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Abstract

A systematic review of educational robotics literature in the past 10 years has
shown a lack of application and research of humanoid robots to support teach-
ing as well as a lack of understanding on its impact in higher education. Hence,
this study aims to compare and better understand the effects of robot tutors
compared to human tutors on learning experience in the higher education con-
text, as well as to suggest a possible framework or guidelines for an effective
application of robots in the university learning environment. An exploratory
case study through eight 15-minute tutorial sessions assessed with flow psychol-
ogy was carried out with or without a robot tutor on undergraduate students
in Monash University, Malaysia. The introduction of robot tutors in univer-
sity tutorial classes was observed to positively affect concentration, perception
of time, and feeling of reward; but imposes a more rigid interaction and les-
son structure which loses sense of control, spontaneity of action and negatively
impacts self-consciousness. There are limitations in classroom human-robot in-
teraction which emphasizes the need for an integration framework incorporating
automation, accessibility, control and emotion-based assessment.
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Chapter 1

Introduction

The usage of robots in education is not entirely new. Examples of dated re-
search include the use of robotics as a collaborative tool for problem-based
learning of 10-year-old children (Denis and Hubert, 2001); a programmable toy
for learning by design in early childhood education of 3-year-old children (Bers
et al., 2002); and a social partner or peer tutor to improve English of first-
grade and sixth-grade students (Kanda et al., 2004). These studies suggest that
educational robotics improve the quality of interaction, creative thinking and
performance. However, Fagin and Merkle’s (2002) quantitative analysis on the
usage of LEGO Mindstorms robots in introductory college-level computer sci-
ence education found no evidence in the improvement of student learning or
retention. Moreover, a systematic review by Benitti (2012) found that empiri-
cal evidence on the effectiveness of educational robots in schools is still limited
albeit painting a positive picture. It is mostly used in Science, Technology, En-
gineering and Mathematics (STEM) subjects with few studies on robot tutors
for non-technology subjects. Teachers were also found uncomfortable with the
high requirement of mastering the programming of robots. More importantly,
Benitti’s (2012) review excludes literature on higher education and focuses only
on elementary, middle and high schools.

1.1 Problem Statement

The current literature seems to have inconsistencies in the evidence for the
benefits of educational robotics in general. There is a lack of research addressing
the higher education context as well as a lack of analysis and methods that can
accurately describe the factors which affect the success of robot integration in
classrooms. The impact of robots on learning experience in university classes is
yet to be explored.
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A systematic review of 62 articles about robotics in education and learning
analytics from year 2008 to 2016 found that the usage of robotics to support
teaching has been gaining attention recently and has seen positive results, but
they are mostly focused on kindergarten to middle schools and there is a lack of
such research in universities. Thus, the motivational and performance benefits
observed in children may differ when it comes to the higher education context
(Wong et al., 2016). There are also a lack of guidelines on integrating robots
into classrooms and on how it can be used to enhance tertiary education. As
such, colleges and universities may not see its role in enhancing education. The
review identifies the problem of educational robotics research in that it does not
focus on the conversations and social interactions that mediate the teaching-
learning process in classrooms. These interactions need to be studied further to
provide us a better understanding of student learning. The full literature review
along with its systematic procedures and findings are presented in Chapter 2.

Therefore, an explorative case study conducted in this research attempts to
fill the aforementioned research gap in exploring the application of a humanoid
robot tutor in the Faculty of Information Technology (FIT) tutorial classes in
Monash University, Malaysia and its effects on student experience compared to
human tutors throughout 8 weekly sessions. By incorporating flow psychology
with the application of a humanoid robot tutor, this case study attempts to
make use of these theories in order to discover the extent of the robot’s impact
on student experience and flow in university classrooms, as well as the efforts
needed to establish a conducive robot-integrated learning environment in the
higher education context through the inquiry of the following research questions.

1.2 Research Questions

1. How does a humanoid robot tutor affect students’ experiences of flow in
university tutorial classes?

2. Are there significant differences in student learning experience with or
without the introduction of a humanoid robot tutor in Monash University,
Faculty of Information Technology (FIT) classes?

3. What would be a possible guideline or framework for the application of a
robot tutor in university tutorial classes?

2



1.3 Significance of Research and Contribution
to the Knowledge

As mentioned in Section 1.1, there is a lack of studies performed on robots used
for teaching in the higher education context. Many of the studies in today’s
literature are focused on using robot tutors for childhood education and as a
care robot for autistic patients or the elderly. While humanoid robots seem to
grab a lot of attention in kindergarten and primary school classrooms, this may
not be the case for university subjects.

This project is an explorative case study carried out on 63 undergraduate
students in Monash University, Malaysia from 2 units offered by the Faculty of
Information Technology on their experiences with or without the intervention
of a robot tutor in 15-minute tutorial class sessions. This thesis describes the
problems which the research is trying to solve, as well as its methods, results and
recommendations in full. The significance of this research can be summarized
into the following points:

1. This research is important as it investigates the extent a robot tutor may
affect university undergraduate students’ learning experience, and to ex-
plore if the usage of humanoid robots as an assistive tool for higher edu-
cation may be worthwhile to improve this experience compared to human
tutors alone. After the study was conducted, the results presented in
Chapter 4 suggests that there are benefits in some areas of the learning
experience which validates the pedagogical role of robot tutors in higher
education, but not without its drawbacks. Nevertheless, its strengths in
increasing student concentration and sense of reward makes it a worth-
while endeavor to further explore and improve upon its applications in
classrooms.

2. This case study presents an implementation of a robot tutor in real uni-
versity tutorial class environments which obtains feedback and suggestions
from actual students over the course of 8 weeks of classes to give us an
idea of how to design lessons and the interactions of a robot tutor in the
higher education context. With this, we can explore ways to enhance
learning in higher education using robots. In Chapter 5, the results of the
study is thoroughly discussed and many guidelines such as speed of the
robot’s speech, accessibility in human-robot interaction, and implementa-
tion details were suggested for a more effective integration of robots in the
university learning environment.
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1.4 Outline of Chapters

Following this introductory Chapter 1 which describes the current problems
of the application of robotics in higher education and the significance of this
research project, Chapter 2 describes the sources and step-by-step procedures
undertaken during the full literature review. It presents the number of articles,
its statistics, as well as a summary of methodologies and results of the current
literature which are discussed and elaborated even further in Section 2.1, Sec-
tion 2.2 and Section 2.3, allowing a better understanding of the problem to be
solved in this research.

The approaches used to tackle these problems are then presented in Chap-
ter 3. The developmental phases used in this project, as well as the design
of the case study is critically discussed here, pointing out its strengths and
weaknesses. The philosophical approaches used in this research such as onto-
logical and epistemological assumptions are also discussed in Section 3.1 and
Section 3.2 respectively. Furthermore, the underlying theory which defines the
methods to be used to assess student learning experience is presented in Sec-
tion 3.3, followed by the data collection and analysis procedures to carry out
the study in Section 3.4. As all research has its own biases and constraints, the
threats to validity when applying these methods are examined in Section 3.5,
as well as its limitations in Section 3.6. Lastly, the ethical concerns arising from
the application of these methods are outlined in Section 3.7.

Chapter 4 combines data from statistical tests and qualitative sources to
explore the extent in which robot tutors affect student learning experience com-
pared to human tutors. Significant differences and sudden changes in trends are
identified and discussed.

Finally, Chapter 5 further interprets the results to propose guidelines for
the integration of robot tutors in higher education, and to discuss the possible
advancements to be made moving forward. Following this, Chapter 6 presents
an overall conclusion based on the results of the research.
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Chapter 2

Literature Review

A systematic review of 62 articles on the technological and pedagogical integra-
tion of robotics in education was carried out. Search results are from Elsevier’s
Scopus and Thomas Reuters’ Web of Science databases due to their popularity
and quality as they track journal impact factors. Due to the wide topic cover-
age of this systematic review, any search results which contain lack of details on
data collection and unreliable validity checks are automatically excluded. The
selection criteria for these articles are strictly on uses of robotics in schools, uni-
versities, classrooms and other similar academic environments. It covers three
main categories of articles which are related to: the usage of robots in educa-
tional research, learning theories applied in educational robotics, and learning
analytics. The high number of search results based on the search criteria as
shown in Table 2.1 and Table 2.2 are further refined for each topic, excluding
literature which matches any of the exclusion rules defined below:

1. Robotics in Education:

� not related to educational/social robotics

� used for training or for disabilities/sickness

� used as an apparatus rather than to support teaching

2. Educational Theory with Robots:

� not related to learning theory

� machine learning (not related to human learning)

� not used in classrooms or by educators

3. Learning Analytics:

� not related to students or teachers

� not experimented in a learning environment
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Scopus

Topic
Robotics in
Education

Educational
Theory with

Robots
Learning Analytics

Criteria1

( TITLE-ABS-KEY ( (
( ( ( “humanoid robot”
OR robotics OR robots
) AND education ) OR
“robot tutor” ) AND (
school OR kindergarten

OR university OR
classroom ) AND (effect

OR impact OR
implication OR

acceptance OR outcome
) ) ) AND NOT

TITLE-ABSKEY ( (
disabled OR disability

OR autism OR training
OR mechanical OR
medical ) ) ) AND
PUBYEAR > 2011

( TITLE-ABS-KEY (
(vygotsky OR papert
OR constructivist OR

constructivism OR
constructionist OR
constructionism OR

cognitivist OR
cognitivism OR
behaviorist OR
behaviorism OR
connectivist OR
connectivism OR

“learning theory” OR
pedagogy OR
“instructional

strategy”) ) AND
TITLE-ABSKEY ( (

humanoid OR robot OR
robotic OR robotics ) )

AND NOT
TITLE-ABS-KEY (

(disabled OR disability
OR autism OR training

) ) )

TITLE-ABS-KEY ( (
“learning analytics”

AND education ) OR (
( “data mining” OR

“data collection” ) AND
( “student outcome”

OR “academic success”
OR “learning

experience” ) ) )

Results 121 416 990

Final 14 16 17

Table 2.1: Literature selection criteria – Scopus

After narrowing down the results, all of the remaining literature from each
database were combined (14 + 16 + 17 + 11 + 14 + 10 = 82) and 31 duplicates
were removed giving a total of 51 articles. 11 relevant secondary references
found among these 51 articles were added to the table as well, giving a final
number of 62 articles.

Based on these shortlisted results, there is an increasing trend for the re-
search of robotics in education which is grounded on educational theory or
related to learning analytics in the past 8 years (see Figure 2.1). Selected ar-
ticles are more recent and are mostly from year 2015; hence, it should provide
high relevance for discussing a rapid-changing technology such as educational
robotics.

It is observed that most of the research employ quantitative or mixed meth-
ods of gathering data for their analysis with mostly well-grounded statistical
tests for significance and correlation (see Figure 2.2). There are also a variety of
articles ranging from first-quartile ranking (Q1) to unranked journals based on
Thomson Reuters’ Journal Citation Reports in the year 2014 (see Figure 2.3).

1 Criteria is based on TITLE-ABS-KEY in Scopus, and TS in Web of Science; both of
which covers Title, Abstract and Keywords.
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Web of Science

Topic
Robotics in
Education

Educational
Theory with

Robots
Learning Analytics

Criteria1

TS=((((“humanoid
robot” OR robotics OR
robots) AND education)

OR “robot tutor”)
AND (school OR
kindergarten OR

university OR
classroom) AND (effect

OR impact OR
implication OR
acceptance OR
outcome) NOT

(disabled OR disability
OR autism OR training

OR mechanical OR
medical))

TS=((Vygotsky OR
Papert OR

constructivist OR
constructivism OR
constructionist OR
constructionism OR

cognitivist OR
cognitivism OR
behaviorist OR
behaviorism OR
connectivist OR
connectivism OR

“learning theory” OR
pedagogy OR
“instructional

strategy”) AND
(humanoid OR robot

OR robotic OR
robotics) NOT

(disabled OR disability
OR autism OR

training))

TS=((“learning
analytics AND

education) OR ((“data
mining” OR “data
collection”) AND

(“student outcome” OR
“academic success” OR
“learning experience”)))

Results 77 197 352

Final 11 14 10

Table 2.2: Literature selection criteria – Web of Science
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Figure 2.1: Number of reviewed literature by year.

7



Qualitative Mixed Quantitative Review
0

5

10

15

20

25

11

17

23

11

Methodology

N
u

m
b

er
o
f

A
rt

ic
le

s
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Figure 2.4: Number of reviewed literature by category.

A review summary of these articles on their methodology (keywords which
demonstrate quality of the research methods are underlined in bold under the
“Experiment” section), participants (including location of experiment if stated)
and results were tabulated in Appendix A. Each article is marked with a shade
of color to show which database it is from. These articles are then categorized
into several topics (see Figure 2.4) which are then discussed in Section 2.1,
Section 2.2 and Section 2.3 where relevant.

2.1 Robotics in Education

Based on the review, research suggests that robotic tutors increase motivation,
performance and satisfaction of kindergarten to middle school children although
there is a lack of research on robots used to assist teaching in higher education.
The use of robots in education to support teaching in classrooms is limited to
kindergarten (Keren and Fridin, 2014; Lee, Sullivan and Bers, 2013), elemen-
tary (Park et al., 2015; Wu et al., 2015; Zaga et al., 2015; Chin et al., 2014;
Saerbeck et al., 2010) and middle schools (Alemi et al., 2015; Alves-Oliveira
et al., 2015; Alemi et al., 2014; Ardito et al., 2014) showing positive results in
student experience, motivation and performance. When it comes to higher edu-
cation research, most research (Michieletto et al., 2016; Yi et al., 2016; Miranda
et al., 2012) use robots in robotics, engineering or computer science units as an
apparatus for study, operation or experimentation.
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Few research using assistive robots on college students showed positive re-
sults in student engagement (Brown and Howard, 2014b; McGill, 2012). Us-
ing Keller’s (1987) Instructional Material Motivation Survey (IMMS), McGill’s
(2012) research on undergraduate students only found significance in attention
but not in other motivational factors such as relevance, confidence or satisfac-
tion; this differs from the results of Chin et al.’s (2014) research on elementary
school students where satisfaction and relevance were rated the highest. The
lack of robotics research in the higher education context suggests that moti-
vational and performance factors may differ based on the level of education,
further emphasizing the need for assistive robotics research in university class-
rooms. Most of the aforementioned literature in this section employ question-
naires, pre-tests and post-tests which although presented strong evidence for
correlation and statistical significance using well-established methods such as
Student’s t-test, Pearson’s product-moment correlation and regression analysis
in their results, lack analysis on the actual human-robot interaction. Student
engagement is usually not monitored explicitly, but based on assumptions from
responses to questions and tasks (Brown and Howard, 2014a).

Given the limited usage of robots in the higher education context, and the
lack of analysis in the interactions during the learning process, it is important to
place focus on conversations that mediate this process. The exchange of ideas
through language is the fundamental instrument between teaching and learning
in academic institutions which deserves a more in-depth study. For this study,
the focus is on the 15-minute teaching and learning interaction with a Q&A
session between the (robot) tutor and students in the university classroom which
addresses this problem by attempting to investigate learning experience using
flow theory, student comments and observations to understand the extent of the
robot’s effects compared to human tutors.

2.2 Educational Theory with Robots

Mubin et al. (2013) found that common robots used in education are electronic
robot kits such as Arduino and Boebot; mechanical robot kits such as LEGO
Mindstorms and Thymio; and humanoid robots such as NAO and Robovie where
these robots serve as tools, peers and tutors with Papert’s constructionism being
the most adopted theory followed by Vygotsky’s social constructivist theories.
Constructionist and constructivist theories are used due to the need of a struc-
ture in the curriculum to introduce the robots into classrooms but the effects
of integrating these pedagogical practices are not clearly understood. Altin and
Pedaste (2013) found that in the 8 articles reviewed, the following approaches
have been used for educational robotics in STEM units: discovery learning, col-
laborative learning, problem solving, project-based learning, competition-based
learning, and compulsory learning; but lack evidence that it achieves educational
goals.
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For direct study of pedagogical and technological integration, there are some
which have applied Vygotsky’s Zone of Proximial Development (ZPD) to study
its effects in classrooms (Berland et al., 2015; Silva et al., 2008) and some which
propose pedagogical models by combining other technologies with robots (Chen
et al., 2012; Mitnik et al., 2009). Some studies found that applying constructivist
theories in educational robotics is more effective than traditional methods of
teaching (Lee, Taha, Yap and Kinsheel, 2013; Plauska and Damaševičius, 2014)
and that it promotes collaborative critical thinking (Bers et al., 2014; Danahy
et al., 2014; Mills et al., 2013; Bilotta et al., 2009). These findings would suggest
that problem-based learning and student-centered techniques such as Vygotsky’s
social constructivism have a more positive impact, something which this research
should apply when integrating robot tutors to carry out teaching. Robot tutors
can be integrated as a peer who learns with the students or as a tutor who
teaches the students but this choice seems to have no differences on the amount
of knowledge retrieved by the students (Blancas et al., 2015).

However, research which apply educational theories and aim to assess the
effectiveness of robotics at the same time have a common limitation where they
cannot easily identify factors affecting student outcomes. They would have to
make assumptions in their results and will continue to do so until there are
proper analysis methods to deal with this limitation. Actually, even without
the use of technology, Stroet et al. (2016) could not distinguish contributing
factors to students’ motivation between schools which apply traditional, social
constructivist and combined educational philosophies. In educational research,
“it may be extremely difficult, or even impossible, to isolate and manipulate
all the variables suspected of being involved in the phenomena being studied”
(Berliner, 2002).

Due to this problem, the effectiveness of educational robotics may still be
subjected to skepticism and its benefits for integration into classrooms is not
very convincing. Although teachers generally have positive perceptions on the
benefits of robots in classrooms (Khanlari, 2013; Fridin, 2014), they recognize
the challenges and adaptations needed for it to work. Additionally, this bar-
rier to adoption may be tougher to overcome as the introduction of robotics
may change the lesson structure, introducing large administrative overhead and
technological challenges (Khanlari, 2016; Serholt et al., 2014); as well as grav-
itate towards constructionist and constructivist theories which may be further
complicated by cultural factors (Hăng et al., 2015; Thomas and Watters, 2015).
The lack of clear evidence in relative advantage, compatibility and observabil-
ity greatly hinders such technological adoptions in academic institutions (Reid,
2017).

11



2.3 Learning Analytics

With the problems described in Section 2.1 and Section 2.2, more refined meth-
ods for data analysis is needed to understand the effects of educational robotics
in classrooms. The complex problem of isolating an absurd number of fac-
tors in educational research may require the application of big data and learn-
ing analytics to provide a better understanding. Learning analytics allows a
learning design to be evaluated based on its pedagogical intent using a set of
real-time, behavior-based data on learner interaction within the learning en-
vironment (Lockyer et al., 2013). Diagrams portraying social networks and
interactions formed in a collaborative group can be mapped out and analyzed.

Currently, learning analytics mostly apply to virtual learning environments
through Learning Management Systems (LMS) such as Moodle or Blackboard
(Fidalgo-Blanco et al., 2015; Hernández-Garćıa et al., 2015; Lonn et al., 2015;
van Leeuwen et al., 2015; Zacharis, 2015) where readily available data such as
login duration and number of forum views can be processed and translated to
student engagement or motivation, with results suggesting active participation
as the major contributor of performance. However, Iglesias-Pradas et al. (2015)
found no relation between LMS interactions and teamwork competency. While
digital data on the actual interaction between students is easily processed, real-
world analog data can be a problem to accurately obtain even with structured
data collection. Eye gaze and head tracking may be useful data to assess inter-
action level (Fridin, 2014) but not when high-level cognitive thinking is required
(Brown and Howard, 2014a).

With that said, there are emerging technologies to record data for classroom
analysis such as The Visible Classroom Project captioning of a teacher’s speech
in a classroom analyzed using a rubric of pedagogical principles (Skipp and Tan-
ner, 2015) and the low-cost distributed Multimodal Recording Device (MRD)
which records video, audio, pen strokes and learning environment properties
such as temperature (Domı́nguez et al., 2015). Combining these technologies
with humanoid robotics may allow better attainment of learning analytics input
from humans through social interactions (de Greeff and Belpaeme, 2015; Das
et al., 2015) which can be further enhanced with emotion data (Singh et al.,
2013). Perhaps one way of adapting learning analytics from virtual to real en-
vironments can be achieved in such a model where data is provided naturally
through friendly human-robot interaction. The mismatch between human-like
robot design and the human frame of reference may provide new ways of analyz-
ing human creativity (Zawieska and Duffy, 2015). Analysis of such inputs from
real-world classrooms may provide a more holistic insight of a student’s learning
in a way that may question Lundie’s (2017) argument on human subjectivity in
learning experience being incommensurable with information analytics.

Even if such real-time learning analytics application is successful, it may not
be useful in classrooms due to high information load (van Leeuwen et al., 2015)
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and preprocessing or latency between collecting data and actionable decision
(Madhavan and Richey, 2016). Madhavan and Richey (2016) found that meth-
ods to tackle the problem of data noise and sparseness are emerging through a
new class of algorithms derived from variations of techniques known as Kalman
filtering and ensemble Kalman filtering. Other efforts include Schieble et al.’s
(2015) attempt to break down the complexities of student-teacher interaction
using positioning theory in discourse analytics; and data mining methods pro-
posed by Anaya et al. (2016) to solve uncertainties in collaborative interaction
using Bayesian networks. Learning analytics models may also be too specific
in scope as Gašević et al. (2016) found that generalized models are inaccurate
in many cases; suggesting that it should instead be at the individual course
level with instructional conditions factored in. Slade and Prinsloo (2013) claims
that student performance and identity are highly dynamic and temporary con-
structs, which means that learning analytics data can have an expiry date that
will become useless within an unknown period of time. In addition to the pri-
vacy and ethical concerns where collected data should be justifiably beneficial
to students’ learning (Rubel and Jones, 2016), learning analytics may have the
problem of being useful only in an extremely narrow scope.

More research on learning analytics should be cross-disciplinary and empha-
size on the impact of interactions within the learning environment. Communi-
cation and social presence of being together is important for learning (Rienties
and Toetenel, 2016; Akhtar et al., 2017; Joksimović et al., 2015); therefore, it
is crucial that communication among students and educators be analyzed. The
implementation of real-time learning analytics is out of the scope of this re-
search, but the aforementioned problems are recognized and will be considered
when designing guidelines and frameworks for robot integration in classrooms.
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Chapter 3

Research Methodology

This research involves an exploratory case study involving only Monash Univer-
sity students with a non-experimental design, where student participants were
introduced to either a robot tutor or a human tutor in a 15-minute tutorial
session once a week for 8 weeks and their experiences were recorded. Selection
of participants is non-random because it was predetermined based on the co-
hort of students for the units which were available at the university. The case
study was carried out with the following definition in mind, sharing the same
post-positivist view as Yin (2013), where a case study is an empirical inquiry
that investigates a phenomenon within its real-life context especially when the
boundaries between this phenomenon and context is not evident; and which may
rely on multiple sources of evidence. Hence, this research uses mixed-methods
collecting both quantitative and qualitative data to be analyzed for a more
holistic view of students’ interaction with a robot in Monash University units.
More elaboration on the post-positivist approach in research can be found in
Section 3.1.

Student experience is evaluated through questionnaires based on a compo-
nential flow psychology model, student and tutor comments as well as obser-
vations. More details on the theoretical framework used in this research can
be seen in Section 3.3. This form of methodological triangulation complements
each other for a more complete data set so that their differences and similarities
can be identified, compared and discussed especially for a problem such as the
human learning process which may be influenced by complex neurological and
societal factors yet to be fully understood.

This research also follows the single-case embedded design guidelines of Yin
(2013), investigating student experiences with the robot tutor in the case of
Monash University undergraduates studying in Malaysia in two different units
offered by the Faculty of Information Technology. Due to the nature of this
study, the topics prepared for the robot depends on the class and units at this
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Context: Higher Education

Case: Students from Monash University, Malaysia

Embedded Unit of Analysis 1
FIT1033: Foundations in 3D

Embedded Unit of Analysis 2
FIT1050: Web Fundamentals

Figure 3.1: Single-case embedded design.

specific university. Other universities may have different course structures and
variety of students in their classes. Looking at more than one unit provides
multiple sources of evidence within a single case. This design is visualized in
Figure 3.1.

Case studies have been criticized for their lack of methodological rigor, va-
lidity and generalizability. Willis (2014) provides a good overview of the advan-
tages and disadvantages of single case study designs, acknowledging its limita-
tions while suggesting that its weaknesses are exaggerated. One of the criticisms
is that it absolves the researcher from methodological considerations due to its
boundedness to context (Maoz, 2002). This allows the study to take a free-form
approach which usually results in long unreadable documents with no ability
to establish causal relationships. It stems from the lack of methodological rigor
which jeopardizes the validity and reliability of the research. Indeed, the lack
of systematic procedures is the greatest concern for case studies but this has
started to change. Yin (2013) called for rigor in his book through proper devel-
opment of a case study protocol to clearly define all field procedures, case study
questions and context; as well as maintaining a chain of evidence that can be
traced throughout the research.

In the field of international relations, Bennett (2004) discussed innovations
in third-generation qualitative methods where scholars have over the last fifteen
years, “revised or added to essentially every aspect of traditional case study
research methods.” For example, process-tracing involves the rigorous testing of
alternative hypotheses against the evidence from the case similar to Bayesian in-
ference by affirming or rejecting explanations that do not fit the evidence based
on eliminative induction. Such is the approach used with the principle of falsi-
fiability in mind; its epistemological considerations are discussed in Section 3.2.
Bennett (2004) also shared the view that although single case studies are not
always explicitly comparative, they are implicitly comparative. For instance, a
most-likely case is one where a theory is likely to provide a sufficient explanation
if it applies to any cases at all. If that theory fails to fit in a most-likely case, then
it is strongly challenged. The opposite is true for least-likely cases. Therefore,
single case analysis can be valuable for the testing of theoretical propositions
given that the predictions are relatively precise and measurement error is low
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(Levy, 2008).

Besides that, case studies are known to use qualitative methods such as ob-
servations and interviews that are highly affected by researcher subjectivity. It
is also susceptible to selection bias, as a poor case selection can lead to over-
generalization or misinterpretation of observations. Concerns of validity are
mitigated using methodology triangulation and pattern-matching as discussed
in Section 3.5 of this thesis. Another criticism is that a single case is hardly
generalizable to the population. It is important to note that unlike standard
statistical methods, selected cases in a case study are not representative of a
larger population. The difference between statistical and analytical generaliza-
tion along with some examples are explained in Section 3.5.3. Nevertheless, all
research has its limitations and they are further discussed in Section 3.6.

In summary, the research follows the process flowchart as shown in Fig-
ure 3.2. After research questions and objectives were defined at the beginning
of this project, the systematic literature review was performed (see Chapter 2)
to further define the problem and refine the research questions. The study was
carried out using the case study design discussed above, with non-probability
sampling (see Section 3.4.1) and a triangulation of questionnaire responses, com-
ments and observations. This study requires the implementation of a humanoid
robot as part of the data collection and analysis; therefore, pilot tests were cru-
cial to ensure that it can carry out the research tasks as correctly and reliably as
possible. After the robot setup has been developed to satisfaction, the field test
was carried out as described in Section 3.4.2 and collected data was analyzed
using both statistical and qualitative methods outlined in Section 3.4.3.

3.1 Ontological Assumptions

Ontology deals with the nature of reality. It primarily questions if social entities
should be regarded as objective where they are external to social actors, or
subjective where they are created from perceptions and actions of social actors.
In layman terms, social actors are us humans as researchers, and the entities
are the phenomenon being studied and observed.

The philosophy of this research adopts the post-positivist paradigm with the
critical realist ontology whereby it is assumed that there is an objective reality
separated from the subject. For this research, this makes the assumption that
there are regularities in human social behavior during learning that can be
generalized within a certain context. However, this reality can only be known
with a probability and must be subjected to critical examination. Observations
are not fixed and are open to change depending on context. Critical realism is an
umbrella term coined by Bhaskar (2013) of the view that we only have access to
empirical data but never the real. It recognizes the reality of the natural order
as well as the events and discourses of the social world.
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Problem Discovery

Define Research Questions

Define Research Objectives

Literature Review

Problem Definition

Exploratory Research Design

QuestionnaireSingle Case Study
Non-Probability

Sampling

Ethical Clearance

Technical Design and Implementation

Pilot Test

Field Test

Data Collection

Data Understanding and Preparation

Modeling and Analysis

Evaluation and Findings

Recommendations and Conclusions

Report Writing

Figure 3.2: Research methodology flowchart.
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We will only be able to understand and change the social world if the gener-
ative mechanisms of events and discourses are identified. A scientist’s conceptu-
alization is simply a way of knowing this reality. Therefore, there is no absolute
proof to verify explanations on any of our observations. Unlike traditional pos-
itivism, this approach finds it acceptable to infer on hypothetical entities that
are not directly observable in quantitative data through abductive reasoning.
Models can be inferred based on their explanatory power rather than from pat-
terns or past events. This is as what Bhaskar (2013) calls it, transcendental
analysis. We transcend empiricism and question what reality is like in order for
the observed phenomena to occur, placing high importance on carefully defining
the conditions and context for the occurrence.

In contrast, subjectivist or constructivist ontology implies that social phe-
nomena are not only produced through social interaction but in a constant state
of revision (Bryman, 2015). The researcher always presents a specific version
of social reality rather than one that can be regarded as definitive. There is no
rationale for choosing either of these standpoints as these are assumptions that
we have to make; yet, questions of ontology influence the way research questions
are formed and carried out.

The researcher takes the critical realist standpoint and believes that there
is ultimately an objective reality. Most notably, this influences the research to
adopt quantitative methods in the case study design rather than just qualitative
methods. The goal is to mitigate biases and emphasize on theories which can
be generalized and known definitely.

3.2 Epistemological Assumptions

Epistemology is a branch of philosophy that questions what is considered knowl-
edge in a discipline. A key question that arises in epistemology is whether or not
the social world should be studied the same way as natural sciences. According
to Bryman (2015), the main paradigms which are concerned about epistemology
are positivism, interpretivism and realism. The positivist position is one that
advocates the same methods to be used when studying both natural and social
sciences. It assumes that human senses are reliable and that it can confirm
observed phenomena as genuine knowledge.

On the other hand, the interpretivist position is an alternative to positivism
that requires the researcher to interpret the subjective meaning of social ac-
tion. Such a stance normally looks at subjective values, beliefs and experiences
of participants to form a social reality rather than trying to separate them as
potential biases to the understanding of reality. The interpretivist stance be-
lieves that human interpretation and understanding are constituents of scientific
knowledge.
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Finally, the realist position shares much of its features with positivism but
branches out from there. As pointed out in the previous section on ontology,
the researcher’s assumptions are of the post-positivist paradigm, in-line with
Bhaskarian critical realism. The key difference compared to positivism is that
it does not assume that human perception is a reliable source of knowledge.
The post-positivist paradigm stance of this research is of a modified objectivist
epistemology. Objectivity can only be approximated because human perception
is assumed to be an imperfect representation of the real world and is only one
way of knowing reality. Therefore, the best model of reality which humans
can know of is socially constructed. Knowledge cannot be separated from an
individual and biases are inherent. In order for human observers to become more
certain of the objective reality, it requires a triangulation of multiple unreliable
perspectives, making subjective experiences of participants a key part of the
research. Both quantitative and qualitative sources will be used to try and widen
this perspective. The researcher is of the opinion that human social processes
should be investigated in the same way as natural sciences while accepting that
it is value-laden and complicated by a large amount factors that are highly
subjective and sensitive to context.

Even so, it is still highly important for the research to maintain objectivity
to the highest degree possible. This project attempts to infer a model based
on pilot tests to account for the observation, relying more on discovering the
mechanisms which produce effects in a specific context rather than testing a pri-
ori hypotheses. This research employs statistical tests on quantitative data to
be compared against subjective qualitative data such as observations and com-
ments, providing more insights to the objective reality that we cannot perfectly
reach.

The principle behind these tests is based on falsifiability, where nothing can
be proven to be true but a contradictory observation is all it takes to demonstrate
the inconsistency of a theory. Popper (2002) stresses the problem of demarcation
that in order for statements to be scientific, it must be capable of conflicting with
possible or conceivable empirical observations. This principle was advanced as
a criticism to the logical positivist idea of scientific verifiability. Post-positivism
is thus a reformation of positivism to address its criticisms, and is the position
which the researcher takes when carrying out this research.

3.3 Theoretical Framework

This research applies the concept of flow psychology to study student engage-
ment and experience in the classroom when being instructed by a robot tutor.
Flow, or more commonly known as “being in the zone” is the state in which a
person is fully immersed in an activity and is said to be an optimal experience
where people felt and performed the best (Csikszentmihalyi, 1990). It is one
of the key concepts under a branch of psychology called positive psychology
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(Seligman and Csikszentmihalyi, 2000), which emphasizes on the use of scien-
tific methods to study interventions that help achieve satisfactory life focusing
on positive human development. Flow does not encompass the entire student
experience as it is much more complex; instead, flow is just one aspect of ex-
perience to look into and is the focus of this study. Csikszentmihalyi (1998)
proposes 9 dimensions of the flow state experience which are: challenge-skill
balance (Q1), action-awareness merging (Q2), clear goals (Q3), unambiguous
feedback (Q4), concentration on task at hand (Q5), sense of control (Q6), loss
of self-consciousness (Q7), transformation of time (Q8), and autotelic experi-
ence (Q9).

First, the experience of flow requires a balance in skill and challenge in order
to feel engaging. If the task is too difficult, it can be frustrating; whereas if the
task is too easy, it can be boring. Second, when experiencing flow, the person’s
involvement in an activity reaches a point where it merges with the self and
their actions are mostly performed at the subconscious level. Third, a clear
understanding of what to do is part of the flow experience as ambiguous or
conflicting goals can divide a person’s attention. Fourth, people who are in flow
constantly require direct and clear feedback in their actions in order to respond
and continue being engaged. Fifth, a person experiencing flow exerts high levels
of concentration on the present activity and would not be distracted by other
thoughts. Sixth, there is no sense of worry about losing control over the task
at hand. Seventh, a person would be so engaged in the activity so as to not
have the mental state to care about their own ego or how others think about
them. Eighth, time can feel accelerated or slowed down when in the state of
flow. Ninth, the activity performed is intrinsically rewarding. Carrying out the
task is an end in itself and does not require external motivation.

The method used in this study to assess these experiences of flow is through
a standardized scale of the componential flow model using a short version of the
statistically-grounded Flow State Scale-2 (Jackson et al., 2008). For each of the
aforementioned flow dimensions, there is a Likert-scale question (item) to help
assess the severity in which the participant is experiencing that dimension of
flow. This model is visualized in Figure 3.3.

Compared to other flow measurement methods such as flow questionnaire
(FQ) and experience sampling method (ESM), this componential model us-
ing standardized scales provides a more comprehensive characterization of flow
and is psychometrically more valid (Moneta, 2012). Despite these strengths,
its weakness is that it imposes flow on all participants, does not measure the
commonness of flow, and is poor at explaining heightened and focused atten-
tion in extreme cases. While other methods also have their own strengths and
weaknesses, the short human-robot interaction time (about 15 minutes) in this
research is best suited for the componential model as other methods are more
suitable for sustained flow over a long period of activity.
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Figure 3.3: 9 dimensions of the componential flow model visualized by Moneta
(2012) where e = measurement error.
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3.4 Analytical Methods

This section outlines the procedures used for the field test such as data collection
and analysis. The results are presented in Chapter 4.

3.4.1 Sampling

The sampling method used in this study is considered as generic purposive
sampling, where a set of criteria on the contexts or cases needed to address the
research questions are defined and identified (Bryman, 2015). It is a form of non-
probability sampling which does not perform random selection of participants
and is not representative of a wider population. Purposive sampling is done
with the research goals in mind. As the research explores in the higher education
context, Monash University, Malaysia is defined as the sample area. The purpose
of this research tries to explore learning experience in university students from
2 different units.

This case study was carried out on a total of 63 undergraduate students aged
17 to 24 (mean x̄ = 19.33, standard deviation σ2 = 1.136) from Monash Univer-
sity, Malaysia who are undertaking units offered by the Faculty of Information
Technology. Two units were selected for analysis – FIT1033: Foundations in 3D
and FIT1050: Web Fundamentals. For each of these units, two study groups
were formed:

� First 4 sessions carried out with robot tutor, last 4 by human

– FIT1033 Mondays 2 p.m.

– FIT1050 Wednesdays 8 a.m.

� First 4 sessions carried out by human tutor, last 4 with robot

– FIT1033 Wednesdays 8 a.m.

– FIT1050 Tuesdays 3 p.m.

3.4.2 Data Collection

Every week for 8 weeks, an educational session lasting approximately 15 minutes
was carried out by either a human or a robot tutor, who will give the instructions
according to the teaching materials for that week. There is a single human tutor
in charge of each unit during the human tutor sessions, so there are 2 tutors in
total. The robot used for this study is an interactive companion robot called
NAO, which is 58cm in height with 25 degrees of freedom equipped with 4
directional microphones and loudspeakers (SoftBank Robotics, 2017). Within
the session, students usually have to perform a small task such as to try out a
small snippet of code, perform some steps in a 3D software, or read up about
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a topic. For human tutors, this session is carried out as usual as in a normal
tutorial class. For robots, the lesson structure is designed to be similar to human
tutors and is represented in Figure 3.4, where the lesson is carried out as usual
according to the teaching materials of the university unit, ending with a short
Q&A voice interaction. The NAO robot is programmed using the included
Choregraphe Software Development Kit (SDK) which provides a user interface
to drag-and-drop nodes that trigger specific robot functions. For this study, only
the “Animated Say” node was used for robot instruction and gestures, while the
“Dialog” and “Tactile Head” nodes were used for the Q&A interaction.

During a session, the robot is placed on a table at the front of the classroom
while a human facilitator controls the robot and the presentation slides from
a short distance away using a laptop. After the lesson is complete, a student
is called forward to interact with the robot at a distance of approximately 1m.
Figure 3.5 shows a student interacting with the robot in front of the class.

An example of the robot setup in the learning environment is illustrated in
the classroom layout shown in Figure 3.6; it is one of the 4 classrooms which
the study took place in. The time taken for the robot to complete the session
is 15.56 minutes on average, but there were technical issues occasionally; the
minimum session time is 7 minutes, whereas the maximum is 30 minutes. At the
end of the session, students are given a questionnaire form (see Appendix B)
containing 3 questions about their experiences with the tutor in the session,
followed by 9 questions according to the short version of the Flow State Scale-
2. Along with these student responses, for every session, the session number,
date, start time, end time, class, study week, topic of study, tutor comments
and tutor type are recorded. This study was carried out from March 2017 to
June 2017. In total, 328 student responses were collected throughout 8 weekly
sessions for all 4 of the aforementioned study groups and the dataset was made
available to the public (Wong, 2017).

3.4.3 Data Analysis

When it comes to demonstrating significant differences, non-parametric tests
such as the Mann-Whitney-Wilcoxon test is more often than not recommended
for ordinal or ranked data as it relies on the median instead of the mean and
does not assume that the outcome should be normally distributed. However,
the standard parametric t-test is just as effective when it comes to five-point
Likert scale items, and provides enough assurance from false positives and false
negatives even for sample sizes as low as 10 per group (De Winter and Dodou,
2010).

Each weekly session is compared with one another to find significant differ-
ences in each dimension of flow which is represented as a Likert-scale item (1 to
5) collected from students’ responses in the short Flow State Scale-2 question-
naire (see Appendix B).
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Figure 3.4: Robot lesson and interaction structure (average completion time:
15.56 minutes).
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Figure 3.5: A student interacting with the robot at the front of the class in the
networking computer laboratory of Monash University, Malaysia.

Figure 3.6: Example layout setup of the networking computer laboratory in
Monash University, Malaysia.
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The null hypothesis is defined as: H0 = There is no difference in students’
experience of flow dimension x between Week y and Week z. The statistical test
employed here is a paired t-test (also known as Student’s t-test) whereby only
students who attended both weeks are included into the sample to be tested.
Paired t-tests allow the identification of significant changes between variables
before and after each week. For a slightly different perspective focusing on
group-wise tests, unpaired t-tests (Welch’s t-test) were also carried out for all
week combinations. All t-tests carried out in this study are two-tailed to test
significant increase and decrease in responses, assuming unequal variances due
to unforeseeable and uncontrollable human factors in this study. Groups with
small sample sizes of less than 6 are ignored.

Apart from week combinations, an overall test was carried out on data sep-
arated into two groups: sessions carried out with the NAO robot tutor, and
those by human tutors (2 tutors in total, 1 for each unit). T-tests were carried
out on these two groups for each of the flow state scale questions. In order
to test for significant differences in categorical data, Pearson’s chi-square test
for independence is carried out between the sentiment of students’ comments;
and whether or not they have interacted with the tutor, expressed suggestions,
or expressed boredom. Sentiment is derived from the students’ remarks in all
3 of the subjective questions provided in the questionnaire. It is categorized
into either: positive, neutral, mixed or negative; where “positive” is assigned
for favorable remarks such as “good,” “interesting,” “informative,” or “fun”;
and “negative” for complaints such as “boring,” “redundant,” “annoying” or
“frustrated.” “Neutral” is assigned when there are neither positive or negative
comments whereas “mixed” is assigned when there are both. As sentiment
classification is inherently subjective and based on human judgment, it was de-
termined that by following the aforementioned examples of rules for keywords
and phrases found in student comments, that a single researcher’s judgment was
sufficient when the manual classification was performed.

All week combinations which are deemed significantly different (α = 0.05)
are then grouped with other combinations based on their similarities and differ-
ences. Demonstrating significant difference does not automatically suggest that
the robot had any effect because none of the variables are properly isolated and
there is no control group. It is worth reminding that the nature and design of
this study makes it impossible to isolate the variables (Berliner, 2002) needed
to pinpoint the factors that may have caused the differences in flow among hu-
man and robot tutor groups through statistical tests alone. T-tests are also
carried out on a week-by-week basis because some information may be lost if
only an overall test of human and robot sessions is performed. Each week can
be considered a different context and can have unforeseeable social or psycho-
logical factors that may come into play to influence a student’s experience of
the session.

Nevertheless, by demonstrating the difference in flow states between multiple
groups and university units, then combining the qualitative data such as stu-
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dents’ comments about their experiences as a mixed-methods research through
“triangulation” (Patton, 1990), it may produce insights to the bigger picture.
For example, if a significant difference is found between human and robot ses-
sions; and none found for robot-robot or human-human week combinations,
then it becomes a meaningful observation. Furthermore, if multiple university
units also follow the same trend, with support from the students’ responses,
then it would strongly suggest that the presence of a robot tutor is affecting the
students’ learning experience.

On an additional note, when comparing flow states across the weeks, the
analysis of the two FIT1050 groups are more prominent. This is because some
data are missing for 2 of the weeks conducted by a human tutor for FIT1033.
The FIT1033 groups also have less statistical power when comparing trends
between human and robot tutor sessions due to its smaller sample size.

3.5 Threats to Validity

Kidder and Judd (1986) summarizes four design tests which will be looked at for
this research: internal validity, construct validity, external validity and reliabil-
ity. Internal validity refers to the establishment of a causal relationship where
certain conditions can be demonstrated to lead to other conditions. Construct
validity is the most important test for this study and ensures a sufficiently op-
erational set of measures used to collect data, questioning the subjectivity in
the interpretation of such data. External validity concerns about the domain in
which the results of the research can be generalized. Lastly, reliability ensures
the repeat-ability of procedures used in the study with the same results given
the same context.

3.5.1 Internal Validity

This research is an exploratory one which is not concerned with making causal
statements. Its non-experimental design makes it clear that there are high
threats to internal validity if the quantitative data in this study is used to
establish cause and effect relationships. This is due to the research having no
control over the assignment of participants between the sampled university units
and must select from a cohort of students in a given university. The subjects
of the experiment are students from different classes within the same university
but they are not comparable. Such a design is most susceptible to selection
bias and the results of this study may not be true if a different university or
course is selected; this is expected in a case study. For example, the students who
participate in the research may consist of only high-achievers. Causation cannot
be proven for any effects that correlate to good student experience because the
researcher has no control over extraneous variables that are not even fully known
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for a complex phenomenon like social interactions in the human learning process.
There is no control group to be compared against, only multiple groups with
the same treatment.

With that said, this does not mean that the data collected about student
performance and experience is meaningless when trying to understand human
learning. By comparing between these groups of students, the threat to internal
validity can be mitigated through cross-verification of data. Trochim (1989)
suggests that pattern-matching of empirical patterns to the predicted patterns
can enhance internal and external validity, even when there are no quantitative
measures. Regularities observed across multiple university units despite differ-
ences in student background, social life and personal interests are key points of
discovery for generating hypotheses and a potential for more in-depth analysis
on student learning.

3.5.2 Construct Validity

Patterns shown in such quantitative data may not represent actual behaviors of
the subject and the results may be meaningless even when significant differences
are observed. For example, if only statistical tests are relied upon, there is a
risk of a false positive when determining if the robot tutor affects students’
experiences, although student comments and responses are no different from
human tutor sessions. This problem is mitigated through the use of methodology
triangulation which relies on a comparison of data collected by the short version
of the Flow State Scale-2, a subjective questionnaire, and observations on the
students’ experience.

3.5.3 External Validity

Usually, experimental studies attempt to generalize findings using statistical
probability. It is common to hear complaints about the threat to external
validity being high for case studies, yet the sampling methods used for this
kind of study is clearly not meant to automatically generalize findings to a
population. Yin (2013) explains that aside from the replications of results in
similar cases, case studies can be generalized through theoretical abstraction by
discussing how findings such as subjective experiences relate to broader issues,
like things that could be done to improve those experiences. Yin (2013) gives
the example of the origins of social class theory derived from a case study of
Yankee City (Warner and Lunt, 1973) which significantly contributed to the
understanding of social differences from “upper” to “lower” class citizens in
broad situations. Another example by Yin is the derivation of urban planning
theories about the role of neighborhood parks, sidewalks, small blocks and slums
from Jacobs’ (1992) book, The Death and Life of Great American Cities which
is a single case study on the experiences in New York City.
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Depending on the results, it may or may not be generalizable for all univer-
sity students. As mentioned before, this research does not attempt to demon-
strate causes and effects but instead to discover theories and mechanisms that
drive the human-robot interaction within the classroom, which can help produce
a model to enhance university learning with robots. It is very important to set
aside the preconceived notion of trying to prove or disprove a theory. The model
formed in this study is based on the data collected from 2 different units and
the patterns and regularities observed between these different units of analysis
can answer questions that are generalizable to university students to a certain
extent.

Strictly speaking, it cannot be proven to be true for all persons, places or
time due to the unknown or uncontrollable variables of the human psychology
that will not be controlled or tested in this project. It can, however, serve as a
foundation for researchers in future, if our technology and knowledge of human
learning behaviors permit, test empirically on a larger scale. As Bennett (2004)
suggests, cases are implicitly comparative and future case studies on the same
topic can be compared to strengthen the external validity of the results obtained
in this study.

3.5.4 Reliability

As a way of enhancing reliability, Yin (2013) proposed the case study protocol
which this thesis follows, containing an overview of the project, field procedures
(see Section 3.4.2 and Section 3.4.3), case study questions (see Section 1.2) and
guidelines for the case study report; as well as a case study database containing
organized records of data collected (Wong, 2017), documents used and reports
written that are easily available and accessible. This maintains a chain of ev-
idence, allowing external observers to trace the evidence from initial research
questions to case study conclusions. This ensures that the case study procedures
are repeatable for a different case, and those results can be compared with the
results from this study to strengthen our understanding of student learning.

3.6 Limitations

This project only covers a specific context on Monash University students which
limits the power to generalize outcomes of this research as patterns in human
behavior. The qualitative data collected from Monash University students do
not represent the general population of university students as they may have
different values, beliefs and perspectives that are not accounted for in this re-
search. No interviews on participants’ background, past experiences and social
lives will be collected in this research. The realm of social sciences is complex
and the application of robot tutors in the higher education context is relatively
new. A problem such as this requires a more exploratory research strategy and
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one that is capable of forming new theories and models such as a case study,
which this research adopts. Especially for the education discipline, case studies
have started gaining popularity in the past few decades (Stake, 1995).

Furthermore, this single case study looks at only two Information Technol-
ogy (IT) units and therefore, the guidelines and suggestions formed lack the
perspective and context from other fields of education. Moreover, the similari-
ties and differences within the IT units alone are not representative of the whole
IT field as they can be about completely different things. For a broad field such
as IT, the researcher has to be careful when formulating theories or generaliza-
tions as these comparisons grant only a tiny perspective of the big picture. This
study does not answer questions pertaining to the effectiveness of robot tutors;
rather, it attempts to explore some of the ways in which a robot tutor may
affect students experiences compared to traditional teaching by human tutors
in the university setting.

Some of the limitations encountered when analyzing the data are discussed
in Section 3.4.3. Triangulation is used to strengthen the validity of the results
obtained in this mixed-methods research; however, biases are still inherent in
the interpretation of students’ responses and sentiments about the experiences.
The field of educational psychology is complex and the questionnaire used in
this study was not able to explain or identify certain behaviors, resulting in
the need for speculation and assumptions from student and tutor comments.
Moreover, all data collected in this study is self-reported by the participants,
and it is assumed that they were aware and truthful of their own experiences.
Lastly, although sentiment classification (see Section 3.4.3) is inherently sub-
jective and is based on human judgment of the attitude of the respondent, an
inter-rater agreement test could have been done to determine the reliability of
the classification to better understand the limitations it has on this study.

3.7 Ethical Considerations

As this study deals with human subjects, the integrity of this research follows
the Australian Code for the Responsible Conduct of Research by the National
Health and Medical Research Committee (2007), a framework for good and
ethical research practice. Upholding this code, the researcher pledges to always
report truthfully on all data collected, respect the rights of all parties affected
by the research, adopt appropriate methods with proper practices for safety, be
accurate in citations, and conform to the policies adopted by Monash University,
the institution which funds and oversees this research.

Specifically, this research involves human participants which directly requires
the written approval of Monash University Human Research Ethics Committee
to review the implications of this research for the following parties:
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1. 63 undergraduate students from Monash University Students from the 2
selected units who agree to participate in the research will interact with
the robot in a simple question and answer session on some topics. They
will also fill up a questionnaire form at the end.

2. 2 tutors (1 for each of the selected units). Tutors from the 2 selected
units will help provide some suitable topics and questions for the robot
to ask students, as well as facilitate the robot tutor sessions and provide
comments or observations of students’ experiences of the session.

Students have 12 weeks of classes, and their consent was obtained in the 3rd
week, after which data collection has started on the 4th week. As the tutor is also
participating in the research, this student-teacher relationship may influence the
consent process. In order to ensure that participation is fully voluntary, a third
party who had no influence or authority over the students’ grades for that unit
was elected to brief the students about the research and ask for consent. The
person briefing the students was simply given a script to read aloud. Students
were specifically told about all details of the research procedure such as the
robot’s height and that there will be no physical games or activities with the
robot aside from questions and answers.

In total, there are 63 consented participants for this study; all of whom are
undergraduate students studying in Monash University, Malaysia. Majority, but
not all participants are from the School of Information Technology. The study
involves giving out a questionnaire about their experiences in a 15-minute session
during the beginning of a class with or without a robot tutor, once a week for
8 weeks. The questionnaire may contain identifiable information because the
participants are required to fill in a name, alias or handle which allows the
researchers to track their responses throughout the 8 weeks. This information
will be removed before the results are published. All details of the project and
what information will be collected are made clear to the participants through an
Explanatory Statement and a Consent Form already approved by the Monash
University Human Research Ethics Committee (MUHREC) (see Appendix E).
As an incentive, participants are given RM20 gift vouchers upon the completion
of the study.

3.7.1 Principles of Integrity

Apart from the ethics review and approval from Monash University, the code
requires compliance on principles of integrity, respect for persons, justice and
beneficence for research participants. These principles were first defined in the
historical Belmont Report (United States Department of Health and Human
Services, 1979), summarizing ethical guidelines for research involving human
subjects. Participants must be respected as autonomous persons receiving full
disclosure of the study, procedures, risks and benefits with the extended op-
portunity to ask for explanations on matters regarding the research. This is
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ensured through an explanatory statement (see Appendix C) describing the de-
tails of this research as well as how data is collected and used. Participants
are not coerced into this research just because they are the selected group for
study. This project ensures voluntary participation by asking for their informed
consent (see Appendix D). If students do not give their written consent, they
will not be part of the study in any way.

Pertaining to justice or rights to service, this is not an issue for this research
as all participants are subjected to the same conditions in the study. For medical
research, there is a concern where the control group is given a placebo, making
it unfair to participants as the treatment group is given real medical benefits.
However, in this case, there is no control group because the aim of this experi-
ment is not to determine effects but to explore a concept. While it is true that
other Monash University students other than those within the selected units do
not have an opportunity to participate in the research, there is no experimental
treatment in this study that would provide a benefit to the participants over
anyone else.

Beneficence is the maximization of possible benefits and reduction of possible
harm. For human-robot interaction, it is possible that there is a psychological
risk of discomfort with proximity despite the NAO humanoid robot’s small size
of 58cm in height. A distance between 1 to 2 meters is required from the robot
to the student during the Q&A interaction. This distance is also suggested to
be within the human social zone (Hall, 1966) which is reserved for face-to-face
conversations. Participants were informed about this distance and can stop
the interaction at any time if they feel uncomfortable with it. The robot will
perform simple gestures but will not walk or move from its position on its own.
Other than that, there are no foreseen risks on physical, social, economic or
legal harms apart from minor inconveniences of filling up the questionnaire and
consent forms. All university students participating in the study were given
incentives for their time in the form of gift vouchers after all data collection
procedures were completed. Thus, this research is considered as low-risk.

3.7.2 Data Management

All research data obtained in this study is stored and documented truthfully
and accurately in the research record according to the Research Data Man-
agement: HDR Candidates Procedures (Monash University, 2010). No video
or audio recordings were performed. The questionnaire responses may contain
personally-identifiable information such as names or identification numbers and
any of such data has been removed. Data collected from questionnaires and con-
versation transcripts during the human-robot interaction are non-confidential
data that can be published as results. Non-confidential data will be made avail-
able and accessible for reference by other parties either through publications,
web pages or both.
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3.7.3 Authorship and Conflicts of Interest

Concerning authorship and data collection, the Research Outputs Data Col-
lection Procedures (Monash University, 2013) is referred to when dealing with
such issues. Monash University must be attributed as the affiliated institution
in all research outputs. The researcher is aware that supervisors and members
participating in the research including himself can claim authorship for any
research outputs only when there is significant contribution in conception and
design of the project, analysis and interpretation of data, or drafts and revisions
contributing to the interpretation.

Conflicts of interest must be declared upfront and avoided so as to not com-
promise the integrity of the research. This interest can be any goal or value held
by any persons involved in the research who personally benefits from a specific
outcome of the research. There are no conflicts of interest to declare for this
research.
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Chapter 4

Results

Most sessions are affected to some degree by the teaching content, and some
flow dimensions are more closely related to the contents of the lesson rather
than the type of tutor giving the instructions. Experiences of boredom and
frustration can be attributed to the lesson design and learning materials. This
is observed in students’ comments and comparisons between multiple sessions
from different university units. Table 4.1 and Table 4.2 show the significant
groups by flow dimension for paired and unpaired t-tests respectively. As seen
in these tables, each t-test was carried out between two groups (weekly sessions)
denoted in superscript by “A” for the first test group’s week number, and “B”
for the second test group’s week number. For example, “Robot2” indicates the
second weekly session which was carried out by a robot tutor. These tests are
then discussed and compared with the qualitative data to identify the extent of
influence on flow which a robot tutor has in a university classroom compared
to a human tutor.

4.1 Challenge-Skill Balance (Q1)

Almost no significant differences are found for challenge-skill balance (Q1) through-
out the 8 weeks for all groups. There are only two cases in the paired t-test
where a significant difference is observed for the Q1 section of Table 4.1 and none
in unpaired t-tests; hence, there is no evidence to suggest that the introduction
of a humanoid robot tutor affects this flow dimension.
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# Class WeekA WeekB n T p

Q1
FIT1050 Tue Human1 Human3 10 −2.450 0.037
FIT1050 Wed Robot1 Human6 14 −2.188 0.047

Q2

FIT1033 Mon Robot1 Human7 7 −2.500 0.047
FIT1033 Mon Robot1 Human8 14 −2.511 0.026
FIT1033 Mon Robot2 Human8 14 −2.474 0.028
FIT1050 Tue Human2 Robot7 9 2.530 0.035
FIT1050 Wed Robot1 Human5 11 −2.283 0.046
FIT1050 Wed Robot1 Human6 14 −2.510 0.026

Q3

FIT1033 Mon Robot1 Robot4 11 −2.887 0.016
FIT1050 Tue Human4 Robot7 10 3.000 0.015
FIT1050 Wed Robot1 Human7 9 −2.530 0.035
FIT1050 Wed Human7 Human8 9 2.530 0.035

Q4

FIT1050 Tue Human1 Robot6 8 2.646 0.033
FIT1050 Wed Robot2 Human8 14 −2.589 0.022
FIT1050 Wed Robot4 Human6 12 2.345 0.039
FIT1050 Wed Human5 Human8 11 −2.283 0.046
FIT1050 Wed Human6 Human8 14 −2.876 0.013

Q5

FIT1033 Mon Robot1 Human7 7 3.873 0.008
FIT1033 Mon Robot2 Human7 7 2.828 0.030
FIT1033 Mon Robot2 Human8 14 −2.511 0.026
FIT1033 Mon Robot3 Human7 7 2.500 0.046
FIT1033 Mon Human7 Human8 7 −3.873 0.008
FIT1050 Tue Human2 Human4 9 −3.411 0.009
FIT1050 Wed Robot4 Human6 12 2.803 0.017

Q6

FIT1033 Wed Human1 Human2 6 −3.162 0.025
FIT1050 Tue Human1 Robot6 8 2.497 0.041
FIT1050 Wed Robot1 Robot3 11 −2.609 0.026
FIT1050 Wed Robot1 Human8 11 −3.130 0.011
FIT1050 Wed Robot2 Human8 14 −2.463 0.029
FIT1050 Wed Human6 Human8 14 −3.229 0.006

Q7

FIT1050 Tue Human1 Human4 11 2.319 0.043
FIT1050 Tue Human1 Robot7 10 2.714 0.024
FIT1050 Wed Robot2 Human8 14 −2.280 0.040
FIT1050 Wed Robot3 Human7 9 −2.828 0.022
FIT1050 Wed Robot3 Human8 13 −2.919 0.013

Q8

FIT1050 Tue Human1 Robot5 10 −3.279 0.009
FIT1050 Tue Human2 Robot5 10 −3.772 0.004
FIT1050 Tue Human3 Robot5 11 −3.730 0.004
FIT1050 Tue Human4 Robot5 11 −2.514 0.030
FIT1050 Tue Robot5 Robot8 9 2.828 0.022
FIT1050 Tue Robot7 Robot8 10 2.377 0.041

Q9

FIT1033 Mon Robot1 Human7 7 2.500 0.047
FIT1050 Tue Human1 Human4 11 −2.390 0.038
FIT1050 Tue Human1 Robot5 10 −3.881 0.004
FIT1050 Tue Human1 Robot6 8 −2.553 0.038
FIT1050 Tue Human1 Robot7 10 −2.333 0.045
FIT1050 Tue Human1 Robot8 8 −2.646 0.033
FIT1050 Tue Human2 Robot5 10 −2.999 0.015
FIT1050 Tue Robot5 Robot6 9 2.401 0.043
FIT1050 Tue Robot5 Robot7 10 4.000 0.003
FIT1050 Tue Robot5 Robot8 9 3.592 0.007

Table 4.1: Paired t-tests with p-values < 0.05
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# Class WeekA WeekB nA nB T p

Q2 FIT1033 Mon Robot2 Human8 14 15 −2.216 0.036

Q3
FIT1050 Tue Human3 Robot5 12 12 2.292 0.036
FIT1050 Tue Human3 Robot7 12 13 2.275 0.033
FIT1050 Tue Human3 Robot8 12 12 2.253 0.036

Q4
FIT1050 Wed Robot2 Human8 17 15 −2.204 0.035
FIT1050 Wed Robot4 Human5 13 13 2.216 0.037
FIT1050 Wed Human5 Human8 13 15 2.389 0.025

Q5

FIT1033 Mon Robot2 Human8 14 15 −2.339 0.028
FIT1033 Mon Robot3 Human7 15 7 2.726 0.021
FIT1033 Mon Robot4 Human8 11 15 −2.453 0.022
FIT1033 Mon Human7 Human8 7 15 −3.726 0.002
FIT1050 Wed Robot4 Human6 13 16 2.423 0.022
FIT1050 Wed Robot4 Human8 13 15 2.469 0.020
Overall Robot Human 170 148 2.027 0.044

Q6

FIT1050 Tue Human1 Robot6 13 10 2.217 0.038
FIT1050 Tue Human3 Robot6 12 10 2.769 0.013
FIT1050 Tue Human3 Robot8 12 12 2.283 0.033
FIT1050 Wed Human6 Human8 16 15 −2.563 0.016

Q7

FIT1050 Tue Human1 Human4 13 13 2.265 0.033
FIT1050 Tue Human1 Robot6 13 10 2.800 0.011
FIT1050 Tue Human1 Robot8 13 12 2.704 0.013
FIT1050 Tue Robot5 Robot6 12 10 2.132 0.047
FIT1050 Wed Robot1 Human8 15 15 −2.080 0.047
FIT1050 Wed Robot2 Human8 17 15 −2.213 0.035
FIT1050 Wed Robot3 Human8 15 15 −2.806 0.009

Q8

FIT1050 Tue Human1 Robot5 13 12 −3.735 0.001
FIT1050 Tue Human1 Robot6 13 10 −2.483 0.022
FIT1050 Tue Human1 Robot7 13 13 −2.550 0.018
FIT1050 Tue Human2 Robot5 12 12 −4.423 0.000
FIT1050 Tue Human2 Robot6 12 10 −3.164 0.005
FIT1050 Tue Human2 Robot7 12 13 −3.179 0.004
FIT1050 Tue Human3 Robot5 12 12 −3.352 0.003
FIT1050 Tue Human3 Robot6 12 10 −2.301 0.033
FIT1050 Tue Human3 Robot7 12 13 −2.392 0.026
FIT1050 Tue Human4 Robot5 13 12 −3.034 0.006
FIT1050 Tue Robot5 Robot8 12 12 3.130 0.005
Overall Robot Human 170 149 2.970 0.003

Q9

FIT1033 Mon Robot3 Robot4 15 11 −2.185 0.039
FIT1050 Tue Human1 Robot5 13 12 −4.450 0.000
FIT1050 Tue Human2 Robot5 12 12 −3.664 0.001
FIT1050 Tue Human3 Robot5 12 12 −2.150 0.046
FIT1050 Tue Human4 Robot5 13 12 −2.584 0.018
FIT1050 Tue Robot5 Robot6 12 10 2.211 0.041
FIT1050 Tue Robot5 Robot7 12 13 2.594 0.016
FIT1050 Tue Robot5 Robot8 12 12 3.344 0.003
Overall Robot Human 170 149 2.296 0.025

Table 4.2: Unpaired t-tests with p-values < 0.05
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4.2 Merging of Action and Awareness (Q2)

For merging of action and awareness (Q2), most robot sessions score significantly
lower compared to human sessions and this is clearly seen in the paired t-tests
shown in the Q2 section of Table 4.1. There are also no observed cases where
robot sessions score significantly higher than human sessions. These differences
are only observed in weekly t-tests and no significant difference is observed if an
overall test is performed. This is especially true for the first week the robot is
introduced; therefore, it is possible that students require time to feel comfortable
with the new tutor and lesson structure.

4.3 Clear Goals (Q3)

Similar to the previous section, it is also observed for clear goals (Q3) where in
some cases, robot sessions scored significantly lower than human sessions but
never the opposite. In the FIT1050 Wednesdays 8 a.m. group, the robot tutor in
week 1 scored significantly lower than the human tutor in week 7 (T = −2.530,
p = 0.035; see Q3 section of the paired t-tests in Table 4.1). Throughout the
weeks, many students commented on the unnatural speech produced by the
robot as there is a lack of intonation in the generated text-to-speech audio.
There are many suggestions by the students which ask for the speed of the
robot’s speech to be changed. There is a consistent observation across multi-
ple units but its occurrence is not frequent enough. It is suggested that the
introduction of a robot tutor negatively affects the “clear goals” flow dimension
depending on the complexity of the task in which the robot tutor is involved
in. For example, in FIT1050 Tuesdays 3 p.m. group, the human tutor in week
3 which is about an assignment briefing (easy task), scored significantly higher
than the robot tutors in weeks 5, 7 and 8 which is about coding and semantic
web technologies (difficult tasks) as seen in the unpaired t-tests in Table 4.2.
Since no significant differences were observed for simpler instructions, the robot
tutor should be able to communicate the goals of low-complexity tasks to the
students without problems.

4.4 Unambiguous Feedback (Q4)

Unambiguous feedback (Q4) refers to whether or not the student is aware of
his/her performance during the task. In the context of this study, it is mostly
a question of whether or not the tutor is capable of invoking awareness of what
the student knows or doesn’t know about the discussed topic. If the student
asks many questions to clarify what to do, then the Q4 score is usually lower.
There are significant differences between robot and human tutor for various
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weeks as shown in the Q4 section of Table 4.1 and Table 4.2, but not much can
be said as there is not much consistency to the differences to be compared. For
example in a paired t-test of 12 students in the FIT1050 Wednesdays 8 a.m.
group, the robot tutor in Week 4 assignment briefing seems to have obtained
a significantly higher Q4 score than the human tutor in week 6 teaching web
accessibility (T = 2.345, p = 0.039). Also, week 6 is significantly lower than
week 8 which is about web semantics (T = −2.876, p = 0.013); both weeks
are taught by a human tutor. As the same sort of differences are also observed
between human tutor sessions, it does not suggest that the robot tutor had any
extra effect on this flow dimension.

Besides that, there are some human tutor sessions which score significantly
higher than robot tutor sessions. In another paired t-test of 8 students in the
FIT1050 Tuesdays 3 p.m. group, the human tutor session in Week 1 about web
design scores significantly higher than the robot in week 6 on web accessibility
(T = 2.646, p = 0.033). Week 6 on the web accessibility topic seems to have
significantly lower Q4 score in both FIT1050 groups. Due to the inconsistencies
in differences across multiple units, it may seem that unambiguous feedback has
more to do with other factors such as the nature of the task rather than the
type of tutor. Nevertheless, there is a lack of evidence suggesting any effect of
the type of tutor on this flow dimension.

4.5 Concentration of Task at Hand (Q5)

As for the concentration of task at hand (Q5), it seems to be greatly influenced
by other factors. In a paired t-test of 9 students from weeks 2 and 4 of the
FIT1050 Tuesdays 3 p.m. group, which are both carried out by a human tutor
on assignment briefing and preparation, there seems to be a significant difference
(T = −3.411, p = 0.009). This one in particular is tricky to explain as they are
almost identical in many ways, even the students’ responses. This could suggest
that the concentration of the task is affected by the teaching materials, because
in week 2, there is a student who suggested to slow the pace of instruction as well
as another student who commented that the content of the tutorial class made
him bored. In the FIT1033 Mondays 2 p.m. group, Week 8 scores significantly
higher than weeks 2, 4 and 7 in both paired and unpaired t-tests, as it consists
of a class test that requires students to focus on performing the task on their
own; therefore, this is an outlier that could be omitted from the analysis. On
the other hand, the week 4 robot tutor session about assignment briefing scored
significantly higher than the week 6 human tutor session about web accessibility
in the FIT1050 Wednesdays 8 a.m. group. In addition, an overall unpaired t-
test between all robot tutor sessions (170 responses) and human tutor sessions
(148 responses) regardless of unit revealed that robot tutor sessions significantly
evoke more concentration on the task at hand (T = 2.027, p = 0.044). This
may be the case as the presence of the robot attracts attention, as well as
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the unnatural speech which requires more concentration from the students in
order to understand its instructions. Although concentration on the task is also
dependent on the nature of the task (i.e. whether the task is of interest to
the student or not), on average, there is evidence suggesting that students have
higher concentration with the robot tutor compared to human tutors across
multiple university units.

4.6 Sense of Control (Q6)

The results for sense of control (Q6) is similar to Section 4.2 where there are
only a few cases where robot sessions score significantly lower but never vice
versa. Weeks 1 and 2 of the FIT1050 Wednesdays 8 a.m. group taught by the
robot tutor scored significantly lower than week 8 which was taught by a human
tutor in the paired t-tests (p-values of 0.011 and 0.029 respectively). In addition,
week 6 of the FIT1050 Tuesdays 3 p.m. group taught by the robot tutor also
scored significantly lower than weeks 1 and 3 taught by a human tutor in the
unpaired t-tests (p-values of 0.038 and 0.013 respectively). It is expected for
these observations to always be influenced by other factors, yet these observed
differences should not be completely disregarded especially with support from
qualitative data such as the students’ comments. Hence, it can be said that
the introduction of a robot tutor has a weak negative influence on the sense of
control due to the slightly more rigid lesson structure introduced by the robot.

4.7 Loss of Self-Consciousness (Q7)

Loss of self-conciousness (Q7) is significantly lower for robot sessions compared
to human sessions, and this is consistent across two study groups of the same
university unit, FIT1050. Throughout the study, it is observed that students
were quite reluctant to interact with the robot. For almost all sessions, the
human facilitator was required to encourage students to participate and assure
them that they are free to choose any answer as it is simply to test the robot
rather than their knowledge. There are 3 responses which indicate that rea-
son for this phenomenon, is the feeling of embarrassment. The causes of this
embarrassment are: (1) the students are still afraid of answering wrongly; and
more interestingly, (2) the robot not being able to detect the student’s response.
One student wrote that, “the feeling of not getting a response from the robot
is shameful” and another said, “I was scared that the robot might fail to detect
my response.” Instead of a feeling of disappointment, why is it that students
feel embarrassed when it is the robot’s fault for not being able to detect their
response? The interaction with the robot requires the student to come forward,
focusing the attention of the entire class on the student and the robot. This
is different from the interaction with human tutors, where the student remains
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(b) Weeks 1-4 carried out by human tutor,
5-8 with robot.

Figure 4.1: Habituation effect and similar trend of positive sentiments over 8
weekly sessions.

seated among the crowd while the tutor asks questions to the audience in a
manner similar to an open discussion. Under the limelight with the robot, and
based on the students’ responses, it is likely that they are simply afraid that
they might not have spoken loud or clear enough; thus, reflecting poorly on
their ability and being caught in an awkward situation feeling out of place.

4.8 Transformation of Time (Q8)

Transformation of time (Q8) had the most significant impact in the FIT1050
Tuesdays 3 p.m. group on Week 5, during the switch from the human tutor to
the robot tutor. In the unpaired t-test (each group having a sample size of 12
students), very significant differences were detected for all human tutor sessions,
Weeks 1 to 4 as compared to Week 5 (p-values < 0.01). Interestingly enough,
significant differences were also consistently found for the following weeks 6 and
7. When looking at the students’ comments, it is rather clear that this is due
to the excitement and anticipation of finally being able to interact with the
robot for the first time, but this effect gradually wears off after each week as
the students get habituated to the same robot lesson structure throughout 4
weeks. Figure 4.1a shows the percentage of positive sentiments out of about 15
students (the number of students depends on the week) gradually decreasing
for the first 4 weeks carried out with a robot tutor, and the trend is similar for
both FIT1050 Wednesdays 8 a.m. and FIT1033 Mondays 2 p.m. groups which
start the first 4 weeks with a robot tutor, followed by the next 4 weeks with
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Figure 4.2: Transformation of time (Q8) and autotelic experience (Q9) average
scores over 8 weekly sessions for FIT1050 groups.

a human tutor. No significant difference is observed for this flow dimension in
the Wednesday group of the same unit, which highly suggests that anticipation
or hype is the primary cause of the session being perceived as more engaging
and rewarding. In fact, if the first 4 weeks are carried out by a human tutor,
followed by the next 4 with a robot tutor, allowing anticipation to build among
about 12 students (the number of students depends on the week), the positive
trend gradually increases as seen in Figure 4.1b.

4.9 Autotelic Experience (Q9)

Like the previous section, the same is true for autotelic experience (Q9) albeit its
effects last only 1 week rather than through the course of 3 weeks. Figure 4.2
shows the sharp change in averages during the robot tutor switch from week
4 to week 5 for the FIT1050 Tuesdays 3 p.m. group. In order to fully take
advantage of the autotelic experience flow dimension, there should be variation
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in activity with the robot, or gradually revealing more features and capabilities
of the robot. This study did not take advantage of that and instead opted for a
more traditional instructional approach throughout all weeks in order to strike
a better comparison with the human tutors in this study.

A summary of how robot tutor sessions affect the 9 flow dimensions are
shown in Table 4.3. For each flow dimension, if there is a high consistency
in both the quantitative and qualitative data that can be used as supportive
evidence, it is said to have a strong influence. A plus ( ) sign indicates that the
robot tutor performs better than human tutors in that flow dimension whereas
a minus ( ) sign indicates otherwise.

4.10 Sentiment, Boredom and Student Comments

Lastly, a chi-square test between the type of tutor and sentiment yields no
significant difference (χ2 = 2.256, p = 0.521). The same result is observed
for experiences of boredom (χ2 = 0.37, p = 0.543) as there are a rather equal
experience of excitement and boredom for both types of tutors. For robot
tutor sessions, many students find it interesting (34 responses) but it also has
a significantly higher number of suggestions for improvement (χ2 = 28.23, p =
1.077×10−7). There were 16 suggestions from the students’ responses to improve
the robot’s speech as it is quite difficult to catch due to the unnatural tone,
pace and lack of emotion in its voice; and 10 suggestions to improve its speech
recognition when interacting with students. In general, students expect the
robot to be more human-like in its operations. There are a few suggestions
which ask to lengthen the time spent with the robot, as well as to make the
robot move or walk around more. Students’ comments regarding the robot tutor
are visualized in Figure 4.3a.

As for human tutors, there is significantly more interaction compared to
the robot tutor (χ2 = 32.178, p = 1.408 × 10−8) as the robot follows a more
rigid, programmed lesson structure and cannot interact with multiple students
at once. Students are able to freely ask questions to the human tutor and this
is reflected quite clearly in their comments as seen in Figure 4.3b. While both
types of tutors are able to present the teaching material in an informative way,
the freedom of interaction is much more limited for the robot tutor; hence,
proper integration and lesson design guidelines are needed.
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# Flow Dimension Influence Comments

Q2
Merging of Action and
Awareness (Section 4.2)

Weak

Students are slightly less
spontaneous in their
actions when the robot is
first introduced.

Q3 Clear Goals (Section 4.3) Weak

Although partly due to
instruction quality,
students are not able to
understand the task clearly
due to unnatural, robotic
speech.

Q5
Concentration of Task at
Hand (Section 4.5)

Weak

Students in general are
more concentrated on the
task when a robot tutor is
involved, although it also
depends on their interest
on the task.

Q6
Sense of Control
(Section 4.6)

Weak

In some cases, the
involvement of a robot in
the task may force a more
rigid lesson structure.

Q7
Loss of Self-Consciousness
(Section 4.7)

Weak

Students are more
concerned with how others
may think of them if/when
they are interacting with
the robot.

Q8
Transformation of Time
(Section 4.8)

Strong

Due to anticipation,
students feel that their
time spent with the robot
passes more quickly.
Gradually loses effect over
several sessions.

Q9
Autotelic Experience
(Section 4.9)

Strong

Due to anticipation,
students perceive their
session with the robot as
more rewarding and
interesting. One-time
effect.

Q1
Challenge-Skill Balance
(Section 4.1)

None
Highly dependent on the
task.

Q4
Unambiguous Feedback
(Section 4.4)

None
Lack of consistent
evidence.

Table 4.3: Summary of flow dimensions affected by the robot tutor, each
corresponding to a question in the Flow State Scale-2 (see Appendix B).
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(a) Robot tutor sessions.

(b) Human tutor sessions.

Figure 4.3: Word cloud of student comments from the questionnaire responses.
The top 50 most frequent word counts are shown in Appendix F
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Chapter 5

Discussion and Key
Recommendations

Aside from the research constraints described in Section 3.6, this study revealed
some technical limitations for robotic hardware and in human-robot interaction
which affects students’ experiences of flow. During the study, there were occur-
rences where the students simply could not speak loud enough for the robot to
detect. Such issues inevitably extend to people with disabilities and therefore,
the problem of accessibility in human-robot interaction should be considered.
For example, voice interaction should not be the only method of interaction with
the robot. Instead, students should be given the option to communicate with
the robot using gestures or touch. There exists an accessibility-aware robot
system that looks at static body language which could prove to be a useful
solution to this problem (McColl et al., 2017). Furthermore, many students
reported that the robot’s speech is unnatural and can be difficult to listen to or
understand. If the robot is integrated with the learning environment,
it is possible for the projector screen to be showing the captions or
script in which the robot is reading from. In this study, the NAO robot’s
speech was required to be set at 80% speed. When the speed was set to 70%
or 90%, students reported that the pacing was either too slow or too fast. In
order to better represent the 80% speed of the NAO robot, a sample text of 38
words in 3 sentences was completed by the robot in approximately 20 seconds;
therefore, the recommended speed for robot instruction in university tutorial
classes based on this case study is 114 words per minute. The sample text used
is as shown below:

Hello class, and welcome to today’s lesson where we will be learning
about robots. Did you know that the recommended speed of robot
speech in university classes is currently being looked into? Thank
you for listening, and goodbye.
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Currently, the robot is very segregated from the learning environment, is
never connected to the computers in the classroom and mostly requires a man-
ual initiation. The robot needs to be part of the learning environment. It needs
to be integrated with computers to be able to proceed with the slideshow pre-
sentation automatically without manual intervention, so as to not break the flow
of instruction. This was suggested by some of the students, as well as the tutor
of the FIT1033 unit. Aside from that, students lack the opportunity to interact
with the robot and it is mostly limited to 1-to-1 interactions. Students were
also generally reluctant to participate when this 1-to-1 interaction structure was
imposed. This fear of getting the wrong answer may likely be caused by the
competitive and collectivist Chinese culture which is also observed in Malaysia
(Hodkinson and Poropat, 2014). A possible solution is to integrate web forms
for students to submit their responses, while still be open to face-to-face interac-
tions with the robot. A server, or the robot itself could process these responses
and generate a response in return. This is one way of interacting with all the
students, and serves as a workaround to the unnatural voice and speech recogni-
tion problem. Another suggestion would also be to reconsider the role of robots
in classrooms as peers rather than tutors. In one study, 28 adults subjected
to the peer condition actually graded the robot highly as a tutor compared to
other conditions; and since the perceived authority of the robot is positively
correlated with the clarity with which it expresses itself (Blancas et al., 2015),
the limitations of the robot speech as seen in this study would suggest that
the robot interactions should be redesigned to be less authoritative but more
cooperative in nature.

The robot should be greatly taken into consideration during the design of
the lesson structure. Currently, any existing teaching materials were just di-
rectly generated using text-to-speech with minor changes and even so, this ad-
ditional amount of work on the tutor’s part is one of the barriers to integration.
Therefore, an automated solution or a standard for lesson planning should be
established. Also, more consideration should be put into how the robot can
act as an assistant in delivering the instructions to the class. In doing so, the
robot should also be equipped with more ready-to-use functionality and ges-
tures which are more suitable for educational environments, such as to grab or
pick up items, and pointing at things. Simple actions like these should be at
a finger’s reach through a simple device such as a remote control or a smart-
phone application to allow the tutor to control the robot directly on demand.
This way, a desired response can be triggered easily so as to not break the flow
of the lesson. Any unwanted or unnatural responses from the robot when the
student interacts with it can be prevented if the tutor has more direct control
of the robot. With the lack of control, it was difficult to implement walking
in a dynamic learning environment and the need of a robust walk controller in
robots such as NAO has been expressed in the past (Shamsuddin et al., 2011).
Furthermore, there is a lack of separate and parallel control between speech and
physical movement of the NAO robot; hence, programming and graphical user
interface (GUI) architectures in educational robotics should aim to facilitate
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Figure 5.1: Example core API functionality and interface design for developers
as part of a suggested robot integration framework for universities.

this process.

With all the suggestions combined, at least from this case study, there is
a need for a web-based Application Programming Interface (API) which exter-
nalizes the functions of robot control and educational software to other devices
(see Figure 5.1, with blue lines and arrows indicating data connections, such as
through Local Area Network (LAN) or the Internet); promoting an Internet-
of-Things (IoT) infrastructure where all devices in the classroom can be inter-
connected. Without such integration, the robot is mostly segregated from the
lesson design process as well as the learning environment, limiting its ability as
an educational robot.

The robot needs access to the university’s servers and storage to contribute
any data it can collect from the students or fetch lesson plans; and be controlled
or interact with educators and students in a variety of ways. With this system in
place, Figure 5.2 illustrates a possible framework which outlines the integration
setup for robot-assisted lessons in the university learning environment. In this
figure, blue lines indicate data connections; red lines indicate real-world inter-
action which can be through speech, touch or gestures; the yellow line indicates
the light projected from the projector; and the grey line indicates the student’s
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Figure 5.2: A suggested robot integration setup in a university learning
environment for educators (C, L and A nodes correspond to the interface in

Figure 5.1).

non-interactive observation of the projector screen.

The tutor can interact with the Web API shown in Figure 5.1 through the
tutor’s computer in the classroom, or with the tutor’s own smartphone device
(through a browser, an application, or any program that can access the web)
to use the control interface (orange-colored node labeled ‘C’ shown in Figure
5.1 and Figure 5.2) which processes the necessary robot functions in the back-
end to be translated into commands which the robot understands, and these
commands are finally sent to the robot to be carried out. The tutor also has
access to the “Parallel Speech-Action Robot Lesson Planning” functions (teal-
colored node labeled ‘L’) which assigns a fixed set of actions and instructions
for the robot to teach the class. “Parallel Speech-Action” is a term defined in
this study to describe that actions of the robot should be executed separately
from its speech, and parallel processing of these two should allow the robot to
instruct the class more fluidly and effectively.
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In addition, the interface for creating robot-based lessons should be designed
with this concept in mind to mitigate the difficulties of robot tutor integration.
Lastly, the functionality to collect student responses and perform learning ana-
lytics (blue-colored node labeled ‘A’) is needed to allow the university servers to
not only receive inputs from all students at once through their computers, but
also to process and analyze these responses, as well as any other inputs from
the robot’s cameras and sensors, allowing for various responses from the robot,
as well as assessments on student performance or experience in the learning
environment.
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Chapter 6

Conclusion and Future
Work

In summary, compared to human tutor sessions, the introduction of a robot
tutor in university tutorial classes positively affects: concentration of task at
hand, transformation of time and autotelic experience; but imposes a slightly
more rigid lesson and interaction structure which negatively affects: merging of
action and awareness, clear goals, sense of control and loss of self-consciousness.
Many students commented that the robot was fun, interesting and felt more
rewarding although the introduction of the robot tutor made the lesson structure
more rigid. On the other hand, many positive comments for the human tutor
are about good social interaction and the ability to question freely about the
lesson contents, which the robot is unable to cater for.

There are strengths and weaknesses to both types of tutors, but we can take
advantage of the incorporation of robots in classrooms despite its limitations
to enhance learning. A robot’s role as an assistant in the classroom can be
effective in providing social support, attracting students’ attention and mak-
ing the lesson feel more exciting. With the human tutor still being the main
driving force behind the lesson, the drawbacks of robot tutors can be mitigated
if more thought is put into its use in the learning environment. Therefore, an
integration framework was proposed in this study to establish guidelines and
recommendations in the design and implementation for robot-assisted teaching
in university classes.

The strongest finding of this study is in discovering the extent in which
robots affect university students’ experiences of flow compared to human tu-
tors (summarized in Table 4.3), as well as the recommended solutions to key
technical limitations of robotic hardware such as unnatural speech (best set to
114 words per minute) and gesture or touch capabilities for accessibility issues
during human-robot interaction.
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In future, more applied research of robotics should be carried out in class-
rooms. By doing so, more of such case studies can strengthen or weaken the
suggestions from this study which will provide us with a clearer understand-
ing of how the introduction of robot tutors affect student learning experience.
More of such studies also help expand the framework for good robot-classroom
integration to understand and even enhance the role of robotics in pedagogy, as
well as to take advantage of it effectively. One of such advancements is ARTIE,
an integrated environment for the development of affective robot tutors with an
architectural pattern to integrate emotional assessment in educational software
driven by the robot’s emotional pedagogical support (Cuadrado et al., 2016).
As the field of educational psychology is broad, a review of these architectures
with the focus shifted to the higher education context is needed, as adults may
interact differently with robots compared to children, along with other social
and cultural factors which may be exacerbated by age.

As more robots are integrated into classrooms, and if future artificial in-
telligence technology permits, the impact of human-robot interaction to edu-
cational performance and student learning experiences can be further explored
with real-time data collection and learning analytics with more focus on speech
recognition and facial emotion analysis (Wong et al., 2016) as emotions are key
drivers of learning (Rienties and Rivers, 2014), yet have received little notice in
educational research especially in the field of learning analytics (Artino, 2012).
Within the 15-minute sessions of this study, students reported to have instances
of boredom but yet still experience fun in the session which proves tricky to in-
vestigate through traditional data collection methods; hence, real-time learning
analytics is suggested as one of the core functions in the integration framework
(see Figure 5.1). As such, emotion assessment is an area which can highly ben-
efit the field of pedagogy, and its application to educational robotics will move
us a step closer to the social integration of robots in classrooms.
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Appendix A: Literature Review Summary

Web of
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Scopus Duplicate Others

*Quartile is based on Thomson Reuters’ Journal Citation Reports
2014 ranking statistics for the journal.

No Literature Journal Quartile∗ Methodology Participants Experiment Results
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[First online
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Technology
and Design
Education

Q4 Quantitative
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graduate
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from
University
of Surrey,
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Implements a Computer
Supported Collaborative
Learning (CSCL)
environment to support
lab-based CAD
teaching. Student
participation is
monitored to identify
predictors of success,
analyzed using
ANOVA, Pearson
correlation and linear
regression.

Attendance and average
time-spent on task has
a direct relation with
the learning outcomes.
Students who prefer to
sit in groups or remain
next to their fellow
students tend to score
better.

2
Alemi et al.
(2015)

International
Journal of
Social
Robotics

Q3 Quantitative
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robot assisted language
learning (RALL) using
NAO robot on the
anxiety level and
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amongst Iranian EFL
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questionnaires of
anxiety and attitude
were utilized to measure
the students’ anxiety
and attitude.

t-tests indicated that
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and a more positive
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3
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(2014)
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students for NAO
robot-assisted language
learning (RALL) and 16
for non-RALL groups.
At the end of the study,
the same test was
administered as an
immediate post-test
and the questions were
counter balanced and
administered as a
delayed post-test two
weeks after the
treatment process (with
Cronbach alpha of
0.89).

Mean results for
pre-test: 13.53,
post-test: 39.76,
delayed post-test:
39.50; showing
effectiveness of
acquiring rudimentary
linguistic skills and
retention of knowledge
through the socially
assistive robot
treatment.

4
Altin and
Pedaste
(2013)

Journal of
Baltic
Science
Education

Q3 Review
8 research
papers

Systematic review on
robotics curricula for
STEM subjects found
that approaches used
are: discovery,
collaborative,
problem-solving,
project-based,
competition-based, and
compulsory learning.

Lack of quantitative
evidence for applying
robots in curricula to
achieve educational
goals. Most robotics
education approaches
should not be used
alone.

5

Alves-
Oliveira
et al.
(2015)

Lecture
Notes in
Artificial
Intelligence

Q4 Quantitative

56 children,
14-16 years
old,
Portugal

Children are paired in
groups to interact with
a NAO robot tutor that
guides them through a
collaborative multiplayer
game, EnerCities for 20
minutes.
Questionnaires were
given before and after
the test.

Majority of children
expected the robotic
tutor to be a good game
companion and revealed
higher satisfaction but
those who expected the
robotic tutor to play
best in the game
showed a significant
decrease in satisfaction
after the interaction.
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6
Anaya et al.
(2016)

Expert
Systems
with
Applications

Q1 Qualitative 23 students

A method of data
mining for learning
experience was formed
through vigorous
literature review and
analysis, then a survey
was carried out to
obtain feedback on the
developed tool.

Two approach to assess
student collabration:
clustering (group
students according to
collaboration) and
metric (calculate
metrics Uses influence
diagrams based on
Bayesian network to
solve uncertainties in
collaboration.

7
Ardito et al.
(2014)

Middle
Grades
Research
Journal

Unranked Mixed

≈1600
students in
Croton
Harmon
School,
New York

Students were engaged
in LEGO Mindstorms
robot challenges using
constructionist methods
that required them to
work together for 1
semester to enhance
problem-solving ability.
Textual analysis was
done on student
writings in a class blog,
and their mathematics
subject grades were
assessed.

Exam scores are higher
in concepts associated
with algebra,
measurement and
probability. Textual
analysis shows prevalent
collaboration among
students.

8
Benitti
(2012)

Computers
&
Education

Q1 Review 10 articles

Systematic review on
subjects taught with
robots on the type of
robot and research
method used, and the
sample characteristics.

Empirical evidence on
effectiveness of
educational robotics is
limited, but has
potential.

9
Berland
et al.
(2015)

International
Journal of
Computer-
Supported
Collabora-
tive
Learning

Q1 Quantitative

95 students
(junior and
high school)
in Texas,
USA

Students were placed in
pairs on the basis of
predictive CS-ZPD as
indicated by AMOEBA
(analytics tool) and
asked to collaborate. As
programming data was
generated and analyzed,
some students were
re-paired. Students’
program data were
analyzed to explore how
pairing with AMOEBA
impacted using IBMs
SBSS statistical
software package.

Students, after having
been paired on the
recommendations
provided by AMOEBA,
evidenced more
proficient program
development.

10
Bers et al.
(2014)

Computers
&
Education

Q1 Quantitative
53 kinder-
garteners in
Boston

TangibleK curriculum
based on
constructionism was
designed for robotics
and programming
course and is carried out
with CHERP
programming language
and LEGO Mindstorms
robots. Student
performance is assessed
with statistical t-tests
for correlation.

When given
age-appropriate
technologies, curriculum
and pedagogies, young
children can actively
engage in learning from
computer programming
as applied to the field of
robotics.

11
Bilotta
et al.
(2009)

Lecture
Notes in
Computer
Science

Q4 Mixed

28 students
in
University
of Calabria,
Italy

An edutainment
robotics program built
based on constructivist
theory and LEGO
Mindstorms is assessed
on work distribution in
each student group,
description of task
resolution, correctness
of programming
strategies and number
of tests completed
before success.

Constructionist
approach of using
robotic artefacts
stimulates students to
collaboratively analyze
processes and
experiment the
consequences of their
behavior.
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12
Blancas
et al.
(2015)

Lecture
Notes in
Artificial
Intelligence

Q4 Mixed 28 adults

This study assesses
whether the role a robot
plays in a classroom
affects knowledge
retrieval, subjective
experience, and the
perception of the
learners. The NAO
robot delivers the
history class in either a
teacher or peer
condition with
differences in posture,
gestures and speech
(formal/informal).
Questionnaires,
pre-test, post-test and
video recordings were
analyzed.

There are no significant
differences between the
conditions in the
amount of knowledge
retrieved. Subjects in
the peer condition
graded the robot as a
tutor higher than in the
other conditions.

13
Brown and
Howard
(2014b)

Integrated
STEM
Education
Conference
(ISEC)

Unranked Mixed

Trial 1: 24
college
students,
Trial 2: 20
high school
students

Integrates a socially
interactive robotic tutor
(DARwIn-OP) to
engage students in the
classroom environment.
Students are randomly
assigned to either a
control group with no
robot tutor or the
treatment group.
Completion time,
Likert-scale survey on
experience and
freeform feedback were
analyzed.

Verbal cues are able to
increase and/or
maintain student
engagement regardless
of student age and
math content level. The
control group was less
nervous with the robot
tutor.

14
Brown and
Howard
(2014a)

Computers
in
Education
Journal

Unranked Mixed

13 middle
school
students
(10-14 years
old) in
Atlanta, GA

15-question math test
in the computer to
assess total time,
response accuracy and
proper function
execution with webcam
to monitor eye gaze and
pose. Data is tested for
statistical significance.
Exit survey and video
observations were
analyzed.

If a student is classified
as being on-task, he or
she is engaged
regardless of speed or
response. Eye gaze and
head pose technique is
not an effective measure
of engagement when
high-level cognitive
thinking is required.

15
Catlin
(2014)

Lecture
Notes in
Computer
Science

Q4 Review N/A

A review on how peer
and self-assessment
(PASA) is applied in
educational robotics.

Black and Williams’
Assessment for Learning
(AfL) strategies offers a
way of structuring
lessons while fostering
essential intellectual
freedom of the student.

16
Chen et al.
(2012)

Turkish
Online
Journal of
Educational
Technology

Unranked Review N/A

A look on the
application of digital
technology such as
robots, projectors and
computers to build a
game-based learning
environment for
classrooms, called
Digital Learning
Playground (DLP) with
the use of Total
Scenario Response
(TSR) learning design
methods.

Suggests that physical
things have higher
potential to engage and
to support authentic
and possibly experiential
learning.

17
Chin et al.
(2014)

IEEE Trans-
actions On
Learning
Technolo-
gies

Q3 Mixed

1 teacher
and 52
second-
grade
students in
Taiwan

Students are randomly
assigned to either the
proposed robot tutor
learning system (using
Robotis Bioloid Kit) or
a PowerPoint-based
learning system. The
robot is used as an
assistant; it performs
gestures according to
the instruction materials
presented. A pre-test
and post-test
questionnaire was
employed to measure
attention, relevance,
confidence and
satisfaction.

Social interaction with
humanoid robots have
positive results on
student motivation and
performance in
elementary education.
Satisfaction and
relevance were rated the
highest.
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18
Danahy
et al.
(2014)

International
Journal of
Advanced
Robotic
Systems

Q4 Review
4 case
studies

Reflecting the role
LEGO robotics has
played in college
engineering education
over the last 15 years,
starting with the
introduction of the RCX
in 1998 and ending with
the introduction of the
EV3 in 2013.

LEGO Mindstorms
products have allowed
students to take on
complex engineering
questions without
experience in circuit
design, artificial
intelligence or
programming.

19
Danubianu
(2015)

19th Inter-
national
Conference
on System
Theory,
Control and
Computing
(ICSTCC)

Unranked Qualitative

960
university
students in
130 courses
of Faculty
of Electrical
Engineering
and
Computers
Science in
University
of Suceava,
Romania

A case study for a data
preprocessing framework
for students’ outcome
prediction using data
collected by Moodle
system. It shows some
methods of aggregating
and extracting useful
data from LMS for
further analysis.

Before further analysis,
data may need to be
preprocessed to
establish the
dependencies between
courses and form
association rules such as
clustering.

20
Das et al.
(2015)

IEEE Trans-
actions on
Human-
Machine
Systems

Q2 Quantitative

36 students
from
Saitama
University,
Japan

A human-robot
interaction approach for
social robots that
attracts and controls
the attention of a target
person based on his/her
current visual focus of
attention. It estimates
”task-related contextual
cues” and ”gaze
pattern” to determine a
suitable time to
interact. Questionnaires
were used to assess the
performance.

Among 72 interactions,
the system was able to
detect 66 times the
gaze point of visitors in
a museum and make a
successful interaction at
a rate of 91.7%.

21

de Greeff
and
Belpaeme
(2015)

PLoS One Q1 Mixed

38
participants
recruited
from around
a British
university
campus

The interaction between
human participants as
teachers and the robot
as a learner is modelled
through a language
game. Participants are
randomly assigned to
social and non-social
robot group.
Assessment is done on
robot learning
performance,
participants’ choice of
topic, participants’ gaze,
and questionnaire on
subjective experience.

Robots might positively
influence an interaction
with a person through
using social cues that
are generally perceived
as natural which can
result in people offering
better quality learning
input to artificial
systems.

22
Doḿınguez
et al.
(2015)

ACM Inter-
national
Conference
on
Multimodal
Interaction,
ICMI

Unranked Review N/A

Discusses and evaluates
the design of a personal
Multimodal Recording
Device (MRD) to
capture student actions
during lectures,
including its foreseeable
costs, scalability,
flexibility, intrusiveness
and recording quality.

Low-cost devices change
the paradigm from
centralized to
distributed recording in
order to establish
student behavior in
class with the potential
for learning analytics
research.

23

Fidalgo-
Blanco
et al.
(2015)

Computers
in Human
Behavior

Q1 Quantitative

110
first-year
Biotechnol-
ogy degree
students
from the
Technical
University
of Madrid,
Spain

Implements a learning
analytics system using
CTMTC method
(Comprehensive
Training Model of the
Teamwork Competence)
to analyze online forum
data through Moodle.
Statistical tests using
Pearsons correlation
were done on 5136
messages and 37,930
message views.

Active interactions have
a greater relation with
the individual
performance in
teamwork contexts than
passive ones. The
relationship between
message views and
individual final grade is
inconclusive.
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24
Fridin
(2014)

Computers
&
Education

Q1 Quantitative

10 kinder-
garten
children (5
boys & 5
girls, aged
3-3.6) in
Israel

Derives a child-robot
interaction metric from
eye contact and
affective factor to
analyze its relationship
to cognitive and motor
performance after NAO
robot interaction based
on constructivist
methods. Statistical
analysis using repeated
measures ANOVA and
Pearson
product-moment
correlations.

Children performance is
positively correlated
with interaction levels,
and is not significantly
affected by any of the
between-subject factors.

25
Fridin and
Belokopytov
(2014)

Computers
in Human
Behavior

Q1 Quantitative 18 teachers

A modified Unified
Theory of Acceptance
and the Use of
Technology model was
applied using
questionnaires following
interactions with NAO
robot in a workshop
(non-random sample).
Results were analyzed
using statistical tests
for correlations and
linear regressions to
determine reliability of
data.

Positive reactions but
lack of consolidated
views and there is a
need for an adaptation
of the model.

26
Gašević
et al.
(2016)

The
Internet and
Higher
Education

Q1 Quantitative
4134 under-
graduate
students

The study used a
correlational design and
statistical analysis as it
investigated the effects
of the variables derived
from the trace data and
the data from the
institutional student
information system on
the prediction of
students’ academic
success. The data for
the study were
extracted from a public
research-intensive
university in Australia.
9 undergraduate courses
were selected.

There is a need to
create models for
academic success
prediction for individual
courses, incorporating
instructional conditions
into the analysis model.
Otherwise, several
threats to the validity of
the results may emerge
such as overestimation
or underestimation of
certain predictors.

27
Goggins
et al.
(2015)

Journal of
Universal
Computer
Science

Q4 Quantitative
28 groups
of 3-5
students

A set of words and
actions were analyzed
e.g. since the task is to
draw a triangle,
conversations with the
word ”triangle” or usage
of the ”segment” tool
indicate collaboration
towards a goal. A
Tree-Augmented
Näıve-Bayes
assessment model was
developed, achieving the
highest accuracy
(95.8%) as compared to
baseline models.

A web-based tool
developed to visualize
time-series activities and
assess small group
learning in real time.
Many studies overlook
the collaborative process
and looks at final
solution or grades, but
this study shows that
group interaction can be
modeled.

28
Hernández-
Garćıa et al.
(2015)

Computers
in Human
Behavior

Q1 Mixed

656
students at
Open
University
of
Catalonia,
Spain

Uses Gephi 0.8.2 for
social network
visualization and
analysis. Network
parameters provide a
quantitative
interpretation of data,
while data visualization
facilitates qualitative
explanation.

Students who got more
replies from consultant
teachers tended to get
higher grades. Social
network analysis (SNA)
parameters are related
to academic
performance only in
some cases, not all.
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29

Iglesias-
Pradas
et al.
(2015)

Computers
in Human
Behavior

Q1 Quantitative

39 Masters
degree
students at
Universidad
a Distancia
de Madrid,
Spain

Explores the
applicability of learning
analytics for prediction
of development of two
cross-curricular
competencies:
teamwork and
commitment.
”Interactions” Moodle
plugin was used for
interaction data
extraction and
categorization. Multiple
regression analysis on
total number of
interactions of each
category as independent
variables and the total
score of each
competency as
dependent variable.

The results showed no
relation whatsoever
between interactions of
any kind in the Learning
Management System
and the students’ final
level of teamwork
competency. There is
also no relation between
any type of interaction
and commitment levels.

30
Joksimović
et al.
(2015)

Journal of
Computer
Assisted
Learning

Q1 Quantitative

81 students
and 1747
student
messages in
online
discussion
from a
public
online
university in
Canada

Examines the
relationship between
indicators of social
presence and academic
performance.
Investigation is done
using minimal guidance
for social interaction
(control group) and one
tailored for social and
cognitive presence
(treatment group).
Pearson’s correlation
and multiple regression
analysis was performed.

Certain indicators of
social presence were
significant predictors of
final grades. Course
design that increased
the level of meaningful
interactions between
students had a
significant impact on
the development of
social presence and
could positively affect
students’ academic
performance.

31

Kandlhofer
and
Steinbauer
(2016)

Robotics
and Au-
tonomous
Systems

Q3 Quantitative

148 pupils
(mean age
14.9 years)
from 9
schools
across
Austria and
Sweden

Quasi-experimental
two-group design with
pre-test and post-test
using questionnaires.
Statistical methods
with repeated
MANOVA, the gathered
data were analyzed
around 14 different
topics (’sub-scales’)
arranged in three main
categories.

Educational robotics
has a significant positive
impact on some
separate sub-scales
(mathematics and
scientific investigation,
teamwork, social skills)
but not all.

32
Keren and
Fridin
(2014)

Computers
in Human
Behavior

Q1 Mixed

3 groups of
children
(Israeli
born, 10
boys and 7
girls), 1
technician,
1 staff
member

NAO robot introduced
in class following a set
of procedures: (1)
cognitive stage - robot
teaches children, (2)
metacognitive stage -
children teach each
other how to interact
with robot. Post hoc
analysis of video
footage, observation
checklist and
interaction index
combines eye contact
and emotional
expressions (with
Cronbach’s alpha of
0.686).

Data revealed
significant improvement
in children’s
metacognitive abilities
in the second stage
compared to the first.
Socially assistive robots
can provide psychology
development data in
real-time for teachers to
regulate.

33

Khanlari
(2016)
[Published
online in
June 2015]

European
Journal of
Engineering
Education

Unranked Qualitative

11
elementary
teachers
from New-
foundland
and
Labrador
English
Schools
District,
Canada

Qualitative case study
using online surveys on
teachers’ perceptions of
the effects of using
robotics on students’
lifelong learning skills,
teachers’ perceptions of
the barriers of using
robotics and the
support they need.

Teachers perceived that
robotics has positive
effects on scientific
inquiry skills. Challenges
include lack of technical
and instructional
support, preparation
and classroom time,
knowledge about
robotics and confidence.

34
Khanlari
(2013)

Engineering
Education
(ICEED),
2013 IEEE
5th
Conference

Unranked Qualitative

6 teachers
with 2-7
years of
experience

Interview on teachers’
perceptions of the
effects of robotics on
students’ learning
experiences and on their
interests towards STEM
subjects.

Teachers feel that
learning with robotics is
helpful because of its
hands-on, play-and-learn
nature and boosts
students confidence.
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35

Lee, Taha,
Yap and
Kinsheel
(2013)

International
Journal of
Engineering
Education

Q4 Quantitative

114 under-
graduate
students
(aged
22-25)

Assesses the learning
environment of a
constructivist
game-based robotics
simulator compared to
non game-based
conventional robotics
simulator on students
perceptions via
Constructivist
Simulation-based
Learning Environment
Survey (CSLES and
Test of Robotics
Related Attitudes
(TORRA)
questionnaires with
statistical tests for
correlation and multiple
regression analysis.

Game-based robotics
simulator is more
effective in terms of
Negotiation, Inquiry
Learning, Reflective
Thinking and Challenge.
There is positive but
relatively weak
relationship between the
undergraduate students’
enjoyment of robotics
lessons and the
game-based learning
environment.

36
Lee,
Sullivan and
Bers (2013)

Computers
in the
Schools

Unranked Mixed

19 kinder-
garten
students in
Boston,
USA

Each child was
randomly assigned in
summer camp LEGO
Mindstorms robotics
workshop to: (a)
instructional
environment through
pre-designed
teacher-guided
challenges or (b) a
constructionist
approach. Assessment
on reported
interactions
triangulated with
interactions observed
across 3 videos per
group.

The constructionist
approach reflected
higher mean numbers of
interactions. A less
structured
learn-by-doing approach
might be useful for
teachers when
integrating technology.

37
Lockyer
et al.
(2013)

American
Behavioral
Scientist

Q2 Review N/A

Uses a learning design
drawn from a repository
established through an
Australian project that
identified, reviewed, and
documented examples
of university courses
that effectively used
technology to facilitate
flexible learning.
Suggests analytics
models on a
case-by-case basis
comprising of individual,
small group, and large
group learning tasks and
use of online resources
and discussion forums.

Learning design consists
of resources, tasks and
support mechanisms.
Checkpoint analytics
looks at snapshot data
to check if students met
prerequisites. Process
analytics looks at
knowledge application
within a tasks.

38
Lonn et al.
(2015)

Computers
in Human
Behavior

Q1 Mixed

216
students in
a Summer
Bridge
Program,
USA

Uses Achievement Goal
Theory to measure
motivation, and
Patterns of Adaptive
Learning Scales to
measure achievement
goal orientations to
design an early warning
system (EWS) to
identify students at risk.
Tests for statistical
significance, multiple
regression models and
student self-reports
were analyzed.

Presentation of learning
analytics data to
students can affect
motivation negatively.
The next generation of
learning analytics
interventions must
provide direction on
how to tailor learning
environments to
learners’ needs.

39

Lundie
(2017)
[Published
online in
June 2015]

Educational
Philosophy
and Theory

Q4 Review N/A

Article which explores
learning analytics in
terms of computing
philosophy and the
information-theoretic
account of knowledge.

The human learning
subject is not reducible
to informational
transactions. Human
subjects experience and
value their own
information
incommensurably with
the ways in which
computers measure and
quantify information.
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40
Madhavan
and Richey
(2016)

Journal of
Engineering
Education

Q1 Review N/A
A review of Big Data
learning analytics
problems in education.

Work on understanding
the types of models that
could be used for
predictive efforts is still
very much in its infancy.
The latency between
collecting data from
students and the ability
to translate these data
into actionable
intelligence is a
significant barrier.

41
McGill
(2012)

ACM Trans-
actions on
Computing
Education

Unranked Mixed

35 non-
computer
science un-
dergraduate
students

Usage of Institute for
Personal Robots in
Education (IPRE) robot
to study its motivational
effects on non-computer
science students in a
CS0 introductory
programming course.
Uses Keller’s
Instructional Materials
Motivation Survey to
measure attention,
relevance, confidence,
and satisfaction; then
analyzed with statistical
t-tests, ANOVA and
MANOVA.

Little or no effect on
relevance, confidence, or
satisfaction; but
significant effect on
attention for
non-computer science
students to learn
programming. A little
different from results
obtained using IMMS by
Chin et al. (2014).

42
Michieletto
et al.
(2016)

Robotics
and Au-
tonomous
Systems

Q3 Quantitative

About 20
postgradu-
ate students
in
University
of Padova,
Italy

A graduate course
project on humanoid
robotics is presented
using a project-based
constructivist approach.
The task combines
teleoperation of NAO
robot using Kinect with
an integrated
programming
framework.
Quantitative data such
as project marks,
course marks and
student questionnaire
are used to assess
problem-solving ability.

Combining a
constructivist approach
with the assignation of
tasks of increasing
complexity (scaffolding)
leads to the desired
results in educational
robotics.

43
Mills et al.
(2013)

Australian
Educational
Researcher

Q4 Qualitative

24 Year 4
students
(aged
8.5-9.5)

Analyzes children
interactions during a
series of problem solving
experiments using
LEGO Mindstorms and
Vygotsky theory with
incrementally difficult
challenges through
students’ speech
interactions with tools,
peers, and other
experts, teacher
interviews, and student
focus group data.

Language-mediated
problem solving begins
with phases of
interaction for each goal
or sub-goal, followed by
the use of predictive
questions and directive
statements, and
culminates in an
emotive utterance of
greater intensity upon
realization of a likely
solution.

44
Miranda
et al.
(2012)

Frontiers in
Education
Conference
Proceedings

Unranked Qualitative

20
engineering
degree
students in
University
of
Catalonia,
Spain

45-hour robotics
workshop conducted
using Robonova-I and
constructivist methods
by randomly assigning
students into small
groups for project-based
learning. Interviews
were conducted.

Suggests use of
humanoid robots
through constructivist
methods enhances
learning and teaching
interest.

45
Mitnik
et al.
(2009)

Educational
Technology
and Society

Q2 Mixed

24
16-year-old
students
(10th
grade)

Students work in groups
of three, using a robot
and wirelessly
interconnected Personal
Digital Assistants
(PDA) based on
Feuersteins Mediated
Learning theory.
Statistical t-test is
made for significance
and video observations
were analyzed.

Statistically significant
increase in performance.
Students are highly
motivated.
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46
Park et al.
(2015)

Indian
Journal of
Science and
Technology

Unranked Quantitative

27
third-grade
students in
Korea

Students participated in
the robot learning
curriculum in 3 different
subjects (Korean,
mathematics and music)
for 12 weeks, a paired
t-test was conducted
with pre-tests and
post-tests on creativity
and class satisfaction.

Fluency and originality
were significantly
improved. Class
satisfaction was
measured by descriptive
statistics with mean of
4.45 out of 5.

47
Plauska and
Damaševičius
(2014)

Communi-
cations in
Computer
and
Information
Science

Unranked Mixed

22
university
students in
Lithuania

Introduces
Internet-of-Things
Supported Collaborative
Learning (IoTSCL)
paradigm based on
constructivism in a
robotics course.
Assessment done on
student engagement
using a survey and
four-phase interest
model. Lack of
statistical tests.

Student engagement
and feedback should be
about physical things
(in this case, robots)
rather than virtual.
Robots are part of the
learning environment
and must interact with
their environment.

48
Rienties and
Toetenel
(2016)

Computers
in Human
Behavior

Q1 Quantitative

151
modules
and 111.256
students
(based on
online data)
at the Open
University
UK

University modules were
mapped to learning
design categories which
are then analyzed with
data from Moodle.
Learner satisfaction is
assessed using Student
Experience on a
Module (SEaM)
questionnaire.
Correlation and
multiple regression
analyses were
conducted using IBM
SPSS 21 statistics
software package.

The primary predictor of
academic retention was
the relative amount of
communication
activities. Learner
satisfaction was strongly
influenced by learning
design.

49
Rubel and
Jones
(2016)

Information
Society

Q2 Review N/A

Thoughts on
information access
concerns and significant
student privacy
problems for learning
analytics in higher
education institutions.

Learning analytics
systems should provide
controls for differential
access to private
student data, must be
able to justify collection,
full accounting of how
benefits are distributed,
and students should be
made aware and given
choices on the collection
and use of their data.

50
Saerbeck
et al.
(2010)

Proceedings
of the 28th
ACM
Conference
on Human
Factors in
Computing
Systems
(CHI2010)

Unranked Mixed

9 girls and 7
boys in the
Primary In-
ternational
School of
Eindhoven,
Netherlands
(10-11 years
old)

Use of a robotic tutor
(iCat from Philips
Research) in 5 behavior
dimensions to vary
social supportiveness.
Participants were
randomly assigned
between Neutral or
Socially Supportive
modes. Video
recordings were
analyzed, survey on first
impressions, language
test to grade
performance,
questionnaire to assess
motivation and a final
interview.

Participants in the
social supportive
condition were
significantly more
motivated. The neutral
condition is solely on
knowledge transfer
while for the social
supportive condition the
focus is on active dialog
and positive social
supportive behaviors.

51
Schieble
et al.
(2015)

Journal of
Teacher
Education

Q1 Qualitative

30
preservice
English
teachers

The authors organized
all data sources
generated by individual
participants and treated
each individual as an
intrinsic case to analyze
the complexities of each
teacher candidate as an
individual with
particular histories of
participation. Teacher
reflections, discourse
analysis charts,
interviews, and videos
were examined.

Discourse analytic
approaches using
positioning theory allow
candidates to focus
specifically on how their
linguistic and non-verbal
choices impact the
enactment of identities
related to teaching and
learning.

68



52
Serholt
et al.
(2014)

2014
RO-MAN:
The 23rd
IEEE Inter-
national
Symposium

Unranked Qualitative

8 teachers
(England,
Scotland,
Portugal,
Sweden)

An interview study
conducted across several
European countries on
teachers’ views on the
use of empathic robotic
tutors in the classroom.

Robotic tutors should fit
with existing classroom
practices and social
norms; and assist in
recording data.

53
Silva et al.
(2008)

Latin
American
Robotics
Symposium

Unranked Qualitative

Children up
to 10 years
in a public
elementary
school in
Brazil

The interaction of each
student with the
Diagnostics Robotic
Agent (DRA) software
records the mistakes,
how long the students
need to perform a task
and how many times
requested help from a
more capable partner. It
then calculates ZPD
metric but the accuracy
and effectiveness of this
method is only observed
and not validated.

A ZPD metric may be
useful to identify
learning potential,
allowing teachers to
make better decisions to
intervene and plan
lessons better.

54
Singh et al.
(2013)

IEEE
Potentials

Unranked Quantitative

A group of
students, no
specific
number

Maintaining a positive
learning rate of a
student being taught in
a classroom using facial
expression recognition
and Tree Augmented
Näıve-Bayes (TAN)
classifier on a biped
robot platform. The
TAN is a probability
measurement to
determine what emotion
is being expressed.
Measures learning rate
of students through
affective emotions
expressed by students
while the robot mimics
teacher’s actions.

Actions can be repeated
if emotions detected are
confused or frustrated.
If emotions such as sad
are detected, the robot
tries a different set of
actions instead. This
type of response helped
maintained a positive
learning rate in this
study.

55
Slade and
Prinsloo
(2013)

American
Behavioral
Scientist

Q2 Review N/A
A socio-critical
perspective on the use
of learning analytics.

There is a need for
consideration of the
ethical dimensions and
challenges of learning
analytics. The proposed
principles provide an
ethical framework for
higher education
institutions to offer
context-appropriate
solutions and strategies
to increase the quality
and effectiveness of
teaching and learning.

56
Sullivan and
Bers (2016)

International
Journal of
Technology
and Design
Education

Q4 Quantitative

60 children
from pre-
kindergarten
to 2nd
grade

Children participate in
8-week robotics
curriculum in their
classrooms using the
KIWI robotics kit,
followed by post-test
for statistical
significance in robot
and programming
knowledge.

Tests for statistical
significance indicates
that the kindergarten,
first, and second grade
classes performed
equally well on
advanced programming
in the same amount of
time.

57

van
Leeuwen
et al.
(2015)

Computers
in Human
Behavior

Q1 Qualitative

2 male
history
teachers, 51
secondary
school
students
(mean age
of 14)

Teachers make use of
learning analytics
information provided to
them via Virtual
Collaborative Research
Institute (VCRI) to try
and regulate the class,
deciding when to
intervene. Assessment
done using interviews
for teachers’ reports
about their strategies
for diagnosing and
intervening, and the
associated challenges
and opportunities.

Teachers must
continuously choose
which level (individual,
group and class) to
monitor and how to
divide their attention.
The manageability of
the available
information decreased
due to high information
load and the teachers
were not always able to
maintain an overview of
all student activities.
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58
Wu et al.
(2015)

Interactive
Learning
Environ-
ments

Q1 Mixed

64 3rd
grade
students in
Yunlin
County,
Taiwan

A teaching assistant
robot named Powerful
English Tutor (PET)
was created to assist in
teaching English as a
Foreign Language.
Students were randomly
assigned to either a
control group without
PET and a treatment
group. Post-test to
assess performance,
survey for motivation,
questionnaire for
perception and
observational video
recordings. Statistical
t-tests were performed.

Treatment group had
significantly better
performance and
motivation. Assistant
robot was highly valued.
Voice recognition is
challenging in classroom
environments which are
normally noisy.

59
Yi et al.
(2016)

Journal of
Intelligent
& Robotic
Systems

Q3 Quantitative

65 under-
graduates
from
Robotics &
Mechanisms
Laboratory
(RoMeLa),
University
of
California,
Los Angeles

Using a Dynamic
Anthropomorphic Robot
with
Intelligence(DARwIn)-
High Performance(HP)
as an educational tool in
robotics undergraduate
classes. The impact is
experimented on
number of regular,
extracurricular and
outreach robotics
activities before and
after participating in
DARwIn-HPs
development.

This study shows that
undergraduates who
attended the
DARwIn-HP
development are likely
to feel strongly the
necessity for studying
STEM curriculum than
before.

60
Zacharis
(2015)

The
Internet and
Higher
Education

Q1 Quantitative

134
university
freshmen
students of
Computer
Science and
Computer
Engineering
courses

A bivariate correlation
between 29 online
activities with student
grade resulted in 14
variables with strong
impact on student final
achievement, which
were then used as the
input in a regression
analysis. Exploratory
univariate regression
analyses for student
age, gender, previous
grades, working status
and ethnicity revealed
that none of these
variables had a
significant effect on
course grade.

Overall accuracy of the
prediction of student
risk of failing is 81.3%.
Only 4 variables:
reading and posting
messages, content
creation contribution,
quiz efforts and number
of files viewed -
predicted 52% of the
variance in the final
student grade (active
participation).

61
Zaga et al.
(2015)

Lecture
Notes in
Artificial
Intelligence

Q4 Mixed

20 children,
6-9 years
old in
Netherlands

A study on the effect of
two different social
characters of NAO
robot (peer vs. tutor)
on children engagement
measured at the
cognitive (attention to
the task and the robot),
affective (emotional
response to the task),
and behavioral
(performance) level by
frequency and duration
of these attributes.
Video recording is
analyzed and a
questionnaire is given.

In the peer character
condition, children paid
attention to the robot
and the task for a
longer period of time
and solved the puzzles
quicker and better than
in the tutor character
condition.

62
Zawieska
and Duffy
(2015)

Advances in
Intelligent
Systems
and
Computing

Unranked Review N/A

This paper argues that
a new form of creativity
concerns the meanings
students make of
anthropomorphic robots
in the course of
human-robot social
interaction. This is
based on the following
assumptions: creativity
is socially constructed
and the main reason for
students to be
interested in robotics is
a fascination with the
illusion of life.

The combination of
anthropomorphic robot
design and social
interaction can result in
new ways to foster
creativity.
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Appendix B: Questionnaire Form

Subjective Experience

Based on your experience with the session, please answer the following questions
honestly and as accurately as possible.

Name:

Age:

Questions:

1. At any point during the session, did you feel bored, scared or frustrated?
If yes, what do you think caused this and why?

2. Did you interact with the tutor in any way, or not at all? Describe this
interaction or the lack thereof, and how you feel about it.

3. In short, how would you describe your experience and what suggestions
would you make to improve this 15-minute session?
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Short Flow State Questionnaire (FSS-2)

Please answer the following questions based on your experience and interaction
with the session. There are no right or wrong answers. Circle the number that
best matches your experience from the options at the bottom of each statement.

Rating Scale:

Strongly
disagree

1

Disagree
2

Neither agree
nor disagree

3

Agree
4

Strongly
agree

5

Statement:

1. I felt I was competent enough to meet the high demands of the situation.

1 2 3 4 5

2. I did things spontaneously and automatically without having to think.

1 2 3 4 5

3. I had a strong sense of what I want to do.

1 2 3 4 5

4. I had a good idea while I was performing about how well I was doing.

1 2 3 4 5

5. I was completely focused on the task at hand.

1 2 3 4 5

6. I had a feeling of total control over what I’m doing.

1 2 3 4 5

7. I was not worried about what others may have been thinking of me.

1 2 3 4 5

8. The way time passed seemed to be different from normal.

1 2 3 4 5

9. The experience was extremely rewarding.

1 2 3 4 5
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Appendix C: Explanatory Statement

Explanatory Statement for Research Participants

Project: Assessing Learning Engagement using Humanoid Robots in Higher Education

You are invited to take part in a research study to analyze the role of robot tutors in the
university classroom on student learning experience compared to human tutors.

This project is currently being undertaken by Nicholas Wong Wai Hong, a student of Monash
University, Malaysia under the Master of Philosophy course. The research project members
are:

Dr. Dharmaratne Anuja
Thimali

Chief Investigator
School of Information

Technology

Dr. Jojo Wong Sze-Meng
Co-Investigator

School of Information
Technology

Catherine Hiew Fui Chin
Research Assistant

School of Information
Technology

Dr. Lim Jen Nee Jones
Co-Investigator

School of Engineering

Dr. Esyin Chew
External Co-Investigator

(UK)
Cardiff School of

Management

Teo Bee Guan
Research Assistant

School of Information
Technology

Nicholas Wong Wai Hong
Co-Investigator

School of Information Technology

Please read this explanatory statement in full before deciding to participate in this research.
This statement is to be read in conjunction with the attached consent form. If you would like
further information regarding any aspect of this project, you are encouraged to contact the
researchers via the phone numbers or email addresses listed above.

1. What is the purpose of this study?
This research aims to compare the effects of student engagement in eight 15-minute
learning sessions (once a week, for eight weeks) between a human tutor and a robot
tutor. By performing a case study of Monash University students from different units,
similarities and differences in student learning experience are explored to study the
effects of robot tutors on engagement and flow in the higher education context.

2. Why have I been invited to participate in this study?
You have been invited to participate in this research because you are a Monash Uni-
versity student, a potential candidate within the higher education context which is the
subject of this study.

3. What does the research involve?
You will be randomly assigned to a 15-minute learning session taught either by a human
tutor or a robot along with other participants. If you were assigned to the human tutor
group, just treat it like a normal class. Otherwise, this study involves listening and
observing the NAO humanoid robot about 58cm tall placed at the front of a classroom.
A human facilitator will be there to aid you and the robot. The robot will begin by
introducing a topic based on what you may or may not have learned in a Monash
University unit.

After it has gone through some topics, you may need to do a class exercise or the robot
may ask some questions for the topics discussed. At this time, you may or may not
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be called up front to interact with the robot, in which the distance would be about 1
meter away from you. You will be presented choices for each question. The session
ends when all exercises or questions have been done. After this interaction, you will
be given a questionnaire which collects data about your experience with the human
or robot tutor. This session will be done once per week, for 8 weeks, amounting to 8
sessions in total.

Please note that your participation in this study is voluntary by signing and returning
the attached consent form. You may choose to discontinue at any stage of the study
without explanation. Only non-personally identifiable information collected from ques-
tionnaires are subject to publishing. Data which are no longer required will be deleted.

4. Are there any possible benefits or risks from participation in this study?
Your responses will help in analyzing human-robot interactions for higher education
learning. A summary of the key findings will be made available to you as a participant
upon request. These findings may tell us more about how a robot tutor affects your
engagement and flow in the higher education context, which may help move us a step
closer to the integration of robots in university classrooms. At the end of the study,
you will be given a RM 20 gift voucher as an appreciation for your time on the project.

You may feel uncomfortable when interacting with the robot. Although the interaction
is rather short, please be reminded that you may discontinue at any time.

5. What if I have any questions about this research?
If you would like to discuss any aspect of this study please feel free to contact Nicholas
Wong Wai Hong by e-mail: nicholas.wong1@monash.edu. We would be happy to discuss
any aspect of the research with you. Once we have analyzed the information we can
e-mail you a summary of our findings on request. You are welcome to contact us at
that time to discuss any issues relating to the research.

Should you have any concerns or complaints about the conduct of the project, you are
welcome to contact the Executive Officer, Monash University Human Research Ethics
(MUHREC):

Executive Officer
Monash University Human Research Ethics Committee (MUHREC)

Thank you for taking the time to consider this study. If you wish to take part in
it, please sign the attached consent form. This explanatory statement is for you
to keep.
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Appendix D: Consent Form

Consent Form

Project: Assessing Learning Engagement using Humanoid Robots in Higher Education

Dr. Dharmaratne Anuja
Thimali

Chief Investigator
School of Information

Technology

Dr. Jojo Wong Sze-Meng
Co-Investigator

School of Information
Technology

Catherine Hiew Fui Chin
Research Assistant

School of Information
Technology

Dr. Lim Jen Nee Jones
Co-Investigator

School of Engineering

Dr. Esyin Chew
External Co-Investigator

(UK)
Cardiff School of

Management

Teo Bee Guan
Research Assistant

School of Information
Technology

Nicholas Wong Wai Hong
Co-Investigator

School of Information Technology

I agree to take part in the Monash University research project specified above. I have had
the project explained to me, and I have read the Explanatory Statement, which I keep for my
records. I understand that agreeing to take part means that I am willing to:

Yes No
Carry out eight 15-minute educational sessions, once a week for eight weeks,

with either a human or robot tutor.
� �

Fill up a questionnaire regarding subjective experiences with the tutor. � �
I have received the incentive of RM20 gift voucher. � �

I understand that my participation is voluntary, that I can choose not to participate in part
or all of the project, and that I can withdraw at any stage of the project without being
penalized or disadvantaged in any way. I understand that although the questionnaire requires
an identifying characteristic such as a name, I can use my first name, an alias or any generated
name so as long as the researcher can keep track of my responses throughout the 8 different
sessions. I understand that any information I provide is confidential which will be kept in a
secure storage accessible to the researchers listed above only, and that no information that
could lead to the identification of any individual will be disclosed in any reports on the project,
or to any other party. I understand that the provided information will be destroyed when
no longer needed for the study. I understand that non-personally identifiable information
extracted from the questionnaire may be used as case studies in the project website, presented
in conference(s) or published in journal paper(s).

Participant Name Participant Signature Date

Investigator Name Investigator Signature Date

75



Appendix E: MUHREC Ethics Approval

Monash University Human Research Ethics Committee

Approval Certificate

This is to certify that the project below was considered by the Monash University Human
Research Ethics Committee. The Committee was satisfied that the proposal meets the require-
ments of the National Statement on Ethical Conduct in Human Research and has granted
approval.

Project Number: 7953

Project Title:
Assessing Learning Engagement using Humanoid Robots in
Higher Education

Chief Investigator: Dr a anuja
Expiry Date: 27/02/2022

Terms of approval - failure to comply with the terms below is in breach of your
approval and the Australian Code for the Responsible Conduct of Research.

1. The Chief Investigator is responsible for ensuring that permission letters are obtained, if
relevant, before any data collection can occur at the specified organisation.

2. Approval is only valid whilst your hold a position at Monash University.

3. It is responsibility of the Chief Investigator to ensure that all investigators are aware of the
terms of approval and to ensure the project is conducted as approved by MUHREC.

4. You should notify MUHREC immediately of any serious or unexpected adverse effects on
participants or unforeseen events affecting the ethical acceptability of the project.

5. The Explanatory Statement must be on Monash letterhead and the Monash University com-
plaints clause must include your project number.

6. Amendments to approved projects including changes to personnel must not commence with-
out written approval from MHUREC.

7. Annual Report - continued approval of this project is dependent on the submission of an
Annual Report.

8. Final Report - should be provided at the conclusion of the project. MUHREC should be
notified if the project is discontinued before the expected completion date.

9. Monitoring - project may be subject to an audit or any other form of monitoring by MUHREC
at any time.

10. Retention and storage of data - The Chief Investigator is responsible for the storage and
retention of the original data pertaining to the project for a minimum period of five years.

Thank you for your assistance.

Professor Nip Thomson

Chair, MUHREC

CC: Dr Jojo Wong, Dr a anuja, Nicholas Wong, Fui Hiew, Teobee Guan, Dr Esyin Chew

List of approved documents:

Document Type File Name Date Version
Consent Form consent-form-new 31/01/2017 1
Explanatory Statement explanatory-statement-new 01/02/2017 3
Questionnaires / Surveys questionnaire-form-new 01/02/2017 2
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Appendix F: Word Count of Comments

*Only the top 50 words from the students’ comments are shown.

Human Tutor Robot Tutor
good 39 robot 97
tutor 28 tutor 44
normal 20 interesting 34
questions 18 experience 27
interaction 16 interaction 26
experience 16 good 24
interesting 14 better 19
nothing 13 speech 18
explained 12 time 18
great 11 fun 18
clear 10 interact 18
asked 10 feel 15
information 9 bit 15
question 9 students 14
pretty 9 clear 14
frustrated 9 need 13
suggestions 9 needs 12
problem 9 question 12
fun 8 bored 12
students 8 new 12
feel 8 voice 11
bored 8 answer 10
ask 7 felt 10
better 7 able 10
help 7 recognition 10
session 7 quite 10
explanation 7 lack 10
class 7 improve 10
helpful 7 understand 10
fine 6 little 10
maybe 6 great 10
really 6 instructions 9
informative 6 however 9
well 6 session 9
us 6 student 8
enough 6 slow 8
need 6 words 8
assignment 6 fast 8
maya 6 interactive 8
quite 6 hard 7
teaching 6 talking 7
none 6 make 7
lack 6 might 7
interact 5 fine 6
engaging 5 maybe 6
scared 5 music 6
asking 5 really 6
felt 5 much 6
much 5 improved 6
answered 5 nothing 6
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