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ABSTRACT

The behavior of neutron stars is governed by the dynamics of ultra-strong magnetic fields which

thread their interiors. In this thesis we develop numerical techniques to model the evolution of

axisymmetric magnetic fields in neutron stars.

Our code models the e↵ects of Hall drift and Ohmic di↵usion in the neutron star crust. We

model the magnetically induced elastic deformation of the crust, and its feedback on the mag-

netic field evolution. For the first time, we correctly model the magnetic coupling between the

solid crust and the liquid core on secular timescales. We find that axisymmetric core magnetic

fields must satisfy an MHD equilibrium in the azimuthal direction. Implementing this equilib-

rium in our simulations, we find that the Hall Attractor of Gourgouliatos and Cumming also

exists for core penetrating B-fields.

We model the drift of superconducting magnetic flux tubes in the core, using the prescription

of Jones. We find that the combination of Jones flux tube drift in the core, and Ohmic di↵usion

in the crust, can deplete pulsar magnetic fields on a timescale of t ⇠ 150 Myr if the crust is hot

(T ⇠ 2 ⇥ 108 K), but acts on much slower timescales for cold neutron stars, such as recycled

pulsars (⇠ 1.8 Gyr, depending on impurity levels).

We develop our own model for the macroscopic transport of flux tubes by superfluid neutron

vortices. Our model includes the e↵ects of vortex-flux tube pinning, the cut-through of super-

fluid vortices, the flux tube self-tension, and the sliding of flux tubes along superfluid neutron

vortices.

Implementing our model of flux tube transport by superfluid vortices in our numerical code, we

model the spin-down of new-born, rapidly rotating, highly magnetized neutron stars. Assum-

ing an initial spin period of 1 ms, and that the core becomes superfluid and superconducting

⇠ 300 years after birth (as suggested by the Cas A remnant) we find that the core magnetic

field cannot be expelled when B & 2⇥ 1013 G. However, for B . 1013 G, the magnetic field is

expelled into the the outer core and deep crust. This results in the growth of strong toroidal

fields due to Hall drift, as well driving very strong currents in the deep crust, which are site to

enhanced Ohmic dissipation.
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Chapter 1

Introduction

Neutron stars are site to the most extreme physics in the universe. The behavior of a neu-

tron star at a given point in its life has a strong dependence on the dynamics of the magnetic

field which threads its interior. With the wealth of observations over the last five decades of

pulsar astronomy, it is possible to pose questions about the behavior of neutron stars over

the course of their lives, by studying properties of the galactic population. Theoretical stud-

ies, combined with observations may provide insight to the magnetic evolution of neutron stars.

In 1931, Landau theorized the existence of dense stars which looked like a giant nucleus, a

year before the discovery of the neutron in February of 1932 (Yakovlev et al., 2013). This

conceptual prediction was published in his 1932 paper [see Landau (1965)]. The existence of

neutron stars was first predicted explicity by Baade & Zwicky (1934) at Caltech, who specu-

lated that a core collapse supernova could result in a small dense neutron dominated remnant.

The first radio pulsar (PSR B1919+21) was discovered in 1967 by Hewish et al. (1968), who

detected periodic radio pulses 1.337 seconds apart with the newly constructed Mullard Radio

Observatory at Cambridge, UK. In the following year the crab pulsar (PSR B0531+21) was

discovered, at the precise location of a supernova witnessed by Chinese astronomers in 1054

A.D (Staelin & Reifenstein, 1968). This provided a firm link between pulsars and supernova

remnants (Comella et al., 1969). In the same year Pacini (1968) and Gold (1968) asserted

that pulsars were rapidly rotating, magnetized neutron stars. The rotation of pulsars can drive

winds, which power electromagnetic emission in surrounding nebulae.

The first millisecond pulsar (a pulsar with spin period . 10 ms) was discovered in 1982 by

Backer et al. (1982). The existence of such fast spinning neutron stars with stable spin frequen-

cies raised interesting questions about their origin. Millisecond pulsars are by far the oldest

neutron stars in the galaxy, and possess the weakest magnetic fields. The field strength of

1



2 CHAPTER 1. INTRODUCTION

pulsars with spin periods  10 ms ranges from 4.5⇥ 107 G to 4.34⇥ 109 G (Manchester et al.,

2005). It is commonly thought that some fraction of the millisecond pulsars had stronger mag-

netic fields, and longer spin periods earlier in their lives.

The work of Duncan & Thompson (1992) proposed a new class of neutron stars, which are pow-

ered by the dissipation of energy stored in ultra-strong magnetic fields (Bdipole ⇠ 1014 � 1015

G), as opposed to pulsars which are powered by rotational energy. Soft gamma repeaters

(SGRs) typically emitt in hard X-ray and soft gamma-ray bands in repeating bursts, first

seen by Mazets et al. (1979a). The first giant flare of an SGR was detected by Mazets et al.

(1979b), in hard X-rays. The 8 second pulsations in the decaying flux tail were indicative of

the rotation of a neutron star, though with much longer spin period than previously known

pulsars. The first measurement of the spin-down rate of an SGR was that of SGR 1806-20 by

Kouveliotou et al. (1998), which inferred a dipole magnetic field strength of 8 ⇥ 1014 G, and

a characteristic age of ⇠ 1500 years. This was strong evidence that SGRs are in fact magnetars.

The first anomalous X-ray pulsar (AXP) was detected by Fahlman & Gregory (1981), who

claimed to have discovered an isolated X-ray pulsar in the supernova remnant SNR G109.11.0,

with spin period 3.5 s. Subsequently, more AXPs were discovered, which displayed X-ray

bursting activity, with energetics which could not be explained by the acretion of a binary com-

painion. The long spin periods of these objects was at odds with other isolated pulsars, and

pulsars in low-mass X-ray binaries (LMXBs). An important suggestion was made by Thomp-

son & Duncan (1996), who stated that if AXPs were magnetars, one would expect SGR like

emission from them. This was confirmed with the detection of X-ray bursts from AXPs 1E

1048-5937 and 1E 2259+586 [Gavriil et al. (2002), Kaspi et al. (2003)], which until that time

had only been observed from SGRs. It is now commonly accepted that both SGRs and AXPs

are magnetars.

X-ray observations of magnetars show a range of interesting phemomena, which are currently

not well-understood. It is generally accepted that magnetar emission is generated by the dissi-

pation of free energy stored in these ultra-strong magnetic fields. Recently a number of neutron

stars have been discovered which display transient periods of X-ray activity, normally associ-

ated with magnetars, though these stars have significantly weaker dipole fields [e.g. Tiengo

et al. (2013), Rodŕıguez Castillo et al. (2016), Borghese et al. (2017) ]. The field strength of

these highly magnetized pulsars, as inferred from their spin-down rate is not su�cient to power

magnetar emission in conventional models.
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Modern neutron star models suggest a radius of ⇠ 11 km, and a typical mass of ⇠ 1.4 M� (Ozel

& Freire, 2016). The outer 1 km is thought to be a solid crystalline crust, which surrounds a

liquid core. In neutron star cores, it has long been theorized that neutrons form a superfluid

[Migdal (1959) - before the discovery of the first pulsar!], while the protons condense to form

a superconductor (Baym et al., 1969). In this interesting scenario there are two interacting,

macroscopic quantum fluids. The magnetic field is quantized into a discrete array of micro-

scopic ‘flux tubes’, and rotation of the star itself manifests itself as an array of vortices in the

neutron superfluid.

The magnetic field which threads the interior of neutron stars can evolve through di↵erent

mechanisms in di↵erent regions of the star. In the neutron star crust, the magnetic field can

evolve through Hall drift and Ohmic di↵usion [Jones (1987), Goldreich & Reisenegger (1992)].

In addition to this the crust deforms in response to magnetic stresses, and the motion of the

crust induces a back-reaction on the evolution of the field [Cumming et al. (2004), Li et al.

(2016a)]. Evolution of magnetic fields in the core is less well-understood. This lack of un-

derstanding is primarily due to uncertainties in the physics of condensed matter at densities

exceeding nuclear density.

The thesis explores problems relating to the evolution of neutron star magnetic fields. Specifi-

cally, we will explore the following problems:

• All numerical studies of magnetic field evolution in neutron stars so far have failed to

correctly model the magnetic coupling between the crust and the core [e.g. Hollerbach

& Rüdiger (2002), Pons & Geppert (2007), Marchant et al. (2014), Gourgouliatos &

Cumming (2014), Suvorov et al. (2016), Elfritz et al. (2016)]. This is because the liquid

core cannot support solenoidal Lorentz forces, and adjusts to any such force on dynamical

timescales (the Alfén crossing time is of order t
A

⇠ 1 s for B ⇠ 1014 G). In addition to

this there are processes which allow the core magnetic field to evolve on secular timescales

both in the crust and the core. Thus, it is a challenge to model the fast response of the

liquid core to shear stresses, as well as long timescale magnetic field evolution.

• Highly magnetized pulsars (the so-called“low-B” magnetars and “high-B” pulsars) display

transient episodes of magnetar-like X-ray emission (Rea et al., 2010). However, the dipole

magnetic field of these objects is significantly weaker than that of classical magnetars.

Importantly, these objects are possibly much older than the classical magnetar age of 10

kyr. Rather, they are mostly Myr’s old [see (Kaspi & Beloborodov, 2017) for a review].

There is little theoretical understanding of the origin and emission of these neutron stars.
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• Millisecond pulsars have the weakest magnetic fields in the pulsar population (Kaspi &

Kramer, 2016). It is thought that many millisecond pulsars were born with magnetic fields

similar to young pulsars, which have typical strength 1011 � 1012 G (Kaspi & Kramer,

2016). One possibility is that the magnetic field is buried by accretion from a binary com-

panion [e.g. Romani (1990), Cumming et al. (2001), Choudhuri & Konar (2002), Payne

& Melatos (2004)]. However the existence of isolated millisecond pulsars is problematic.

Another possibility is that the magnetic field can decay on long timescales due to dissi-

pative processes in the neutron star [e.g. Goldreich & Reisenegger (1992), Jones (2006),

Ruderman et al. (1998)]. The field decay of isolated neutron stars has been controversial.

Bhattacharya et al. (1992) conducted statistical studies and argued that pulsar magnetic

fields do not decay. Conversely, Mukherjee & Kembhavi (1997) stated that the magnetic

fields of isolated pulsars could decay with a minimum timescale of ⇠ 160 Myr. Similarly,

more recent studies of the pulsar population have failed reach reach any strong consensus

[e.g. Faucher-Giguere & Kaspi (2006), Popov et al. (2010), Gullón et al. (2014), Gullón

et al. (2015)]. It is possible that theoretical input, combined with observations could

uncover the origin of millisecond pulsars, and the evolution of their magnetic fields.

• The coupled dynamics of the solid crust and the magnetic field in highly magnetized

neutron stars has been explored using numerical arguments Cumming et al. (2004), and

detailed numerical experiments Li et al. (2016a), Thompson et al. (2017). However, 2D

axisymmetric models of magnetic field evolution in neutron star crusts so far have not

included the deformation of the solid crust on the magnetic field evolution [e.g. Hollerbach

& Rüdiger (2002), Pons & Geppert (2007), Marchant et al. (2014), Gourgouliatos &

Cumming (2014), Suvorov et al. (2016), Elfritz et al. (2016)].

Developments in numerical techniques have made it possible to study the global magnetic field

evolution of neutron stars due to a variety of proposed mechanisms. In this thesis we ad-

dress the issue of modeling the magnetically coupled crust and core. We find that the liquid

core satisfies a hydromagnetic equilibirum in the azimuthal direction. Implementing this in

our numerical experiments allows us to self-consistently study the coupled crust-core evolution

of neutron star magnetic fields on secular timescales, while ensuring the stability of the field

configuration, and taking into account the magnetic twist exchange between the crust and the

core. Previous studies have neglected the injection and extraction of magnetic twist into/out

of the core [Suvorov et al. (2016), Elfritz et al. (2016)].

Implementing the hydromagnetic equilibrium in our simulations, we model the drift of super-

conducting magnetic flux tubes in the neutron star core, coupled to a crust evolving through
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Hall drift and Ohmic di↵usion. We explore the long timescale evolution of pulsar strength

magnetic fields with the combination of flux tube drift in the core, and Ohmic di↵usion in the

crust. Using this 2D model we calculate the decay timescale for the dipole magnetic field, and

compare with the galactic population of pulsars. We also develop a method for studying the

coupled mageto-elastic evolution in the crust of highly magnetized neutron stars in axisymme-

try.

An outline of this thesis is as follows. In Chapter 1 we introduce neutron star phenomenolgy,

and more theoretical background on the crust, the core, and evolution of magnetic fields in

neutron stars. In Chapter 3 we discuss magnetic field evolution in neutron star crusts. We de-

scribe our formalism for representing axisymmetric magnetic fields, and outline our numerical

scheme for evolving magnetic fields through Hall drift and Ohmic di↵usion.

In Chapter 4 we formulate the hydromagnetic equilibrium in the core using two di↵erent ap-

proaches. We then show the results of implementing this equilibrium in our numerical code.

In Chapter 5 we outline the drift of superconducting flux tubes according to the treatment of

Jones (2006). Here we also point out some of the controversies in the literature surrounding

this topic, though we do not resolve these issues – this is left for future work. We also cover

some other aspects of building a theory of magnetic field evolution in superconducting neutron

stars. Specifically, we discuss the balance of forces acting on a flux tube, the charge current

screening condition, and the magnetic field evolution equation. We then model the Jones drift

of flux tubes in the core for the case of strong B (Hall + Ohmic di↵usion in the crust), and for

the case of moderate B (Ohmic di↵usion only in the crust).

In Chapter 6 we outline our model of flux transport by superfluid vortices. We then present

simulations for the spin-down of a new-born, rapidly rotating, highly magnetized pulsar for

several di↵erent field strengths, and initial spin periods. In Chapter 7 we outline our method

for including the elastic displacement of the crust in axisymmetry, and the feedback of this

on the magnetic field evolution. We present a simulation showing the elastic deformation of

the crust, and the magnetic field evolution when a burst of Hall waves is launched from the

crust-core interface in a highly magnetized neutron star. In Chapter 8 we discuss our results,

and some preliminary implications of these in relation to the galactic population of neutron

stars. Below we provide a table which summarizes our Models of magnetic field evolution, for

ease of navigation in this thesis.
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2.1 Phenomenology

Figure 2.1: P � Ṗ diagram. Red dots represent known radio pulsars as of April 2014, blue

circles represent binaries, red dots represent pulsars, and stars represent supernova remnants.

Magnetars are represented by green triangles. Solid grey lines are of constant magnetic field

strength, and dotted grey lines are of constant characteristic age (Tauris et al., 2014).

There is a rich variety of neutron stars with magnetic field strengths which di↵er by several

orders of magnitude, and vastly di↵erent behaviors. The evolution of neutron star magnetic

fields can provide insight into the origin, behavior, and populations of neutron stars [eg. Tauris

et al. (2014)].

Pulsars are rapidly rotating, magnetized neutron stars, and are characterized by intense beams

of radio-waves, emitted by the plasma on the open magnetic field lines connecting the star to

its light cylinder. Young pulsars have spin periods of tens of milliseconds to seconds. The spin-

down inferred field strength of pulsars younger than 100 Myr ranges from 1.57⇥109�9.4⇥1013

G (Manchester et al., 2005), with the mode field strength B ⇡ 1012 G (Kaspi & Kramer, 2016).

Millisecond pulsars, an extreme subclass of radio pulsars exhibit spin periods ranging from

1.4 ms to ⇠ 10 ms, and far weaker magnetic fields ranging from 108 � 1010 G. The current

fastest spinning millisecond pulsar has spin frequency of 716 Hz (Hessels et al., 2006). Approx-

imately 60% of the 294 observed pulsars with spin periods less than 10 ms (Manchester et al.,

2005) exist in binary systems. This leads to the conclusion that much of the millisecond pulsar

population may have been born regular pulsars, which spin-down below the radio death-line
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by magnetic braking, and then spin-up by the accretion of a companion star. These are the

so-called recycled pulsars. The depletion of the pulsar magnetic field during this process is not

well understood. One proposed mechanism is the burial of the surface field by the accretion

flow [see eg. Romani (1990), Cumming et al. (2001), Choudhuri & Konar (2002), Payne &

Melatos (2004)]. Another is expulsion of flux from the core, [Ruderman et al. (1998) Jones

(2006)]. It is possible that the origin, birth rate, and spin history of millisecond pulsars can be

better understood by studying the evolution of pulsar magnetic fields.

The most extreme class of neutron stars are magnetars. Canonical magnetars are radio-quiet

persistent X-ray sources, powered by dissipation of free energy stored in ultra-strong magnetic

fields (1014�1015 G) [Duncan & Thompson (1992), Kaspi & Beloborodov (2017)]. These young

neutron stars have typical spin-down inferred ages of ⌧
c

. 10 kyr. But the discovery of a wide

variety of magnetars over the years has lead to a broader class of objects, with a range of ages

and field strengths. Particularly interesting are the so-called transient magnetars, which exhibit

extended periods of low luminosity, followed by outbursts, during which the X-ray flux can in-

crease by three orders of magnitude, before returning to quiescence over periods of months to

years (Turolla et al., 2015). The mechanism which causes these bursts of activity is not well

understood, but is believed to be due to the evolution of super-critical magnetic fields which

shear the crust, and generate magnetospheric activity [Perna & Pons (2011), Beloborodov &

Levin (2014), Li et al. (2016a), Thompson et al. (2017)]. Many transient magnetars are young,

seemingly displaying these bursts of activity in the thousands of years following their birth [see

eg. Ibrahim et al. (2004)]. The discovery of SGR 0418+5729 in 2009 with spin-down inferred

age greater than 24 Myr and dipole field strength B = 7.5 ⇥ 1012 G was the beginning of a

new class of transients, possibly older than the commonly accepted magnetar lifetime of 10

kyr (Rea et al., 2010). The so-called “weak-field” magnetars challenge some aspects of the

classical magnetar model, which posits that magnetar activity is generated by energy stored in

an ultra-strong magnetic field.

The fact that there are several well defined classes of neutron stars, with a number of transient

objects displaying behavior somewhere between these classifications, suggests that the galactic

population of neutron stars may be explained by di↵ering ages and birth field strengths. The

discovery of radio emission from magnetars (Camilo et al., 2006), and magnetar emission from

so-called “high-B pulsars” (Archibald et al., 2016) adds evidence to this argument. While

observations point to a unification of neutron star classes (Kaspi & Kramer, 2016), further

theoretical work is required to complete this picture. Recent discussion of a unification was

based on the models of magnetic field and thermal evolution (Viganò et al., 2013). It is likely
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that any such unification would see a given neutron star traverse a variety of classes over the

course of its life, with its classification at any time having a strong dependence on magnetic

field strength, and configuration. Indeed studying the evolution of neutron star magnetic fields

is key to understanding how a neutron star may transition from one class of object to another.

2.2 Crust

Figure 2.2: Diagram of lattice structure as a function of density. Image: (Chamel & Haensel,

2008).

The crust of a neutron star is primarily an ionic lattice of ionized nuclei, immersed in a sea of de-

generate electrons. Above the solid crust is an ocean, formed by a heavy ion plasma. The density

at the crust-ocean interface is fixed by the value of the Coulomb parameter [� = 175 (Potekhin

& Chabrier, 2000)]. This gives the density at the crust-ocean interface ⇢surface ⇡ 8⇥107 g cm�3

at 108 K (Cumming et al., 2004). Nuclei posses an increasing number of neutrons with depth,

due to electron captures (Chamel & Haensel, 2008). The so-called ‘neutron drip’ begins at

⇢ ⇡ 4⇥ 1011 g cm�3. This is the location in the crust where the nuclei become too bloated to

contain their neutrons, and it becomes energetically favorable for neutrons to ‘drip’ out of their

corresponding nucleus. Thus, beyond this density the ionic lattice is immersed in neutrons, as

well as degenerate electrons. In the upper crust the pressure is dominated by degenerate elec-

trons, while in the lower crust, the pressure is dominated by degenerate neutrons. In the deep

crust the density approaches nuclear density ⇢ ⇡ 1014 g cm�3. Around this density it becomes

energetically favorable for nuclei to acquire various exotic morphologies, corresponding to the

so-called pasta phases (Chamel & Haensel, 2008). The base of the crust (or the crust-core
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interface) corresponds to the depth beyond which nuclear density is exceeded, and the solid

lattices becomes a nuclear liquid (Chamel & Haensel, 2008).

In our studies of magnetic field evolution, we will be particularly interested in the variation

of the electron density and electrical conductivity throughout the crust, since this determines

the evolutionary time scale. The rate at which magnetic fields are di↵used in the neutron

star crust is determined by the electrical conductivity, �. The crust has some finite electrical

conductivity due to electron-phonon and electron-impurity scattering. The conductivity due

to phonon scattering is given as

�phonon = 1.8⇥ 1025(⇢7/614 /T 2
8 )(Ye

/0.05)5/3 s�1, (2.1)

with ⇢14 the mass density in units of 1014 gcm�3, and T8 the temperature in units of 108 K

[Baiko & Yakovlev (1995), Baiko & Yakovlev (1996), Cumming et al. (2004)]. Phonon scattering

is exponentially suppressed when T < T
U

= 8.7 ⇥ 107 K ⇢14(Ye

/0.05)(Z/30)1/3 [Gnedin et al.

(2001), (Cumming et al., 2004)], and the Umklapp processes freeze out. Impurity scattering is

dominant at low temperatures (T < T
U

), or high impurity levels. Estimates of the impurity

levels in the deep crust range from Qimp ⇡ 10�3 (Flowers & Ruderman, 1977), to Qimp ⇡ 10

(Jones, 2001). When T < T
U

, and impurity scattering is dominant, the electrical conductivity

in the deep crust is

�
Q

= 4.4⇥ 1025 s�1(⇢1/314 /Qimp)(Ye

/0.05)1/3(Z/30) s�1, (2.2)

[Itoh & Kohyama (1993), Cumming et al. (2004)]. The ionic lattice can support elastic stresses

up to some critical stress, beyond which the crust deforms in the plastic regime. We will model

the deformation of the crust due to magnetic stresses, in the elastic regime.

2.3 Core

Neutron star cores are a dense liquid comprised of neutrons, and a proton electron plasma.

The degeneracy pressure of of neutrons, and nuclear forces between baryons supports the core

against the force of gravity. Goldreich & Reisenegger (1992) emphasized that the composition

of matter in neutron star cores is stably stratified. Specifically, the ratio of charged particle

number density to neutron number density increases with depth. In the absence of external

forces, the stratification satisfies chemical equilibrium, mediated by di↵usion of neutrons, and

weak interactions which drive the ratio of charged particles to neutrons to the equilibrium value

at a given depth.
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Magnetic fields in the core can evolve due to a number of mechanisms on timescales which vary

by many orders of magnitude. Dynamical evolution of the magnetic field occurs through ideal

magnetohydrodynamics (ideal MHD). The Alfén crossing time in neutron star cores is of order

t
A

⇠ 1 s for B ⇠ 1014 G. Additionally there are secular processes which occur over much longer

timescales, which we discuss below.

In normal (non-superconducting) neutron star cores, the magnetic field is coupled to the charged

particle plasma, which can be forced through the background neutrons by Lorentz forces. The

transport of the magnetic field with this flow of charged particles is known as Ambipolar di↵u-

sion. Goldreich & Reisenegger (1992) show that compressive Lorentz forces perturb the chem-

ical equilibrium, and lead to the development of chemical potential gradients. These pressure

gradients choke the flow of charged particles, and inhibit the drift of the magnetic field due to

Ambipolar di↵usion. As pointed out by Beloborodov & Li (2016), if the core is hot T & 109 K,

and the magnetic field is very strong B ⇠ 1016 G, the weak interactions proceed so quickly

that the core matter is never far from chemical equilibrium. In this regime the ambipolar drift

of charged particles is only limited by the frictional drag on the background neutrons, and the

magnetic field may be rearranged very quickly.

The core magnetic field likely has a strong toroidal component, since purely poloidal configura-

tions are susceptible to the Flowers-Ruderman instability, in the first ⇠ 100 s after birth, before

the crust freezes in [Flowers & Ruderman (1977), Braithwaite & Spruit (2006)]. An interesting

consequence of stable stratification in neutron star cores is that hydromagnetic instabilities

are forced to occur at the ambipolar drift velocity, rather than on the Alfén crossing time, as

pointed out by Thompson et al. (2017). This is because the magnetic field is coupled to the

charged fluid, which can only proceed at the rate set by weak nuclear interactions and friction

between the charged plasma and the background neutrons. Additionally field lines which are

anchored in the solid crust may be stabilized.

Conventional theory indicates that the neutrons in the cores form a 3P2 superfluid below the

critical temperature T ⇠ few ⇥ 108 K depending on the model (Potekhin et al., 2015). The

protons are believed to condense and form a 1S0 superconductor when T . few ⇥ 109 K de-

pending on the model (Potekhin et al., 2015). In this scenario the magnetic field is quantized

into a discrete array of microscopic magnetic flux tubes, each of which possess the quantum of

flux �0 = hc/2e. Rotation of the neutron superfluid manifests itself in an array of microscopic

superfluid vortices, each of which posses the quantum of circulation  = h/2m
n

. Since neutron

stars are born very hot, and cool as they age, the phase transition to proton superconductivity
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will likely occur before the phase transition to neutron superfluidity.

The most significant evidence for superfluidity in neutron star cores comes from observations

of the Cas A remnant, which is site to a 330 yr old neutron star (Ho & Heinke, 2009). The

cooling curves of the Cas A remnant are consistent with the phase transition to neutron super-

fluidity through the formation of cooper pairs [Shternin et al. (2011) and Page et al. (2011)].

Importantly, in most models the protons would already be superconducting, so that after the

phase transition to neutron superfludity there are two coexisting, interacting quantum liquids

in the core. This will be of importance in Chapter 6, where we discuss the consequences of

these interactions for the evolution of the magnetic field.

2.4 Magnetic Field

Figure 2.3: Surface dipole field strength (Bdipole) and spin-down inferred age (⌧
c

) of all known

neutron stars in the galaxy. Data from the ATNF Pulsar Catalogue (Manchester et al., 2005).

The presence of neutron star magnetic fields was first realized in the explanation of the spin-

down of the crab pulsar. If the loss of rotational energy of a neutron star is attributed entirely

to a misaligned magnetic dipole, the strength of the dipole component of the magnetic field

may be estimated with

B =

 
3

8⇡2

IP Ṗ c3

R6
⇤ sin

2 ✓

!1/2

= 3.2⇥ 1019
p

PṖ G, (2.3)
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[Kaspi & Kramer (2016)], with P the spin period, Ṗ the period derivative, I ⇠ 1046 gcm2 the

neutron star moment of inertia, and ✓ the inclination angle of the dipole relative to the spin

axis. In reality this formula is too naive. An updated form is given by Spitkovsky (2006) who

relaxes the condition of a vacuum magnetosphere. He allows currents to flow through a force

free magnetosphere in detailed numerical simulations, and finds the modified field strength

B = 3.2⇥ 1019
p

PṖ (1 + sin2 ✓)�1/2 G, (2.4)

which can be up to 1.7 times smaller than the vacuum formula.

More recently X-ray spectra of neutron stars have shown signs of cyclotron emission lines,

providing a way of independently determining the field strength. Interestingly, a number

of measurements have determined field strengths from cyclotron lines which are significantly

stronger than the dipole field inferred from spin down measurements [eg. Tiengo et al. (2013),

Rodŕıguez Castillo et al. (2016), Borghese et al. (2017)]. This suggests the presence of higher

order multipoles, ie. magnetic loops with a high density of field lines in the presence of a weaker

background dipole field.

There is significant evidence to suggest that neutron star magnetic fields evolve with time, on

a number of di↵erent timescales. Figure 2.3 shows the dipole field strength of known neutron

stars in the galaxy, plotted against their respective spin-down inferred ages [Data from ATNF

pulsar catalog (Manchester et al., 2005)]. There is a clear trend of older neutron stars having

weaker magnetic fields. This has led theorists to speculate that neutron star magnetic fields

weaken with time. The activity of magnetars also suggests evolution of strong magnetic fields,

powering the observed X-ray outbursts (Kaspi & Beloborodov, 2017). Most recently it has been

suggested that repeating FRB’s could be powered by the rapid drift of ultra strong magnetic

fields inside a newly born magnetar (Beloborodov, 2017).

The evolution of magnetic fields in neutron star crusts is due to Hall drift and Ohmic di↵u-

sion. It was studied by Jones (1988), and more difinitively by Goldreich & Reisenegger (1992).

Hall drift is the non-linear advection of magnetic fields, by the electron currents supporting

r ⇥ B = 4⇡/cj. The Hall e↵ect can generate large magnetic shear stresses, countered by the

solid stress of the crust. In reality the crust yields elastically to Hall-induced stresses up to

a point, beyond which it deforms in the plastic regime [see eg. Levin & Lyutikov (2012), Be-

loborodov & Levin (2014), Thompson et al. (2017)]. Ohmic di↵usion is caused by the finite

resistivity of the crustal material due to electron scattering by the ion lattice. This process

converts magnetic energy to heat, in contrast to Hall drift which conserves magnetic energy. In

neutron stars with magnetic fields B & 1013 G, the Hall timescale is shorter than the Ohmic
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timescale, making Hall drift the dominant channel of evolution for the crustal magnetic field.

Advances in numerical techniques have allowed Hall drift and Ohmic di↵usion of 2D axisym-

metric magnetic fields to be studied in numerical simulations, with a variety of pseudo-spectral

and grid based methods [Hollerbach & Rüdiger (2002), Pons & Geppert (2007)]. The basic find-

ing was that Hall drift could enhance the transfer of magnetic energy to smaller scales, where

Ohmic di↵usion proceeds more e�ciently. Gourgouliatos & Cumming (2014) found that Hall

drift drives itself toward a configuration with uniform electron angular velocity along poloidal

field lines. This “Hall attractor” is analogous to Ferraro’s Law in ideal MHD, in which twisted

field lines in a cylindrical configuration will evolve to a state with constant angular velocity

along field lines (Ferraro, 1937). The Hall attractor has interesting implications for the active

periods of magnetars and other transients. Most recently Hall drift has been simulated numer-

ically in 3D (Wood & Hollerbach, 2015). Gourgouliatos et al. (2016) found that Hall drift can

generate localized patches of high magnetic field strength in a magnetar crust, where significant

heat can be generated through Ohmic di↵usion.

There are a number of proposed channels of evolution for the core magnetic field. Most well

known is ambipolar di↵usion (Goldreich & Reisenegger, 1992), which is the evolution induced

by the drift of the charged component through the neutral one, ie. the drift of the proton-

electron plasma through the neutrons. Ambipolar di↵usion is limited by two factors. Firstly,

there is friction between protons and the background neutron fluid. Secondly, departures from

chemical equilibrium create pressure gradients which choke the flow of charge currents. Gra-

dients in chemical potential can be erased by weak nuclear interactions. Recently ambipolar

di↵usion was modeled in 2D by Castillo et al. (2017).

Neutron stars cool as they age and their cores are expected to become superconducting and

superfluid (unless the magnetic field is ultra-strong, B > 1016 G, and quenches superconduc-

tivity). This results in the quantization of vorticity into vortex lines and magnetic flux – into

flux tubes. An important magnetic flux transport mechanism is the drift of superconducting

flux tubes. Jones (2006) shows that flux tubes in a superconducting core can move with vis-

cous dissipation through the core fluid, under their own self tension. The drift of flux tubes

has a typical velocity v ⇡ 4 ⇥ 10�7 cm s�1 for typical pulsars [see section 3 of (Jones, 2006)],

making this e↵ect relevant to the depletion of pulsar magnetic fields. We note straight out that

this result is controversial, and there is no consensus about it in the theoretical literature; we

discuss it below. Furthermore, Ruderman & Sutherland (1974) pointed out that the spin-down

of superfluid neutron stars must be associated with the outward motion of superfluid neutron
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vortices. Srinivasan et al. (1990), and Ruderman et al. (1998) showed that due to entrainment

of superfluid protons the neutron vortices are magnetized and that as consequence, there is a

strong interaction between superfluid vortices and superconducting flux tubes. In this picture,

the flux tubes may be pulled along with neutron vortices during spin-down.

Axisymmetric magnetic configurations satisfy an MHD equilibrium condition in the azimuthal

direction in the core, which we formulate and implement in our simulations. We find that with

this equilibrium, the magnetic field in the crust and the core assymptotically settles into the Hall

Attractor of Gourgouliatos & Cumming (2014), which was established for crust-confined fields.

We explore the evolution of the core magnetic field under Jones’ flux tube drift. Our simulations

suggest that a combination of Jones’ flux tube drift in the core, and Ohmic di↵usion in the crust

can deplete pulsar magnetic fields on a timescale of 150 Myr, if the crust is hot (T ⇠ 2⇥108 K).

We also consider the hypothesis that the weak-field magnetar can be produced by a neutron

star with initially rapid spin and dipole field smaller than the conventional magnetar field. In

this scenario, the field is pushed out of the core by the neutron vortices into the crust and

thus some of the rotational energy is transformed into magnetic energy. We find that the core

magnetic field cannot be expelled when B & 2⇥1013 G. However, for B . 1013 G, the magnetic

field is expelled into the the outer core and deep crust. This drives very strong currents in the

deep crust, which are site to enhanced Ohmic dissipation. The strong currents also generate

toroidal field through the Hall e↵ect.
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3.1 Hall Drift and Ohmic Di↵usion

The evolution of the magnetic field in a neutron star crust satisfies Faraday’s Law,

@B

@t
= �cr⇥ E, (3.1)

with E an induction field. An expression for the induction field can be found by considering the

force balance for the electrons in the crust. In the non-inertial limit, the sum of forces acting

on the electrons must equal zero,

0 = �e
⇣
E+

v
e

c
⇥B

⌘
� n

e

m⇤
e

⌫
ei

(v
e

� v
i

) . (3.2)

Here v
e

is the electron velocity, v
i

is the velocity of the positively charged ion lattice, n
e

is the

electron number density, m⇤
e

the electron e↵ective mass, and ⌫
ei

the electron collision frequency.

The first term in brackets is the Lorentz force, while the second represents the collective drag

on electrons due to collisions in the rest frame of the ion lattice. Physically electrons can scatter

o↵ impurities in the lattice, and phonons. Solving this expression for the electric field, gives

E = �v
e

c
⇥B+

j

�
, (3.3)

where we have identified the current density

j = �en
e

(v
e

� v
i

), (3.4)

and the electrical conductivity

� =
n
e

e2

m⇤
e

⌫
ei

. (3.5)

Substituting (5.48) into (3.1) yields the following evolution equation for the magnetic field,

@B

@t
= r⇥ (v

e

⇥B)� cr⇥
✓
j

�

◆
(3.6)

We can write the electron velocity in terms of the Hall drift velocity, vhall, and ⇠̇ = v
i

the

displacement velocity of the ion lattice,

v
e

= vhall + ⇠̇. (3.7)

The Hall drift velocity describes the velocity of electrons relative to ions, and is given by

vhall = � j

n
e

e
= � c

4⇡n
e

e
r⇥B. (3.8)

We may now write the evolution equation for the magnetic field in terms of the field itself, and

the crustal displacement velocity,

@B

@t
= � c

4⇡e
r⇥

✓r⇥B

n
e

⇥B

◆
+r⇥ (⇠̇ ⇥B)� c2

4⇡
r⇥

✓r⇥B

�

◆
. (3.9)
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Figure 3.1: Electron density (n
e

) and electrical conductivity (�) profiles we use in our numerical

models, following Gourgouliatos & Cumming (2014).

The dynamics of the crust and the way we calculate ⇠̇ is outlined in Chapter 7.

The electron density can be written as n
e

= Y
e

n
b

, with Y
e

the electron fraction, and n
b

the

baryon density. Chamel & Haensel (2008) give the baryon density at the base of the crust as

n
b

⇡ 0.08 fm�3, and the corresponding electron fraction Y
e

⇠ 0.03. The electron density at the

base of the crust is then calculated as n
e

= 2.5⇥ 1036 cm�3. In our numerical experiments we

follow Gourgouliatos & Cumming (2014) and take n
e

/ z4. Specifically we use

n
e

/
✓
1.0463r⇤ � r

0.0463r⇤

◆4

, (3.10)

with r⇤ the radius of the star. Following Gourgouliatos & Cumming (2014) we take � / n
2/3
e

,

which is somewhere between the density scalings expected for phonon scattering and impurity

scattering. We set the electrical conductivity to vary from � = 3.6 ⇥ 1024 s�1 at the base of

the crust, to � = 1.8 ⇥ 1023 s�1 at the surface, which is appropriate for phonon scattering at

T ⇡ 2⇥108 K, or impurity scattering with Qimp ⇡ 3 (Gourgouliatos & Cumming, 2014). These

are within an order of magnitude of the values used by Viganò et al. (2013).

3.2 Characteristic Time Scales

The complete magnetic field evolution equation in the crust is given as

@B

@t
= � c

4⇡e
r⇥

✓r⇥B

n
e

⇥B

◆
+r⇥ (⇠̇ ⇥B)� c2

4⇡
r⇥

✓r⇥B

�

◆
. (3.11)
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The terms on the right hand side describe, in order, the e↵ects of Hall drift, crustal deformation,

and Ohmic di↵usion. The Hall term corresponds to the nonlinear advection of the magnetic

fields by the currents which support r⇥B = 4⇡/cj. The Hall term conserves magnetic energy.

The second term corresponds to crustal deformation, in a way that minimizes magnetic stress,

and partially cancels the Hall term. If the crustal displacement is due to elastic deformations

only, then the second term will conserve magnetic energy. The third term represents di↵usion

of magnetic field lines due to the Ohmic scattering of currents. The Ohmic term converts

magnetic energy into heat. We can define the ‘Hall Magnetic Reynolds number’

R
B

=
�B

n
e

ec
, (3.12)

as the ratio between the coe�cients of the Hall and Ohmic terms in the induction equation.

If R
B

is large then the Hall e↵ect dominates the evolution timescale. Likewise if R
B

is small,

Ohmic di↵usion dominates the evolution timescale.

We can determine the characteristic timescales of evolution of the Hall and Ohmic terms, with

L a characteristic length scale, taken to be the thickness of the crust (1 km) and n
e

and �

evaluated at the base of the crust,

tohm ⇠ 4⇡�L2

c2
= 13.5

✓
L

1km

◆2✓
�

3.6⇥ 1024 s�1

◆
Myr, (3.13)

thall ⇠ 4⇡eL2n
e

cB
=

1.6

B14

✓
L

1km

◆2✓
n
e

2.5⇥ 1036 cm�3

◆
Myr (3.14)

where B14 is the magnetic field strength in units of 1014 G.

3.3 Axisymmetric Equations

We now follow closely the formalism of Gourgouliatos & Cumming (2014). In axisymmetry the

magnetic field can decomposed into poloidal and toroidal components, and expressed in terms

of the scalar functions  and I. The magnetic field is written as a sum of poloidal (Bp) and
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toroidal (BT) components

B = Bp +BT = r ⇥r�+ Ir�, (3.15)

where we work in spherical coordinates (r, ✓,�), and define r� ⌘ ê
�

/rsin✓. The function  is

known as the flux function (identical in form to the Stokes stream function), since 2⇡ (r, ✓)

is the poloidal magnetic flux passing through the polar cap with radius r and opening angle

✓. The function I has the interpretation that cI(r, ✓)/2 is the poloidal current passing through

the same polar cap, and hence is often called the poloidal current function.

We now express the evolution equation (3.9) in terms of the scalar functions  and I as de-

fined in (3.32). Evolving fields in this formalism has the advantage of automatically preserving

r · B = 0 at all times, provided the scalar functions  and I are di↵erentiable. We begin by

defining the quantity

� =
c

4⇡en
e

r2sin2✓
, (3.16)

as in Gourgouliatos & Cumming (2014). We also write the toroidal current as

j
T

=
c

4⇡
r⇥B

p

= � c

4⇡
�⇤ r�, (3.17)

and the electron angular velocity as

⌦e = ⌦hall + ⌦el = � j
T

n
e

ersin✓
+

v�el
r?

= ��⇤ +
v�el
r?

, (3.18)

where we have used the Grad-Shafranov operator,

�⇤ =
@2

@r2
+

sin✓

r2
@

@✓

✓
1

sin✓

@

@✓

◆
. (3.19)

Using the above definitions, the Hall evolution equation reduces to the following two scalar

equations, in terms of the poloidal and toroidal scalar functions

@ 

@t
� r2sin2✓�(rI ⇥r�) ·r =

c2

4⇡�
�⇤ , (3.20)
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@I

@t
+r2sin2✓[(r⌦hall⇥r�)·r +(r⌦el⇥r�)·r +I(r�⇥r�)·rI] =

c2

4⇡�

✓
�⇤I � 1

�
rI ·r�

◆
.

(3.21)

These evolution equations are the same as those in Gourgouliatos & Cumming (2014), except for

the addition of the elastic back-reaction velocity of the crust. It is clear that for our profiles of

n
e

and �, the magnetic Reynolds number is largest at the surface. We do not include the upper

layers of the crust where R
B

> 100 [Equation (3.12)], in order to avoid time stepping issues

where the Hall evolution is very fast. This corresponds to a minimum electron density cuto↵ of

2.5 ⇥ 1034 cm�3 for our choice of conductivity, and a magnetic field of strength ⇠ 2 ⇥ 1014 G.

The layers we exclude will have mass density ⇢ . 1011 g cm�3.

3.4 Hall Attractor

Cumming et al. (2004) first showed that rigid rotation of electrons along poloidal field lines

was a steady state of the Hall evolution equations. The Hall Attractor was later found to exist

for axisymmetric, crust-confined, magnetic fields in numerical simulations [Gourgouliatos &

Cumming (2014)]. Here we give a brief overview of Ferraro’s law of isorotation in ideal MHD

[Ferraro (1937)], which is analogous to the Hall Attractor in Hall evolution. We then discuss

the Hall Attractor for axisymmetric magnetic fields.

We begin by considering an axisymmetric magnetic field in cylindrical coordinates. The fluid

flow is constrained to be purely azimuthal,

v = r?⌦êr? , (3.22)

with r? = r sin ✓, and ⌦ the angular velocity of the fluid. For this configuration it can be shown

that
@Bp

@t
= 0. (3.23)

Here the poloidal field is Bp = B
r? êr?+B

z

ê
z

. The evolution of the toroidal field can be written

as
@B

�

@t
= r?(Bp ·r)⌦. (3.24)

It is easy to see that when ⌦ is constant along poloidal field lines, there is no evolution of the

magnetic field, i.e. it is a steady state. This is Ferraro’s Law in ideal MHD. For Hall drift in

axisymmetry, the attractor state corresponds to

⌦e �! ⌦e( ), (3.25)
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that is, rigid rotation of electrons along poloidal field lines. We will discuss this result further

in Chapter 4. We find that the Hall Attractor of Gourgouliatos and Cumming also exists for

B-fields which penetrate the neutron star core.

3.5 Computational Methods

3.5.1 Boundary Conditions

We give an overview of the boundary conditions which are common between all simulations.

Depending on the simulation, certain boundary conditions may change significantly, but this

will be noted as necessary. Since we are working in axisymmetry, we must enforce continuity

of the magnetic field at the poles of the star. This ensures that the field is purely radial, and

has no polar or azimuthal component at ✓ = 0 and ✓ = ⇡. We set

B
�

(r, ✓ = 0) = B
�

(r, ✓ = ⇡) = 0, (3.26)

to enforce zero azimuthal component. But since I is defined as

B
�

=
I

r sin ✓
ê
�

, (3.27)

we see that I must tend to zero atleast as fast as sin ✓ = ✓ + O(✓3), in order to prevent a

coordinate singularity. Ensuring that

I(r, ✓ = 0) = I(r, ✓ = ⇡) = 0 and
@I

@✓

����
✓=0,⇡

= 0 (3.28)

means that the singularity will be properly regularized. To enforce the condition on the flux

function, we use (3.32), to see that

B
✓

(r, ✓ = 0) = B
✓

(r, ✓ = ⇡) =
1

r2 sin ✓

@ 

@r

����
✓=0,⇡

= 0, (3.29)

where we again note that there is a coordinate singularity in ✓. We may regularize this by

ensuring that
@ 

@r

����
✓=0,⇡

= 0 and
@

@✓

✓
@ 

@r

◆ ����
✓=0,⇡

= 0 (3.30)

The first condition is satisfied when

 (r, ✓ = 0) =  (r, ✓ = ⇡) = 0. (3.31)
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3.5.2 Matching the Crust Field to the Magnetosphere

In order to solve the evolution Equations (3.20) and (3.21) we need two boundary conditions,

for I and  at r⇤, which may also be formulated as conditions on B(r⇤, ✓). In this work

we are considering a slow evolution of magnetic fields on timescales over which any episodic

magnetospheric twists (magnetar activity) must be erased (Beloborodov, 2009). It is therefore

reasonable to assume a vacuum magnetic field as the boundary condition at the surface. De-

manding zero current means that r ⇥ B = 0 outside the star. So we can write the vacuum

field as

B = rV, (3.32)

where V is a scalar function. We also assume that there is no surface current at r⇤ due to the

finite electrical conductivity of the outer crust. Thus, the two boundary conditions express the

continuity of the tangential components of the magnetic field B
�

, B
✓

, at the surface, so that

they match a vacuum solution outside the star:

1. The continuity of B
�

implies for the crustal field B
�

(r⇤, ✓) = 0, since in any axisymmetric

vacuum magnetosphere B
�

= (r sin ✓)�1@V/@� = 0. This gives I(r⇤, ✓) = 0.

2. The continuity of B
✓

gives a condition on @ /@r = �r sin ✓B
✓

(no boundary condition

is imposed on the values of  (r⇤, ✓) – its evolution is calculated from Equation (3.20) in

the crust).

The constraint r ·B = 0, gives the Laplace equation for V,

r2V = 0. (3.33)

B
✓

is determined by this Laplace equation outside the star for given surface values of B
r

.

Because V �! 0 as r �! 1, we can write the solution as a multipolar expansion. For

axisymmetric magnetic fields V is given by

V (r, ✓) =
1X

l=1

a
l

rl+1
P
l

(cos ✓), (3.34)

where P
l

(cos ✓) are the associated Legendre polynomials. The first sum starts at l = 1 because

there are no magnetic monopoles, and a
l

are expansion coe�cients to be determined. Now

using the definition of the magnetic field in Equation (3.32), we can write

B
r

(r, ✓) =
@V

@r
= �

1X

l=1

(l + 1)
a
l

rl+2
P
l

(cos ✓). (3.35)
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We can invert this expression to solve for the expansion coe�cients, and evaluate it at r⇤ which

gives

a
l

= �rl+2
⇤

2l + 1

2l + 2

Z
⇡

0

P
l

(cos✓)B
r

(r⇤, ✓) sin ✓d✓. (3.36)

Using these expansion coe�cients, we can calculate B
✓

using Equation (3.32),

B
✓

(r, ✓) =
1

r

@V

@✓
=

1X

l=1

a
l

rl+2

@P
l

(cos✓)

@✓
= � 1

r sin ✓

@ 

@r
. (3.37)

This gives the boundary condition for  on the surface of the star as

@ 

@r

����
r⇤

= � sin ✓
1X

l=1

a
l

rl+1
⇤

@P
l

(cos✓)

@✓
. (3.38)

3.5.3 Numerical Scheme

We evolve the poloidal and toroidal scalar functions on a discrete grid, which is linear in r and

u ⌘ cos ✓, in the crust and the core. The variable u varies from -1 at the south pole, to 1 at

the north pole, and the radius of the star is r⇤ = 1 in units of 106cm. The crust core interface

is at r
c

= 0.9r⇤. We use the indices i and j to specify grid points in the r and u directions

respectively. The index j varies from j1 = �50 which corresponds to the south pole, to j2 = 50

which corresponds to the north pole, with j = 0 defining the equator. We choose the di↵erence

in u such that �u = 2/(j2 � j1). The index i varies from i0 = 0 at the center (r = 0), to typical

values of i
c

= 350 at the crust core interface (r = r
c

) depending on the simulation. For most

simulations i extends to i
s

= i
c

+100 at the surface (ie. a crustal grid of 101⇥ 101), though for

some simulations higher resolution is required in the radial direction in the crust. Throughout

the crust and the last few rows of the core (ghost points for the crust) the radial grid spacing is

�rcrust = 1/i
s

. The radial grid spacing in the outer few rows of the core grid matches the radial

grid spacing of the crust, for ease of implementing boundary conditions on the crustal field. In

order to avoid numerical instabilities near the poles in some simulations, we added adjustable

patches of increased resolution in the u direction. The angular resolution was sometimes set to

between 6 and 10 times the original resolution near the poles in order to obtain convergence.

This resolved the issue of numerical instabilities, and added little expense to the computations.

We evaluate spatial derivatives in the crustal evolution equations [Equations (3.20), (3.21),

(7.20)] with the following finite di↵erence formulae. To evaluate the radial derivatives at each

time step in the crust we use

 
r

=
 

j,i+1 � j,i�1

2�r
, (3.39)
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rr

=
 

j,i�1 � 2 
j,i

+ 
j,i+1

�r2
, (3.40)

with the subscript a short hand for partial derivative. For the derivatives with respect to u

however, a di↵erent approach was needed, since central di↵erences do not preserve second order

accuracy on a non-uniform grid. We use the following finite di↵erences which are generalized

to maintain second order accuracy [Equations A3b, and A4c in Bowen & Smith (2005)]. These

are found by using Lagrange interpolation to fit a polynomial to the points, and then taking

a derivative of that polynomial. We first define the displacements ↵
j

= u
j

� u, where u is the

point at which we evaluate the derivative, and u
j

is a grid point. The point u may be any point

contained by the grid points (j � 1, j, j + 1), not necessarily a grid point. The first and second

derivatives with respect to u are then

 
u

= � (↵2 + ↵3) j�1,i

(↵1 � ↵2)(↵1 � ↵3)
� (↵1 + ↵3) j,i

(↵2 � ↵1)(↵2 � ↵3)
� (↵1 + ↵2) j+1,i

(↵3 � ↵1)(↵3 � ↵2)
, (3.41)

 
uu

=� 2(↵2 + ↵3 + ↵4) j�2,i

(↵1 � ↵2)(↵1 � ↵3)(↵1 � ↵4)
� 2(↵1 + ↵3 + ↵4) j�1,i

(↵2 � ↵1)(↵2 � ↵3)(↵2 � ↵4)

� 2(↵1 + ↵2 + ↵4) j,i

(↵3 � ↵1)(↵3 � ↵2)(↵3 � ↵4)
� 2(↵1 + ↵2 + ↵3) j+1,i

(↵4 � ↵1)(↵4 � ↵2)(↵4 � ↵3)
.

(3.42)

We use the same derivative formula for the toroidal scalar function I. In the code we normalize

the Hall Evolution equation in the same way as Gourgouliatos & Cumming (2014),

1.6⇥ 106
@B14

@tyr
= �r̃ ⇥

 
r̃ ⇥B14

n
e,0

⇥B14

!
� 0.02r̃ ⇥

 
r̃ ⇥B14

�0

!
, (3.43)

where B14 = B/1014 G, tyr = t/3.15⇥ 107 s, r̃ is the del operator with lengths normalized to

106 cm, n
e,0 = n

e

/2.5⇥1034 cm�3, and �0 = �/1.8⇥1023 s�1. For more details of the numerical

method we refer the reader to Appendix B.

3.6 Test Problems

In this section we show tests of our numerical scheme for Hall drift and Ohmic di↵usion.

Firstly, we test the Ohmic terms in Equations (3.20) and (3.21) by comparing with the analytic

Ohmic eigenmodes. We show that our code demonstrates second order spatial convergence.

Since there are no known analytic solutions to the non-linear Hall terms, we instead compare

our results with the code of Gourgouliatos & Cumming (2014). We observe excellent agreement.

Purely toroidal fields evolving through Ohmic di↵usion, with a uniform conductivity, satisfies

the following evolution equation,

@B

@t
= � c2

4⇡�
r⇥ (r⇥B) . (3.44)
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This equation has analytic solutions [first shown by Chandrasekhar (1961)], given in terms of

the scalar function I by

I(r, ✓, t) = r2[Aj
n

(kr) + By
n

(kr)] sin ✓P 1
l

(cos ✓)e�t/⌧ , (3.45)

with A and B constants, the ratio of which depends on the boundary conditions, and k =

1/
p
⌘⌧ . The decay timescale ⌧ depends on the boundary conditions chosen. For the lowest

order radial mode (n = 0), with B
�

(r = r
c

) = B
�

(r = r⇤) = 0, it is easy to show that the

characteristic decay time is

⌧ =

✓
r⇤ � r

c

⇡

◆2 1

⌘
. (3.46)

The characteristic decay times for higher order radial modes are non-trivial to find. We run our

code using the n = 0 l = 1 Ohmic eigenmode as an initial condition. We eliminate error from

the time stepping by scaling the time step. That is, when we double the grid spacing, we divide

the time step by 4, so that we are e↵ectively using the same time step size for all grid resolutions.

Figure 3.2: log10 L2 vs. log10 �r: Comparisson of our code with the analytic n = 0 l = 1 Ohmic

eigenmode.

In order to compare the analytic and numerical solutions we use the L2 norm, defined

L2 =

s
1

N

X

i,j

|x
i,j

� y
i,j

|2, (3.47)

where the sum is performed over the whole grid, with x
i,j

and y
i,j

the analytic and numeric

solutions at a grid point. We normalize by N the number of grid points. Since the slope in
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Figure 3.2 is ⇡ 2, our scheme is converging to second order spatial accuracy. The error levels

o↵ in the left region of the plot, because the scheme has converged for these high resolution trials.

Figure 3.3: log10 ✏max vs. log10 �r: Comparisson of our code with the analytic n = 0 l = 1

Ohmic eigenmode.

In addition to testing the convergence of our numerical scheme with the L2, norm, we perform

a check on the absolute error of individual grid cells. We define

✏max = max|x
i,j

� y
i,j

|, (3.48)

with x
i,j

and y
i,j

the analytic and numeric solutions at a grid point. The maximum is taken

over the whole grid. This check ensures that there are no local errors growing large, while the

global error we studied with L2 grows smaller. In Figure 3.3 the slope has gradient ⇡ 2, which

implies the convergence is second order accuracy. The data points level o↵ in the left region of

the plot because the scheme has converged.

We test the Hall terms in the evolution Equations (3.20) and (3.21) by comparing our code

with that of Gourgouliatos & Cumming (2014). Using the so-called “Hall equilibrium” initial

magnetic field, we simulate for 2 Myr using the same electrical conductivity and electron density

profile as Gourgouliatos & Cumming (2014). The results of our code are shown alongside theirs

in Figure 3.4. We observe excellent agreement.
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Figure 3.4: Evolution of the so-called “Hall equilibrium” with Hall Drift and Ohmic Di↵usion.

The images on the left are plotted from data files provided by Gourgouliatos & Cumming

(2014), and the images on the right are the results of our own code. In this figure the thickness

of the crust has been scaled by a factor of 2.5 for clarity.
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4.1 Hydromagnetic Equilibrium

In this section we outline two methods for studying the evolution of neutron star core magnetic

fields on long (Hall) timescales, while maintaining stability on dynamical (MHD) timescales,

and taking into account fluid degrees of freedom. The core has a very high conductivity and

we treat it as an ideal conductor, so that the field is perfectly coupled to the fluid. It is then

instructive to consider displacements of the fluid, since these correspond directly to degrees

of freedom of the field. Firstly we assume there is no bulk fluid displacement in the radial

direction ⇠
r

= 0 on an Alfén timescale because of the stable stratification (there may be a

slow drift due to secular e↵ects which we discuss later on). We also assume that the core is

incompressible, which in axisymmetry implies ⇠
✓

= 0. In this axisymmetric model, the core

fluid can only be displaced in the azimuthal direction, which corresponds to the motion of fluid

elements on spherical shells, at fixed cylindrical radius. Such displacements in the � direction

do not perturb the local chemical equilibrium, and are only limited by the viscosity of the fluid

which is negligible. Thus, it is a good approximation to assume that any toroidal flux injected

into the core, readily distributes itself according to a tension equilibrium along poloidal field

lines. This is equivalent to the force f
�

= j
p

⇥ B
p

/c = 0 in axisymmetry, but in general it is

the vanishing of the solenoidal part of the Lorentz force. In terms of the scalar functions I and

 , this condition is equivalent to

I = I( ), (4.1)

which means that I is constant along poloidal field lines in the core. We present two methods

enforcing this condition. We briefly outline the first method here, but leave the details for the

appendix.

4.2 Method I: Flux Coordinates

Firstly, it is possible to determine the value of I along a given poloidal field line in the core

by calculating the advection flux of B
�

into the core by Hall drift. The advection flux of B
�

is defined by writing the Hall evolution equation for B
�

in the crust in conservative form, and

identifying the advection flux. In this method it is convenient to work in the so-called flux-

coordinates ( ,�,�), where  labels surfaces of constant poloidal flux, and � is the length

along a given poloidal field line in the � = const plane (Goedbloed et al., 2010). It can be

shown (Appendix A), that the twist angle ⇣ of a given poloidal field line in the core evolves

according to the equation

@⇣( )

@t
= �[J( ,�2, t)� J( ,�1, t)], (4.2)
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where we have identified the twist angle

⇣( ) =

Z
�2

�1

d�

✓
B

�

r?B�

◆
, (4.3)

where the integral is taken along the magnetic field line ( = const), and J is related to the

“flux of twist” into the core through

F = r?B�

J = v
�

B
�

� v
�

B
�

. (4.4)

The rhs of (4.2) represents the di↵erence between flux of twist at each footpoint of a field line

threading the core at its boundary. There are two contributions to the flux of twist J . The first

term can be attributed to Hall drift advecting B
�

into the core with poloidal drift currents, and

the second term is the azimuthal winding of poloidal field lines by Hall drift. Equation (4.2)

may be rearranged to obtain the following equation for the evolution of I( ),

@I( , t)

@t
= �$( )[J( ,�2, t)� J( ,�1, t)], (4.5)

with

$( ) =

✓Z
�2

�1

d�

r2?B�

◆�1

. (4.6)

If the toroidal field displays equatorial plane reflection symmetry, and the poloidal field displays

equatorial symmetry, J( ,�1, t) = J( ,�2, t), and there will be no magnetic twist injected into

the core.

The procedure outlined above is e�cient in tracing the crust-core evolution of the field, so long

as the flux surfaces in the core are fixed in time. However, in our studies we would like to have

the freedom to evolve the core poloidal field. In such situations, we found it more practical to

use the second method outlined below.

4.3 Method II: Relaxation

The second method of enforcing hydromagnetic equilibrium, is to treat it as a relaxation prob-

lem. This method has the advantage of not requiring the integral in Equation (4.6) to be

evaluated. Suppose there is a poloidal field threading the core. Hall drift in the crust will

slowly displace the magnetic field lines in the azimuthal direction, and in response to this, the

core field will adjust, quickly returning to hydromagnetic equilibrium. The evolution of the

core field can be written
@BT

@t
= r⇥ (vT ⇥Bp + vp ⇥BT), (4.7)
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with vT the toroidal (azimuthal) velocity which returns the core field to hydromagnetic equi-

librium. The second term on the rhs is the advection of the toroidal field with the poloidal drift

velocity vp, of flux surfaces. This term ensures that each poloidal field line maintains its own

twist angle when the flux surfaces are evolving. For a given (fixed) poloidal field configuration,

equilibrium is satisfied when
@BT

@t
= 0 (equilibrium). (4.8)

Thus all that is required, is to choose a convenient form of vT which drives the field towards

equilibrium faster than the other channels of evolution, such as Hall drift. First though, we

write Equation (4.7) in a more convenient form. It can be shown that Equation (4.7) may be

written as
@B

�

@t
+rp · (vpB�

) = rp · (v�Bp), (4.9)

where we have defined the poloidal di↵erential operator

rp ⌘
✓

@

@r?
,
@

@z

◆
, (4.10)

which acts in the 2D plane. Equation (4.9) is easily interpreted as a continuity equation, with

the second term on the lhs representing the divergence of a transport flux of B
�

due to drift

of the poloidal field. The term on the rhs is a source term, which represents the injection

or extraction of B
�

(and magnetic twist) from the magnetic field lines which enter the crust.

When using this method vp must be the same as the poloidal drift velocity of flux surfaces in

the core. In this paper we only use this method for the case of fixed poloidal field lines in the

core (vp = 0), so that second term on the lhs of Equation (4.9) vanishes. All that remains is

to choose a convenient form of v
�

which will drive the field toward equilibrium. An obvious

choice is to set

v
�

/ f
�

=
(r⇥BT)⇥Bp

4⇡
, (4.11)

so that when the field reaches hydromagnetic equilibrium, the velocity tends to zero. Note that

this technique was also used by Yang et al. (1986). In our axisymmetric formalism, this is

v
�

/ (rI ·Bp)r�. (4.12)

We find however, that it is convenient to divide by poloidal field strength, so that the relaxation

timescale is independent of this quantity. This gives the relaxation velocity

v
�

=
k

|Bp|(rI · ê
�

), (4.13)

which obviously tends to zero as the field is driven toward equilibrium. For the case of static

poloidal fields in the core (vp = 0), Equation (4.9) becomes

@I

@t
= r?rp · [k(rI · ê

�

)ê
�

], (4.14)
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which has the form of a modified di↵usion equation. Solving the equations directly in the

original form [Equation (4.7)] lead to short-wavelength numerical instabilities. Solving in the

flux-conserving form [Equation (4.14)] removed the instabilities. Equation (4.14) with a large

k ensures that the magnetic field in the core evolves through a sequence of MHD equilibria,

and that these equilibria are stable.

In the more general case, poloidal magnetic field lines are not fixed in the core, but can drift

with Ambipolar di↵usion, or Jones drift. In this case one must ensure that vp matches the

drift velocity of field lines in the crust at the crust-core interface. In the crust, the velocity of

poloidal field lines is due to the Hall drift velocity vhall, and the Ohmic di↵usion velocity vohm,

vp(rc) = vhall(rc) + vohm(rc), (4.15)

where vhall is determined by Equation (3.8). We determine the Ohmic drift velocity of poloidal

field lines by noting that the electric field determines @B/@t = �cr⇥E. If we assume that vp

is perpendicular to B, one may rewrite the evolution equation as @B/@t = r⇥ (v ⇥B) with

v defined by E = �v ⇥B/c. Using Ohm’s law, for the case of poloidal fields this becomes

JT

�
=

c

4⇡�
r⇥Bp = �1

c
vp ⇥Bp, (4.16)

with vp the poloidal velocity. Taking the cross product of both sides with Bp allows us to solve

for vp. This is the velocity at which poloidal magnetic field lines drift due to Ohmic di↵usion,

and we call it vohm,

vohm =
c2

4⇡�

[(r⇥Bp)⇥Bp]

(Bp ·Bp)
. (4.17)

When this velocity is inserted into an induction equation it is exactly equivalent to the Ohmic

di↵usion equation, so this is the correct Ohmic di↵usion velocity. It is worth noting that we do

not evolve the crustal field in our code with the velocity given by Equation (4.17). The crustal

field is evolved with Ohmic di↵usion in our code using Equation (3.21). The Equation (4.17)

simply provides a boundary condition for the evolution of poloidal magnetic fields in the core.

We note here that a number of previous works fail to include the correct hydromagnetic equi-

librium in the core, rendering their boundary condition on the crust-core interface unphysical.

Suvorov et al. (2016) violate equatorial plane reflection symmetry, and therefore e↵ectively

must be injecting magnetic twist into the core within the timescale of their simulation. The

simulations of Elfritz et al. (2016) include strong toroidal fields in the core, which in general

do not satisfy f
�

= 0. These stresses cannot be supported by the fluid, and therefore these

simulations violate hydromagnetic equilibrium. This error in Elfritz et al. (2016) is due to their
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lack of the terms which advect magnetic field by an azimuthal fluid motion; in other words, the

background in which their flux tubes move is assumed to be static.

4.4 Numerical Details

Here we outline our numerical method used to implement hydromagnetic equilibrium through

relaxation. While the method we developed in the previous section is applicable to scenarios

with drifting poloidal magnetic field lines, so far we have only used it for the case when they

are fixed. We begin with Equation (4.9) with vp = 0,

@B
�

@t
= rp · (v�Bp) = rp · [k(rI · ê

�

)ê
�

]. (4.18)

We find it useful to rewrite this in a conservative form as

@

@t

✓
I

r sin ✓

◆
=

1

r

@F
r

@r
+

1

r

@F
✓

@✓
, (4.19)

where we have identified the fluxes

F
r

= r
k

|Bp|(rI · ê
�

)B
r

, (4.20)

F
✓

=
k

|Bp|(rI · ê
�

)B
✓

. (4.21)

In our numerical code we evaluate the functions F
r

and F
✓

using the finite di↵erence formula

[Equation (3.41)]. The appropriate boundary condition at the crust-core interface is to enforce

v
�

(r
c

) = 0, so that there are no hydromagnetic flows at the base of the crust, ie. the field lines

are anchored at the base of the crust. This is a no-slip boundary condition. Since we chose the

relaxation velocity

v
�

=
k

|Bp|(rI · ê
�

), (4.22)

this is equivalent to enforcing

F
r

(r
c

) = 0, (4.23)

and

F
✓

(r
c

) = 0. (4.24)

We can also see that since I(r, 0) = I(r, ⇡) = 0, rI · ê
�

= 0 along the poles. So we also set

F
r

(r, 0) = 0, (4.25)

F
✓

(r, ⇡) = 0. (4.26)
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We can see due to axisymmetry that the function F
✓

is even about the poles, so we set ghost

points according to

F j1�1
✓

= F j1+1
✓

, (4.27)

F j2+1
✓

= F j2�1
✓

. (4.28)

Ghost points are set for F
r

at the crust-core interface such that

F ic+1
r

= F ic�1
r

. (4.29)

We then use finite di↵erence formula to evaluate the derivatives of F
r

and F
✓

throughout the

core [Equation (4.19)] using finite di↵erence formulae [Equation (3.41)]. The crust and the core

are time stepped in sequence so that the evolution is self consistent, ie. the crust is stepped in

time which determines the value Icrust(rc). Then we set Icore(rc) = Icrust(rc), and step the core.

This process is repeated. We normalize the evolution equation in the code in the same way we

normalize the Hall drift and Ohmic equations,

@B14
�

@tyr
= 6.3⇥ 10�7r̃p · [k0(r̃(B14

�

r6 sin ✓) · ê�)ê�]. (4.30)

where B14
�

= B
�

/1014 G, tyr = t/3.15⇥ 107 s, r̃ is the del operator with lengths normalized to

106 cm, r6 = r/106 cmand k0 = k/2 ⇥ 10�8 cms�1. For more details of the numerical method

we refer the reader to Appendix B.

4.5 Test Problems

In this section we present two test problems, to ensure that our relaxation scheme converges to

hydromagnetic equilibrium, and that the correct symmetries are preserved.

Changing the twist angle of a field line in the core requires di↵erential rotation of its two

ends where it is attached to the crust. Equatorial symmetry of the magnetic field implies no

di↵erential rotation – the two ends must move with the same speed. The same fact is seen

formally from the equations. For the case of equatorial symmetry, the net flux of twist into the

core vanishes for each field line, as

J( ,�2, t)� J( ,�1, t) = 0, (4.31)

(see Section 4). If the initial field has plane reflection symmetry about the equator, it will

maintain this symmetry throughout the evolution. Then, by Equation (4.5), we see that

@
t

Icore( , t) = 0 (if symmetric), (4.32)
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for all time. In reality it is likely that young neutron stars will have some toroidal field in

order to stabilize the poloidal field. However in some of our simulations we consider a number

of initial fields which display equatorial reflection symmetry, and have purely poloidal fields in

the core. In this special case the evolution of the core toroidal field is trivial - it remains zero

according to hydromagnetic equilibrium.

First we consider a stationary core penetrating poloidal field, with some patches of toroidal

field in the core which do not satisfy hydromagnetic equilibrium. That is

I 6= I( ). (4.33)

We use the same poloidal field as Lasky & Melatos (2013). In this simple test problem the

crust field is fixed, and the only evolution is the hydromagnetic relaxation of the toroidal field

in the core. For this particular choice of initial conditions, the toroidal field is symmetric about

the equator, so we would expect the toroidal field to redistribute itself along the poloidal field

lines and result in a positive, non-zero I along each poloidal field line.

We see in Figure 4.1 that after ⇠ 15 kyr the toroidal field has been redistributed along the

poloidal field lines [di↵used by Equation (4.14)] to satisfy hydromagnetic equilibrium. That is,

I �! I( ), (4.34)

which is also reflected in Figure 4.2. In Figure 4.3 we show the same setup, but for a toroidal

field with equatorial reflection symmetry. That is, the toroidal field changes sign in opposite

magnetic hemispheres. For this test we would expect the toroidal field to relax to I = 0 along

each poloidal field line, due to the symmetry shown in Equation (4.32). In Figures 4.3 and 4.4

we see that

I �! I( ) = 0, (4.35)

as expected.
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Figure 4.1: Snapshots of hydromagnetic relaxation of an initial field which is not in equilibrium,

shown at t = 0, and 15 kyr. The black curves are 10 contour lines of the poloidal flux function

 (i.e. the polodial magnetic field lines), equally spaced between  = 0 and the maximum

value  max, at t = 0. The toroidal field scalar function I is represented by the color scale,

which varies logarithmically, with a linear region around zero.

Figure 4.2: The values of I, and corresponding values of  are plotted for the grid points in

the core at t = 0 kyr, and 15 kyr.
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Figure 4.3: Snapshots of hydromagnetic relaxation of an initial field which is not in equilibrium,

shown at t = 0, and 60 kyr. The black curves are 10 contour lines of the poloidal flux function

 (i.e. the polodial magnetic field lines), equally spaced between  = 0 and the maximum

value  max, at t = 0. The toroidal field scalar function I is represented by the color scale,

which varies logarithmically, with a linear region around zero.

Figure 4.4: The values of I, and corresponding values of  are plotted for the grid points in

the core at t = 0 kyr, and 60 kyr.



4.6. RESULTS 45

4.6 Results

First we consider Model A in which the e↵ects of stellar spin-down, and Jones flux tube drift,

and ambipolar di↵usion are neglected (ie. the poloidal field is static in the core). The purpose

of this section is to demonstrate clearly the hydromagnetic equilibrium described in Section 4.

The drift of poloidal field lines in the core will be studied in Chapters 5 and 6.

Poloidal fields which violate equatorial plane reflection symmetry are chosen so that there is a

non-zero flux of twist into the core,

J( ,�2, t) 6= J( ,�1, t), (4.36)

and we may see evolution of the toroidal field in the core. With this in mind we choose the

initial poloidal field in Figure 4.5 to violate equatorial reflection symmetry. In particular, we

choose the initial field  to be the same as Lasky & Melatos (2013), except we multiply by

sin ✓ in the northern hemisphere to break equatorial symmetry. We enforce hydromagnetic

equilibrium in Model A with the relaxation method outlined in Section 4.

The simulation shown in Figure 4.5 starts with a current sheet on the surface of the star in

the northern hemisphere (see Figure 4.6). The current sheet shears poloidal field lines near

the surface, and generates toroidal field with positive polarity in the northern hemisphere,

and negative in the south. Hall drift in the crust slowly winds the core magnetic field in the

azimuthal direction. At t = 200 kyr there is a weak toroidal field in the core, and several

patches of toroidal field in the crust with alternating polarity. After t ⇠ 600 kyr the toroidal

field reaches a steady state, with two patches near the equator in opposite hemispheres, which

are damped by Ohmic di↵usion from this point on. By this time the poloidal field has settled

into the Hall attractor state, corresponding to constant electron angular drift velocity along

poloidal field lines in the crust (⌦e = ⌦e( )). Hall drift in the crust continues to wind the core

field in the azimuthal direction, though more slowly as Ohmic di↵usion dissipates the crustal

currents. At t = 2 Myr the core supports a toroidal field of strength B ⇠ 1012 G, and similar

in the crust. This confirms the Hall attractor of Gourgouliatos & Cumming (2014) for core

penetrating B-fields, with the correct hydromagnetic equilibrium enforced.
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Figure 4.5: Snapshots of the magnetic field evolution for Model A (Table 1.1), shown at t = 0,

20 kyr, 200 kyr, 500 kyr, 1 Myr, and 2 Myr. The black curves are 10 contour lines of the

poloidal flux function  (i.e. the polodial magnetic field lines), equally spaced between  = 0

and the maximum value  max, at t = 0. The toroidal field is represented by the color scale,

which varies logarithmically, with a linear region around zero.
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Figure 4.6: Snapshots of the evolution for Model A (Table 1.1), shown at t = 0 kyr, and 1 Myr.

The plotting scheme is the same as Figure 4.5 but here color shows ⌦e (the angular velocity

of the electron fluid), the result of Hall drift in the crust. The thickness of the crust has been

magnified by a factor of 2.5.
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5.1 Jones Flux Tube Drift

5.1.1 Superconducting Magnetic Stress Tensor

When matter undergoes a phase transition to a type-II superconductor, the magnetic field is

confined to an array of microscopic flux tubes, each surrounded by a super-current vortex. The

tension and pressure of the spatially averaged magnetic field which threads the superconductor

is no longer accurately described by the Maxwell stress tensor, and a special treatment is

required. Here we show a derivation of the stress tensor for spatially averaged fields in a type-II

superconductor. We follow closely the work of Easson & Pethick (1977), filling in the gaps

in their calculation. We begin by considering the stresses of a magnetic field in some normal

matter, which are given by the Maxwell stress tensor, with components

�
ij

= �B2

8⇡
�
ij

+
1

4⇡
B

i

B
j

. (5.1)

Each component of the stress tensor may be interpreted as a pressure which acts in the j

direction, on a surface element with unit normal in the i direction. The first term is the

isotropic part, which contributes to the pressure (diagonal components). The second term is

the anisotropic contribution to the stress, which contributes to both the pressure, and the ten-

sion of the field (o↵ diagonal components). For the case of a type-II superconductor, when the

flux density is low (B ⌧ H
c1, the flux tubes are separated by distances much greater than the

penetration depth of the magnetic field, ie. � ⌧ d) the magnetic field of a given flux tube

cannot interact with the magnetic field of another such tube. Thus, intuitively we expect that

the pressure term of the stress tensor will become negligible in this limit. Not so intuitively,

the tension components of the stress can increase by factors which may be much greater than

unity. This will become clear in the form of the superconducting magnetic stress tensor, which

we now derive.

We follow the thermodynamic derivation of Easson & Pethick (1977). We consider a rectangular

box, with side lengths L
x

, L
y

, and L
z

, filled with a highly conductive fluid, and permeated by

flux tubes. We first assume that the system is in a thermodynamic equilibrium (dT = 0), which

is a good approximation so long as processes occuring there have timescales long compared to

the time to reach thermal equilibrium. We work in cartesian coordinates, and consider the

box to be su�ciently small that any variation of the matter density or density of flux tubes

are negligible within it. So in this sense the box is homogeneous. In assuming that the fluid

has high electrical conductivity, we are able to neglect any dissipative drift of the flux tubes

relative to the fluid (i.e. the flux tubes are perfectly coupled to the fluid). The volume of the
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box is V = L
x

L
y

L
z

, and the free energy of the system is FV , where F is the Helmholtz free

energy density which has natural thermodynamical variables temperature T , matter density ⇢,

and spatially averaged magnetic field B. The spatially averaged field may be written simply as

B = n
�

�0, with n
�

the average number of flux tubes per unit area in the x-y plane. The free

energy does not depend on our choice of the direction of B. Now consider the response of the

free energy to small variations in the volume of the box. First we consider a small deformation

of L
z

. The variation in the Helmholtz free energy for such a process which retains thermal

equilibrium is

d(FV ) = �
zz

L
x

L
y

dL
z

. (5.2)

Squeezing the box in the z direction changes the density, but not the magnetic field, so we may

write the variation of the free energy as

�
zz

=
1

L
x

L
y

d(FV )

dL
z

= F (⇢, B)� ⇢
dF

d⇢
(⇢, B). (5.3)

Now if we consider deforming the box in the x or y direction, the density will change as before.

As the fluid is squeezed, the flux tubes move with the fluid. Since the total number of flux

tubes remains constant, the number of flux tubes per unit area changes, and so too does B. So

the xx and yy components may be written as

�
xx

= �
yy

= �
zz

� B

✓
@F

@B

◆

⇢,T

= �
zz

� BH

4⇡
, (5.4)

where we have identified

H = 4⇡

✓
@F

@B

◆

⇢,T

. (5.5)

The components can be written in tensor notation as

�
ij

=

✓
F � ⇢

@F

@⇢
� H ·B

4⇡

◆
�
ij

+
H

i

B
j

4⇡
. (5.6)

There are contributions to the stress tensor (5.6) from both matter, and the magnetic field. To

make clear the contribution from the field only, we write the Helmholtz free energy density as

F = Fmatter(⇢) + Fmag(⇢, B). (5.7)

Note that while the matter contribution depends only on the matter density, the magnetic part

depends on both the field and the matter density. The magnetic part depends on matter because

the density of the fluid can a↵ect the pressure on the flux tubes, and hence, the magnetic energy

contained in them. We can now write the magnetic part of the stress tensor as

�mag
ij

=

✓
Fmag � ⇢

@F

@⇢

mag

� H ·B
4⇡

◆
�
ij

+
H

i

B
j

4⇡
. (5.8)
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This tensor was derived in the most general case, where the magnetic flux density may be very

high. For this reason the stress clearly has non-zero pressure components. But the pressure

should become negligible in the limit � ⌧ d ie. B ⌧ H
c1. We can write an expression for

the Helmholtz free energy density by considering its taylor expansion for small B(here small B

means B ⌧ H
c1),

Fmag(B) = Fmag(0) +B

✓
@F

@B

mag◆

⇢,T

+
1

2!
B2

✓
@2F

@B2

mag◆

⇢,T

+ ... ' H ·B
4⇡

. (5.9)

We recognize second term in the isotropic part of (5.8) as a buoyancy contribution to the stress

tensor, which we choose to neglect for the time being. This gives the final stress tensor as

�mag
ij

=
H

i

B
j

4⇡
, (5.10)

which is pure tension. So our intuition was correct that for low flux density, the flux tubes

do not feel mutual repulsion (pressure). It is su�cient to include only the tension part of the

stress tensor for the spatially averaged field. Taking the divergence of this stress tensor gives

the volume force of an array of flux tubes on the fluid in which they are immersed,

f
Bi =

@�
ij

@x
j

mag

=
B

j

4⇡

@H
i

@x
j

, (5.11)

where we have used the fact that the divergence of B is zero. In vector form this is

f
B

=
1

4⇡
(B ·r)Hc1, (5.12)

where we have approximated H ⇡ Hc1.

5.1.2 Forces on a Flux Tube

Cooling of neutron star cores below Tcrit ⇡ 108 � 109 K is accompanied by cooper pairing of

protons to form a 1S0 superfluid (Baym et al., 1969). The phase transition to superconductivity

is associated with the quantization of magnetic flux on microscopic scales, with the quantum

of flux �0 = hc/2e. The flux is localised within proton supercurrent vortices, and drops o↵

exponentially within � . 10�11 cm. The mean intervortex spacing is d = 5 ⇥ 10�10 B
�1/2
12 cm,

greater than the penetration depth, so that the flux tubes are very weakly interacting. ? re-

alized that the anisotropic component of the magnetic stress tensor in type-II superconductors

can be significantly larger than B2/4⇡, which was later confirmed by Easson & Pethick (1977).

Additionally, the transition to proton superconductivity dramatically alters the transport of

magnetic flux. In this section we consider the forces acting on the fluid surrounding a moving

isolated flux tube. In this section we neglect the coupling of proton and neutron mass currents,
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Figure 5.1: Cross section of a flux tube: Red lines show streamlines of superconducting protons,

with the inner and outer dotted black lines representing the penetration coherence length ⇠
p

,

and the penetration depth � respectively. The path of a typical electron in the vicinity of a

flux tube is shown in blue.

and focus only on the force experienced by the protons and electrons in the immediate vicinity

(. �) of a flux tube.

There has been much controversy in the literature on the topic of flux tube drift in neutron

stars [eg. Jones (2006), Glampedakis et al. (2011), Graber et al. (2015), Elfritz et al. (2016),

Dommes & Gusakov (2017), Passamonti et al. (2017)]. Further work is required to clarify the

controversy, which is outside the scope of this thesis. In this section we present the prescription

of Jones (2006) (J2006 from now on) as clearly as possible, so that the reader may understand

this particular model of flux tube drift.

We consider the forces a microscopic flux tube moving at velocity v
L

exerts on the proton-

electron liquid in the neutron star core. First we study the force on the proton liquid in the

immediate vicinity of a single flux tube (. �, see Figure 5.1). Then we consider the force

a flux tube exerts on the electrons in the immediate vicinity of a flux tube (. �). We then

average over these microscopic forces, to obtain the macroscopic force density exerted on the

proton-electron liquid by a lattice of flux tubes.

The total force acting on the proton liquid in the immediate vicinity of a single flux tube (the

force on the flux tube) is calculated as a sum of electromagnetic forces and fluid pressures. We

refer the reader to Nozières & Vinen (1966) for a detailed calculation. Jones (1991) states that
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the superfluid proton velocity in the rest frame of the vortex lattice is given by vp = ṽp+v
p0�v

L

.

Here ṽp is the microscopic circulation around the flux tube, and v
p0 is a large scale drift

(spatially uniform on microscopic scales). Jones (1991) gives the force per unit length on the

proton liquid as

Fp =
e

m
p

c
⇢p(vp0 � v

L

)⇥ �0, (5.13)

which is the Magnus force. Here ⇢p is the mass density of superfluid protons, and �0 = �0ê�,

with ê
�

a unit vector directed along the flux tube. This is a well known result which has been

shown by many authors including Nozières & Vinen (1966), Parks (1969), Jones (1987), Jones

(1991), Glampedakis et al. (2011), Graber et al. (2015). There appears to be agreement on this

force in the literature. The corresponding spatially averaged force density is given by J2006 as

fp =
n
p

e

c
(v

p0 � v
L

)⇥B, (5.14)

with B = n
�

�0 the spatially averaged magnetic field. Here n
�

is the number of flux tubes per

unit area.

In the core, electron orbits are irregular polyhedra, with vertices coinciding with the microscopic

magnetic flux density B̃ (see Figure 5.1) J2006. The intervortex spacing d is much greater than

the penetration depth �, so that the electron paths are straight in between scatterings. Jones

(1987) states that the scattering angle of electrons at each vertex is small, so that the electron

orbits are e↵ectively circular with orbit size given by the average flux density, r = ck
F

/eB.

The Lorentz force deflects electrons from the microscopic flux density B̃. Jones (1991) gives

this force per unit length as

Fe
L = �n

e

e

c

Z
d2r(ve � v

L

)⇥ B̃, (5.15)

with the integral over the cross section of a single flux tube. The corresponding spatially

averaged Lorentz force density on the electrons is given by J2006 as

f eL = �n
e

e

c
(ve � v

L

)⇥B. (5.16)

Jones (1987) shows that there is a drag force exerted on electrons in the immediate vicinity of

a flux tube by quasi-particles and normal protons localized within the flux tube core, and that

this force is proportional to the relative velocity between the flux tube and the electron liquid.

J2006 provides a microphysical derivation of the drag coe�cient using the electron Boltzmann

equation. J2006 gives the spatially averaged drag force density on the electrons as

f e
D

=
(n

e

e)2

�̃
(v

L

� v
e

), (5.17)
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with (n
e

e)2/�̃ a drag coe�cient, and �̃ an e↵ective conductivity. To summarize, the total force

density an array of flux tubes exerts on the electrons is the sum of the Lorentz and drag forces,

f e = f eL + f e
D

= �n
e

e

c
(ve � v

L

)⇥B+
(n

e

e)2

�̃
(v

L

� v
e

), (5.18)

while the total force density exerted on the proton liquid is the Magnus force

fp =
n
p

e

c
(v

p0 � v
L

)⇥B. (5.19)

The total force an array of flux tubes drifting with velocity v
L

exerts on the combined proton-

electron fluid is

fpe = fp + f e = �n
e

e

c
(ve � v

L

)⇥B+
(n

e

e)2

�̃
(v

L

� v
e

) +
n
p

e

c
(v

p0 � v
L

)⇥B. (5.20)

But the force flux tubes exert on the fluid is also given by the divergence of the superconducting

stress tensor by Easson & Pethick (1977). Therefore, we can equate f
B

= fpe. This is similar to

equating the Lorentz force, to the force on the proton-electron liquid, as is done with ambipolar

di↵usion (Goldreich & Reisenegger, 1992). This yields the force balance

f
B

= �n
e

e

c
(ve � v

L

)⇥B+
(n

e

e)2

�̃
(v

L

� v
e

) +
n
p

e

c
(v

p0 � v
L

)⇥B. (5.21)

This force balance has some di↵erences to that of Glampedakis et al. (2011), Graber et al.

(2015), and Elfritz et al. (2016) which we list below.

1. J2006 has equated the force f
B

to the sum of forces acting on the proton-electron liquid

in the vicinity of the flux tube fpe. Conversely, Glampedakis et al. (2011) and Graber

et al. (2015) have summed all of the forces and set the sum equal to zero. This leads to

a di↵erence in sign in the magnus force.

2. J2006, Glampedakis et al. (2011), and Graber et al. (2015) all agree on the form of the

drag force

f
D

/ (v
L

� v
e

.)

J2006 attributes this force to electron scattering o↵ quasi particles and normal protons

localised in the flux tube cores. Conversely Glampedakis et al. (2011) and Graber et al.

(2015) attribute this force to electrons scattering o↵ the microscopic flux density B̃ lo-

calised in the flux tube. J2006 has accounted for magnetic scattering with the Lorentz

force f eL.
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3. Glampedakis et al. (2011) and Graber et al. (2015) have an additional term fem, which is

attributed the the force of flux tubes on macroscopic electromagnetic currents. Its form

is

fem / (v
e

� v
p

)⇥ B̃. (5.22)

4. In its most basic form, the drag force of J2006 and Alpar et al. (1984) reduces to

f
D

=
⇢
e

⌧
e

(ve � v
L

), (5.23)

with ⇢
e

the mass density of electrons, and ⌧
e

the electron-flux tube relaxation timescale.

However the drag force of Glampedakis et al. (2011), Graber et al. (2015), and Elfritz

et al. (2016) reduces to

f
D

=
⇢
p

⌧
e

(ve � v
L

), (5.24)

with ⇢
p

the proton density, which is almost four orders of magnitude larger than the

electron mass density.

5. Elfritz et al. (2016) identify the magnus force per unit length as depending on the relative

velocity between the flux tubes and the electrons, rather than the flux tubes and the

protons, but still use the proton mass density.

It is important that these di↵erences are resolved, since this force balance determines the equa-

tion of motion for the magnetic field. However, clarifying each of the above issues will require

careful consideration, which is outside the scope of this thesis. Despite the lack of theoretical

consensus on the dynamics of flux tubes, we take the prescription of J2006, and proceed, since

the time scales produce interesting e↵ects which are well modeled by our numerical code.

5.1.3 Current Screening Condition

There is a peculiarity in the system described above, in that magnetic fields (and therefore the

currents which generate them) are forbidden from existing inside a superconductor. However,

in this case, relative motion between superfluid protons and normal electrons can cause macro-

scopic currents to flow, and hence generate magnetic fields. Evidently if the superconducting

phase is to be preserved, these currents must somehow be screened. A screening condition has

been proposed by Jones (1991). We present here our own argument, which leads to the same

screening condition. Following the convention set by Alpar et al. (1984), we label any magnetic

field which may exist in the bulk of the fluid (in between flux tubes) bL, the London field. The
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universality of Maxwell’s equations means that they must hold true inside a superconductor.

Therefore the London field satisfies Amperes law for the total current,

Je + Jp =
c

4⇡
r⇥ bL. (5.25)

However there is an additional constraint equation. This can be realized by first considering

the velocity of superfluid protons, which is given by the expression

vp =
~

2m
p

r�� e

m
p

c
A (5.26)

[see eg. Lifshitz & Pitaevskii (1980)], where � is a complex phase parameter, and A is the

vector potential with bL = r ⇥ A. It is then easy to see that the proton supercurrent must

satisfy the constraint

r⇥ (�2Jp) = � c

4⇡
bL, (5.27)

which is known as the London equation, with

�2 =
m2c2

4⇡e2⇢
p

(5.28)

the penetration depth. The constraint Equation (5.27) must be obeyed along with all of

Maxwell’s equations in the superconductor. Now we solve (5.27) for bL, and insert it in Equa-

tion (5.25), to obtain

Je + Jp = �r⇥r⇥ (�2Jp). (5.29)

In order to proceed we resolve Je and Jp into solenoidal (divergence-free), and irrotational

(curl-free) parts, Je
sol and Jp

sol, and Je
ir and Jp

ir. Note that the rhs of (5.29) is always solenoidal.

The solenoidal and irrotational components of (5.29) can then be written as

Je
ir + Jp

ir = 0, (5.30)

Je
sol + Jp

sol = �r⇥r⇥ (�2Jp
ir + �2Jp

sol). (5.31)

The irrotational part of the current is perfectly screened, however the behavior of the solenoidal

equation is not yet apparent. To proceed we must assume that the penetration depth has

negligible spatial dependence, so that it can be taken outside the di↵erential operator. Then

equation (5.31) becomes

Je
sol + Jp

sol = ��2r⇥r⇥ Jp
sol, (5.32)

which reduces to the following equation after the use of a vector identity,

Jp
sol � �2r2Jp

sol = �Je
sol. (5.33)
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This is the inhomogeneous vector Helmholtz equation, with the electron current density acting

as a source term. To understand this equation, we consider (5.33) in cartesian coordinates,

with a current density which only depends on the x coordinate. The solenoidal component

must satisfy

r · Jp
sol = 0, (5.34)

which implies that Jp
x

= const. Here Jp
x

, Jp
y

, and Jp
z

refer to the x, y, and z components of Jp
sol.

It is instructive to consider how the Equation (5.33) responds to a given Fourier mode of proton

current density. We write the spatial dependence of the y and z components as,

Jp
y

= Jy

n

eiknx, (5.35)

Jp
z

= Jz

n

eiknx. (5.36)

Inserting Jp
x

= const into Equation (5.33) results in

Je
x

+ Jp
x

= 0. (5.37)

The y-component of Jp
sol satisfies

Jp
y

= � Je
y

1 + �2k2
n

. (5.38)

The penetration depth is estimated as � ⇠ 10�11 cm (Jones, 1991), and we envisage a large

scale (within a few orders of magnitude of k�1
n

⇠ r⇤ ⇠ 106 cm) proton supercurrent induced as a

result of global flux tube drift. Therefore the quantity �k
n

is always many orders of magnitude

smaller than unity, and the following equality

Jp
y

+ Je
y

= 0, (5.39)

can be regarded as exact. The same is true of the z component. Thus, we can see that

Je
sol + Jp

sol = 0, (5.40)

provided �k
n

⌧ 1. Combining with (5.30), we see that

Je + Jp = 0, (5.41)

so that all large scale charged currents are screened inside the superconductor. In the case of

charge neutrality (n
e

= n
p

), this implies co-motion of electrons and protons on large scales

ve = vp. (5.42)

This is an amazing fact which is a simple consequence of the London constraint on Maxwell’s

equations, and is analogous to the Meissner screening condition in simpler single fluid super-

conductors. Jones (1991) arrives at the same result, by assuming that the proton supercurrent
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varies on large scales. The derivation of Jones (1991) also requires an assumption about the

spatial dependence of the phase parameter �. We make no assumptions about �, and also show

that irrotational currents are perfectly screened at all scales. In our opinion the physical mech-

anism behind this screening condition is not well understood. It is not yet clear to us which

field enforces the co-motion of protons and electrons, and how it is generated. This requires

further investigation which is outside the scope of this work. A consequence of this screening

condition, is that the London field is negligibly weak in studies of large scale electrodynamics in

neutron star cores. Note that Glampedakis et al. (2011) and Graber et al. (2015) identify the

lhs of Equation (5.27) with the rigid rotation of the star itself, and then incorrectly estimate the

strength of the London field based on typical neutron star spin frequencies. They also reach the

result that the London field is weak, however the screening condition as we have shown above,

and as Jones (1991) has shown is a more general statement which is valid for arbitrary large

scale currents. Passamonti et al. (2017) states that the london field is weak, and this implies

protons and electrons are co-moving. The correct statement is that protons and electrons are

co-moving due to the London constraint on electrodynamics, and this implies the london field

is weak.

5.1.4 Electric Field of a Moving Flux Tube

Figure 5.2: A type-I superconducting ring (white), with a type-II superconducting region (grey).

The ring carries a current which supports the magnetic field threading it (blue).

The evolution of the spatially averaged magnetic field (B = hB̃i with B̃ the microscopic mag-

netic flux density) in a type-II superconductor is determined by Faraday’s law,

@B

@t
= �cr⇥ E, (5.43)
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with E = hẼi the spatially averaged electric field. The form of the electric field E associated

with the drift of flux tubes has been discussed by several authors, including Nozières & Vi-

nen (1966), Parks (1969), and J2006. Here we outline the thought experiment used by Parks

(1969). It is useful to consider a superconducting ring as in Figure 5.2. The ring is a type-I

superconductor, except for a part of the ring which has been replaced by a type-II supercon-

ductor. A magnetic field is supported by a supercurrent which flows in the ring. In this thought

experiment, the magnetic field can leak out of the ring, but only through the type-II region —

it is forbidden from passing through the type-I part of the loop. As the magnetic field leaks

through the type-II region, the magnetic flux contained in the loop decreases at the rate

@�

@t
=

I

�

@A

@t
· dl =

I

�

v
L

⇥B · dl, (5.44)

with � the magnetic flux, A the magnetic vector potential, v
L

the velocity of flux tubes passing

through the type-II superconductor, and � the contour of integration which passes through the

interior of the loop shown in Figure 5.2. In the type-I part of the loop E = 0, but in the type-II

region the electric field satisfies Faraday’s law,

E = �rV � 1

c

@A

@t
, (5.45)

with V a scalar potential. Rearranging this for @A/@t, and inserting into Equation (5.44) gives
I

�

(rV + E) · dl = �1

c

I

�

v
L

⇥B · dl. (5.46)

Assuming V is continuous throughout the loop, the line integral of rV vanishes according to

the fundamental theorem of line integrals. It is clear that the only contribution to the remaining

line integrals is from the type-II region,
Z

�2

E · dl = �1

c

Z

�2

v
L

⇥B · dl, (5.47)

where �2 is the part of the contour which passes through the type-II superconductor. From

this expression we can write the electric field in di↵erential form as

E = �1

c
v
L

⇥B. (5.48)

This is the electric field associated with the motion of flux tubes at velocity v
L

. The evolution

of the magnetic field is then
@B

@t
= r⇥ (v

L

⇥B). (5.49)

Other authors have preferred to use Euler equations for the spatially averaged flux tube array

and multi-fluid system to determine the electric field which governs the evolution of the magnetic
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field in Equation (5.43). We however, prefer a simpler approach, which is based on the fact

that the magnetic field must be advected at the velocity of the flux tubes v
L

. We hope that in

using this approach we have avoided the presence of unphysical terms in our evolution equation,

which advect the magnetic field at a velocity di↵erent to v
L

. The form of Equation (5.49) is

supported by Konenkov & Geppert (2001), and Dommes & Gusakov (2017). In order to close

the system, we use a force balance on the liquid [provided by J2006] to determine the velocity

v
L

.

5.1.5 Large Scale Flux Tube Drift

We now return to the force balance of J2006, in order to determine the velocity of flux tubes

v
L

. Here we equate the force f
B

to the force of the flux tubes on the proton-electron liquid,

f
B

� (n
e

e)2

�̃
(v

L

� v
e

)� n
e

e

c
(v

L

� v
e

)⇥B� n
p

e

c
(v

p0 � v
L

)⇥B = 0. (5.50)

The screening condition described in Section 5.41 is

Je + Jp = 0, (5.51)

which implies v
p0 = v

e

in the case of charge neutrality (n
e

= n
p

). Enforcing this screening

condition on the force balance Equation (5.50) leads to the perfect cancellation of the Magnus

force on the proton fluid, and the Lorentz force on the electron fluid. The remaining force

balance can then be solved for the velocity of the flux tube lattice,

v
L

= v
e

+
�̃

n2
e

e2
f
B

, (5.52)

which is the velocity of the normal electron liquid, plus the viscous slippage of the flux tube

lattice through the normal liquid, driven by the tension force f
B

. Intuitively this velocity

makes sense — if the flux tubes are to drift any faster than the bulk fluid velocity, it must be

accompanied by dissipation at the rate

u̇ = f
B

· vJ (5.53)

Inserting this expression for the flux tube velocity into the electric field Equation (5.48) yields

the following spatially averaged electric field

E = �1

c
v
e

⇥B� 1

c

�̃

n2
e

e2
f
B

⇥B (5.54)

Inserting this into Equation (5.43), which yields the following equation for the evolution of the

magnetic field
@B

@t
= r⇥ (v

e

⇥B) +r⇥


�̃

n2
e

e2
(B ·r)Hc1

4⇡
⇥B

�
. (5.55)
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The second term is of particular interest. It describes the dissipative drift of flux tubes through

the core, and is analogous (mathematically) to the ambipolar di↵usion of Goldreich & Reiseneg-

ger (1992). Here though, the classical Lorentz force has been replaced by the superconducting

analogue, and the drag on the field is due to a fundamentally di↵erent physical mechanism.

There has been particular interest in the literature in the presence of a Hall-like term in the

evolution equation for magnetic fields in a type-II superconductor [eg. Graber et al. (2015),

Elfritz et al. (2016), Dommes & Gusakov (2017), Passamonti et al. (2017)]. The term we refer

to is present in the evolution equation of the magnetic field as

@B

@t
= r⇥

✓
k

n
c

e
f
B

◆
, (5.56)

with n
c

the density of charge carriers, k a coe�cient which has been the subject of recent debate,

and f
B

the superconducting analogue of the Lorentz force j⇥B/c [see Passamonti et al. (2017)

for a detailed discussion of this term and the coe�cient we call k]. It is our view that this Hall

like term leads to unphysical evolution of the core magnetic field. Our reasoning is as follows.

Consider a purely poloidal, axisymmetric initial magnetic field, which satisfies hydromagnetic

equilibrium (f
�

= 0). The Hall-like term in Equation (5.56) will slowly shear the poloidal field

lines in the azimuthal direction, generating non-zero f
�

. The fluid cannot support non-zero

f
�

, so a hydromagnetic flow ensues, quickly returning the field to a state of f
�

= 0, and in

this case B
�

= 0. That is, any stress which is generated by Equation (5.56), is removed even

faster by hydromagnetic flows, to return the field to f
�

= 0. There is no net e↵ect. Therefore

this term is not relevant for magnetic field evolution in a liquid which is hydromagnetically

stable, and the term should be discarded from the evolution equation. It is for the same reason

that a non-superconducting core cannot evolve with classical Hall drift of the magnetic field

— the fluid cannot support stresses generated by this e↵ect. Hall drift can occur in the crust

only because the solid has restoring forces which can support magnetic stresses the Hall e↵ect

generates.

5.2 Axisymmetric Equations

In axisymmetry the evolution of the toroidal magnetic field is governed by hydromagnetic

equilibrium (see Chapter 4). Therefore, in our studies of flux tube drift, we need only specify

the evolution of the poliodal field due to this e↵ect, which we write as

@Bp

@t
= r⇥ (v

L

⇥Bp). (5.57)
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This is very di↵erent from the evolution equation used by Elfritz et al. (2016) (see their equation

16). Firstly, as pointed out by Dommes & Gusakov (2017), the magnetic field is locked into

flux tubes, and therefore, the evolution of the magnetic field must be governed by an advection

equation of the form Equation (5.57), where the field is advected at the same velocity as the

flux tubes, v
L

. However the evolution equation of Elfritz et al. (2016) does not advect the

magnetic field at the velocity v
L

. This appears to be one of the reasons why their timescales

are several orders of magnitude longer than the evolution governed by Equation (5.57).

It is important to note that the transport velocity of flux can be significantly larger than the

electron drift velocity, which tends to be slowed by the formation of sharp pressure gradients in

most typical cases. For this reason we neglect the electron velocity in these calculations, and

define the Jones drift velocity

vJ =
↵

4⇡
(B ·r)Hc1, ↵ = �̃/n2

e

e2, (5.58)

with ↵ an e↵ective drag coe�cient, and consider transport of flux due to this e↵ect in isolation

(v
L

= vJ). As in Section 3 we write the evolution equation in terms of the scalar functions  

and I,
@ 

@t
+ vJ ·r = 0, (5.59)

while I satisfies Equation (4.5). J2006 estimates �̃ ⇡ 1029 � 1032B�1
12 s�1, depending on the

composition of the core. We use in our simulations �̃ = 1029B�1
12 s�1. For a 1.4M� neutron

star, a typical baryon density at the center of the core is n
B

⇡ 3.5 ⇥ 1038 cm�3 (Li et al.,

2016b). We take a central electron fraction Y
e

= 0.1, which gives n
e

= Y
e

n
B

= 3.5⇥ 1037 cm�3.

Rather than adopt a particular equation of state we use these conservative values to calculate

↵ throughout the core, which will cause the field evolution to be slower in the outer core in our

simulations. But for our purposes we want to understand the dynamics of flux tubes on long

timescales, and this will not e↵ect the end state of our simulations.

5.3 Numerical Details

In our code we evaluate the components of the vector H
c1 as

H
c1 =

H
c1

B
B, (5.60)

using the derivative formula in Equation (3.41). We set ghost points on the poles for H
c1

according to axisymmetry,

Hj1�1
r

= Hj1+1
r

, (5.61)

Hj2+1
r

= Hj2�1
r

(5.62)
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Hj1�1
✓

= �Hj1+1
✓

(5.63)

Hj2+1
✓

= �Hj2�1
✓

(5.64)

We are now able to evaluate the components of the Jones drift velocity, Equation (5.58), using

our computed components of H
c1. We evaluate the Jones drift velocity using the derivative

formula in Equation (3.41) as

vJ =
2.9⇥ 10�8

B14
(B14 · r̃)H15

c1 , (5.65)

where we have normalized ↵ = 3.54 ⇥ 10�30/B14, B14 = B/1014 G, H15
c1 = H

c1/1015, and r̃
is the del operator with lengths normalized to 106 cm. Note that the factor 1/4⇡ has been

included in the numerical prefactor. Similarly, normalization of the magnetic field evolution

equation is then,
@B14

@tyr
= 31.5r̃ ⇥ (vJ ⇥B14) . (5.66)

We step the crust and the core sequentially, so that when we step the crust, the core is the

boundary condition, ie. we set  crust(rc) =  core(rc). Then, the crust provides the boundary

condition when we step the core, so we set  core(rc) =  crust(rc). For more details of the

numerical method we refer the reader to Appendix B.

5.4 Results

Jones drift allows flux tubes to straighten by slipping with some viscous dissipation through

the core electron fluid. As the flux tubes straighten, free energy stored in the curvature of the

flux tubes is dissipated. The characteristic timescale of this straightening is

⌧diss ⇠ s

vJ
(5.67)

with s the deviation from straight flux tubes. We approximate a curved flux tube as a circular

arc, with s ⇡ r2
c

/2R
c

, and radius of curvature R
c

. The Jones drift velocity is approximated

vJ ⇠ �̃

4⇡n2
e

e2
BHc1

R
c

. (5.68)

The timescale for flux tubes to straighten is then

⌧diss ⇠ 2⇡n2
e

e2

�̃

r2
c

BHc1
= 450

✓
n
e

3.5⇥ 1037 cm�3

◆2✓1029 s�1

�̃

◆
kyr, (5.69)

where we have taken the estimate of J2006 �̃ = 1029B�1
12 s

�1. Note that the timescale is in-

dependent of the field strength B. The timescale for straightening can also be significantly



5.4. RESULTS 65

shorter than the above estimate, depending on �̃, which can be larger for cores with high muon

densities J2006.

The Jones drift velocity acts perpendicular to poloidal field lines, in order to minimize the

curvature. Thus, Jones’ e↵ect becomes inactive when the flux tubes are straightened. How-

ever, when the field is straightened in the core, a sharp cusp forms on the crust-core interface,

supported by strong toroidal currents at the base of the crust. This cusp will therefore be site

to rapid Ohmic di↵usion, which smooths the cusp, generating curvature in the field lines, and

reactivating Jones’ e↵ect in the core, which proceeds to straighten them again. So we see that

the coupled crust-core system continuously evolves under the combined e↵ects of Jones’ flux

tube drift in the core, and Ohmic di↵usion in the crust. In this section we explore the evolution

in two scenarios.

Firstly, we consider the drift of flux tubes in a strongly magnetized neutron star, with Hall drift

and Ohmic di↵usion active in the crust. Secondly, we study the long timescale evolution of a

pulsar strength magnetic field, in order to determine the decay timescale.

5.4.1 Flux tube drift and Hall drift (strong B)

For strong magnetic fields, Hall drift can interfere with the flux tube drift in the core (when

tHall is comparable to ⌧diss). Figure 5.3 shows the evolution of a highly magnetized neutron

star (model B) with an initially poloidal field, evolving by Jones’ flux tube drift in the core,

coupled to a crust evolving with Hall drift and Ohmic di↵usion. For this simulation we use

�̃ = 1029B�1
12 s

�1. The field has maximum strength B ⇡ 3⇥ 1014 G in the core. The initial field

displays equatorial symmetry, and thus Hall drift will not inject any magnetic twist into the

core, meaning that the toroidal field remains zero there.

There are two main stages to the evolution of the core magnetic field in model B. The first stage

lasts for ⌧diss, and involves a rapid straightening of the flux tubes in order to relieve magnetic

stresses. During this stage the core field dissipates its initial free energy, on viscous slippage

through the fluid. The straightening of flux tubes in the core is associated with the formation

of a sharp cusp in the poloidal field at the crust-core interface, supported by a toroidal current

sheet at the base of the crust. This current sheet generates toroidal field deep in the crust

through the Hall e↵ect. The current sheet is also site to enhanced ohmic dissipation. The

regions of toroidal field in the crust are advected toward the equator, and much weaker higher

order multipole structure forms in the toroidal field which is e�ciently damped. The toroidal

field is su�ciently weak, that it does not cause any large scale rearrangement of the poloidal
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field. Eventually activity due to Hall drift declines, as the Hall attractor drives the poloidal

field in the crust to a state of rigid rotation of the electron fluid.

The second stage begins at t ⇠ 1 Myr. During this stage, Ohmic di↵usion controls the evolution,

which becomes a self-similar decay of the global magnetic field. Jones drift allows the core

magnetic field to adjust on a timescale which is faster than Ohmic di↵usion at the base of the

crust, so that they e↵ectively remain straight for the remainder of the evolution. Flux tubes in

the core gradually drift outward, consistent with the rate of Ohmic di↵usion at the base of crust.

Flux in the core converges toward the null point in the field, which is located at the equator, on

the crust-core interface, for this particular configuration. At the null point, the field lines close

and annihilate, through a combination of Jones drift in the core, and Ohmic di↵usion in the

crust. The evolution of the field into this state of self similar decay is not unique to these initial

conditions, and we observe the same final state for a number of approximately dipole initial

magnetic fields. We note that the Jones drift timescale does not scale with field strength, and

likewise with Ohmic di↵usion. This implies that timescales relating to the evolution of poloidal

fields in model B could be applied to initial fields with a variety of strengths.
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Figure 5.3: Snapshots of the magnetic field evolution for Model B (Table 1.1), shown at t =

0 kyr, 20 kyr, 40 kyr, 400 kyr, 1 Myr, and 2 Myr. The plotting scheme is the same as Figure

4.5.
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5.4.2 Flux tube drift and no Hall drift (moderate B)

Figure 5.4: Plane parallel slab (black), with length l. Field lines (blue) move to the right

consistent with the rate set by Ohmic di↵usion.

The second scenario of interest is the evolution of pulsar strength magnetic fields due to Jones

flux tube drift in the core. As seen in Figure 5.3, Hall drift plays a minor role in the long

term distribution of magnetic flux in the star. For fields B ⇡ 1012 G, is slower than Ohmic

di↵usion [Equation (3.14)], and will have even less of an e↵ect. With this in mind, in Model

C [Table 1.1] we consider the crust evolving under Ohmic di↵usion only so that long timescale

simulations are less computationally expensive. We also avoid evolving the flux tubes in the

core directly [Equation (5.59)], and instead enforce the boundary condition at the base of the

crust that field lines remain vertical in the core (B
✓

= B
r

tan✓ at r = r
c

) as a consequence of

Jones drift. This is a good approximation because the flux tubes can always straighten faster

than Ohmic di↵usion at the base of the crust, as seen in Figure 5.3.

The timescale for magnetic flux to di↵use through the crust in the above scenario is very

di↵erent from the Ohmic timescale of Goldreich & Reisenegger (1992). As an approximation,

consider the cartesian configuration shown in Figure 5.4, and assume a constant di↵usivity ⌘

throughout the crust. The curvature of the field lines at the base of the crust generates a

current sheet of thickness h, given by Ampere’s law as

j ⇠ � c

4⇡

B
x

h
, (5.70)

using Ohm’s law this gives the electric field

E ⇠ � c

4⇡�

B
x

h
. (5.71)

The electric field determines @B/@t = �cr⇥E. Using the fact that E = E
y

ê
y

is perpendicular

to B, one may rewrite the evolution equation as @B/@t = r ⇥ (v ⇥ B) with v defined by
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E = �v ⇥ B/c. In this form, the equation describes the motion of magnetic field lines with

velocity v, which we call vOhm. The resulting velocity of field lines in the x-direction is

vOhm ⇠ ⌘

h

B
x

B
z

, (5.72)

with B
z

and B
x

the vertical and horizontal components of the field. A quasi-steady drift is

established with the current sheet occupying the region of the crust with highest conductivity,

i.e. the deep crust. Its thickness h is a few hundred meters. The quasi-steady drift is established

on the timescale h2/⌘, and the drift is associated with the transport of magnetic field lines with

characteristic time

⌧Ohm ⇠ hl

⌘

B
z

B
x

= 150

✓
h

3⇥ 104 cm

◆✓
l

⇡r⇤

◆✓
�

3.6⇥ 1024 s�1

◆
Myr,

(5.73)

where we have assumed B
z

⇡ B
x

, and the current sheet thickness h ⇡ 3⇥104 cm corresponding

to the highly conducting region of the deep crust. We have used � = 3.6⇥1024 s�1, correspond-

ing to phonon scattering at T ⇡ 2⇥ 108 K (Gourgouliatos & Cumming, 2014). This timescale

can be greater by an order of magnitude compared to the Ohmic timescale of Goldreich &

Reisenegger (1992), depending on the thickness of the crust and the geometric factor B
z

/B
x

.

Figure 5.5 shows the long timescale evolution of Model C, with Jones flux tube drift in the

core, coupled to a crust with Ohmic di↵usion. The field in the core is pure B
z

(In particular

 / r2?), and the initial crustal field is a dipole potential field matched on to the core. The field

has typical strength B ⇡ 1012 G. In the first h2/⌘ ⇠ 1 Myr, di↵usion at the base of the crust

smooths the kink in the poloidal field, and the crustal field relaxes into an Ohmic eigenmode.

From this point on the evolution of the global field can be described by self similar decay.

Tension in the magnetosphere ensures that poloidal field lines in the crust converge toward the

null point at the equator. The field lines in the core are pulled along at the rate set by Ohmic

di↵usion, also toward the null point at the base of the crust, where they close and annihilate.

For the remainder of the evolution the structure of the magnetic field remains unchanged, as

it gradually grows weaker. The evolution of the dipole field strength is plotted in Figure 5.6.

After ⇠ 150 Myr, the dipole field strength has decreased from B ⇡ 1012 G to B ⇡ 109 G. We

can see that our timescale Equation (5.73) corresponds to the time taken for the dipole field

strength to decay by approximately 3 orders of magnitude for the numerical simulation seen in

Figure 5.5.
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Figure 5.5: Snapshots of the magnetic field evolution for Model C (Table 1.1), shown at t =

0 Myr, 10 Myr, 20 Myr, 30 Myr, 40 Myr, and 45 Myr. The plotting scheme is the same as

Figure 4.5. The toroidal field is everywhere zero.
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Figure 5.6: Decay of the dipole field for the magnetic field evolution shown in Figure 5.5.
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6.1 Rotating Neutron Superfluid

In conventional neutron star models, neutrons in the core form cooper pairs, and exist in a 3P2

superfluid state (Baym & Pethick, 1975). The vorticity of the bulk fluid must be zero, and

circulation is quantized on microscopic scales with the formation of superfluid vortices, with

the quantum of circulation  = h/2m
n

where h is the Planck constant, and 2m
n

is the e↵ective

mass of a cooper pair. The mean number density of vortices is

n
v

=
2⌦

n


, (6.1)

where ⌦
n

is the superfluid rotational frequency. The neutron vortices are not necessarily

straight, though the absence of a firm detection of precession in all but one pulsar (Stairs

et al., 2000), seems to indicate that the vortex configuration is not radically di↵erent from a

linear array.

To determine the motion of neutron vortices during stellar spin-down, we consider the balance of

forces on a neutron vortex in the co-rotating frame of reference. We consider an axisymmetric

incompressible neutron fluid, rotating with angular velocity ⌦
n

= ⌦
n

ê
z

. It is a well known

result that the total conservative force acting on a neutron vortex is the magnus force. Jones

(1991) gives the magnus force per unit length as

f̃nM = ⇢
n

(v
n0 � v

L

)⇥ , (6.2)

with ⇢
n

the mass density of superfluid neutrons, v
n0 a large scale background flow of the

neutron liquid, v
L

the velocity of the neutron vortex, and  = ê
n

. We use ê
n

as a unit vector

to indicate the local direction along a neutron vortex. Here we assume a uniform array of

neutron vortices with ê
n

= ê
z

, so that the vortices are aligned with the axis of rotation. We

will discuss the validity of this assumption in more detail later. Now we calculate the magnus

force per unit volume as,

fnM = n
v

f̃nM = 2⇢
n

(v
n0 � v

L

)⇥⌦
n

. (6.3)

In the co-rotating frame, the vortices feel a tangential force in the azimuthal direction from the

spin-down of the fluid. The force per unit volume is

fnE = �⇢
n

⌦̇
n

⇥ r?, (6.4)

which is the Euler force. Since the magnus force is the total conservative force experienced by

the neutron vortex, it must balance the Euler force (fnM = fnE). This gives the equality

� ⇢
n

⌦̇
n

⇥ r? = 2⇢
n

(v
n0 � v

L

)⇥⌦
n

. (6.5)
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In order to solve this equation for v
L

, we take the cross product of both sides with ⌦
n

. We also

assume that v
L

·⌦
n

= 0 and v
n0 ·⌦n

= 0, since any velocity in the ê
z

direction will not change

the density of vortices n
v

, in this cylindrical geometry. Solving for v
L

yields the expression

v
L

= v
n0 � r?⌦̇n

2⌦
n

ê
r? (6.6)

Stellar spin-down must be accompanied by motion of these vortices outward, and likewise

spinning up the star must be accompanied by motion of the neutron vortices inward, as shown

by Ruderman & Sutherland (1974). The neutron vortices move in the radial direction with

velocity

v? = �r?⌦̇n

2⌦
n

ê
r? , (6.7)

due to the spin-down or the liquid core.

6.2 Vortex - Flux Tube Interactions

Figure 6.1: Vortex - flux tube interactions: A magnetized superfluid neutron vortex (blue)

moving at velocity v? pulls along a flux tube (red).

As a consequence of the neutron superfluid coupling to the proton superfluid, protons also

circulate around the neutron vortices, which produces magnetization localized within the pene-

tration depth � . 10�11 cm of the neutron vortex core [see eg. Jones (1991)]. Outward moving

neutron vortices interact strongly with flux tubes, and thus the spin-down of neutron stars

can result in the transport of magnetic flux (Srinivasan et al., 1990). According to Ruderman

et al. (1998), force builds up on the flux tubes, which are either carried along with the neutron

vortices, or are cut through by them. We now estimate the maximum force flux tubes can exert
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on an array of neutron vortices before cut-through occurs. We denote the microscopic magnetic

field of a flux tube as

B� =
�0

⇡�2
ln

✓
�

⇠
p

◆
, (6.8)

and the microscopic flux density of a neutron vortex as

B
v

=
�⇤
0

⇡�2
. (6.9)

Here �⇤
0 is the non-quantized magnetic flux possessed by a neutron vortex, due to the circulation

of entrained superfluid protons. When a flux tube intersects a neutron vortex, the magnetic

energy density is
(B� +B

v

) · (B� +B
v

)

8⇡
. (6.10)

Expanding this expression, we identify the cross terms as the interaction energy,

Eint = 2
B� ·B

v

8⇡
, (6.11)

which is in agreement with the pinning energy of Gügercinoğlu & Alpar (2016). We then

estimate the maximum force per unit length before cut-through as

f̃
v

= Eint

✓
⇡�2

l

◆
, (6.12)

with ⇡�2 the area of intersection, and l the distance between intersections along the neutron

vortex. Jones (1991) and J2006 set l = d, the average flux tube separation. However, since there

are many more flux tubes than neutron vortices, as a neutron vortex moves along and collects

flux tubes, eventually the flux tubes will cover the length of neutron vortex. In this regime,

the separation between flux tubes along the vortex approaches l = 2�, which is also supported

by Ruderman et al. (1998)1, and Gügercinoğlu & Alpar (2016). This gives the maximum force

per unit length as

f̃
v

=
�0�

⇤
0

8⇡2�3
ln

✓
�

⇠
p

◆
⇡ 3.8⇥ 1017 dyne/cm. (6.13)

6.3 Flux Transport by Superfluid Neutron Vortices

In this section we outline our treatment of large scale flux tube transport by interactions with

superfluid vortices. We envisage an array of flux tubes threading through an array of superlfuid

vortices, similar to the picture of Ruderman et al. (1998) [see Figure 6.2]. J2006 provides a

1These authors have corrected a typo in the interaction energy of Ruderman et al. (1998) which erroneously

leads to a factor of ⇡2 larger pinning energies.
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Figure 6.2: Ruderman’s model of flux tube transport. (a) Side view of of a flux tube (thicker

line), threading through vortices in the core. (b) Top view of (a) from along the spin-axis. (c)

Top view of flux tubes in the equatorial region after spin-down. Image credit: Ruderman et al.

(1998).

treatment for flux tube transport for the case of straight flux tubes (f
B

= 0). J2006 argues that

the terminal velocity of a flux tube array being pulled along by neutron vortices is given by

v
F

= ↵n
v

f̃
v

ê
r? , (6.14)

where ↵ is the drag coe�cient defined in Equation (5.58), and f̃
v

is the maximum force per

unit length a neutron vortex can exert on a flux tube without cutting through. J2006 states

that in order for the flux tubes to be pushed along by neutron vortices with velocity

v? = �r?⌦̇n

2⌦
n

ê
r? , (6.15)

the following inequality must be satisfied,

|v
F

| � |v?|, (6.16)

which is in agreement with Ruderman et al. (1998). If this inequality is not satisfied, the neu-

tron vortices will cut through the flux tubes.

We extend the treatment of J2006 and Ruderman et al. (1998) to include the vortex self-tension

force f
B

, and also discuss the transport of flux tubes in the cut-through regime. We begin by

specifying a modified cut-through criterion. That is, if the sum of the drag force, and self

tension force flux tubes exerted on the neutron vortices exceeds the the maximum possible

force, cut-through will occur. We say that cut-through occurs when

����v?

↵
· ê

r? + fB · ê
r?

��� � n
v

f̃
v

, (6.17)
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with �v? · ê
r?/↵ the drag force the flux tubes exert on the neutron vortices (assuming a sta-

tionary background fluid), fB · ê
r? the tension force flux tubes exert on the vertical vortices,

and n
v

f̃
v

the maximum force per unit volume the neutron vortices can exert on the flux tubes.

We call satisfaction of the above inequality “cut-through”, and dissatisfaction of the inequality

“vortex-transport”.

In the transport regime, the flux tubes are carried along with velocity v?. But the flux tubes

also have the freedom to slide along the neutron vortices, with the projected Jones drift velocity

(vJ · ên)ên.

In the cut-through regime, we assume that the flux tubes are still carried along by the neutron

vortices, but only at the terminal velocity v
F

. Since the vortices cannot prevent the motion of

flux tubes in the cut-through regime, the flux tubes can also drift in accordance with their own

self tension (the Jones drift velocity vJ). To summarize the flux tubes are advected with the

velocity field

vsd =

8
<

:
v? + (vJ · ên)ên, (vortex-transport)

v
F

+ vJ, (cut-through)
(6.18)

while the neutron vortices move with velocity v?. We assume that the neutron vortex array

is not significantly deformed by the flux tubes. This is true when for high spin frequencies.

Specifically, when

|⇢
n

(v
n0 � v

L

)⇥ | > B� ·B
v

8⇡
�, (6.19)

the force of flux tubes pushing on the vortices is small, and the flux tubes cannot significantly

alter the structure of the vortex array. The relative velocity of the vortex array and the

background neutrons cannot exceed the spin-down velocity of the fluid,

kv
n0 � v

L

k  r?⌦n

, (6.20)

so that

⇢
n

r?⌦n

 � B� ·B
v

8⇡
�. (6.21)

Assuming ⌦ = ⌦
n

, gives the following constraint on the stellar spin frequencies

⌦ � �
B� ·B

v

8⇡r?⇢n
(6.22)

For typical values this gives P  6.3 s, with P = 2⇡/⌦ the spin period. We find this is satisfied

in our simulations.
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The evolution of the magnetic field due to motion of neutron vortices is given by

@Bp

@t
= r⇥ (vsd ⇥Bp). (6.23)

In terms of the scalar function  , the evolution is

@ 

@t
+ vsd ·r = 0, (6.24)

while the toroidal field evolves according to hydromagnetic equilibrium.

6.4 Numerical Details

In this section we give a summary of our numerical implementation of our model for flux tube

transport described in the previous section. We model the spin evolution of the star self-

consistently according to ⌦̇ = ��⌦3, where � = 2a21/3c
3I. Here a1 is the dipole moment of

the surface magnetic field which we evaluate at each time step. We take I = 1045 g cm2 as a

typical moment of inertia. In our code we evaluate the velocity fields

v? = 5⇥ 105
r6 sin ✓Ṗ

P
ê
r? , (6.25)

v
F

=
8.45⇥ 10�9

B14P
ê
r? , (6.26)

vJ =
2.9⇥ 10�8

B14
(B14 · r̃)H15

c1 , (6.27)

throughout the core, using the finite di↵erence formula Equation (3.41). We have used ↵ =

3.54 ⇥ 10�30/B14, B14 = B/1014 G, H15
c1 = H

c1/1015, and r̃ is the del operator with lengths

normalized to 106 cm. P and Ṗ are the spin period and period derivative. In spherical coordi-

nates,

ê
r? = sin ✓ê

r

+ cos ✓ê
✓

. (6.28)

We find that it is convenient to multiply both sides of the cut-through criterion Equation (6.16)

by ↵, so that it may be written in terms of velocity fields only,

|�v? · ê
r? + vJ · êr? | � v

F

, (6.29)

We then set the velocity field depending on local satisfaction of the inequality [Equation (6.29)],

according to

vsd =

8
<

:
v? + (vJ · ên)ên, (vortex-transport)

v
F

+ vJ, (cut-through)
(6.30)
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The vector ê
n

= ê
z

is written in spherical coordinates as

ê
n

= cos ✓ê
r

� sin ✓ê
✓

. (6.31)

In regions of cut-through, we can then write the projected Jones velocity as

(vJ · ên)ên = (vrJ cos
2 ✓ � v✓J cos ✓ sin ✓)êr + (v✓J sin

2 ✓ � vrJ cos ✓ sin ✓)ê✓. (6.32)

We can then evaluate the evolution of the magnetic field through the equation

@B14

@tyr
= 31.5r̃ ⇥ (vJ ⇥B14) , (6.33)

with tyr = t/3.15 ⇥ 107 s. We step the crust and the core sequentially, so that when we step

the crust, the core is the boundary condition, ie. we set  crust(rc) =  core(rc). Then, the crust

provides the boundary condition when we step the core, so we set  core(rc) =  crust(rc). We

add a small amount of artificial di↵usion in order to achieve numerical stability. The artificial

di↵usion does not e↵ect our results since we ensure it occurs on timescales much longer than we

are simulating. For more details of the numerical method we refer the reader to Appendix B.

6.5 Results

The origin of strong magnetic fields in neutron stars is not well understood. Some models

suggest a fossil field, left behind by the progenitor (Ferrario & Wickramasinghe, 2006), while

others invoke dynamo mechanisms requiring the neutron star to be born with millisecond spin

periods (Thompson & Duncan, 1993). Here we assume that a highly magnetized neutron star

can be born with a 1 millisecond spin period, and consider the implications for the evolution

of the magnetic field. In particular, we are interested in the interaction of superfluid neutron

vortices with flux tubes, as a means for the rotational energy of the star to rearrange the core

magnetic field. Importantly the cooling curves of the Cas A remnant suggest that the transi-

tion to superfluidity in the core takes place after t ⇠ 300 years [Shternin et al. (2011), Page

et al. (2011)]. As was pointed out by Thompson et al. (2017), by this time a typical magnetar

(B ⇠ 1015 G) will have a spin period > 1 s. It is simple to show that the ratio of rotational

to magnetic energy is very small, and it is di�cult to envisage how the core field could be

significantly rearranged by a transfer of rotational energy. However, for neutron stars born

with weaker magnetic fields, this is not the case. Specifically, if a neutron star is born with

initial spin period 1 ms, and B ⇠ 1013 G, then after 300 years, the spin period will be > 20

ms. It is then simple to show that the ratio of rotational to magnetic energy is large, and will

remain so for an extended period after the transition to neutron superfluidity.
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In our axisymmetric model, we have are limited to the case with the magnetic axis aligned

with the spin axis. In general this will not be true, however a 3D code is required to solve

this problem, since a spin axis misaligned from the magnetic axis violates axisymmetry. In our

axisymmetric models we assume that the flux tubes are weakly tangled around the neutron

vortices, so that even though both the flux tubes and vortices exist in the � = const plane,

the flux tubes are still constrained to move with the vortices in accordance with the velocity

given by Equation (6.18).

In Models D1, D2, and D3, we model a neutron star assuming a birth spin period of 1 ms, and

a range of magnetic fields strengths [see Table 1.1]. Specifically, we assume that the star spins

down through dipole breaking for 300 years, before the transition to superfluidity, which is

when we begin our simulations. The spin period at 300 years is set depending on the strength

of the magnetic field in the particular model. We model the spin evolution of the star self

consistently according to ⌦̇ = ��⌦3, where � = 2a21/3c
3I. Here a1 is the dipole moment of the

surface magnetic field, and we take I = 1045 g cm2 as a typical moment of inertia. The spin

evolution of the star determines the velocity of the neutron vortices, according to

v? = �r?⌦̇n

2⌦
n

ê
r? . (6.34)

Our code self consistently models the transport of flux tubes according to the velocity field in

Equation (6.18), and the cut-through criterion in Equation (6.17).

In Model D1 we use an initial field of strength ⇠ 5 ⇥ 1012 G at the surface, and 6.9 ⇥ 1012

G in the core. We set the initial spin period accordingly to 10.9 ms. We show the results of

this simulation in Figure 6.3. In the first 100 kyr the flux is rapidly pushed out of the core

at the velocity v?. In the outer core the flux tubes are severely deformed, and the tension

force f
B

becomes large enough to cause cut-through in a thin layer beneath the crust. The

sharp curvature of poloidal field lines at the base of the crust is site to a strong toroidal current

sheet, which generates a quadrupolar toroidal field (l = 2) through Hall drift, and rapid Ohmic

dissipation of the poloidal field. The expulsion of flux tubes can result in an order of magnitude

increase in the poloidal field strength in the outer core.

From this point on, the flux tubes slide vertically along the neutron vortices toward the equator

(away from the crust-core interface) with the projected Jones velocity (vJ ·ên)ên. The flux tubes

form a “>” shape, with the cusp located along the equator in the outer core. The cusp be-

comes sharper, until the tension force f
B

becomes large enough to cut through the vortices, and

begins to minimize it at ⇠ 880 kyr. After ⇠ 1 Myr, the core operates in the transport regime,
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except for a small region around the cusp where the tension force f
B

is large. The toroidal

field oscillates into an octupole configuration (l = 3), which is severely damped by Ohmic dif-

fusion. After 2 Myr the crustal poloidal field begins to develop an octupole component, due to

the magnetic pressures and tensions communicated from the base of the crust through Ohmic

di↵usion. This is clearly evident at 4 Myr in Figure 6.3. Throughout this simulation Hall drift

does not play a major role in the redistribution of the magnetic field, because the field strength

is weak, and Ohmic di↵usion is the dominant e↵ect (thall < tohm). The spin period after 4 Myr

in this simulation is 0.85 s.

In Model D2 the initial field has strength ⇠ 1013 G at the surface, and 1.4⇥ 1013 G in the core.

We set the initial spin period accordingly to 21.8 ms, and show the results of this simulation in

Figure 6.4. In the first 5 kyr the most of the core operates in the cut-through regime, except for

a thin cylinder around the axis of rotation where the vortices move slowly. In the cut-through

regime the flux tubes are allowed to bend, and as a result they curve away from the axis of

rotation due to the collective drag of vortices cutting through them. After 10 kyr the vortices

are moving slowly enough that the core operates in the transport regime, except for a thin

layer beneath the crust where the flux tube tension is large. In this thin layer the vortices cut

through, and the terminal velocity of flux tubes gets very small due to the high density of flux

tubes. The sharp curvature of flux tubes at the crust-core interface results in the development

of a strong current sheet in the deep crust, which is site to enhanced Ohmic dissipation, and

the development of a quadrupole toroidal field (l = 2) through Hall drift.

As the star spins down the number density of vortices decreases along with the critical force

n
v

f̃
v

. As a result, after ⇠ 100 kyr the region of cut-through in the outer core begins to grow,

allowing the flux tubes to drift once again back into the core, with the Jones drift velocity vJ.

The thickness of the cut-through layer increases as the star continues to spin down. After 3

Myr the toroidal field is significantly damped by Ohmic di↵usion, and the flux tubes in the core

remain curved outward in the outer regions of the core, a result of the collective cut-through

by neutron vortices. The spin period after 3 Myr in this simulation is 1.87 s.

In Model D3 we use an initial field of strength ⇠ 2 ⇥ 1013 G at the surface, and ⇠ 2.7 ⇥ 1013

G in the core. This field is stronger than previous models, so the star spins down faster, and

we set the initial spin period accordingly to 43.5 ms. The results of this simulation are shown

in Figure 6.5. In the beginning the vortices cut through in the entire core, except for a thin

cylinder around the spin-axis where they are slowly moving. As a result of the vortices cutting

through, the flux tubes bend away from the axis of rotation, and bunch in the outer core.
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The sharp curvature of poloidal field lines at the crust-core interface is supported by a strong

toroidal current sheet. This results in the development on a quadrupole (l = 2) toroidal field in

the deep crust, and enhanced Ohmic dissipation. As the star spins down the force of vortices

pushing on flux tubes becomes smaller while the tension force grows larger. This continues

until ⇠ 250 kyr, when the flux tubes stop moving away from the spin-axis, and begin moving

back toward. From this point on, the core mostly operates in the cut-through regime, and the

combination of the slow spin period, and strong magnetic field means that the flux cannot be

expelled from the core. The flux tubes remain bent away from the spin-axis due to the cut-

through of vortices for the remainder of the simulation, while the crustal field decays primarily

due to Ohmic di↵usion. The spin period after 3 Myr is 4.01 s. The spin periods we observe in

this simulations are not unlike the spin periods of known low-B magnetars. However, it seems

unlikely that the toroidal field in these models is strong enough to break the crust and power

classical magnetar activity.
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Figure 6.3: Snapshots of the magnetic field evolution for Model D1 (Table 1.1), shown at t = 0

kyr, 5 kyr, 100 kyr, 1 Myr, 2 Myr, and 4 Myr. The plotting scheme is the same as Figure 4.5.
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Figure 6.4: Snapshots of the magnetic field evolution for Model D2 (Table 1.1), shown at t = 0

kyr, 5 kyr, 50 kyr, 250 kyr, 1 Myr, and 3 Myr. The plotting scheme is the same as Figure 4.5.
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Figure 6.5: Snapshots of the magnetic field evolution for Model D3 (Table 1.1), shown at t = 0

kyr, 5 kyr, 50 kyr, 150 kyr, 1 Myr, and 3 Myr. The plotting scheme is the same as Figure 4.5.
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7.1 Magneto-Elastic Evolution

Lorentz forces generated by Hall drift can deform the neutron star crust, which in turn feeds

back into the magnetic field evolution. These crustal deformations consist of an elastic part

(thermodynamically reversible), and a plastic part (thermodynamically irreversible). While

plastic deformations of the crust are expected to play an important role in strongly magnetized

neutron stars (Beloborodov & Levin, 2014), we content ourselves for now with only elastic

deformations. In this section we lay out the theory which governs the dynamics of the system,

and conclude by presenting the set of coupled magneto-elastic evolution equations. We begin

by defining the Lagrangian displacement field of the neutron star crust as

⇠(r, t) ⌘ r0 � r, (7.1)

where r is the position of a point in the crust before deformation, and r0 is the position of that

point after the deformation. There are two contributions to ⇠,

⇠ = ⇠el + ⇠pl. (7.2)

Here ⇠el is the elastic deformation, and ⇠pl is the plastic deformation. For now we neglect the

plastic response of the crust, and content ourselves with the elastic deformation. The equation

of motion of the solid crust is then easily derived using Newton’s second Law,

⇢
@2⇠

i

@t2
=

@�
ij

@x
j

+ f
i

, (7.3)

where ⇢ is the mass density, �
ij

is the elastic stress tensor, and f
i

is the magnetic part of the

Lorentz force which acts on the crust. We restrict ourselves to the regime of linear elastody-

namics and only consider small, reversible deformations of the crust. In this framework the

stress depends linearly on the displacement, and we may express the elastic stress tensor using

Hooke’s Law as

�
ij

= c
ijkl

✏
kl

, (7.4)

with c
ijkl

the components of the sti↵ness tensor, and ✏
kl

the components of the strain tensor.

It has been shown that the speed at which shear waves propagate in a neutron star crust is

remarkably constant over it’s depth Ruderman (1968). We assume vsh is constant throughout

the crust in our model, so that

µ = ⇢v2sh ⇡ 1028⇢12 erg cm�3, (7.5)

with ⇢12 the mass density in units of 1012 g cm�3. Following the equations of state shown in

Chamel & Haensel (2008), we approximate for our convenience log10⇢ / 8log10z, which gives the



7.1. MAGNETO-ELASTIC EVOLUTION 91

density scaling in the deep crust as ⇢ / z8. Specifically, we choose ⇢12 = 0.5[(1.1r⇤�r)/(0.1r⇤)]8,

which varies from 1.3⇥1014 g cm�3 at the base of the crust to 5⇥1011 g cm�3 at the surface, our

chosen density cuto↵. The corresponding shear modulus profile varies from 5⇥ 1027 erg cm�3

at the base of the crust, to 1.3 ⇥ 1030 erg cm�3 at our chosen surface cuto↵. We also work in

the approximation that the crust is isotropic. The sti↵ness tensor for an isotropic medium may

be written as

c
ijkl

= ��
ij

�
kl

+ µ(�
ik

�
jl

+ �
il

�
jk

), (7.6)

where � and µ are referred to as the Lame coe�cients. The first term gives rise to compressive

deformations which are very di�cult to excite with slowly evolving magnetic stresses. We work

in the limit of an incompressible crust (� �! 0 and r · ⇠ = 0). The coe�cient of the second

term, µ, is the shear modulus of the crust. This term leads to transverse elastic modes. The

strain tensor is

✏
kl

=
1

2
(⇠

k,l

+ ⇠
l,k

) . (7.7)

These definitions of the sti↵ness and strain tensors may be substituted into the evolution

equation (7.3),

⇢
@2⇠

i

@t2
=

@

@x
l

(µ⇠
l,i

) +
@

@x
l

(µ⇠
i,l

) + f
i

. (7.8)

Upon expansion of these derivatives we obtain

⇢
@2⇠

i

@t2
=

@µ

@x
l

@⇠
l

@x
i

+ µ
@2⇠

l

@x
l

@x
i

+
@µ

@x
l

@⇠
i

@x
l

+ µ
@2⇠

i

@x2
l

+ f
i

. (7.9)

Our aim is to recover a vector equation from the above expression. This vector equation will

then be studied in the spherical geometry of a neutron star crust. The terms on the right

hand side of (7.9) will be considered one at a time. The first term may be expressed more

conveniently in vector form if we write it as

@µ

@x
l

@⇠
l

@x
i

=
@

@x
i

✓
⇠
l

@µ

@x
l

◆
� ⇠

l

@

@x
i

✓
@µ

@x
l

◆
, (7.10)

by using the product rule in reverse. We now identify this as

@µ

@x
l

@⇠
l

@x
i

= [r(⇠ ·rµ)� (⇠ ·r)rµ]
i

. (7.11)

We may change the order of the derivatives in the second term of (7.9), so that

µ
@2⇠

l

@x
l

@x
i

= µ
@

@x
i

✓
@⇠

l

@x
l

◆
= [µr(r · ⇠)]

i

= 0. (7.12)

This term vanishes because we are working in the limit of an incompressible crust. The third

term is expressed as
@µ

@x
l

@⇠
i

@x
l

= [(rµ ·r)⇠]
i

. (7.13)
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The last term is easily written in terms of the vector laplacian,

µ
@2⇠

i

@x2
l

= [µr2⇠]
i

. (7.14)

So the vector elastodynamic wave equation for an incompressible medium is

⇢
@2⇠

@t2
= r(⇠ ·rµ)� (⇠ ·r)rµ+ (rµ ·r)⇠ + µr2⇠ +

1

4⇡
(r⇥B)⇥B. (7.15)

Assuming a spherically symmetric shear modulus profile yields the elastodynamic wave equation

⇢
@2⇠

@t2
= (rµ ·r)⇠ � (⇠ ·r)rµ+ µr2⇠ +

1

4⇡
(r⇥B)⇥B. (7.16)

The first three terms on the rhs of (7.16) are due to the elastic restoring forces of the solid

crust, and the last term is due to the applied Maxwell stress of the magnetic field. Since in

models of Hall drift, the Hall evolution timescale is much longer than the elastic wave crossing

time, the inertial term on the lhs of (7.16) may be safely neglected. With the neglect of the

inertial terms, magneto-elastic equilibrium is given by

1

4⇡
(r⇥B)⇥B = �(rµ ·r)⇠ + (⇠ ·r)rµ� µr2⇠, (7.17)

which is a constraint that must be satisfied throughout the evolution. In the following section

we show our own method for ensuring that this equilibrium is satisfied at all times.

7.2 A Relaxation Method for Magneto-Elastic Evolution

With the neglect of the inertial term, magneto-elastic equilibrium is given by

1

4⇡
(r⇥B)⇥B = �(rµ ·r)⇠ + (⇠ ·r)rµ� µr2⇠. (7.18)

We, however, prefer to deal with an evolution (rather than the above constraint) equation for

⇠ and therefore introduce a small non-zero velocity

vel ⌘ @⇠

@t
. (7.19)

It corresponds to a small deviation from the force balance that we write in a relaxation/damping

form fdamp = ��⇢vel. The value of � is not important as long as it is small enough, so that the

system evolves while staying very close to the force balance. E↵ectively, this is a dynamic way

of implementing the constraint on ⇠ required by the force balance. This yields the evolution

equation,
@⇠

@t
=

1

�⇢

⇥
(rµ ·r)⇠ � (⇠ ·r)rµ+ µr2⇠

⇤
+

1

4⇡�⇢
(r⇥B)⇥B, (7.20)
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which when evolved in the limit of small � will tend toward the adiabatic solution. This

relaxation method is equivalent to solving a matrix problem to find ⇠, but avoids the di�culty

of equations which are implicit in the evolution of B. The challenge in choosing the value of �

is on the one hand to ensure the relaxation is fast enough so that the crust is in equilibrium

between the magnetic and elastic forces, but on the other hand is slow enough so that the

numerical computations do not become too costly. It is helpful to consider the characteristic

relaxation timescale

⌧re = �
L2

v2sh
, (7.21)

and require ⌧re ⌧ ⌧hall. This gives the criterion

� ⌧ 4⇡n
e

e

B
v2sh. (7.22)

The back reaction of the crustal motion on the evolution of the magnetic field occurs through

the equation
@B

@t
= r⇥ [(vhall + vel)⇥B] +r⇥ (⌘r⇥B). (7.23)

7.3 Axisymmetric Equations

In axisymmetry the magneto-elastic evolution equations are given as

@ 

@t
� r2sin2✓�(rI ⇥r�) ·r =

c2

4⇡�
�⇤ , (7.24)

@I

@t
+ r2sin2✓[(r⌦e ⇥r�) ·r + I(r�⇥r�) ·rI] =

c2

4⇡�

✓
�⇤I � 1

�
rI ·r�

◆
, (7.25)

with the electron angular velocity

⌦e = ⌦hall + ⌦el = � j
T

n
e

ersin✓
+

v�el
r?

= ��⇤ +
v�el
r?

. (7.26)

The elastic evolution of the crust is written in terms of the scalar functions  and I as

@⇠

@t
=

1

�⇢

⇥
(rµ ·r)⇠ � (⇠ ·r)rµ+ µr2⇠

⇤
+

1

4⇡�⇢
rI · (r ⇥r�)r�. (7.27)

7.4 Numerical Details

In this section we outline the numerical techniques we use to model the magneto-elastic evo-

lution of a neutron star crust. We compute the elastic evolution of the crust through the

equation

@⇠

@tyr
=

3.15

�11⇢12

h
(r̃µ · r̃)⇠ � (⇠ · r̃)r̃µ+ µr̃2⇠

i
+

106

�11⇢12
(r̃ ⇥B14)⇥B14, (7.28)
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where we have normalized tyr = t/3.15 ⇥ 107 s, �11 = �/1011 s�1, ⇢12 = ⇢/1012 g cm�3, B14 =

B/1014 G, r̃ is the del operator with lengths normalized to 106 cm, and ⇠ is in cm. The

derivatives are evaluate using the di↵erence formula in Equations (3.39), (3.40), (3.41), and

(3.42). In Model E the toroidal field is zero at the surface of the crust and at the base, so the

shear stress must be zero there. That is, the traction component of the stress tensor must be

zero. In spherical coordinates this is

�
r�

=
1

2

✓
@⇠

�

@r
� ⇠

�

r

◆
= 0, (7.29)

[e.g. Landau & Lifshitz (1970)]. This gives a boundary condition for the gradient of ⇠
�

at the

base and surface of the crust,
@⇠

�

@r

����
r=rc

=
⇠
�

(r
c

)

r
, (7.30)

@⇠
�

@r

����
r=r⇤

=
⇠
�

(r⇤)

r
. (7.31)

We set ghost cells accordingly. For cases when the toroidal field is non-zero it is trivial to

include the relevant component of the Maxwell tensor in the boundary condition. The boundary

conditions on ⇠
�

at the poles are set according to axisymmetry,

⇠j1�1
�

= �⇠j1+1
�

(7.32)

⇠j2+1
�

= �⇠j2�1
�

. (7.33)

We identify the elastic deformation velocity as

v�el =
1

3.15⇥ 107
@⇠

�

@tyr
. (7.34)

We evaluate the angular velocity of the crustal deformation as

⌦el =
v�el

r sin ✓
. (7.35)

In order to advance the toroidal field evolution Equation (7.25), we must set ghost cells for ⌦el,

so that we can evaluate its derivatives. The gradient of ⌦el is fixed at the surface and the base

of the crust by the boundary condition on ⇠
�

. We can see this by rewriting the traction in the

form

�
r�

=
r sin ✓

2

@

@r

✓
⇠
�

r sin ✓

◆
= 0, (7.36)

then taking a time derivative of both sides yields the gradient conditions

@⌦el

@r

����
r=rc

= 0, (7.37)
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@⌦el

@r

����
r=r⇤

= 0. (7.38)

Derivatives of ⌦el can then be taken using the formula in Equations (3.39) and (3.41), and used

to advance the Equation (7.25). The crustal deformation enters the magnetic field evolution

through

@B14

@tyr
= �6.25⇥10�7r̃⇥

 
r̃ ⇥B14

n
e,0

⇥B14

!
�1.25⇥10�8r̃⇥

 
r̃ ⇥B14

�0

!
+31.5r̃⇥(vel ⇥B14) ,

(7.39)

with the usual normalizations. In Model E we fix all components of the magnetic field at the

base of the crust. The azimuthal component is fixed by hydromagnetic equilibrium to be

B
�

(r
c

) =
I(r

c

)

r
c

sin ✓
= 0. (7.40)

The radial component B
r

is fixed at the crust-core interface by setting

 crust(rc) =  core(rc), (7.41)

which fixes @ /@✓, and hence B
r

. The component B
✓

is fixed at r
c

by setting

@ 

@r

����
r=rc

(t) =
@ 

@r

����
r=rc

(t = 0), (7.42)

which we enforce by setting the appropriate ghost cells. For more details of the numerical

method we refer the reader to Appendix B.

7.5 Results

In this section we present the coupled evolution of the elastic crustal deformation, and the

magnetic field under Hall drift and Ohmic di↵usion. The initial magnetic field is chosen such

that there is a sharp cusp in the field on the crust-core interface. Goldreich & Reisenegger

(1992) showed that such a disturbance will launch circularly polarized “Hall waves”, which can

propagate from the crust-core interface, and transport magnetic energy toward the surface of a

neutron star. Beloborodov & Levin (2014) showed that Hall waves in strong magnetic fields can

trigger a thermoplastic instability in the crust, which can generate X-ray activity associated

with magnetars. The elastic deformation of the crust can be significant in the upper layers,

where the magnetic energy density µB = B2
z

/8⇡ is comparable to the crustal shear modulus

µ. Here the crust cannot balance arbitrary stresses generated by Hall drift, so it yields, thus

nullifying the Hall e↵ect. In their 1D plane parallel model, Cumming et al. (2004) show that the

Hall term in the Hall-elastic evolution equation is suppressed by a factor (1+ µB/µ)�1, so that
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when µB � µ, Hall drift is significantly suppressed. Unfortunately in this regime (µB � µ), we

encounter severe numerical instabilities due to our explicit time integrator. Thus, for now we

are restricted to work in the limit µB  µ, where we may still demonstrate the e↵ectiveness of

the relaxation method outlined in this Chapter. In this regime the Equations (7.20) and (7.23)

are weakly coupled.

In Model E we chose the initial field to be purely poloidal, with vertical field lines (pure B
z

)

in the core (in particular  / r2?), with a dipole potential field in the crust. The initial field

has strength B ⇡ 2 ⇥ 1014 G. There are several physical processes which could cause such

a cusp at the crust-core interface in a highly magnetized neutron star, and these motivate

our choice of initial field. As demonstrated in Chapter 6, if the magnetic field is su�ciently

weak, superfluid neutron vortices will be present for a significant period during the spin down

of a rapidly rotating neutron star, while the ratio of rotational to magnetic energy is high.

Transport of flux tubes by outward moving vortices can result in a cusp in the field at the

base of the crust, though this will not result in vertical field lines in the core as shown above.

Jones flux tube drift in a young magnetar can result in a cusp in the field, and could launch

Hall waves, depending on the composition of the core and the subsequent value of the drag

coe�cient ↵. The launching of short wavelength Hall waves depends on Jones drift being sig-

nificantly faster than the Hall timescale. There may be other e↵ects which could drive a fast

change of the core magnetic field, and thus launch the Hall waves. Beloborodov & Li (2016)

found that in young magnetars with hot cores (Tcore ⇡ 109 K) and ultra-strong magnetic fields

(B & 1016 G), ambipolar di↵usion operates in the friction dominated regime, and may cause a

fast rearrangment of the core magnetic field. Additionally there may be hydromagnetic insta-

bilities in young magnetars which can result in a rapid rearrangement of the core magnetic field.

The magneto-elastic evolution is seen in Figure 7.1. Initially, the cusp in the poloidal field

generates strong toroidal currents which in turn generate toroidal field. The result is a burst of

Hall waves which propagate away from the core. These waves are the 2D analogue of the Hall

waves shown in Li et al. (2016a). At 3 kyr the small amplitude, short wavelength Hall waves,

have traveled the furthest toward the stellar surface. The long wavelength Hall waves near the

core evolve much more slowly. This can be understood if we consider our system as a constant

background field, with an oscillating perturbation which is linear in the field. This is valid

because the Hall waves are su�ciently weak that evolution equation for the poloidal field is

weakly coupled to the toroidal field, meaning that the structure of the poloidal field is e↵ectively

constant. Here we understand the background field to be poloidal, and the perturbation is the

Hall waves, early in the evolution before non-linearity becomes significant. The dispersion
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relation is

! =
ck|k ·B0|

4⇡n
e

, (7.43)

(Goldreich & Reisenegger, 1992) where k is the wave vector, k := |k|, and B0 a uniform

background magnetic field. The waves are seen to fan out from the crust-core interface over

the next few kyr, traveling furthest near the poles. This is due to the geometry of the existing

background field. The group velocity of Hall waves in the linear regime follows from the

dispersion relation (Goldreich & Reisenegger, 1992) as

vgp = ±ck(B0 + (k̂ ·B0)k̂)

4⇡n
e

e
, (7.44)

where k̂ := k/k. Near the poles, the background field is almost pure B
r

, so the waves travel

radially there. However, near the equator, the background field is almost entirely B
✓

, so there

is less radial propagation. After the first 6 kyr the waves begin to evolve non-linearly. Hall drift

sets in and advects the wave fronts toward the equator of the star. But due to the gradient

in electron density, and the fanning of the wave fronts, they are advected non-uniformly, and

start to break apart. Di↵usion also smears the wave fronts, and decreases the amplitude.

The evolution of the crustal displacement is shown in Figure 7.2. The displacement is largest

near the surface, where the shear modulus is smallest and the crust yields easily. The crustal

displacement reaches a maximum amplitude of ⇠ 2 m.
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Figure 7.1: Snapshots of the magnetic field evolution for Model E (Table 1.1), shown at t = 0

kyr, 3 kyr, 6 kyr, and 9 kyr. The plotting scheme is the same as Figure 4.5. The thickness of

the crust has been magnified by a factor or 2.5.
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Figure 7.2: Snapshots of the Lagrangian displacement of the crust (⇠
�

) for Model E (Table 1.1),

shown at t = 0 kyr, 3 kyr, 6 kyr, and 9 kyr. The color scale varies logarithmically, with a linear

region around zero. The thickness of the crust has been magnified by a factor or 2.5.
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In this thesis we have modeled the coupled magnetic field evolution of neutron stars in the

crust and the core. In the crust we include evolution due to Hall drift and Ohmic di↵usion

(Goldreich & Reisenegger, 1992), as well as the elastic response of the solid crust. We enforce

the correct hydromagnetic equilibrium in the fluid core. We also explore the e↵ects of the Jones

flux tube drift (Jones, 2006), and expulsion by superfluid neutron vortices during spin-down

[Ruderman & Sutherland (1974), Srinivasan et al. (1990), Ruderman et al. (1998)]. In this

section we discuss the implications of these results, in the context of the galactic population of

neutron stars, and their observable behavior.

In Chapter 4 we modeled the evolution of an initial poloidal field with broken equatorial sym-

metry. We evolved the crustal magnetic field through Hall drift and Ohmic di↵usion, while the

core field evolved according to the hydromagnetic equilibrium we formulate in Chapter 4. We

confirm the Hall attractor of Gourgouliatos & Cumming (2014) for B-fields which penetrate

the core, while satisfying the correct hydromagnetic equilibrium.

In Chapter 5, we present simulations of Jones flux tube drift, which show that the B-field in

the core can straighten under the enhanced self tension possessed by the quantized flux tubes.

The straightening of flux tubes is associated with the dissipation of free energy stored in the

curvature of the field. This straightening occurs on a timescale

⌧diss ⇠ 450

✓
n
e

3.5⇥ 1037 cm�3

◆2✓1029 s�1

�̃

◆
kyr, (8.1)

but can occur significantly faster depending on the value of �̃. Interestingly this can generate a

burst of activity in highly magnetized neutron stars which were previously in the Hall attractor

state. Importantly, we show that for the range of values of �̃ estimated by Jones (2006), ⌧diss is

always much smaller than the modified Ohmic timescale [Equation (5.73), so that the Ohmic

timescale governs the rate of depletion of the global magnetic field. However this timescale is

very di↵erent to the Ohmic timescale of Goldreich & Reisenegger (1992).

The timescale for depleting the pulsar magnetic fields in these simulations is very sensitive to

the choice of electrical conductivity, and it is worth while to discuss the implications of this.

Phonon scattering, and impurity scattering are the main ways currents can be di↵used in a

neutron star crust. Phonon scattering is exponentially suppressed when T < T
U

= 8.7 ⇥ 107

K ⇢14(Ye

/0.05)(Z/30)1/3 [Gnedin et al. (2001), Cumming et al. (2004)], and the Umklapp pro-

cesses freeze out. Impurity scattering is dominant at low temperatures (T < T
U

), or high

impurity levels. Estimates of the impurity levels in the deep crust range from Qimp ⇡ 10�3

(Flowers & Ruderman, 1977), to Qimp ⇡ 10 (Jones, 2001). For young or accreting pulsars,
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with temperatures T & 108 K (Brown & Bildsten, 1998), T > T
U

, and typical impurity levels,

phonon scattering will be dominant in the deep crust. The timescale for flux to di↵use through

the crust, using the electrical conductivity in Chapter 3 (phonon scattering at T ⇡ 2 ⇥ 108

K), our modified Ohmic timescale Equation (5.73) yields ⌧Ohm ⇠ 150 Myr. A full treatment

would include the e↵ects of accretion onto the neutron star surface, and burial of the magnetic

field. The consequences of this are not clear, but it should be noted that burial of the field [see

eg. Choudhuri & Konar (2002) and the field configurations therein] could result in suppression

of the factor B
z

/B
x

in the modified ohmic timescale [Equation (5.73)], and an even shorter

timescale for the depletion of the global field. Pons et al. (2009) found that Ohmic dissipation

proceeds faster when thermal feedback on the crustal conductivity is included. This could fur-

ther shorten the timescale of 150 Myr we observe in our simulations.

After a young pulsar has cooled, or accretion has subsided, the neutron star crust will cool.

For T ⇠ 106 K, T < T
U

, and impurity scattering will dominate. When impurity scattering is

dominant, the electrical conductivity in the deep crust is

�
Q

= 4.4⇥ 1025 s�1(⇢1/314 /Qimp)(Ye

/0.05)1/3(Z/30). (8.2)

[Baiko & Yakovlev (1995), Baiko & Yakovlev (1996), Cumming et al. (2004)]. In the impurity

dominated regime, the timescale for flux to di↵use through the crust is

⌧ohm ⇠ hl
4⇡�

Q

c2
B

z

B
x

=
1.8 Gyr

Qimp
, (8.3)

meaning that flux is e↵ectively frozen into the crust, and the dipole surface field of the pulsar

will no longer decay. For any impurity parameter which yields a decay time comparable to

the Hubble time (Qimp . 0.13), the field will be approximately stable. This could explain the

persistence of magnetic fields in millisecond pulsars, after periods of rapid depletion at higher

temperatures. Alternatively, if impurity levels are much higher, as suggested by Jones (2001),

then Ohmic di↵usion can proceed rapidly in pulsars even after cooling, so that the crust cannot

prevent decay of the dipole field. This would suggest that something elsewhere, in the core was

inhibiting the motion of flux.

In the core flux tubes may get caught on magnetized neutron vortices, and be forced to move

outward at the same rate. The vortices move outward at a timescale equal to the spin down

time of the star, which is very long for millisecond pulsars. Jones (2006) also found that while

the outer core is likely be a type-II superconductor, protons in the inner core may be type-I.

In type-I superconductors magnetic flux is confined to macroscopic filaments of normal mat-

ter. Due to the presence of muons in the inner core in some equations of state, motion of
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the filaments would be accompanied by the formation of large gradients in chemical potential,

limiting the motion of flux to the rate set by weak nuclear interactions (Jones, 2006). Addi-

tionally our simulations do not include a smooth transition from the solid crust to the liquid

core. It is possible that some flux tubes get pinned in the pasta phases at the crust core inter-

face, thus causing a remnant field to be left behind. Any of these could provide an explanation

for the persistence of a magnetic field in millisecond pulsars despite the decay time we calculate.

In Chapter 6 we modeled the expulsion of flux from the core by the outward motion of neutron

vortices during spin-down. We chose the initial spin period for our models by assuming the

star was born with a 1 ms spin period, and allowed to spin down for 300 years before the phase

transition to superfluidity, as suggested by the Cas A remnant [Shternin et al. (2011), Page

et al. (2011)]. Models D1, D2, and D3 have typical magnetic field strengths of 5⇥ 1012 G, 1013

G, and 2⇥ 1013 G respectively.

While Ruderman et al. (1998) argues that flux tube tension is small compared to the critical

force n
v

f
v

, we find that it plays a crucial role in rearranging flux tubes in the core — even for

weaker magnetic fields . 5 ⇥ 1012 G. This is because the transport of flux tubes by vortices

results in the formation of sharp magnetic features, which possess enormous tension, particu-

larly in the outer core, where flux tubes are anchored to the crust. Even in regions where the

tension force f
B

is small, it causes the flux tubes to slide along neutron vortices, and plays an

important role in the large scale distribution of flux. We found that when B & 2⇥ 1013 G, the

combination of the strong magnetic field and the slower spin period, means that the magnetic

field could not be expelled from the core. On the other hand, we found that for B . 1013 G,

the outward motion of vortices resulted in a partial expulsion of the core magnetic field, into

the outer core and deep crust. We find that in all simulations, as the field is pushed away from

the spin-axis a toroidal field grows in the deep crust.

When the flux is expelled into the outer core regions, a strong toroidal current sheet develops

in the deep crust. These currents drive Ohmic dissipation at an enhanced rate, as compared to

core-penetrating fields which vary on larger spatial scales. Additionally, the bunching of flux

tubes in the outer core means the poloidal field can be an order of magnitude stronger there,

compared to the spin-down inferred dipole field strength. At some stages in our simulations

the field configurations loosely resemble the crust-confined fields of Pons & Geppert (2007), so

we may expect thermal emission similar to that in their crust-confined models. The crucial

di↵erence is that in our simulations the field penetrates the core. It seems unlikely that flux

expulsion could power the magnetar activity of weak-field magnetars or high-B pulsars since
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the toroidal field is always < 1014 G. However, it is possible that flux expulsion could power

thermal emission in isolated neutron stars, due to enhanced Ohmic dissipation in the deep crust.

A shortcoming is that we have not resolved the controversy in the literature between the

timescales of Jones (2006) and Glampedakis et al. (2011), and this is left for future work. This

thesis is using the drift timescales derived by Jones, as they lead to interesting dynamical ef-

fects at the crust-core interface that are well-modeled in our numerical experiments. A full

treatment would include other e↵ects, such as thermal creep. We also point out that a dipole

which is misaligned from the axis of rotation violates axisymmetry, so a full 3D treatment is

required for this problem, and could lead to very di↵erent field configurations in the core.

In this thesis we have numerically modeled the e↵ects of Hall drift, Ohmic di↵usion, and the

magnetically induced elastic back-reaction on the crustal magnetic field of a neutron star. We

formulate the correct hydromagnetic equilibrium to ensure dynamical stability of the core field

on long timescales. We use this to magnetically couple the crust and the core in all of our

simulations. We confirm the Hall attractor of Gourgouliatos & Cumming (2014) for B-fields

which penetrate the core. We model a core evolving in accordance with Jones flux tube drift

(Jones, 2006). The combination of Jones flux tube drift in the core, and Ohmic di↵usion in a

hot crust (T ⇠ 2 ⇥ 108 K), can deplete pulsar magnetic fields on a timescale of 150 Myr. We

model the expulsion of flux from the core by superfluid neutron vortices during the spin-down

of a newborn rapidly rotating pulsar. This can result in the partial expulsion of flux from the

core when B . 1013 G, and could power thermal emission in isolated neutron stars. Future

work will include the e↵ects of field burial by accretion, and a detailed study of the galactic

population of pulsars.
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Appendix A

Twist Evolution of the Core.

The Hall evolution of B
�

in the crust can be written as

@B
�

@t
= �rp · (B�

vp) + (r?Bp ·rp)

✓
v
�

r?

◆
, (A.1)

with v
p

and v
�

the poloidal and toroidal parts of the Hall drift velocity, and we have defined

the poloidal di↵erential operator

r
p

⌘
✓

@

@r?
,
@

@z

◆
, (A.2)

using cylindrical coordinates (r?, z). The first term on the rhs of (A.1) represents advection of

B
�

by poloidal velocities, and the second term represents shearing of poloidal field lines in the

azimuthal direction. By using a combination of the product rule and the divergence constraint,

(A.1) can be written in conservative form as

@B
�

@t
+rp · Fhall = 0, (A.3)

where we identify the Hall advection flux

Fhall = B
�

vp � v
�

Bp. (A.4)

It is convenient to work in the so-called flux-coordinates ( ,�,�), where  labels surfaces of

constant poloidal flux, and � is the length along a given poloidal field line in the � = const

plane [e.g. Goedbloed et al. (2010)]. At the base of the crust the boundary condition is

f
�

= jp ⇥Bp/c = 0, which implies vp k Bp. So the Hall flux can be written in flux coordinates

as

FHall = B
�

|vp|ê� � v
�

|Bp|ê� = (B
�

v
�

� v
�

B
�

)ê
�

= F
�

ê
�

, (A.5)
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where Bp = B
�

ê
�

, and vp = v
�

ê
�

at the base of the crust. Then, using the scale factors for

flux-coordinates

h =
1

r?B�

, h
�

= 1, (A.6)

we may write the conservation equation for B
�

in flux coordinates as,

@B
�

@t
= �r?B�

@

@�

✓
F
�

r?B�

◆
. (A.7)

Rearranging and integrating both sides with respect to � yields an evolution equation for the

twist of the core magnetic field

@⇣( )

@t
= �[J( ,�2)� J( ,�1)], (A.8)

where we have identified the twist angle

⇣( ) =

Z
�2

�1

d�

✓
B

�

r?B�

◆
, (A.9)

and the“flux of twist” into/out of the core as

J =
F
�

r?B�

=
v
�

r?

B
�

B
�

� v
�

r?
. (A.10)



Appendix B

The Code

We evolve the poloidal and toroidal scalar functions on a discrete grid, which is linear in r

and u ⌘ cos ✓, in the crust and the core. The variable u varies from -1 at the south pole, to

1 at the north pole, and the radius of the star is r⇤ = 1 in units of 106cm. The crust core

interface is at r
c

= 0.9r⇤. We use the indices i and j to specify grid points in the r and u

directions respectively. In most simulations the index j varies from j1 = �50 corresponding to

the south pole, to j2 = 50 corresponding to the north pole, with j = 0 defining the equator.

We choose the di↵erence in u such that �u = 2/(j2 � j1). The index i varies from i0 = 0 at the

center (r = 0), to typical values of i
c

= 400 at the crust core interface (r = r
c

) depending on

the simulation. Throughout the crust and the last few rows of the core (ghost points for the

crust) the radial grid spacing is �rcrust = 1/i
s

. The radial grid spacing in the outer few rows of

the core grid matches the radial grid spacing of the crust, for ease of implementing boundary

Table B.1: The grid resolution used in the crust and core for each of the Models A-E.

Model Crust (N
r

⇥N
u

) Core (N
r

⇥N
u

)

A (100⇥ 133) (400⇥ 133)

B (100⇥ 101) (400⇥ 101)

C (100⇥ 201) —

D1 (100⇥ 101) (700⇥ 101)

D2 (100⇥ 101) (700⇥ 101)

D3 (100⇥ 101) (700⇥ 101)

E (500⇥ 201) —
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conditions on the crustal field. In order to avoid numerical instabilities near the poles in some

simulations, we added adjustable patches of increased resolution in the u direction. Depending

on the magnetic field structure, angular resolution was some times set to 3 times the original

resolution near the poles in order to obtain convergence. This resolved the issue, and added

little expense to the computations.

We use a variable time step, which shrinks in order to avoid instability in the evolution. Because

we are evolving magnetic fields and crustal displacements with a variety of evolution equations,

we calculate a stable time step for each evolution equation. For the Hall e↵ect [Equations (3.20)

and (3.21)], we use the fastest electron velocity in the grid to limit the maximum time step,

using

�thall = k
c

4⇡n
e

e

c

�r�µ

|r⇥BT| , (B.1)

with k
c

a Courant parameter. For Ohmic di↵usion [rhs of Equations (3.20) and (3.21)], we use

�tohm = k
c

�r2

⌘
= k

c

4⇡��r2

c
, (B.2)

which is minimized by choosing the smallest conductivity. For the elastic relaxation [Equa-

tion (7.20)] we use the time step

�tel = k
c

�
�r2

v2sh
. (B.3)

For the hydromagnetic relaxation Equation (4.14) we choose the di↵usion time step

�thme = k
c

�r2

k
. (B.4)

The stable time step for Jones drift [Equation (5.59)] is chosen using the maximum flux tube

velocity on the computational grid,

�tJones = k
c

�r�µ

max|vJ| , (B.5)

and similarly with the spin-down transport of flux [Equation (6.24)]

�tsd = k
c

�r�µ

max|vsd| . (B.6)

In all of the above, the Courant parameter 0 < k
c

< 1 is chosen so that such that we observe

convergence and stability. At each time step, we evaluate the rhs of the evolution equations

using the di↵erence formulae above, then use Euler integration with the smallest time step

�t = min{dthall, �tohm, �tel, �thme, �tJones, �tsd}, (B.7)
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to advance the functions  and I to t+ �t.

In Model A we choose the relaxation parameter k = 2⇥ 10�6 cms�1 In Model E we choose the

parameter � = 1⇥ 1016 s�1.

In the core we treat coordinate singularities along the pole, and at the origin by freezing in

the magnetic field beyond some flux surface  0, so that the magnetic field is unevolving very

close to the pole. This is done by multiplying the velocity fields in Equations (4.14) (5.59) and

(6.24) by the function

s( ) =
1

exp[�a( � 0)] + 1
, (B.8)

which behaves like a smoothed step function. The parameter c is chosen to make the step as

steep as possible while still being resolved by the grid mesh. In Model A we also add a term

to the rhs of Equation (4.14),

� 1

⌧

I(r, ✓)

exp[b( � 0)] + 1
, (B.9)

to ensure that any toroidal field beyond  0 is exponentially reduced on the timescale ⌧ . Our

results are not sensitive to these methods, so long as  0 is close to the pole.

We have tested the Ohmic evolution of our code by comparing with the analytic Ohmic eigen-

modes, and observe excellent agreement. We also study the agreement of our code with the

grid based code of Gourgouliatos & Cumming (2014), (data files provided by the authors),

and observe excellent agreement. We have also carried out resolution studies of all simulations

presented, and summarize the grid sizes for which each simulation had converged in Table B.1.
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