UE)
is obtained. We rely on the basic multi-parton-interaction
(MPI) modelling of Pythia 8 [8,34,108] including its
default colour-reconnection (CR) model, with parameters
reoptimised for use with Vincia ’s initial- and final-state
showers.

The MPI and CR parameter choices for the default Vin-
cia 2.001 tune are as follows:
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Fig. 24 Inclusive cross section for the Drell–Yan lepton pair plus ≥ N
jets (top left), the transverse-momentum (top right) and the pseudo-
rapidity spectrum of the leading jet (bottom). Predictions of default

Vincia 2.0 in red, Vincia 2.0 wimpy in green, and Pythia 8.2 in blue,
compared to CMS data from [107]

! UE/MPI tuning parameters
SigmaProcess:alphaSvalue = 0.118
SigmaProcess:alphaSorder = 2
MultiPartonInteractions:alphaSvalue = 0.119
MultiPartonInteractions:alphaSorder = 2
MultiPartonInteractions:pT0ref = 2.00
MultiPartonInteractions:expPow = 1.75
MultiPartonInteractions:ecmPow = 0.21
! Parameters for PYTHIA 8’s baseline CR model
ColourReconnection:reconnect = on
ColourReconnection:range = 1.75
! VINCIA is not compatible with perturbative diffraction
Diffraction:mMinPert = 1000000.0

Note that we choose two-loop running for αs , analogously
to the rest of Vincia , whereas the default Pythia8.2 Monash
tune [94] uses one-loop running. We also set the αs(MZ )

reference value for hard processes (SigmaProcess:
alphaSvalue) to the same value (0.118) as used for
the showers, and use a similar value (0.119) for MPI,
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Fig. 25 The underlying event in pp collisions at 7 TeV: Measure-
ment of charged particles with p⊥ > 0.5 GeV and |η| < 2 in the
transverse region; average multiplicity (top left) and average scalar∑

p⊥ (top right) as a function of the transverse momentum of the
leading track-jet, and normalised scalar

∑
p⊥ distribution for leading

track-jets with p⊥ > 20 GeV (bottom). Predictions of default Vin-
cia 2.0 in red and Pythia 8.2 in blue, compared to CMS data from
[110]. Note that we use a cut of p⊥ > 15 GeV in the hard process
for the MC predictions and are therefore not showing the region of
1 GeV < p⊥ (leading track-jet) < 10 GeV for the top histograms

whereas the default Pythia tune employ larger values ∼
0.13. The remaining MPI parameters were optimised using
the 7-TeV charged-track summed-p⊥ and number densities
from [109], as well as their 900-GeV equivalents to con-
strain the energy-scaling parameter. The colour-reconnection
strength was determined using the high-multiplicity region
of the 〈p⊥〉 (Nch) distribution measured by ATLAS [109]
in minimum-bias events. It should be noted, however, that
Vincia is not suitable for (low-multiplicity) minimum-bias
physics in its present form. This is partly related to the last
parameter, which is included to switch off Pythia’s pertur-
bative treatment of hard diffraction, with whichVincia is not
yet compatible.

In Fig. 25, we compare default Vincia 2.0 with default
Pythia 8.2, to three basic observables measuring the level
of activity in the region transverse to the leading (hard-
est) charged-particle jet in the central pseudorapidity region,
|η| < 2, for LHC collisions at 7 TeV. We use the conventional
definition of the transverse region, spanning 60◦ < �φ <

120◦ in azimuth with respect to the leading charged-particle
jet, and compare to CMS data [110]. These comparisons sat-
isfy us that at least the global properties of the UE are in
acceptable agreement with the measurements, in particular
in regards to the average p⊥ density (top right-hand plot) and
its event-to-event fluctuations (bottom right-hand plot). The
charged-track multiplicity (top left-hand plot) is a more dif-
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Fig. 26 Distribution of dijet azimuthal decorrelations; predictions of Vincia 2.0 in red and Pythia 8.2 in blue, compared to ATLAS data from
[112]

ficult observable to predict since it is less IR safe and hence
more dependent on details of the hadronisation modelling;
we presume that the small (O(10 %)) discrepancies observed
for both Pythia and Vincia in this observables may be due
to imperfections in Pythia’s still rather crude modelling of
colour reconnections.

QCD jets

As our final set of validation checks, we consider the follow-
ing observables in hard-QCD events: azimuthal dijet decor-
relations, jet cross sections, and jet shapes. A technical aspect
is that, due to the steeply falling nature of the jet p⊥ spectrum,
we use weighted events for all MC results in this section. The
basic 2 → 2 QCD process at the scale p̂⊥ is oversampled
by an amount of ( p̂⊥/10)4, while the compensating event
weight is (10/ p̂⊥)4. This allows one to fill the low-cross-
section tails of the distributions with a reasonable amount

of events. Note, however, that, for observables that are not
identical to the biasing variable (which are all observables
since no one-to-one measurement of the partonic p̂⊥ is pos-
sible), rare events with large weights can then produce “spu-
rious” peaks or dips in distributions, accompanied by large
error bars. Such features are to be expected in some of the
distributions we show below; removing them would require
generating substantially more events. While these features
appear in the predictions of Vincia , they are not present in
Pythia’s distributions. The reason is as follows: The afore-
mentioned event weight becomes large for small values of
p̂⊥. As this value serves as the starting scale in Pythia’s
shower, the event will not produce any high-p⊥ jets. In Vin-
cia , however, the full phase space for the first emission is
explored with the suppression factor Pimp which is necessary
for the application of MECs. In the rare cases, where Vin-
cia produces a jet with p⊥ j � p̂⊥, the large event weight
becomes visible in distributions which require high-p⊥ jets.
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Fig. 27 Inclusive jet cross section for 4 different rapidity bins as a function of the jet p⊥. Predictions of Vincia 2.0 in red and Pythia 8.2 in blue.
Data from CMS [113]

Fig. 28 Inclusive dijet cross sections for 5 different rapidity bins as a function of the dijet mass. Predictions of Vincia 2.0 in red and Pythia 8.2
in blue. Data from CMS [114]
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Fig. 29 Distributions of the jet shape variables ρ(r) (top) and �(r) (bottom) for different ranges of the jet transverse momentum. Predictions of
Vincia 2.0 in red and Pythia 8.2 in blue, compared to ATLAS data from [115]

A second technical aspect is that, as shown in Fig. 16, the
PS-to-ME ratios for QCD processes result in rather broad
distributions already for the first-order correction with gluon
emission only. This complicates including MECs for QCD
processes, as violations in the Sudakov veto algorithm for
generating emission and no-emission probabilities in the

shower become more likely. By default, we neglect such
violations. It is, however, possible for the user to check the
effect of taking the violations into account properly via the
procedure outlined in Ref. [111], which has been included in
Vincia .
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In Fig. 26 we show the predictions of Vincia 2.0 and
Pythia 8.2 for dijet azimuthal decorrelations for differ-
ent ranges of the jet transverse momentum and compare to
ATLAS data from [112]. While we observe no glaring dis-
crepancies with the data—the general trends of the distribu-
tions are well reproduced by bothVincia andPythia—there
still appears to be some room for improvement, in particu-
lar with Vincia undershooting the precisely measured data
points around �φ ∼ 0.9 in the lower two pmax⊥ bins by about
10–20 %.

Figures 27 and 28 show the transverse-momentum and jet
mass spectra for different ranges of the jet rapidity and com-
pare the MC predictions to CMS data from [113] and [114]
respectively. We note that, whereas Pythia lies systemati-
cally above the data here, the lower default αs value chosen in
Vincia causes the Vincia normalisations to be substantially
lower, even to the point of undershooting the measurements.
This is not surprising given that the inclusive-jet cross sec-
tion in Pythia/Vincia is calculated at LO. The tails of the
distributions unfortunately suffer from rather large weight-
fluctuation effects, as was discussed above; nonetheless we
note that the bins for which a reasonable statistical precision
is obtained are generally closer to the data than the Pythia
reference comparison.

Finally, in Fig. 29 we show the differential jet shape vari-
able ρ(r) and its cumulative integral �(r) for different ranges
of the jet transverse momentum, compared with ATLAS data
from [115]. This validates that the FSR broadening of QCD
jets is in reasonable agreement with the experimental mea-
surements, though we note that Vincia ’s distributions may
be slightly too narrow, which we again regard as being con-
sistent with the LL nature of Vincia ’s antenna functions
and analogous to the slightly too narrow thrust distribution
we allowed in the e+e− event shapes. As far as a first default
set of parameters goes, we are satisfied with this level of tun-
ing, with future directions being informed both by lessons
from combinations with external matrix-element matching
and merging schemes and by attempts to integrate NLO
antenna-function corrections into the shower itself, e.g. in
the spirit of [40].

5 Summary and conclusions

We presented the first publicly available antenna shower for
initial and final state in Vincia 2.0, with focus on antenna
functions and kinematic maps for initial-state radiation.Vin-
cia 2.0 includes two different methods to explore the full
phase space for the first emission, depending on the hard pro-
cess at hand, without the disadvantages of a “power shower”.
The full phase space of subsequent emissions is populated in
a Markovian way. We compare explicitly to tree-level matrix

elements for pp → Z/H j j ( j) and pp → j j j to check the
validity of our approximations.

We extended the iterative MEC approach to the initial
state and include MECs for QCD up toO(α4

s ) (4 jets), and for
Drell–Yan and Higgs production up toO(α3

s ) (V/H + 3 jets).
This is the first time MECs beyond one leg have been applied
to hadron collisions. However, this implementation was not
without its complications; the large phase space available
for initial-state branchings implies that “unordered” emis-
sions account for a larger fraction of the full phase space
than was the case for FSR, and the MEC factors are less
well behaved and therefore more difficult / less efficient to
implement, compared to pure final-state MECs. We also saw
in Sect. 4.2 that biased event samples result in larger weight
fluctuations for Vincia than in the case of pure Pythia, pre-
sumably due to unordered emissions in Vincia allowing a
larger range of corrections to each event. In the context of
future developments of Vincia , these aspects will therefore
merit further consideration.

We presented first validation results with Vincia 2.0 for
the main benchmark processes for FSR and ISR, including
hadronic Z decays, Drell–Yan, and QCD jets. We observe
good agreement with experimental data from the LEP/SLD
and LHC experiments.

The development of a more highly automated interface to
MadGraph 5 is among the main development targets for the
near future. The feasibility of an interface to Njet2 [116] is
also being explored.
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A Details of the shower algorithm

In this section we present some details of the shower algo-
rithm, starting with the construction of the kinematics after
the branching. Thereafter we will give a brief overview on
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how the antenna functions correctly reproduce the DGLAP
functions in the collinear limit.

A.1 Construction of the post-branching momenta

The antenna picture does not distinguish between the emit-
ter/splitter and recoiler. Therefore, we have one mapping for
each configuration, initial–initial, initia–final, and final–final.
We express the momenta in terms of branching invariants
only which leads to very simple expressions.

Initial–initial antennae

For a branching of type AB → abj , the invariant mass
and rapidity of the recoiler, R → r , are not changed. The
kinematics are constructed in the lab frame, where the post-
branching momenta read as follows:

pμ
a =

√
sab
sAB

sAB + s jb
sAB + saj

pμ
A, (88)

pμ
b =

√
sab
sAB

sAB + saj
sAB + s jb

pμ
B, (89)

pμ
j =

√
s2
jb

sabsAB

sAB + s jb
sAB + saj

pμ
A

+
√

s2
aj

sabsAB

sAB + saj
sAB + s jb

pμ
B +

√
saj s jb
sab

pμ
⊥, (90)

pμ
r = pμ

a + pμ
b − pμ

j , (91)

with p⊥ = (0, cos φ, sin φ, 0), where φ is chosen uniformly
in [0, 2π ].

Initial–final antennae

For a branching of type AK → ak j the kinematics are con-
structed in the centre-of-mass frame of the parent antenna,
which we define to be the rest frame of pA+ pK here, rotated
so they are aligned with the z axis (the inverse of the cor-
responding Lorentz transformation is applied afterwards to
bring the system back to the lab frame). The post-branching
momenta read as follows:

pμ
a = sAK + s jk

sAK
pμ
A, (92)

pμ
k = s jksaj

sAK (sAK + s jk)
pμ
A + sak

sAK + s jk
pμ
K

−
√
s jksaksaj

sAK + s jk
pμ
⊥, (93)

pμ
j = s jksak

sAK (sAK + s jk)
pμ
A + saj

sAK + s jk
pμ
K

+
√
s jksaksaj

sAK + s jk
pμ
⊥, (94)

with p⊥ defined as in the previous paragraph.

Final–final antennae

For a branching of type I K → i jk the kinematics are con-
structed in the centre-of-mass frame of the parent antenna,
with the direction of parton I defining the positive z axis
(The inverse of the corresponding Lorentz transformation is
applied afterwards to bring the system back to the lab frame).
A first set of post-branching momenta is constructed with
parton i aligned with the z axis and using the xz plane to
represent the branching plane,

pμ
i = Ei (1, 0, 0, 1), (95)

pμ
k = Ek(1, sin θik, 0, cos θik), (96)

pμ
j = E j (1,− sin θi j , 0, cos θi j ), (97)

with the energies

Ei = sI K − s jk
2

√
sI K

, Ek = sI K − si j
2

√
sI K

, E j = sI K − sik
2

√
sI K

,

(98)

and angles between the partons

cos θik = 2Ei Ek − sik
2Ei Ek

, cos θi j = 2Ei E j − si j
2Ei E j

. (99)

The azimuth angle of the emitted gluon in the xy plane
(defining the orientation of the branching plane) is gener-
ated by rotating the above momenta around the z axis by a
uniformly chosen random angle φ.

Finally, there remains one more global orientation angle,
which can be cast as the angle between parton i and the origi-
nal parton I , ψI i , around an axis perpendicular to the branch-
ing plane (still in the centre-of-mass frame), i.e., specifying
the degree to which pi is not aligned with the z axis after the
branching. Different choices are implemented in Vincia (see
[21,23]), with the default being

ψI i = 1 + 2yii
sI K − s jk

with

yii = − (1 − ρ)sik/sI K + 2 f si j s jk/s2
I K

2(1 − si j/sI K )
,

f = s jk
si j + s jk

, ρ =
√

1 + 4 f (1 − f )si j s jk/siksI K .

The final post-branching momenta are constructed by rotat-
ing the i jk system by the angle ψI i around the axis perpen-
dicular to the branching plane, and then finally performing
the inverse Lorentz transform to bring the post-branching
partons back to the lab frame.
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A.2 Collinear limits of the antenna functions

In this paragraph, we collect, for convenience of the reader,
the collinear limits of the antenna functions used in Vincia .
We also relate the antenna functions in this limit to corre-
sponding DGLAP splitting kernels, which we will denote
P(x → yz). Note that the apparent difference in colour fac-
tors for DGLAP splitting kernels and antenna functions is due
to the phase-space and coupling factor, which, for antennae,
is

αs Cant

4π
with Cant ∈ [CA, 2CF , TR], (100)

whereas DGLAP kernels are conventionally defined with

αs CDGLAP

2π
with CDGLAP ∈ [CA,CF , TR/2]. (101)

We note that antenna functions with gluons as parent partons
only reproduce half of a DGLAP kernel, as gluons take part
in two antennae. In addition a factor of 1/z will multiply the
DGLAP kernels in the case of initial-state radiation.

The collinear limits of the antenna functions below agree
with the limits found in Refs. [16–18,118].

Initial–initial antennae

In the case of initial–initial antenna functions the energy-
sharing variable is z = sAB/sab and we arbitrarily pick the
invariant mass of one of the parton pairs, Q2 = saj , and its
scaled version, y = Q2/sAB . For an easy comparison with
the DGLAP kernels we rewrite the antenna functions in terms
of these variables,

āII
qq̄ g = 1

Q2

1

z

(
2

z

1 − z − zy
+ (1 − z − zy)

)
+ O(Q2),

(102)

āII
gg g = 2

1

Q2

1

z

(
z

1 − z − zy
+ 1

z
− 1 − y

+ (1 − z − zy)
z

1 + zy

)
+ O(Q2), (103)

āII
qx q = 1

2

1

Q2

1

z

(
(1 − z − zy)2 + 1

z

)
, (104)

āII
gx q̄ = 1

Q2

1

z

(
1 − 2z + 2

z2

1 − zy

)
. (105)

Note that we made use of s jb = sAB(1 − z − zy)/z and
wrote the terms in the gluon-emission antennae that do not
contain 1/Q2 singularities as O(Q2), as they will vanish in
the unresolved limit anyway.

Given this new form of the antenna functions, the collinear
limits, y → 0, are simple to read off,

āII
qq̄ g → 1

Q2

1

z

(
1 + z2

1 − z

)
= 1

Q2

1

z
P(q → qg), (106)

āII
gg g → 2

1

Q2

1

z

(
z

1 − z
+ 1 − z

z
+ z(1 − z)

)

= 1

Q2

1

z
P(g → gg) (107)

āII
qx q → 1

2

1

Q2

1

z

(
(1 − z)2 + 1

z

)
= 1

2

1

Q2

1

z
P(q → gq),

(108)

āII
gx q̄ → 1

Q2

1

z

(
z2 + (1 − z)2

)
= 1

Q2

1

z
P(g → qq̄).

(109)

Note in particular that the second and fourth antenna func-
tions include the full DGLAP kernels for g → gg and
g → qq̄ , respectively. This is different from their final-state
counterparts (see below) in which two neighbouring antenna
functions must be summed over to recover the full DGLAP
kernels. This difference arises from the fact that there is no
“emission into the initial state”—the initial-state gluon only
occurs as a hard leg, not as the emitted parton.

Initial–final antennae

We start with the collinear limit of the initial-state side,
Q2 = saj and y = Q2/sAK , and energy-sharing variable
z = sAK /(sAK + s jk) and rewrite the antenna functions,

āIF
qq g = 1

Q2

1

z

(
1 + z2 − 2zy

1 − z

)
+ O(Q2), (110)

āIF
gg g = 2

1

Q2

1

z

(
z(1 − zy)

1 − z
+ (1 − z)(1 − zy)

z

+ z(1 − z)) + O(Q2), (111)

āIF
qx q = 1

2

1

Q2

1

z

(
(1 − z)2 + (1 − zy)2

z

)
, (112)

āIF
gx q̄ = 1

Q2

1

z

(
z(1 − 2z)y + z2 + (1 − z)2

)
. (113)

Note that we made use of s jk = sAK (1 − z)/z and sak =
sAK (1 − yz)/z and, as before, wrote the terms in the gluon-
emission antennae that do not contain 1/Q2 singularities as
O(Q2).

Given this new form of the antenna functions, the collinear
limits, y → 0, are simple to read off,
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āIF
qq g → 1

Q2

(
1 + z2

1 − z

)
= 1

Q2

1

z
P(q → qg), (114)

āIF
gg g → 2

1

Q2

1

z

(
z

1 − z
+ 1 − z

z
+ z(1 − z)

)

= 1

Q2

1

z
P(g → gg) (115)

āIF
qx q → 1

2

1

Q2

1

z

(
(1 − z)2 + 1

z

)

= 1

2

1

Q2

1

z
P(q → gq), (116)

āIF
gx q̄ → 1

Q2

1

z

(
z2 + (1 − z)2

)
= 1

Q2

1

z
P(g → qq̄).

(117)

Now we continue with the collinear limit of the final-
state side, Q2 = s jk and y = Q2/sAK , and energy-sharing
variable z = sak/sAK . The antenna functions, rewritten in
terms of the new variables and using saj = sAK (1 − z + y),
read

āIF
qq g = 1

Q2

1

z

(
2z + (1 − z + y)2

1 − z + y

)
+ O(Q2), (118)

āIF
gg g = 1

Q2

(
2

z

1 − z + y
+ z(1 − z)

)
+ O(Q2), (119)

āIF
xq q̄ = 1

2

1

Q2

(
(1 − z + y)2 + z2

)
. (120)

Given this new form of the antenna functions, the collinear
limits, y → 0, are simple to read off,

āIF
qq g → 1

Q2

(
1 + z2

1 − z

)
= 1

Q2 P(q → qg), (121)

āIF
gg g + āIF

gg g[z ↔ 1 − z] → 2
1

Q2

×
(

z

1 − z
+ 1 − z

z
+ z(1 − z)

)
= 1

Q2 P(g → gg)

(122)

āIF
xq q̄ → 1

2

1

Q2

(
(1 − z)2 + z2

)
= 1

2

1

Q2 P(g → qq̄).

(123)

Final–final antennae

In the case of final–final antenna functions the energy-sharing
variable is z = sik/sI K and we arbitrarily pick the invariant
mass of one of the parton pairs, Q2 = s jk , and its scaled
version, y = Q2/sI K . For an easy comparison with the
DGLAP kernels we rewrite the antenna functions in terms
of these variables (leaving out the finite parts as their choice
is arbitrary),

āFF
qq̄ g = 1

Q2

(
2z + (1 − z − y)2

1 − z − y

)
+ O(Q2), (124)

āFF
gg g = 1

Q2

(
2

z

1 − z − y
+ (1 − z − y)(z + y)

)
+ O(Q2),

(125)

āFF
xq q̄ = 1

2

1

Q2

(
(1 − z − y)2 + z2

)
. (126)

Note that we made use of si j = sI K (1 − z − y) and, as
before, wrote the terms in the gluon-emission antennae that
do not contain 1/Q2 singularities as O(Q2).

Given this new form of the antenna functions, the collinear
limits, y → 0, are simple to read off,

āFF
qq̄ g → 1

Q2

(
1 + z2

1 − z

)
= 1

Q2 P(q → qg), (127)

āFF
gg g + āFF

gg g[z ↔ 1 − z] → 2
1

Q2

×
(

z

1 − z
+ 1 − z

z
+ z(1 − z)

)
= 1

Q2 P(g → gg)

(128)

āFF
xq q̄ → 1

2

1

Q2

(
(1 − z)2 + z2

)
= 1

2

1

Q2 P(g → qq̄).

(129)

A.3 Phase-space variables and limits

In Table 1 we give an overview on combinations of the evo-
lution variable t and complementary phase-space variable ζ

that are used in the shower.
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Table 1 Definitions of the
evolution variable t and the
complementary phase-space
variable ζ for II, IF and FF
configurations, with the ζ

boundaries in the last two
columns

Evolution Definition ζ Boundaries
Variable t of ζ ζmin ζmax

II
saj s jb
sab

saj
sab

s−sAB
s −

√
tmax−t

s
s−sAB

s +
√

tmax−t
s

saj
sAB

s−sAB
2sAB

− 1
sAB

√
s(tmax − t) s−sAB

2sAB
+ 1

sAB

√
s(tmax − t)

s jb
sAB

s−sAB
2sAB

− 1
sAB

√
s(tmax − t) s−sAB

2sAB
+ 1

sAB

√
s(tmax − t)

saj
sab
sAB

sAB+t
sAB

s
sAB

s jb
sab
sAB

sAB+t
sAB

s
sAB

IF
saj s jk

sAK +s jk
s jk+sAK

sAK
sAK +t
sAK

1
xA

saj
sAK +s jk

t xA
sAK (1−xA)

1
saj
s jk

t xA
sAK (1−xA)2

sAK +t
t

sa j
s jk+sAK

sAK
max

(
1, t

sAK

)
1
xA

s jk
saj

sAK +s jk
0 1

FF 4
si j s jk
sI K

si j
si j+s jk

1
2

(
1 −

√
1 − t

sI K

)
1
2

(
1 +

√
1 − t

sI K

)
si j

s jk
sI K

0 sI K −t
sI K

s jk
si j
sI K

0 sI K −t
sI K

B Comparison with matrix elements

In this section we show an extended set of plots where we
compare the shower approximation to leading-order matrix
elements; see Sects. 3.2 and 3.3 for a description of the
observables. We show the one- and two-dimensional distri-

butions of the PS-to-ME ratios for gg → Zqq̄(g) in Figs.
30 and 31, for qq̄ → Hgg(g) in Figs. 32 and 33, and for
gg → Hgg(g) in Figs. 34 and 35. As before, see Eqs. (73)
and (74), we include distributions with a cut on the trans-
verse mass of the boson, m2⊥ Z (labelled “no EW Z”) and
m2⊥ H (labelled “no EW H”), respectively.

(PS/ME)
10

log

Fr
ac
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n 

of
 P
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Fig. 30 Antenna shower, compared to matrix elements: distribution of log10(PS/ME) in a flat phase-space scan of the full phase space. Contents
normalised to the number of generated points
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Fig. 31 The value of 〈R4〉 (left) and dev(R4) (right), differentially over the 4-parton phase space, with Q2 ratios characterising the first and second
emissions on the x and y axis, respectively. Strong (top) and smooth (bottom) ordering in the shower

Fig. 32 Antenna shower,
compared to matrix elements:
distribution of log10(PS/ME) in
a flat phase-space scan of the
full phase space. Contents
normalised to the number of
generated points. Gluon
emission only
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Fig. 33 The value of 〈R4〉 (left) and dev(R4) (right), differentially over the 4-parton phase space, with p2⊥ ratios characterising the first and second
emissions on the x and y axis, respectively. Strong (top) and smooth (bottom) ordering in the shower, with gluon emission only

Fig. 34 Antenna shower,
compared to matrix elements:
distribution of log10(PS/ME) in
a flat phase-space scan of the
full phase space. Contents
normalised to the number of
generated points. Gluon
emission only
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Fig. 35 The value of 〈R4〉 (left) and dev(R4) (right), differentially over the 4-parton phase space, with p2⊥ ratios characterising the first and second
emissions on the x and y axis, respectively. Strong (top) and smooth (bottom) ordering in the shower, with gluon emission only
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4.2 The Shower Algorithm

The parton-shower algorithm is based on solving

Π ≡ Π(tn, tn+1) = R (4.1)

for the scale of the next branching tn+1. Here,R is a random number distributed flat
in the interval [0, 1]. The same symbol will be used throughout this chapter to de-
note random numbers. The no-emission probability integrates over the differential
kernels dAwhich are non-trivial functions of the evolution t and a complementary
phase-space variable ζ,

Π = exp

(
−
∫

dA(tn, tn+1)

)
= exp

(
−
∫

dΦant g
2
s(t) C ā(t, ζ)Rpdf)

)

= exp

(
−
∫ tn

tn+1

dt

∫ ζ+(t)

ζ−(t)
dζ

∫ 2π

0

dφ

2π

(
xA xB
xa xb

)2 αs(t) C
4π

ā(t, ζ)

sant
Rpdf |J |

)
. (4.2)

The variables t and ζ are functions of the antenna invariant mass squared sant and
the branching invariants s12 and s23, t ≡ t(s12, s23, sant) and ζ ≡ ζ(s12, s23, sant).
Here, the numbers 1, 2, 3 refer to the post-branching momenta, i.e. s12 = saj and
s23 = sjb or sjk for initial-initial or initial-final antennae respectively. The antenna
phase space dΦant is typically expressed in terms of s12 and s23. The transforma-
tion from the invariants (s12, s23) to the evolution parameters (t, ζ) introduces the
Jacobian

J = det

(
∂{s12, s23}
∂{t, ζ}

)
=

(
∂t

∂s12

∂ζ

∂s23
− ∂ζ

∂s12

∂t

∂s23

)−1

. (4.3)

The functional form of ζ is required to be linearly independent of the evolution
variable t, to be not a candidate for t itself. Furthermore, contours of constant ζ
should intersect contours of constant t only once for all t > 0, such that the Jacobian
in eq. (4.3) is well defined. In the DGLAP picture, the z variable corresponds to
the energy fraction of the emission, which not only assigns a physical meaning
to the complementary variable, but is also particularly convenient for initial-state
radiation, as will be discussed below.

The PDF ratio has the general form

Rpdf =
fa(xa, t)

fA(xA, t)

fb(xb, t)

fB(xB, t)
. (4.4)

The no-emission probability in eq. (4.2) holds for all types of antennae. If one or
both of the initial-state partons are left unchanged by the branching, the ratio of
x-values and PDFs automatically cancel.

The complexity of eq. (4.2) requires introducing overestimates of the splitting ker-
nels ā, PDF ratio Rpdf , and the ζ-integral Iζ ,

ā , Rpdf , Iζ (ζ−(t), ζ+(t)) −→ â , R̂pdf , Iζ (ζ−(tmin), ζ+(tmin)) , (4.5)
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such that eq. (4.1) can be solved. The functional forms of â are given in secs. 4.3.4
and 4.4.4. The ζ-integral includes all ζ-dependent terms of eq. (4.2) and is overesti-
mated by applying integration boundaries that are evaluated at the scale tmin. The
PDF ratio is overestimated by

R̂pdf =
xεa fa(xA, tmin)

xεA fA(xA, tmin)

xεb fb(xB, tmin)

xεB fB(xB, tmin)
. (4.6)

Here, tmin is the lower limit of the range of evolution variable under consideration.
If the ζ variable corresponds to the energy-sharing xA/xa xB/xb (or the inverse), as
it is the case in DGLAP showers, the overestimate of the PDF ratio can be controlled
by choosing a value of ε 6= 0.

This allows to propose a branching in terms of the three evolution parameters, by
solving the following equations for tn+1, ζ, and φ,

Π̂(tn, tn+1) = Rt , (4.7)

Iζ(ζ−(tmin), ζ)

Iζ(ζ−(tmin), ζ+(tmin))
= Rζ , (4.8)

φ/2π = Rφ . (4.9)

In eq. (4.8), the boundary values (ζ−(tmin), ζ+(tmin)) must be the same as those that
were used in the overestimate of Iζ . The angle φ is generated in the rest frame of
the parent antenna. The proposed branching is rejected if it is unphysical, e.g. if ζ
is outside the physical phase space, or if

PLL · PME =
ā

â

Rpdf

R̂pdf

· PME < R . (4.10)

Here, PLL denotes the accept probability of the pure shower and PME represents
an additional term due to MECs. By the virtue of the veto algorithm [138], this will
remove the excess emissions introduced due to the overestimates. To construct the
post-branching kinematics, the variables t and ζ must be inverted to reobtain the
branching invariants (s12, s23).

The follow sections give the details required to follow the previous instructions for
initial-initial and initial-final antennae.

4.3 Initial-Initial Antennae

The integration kernel for initial-initial configurations reads

dAII(tIIn , t
II
n+1) = dtII dζ

dφ

2π

αs(t
II) C sAB

4π s2
ab

āII(tII, ζ)Rpdf |J | . (4.11)

The calculation of the initial-initial antenna phase space dΦII
ant is discussed in

sec. 4.3.1. The functional form of the variables tII and ζ is given in sec. 4.3.2, with
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a brief discussion of their kinematical limits. The Jacobian J , which transforms
the invariants (saj , sjb) to the evolution parameters (tII, ζ), is given in sec. 4.3.3.
The overestimates for the antenna functions, required to solve eq. (4.1), is given in
sec. 4.3.4. Finally, the different pieces are put together into the evolution integrals
in sec. 4.3.5, and solved to find values for ζ and tII in sec. 4.3.6 and sec. 4.3.7 re-
spectively. As a last step, the transformation from tII and ζ back to the branching
invariants saj and sjb is given in sec. 4.3.8.

4.3.1 Phase-Space Factorization

To calculate the phase-space factorization the mapping from the momenta before
the branching, AB → R, to the ones after the branching, ab→ jr, has to be known;
see fig. 1 in sec. 4.1 for a graphical illustraction. The final state particles are com-
bined into the massive recoiler system R/r; all other partons are considered mass-
less here. Keeping the direction of the incoming partons A and B fixed, two de-
grees of freedom remain to construct the post-branching momenta. The following
choices are made:

1. The invariant mass of the final state recoiler system R is kept invariant. Ap-
plying momentum conservation, pR = pA + pB and pj + pr = pa + pb, yields

p2
R = p2

r ⇔ sAB = sab − saj − sjb . (4.12)

2. The rapidity of the final state recoiler system is kept invariant,

yR = yr ⇔
pR+

pR−
=
pr+

pr−
⇔ xA

xB
=
xa(sab − sjb)
xb(sab − saj)

. (4.13)

With eqs. (4.12) and (4.13) at hand, we can proceed to the calculation of the phase-
space factorization. The full phase space consists of the two-particle phase space
dΦ2(pa, pb → pj , pr) and a part describing the incoming partons,

dΦII
2 =

dxa
xa

dxb
xb

dΦ2(pa, pb → pj , pr) , (4.14)

The two-particle phase space is

dΦ2(pa, pb → pj , pr)

=
1

(2π)2

d3pj
2Ej

d4pr θ(Er) δ(p
2
r −m2

r) δ
(4)(pa + pb − pr − pj)

=
1

8π2
Ej dEj d cos θj dφj θ(Ea + Eb − Ej) δ(sab − saj − sjb −m2

r) . (4.15)

Performing the transformation from the variables (Ej , cos θj , xa, xb) to
(saj , sjb, xA, xB) introduces a 4-dimensional Jacobian factor,

J = det

(
∂{saj , sjb, xA, xB}
∂{Ej , cosθj , xa, xb}

)
. (4.16)
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This requires the new variables to be written solely in terms of the old variables,

saj = xa
√
sEj (1− cos θj) (4.17)

sjb = xb
√
sEj (1 + cos θj) (4.18)

xA =

√
xa(sab − sjb)
xb(sab − saj)

sab − saj − sjb
s

(4.19)

xB =

√
xb(sab − saj)
xa(sab − sjb)

sab − saj − sjb
s

. (4.20)

The hadronic center-of-mass energy is denoted by s. Using MATHEMATICA [139]
to calculate the Jacobian gives the simple result

J−1 = 2Ej sab . (4.21)

Plugging eqs. (4.15) and (4.21) into the expression for the full phase space, eq. (4.14)
reads

dΦII
2 =

dxA
xa

dxB
xb

1

8π2
Ej dsaj dsjb dφj

1

2Ejsab
δ(sab − saj − sjb −m2

r)

=
dxA
xA

dxB
xB

2π δ(sab − saj − sjb −m2
r)

1

16π2

sAB
s2
ab

dsaj dsjb
dφj
2π

=
dxA
xA

dxB
xB

dΦ1(pA, pB → pR) dΦII
ant . (4.22)

The phase space is now written in terms of the one-particle phase space

dΦ1(pA, pB → pR) = 2π d4pR δ(p
2
R −m2

R) δ(4)(pA + pB − pR)

= 2π δ(sAB −m2
R) (4.23)

and the antenna phase space

dΦII
ant =

1

16π2

sAB
s2
ab

dsajdsjb
dφj
2π

. (4.24)

4.3.2 Evolution Variables and ζ Definitions

Branchings are evolved in the following variables,

tII =




tIIemit =

sajsjb
sab

for gluon emission

tIIconv = saj or sjb for a or b converting to/from a gluon .
(4.25)

The upper phase-space limits are tIIemit ≤ (s− sAB)2/(4s) and tIIconv ≤ s− sAB . From
here on, whenever the two initial sides are treated separately, we will only consider
branchings involving leg A. Branchings off leg B are treated similarly.

Our choices for the functional form of the ζ variable are

ζ1 =
saj
sab

=
saj

sAB + saj + sjb
, ζ2 =

sjb
sAB

, and ζ3 =
sab
sAB

=
xa xb
xA xB

. (4.26)
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Figure 4.1: Contours of constant values of the evolution variable are shown in color.
The grey lines represent the corresponding ζ-integration boundaries. The recoiler
has chosen to be a Higgs boson, sAB = m2

H = (125 GeV)2. The phase space limit
saj + sjb ≤ s− sAB is visualized by the thick black line.

The ζ-integration boundaries are denoted by ζ±. For a given value of the evolution
variable, tIIemit or tIIconv respectively, the boundaries are

ζ1−(tIIemit) =
sxj−
s

ζ1 +(tIIemit) =
sxj+

s
, (4.27)

ζ2−(tIIemit) =
sxj−
sAB

ζ2 +(tIIemit) =
sxj+

sAB
, (4.28)

ζ3−(tIIconv) =
sAB + tIIconv

sAB
ζ3 +(tIIconv) =

s

sAB
, (4.29)

with 2 sxj± = s − sAB ±
√

(s− sAB)2 − 4 tIIemit s . Plots of contours of constant
values of the different evolution variables, together with the corresponding ζ limits
are shown in fig. 4.1.

4.3.3 Jacobians

The Jacobian factors for the transformation from the phase-space variables (saj , sjb)

to the shower variables (tII, ζ) are

|J(tIIemit, ζ1)| = sab (ζ1(1− ζ1))−1 , (4.30)

|J(tIIemit, ζ2)| = s2
ab (sjb(1 + ζ2))−1 , (4.31)

|J(tIIconv, ζ3)| = sAB . (4.32)

4.3.4 Trial Antenna Functions

To overestimate the physical antenna functions we make use of sab > sAB and sab >
saj/jb. The following list presents the physical antenna functions āII for initial-
initial configurations together with the overestimate âII,
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āII
qq̄ g =

1

sAB

(
2 sabsAB
sajsjb

+
saj
sjb

+
sjb
saj

)
⇒ âII

soft =
1

sAB

2 s2
ab

sajsjb
, (4.33)

āII
gx g − āII

soft =
2

sAB

(
sjb
saj

sab
sAB

+
sjb
saj

sAB
sab + saj

)
⇒ âII

gx g = 2
s2
ab

s2
AB

1

saj
, (4.34)

āII
gx q̄ =

1

sAB

(
−2

sjbsAB
saj(sab − saj)

+
sab
saj

)
⇒ âII

gx q̄ =
sab
sAB

1

saj
, (4.35)

āII
qx q =

1

2 saj

s2
jb + s2

ab

s2
AB

⇒ âII
qx q =

s2
ab

s2
AB

1

saj
. (4.36)

Note that the overestimate of the soft eikonal term âII
soft already includes the

collinear singularities of the parent quarks. However, if a parent parton is a gluon,
the overestimate of the eikonal term is not large enough. In those cases an addi-
tional term âII

gx g is introduced. It contains only the singularities associated with the
emission being collinear to the parent gluon and is independent of the flavour of
the other parent parton, x.

4.3.5 Evolution Integrals

The integration kernel in eq. (4.11) contains the angle φ. As the integration over
dφ is trivial, we will drop it in this section. sing the Jacobian factors in eqs. (4.30)
to (4.32) and the trial antenna functions in eqs. (4.33) to (4.36), the trial integration
kernels dÂ can be written in terms of t and ζ,

dÂII
soft =

αs C
2π

R̂pdf
dtIIemit

tIIemit

dζ1

ζ1(1− ζ1)
, (4.37)

dÂII
gx g =

αs C
2π

R̂pdf
dtIIemit

tIIemit

dζ2

1 + ζ2
, (4.38)

dÂII
gx q̄ =

αs C
4π

(
xa xb
xA xB

)α
R̂pdf

dtIIconv

tIIconv

dζ3

ζ1+α
3

, (4.39)

dÂII
qx q =

αs C
4π

(
xa xb
xA xB

)α
R̂pdf

dtIIconv

tIIconv

dζ3

ζα3
. (4.40)

For the last two processes the general factor α helps to control the overestimate of
the PDF ratio, as discussed in sec. 4.2.

4.3.6 ζ Integrals and Trial ζ

The ζ integrals that appear in the trial evolution kernels in eqs. (4.37) to (4.40) are

Iζ1/2 =

∫ ζb

ζa

dζ

ζρ(1± ζ)
= ln

(
ζρb (1± ζb)±1

ζρa(1± ζa)±1

)
with ρ ∈ {0, 1} , (4.41)

Iζ3 =

∫ ζb

ζa

dζ

ζκ
=

{(
ζ1−κ
b − ζ1−κ

a

)
/ (1− κ) for κ 6= 1

ln (ζb/ζa) for κ = 1
. (4.42)
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Here, κ = α for eq. (4.40), κ = 1 + α for eq. (4.39), ρ = 1 for eq. (4.37), and ρ = 0 for
eq. (4.38). A trial value for the ζ variable is generated according to

ζ1/2 =

[
1± ζmin

ζρmin

(
ζρmin(1± ζmax)

ζρmax(1± ζmin)

)Rζ1/2
∓ 1

]±1

, (4.43)

ζ3 =

{(
Rζ3(ζ1−κ

min − ζ1−κ
max) + ζ1−κ

max

) 1
1−κ for κ 6= 1

ζmax (ζmin/ζmax)Rζ3 for κ = 1
. (4.44)

4.3.7 Generation of Trial Evolution Scale

In the discussion so far we have not considered the strong coupling. We distinguish
between two cases: a constant and running αs. For a constant αs the integral over
the evolution is scale is

αsX

∫ tIIn

tIIn+1

dtII

tII
= αsX ln tII

∣∣tIIn
tIIn+1

= αsX ln
tIIn
tIIn+1

. (4.45)

X represents all terms in eqs. (4.37) to (4.40) that do not depend on the scale. The
solution for the next trial scale tIIn+1 is

tIIn+1 = tIIn R(αsX)−1

. (4.46)

To include one-loop running of the strong coupling we use α−1
s (t) =

b0 ln
(
k2
R t/Λ

2
)

. The arbitrary scaling factor kR includes the compound effect of
any renormalization scale prefactor choices. The integral over the evolution scale
changes to

X

∫ tIIn

tIIn+1

dtII

tII ln
(
k2
R t

II

Λ2

) = X ln

(
ln

(
k2
R t

II

Λ2

))∣∣∣∣
tIIn

tIIn+1

= X ln




ln
(
k2
R t

II
n

Λ2

)

ln
(
k2
R t

II
n+1

Λ2

)


 . (4.47)

The solution for the next trial scale tIIn+1 is

tIIn+1 =
Λ2

k2
R

(
k2
R t

II
n

Λ2

)R1/X

. (4.48)

4.3.8 Inverse Transforms

After a set of shower variables has been generated, the (tII, ζ) choices must be in-
verted to reobtain the branching invariants (saj , sjb) which are used to construct
the kinematics of the trial branching. These inversions are the following:

tIIemit with ζ1 : saj =
tIIemit + ζ1 sAB

1− ζ1
sjb =

tIIemit

ζ1
(4.49)

tIIemit with ζ2 : saj =
tIIemit(1 + ζ2)

ζ2 − tIIemit/sAB
sjb = ζ2 sAB (4.50)

saj with ζ3 : saj = tIIconv sjb = sAB(ζ3 − 1)− tIIconv (4.51)
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4.4 Initial-Final Antennae

The integration kernel for initial-final configurations reads

dAIF(tIFn , t
IF
n+1) = dtIF dζ

dφ

2π

αs(t
IF) C sAK

4π(sAK + sjk)2
āIF(tIF, ζ)Rpdf |J | . (4.52)

The following sections are structured as for initial-initial antennae: the phase space
dΦIF

ant is calculated in sec. 4.4.1, the tIF and ζ variables are given in sec. 4.4.2,
the Jacobian factors J in sec. 4.4.3, the overestimates for the antenna functions in
sec. 4.4.4, the trial evolution integrals in sec. 4.4.5, values for ζ and tIF are found in
sec. 4.4.6 and sec. 4.4.7 respectively, and the transformation from tIF and ζ back to
the branching invariants saj and sjk is given in sec. 4.4.8.

4.4.1 Phase-Space Factorization

To calculate the phase-space factorization the mapping from the momenta before
the branching, AB → KR, to the ones after the branching, ab → jkr, has to be
known; see fig. 3 in sec. 4.1 for a graphical illustraction. . The final state particles,
except for the parton K, are combined into the massive recoiler system R/r; all
other partons are considered massless here. Keeping the direction of the incoming
partons A and B fixed and not allowing recoil outside of the antenna, i.e. b = B

and r = R, fully fixes the degrees of freedom. With this choice of recoil strategy
momentum conservation is

pj + pk − pa = pK − pA ⇔ sAK + sjk = sak + saj . (4.53)

The ratio of the energy fractions of the incoming parton is xA/xa = sAK/(sAK+sjk).

The full phase space consists of the three-particle phase space dΦ3(pa, pB →
pj , pk, pR) and a part describing the incoming parton,

dΦIF
3 =

dxa
xa

dΦ3(pa, pB → pj , pk, pR) , (4.54)

Note that no integration over xb = xB enters, as the other incoming parton does
not change its momentum. The three-particle phase space is

dΦ3(pa, pB → pj , pk, pR)

=
1

(2π)5

d3pj
2Ej

d3pk
2Ek

d4pR θ(ER) δ(p2
R −m2

R)δ(4)(pa + pB − pj − pk − pR)

=
1

4(2π)5
Ej dEj d cos θj dφj Ek dEk d cos θk dφk δ((pa + pB − pj − pk)2 −m2

R) .

(4.55)

Performing the transformation from the variables (Ej , cos θj , cos θk, xa) to
(saj , sjk, sAK , xA) introduces a 4-dimensional Jacobian factor,

J = det

(
∂{saj , sjk, xA, sAK}
∂{Ej , cosθj , xa, cos θk}

)
. (4.56)
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This requires the new variables to be written solely in terms of the old variables,

saj = xa
√
sEj (1− cos θj) (4.57)

sak = xa
√
sEk (1− cos θk) (4.58)

sAK = xA
√
s (Ej (1− cos θj) + Ek (1− cos θk)) (4.59)

sjk = −sAK + sak + saj (4.60)

xA =
1√
s

(
xa
√
s

(
1 +

p2
⊥K

saj + sak

)
− Ej(1 + cos θj)− Ek(1 + cos θk)

)
(4.61)

Using MATHEMATICA [139] to calculate the Jacobian gives the simple result

J−1 = 2Ej Ek (sAK + sjk)xA
√
s = 2Ej Ek

(sAK + sjk)
2

sAK

x2
A

xa

√
s . (4.62)

Plugging eqs. (4.55) and (4.62) into the expression for the full phase space, eq. (4.54)
reads

dΦIF
3 =

dxA
xA

1

4(2π)5

sAK
2 (sAK + sjk)2 xA

√
s

dsAK dsaj

dsjk dφj dφk dEk δ((pa + pB − pj − pk)2 −m2
R) . (4.63)

To carry out the integration dEk we rewrite the remaining delta-function as

δ

(
sab − saj − sjb +

xb − xa
xa

sak − 2xb
√
sEk −m2

R

)
. (4.64)

With the result of the integration, (2xB
√
s)−1, the phase space reduces to

∫
dxa
xa

dΦ3(pa, pb → pj , pk, pR)

=

∫
dxA
xA

dsAK dφk
(2π)2 sAB

1

16π2

sAK
(sAK + sjk)2

dsaj dsjk
dφj
2π

=

∫
dxA
xA

dΦ2(pA, pB → pK , pR) dΦIF
ant . (4.65)

To verify this result we calculate the two-particle phase space

dΦ2(pA, pB → pK , pR)

=
1

(2π)2

d3pK
2EK

d4pR θ(ER) δ(p2
R −m2

R) δ(4)(pA + pB − pR − pK)

=
1

2(2π)2xA
√
s

dsAK dφK dEK δ((pA + pB − pK)2 −m2
R) . (4.66)

A factor of (xA
√
sEK)−1 arises due to the variable transformation from cos θK to

sAK . The remaining delta-function can be rewritten as

δ

(
sAB +

xB − xA
xA

sAK − 2xB
√
sEK −m2

R

)
. (4.67)
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Figure 4.2: Contours of constant values of the evolution variable are shown in color
with the choices sAK = 12.6 TeV2 and xA = 0.3. The grey lines represent the
corresponding ζ-integration boundaries. The phase space limit saj ≤ sAK + sjk is
visualized by the thick black line.

With the result of the dEK integration, (2xB
√
s)−1, the two-particle phase space

reduces to

dΦ2(pA, pB → pK , pR) =
dsAK dφK
(2π)2 sAB

. (4.68)

Comparing eqs. (4.65) and eq. (4.68) gives the result for the initial-final antenna
phase space for local recoils

dΦIF
ant =

1

16π2

sAK
(sAK + sjk)2

dsaj dsjk
dφj
2π

. (4.69)

4.4.2 Evolution Variables and ζ Definitions

Branchings are evolved in the following variables,

tIF =





tIFemit =
sajsjk

sAK + sjk
for gluon emission

tIFconv =

{
saj for a converting to/from a gluon
tIFconv = sjk for final state gluon splitting .

(4.70)

The upper phase-space limits are temit
IF ≤ sAK(1 − xA)/xA, saj ≤ sAK/xA, and

sjk ≤ sAK(1− xA)/xA.

Our choices for the functional form of the ζ variable are

ζ1 =
sjk + sAK
sAK

=
xa
xA

, ζ2 =
saj

sAK + sjk
, and ζ3 =

saj
sjk

. (4.71)

For a given value of the evolution variable, tIFemit, saj , or sjk respectively, the ζ-
integration boundaries are
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ζ1−(tIFemit) =
tIFemit + sAK

sAK
ζ1 +(tIFemit) =

1

xA
, (4.72)

ζ2−(tIFemit) =
tIFemit xA

sAK(1− xA)
ζ2 +(tIFemit) = 1 , (4.73)

ζ3−(tIFemit) =
tIFemit xA

sAK(1− xA)2
ζ3 +(tIFemit) =

sAK + tIFemit

tIFemit

, (4.74)

ζ1−(saj) = max

(
1,

saj
sAK

)
ζ1 +(saj) =

1

xA
, (4.75)

ζ2−(sjk) = 0 ζ2 +(sjk) = 1 . (4.76)

Plots of contours of constant values of the different evolution variables, together
with the corresponding ζ limits are shown in fig. 4.2.

4.4.3 Jacobians

The Jacobian factors for the transformation from the phase-space variables (saj , sjk)

to the shower variables (tIF, ζ) are

|J(tIFemit, ζ1)| = (sAK + sjk)sAK/sjk , (4.77)

|J(tIFemit, ζ2)| = (sAK + sjk)
2/saj , (4.78)

|J(tIFemit, ζ3)| = (sAK + sjk)
2 (ζ3(2 sAK + sjk))

−1 , (4.79)

|J(saj , ζ1)| = sAK , (4.80)

|J(sjk, ζ2)| = sAK + sjk . (4.81)

4.4.4 Trial Antenna Functions

To overestimate the physical antenna functions we make use of sAK+sjk = sak+saj

and replacing for instance sak with sak + saj = sAK + sjk > sak. The following list
presents the physical antenna functions āIF for initial-final configurations together
with the overestimate âIF,

āIF
soft = 2

sak
sajsjk

⇒ âIF
soft =

(2 sAK + sjk)(sAK + sjk)

sajsjksAK
, (4.82)

āIF
qx g − āIF

soft =
1

sAK

sjk
saj

⇒ âIF
qx g =

1

sAK

sjk + sAK
saj

, (4.83)

āIF
xq g − āIF

soft =
1

sAK

saj
sjk

⇒ âIF
xq g =

1

sAK

sjk + sAK
sjk

, (4.84)

āIF
gx g 1 − āIF

soft =
2

sAK

sjk
saj

sak
sAK

⇒ âIF
gx g 1 = 2

(sAK + sjk)
2

s2
AKsaj

, (4.85)

āIF
gx g 2 − āIF

soft =
2 sjk

saj(sAK + sjk)
⇒ âIF

gx g 2 =
2

saj
, (4.86)
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āIF
xg g − āIF

soft =
1

sAK

saj
sjk

sak
sAK

⇒ âIF
xg g =

1

sAK

saj
sjk

sAK + sjk
sAK

, (4.87)

āIF
qx q =

1

2 saj

s2
ak + s2

jk

s2
AK

⇒ âIF
qx q =

1

saj

(sAK + sjk)
2

s2
AK

, (4.88)

āIF
gx q̄ =

1

sAK

sak
saj
− 2

sAK

sjk
saj

sAK − saj
sAK + sjk

⇒ âIF
gx q̄ =

2

sAK

sAK + sjk
saj

, (4.89)

āIF
xq q̄ =

1

2 sjk

s2
ak + s2

aj

s2
AK

⇒ âIF
xq q̄ =

1

2 sjk

(sAK + sjk)
2

s2
AK

. (4.90)

As a first step we find an overestimate for the soft eikonal term, present in all gluon
emission antenna functions. In a second step we analyze the collinear terms in-
dividually, eqs. (4.83) to eq. (4.87). Finally we find overestimates for the antenna
functions that involve flavour changes.

4.4.5 Evolution Integrals

As for initial-initial antennae, the integration over dφ will be dropped in this sec-
tion. Using the Jacobian factors in eqs. (4.77) to (4.81) and the trial antenna functions
in eqs. (4.82) to (4.90), the trial integration kernels dÂ can be written in terms of t
and ζ,

dÂIF
soft =

αs C
4π

R̂pdf
dtIFemit

tIFemit

dζ3

ζ3
, (4.91)

dÂIF
qx g =

αs C
4π

(
xa xb
xA xB

)β
R̂pdf

dtIFemit

tIFemit

dζ1

ζ1+β
1

, (4.92)

dÂIF
xq g =

αs C
4π

R̂pdf
dtIFemit

tIFemit

dζ2 , (4.93)

dÂIF
gx g 1 =

αs C
2π

(
xa xb
xA xB

)β
R̂pdf

dtIFemit

tIFemit

dζ1

ζβ1
, (4.94)

dÂIF
gx g 1 =

αs C
2π

(
xa xb
xA xB

)β
R̂pdf

dtIFemit

tIFemit

dζ1

ζβ1
, (4.95)

dÂIF
gx g 2 =

αs C
2π

(
xa xb
xA xB

)β
R̂pdf

dtIFemit

tIFemit

dζ1

ζ2+β
1

, (4.96)

dÂIF
xg g =

αs C
4π

xa xb
xA xB

R̂pdf
dtIFemit

tIFemit

ζ2 dζ2 , (4.97)

dÂIF
gx q̄ =

αs C
2π

(
xa xb
xA xB

)α
R̂pdf

dtIFconv

tIFconv

dζ1

ζ1+β
1

, (4.98)

dÂIF
qx q =

αs C
4π

(
xa xb
xA xB

)α
R̂pdf

dtIFconv

tIFconv

dζ1

ζβ1
, (4.99)

dÂIF
xq q̄ =

αs C
8π

xa xb
xA xB

R̂pdf
dtIFconv

tIFconv

dζ2 . (4.100)

For some processes the general factor β helps to control the overestimate of the PDF
ratio, as discussed in sec. 4.2.
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4.4.6 ζ Integrals and Trial ζ

The general form of the ζ integrals appearing in the trial evolution kernels in
eqs. (4.91) to (4.100) is

Iζ =

∫ ζb

ζa

dζ

ζκ
=

{(
ζ1−κ
b − ζ1−κ

a

)
/ (1− κ) for κ 6= 1

ln (ζb/ζa) for κ = 1
. (4.101)

Here, κ = β for eqs. (4.95) and (4.99), κ = 1 + β for eqs. (4.92) and (4.98), κ = 2 + β

for eq. (4.96), κ = 1 for eq. (4.91), κ = 0 for eq. (4.93), and κ = −1 for eq. (4.91). A
trial value for the ζ variable is generated according to

ζ =

{(
Rζ(ζ1−κ

min − ζ1−κ
max) + ζ1−κ

max

) 1
1−κ for κ 6= 1

ζmax (ζmin/ζmax)Rζ for κ = 1
. (4.102)

4.4.7 Generation of Trial Evolution Scale

The new scale is generated as in the case of initial-initial antennae, see sec. 4.3.7.

4.4.8 Inverse Transforms

After a set of shower variables has been generated, the (tIF, ζ) choices must be
inverted to reobtain the branching invariants (saj , sjk) which are used to construct
the kinematics of the trial branching. These inversions are the following:

tIFemit with ζ1 : saj =
tIFemit ζ1

ζ1 − 1
sjk = sAK(ζ1 − 1) (4.103)

tIFemit with ζ2 : saj = sAK ζ2 + tIFemit sjk =
tIFemit

ζ2
(4.104)

tIFemit with ζ3 : saj = tIFemit

(
1

2
+

√
1

2
+
ζ3 sAK

tIFemit

)
sjk =

saj
ζ3

(4.105)

saj with ζ1 : saj = tIFconv sjk = (ζ1 − 1)sAK (4.106)

sjk with ζ2 : saj = ζ2

(
sAK + tIFconv

)
sjk = tIFconv (4.107)



5
Correcting Ordered Showers

The GKS MEC algorithm for combining the parton-shower approximation with LO
matrix elements with different multiplicities has been discussed in chap. 4. How-
ever, this procedure requires the shower to populate phase-space regions that are
beyond the reach of traditional ordered evolution. In this context, a consequence of
the shower unitarity is the loss of soft, low-energy radiation due to increasing the
emission rate in the hard part of phase space. In other words, if additional radia-
tion is allowed in the unordered parts of the evolution, it is taken away from the
ordered phase space. In addition, the smooth ordering restricts the branching range
of ordered partons for higher multiplicities, as these partons restart the evolution at
a scale that is, by definition, smaller or equal to the scale of the last branching. Due
to the evolution of initial-state partons in unordered regions, no-emission proba-
bilities arise that do not correspond to conventional terms of the PDF evolution in
sec. 3.3.

Unordered branchings also potentially violate the assumption under which factor-
ization has been proven. As discussed in sec. 2.4, factorizing the calculation of the
hard process into the short-distance physics described by the partonic cross section
and the long-distance physics described by universal PDFs, relies on approxima-
tions. Factorization uses a scale Q that is based on the kinematics of the hard scat-
tering process, or energy flow through the corresponding Feynman diagram. For
instance for the Drell-Yan process the “natural” scale is the mass of the lepton pair,
Q = mll. The factorization theorem assumes that the factorization scale µF ∼ Q

correctly characterizes the process and that radiation with scales ≤ Q is resummed
properly, see e.g. [140–143] and references therein. “Power showers” allow the pro-
duction of partons with scales larger than the factorization scale of the underlying
Born process, t > µF , in the parton shower. While this concept might be interesting
from a phenomenological point of view, if it constitutes the only option to popu-
late the hard phase-space regions, it is in conflict with the factorization assumption
described before and the additional parton is not well described by the collinear
PDFs. In a similar way, unordered branchings with tn+1 > tn are in disagreement
with the factorization condition.

Based on the arguments given in the preceding paragraphs, we introduce a new
method to correct the ordered evolution of the parton shower and combine it with
unordered phase-space points, while avoiding the smooth ordering of sec. 4.1 for
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subsequent unordered emissions as well as the power-shower concept and the
method of sec. 4.1 for the first emission of the parton shower. This is achieved
by extending the MEC formalism of chap. 4 to purely ordered evolution. To fill the
full phase space for the corrected orders, a prescription for adding events beyond
the reach of the parton shower is required. An important feature in these events,
probably the most important one, is the choice of factorization and renormalization
scale, as has been shown e.g. in [144, 145]. In the publication in sec. 5.1 we develop
a MEC formalism for ordered evolution, together with a new scale-setting scheme
for unordered events which is based on ME as well as parton-shower information.

The algorithm discussed in the publication borrows from the CKKW-L [75, 76]
method for merging ME calculations of different parton multiplicities with the par-
ton shower. We implemented the necessary functionality in VINCIA by using the
existing machinery of PYTHIA 8 and adjusting it to the QCD antenna picture of
VINCIA. As a result, the CKKW-L approach can not only be applied in the context
of sec. 5.1, but also standalone in the PYTHIA 8 + VINCIA framework. This method
is therefore discussed in sec. 5.2 in the context of antennae.

5.1 Published Material
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Abstract We present a parameter-free scheme to combine
fixed-order multi-jet results with parton-shower evolution.
The scheme produces jet cross sections with leading-order
accuracy in the complete phase space of multiple emissions,
resumming large logarithms when appropriate, while not
arbitrarily enforcing ordering on momentum configurations
beyond the reach of the parton-shower evolution equation.
This requires the development of a matrix-element correc-
tion scheme for complex phase-spaces including ordering
conditions as well as a systematic scale-setting procedure
for unordered phase-space points. The resulting algorithm
does not require a merging-scale parameter. We implement
the new method in the Vincia framework and compare to
LHC data.

1 Introduction

High-energy physics in the era of the Large Hadron Collider
relies on accurate calculations of Standard-Model scattering
signatures—both to determine backgrounds when directly
searching for new physics and to allow for setting indirect
bounds by comparing measurements to precision calcula-
tions. Since measurements at the LHC are typically sensi-
tive to the formation and evolution of jets, much attention
has been devoted to calculating QCD corrections. This has
led to exquisite dedicated high-precision calculations, and to
the development of general schemes to overcome the lim-
ited applicability of individual fixed-order QCD calculations
by combining multiple calculations into a single consistent
result. To this end, modern General Purpose Event Genera-
tors [1–4] include a variety of complex matching [5–16] and
merging [17–35] schemes.

A unified Standard-Model prediction that is applicable
for precision measurements and new-physics searches alike

a e-mail: nadine.fischer@monash.edu

must naturally include particle configurations that probe very
different aspects of the calculation. The optimal perturbative
description of very different particle (and momentum) con-
figurations can consequently vary significantly within one
measurement, so that care must be taken to avoid apply-
ing specialized arguments outside of their region of valid-
ity. Otherwise, the accuracy of the calculation is in jeop-
ardy and its uncertainty might be underestimated. For exam-
ple, applying QCD reasoning to events without large hier-
archies in the hardness of jets can lead to problematic
effects [36].

Standard-model calculations at the LHC can somewhat
artificially be categorized as focussing on momentum con-
figurations with or without large scale (hardness) hierarchies
between jets. Fixed-order QCD calculations are often appro-
priate for the latter, while the former require a resummation
of large perturbative enhancements by means of evolution
equations. Both approaches have complementary strengths
and should be combined for a state-of-the-art calculation. It
is crucial to avoid bias when constructing a single calculation
that describes very different limits.

In this article, we design a new algorithm to combine mul-
tiple fixed-order calculations for different parton multiplici-
ties with each other and with (parton-shower) resummation
of large logarithmic enhancements. The aim of this combined
calculation is to simultaneously describe up to n hard, well-
separated partons with fixed-order matrix elements while
retaining the jet evolution given by the parton shower. We
enforce strict requirements on the new scheme to improve
on previous ideas:

1. The introduction of new parameters into the calculation
is avoided. This is especially important when the corre-
lation with existing parameters is not obvious.

2. The method should provide a uniform accuracy over the
complete phase space for one particle multiplicity. For
now, this means that the rate of n jets should be given

123
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with leading-order accuracy in QCD, irrespectively of
the hardness of jets.

3. The method should be largely agnostic to parton-shower-
inspired arguments when configurations without large
scale hierarchies are discussed.

The resulting method borrows concepts from the CKKW-
L method of merging matrix elements and parton show-
ers [26–28], as well as from matrix-element correction
schemes [37,38]. We provide a new solution to the treat-
ment of phase-space regions beyond the reach of tradi-
tional shower evolution. Furthermore, we improve upon the
structure of the combined calculation in the parton-shower
region of soft and/or collinear emissions. Our new method
consists of two main developments: the introduction (and
implementation) of matrix-element corrections for ordered
parton-shower evolution, and the definition of a general
scale-setting prescription based on matrix elements for con-
tributions without apparent scale hierarchies. The benefit
of using matrix-element corrections for shower-like split-
ting sequences is that unitarity of fixed-order multi-jet cross
sections is automatically guaranteed in these phase-space
regions. This means that the inclusive rates for n jets will
be correctly described with fixed-order accuracy, without the
need for explicit subtractions of negative weight, even if the
rate for n + 1 jets is also corrected with matrix elements.
We will describe how the new method allows to achieve
leading-order accuracy in QCD for multi-parton configura-
tions. This establishes a baseline for future developments
beyond leading-order QCD.

The new scheme relies on applying leading-order matrix-
element corrections in phase-space regions that are accessi-
ble by a sequence of splittings ordered in a parton-shower
evolution variable, supplemented with fixed-order results
for configurations that cannot be reached by any such
sequence. We will use the misnomer “shower configura-
tions” for such states, and call states which cannot be reached
by an ordered sequence of shower emissions “non-shower
states”.

A very brief introduction to the parton-shower formalism
and the notation is established in Sect. 2. The new method
to iteratively correct parton showers with matrix elements
is described in detail in Sect. 3. The combination of this
scheme of matrix-element corrections for ordered parton-
shower evolution with non-shower states is discussed in
Sect. 4. An executive summary of the algorithm is given in
Sect. 5, followed by a discussion of the impact of combining
parton-shower-like and non-shower phase-space regions at
parton level. Then results and data comparisons are presented
in Sect. 6 before we summarize and give an outlook in Sect. 7.
Additional details about the smoothly ordered showers and
“GKS” matrix-element corrections previously used in Vin-
cia are collected in Appendix A, while a thorough validation

of new matrix-element corrections for ordered parton-shower
evolution is given in Appendix B.

2 Parton showers and matrix-element corrections

To set the scene and establish notation, let us briefly review
some parton-shower basics. We start by defining the effect of
parton-shower evolution [39,40] on an arbitrary observable
O (in the notation of [41]),

F�a(�n, t, t
′; O) = F�a(�n, t, t

′) O(�n)

+
∫ t ′

t

dt̄

t̄

dF�a(�n, t̄, t ′)
d ln t̄

F�a′(�′
n+1, t, t̄; O), (1)

where t ≡ t (�n+1/�n) is the shower evolution variable,
and the shower generating functional F depends on the list
of parton flavors �a, and the corresponding n-particle momen-
tum configuration �n . Though not explicitly stated, any n-
particle state contains an arbitrarily complicated Born state,
�n ≡ �B+n . The first term in Eq. (1) encodes the con-
tribution from no resolvable shower emissions, while the
second piece includes one or more emissions. The parton
flavors �a′ of the (n + 1)-particle momentum configuration
�n+1 include the resolved emission and the partons �a, with
momenta changed according to the recoil prescription of the
parton shower and flavor changes where applicable. The gen-
erating functional obeys the evolution equation

d ln F�a(�n, t, μ2)

dt

=
∑
i∈IS

∑
b=q,g

∫ 1−ε

xi

dz

z

αs(t)

2π
Pbai

fb(xi/z, t)

fai (xi , t)

+
∑
j∈FS

∑
b=q,g

∫ 1−ε

ε

dz
αs(t)

2π
Pa j b, (2)

where z ≡ z(�n+1/�n) is an energy-sharing variable and x
the momentum fraction of the incoming parton in �n . The
first term in Eq. (2) corresponds to evolution by initial-state
radiation, while the second term represents final-state radia-
tion. Backward evolution [39] for initial-state radiation intro-
duces a ratio of parton distribution functions (PDFs) f in the
first term. The quality of the shower real-radiation pattern
is governed by the unregularized, dimensionful splitting ker-
nels Pi j ≡ Pi j (�n+1/�n).

1 For brevity, we will suppress the
indices of the splitting functions. The shower will produce
an accurate real-emission pattern if the sum of all products of

1 We define Pi j (�n+1/�n) as dimensionful to follow the convention
used in the antenna literature [42,43]. Thus, Pi j corresponds to P̂i j/t in
the notation of [41], leading to a marginally different notation compared
to the latter.
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splitting probabilities and transition probabilities |M(�n)|2
is a good approximation of the full real-emission probabil-
ity |M(�n+1)|2. For a transition from an n-particle to an
(n+ 1)-particle state, this can be achieved by the (symbolic)
replacement

⎡
⎣∑

�n

P(�n+1/�n) |M(�n)|2
⎤
⎦

→
⎡
⎣∑

�n

P(�n+1/�n) |M(�n)|2
⎤
⎦

× |M(�n+1)|2(∑
�′

n
P(�n+1/�′

n)
∣∣M(�′

n)
∣∣2

)

=
∑
�n

[
P(�n+1/�n) |M(�n)|2 R(�n+1)

]
. (3)

Such a process- and multiplicity-dependent redefinition
of the splitting kernel is called matrix-element correction
(MEC). It is worth noting that this replacement changes both
the shower no-emission probability and the real-emission
pattern. The real-emission pattern is corrected to a target
fixed-order accuracy. However, the accuracy of the parton-
shower resummation of virtual corrections into Sudakov fac-
tors is not improved.

The impact of ME corrections is largest for hard, well-
separated jets, as splitting kernels do not approximate the
full fixed-order matrix element well for configurations with
hard, well-separated jets. Thus, the most significant improve-
ment of ME corrections can be obtained when correcting
the n hardest splittings in the shower cascade. In practise,
this means that hardness-ordered parton showers allow for
simpler MEC schemes [44–46], which in particular do not
require knowledge of high-multiplicity matrix elements as a
function of evolution variables.2 Instead, it is sufficient that
the parton shower generates complete, physical intermediate
momenta �n that can be used to evaluate |M(�n)|2 numeri-
cally. Thus, we will limit our discussion to hardness-ordered
shower programs. This will allow for a level of process-
independence, and make the iteration of ME corrections pos-
sible.

The key technical difficulty for a consistent application of
ME corrections is the construction of the sum over parton-
shower paths in the denominator of the correction factor
R(�n+1). Since parton showers are formulated as Markov

2 A scheme to correct the hardest emission in angular-ordered showers
has been discussed in [47]. This scheme requires to apply the same cor-
rection repeatedly, to guarantee that the single hardest emission is cor-
rected to leading-order accuracy. Although promising from the resum-
mation standpoint, it is, however, not obvious how this scheme could
be used to correct the n hardest emissions.

processes, neither the weight nor the existence of each term
in the sum is known a priori when the splitting governed by
P(�n+1/�n) is generated, and all terms have to be recon-
structed explicitly.

3 Matrix-element corrections for ordered parton
showers

The formalism of ME corrections for ordered parton show-
ers (MOPS) is close in spirit to the idea of the iterative MEC
approach of [37,38].3 These previous ideas rely on a history-
independent parton shower that is able to fill the complete
available phase space. This necessitates abandoning parton-
shower ordering, i.e. the property that ensures the resumma-
tion of large logarithms in ratios of evolution scales. Sensi-
ble resummation properties then rely on the introduction of
auxiliary functions. Furthermore, configurations with hard
well-separated jets might contain poorly understood higher-
order corrections. It is thus sensible to limit ME corrections
for the parton shower to phase-space regions reachable by
an ordered sequence of branchings. This means that we need
to rederive appropriate MEC factors R(�n) that correctly
encode the presence of complicated phase-space constraints
due to ordering—making the resulting method substantially
different from previous attempts.

To not overcomplicate the derivation of the MOPS for-
malism, we drop all coupling- and PDF factors in this sec-
tion. These pieces are evaluated exactly as in an uncorrected
parton shower (the probability of a splitting at evolution
scale t includes a factor αs(t)/2π , splittings involving ini-
tial legs induce ratios of PDFs f ( xz , t)/ f (x, t), cf. Eq. (2)),
and do not enter in the MEC factors. Similarly, Sudakov fac-
tors are not explicitly written out when demonstrating the
MOPS method. The MOPS procedure is applied during the
Sudakov veto-algorithm as a redefinition of the splitting ker-
nels, meaning that both the (real) emission probability and
the no-emission probabilities are ME corrected. This ensures
the unitarity of the method, i.e. that corrections to higher par-
ton multiplicities vanish in observables that are only sensitive
to a lower multiplicity.

Consider an arbitrary Born process with factorization
scale tfac ≡ t (�0) as starting point of the parton shower.
The weight of the first branching is

P(�1/�0) �(t (�0) − t (�1/�0)) |M(�0)|2 d�1, (4)

where the shower is restricted to scales below the factoriza-
tion scale. For processes that require regularizing cuts at Born
level, the matrix element |M(�0)|2 can be suitable redefined
to include the necessary �-functions. To correct the weight

3 A short review of the GKS approach is given in Appendix A.
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of the phase-space point �1 to the full fixed-order matrix ele-
ment, all possible emissions from “underlying” Born config-
urations �′

0 that could have produced the phase-space point
�1 that we want to correct have to be taken into account. A
suitable multiplicative correction factor is thus

R(�1)

= |M(�1)|2∑
�′

0
P(�1/�

′
0) �(t (�′

0) − t (�1/�
′
0))

∣∣M(�′
0)

∣∣2 .

(5)

Applying this correction to each individual splitting and sum-
ming over all shower contributions cancels the denominator
of Eq. (5) and gives

R(�1)
∑
�0

P(�1/�0) �(t (�0) − t (�1/�0)) |M(�0)|2

= |M(�1)|2 . (6)

The calculation of the correction factor for the weight of a
second branching becomes more cumbersome,

R(�2) = |M(�2)|2∑
�′

1
P(�2/�

′
1) R(�′

1)
∑

�′
0
�(t (�′

1/�
′
0) − t (�2/�

′
1)) P(�′

1/�
′
0) �(t (�′

0) − t (�′
1/�

′
0))

∣∣M(�′
0)

∣∣2 . (7)

Here, the denominator sums over all possible ways how the
shower can populate the phase-space point �2, taking into
account the allowed (ordered) paths through the �-functions
with the ME corrected parton-shower weights of the interme-
diate +1-particle phase-space points. Consequently, R(�2)

includes the correction factors of the previous order, R(�′
1).

It is useful to illustrate how this relatively complicated
recursive definition is obtained with an example. Consider the
case of a +2-particle state shown in Fig. 1. The +2-particle
state on top of the pyramid can be reached from the base of the
pyramid by several splitting sequences or “paths”. The paths
are not necessarily physical but rather serve the purpose of
illustration. In Fig. 1a all paths directly contribute to the +2-
particle state, as each path from the base to the top follows
a decreasing (i.e. ordered) sequence of branchings scales.
With the shorthands introduced in the caption of Fig. 1 the
correction factors for the +1-particle states are

R1
1 = M1

1

P1
1 M1

0 + P2
1 M2

0

and R2
1 = M2

1

P3
1 M3

0 + P4
1 M4

0

.

(8)

Both factors contribute to the correction to the +2-particle
state,

R2 = M2

P1
2 R1

1 (P1
1 M1

0+P2
1 M2

0)+P2
2 R2

1 (P3
1 M3

0+P4
1 M4

0)+P3
2 M3

1

= M2

P1
2 M1

1 + P2
2 M2

1 + P3
2 M3

1

. (9)

Since all paths contribute, the nesting of the MOPS factors
cancels and the denominator reduces to the sum of the split-
ting kernels, multiplied with the +1-particle matrix elements.

Some paths in Fig. 1b are unordered, which leads to +1
MOPS factors of

R1
1 = M1

1

P1
1 M1

0

and R2
1 = M2

1

P3
1 M3

0 + P4
1 M4

0

. (10)

Only one path (brown) contributes to the denominator of
R1

1—the other path (red) is unordered.
The correction to the +2-particle state is

R2 = M2

P1
2 R1

1 P1
1 M1

0 + P2
2 R2

1 P4
1 M4

0

= M2

P1
2 M1

1 + P2
2

M2
1

P3
1 M3

0 + P4
1 M4

0

P4
1 M4

0

. (11)

The red path in Fig. 1b does not contribute at all to the
+2-particle state since the first branching scale is exceeding
the factorization scale, t2

1 > t2
fac. This leads to a cancellation

in the first term of the denominator in Eq. (11). The green
path is not contributing directly to the +2-particle state, as
t2
2 > t3

1 . However, since t3
1 < t3

fac, the path is present in R2
1.

Therefore, the MOPS factor for the +2-particle state depends
on more than one “layer” in the paths, and can thus not be
calculated by reconstructing only +1-particle states from the
+2-particle state that should be corrected.

This example highlights the core features of the MOPS
method. The recursive structure of the correction factor
represents a crucial difference to the GKS method (see
Appendix A). At first sight, it seems counter-intuitive that
knowledge of ordered and unordered paths is required to cor-
rectly calculate the correction factor for a phase-space point
that has been generated by an ordered sequence of splittings.
However, the necessity becomes clear when the weight of
intermediate states is taken into account.

To obtain a uniform accuracy over the complete n-parton
phase space, states beyond the reach of the parton shower
have to be included. We discuss the treatment of these non-
shower states in the next section, and present the general
formula for the MOPS factor in Sect. 5.
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t1fac t2fac t3fac t4fac t5fac

M1
0 M2

0 M3
0 M4

0 M3
1

t11

P 1
1

t21

P 2
1

t31

P 3
1

t41

P 4
1

M1
1 M2

1

M2

t12

P 1
2

t22

P 2
2

t32

P 3
2

(a)All paths are contributing to the state M2 , i.e. all
scales fulfill ti

2 < tj
1 < tj

fac along the lines.

t1fac t2fac t3fac t4fac t5fac

M1
0 M2

0 M3
0 M4

0 M3
1

t11

P 1
1

t21

P 2
1

t31

P 3
1

t41

P 4
1

M1
1 M2

1

M2

t12

P 1
2

t22

P 2
2

t32

P 3
2

(b) The red and purple paths do not contribute, and the
green path only contributes indirectly to the state M2.

Fig. 1 History pyramid to illustrate different levels of contribution to the MOPS factor. The superscripts are numbering the different nodes. We
use the shorthands MX ≡ |M(�X )|2, tX ≡ t (�X /�X−1), and PX ≡ P(�X /�X−1). The top layer is the main +2-particle state and the lower
boxes represent the clustered states after one and two successive clusterings, respectively. The scales and splitting probabilities associated with the
clusterings are noted along the lines. For illustrative purposes we included a path where the Born state is reached after one clustering (purple line),
as present e.g. when combining QCD and electroweak clusterings

4 Completing the calculation with non-shower
configurations

The MOPS formalism discussed in Sect. 3 only covers
the parton-shower phase space characterized by an ordered
sequence of splitting scales (tfac > t1 > t2 . . . ). As a conse-
quence, a prescription for the missing phase space is required.
The precise definition of these regions depends on the parton
shower itself, the starting scale, definition of the evolution
variable, and recoil strategy. Configurations can either be
forbidden by restricting the first emission to scales below the
factorization scale, cuts on lowest-multiplicity phase space
points, or by the ordering property of the shower.

When combining non-shower and shower states, care has
to be taken to avoid double- or under-counting. As discussed
in Sect. 3, the shower off lowest-multiplicity events is treated
without any restrictions apart from ordering emissions in
the parton-shower evolution variable. Only those higher-
multiplicity states that cannot be reproduced by showering
lower-multiplicity states need to be added explicitly. This
criterion supersedes algorithms that rely on the introduction
of a merging cut.4 Uniform (leading-order) accuracy then is
obtained across the complete emission phase space by also

4 An arbitrary shower will not correctly describe all sub-leading logs
in its evolution variable, so that non-shower configurations may still
contain (sub-leading) logarithmic divergences. One famous example
of such configurations are the unordered, balancing soft-gluon emis-
sions leading to Parisi–Petronzio scaling in p⊥ distributions [48,49].

applying a ME corrected shower when adding soft-collinear
shower radiation to non-shower states. This will, if performed
naively, introduce overlap between (the shower off) different
non-shower states. Three steps are required to avoid the over-
lap:

1. Non-shower events are defined as unordered if no ordered
path exists, i.e. if different paths to the same ME state are
present, the event is only considered unordered if none
of the paths can be reproduced with an ordered sequence
of branchings scales.

2. Potential overlap between non-shower states with differ-
ent parton multiplicities has to be removed, e.g. a maxi-
mally unordered +2-particle state may also be produced
as a shower emission off a maximally unordered +1-
particle state. The explanation how this overlap is iden-
tified and removed in the higher-multiplicity states, is
deferred to the end of Sect. 5, since it is helpful to first
discuss how non-shower states are showered.

3. States produced by ordered parton showers overlap with
soft-collinear radiation attached to non-shower states if
the “history” of a phase-space point contains both ordered
and unordered paths. Therefore, both have to be ME cor-

Footnote 4 continued
To avoid such divergences in practice, we only include non-shower
phase-space points if each scale at which partons could be recombined
(as defined by the shower evolution variable) is above the parton-shower
cut-off tcut ≈ 1 GeV.
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rected with correction factors taking into account both
possibilities of population.

We now turn to the scale setting in non-shower events with
two or more additional partons. From a parton-shower stand-
point, there is no a priori guideline how non-shower config-
urations should be treated. However, since non-shower con-
figurations easily dominate LHC observables depending on
many well-separated jets, finding a sensible scale-setting pre-
scription for arbitrary processes will greatly improve the abil-
ity of fixed-order + parton-shower calculations to describe
data. Variations around the central scale can then be used to
assess the precision of the calculation.

To obtain a flexible scale-setting prescription, we bor-
row the idea of constructing all possible event histories from
the CKKW-L [26–28] The aim of the procedure is twofold:
define dynamical scales by exploiting the information about
the phase-space points with the help of the weight and “sub-
structure” of multi-jet matrix elements, while further ensur-
ing a smooth inclusion of non-shower states with shower-
accessible events.

For a sensible scale-setting prescription for non-shower
states, we follow an argument similar to the derivation of
the MOPS factor. However, ordering considerations should
not be applied to non-shower states. Assume that a phase-
space point �n+1 can be reached from multiple �′

n states by
splitting an external leg. The contribution to the cross section
due to splitting a single leg can be approximated by

αs(t (�n+1/�
′
n)) P(�n+1/�

′
n) αn

s (t
eff
n )

∣∣M(�′
n)

∣∣2
, (12)

where t eff
n is a suitable scale for the “underlying” n-particle

state. To obtain the correct (leading-order) result when sum-
ming over all possible splittings �′

n → �n+1, we can apply
the corrective factor

R(�n+1) = αn+1
s (t eff

n+1) |M(�n+1)|2∑
�′

n
αs(t (�n+1/�′

n)) P(�n+1/�′
n) αn

s (t eff
n )

∣∣M(�′
n)

∣∣2 ,

(13)

where t eff
n+1 is the desired (currently unknown) scale for the

(n + 1)-particle state. To find a suitable scale, note that

(a) if one splitting dominates over all other splittings, then
a natural scale to capture the dynamics is strongly cor-
related with the relative jet separation of the dominant
splitting,

(b) if no splitting dominates, i.e. all splittings contribute
democratically, there should be no strong preference for
a scale, and a weighted average of jet separations seems
appropriate.

Leaving aside the complications (and bias) induced by order-
ing constraints, an identical argument holds for parton-
shower-produced states. In this case, the requirements above
are fulfilled by keeping the characteristic shower-induced αs

factors for every ME corrected shower splitting. This would
be guaranteed if the αs factors in Eq. (13) would be identified
by

αn+1
s (t eff

n+1)

=
∑

�′
n
αs(t (�n+1/�

′
n)) P(�n+1/�

′
n) αn

s (t
eff
n )

∣∣M(�′
n)

∣∣2

∑
�′

n
P(�n+1/�

′
n)

∣∣M(�′
n)

∣∣2 ,

(14)

since then Eq. (13) is a simplified MEC factor. For ordered
parton-shower sequences, Eq. (14) will not lead to the correct
result. It is, however, well-suited as a scale-setting prescrip-
tion for non-shower configurations. We will use Eq. (14)
as the definition of the effective scales below, i.e. we set
the renormalization and factorization scales for non-shower
events to t eff . The effective scale also serves as a shower
(re)starting scale. The variation of the effective scale may
act as an uncertainty estimate of the prescription.

An expression for the effective scale could also have been
obtained by including PDF ratios in Eq. (13), which would
mean that the choice of effective scale captured dynamics
of underlying “hadronic” cross sections. We do not imple-
ment such a scale-setting prescription since we believe that
the scale setting should be based on perturbative parton-level
quantities.

Note that the scale-setting mechanism in Eq. (14) allows
for tfac < t eff if the scales entering the calculation are suf-
ficiently large. An example of such a configuration are non-
shower states with multiple hard (and possibly balancing) jets
without p⊥ hierarchy. In this case, using a scale defined for
the lowest-multiplicity process can result in pathologies [50].
It is desirable that t eff is not bounded by tfac, the factoriza-
tion scale assigned to a fictitious lowest-multiplicity process.
Instead, t eff should provide a more “natural” scale for this
genuine multi-jet configuration. Furthermore, t eff is bound
to remain in the perturbative region, since we only include
non-shower phase space points for which clustering scales
(as defined by the shower evolution variable) are above the
parton-shower cut-off.

In Sect. 6 we will show that the scale setting outlined in
this section results in a very good description of LHC data.

5 The complete algorithm

In this section, we summarize the combined fixed-order +
parton-shower algorithm, and present the general form of
the MOPS factor. The scheme introduces ME correction for
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several ordered consecutive parton-shower emissions. This
is in general obtained by applying the MOPS factor

R(�n+1) = |M(�n+1)|2
[ ∑

�′
n

P(�n+1/�
′
n) R(�′

n)
∑
�′

n−1

�(t (�′
n/�

′
n−1) − t (�n+1/�

′
n)) P(�′

n/�
′
n−1) R(�′

n−1)

×
k≤1∏

k=n−2

( ∑
�′

k

�(t (�′
k+1/�

′
k) − t (�′

k+2/�
′
k+1)) P(�′

k+1/�
′
k) R(�k)

)

∑
�′

0

�(t (�′
1/�′

0) − t (�′
2/�′

1))P(�′
1/�′

0) �(t (�′
0) − t (�′

1/�′
0))

∣∣M(�′
0)

∣∣2
]−1

(15)

to the splitting kernel. When including the correct weight of
each possible path, the result exhibits a recursive structure,
where R(�n+1) includes the correction factors of all previ-
ous orders, R(�′

n) to R(�′
1). Once non-shower states are

added, their contributions to the MOPS factor are taken into
account as well.

Non-shower states are added as new configurations, with
renormalization and factorization scales calculated through

αn+1
s (t eff

n+1) =
∑

�′
n
αs(t (�n+1/�′

n)) P(�n+1/�′
n) αn

s (t eff
n )

∣∣M(�′
n)

∣∣2

∑
�′

n
P(�n+1/�′

n)
∣∣M(�′

n)
∣∣2 .

(16)

This should ensure that the dynamics of the process are
encoded in a sensible scale choice, without the scale-
setting prescription being based on process- or multiplicity-
dependent arguments.

Since non-shower states are included without a hard cut-
off (e.g. a merging scale), the effective scale t eff may differ
significantly from the factorization scale tfac. In this case,
we further attach Sudakov factors by means of trial show-
ering [26,27] to the non-shower states to include a sensible
suppression due to the resummation of large logarithms of
tfac/t eff . This is relatively straight-forward for +2-particle
states—a Sudakov factor �(tfac, t eff

2 ) is applied to ensure a
sensible result if the �p⊥ of the combined Born+2-parton sys-
tem is small. For higher-multiplicity non-shower states, more
scale hierarchies arise, and a more detailed scheme is nec-
essary to cover all relevant cases. However, only two types
of scale hierarchies can remain after removing the overlap
between n-particle non-shower events and states that are pro-
duced by showering lower-multiplicity non-shower configu-
rations: the ordering tfac > t eff

n , or the ordering tfac > teff
n−1 >

tn .5 The hierarchy tfac > t eff
n is again ameliorated by apply-

ing a single Sudakov factor �(tfac, t eff
n ) to produce a sensible

5 Consider a non-shower (unordered) +4-particle state. After comput-
ing effective scales, it is possible that a scale hierarchy tfac > t eff

2 >

t3 > t4 exists. Such a configuration can be obtained in several ways

result for small �p⊥ of the combined Born+n-parton system.
If instead a hierarchy tfac > t eff

n−1 > tn can be constructed,

then a product of Sudakov factors �(tfac, t eff
n−1)�(t eff

n−1, tn)
is appropriate. This guarantees a uniform weighting of +n-
particle events arising from either +n-particle non-shower
states or showered +(n − 1)-particle configurations. Note
that the Sudakov factors �(tfac, t eff) are unity if tfac < t eff .

The information about the different types of scale hier-
archies are also used to remove the overlap between non-
shower states with different parton multiplicities. States with
scale hierarchies of the type t eff

n−m > tn−(m−1) > · · · > tn
are removed for m ≥ 2. For states that contain the hierarchy
t eff
n−1 > tn , the event is removed if the clustered +(n − 1)-

particle state is itself an unordered state. Events without scale
hierarchies that could have resulted from showering lower-
multiplicity states are kept; that includes all+2-particle states
with unordered scales t2 > t1 and +1-particle states with
t1 > tfac. For the interested reader we include further method-
ological instructions in Appendix C.

6 Results

In this section, we present results obtained with the new
method, including both the MOPS factor and the non-shower
states (called “MOPS + unordered” in the following). A
detailed validation can be found in Appendix B. The anal-
yses are performed with Rivet [51]. We begin this section

Footnote 5 continued
showering lower-multiplicity non-shower states. (a) If the reconstructed
underlying +2-particle state is not shower-like (i.e. unordered), then the
+4-particle state with the above hierarchy can be produced by adding
two ordered shower emissions to the +2-particle state. Thus, the state is
included by showering a non-shower +2-particle state. (b) If the recon-
structed +2-particle state can be reached by an ordered sequence of
emissions, and furthermore t3 > t4 then the “unordering” stems from
the +2-particle to +3-particle transition. Thus, the +4-particle config-
uration can be reached by adding one ordered shower emission to a
non-shower +3-particle state. In conclusion, the states with this more
complex scale hierarchy should not be included through a non-shower
+4-particle input, since this would result in over-counting.
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by studying the effect of the new method on jet separations,
before moving to comparisons to LHC data. In both cases,
we juxtapose the results with the GKS ME corrections imple-
mented in Vincia. The GKS MECs scheme includes emis-
sions above the factorization scale tfac (see Appendix A2 for
how those are generated) as does the MOPS + unordered
method by adding non-shower +1-particle states. Emissions
with scales t1 > tfac would not naturally be present in the
pure or MOPS corrected shower, where Born states are show-
ered beginning at tfac. For the following results we add +1-
particle states with scales t1 > tfac explicitly to the pure
and MOPS corrected shower, and shower these states using
t1 as shower starting scale. This decreases the significance
of including non-shower states w.r.t comparing to a strictly
ordered shower evolution, but should avoid using an “overly
conservative” shower setup when comparing to default
Vincia.

6.1 Theory comparisons

Here, the general features of the new method are illustrated by
discussing jet resolution scales. These variables show signif-
icant sensitivity to hard, well-separated jets as well as parton-
shower resummation, and they can thus be used to gauge the
effect of different pieces in the calculation. To not obscure
the Sudakov shapes of the parton shower at low jet resolution,
we do not include multiparton interactions.

Hadron-level results for hadronic Z decays and Drell–Yan
events are presented in Fig. 2. The results have the expected
behavior: at low jet resolution, parton-shower effects domi-
nate, while non-shower states contribute mainly to large jet
scales. Hence, the MOPS factor is dominating the observable
at low scales. At LEP, shower states remain a dominant con-
tribution even when modeling well-separated jets, and the
effect of non-shower states remains at below 10% per bin.
Results at the LHC are in stark contrast to this. There, the
influence of shower configurations decreases substantially
for large jet resolution, and non-shower phase-space regions
become increasingly important. The uncertainty from vary-
ing the effective scale is not significant at LEP, and should
thus not be considered a realistic uncertainty estimate. At
LHC, the variation of t eff (= tfac = tren = tstart) is larger,
and increases for high jet resolution, as expected from vary-
ing scales in a tree-level fixed-order variation. At low reso-
lution, we observe a small increase in the scale uncertainty,
which stems from the interplay of very large αs values with
the Sudakov factors that are applied to non-shower states.

By comparing with previous ideas below, we hope to
understand the short-comings and benefits of our MOPS +
unordered prescription. In Fig. 3 we compare the results of
Vincia2.2 without corrections, with the MOPS correction,
MOPS + unordered scheme, and Vincia2.0.01 with smooth
ordering for the GKS ME corrected orders.

The MOPS correction for purely evolution-induced events
is small for all jet resolutions. Differences are mostly at
the level of 1–5%, illustrating that the uncorrected shower
already describes the matrix elements well in phase-space
regions reachable by showering. As discussed above, the jet
resolution scales exhibit a Sudakov suppression for small val-
ues. In the Sudakov region, the corrected predictions should
not deviate greatly from the “plain” shower result. This is
indeed the case for both the MOPS + unordered and the GKS
MECs method for very small resolution scales. The GKS
MECs method generates more events with larger dm m+1

separation. Due to the unitarity of the shower, this leads
to a depletion of events with small separation compared to
the pure shower. The behavior is consistent with the find-
ings in [38], where differences between strong and smooth
ordering have been investigated. The impact of non-shower
states in the MOPS + unordered scheme remains noticeable
close to the peak of the distribution, although the modeling
of the Sudakov region approaches the uncorrected shower
more quickly than for the GKS MECs method. This means
that the handling of non-shower states with large scale hier-
archies (cf. end of Sect. 5) is important in our approach.
Merging approaches commonly discard non-shower states
with separation below a certain (merging) scale.

In conclusion, we believe that the MOPS + unordered
scheme has desirable features, and that the choices in the
method lead to the expected behavior.

6.2 Comparisons to data

To assess how the method performs for realistic observables,
we now turn to Drell–Yan + jets measurements at the LHC.
All curves employ the NNPDF 2.1 LO PDF set [56] and use
the corresponding strong coupling αs(kμ t) with one-loop
running, αs(m2

Z ) = 0.13, and kμ = 1 for all branchings. We
use these settings to compare all schemes on equal footing
and choose kμ = 1 as required for the calculation of the effec-
tive scale.6 Soft-physics parameters are kept at their current
Vincia default values. The default Vincia2.0.01 tune [38]
corresponds to different αs settings. While this results in a
slightly better data description, it does not alter the general
observations and conclusions of this section.

In Fig. 4 we confront the results of Vincia2.2 without
corrections, with the MOPS correction, MOPS + unordered
scheme, and Vincia2.0.01 with GKS ME corrections with
ATLAS [52,53] and CMS [54,55] measurements.

As already seen in Sect. 6.1, the effect of the MOPS cor-
rection factor is small for all observables. This is of benefit
for the description of the Drell–Yan p⊥ spectrum (upper left

6 Different kμ values for different branching types invalidate the inter-
pretation of the effective scale as a single parton-shower starting scale
for subsequent showering.
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(a) (b)

Fig. 2 Pythia8.2.26 +Vincia2.2 predictions for jet resolution measures dm m+1 and ym m+1 (the longitudinally invariant k⊥ jet algorithm with
R = 0.4 for hadronic initial states and the Durham jet algorithm for lepton collisions). ME corrections are applied for ≤3 emissions. The red band
is obtained by varying the effective scale t eff [GeV] in non-shower events by factors of 2

Fig. 3 Pythia8.2.26 +Vincia2.2 and Pythia8.2.15 +Vincia2.0.01 predictions for jet resolution measures in Drell–Yan events @ 7 TeV. ME
corrections are applied for ≤3 emissions

panel of Fig. 4), for which the plain shower already offers a
sensible data description. The quality of the description also
remains unchanged for the MOPS + unordered scheme. The
other observables in Fig. 4 test the existence of hard, well-

separated emissions in the tails of the distributions and are
thus poorly modeled with the parton shower alone. We find
a very good data description with the MOPS + unordered
scheme. In particular, the quality of the data description in
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Fig. 4 Pythia8.2.26 +Vincia2.2 and Pythia8.2.15 +Vincia2.0.01 predictions compared to ATLAS data from [52,53] and CMS data from
[54,55]. Rivet analyses ATLAS_ 2013_ I1230812, ATLAS_ 2014_I1300647, CMS_ 2013_ I1209721, and CMS_ 2015_ I1310737. For the leading
jet p⊥ and the scalar p⊥ sum of jets the predictions are rescaled to the experimental inclusive one-jet cross section. ME corrections are applied for
≤3 emissions. The red band is obtained by varying the effective scale t eff [GeV] in non-shower events by factors of 2

our scheme relies crucially on the treatment of non-shower
states. The scale-setting mechanism presented in Sect. 4 pro-
duces promising results, with the naive central scale choice
close to the data, but with a large, leading-order-like uncer-
tainty due to scale variations. We anticipate that the width of
the band will decrease when performing a next-to-leading-
order calculation with a similar scale choice. The uncertainty
due to scale variations is largest in phase-space regions most
sensitive to non-shower contributions. For the S⊥ and leading
jet p⊥ distributions, the results of the GKS MECs approach
touch the uncertainty bands attributed to non-shower events
at low values, but are outside of the band in regions influ-
enced by multiple hard jets. Both of these observables are
much improved in the MOPS + unordered method, com-
pared to the uncorrected shower. For the angle between the
Z -boson and the hardest jet we observe a satisfactory data
description for both our new method and Vincia2.0.01.

7 Conclusions

We have presented an algorithm to obtain fixed-order accu-
rate predictions combined with all-order parton-shower evo-
lution that produces finite and non-overlapping results with-
out introducing a merging scale. The new algorithm requires
the introduction of a sophisticated matrix-element correction
method for evolution-induced configurations. States beyond
the reach of the parton shower are included with a system-
atic scale-setting procedure. This smoothly combines non-
shower configurations and states produced in the ordered
parton-shower evolution. The algorithm does not depend
on specific properties of the parton shower and allows for
arbitrary dead zones (which may be required by resumma-
tion considerations). The new fixed-order + parton-shower
scheme has been implemented in the Vincia parton shower
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and will be made publicly available upon the Vincia2.2
release.

The effect of including ME corrections for ordered parton-
shower splittings is minor compared to the uncorrected
shower. This means that the method does not deteriorate
the shower resummation, and gives us confidence that the
improvement does not interfere with other improvement
strategies [57–59]. The main improvements stem from a care-
ful treatment of contributions from phase-space regions that
are not accessible by ordered parton showers. Such contri-
butions are included with a sophisticated scale-setting pre-
scription. For hadronic initial we find the scale setting to
have a sizable influence on observables, since large parts of
phase space are not shower accessible. We presented com-
parisons to data for the pp → Z+jets process and found the
results of our new algorithm to be in good agreement with the
data.
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Appendix A: Review of GKS matrix-element corrections

Iterative ME corrections have first been introduced in [37],
and have been applied to colorless resonance decays [37]
as well as to initial-state radiation [38]. Finite multiplica-
tive correction factors are applied order by order in perturba-
tion theory as the shower evolves. The MEC factor R(�n+1)

replaces the splitting kernels by a ratio of tree-level matrix
elements. Symbolically, the correction factor can be written
as

P(�n+1/�n) −→ R(�n+1) P(�n+1/�n)

≡ |M(�n+1)|2∑
�′

n
P(�n+1/�

′
n)

∣∣M(�′
n)

∣∣2 P(�n+1/�n). (A1)

The denominator sums over all possible n-particle states
through which the shower could have produced the (n + 1)-
particle state.

A 1. Smoothly ordered showers

The MEC formalism in [37,38] requires a history-
independent parton shower that covers the full phase space
for the ME corrected orders. Therefore, Vincia introduces
the concept of smooth ordering. At any stage of the evolu-
tion the following procedure determines at which scale the
shower off each parton in a (n+1)-particle state is restarted:

• Find all physical clusterings �n+1 → �i
n and their

branching scales t (�n+1/�
i
n). The reference scale is the

minimum of all scales, t̂(�n+1) = min i (t (�n+1/�
i
n)).

• Divide the (n + 1)-particle state into a set of “ordered”
and “unordered partons”. For more details see [38].

• The evolution of “ordered partons” is restart at the refer-
ence scale t̂ . “Unordered partons” are allowed to radiate
up to the phase-space maximum, but with the suppression
factor

Pimp
(
t̂(�n+1), t (�n+2/�n+1)

)

= t̂(�n+1)

t̂(�n+1) + t (�n+2/�n+1)
. (A2)

When taking smooth ordering into account, the MEC factor
(A1) should be defined as

R(�n+1) = |M(�n+1)|2∑
�′

n
O

(
t̂(�′

n), t (�n+1/�′
n)

)
P(�n+1/�′

n)
∣∣M(�′

n)
∣∣2 .

(A3)

The ordering criterion reflects the different treatment of par-
tons,

O (
t̂(�′

n), t (�n+1/�′
n)

)

=
{
Pimp

(
t̂(�′

n), t (�n+1/�′
n)

)
for a branching of an “unordered parton”,

�
(
t̂(�′

n) − t (�n+1/�′
n)

)
for a branching of an “ordered parton”.

The procedure guarantees a history-independent parton
shower that covers the full kinematic range. However, it intro-
duces complications that are hard to constrain from QCD
considerations alone.

a. Sudakov factors in unordered regions

Consider the exclusive Born+jet cross section at the end
of parton shower with the following evolution. The shower
starts at the factorization scale of the Born process tfac. After
the branching at scale t1 < tfac, all partons explore their full
kinematic range up to the scale tmax and are evolved down
to the shower cut-off μc. Dropping the PDF factor for the
second leg and suppressing most dependences of the split-
tings kernels, the exclusive cross section for this evolution
sequence reads
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dσ 1(μc) = 	 1(tmax, μc) · αs(t1) P(t1)

× f1(x1, t1)

f0(x0, t1)
	 0(tfac, t1) · f0(x0, tfac) |M(�0)|2 d�1.

(A4)

The no-emission probability 	 1(tmax, μc) can be split up
into an ordered part 	 1(t1, μc) and a part that reflects the
evolution in the unordered region 	 uo

1 (tmax, t1). We use the
relation [60]

	 n(tn, tn+1) = fn(xn, tn+1)

fn(xn, tn)
� n(tn, tn+1) (A5)

to write the cross section in terms of Sudakov factors,

dσ 1(μc) = 	 uo
1 (tmax, t1) · f1(x1, μc) � 1(t1, μc)

× αs(t1) P(t1) � 0(tfac, t1) · |M(�0)|2 d�1. (A6)

The no-emission probability 	 uo
1 (tmax, t1) remains in the

cross section. In Vincia this factor is defined as

	 uo
1 (tmax, t1)

= exp

(
−

∑
1 → 2

∫
dz

∫ tmax

t1
dt

f2(x2, t1)

f1(x1, t1)
αs(t) Pimp P(t, z)

)
.

(A7)

Here, the scale in the PDF ratio is fixed to the scale of the
previous emission to ensure the proper cancellation between
PDF factors for branchings in the unordered region. How-
ever, (A7) does not have a direct correspondence to any term
in the DGLAP equation reformulated as a backwards evolu-
tion [39].

b. Missing evolution and configurations

For low multiplicities, all partons in the system are treated as
unordered and explore their phase space up to the kinematics
limit. However, starting for higher multiplicities, “ordered
partons” are present which restart their evolution at the
Markovian scale. By definition, this scale is smaller or equal
to the scale of the last branching. The allowed branching
range of “ordered partons” is therefore more restricted than
in an ordered shower.

As with every parton shower that only contains QCD
splittings, certain flavor configurations cannot be reached,
independent of kinematic constraints. One such example is
qq̄ → Wq ′q̄ ′′, where the W boson can only be radiated off
the final-state legs. To include such a configuration within
the MECs method an electroweak shower is necessary.

A 2. The treatment of hard jets

To avoid the concept of “power showers” and simultaneously
allow jets with scales t > tfac, Vincia distinguishes between
non-QCD and QCD processes. The latter category covers all
hard processes with partons in the final state (except partons
arising from resonance decay).

In non-QCD processes the input events are divided in two
samples. The first one is associated with no hard jets, while
the second sample contains at least one jet with t > tfac.
Because both samples are weighted differently, this intro-
duces a non-smooth transition, see the left panel of Fig. 5.
When more branchings are taken into account, the effect is
washed out and the step barely visible as shown in the right
panel of Fig. 5.

Fig. 5 Distribution of the Vincia evolution variable after the first branching (left) and the Z boson transverse momentum (right) for pp → Z+jets
at parton level
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(a) (b)

Fig. 6 Parton-level results: the distribution of the merging scale in exclusive 3-parton events (bottom) and the logarithmic distributions of differential
jet resolutions (top). Merged predictions with a merging-scale value of 5 GeV are compared to predictions with the MOPS method

The first emission off a QCD 2 → 2 process is treated
similar to the procedure summarized in Appendix A 1: all
partons are allowed to explore their full phase space, but
with a suppression of

Pimp (tfac, t (�1/�0)) = tfac

tfac + t (�1/�0)
. (A8)

Here the factorization scale replaces the Markovian reference
scale. This leads to similar, leftover no-emission probabilities
from unordered regions as discussed in Appendix A 1.

AppendixB:Validation ofmatrix-element corrections for
ordered emissions in VINCIA

In this section we validate the numerical implementation of
the MOPS method in Vincia by comparing it to merged
predictions using the CKKW-L merging implementation in
Pythia8 [28] applied to Vincia. For the latter we define
the merging scale as the minimum of all evolution scales,
tMS = min i (t (�n+1/�

i
n)). No color information is used to
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Fig. 7 Parton-level results for pp → Z+jets: the distribution of the
merging scale in exclusive 1-parton events (bottom) and the logarithmic
distributions of differential jet resolutions (top). Merged predictions
with a merging-scale value of 5 GeV are compared to predictions with
the MOPS method

find possible clusterings. For the validation we use parton-
level results with a fixed αs for both methods and do not
include events that cannot be reproduced by Vincia with an

Fig. 8 Parton-level results for e+e− → Z → qq̄gg: the distribu-
tion of the merging scale in exclusive 4-parton events (bottom) and the
logarithmic distributions of differential jet resolutions. Comparison of
MadGraph 4, MadGraph 5, and Vincia+ MadGraph 4 + Rambo

ordered sequence of branching scales. To ensure the same
Sudakov factors ME corrections are also applied in the case
of merging.
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Figures 6 and 7 show a comparison between the results
of the MOPS method and merging including a ME corrected
first emission. Each simulation contains at least 108 input
events generated with MadGraph [61,62]. The lower pan-
els present the deviation between the two methods, normal-
ized to the statistical uncertainty of the merged prediction
in the respective bin. As both methods should provide the
same result, this distribution should exhibit statistical fluctu-
ations only. Parton-level results for e+e− → Z → jets and
τ+τ− → H → gluons are presented in Fig. 6. The devia-
tion in the lower panels clearly show that both methods are
identical up to statistical fluctuations.

Similar plots are shown for on-shell Z -boson production
in Fig. 7. Note that we exclude branchings with scales above
the factorization scale for comparison purposes. This is nec-
essary due to how such emissions are generated in Vincia,
see Appendix A 2.

When correcting the second emission, we expect slight
mismatches between the predictions of the two methods.
The matrix elements in Vincia are taken from MadGraph
4. It would thus be preferable to use MadGraph 4 input
for the merging. However, MadGraph 4 is no longer devel-
oped and does not allow for linking against LHAPDF 5 [63],
while Pythia8 requires LHAPDF 5 or higher. Thus, using
the same PDF set for hadronic initial states means that the
input for merging was generated with MadGraph 5. Mad-
Graph 4 and 5 exhibit shape and normalization differences
at the (sub-)percent level in the observables investigated for
the validation, as discussed in the following. As an exam-
ple, we compare the ME output of MadGraph 4 and 5 for
e+e− → Z → qq̄gg with a cut on the invariant mass of jet
pairs, m j j ≥ 5 GeV. We further include curves for the Vin-
cia matrix element integrated with Rambo [64] (an imple-
mentation of which is included in Vincia) and normalized to
the MadGraph 4 cross section, as we are mainly interested in
shape differences. The results are shown in Fig. 8. The ratio
plots shown in the lower panels reveal differences between
all three predictions, mostly at the level of around 0.5%.
While those mismatches are irrelevant in practical studies,
they deteriorate the quality the validation. Nevertheless the
results of the validation are satisfactory. When correcting the
third emission, we anticipate further differences between the
two methods. In Vincia, the color matrices for matrix ele-
ments with two identical quark pairs and at least one gluon
are decomposed by hand; see [38]. Therefore, higher orders
cannot be validated at the same level as the first order.

In Fig. 9 we show a comparison of merging and the MOPS
method for three corrected emissions. The lower panels show
the ratio of predictions with the MOPS method to merged

results. Small deviations between the two methods are vis-
ible at large scales. Considering that the differences are at
most 3%, and that we expect some mismatches, and that the
differences are mostly in a region where non-shower states
have a very large impact (cf. Fig. 3), we find the methods in
good agreement.

Appendix C: Identifying and removing the overlap
between states with different multiplicities

As discussed in Sects. 4 and 5, overlap between (the shower
off) non-shower states with different parton multiplicities
exists and has to be removed. In this section we briefly
explain, for interested readers and practitioners, how differ-
ent states are treated to remove potential overlap.

+0-particle states: The shower is started at the factor-
ization scale tfac of the Born state and no further restrictions
apply.

+1-particle states:Only events where all scales t1 exceed
the factorization scale, t1 > tfac, are taken into account. After
a path is chosen, the shower off the +1-particle state starts
at the scale t1.

+2-particle states: To avoid overlap with the shower off
non-shower +1-particle states, an ordering of the clustering
scales with respect to the factorization scale is not checked.
Only events, where t2 > t1 holds for all paths, are taken into
account and the effective scale t eff

2 is calculated. If tfac > t eff
2

a Sudakov factor �(tfac, t eff
2 ) is attached by trial-showering

the clustered Born state. The shower off the +2-particle state
starts at t eff

2 .
+n-particle states (n ≥ 3): As for the non-shower +2-

particle states, an ordering of the clustering scales with
respect to the factorization scale is not checked. Only events
without an ordered path are taken into account. The effec-
tive scales t eff

2 , t eff
3 , . . . t eff

n are calculated and the smallest
k ∈ {2 . . . n} which leads to an ordered sequence of scales,
t eff
k > tk+1 > · · · > tn , is found. If k ≤ n − 2, the event

is removed from consideration due to overlap with show-
ering lower-multiplicity non-shower states, see Sect. 5. If
k = n − 1, i.e. t eff

n−1 > tn , the event is removed, if the clus-
tered +(n − 1)-particle state is itself a non-shower state.
For events that are not rejected we chose one of the paths
for which t eff

n−1 > tn holds and attached the Sudakov fac-
tors �(tfac, t eff

n−1)�(t eff
n−1, tn). The shower off the +n-particle

state starts at tn . If no scale hierarchy is found, the event is
retained, the Sudakov factor �(tfac, t eff

n ) is attached, and the
+n-particle states is showered from t eff

n .
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(a) (b)

Fig. 9 Parton-level results: the distribution of the merging scale in exclusive 4- and 5-parton events (bottom) and the logarithmic distributions of
differential jet resolutions (top). Merged predictions with a merging-scale value of 5 GeV are compared to predictions with the MOPS method
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5.2 CKKW-L Merging

This section sketches the relevant steps to perform the CKKW-L merging for com-
bining the parton shower with LO matrix elements of different multiplicity. As
an example, the process pp → Z + ≤ 3 jets is used in the context of the PYTHIA

8 + VINCIA framework. Event samples for pp→ Z + n · j (n ∈ {0 . . . 3}) with fixed
renormalization and factorization scales, µRME and µF ME , are generated, for in-
stance with MADGRAPH. If theZ boson is accompanied by additional jets, the cross
section has to be regularized by applying a cut. This is expressed as Θ

(
tnME − tcut

ME

)
,

where tcut
ME is the numerical value of the cut and the superscript n denotes the num-

ber of additional partons in the event sample. The definition of the cut tnME is in
principle arbitrary. However, if the functional form of tnME is not identical to that
of the merging scale tnMS, the full phase space might not be covered. Thus, we as-
sume tnME ≡ tnMS and the cut in the ME to be more strict, compared to the cut in the
merging, i.e. tcut

ME < tcut
MS. 1 The event samples for pp → Z + ≤ 3 jets are generated

according to the differential cross sections

dσpp→Z+n·j = fn(xn, µ
2
F ME) αns (µ2

RME) |MZ+n·j |2 Θ
(
tnMS − tcut

MS

)
dΦZ+n·j . (5.1)

For the sake of readability only one PDF factor is used. Flux factors are included
in the phase-space and the strong coupling is explicitly written down. The sub-
and superscripts n indicate how many final state partons exist. Simply showering
and adding the events leads to the double counting problem introduced in sec. 3.4.
Instead, the following procedure is applied to each event sample:

1. A complete history tree is set up by constructing all possible ways the event
can be clustered back to the underlying Born state (pp → Z). Such a history
tree is shown in fig. 5.1 for qq̄ → Zgg and qq̄′ → Zqq̄′. In VINCIA only one
clustering from pp→ Zj to pp→ Z exists.

2. A probability is assigned to each path in the tree, corresponding to the
product of splitting functions A and the ME of the Born state, e.g. P1 =

A
(1)
1 A

(1)
2

∣∣M(1)
Z

∣∣2 and P2 = A
(2)
1 A

(2)
2

∣∣M(2)
Z

∣∣2 for qq̄ → Zgg. One path is
selected among all, based on the relative probabilities. If ordered and un-
ordered paths are present, e.g. if t(1)

1 > t
(1)
2 and t(2)

1 < t
(2)
2 , only ordered paths

are considered.

3. No-emission probabilities Πpp→Z
(
µ

(p)
F , t

(p)
1

)
Πpp→Zj

(
t
(p)
1 , t

(p)
2

)
are attached to

the selected path p by means of trial showers [75]. The αs reweighting factor
for path p is

n∏

i=1

αs(k
(p)
i t

(p)
i )

αs(µ2
RME)

. (5.2)

1At the beginning of the merging procedure, the cross section is recalculated, taking into account
the looser cut due to the merging scale.
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Figure 5.1: History trees for qq̄′ → Zqq̄′ (left) and a qq̄ → Zgg (right). The super-
scripts indicate a horizontal numbering within each tree. Solid (dashed) lines rep-
resent initial-initial (initial-final) clusterings: gluon emissions are red, gluons back-
wards evolving to quarks blue, and quarks backwards evolving to gluons green.

The product runs over the n segments of the selected path and replaces all αs
factors of the ME calculation with the couplings of the corresponding branch-
ing. With the superscript p dropped, the PDF reweighting factor is

f0(x0, µ
2
F )

fn(xn, µ2
F ME)

n∏

i=1

fi(xi, ti)

fi−1(xi−1, ti)
. (5.3)

The first PDF ratio replaces the PDFs in the ME calculation with the PDFs that
the shower would have used as input for the Born state. The following PDF
ratios reproduce the ones associated with each shower branching.

4. Further radiation is allowed through showering the event from t
(p)
n (or µF

for the lowest multiplicity sample). To avoid overlap between event samples
with different multiplicities, the event is rejected if an additional branching
results in a merging scale of tMS > tcut

MS , evaluated on the configuration after
the branching. This cut is applied on all but the largest-multiplicity sample.

The selection and reweighting of the paths, together with the attached no-emission
probabilities, reproduces the shower behaviour, see eq. (3.22). The emission pat-
terns for pp→ Z + ≤ 3 jets are now LO correct for scales above the merging cut.
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6
Helicity Antenna Showers

The speed of the event generation is a crucial factor of MCEGs. The most compu-
tationally intense calculations performed in VINCIA are the ME evaluations during
the MEC procedure discussed in chaps. 4 and 5. In Feynman-diagram based ap-
proaches, as implemented for instance in MADGRAPH, the ME result is obtained
by taking into account all possible helicity configurations; summing over the he-
licities of outgoing particles and averaging over the incoming ones. Helicity is a
gauge invariant quantum number and describes the projection of the spin onto
the direction of momentum. The possible helicity states of partons are + and −,
whereas massive spin-1 objects have three, and spin-0 objects one possible helic-
ity state. For massless particles, helicity is a “good quantum number”, i.e. it is a
conserved quantity. The definition of the spin for massive particles is ambiguous
though. Defining it by a projection onto a reference vector breaks Lorentz invari-
ance and defining it by chirality (determined by the transformation property of a
particle, see e.g. [146]) results in spin-flips. Chirality, however, has the advantage of
being Lorentz invariant and equal to helicity for massless particles. In the current
version of VINCIA the ambiguity is not taken into account as all partons are treated
massless and the helicity of massive particles, such as the Z boson, is summed or
averaged over. Caluating the ME by summing and averaging over helicities implies
evaluating the amplitudes for an increasing number of different helicity configura-
tions with increasing particle multiplicity. For instance, 48 helicity states exist for
pp → Zjj. If, however, the parton shower is capable of assigning explicit helici-
ties to all partons, a significant increase in speed is achieved. Instead of summing
over the helicity configurations, the amplitude has to be evaluated for only one
state. This is possible as amplitudes with different external helicity states do not
interfere.

A helicity-dependent antenna shower for final-state radiation has already been in-
troduced in [147]. The extension to hadronic initial states is rather straightforward;
we present a complete helicity-dependent antenna shower for initial- and final-
state radiation in the publication in sec. 6.1, together with the corresponding an-
tenna functions. A further small increase in speed is achieved by using Maximally
Helicity Violating (MHV) amplitudes. A n-particle state, where all particles are con-
sidered outgoing, is in a MHV configuration if n−1 particles have the same helicity.
In this case the ME calculation reduces to a rather simple expression. A library of
analytical MHV amplitudes for purely partonic external states and one lepton pair
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plus partons has been implemented in VINCIA by Andrew Lifson. In the publica-
tion in sec. 6.1 we show how a helicity-dependent antenna shower for final- and
initial-state radiation and MHV amplitudes are used to increase the speed of the
parton shower with MECs. In addition, we introduce user-specifiable variations of
the renormalisation scale and splitting kernels. Following the publication, sec. 6.2
shows how to obtain helicity-dependent antenna functions, given the unpolarized
antenna functions and helicity-dependent DGLAP splitting kernels.

The helicity-dependence itself does not provide different radiation patterns, com-
pared to the helicity-summed and -averaged parton shower. As will be shown in
sec. 6.1, the singular terms of the generated radiation patterns are the same for both
models. Therefore, the evolution of PDFs remains intact as the DGLAP limits of the
antenna functions are not changed. By assigning explicit helicities to all partons, no
unphysical helicity configurations are produced in the shower. However, there is
no “consumer” of this information, i.e. neither the PDFs nor the fragmentation
functions make use of it. The situation is fairly similar when MECs are applied:
the parton-shower evolution is corrected such that all physical helicity states are
generated according to the appropriate LO ME. The same holds for the helicity-
independent shower, where unphysical helicity configurations do not contribute to
the sum and average in the ME calculation.

6.1 Published Material

Helicity Antenna Showers for Hadron Colliders

Nadine Fischer, Andrew Lifson, and Peter Skands

Published in The European Physics Journal C 77 no. 10 (2017) 719
DOI: 10.1140/epjc/s10052-017-5306-7
e-Print: arXiv:1708.01736 [hep-ph]
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Abstract

We present a complete set of helicity-dependent 2 → 3 antenna functions for QCD initial- and final-
state radiation. The functions are implemented in the Vincia shower Monte Carlo framework and are
used to generate showers for hadron-collider processes in which helicities are explicitly sampled (and
conserved) at each step of the evolution. Although not capturing the full effects of spin correlations,
the explicit helicity sampling does permit a significantly faster evaluation of fixed-order matrix-element
corrections. A further speed increase is achieved via the implementation of a new fast library of analytical
MHV amplitudes, while matrix elements from Madgraph are used for non-MHV configurations. A few
examples of applications to QCD 2 → 2 processes are given, comparing the newly released Vincia 2.200
to Pythia 8.216.

1 Introduction

The description of bremsstrahlung processes in parton-shower event generators typically starts from the prob-
ability density for unpolarised partons to emit unpolarised radiation, i.e., DGLAP kernels or dipole/antenna
functions summed over outgoing and averaged over incoming polarisations/helicities. One way of incorporat-
ing nontrivial polarisation effects, used in Pythia [1], is to correlate the plane in which a gluon is produced,
with the plane in which it subsequently branches, taking linear-polarisation effects into account on the in-
termediate propagator, and casting the result in terms of a non-uniform selection of the azimuthal ϕ angle
around the direction of the branching gluon, see, e.g., [2]. A more complete, but also more cumbersome,
alternative, used in Herwig [3], is to keep track of spin correlations explicitly, using a spin-density matrix
formalism [4–6]. In both cases, the nontrivial angular correlations ultimately arise from dot products between
reference vectors expressing linear polarisations.

By contrast, a helicity basis does not rely on any external reference vectors, and hence helicity-dependence
in and of itself does not generate any nontrivial angular correlations. Nonetheless, helicity-dependent radi-
ation functions, as used for final-state radiation in Vincia for a few years [7], do have some advantages:
helicity conservation can be made explicit, allowing to trace helicities through the shower; unphysical helicity
configurations are prevented from contributing to sums and averages; and the explicit helicity assignments
allow faster evaluations of matrix-element correction (MEC) factors, since only a single (or a few) helicity
amplitudes need to be evaluated for each ME-corrected parton state [7].

The concept of ME corrections was first developed to improve the description of radiation in Pythia (then
called Jetset) outside the collinear region to agree with first-order matrix elements for e+e− → 3 jets [8,9],
and was since extended to correct the first emission in a wide range of resonance-decay processes and some
(colour-singlet) production processes [10, 11]. It was also used as a component of the first ME correction
strategies in Herwig [12,13], and it forms the basis of the treatment of real corrections within the Powheg
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formalism [14,15]. We note that, in these approaches, only the first shower emission is corrected, essentially
by applying a multiplicative factor,

RMEC =
ME

PS
, (1)

to the shower kernels, where ME is the relevant matrix-element expression (typically called “R” in Powheg
notation) and PS represents the (sum of) parton-shower contributions to the given phase-space point.

The limitation to single emissions was lifted by the development of iterated ME corrections [16]1, im-
plemented in Vincia [17, 18], again first in the context of e+e− → jets [16] and subsequently for hadron
collisions [18,19]. Importantly, the most recent study in [19] extended the formalism to strongly-ordered and
non-Markovian shower algorithms, expanding its applicability to essentially any shower algorithm in modern
MC generators. Although a helicity-dependent (and hence computationally faster) version of the iterated-
MEC algorithm was developed for final-state radiation [7], a fully-fledged helicity-dependent version for
hadron collisions (and for strongly-ordered non-Markovian showers) has so far been missing. The aim of this
paper is to develop this missing piece, while simultaneously presenting a complete set of helicity-dependent
(and positive-definite) antenna functions for 2 → 3 branchings for both initial- and final-state radiation. In
addition, some helicity configurations (called “maximally helicity violating”) can be expressed in compact
analytical forms, hence we use such amplitudes for QCD 2→ n processes whenever possible to speed up the
calculation further. For non-MHV configurations, we use matrix elements from Madgraph 4 [20]. (Note
that the use of Madgraph 4 puts some limitations on the configurations for which the relevant information
for MEC factors can be extracted easily from the matrix elements. In particular, this is the case for ampli-
tudes with multiple quark pairs. These limitations will be lifted by a new interface to Madgraph 5 which
is currently under development [21].)

This article is organised as follows. In sec. 2, we give an overview over the helicity-dependent shower
in Vincia, including the extension to initial-state radiation and changes with respect to [18]. The matrix-
element correction formalism is reviewed in short in sec. 3 together with a brief introduction to the MHV
amplitudes in Vincia. In sec. 4, we report on the new user-specifiable uncertainty variations. Results are
presented in sec. 5, before giving some concluding remarks in sec. 6. The helicity-dependent antenna functions
are given in app. A.

2 Helicity-Dependent Showers

A helicity-dependent antenna shower for final-state radiation has already been introduced in [7]. The exten-
sion to hadronic initial states is straightforward. We start with a brief review of how emissions are generated
and helicities selected. In cases where an event with unpolarised partons is showered by Vincia, a polariser
function is first called, which uses helicity matrix elements to assign explicit helicities to all partons. Since
the events are also assigned colour flows, we first define the joint probability to select a parton configuration
with a colour flow i and a set of helicities h,

P (h, i) =
FCh∑
h′ FCh

′

︸ ︷︷ ︸
Helicity-Selection Factor

× LChi∑
j LChj︸ ︷︷ ︸

Colour-Flow Selection Factor

, (2)

where the full-colour (FC) and leading-colour (LC) matrix elements squared are defined by

FCh =
∑

i,j

Mh
iMh∗

j (3)

LChi = |Mh
i |2 (4)

1We note that a form of iterated ME corrections is also used throughout the Pythia showers to impose quark-mass correc-
tions [11], but the resulting process-dependent nonsingular terms will still only be fully correct for the first emission.

2
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with Mi the amplitude for colour-ordering i. We also make use of the notation

VChi = FCh
LChi∑
j LChj

(5)

for the fraction of the full-colour helicity matrix element squared that is projected onto LC colour flow i.
As written here, the easiest would be to start by generating a helicity configuration, using the first factor

in eq. (2) and then subsequently generate a colour flow using the second factor. For events which already
have colour-flow assignments, the conditional probability for choosing helicity configuration h is simplest to
define in terms of the redefined LC matrix elements,

P (h|i) =
VChi∑
h′ VCh

′
i

. (6)

(If the corresponding matrix elements do not exist in Vincia, the event will remain unpolarised and showered
using helicity-averaged and -summed antenna functions.)

For events with explicit helicities, trial branchings are generated just as in the helicity-independent shower,
i.e., using unpolarised trial-antenna function overestimates. After generating the post-branching kinematics
(see, e.g., [17, 18]), the total probability for accepting a branching (denoting pre-branching partons by AB
and post-branching ones by ijk)2 is:

Paccept =
Aphys

Atrial
=

∑
hi,hj ,hk

A (hA, hB ;hi, hj , hk)

Atrial
, (7)

for fixed helicities hA,B of the parent partons. The sum over daughter helicities, hi,j,k, in the physical
antenna function, Aphys, runs over all possible (physical) helicities for the ijk partons, with each term,
A (hA, hB ;hi, hj , hk), being a helicity-dependent antenna function. To avoid clutter, and for ease of reference,
we collect the precise forms for these functions in the appendix. We note that some of the functions differ
(by nonsingular terms) from those used in previous versions of Vincia, in particular those in [7,18]. We also
note that the accept probability defined by eq. (7) is in general identical to the unpolarised one (i.e., where
one averages over hA and hB as well), up to nonsingular terms. In case of initial-state radiation, eq. (7) will
be multiplied with the accept probability for the PDF ratios, just as in the unpolarised case [18].

Explicit helicities are then selected for the daughters according to the relative probabilities given by the
antenna functions,

P (hA, hB ;hi, hj , hk) =
A (hA, hB ;hi, hj , hk)∑

hi,hj ,hk

A (hA, hB ;hi, hj , hk)
, (8)

where the denominator is equal to the numerator in eq. (7). Helicities are assigned to initial-state partons as
well, using the same formalism. With the assumption that positive-helicity partons appear equally often as
negative-helicity ones in the (anti)proton, the algorithm does not require any modifications when considering
initial-state partons.

Helicity conservation implies that, for gluon emission off (massless) quarks or final-state gluons, the parent
partons do not change their helicities. A subtlety arises, however, for emissions off initial-state gluons. In the
perspective of forwards evolution, such a branching looks like g I

i → g I
Ag

F
j , where superscript I (F ) denotes an

initial-state (final-state) parton; clearly, the helicity of parton i can be inherited by either parton j or parton
A without violating helicity conservation. Hence the reader should not be confused by the appearance of
physical initial-state antenna functions for which hA 6= hi in apps. A.3 and A.4, with corresponding DGLAP
limits given in app. A.6.

For completeness, we also report on the following changes in Vincia with respect to [18]:

2This is the same labelling convention as used in the Vincia reference for final-state helicity showers [7].
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• The so-called “Ariadne factor” [22] for gluon splitting antennae has been removed completely, as it has
only been applied to 4-jet events in hadronic Z decays and its influence cancels once ME corrections
are used in the evolution.

• The CMW-rescaling of αs [23] is no longer applied to the soft-eikonal terms of the antenna functions,
but rather as a global rescaling of ΛQCD, independent of the type of branching.

• By default the power shower approach is used for hard process without QCD partons in the final state.
This obviates the need for a separate event sample containing jets associated with scales larger than
the factorisation scale, which has been introduced in [18]. For QCD-type processes the shower starts
the evolution at the factorisation scale.

• The so-called “smooth ordering”, which allows the shower to populate phase-space regions beyond the
reach of traditional ordered showers, is no longer used. Consequently, the MECs formalism so far used
in Vincia is no longer applicable and the MECs method for ordered showers of [19] is applied. See
sec. 3 for a brief review of the formalism.

• The CKKW-L merging implementation in Pythia 8 [24] is now also available in Vincia, making use
of the parameters in Pythia 8. This allows to supplement the MECs method for ordered showers
with non-shower-like events, as discussed in [19]. Note however, that it is not possible to combine the
merging procedure with the helicity-dependent shower.

• The hard-coded uncertainty variations have been replaced by the user-specifiable variations which are
described in detail in sec. 4.

3 Matrix-Element Corrections and MHV amplitudes in Vincia

3.1 Matrix-Element Corrections

The GKS formalism for iterated matrix-element corrections [16] was originally based on so-called smoothly
ordered showers, with a Markovian (history-independent) choice of restart scale after each branching. This
allows the shower algorithm to generate phase-space points that violate the nominal ordering condition of the
shower, at a suppressed but still non-zero rate, thus filling previously inaccessible regions of phase space; the
correct (tree-level) emission rates can then be obtained via matrix-element corrections just as in the ordered
part of phase space. However, general arguments indicate that the effective Sudakov factors for the non-
ordered histories, are probably not correct [18,25,26]. Recent efforts [19,26] have therefore shifted focus back
to filling the phase space for multiple hard emissions while remaining within the paradigm of strong ordering.
In particular, we take the strongly-ordered iterated-MEC formalism presented in [19] as our starting point,
and adapt it to include explicit helicities.

The question of Markovian vs non-Markovian behaviour comes about since the value of the shower evo-
lution parameter in conventional strongly-ordered showers depends on which parton was the last one to be
emitted. This cannot be uniquely determined merely by considering a given parton configuration; the value is
a function of what shower history (or path) led to the configuration in question; a non-Markovian aspect. In
the context of iterated ME corrections, non-Markovianity implies that the MEC factors contain nested sums
over shower histories involving clusterings all the way back to the Born configuration (while a Markovian
algorithm only requires a single level of clusterings [16]).

Within the formalism presented in [19], the splitting kernels are redefined by multiplying them with the
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correction factor

R(Φn+1) = |M(Φn+1)|2
[∑

Φ′n

A (Φn+1/Φ′n) R(Φ′n)
∑

Φ′n−1

Θ(t(Φ′n/Φ′n−1)− t(Φn+1/Φ′n)) A (Φ′n/Φ′n−1) R(Φ′n−1)

k≤1∏

k=n−2


∑

Φ′k

Θ(t(Φ′k+1/Φ′k)− t(Φ′k+2/Φ′k+1)) A (Φ′k+1/Φ′k) R(Φ′k)




∑

Φ′0

Θ(t(Φ′1/Φ′0)− t(Φ′2/Φ′1)) A (Φ′1/Φ′0) Θ(t(Φ′0)− t(Φ′1/Φ′0)) |M(Φ′0)|2
]−1

. (9)

|M(Φn+1)|2 denotes the matrix element squared of the Φn+1 state and A (Φn+1/Φ
′
n) the antenna function,

associated with the clustering Φn+1 → Φ′n. The denominator sums over all possible ways the shower could
have produced the n+1-particle state Φn+1 from a given Born state Φ′0, including the correct weights of every
shower step on the way. This yields the recursive structure of eq. (9) and the dependence on the correction
factors of the previous orders. In addition the (process-dependent) scale t(Φ′0), at which the shower starts
the evolution off the Born state is taken into account.

For a helicity-dependent correction, we modify eq. (9) such that, for a given polarised Φn state, the
sums over the intermediate states Φn−1 . . .Φ0 are extended to include all possible helicity configurations. As
an example, consider a possible clustering of a final-state qq̄ pair to a gluon. In the unpolarised case, one
term corresponding to the clustering qq̄ → g contributes with the respective unpolarised antenna function
and matrix element (which both implicitly involve helicity sums of course). For a polarised q+q̄− pair, two
different clustered helicity states are possible, q+q̄− → g+ and q+q̄− → g−, each contributing according to
their antenna function and matrix element. The evolution variable, however, is the same as in the unpolarised
case. This concludes our discussion of helicity-dependent matrix element corrections.

3.2 MHV Basics

For fast evaluation of certain types of helicity configurations Vincia uses Maximally Helicity Violating
(MHV) amplitudes. MHV amplitudes have the advantage of being compact analytical expressions which
are independent of Feynman diagrams; see [27, 28] for reviews. In this section, we briefly introduce the
concepts and notation relevant to understanding the conventions and properties of the small library of MHV
amplitudes implemented in Vincia.

In the following we consider all particles to be outgoing and massless. We recall that in this limit a
particle’s helicity corresponds to its chirality, and define our spinors in the helicity basis:

v∓(p) = u±(p) =
1

2

(
1± γ5

)
u(p) , v∓(p) = u±(p) = u(p)

1

2

(
1∓ γ5

)
. (10)

The notation 〈ij〉 and [ij] is used for inner products of such spinors:

u−(i)u+(j) ≡〈ij〉 =
√
p+
j e

iφi −
√
p+
i e

iφj , (11)

u+(i)u−(j) ≡[ij] = 〈ji〉∗ , (12)

in terms of the (light-cone) momentum p+
i = p0

i + p3
i and eiφi = (p1

i + ip2
i )/
√
p+
i . For more details about

spinor inner products and their properties see e.g. [27, 28]. Note that in recent literature one often finds the
convention [ij] = 〈ij〉∗, which is different to above (see e.g. [29]).

In the all-outgoing convention, helicity conservation implies that at least two pairs of opposite-helicity
partons must exist for an n-parton amplitude to be nonzero3. If the remaining n− 4 partons are all chosen
to be of the same helicity (+ or −), the amplitude is called maximally helicity violating (MHV), and has

3E.g., think of ++ → ++ and cross the two incoming positive helicities to be outgoing negative ones.
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a remarkably simple structure. The first MHV amplitude to be discovered was the all-gluon Parke-Taylor
amplitude [30]. In the following years this was extended to include one [31, 32] and two [33–35] quark pairs,
as well as to the case of a quark pair and a massive vector boson which decays leptonically [36,37].

All-Gluon Amplitudes: To use these amplitudes we first note that the colour information can be fac-
torised from the kinematics. In the n-point all-gluon case we use:

Mn(g1, g2, . . . , gn) = gn−2
s

∑

σ∈Sn/Zn
Tr(taσ(1) . . . taσ(n))An(σ(ph1

1 ), . . . , σ(phnn )) , (13)

where gs is the strong coupling (g2
s = 4παs), the normalisation convention is ta = λa

√
2 with λa being the

generators of SU(3), pi is the gluon momentum, hi the gluon helicity, Tr(taσ(1) . . . taσ(1)) the colour factor and
An(σ(ph1

1 ), . . . , σ(phnn )) the kinematic part of the amplitude. The sum is over all non-cyclic permutations σ
of the particles. The Parke-Taylor amplitude then describes the kinematic part of eq. (13) and is given by:

An(i−, j−) = i
〈ij〉4

〈12〉〈23〉 . . . 〈n1〉 , (14)

where gluons i and j have negative helicity, and all other particles have positive helicity.

One Quark Pair: If we add a qq̄ pair we require that the quark and antiquark have opposite helicities
(consistent with the gluon having spin 1), and use the following colour basis:

Mn(q, g1, g2, . . . gn−2q̄) = gn−2
s

∑

σ∈Sn−2

(taσ(1) , . . . taσ(n−2))ijAn(qhqσ(ph1
1 ), . . . , σ(p

hn−2

n−2 )q̄hq̄ ) , (15)

where q, hq, and i (q̄, hq̄, and j) are respectively the quark (anti-quark) momentum, helicity, and colour
index; and the sum is over all permutations of the gluons. If the quark and gluon i each have negative
helicity and all other particles positive helicity, then the kinematic amplitude is the given by:

An(q−, i−, q̄+) =
〈qi〉3〈q̄i〉

〈q̄q〉〈q1〉〈12〉 . . . 〈(n− 2)q̄〉 , (16)

where the numbers refer to the (colour-ordered) gluons. If we exchange the helicities on the quarks, it is
sufficient to exchange the exponents in the numerator:

An(q+, i−, q̄−) =
〈qi〉〈q̄i〉3

〈q̄q〉〈q1〉〈12〉 . . . 〈(n− 2)q̄〉 . (17)

Two Quark Pairs: The four-quark, n− 4 gluon colour structure is given by:

Mn(q,q̄, Q, Q̄, g1, . . . gn−4) = gn−2
s

A0(hq, hQ, hg)

{qq̄}{QQ̄} ×( ∑

σ∈Sn−4

(taσ(1) . . . taσ(k))qQ̄(taσ(k+1) . . . taσ(n−4))Qq̄ ×A(0)
n (q, 1, . . . , k, q̄, Q, k + 1, . . . , n− 4, Q̄)

− 1

NC
(taσ(1) . . . taσ(k′))qq̄(t

aσ(k′+1) . . . taσ(n−4))QQ̄ ×A(1)
n (q, 1, . . . , k′, q̄, Q, k′ + 1, . . . , n− 4, Q̄)

)
,

(18)

where {ij} = 〈ij〉 for positive-helicity gluons and {ij} = [ji] for negative-helicity gluons; q and Q label the
two quark lines; A0(hq, hQ, hg) is a kinematic function which depends on the helicities of the two quarks and
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the gluons,
(hq, hQ, hg) A0(hq, hQ, hg)
(+,+,+) 〈q̄Q̄〉2
(+,+,−) [qQ]2

(+,−,+) 〈q̄Q〉2
(+,−,−) [qQ̄]2

, (19)

with opposite-helicity cases obtained using parity transformation 〈ij〉 ↔ [ji]; and the two functions A
(0)
n and

A
(1)
n are kinematic amplitudes, for which we have used the short-hand notation q ≡ qhq , i ≡ σ(phii ) etc.:

A(0)
n =

{qQ̄}
{q1}{12} . . . {kQ̄}

{Qq̄}
{Q(k + 1)}{(k + 1)(k + 2)} . . . {(n− 4)q̄} , (20)

A(1)
n =

{qq̄}
{q1}{12} . . . {kq̄}

{QQ̄}
{Q(k + 1)}{(k + 1)(k + 2)} . . . {(n− 4)Q̄} . (21)

We must sum over all possible partitions of gluons between the two quark colour lines, and also over all
possible permutations of gluons within those partitions. If there are no gluons propagating off a particular
colour line, then that colour line is described by a Kronecker delta. Note that this decomposition only works
for the MHV configuration.

Drell-Yan, DIS, and hadronic Z decays: To create MHV amplitudes with a single quark pair, a single
lepton pair, and an arbitrary number of gluons, the four-quark amplitude can be recycled with all gluons
coming from a single quark line. The second quark line is now equivalent to a ll̄ pair up to couplings and an
overall propagator factor. The amplitude then has the form

Mn(hq, hl, hg) = ign−4
s

∑

σ∈Sn−4

(taσ(1) , . . . taσ(n−4))ijAn(qhq , σ(ph1
1 ), . . . , σ(p

hn−4

n−4 ), q̄hq̄ , lhl , l̄hl̄) , (22)

where the sum is again over all gluon permutations. The kinematic amplitude is given by

An(q, 1, . . . , n− 4, q̄, l, l̄) =
∑

V=γ,Z,W±

M l
V (hl, hq, hg)

1

{q1}{12} . . . {(n− 4)q̄} , (23)

where the braces have the same meaning as in eq. (21), and the function M l
V is given by

M l
V (hl, hq, hg) =

A0(hl, hq, hg)[l̄l](v
l
±)V (vq±)V

〈ll̄〉[l̄l]−M2
V + iΓVMV

, (24)

where A0(hl, hq, hg) is given by eq. (19), (vl±)V ((vq±)V ) is the coupling of lepton l (quark q) with helicity ±
to vector V , and MV and ΓV are the mass and width of the vector boson respectively.

Finally, we remark that in all of the above expressions, flipping the helicity of every particle is equivalent
to exchanging each 〈ij〉 ↔ [ji]. This concludes our brief recapitulation of the basics of the MHV formalism
and convention choices.

3.3 MHV within Vincia

The MHV amplitudes that are made available in standalone Vincia are summarised in tab. 1. Note that
these amplitudes are so far only used for QCD 2→ n matrix-element corrections, and that the second quark
pair must have a different flavour to the first.

The colour-summed squared matrix element is calculated using the following matrix equation:

FC =
∑

ij

A†σiCijAσj , (25)
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Type of process Number of particles
All-gluon 4-6

1 quark pair plus gluons 4-7
2 quark pairs plus gluons 4,5

1 lepton pair, 1 quark pair plus gluons 4-9

Table 1: The types of processes available in Vincia’s MHV library.

where FC stands for the full colour-summed matrix element squared as in eq. (3), Cij is a colour matrix
obtained by multiplying the colour factor from permutation σi onto the conjugate colour factor from σj , and
the sum is over all colour orders. We optimise the all-gluon amplitudes by diagonalising Cij for the 4 and
5-gluon matrix elements, and partially diagonalising Cij for the 6-gluon matrix element as done in [27].

By default, Vincia uses MHV amplitudes wherever possible to compute its matrix-element correction
factors, thus ensuring the fastest possible run time. However, this can be turned off (e.g., for cross checks
with amplitudes from Madgraph) using the flag vincia:useMHVamplitudes. To calculate an MHV ME
correction, Vincia actively crosses the initial-state partons into the final state, rearranges the partons into
the correct colour order, calculates all of the explicit spinor products needed, and then calculates the matrix
element squared.

The calculation of ME corrections for MHV configurations exhibits the nice feature that all clustered
states in eq. (9) are MHV configurations as well. Helicity conservation does not allow ++→ − nor −− → +
clusterings (in the all-outgoing convention). This results in clustered states being either MHV configurations
themselves or unphysical states with a vanishing amplitude. Consider n positive- and 2 negative-helicity
outgoing partons as an example. Here clustered states contain either n− 1 positive- and 2 negative-helicity
partons (MHV) or n positive- and 1 negative-helicity partons (unphysical).

For instructions on how to use Vincia for calculating spinor products or MHV amplitude in a standalone
context, see the online user guide [38].

3.4 Polarising events with MHV

The fact that Vincia assigns helicities to unpolarised events, with relative probabilities according to the
corresponding helicity matrix elements squared, was briefly discussed in sec. 2. An interesting simplification
occurs when all of the contributing amplitudes are of the MHV kind, as is, e.g., the case for all QCD 2→ 2
and 2 → 3 processes. The simplification follows by noting that the full-colour (FC) MHV matrix elements
squared all have the following form (so long as there is at most one quark pair):

FCh = |Ahn(1, . . . , n)|2
∣∣∣∣∣
∑

σ

1

〈σ(1)σ(2)〉 . . . 〈σ(n)σ(1)〉CF(σ(1) . . . σ(n))

∣∣∣∣∣

2

≡Mh
n

∣∣∣∣∣
∑

σ

F (σ)

∣∣∣∣∣

2

, (26)

where h is a label denoting the helicity assignments, Mh
n ≡ |Ahn(1, . . . , n)|2 is some function of the helicities

and momenta, σ is the relevant set of permutations, CF is the relevant colour factor at the amplitude level,
and |∑σ F (σ)|2 is the square of the sum over colour permutations. For example, in the all-gluon amplitude
Ahn(1, . . . , n) could be 〈ij〉4. We have therefore factored out the helicity information Mh

n from the colour
information. This also works for the LC matrix elements LChi which are given by eq. (26) above without the

sum of permutations. That is, LChi = Mh
n |F (σi)|2. Recall that the conditional probability defined in (6)

used to pick helicities for configurations that already have colour assignments has the form:

P (h|i) =
VChi∑
h′ VCh

′
i

=
FChLChi∑

j LChj

[∑

h′

FCh
′
LCh

′
i∑

k LCh
′
k

]−1

. (27)
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We can use eq. (26) to simplify this:

P (h|i) =
Mh
n |
∑
σ F (σ)|2Mh

n |F (σi)|2∑
jM

h
n |F (σj)|2

[∑

h′

Mh′
n |
∑
σ′ F (σ′)|2Mh′

n |F (σi)|2∑
kM

h′
n |F (σk)|2

]−1

= Mh
n

|∑σ F (σ)|2 |F (σi)|2∑
j |F (σj)|2

[
|∑σ′ F (σ′)|2 |F (σi)|2∑

k |F (σk)|2
∑

h′

Mh′
n

]−1

=
Mh
n∑

h′M
h′
n

. (28)

This shows that our factorisation allows to use the much simpler expressions Mh
n ≡ |Ahn(1, . . . , n)|2 to polarise

the process. QCD processes are non-chiral, so we explicitly calculate only half of the factors Mh
n to polarise

them, since the other half are equal by parity. For the mostly-plus helicity case the factors Ahn(1, . . . n) are

Process Negative-helicity particles Ah0 (1, . . . , n)
All-gluon i, j 〈ij〉4

Single Quark Pair q, i 〈qi〉3〈q̄i〉
Single Quark Pair q̄, i 〈qi〉〈q̄i〉3

Quark Pair and Lepton Pair − A0(hl, hq,+)(vl±)V (vq±)V

, (29)

while the mostly plus factors are given by the usual parity relation.
Note that this also holds for the full-colour amplitudes used for selecting helicities at the colour-summed

level, cf. eq. (2),

P (h) =
FCh∑
h′ FCh

′ =
Mh
n∑

h′M
h′
n

|∑σ F (σ)|2

|∑σ′ F (σ′)|2
=

Mh
n∑

h′M
h′
n

. (30)

The preceeding argument also works for 4-quark MHV amplitudes with distinct quark pairs provided one
changes eq. (26) to include the second colour connection. However, this doesn’t work for all 4-quark MHV
amplitudes because there is an extra colour-connection when two identical quarks have the same helicity.
Hence the colour factor depends on the helicity and cannot be factorised.

3.5 Speed Comparisons

As a measure of the relative speed of helicity-dependent vs helicity-summed ME corrections, and the difference
between using MHV matrix elements or Madgraph 4 ones, we consider the following specific (but fairly
representative) benchmark case: qg → qg Born-level processes, with a minimum p̂⊥ of 100 GeV, in pp
collisions with Ecm = 10 TeV. A technical point is that, for this comparison, we switch g → qq̄ branchings off
in the shower, so that the generated shower configurations are all of the simple qg → qg + gluons type. This
allows us to illustrate speeds of ME corrections with up to three additional legs while, if g → qq̄ branchings
had been switched on, the current version of Vincia is restricted to ME corrections with up to two additional
legs. (This restriction will be lifted in a future update.)

Fig. 1 illustrates the number of milliseconds it takes to generate one shower, as a function of the number
of legs that are requested to be ME-corrected. The solid (red) line without symbols uses helicity-summed
showers and matrix elements, while the two blue curves (with symbols) show the dependence of the helicity-
dependent formalism, with or without enabling the library of MHV matrix elements, respectively. For
reference, the thick dashed horisontal line shows the time it takes to generate multi-parton interactions
(MPI) and hadronisation for the same events4. For 0 or 1 corrected emissions, the helicity-summed shower
is actually slightly faster, since the Born-level polariser and the helicity selection in the shower take a little
extra time and the first-order ME corrections are very quick to evaluate even when summing over helicities.
At two legs, however, the helicity-dependent formalism is up to 30% quicker (with the MHV library switched

4The thickness of the dashed line reflects that the helicity-dependent showers result in slightly longer MPI generation times
due to the slightly slower showering off the MPI systems.
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Figure 1: Speed comparison for helicity-independent (“Non-hel”) and helicity-dependent (“Hel”) showers as
a function of the number of ME-corrected legs, for qg → qg+ gluons with p̂⊥min = 100 GeV, for pp collisions
at Ecm = 10 TeV. The dashed horisontal line indicates the time it takes to generate MPI and hadronisation
for the same events. Results were obtained from 10,000 events generated for each run, on a single 2.9 GHz
Intel Core i7 processor, using the clang compiler (v3.9), with -O2 optimisation.

on) than the helicity-summed one. At three legs, the difference is a factor 4, with the MHV library allowing
to shave an extra ∼ 15% off the shower-generation time relative to using only MG4 matrix elements.

One also notices that by two corrected legs, the showering time is becoming comparable to the time it
takes to generate MPI and hadronisation for the events, hence this is the point at which the showering speed
would start to be felt in the context of generating full events. By three corrected legs, the ME corrections
dominate the event-generation time. The default in the current version of Vincia is that ME corrections
are enabled for QCD 2 → 2 processes up to two additional legs; the event-generation time should therefore
stay within roughly a factor 2 of that of the uncorrected algorithm. The complete set of matrix elements
required for 3rd-order corrections will be provided in a future update. For hadronic Z, W , and H production
or decay, the full set of 3rd-order matrix elements are already available in the current version. (We note that
the implementation of the iterated-MEC algorithm itself is general and could in principle handle any number
of legs, if provided with the required matrix elements.)

4 Automated Uncertainty Variations

Methods to deliver automated shower-uncertainty bands as vectors of alternative event weights, as first
proposed in [16], were recently implemented in all of the main general-purpose event generators [39–41]. As
a part of the work reported on here, we adapted the implementation in Vincia to enable user-specifiable
variations of the renormalisation scale and antenna functions using similar keywords as those defined in the
Pythia 8 implementation [39]. The variation of the renormalisation scale is performed as

αs(t) → αs(k t) . (31)

The renormalisation-scale prefactor k can be chosen to be the same for all types of branchings or specific for
the type of emission or splitting. For gluon emission we include an NLO-compensating term as

αs(t) → αs(k t)

(
1 + ζ

αs(µmax)

2π
b0 ln(k)

)
, (32)
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where b0 = (11NC − 2nF )/3 with NC = 3 and nF is the number of active flavours at the scale t. The scale
µmax is defined as max (mant, k t) with mant the mass of the parent antenna. The prefactor is

ζ =





1− sik/sIK for a final-final branching IK → ijk
1− sAB/sab for an initial-initial branching AB → ajb

1− sAK/(sAK + sjk) for an initial-final branching AK → ajk
(33)

The user-specifiable keywords for the renormalisation-scale variations are the following:

Final-Final: ff:muRfac, ff:QQemit:muRfac, ff:QGemit:muRfac, ff:GGemit:muRfac, and

ff:XGsplit:muRfac

Initial-Final: if:muRfac, if:QQemit:muRfac, if:QGemit:muRfac, if:GQemit:muRfac,

if:GGemit:muRfac, if:GXconv:muRfac, if:QXsplit:muRfac, and if:XGsplit:muRfac

Initial-Initial: ii:muRfac, ii:QQemit:muRfac, ii:GQemit:muRfac, ii:GGemit:muRfac,

ii:GXconv:muRfac, and ii:QXsplit:muRfac

We further include a variation of the antenna functions by nonsingular terms to represent unknown (and
in general process-dependent) corrections to hard radiation,

A (s12, s23, sant) → A (s12, s23, sant) +
CNS

sant
, (34)

with s12 and s23 the branching invariants and sant the invariant mass squared of the parent antenna. The
additional nonsingular term CNS/sant is distributed evenly amongst all helicity configurations for a specific
antenna function, i.e. all helicity-dependent antenna functions obtain the same fraction of the nonsingular
term. As for the renormalisation-scale variation, CNS can be chosen to be the same for all types of antenna
functions, but we also include the possibility to specify different finite terms for each type. The user-specifiable
keywords for the splitting-kernel variations are the following:

Finial-Final: ff:cNS, ff:QQemit:cNS, ff:QGemit:cNS, ff:GGemit:cNS, and ff:XGsplit:cNS

Initial-Final: if:cNS, if:QQemit:cNS, if:QGemit:cNS, if:GQemit:cNS, if:GGemit:cNS,

if:GXconv:cNS, if:QXsplit:cNS, and if:XGsplit:cNS

Initial-Initial: ii:cNS, ii:QQemit:cNS, ii:GQemit:cNS, ii:GGemit:cNS, ii:GXconv:cNS, and

ii:QXsplit:cNS

All variations can be combined arbitrarily for a comprehensive uncertainty study. Note also that the
nonsingular-term variations are cancelled by ME corrections (up to the corrected order) and are therefore
only carried out for uncorrected orders. Any significant remaining dependence on CNS indicates a need for
further corrections from hard matrix elements, while a significant dependence on the renormalisation scale
indicates a need for further corrections at the loop level.

Finally, it is worth emphasising that the statistical fluctuations of the uncertainty variations are generally
larger than for the central (non-varied) predictions. This is due to the central prediction being unweighted (in
our setup) and the the variations being computed by reweighting. See [40] for an example of how weighting
(“biasing”) the central distribution can improve the relative statistical precision of the uncertainty bands.

5 Example Application

To illustrate the properties of the ME-corrected algorithm (and uncertainty variations) in the context of
a realistic application, we consider showers off gg → gg Born-level events and compare Pythia 8.226 and
Vincia 2.200 on three observables sensitive to different aspects of the evolution: early branchings, late
branchings, and a polarisation effect, respectively:

1. Early branchings: the 3-jet resolution scale, d23, using the longitudinally invariant k⊥-jet algorithm
with R = 0.4.
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2. Late branchings: the 6-jet k⊥ resolution scale, d56, with the same jet algorithm as above.

3. Gluon polarisation: the angle between the event plane (characteristic of the original gg → gg Born-
level event) and the plane of a subsequent g → bb̄ splitting. Here, the anti-k⊥ jet algorithm with R = 0.2
is used (so that the b jets can be resolved down to small separations), and we impose a minimum jet
p⊥ of 50 GeV. (For further ideas on how to exploit heavy-flavour tags to probe g → qq̄ splittings at
colliders, see e.g. [42, 43].)

The basic 2 → 2 QCD process is sampled with the cut p̂⊥ ≥ 500 GeV on the final-state partons. For
consistency with the shower αs parameters, Vincia’s default tune uses two-loop running for the strong
coupling with αs(m

2
Z) = 0.118 for the hard process. To compare predictions on an equal footing we apply

the same settings for the underlying Born process in Pythia. To focus on the showering off the hard process
all comparisons are done with multiparton interactions switched off.

To obtain dimensionless variables, the jet resolution measures d23 and d56 are normalised by a factor
1/d12, i.e., they are effectively measured relative to a scale representing the p̂2

⊥ scale of the underlying Born
process5. The resulting quantities exhibit a fixed-order behaviour for large values and a Sudakov suppression
for low values. Especially for well-resolved radiation, we therefore expect these observables to be sensitive to
low-order ME corrections, and hence the uncertainty associated with nonsingular-term variations should be
reduced when Vincia’s ME corrections are switched on. (Note: Pythia does not incorporate ME corrections
for QCD 2 → 2 processes.) Parton-level results for showered gg → gg events are presented in fig. 2 with
uncertainty bands.

The ME corrections in strongly-ordered events exhibit a modest effect of up to 20% for large values of
d23/d12 and d56/d12, with the ME-corrected rate being larger than that of the pure Vincia shower. Shape
differences between the predictions of Pythia and Vincia are visible throughout most of the distributions,
with the uncorrected Vincia shower generating a somewhat harder d23/d12 spectrum than Pythia. ME
corrections increase the rate for large d56/d12 values, bringing the predictions of Vincia closer to that of
Pythia. Given the different choices of shower αs parameters, evolution variable, and radiation functions,
we do not consider this level of disagreement between the two models surprising. The evolution of the hard
process starts at the factorisation scale for both showers. However, depending on the form of evolution
variable, the hardest possible scales correspond to different values of d23.

All predictions exhibit some rather large fluctuations in the uncertainty bands. The dijet system with the
cut p̂⊥ ≥ 500 GeV as underlying hard process is typically accompanied by a large number of additional jets.
Given the nature of the reweighting algorithm of [39] (and similarly for [40,41]) this may easily result in fluc-
tuating weights. In addition we expect larger fluctuations in the nonsingular-term variations for the helicity
shower, compared to the helicity-independent one. As discussed in sec. 4, the additional nonsingular terms
are distributed evenly between all helicity configurations. This results in a larger spread of weights, when
considering helicity configurations that constitute either a large or a small fraction of the helicity-summed
antenna functions. To mitigate the effects of weight fluctuations, we conclude that further development of
these reweighting methods would be useful, in particular for large phase spaces (long shower chains). E.g.,
the authors in [40] have demonstrated that combining biasing with reweighting can improve the relative
statistical precision of the uncertainty variations, at the price of generating some reasonably well-behaved
weights for the central (non-varied) event sample.

The variation of the nonsingular terms (hashed bands) results in a larger band around small |d23/d12| and
|d56/d12| for Vincia without ME corrections, compared to Pythia. The ME corrections cancel the effect of
varying the nonsingular terms in the radiation functions. Consequently, the respective uncertainty band for
Vincia with ME corrections is very narrow, especially for d23. The renormalisation-scale variations (shaded
bands) are quite similar in size for all predictions. They show the largest effect for small jet separation scales,
where soft emissions and the Sudakov factor contribute to the distribution.

We now turn to an observable where polarisation effects are expected to contribute. In events with two
b-jets a plane is defined by the two jets. A second plane is defined by the gluon-jet (the sum of the two
b-jets) and the beam axis. In fig. 3 the angle between the two planes is shown. A flat distribution is obtained

5This is similar to how, e.g., m2
Z is used to normalise corresponding observables in e+e− collisions at the Z pole.

12

128 Helicity Antenna Showers



gg → gg + shower√
s = 14 TeV

Pythia 8
Vincia no MECs
Vincia MECs O(α2

s )

αs variation

CNS variation
1

10 1

10 2

Ratio of differential k⊥-jet resolutions (R = 0.4)

d
σ

/
d

lo
g 1

0(
d 2

3/
d 1

2)

0.6
0.8

1
1.2
1.4

⊥

ra
ti

o

0.6
0.8

1
1.2
1.4

⊥

0.6
0.8

1
1.2
1.4

⊥

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
0.6
0.8

1
1.2
1.4

⊥

log10(d23/d12)

gg → gg + shower√
s = 14 TeV

Pythia 8
Vincia no MECs
Vincia MECs O(α2

s )

αs variation

CNS variation10−1

1

10 1

10 2

10 3
Ratio of differential k⊥-jet resolutions (R = 0.4)

d
σ

/
d

lo
g 1

0(
d 5

6/
d 1

2)

0.6
0.8

1
1.2
1.4

⊥

ra
ti

o
0.6
0.8

1
1.2
1.4

⊥

0.6
0.8

1
1.2
1.4

⊥

-2 -1.5 -1 -0.5
0.6
0.8

1
1.2
1.4

⊥

log10(d56/d12)

Figure 2: Logarithmic distributions of ratios of differential jet resolutions, d23/d12 and d56/d12, for showering
gg → gg events. Predictions of Pythia 8.226 and Vincia 2.200 with and without ME corrections are
shown. The solid bands present a renormalisation-scale variation with k = 1/2 and 2 and the hashed bands
a variation of the nonsingular terms with CNS = ±2.

with Pythia without gluon polarisation effects in the final-state shower and Vincia without ME corrections.
However, Vincia produces an around 15% higher total rate, compared to Pythia. We note that both codes
generate a similar total rate of g → bb̄ splittings in the shower, where the gluon splittings occur “later” in
the evolution in Pythia (i.e., preceded by a larger number of other branchings). The b-quarks are therefore
more likely to obtain a smaller invariant mass and might be clustered within the same jet. Together with
the p⊥ and invariant mass cuts on the jets, this may cause a smaller rate of events with two b-jets. The
polarisation effects in Pythia leave the total rate unchanged, but increase the amount of events where the
angle is close to π/2. The ME corrections in Vincia change the total rate by decreasing the number of events
with splitting angles near 90 degrees. The qualitative effect is therefore the opposite of that in Pythia, where
the total shower rate is preserved, but the region around 90 degrees is enhanced by the polarisation effect. We
conclude that a measurement of this observable, and the development of alternative strategies for corrections
beyond fixed order (e.g., along the lines proposed in [26]), would be desirable.

6 Conclusions

We have presented a helicity-dependent antenna shower for QCD initial- and final-state radiation, imple-
mented in the Vincia shower model. The iterated ME correction formalism of [7,16,18,19] has been extended
to cope with helicity-dependent clusterings and splitting kernels involving initial-state legs, and in this work
has been applied to strongly ordered showers in a direct extension of the formalism presented in [19]. We
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Figure 3: The angle between the plane of the two b-jets and the plane of the gluon jet and the beam axis.
Predictions of Pythia 8.2.26 and Vincia 2.2.0 with and without ME corrections are shown. In the labelling,
“pol off” refers to the Pythia 8 parameters TimeShower:phiPolAsym and TimeShower:phiPolAsymHard

being switched off and “pol on” to the default settings, where both parameters are switched on.

further reported on new, user-specifiable uncertainty variations in Vincia, including renormalisation-scale
and splitting-kernel variations.

The new approach and a library for tree-level MHV amplitudes enable a faster evaluation of MEC factors,
as illustrated explicitly for the process qg → qg+ gluons. While the pure shower is slightly slower due to the
additional step of helicity selection, the evaluation of ME corrections can be done significantly faster when
only a single or a few helicity matrix elements need to be evaluated per trial branching, relative to when
helicity-summed matrix elements are used.

To illustrate the effect of the iterated ME corrections and uncertainty variations within the helicity-
dependent shower, we considered a few representative observables, based on showered gg → gg Born-level
events. As expected, ME corrections reduce the overall amount of variation considerably in regions of
relatively hard emissions, where process-dependent nonsingular terms (captured by the matrix elements)
dominate over the universal logarithmic terms (captured by the showers). In regions of large scale hierarchies,
the uncertainty due to renormalisation-scale variations dominates and remains uncompensated by tree-level
ME corrections.

We also showed a more complex example, the angle between a Born-level gg → gg event plane and the
plane of a subsequent g → bb̄ splitting. In Pythia, a general implementation of gluon polarisation effects
implies an enhancement of such splittings at 90 degrees to the original event plane (while the total shower
rate of g → bb̄ splittings is preserved); while in Vincia, ME corrections dominantly act to suppress the overall
rate of g → bb̄ splittings. Moreover, the suppression is most active for the most well-resolved branchings (at
90 degrees), leading to an opposite-sign effect than the one in Pythia. We conclude that there is a complex
interplay between the rate and the angular dependence of these branchings, and intend to investigate this
further in future studies.

Acknowledgments: AL and PS acknowledge support from the Monash-Warwick Alliance Development
Fund Project “Collider Physics”. PS is the recipient of an Australian Research Council Future Fellowship,
FT130100744.
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A Helicity-Dependent Antenna Functions

A.1 Notation and Conventions

We use capital letters to denote partons in the pre-branching n-parton configuration and lower-case letters
to denote partons in the post-branching (n + 1)−parton configuration. Incoming partons are denoted a, b,
while final-state partons are denoted i, j, k. Thus, for example, an initial-final antenna branching is written
AK → ajk.

The scaled branching invariants for final-final antenna functions are

yij =
sij
m2
IK

, yjk =
sjk
m2
IK

, and yik =
sik
m2
IK

, (35)

and the energy fractions

xj = 1− 1

1− µ2
I

yik and xk = 1− 1

1− µ2
I

yij , (36)

with µI = mi/mIK . The scaled branching invariants for initial-final antenna functions are

yaj =
saj

m2
AK + sjk

, yjk =
sjk

m2
AK + sjk

, and yak =
sak

m2
AK + sjk

, (37)

and for initial-initial antenna functions

yaj =
saj

m2
AB + saj + sjb

, yjb =
sjb

m2
AB + saj + sjb

, and yAB =
m2
AB

m2
AB + saj + sjb

. (38)

Note that, for gluon-emission antennae involving massive parent quarks, a helicity-independent negative
correction to the eikonal is added, with helicity-summed average:

∆aeik
mass = −2m2

I

s2
ij

− 2m2
K

s2
jk

. (39)

For gluon-splitting antennae (Xg → Xq̄jqk), the mass correction is positive:

∆asplit
mass =

m2
j

m4
jk

. (40)

A.2 QQ̄ parents: Gluon Emission

The helicity averages for qq̄ → qgq̄ antennae are

FF : a(qIqK → qigjqk) =
1

m2
IK

[
2yik
yijyjk

+
yjk
yij

+
yij
yjk

+ 1

]
=

1

m2
IK

[
(1− yij)2 + (1− yjk)2

yijyjk
+ 1

]
, (41)

II : a(q̄AqB → q̄agjqb) =
1

sAB

[
2yAB
yajyjb

+
yjb
yaj

+
yaj
yjb

+ 1

]
=

1

sAB

[
(1− yaj)2 + (1− yjb)2

yajyjb
+ 1

]
, (42)

IF : a(qAqK → qagjqk) =
1

sAK

[
(1− yaj)2 + (1− yjk)2

yajyjk
+

3

2
−
y2
aj

2
−
y2
jk

2

]
, (43)

where the slightly different nonsingular terms chosen for the IF case ensure positivity of in particular the
(++→ +−+) antenna function over all of the IF phase space, while the nonsingular terms for the FF and
II cases result from averaging over the corresponding helicity matrix elements for Z and H decays.
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The individual helicity contributions are:

a(++→ + + +) =
1

m2
IK

[
1

yijyjk

]
, (44)

a(++→ +−+) =
1

m2
IK

[
(1− yij)2 + (1− yjk)2 − 1

yijyjk
+ 2

]
, (45)

FF :

a(+− → + +−) =
1

m2
IK

[
(1− yij)2

yijyjk

]
, (46)

a(+− → +−−) =
1

m2
IK

[
(1− yjk)2

yijyjk

]
. (47)

a(++→ + + +) =
1

sAB

[
1

yajyjb

]
, (48)

a(++→ +−+) =
1

sAB

[
y2
AB

yajyjb

]
, (49)

II :

a(+− → + +−) =
1

sAB

[
(1− yaj)2

yajyjb

]
, (50)

a(+− → +−−) =
1

sAB

[
(1− yjb)2

yajyjb

]
. (51)

a(++→ + + +) =
1

sAK

[
1

yajyjk

]
, (52)

a(++→ +−+) =
1

sAK

[
(1− yaj)2 + (1− yjk)2 − 1

yajyjk
+ 3− y2

aj − y2
jk

]
, (53)

IF :

a(+− → + +−) =
1

sAK

[
(1− yaj)2

yajyjk

]
, (54)

a(+− → +−−) =
1

sAK

[
(1− yjk)2

yajyjk

]
. (55)
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A.3 QG parents: Gluon Emission

The helicity averages for qg → qgg antennae are

FF : a(qIgK → qigjgk) =
1

m2
IK

[
2yik
yijyjk

+
yjk
yij

+
yij(1− yij)

yjk
+ yij +

yjk
2

]

=
1

m2
IK

[
(1− yij)3 + (1− yjk)2

yijyjk
− 2µ2

I

y2
ij

+
yik − yij
yjk

+ 1 + yij +
yjk
2

]
, (56)

II : a(qAgB → qagjgb) =
1

sAB

[
(1− yaj)3 + (1− yjb)2

yajyjb
+

1 + y3
aj

yjb(1− yaj)
+ 2− yaj −

yjb
2

]
, (57)

IF : a(qAgK → qagjgk) =
1

sAK

[
(1− yaj)3 + (1− yjk)2

yajyjk
+

1− 2yaj
yjk

+
3

2
+ yaj −

yjk
2
−
y2
aj

2

]
, (58)

IF : a(gAqK → gagjqk) =
1

sAK

[
(1− yjk)3 + (1− yaj)2

yajyjk
+

1 + y3
jk

yaj(yAK + yaj)
+

3

2
−
y2
jk

2

]
. (59)

(60)

Note that for the initial-final case two antennae, qg → qgg and gq → ggq, exist.
The individual helicity contributions are:

a(++→ + + +) =
1

m2
IK

[
1

yijyjk
+ (1− α)(1− yjk)

(
1− 2yij − yjk

yjk

)]
, (61)

a(++→ +−+) =
1

m2
IK

[
(1− yij)y2

ik

yijyjk

]
, (62)

FF :

a(+− → + +−) =
1

m2
IK

[
(1− yij)3

yijyjk

]
, (63)

a(+− → +−−) =
1

m2
IK

[
(1− yjk)2

yijyjk
+ (1− α)(1− yjk)

(
1− 2yij − yjk

yjk

)]
. (64)

17

6.1. Published Material 133



a(++→ + + +) =
1

sAB

[
1

yajyjb

1− yjb
1− yaj − yjb

]
=

1

sAB

[
1

yajyjb
+

1

yjbyAB

]
(65)

sing→ 1

sAB

[
1

yajyjb
+

1

yjb(1− yaj)

]
, (66)

a(++→ +−+) =
1

sAB

1

yajyjb

y3
AB

1− yjb
y3
AB

sAB

[
1

yajyjb
+

1

yaj(1− yjb)

]
(67)

sing→ 1

sAB

[
y3
AB

yajyjb
+
y2
AB

yaj

]
=

1

sAB

(1− yaj)y2
AB

yajyjb
, (68)

a(+− → + +−) =
1

sAB

[
(1− yaj)3

yajyjb
+

1− yjb − y2
aj

1− yjb

]
(69)

sing→ 1

sAB

(1− yaj)3

yajyjb
, (70)

II :

a(+− → +−−) =
1

sAB

1

yajyjb

(1− yjb)3

1− yaj − yjb
=

(1− yjb)2

sAB

[
1

yajyjb
+

1

yjb

1

1− yaj − yjb

]
(71)

sing→ 1

sAB

[
(1− yjb)2

yajyjb
+

1

yjb(1− yaj)

]
, (72)

a(++→ +−−) =
1

sAB

y3
aj

yjb(1− yjb)
1

1− yaj − yjb
, (73)

sing→ 1

sAB

y3
aj

yjb(1− yaj)
, (74)

a(+− → + + +) = a(++→ +−−) . (75)

a(++→ + + +) =
1

sAK

[
1

yajyjk
+

1− 2yaj
yjk

]
, (76)

a(++→ +−+) =
1

sAK

[
(1− yaj)3 + (1− yjk)2 − 1

yajyjk
+ 3− y2

aj

]
, (77)

IF :

a(+− → + +−) =
1

sAK

[
(1− yaj)3

yajyjk

]
, (78)

a(+− → +−−) =
1

sAK

[
(1− yjk)2

yajyjk
+

1− 2yaj
yjk

+ 2yaj − yjk
]
. (79)
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a(++→ + + +) =
1

sAK

[
1

yajyjk
+

1

yaj(yAK + yaj)

]
, (80)

a(++→ +−+) =
1

sAK

[
(1− yaj)2 + (1− yjk)3 − 1

yajyjk
+ 3− y2

jk

]
, (81)

a(+− → + +−) =
1

sAK

[
(1− yaj)2

yajyjk
+

1

yaj(yAK + yaj)

]
, (82)

IF :

a(+− → +−−) =
1

sAK

[
(1− yjk)3

yajyjk

]
, (83)

a(++→ −−+) =
1

sAK

y3
jk

yaj(yAK + yaj)
, (84)

a(+− → −−−) = a(++→ −−+) . (85)

Note that for gluons in the initial-state an additional helicity configuration 6 arises where the final-state
gluon inherits the helicity.

A.4 GG parents: Gluon Emission

The helicity averages for gg → ggg antennae are

FF : a(gIgK → gigjgk) =
1

m2
IK

[
2yik
yijyjk

+
yjk(1− yjk)

yij
+
yij(1− yij)

yjk
+

1

2
yij +

1

2
yjk

]

=
1

m2
IK

[
(1− yij)3 + (1− yjk)3

yijyjk
+
yik − yij
yjk

+
yik − yjk

yij
+ 2 +

1

2
yij +

1

2
yjk

]
,

(86)

II : a(gAgB → gagjgb) =
1

sAB

[
(1− yaj)3 + (1− yjb)3

yajyjb
+

1 + y3
aj

yjb(1− yaj)
+

1 + y3
jb

yaj(1− yjb)
+ 3− 3yaj

2

−3yjb
2

]
, (87)

IF : a(gAgK → gagjqk) =
1

sAK

[
(1− yaj)3 + (1− yjk)3

yajyjk
+

1 + y3
jk

yaj(yAK + yaj)
+

1− 2yaj
yjk

+ 3− 2yjk

]
. (88)

The individual helicity contributions are:

a(++→ + + +) =
1

m2
IK

[
1

yijyjk
+ (1− α)

(
(1− yij)

1− 2yjk − yij
yij

+ (1− yjk)
1− 2yij − yjk

yjk

)]
,

(89)

a(++→ +−+) =
1

m2
IK

[
y3
ik

yijyjk

]
, (90)

FF :

a(+− → + +−) =
1

m2
IK

[
(1− yij)3

yijyjk
+ (1− α)(1− yij)

1− 2yjk
yij

]
, (91)

a(+− → +−−) =
1

m2
IK

[
(1− yjk)3

yijyjk
+ (1− α)(1− yjk)

1− 2yij
yjk

]
. (92)

6Additional with respect to the final-state antenna functions.
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a(++→ + + +) =
1

sAB

[
1

yajyjb
+

1

yjb(1− yaj)
+

1

yaj(1− yjb)

]
, (93)

a(++→ +−+) =
1

sAB

y3
AB

yajyjb
, (94)

a(+− → + +−) =
1

sAB

[
(1− yaj)3

yajyjb
+

1

yaj(1− yjb)

]
, (95)

a(+− → +−−) =
1

sAB

[
(1− yjb)3

yajyjb
+

1

yjb(1− yaj)

]
, (96)

II :

a(++→ +−−) =
1

sAB

y3
aj

yjb(1− yaj)
, (97)

a(++→ −−+) =
1

sAB

y3
jb

yaj(1− yjb)
, (98)

a(+− → + + +) = a(++→ +−−) , (99)

a(+− → −−−) = a(++→ −−+) . (100)

a(++→ + + +) =
1

sAK

[
1

yajyjk
+

1− 2yaj
yjk

+
1

yaj(yAK + yaj)

]
, (101)

a(++→ +−+) =
1

sAK

[
(1− yaj)3 + (1− yjk)3 − 1

yajyjk
+ 6− 3yaj − 3yjk + yajyjk

]
, (102)

a(+− → + +−) =
1

sAK

[
(1− yaj)3

yajyjk
+

1

yaj(yAK + yaj)

]
, (103)

IF :

a(+− → +−−) =
1

sAK

[
(1− yjk)3

yajyjk
+

1− 2yaj
yjk

+ 3yaj − yjk − yajyjk
]
, (104)

a(++→ −−+) =
1

sAK

y3
jk

yaj(yAK + yaj)
, (105)

a(+− → −−−) = a(++→ −−+) . (106)

Note that for gluons in the initial-state an additional helicity configuration 7 arises where the final-state
gluon inherits the helicity.

A.5 G→ Q̄Q Splittings

The helicity averages for Xg → Xq̄q antennae (final-state gluon splitting) are

FF : a(XIgK → Xiq̄jqk) =
1

2m2
jk

[
(1− xj)2 + (1− xk)2

]
=

1

2m2
jk

[
y2
ik + y2

ij

(1− µ2
I)

2

]
, (107)

IF : a(XAgK → Xaq̄jqk) =
1

2m2
jk

[
y2
ak + y2

aj

]
. (108)

7Additional with respect to the final-state antenna functions.
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The individual helicity contributions are:

a(X+→ X −+) =
1

2m2
jk

y2
ik

(1− µ2
I)

2
=

(1− xj)2

2m2
jk

, (109)

FF :

a(X+→ X +−) =
1

2m2
jk

y2
ij

(1− µ2
I)

2
=

(1− xk)2

2m2
jk

. (110)

a(X+→ X −+) =
y2
ak

2m2
jk

, (111)

IF :

a(X+→ X +−) =
y2
aj

2m2
jk

. (112)

The helicity averages for qX → gq̄X antennae (quark backwards evolving to a gluon) are

II : a(qAXB → gaq̄jXb) =
1

sAB

y2
AB + (1− yAB)2

yaj
, (113)

IF : a(qAXK → gaq̄jXk) =
1

sAK

y2
AK + (1− yAK)2

yaj
. (114)

The individual helicity contributions are:

a(+X → +−X) =
1

sAB

y2
AB

yaj
, (115)

a(+X → −−X) =
1

sAB

(1− yAB)2

yaj
, (116)

II :

a(−X → −+X) =
1

sAB

y2
AB

yaj
, (117)

a(−X → + +X) =
1

sAB

(1− yAB)2

yaj
. (118)

a(+X → +−X) =
1

sAK

y2
AK

yaj
, (119)

a(+X → −−X) =
1

sAK

(1− yAK)2

yaj
, (120)

IF :

a(−X → −+X) =
1

sAK

y2
AK

yaj
, (121)

a(−X → + +X) =
1

sAK

(1− yAK)2

yaj
. (122)

The helicity averages for gX → qqX antennae (gluon backwards evolving to a quark) are

II : a(gAXB → qaqjXb) =
1

sAB

1 + (1− yAB)2

2yaj(1− yjb)
, (123)

IF : a(gAXK → qaqjXk) =
1

sAK

1 + (1− yAK)2

2yaj(yAK + yaj)
. (124)
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The individual helicity contributions are:

a(+X → + +X) =
1

sAB

1

2yaj(1− yjb)
, (125)

a(+X → −−X) =
1

sAB

(1− yAB)2

2yaj(1− yjb)
, (126)

II :

a(−X → −−X) =
1

sAB

1

2yaj(1− yjb)
, (127)

a(−X → + +X) =
1

sAB

(1− yAB)2

2yaj(1− yjb)
. (128)

a(+X → + +X) =
1

sAK

1

2yaj(yAK + yaj)
, (129)

a(+X → −−X) =
1

sAK

(1− yAK)2

2yaj(yAK + yaj)
, (130)

IF :

a(−X → −−X) =
1

sAK

1

2yaj(yAK + yaj)
, (131)

a(−X → + +X) =
1

sAK

(1− yAK)2

2yaj(yAK + yaj)
. (132)

A.6 Gluon Emission of Initial-State Gluons

As discussed in apps. A.3 and A.4, helicity configurations exist for which a final-state gluon inherits the
helicity of an initial-state gluon. Thus, the helicity of a pre-branching initial-state gluon, A or B, can be
different from that of the corresponding post-branching initial-state gluon, a or b, without violating helicity
conservation.

For completeness, we give the DGLAP limits of antenna functions for gluon emission off initial-state
gluons. The limits are independent of the other parent in the parent antenna. For intial-initial antennae the
DGLAP limit corresponds to

yjb =
Q2

sab
→ 0 , z = yAB =

sAB
sab

, and yaj → 1− z . (133)

This gives the following limits of the helicity-dependent antenna functions in eqs. (93) to (100) (or eqs. (65)
to (75)) for a parent with + helicity,

a(X+→ X + +) → 1

Q2

1

z

1

z(1− z) =
1

Q2
P IS
g→gg(+→ ++) ,

a(X+→ X −+) → 1

Q2

1

z

z3

1− z =
1

Q2
P IS
g→gg(+→ −+) ,

a(X+→ X −−) → 1

Q2

1

z

(1− z)3

z
=

1

Q2
P IS
g→gg(+→ +−) .

The same limits are obtained for initial-final antennae with

yaj =
Q2

m2
AK + sjk

→ 0 , z = yAK =
m2
AK

m2
AK + sjk

, yjk → 1− z , and yak → 1 . (134)
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[1] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O.
Rasmussen, and P. Z. Skands, An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015)
159–177, [arXiv:1410.3012].

[2] B. R. Webber, Monte Carlo Simulation of Hard Hadronic Processes, Ann. Rev. Nucl. Part. Sci. 36
(1986) 253–286.

[3] J. Bellm et al., Herwig 7.1 Release Note, arXiv:1705.0691.

[4] I. G. Knowles, Spin Correlations in Parton - Parton Scattering, Nucl. Phys. B310 (1988) 571–588.

[5] I. G. Knowles, A Linear Algorithm for Calculating Spin Correlations in Hadronic Collisions, Comput.
Phys. Commun. 58 (1990) 271–284.

[6] P. Richardson, Spin correlations in Monte Carlo simulations, JHEP 11 (2001) 029, [hep-ph/0110108].

[7] A. J. Larkoski, J. J. Lopez-Villarejo, and P. Skands, Helicity-Dependent Showers and Matching with
VINCIA, Phys. Rev. D 87 (2013), no. 5 054033, [arXiv:1301.0933].
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a→ Aj

K → kj
+→ ++ +→ +− +→ −+ sum

Pq→qg
1

1− z
z2

1− z 0
1 + z2

1− z

Pq→gq
1

z
0

(1− z)2

z

1 + (1− z)2

z

Pg→gg
1

z(1− z)
z3

1− z
(1− z)3

z

1 + z4 + (1− z)4

z(1− z)

Pg→qq̄ 0 z2 (1− z)2 z2 + (1− z)2

Table 6.1: Helicity-dependent DGLAP kernels with pA = z pa and pk = z pK . The
same expressions apply for +↔ − or q ↔ q̄.

6.2 Helicity-Dependent Antenna Functions from DGLAP
Limits

In this section we discuss how the different helicity contributions to unpolar-
ized initial-state antenna functions are constructed with the help of the helicity-
dependent DGLAP splitting kernels and the unpolarized antenna functions. The
results for initial-final antennae are presented in sec. 6.2.1 for the initial-state
end and sec. 6.2.2 for the final-state end. Initial-initial antennae are discussed in
sec. 6.2.3.

The helicity-dependent DGLAP kernels without colour factors are given in tab. 6.1.
Note that for comparison with antenna functions, the kernel for g → gg includes an
additional factor of 2 with respect to the function introduced in sec. 3.3.1. In other
words, it does not include the symmetry factor of 1/2 for two identical bosons
in the final state. The colour and coupling factors for DGLAP kernels, including
dimensionless phase-space factors and the final-state g → gg symmetry factor, are

q → qg/q → gq g → gg [FSR] g → gg [ISR] g → qq̄

CF
αs
2π

,
1

2
CA

αs
2π

, CA
αs
2π

, TR
αs
2π

.
(6.1)

The same expressions for antenna functions (which already include all relevant
symmetry factors) are

q → qg/q → gq g → gg [FSR] g → gg [ISR] g → qq̄

2CF
αs
4π

, CA
αs
4π

, CA
αs
4π

, 2TR
αs
4π

.
(6.2)
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Except for gluon emission off initial-state gluons, the expressions are identical for
antenna functions and DGLAP kernels, allowing a direct comparison between the
two. We will come back to the difference in prefactors for the initial-state branching
process g → gg below.

6.2.1 Initial-Final Antennae: Initial-State Side

In the antenna language, an initial-final branching is denoted by AK → ajk, where
AK is the parent antenna. When comparing to DGLAP kernels for initial-state
radiation, note that the notation there uses a forward perspective, a → Aj. The
branching invariants in the DGLAP limit and the expression for the energy fraction
of the branching parton, defined by pA = z pa, are

saj = Q2 → 0 , z =
sAK

sAK + sjk
, and sjk = sAK

1− z
z

. (6.3)

We now consider singularities in saj only, as finite terms and singularities in sjk do
not contribute to the DGLAP limit. The limits of the antenna functions are

A ISR
qx→qgx → 2

sAK
sajsjk

+ 2
1

saj
+

sjk
sAKsaj

, (6.4)

A ISR
gx→qqx →

1

2

1

saj
+

sjk
sAKsaj

+
s2
jk

s2
AKsaj

, (6.5)

A ISR
gx→ggx → 2

sAK
sajsjk

+ 2
1

saj
+ 2

sjk
sAKsaj

+ 2
s2
jk

s2
AKsaj

+ 2
sjk

(sAK + sjk)saj
, (6.6)

A ISR
qx→gq̄x →

1

saj
+

sjk
sAKsaj

− 2
sjk

(sAK + sjk)saj
. (6.7)

These terms are easily rewritten by means of Q2 and z,

A ISR
qx→qgx →

1

Q2

1

z

[
2

z2

1− z + 2 z + (1− z)
]
, (6.8)

A ISR
gx→qqx →

1

Q2

1

z

[
1

2
z + (1− z) +

(1− z)2

z

]
, (6.9)

A ISR
gx→ggx →

1

Q2

1

z

[
2

z2

1− z + 2 z + 2 (1− z) + 2
(1− z)2

z
+ 2 z (1− z)

]
, (6.10)

A ISR
qx→gq̄x →

1

Q2

1

z
[z + (1− z)− 2 z (1− z)] . (6.11)

The DGLAP limits of the unpolarized antenna functions coincide with the DGLAP
kernels in tab. 6.1,

A ISR
qx→qgx →

1

Q2

1

z

1 + z2

1− z =
1

Q2

1

z
Pq→qg , (6.12)

A ISR
gx→qqx →

1

Q2

1

z

1

2

1 + (1− z)2

z
=

1

Q2

1

z

1

2
Pq→gq , (6.13)

A ISR
gx→ggx →

1

Q2

1

z

1 + z4 + (1− z)4

z(1− z) =
1

Q2

1

z
Pg→gg , (6.14)

A ISR
qx→gq̄x →

1

Q2

1

z

[
z2 + (1− z)2

]
=

1

Q2

1

z
Pg→qq̄ . (6.15)
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The additional factor of 1/z is typically written as a phase-space contribution in the
DGLAP language and does not appear in the splitting kernels. For the branching
processes gx→ ggx and gx→ qqx, the antenna function reproduces only half of the
DGLAP kernel, as the parent gluon A participates in two antennae. For gx → ggx,
the difference is hidden in the prefactors of eqs. (6.1) and (6.2).

According to tab. 6.1, two different helicity configurations exist for the processes
q → qg / q → gq / g → qq̄ and three for g → gg. The contributions for + ↔ −
have the same functional forms. The helicity of the parent parton A is averaged
over to obtain the unpolarized splitting kernels from the polarized ones. Therefore,
only the contributions with + helicity of the parent parton A are of interest now. A
general combination of terms in Q2 zA ISR

Ax→ajx with the prefactors a to e reads

A ISR
qx→qgx :

(2 a− 2 b+ c) z2 + (2 b− 2 c) z + c

1− z ,

A ISR
gx→qqx :

1

2

(a− 2 b+ 2 c) z2 + (2 b− 4 c) z + 2 c

z
,

A ISR
gx→ggx : 2

e z4 + (a− b+ c− d− 2 e) z3 + (b− 2 c+ 3 d+ e) z2 + (c− 3d) z + d

z (1− z) ,

A ISR
qx→gq̄x : 2 c z2 + (a− b− 2 c) z + b .

The helicity-dependent antenna functions can simply be read off by comparing to
the DGLAP kernels,

A ISR
qx→qgx : [a = 0.5, b = c = 1] and [a = 0.5, b = c = 0]

(+× → + +×) → sAK
sajsjk

+ 2
1

saj
+

sjk
sAKsaj

=
1

Q2

1

z

1

1− z ,

(+× → +−×) → sAK
sajsjk

=
1

Q2

1

z

z2

1− z ,

A ISR
gx→qqx : [a = b = 1, c = 0.5] and [a = b = 0, c = 0.5]

(+× → + +×) → 1

2

1

saj
+

sjk
sAKsaj

+
1

2

s2
jk

s2
AKsaj

=
1

Q2

1

z

1

2

1

z
,

(+× → −−×) → 1

2

s2
jk

s2
AKsaj

=
1

Q2

1

z

1

2

(1− z)2

z
,

A ISR
gx→ggx : [a = d = 0.5, b = c = 1.5, e = 0] , [a = e = 0.5, b = −0.5, c = d = 0] ,

and [a = b = 0, c = d = e = 0.5]

(+× → + +×) → sAK
sajsjk

+ 3
1

saj
+ 3

sjk
sAKsaj

+
s2
jk

s2
AKsaj

=
1

Q2

1

z

1

z(1− z) ,

(+× → +−×) → sAK
sajsjk

− 1

saj
+

sjk
(sAK + sjk)saj

=
1

Q2

1

z

z3

1− z ,

(+× → −−×) →
s2
jk

s2
AKsaj

− sjk
sAKsaj

+
sjk

(sAK + sjk)saj
=

1

Q2

1

z

(1− z)3

z
,
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A ISR
qx→gq̄x : [a = 0 , b = 1, c = 0.5] and [a = 1, b = 0, c = 0.5]

(+× → −−×) → sjk
sAKsaj

− sjk
(sAK + sjk)saj

=
1

Q2

1

z
(1− z)2 ,

(+× → +−×) → 1

saj
− sjk

(sAK + sjk)saj
=

1

Q2

1

z
z2 .

Averaging over the helicity of the parent parton gives the unpolarized antenna
functions, e.g. for gluon emission off an initial-state quark,

1

2

(
A ISR
qx→qgx(+× → + +×) +A ISR

qx→qgx(+× → +−×)+

A ISR
qx→qgx(−× → −−×) +A ISR

qx→qgx(−× → −+×)
)

= A ISR
qx→qgx . (6.16)

6.2.2 Initial-Final Antennae: Final-State Side

We now turn to the discussion of the final-state limit, K → kj. The branching
invariants in the DGLAP limit and the expression for the energy fraction of the
branching parton, defined by pk = z pK , are

sjk = Q2 → 0 , z =
sak
sAK

, and saj = sAK (1− z) . (6.17)

Similar to sec. 6.2.1, only singularities in sjk are considered. The expressions for the
antenna functions of sec. 4.1 are

A FSR
xq→xgq → 2

sAK
sajsjk

− 2
1

sjk
+

saj
sAKsjk

, (6.18)

A FSR
xg→xgg → 2

sAK
sajsjk

− 2
1

saj
+

saj
sAKsjk

−
s2
aj

s2
AKsjk

, (6.19)

A FSR
xg→xq̄q →

1

2

1

sjk
− saj
sAKsjk

+
s2
aj

s2
AKsjk

. (6.20)

These terms are easily rewritten by means of Q2 and z,

A FSR
xq→xgq →

1

Q2

[
2

1

1− z − 2 + (1− z)
]
, (6.21)

A FSR
xg→xgg →

1

Q2

[
2

1

1− z − 2 + (1− z)− (1− z)2

]
, (6.22)

A FSR
xg→xq̄q →

1

Q2

[
1

2
− (1− z) + (1− z)2

]
. (6.23)

The DGLAP limits of the unpolarized antenna functions coincide with the DGLAP
kernels in tab. 6.1,

A FSR
xq→xgq → 1

Q2

1 + z2

1− z =
1

Q2
Pq→qg , (6.24)

A FSR
xg→xgg(z) +A FSR

xg→xgg(1− z) →
1

Q2

1 + z4 + (1− z)4

z(1− z) =
1

Q2
Pg→gg , (6.25)

A FSR
xg→xq̄q(z) +A FSR

xg→xq̄q(1− z) →
1

Q2

[
z2 + (1− z)2

]
=

1

Q2
Pg→qq̄ . (6.26)
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For gluon emission off a gluon and gluon splitting to a qq̄ pair, the DGLAP kernels
are reproduced by summing over j ↔ k, which corresponds to summing over z ↔
1−z. As for the initial-state side, this is caused by the parent gluonK participating
in two antennae.

Similar to the initial-side limit, a general combination of terms in Q2 zA FSR
xK→xjk is

A FSR
xq→xgq :

c z2 + (2 b− 2 c) z + (2 a− 2 b+ c)

1− z ,

A FSR
xg→xgg :

d z4 + (c− 3 d) z3 + (2 b− 2 c+ 3 d) z2 + (2 a− 2 b+ c− d) z

z(1− z) ,

A FSR
xg→xq̄q :

1

2

(
2 c z2 + (2 b− 4 c) z + (a− 2 b+ 2 c)

)
,

The helicity-dependent antenna functions are read off by comparing to the DGLAP
kernels,

A FSR
xq→xgq : [a = 0.5, b = c = 0] and [a = 0.5, b = c = 1]

(×+→ ×+ +) → sAK
sajsjk

=
1

Q2

1

1− z ,

(×+→ ×−+) → sAK
sajsjk

− 2
1

sjk
+

saj
sAKsjk

=
1

Q2

z2

1− z ,

A FSR
xg→xgg : [a = 0.5, b = −0.5, c = −2, d = 0] and [a = 0.5, b = 1.5, c = 3, d = 1]

(×+→ ×+ +) → sAK
sajsjk

+
1

saj
− 2

saj
sAKsjk

=
1

Q2

3 z2 − 2 z3

z(1− z) ,

(×+→ ×−+) → sAK
sajsjk

− 3
1

saj
+ 3

saj
sAKsjk

−
s2
aj

s2
AKsjk

=
1

Q2

z3

1− z ,

A FSR
xg→xq̄q : [a = b = 0, c = 0.5] and [a = b = 1, c = 0.5]

(×+→ ×+−) → 1

2

s2
aj

s2
AKsjk

=
1

Q2

1

2
(1− z)2 ,

(×+→ ×−+) → 1

2

1

sjk
− saj
sAKsjk

+
1

2

s2
aj

s2
AKsjk

=
1

Q2

1

2
z2 .

To obtain the correct result for A FSR
xg→xgg(×+ → × + +) for comparison with the

DGLAP kernels, the permutations of the final-state gluons k and j have to be
summed over,

A FSR
xg→xgg(×+→ ×+ +) (z) +A FSR

xg→xgg(×+→ ×+ +) (1− z)

=
1

Q2

1

z(1− z) =
1

Q2
Pg→gg(+→ ++) . (6.27)

The configuration×+→ ×+− is missing here, as it is taken care of by the permuted
antenna function A FSR

xg→xgg(1− z), when comparing to the full DGLAP kernels.
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As before, averaging over the helicity of the parent parton gives the unpolarized
antenna functions, e.g. for gluon emission off a final-state quark,

1

2

(
A FSR
xq→xgq(×+→ ×+ +) +A FSR

xq→xgq(×+→ ×−+)+

A FSR
xq→xgq(×− → ×−−) +A FSR

xq→xgq(×− → ×+−)
)

= A FSR
xq→xgq . (6.28)

6.2.3 Initial-Initial Antennae

An initial-initial branching is denoted by AB → ajb, where AB is the parent an-
tenna. The branching invariants in the DGLAP limit and the expression for the
energy fraction of the branching parton, defined by pA = z pa, are

saj = Q2 → 0 , z =
sAB
sab

, and sjb = sAB
1− z
z

. (6.29)

As for initial-final antennae, only singularities in saj are considered. The expres-
sions for the antenna functions of sec. 4.1 are

A ISR
qx→qgx → 2

sAB
sajsjb

+ 2
1

saj
+

sjb
sABsaj

, (6.30)

A ISR
gx→qqx →

1

2

1

saj
+

sjb
sABsaj

+
s2
jb

s2
ABsaj

, (6.31)

A ISR
gx→ggx → 2

sAB
sajsjb

+ 2
1

saj
+ 2

sjb
sABsaj

+ 2
s2
jb

s2
ABsaj

+ 2
sjb

(sab + saj)saj
, (6.32)

A ISR
qx→gq̄x →

1

saj
+

sjb
sABsaj

− 2 sjb
(sAB + sjb)saj

. (6.33)

These terms are easily rewritten by means of Q2 and z,

A ISR
qx→qgx →

1

Q2

1

z

[
2

z2

1− z + 2 z + (1− z)
]
, (6.34)

A ISR
gx→qqx →

1

Q2

1

z

[
1

2
z + (1− z) +

(1− z)2

z

]
, (6.35)

A ISR
gx→ggx →

1

Q2

1

z

[
2

z2

1− z + 2 z + 2 (1− z) + 2
(1− z)2

z
+ 2 z (1− z)

]
, (6.36)

A ISR
qx→gq̄x →

1

Q2

1

z
[z + (1− z)− 2 z (1− z)] . (6.37)

The DGLAP limits are exactly the same as as for initial-final antennae. Therefore,
the helicity contributions can simply be taken over from sec. 6.2.1.

It is worth mentioning that the singularity

sjb
(sAB + (n+ 1) saj + sjb) saj

=
sjb

(sab + n saj) saj
, (6.38)

appearing with n = ±1 above, has the same limit for saj → 0, independent of n.
Thus, the choice of n is arbitrary when considering the DGLAP limit and here only
fixed due to the choice of unpolarized antenna functions.
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6.2.4 Summary

The limits of the helicity-dependent antenna functions in secs. 6.2.1 to 6.2.3 are
combined for a consistent set of functions. The results are presented in tabs. 6.2
and 6.3. The shaded rows correspond to the unpolarized functions, obtained by
averaging over parent and summing over daughter helicities. Note that no finite
terms are added.

AB → ajb
sAB
sajsjb

1

saj

1

sjb

ηjb
saj

ηaj
sjb

η2jb
saj

η2aj
sjb

sjb/saj
sab + nsaj

saj/sjb
sab + nsjb

qq̄ → qgq̄ 2 2 2 1 1 0 0 0 0
++→ + + + 1 2 2 1 1 0 0 0 0
++→ +−+ 1 0 0 0 0 0 0 0 0
+− → + +− 1 2 0 1 0 0 0 0 0
+− → +−− 1 0 2 0 1 0 0 0 0
qg → qgg 2 2 2 1 2 0 2 0 2
++→ + + + 1 2 3 1 3 0 1 0 0
++→ +−+ 1 0 −1 0 0 0 0 0 1
+− → + +− 1 2 −1 1 0 0 0 0 1
+− → +−− 1 0 3 0 3 0 1 0 0
++→ +−− 0 0 0 0 −1 0 1 0 1
+− → + + + 0 0 0 0 −1 0 1 0 1
gg → ggg 2 2 2 2 2 2 2 2 2
++→ + + + 1 3 3 3 3 1 1 0 0
++→ +−+ 1 −1 −1 0 0 0 0 1 1
+− → + +− 1 3 −1 3 0 1 0 0 1
+− → +−− 1 −1 3 0 3 0 1 1 0
++→ −−+ 0 0 0 −1 0 1 0 1 0
++→ +−− 0 0 0 0 −1 0 1 0 1
+− → −−− 0 0 0 −1 0 1 0 1 0
+− → + + + 0 0 0 0 −1 0 1 0 1
xg → xqq 0 0 1/2 0 1 0 1 0 0
++→ + + + 0 0 1/2 0 1 0 1/2 0 0
++→ +−− 0 0 0 0 0 0 1/2 0 0
+− → + + + 0 0 0 0 0 0 1/2 0 0
+− → +−− 0 0 1/2 0 1 0 1/2 0 0
xq̄ → xqg 0 0 1 0 1 0 0 0 −2

++→ +−+ 0 0 1 0 0 0 0 0 −1

++→ +−− 0 0 0 0 1 0 0 0 −1

+− → + + + 0 0 0 0 1 0 0 0 −1

+− → + +− 0 0 1 0 0 0 0 0 −1

Table 6.2: Singular terms of the helicity-dependent initial-initial antennae with the
shorthand notation ηaj/jb = saj/jb/sAB .
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AK → ajk
sAK
sajsjk

1

saj

1

sjk

ηjk
saj

ηaj
sjk

η2jk
saj

η2aj
sjk

sjk
saj(sAK + sjk)

qq → qgq 2 2 −2 1 1 0 0 0
++→ + + + 1 2 0 1 0 0 0 0
++→ +−+ 1 0 −2 0 1 0 0 0
+− → + +− 1 2 −2 1 1 0 0 0
+− → +−− 1 0 0 0 0 0 0 0
qg → qgg 2 2 −2 1 1 0 −1 0
++→ + + + 1 2 1 1 −2 0 0 0
++→ +−+ 1 0 −3 0 3 0 −1 0
+− → + +− 1 2 −3 1 3 0 −1 0
+− → +−− 1 0 1 0 −2 0 0 0
gq → ggq 2 2 −2 2 1 2 0 2
++→ + + + 1 3 0 3 0 1 0 0
++→ +−+ 1 −1 −2 0 1 0 0 1
+− → + +− 1 3 −2 3 1 1 0 0
+− → +−− 1 −1 0 0 0 0 0 1
++→ −−+ 0 0 0 −1 0 1 0 1
+− → −−− 0 0 0 −1 0 1 0 1
gg → ggg 2 2 −2 2 1 2 −1 2
++→ + + + 1 3 1 3 −2 1 0 0
++→ +−+ 1 −1 −3 0 3 0 −1 1
+− → + +− 1 3 −3 3 3 1 −1 0
+− → +−− 1 −1 1 0 −2 0 0 1
++→ −−+ 0 0 0 −1 0 1 0 1
+− → −−− 0 0 0 −1 0 1 0 1
xg → xq̄q 0 0 1/2 0 −1 0 1 0
++→ + +− 0 0 0 0 0 0 1/2 0
++→ +−+ 0 0 1/2 0 −1 0 1/2 0
+− → + +− 0 0 1/2 0 −1 0 1/2 0
+− → +−+ 0 0 0 0 0 0 1/2 0
gx→ qqx 0 1/2 0 1 0 1 0 0
++→ + + + 0 1/2 0 1 0 1/2 0 0
++→ −−+ 0 0 0 0 0 1/2 0 0
−+→ + + + 0 0 0 0 0 1/2 0 0
−+→ −−+ 0 1/2 0 1 0 1/2 0 0
qx→ gq̄x 0 1 0 1 0 0 0 −2

++→ +−+ 0 1 0 0 0 0 0 −1

++→ −−+ 0 0 0 1 0 0 0 −1

−+→ + + + 0 0 0 1 0 0 0 −1

−+→ −+ + 0 1 0 0 0 0 0 −1

Table 6.3: Singular terms of the helicity-dependent initial-final antennae with the
shorthand notation ηaj/jk = saj/jk/sAK .
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Constructing the helicity-dependent antenna functions as shown in secs. 6.2.1-6.2.3
automatically respects Bose-Einstein symmetry and the C and P invariance of
QCD. The functions are symmetric when final-state gluons of the same helicity
are exchanged, see qg → qgg and gg → ggg for initial-final antennae. The same
functions apply for + ↔ − or q ↔ q̄. These requirements are already encoded in
the helicity-dependent DGLAP kernels in tab. 6.1 and consequently transferred to
the antenna functions.

For initial-state radiation helicity configurations exist for which a final-state gluon
inherits the helicity of an initial-state gluon, for instance g+q× → g−g−q×. From
a physical point of view, there is no soft singularity associated with the final-state
gluon. In a forwards perspective, the role of the “emission” is rather played by the
initial-state gluonA, with the gluons a and j being the “emitter”. This is reflected in
the antenna functions, where no soft terms sAB/(sajsjb) or sAK/(sajsjk) are present
for g+x× → g−g−x×.

Finally, note that the initial-final antenna functions in tab. 6.3 have the same sin-
gularities in sjk as the corresponding final-final antenna functions in [147] with
α = 0.
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A Trip into Fragmentation

The predictions of PYTHIA 8 agree very well with a large range of LEP and early
LHC data. New LHC measurements exhibit effects that are not included in the
PYTHIA 8 string fragmentation, such as collective flow [148–150] or “the ridge”
[151–153]. Furthermore, deviations between data and PYTHIA 8 in p⊥ spectra are
present, for instance pions obtain a too hard p⊥ spectrum, whereas heavier hadrons
obtain too little p⊥.

The aim of the paper presented in sec. 7.1 is to implement modifications to the
conventional string fragmentation framework in the PYTHIA 8 event generator and
explore whether those can provide a step in the right direction to improve the de-
scription of new LHC data. In the current form of the fragmentation the string
breaking is based on a tunneling analogy, where fluctuations of the form g → qq̄

break the string. The quark-antiquark pairs receive opposite and compensating
kicks in p⊥ according to a Gaussian distribution, independently of their flavour.
We implement a new model for generating the p⊥ of hadrons during the fragmen-
tation in PYTHIA 8. It is inspired by thermodynamics and based on an exponen-
tial suppression of the hadronic transverse mass. It therefore naturally suppresses
heavier hadrons with respect to lighter hadrons but they obtain a higher average
p⊥. We further added a simple model to take the close-packing of strings into ac-
count. By making the generation of the p⊥ dependent on the environment, hadrons
in high-multiplicity events obtain more p⊥. As a last addition we implement a sim-
ple model for hadron rescattering, where hadron pairs are allowed to scatter off
each other dependent on their rapidity difference.

The modified predictions have been tested and validated with toy model studies as
well as by comparing to LHC data, such as identified particle spectra. We tuned the
newly introduced parameters to achieve an improved description of data. While
the thermodynamical model provides a significantly improved description of some
observables, compared the conventional model, the overall effects are not as large
as hoped for and not all phenomena are included in the new model. Neverthe-
less the results point out that more physics is at play than assumed in the tradi-
tional Lund model with tunneling-based string breaks. The improvement due to
the thermodynamical model implies that the string breaking is not governed solely
by partons, but one should rather consider the hadrons themselves in the process.
Taking into account the close-packing of string confirms that strings do affect each
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other, especially in a dense environment. We do not claim that our simple model is
necessarily the correct approach, but the improvements it causes point towards the
right direction. The hadronic rescattering as a way of accounting for collective-flow
effects contributes to the modelling of additional hadron-hadron interactions that
occur on top of the string fragmentation.

The conclusions above are confirmed by the even more successful DIPSY genera-
tor, where the formation of colour ropes is a consequence of a more sophisticated
model for the close-packing of strings [154]. In addition to the increased produc-
tion of heavier hadrons and larger p⊥ values, the ridge phenomenon is included
via a shoving mechanism [155]. Similar effects are achieved in the EPOS generator
due to the formation of a quark-gluon plasma [156].

The new LHC measurements and successful models, which take into account
string density, hadron rescattering, and/or quark-gluon plasma, point towards the
physics of soft collective signals, including fragmentation, being similar for high-
energy reactions with incoming hadrons and heavy ions. The effects are more obvi-
ous and dominant in heavy-ion collisions though. One may hope that the fragmen-
tation in e+e−, pp, and heavy-ion collisions can be performed by the same underly-
ing model, providing distinct predictions for the three different beam setups, based
on arguments such as string density or energy. A recent article fits in this discussion
by asking the question of whether the minimal conditions for collective effects are
already met in e+e− collisions [157]. The authors predict results that “imply that
in small collisions systems over a range of energies, a minimum of two strings is
sufficient to generate collectivity signals.” Future studies will hopefully reveal the
way how those effects are generated and therefore what underlying mechanisms
are at play.
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1 Introduction

QCD, the theory of strong interactions, is at the origin of a wide range of phenomena.

In one extreme, progress on high-energy perturbative calculations offers an increasingly

precise and successful description of hard processes, as a large community is steadily im-

proving calculational techniques. NLO calculations, once rare, are now standard, NNLO is

getting there, and even NNNLO is starting to appear (see e.g. [1] and references therein).

In another extreme, the nonperturbative aspects of low-energy interactions are less well

understood. Lattice QCD can be used to calculate static hadron properties, but not (yet?)

dynamical processes. Specifically, the description of hadronization, the step whereby par-

tons turn into hadrons in high-energy collisions, cannot be derived directly from the QCD

Lagrangian within any currently known formalism. Instead string [2] and cluster [3–5] mod-

els, developed in the early eighties, have been used almost unchanged from PETRA/LEP

e+e− events to SppS/Tevatron/LHC pp/pp ones — the assumed “jet universality”. Differ-

ences have been attributed to the quite disparate parton-level configurations that undergo

hadronization: while e+e− involves only hard process and final-state radiation (FSR), pp

adds aspects such as initial-state radiation (ISR), multiparton interactions (MPIs), beam

remnants and colour reconnection (CR).

– 1 –
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Cracks have started to appear in this picture as new LHC data have been presented.

Specifically, several studies have shown how high-multiplicity pp events have properties sim-

ilar to those observed in heavy-ion AA collisions. Some observations may have an explana-

tion within the current framework, e.g. CR may give some flow-like patterns [6], but others

do not. An early example was the discovery of “the ridge”, an enhanced particle produc-

tion around the azimuthal angle of a trigger jet, stretching away in (pseudo)rapidity [7–9].

A more recent example is the smoothly increasing fraction of strange baryon production

with increasing charged multiplicity, a trend that lines up with pA data before levelling out

at the AA results [10].1 Conventional wisdom holds that the formation of a quark-gluon

plasma (QGP) requires a larger volume and longer time for thermalization than pp or pA

systems can offer, so such trends are unexpected, see e.g. [12].

It is therefore time to rethink the picture of hadronization in high-energy and high-

multiplicity collisions. One possible approach is to imagine that a QGP is at least partly

formed in pp collisions, such that individual colour fields (strings) cease to exist. Such a

behaviour is already implemented in the EPOS model [13]. Another is to imagine that

strings survive as a vehicle e.g. of short-range flavour correlations, but that their proper-

ties are modified. Colour ropes [14–16] is one such example, wherein several colour-triplet

strings combine to a higher colour-representation field. A detailed implementation of rope

dynamics is found in the DIPSY program [17]. Both EPOS and DIPSY qualitatively de-

scribe several of the new key features, such as the increasing rate of strangeness production

at higher multiplicities.

With the studies described in this article we want to add to the set of alternative

models that can be used to compare with data. At best it may offer some new insights, at

worst it will act as a straw man model. Firstly, rather than the particle-mass-independent

Gaussian p⊥ spectrum assumed in the standard string model, it introduces an exponential

p⊥ dependence, exp(−p⊥/T ). This is split among possible flavours according to hadronic

m⊥, exp(−m⊥/T ). Such p⊥ and m⊥ shapes were used to describe early pp data, e.g. at the

ISR [18], and has some foundation in the Hagedorn temperature [19–21] and in related [22]

ideas. (Later powerlike p⊥ ansätze [21, 23, 24] or two-component exponential + powerlike

ones [25] can be viewed as a consequence of perturbative jet production, and is in our

framework generated as such, in an earlier stage than the nonperturbative hadronization.)

Secondly, it assumes that the close-packing of several strings leads to an increased effective

temperature and thereby both a changed particle composition and changed p⊥ spectra. In

spirit this is close to the rope model, but it does not have to assume that the individual

strings either fuse or melt away. Thirdly, if the fragmenting strings are close-packed this

also implies the initial formation of a dense hadronic gas, wherein rescattering may lead to

collective-flow effects. Such effects are simulated in a crude first approximation.

The impact of these mechanisms on experimental distributions is studied, in order to

quantify their significance. As a prime example, consider the 〈p⊥〉(nch) distribution, with

a characteristic rising trend that has been proposed as a signal for colour reconnection [26].

1Note that in [11] the authors obtain the same enhancement regardless of the system measured if the

yield ratios are plotted against the estimated energy density.

– 2 –
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Alternative interpretations are now offered in terms of close-packing of strings and/or

hadrons, and these are presented and compared with data individually. At the end of

the day, we should expect the “true” nature of high-multiplicity pp collisions to contain

many contributing mechanisms, however. To be more more specific, in quantum mechanics

any process that is not explicitly forbidden by some selection rule is bound to occur, the

question is only with what rate. The final task therefore is try to constrain the relative

importance of the mechanisms, not to prove a specific one “right” or “wrong”.

The new model components are implemented as options in the standard Pythia event

generator [27, 28], which makes it easily accessible for further experimental tests. They

should be viewed as a first iteration. Should they prove useful there is room for further

improvements, as we will indicate.

The article is organized as follows. Section 2 outlines relevant features of the existing

Lund string model and introduces key observables, with emphasis on those new ones that

are not well described by the current Pythia generator. Section 3 introduces the alterna-

tive approaches explored in this article, and presents some first toy studies for simplified

string topologies. Comparisons with data are presented in section 4, highlighting what

seems to work where and what not. Finally section 5 contains a summary and outlook.

2 Existing models and data

2.1 The Lund string model

The Lund string fragmentation model [2] is very successful in many respects, but more so

for the overall longitudinal fragmentation structure than for its description of the particle

composition.

The central assumption in the string model is that of linear confinement, V (r) = κr,

with a string tension κ ≈ 1 GeV/fm. The word “string” should here not be taken literally;

the physical object is a kind of flux tube stretched between the endpoints, with a typical

transverse size of the order of the proton one, rp ∼ 0.7 fm. The one-dimensional “mathe-

matical” string should then be viewed as a description of the location of the center of the

flux tube. By analogy with superconductivity the tube could be viewed as a vortex line

like in a type II superconductor, alternatively as an elongated bag in a type I one.

In the case of a simple stable back-to-back qq system, with mq = p⊥ q = 0, quarks

move with the speed of light in “yo-yo”-mode oscillations, as energy moves between being

stored in the endpoint quarks and in the intermediate string. If creation of new qq pairs

is allowed the original system can break up into smaller ones, each a colour singlet in its

own right. Denoting the original pair q0q0, and ordering the new pairs qiqi, 1 ≤ i ≤ n− 1

from the quark end, results in the production of n hadrons q0q1, q1q2, . . . , qn−1q0.

Aligning the x axis with the string axis, the breakup vertices are characterized by

their location (ti, xi). These vertices have a spacelike separation, and so have no unique

time ordering. (Except for the original (t0, x0) = (0, 0) of course. But here it is actually

the turning points of the q0 and q0 that define the vertices in eq. (2.1) below, and then

spacelike separation is restored.) Two adjacent ones are correlated by the constraint that

– 3 –
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the hadron produced should have the correct mass mi:

κ2((xi − xi−1)2 − (ti − ti−1)2) = m2
i . (2.1)

If the vertices are assigned from the quark end, say, each new vertex therefore corresponds

to one degree of freedom, which should be selected according to some probability function.

Imposing consistency constraints, mainly that results should be the same (on the average)

if fragmentation is instead considered from the antiquark end, gives the solution [2]

f(z) ∝ 1

z
(1− z)a exp(−bm2/z) , (2.2)

with a and b two free parameters, and where m2 → m2
⊥ once transverse momentum is

introduced. Here z is the fraction of available lightcone momentum E + px taken by a

hadron, with the remainder 1−z retained by the string for subsequent particle production.

This ansatz leads to vertices having an equilibrium distribution (after having taken a

few steps away from the endpoints)

P (Γ) ∝ Γa exp(−bΓ) , Γ = (κτ)2 = κ2(t2 − x2) , (2.3)

with the same a and b as above. (For the special case a = 0 this result agrees with the

Artru-Mennessier model [29], which is based on constant decay probability per string area

dt dx, without any mass constraint.) The associated probability for producing n particles

can be written as [30]

dPn ∝
[
n∏
i=1

Nd2piδ(p
2
i −m2

i )

]
δ(2)

(∑
i

pi − ptot

)
exp(−bκ2Atot) , (2.4)

where Atot is the total space-time area under the breakup vertices. The relation between

dPn and dPn−1 (at a reduced c.m. energy) is then given by the fragmentation function

eq. (2.2), where it is easy to show that the exponentials match, and somewhat less trivial

that a larger N (i.e. larger weight for higher multiplicities) corresponds to a larger a (i.e.

less momentum taken away in each step).

The simple qq fragmentation picture can be extended to qqg topologies if the gluon

is viewed as having separate colour and anticolour indices, as in the NC → ∞ limit [31].

Then one string piece is stretched between the quark and the gluon, and another between

the gluon and the antiquark. The absence of a string piece stretched directly between

the quark and antiquark leads to predicted asymmetries in the particle production [32]

that rapidly were observed experimentally [33]. In general, a string can stretch from a

quark end via a number of intermediate gluons to an antiquark end. Technically the

motion and fragmentation of such a string system can become rather complicated [34],

but the fragmentation can be described without the introduction of any new principles or

parameters. This is the most powerful and beautiful aspect of the string fragmentation

framework. Note that the leading hadron in a gluon jet can take momentum from both

the string pieces that attaches it to colour-adjacent partons. This is unlike cluster models,

where gluons are forced to branch into qq pairs, such that smaller colour singlets are
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formed rather than one single string winding its way between the partons. The string

model is easily extended to closed gluon loops and, with rather more effort [35], to junction

topologies, where three string pieces come together in a single vertex.

We now turn to the breakup mechanism. If a qq pair is massless and has no transverse

momentum it can be produced on-shell, in a single vertex, and then the q and q can move

apart, splitting the string into two in the process. But if the q (and q) transverse mass

m⊥q =
√
m2

q + p2
⊥q > 0 this is no longer possible. By local flavour conservation the qq pair

is still produced at a common vertex, but as virtual particles that each needs to tunnel

out a distance d = m⊥/κ. Using the WKB approximation [2] to calculate the tunneling

probability for the pair gives a factor

exp
(
−πm2

⊥q/κ
)

= exp
(
−πm2

q/κ
)

exp
(
−πp2

⊥q/κ
)
, (2.5)

where the Gaussian answer allows a convenient separation of the m and p⊥ dependencies

(with implicit phase space d2p⊥).

The latter is implemented by giving the q and q opposite and compensating p⊥ kicks,

with 〈p2
⊥q〉 = κ/π = σ2 ≈ (0.25 GeV)2. A hadron receives its p⊥ as the vector sum of it q

and q constituent kicks, and thus 〈p2
⊥had〉 = 2σ2. Empirically the tuned σ value comes out

larger than this, actually closer to σ = 0.35 GeV. This implies that almost half of the p2
⊥

kick is coming from other sources than tunneling. One source could be soft gluon radiation

below the perturbative (parton shower) cutoff, where αs becomes so big that perturba-

tion theory breaks down [36]. Effectively radiation near the perturbative/nonperturbative

border is thus shoved into an artificially enhanced tunneling answer, with the further as-

sumption that the Gaussian shape and the p⊥ balancing inside each new qq pair still holds.

Uncertainties also arise in the interpretation of the mass suppression factor of eq. (2.5):

what quark masses to use? If current quark masses then the u and d ones are negligible

while the s is below 0.2 GeV, predicting less strangeness suppression than observed, while

with constituent masses mu ≈ md ≈ 0.33 GeV and ms ≈ 0.51 GeV [37] too much sup-

pression is predicted. Intermediate masses and suppression factors closer to data can be

motivated e.g. by noting that an expanding string corresponds to confinement in the two

transverse dimensions but not in the longitudinal one. In the end, however, the s/u sup-

pression is viewed as an empirical number to be tuned to data. Whichever values are

used, c and b quark tunneling production is strongly suppressed, so this mechanism can

be totally neglected relative to the perturbative ones.

Considering only mesons in radial and rotational ground states, i.e. only the pseu-

doscalar and vector multiplets, naive spin counting predicts relative rates 1 : 3, whereas

data prefers values closer to 1 : 1, at least for π : ρ. It is possible to explain a suppres-

sion of the vector mesons based on the difference in the hadronic wave functions, from

the spin-spin interaction term [2], but the amount has to be tuned to data. And further

brute-force suppression factors are needed specifically for the η and η′ mesons, which have

“unnaturally” large masses owing to the U(1) anomaly.

Baryon production can be introduced by allowing diquark-antidiquark breakups of the

string [38], to be viewed as occurring in two consecutive qq creation steps [39]. A baryon
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and the matching antibaryon would normally be nearest neighbours along the string, but

the “popcorn mechanism” also allows one (or more) mesons to be produced in between.

Diquark masses can be used to derive approximate suppressions, but again free parameters

are used, for qq/q, sq/qq, qq1/qq0 and others. Unfortunately the tuned values do not

always match so well with the tunneling-formula expectations.

In total O(20) parameters are used to describe the outcome of the string/tunneling

mechanism for particle production. Notable is that the particle masses do not enter explic-

itly in these considerations. This is unlike cluster models, e.g., where hadron masses occur

in the phase space available for different cluster decay channels. A fair overall descrip-

tion of the particle composition is then obtained with very few parameters [40, 41]. Note

that while most fragmentation parameters in Herwig++ exist in different copies for light

(u, d, s), c, and b quarks, the ones for heavy quarks have either been set equal to the values

of those for light quarks [40] or have not been included in further tuning processes [41].

The hadron masses can be explicitly introduced into the Lund framework by assuming

that the integral
∫ 1

0 f(z) dz, with f(z) given by eq. (2.2), provides the relative normalization

of possible particle states. This concept has been developed successfully within the UCLA

model [42, 43], in that particle rates come out quite reasonably with minimal further

assumptions. There are some other issues with this approach, however, and we do not

pursue it further here.

2.2 Key data

An immense number of studies have been published based on hadron collider data, and it

is not the intention here to survey all of that. Instead we here bring up some of the key

data and distributions that have prompted us to this study. Several of them will be shown

repeatedly in the following. We note that all histograms we will present in this article are

produced by utilizing Rivet [44].

The list of key observables includes:

• The change of flavour composition with event multiplicity. Specifically, high-

multiplicity events have a higher fraction of heavier particles, meaning particles with

a higher strangeness content [10]. Pythia contains no mechanism to generate such

a behaviour. On the contrary, within a single fixed-energy string a higher multiplic-

ity means more lighter particles, for phase space reasons. In pp collisions a higher

multiplicity is predominantly obtained by more MPIs, however, so the composition

stays rather constant.

• The average transverse momentum 〈p⊥〉 is larger for heavier particles, both at

RHIC [45] and LHC [46]. This is a behaviour that is present also in Pythia, and

comes about quite naturally e.g. by lighter particles more often being decay products,

with characteristic 〈p⊥〉 values smaller than the primary particles in the string frag-

mentation. The mass dependence is underestimated, however. That is, π± obtains a

too large 〈p⊥〉 in Pythia and baryons a too small one. Recently 〈p⊥〉 has also been

presented as a function of nch, inclusive [47] and for different hadron species [48],

providing a more differential information on this mismatch. In figure 1 we show
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these observables and compare default Pythia with data, with the above expected

conclusions. Note that the data in figure 1 of [48] is not (yet) publicly available.

To obtain an estimate of the data that is comparable to MC predictions we used an

estimate of the logarithmic fits shown in figure 1 of [48] and used nch values on the

x axis rather than 〈dnch/dη〉|η|<0.5.

• The charged particle p⊥ spectrum is not correctly modelled at low p⊥ scales, with

Pythia producing too few particles at very low values [47, 49, 50]. Often tunes

then compensate by producing a bit too many at intermediate p⊥ scales. The issue

shows up e.g. in minimum-bias dnch/dη distributions, where it is not possible to

obtain a good description for data analyzed with p⊥ > 0.1 GeV and p⊥ > 0.5 GeV

simultaneously.

• In the p⊥ spectra for identified particles [51] it turns out that the deficit at low p⊥ is

from too little π± production. This is not unexpected, given the previous two points,

but stresses the need to revise the mass dependence of p⊥ spectra.

• The Λ/K p⊥ spectrum ratio, measured by CMS [52], where Pythia is not able to

reproduce the peak at ∼ 2.5 GeV completely and overshoots the distribution for

large-p⊥ values.

• The observation of a ridge in pp collisions was one of the major surprises in the

7 TeV data [7], and has been reconfirmed in the 13 TeV one [8, 9]. The ridge is most

clearly visible at the very highest multiplicities, but more careful analyses hints the

effect is there, to a smaller extent, also at lower multiplicities. Like in heavy-ion

collisions one may also seek a description in terms of correlation functions, C(∆φ) ∝
1 +

∑
n≥2 vn cos(n∆φ), notably the v2 coefficient, with a similar message. These

phenomena are not at all described by Pythia: there is no mechanism that produces

a ridge and, once the effects of back-to-back jet production have been subtracted, also

no rise of v2.

There are also some other reference distributions that have to be checked. These are

ones that already are reasonably well described, but that inevitably would be affected by

the introduction of new mechanisms.

• The charged particle multiplicity distribution P (nch) is sensitive to all mechanisms

in minimum-bias physics, but especially the MPI and CR modelling. A mismatch in

〈nch〉 is most easily compensated by modifying the p⊥0 scale of the MPI description.

This parameter is used to tame the dp2
⊥/p

4
⊥ divergence of the QCD cross section to a

finite dp2
⊥/(p

2
⊥0 +p2

⊥)2 shape. It can be viewed as the the inverse of the typical colour

screening distance inside the proton. A mismatch in the width of the nch distribution

can be compensated by a modified shape of the b impact-parameter distribution of

the two colliding protons. Specifically, a distribution more sharply peaked at b = 0

gives a longer tail towards high multiplicities.
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Figure 1. The mean transverse momentum as a function of the charged multiplicity (top left and

the hadron mass (top right) and bottom). Predictions of default Pythia compared to ALICE [46, 48]

and ATLAS [47] data. The data in the bottom plots is taken to be an estimate of the logarithmic

fits in [48] and therefore no error bars are included.
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• An 〈p⊥〉 increasing with nch was noted already by UA1 [53], and has remained at

higher energies [47, 48]. It offers a key argument for introducing CR in pp/pp colli-

sions, as follows [26]. The tail towards large nch is driven by events with more MPI

activity, rather than e.g. by events with higher-p⊥ jets. If each MPI subcollision

produces particles essentially independently the 〈p⊥〉(nch) would be rather flat. CR

implies that fewer and fewer extra particles are produced for each further MPI, as

the possibilities to reduce the total string length by CR increase the more partons

are already present. The amount of p⊥ from the MPIs thus increases faster than

the nch, meaning more p⊥ per particle. (To this comes the normal hadronization

p⊥ contribution, which raises the overall 〈p⊥〉 level but does not contribute to the

〈p⊥〉(nch) slope.) The exact nature of CR is not known, meaning that many models

have been developed [26, 54, 55]. In most of them there is some overall CR strength

parameter that can be adjusted to fit the 〈p⊥〉(nch) slope.

• A natural reference for hadronization properties always is e+e− data. The principle of

jet universality — or, in our case, string universality — is deeply rooted, so it it useful

to check that no changes of fundamental string properties have too adverse an impact

on e+e−. There is also a possibility of improvements in some places, like the inclusive

p⊥in and p⊥out spectra; unfortunately these are not available for identified particles.

3 The new models

In this section we outline the basic ideas and implementations that we have developed to

offer new options to the traditional Pythia hadronization framework. As we later compare

with data we will have reason to go into more detail and discuss some variations.

3.1 Variations of the normal string model

As described above, the standard tunneling framework suggests a Gaussian suppression of

the production of heavier quarks and diquarks, with a further suppression based on the

hadronic spin state, but no obvious room for an explicit dependence on the hadron mass.

It also provides a common Gaussian p⊥ spectrum for all new qq pairs. We will study a few

variations of this framework, mainly as a reference for the thermodynamical ansatz below.

Firstly, consider a Gaussian suppression associated with the masses of the produced

hadrons rather than with the quarks. That is, let the relative production rate of different

hadron species be given by a factor exp(−m2
⊥had/2σ

2), which factorizes into a species-

independent p⊥ spectrum and an exp(−m2
had/2σ

2) mass suppression. The question is then

whether this would give the appropriate suppression for the production of heavier particles.

Secondly, the universal p⊥ spectrum could be broken by assigning a larger width in

string breakups of the ss and qqqq kinds, relative to the baseline uu and dd ones. The issue

to understand here is how dramatic differences are required to get a better description of

the individual π, K and p p⊥ spectra.

Thirdly, assume that more MPIs leads to a closer packing of strings in the event,

but that each string “flux tube” remains as a separate entity. The transverse region of the
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Figure 2. Rapidity distribution of the strings (added on top of each other) in a typical QCD event

(left) and in a diffractive event (right).

string shrinks and, essentially by Heisenberg’s uncertainty relations, this should correspond

to a higher energy, i.e. a larger string tension κ. (Such a relation comes out naturally e.g.

for bag models of confinement [56].) Overall the dense-packing effect on κ and related

parameters should scale as some power of nMPI, i.e. the number of MPIs in the current

event. Since nch and nMPI are strongly correlated it is thus interesting to study how the

particle composition and 〈p⊥〉 depend on nch. For a more differential picture it should

be preferable to estimate the number of strings in the neighbourhood of each new hadron

being produced.

This is done by making a reasonable guess for the momentum of the hadron that is the

next to be produced on the current string. Using an average hadron mass and p⊥, defined

in the frame of the parent string, and an average Γ value of 〈Γ〉 = (1+a)/b, the momentum

of the “average expected” hadron is calculated. Using this information, we determine the

number of strings that cross the rapidity of the expected hadron. For this purpose the

rapidity range that a string will populate is defined by the rapidity of the endpoint partons

of each string piece,

y = sgn (pz) log
E + |pz|√

max
(
m2
⊥,m

2
min

) , (3.1)

where m2
min has the purpose to protect against strings with low-m⊥ endpoints from pop-

ulating the full rapidity range. The rapidity-density measure is reasonable for low-p⊥
hadroproduction, but does not reflect the phase space inside a high-p⊥ jet, where close-

packing of strings should be rare. Therefore the effective number of strings is calculated as

neff
string = 1 +

nstring − 1

1 + p2
⊥had/p

2
⊥ 0

, (3.2)

where p⊥had is the physical hadron p⊥ and p⊥ 0 is the MPI regularization parameter.

As two examples, the rapidity distribution of the strings in a typical QCD event and

in a diffractive event are shown in figure 2. Using eq. (3.2), the string tension in eq. (2.5)

is modified to be

κ→
(
neff

string

)2r
κ , (3.3)
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where the exponent r is a left as a free parameter, that can be used to tune the model

to data. Note that while junctions2 contribute to the calculation of nstring by assuming

one string stretched between the highest- and lowest-rapidity parton, their fragmentation

does not make use of eq. (3.3). Junctions are rare in the models we study, so this is not a

significant simplification.

The effect of modifying the string tension due to the local density has also been studied

in other Monte Carlo programs, which are primarily for heavy-ion collisions. Some of them

have hardly been used for pp physics as they miss out on other physics aspects such as QCD

jet production. In the RQMD model [57] for studying relativistic nucleus-nucleus collisions,

colour strings are allowed to fuse into ropes if they are overlapping, which weakens the

suppression of strangeness and baryon production due to the increased string tension [58].

A similar model with string fusion into colour ropes is implemented in the DIPSY event

generator [17] and shows improvement in the description of identified particle spectra in

pp minimum bias data. For the UrQMD model [59, 60], used for relativistic heavy-ion

and hadron-hadron collisions, the authors of [61] show that a better description of particle

yields is achieved with an enhanced string tension. The effect of an increased string tension

in a densely populated environment on strangeness and diquark production, antibaryon-

to-baryon ratios and other observables has been investigated in [62]. In AMPT [63, 64], a

Monte Carlo transport model for heavy-ion collisions at relativistic energies, parameters in

the Lund string fragmentation model have been modified, as the string tension is expected

to be increased in the dense matter formed in heavy-ion collisions [65]. In the PSM [66, 67]

Monte Carlo model for simulating nuclear collisions, string fusion associated with high

string densities is taken into account to reduce multiplicities and increase 〈p⊥〉, baryon

and strangeness production. Ref. [68] presents a model which introduces the interaction

between strings via their fusion and percolation analytically. The 〈p⊥〉 of the produced

particles, and therefore also the string tension, depends on the string density and how

much strings overlap [69–71].

3.1.1 One-string toy model

A very simple toy model is introduced to validate the modifications to the string tension

in the conventional string model. A single string with energy mZ is spanned along the z

axis. The flavour of the endpoint quarks is chosen random from the set (u, d, s, c, b). The

study includes only primary produced hadrons, i.e. no hadron decays, and also excludes

the hadrons containing the endpoint quarks. (Such hadrons would have lower 〈p⊥〉 since

the endpoint quarks by definition have p⊥ = 0.)

The 〈p⊥〉 and the mean multiplicity for different hadron species are shown in figure 3.

As expected, increasing the string tension either for s quarks or for diquarks leads to an

increased 〈p⊥〉 value for the hadrons concerned. Note that for η + η′ the 〈p⊥〉 is only

increased slightly due to the uu + dd quark component being more frequently produced

compared to ss. There is a slight reduction of the production probability for hadrons with

s quarks or diquarks, shown in the top right plot in figure 3, due to the increased string

2A junction topology corresponds to an Y arrangement of strings, i.e. where three string pieces have to

be joined up in a common vertex.
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Figure 3. 〈p⊥〉 (top left) and mean multiplicity (top right) for different hadron species and the K

(bottom left) and p/n p⊥ (bottom right) spectra in the toy model. Predictions of the conventional

string model without modifications are shown in red and with the string tension κ increased for

diquarks in blue and strangeness in green.

tension leading to fewer particles being produced in affected events. The bottom row of

figure 3 shows the K and p/n p⊥ spectra, shifted to larger values as the string tension for

that hadron species is increased.

3.1.2 Multi-string toy model

To investigate the effect of the close-packing of strings, as in eq. (3.3), the above toy model

is extended to include several strings along the z axis. The number of strings is picked

randomly between two and eight and the string energies are chosen such that they sum up

to 1 TeV. Figure 4 shows 〈p⊥〉 as a function of the number of charged particles and the p⊥
distribution and compares the modified model to default Pythia. Two different choices

for the baseline value for the string tension are made in case of taking the close-packing

of strings into account. In the first case the tension is denoted with κ and its value is
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Figure 4. 〈p⊥〉 as a function of the number of charged particles (left) and the p⊥ distribution

(right) for the toy model with multiple strings along z axis. Predictions of the default model are

shown in red and dependence of the string tension on the number of close strings in blue and green

with two different string tensions κ > κ′.

adjusted such that 〈p⊥〉 agrees with default Pythia for small values of nch. In the second

case, where the string tension is denoted by κ′ the value is adjusted to obtain the same

〈p⊥〉, averaged over all hadrons and charged multiplicities. The latter case serves as a cross

check when investigating the influence on the p⊥ spectrum of charged hadrons.

As expected the 〈p⊥〉 increases with the charged multiplicity, eventually flattening out

at large multiplicities. The left histogram in figure 4 also nicely shows that the rise is

independent of the baseline string tension value.

When fitting the string tension such that the same overall 〈p⊥〉 is reached as in the

default model, the charged hadron p⊥ spectrum exhibits only small changes; making the

spectrum somewhat broader.

3.1.3 Gaussian m2
⊥had suppression

To test the applicability of the Gaussian transverse mass suppression, the quark p⊥ is

generated according to exp
(
−p2
⊥q/σ

2
)

, see eq. (2.5), with the hadron flavour chosen based

on exp
(
−m2

⊥had/2σ
2
)
. The additional factor of two arises from the hadron receiving p⊥

contributions from two quarks. As the comparison to data is of interest here, realistic

e+e− → jets events with s = m2
Z are investigated. In figure 5 the particle composition

is shown as a function of mass. This clearly indicates that the suppression based on the

transverse mass squared of the hadrons is suppressing heavier hadrons too much. We will

therefore not consider this option further.

3.2 The thermodynamical string model

The most radical departure from standard Lund string principles that we explore in this

article is to replace the Gaussian suppression factor in mass and p⊥ by an exponential one.
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Figure 5. The conventional string model with its default options (red) and with the relative

production rate of different hadron species given by a factor exp(−m2
⊥had/2σ) (blue), compared to

PDG data [72].

To be more explicit, instead of a quark-level suppression governed by eq. (2.5) there will

be a hadron-level suppression

exp(−m⊥had/T ) with m⊥had =
√
m2

had + p2
⊥had . (3.4)

The inspiration clearly comes from a thermodynamical point of view, which is why we

choose to associate the dimensional parameter with a temperature T . This association

should not be taken too literally, however; there are many differences relative to a purely

thermal model. The main one is that we keep the longitudinal string fragmentation struc-

ture unchanged, which ensures local flavour conservation. Another is that e.g. the Hagedorn

approach [19, 20] is based on the assumption of a steeply increasing density of excited states

as a function of mass, whereas we only include a few of the lowest multiplets. (By default

only the ground states corresponding to no radial or orbital excitation, optionally also the

lowest L = 1 meson multiplets.) This means that, although our T comes out to be a num-

ber of the order of the Hagedorn temperature, there is no exact correspondence between

the two. Also, T ∼
√
κ/π = σ from dimensional considerations, so our T could be viewed

as a manifestation of the string energy per unit length, not directly linked to a temperature.

There is also an experimental historical background to the choice of an exponential

shape, in that already fixed-target and ISR data showed that a distribution like exp(−Bp⊥)

offered a good fit to the inclusive dnch/dp
2
⊥ spectrum, with B ≈ 6 GeV−1 [18, 73–75]. With

data split by particle type, a lower B value is noted for kaons and protons than for pions,

but with the modified form exp(−Bm⊥) all the spectra can be described by almost the

same B ≈ 6 value.

As an aside, the preference for an exponential shape was and is not a show-stopper for

the Gaussian approach in the normal string fragmentation. At larger p⊥ the spectrum is

dominated by the fragmentation of (mini)jets, giving a larger rate than the nonperturbative
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hadronization one. And at smaller p⊥ the pattern of decays makes the spectrum more steep

than the Gaussian one of the primary hadrons. So at the end of the day a Gaussian ansatz

lands not that far away from an exponential spectrum, although differences remain. See

further section 3.4.1, in particular figure 9.

In more detail, our model is intended to give each new hadron in the string fragmen-

tation a p⊥ according to an exponential distribution. We want to preserve the concept of

local p⊥ conservation in each qq breakup vertex, so seek a distribution that convoluted

with itself (in two transverse dimensions) gives an exponential,

fhad (p⊥had) = exp (−p⊥had/T ) =

∫
d2p⊥ 1fq(p⊥ 1)

∫
d2p⊥ 2fq(p⊥ 2) δ(p⊥had−p⊥ 1−p⊥ 2) .

(3.5)

Using Fourier transforms to turn the convolution into a product,

f̃had(b⊥) =
1

2π

∫
fhad (p⊥had) exp (−ib⊥ · p⊥had) d2p⊥had

= 2π f̃2
q (b⊥) =

1

(1 + (b⊥T )2)3/2
. (3.6)

The transformation back of f̃q then gives [76]

fq(p⊥ q) ∝
∫

exp(ib(p⊥ q/T ) cosϕ)

(1 + b2)3/4
b db dϕ ∝

∫ ∞
0

b J0(b p⊥ q/T )

(1 + b2)3/4
db ∝

K1/4(p⊥ q/T )

(p⊥ q/T )1/4
,

(3.7)

where b = b⊥T , J0 is a regular Bessel function of the first kind, and K1/4 is the modified

Bessel function of the second kind of order 1/4. An implementation of K1/4 has been

included in Pythia based on [77], using a power series for p⊥ q/T < 2.5 and an asymptotic

expansion for p⊥ q/T > 2.5.

Consider the fragmentation of a string, where the quark q of one breakup has a certain

p⊥ 1. The transverse momentum p⊥ 2 of the (di)quark of the next breakup pair q′q̄′ is con-

structed by picking its absolute value according to eq. (3.7) and a random azimuthal angle.

The partner anti(di)quark must thus have −p⊥ 2 due to local momentum conservation.

The hadron transverse momentum is simply the sum of the p⊥ of the two contributing

quarks, p⊥had = p⊥ 1−p⊥ 2. Having p⊥had at hand we decide on the flavour of the breakup

pair q′q̄′, and therefore also on the hadron species, as follows: calculate the transverse mass

m⊥had of all hadrons whose flavour content includes the incoming quark q and determine

the basic probability for each hadron as

Phad = exp(−m⊥had/T ) . (3.8)

Assuming the production of two hadrons with different masses m1 and m2, then eq. (3.8)

implies the same production rate for p⊥ � m1,m2, but more suppression of the heavier

hadron at low p⊥. Thus there is less production of heavier states, but they come with

a larger 〈p⊥〉.
As mentioned above, by default we only include the light-flavour (u, d, s) meson and

baryon multiplets without radial or orbital excitation.3 However, if desired, more hadrons

3Heavy flavour hadrons are of course included to handle the endpoint quarks of the strings, where needed.
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can be added to the procedure. Depending on the flavour content of the hadron, the

probability in eq. (3.8) receives additional multiplicative factors:

• Due to spin-counting arguments vector mesons receive a factor of 3 and tensor mesons

a factor of 5.

• For same-flavour mesons we include the diagonal meson mixing factors, similar to

what has been done previously in the conventional Lund string model.

• Baryons receive a free overall normalization factor with respect to mesons, as well

as an additional factor stemming from the SU(6) symmetry factors, see [38]. The

relative weight of spin 1/2 baryons with respect to those with spin 3/2 is 2 : 4,

similar to the factors for mesons arising from the spin-counting arguments in point 1.

• For the special case of octet baryons with three different flavours, e.g. Λ and Σ0, their

probability for different internal spin configurations is taken into account.

• An extra suppression factor for hadrons with strange (di)quarks is included to get

more control over the relative hadron production and thus a better description of data.

All probabilities are then rescaled to sum up to unity and the hadron species and therefore

the flavour of the next (di)quark pair is chosen accordingly. Note that we have not (yet)

implemented popcorn baryon production, i.e. no mesons are produced in between a baryon

and its antibaryon partner.

Similar to eq. (3.3) the temperature can be modified as

T →
(
neff

string

)r
T , (3.9)

with neff
string given in eq. (3.2) to take into account the effect of close-packed strings. Note

that in [78] the temperature has been related to the density in the context of the percolation

of color sources (the density is however defined differently).

3.2.1 Asymmetry in different flavour transitions

Consider a very simple model, where only string breaks with dd and ss quark pairs are

allowed to produce only pseudoscalar mesons, and the mixing of diagonal mesons is ignored.

Then it is rather easy to see that the p⊥ spectra and 〈p⊥〉 of the hadrons produced in

(d → s) transitions is not the same as for (s → d) transitions, due to the difference in

competition. In the first instance (d → s) competes with (d → d), and since the former

produces the heavier meson it also obtains the higher 〈p⊥〉. In the latter instance (s→ d)

instead competes with (s → s) and so gives the lighter meson and lower 〈p⊥〉. Assuming

that fragmentation is performed from the quark end inwards, K0 = ds would thus obtain

a harder p⊥ spectrum than K̄0 = ds, which should not be the case. A simple solution

for obtaining the same 〈p⊥〉 for both (d → s) and (s → d) transitions is to adjust the

temperature in eq. (3.8) in case of initial s/s̄ quarks such that ds and ds hadrons are

produced with the same 〈p⊥〉 value, higher than dd, and ss becomes even higher than that.
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Figure 6. The inclusive hadron p⊥ spectrum for (d → s) and (s → d) transitions with the same

temperature for both cases (left) and with the adjusted temperature (right).

In figure 6 we show the p⊥ spectra for both types of transitions with the same temper-

ature and with the adjusted temperature. Note that though both transitions end up with

the same 〈p⊥〉 value, the shape of the p⊥ distribution still differs somewhat.

Unfortunately this is a price to pay for working with a recursive model, where flavour

is conserved locally. A traditional thermal model based on eq. (3.8) would not conserve

flavour or momentum, however, so is not an option here.

3.3 The hadronic rescattering model

A close-packing of fragmenting strings also implies a close-packing of the produced primary

hadrons, i.e. a dense hadronic gas. This gives the possibility for hadrons to rescatter on the

way out, in particular at the earliest times after hadronization. A detailed simulation of this

mechanism would require a knowledge of where in space-time each hadron is produced. For

a single string, say stretched along the z axis, it is straightforward to translate between the

(E, pz) values of the primary hadrons and the (t, z) coordinates of the string breakups. For

the more realistic case, when a string is stretched between several partons and the string

motion is considerably more complicated [34], appropriate rules have not been worked

out. To this should be added ambiguities in the transverse production coordinates, both

as a consequence of the transverse distribution of the MPIs and of transverse fluctuations

inside each string. The modelling of all of these aspects is an interesting task for the future.

In addition, the cross section for the scattering of two hadrons against each other varies

between hadron kinds, and depends on the relative energy of the two, adding a further

layer of complexity.

Here we want to avoid such a detailed model, but still be able to explore whether

hadronic rescattering effects could contribute to the resolution of some of the effects that

we are attempting to explain. Collective flow — whether dictated by properties of the QGP

or by hadronic rescattering — is well-established in heavy-ion collisions, see e.g. [79–81]
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and references therein. In particular, a common average radial velocity means that heavier

particles have a higher 〈p⊥〉 than lighter. Of course we do not expect as dramatic effects

in pp, but they may still contribute to the same kind of π/K/p p⊥ separation as in the

thermodynamic scenario above, so it should be interesting to compare the two possibilities.

The simple modelling we have in mind is applied to the primary hadrons produced di-

rectly from the string fragmentation, before secondary decays are considered. Furthermore,

for strings stretched along the z axis there is a strong correlation between the rapidity y of

a particle and its space-time production vertex. Therefore, for a given hadron, the density

of other hadrons at around the same rapidity is a reasonable (and longitudinally boost

invariant) measure of how close-packed particle production is. If there is a contribution

from particles coming from the same simple string it has presumably already been absorbed

in the tuned fragmentation parameters, so we should disregard such pairs. Unlike e+e−

events, however, it is common with topologies where a string consists of pieces stretched

back and forth across the same rapidity range, and then the above argument does not

apply. In practice, it is therefore more relevant to exclude rescattering only between close

neighbours in the fragmentation chains.

One should further note that the rapidity density of hadrons refers to low-p⊥ particles.

The hadronization of a scattered high-p⊥ parton mainly occurs at larger p⊥ scales, and

these hadrons would be essentially unaffected.

The angular distribution of a rescattering, defined in the rest frame of the hadronic pair,

should depend on the orbital angular momentum L. For simplicity, we restrict to s-wave

isotropic scattering (i.e., L = 0) by requiring that the classical value of angular momentum

L = b |p| < b |pmax| ∼ 1, where b is the impact parameter and pmax is the maximally

allowed three-momentum of the hadrons in their rest frame, left as a (in principle) free

parameter. We don’t have access to b for each pair, but assume it is the same distribution

for all combinations of hadron types. A common restriction on the three-momentum is

thus introduced for all pairs, which is implemented as a cut on the invariant mass of the

hadron pair,

minv <
√
m2

1 + |pmax|2 +
√
m2

2 + |pmax|2 , (3.10)

with m1 and m2 being the masses of the hadrons and minv the physical invariant mass of

the hadron pair. For all hadron pairs that are not excluded by eq. (3.10) we calculate the

difference in rapidity, ∆y = |y1 − y2|, and the rescattering probability. For hadrons that

are not produced in the same string the latter is

Pds(∆y) = Pmax
ds

(
1− ∆y

∆ymax

)
, (3.11)

where the maximum scattering probability Pmax
ds and the maximum rapidity difference

∆ymax are left as free parameters. Eq. (3.11) simply means a probability of Pmax
ds for zero

rapidity difference of the hadron pair, linearly decreasing to zero at a rapidity difference

of ∆ymax.
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As an alternative to eq. (3.11), without the cut on the invariant mass in eq. (3.10), the

probability can be chosen to be

Pds(∆y,∆ϕ) = Pmax
ds

(
1−

√
(∆y)2 + (∆ϕ)2

Rmax

)
, (3.12)

with ∆ϕ being the difference in azimuth of the hadron pair and Rmax the maximally allowed

value of the radius R =
√

(∆y)2 + (∆ϕ)2.

For hadron pairs that are produced in the same string we introduce the difference in

hadron index (called rank e.g. in [82]), ∆ij = |i− j|, to denote how close two hadrons are,

i.e. two neighbours have ∆ij = ∆i i+1 = 1, next-to-neighbours ∆ij = ∆i i+2 = 2 and so on.

The scattering probability for same-string hadrons is

Pss(∆y) = Pds(∆y) ·


Pmax

ss if ∆ij > ∆max
ij

Pmax
ss (∆ij −∆min

ij ) + Pmin
ss (∆max

ij −∆ij)

∆max
ij −∆min

ij

if ∆min
ij ≤ ∆ij ≤ ∆max

ij

0 if ∆ij < ∆min
ij ,

(3.13)

where P
min/max
ss is the minimum/maximum probability associated with the nearest/furthest

neighbour, characterized by ∆
min/max
ij , with a linear behaviour of the probability in between;

zero probability for hadrons closer than ∆min
ij and maximum probability for those further

apart than ∆max
ij . All four are left as free parameters. In the case where eq. (3.12) is

applied, Pds(∆y) in eq. (3.13) has to be replaced by Pds(∆y,∆ϕ).

3.3.1 Multi-string toy model

In order to test the hadron scattering a simple toy model is applied: five strings, each with

energy mZ, are constructed along the z axis with different quark flavours for the endpoint

quarks, and the primary produced hadrons are studied. As in section 3.1 the hadrons

containing the endpoint quarks are excluded. The following plots are obtained by making

use of eqs. (3.10) and (3.11); using eq. (3.12) instead leads to similar results, and thus the

same conclusions.

Figure 7 shows the 〈p⊥〉 for different hadron species. For the Gaussian hadronic p⊥
distribution without hadron scattering all hadrons receive the same p⊥ spectrum. Including

hadron scattering, the 〈p⊥〉 decreases for pions, the lightest hadrons, by about 20% and

increases for heavy hadrons by up more than 40%. The same effect is present for the

thermodynamical model, although changes only reach around 10%, as the 〈p⊥〉 is higher

for heavier hadrons already without hadron rescattering.

Figure 8 shows the normalized p⊥ spectra for all hadrons and, to exemplify the

difference between light and heavy hadrons, the spectrum for pions, kaons, and pro-

tons/neutrons. Comparing the inclusive p⊥ spectrum for the Gaussian p⊥, we notice that

the distribution gets broader with hadron scattering, i.e. we get more pions with small p⊥
and more heavy hadrons with higher p⊥.

As the thermodynamical model without hadron rescattering comes with a different

starting point, compared to the Gaussian model, the effect of the rescattering is not as
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Figure 7. The 〈p⊥〉 for different hadron species, with (blue triangles) and without (red dots)

hadron scattering for the Gaussian p⊥ and with (orange pentagons) and without (green squares)

hadron scattering for the thermal p⊥ in the toy model. The right plots show the ratio of the

Gaussian model with to without hadron scattering in the upper panel and the same ratio for the

thermodynamical model in the lower panel.

large, and shifts the p⊥ spectrum towards larger values. The exception is for pions only,

where there is a slight broadening also towards smaller p⊥ values.

3.4 Results

3.4.1 The effect of decays

Hadron decays, such as ρ → ππ or η → π+π−π0, influence the p⊥ spectra of the final

state hadrons. As the decays are mostly dictated by kinematics, they constitute a limiting

factor on the possibilities of modifying for instance the pion p⊥ spectrum during the frag-

mentation process. Even though the primary hadrons follow a Gaussian or exponential p⊥
distribution, the spectra obtained after decays do not, and become more similar. In addi-

tion, in realistic events the effects of perturbative jet production leads to a p⊥ broadening

and the emergence of a powerlike high-p⊥ tail.

To investigate this smearing of the p⊥ spectra, we consider realistic e+e− → jets

events and inelastic pp collisions, where the previously discussed effects of string density

and hadron rescattering are not taken into account. The normalized transverse momentum

distributions of π± and p, p̄ are shown in figure 9 for the Gaussian and the thermodynamical

model. Comparing the p⊥ spectra to the previous plots (note the different range of x and y

axis) reveals how much the p⊥ distributions have moved to higher p⊥ values, as mentioned

above. Four different ratio plots are included for each histogram to investigate different

effects: the ratio of distributions after hadronic decays with respect to before, for both

models, and the ratio of the thermodynamical with respect to the Gaussian model, with

and without decays.

Decays shift the p⊥ spectra towards smaller values, where the Gaussian model shows a

larger change, compared to the thermodynamical model. For LEP the difference between

the predictions with and without decays is limited to around 50% at most, while for LHC

the changes are rather large, especially for small and large p⊥ values. Figure 9 also nicely

shows that the differences between the Gaussian and thermodynamical model become
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Figure 8. The p⊥ spectrum for all hadrons (top left), pions (top right), kaons (bottom left)

and protons and neutrons (bottom right), with (blue) and without (red) hadron scattering for the

Gaussian p⊥ and with (orange) and without (green) hadron scattering for the thermal p⊥ in the

toy model.

more than a factor of two smaller when hadronic decays are included, where, as before, the

differences are more pronounced for LHC events. Unfortunately, this will limit the impact

of the modifications previously discussed in this section.

Another question is how much of the hadron rescattering effect on the primary hadrons

survives the decays. Note that some of the primary hadrons, such as the ρ meson, are so
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Figure 9. The p⊥ spectrum for charged pions (left) and protons (right), with (blue) and without

(red) hadronic decays for the Gaussian and with (orange) and without (green) hadronic decays for

the thermal model in e+e− → jets (top) and inelastic pp collisions (bottom).

short-lived that some of their decay products could rescatter which would influence the p⊥
spectra further. A realistic interleaving of rescattering and decays would require a detailed

space-time picture, however, which is for the future.

In figure 10 the pion and proton p⊥ spectra are shown again for LHC events with

hadron rescattering. The same ratio plots as before are included. The ratio of predictions
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Figure 10. The p⊥ spectrum for charged pions (left) and protons (right), with (blue) and without

(red) hadronic decays for the Gaussian and with (orange) and without (green) hadronic decays for

the thermal model in inelastic pp collisions (bottom) with hadron rescattering.

with to without hadron decays shows a similar behaviour as the plots before, where no

rescattering was included. The difference between the two models without hadronic decays

becomes smaller when hadron rescattering is included. This it not surprising since the effect

of the rescattering, that of shuffling some p⊥ from lighter to heavier hadrons, is smaller in

the thermodynamical model where more massive hadrons obtain more p⊥ already form the

beginning. Including decays brings the predictions of the two models even closer together.

3.4.2 Adding more hadrons

We now briefly investigate the effect of including additional hadrons in the flavour picking

process in the thermodynamical model. e+e− → jets events at
√
s = mZ are analyzed

with the effects of string density and hadron rescattering not being used. As discussed in

section 3.2, by default only hadrons with u/d/s quarks and no radial or orbital excitation

are included.

Firstly, consider including hadrons with charm quarks. To obtain a rough estimate of

the suppression of c production in string breaks, compared to that of s quarks, the rates

of D and K mesons and their ratios are analyzed; similar for vector mesons and baryons.

The results in figure 11 show that the c hadrons are suppressed by more than an order of

magnitude compared to s hadrons, although a bit less when only vector mesons are con-

sidered. In absolute numbers the amount of extra charm production is non-negligible, and

probably inconsistent with both LEP and LHC observed rates. Recall that an additional

suppression factor for s quarks was introduced for the hadron rates in section 3.2; we would
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Figure 11. Mean multiplicities and their ratios for different groups of hadrons. Predictions

of the thermodynamical model with c hadrons included in the fragmentation process and no

hadronic decays.

therefore expect that a similar, even stronger factor is needed when including c quarks in

the thermodynamical model. Given this, neither charm nor bottom production is included

in the nonperturbative hadronization in the rest of our studies.

Secondly, consider excited mesons by including all of the following meson multiplets,

where by default only the first two are present,

• pseudoscalar multiplet with L = 0, S = 0, J = 0 ,

• vector multiplet with L = 0, S = 1, J = 1 ,

• pseudovector multiplet with L = 1, S = 0, J = 1 ,

• scalar multiplet with L = 1, S = 1, J = 0 ,

• pseudovector multiplet with L = 1, S = 1, J = 1 ,

• tensor multiplet with L = 1, S = 1, J = 2 ,

with J denoting the sum of the spin S and orbital angular momentum L in the nonrel-

ativistic approximation. In figure 12 the mean multiplicity of the different multiplets is

shown, together with the p⊥ spectra of pions and protons. Note that including excited

mesons leads to an increase of the total meson multiplicity after decays. All L = 1 multi-

plets are suppressed by more than an order of magnitude with respect to the pseudoscalar

multiplet, with the scalar mesons being suppressed the most due the combination of them

being the heaviest of the considered hadrons and their smaller spin-state weight 2J + 1.

The normalized p⊥ spectra exhibit slight shifts towards smaller values, as the now included

heavier mesons decay to more lighter hadrons. The excited mesons combined constitute

a fraction of roughly 10% of the total meson multiplicity. Given that in addition those

mesons and their decay channels are not very well understood, we consider it reasonable

to not include those in further studies. In default Pythia the suppression of light vector

mesons with respect to pseudoscalar mesons is ∼ 0.5. The thermodynamical naturally

comes with a fairly similar value of ∼ 0.35.
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Figure 12. Mean multiplicities and ratios for the different meson multiplets (top). The p⊥ spec-

trum for charged pions (bottom left) and protons (bottom right). Predictions of the thermodynamical

are shown, where decays are either switched on or off and L = 1 mesons are included or not.

4 Comparisons with data

We now proceed to compare the models with data. Note that, in a first step, there is

no ambition to obtain a better overall description than the one achieved in several of the

standard tunes that come with Pythia. It is rather to explore how the modelling of the

new mechanisms impacts selected distributions, notably the ones discussed in section 2.2.

That is, whether the mechanisms have the potential to improve the agreement with data in

some crucial respects. Only in a second step is there some attempt to combine the various

mechanisms, but still without the ambition of a full-fledged tune. In section 4.1 we present

a comparison of the different effects we have discussed so far, while section 4.2 gives an

overview of the results obtained by combining the effects into a more complete picture.

Note that the new mechanisms will be available in the next public Pythia release.
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4.1 Impact of the different effects

Based on a limited set of LHC observables, this section presents the impact of the new

mechanisms outlined in section 3 on the description of data. The observables have been

chosen to illustrate the effects of the change of the Gaussian width or temperature, re-

spectively, depending on the close-packing of strings as in eqs. (3.3) and (3.9), of hadron

rescattering, and of colour reconnection. The latter has been included as it serves a similar

purpose and shows a somewhat comparable behaviour. The baseline prediction, which

serves as the main comparison for both models, is obtained by switching off all of the

aforementioned effects. For a clear picture of the influence of the individual mechanisms,

only one of them is switched on at a time. Note that the prediction of the Gaussian model

with colour reconnection, labelled “Gaussian p⊥ ColRec” in the plots, corresponds to de-

fault Pythia 8. Recall that the results presented in this subsection are not obtained with

parameter settings that optimize the data description but rather illustrate their general

effect. The average transverse momentum 〈p⊥〉 as a function of the hadron mass and the

charged multiplicity are shown in figure 13, together with the charged particle p⊥ spectrum.

For both models, the description of 〈p⊥〉 as a function of mass improves for each of

the different mechanisms, compared to the baseline prediction, as heavier hadrons obtain

larger 〈p⊥〉 values. The thermodynamical model provides a somewhat better description

of this observable, compared to the Gaussian model, which comes naturally due to the

exponential hadronic transverse-mass suppression.

The baseline prediction for 〈p⊥〉(nch) plateaus at small multiplicities, therefore under-

estimating 〈p⊥〉 for values nch & 25. All of the effects investigated in this study have a

somewhat similar effect, in the sense that they are able to push up the prediction, compared

to the baseline settings. While including the neff
string-dependence significantly improves the

description, it is still slightly worse than the prediction with colour reconnection. The

hadron rescattering provides a fairly good description of 〈p⊥〉 for small nch values, but

clearly overshoots the distribution at high multiplicities.

Similar to the previous observable, the neff
string-dependence and colour reconnection

improve the description of the inclusive p⊥ spectrum. The Gaussian model without ad-

ditional effects switched on produces a bump at p⊥ ∼ 0.5 GeV/c and a broad dip at

p⊥ ∼ 2.5 GeV/c. While colour reconnection removes the dip almost completely, the bump

is still clearly visible. The neff
string-dependence somewhat reduces both bump and dip, but

at the cost of introducing another dip towards very small p⊥ values. The baseline predic-

tion of the thermodynamical model, compared with the Gaussian one, has the same dip

at p⊥ ∼ 2.5 GeV/c, while the bump is much less visible. Both colour reconnection and

the neff
string-dependence reduce the dip quite substantially and provide a very good descrip-

tion of the data. The hadron rescattering, while somewhat improving the description in

the low-p⊥ region, overestimates mid-p⊥ values by around 20% before undershooting the

distribution.
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Figure 13. Comparisons to ALICE [46] and ATLAS [47] data: 〈p⊥〉 as a function of

the hadron mass (top), charged multiplicity (middle), and the charged particle p⊥ (bottom).

Predictions with the Gaussian (thermodynamical) model are shown in the left (right) plots.

ColRec / HadScat / NrString means that only colour reconnection / hadron rescattering / neff
string-

dependence is switched on, otherwise everything is switched off.
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4.2 Results

Using the information of the last subsection we adjust the parameters associated with the

new mechanisms to obtain a good data description, with the main focus lying on p⊥ spectra

of pions, kaons, and protons. We begin with LHC data, as this is the motivation for the

thermodynamical model, the neff
string-dependence, and the hadron rescattering, and continue

with a cross-check of some LEP and SLC observables.

4.2.1 LHC

The new parameters are adjusted such that an improvement of the p⊥ spectra of π±, K± and

p, p̄, measured with ALICE [51], is achieved, while still giving a reasonable description of the

charged particle p⊥ distribution and 〈p⊥〉 as a function of the multiplicity, both measured

with ATLAS [47]. The corresponding settings and values can be found in appendix A. The

LHC data set presented here includes the aforementioned p⊥ spectra and the Λ to K0
S ratio

shown in figure 14, 〈p⊥〉 as a function of the hadron mass and the charged multiplicity, both

inclusive and for different hadrons, shown in figure 15, and the ratio of yields with respect to

(π+ +π−) as a function of the charged multiplicity for different hadrons, shown in figure 16.

The predictions of default Pythia are compared to the Gaussian and thermodynamical

model with the modifications outlined in section 3.

Default Pythia describes the ATLAS charged particle p⊥ distribution very well for

values of p⊥ > 1 GeV/c, but shows a bump at around 0.5 GeV/c. The Gaussian model with

modifications gives a similar shape and reduces the bump somewhat, while undershooting

the distribution large p⊥ by a few %. The thermodynamical model improves the description

quite substantially, especially for low-p⊥ values, where the aforementioned bump is almost

gone. The predictions for the CMS charged hadron p⊥ spectrum behave mostly similar,

with the same bump visible for default Pythia and the Gaussian model.

For default Pythia, pions obtain a too hard p⊥ spectrum. The modifications to

the Gaussian model improve the distribution slightly, but there is still no good overall

description. With the thermodynamical model the spectrum improves for low-p⊥ values

quite a bit; however, it is still a bit too high in the large-p⊥ region. The K± p⊥ spectrum

shows the opposite behaviour: too many soft and too few hard kaons. The Gaussian

model with modifications improves the description in the soft region somewhat, compared

to default Pythia. Both the Gaussian and thermodynamical model change the shape

of the spectrum slightly, but do not provide a better overall description of the K± p⊥.

The prediction of both models for the p, p̄ p⊥ spectrum are better compared to default

Pythia, where especially the thermodynamical model improves the low-p⊥ region quite

substantially.

While the prediction of the thermodynamical model for the Λ/K0
S ratio is somewhat

flatter with respect to the data, especially in the low-p⊥ region, the normalization is off by

almost a factor of two due to the combination of producing slightly too many K0
S and not

enough Λ. The observable could be improved by adjusting the overall normalization factor

of baryons with respect to mesons. The value of this parameter has been fixed using the

proton p⊥ spectrum, however.
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Figure 14. Inclusive (top), π±, K±, and p, p (middle and bottom left) p⊥ spectra and the Λ to

K0
S ratio (bottom right). Predictions of default Pythia, the Gaussian and thermodynamical model

with modifications, compared to ATLAS [47], CMS [52, 83] and ALICE data [51].
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Figure 15. The mean transverse momentum as a function of the charged multiplicity (top left)

and the hadron mass (top right) and (bottom). Predictions of default Pythia, the Gaussian and

thermodynamical model with modifications, compared to ALICE [46, 48] and ATLAS [47] data.

The data in the bottom plots is taken to be an estimate of the logarithmic fits in [48] and therefore

no error bars are included.
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Figure 16. Ratio of yields with respect to (π+ + π−) as a function of the charged multiplicity.

Predictions of default Pythia, the Gaussian and thermodynamical model with modifications. The

ALICE measurement can be found in [10].

All models give very similar predictions for 〈p⊥〉 as a function of nch, with an extremely

good description of the region nch > 20, but too low 〈p⊥〉 for smaller multiplicities. It is

quite obvious that the description of this observable could be further improved by choosing

a larger value for the width or temperature respectively and simultaneously lowering the

neff
string-dependence and hadron rescattering. This would however come hand in hand with

worse descriptions of other observables. For default Pythia, pions obtain a too large 〈p⊥〉
and heavier hadrons a too small one. While the thermodynamical model improves the

predictions for 〈p⊥〉(m), there is still no full agreement with data. The Gaussian model

lies in between default Pythia and the thermodynamical model. We observe a similar

behaviour for the 〈p⊥〉(nch) distribution for individual hadrons. The pion 〈p⊥〉 is described

fairly well with a slope that is slightly too steep. The main difference of the other hadrons

with respect to pions is that they obtain a too small 〈p⊥〉 over the whole nch range. As for

pions, the slopes tend to be too steep.

ALICE [10] found that the production of strange and multi-strange hadrons is en-

hanced with increasing multiplicity. While default Pythia is not able to reproduce such

a behaviour, figure 16 shows that the thermodynamical model achieves an increase of

strangeness with charged multiplicity for K0
S, Λ, and Ξ, but not for Ω. Except for the

latter, we therefore expect the thermodynamical model to give an improved description

of the data presented in [10]. The Gaussian model with modifications shows the opposite

effect, a decrease with growing multiplicity. These findings can be explained as follows:

in default Pythia all (primary) hadrons are produced with a probability that is inde-

pendent of the multiplicity or number of strings. In the thermodynamical model heavier

hadrons are produced preferably at large p⊥ values. Including the neff
string-dependence leads

to potentially higher temperatures for events with large nch, where heavy hadrons have a

higher probability to be produced, compared to low-nch events. With the modifications
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to the Gaussian model, all hadrons obtain more p⊥ in events with large values of neff
string.

Due to phase-space constraints heavier hadrons might be rejected more often compared to

lower-mass hadrons, leading to the decrease with growing multiplicity. This might also be

the reason for the slight drop towards large nch for Ω in the thermodynamical model, as it

eventually dominates over the effect of the neff
string-dependence.

4.2.2 LEP and SLC

While the main motivation for introducing the exponential p⊥ distribution is arising from

LHC data, the valid question of whether the same model is able to describe e+e− observ-

ables as well remains. The effect of the close-packing of strings and hadron rescattering are

not included for e+e− data as we do not expect them to represent relevant physics here.

Furthermore the string dependence relies on rapidity differences and an event axis aligned

with the beam, which is not present in e+e− collisions.

The parameters of the thermodynamical model are adjusted using the charged par-

ticle momentum spectrum as well as the scaled momenta of π±, K± and p, p̄, measured

with SLD [84], while the ALEPH event shapes [85] served as cross checks. For the Gaus-

sian model the width and prefactors for strange and diquarks have been adjusted such

that the mean charged multiplicities agrees with the value obtained with the thermody-

namical model. The corresponding settings and values can be found in appendix A. The

e+e− data set presented here includes the aforementioned momenta and mean multiplicities

for different hadrons shown in figure 17, as well as the charged multiplicity distribution,

scaled momentum and the inclusive p⊥in and p⊥out spectra shown in figure 18. The pre-

dictions of default Pythia are compared to the Gaussian and thermodynamical model as

described above.

The only difference between default Pythia and the prediction labelled as “Gaussian

p⊥” is an adjusted value for the Gaussian width and its prefactors for s and diquarks, i.e.

there is no change of the flavour selection parameters. Therefore, the values of the mean

multiplicities remain, leading to overlapping data and Monte Carlo histogram points in

figure 17, which are thus not fully visible. With the thermodynamical model we obtain a

fairly good description of most hadrons, with the notable exceptions of producing too many

heavy baryons. Note however, that the Gaussian model comes with around 20 parameter

for selecting the flavour of new hadrons, whereas the thermodynamical model makes use of

only three parameters: the temperature, the overall normalization factor of baryons with

respect to mesons, and the additional suppression factor for hadrons with strange quarks,

see section 3.2. Hence, the result is fairly acceptable.

The predictions of the two models for the charged particle momentum agree very

well with data in the soft region; there is only some small deviation for medium and

large momenta, where especially the thermodynamical model predicts somewhat too many

particles in the hard region. The same effect is even clearer visible in the scaled momentum

spectrum of pions. For kaons and protons we observe the opposite effect: the new model

predicts too few hadrons with large momenta.

Similar to the charged particle momentum, the predictions of both models for the

logarithm of the scaled momentum agrees well with data, with some small deviation for
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Figure 17. Mean hadron multiplicities (top), charged particle momentum (middle left), and scaled

momenta xp = 2|p|/Ecm of π± (middle right), K± (bottom left) and p, p̄ (bottom right). Predictions

of default Pythia 8, the Gaussian and thermodynamical model compared to PDG [72] and SLD

data [84].
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Figure 18. Charged multiplicity distribution (top left), scaled momentum (top right) and the

inclusive p⊥in and p⊥out spectra (bottom). Predictions of default Pythia 8, the Gaussian and

thermodynamical model compared to ALEPH data [85].

medium and large values. However, the sudden drop in the ratio of the Monte Carlo

prediction to data at around ξp = 4.7 remains almost unchanged. The description of the

charged multiplicity distribution improves slightly, compared to default Pythia, towards

having less events with small multiplicities and more events with larger ones. This is due

to having an increased mean charged multiplicity. While both models describe the low-p⊥
region of the inclusive p⊥in and p⊥out spectra very well, they underestimate the amount of

events with larger p⊥ values. The thermodynamical model provides a better description of

especially the p⊥out spectrum, compared to the Gaussian model.

To summarize we note that the thermodynamical model is able to provide predictions

for event shapes and momentum spectra in e+e− events that are of a similar quality as

those by the Gaussian model. Nevertheless, the hadron decomposition is not described

well, a price to pay for reducing the amount of flavour selection parameters.
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5 Summary and outlook

The understanding of soft hadronic physics is changing under the onslaught of LHC pp

data. Of course, there has never been an approach that could describe all aspects of pp

physics perfectly, but before LHC it was often assumed that all the basic concepts were in

place, and that what remained was successive refinements. Now we see that there is still

much left to learn. There have already been several surprises, and further data analyses

may well produce more.

In view of this we have revisited some of the basic soft-physics assumptions of the

Pythia event generator, which has been quite successful in predicting and describing many

aspects of the data, but now starts to show cracks. New approaches have here been studied

for some areas, to understand how much room for improvements there would be, without

any claim that either of them would necessarily be the one and only right way to go.

A central pillar of Pythia has been the Lund string fragmentation model, where a

tunneling mechanism for string breakups leads to a universal Gaussian p⊥ spectrum. In this

work a thermodynamical model is implemented as an alternative, where p⊥ instead follows

an exponential distribution. For an already selected p⊥, the hadron flavour is picked based

on an exponential m⊥ weight, with additional factors due to spin-counting rules and so on.

This approach suppresses the production of heavier hadrons, and gives them a larger 〈p⊥〉.
Such a pattern is observed in data, and exists in the Gaussian approach mainly owing to

particle decays, but there undershoots data.

Making the Gaussian p⊥ width, or temperature in case of the thermodynamical model,

dependent on the close-packing of strings allows for modelling the influence of strings on

each other in a simple way. An effective number of density of strings is introduced for low

p⊥’s, while high-p⊥ fragmentation tends to occur outside the close-packed string region

and is left unaffected. Such a mechanism could e.g. be used to explain a changing flavour

composition at high multiplicities.

Finally we implemented a simple model for hadronic rescattering, applied to the pri-

mary hadrons, before decays. The probability of two hadrons to rescatter is based on how

close they are in phase space. By favouring a shift towards equal transverse velocities, it

should also give higher 〈p⊥〉 for heavy hadrons and lower for pions.

Not surprisingly we found the hadronic decays to limit the hoped-for effects. Specif-

ically, most pions come from decays of heavier hadrons, and so the mechanisms intended

to give less p⊥ to pions and more to kaons and protons are largely nullified. The mecha-

nisms are also not simply additive; starting out from the thermodynamical model with its

already-existing mass differentiation, the further effects of varying temperatures or hadronic

rescattering are smaller than corresponding effects in the Gaussian approach.

Nevertheless the thermodynamical model is able to provide reasonable descriptions of

observables such as the p⊥ spectrum of charged hadrons, the average transverse momentum

as a function of the hadron mass, or the recently measured enhanced production of strange

and multi-strange hadrons with increasing multiplicity. These observables have so far been

described rather poorly by Pythia. And, given the small number of flavour parameters in
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the thermodynamical model, it is able to describe a reasonable number of e+e− data rather

well, even if it can not compete with the many-more-parameter tunes of default Pythia.

It should be noted that we have not compared with all relevant available data, by far.

Notably, the ridge effect was not described by the existing Pythia model, and our current

changes do not introduce any mechanism to induce it. The ridge was first observed in

AA collisions [86–89], where nuclear geometry and hydrodynamical expansion offer natural

starting points [90, 91], although the range of detailed models is too vast to cover here [92].

In the field of pp physics [93], the EPOS model addresses the issue by having an inner core

that can push strings in the outer corona [94], whereas a recent extension of DIPSY [95] pro-

vides a corresponding shove from the excess energy of central overlapping strings that form

ropes. In a similar spirit, our higher string tension could introduce a push also without rope

formation. A detailed modelling is not trivial, however, and we have not pursued it for now.

To advance to the next level of sophistication within the line of research advocated

here, it would be necessary to do a microscopic tracing of the full space-time evolution

of the event, both for partons and for hadrons, and including both production and decay

vertices. This is nontrivial beyond the simple one-string picture, even in the cleaner e+e−

events, and the further complications of MPIs and CR in hadronic events will make it even

worse. What it would allow is a more detailed understanding of the close-packing both of

strings and of hadrons. Combined with a more detailed modelling of hadronic rescattering,

a more realistic picture may emerge.

Some of the limitations encountered here are likely still to remain, so further mecha-

nisms may be at play, in addition to the ones studied here. This would not be the first

time where a cocktail of smaller effects combine to give a significant signal. What is less

likely is actually the opposite, that one single mechanism does it all. Specifically, whatever

else may be going on, the close-packing of strings and hadrons appears unavoidable in

high-multiplicity pp events, and collective-flow effects are here to stay. In sum, we have

an interesting and challenging time ahead of us, where some of the most unexpected new

LHC observations may well come in the low-p⊥ region rather than the in high-p⊥ one.
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A Settings

Table 1 gives a list of the settings that have been changed with respect to default Pythia

to obtain the results presented in section 4.2.

LHC LEP and SLC

Default Gaussian Thermal Gaussian Thermal

Switch to thermal model?

StringPT:thermalModel off off on off on

Gaussian width σ =
√
κ/π

StringPT:sigma 0.335 0.33 - 0.295 -

σ prefactor for s quarks

StringPT:widthPreStrange 1.0 1.2 - 1.2 -

σ prefactor for diquarks

StringPT:widthPreDiquark 1.0 1.2 - 1.2 -

Fraction with enhanced σ

StringPT:enhancedFraction 0.01 0.0 - 0.0 -

Temperature T

StringPT:temperature - - 0.21 - 0.205

Baryon normalization factor

StringFlav:BtoMratio - - 0.357 - 0.625

Suppression factor for s hadrons

StringFlav:StrangeSuppression - - 0.5 - 0.45

r parameter in eq. (3.3) or (3.9)

StringPT:expNSP 0.0 0.01 0.13 0.0 0.0

Range of MPI-based CR scheme

ColourReconnection:range 1.8 1.8 1.1 - -

Hadron rescattering (HR) on?

HadronLevel:HadronScatter off on on off off

HR with eq. (3.10) and (3.11)

HadronScatter:mode - 0 0 - -

Pmax
ds parameter in eq. (3.11)

HadronScatter:maxProbDS - 0.25 0.5 - -

MPI regularization parameter

MultipartonInteractions:pT0Ref 2.28 2.34 2.5 - -

Table 1. Pythia 8 parameters and their values for tuning to LHC and LEP/SLC observables.
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[27] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05

(2006) 026 [hep-ph/0603175] [INSPIRE].
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8
Summary and Conclusions

The work of this thesis has been performed in the context of general-purpose Monte
Carlo event generators, indispensable tools in high-energy collider physics. Their
primary goal is to provide an as detailed and precise picture as possible of the com-
plete final-state dynamics in collider events, which is crucial for the understanding
of Standard Model as well as new physics processes. The contributions of the thesis
span both the perturbative and the non-perturbative side of the event simulation.

In chap. 2 the theoretical background of the Standard Model has been reviewed
with emphasis on Quantum Chromodynamics. The notion of the cross section has
been introduced to calculate the probability for certain scattering processes to oc-
cur. The main features of Monte Carlo event generators have been discussed in
chap. 3, with the main focus on parton showers and different matching and merg-
ing strategies. These topics, together with the concept of fragmentation, constitute
the basis for the following chapters including published material.

In the first paper, presented in chap. 4, the VINCIA antenna shower for final-state
radiation has been extended to emissions involving initial-state legs. The functions
driving the radiation have been taken from a previous publication [158]. Phase-
space convolutions and kinematic maps have been calculated for emissions off an-
tennae, where either both partons are in the initial state or one parton is the initial
and one in the final state. The parton-shower approximation is systematically im-
proved by means of iterated matrix-element corrections, which had so far only ap-
plied to colourless resonance decays [80]. Some modifications and improvements
with respect to [80] have been made, such as the handling of interference terms or
making the shower history independent, which is important for maintaining a fast
code. The implementation has been published with the release of VINCIA 2.001,
making it the first publicly available antenna shower for initial-state radiation. It-
erated matrix-element corrections have been applied to LHC processes for the first
time.

The matrix-element corrections approach has been revised in chap. 5, such that
the purely ordered evolution of the parton shower remains undistorted. This re-
quires the development of a correction scheme for complex, evolution-induced
phase spaces. Configurations beyond the reach of the parton shower are included
with a systematic scale-setting procedure to supplement the parton-shower states.
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The resulting algorithm does not depend on specific properties of the shower, al-
lows arbitrary dead zones, and does not require a merging scale for unordered
states. Comparisons to LHC data for the process pp→ Z+jets have been presented
and the new algorithm has been found to be in good agreement with the data. The
new method has been implemented in the VINCIA framework and made public
with the release of VINCIA 2.200.

The matrix-element evaluations required for correcting the parton shower consti-
tute a fairly large amount of computing time when generating collider events. To
increase the speed of the calculation, chap. 6 uses a helicity-dependent shower to
assign explicit helicities to all partons in the event. Instead of summing over all
possible helicity configurations, the matrix element has to be evaluated for only
one constellation. For so-called maximally-helicity violation configurations, a ded-
icated set of amplitudes coded in VINCIA is applied. This allows a further, modest
decrease of the evaluation time. The code has been made public with the release of
VINCIA 2.200.

In chap. 7 a new model has been developed to take over parts of the Lund string
fragmentation model. While in the conventional model the transverse momen-
tum of hadrons is modelled flavour-independently according to a Gaussian dis-
tribution, the new model is based on an exponential suppression of the hadronic
transverse mass. Therefore, heavier hadrons are naturally suppressed in rate with
respect to lighter hadrons, but they obtain a higher average transverse momen-
tum. To take the close-packing of strings into account, a simple model has been
added, which generates the transverse momentum dependent on the environment,
i.e. hadrons in events with large multiplicities obtain more transverse momentum.
As a last addition a simple model for hadron rescattering has been implemented,
where hadron pairs are allowed to scatter off each other dependent on their ra-
pidity difference. The predictions have been tested and validated with toy model
studies and by comparing to LHC data. The newly introduced parameters have
been adjusted such that they result in an improved description of data. The study
showed that the new models have the capability to describing some observables
better, compared to the conventional model. However, given the reduced set of pa-
rameters, weaknesses in describing particle multiplicities exist. The methods and
results have been published and the code has been made public with the release of
PYTHIA 8.223.

Event generators are widely used as a research tool for exploring phenomenologi-
cal aspects of and beyond the Standard Model. Processes involving quarks and glu-
ons are ubiquitous in the high-energy particle collisions at current machines, as well
as possible future colliders such as the Future Circular Collider at CERN. Match-
ing the increasing precision of experimental measurements implies that generators
have to model the effects of Quantum Chromodynamics both precisely and accu-
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rately. This allows sophisticated predictions and comparisons to data, as required
to extract conclusions from experimental measurements. Therefore, the develop-
ment of improved parton-shower models and their combination with fixed-order
matrix elements is crucial. As an example, the publication in chap. 5 nicely shows
that observables such as the sum of scalar transverse momenta of jets or the leading
jet transverse momentum are in need of a well-defined parton-shower + matrix-
element scheme, as otherwise the data cannot be described properly.

As the quarks and gluons at the end of the parton shower provide the input for the
fragmentation step, improved perturbative models also allow for clearer interpre-
tations of non-perturbative phenomena. In addition, new or revised fragmentation
models are clearly required as shown by recent measurements such as the enhanced
production of strange and multi-strange hadrons in high-multiplicity events [159].
The development and testing of different models and their confrontation with data
is a key aspect in investigating and understanding non-perturbative phenomena in
leptonic, hadronic, as well as heavy-ion collisions.

A further application of event generators is the correction of data for detector ef-
fects. The generator output is passed through a detector simulation and the results
are used to perform an unfolding of the data. Improved theoretical models allow to
optimize the unfolding procedure and thereby decrease the systematic uncertain-
ties of measurements.

With the Standard Model being firmly validated by current experiments, the pri-
mary goal of many particle physicists is to investigate what physics beyond the
Standard Model may look like. In hadronic collider experiments, a potential new
particle would most likely be produced in association with known particles. This is
particularly pressing when considering the composite nature of the beam particles.
A difficult task is therefore to distinguish such a signal event from much more fre-
quent Standard-Model-like background events. Multijet events often represent the
most difficult Standard Model background for new-physics searches at the LHC.
Improvements in the reliability of event generators can help to better constrain the
background, aiding new-physics searches at both current and future high-energy
colliders. Better measurements at collider experiments can also help other fields of
particle physics, e.g. the search for Dark Matters candidates, carried out through,
for instance, gamma-ray observations and cosmic-ray measurements.

Possible Future Work

The development and improvement of event generators is an open-ended research
field. Among the possible areas to improve is the development of a run-time inter-
face to a matrix-element provider, which allows to matrix-element correct arbitrary
processes up to arbitrary orders. Supplementing the shower with higher-order
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corrections in VINCIA is so far limited to including leading-order matrix elements
with different parton multiplicities. A general description for next-to-leading order
matching and merging is required. Apart from improving the predictive power of
VINCIA in that respect, further modifications to the shower itself would add to the
value of the code. Those include the possibility of electroweak radiation as well
as taking the quark masses in the shower into account, i.e. implementing massive
radiation functions and a massive phase-space factorization for the initial state.

A lot of new and updated LHC measurements have become available during the
last year. There are now several signals of collective flow in pp collisions, rather
unexpected and in need of a deep understanding. Models exist that describe some
of the effects, but not yet any consensus. The results of the PYTHIA fragmentation
study showed that more work has to be done for a fully convincing description of
LHC data. A microscopic tracing of the full space-time evolution of the event in
PYTHIA, for partons and hadrons as well as for all production and decay vertices
would provide the information for a more detailed understanding and modelling
of the close-packing of strings and hadrons as well as the hadronic rescattering.
This should lead to a more realistic picture of the soft structure of LHC events and
therefore hopefully an improved description of data.
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[76] N. Lavesson and L. Lönnblad, W+jets matrix elements and the dipole cascade, JHEP 07
(2005) 054.

[77] M. L. Mangano, M. Moretti, F. Piccinini, and M. Treccani, Matching matrix elements
and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013.

[78] S. Mrenna and P. Richardson, Matching matrix elements and parton showers with
HERWIG and PYTHIA, JHEP 05 (2004) 040.
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