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Abstract

Buildings are key components of geographic information systems, which offer support

and analysis in various fields. Examples include disaster prevention and control, city

and transportation planning, cadastral maps, installation of solar devices, cultural her-

itage documentation, and insurance. Therefore, studies on the rapid detection and

reconstruction of buildings have increased over time.

Of the various remote sensing data sources, Light Detection and Ranging (LiDAR)

and airborne imagery have received a good deal of attention, as they provide informa-

tion about the terrain, natural and other built-up features with high accuracy and res-

olution. The algorithms mostly designed for building detection and three-dimensional

(3-D) modelling usually fall short of producing comprehensive results, mainly because

they often impose constraints on the size, height, area, and orientation of objects.

Buildings and roofs small in size, in shadow or partly occluded are removed during the

filtering process, and this adversely affects the detection and modelling performance.

In addition, the scene heterogeneity, innumerable possibilities of building structures,

and unavoidable noise due to the hardware sensors and the environment make ro-

bust modelling of the objects extremely challenging. Therefore, there is great research

potential in this field to address these shortcomings of building detection and recon-

struction techniques.

The research in this thesis mainly concerns the development of robust techniques

in a hierarchical framework for the data-driven detection of buildings, the extraction

of roof planes, and the reconstruction of building models through the use of LiDAR

and aerial images. Firstly, the thesis begins with a review of the literature that allows

us to identify potential research directions in the field. In the remainder of the thesis,

we address several of the identified limitations in the development of the framework.

Secondly, we propose a methodology to detect and regularise buildings integrating the

spectral and spatial features extracted from LiDAR data and aerial images respectively.
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This enables the technique to extract small, partially occluded, and shadowed build-

ings. These features also allow the detection technique to generate building footprints

using the detected building boundaries. Thirdly, we propose a segmentation technique

that provides a better interpolation of roof regions and does not apply any constraint to

the shape or size parameters; therefore, it is more effective in extracting roofs and their

non-occluding parts. Fourthly, the thesis also reports an automatic technique for the 3-

D roof reconstruction and modelling of polyhedral buildings. The proposed technique

processes datasets in data-driven fashion and reconstructs the buildings represented at

lower levels with coarse boundaries (3-D roof planes) to the higher levels (3-D build-

ing models). Finally, we present an industrial application for solar potential assessment

utilising information on building rooftops.
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Notations
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Chapter 1

Introduction

“The beginning is the most important

part of the work.”

Plato

In this chapter we provide an introduction to the work presented in this thesis. We

describe the research problem in Section 1.1, the research challenges in Section 1.2,

the research objectives in Section 1.3, and finally the contribution of this research in

Section 1.4.

1.1 Problem Statement

Building being a key urban object is indispensable to various Geographic Information

System (GIS) applications. At first glance, building appears to be a simple object on the

earth’s surface that can easily be identified. However, in reality, detection of the build-

ings, roof planes, and their 3-D city form are quite challenging, due to differences in

the viewpoint, the surrounding environment, and structural complexities. The aim of

the detection of building and roof planes is to identify the area of a building region and

its constituent roof surfaces, respectively. Modelling subsequently uses these geomet-

rical parameters for the development of an equivalent computer-based representation

of the buildings. According to a survey by the European Organization for Experimental

Photogrammetric Research [1], more than 90% of participants expressed their inter-

est in the construction of realistic 3-D city models that include information about the

buildings, the traffic network, and the vegetation.

Geospatial technologies have long been proved to be reliable and efficient tools for

understanding the urbanisation process and generating building models [2, 3]. How-

ever, traditional methods, such as ground surveys, intrinsically degrade the automation

2
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and processing speed [4]. Meanwhile, the emergence of spatial data acquisition tech-

nologies has made various types of data, such as aerial and oblique images, LiDAR data

and terrestrial laser scanning data, available for 3-D characterisation of the earth’s sur-

face and the objects on it [5].

Beginning with a single data type, either aerial imagery or LiDAR data, modelling

of buildings is performed in two interdependent tasks i.e., detection and reconstruc-

tion [6–9], in which the accuracy of modelling is arguably subject to the reliability

of the detection process. The development of high spectral imagery, which captures

image data within several wavelength ranges across the electromagnetic spectrum,

makes it possible to sense individual buildings in an urban scenario [10]. However,

the increasing spectral band ranges and textural information do not warrant a pro-

portional increase in building detection and modelling accuracy [11, 12], but rather

adversely increase classification ambiguities [13]. Consequently, similar objects (e.g.,

green and red trees) may appear with different spectral signatures, whereas different

objects (e.g., a green tree and a green roof) may appear to have similar spectral signa-

tures under various background conditions [14]. These factors, together with sensory

noises, reduce the building detection rate and increase the modelling error. Therefore,

the use of spectral information alone to differentiate these objects eventually results in

poor performance [10].

LiDAR data, on the other hand, provide height information for objects, such as

buildings, trees, bushes, terrain, and other 3-D objects. Therefore, adopting height

variation to distinguish these urban objects is a more suitable cue than spectral and

texture changes. However, the accuracy of the detected boundaries is often compro-

mised due to point cloud sparsity, and this reduces planimetric accuracy [12, 14]. In

addition, trees and buildings in complex urban scenes sometimes appear to have simi-

lar height variations [15], and height information alone is not perceived to produce a

finer classification [11]. Therefore, several researchers have developed the consensus

to use multisource data in designing better strategies to increase the building detection

rate and the accuracy of the reconstructed models [12,14–17].

The acquisition and modelling of buildings include not only detection but also sev-

eral non-trivial processes such as segmentation, classification, structuring, hypothesis
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generation, and geometric modelling. In fact, the seamless integration of these pro-

cesses to acquire the required 3-D information in a conventional way would be not

only unrealistic but also laborious. We, therefore, present a solution for 3-D build-

ing modelling as a framework that performs building detection, roof plane extraction,

and 3-D model generation of variably-shaped complex structures separately. Moreover,

we have developed an automated system for industrial use for large-scale assessment

of solar potential by leveraging the proposed framework. To achieve our goals, pho-

togrammetric imagery and LiDAR data are used addressing the particular challenges

and research questions presented in the following section.

1.2 Research Challenges

Urban areas are continuously changing as a result of construction and extension with

complex building structures such as dormers, hedges, and ventilation systems. Accord-

ing to the United Nations, the world’s population living in urban regions is projected

to increase from 54% to 66% by the year 2050 [18]. Another study reports that the

building modelling and mapping markets are expected to expand from $1.1 billion to

$7.7 billion in a short period of 5 years beginning from 2013 [19]. A more refreshed

construction of 3-D building models is therefore imperative in order to contend with

the issues of growing urban agglomeration and city management.

With the advent of advanced technology and fast computational power, several ef-

forts have been made over the last two decades to achieve automatic building mod-

elling, showing various degrees of success [20–23], but usually failing to produce

promising results, mostly because of the intrinsic characteristics and the large size

of the input data. These systems fall short in extracting buildings with unusual geo-

metrical structures and occlusion by dense vegetation or shadows. Therefore, there is

great research potential for robust detection and modelling tasks because of difficulties

created by scene heterogeneity in appearance, unavoidable noise due to the environ-

ment, terrain complexities, and the indefinite possibilities of different structures. The

research challenges addressed in this thesis are:

• Occlusions and shadows by surrounding objects are major issues, often caus-

ing object recognition processes to fail or at least, increasing the misclassification
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rate. They usually reduce the accuracy of the process in hypothesising the major

structures of the buildings. Figure 1.1 shows complexity scenarios where build-

ings are partially occluded and/or shadowed by surrounding trees.

Figure 1.1 Occluded and shadowed building samples.

• Most strategies either neglect or fall short in the detection of buildings of small

size and low height. The problem is aggravated when several small structures

form a block of buildings and identifying a discrimination element automatically

becomes challenging for modelling purpose. In addition, noise and outlier data

introduce the issue of over-segmentation, which at the later stages causes ambi-

guity in building geometric modelling. Example scenarios are sketched in Figure

1.2.

• Building shape heterogeneity and complex structures prohibit the use of spe-

cific object models for the 3-D representation of all possible buildings in an area.

Therefore, many researchers, as alternatives, use different constraints on the ge-

ometric regularity of the building structures that prevent the detection and mod-

elling of several structures which do not satisfy the conditions perfectly. Figure

1.3 shows sketches of possible structures and the heterogeneity of buildings that

make the modelling of buildings and their constituent roof planes a challenging

task.

• The problem of misregistration for the integration of LiDAR and aerial imagery

has a profound impact on the robustness of a detection and modelling proce-

dure. It is challenging to identify and extract the correct features and combine
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Building blocks and small building structures

Noise 

and 

Outliers

Figure 1.2 Sample small structures, and noise and outlier points in LiDAR data.

Skillion and 

lean-to
Open gable Box gable Dormer Hip

Hip and valley Gambrel Mansard Butterfly Overlaid hip

Dutch gable Hexagonal 

gazebo

Jerkinhead Flat Cross hipped

M shaped Saltbox Shed Combination Pyramid hip

Figure 1.3 Some possible different arrangements of building rooftops.

them such that their strengths can be exploited to achieve a high detection rate

and reduce modelling errors. Figure 1.4 shows misregistration/misalignment be-
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tween the LiDAR points and the corresponding building in the aerial images.

Figure 1.4 Misregistration between LiDAR and the corresponding aerial images when the Li-
DAR points are overlaid on the corresponding buildings showing a moderate offset from their
actual location in the aerial image.

1.3 Research Objectives

On the basis of the discussion in Sections 1.1 and 1.2, the main question this research

aims to answer is: How can the effectiveness of building detection and 3-D mod-

elling using LiDAR and aerial imagery be improved? To help answer this question,

this thesis addresses the following list of research objectives (ROs):

1. RO1: To identify the research gaps and limitations, and conduct a review of

existing approaches to building detection, roof plane extraction, and 3-D building

modelling.

2. RO2: To develop a technique which can handle moderate misregistration errors

for the automatic detection of buildings which have variable shapes or sizes or

can be partially occluded or in shadow.

3. RO3: To develop a roof detection technique which can extract roof planes and

small structures, and can handle occlusion, noise and moderately corrupt data.

4. RO4: To develop a modelling technique that can use the extracted roof planes to

develop 3-D models for heterogeneous polyhedral buildings.

5. RO5: To develop an application using roof geometric information for the large-

scale assessment of solar potential.
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1.4 Thesis Contribution and Structure

To achieve the objectives, the thesis is organised into eight chapters. Each chapter starts

with an introduction and highlights the main contributions it makes. The structure of

the thesis is sketched in Figure 1.5.

Chapter 2

Background

Chapter 3

Literature 

Review

Chapter 4

Building 

Detection 

and Boundary 

Regularisation

Chapter 5

Robust 

Segmentation 

and Building 

Roofs 

Identification

Chapter 6

Reconstruction 

of 3D Building

Models

Chapter 7

Solar 

Potential 

Assessment

Chapter 1

Introduction

Chapter 8

Conclusion

Figure 1.5 Thesis organisation.

The remainder of this thesis is structured as follows:

• Chapter 2 provides background information on key remote sensing technolo-

gies and data sources, the mathematical concepts of the performance evaluation

systems, and benchmark datasets.

• Chapter 3 addresses RO1 by presenting an extensive literature review of build-

ing detection, roof plane extraction, and 3-D building modelling. The review

process allows us to identify potential research gaps and directions in the field of

detection and reconstruction of urban objects.

• Chapter 4 focuses on RO2 and introduces a technique for building area detec-

tion and footprint generation. The proposed technique integrates LiDAR data

and aerial imagery to eliminate vegetation, extract partly-occluded buildings, and

generate building outlines. The synthesising approach to the use of features from

both data sources enables the proposed technique to extract not only small and

shadowed buildings but also building regions where LiDAR data have large spar-

sity. The proposed method offers high detection rates, even in the presence of a

moderate registration error between the input data sources.
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• Chapter 5 addresses RO3 and proposes an effective system for the recognition

of roof planes. Since the availability of aerial imagery for particular LiDAR data

can never be guaranteed, instead of using the output of the previous chapter, the

proposed system utilises only LiDAR data for the extraction of the roof planes

and their constituent primitives e.g., dormers, chimneys, vents, and the building

regions. The use of robust saliency features enables the technique to handle noise

and eliminate vegetation to extract roofs as well as their partially occluded parts

from complex scenes with a high success rate. A new LiDAR-based boundary

tracing algorithm is also proposed, which seamlessly extracts the inner and the

outer boundaries of an object without imposing any geometric constraint.

• Chapter 6 provides an automatic technique for 3-D modelling of polyhedral

buildings in order to address RO4. The proposed technique uses the extracted

roof planes (from Chapter 5) as the only information for the construction of

building models. This chapter also introduces a robust procedure to approximate

the missing roof planes that were not extracted from LiDAR previously due to low

point density or missing data. The proposed technique develops an interrelation

among the building roof planes and identifies their interconnections, which are

later used for the reconstruction of 3-D building models.

• Chapter 7 focuses on RO5. This chapter aims to develop an application for

the installation of photovoltaic (PV) systems for a solar potential assessment

project at the Collaborative Research Centre for Spatial Information (CRCSI)1.

For project development, building roofs and other geometrical information pro-

duced in Chapters 5 and 6 are leveraged for the effective assessment of solar PV

deployment for both local and state governments and solar energy companies in

Australia.

• Chapter 8 concludes the thesis with a summary of the achievements and sugges-

tions for future research directions.

1
http://www.crcsi.com.au/

http://www.crcsi.com.au/
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Chapter 2

Background

“Success is the result of perfection,

hardwork, learning from failure,

loyalty, and persistence.”

Collin Powell

2.1 Introduction

The aim of this chapter is to present background information for the research work de-

scribed in this thesis. We provide descriptions of key technologies, data sources, math-

ematical concepts of the performance evaluation systems, and benchmark datasets and

their characteristics. Section 2.2 provides an overview of different input data sources

for building detection, roof extraction, and 3-D building reconstruction. Section 2.3

presents a brief discussion of different basic principles that are used in this thesis. A

summary of different evaluation systems is provided in Section 2.4, and the metrics to

measure the performance of the proposed methodologies are discussed in Section 2.5.

The benchmark datasets are introduced in Section 2.6 and Section 2.7 concludes the

chapter.

2.2 Remote Sensing Data Sources

Remote sensing is a technique for acquiring information about objects without physical

contact. The basic principle is to detect and measure the electromagnetic radiations of

different wavelengths reflected or emitted from features on the surface, in the atmo-

sphere or in the ocean by which they may be identified and categorised. This tech-

nique has been applied to numerous disciplines, including geography, land surveying,

11
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and the earth sciences. Remote sensing, in its current usage, is performed through

satellite- or aircraft-based platforms equipped with various sensors operating at spe-

cific wavelengths. It can be an active or passive remote, depending on the sensors.

In active remote sensing, the signals are emitted by a satellite or aircraft and the en-

ergy reflected from objects is detected by the sensors. Radio detection and ranging

(RADAR) and LiDAR are examples where the time difference between emission and

return is measured, and the location and direction of an object are determined. In

contrast, a sensor in passive remote sensing records the energy emitted from different

objects [24–26]. Examples include film photography, infrared, charge-coupled devices,

and radiometers [27]. The difference between active and passive remote sensing is

illustrated in Figure 2.1.

The most common remote sensing data types used for building detection, roof ex-

traction, and 3-D reconstruction are image and LiDAR data [28,29]. Many researchers

have tried using image information [30–33], while others have simply used the LiDAR

data in different applications for urban monitoring and planning [34–37]. Recently

some researchers have tried integrating both types of data to perform detection and

reconstruction activities [32,38–44]. In this thesis, Chapter 3 provides an extensive lit-

erature review on building detection, roof plane extraction, and 3-D building modelling

strategies. However, this chapter briefly discusses the most commonly used technolo-

gies involved in object extraction and its representation.

2.2.1 Airborne Imagery

The American Society for Photogrammetry and Remote Sensing (ASPRS) defines pho-

togrammetry as “the art, science, and technology of obtaining reliable information

about physical objects and the environment through the process of recording, mea-

suring, and interpreting photographic images and patterns of recorded radiant elec-

tromagnetic energy and other phenomena” [45]. Photogrammetry has been the tra-

ditional way of generating 3-D information and still is a major data source for GIS

building detection and reconstruction applications.

In mainstream usage, two types of remotely-sensed images frequently used are

satellite imagery and aerial imagery. A satellite imagery is captured by a satellite sys-
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Figure 2.1 Illustration of remote sensing: (a) Passive remote sensing and (b) Active remote
sensing.

tem that is distant from the real objects [46]. In contrast, an aerial vehicle flying at

low height is utilised to capture the real objects in aerial imagery [47]. There are a

number of imagery sources, and the choice of which imagery to be used is entirely

dependent upon the context of the problem. To provide an in-depth survey based on

all the available sensors and their data is nearly impossible, due to the sheer number

of sensors available. Instead, we explore those most frequently used in the literature

for building identification and its related GIS applications.

Most often, aerial orthoimagery, which is simply a remotely-sensed image that has

been geometrically corrected, is used to measure the true distance of objects on the

earth in various geomorphological and earth science applications. Of the satellite im-
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agery systems, Synthetic Aperture Radar (SAR), QuickBird, WorldView, and GeoEye-1

have been used by researchers for building detection, roof extraction, and 3-D build-

ing reconstruction purposes [32, 48]. A well-known aerial image used extensively in

the literature is multispectral image [15,49]. The following section provides details of

multispectral imagery and its associated advantages and disadvantages.

2.2.1.1 Multispectral Imagery

Multispectral sensors capture spectral information from multiple discrete bands of the

electromagnetic spectrum. They sense radiations from multiple wavelength regions of

the visible, near infrared, middle infrared and thermal infrared bands and transform

them into a digital image known as a multispectral image [50]. A multispectral im-

age, or simply a multi-band image, is a colour image consisting of a red, a green and

a blue band, each taken with a sensor sensitive to a different wavelength. Multispec-

tral images are most commonly-used for remote sensing applications such as building

detection, building change detection, flood monitoring, and forest mapping. The tech-

nique to capture multispectral imagery is shown graphically in Figure 2.2.

Multispectral imagery has several advantages over satellite imagery. For example,

since it has high spatial resolution (number of pixels), processing the images and han-

dling objects become quite easy. It also offers high location accuracy [52] and describes

various urban attributes with different colour bands e.g., healthy vegetation appears

in shades of red; water shows up almost black; and concrete and gravel appear in

shades of grey. Therefore, multispectral images are considered a strong candidate for

a variety of observation and monitoring applications e.g., urban objects, forestry, and

plant health. More details on discriminating these objects is provided later in the the-

sis, specifically in the context of vegetation elimination as it is one of the key subjects

being addressed here.

There are also some limitations with the use of multispectral imagery. It has low

area coverage and high cost per unit area compared with satellite imagery. Often,

weather conditions and sun-light cause delays in data acquisition. In addition, the

accuracy of an object extraction procedure is often affected by the variability and visi-

bility of the object’s structure when multispectral images are used [53]. The variability
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Figure 2.2 Production of multispectral imagery from the electromagnetic spectrum [51] (best
seen in colour).

aspect of an object deals with the nature of the content e.g., density (rural or urban

territories), architectural complexity (residential, industrial or commercial areas), ter-

rain (flat or hilly), and vegetation (low, moderate or heavy), whereas object structure

visibility addresses the resolution, quality of the contents (blurriness or sharpness) and

view of an object (visible, shadowed, or occluded).

2.2.1.2 Derived data - Normalized Difference Vegetation Index

Multispectral images provide very interesting analysis through the use of different in-

dices. A multispectral image comprises of green (555–580 nm), red (665–700 nm)

and near infrared (NIR, 740–900 nm) bands, which assist the observation of vegeta-

tion mapping and plant health. The chlorophyll in plants basically absorbs the NIR

wavelength of light that is more for a healthier plant than a dried one. The NIR

camera detects this difference and calculates different vegetation indices. The Nor-

malized Difference Vegetation Index (NDVI) is an index which is extensively used in the
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research literature for the elimination of vegetation and the classification of different

objects [14,17,42,49,54,55]. It is calculated using Equation 2.1 [42,55]:

NDV I =
(NIR−Red)
(NIR+Red)

(2.1)

A high value of the NDVI for a pixel indicates the presence of plants. For vegetation

analysis, different NDVI thresholds are used simultaneously for vigorous plants with

green leaves and plants with red leaves. Figure 2.3 shows the original image and the

corresponding NDVI image. The images have been slightly modified for the purposes

of the thesis based on [56].

(a) (b)

Figure 2.3 An oblique photo pair: (a) Original image and (b) The corresponding NDVI image
(best seen in colour).

2.2.2 Airborne Laser Scanning Data

Airborne LiDAR has gained popularity among spatial researchers and mapping profes-

sionals due to its speed, precision, and accuracy in capturing 3-D geo-referenced spatial

information about buildings, roads, vegetation, and other objects expediently at a high

point density. These characteristics make it feasible to examine natural and built envi-

ronments across a wide range of scales for the automatic extraction and reconstruction

of buildings and their distinct features. Figure 2.4(a) and Figure 2.4(b) show the Li-

DAR data and the corresponding aerial imagery of a site in Australia, respectively.

A complete LiDAR system is made up of several components which work together to

generate, record, and geo-reference the data. The components include a Light amplifi-

cation by stimulated emission radiation (Laser) unit, a Global Positioning System (GPS),
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(a) (b)

Figure 2.4 (a) LiDAR data over an area where different colours correspond to different height
values and (b) The corresponding aerial imagery.

an Inertial Measurement Unit (IMU), and a general-purpose computer. The laser unit

generates energy in discrete pulses and captures the returned energy, the GPS unit

records the precise location of the scanner, and the IMU sensor measures the velocity,

orientation and gravitational forces. A LiDAR system also utilises a fixed ground base

station to correct and improve the data collected by the sensors. Moreover, a LiDAR

system employs a computer unit for the integration of data received from the laser

system, the GPS and the IMU to produce LiDAR point cloud data. Of the cost-effective

platforms, airplanes and helicopters are the most commonly-used carriers for acquir-

ing LiDAR data over large areas. A particular arrangement of a LiDAR system which

operates in airborne vehicles is shown in Figure 2.5.

LiDAR uses electromagnetic energy to detect various GIS objects and determine

their height values. Each time the laser hits a feature on the earth, it generates a

return. Each return carries the 3-D coordinates (x, y, and z or latitude, longitude, and

elevation) of the objects which are measured from 1) the time difference between the

emitted and returned laser pulses, 2) the angle at which the pulses were “fired”, and

3) the absolute location of the sensor on or above the surface of the earth. In the case

of buildings and the ground, we have a single return, but in the case of trees, which
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Figure 2.5 Schematic diagram of an airborne LiDAR data collection.

are not dense features, we may have multiple laser returns from different heights.

However, LiDAR systems have some limitations. For example, the laser pulses cannot

penetrate through clouds and dense haze. It is therefore recommended to record the

data during fair weather conditions and this is the reason why flight missions are often

carried out at night.

2.2.2.1 Derived data - DEM, DSM, and DTM

LiDAR data allow us to generate models of the earth’s surface. The general term for a

model of the elevation of an area is a Digital Elevation Model (DEM). DEMs come in two

common types: Digital Surface Models (DSMs) and Digital Terrain Models (DTMs). High

quality DSMs are the direct products of laser pulses reflected off the earth’s surface or

the tops of man-made or natural objects. More simply, DSMs represent the earth’s

surface and all the objects on it. With minute or almost no post-processing, a DSM can

provide 3-D landscape models for fly- or walk-through visualisation, landscape design,

and computer game production. In contrast, the DTM describes only the bare ground

surface without any objects such as trees and man-made objects. Figure 2.6 illustrates
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the difference between a DSM and DTM using a red solid line with blue circles to

represent LiDAR discrete points.

DSM

Digital Surface Model

DTM

Digital Terrain Model

Elevation

Elevation

Figure 2.6 Surfaces represented by DSM and DTM [57].

The term DEM often loosely refers to both DSM and DTM in the literature. DEM

is a bare earth (topology) model of the earth’s surface generated by removing the Li-

DAR points reflected off non-ground objects. When using a DEM, the reference surface

must always be stated. Alternatively, it can be generated using stereo photogrammetry

or land survey techniques [58]. The usage of DEMs as principal data is widespread

for supporting applications in both the engineering and scientific fields, such as ge-

omorphological analysis, flood-risk mapping, oil and gas exploration, and real-estate

development. To a certain extent, city modelling and urban reconstruction could be

considered as a subset problem of DEM production.

2.2.3 Characteristics of LiDAR

This section presents the characteristics of LiDAR data that are important to several

applications which involve LiDAR point cloud processing. Of its various properties,

point spacing, average point density, and accuracy are of common interest; therefore,

these factors are briefly discussed in the following sections.
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2.2.3.1 Point Distribution and LiDAR Density

LiDAR point distribution or point spacing and LiDAR density are amongst the most

frequently used metrics to describe the quality of the point cloud data in the litera-

ture [59,60]. LiDAR point distribution refers to the point-to-point distance of the data

and describes how close the laser points are to each other. It is considered analogous

to the pixel size of an aerial image [61]; however, the spacing value is not uniform,

unlike image pixels, as the points of the LiDAR data are sparse and highly dispersed.

Alternatively, the nominal spacing value is generally regarded as the best representa-

tion of point distribution, which is the average spacing of the unorganised points in

both x and y directions [60,62].

LiDAR point density, on the other hand, refers to the number of points per unit

area [60]. This is typically measured by first using a square grid on the LiDAR data and

then determining the average number of points per cell, which is taken as the point

density of the data. The greater the number of points per grid cell, the denser the

dataset is, and finer the quality of the reconstructed objects which can be achieved. In

contrast, several features, like gullies, mounds, chimneys, slope changes, and depres-

sions are often obscured in a low-resolution dataset, and the resultant building models

therefore have low quality and high reconstruction errors [61]. The point densities of

the datasets we use in the present thesis vary between 1 point/m2 to 40 points/m2.

In terms of point distribution, these datasets have point spacings varying between 0.2

m to 1.2 m. More details on the benchmark datasets are provided in the following

section.

2.2.3.2 Accuracy

Photogrammetric elevation generation is a time-consuming and labour-intensive pro-

cess, especially for high-accuracy products. According to Carter et al. [61], determining

the required level of data accuracy and the level achieved are important parts of a data

collection procedure and its subsequent usage. Often, the regions hidden by or below

trees have low elevation accuracy and this requires such locations to be visible from

other images by a photogrammetric elevation generation process. In contrast, LiDAR
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has not only a similar cost but also captures the topographic mappings for large areas,

including hidden locations rapidly and with a higher level of accuracy [61,63].

The vertical accuracy of LiDAR data has improved over time with the increasing so-

phistication of the technology. Now the LiDAR datasets have vertical Root Mean Square

Error (RMSE) values of less than 20 centimeters (8 inches) [61], which adds great

value to applications for building detection, roof extraction, and GIS object modelling.

However, the horizontal resolution refers to the point spacing concept of a dataset and

directly affects the planimetric accuracy of extracted objects.

2.2.4 Which is better?

To date, there has not been a single authoritative study to indicate which technology is

better between imagery- and LiDAR-based systems. Over the last decade, research in

the field of photogrammetry and remote sensing clearly shows that the usage of LiDAR

has increased considerably for practical and industrial applications. However, this does

not guarantee the advantages of LiDAR over the competing technologies. In this regard,

Leberl et al. [64] carried out two separate studies comparing the performance of point

clouds produced from airborne- and ground-based LiDAR systems with those generated

using optical images.

Their research findings demonstrate that the accuracy achieved by using the pho-

togrammetric technique is comparable with that of the LiDAR-based technique. The

authors identified fifteen additional advantages in order to support photogrammetric

methods despite the fact of tremendous increase in the use of LiDAR data. Other ad-

vantages and disadvantages and the selection of a particular data type are discussed

in the following sections while addressing the challenges and describing the proposed

methodologies.

2.3 Basic Principles of the Proposed Techniques

This section provides a brief review of some basic principles used in the areas of build-

ing detection, roof extraction, and 3-D building reconstruction.
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2.3.1 Delaunay Triangulation

LiDAR data has a collection of laser points which are spatially unorganised and have

variable point density. LiDAR point clouds often have gaps due to occlusion by neigh-

bouring objects, e.g., vegetation clusters [65]. These points do not have any connection

information. In fact, the main reason for using the Delaunay triangulation (DT) is to

solve the problem of the spatial adjacency of disconnected points. According to [66],

“a DT for a given set P of discrete points in a plane is a triangulation DT(P) such that

no point in P is inside the circumcircle of any triangle in DT(P). DTs maximise the min-

imum angle of all the angles of the triangles in the triangulation; they tend to avoid

long/thin shapes”.

The authors [66] further state that “for a set of points on the same line there is no

DT (the notion of triangulation is degenerate for this case). For four or more points

on the same circle (e.g., the vertices of a rectangle) the DT is not unique: each of

the two possible triangulations that split the quadrangle into two triangles satisfies the

Delaunay condition, i.e., the requirement that the circumcircles of all triangles have

empty interiors. The circumcircle of a triangle actually is the unique circle passing

through the three vertices of the triangle”.

For a set of points in 2-dimensions (2-D) or 3-D, a DT of these points ensures the

circumcircle associated with each triangle contains no other point in its interior. Once a

DT is created, a variety of topological and geometric queries can be performed, such as

surface interpolation, determining the density or intensity of point sampling, locating

a facet that contains a specific point, find the nearest neighbours of a particular point,

and generating a convex hull. Figure 2.7 shows 2-D and 3-D DTs using 30 random

points. In this thesis, we utilise a variant of 2-D DT called constrained Delaunay trian-

gulation for the development of a building region detection technique and a boundary

outline tracing algorithm, which are described in Section 5.2.1.

2.3.2 Principal Component Analysis

Principal Component Analysis (PCA) is one of the most widely-used multidimensional

statistical technique for dimension reduction and data visualisation [67]. PCA begins
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(a) (b)

Figure 2.7 Illustration of Delaunay Triangulation with 30 points in (a) 2-D and (b) 3-D spaces.

to find directions of maximum or minimum variability in the data space, and tries to

represent the data across orthonormal axes with maximum de-correlation. Through

the transformation process, PCA generates new set of uncorrelated and orthogonal

variables that can explain the underlying covariance structure of the data. The new set

of variables, the Principal Components (PCs), are the linear combinations of the mean-

centred original variables that rank the variability in the data through the variances and

produces the corresponding directions using the eigenvectors of the covariance matrix

[68, 69]. The PCs are usually ranked in descending order, explaining the underlying

data variability of the corresponding eigenvalues.

In LiDAR data processing, the first two PCs serve the orthogonal basis of the 3-D

plane, whilst the third PC, being orthogonal to the first two, corresponds to a normal

of the fitted plane and is used to compute saliency features (e.g., surface normal and

slope). Figure 2.8 shows a plane-fitting illustration in a sample point cloud. LiDAR

points are shown using blue and red points with the plane-fitting residuals shown

graphically using lines of the same colours, respectively. The variations in the data are

shown with arrows where the arrow towards to the least variation corresponding to

plane normal.

2.3.3 Region Growing

Urban scenes are characterised by the existence of diverse objects, such as buildings,

trees, bridges, and road infrastructures, offering a high degree of complexity. In order
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(a) (b)

Figure 2.8 Plane-fitting demonstration using PCA: (a) Sample point cloud and (b) Plane-fitting,
residuals, and PCs showing directions of data variations in their respective directions.

to identify these underlying objects from any input data source, segmentation is per-

formed, which is a process of separating and labelling the most similar features into a

number of separate surfaces. Region growing in reality is an approach for performing

the segmentation task.

Region growing was originally introduced in the context of the region-based image

segmentation method. The process examines the neighbouring pixels of initial seed

points and determines whether the pixel neighbours should be added to the region

based on some similarity e.g., intensity, colour, or texture information. The process

continues in the same manner and segments the image into different regions. Due to

its simplicity, this approach has been adopted for data clustering algorithms in other

disciplines, including LiDAR systems.

We explain the region-growing approach in terms of segregating the LiDAR points

based on some similarity criteria. Since LiDAR data points do not have any statistical

distributional pattern in the data and provide no connection information, we approx-

imate saliency features, namely point normal and slope, using the PCA. We then use

them as the similarity criteria for segmentation of LiDAR points into different underly-

ing regions. Figure 2.9 shows the region growing-based segmented LiDAR points. The

region-growing process generally has the following stages:

• Start by choosing a seed point (often the one with the least variation)
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• A region is grown from a seed point by adding the neighbouring LiDAR points

based on the similarity criteria. This results in the region expanding in size.

• The growth of one region stops when no more points can be added to the region.

Another seed point is then chosen from the unsegmented points.

• For the remaining unsegmented points, repeat the previous steps.

(b)(a)

Figure 2.9 Point cloud segmentation using region growing: (a) Sample building LiDAR data
and (b) Segmented LiDAR data.

The selection of a seed point depends entirely on the nature of the problem. Of-

ten, the random selection of a point as the seed can segment the data but it generally

requires some prior knowledge. However, in the presence of noise, outliers and the di-

verse features in urban areas, a particular criterion needs to be defined for the selection

of a seed point. In contrast with images where the neighbouring pixels can be selected

in four-connected neighbourhoods or eight-connected neighbourhoods, neighbouring

points in LiDAR are selected using a fixed-distance neighbourhood and k-nearest neigh-

bourhood (Knn) methods [69]. Figure 2.10 shows the difference between the two

neighbourhood selection approaches. Pi shows a random LiDAR point and NPi
shows

the neighbours of Pi. In the case of a fixed-distance neighbourhood, the radius r of a

concentric-circle needs to be defined and NPi
corresponds to the points which lie within

the circular region defined by r. In contrast, the Knn method uses Euclidean distance

for the construction of a kd-tree from the LiDAR point cloud. The value of parameter k

signifies the number of neighbours of point Pi.

Once the neighbours of a seed point are identified by the region-growing process,
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Figure 2.10 (a) Fixed-distance neighbourhood and (b) K nearest neighbourhood.

they are included in a region only after examining all the given criteria. The entire pro-

cedure is iterative and stops when a significant change is observed between successive

iterations or no new neighbouring points are added. Throughout the present thesis,

we employ the Knn method for neighbourhood selection, since it quickly adapts to the

limitation of point density variation and sparseness. It is a well-established fact that

point density variation occurs because of the variations in both data acquisition sensors

and the orientation of a surface with respect to the scanner position. More specifically,

we utilise the Knn method to find the local neighbours of a laser point in point cloud

segmentation and approximate their saliency features using the PCA in Section 5.2.2.

2.4 Performance Evaluation Systems

In light of the end goal to gauge the quality of building recognition and rooftop ex-

traction techniques, and to evaluate their pertinence for functional applications, it is

important to assess them by contrasting the detected and the reference information.

An evaluation framework measures the robustness of a technique by different perfor-

mance measurements. Such systems perform a coordinated correspondence between

the identified polygons and the reference polygons. The overlapping region of the

polygons is determined through pixel-by-pixel comparison, in order to establish the ac-

curacy of a technique. The overlapping region is categorised into four types as follows:

1. TP (True Positive): A detected polygon is classified correctly in the reference data

as a building;
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2. TN (True Negative): An entity is classified as other object in both the detected

and reference data;

3. FP (False Positive): A detected polygon (a building) does not have a correspond-

ing object in the reference data;

4. FN (False Negative): A reference polygon (a building) is identified as other object

(not a building);

Several possible quality metrics can be derived using these quantities in order to

assess the performance of building detection and rooftop extraction techniques. Ir-

respective of the general understanding, to date no single uniform evaluation system

is available which can run performance evaluation for any benchmark dataset in the

realm of airborne laser scanning [70]. Therefore, various studies use different eval-

uation methods for measuring the quality of their methods. This selection is heavily

dependent upon the dataset used for the analysis. In the present study, we use the

International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark

datasets [71] and the Australian benchmark datasets. Therefore, the threshold-based

system [70] has been used for evaluation of the ISPRS datasets while for the Australian

benchmark datasets, the present study uses an automatic and threshold-free evaluation

system [72].

Both the evaluation systems perform three categories of evaluation: object-based,

pixel-based, and geometric, and each category uses several metrics. The object-based

metrics evaluate the performance by counting the number of buildings, while the pixel-

based metrics measure the detection accuracy by counting the number of pixels. The

pixel-based metrics also correspond to the horizontal accuracy of the detected polygon

and indicate the area which is classified accurately. In addition, the geometric metric

indicates the accuracy of the extracted boundaries with respect to the reference entities.

It also measures the height accuracy of a detected polygon with respect to a reference

polygon.
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2.4.1 Threshold-based Evaluation System

The ISPRS working group II1 quantitatively evaluates the performance of a technique

using a threshold-based evaluation system [70]. This system applies a number of

thresholds for establishing the correspondence between the detected and the reference

buildings for performance evaluation. Here, we provide a summary of the evaluation

system. The pixel-based evaluation of the system compares the detected and the refer-

ence polygons pixel by pixel in order to compute the TP, FP, FN, and TN pixels. This

evaluation further measures the pixel-based completeness, correctness, and quality of

the detected buildings. In contrast, in object-based evaluation, the overlapping region

between the detected and reference polygons is determined. This approach actually

counts the pixels assigned to a building (Br) in the reference label image with a build-

ing (Ba) in the detected label image.

In the case of object-based TP, the reference polygon is considered to be detected

if more than 10% of its pixels overlap those of the detected polygon. In the case of

pixel-based TP, the overlapping pixels of the detected polygon are considered posi-

tively identified if 50% of its pixels overlap those of the reference polygon. In reality,

a detected building might have zero, one, or multiple overlaps with other buildings

present in the reference. Therefore, the authors used a split and merge technique to

accurately establish the correspondence, which is demonstrated graphically in Figure

2.11.

Figure 2.11(a) shows the scenario of a merge operation when a detected build-

ing (Ba) is overlapping N reference buildings (Br1 and Br2). Therefore, the detected

building is split into N new buildings. In contrast, a merge operation is invoked if the

correspondence of Ba is greater than that of Br as shown in Figure 2.11(b). Similarly,

both the split-and-merge operations are performed for a scenario presented in Figure

2.11(c). For more technical detail, readers are encouraged to study the following arti-

cle [70].

1ISPRS Working Group II/4 aims to make progress in the automatic recognition and 3-D reconstruc-
tion of objects in complex scenes from images, point clouds, and other sensor data. More detail can be
found at http://www2.isprs.org/commissions/comm2/wg4.html

http://www2.isprs.org/commissions/comm2/wg4.html
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Figure 2.11 (a) Split of a detected building into two new buildings; (b) Two detected buildings
are merged into one building; and (c) The detected buildings are split and merged to match
the reference buildings [70].

2.4.2 Threshold-free Evaluation System

In contrast with the previous system, the threshold-free evaluation system [72] uses

pseudo one-to-one similarity matching to avoid the use of thresholds. In this system,

each building of one dataset has at most one correspondence in the other dataset. In

the case where a detected building overlaps more than one reference building, the

nearest reference building is considered as a true matched reference building for the

detected building. The pseudo one-to-one correspondence is illustrated in Figure 2.12.

The detected building is labelled FP if it does not overlap any reference building.

Similarly, if a reference building overlaps any detected building, the reference building

is labelled FN. In the case where the reference buildings have one-to-one correspon-

dence with the detected buildings, both are labelled TP, as shown in Figure 2.12(a).

If several reference buildings overlap a detected building, the reference building (e.g.,

1 in Figure 2.12(b)) which is nearest to the centre of the detected building is labelled

TP, and others (e.g., 2 in 2.12(b)) are labelled FP. If a reference building overlaps mul-

tiple detected buildings (as in Figure 2.12(c)), both the detected buildings are labelled

multiple detections (MDs). Otherwise, the detected buildings are not labelled as MDs
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(see Figure 2.12(d)).

(a) (b) (c) (d)

1 1 1

2 22

Figure 2.12 (a) Different scenarios for establishing a pseudo one-to-one correspondence, where
a red rectangle denotes a detected building and a black rectangle denotes the reference building
[72].

2.5 Quality Assessment Criteria

As mentioned previously, both the evaluation systems run three categories of evalu-

ation, i.e., object-based, pixel-based, and geometric. Each category includes a num-

ber of metrics to measure the performance of a proposed method. The object-based

metrics (i.e., completeness (Cm ), correctness (Cr), quality (Ql), over-segmentation

(one-to-many - 1 : M), under-segmentation (many-to-one - N : 1) and over-and-under

segmentation (man-to-many - N : M) errors) measure the performance quantitatively

by counting the number of building objects, whereas the pixel-based metrics (i.e., pixel

completeness (Cmp), pixel correctness (Crp), and pixel quality (Ql p)) evaluate the per-

formance by counting the number of pixels of the detected objects.

Completeness =
T P

T P+FN
(2.2)

Correctness =
T P

T P+FP
(2.3)

Quality =
T P

T P+FN +FP
(2.4)

In contrast to the system adopted by the ISPRS [70] which measures one-to-many,

many-to-one, and many-to-many segmentation errors, the threshold-free evaluation



§2.5 Quality Assessment Criteria 31

system measures detection cross-lap (Dcl) and reference overlap Rcl. To compute Dcl,

the formula defined in [72] uses Cld which is the number of detected buildings with

more than one correspondence with the reference buildings.

Dcl =
Cld

T P+FP+MD
(2.5)

Similarly, for the calculation of Rcl, the formula uses Clr which gives the number of

reference buildings overlapping more than one detected building.

Rcl =
Clr

T P+FP+MD
(2.6)

In addition, the geometric accuracy in terms of RMSE is determined, which mea-

sures the average distance between a pair of detected and reference buildings [73].

This can be represented as:

RMSE =

√
∑d2

N
(2.7)

Here, d corresponds to the Euclidean distance between the corresponding bound-

ary points of the detected and reference objects, whereas N refers to the number of

points for which a correspondence has been found. Moreover, the geometric evalua-

tion process also measures the height accuracy (RMSz), which is the root mean square

height distance of the points within the corresponding planes. The height values of all

points corresponding to both the planes are used to calculate RMSz as:

RMSz =

√
∑(Zre fi−Zdet j

)2

N
(2.8)

Here, Zre fi
and Zdet j

are the height values of the points from both the reference and

the detected objects, respectively.
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2.6 Benchmark Datasets

This section provides information about the data used throughout the thesis. The infor-

mation about the characteristics of the data is important for the robust interpretation

of the proposed methods and the results achieved.

2.6.1 The ISPRS Benchmark Dataset

The first dataset is Vaihingen (VH) from the ISPRS benchmark and provided by the Ger-

man Society for Photogrammetry, Remote Sensing and Geo-information (DGPF) [71].

It has three test areas, as shown in Figure 2.13. Each area has a point density of 3.5,

3.9, and 3.5 points/m2, respectively. The VH1 area is situated in the centre of the

city and characterised by dense construction consisting of historic buildings. These

buildings have complex shapes, such as gables and hip roofs, with small chimneys and

dormers. In most cases, the buildings are located beside vegetation that often partially

occludes the buildings. The VH2 area is characterised by a few high-rise residential

buildings surrounded by dense trees. Finally, VH3 area is purely residential, with de-

tached houses and many surrounding trees. The numbers of buildings larger than 2.5

m2 in these three areas are 37, 14, and 56, and the corresponding numbers of planes

are 288, 69, and 235, respectively. The red polygons in all the areas of the ISPRS

benchmark dataset show the region the evaluation system uses for quantitative per-

formance analysis. For independent evaluation, building detection and roof extraction

results are submitted to the ISPRS, which quantitatively evaluates the performance of

a technique and publishes the results online2.

2http://www2.isprs.org/commissions/comm3/wg4/results.html
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(a) (b)

(c) (d)

(e) (f)

Figure 2.13 The ISPRS Vaihingen dataset: (a)–(b) VH1 ; (c)–(d) VH2; and (e)–(f) VH3. Col-
umn 1 shows polygons for the reference buildings and Column 2 shows polygons for the refer-
ence roof planes.
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2.6.2 The Australian Benchmark Dataset

Four Australian datasets, Aitkenvale (AV), Hervey Bay (HB), Eltham (EL), and Hobart

(HT) were used for testing the applicability of the proposed solutions on diverse ar-

eas. The first two datasets were provided by Ergon Energy3 in Queensland, Australia

while the latter two were supplied by Photomapping Services and the Department of

Environment and Primary Industries of Victoria, Australia, respectively.

The AV dataset has two areas for which we used two different acronyms, AV1 and

AV2. The AV1, AV2, HB, EL, and HT datasets have point densities of 35, 29.3, 12,

4.8, and 1.6 points/m2, respectively. Topographically, the AV and HB areas are flat,

while EL and HT are hilly, containing mostly residential buildings with different levels

of vegetation. The AV, EL, and HT datasets have dense vegetation, and many of the

buildings are severely occluded by the surrounding trees. The test areas AV1, AV2, HB,

EL, and HT cover 66 × 52 m2, 214 × 159 m2, 108 × 104 m2, 393 × 224 m2, and 303

× 302 m2 areas, respectively, as shown in Figure 2.14(a)–(j).

AV1 contains 6 buildings comprising 24 roof planes, while AV2 has 63 buildings

(four are between 4 to 5 m2 and 10 are between 5 to 10 m2) comprising 211 roof

planes. The EL dataset contains 75 buildings (nine are less than 10 m2, including

five within 3 to 5 m2) consisting of 441 planes. The HT dataset has 69 buildings

(thirteen are less than 10 m2, including four within 1 to 5 m2) containing 257 planes.

The HB dataset contains 28 buildings (three are between 4 to 5 m2 and six are between

5 to 10 m2), consisting of 166 roof planes. The reference datasets included parking

shades, huts, and shelter umbrellas as buildings in the evaluation.

3
http://www.ergon.com.au

http://www.ergon.com.au
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

Figure 2.14 Australian benchmark datasets: (a)–(b) AV1; (c)–(d) AV2; (e)–(f) HB; (g)–(h)
EL; and (i)–(j) HT. Column 1 shows polygons for reference buildings and Column 2 shows
polygons for the reference roof planes.

2.7 Summary

The background material relevant to understanding the thesis has been discussed

in this chapter. We summarised the characteristics of remote sensing systems, both

satellite- and airborne-based, and provided a discussion on which data source is better

for GIS object detection and classification. We briefly discussed the technical principles

to establish the foundation for a better understanding of the work presented in the fol-

lowing chapters. We also briefly presented the performance evaluation systems and the

metrics to measure different quality aspects in terms of pixels and objects. Finally, the

datasets used in the entire thesis were introduced in the last section. The next chapter

presents the relevant literature to provide the motivation for the research on building
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detection, roof plane extraction, and 3-D building modelling.
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Chapter 3

Literature Review

“If you can’t explain it simply, you

don’t understand it well enough.”

Albert Einstein

3.1 Introduction

In this chapter, we address the first research objective RO1, i.e., “To identify the

research gaps and limitations, and conduct a review of existing approaches to

building detection, roof plane extraction, and 3-D building modelling”. Recent

developments in the fields of photogrammetry and remote sensing for automating the

measurement and scene interpretation tasks have resulted in sophisticated methods

with promising results for data acquisition, and the identification and reconstruction of

urban objects. Many scientists have developed building recognition and reconstruction

techniques utilising image information only, others have utilised LiDAR point cloud,

and some have attempted to integrate LiDAR and aerial images for several GIS appli-

cations.

In recent years, studies on the detection and reconstruction of buildings have made

significant advances. These methods can broadly be classified into three categories

on the basis of their processing strategy: model-driven, data-driven, and hybrid ap-

proaches [12, 17, 74, 75]. A model-driven method uses a predefined building model

(shape) and fits into the input data for the extraction purposes, in contrast to a data-

driven method that uses the input data and extracts one or more features (corners,

lines, and planes) for the detection and reconstruction of buildings. A hybrid method,

on the other hand, exhibits the characteristics of both model- and data-driven ap-

proaches. All these strategies differ significantly in terms of degree of automation,

39
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the data sources used, methodologies, and the processing strategies. Therefore, they

can be categorised according to the following different criteria [22,76]:

• Degree of automation: automatic or semi-automatic

• Input data source: photogrammetry image and/or laser scanning data

• Processing strategy: supervised (probabilistic or non-probabilistic classifiers), un-

supervised (rule-based) or statistical (heuristic model as energy function)

• Data features: corners, lines, illumination, contrast (from image) and/or geo-

graphical location, point density, height, intensity, flight scan-line information

(from LiDAR data)

• Pre-existing knowledge: none; building geographical position, cadastral map or

off-line pre-computed information

• Output: buildings, roof planes, training parameters; geometric information; build-

ing model; or scene description

There are numerous possibilities for categorising the existing techniques on the ba-

sis of given criteria. However, the input data source parameter is adopted for the clas-

sification in this chapter to simplify the systematic review of the techniques. Further,

the scope of the discussion is limited to the context of the proposed study. Therefore,

only the relevant techniques are reviewed. A schematic categorisation of the literature

review is shown in Figure 3.1.

In Section 3.2, we provide the definitions of some basic concepts, followed by a

review of building detection techniques in Section 3.3. The techniques for roof plane

extraction and 3-D building modelling are discussed in Sections 3.4 and 3.5, respec-

tively. The research challenges addressed in the thesis are presented in Section 3.6.

The chapter concludes with Section 3.7.
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Figure 3.1 Schematic of literature review classification.

3.2 Preliminaries

This section provides the definitions of some basic terms in order to assist understand-

ing of the topics discussed. These terms will frequently be used throughout the disser-

tation. The definitions are as follows:

• An automatic method refers to a technique which does not require any user

interaction in the course of the classification/segmentation/detection steps, apart

from the selection of model parameters or determining the training data off-line,

and the output of the method is not subject to any post-editing [22].

• The building detection procedure aims to identify the location, area, and the

boundary of a building region. The extracted boundary is generally represented

as 2-D LiDAR points/image pixels.

• The building regularisation technique generates a 2-D regular outline of a build-

ing periphery by replacing the sequence of boundary points with straight lines.

• Roof plane extraction techniques classify the LiDAR point cloud into homoge-

neous and non-homogeneous points in order to detect the roof plane surfaces.

These techniques also estimate the area and boundary of the extracted surfaces.
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• Roof reconstruction is a procedure for generating a 3-D reconstructed view of

building roofs with the minimum number of geometric primitives. This procedure

is also referred to as the roof plane regularisation procedure.

• Building reconstruction is the determination of the geometrical parameters of

a building in 3-D space located in a given region of interest [77]. In addition to

the roof model, the wall models are generated and added to obtain a complete

building model.

• A building delineation error denotes when the boundaries of buildings are not

properly approximated.

• A building detection error corresponds to an error when buildings are not de-

tected by a building detection process.

3.3 Building Detection

Of the countless objects on the earth, buildings are a fundamental component and

quite diverse for several applications in the field of urban planning, civilian and mil-

itary emergency responses, cartographic mapping, and crisis management [17, 78].

Accurate and current information on buildings is imperative to keep these applications

operational. In the past, some promising solutions used an interactive initialisation

set-up, followed by an automatic extraction procedure [79]. However, this approach

is practical only if a trained human operator makes the initialisation and supervises

the extraction process. In contrast, automatic building extraction has proven to be a

non-trivial task [9]. The following sections provide a review of techniques using single

and multiple data sources.

3.3.1 Review of Image-based Methods

The development of very high resolution (VHR) space-borne images makes it possible

to sense individual buildings in an urban scenario [10], which is imperative in vari-

ous reconstruction, cartographic, and crisis management applications. However, the
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increasing information in high-resolution imagery does not guarantee a proportional

increase in building detection performance [11, 12]. Rather, it adds to the spectral

ambiguities [13]. Consequently, similar urban objects may have different spectral sig-

natures, whereas different objects may have similar spectral signatures under various

background conditions [14]. These factors, together with hardware errors, reduce the

building detection rate. Therefore, using spectral information alone to discern build-

ings from other urban objects eventually results in poor performance [10]. A practical

solution is to combine the information of both LiDAR and images for building region

detection. Following a major principle of scientific writing that the readers must un-

derstand the concept, we, therefore, provide a brief discussion of the methods utilising

images as the only source for building detection. The following Section 3.3.3 primarily

focuses on a literature review of studies using the integration of multiple data types.

Song et al. [80] proposed a building detection technique based on single high-

resolution satellite imagery. The detection was performed in two stages: hypothesis

generation and hypothesis verification. Firstly, the input image was decomposed into

small regions, called Candidate Building Regions (CBRs). Next, image lines were ex-

tracted from each CBR and classified into nine sub-sets. Then, four random lines from

each sub-set were used in developing a rectangular building hypothesis. Finally, the au-

thors applied an edge verification approach to remove all the unreasonable hypotheses

for further processing. The method was tested using satellite imagery that did not have

any vegetation. According to the performance evaluation results, the method detected

more than 90% of buildings. However, buildings which were small or constructed with

dark rooftops were not identified.

Wei and Prinet [81] applied a probability function for the detection of building

regions. They first performed image segmentation that decomposed the image into

several regions. Next, they computed many features, including shadow ratios, region

entropy, contour edges, and shape features for each region. The authors then applied

a probability function to calculate a confidence value which defines whether or not a

region corresponds to a building. The probability function utilises the following fea-

tures for calculating the confidence value: distance to straight line segments, contour

region entropy, edges, grey level, standard deviation, shape, and shadow ratio. The

values of many parameters were identified by manual interaction, making this method
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semi-automatic. The authors identified the presence of shadows as a key factor in poor

performance.

Izadi and Saeedi [82] proposed a building detection technique using aerial images.

The images were decomposed using a hierarchical segmentation algorithm. Unlike

a generic segmentation algorithm that uses colour or intensity information for image

segmentation, a hierarchical segmentation algorithm segments the given images based

on adaptive colour range resolution. Using this algorithm, a segmented image along

with a set of regions for each range were produced. The authors then organised the

information on the image segments and the set of regions in a tree structure which was

later used to obtain the best colour range resolution for various image regions. After

applying some building rooftop features, trees, roads, and other non-building objects

were removed. Finally, the regions which were left were the potential buildings. The

authors tested their method using seven aerial images, and the results showed high

accuracy. However, since the test datasets had little vegetation, the robustness of the

method remains unclear for datasets with dense vegetation.

Sirmacek and Unsalan [83] employed colour-invariant features and shadow infor-

mation in a feature- and area-based technique. The shadows were detected using the

information of the blue colour channel, while roofs constructed with red coloured ma-

terial were detected using the red colour channel. The authors detected the shadow

regions first and the regions opposite to them were then selected using the illumination

angle as candidate regions. They next applied the canny edge detector and then the

box-fitting algorithm for candidate region extraction. This technique assumes that all

the buildings have rectangular shapes and contain only a single texture on the rooftops.

Therefore, the method is not applicable for other types of buildings and multi-textured

rooftops.

3.3.2 Review of LiDAR-based Methods

Airborne LiDAR data provide height information on salient ground features, such as

buildings, trees, bushes, terrain, and other 3-D objects. Therefore, the adoption of

height variation to distinguish various urban objects is a more suitable cue than spectral

and texture changes. However, the detected boundaries have low planimetric accuracy
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due to point cloud sparsity [12,14]. In addition, the appearance of trees and buildings

is sometimes similar in complex urban scenes [15], when height information alone is

not perceived to produce a finer classification [11]. Therefore, the fusion of LiDAR with

aerial images is regarded as a promising strategy to increase the building detection

rate [12, 14–17]. The following Section 3.3.3 focuses on integration techniques for

building detection. However, this section discusses detection techniques using only

LiDAR data.

Cheng et al. [84] presented a reverse iterative morphological algorithm for build-

ing extraction. They used a large window size at the beginning for the morphological

operations to separate the ground points and the non-ground points (on buildings,

sparse and dense trees). After each iteration, the window size was decreased and only

the non-ground points were filtered based on the height difference between two suc-

cessive morphological operations. The authors used some other parameters the values

of which were adjusted manually, based on the minimum and maximum building size

and the minimum building height. Finally, the tree regions were removed at the post-

processing stage with the help of surface roughness measurement and the building

regions were detected. This technique was tested using 10 building samples and the

minimum building size was over 500 m2. Therefore, the algorithm’s ability to detect

buildings as small as 10 m2 is unclear. Moreover, this method failed to detect one large

building and some of the building parts, and this shows low detection accuracy.

Yang et al. [85] optimised the Gibbs energy model for building detection. Initially,

a LiDAR point on each building that served as prior knowledge of the building position

was marked in terms of energy. The authors used Reversible-Jump Markov Chain Monte

Carlo (RJMCMC) to sample the global energy to fit the LiDAR data to the marked build-

ing points for the generation of the building cuboid. Finally, the false buildings were

removed and the boundaries of the potential buildings were refined. The method was

tested on three datasets. Several low height buildings were not detected, resulting in

low object-based evaluation. However, the technique achieved high pixel-based accu-

racy. The energy optimisation process needs an exact number of iterations to achieve

a building’s global optimal location, which is a computationally expensive process and

a major limitation of this method.
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Mongus et al. [86] proposed a LiDAR-based building detection technique. The au-

thors introduced a differential morphological profile algorithm which makes the pro-

cess of segmentation independent of building size and shape. The buildings were de-

tected in a three-stage process. Firstly, the LiDAR points were arranged into a grid in

which the grid resolution was defined by the density of the data. Next, the outliers

were removed using a data de-noising process. At this stage, bushes and small trees

were removed for further processing. The authors finally applied a grid segmentation

process to detect the building regions. The performance was evaluated using three

datasets and the results showed high accuracy in terms of objects and pixels. However,

the user-defined values were not consistent in the different datasets, indicating that

the method is quite subjective.

Awrangjeb and Fraser [87] presented a region-growing-based building extraction

method using LiDAR data. They first separated the LiDAR data and generated a build-

ing mask. The authors then decomposed the mask into equal-sized cells and used a

region-growing technique for the extraction of planar regions. The segmentation tech-

nique used the coplanarity of the laser points and their locality for segmenting the

non-ground LiDAR points into planar surfaces. The planar surfaces on trees and other

non-building objects were then removed using area, point height difference, and used-

to-unused point ratio. The technique establishes a neighbourhood relationship among

the adjacent planes which is used finally to detect the building regions. Although this

method achieves reasonably high pixel-based accuracy, it is unable to extract small and

occluded buildings.

3.3.3 Review of Methods using Multisource Data

Despite the agreement to use multiple data sources, how to extract and integrate the

distinct features so that their weaknesses can be compensated effectively is a hot area

of investigation. Haala [88] classified the integrated methods into two categories.

The first group of techniques [12, 14, 17, 89] primarily uses the image features, for

instance NDVI, entropy, and illumination, for the elimination of unwanted objects and

the extraction of buildings. Therefore, the detection rate and planimetric accuracy of

the detected buildings is fairly high.
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Chen et al. [14] proposed an integration method for building detection using LiDAR

data and QuickBird imagery. A normalised DSM (nDSM) was first generated from the

LiDAR data. Then, it was decomposed into equi-sized grids and the cells representing

unwanted objects were eliminated using prior knowledge of minimum building height.

The authors next utilised the NDVI and spatial relationship in order to eliminate trees

and to extract the building roofs. This technique performs poorly when buildings have

small roof planes or complex roof structures. Moreover, several buildings with green

roofs were also removed due to inappropriate usage of features from LiDAR and im-

ages. Since the method was tested using single dataset, the robustness of this technique

is unclear.

Grigillo et al. [55] follows the mask generation process in [14] and then eliminated

the vegetation under shadows by truncating the areas with low homogeneity. However,

this technique does not address the occlusion issue and produces inaccurate building

boundaries when they are surrounded by trees but works well when trees are isolated.

Another technique [49] generates a DSM from the first and last pulse return of the

LiDAR data, and uses the NDVI and spatial relationship between buildings and trees

to complement the detection process. However, it has the similar limitations to the

previous technique.

A technique by Awrangjeb et al. [17] initially separated the LiDAR data into ground

and non-ground points using a height threshold value. The non-ground points were

then used to generate a building mask. The line segments were then extracted from

the image and used for the segmentation of non-ground LiDAR points. Finally, the

authors, used image features like NDVI and entropy for the removal of vegetation

and identification of the building regions. Due to a large height threshold (2.5 m) to

avoid roadside furniture, bushes, and several low height objects, many small buildings

(with areas < 10 m2) were not detected. In addition, buildings, which were partially

occluded and in shadow were also not detected.

The techniques in the second group utilise LiDAR as the primary cue for building de-

tection and employ image features only to remove vegetation [15, 90]. Consequently,

such approaches show poor horizontal accuracy of detected buildings due to LiDAR

point discontinuity. A method based on the Dempster–Shafer theory [15] classified
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the LiDAR data into several groups representing buildings, trees, grassland, and bare

soil. A morphology operation was later performed to eliminate the small segments and

detect the building regions. However, this procedure requires tuning of several pa-

rameters with an estimation of wooded areas. This technique results in poor detection

rates in the case of small buildings because it uses a large threshold (area≥ 30 m2) and

an untrained Dempster–Shafer model [91]. Xiao et al. [9] used edge and height infor-

mation in a dense image-matching technique to detect the façades in oblique images.

The authors considered these façades as a representation of vertical planes to define

the building hypotheses. A major disadvantage is that the method fails to extract small

buildings and simply ignores building attachments and small structures in backyards

and open areas.

Qin and Fang [13] first obtained an initial building mask hierarchically by consid-

ering the shadow and off-terrain objects. A graph cut optimisation technique based

on spectral and height similarity was then used to refine the mask by exploring the

connectivity between the building and non-building pixels. This method can handle

shadows and small buildings to a good extent, but building patches on steep slopes,

roof parts in shadow, and roofs with vegetation cannot be extracted. Zhang et al. [10]

proposed a dual morphology top-hat profile to overcome spectral ambiguity using a

DSM and ultra-high-resolution image for feature classification. However, the accuracy

of the DSM remains a critical factor in building extraction, particularly for small ob-

jects.

Awrangjeb et al. [41] proposed a residential building detection technique using

LiDAR data and orthoimagery. They generated two masks from the LiDAR data to

represent void and filled areas, and then used the prior mask for extracting the line

segments. Trees were removed next using the NDVI from the input orthoimage. Using

the line segments, this method further identified the initial positions of the buildings.

Finally, the building footprints were extracted from their initial positions using the

generated masks and orthoimagery. The evaluation results showed that the method

has good object-based accuracy than pixel-based accuracy. Moreover, the technique

cannot represent the position of a complex building using single polygon. Instead,

different parts of some buildings were detected separately.
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Since the LiDAR-based methods generally produce ragged building boundaries,

some researchers have tried to outline the ragged boundaries with minimum possible

lines, which is called boundary regularisation or generalisation in literature. The fol-

lowing techniques give an overview of boundary regularisation studies. The polygon

extraction method proposed in [92] determined the dominant direction of a build-

ing using cross-correlation mapping and later, used a rotating template and angle his-

togram to obtain a regularised boundary. Fu and Shan [93] used three primitive mod-

els based on locating 2-D rectangles to construct 3-D polyhedral primitives followed by

assembling the final buildings with right-angled corners.

Ma [94] categorised the lines into two perpendicular classes and performed a

weighted adjustment to calculate the azimuth of these classes using the Gauss-Markov

model. Finally, the adjacent parallel lines were combined together to construct a reg-

ularised boundary. Sampath and Shan [74] utilised a conditional hierarchical least

squares method ensuring the lines participating in the regularisation process have the

slopes of parallel lines equal or a product of the slopes of perpendicular lines to be

−1 (orthogonal). Another similar technique [95] forced boundary line segments to be

either parallel or perpendicular to the dominant building orientation when appropriate

and fitted the data without a constraint elsewhere.

A compass line filter [96], on the other hand, extracted straight lines from irregularly-

distributed 3-D LiDAR points and constructed a boundary by the topological relations

between adjacent planar and local edge orientation. For building boundary extraction,

Wei [97] used the alpha-shape algorithm and applied a circumcircle regularisation ap-

proach to outline rectangular buildings.

Rottensteiner [15] found through the comparative analysis of several techniques

that a major reason for any building detection technique producing low detection rates

is incompetence in the extraction of partially-occluded buildings. These techniques also

produce a high delineation error because trees standing close to buildings are wrongly

merged into the building region.
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3.4 Building Roof Detection

Building roof extraction techniques aim to identify individual planes of buildings and

their constituent components e.g., dormers, chimneys, and vents. To the best of our

knowledge, no attempt has been undertaken to date to recognise roof planes using

only image data. We, therefore, do not provide any discussion of this category. Our

statement is further supported by another study [98] that also claims the unavailability

of image-based roof extraction techniques. Therefore, the following sections provide

a review of different roof plane extraction techniques using LiDAR data and those

integrating multiple data sources.

3.4.1 Review of LiDAR-based Methods

For building roof detection using LiDAR data, RANdom SAmple Consensus (RANSAC),

Hough Transform, and region-growing algorithms are three major contenders often

utilised for point set segmentation [99–102]. In principle, RANSAC is a randomised

procedure that iteratively fits an accurate model to a set of observed data which may

contain outliers. Hough Transform, however, describes the primitives in which each

data point casts its vote for candidate planes in a parameter space. On the other hand,

the region-growing algorithm finds the primitive shapes from the unorganised point

cloud by accumulating points into regions satisfying certain conditions.

To comprehend the theoretical and practical feasibility of these approaches, De-

schaud and Goulette [103] conducted a comparative study. They showed that RANSAC

is very efficient for detecting large planes in a noisy point cloud but very slow for small

planes in large datasets. They also showed that the Hough Transform is computation-

ally expensive and time-consuming for plane fitting and extraction. In contrast, they

argued that region growing is a quite robust and fast segmentation approach which

offers strong resilience to noise [104]. However, it is not highly accurate due the sen-

sitivity and location of the initial seed [103]. But this issue can better be addressed

when global information is used by the segmentation process [104].

Awrangjeb and Fraser [87] proposed a roof plane and building extraction method

using LiDAR data. They first separated the LiDAR data into the ground and non-ground
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points, and generated a primary building mask. Points from the earth, roadside fur-

niture, and small bushes were represented in white in the mask whereas non-ground

points, including buildings and trees denoting the elevated objects, were represented in

black. The authors then divided the mask into equal-sized grids and applied a region-

growing technique to extract the planar regions. They then used a rule-based method

to remove the false planes and extract the roof planes. Although, this method achieves

a reasonably high pixel-based accuracy, it is unable to extract small and occluded roof

planes.

For point cloud filtering, Vosselman [105] proposed a slope-based classification

algorithm that first computed the slope between any two adjacent LiDAR points and

classified them as non-ground if the slope value was larger than a threshold value.

However, the selection of a threshold value is quite critical to the method which directly

affects the filtering process and can flatten the terrain details. In contrast, a method

proposed by Arastounia and Lichti [106] used the point height histogram mechanism

for the dynamic selection of the threshold value. A peak in the histogram represents

the ground surface and a threshold was chosen where the bin entries were decreasing

dramatically. Although, this automatic selection criterion works well for the flat terrain,

it does not accurately produce a threshold value for hilly and slopping surfaces.

Sampath and Shan [35] presented a framework to extract and reconstruct polyhe-

dral building roofs from LiDAR point cloud data. First, planar and non-planar points

were determined through eigenvalue analysis. Next, plane segments were extracted

using planar points by a modified fuzzy k-means clustering algorithm [107]. The non-

planar points were then assigned to the appropriate planar clusters, where finding a

cluster centre was computationally expensive. The authors showed results using a

small number of building samples and the effect of noise was completely ignored al-

though a surface becomes noisy in dense datasets [52]. In addition, the results were

not convincing for small roof planes.

Dorninger and Pfeifer [34] assumed that buildings comprise of planar structures

and the LiDAR points of these surfaces have similar local normals. They began with

the identification of the seed points through a histogram analysis. A predominant bin

in the histogram was chosen as the feature space parameter. They later detected the
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planar patches utilising seed points and coplanarity analysis in a region growing tech-

nique. Then, the alpha-shape algorithm was applied to approximate the boundary of

the building regions. The authors proposed a boundary regularisation technique that

use the mean angular directions of the approximated boundary to regularise the build-

ing outline. This study shows the applicability of the technique using two datasets,

but does not provide any discussion of partial occlusion and the elimination of vegeta-

tion. Further, the authors advised initialising the coarse selection of building regions

interactively to achieve better accuracy. In addition, this method requires some of

the algorithmic parameters to be tuned through manual interaction, which causes this

technique to be categorised as semi-automatic.

Zhou and Neumann [108] proposed a region growing technique for segmenting

building rooftops. They used a contouring algorithm to extract the building bound-

aries. Later, histogram statistics were used to determine the principal direction of the

buildings and roof planes for footprint generation. This method works only for flat

roofs and needs manual interaction for the identification of non-flat surfaces.

In another technique proposed by Awrangjeb and Fraser [109], a rule-based seg-

mentation technique was presented using LiDAR point cloud. They initially divided

the LiDAR data into two groups based on a height threshold and generated a building

mask. The non-ground points were further classified based on the coplanarity of points.

Using planarity and neighbouring plane information, a rule-based method was applied

to remove the tree segments and identified the roof planes. Results show that this

method missed some small buildings and several roof planes. Moreover, the detected

boundaries were ragged and had low planimetric accuracy.

An area-wide point cloud segmentation was proposed by Jochem et al. [110],

where data were processed in the form of several overlapping tiles. The candidate

building regions of all the tiles were detected first and then merged into a single poly-

gon layer for plane extraction. The normal vector to all the points in the polygonal

layer were approximated by fitting an orthogonal regression plane and using the 3-D

k-nearest neighbourhood method. Further, surface roughness was determined as the

standard deviation of the orthogonal fitting residuals for local planarity analysis. The

authors next used the similarity of the normal vector and the 3-D distance to the seed
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point in a region-growing algorithm for plane surfaces. Finally, using the plane’s slope,

aspect, and area attributes, the plane segments were classified to identify the building

roofs. The technique showed fast handling of the data but roof planes below a certain

height (< 1.5 m) and area (< 6 m2) were not detected. This technique works seam-

lessly for larger planes and non-occluding building parts. However, roof artefacts (e.g.,

dormers and chimneys) were not extracted due to the merger of adjacent candidate

regions.

3.4.2 Review of Methods using Multisource data

Various integrated methods have been introduced in the literature in which multiple

data sources are used for roof plane extraction. Typically, two main approaches are

taken to the segmentation of roof surfaces: the top-down approach first identifies the

building periphery and then detects the roofs and other primitives, while the bottom-

up approach detects planar patches first and then determines the building regions.

Irrespective of the approach taken, the ultimate aim is to extract the building roof

surfaces. This section provides an overview of method of building roof detection.

Awrangjeb et al. [17] proposed an automatic data-driven method for roof plane ex-

traction using LiDAR data and orthoimagery. The method extracted the line segments

from a grey-scaled version of the image using the canny edge detector. It then classified

all the extracted lines as edge-, ridge-, ground-, and tree-lines. The authors used the

ridge lines to determine the seed point and applied the region growing technique for

segmenting the point cloud into planar segments. They used the NDVI and entropy of

the image in a rule-based refinement procedure to remove the planes on trees and non-

building objects. The technique applied a height threshold of 2.5 m to remove LiDAR

points on the earth and smaller objects, including roadside furniture and bushes. This

technique offered high accuracy but is unable to detect small-sized primitives due to

the large threshold values for area and width parameters. Moreover, roofs which were

partially occluded in complex areas and in shadow were also not detected.

In the technique proposed by Khoshelham et al. [91], split and merge technique

was adopted for roof extraction using both aerial imagery and height information.
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They addressed over- and under-segmentation issues in image segmentation by in-

tegrating the height values from the DSM with the image segmentation algorithm.

They exploited a simple observation to resolve the segmentation issues. In the case

of under-segmentation, multiple regions were detected as single over-grown region,

but in reality these regions had different height values and the opposite is the case for

over-segmented regions when multiple segments had the similar height values. The

authors evaluated the performance of the method through the RMS error using four

simple gable roofs. Only one metric for the evaluation is not found to be convincing as

the avoidance of segmentation issues could have led to other errors.

Since the detection of roof planes is considered a sub-task in 3-D building recon-

struction, a survey of many other techniques in the context of roof extraction is pro-

vided in the following Section 3.5.3. Regarding the integration approach, Sun [111]

argues that although combining information from multisource data has several ad-

vantages, it becomes problematic to determine the correspondences between different

types of data for the detection of roof planes. It also becomes difficult to assess which

particular information or what level of amalgamation should be achieved for the de-

velopment of a generic approach.

3.5 3-D Building Reconstruction

The fundamental task of building modelling is the transformation of low-level building

primitives to a high-level model description. In the research literature, a wide range

of methods for reconstruction of buildings have been proposed [21, 23, 30, 31, 35, 52,

65, 112–121]. Theoretically, these techniques differ from each other in the generality

and degree of automation, the data sources, the geometric modelling methodologies

and the strategies to achieve GIS building models. This section provides a review and

discussion of recent developments in the reconstruction of 3-D buildings based on the

input data sources used, as shown in Figure 3.1.

3.5.1 Review of LiDAR-based Methods

Vosselman [23] proposed a building reconstruction technique using 3-D Hough trans-

formation for the extraction of roof surfaces from Airborne Laser Scanning (ALS) data.
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The edges were recognised through cross-intersection of the extracted surfaces and

analysis of the discontinuities in Delaunay triangulation of the original height points.

A roof topology was built assuming buildings were polyhedral and their edges cor-

responding to height discontinuities were either parallel or perpendicular. The large

gaps in the reconstruction were resolved by building regularity constraints and manual

intervention. This strategy has the disadvantage that adjacent vegetation is consid-

ered as part of the building and partial occlusion by nearby trees also hampers the

reconstruction process.

In a subsequent approach, Vosselman et al. [115] used ground plans and the 3-

D Hough transformation for building reconstruction. The ground plans were used

to obtain the accurate location of the outer roof face edges and information about

the structure of a building. The first strategy explored the Hough Transform for the

detection of intersection lines and planar faces. In the event that building outlines

were unavailable, they were drawn manually in a display of the laser points with grey-

value-coded heights. The second strategy adopted some predefined simple roof models

(flat, shed, gable, hip, spherical, or cylindrical) that were refined on the basis of fitting

them into the input point cloud data. The first strategy is often deficient in finding

the intersection lines or the height jump edges and therefore fails to refine the initial

ground plan. However, the second strategy is unsatisfactory while working with small

details of buildings. Moreover, some unnecessary extensions in the building regions are

observed, mainly due to misalignment between the ground plan and the corresponding

laser data.

Kim and Shan [117] proposed a novel roof plane segmentation and building re-

construction technique using airborne LiDAR data. A segmentation process based on a

multiphase level set was applied to extract the roof planes that used point normal for

local planarity analysis and exclude the non-planar points lying on roof ridges or step

edges. The reconstruction of buildings was then performed in two stages. The roof

structure points were first determined through the intersection of adjacent roof planes

or line segments of the building boundary and repositioning the structure points based

on their topological relations inferred from the segmentation results. Although, this

technique shows good results, it suffers from over-segmentation and neglects the ef-

fect of vegetation in the segmentation process.
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Sohn et al. [122] proposed a generative modelling approach to reconstruct 3-D

polyhedral building models using LiDAR point cloud. The coarse boundaries of the

buildings were detected and the tree segments were eliminated at the beginning. The

building points were then partitioned into homogeneous rooftop regions based on

height and plane similarity criteria using the RANSAC algorithm. The step edges and

the plane intersecting lines were identified using a Compass Line Filter (CLF) and the

intersection of the adjacent roof planes, respectively. A Binary Tree Partitioning (BSP)

tree was used to produce initial rooftop vectors using the topological relationships

between the adjacent planar surfaces. Finally, Minimum Description Length (MDL)-

based regularisation was performed by rectifying the geometrical distortions between

adjacent roofs and the intersection lines, and then an optimal rooftop model was re-

constructed. The study showed good evaluation results and is suitable for updating

cadastral maps, but the extracted models tend to shrink in comparison with the refer-

ence vectors which are digitised using the multispectral image. This method also shows

low geometric accuracy due to over-segmentation and the applied error tolerance. In

addition, the occurrence of deformation in rooftop models is observed when the curved

segments are extracted as linear segments. Some initial work and a similar study have

been published in [123] and [124], respectively.

Kong et al. [36] proposed a classification method based on the k-plane clustering

algorithm. The point cloud data were used to obtain the clustering objects and real

intersecting lines which were mapped directly onto the xy-plane. Using the location of

intersecting lines on the XY-plane, the point cloud data of the obtained clusters were

segmented to identify the building roof planes. By employing the largest polygons

composed of the intersecting lines and boundary lines, 3-D models of the buildings

were reconstructed. Since the method since adopts a plane as the clustering model, it

is unable to classify the laser points for curved building roofs. Moreover, information

about the initial clusters and the normal vectors of the neighbouring planes need to be

generated in advance for successful clustering of the objects.

Poullis and Suya [125] presented a reconstruction pipeline method for building de-

tection and the production of high-fidelity geometric models using LiDAR data. The

input LiDAR was first interpolated and subdivided into a grid space. Next, the neigh-

bouring points which have similar geometrical properties were grouped into homoge-
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neous regions describing the roof planes. These regions from laser points were ex-

tracted through the segmentation of maps following a plane-fitting technique. They

used the Gaussian Mixture Model (GMM) to classify the boundary points into different

orientations. Through experiments, the authors show that their method is capable of

delineating linear as well as non-linear boundaries. However, no detail is provided on

building roof topology in their results.

Jung et al. [126] presented a data-driven reconstruction technique to develop 3-D

rooftop models at city-scale from ALS data. This technique does not differ much from

their earlier work [122]. Using height- and plane-similarity, building-labelled laser

points were clustered into homogeneous regions. In the next stage, external outlines,

intersection lines, and step lines of the planar segments were extracted as part of the

linear modelling cues for reconstruction purposes. The topology relationship among

the modelling cues were recovered through the use of the BSP technique. The building

rooftops were modelled using an implicit regularisation process based on Hypothesise

and Test (HAT) optimisation in the MDL framework. The parameters governing the

MDL optimisation were approximated using min-max optimisation and entropy-based

weighting methods which were used for selecting an optimal model from the possi-

ble hypotheses. Although the experimental results show good performance for large

objects, some small roof planes were not detected, and were therefore, not recon-

structed. This method suffers from under-segmentation issues since many roof planes

were merged into their adjacent clusters. In addition, this study lacks a discussion of

the reconstruction of partially occluded buildings and their detection.

Wu et al. [127] offer a graph-based technique to reconstruct urban building mod-

els from airborne LiDAR data. In their paper, they represented buildings as topological

structures using a graph theory-based localised contour tree method. The contour tree

was then split into different individual parts for surface modelling by analysing their

topological relationships. The technique further constructed a weighted bipartite graph

between any two adjacent contours and solved the correspondence problem for surface

modelling using bipartite graph matching. Finally, building models were reconstructed

by gluing all individual parts of the building models obtained from bipartite graph

matching into a complete model. Although this technique provides descriptive models,

it fails to capture the sides of buildings and produces high geometric distortion. Simi-
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larly, multi-storey buildings and buildings constructed with transparent materials were

unable to be reconstructed, and therefore, the technique produces low completeness

and high modelling errors.

Rottensteiner et al. [112] proposed a 3-D building reconstruction technique using

airborne LiDAR data. They detected roof planes using surface normal vectors and sub-

sequently determined the intersection lines and step edges among the adjacent roof

planes. Finally, the intersection lines and the step edges were combined to construct

3-D building models. More recent contributions to 3-D building reconstruction by Rot-

tensteiner can also be found in [22, 113, 114]. In addition, Rottensteiner et al. [22]

have reported comparative research results for urban object detection and 3-D building

reconstruction using the ISPRS benchmark datasets. They selected fourteen different

building reconstruction methods, of which ten methods were based on LiDAR point

cloud, two methods used images, one method employed a raster DSM from ALS data,

and one method used both image and LiDAR data. The performances of these tech-

niques were evaluated on the basis of different quality matrices. Readers interested in

more in-depth knowledge are encouraged to read the case study [22].

3.5.2 Review of Image-based Methods

For image-based roof reconstruction, researchers have proposed a variety of tech-

niques. One goal common to all the techniques is the identification of the 3-D in-

tersection points and this is where different approaches and their variations have been

developed. This section provides a brief description of some salient building recon-

struction methods.

Noronha and Nevatia [120] proposed a 3-D wireframe roof modelling technique

using multiple aerial images. The authors chose a dual-phase modelling procedure for

hypothesis generation and verification of flat and symmetric gable roof structures. Ini-

tially, hypotheses for rectangular rooftops were generated by grouping the extracted

lines in the images hierarchically. Next, junction points were determined through

matching and grouping them into different classes of parallel or U-shaped line seg-

ments. These lines and junctions were utilised to generate roof hypotheses and were
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verified by searching for the presence of predicted walls and shadows. The verified hy-

potheses were finally combined to reconstruct the 3-D roof model. The authors show

that occlusion and shadows limit the performance because of overlap mismatch when

different viewpoint images were used.

Sportouche et al. [31] presented a semi-automatic building reconstruction tech-

nique using DTM, high resolution optical, and SAR images. The authors argued that

the amalgamation of optical images with SAR is a difficult task and therefore favoured

the intervention of an operator in a restricted manner. First, individual rectangular

buildings were distinguished using a region-based segmentation technique, followed

by a boundary refinement procedure utilising a contour-based approach. Next, the

optical footprints were projected and registered in the SAR data in order to obtain

a fine superposition between the optical and SAR features. The last stage was to re-

trieve height and validation of the identified buildings based on the optimisation of two

SAR criteria. The authors chose a confidence score as the evaluation parameter which

was higher for most of the reconstructed buildings. However, they have been used

many other user-defined parameters for different datasets that make the robustness of

this approach questionable. The technique was tested using only rectangular and flat

rooftops. Therefore, reconstruction of complex buildings is not found to be convincing

using the proposed arrangements.

Arefi and Reinartz [128] introduced a building reconstruction method integrating

DSMs and orthoimagery. Firstly, building ridge lines were extracted using orthoim-

agery and height information in a ridge-based decomposition process. Next, paramet-

ric rooftops were reconstructed using a projection-based algorithm for each ridge line

by projecting the 3-D points onto the 2-D plane which was defined by the orientation

of the processed ridge line. The authors then fit a predefined 2-D model into the data

and back-projected to the 3-D space. Further, these parametric and prismatic models

were merged and the coinciding nodes and corners were refined in a post-processing

stage to form a final 3-D model of the building. This method is quite sensitive to the

location and accuracy of the extracted ridge lines and a model cannot be reconstructed

if there is no ridge line available. Occlusion with nearby trees is another limitation of

the technique, which causes incorrect detection of the building walls.
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Haala [30] used a DSM to detect building areas for building reconstruction. The

author utilised height isolines to decompose the DSM. For each region, size and com-

pactness parameters were computed and the regions with building-like features were

selected for building reconstruction. The straight lines were extracted from the im-

age and a stereo matching was performed using the height information. Based on

the assumption that the ridge-line of the roof represents the dominant direction of the

building and has the maximum elongation, a prismatic building model was fitted to

the candidate 3-D edges to obtain the reconstructed object.

Yu et al. [33] reported an automated data-driven reconstruction technique using

Terrestrial Laser Scanning (TLS) images. They aimed to describe an entire 3-D building

by using predefined grammar e.g., Lindenmayer systems (L-systems) and the use of the

Maximum A Posteriori (MAP) principle. First, the geometry handling process converted

the unstructured geometry data into structured geometry in terms of polygons. Then,

the mapping-relationship between the structured geometry objects and semantic build-

ing objects were determined by the grammar-based reconstruction procedure. Finally,

the MAP estimator was used as part of the rule selection strategy to assess the goodness

of fit between the observed data and the selected model, as well as the complexity of

the fitted model, in order to determine the best hypothesis.

3.5.3 Review of Methods using Multisource data

In the context of integrating more than one data source for roof reconstruction, re-

searchers have proposed a variety of techniques. These techniques integrate the fea-

tures obtained from different sources and attempt to extract building primitives, lo-

cate 3-D intersection points, and approximate the roof topology for the construction

of building models. This section presents a summary of some building reconstruction

techniques.

The approach of Brenner and Haala [28] integrated both DSMs and 2-D ground-

plans data sources in a semi-automatic reconstruction process. They used a heuristic

algorithm to decompose the ground plans into rectangular regions. For each region,

several 3-D parametric primitives were instantiated and their optimal values were ap-

proximated. Then, a primitive with the least fitting error was selected using the area
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and slope threshold parameters. The selected 3-D primitives and their parameters

were later refined using aerial images by a human operator during the semi-automatic

post-processing stage. The authors provided an interactive mode to modify or add the

ground plan rectangles and estimate a best matching 3-D primitive. Finally, all the 3-D

primitives were merged to obtain the reconstructed object.

The semi-automatic technique of Wang et al. [129] offered a building reconstruc-

tion from LiDAR data and aerial images by introducing floating models. In this tech-

nique, the operator made a model choice and estimated its alignments to the building

boundary on the aerial photographs. Next, the model’s optimal fit parameters were as-

sessed using aerial photographs and the model’s vertical parameters were determined

by LiDAR data using an iterative least-squares model-data fitting algorithm. Finally,

using the model parameters and standard deviations, the wire-frame-model was re-

projected onto all the overlapping aerial photographs to enable the operator to further

modify the results if necessary. The operator actually selects a model, which is rec-

tilinear and approximately fits it. This study is limited to the construction of simple

buildings, and for complex buildings, the design of more model types is required.

Seo [130] used LiDAR data as a combination of wing models for generating build-

ing model hypotheses. The author used surface patches as the fundamental primitives

and stored their adjacent relationships in an adjacent relationship graph. A wing model

was initiated with an antisymmetric plane and the remaining patches were next exam-

ined to determine if they can be grouped into any existing wing model. Building mod-

els/hypotheses were then generated by combining the wing models. These hypotheses

were finally verified by evaluating the consistency between the model hypothesis and

the corresponding aerial imagery. However, the parameter optimisation procedure was

not explained in detail by the author.

Suveg and Vosselman [131] utilised existing ground-plans with LiDAR information

for building reconstruction. They proposed both data-driven and model-drive methods.

In their data-driven method, initially, the building plans were decomposed into polygon

segments. Next, the LiDAR points for each polygon were extracted and supplied to a

least square plane fitting method to compute the parameters of the planes. The authors

investigated the topological relationship between the plane surfaces by determining
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their mutual intersections. Their model-driven technique begins with the generation of

a building hypothesis. 3-D lines were then extracted to determine the building edges

and the were projected back onto the images. Finally, the building hypotheses were

verified with the gradient analysis of these projected edges. The main limitation of the

proposed methods is their restriction to the use of an external ground-plan.

Zhang et al. [43] introduced a model-driven 3-D building roof modelling technique

combining both LiDAR point cloud and aerial imagery. The fundamental concept was

to characterise the building rooftops by parametric primitives and develop cost func-

tions utilising the information from both the input data. The cost function was then

minimised by the use of shape parameters present in the library. The purpose of the

minimisation function was to transform the 3-D modelling problem into a optimisa-

tion problem. Since the authors choose a rectangular shape for the building primitives,

buildings with complex structures or non-rectilinear shapes cannot not be detected and

hence reconstructed.

Kwak [44] proposed a hybrid building modelling technique integrating both LiDAR

point cloud and aerial images. The method decomposed a complex building into rect-

angular primitives using the Recursive Minimum Bounding Rectangle algorithm (RMBR).

Next, the parameters associated with the extracted primitives were approximated from

LiDAR data. Building edges were identified from the aerial images. Finally, the model

primitives were adjusted using edges through the least-squares adjustment procedure,

i.e., model-based image fitting. However, this method cannot reconstruct buildings

with hipped roof structures, because the fundamental primitive used for the recon-

struction was a rectangular primitive.

3.6 Research Challenges

Since the beginning of the development of techniques that aim to provide solutions

for building detection, roof plane extraction, and 3-D building modelling, there has

been a clear path of progress, starting from early techniques that solve the problem of

occlusion, shadows, vegetation elimination, and urban object differences using naive

approaches, moving to 3-D building modelling that allows the reconstruction of urban
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GIS objects. However, some research gaps can be focused on to improve the effective-

ness of such techniques. This thesis addresses some of these identified shortcomings as

follows:

• Building detection: There is a class of building detection techniques which ei-

ther neglect the effect of vegetation altogether or consider only the constrained

presence of vegetation. Another class of techniques either applies large height

threshold or uses large windows in morphological filters to remove unwanted

GIS objects, while others utilise ground-plans to address only the region of in-

terest. Due to spectral ambiguities, many image-based techniques have difficulty

distinguishing buildings with coloured rooftops from the connecting vegetation.

As described in Section 2.2.3, since LiDAR data have discrete laser pulses and

sparsity, building outlines normally have low planimetric accuracy. In contrast,

buildings extracted from imagery data have high planimetric accuracy but lim-

ited vertical accuracy due to the unavailability of accurate height information.

To overcome these issues, a robust technique for automatic building detection

and regularisation is introduced in Chapter 4. We consider the complementary

advantages of LiDAR and imagery data, and choose the fusion of two sources as

a promising strategy to increase the building detection rate and the planimetric

accuracy of the building regions.

• Roof plane detection: Most often, roof plane extraction techniques choose to

apply constraints on plane size, area, and orientation to address forefront chal-

lenges because of point cloud sparsity, urban object differences, surrounding com-

plexity, and high spectral variability, which adversely affect their detection perfor-

mance. Some methods use colour features for segmentation and therefore lack

in detecting the rooftops constructed using unspecified colours. Furthermore,

techniques based on clustering and region-growing approaches have difficulty

in determining an initial cluster count and a seed region respectively, resulting

in false segmentation and high computational expense. Another group of tech-

niques focus on simple rooftops e.g., flat surfaces, and are therefore unsuitable

for complex roof structures. On the other hand, integrated techniques have not

been proven successful in providing promising results as finding a correct corre-
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spondence among the different features becomes problematic [111]. By using

LiDAR data in a data-driven fashion, the technique proposed in Chapter 5 not

only detects polyhedral buildings with diverse roof types but also roofs which are

partially occluded, situated in shadow or have colourful surfaces. The proposed

technique provides a better interpolation of roof regions where multiple surfaces

intersect creating non-manifold points. As a result, these geometric features are

preserved to provide automated identification and segmentation of roof planes

from unstructured laser data.

• Building reconstruction: The challenges of building reconstruction have been

addressed in previous studies. However, the quality of reconstructed models ap-

pears to be limited by the accuracy and quality of the input data, resulting in

several low quality measures such as completeness, correctness or planimetric

accuracy. Further, providing the specifications of different input models does not

warrant that the reconstructed model has high geometric accuracy [65]. Many

general parameters, including minimum footprint size and positional accuracy

values, are used by several techniques to develop building models with certain

level of detail [132]. Many existing approaches have demonstrated promising

results in building reconstruction, but there are still a number of issues to be im-

proved. For instance, in segmentation, segmented roofs are mostly disconnected,

causing difficulty in determining the neighbourhood relationships among the roof

planes. Furthermore, locating step edges only from LiDAR data is also hard and

often requires additional information or constraints. In addition, the approxima-

tion of roof patches, which are generally missed because of the low resolution

of the LiDAR data, requires the operator to make assumptions and often pro-

duces high reconstruction errors. To resolve these issues, Chapter 6 introduces

a data-driven 3-D reconstruction technique that constructs buildings represented

at lower levels with coarse boundaries (3-D roof-planes) to the higher levels (3-D

building models).
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3.7 Summary

This chapter has reviewed techniques of building detection, roof plane extraction, and

3-D building reconstruction. These techniques were categorised based on the type of

input data sources, including LiDAR, imagery or both. In the review, the execution

stages of different techniques were probed and their performances analysed to identify

their limitations in performing the designated tasks. These limitations include: (1) in-

ability to detect partially occluded buildings and roof surfaces, (2) limited robustness

to detect small-sized and low height buildings, (3) difficulty in recognising buildings

in shadows, (4) unavailability of effective theories to eliminate the vegetation from re-

gions of different complexities, (5) inadequacy in overcoming noise and outlier effects,

and (6) lack of a sound foundation for the integration of multiple data sources.

In the following chapters, we propose solutions for automatic building detection

and footprint generation, roof plane extraction, and 3-D building modelling and scene

reconstruction to address the highlighted limitations. Furthermore, a detailed perfor-

mance and comparative analysis is also provided using a variety of datasets in each

chapter.



Chapter 4

Building Detection and Boundary
Regularisation

“Science knows no country, because

knowledge belongs to humanity, and

is the torch which illuminates the

world. Science is the highest

personification of the nation because

that nation will remain the first

which carries the furthest the works

of thought and intelligence.”

Louis Pasteur

4.1 Introduction

The automated extraction and localisation of urban objects is an active field of research

in photogrammetry with the focus on detailed representation. The literature survey in-

dicates that the success of most existing detection methods relies on the quality of the

DEM and the accuracy of co-registration between multisource data. They often impose

constraints on several features such as height, area, and orientation to distinguish dif-

ferent urban objects and remove vegetation. These methods have been observed to

be unable to address buildings which are small in size, in shadow or partly occluded.

Furthermore, the building outlines produced by these data-driven approaches are gen-

erally ragged. Therefore, the research objectives of this chapter research objective

(aligned to RO2) are to develop a strategy able to:

• deal with moderate misregistration between the LiDAR point cloud and the cor-

responding orthoimagery,

66
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• identify buildings which are partially occluded and in shadow,

• extract small buildings without affecting larger ones, and

• generate regularised and well-delineated building boundaries.

This chapter concentrates on building detection and boundary regularisation us-

ing multisource data. It includes a comprehensive evaluation and analysis of a wide

range of test datasets. These datasets differ in scene complexity, vegetation, topogra-

phy, building sizes, and LiDAR resolution (1 to 29 points/m2). We further incorporate

LiDAR’s point density feature in different processes to make the proposed technique

flexible and robust in relation to multiple data acquisition sources, e.g., airborne and

mobile laser scanning systems. An adaptive local height threshold is utilised in detec-

tion for fine delineation of building boundaries. Moreover, a new boundary regularisa-

tion technique is also introduced which generates 2D building footprints using spectral

information (image lines) assuming buildings are rectilinear.

To meet the set objectives and evaluate the proposed technique, it is tested using

the ISPRS (German) and the Australian benchmark datasets. Compared to the ISPRS

benchmark, the Australian datasets are far more complex and challenging due to the

hilly terrain (Eltham and Hobart), dense vegetation, shadows, occlusion, and low point

density (1 point/m2). Often, the buildings are covered by nearby trees or shadows,

as indicated by some real scenarios in Figure 4.1. The evaluation study, particularly

on the Australian datasets, demonstrates the robustness of the proposed technique

in regularising boundaries and separating partly occluded buildings from connected

vegetation and detecting small buildings as well as larger ones.
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Figure 4.1 Complex scenarios in Australian datasets: Partly occluded and shadowed buildings.

The rest of the chapter is organised as follows: Section 4.2 details the proposed

building detection and boundary regularisation techniques. Section 4.3 presents the

performance study and discusses the experimental results using five test datasets, fol-

lowed by a comparative analysis. Section 4.4 concludes the chapter.

4.2 Proposed Method

The proposed technique identifies the candidate building regions and subsequently

segments the regions into grids. Next, vegetation elimination, building detection and

extraction of their partially occluded parts are achieved by synthesising the point cloud

and image data. Finally, the detected buildings are regularised by exploiting the image

lines in the building regularisation process. The workflow of the proposed technique

has three stages, as sketched in Figure 4.2. In the data pre-processing stage, several
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data metrics are generated to be used at later stages, namely the building mask and

height difference data from the ALS, and entropy, NDVI, and image lines from the

orthoimagery. In the building detection stage, the candidate building regions are iden-

tified following a proposed graph-based line clustering process to remove the superfluous

objects. Next, the buildings and their parts occluded or in shadow are identified and

vegetation is eliminated using a proposed cell-based clustering process. Subsequently,

the detected area is enlarged to reduce misalignment between the aggregated data.

Finally, the building footprints are generated using a new proposed building regulari-

sation process.

Candidate region detection

Line clustering & false 

candidate elimination

Cell clustering for building 

detection & vegetation removal

Outline extension of detected 

buildings

1 - Data preprocessing
Building edge selection

Building footprint 

generation

Edge line estimation

NDVI Image linesEntropy

Building mask ΔH matrix

2 - Building detection

3 - Building regularisation

ALS Data + DTM

Aerial image

Figure 4.2 Workflow of the proposed building detection and regularisation technique.

4.2.1 Data Pre-processing

The proposed technique takes ALS data, orthoimagery, and a DTM as inputs. For this

study, DTM with 1 m horizontal resolution was available for each benchmark dataset.

Otherwise, it can be generated using any commercial software, such as MARS® Ex-

plorer [133].

4.2.1.1 Test Data

Figure 4.3(a) presents a test dataset, AV2, which was introduced in Section 2.6. The

AV2 dataset can be regarded as a moderately vegetated area containing complex neigh-

bourhood structures, small and occluded buildings, shadowed, impervious and trans-

parent roofs, and flat and gabled structures. It is, therefore, selected to evaluate the

performance and illustrate the different processes of the proposed technique.
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The test ALS dataset has a point spacing of 0.17 m with 29.3 points/m2 and the

corresponding RGB colour orthoimage has a resolution of 0.05 m. The available or-

thoimages for the Australian sites were created using DTM. These datasets were regis-

tered using the mutual information-based method [134], which exploits the statistical

dependency between same- and multi-modal datasets to produce a similarity measure

and uses LiDAR intensity in simultaneous registration. Nevertheless, the building roofs

and tree tops are considerably displaced with respect to the LiDAR, owing to the ab-

sence of true orthophotos.
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Figure 4.3 Sample data: (a) RGB orthoimage and (b) Building mask.

4.2.1.2 ALS-Generated Data

A building mask is generated using the ALS data and ground height from DTM to

divide the point cloud into the ground and non-ground points. For each point, a height

threshold is calculated as ht = hg +hr f , where hg is the ground-height taken from DTM,

while hr f is a relief factor that separates low height objects from large height objects.

For this study, hr f was set to 1 m to keep the low height objects [37], which classifies
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many points on bushes and low height trees as non-ground points. Figure 4.3(b) shows

the building mask, where black regions correspond to elevated objects (buildings and

trees) while white regions represent bare earth, including roadside furniture, cars,

and bushes.

Moreover, height difference data are generated by dividing the ALS data into a

uniform grid twice the ALS data spacing in magnitude. The method is explained with a

sample image taken from the test dataset, as shown in Figure 4.4(a). If a cell contains

only one laser point, the elevation of the point is assigned to the cell. Otherwise, the

elevation of the laser point which is closest to the centre of the cell is assigned to

the grid (see Figure 4.4(b)). If a cell has no laser point, the elevation of the grid is

assigned zero height. Finally, the average height difference ∆H of each cell is computed

by averaging the elevation differences of 8 connected neighbouring cells. ∆H is used

by the cell clustering process to delineate buildings and identify vegetation.

(a) (b)Legends: 

 = Laser points = Cell centre  = Laser point closest to the centre*
Figure 4.4 (a) Grids overlaid on a sample image and (b) LiDAR points within a grid cell.

4.2.1.3 Aerial Image Generated Data

NDVI has been used extensively in the research literature to eliminate vegetation and

classify scenes [14, 42, 49, 55]. Nevertheless, many authors [14, 17] emphasise com-

bining it with entropy, since NDVI alone is not a promising feature to handle shadows

and coloured buildings. Therefore, texture information in the form of entropy [135] is

utilised on the basis of the observation that trees are rich in texture and have higher
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surface roughness than building roofs [14]. If multispectral orthoimagery (RGBI) is

not available, a pseudo-NDVI is then calculated from a colour orthoimage (RGB) fol-

lowing the process explained in [15,17,54], which assumes the three colour channels

in the order of I-R-G to use the standard NDVI formula. Henceforth, the term NDVI is

used to refer to both NDVI and pseudo-NDVI.

Furthermore, using the method explained in [17], the image lines are extracted

from the test input image and categorised into edge (building border), ridge (intersec-

tion of two roof planes), and ground classes sketched with blue, cyan, and red colours,

respectively, in Figure 4.5. The structural lines define the shape and direction of a

building. These can be used as a cue to differentiate vegetation and buildings and

later, to generate building footprints in the building regularisation stage.
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Figure 4.5 Image line extraction: (a) All classified lines on RGB orthoimage and (b) All classi-
fied lines on the building mask.

4.2.2 Building Detection

In this section, the building detection stage shown in Figure 4.2 is presented in more

detail using the test dataset.
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4.2.2.1 Candidate Region Detection

Candidate building regions are identified from the building mask using connected com-

ponent analysis and their boundaries are estimated using the Moore-Neighborhood trac-

ing algorithm [135], which provides a list of connected pixels of an object in clockwise

order. Figure 4.6(a) shows the detected candidate regions, and each region is labelled

and sketched in a different colour from its neighbour with the boundary black in colour.

It is shown in Figure 4.6(b) that the extracted boundaries (from the LiDAR-based build-

ing mask) are misaligned with the image (often over 1 m) due to misregistration be-

tween the aggregated data.

Similarly, Figure 4.6(c) shows the inaccuracy of the extracted objects, as although

the large buildings are detected, their boundaries are inaccurately delineated. It also

shows the presence of several false objects on trees and the inaccurate inclusion of

nearby vegetation in the building region. For instance, two buildings (labelled (vi))

have been wrongly detected as a single object due to dense vegetation between them.

Some complex situations are shown in Figure 4.6(d) with their corresponding locations

marked with labels (i)–(vi) in Figure 4.6(c).

4.2.2.2 Line Clustering and False Candidate Elimination

To associate the lines (from the image) and the candidate building regions (from the

LiDAR-based building mask), a graph is constructed as part of this process. Each pixel

of the building mask corresponds to a node. An edge exists between a pair of nodes

if a pixel and its 3 × 3 neighbouring pixels are black, denoting a non-ground ob-

ject. All these edges carry a weight equal to 1. However, if a pixel or the neighbour-

ing pixels are white (ground object), the corresponding nodes do not have any edge.

Therefore, the resultant graph G is disconnected where each candidate region of the

building mask corresponds to a strongly connected edge-weighted graph g, such that

G = {g1,g2, ...,gn} with n describing the number of candidate regions.

Figure 4.5(b) shows the misalignment issue, as we can see that edge lines (blue)

are substantially away from the borders of their respective candidate regions. This

issue is overcome by using a determinant point Dpt that can be either a line’s midpoint
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Figure 4.6 (a) Connected components extracted from the building mask of test data; (b) Over-
laying building mask and orthoimage (misalignment and squeezed boundaries); (c) Boundaries
of the candidate regions sketched on input orthoimage; and (d) Complex scenes representing
false boundary delineation from (i) to (vi).
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Pmid , vertex, or inside-point Pin for the clustering of image lines around the candidate

building regions. An inside-point of a line is actually a perpendicular offset point (i.e.,

1.5 m) from a line’s Pmid that is given by the line extraction process in [17]. The line

clustering process, with reference to Figure 4.7(a), works as follows: A pool of candidate

lines is created by defining a buffer region (in cyan) using uniform matrix scaling

transformation. The longest line is then chosen as a seed, such that its Dpt resides

within the region’s boundary. If no seed is found, the procedure continues to process

the next building region. Finally, the candidate lines with finite distances from the seed

are added to the cluster. The Bellman-Ford algorithm, which computes the shortest path

between two nodes, is used to calculate the distances between Dpt ’s of the lines. The

procedure continues until the pool is empty and all the candidate regions are processed

iteratively. A candidate region which fails to cluster any line is removed for further

investigation. Figure 4.7(b) shows the remaining candidate building regions with their

clustered lines (it displays 307 candidate regions from an initial count of 936 from the

building mask for brevity).
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Figure 4.7 Line clustering process: (a) Pool of candidate lines to a sample building and (b)
Clusters found with their associated lines in different clustering colours.
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4.2.2.3 Cell Clustering for Building Detection and Vegetation Removal

It is a core process to distinguish urban objects, eliminate vegetation, and identify

buildings partly occluded or in shadow in addition to larger buildings and those small

in size. Features such as ∆H, NDVI, and entropy are used to detect objects using a

cell-based region growing process. To make the segmentation flexible and robust in

relation to multiple data acquisition sources, e.g., airborne and mobile laser scanning

systems [136], the point cloud density per grid cell Pd is combined with the preceding

features. The test area is divided into a uniform grid structure and Pd is computed in

relation to LiDAR resolution and cell size. For example, Pd for the AV2 dataset is 7

(floor(29 × 0.25)) using a grid of size 0.25 m with 29 laser points/m2, while for the

German benchmark Pd is 3 with a grid size of 1 m. The process is explained as follows

with reference to Figure 4.8 (sample occluded building labelled (vi) in Figure 4.6):

The cells of a candidate building region are marked as unused (blue circles in Figure

4.8(a)) and a seed cell is chosen i.e., an unused cell with the lowest ∆H. Its neighbours

are found iteratively in a region-growing fashion. Neighbouring cells are added to the

cluster if their values for ∆H, Pd , NDVI, and entropy are smaller than the user-defined

thresholds (see Table 4.1). If region-growing stops, a cell with the smallest ∆H is then

chosen. This becomes the new seed cell, and the process continues. Any seed that fails

to grow is removed. Figure 4.8(b) shows the different clusters (shown in red) within

the region’s boundary conceived during the cell clustering process.

Parameters Values Sources

Ground height hg DTM height input ALS data

Height threshold ht hg +1 m [37]

Entropyt 8.0 [17]

R
G

B
I NDV It 10 [17]

NDV It−max 15 this chapter

R
G

B NDV It 48 [17]

NDV It−max 75 this chapter

∆
H

t Flat terrain 0.4 this chapter

Hilly terrain 0.8 this chapter

Table 4.1 Parameters used by the proposed building detection technique.
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(d)

(g)

(a) (b) (c)

(h)

Candidate region Boundary

(e) (f)

Figure 4.8 Cell clustering process: (a) Cell collection for a candidate region (4 blue holes cor-
respond to a cell); (b) Clustered cells (red); (c) Clusters marked as buildings (cyan boundary);
and (d)–(h) Boundary delineation samples.

Due to errors in hardware sensors, a data acquisition system fails to capture the

laser returns from various parts of a single object. Therefore, a segmentation pro-

cess based on ALS data alone extracts these parts as different buildings and therefore,

exposes the strategy to over-segmentation. To circumvent this limitation, the cell clus-

tering process entirely uses NDVI and entropy if a maximum 25% of the total cells of

a particular candidate region does not have any laser point. The seed cell is chosen

with the lowest NDVI whereas a cell’s neighbours are chosen based on both NDVI and

entropy rather than the ALS-based features.

Finally, a rule-based procedure employing NDVI, entropy, and boundary intersec-

tion is used to identify clusters within a region’s boundary as buildings or vegetation.

It was found that buildings in shadow or with coloured roofs have a higher NDVI
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value, which can be removed if a smaller threshold is employed. Therefore, NDV It−max

is introduced which works with image entropy to remove vegetation without elimi-

nating any potential building. A cluster c is marked as a tree if its boundary does

not intersect with the boundary of the candidate region and NDV Ic > NDV It−max OR

NDV Ic < NDV It−max AND entropyc > entropyt . Similarly, c is identified as a building if its

boundary intersects with the boundary of the candidate region and NDV Ic < NDV It OR

NDV Ic < NDV It−max AND entropyc < entropyt .

Figure 4.8(c) shows two partially occluded buildings that are identified and sepa-

rated from the connected tree whereas the clusters within the region’s boundary are

eliminated as vegetation. Similarly, some more detected buildings either occluded or

under shadows, marked earlier in Figure 4.6, are shown in Figures 4.8(d)–(h) with

their boundaries in cyan while the candidate regions’ boundaries are shown in red.

The final building positions are obtained by the cell clustering process after the elimi-

nation of vegetation.

4.2.2.4 Building Area Enlargement

Owing to misalignment and a large height difference on the building perimeter, build-

ing edges are usually under-detected (Figures 4.9(a) and 4.10(a)). This is compen-

sated by claiming individual pixels based on the NDVI, entropy, and LiDAR height dif-

ference. An adaptive local height threshold is employed instead of a global threshold

in the area enlargement process by taking into account buildings with gables, flat, and

complex roofs. The process with reference to Figure 4.9 is described as follows:

A boundary pixel Pb is first selected and its neighbouring pixels Pn which are outside

the current boundary (black) are determined. Subsequently, a concentric square of

a grid-size (magenta) around Pn is considered. If the NDVI and entropy values of

Pn are less than their thresholds presented in Table 4.1, and the mean height inside

the square remains within ±1 standard deviation of the building height (within the

building boundary), it is included as a new boundary pixel and Pb is added in the

building region. The building outline process continues until all the boundary pixels

including the new ones are processed as described in Figures 4.9(b) and (c). The
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building boundary before and after the enlargement process is presented in Figure

4.9(d).

Pn

Pb

Yellow - LiDAR 

ground point

Cyan - LiDAR 

above point

Yellow – Region extended 

by adding boundary pixels

Red – New 

boundary pixels

Cyan – no more 

extension (final 

boundary pixels)

(a) (b)

(c) (d)

Yellow – Extended region 

Blue – Detected building 

           boundary 

Cyan – Final boundary 

           (extended)

Figure 4.9 Pixel-based enlargement process: (a) Candidate boundary pixel (Pn) selection; (b)
Snapshot of the accumulated pixels; (c) Extended region; and (d) Detected outline and final
building boundary.

Figures 4.10(a) and (b) show the building detection results before and after the

pixel-based enlargement process. It is discernible that the final detected boundaries

in Figure 4.10(b) cover rooftops close to the building edges and the building bound-

aries are detected accurately. The same boundaries are used eventually for evaluation

purposes. Since the building boundaries are independent, the clustering (line and

cell-based) and area enlargement processes are executed in parallel to improve their

performance.

4.2.3 Building Regularisation

Due to point cloud sparsity, the extracted boundaries are jagged, as shown in Fig-

ure 4.10(b), which can be regularised by obtaining structural lines using the MDL
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Figure 4.10 (a) Building boundaries before enlargement (under-detected edges with black
boundary and red region); (b) Final detected buildings after enlargement (cyan boundary).

method [7], although it is computationally intensive. However, the proposed regulari-

sation method employs image lines to regularise the boundary, assuming buildings are

rectilinear and adjacent edges are either parallel or perpendicular. Since all possible

image lines could not be extracted due to shadows and low contrast, this makes the

German dataset (Vaihingen) suitable to demonstrate the robustness of the regularisa-

tion technique. Therefore, we chose a sample scene from VH3, to explain the building

footprint generation process.

The workflow of the regularisation process is shown in Figure 4.2. Figure 4.11(a)

shows the boundary of the candidate building region (from the building mask) and

classified image lines before the application of the building detection steps described

in Section 4.2.2. Figure 4.11(b) shows the clustered lines to the candidate building

region and the refined building boundary after the application of the building detection

procedure. The proposed building regularisation method works in three steps: line

selection, line estimation, and footprint generation.
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(a) (b)

Image lines intersecting  

boundary outline (red circle)

Inside-point (Pi)

Mirror-point (Mi)

Selected line (blue)

Boundary marker 

(Yellow)

(c) (d)

Yellow – Estimated line based on boundary points

Green – Boundary 

with no image lines

White – Boundary 

with image lines

Blue – Image lines

Peak point 

(red circle)

(e) (f)

Intersection (red circle) with adjacent 
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Figure 4.11 Building regularisation process: (a) Candidate boundary region (yellow) from
building mask and image extracted lines; (b) Clustered lines to candidate region and final
detected building; (c) Boundary lines selection; (d) Edge selection and boundary marking; (e)
Edge line estimation for unmarked boundary outline; and (f) 2-D building footprint/regularised
boundary.
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4.2.3.1 Building Edge Selection

For each clustered line with its midpoint Pmid , we use its inside-point Pin and mirror-

point Pmir to determine whether the line is a candidate line for the building boundary.

For instance, with reference to Figure 4.11(c), the image line (blue) exists near the

building perimeter, the perpendicular line from Pmir to Pin through Pmid intersects the

extracted boundary (green), making this line a candidate boundary line. The corre-

sponding boundary part of the selected line is also marked. Figure 4.11(d) shows the

corresponding boundary parts within two yellow perpendicular lines through the end

points of the selected line. This selected line can be from any class of edge, ridge, or

ground to overcome misalignment between the LiDAR-derived building boundary and

the image-derived lines. All the candidate lines are determined iteratively. If a line

fails to intersect the building boundary, it is removed. If two or more candidate lines

are found for a part of the boundary, the line that has the lowest mean perpendicular

distance of the boundary points to the line is selected for the boundary part.

4.2.3.2 Edge Line Estimation

The edge lines are estimated only if the boundary points are left unmarked, as illus-

trated by the green colour boundary in Figure 4.11(e). These boundary points are first

smoothed using the Gaussian function and then corner detection is carried out using

the technique described in [137]. We determine the curvature peaks (red circles in Fig-

ure 4.11(e)) that specify the locations where a considerable change in curve direction

occurs. A straight line is next fitted to the boundary segments using the least-square

technique such that the line is rotated by a half degree clockwise/anti-clockwise around

its centre to minimise the mean perpendicular distance to boundary points. The esti-

mated edge lines and the chosen image lines (yellow and blue respectively) can be

seen in Figure 4.11(e).

4.2.3.3 Building Footprint Generation

Assuming buildings mainly have two principal directions along their length and width,

lines at least 6 m long are considered to be long lines [138]. The long lines from the
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image are kept fixed. If an image line does not exist, the estimated long lines are kept

fixed. In the case of single fixed line, all the other line segments are made parallel

or perpendicular to it. The two closest small lines on both sides of a fixed line are

adjusted first, and the next two nearest small lines are tuned with reference to the

last fixed lines. This process continues until all the lines are adjusted to a parallel and

perpendicular relationship.

If there exist two or more fixed lines, the small lines between them are gradually

made parallel or perpendicular to their nearest fixed lines. In the case where a small

line is at an equal distance from the fixed lines, it is adjusted according to the fixed

line with which it makes the smaller angle. Perpendicular lines are then introduced

between the successive parallel lines. Finally, the regularised building boundary is

generated by intersecting the consecutive lines. The regularised building footprint for

the sample scene is sketched on the input image in Figure 4.11(f).

4.3 Performance Evaluation

The performance of the proposed technique was tested on five datasets (introduced in

Section 2.6) with different LiDAR point densities, topographies, and surrounding con-

ditions. The ISPRS benchmark dataset, Vaihingen, Germany has three areas, whereas

the other four datasets have one area captured over different geographic locations in

Australia.

4.3.1 ISPRS Benchmark Results and Discussion

Tables 4.2 and 4.3 show the official per-object and per-area level evaluation results for

the three test areas of the benchmark dataset. Figure 4.12 shows the per-pixel level

visual evaluation of all the test areas (column 1) for the building delineation technique

(column 2) and the corresponding regularisation outcome (column 3). Detailed quality

measures for the building delineation technique before and after regularisation can be

found on the ISPRS portal [139] under detection with the acronyms Fed 1 and Fed 2
1,

respectively.

1
http://www2.isprs.org/commissions/comm3/wg4/results/a1_detect.html

http://www2.isprs.org/commissions/comm3/wg4/results/a1_detect.html
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Proposed Detection Areas Cm Cr Ql Cm,50 Cr,50 Q1,50 1:M N:1 N:M

Before Regularisation

VH 1 83.8 100 83.8 100 100 100 0 6 0
VH 2 85.7 91.7 79.5 100 100 100 0 2 0
VH 3 82.1 95.7 79.2 100 100 100 0 7 0

Average 83.87 95.80 80.83 100 100 100 0 5 0

After Regularisation

VH 1 83.8 100 83.8 100 100 100 0 6 0
VH 2 85.7 100 85.7 100 100 100 0 2 0
VH 3 82.1 95.7 79.2 100 100 100 0 5 0

Average 83.87 98.57 82.90 100 100 100 0 4.3 0

Table 4.2 Object-based building detection results for Vaihingen (VH) dataset before and after
regularisation stage. (Cm = completeness, Cr = correctness and Ql = quality, are for all build-
ings and over 50 m2 in percentage; 1:M = over-segmentation and N:1 = under-segmentation,
N:M = both over- and under-segmentation in the number of buildings).

Proposed Detection Areas Cmp Crp Ql p RMSE

Before Regularisation

VH 1 84.9 86.5 74.9 1.2
VH 2 87.9 84.4 75.6 1.28
VH 3 88.7 85.0 76.7 1.1

Average 87.17 85.30 75.73 1.19

After Regularisation

VH 1 85.4 86.4 75.4 1.06
VH 2 88.8 84.5 76.4 1.21
VH 3 89.9 84.7 77.4 1.06

Average 88.03 85.20 76.40 1.11

Table 4.3 Pixel-based building detection results for Vaihingen (VH) dataset before and after
regularisation stage. (Cmp = completeness, Crp = correctness and Ql p = quality are in percent-
age, RMSE = planimetric accuracy in metres).

Considering all the buildings, Table 4.2 shows that the overall object-based com-

pleteness and correctness before regularisation are 83.87% and 95.80%, respectively.

However, the buildings eliminated during the mask generation process, shown with

green arrows in Figures 4.12(a),(d), and (g) became an issue with a relatively re-

duced performance, although 100% object-based accuracy was achieved on the large

buildings. Since the overlap areas of the resultant and reference polygons after the

regularisation process were not greatly changed, a substantial increase in per-object

evaluation accuracy was not achieved. Table 4.3 shows the per-area evaluation (com-

pleteness and correctness ' 88% and 85%, respectively) of the proposed detection

before regularisation in VH2 and VH3. However, per-area completeness in VH1 was

lower (84.9%) because some carports below the height threshold, marked with yellow

dashed circles in Figure 4.12(b) and one in VH3 (Figure 4.12(h)), were eliminated by
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(a) (b) (c)

(d) (e) (f)

(g)

(h) (i)

True positive (TP) pixels False negative (FN) pixels False positive (FP) pixels

Legends for ISPRS per-pixel 

evaluation - (a) (d) and (g)

(M)

(N)

(P)

(Q)

(R)

(i)
(ii)

(iii)

(X)

(Y)

Figure 4.12 Building detection on the ISPRS German dataset: (a)–(c) VH1, (d)–(f) VH2, and
(g)–(i) VH3. Column 1: pixel-based evaluation, Column 2: boundary before regularisation,
and Column 3: regularised boundary.
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the building mask generation process.

During the cell clustering process, the cells lying partially on the building perimeter

were included in the region. Consequently, some very close buildings were combined

unexpectedly (marked as P, Q, and R) apart from the false positive pixels, as shown in

Figure 4.12. This can be avoided by analysing the white pixels from the building mask

during region growing. Nevertheless, the proposed technique extracted several close

buildings with greater accuracy, as shown in Figures 4.12(b) and (h) with Labels (i)–

(iii). Moreover, two buildings labelled X and Y, as shown in Figures 4.12(e) and (h),

respectively were completely extracted using the proposed cell clustering process, al-

though major parts of the buildings did not have any LiDAR data present in the dataset.

The results in Table 4.2 further indicate that the proposed technique is completely free

of over- (1:M) and many-to-many (M:N) segmentation errors, although there are some

under-segmentation cases.

Table 4.3 shows that the regularisation process has improved the per-area com-

pleteness, correctness, and quality. This increase might be substantial if the image

lines could come in place of all the boundary segments, which are a more accurate rep-

resentation of the building outline than the ALS-derived boundary. However, a slight

decrease in VH3 correctness after regularisation was observed, because the lines and

their intersections (corners) shifted from their actual positions during regularisation.

Notably, the regularisation process obtained higher planimetric accuracy, reaching up

to two times the horizontal point spacing of the ALS data. Overall, it can be established

from the evaluation performance that the proposed delineation together with the reg-

ularisation process can not only eliminate vegetation and extract buildings and their

parts from the connected trees but also regularise the boundary with 98.57% average

objective correctness.

4.3.2 Australian Benchmark Results and Discussion

Tables 4.4 and 4.5 present object- and pixel-based evaluations of the detection tech-

nique before and after regularisation using the threshold-free evaluation system. Fig-

ures 4.13 and 4.14 show the extracted buildings and their corresponding building foot-

prints for the AV2, EL, HT, and HB datasets. The proposed detection extracted 55, 68,
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62, and 22 buildings out of 65, 75, 69, and 22 reference buildings in the AV2, EL, HT,

and HB datasets, respectively.

Table 4.4 shows that the object-based completeness of HT for all the buildings was

comparatively lower than that of AV2 and EL. The reason was the missing buildings

(marked red) caused by severe occlusion (Figures 4.13(c) and (f) and 4.14(e)) and

transparent roof material (Figure 4.14(g)). The results further show that buildings

over 50 m2 were extracted with 100% objective completeness and correctness while

nearly equal average completeness (' 95%) was achieved for buildings over 10 m2.

Figures 4.13(c) and (f)–(h) show scenarios where non-occluded building parts were

extracted after eliminating the connected vegetation. However, two very close build-

ings in EL, labelled (i) in Figure 4.13(f), were unexpectedly merged due to a small con-

necting region. Such complex cases increased the cross-lap rate (under-segmentation)

in EL compared with AV2 and HT, as given in Table 4.4. This could be prevented by

considering white pixels between the connected regions using the building mask. Since

the overlap areas of the resultant and reference polygons before and after regularisa-

tion were not greatly changed, the objective evaluation was nearly the same as that

shown in Table 4.4.

Table 4.5 shows the pixel-based evaluation (completeness and correctness ' 87%

and 95%) before regularisation for AV2, HT, and HB. However, there was relatively

lower completeness in EL (80.57%) than others caused by missing fewer buildings

which were under severe occlusion and evident from the high area omission errors.

For buildings larger than 50 m2, average completeness and correctness of about 87%

and 95% were achieved, while similar results were obtained for buildings over 10 m2.

More than a 2% increase in average completeness was recorded after the regularisation

process when all the buildings were considered. However, the planimetric accuracy was

compromised, since the regularised lines and their intersections were repositioned to

generate a regularised boundary. Nevertheless, Table 4.5 shows a significant increase

in average pixel-based completeness from 86.95% to 91.80% in the HB dataset after

regularising all the buildings. The reason is that most parts of the delineated boundary

were replaced with image lines, which increased the accuracy.

The performance of the proposed technique is demonstrated using several datasets

which have transparent to complex structure buildings with varying sizes, flat to hilly
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(a) (b)

(d)

(e)

(c)

(g)

(h)

(c)

(f)

(g)

(h)
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(c)

(f)
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(h)

(f)

(P)(P)

Legends:

Missed buildings

Detected buildings

Figure 4.13 (a),(b) Building detection and regularisation on AV2 dataset; (c) Building regu-
larisation example in AV2; (d),(e) Building detection and regularisation on EL dataset; and
(f)–(h) Building regularisation examples in EL. Areas marked in (b) and (e) are magnified in
(c) and (f)–(h), respectively.
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(i)

(a)

(d)

(e)

(f)

(g) (h)
Legends: Missed buildingsDetected buildings

(e)

(f)

(g)

(e)

(f)

(g)

(h) (h)

(i) (i)

(c)

(b)

Figure 4.14 Building detection and regularisation on Hobart (a),(b) and Hervey Bay
(c),(d). Building detection examples after regularisation in: (e)–(h) HT dataset (1.6 points/m2)
; and (i) HB dataset (12 points/m2). Areas marked in (b) and (d) are magnified in (e)–(i).
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terrains, low to dense vegetation, and different point cloud resolutions. The qualitative

(figures) and quantitative (Tables 4.2–4.5) results show that the proposed detection

method can eliminate vegetation and extract buildings as well as their non-occluded

parts from complex scenes with high object- and pixel-based accuracies. A constantly

higher (> 95%) correctness suggests that the proposed detection technique is robust.

Moreover, the applicability of the regularisation process after detection is effective in

the generation of building footprints.

4.3.3 Comparative Analysis

The proposed method is automatic and data-driven, and integrates LiDAR and orthoim-

agery. It predominantly uses LiDAR to create the building mask and building extraction.

From the ISPRS portal and the methods classified in [22], we selected those which (1)

use both LiDAR and images; (2) in which pixel- and point-based processing is equally

important; (3) are automatic; and (4) are unsupervised and data-driven [22]. Due

to a lack of integrated methods meeting the above criteria, two supervised integrated

(criteria (1)–(3)) and two LiDAR only (criteria (2)–(4)) methods were also chosen, as

shown in Table 4.6. The quantitative evaluation of the German dataset (VH1, VH2, and

VH3) for KNTU mod, Whuz, IIST, Mon2, and the proposed detection and regularisation

technique (FED 2) are available on the ISPRS’ website. However, Yang’s [85] results

are taken from the paper. To the best of our knowledge, the only method evaluated

using the evaluation system in [72] on the Australian datasets is MA [37]. Therefore,

it was chosen for the comparative study in order to conduct a fair evaluation.

Benchmark dataset Method’s Name Data Types Processing Strategy Reference

ISPRS, Germany

KNTU mod LiDAR + image supervised [140]
Whuz LiDAR + image supervised [141]
IIST LiDAR + image Data-driven [142]

Mon2 LiDAR Data-driven [138]
Yang LiDAR Data-driven [85]

Australian MA LiDAR Data-driven [37]

Table 4.6 Existing methods compared with the proposed technique (FED 2).

A comparison of FED 2 and other methods is presented in Tables 4.7 and 4.8, where

bold numbers show better or equal performance of our technique. FED 2 performed
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Methods Cm Cr Cm,50 Cr,50 Cmp Crp RMSE 1:M N:1 N:M

VH1 - 3.5 laser points/m2

KNTU mod 83.8 100.0 100.0 100.0 91.4 94.3 0.8 - - -
Whuz 78.4 43.5 89.3 96.3 84.4 83.9 1.2 - - -
IIST 78.4 83.3 82.1 95.8 75.8 74.3 1.4 - - -

Mon2 89.2 91.4 100.0 100.0 88.1 90.0 1.0 0 6 0
Yang 81.1 96.8 100.0 96.6 87.9 91.2 0.9 0 3 2

FED 2 83.8 100.0 100.0 100.0 85.4 86.4 1.0 0 6 0

VH2 - 3.9 laser points/m2

KNTU mod 83.8 100.0 100.0 100.0 86.5 93.6 0.8 - - -
Whuz 57.1 42.3 80.0 90.9 79.6 91.9 0 - - -
IIST 71.4 62.5 100.0 90.9 78.8 92.6 0.9 - - -

Mon2 85.7 92.3 100.0 100.0 87.1 94.0 0.8 0 2 0
Yang 78.6 100.0 100.0 100.0 88.8 94.0 0.8 0 2 0

FED 2 85.7 100.0 100.0 100.0 88.8 84.5 1.2 0 2 0

VH3 - 3.5 laser points/m2

KNTU mod 85.7 98.0 100.0 100.0 88.3 99.0 0.7 - - -
Whuz 64.3 79.2 81.6 100.0 76.9 92.6 1.1 - - -
IIST 67.9 58.3 86.8 94.3 86.2 78.4 1.2 - - -

Mon2 83.9 97.9 97.4 100.0 87.7 89.0 1.0 0 8 0
Yang 73.2 97.6 97.6 92.1 85.2 89.5 0.8 0 6 0

FED 2 82.1 95.7 100.0 100.0 89.9 84.7 1.1 0 5 0

- means results not available.

Table 4.7 Comparison of building detection results for Vaihingen (VH) dataset. Object-based
Cm = completeness, Cr = correctness (Cm,50 and Cr,50 are for buildings over 50 m2) and pixel-
based Cmp = completeness and Crp = correctness are in percentages. RMSE = planimetric
accuracy in metres. 1:M = over-segmentation and N:1 = under-segmentation, N:M = both
over- and under-segmentation in the number of buildings. Bold values show better or equal
performance of the proposed technique.

significantly better on the Australian datasets which are more complex than the IS-

PRS benchmark due to dense vegetation, shadows, and topography. Likewise, FED 2

achieved similar or better object- and area-level completeness and correctness than

the counterparts in all the German areas. In VH1, Mon2 offered better object com-

pleteness, since it captured the carports at ground height due to more accurate DTM,

however, high per-object correctness was obtained by FED 2 (see Table 4.7), which

is an indicator of a method’s robustness. Moreover, the proposed method had better

objective completeness than Yang, which had more per-area completeness on VH1. In

addition, FED 2 performed better in VH2 than the other methods, and Mon2 achieved

slightly better per-object completeness in VH3. Nevertheless, FED 2 achieved higher

per-area and better per-object completeness on the large buildings in VH3.
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Table 4.7 further shows that large buildings (50 m2) were extracted with 100%

completeness compared with Yang and Mon2, which missed large buildings from VH3

and IIST from VH1 and VH3. IIST also performed poorly on all the areas in the Ger-

man dataset due to the inappropriate integration of features extracted from LiDAR

and images. Notably, FED 2 was mainly free of over- and many-to-many segmenta-

tion errors, but had some under-segmentation cases, unlike Yang which suffered from

many-to-many and under-segmentation. Compared with supervised methods, which

are trained to perform a better classification, the proposed method achieved better per-

object completeness and correctness in all the areas except VH3. Likewise, it performed

better in per-area level except in VH1 where KNTU mod had better completeness and

correctness. However, Whuz performed consistently poorly on all the areas in the Ger-

man dataset and even missed buildings larger than 50 m2 in VH1 and VH3. Since

the segmentation error results of the IIST, KNTU mod, and Whuz are not available, a

comparative discussion is not provided.

Methods Cm Cr Cm,10 Cr,10 Cmp Crp RMSE

Aitkenvale (AV2) - 29.3 laser points/m2

MA 67.2 100 81.1 100 87.2 94.9 0.66
FED 2 84.62 100 91.67 100 90.11 97.50 1.3

Eltham (EL) - 4.8 laser points/m2

MA 77.6 88.2 77.6 88.2 85.6 90.1 1.31
FED 2 84.0 100 94.03 100 82.25 95.43 2.08

Hobart (HT) - 1.6 laser points/m2

MA 71.2 80.8 80.8 79.3 80 80.2 1.33
FED 2 82.61 98.39 95 100 89.4 93.67 1.42

Hervey Bay (HB) - 12 laser points/m2

MA 73.2 97.6 97.6 92.1 80 80.2 0.68
FED 2 100 100 100 100 91.80 96.08 1.78

Table 4.8 Comparison of building detection results for the Australian datasets. Object-based
Cm = completeness, Cr = correctness (Cm,10 and Cr,10 are for buildings over 10 m2) and pixel-
based Cmp = completeness and Crp = correctness are in percentage. RMSE = planimetric ac-
curacy in metres. Bold values show better or equal performance of the proposed technique.

FED 2 achieved better object and area level accuracy than MA on the Australian

datasets, as shown in Table 4.8. However, in EL, the per-area completeness of MA

was marginally better but performed poorly (per-object) in AV2 due to missing small
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buildings. Nevertheless, FED 2 offered high completeness and correctness on all the

datasets but showed lower planimetric accuracy than MA. It is concluded that FED 2

is quite robust for complex scenarios in the Australian datasets and achieves higher

completeness and correctness. However, it achieved better or equal performance with

the exception of a few cases on the ISPRS benchmark datasets with constantly high

correctness.

4.4 Summary

A building detection and footprint generation technique is presented in this chapter,

which is fully data-driven and automatic. The candidate building regions are first iden-

tified using connected component analysis. Next, the buildings are extracted including

those partly occluded and shadowed after vegetation removal through the grid index

structure and multisource data. Finally, the building footprints are generated using the

image lines and the extracted building boundaries.

The performance of the proposed technique was tested on several datasets with

different point densities (1 to 29 points/m2), topographies, and vegetation conditions.

The results showed that the technique can not only extract small, partially occluded

and shadowed buildings, but it can generate footprints irrespective of the surrounding

complexity. The proposed method offers high detection rates, even in the presence of

moderate registration errors between the ALS data and the orthoimagery. The exper-

imental results further demonstrated that the proposed method is completely free of

many-to-many and over-segmentation errors, which is imperative to obtain high objec-

tive accuracy. Compared with six existing methods, the proposed technique performs

better with correctness of above 95%. In addition, the building outlines produced are

regularised, in contrast with the recent methods which generate only ragged bound-

aries. In the next chapter, we present a roof plane extraction technique, which is a

subsequent task in 3-D building modelling.



Chapter 5

Robust Segmentation and Building
Roof Identification

“Stay positive and happy. Work hard

and don’t give up hope. Be open to

criticism and keep learning. Surround

yourself with happy, warm and

genuine people.”

Tena Desae

5.1 Introduction

The aim of the research in this thesis is the development of a 3-D building frame-

work that includes not only building detection but also extraction of the roof planes.

The previous chapter introduced the main aspects of the building recognition task,

encompassing building detection, vegetation elimination, and generation of building

footprints. Based on examples and performance evaluation using several datasets, it

was demonstrated that the proposed integration technique has the ability to eliminate

vegetation and extract buildings as well as their non-occluded parts with high object-

and pixel-based accuracy. We also observed that image lines were utilised with LiDAR-

based building boundaries for the useful generation of building footprints that have

high planimetric accuracies. These building footprints can be used subsequently in

the task of building roof segmentation for the extraction of roof planes, and this ad-

dresses the third research objective (RO3). However, there are some salient reasons

for devising a new technique and declining the use of detection results (the output of

the previous chapter) for the extraction of building roofs and building regions. The

reasons are as follows:

95
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• The detection technique proposed in the previous chapter integrates both LiDAR

point cloud and the corresponding aerial imagery, which are not necessarily avail-

able for all possible areas. Therefore, there is an urgent need for the development

of a technique that can use LiDAR point cloud for the detection of buildings and

their constituent roof surfaces.

• A large misalignment between LiDAR and its corresponding imagery generally

results in under-detected roof regions, because both LiDAR and image features

are generally used together in the extraction process. As a result, the detected

building regions result in areas which are compressed compared with their actual

areas from images. Consequently, LiDAR point segmentation using these building

regions for the extraction of building roofs may worsen the misalignment effect

and produce under-detected roof surfaces.

• The building footprints sometimes deviate from their principal direction during

the regularisation process and wrongly include nearby non-building regions in

their detected areas. Therefore, the use of such building regions for the extraction

of roof planes result in anomalous planes which may belong to non-building

surfaces.

Evaluation of the existing techniques (in Section 3.4) shows that building roof ex-

traction has been challenging for the research community and is restricted by the fol-

lowing quality issues: LiDAR data (1) have systematic and stochastic measurement

inaccuracy; (2) points are spatially unorganised and have variable point density; (3)

have sparsity and gaps due to occlusion by neighbouring objects, e.g., vegetation clus-

ters [65]; (4) have no connection information among 3-D laser points; (5) show the

presence of noisy laser pulses due to the physical limitations of data acquisition sensors

and multiple reflectance (multipath effects); and (6) have no statistical distributional

pattern, especially for points around anisotropic surfaces (where multiple surfaces in-

tersect) [143]. The absorption of laser pulses by water and reflection from vents and

transparent roof structures are additional issues which make roof plane detection based

on LiDAR data alone more challenging.

Urban scenes are characterised by the existence of diverse objects such as buildings,

trees, bridges, and road infrastructure, offering a high degree of complexity. In many
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cases, vegetation is very close to buildings and often occludes parts of roofs. These

buildings are generally ignored and therefore removed during the elimination of false

objects by some existing methods. To overcome these limitations and address the high-

lighted challenges, a technique of roof plane extraction and building detection using

LiDAR data is proposed here. The main contributions of the chapter are as follows:

• Point cloud density is used at different stages of execution for handling sparsely

sampled point sets and making the proposed technique robust for multiple data

acquisition sources, e.g., airborne and terrestrial (mobile) platforms.

• A new LiDAR-based boundary-tracing technique is included, which seamlessly

extracts the inner and outer boundaries of an object without any limitation.

• Two new algorithms, anisotropic point selection and saliency feature (e.g., sur-

face normal and slope) estimation, are introduced in this research. The first

algorithm identifies points on intersecting surfaces using a local rather a global

threshold, while the latter estimates saliency features accurately to help in ex-

tracting occluded roof planes and is robust to noise.

• A roof plane extraction method and a comprehensive objective assessment using

several datasets are included in this study. These datasets differ in scene com-

plexity, topographical conditions, and point density (1.6 to 35 points/m2).

The proposed technique has a light computing burden since it uses geographic lo-

cation and height information of a point cloud for roof plane segmentation and bound-

ary extraction. In contrast, other techniques incorporate more features of LiDAR data,

including the timestamp, the strength of backscatter (intensity data), colour or scan

angle. Note that the proposed point cloud segmentation method prefers buildings with

planar surfaces which exist widely in urban environments and are therefore the focus

of the study.

The remainder of the chapter is structured as follows: Section 5.2 discusses the

methodology for robust roof extraction and building detection, including a detailed

description of each stage of the workflow. Section 5.3 provides a comprehensive perfor-

mance evaluation and comparative analysis of the proposed method using four bench-

mark datasets. Concluding remarks are provided in Section 5.4.
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5.2 Methodology

The proposed technique preserves sharp surfaces and combines PCA and the Low-Rank

Subspace Clustering framework with Prior Knowledge (LRSCPK) technique [144] for the

estimation of robust saliency features. The use of these robust features makes the seg-

mentation of LiDAR data more resistive to noise. Figure 5.1 shows the workflow of the

proposed roof extraction and building detection technique. The input data consist of

raw LiDAR points and the corresponding DTM. For this study, DTM with 1 m horizontal

resolution was available for each benchmark dataset. Otherwise, it can be generated

using any commercial software, such as MARS® Explorer [133].

The proposed technique comprises three major stages. First, we separate the Li-

DAR data into ground and non-ground point sets and use them later to identify the

building regions. Second, the proposed segmentation method extracts the planar sur-

faces from the point cloud of each identified building region using saliency features.

Finally, a refinement procedure eliminates the non-building planes and then approx-

imates the boundaries of the roof planes and buildings using a proposed boundary

tracing algorithm. We used Matlab® 2016a for all the experiments and utilised the

built-in functions, where applicable, to exploit parallel processing and gain high per-

formance. The detailed explanation of all the intermediate stages is provided in the

following sections.

Building region 
detection

Building rooftop segmentation Plane refinement & boundary 
approximation

Separation of non-ground 
points from ground points

Building region 
extraction

Separation of non-ground 
points from ground points

Building region 
extraction

Elimination of non-building 
planes

Roof facets extraction and 
building detection

Elimination of non-building 
planes

Roof facets extraction and 
building detection

Identification of anisotropic points 
and estimation of saliency features

Seed point selection and 
point cloud segmentation

Planar surface extraction

Identification of anisotropic points 
and estimation of saliency features

Seed point selection and 
point cloud segmentation

Planar surface extraction

LiDAR
 + 

DTM

LiDAR
 + 

DTM

Input data

Figure 5.1 Workflow of the proposed technique.

5.2.1 Building Region Detection

Figure 5.2(a) shows the test dataset AV1 introduced in Section 2.6. The aerial image

is used for the demonstration of different stages of the proposed methodology and to
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show the planimetric accuracy of the extracted roof planes and building boundaries.

Although the test dataset is small, it offers the challenges of vegetation and occlusion,

as shown in Figure 5.2(a) and the magnified rectangle. It covers an area of 66 m × 52

m containing moderate vegetation and six buildings comprising 24 roof planes. LiDAR

coverage of AV1 comprises the first pulse returns with a point density of 35 points/m2

and a spacing of 0.17 m in both in- and across-flight directions.

The proposed method takes the LiDAR point cloud C ∈ R3 (tri-dimensional space)

and its corresponding DTM as inputs. Generally, airborne LiDAR data contain points

returned from different features such as the ground surface, trees, buildings, and other

3-D objects. Therefore, we first separate the area of interest from other ground objects

for the detection of building roof planes. In order to separate the non-ground points, a

height threshold ht = hg+hr f for each LiDAR point is computed using its ground height

hg from DTM and a relief factor hr f which is 1 m in this study. This process eliminates

all the low height objects below hr f including bare earth, roadside furniture, cars, and

bushes, while preserving the objects above the threshold including buildings and trees.

Notably, many points on low height trees and bushes may be classified as non-ground

points provided they are above the hr f . Figure 5.2(b) shows the LiDAR points separated

into ground and non-ground points sketched in blue and cyan colours, respectively.

From this point onwards, we use only the non-ground LiDAR points P ⊆C for ex-

tracting the building regions which will subsequently be processed for the detection of

roof planes. To identify the building regions, a neighbourhood connection among R
2

(bi-dimensional space) representation of P is established using Delaunay triangulation

(see Section 2.3) as shown in Figure 5.2(c). The edges of any triangle having a length

≥ 2dmax are determined as anomalous connections (see red lines in Figure 5.2(d)),

where dmax corresponds to the maximum point spacing of the data. These edges are

then removed. The resultant triangles form contiguous regions, which do not have any

connection with the others, and are named herein building regions. We used Matlab’s

DelaunayTri function for the construction of the Delaunay triangulation and the edges

method to identify the unwanted constrained triangles.

The proposed boundary tracing algorithm then takes the building regions and ap-

proximates their boundaries. It can be observed in Figure 5.2(d) (digital copy) that
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(a) (b)

(c) (d)

Occluded 
building

Outer boundaries

Inner boundaries

Figure 5.2 (a) Aerial image of test dataset; (b) LiDAR point set; (c) Delaunay triangularisation
of the non-ground points; and (d) Building region identification.

each side of an inner triangle of the connected region is associated with exactly two

neighbouring triangles. However, one of the sides of a triangle along the periphery of

the region or inscribed hole is associated with only one triangle. It is computationally

inefficient to search such triangles sequentially. Therefore, Matlab’s built-in method
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freeBoundary is used to obtain the edges of triangles along a region’s periphery and

inside holes/concavities. This method returns an unorganised connectivity list of trian-

gle edges where each record has start and end vertices. The boundary tracing algorithm

pops the top-most edge from the list and chooses its start vertex as a beginning point

of the object boundary. An edge is iteratively selected from the list the start vertex of

which is the end vertex of the previous edge and adds it in a boundary segment. The

boundary approximation stops if the process meets an edge the end vertex of which is

the beginning point of the boundary. The proposed boundary tracing algorithm con-

tinues extracting boundaries of the building regions until the connectivity list has no

further edges left.

Unlike the algorithms in [145] and [146], where outer and inner building bound-

aries are identified and processed separately, the proposed algorithm traces a primi-

tive’s boundary irrespective of its alpha-shape and location. The proposed technique

does not struggle like those in [145] and [147], where the value of α is carefully

chosen in order to avoid producing exclusively convex hulls. The boundary tracing

technique, on the other hand, relies only on a single parameter, i.e., dmax to remove the

unwanted edges. Furthering the robustness, our method does not degenerate a convex

hull because all of the unwanted long edges are removed upfront before the boundary

extraction process begins. Another advantage of the proposed method is that it is easy

to implement and exploits the underlying hardware for parallel execution. The time

complexity of the boundary tracing algorithm using big O notation is approximated as

O(n) i.e., linear. Figure 5.2(d) presents a snapshot of the proposed boundary tracing

technique and also shows the extracted building regions and their boundaries.

5.2.2 Building Rooftop Segmentation

Building roofs in urban environments vary from flat to steeply-pitched surfaces and

often, have a complex arrangement of slopes, gables, and hips. These distinct parts

define sharp features at their intersections like edges, ridges, and corners. Therefore,

LiDAR points on these features describe fundamental characteristics of the underlying

geometry and considering them in advance improves the performance of a segmenta-

tion process [148] and therefore an integral component of our segmentation method.
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Similarly, estimation of saliency features such as normal and curvature, is an essential

step in the surface approximation process, because the quality of the extracted surfaces

depends heavily on the quality of the estimated point normals [144,149]. Often, Prin-

cipal Component Analysis (described in Section 2.3.2) is used but, it overly smooths the

normals at the points near/on the sharp features due to non-robust location and scatter

analysis [69, 149]. Therefore, any segmentation based on these erroneous descriptors

results in unreliable and inaccurate surfaces [150].

Further to the smoothness issue, PCA is also inefficient in estimating normals in the

presence of noise and a direct and/or indirect reason for the failure of region-growing

processes [69]. To overcome these limitations, several methods [69,99,144,149–152]

have been proposed which can handle data inconsistencies to a certain extent. To

obtain statistically robust normals along sharp features, we propose a PCA mollifica-

tion method that uses pre-computed normals to generate consistent point normals.

PCA mollification is based on the LRSCPK technique [144], which uses the PCA’s pre-

computed point normals as prior knowledge and employs an unsupervised learning

process to compute robust normals around anisotropic regions, regardless of data in-

consistencies. Another advantage of low-rankness is that it better captures the global

structure of the data, making it robust to noise [153] and enables the handling of cor-

rupt data [144]. In the research literature, mollification has been used in computer

graphics for the representation of geometric models [151]. However, to the best of our

knowledge, this is the first study of the detection of roof planes and buildings from

LiDAR data using PCA mollification.

In addition, the estimation of a point normal largely depends on the appropriate

selection of a local neighbourhood size and the method to search a point’s neighbours.

Commonly, two neighbourhood selection methods are widely practised (as discussed

previously in Section 2.3): Knn and fixed-distance neighbours. However, Knn has

the advantage over others due to its adaptiveness towards the sparsity of an unstruc-

tured point cloud, which makes it suitable for airborne LiDAR processing. The present

research, therefore, adopted the Knn method to determine local neighbourhoods for

point cloud segmentation and saliency feature estimation. Matlab’s KDTreeSearcher

and its relevant functions were used to find a point’s local neighbours in an optimised

fashion.
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5.2.2.1 PCA Mollification

PCA internally reduces the dimensions of the data and finds a matrix V (representing

eigenvectors −→v1 ,
−→v2 ,
−→v3 ) and scalar λ (representing eigenvalues λ1 ≤ λ2 ≤ λ3), where

λi describes a spatial variation along the corresponding −→vi . In the case of 3-D point

cloud data, the first two eigenvectors can describe a planar surface where the small-

est eigenvalue λ1 corresponding to −→v1 defines a point normal n̂i [69]. However, PCA

approximates inaccurate normals at the feature points, those not lying on planar sur-

faces, such as edges. Therefore, we combine LRSCPK at this stage, which segments

the neighbours of each feature point into several isotropic subspaces and re-estimates

these normals. An affinity matrix, which is dense amongst the same classes and sparse

otherwise, is generated by seeking the lowest rank representation on the PCA normals.

A plane is then fitted to the feature point and each of its subneighbourhoods to estimate

a fitting residual. A subneighbourhood that exhibits a minimum residual is identified

as a consistent subneighbourhood and used to approximate an accurate normal.

A careful analysis of LiDAR data shows that building roof planes have diverse ge-

ometries and predominantly three invariants generally exist when a dihedral angle at

the intersection of two or more planes makes 1) an acute/obtuse angle; 2) a right

angle; or 3) a jump edge (from mutually superposing surfaces). We demonstrate the

robustness of the PCA mollification using three real-world point cloud samples and

visually assess the quality of the estimated normals. Figure 5.3 shows that the point

normals approximated using PCA mollification can accurately approximate the under-

lying surfaces as compared to the PCA.

5.2.2.2 Feature Point Selection

PCA performs Eigen value analysis to estimate the normal for each LiDAR point. These

normals are then used for the identification of sharp features so that points on/around

these intersecting surfaces can be preserved to avoid degenerating the segmentation

process. It is achieved by computing the weight (curvature) wi of each point pi ∈ P

that measures the likelihood of pi belonging to a sharp feature. wi is computed using

Equation 5.1 as defined by Pauly et al. [154]:
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(a) (b) (c)

(d) (e) (f)

Figure 5.3 Point normals for three real-world roof plane samples using PCA (a)–(c) and (d)–(f)
PCA mollification using the LRSCPK. Planes forming an acute/obtuse angle (left), right angle
(middle), and jump edges (right).

wi =
λ1

λ1 +λ2 +λ3
(5.1)

The use of a global weight threshold to determine feature points will be irrational

since the underlying point set of each building region can have an entirely different

geometry. Therefore, we extended the original principle proposed by [144] that au-

tomatically calculates a single threshold for the entire point set. We incorporated an

adaptive threshold estimation mechanism that first computes a histogram capturing

the distribution of the weights for each building region separately. A threshold wt is

then defined as the horizontal ordinate where the plane fitting residual begins to show

a slow decrease. We used points within 2dmax of each LiDAR point as its k local neigh-

bours for plane fitting. Zhang et al. [144] define the distribution of {wi}
N
i=1 as fw and

smooth it by the following function:

min f̂w
‖ f̂w− fw‖F +‖D fw‖1 (5.2)

where, D is the second difference matrix, and ‖ · ‖F and ‖ · ‖1 represent l2 norm and

l1 norm, respectively. A threshold wt value for a building region is chosen after the

first peak of the smoothed distribution, as indicated by the red dotted line in Figure

5.4(a). So, the LiDAR points of a building region having weights below wt are classified

as feature points (red), as shown in Figure 5.4(b). Similarly, all the building regions

are processed concurrently to determine a local region-specific wt for the selection of

feature points. The results are shown in Figure 5.5(a). The feature points of each
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building region are further used to estimate robust normals using the proposed PCA

mollification method (see Section 5.2.2.1). The estimated normals in Figure 5.5(b)

show that the point normals near connected vegetation and across sharp edges are

quite accurate and robust.
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Figure 5.4 (a) Adaptive selection of weight threshold wt , and (b) Feature points (red) of a
building region. The red dotted line represents the position of a selected threshold wt .

5.2.2.3 Segmentation

A region-growing technique commonly uses several parameters to determine the copla-

narity of the LiDAR points. However, the proposed segmentation method utilises only

the critical parameters to achieve robustness and efficiency. Therefore, the surface

curvature and normal orientation [69, 145] of points are chosen as proximity criteria,

whereas, to distinguish superstructures, point-to-plane tolerance and plane fitting er-

ror thresholds [37] are used as coherence criteria. Curvature σ, which measures the

rate of change of surface normal, is estimated using Equation 5.1 earlier referred to

as weight. Generally, real-world datasets have inherent noise and even the points re-

flected from a smooth surface in a local vicinity have some height variations. Therefore,

the coherence criterion is inevitable for better convergence of the plane surfaces.

A region-growing technique begins with the selection of a seed point which is sensi-

tive to the segmentation process. However, the proposed segmentation process defines

a robust seed point selection criterion where a point is chosen from non-feature point
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set that has the least curvature value. It is believed that region growing will be more

successful for areas where spatial variation is the least. If point normals closely approx-

imate the true normals, the usual case is that the angle θ between two normals across

neighbouring surfaces will be larger than a minimum angle threshold. However, when

the normals belong to the same surface, θ will be smaller than the threshold. Note that

θ between two normals n̂i and n̂ j can be estimated as:

θi, j = cos−1|n̂i · n̂ j| (5.3)

Following the principle that a smooth (non-feature) point in a sufficiently small

local neighbourhood always lies on a planar surface, we chose a relatively small neigh-

bourhood k i.e., LiDAR points within 2dmax for coplanarity check and the extraction

of planar surfaces. Trees, in point cloud data, are assumed to be composed of sev-

eral randomly oriented surfaces which are intersecting arbitrarily, would have a high

concentration of feature points compared to building roofs. This cue is exploited in

two meaningful ways: to reduce the amount of data and to eliminate the vegetation.

Therefore, for point cloud segmentation, those building regions, where concentration

of the feature points is less than 95%, are processed to extract planar surfaces. This

condition also helps with removal of several small bushes and trees at the beginning of

the segmentation process. Figure 5.5(a) shows tree regions, which can be seen in the

image in Figure 5.2(a), have a high concentration of feature points (red) in contrast

with buildings.

The segmentation process begins with the selection of a seed point from the set

of non-feature points that has the least curvature value. Next, we take k local neigh-

bourhood points Np of the seed. Then, the points with angular differences between

the normal of the seed and Np within a predefined threshold θt are used for the plane

fitting using PCA. If plane fitting error and difference between a points’ height and fit-

ted plane’s height are smaller than the corresponding fitting error εt and point-to-plane

tolerance ξt thresholds, these LiDAR points are added in a planar region. This region

continues growing as long as new neighbouring points meet the criteria. Otherwise, a

new region is instantiated. The proposed segmentation process considers all the unseg-

mented LiDAR points, including feature and non-feature points for determining a local
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(a) (b)

Figure 5.5 Feature point estimation: (a) Ground points (blue), non-ground points (cyan),
feature points (red) and (b) Estimated point normals using proposed PCA mollification. Insets
show magnified snapshots of two buildings and their estimated point normals.

neighbourhood, while expanding any region. This procedure of region growing adds

most of the anisotropic points to some planar surfaces. The extracted planar primitives

at this stage are shown in Figure 5.6(a).

Often, building roofs have small facets such as dormers, chimneys, and vents, and

the LiDAR returns of them may be classified as feature points. Therefore, feature

points, that have not yet been classified into any planar surface, are segmented fol-

lowing the proposed segmentation technique. Since tree canopies can better be ap-

proximated using a non-planar structure, points reflected from such regions generate

a significant number of small planar surfaces. For instance, Figure 5.6(b) shows vege-

tation that breaks up into many smaller planar surfaces. These planar surfaces do not

render any parts of trees rather sets of points reflected of tree-branches that are nearly

coplanar. These planes are shown in Figure 5.6(c) using the aerial image, where red-

dotted ovals indicate trees which were eliminated due to high concentration of feature

points (> 95%) at the beginning of segmentation process. Ideally, any two points on a

truly flat plane have similar heights and normals. However, due to noise and surface

roughness, there are some random errors in the estimated LiDAR-determined heights

and normal directions. Therefore, for better convergence of the segmentation pro-

cess, the proposed region growing technique adopts the threshold values for θt = 10o

from [145] and εt = 0.1 m and ξt = 0.15 m given in [37].



§5.2 Methodology 108

(a) (b) (c)
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Figure 5.6 Plane extraction from 3-D point cloud using: (a) non-anisotropic points; (b)
anisotropic points; and (c) overlaying the extracted planes on the test image for the demon-
stration.

5.2.3 Removing non-building Planes and Boundary Approximation

We formulated the problem of removing non-building planes in unsupervised non-

parametric fashion by identifying the underlying patterns of LiDAR data points. The

concentration of feature points rc is observed a key indicator to identify non-planar re-

gions and is proposed as a useful cue to distinguish vegetation compared to roof planes.

The sizes of tree segments are typically minuscule, which is a useful feature to differ-

entiate between vegetation and roofs [155], and is therefore, used here. In addition,

low number of the segmented to unsegmented points ratio ru in plane segments, which

typically is high for vegetation but low for roof surfaces, is employed. This attribute

serves a reliable cue for the classification of vegetation segments. To avoid the removal

of small roof planes, like chimneys and vents, the plane refinement procedure adopts

the following criterion from Awrangjeb et al. [156]. This test marks any misclassified

plane as a roof plane if it resides within the boundary of an accepted plane.

Typically, urban buildings have complex arrangement of dormers, which do not ex-

tend their footprints but rather provide architectural detail. These dormers, as shown

in Figure 5.7, are generally constructed using several intersecting surfaces, which are

small in size and in proximity e.g., hexagonal gazebo dormers. As a result, LiDAR

points reflecting from these planar surfaces are often classified as feature points, be-

cause of insufficient cues to differentiate them from tree planes. Therefore, another
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test is performed to detect valid roof planes if any exists in anisotropic points. This

test ensures a plane, that has not yet been classified, exists in local neighbourhood

of a valid roof plane and has a straight line at least 2 m along its boundary. All the

user-defined parameters used in the refinement process are listed in Table 5.1.

Hipped dormer

Pitched gable dormer

Hexagonal gazebo dormer

Monopitched dormer

Figure 5.7 Various types of dormers.

Parameters Values Sources

Feature points Concentration rc 95 (%) This chapter
Straight line length 2 m This chapter
Minimum plane area 1 m2 [37]
Used point ratio ru 60 (%) [37]

Table 5.1 Parameters for plane refinement.

The proposed boundary tracing technique is capable of deriving boundary of a seg-

ment in R
3, because each transformed point in R

2 has the same reference index as the

input LiDAR data. Therefore, the 3-D boundaries of the segmented point cloud are

determined and shown in Figure 5.8(a). In this procedure, a plane segmented from

tree or any non-building region is usually small in size and has both high concentration

of feature points (rc) and low point usage (ru) compared to a roof plane. Therefore,

such planes, known as false planes, are removed regardless of other parameters. Fur-

ther, planes which exist in local neighbourhood of false planes are considered false

alarms, and are removed. However, two tests: presence of long straight lines along

the boundary of a plane and its occurrence near an accepted plane, are performed to

detect roof planes connected to vegetation and identify small roof facets like dormers
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and sheds. These line segments are extracted using the canny edge detector from the

plane’s mask.

(a) (c) (e)

(b) (d) (f)

Figure 5.8 Demonstration of removing non-building planes and building detection using LiDAR
and imagery respectively: (a)–(b) All the extracted plane segments and their boundaries; (c)–
(d) The detected building roof planes; and (e)–(f) The detected buildings.

Figure 5.8(b) shows a snapshot of false plane removal, where roof planes (plotted

in blue and black-dotted on cyan colour) and non-building segments (represented in

red, yellow, cyan and magenta colours) are sketched. The planar surfaces plotted in

black dots on cyan boundaries correspond to roof planes which are identified using the

neighbourhood criterion and the line presence along plane’s boundary test. Figures

5.8(c) and 5.8(d) show all the roof planes and their boundaries after the elimination

of non-building structures in R
3 and R

2, respectively.
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5.2.4 Building Outline Generation

The buildings present in test area are now extracted using all the detected roof planes.

We process the building regions sequentially and collect the LiDAR points of all the

detected roof planes. Next, the proposed boundary tracing technique is employed to

determine connected region(s)/building(s) and approximate their outlines using the

procedure in Section 5.2.1. Figures 5.8(e) and 5.8(f) show the extracted buildings and

their corresponding boundaries in R
3 and R

2, respectively.

5.3 Performance Evaluation

To validate the performance of proposed technique, we provide comprehensive evalu-

ation using four benchmark datasets (introduced in Section 2.6), which have different

LiDAR resolutions, topographies, and surrounding conditions. The ISPRS dataset has

three test areas and other three datasets have one area each captured from different

geographic locations in Australia.

5.3.1 Building Detection

Tables 5.2 and 5.3 show per-object and per-area level quantified evaluation for the

ISPRS and the Australian datasets. Figures 5.9 and 5.10 show the respective detection

results and some detection examples from the benchmark test areas. For the ISPRS

dataset, detailed quantitative and qualitative measures of building detection can be

found on the ISPRS portal [139] under the acronym Mon51.

First, we proceed with qualitative evaluation. The buildings in Figures 5.9(d)–

(e) and 5.10(g) and (i) show classic examples of small huts, which were accurately

segmented and successfully detected (yellow polygons). Figures 5.9(f) and 5.10(d)–

(f) and (i) show few complex scenarios, where partially occluded buildings were ac-

curately separated from nearby vegetation, demonstrating the robustness of the pro-

posed technique to noise and non-homogeneous surface points. The buildings in Figure

5.9(g) have a combination of several flat and hipped rooftops, which collectively form

1
http://www2.isprs.org/commissions/comm3/wg4/results/a1_recon.html

http://www2.isprs.org/commissions/comm3/wg4/results/a1_recon.html
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inner boundaries. The proposed technique traces both the inner and outer building

boundaries although their boundary points have no topological relationship. The ad-

ditional benefits of the robust normal estimator are twofold; it extracts planar surfaces

and eliminates curved surfaces. For instance, see trees and domes in Figure 5.9(h),

where a roof-mounted umbrella was accurately separated from neighbouring planar

surface.

(a) (b) (c)

(d)

(e)

(f)

(h)

(d) (e) (f)

(h)

(i)

(g)

(g)

(i) (j) (k)

(j)

(k)

Under segmentation

Inner boundary

Occluded building

Under detection

Figure 5.9 Building detection on the VH dataset: (a) VH1; (b) VH2; and (c) VH3. Snapshots
(d)–(h) show examples of small, occluded, and under-detected cases.

Visual inspection indicates that proposed method obtains good results on all the

datasets. However, there are some segmentation errors. The proposed algorithm has

missed some building attachments (green rectangles) and small buildings (cyan rect-

angles), as shown in Figure 5.9. This is because VH has slopping terrain and building

regions on stilts have LiDAR points below 1 m (hr f ), which were removed during sepa-
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(a) (b) (c)

(d)

Under Segmented

(e)
(f)

(d)

(e) (f) (g) (h) (i)

(g)

(h) (i)

Missing 
buildings

Occluded
Transparent

Occluded

Over 
segmented

Figure 5.10 Building detection on Australian datasets: (a) AV1; (b) HB; and (c) HT. Snapshots
(d)–(i) show small, occluded, and under-detected cases.

ration of ground and non-ground points. Some small buildings were missed in the HT

dataset, as shown in Figure 5.10(c) and magnified Figures 5.10(h)–(i). This was due

to low point density (≈ 1 point/m2) and severe occlusion of neighbouring vegetation.

To quantitatively evaluate the detection results, these detected buildings are further

analysed. Considering all the buildings, Table 5.2 shows that overall object-level com-

pleteness for VH1 and VH2 are 91.9% and 92.9% with corresponding correctness of

97.1% and 100.0%. For buildings larger than 50 m2, the proposed technique achieved

100% object-based completeness, correctness, and quality in VH1 and VH2. However,

VH3 has lower object-level accuracy because of missing point cloud data of partially

detected large building, as shown in Figure 5.9(i). Some under-segmentation cases

occurred when nearby buildings were close to one another. As shown in Figure 5.9(j),

a carport between two buildings and two carports in Figure 5.9(k) were merged with

their neighbouring buildings. This unexpected merging was due to low density of the

input LiDAR data, which can be avoided by analysing height spikes among the neigh-

bouring planes at the time of delineating the building peripheries. As far as per-area

accuracy is concerned, the statistics in Table 5.2 show both average completeness and
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correctness were around 90%, indicating accurate detection of correct pixel points.

The results in Table 5.2 also indicate that the proposed technique is entirely free of

over- and many-to-many segmentation errors.

A similar detection trend was observed in the AV1 and HB datasets, as presented

in Table 5.3. The statistics represent high detection rate, and in particular, the overall

accuracy, quantified in terms of completeness, correctness, and quality, was 100.0%.

In addition, there were no under- and over-segmentation cases because buildings were

well separated and both AV1 and HB datasets had high point densities in contrast with

the VH dataset. The results in Table 5.3 show that the proposed method has extracted

small buildings (see Figures 5.10(d) and (g)), which were as smaller as 10 m2, in-

cluding buildings larger than 50 m2. However, considering all the buildings in the HT

dataset, object-based completeness was comparatively lower than two other datasets.

The reason was some missing buildings (marked in cyan) caused by severe occlusion

and transparent roof material (Figures 5.10(c) and (h)). LiDAR pulses generally pass

through transparent roof materials and return from the ground. Consequently, such

building points were removed as ground measurements and were not used in point

cloud segmentation. The results further show that buildings over 50 m2 were extracted

at 100% object-based completeness and correctness, while nearly equal completeness

(96.2%) and correctness of 100.0% were achieved for buildings over 10 m2. However,

three close buildings in HT, as shown in Figure 5.10(i), were merged unexpectedly

since they were situated in close proximity a distance of less than 2dmax. Such complex

cases have increased the detection cross-lap rate (under-segmentation) in HT. More-

over, missing transparent buildings results in reference cross-lap (over-segmentation),

as shown in Figure 5.10(c). In terms of per-pixel accuracy, performance of HT was

lower (85.6%) than that of AV1 (96.2%) and HB (95.2%) but it has a similar correct-

ness.

The statistics in Tables 5.2 and 5.3 indicate that the planimetric accuracies achieved

were close to one to two times of horizontal resolution of the LiDAR data. Overall, these

experiments suggest that the proposed method obtains high detection performance

and extracts buildings of variable sizes and partially occluded from flat to hilly terrains

under different surrounding complexities. Moreover, statistics of both the tables show

that per-object and per-pixel accuracies are promoted with a proportional increase in
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point cloud densities. A constantly higher (> 97%) correctness further indicates that

our technique is robust to scene complexity. In fact, both qualitative and quantitative

results show that the proposed detection method can eliminate vegetation and extract

buildings as well as their non-occluded parts from complex scenes with high object-

and pixel-based accuracies.

5.3.2 Building Roof Detection

Tables 5.4 and 5.5 show object- and pixel-based evaluation results of roof plane ex-

traction for the ISPRS and the Australian datasets, respectively, and Figures 5.11 and

5.12 show the roof plane extraction results for the ISPRS and the Australian datasets,

respectively. These figures also present some samples of plane extraction results from

the corresponding datasets.

In the VH dataset, the proposed roof extraction algorithm performed better on VH3,

which is purely residential and has detached houses. Table 5.4 shows that planes larger

than 10 m2 were detected with per-object completeness and correctness of 90.2% and

99.7%, respectively. Some examples are shown in Figures 5.11(d)–(f) (yellow ovals).

However, there were many under-segmentation cases, where small roof planes were

not extracted separately, and they were merged in neighbouring large planes, as shown

in Figure 5.11(g) (purple oval). In addition, there were some over-segmentation cases,

when roof planes were detected in two or more splits, as shown in Figures 5.11(e),(h),

and (i) (aqua ovals). Some roof structures were also missed, because they were either

situated below the height threshold or smaller than 1 m2, as shown in Figures 5.11(g)–

(i) (red ovals). Consequently, per-object completeness was rather low for all the areas.

However, the proposed technique achieved per-area completeness and correctness of

82.0% and 98.6%, respectively.

With increasing point densities in the Australian datasets, improved roof detection

results were obtained in AV1 and HB, as the statistics show in Table 5.5. The pro-

posed technique extracted planes larger than 10 m2 with 100% per-object complete-

ness and correctness in the AV1 and HB datasets and correspondingly achieved 96.0%

and 94.6% per-object completeness, when all the planes were considered (see yellow

ovals in Figures 5.12(d)–(e) and (g)). Figures 5.12(g)–(j) show that many small planes
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Figure 5.11 Roof plane extraction on the ISPRS dataset: (a) VH1; (b) VH2; and (c) VH3. Areas
marked by letters in (a), (b), and (c) are magnified in (d)–(i).

(a) (b) (c)

(d) (e) (f) (g) (h) (i) (j)
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Detected small facets Missed facets Over segmentation Under segmentationLegends for (d) – (j): 

Figure 5.12 Roof plane extraction on the Australian datasets: (a) AV1; (b) HB; and (c) HT.
Areas marked by letters in (a), (b), and (c) are magnified in (d)–(j).
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(< 10 m2) were missed (red ovals) and merged into neighbouring planes, and this in-

creased the under-segmentation and over-segmentation rates. These segmentation er-

rors were more numerous in HT dataset, since it had low point density (≈ 1 point/m2)

and severe occlusion. The statistics further show that the planimetric accuracy of roof

plane extraction was within one to two times of horizontal point spacing of the input

LiDAR points. Despite the registration error between detected roofs (from LiDAR data)

and reference roofs (from orthoimages), the proposed method achieved nearly 90%

per-area completeness for the AV1 and HB datasets, and around 72% completeness

for the HT dataset. A constantly higher correctness of above 90% demonstrates ro-

bustness of the method in roof plane extraction for different complex conditions. It is

observed that detection performance of the proposed method degrades gracefully with

the decrease in point density, and does not severely impact planimetric accuracy of the

extracted polygons.

5.3.3 Comparative Analysis

The proposed automatic technique is data-driven and only use airborne LiDAR data.

Therefore, for comparative purposes, the methods which are (1) automatic and data-

driven; (2) use only LiDAR data; and (3) unsupervised, were chosen from the ISPRS

portal [139] and the methods classified in [22]. The evaluation results of the HKP,

VSK, and TUD on the VH dataset are available at the ISPRS portal. However, the

Yang [85] and MA [37] results are taken from their papers. Tables 5.6 and 5.7 present

performance evaluation of building detection and roof plane extraction results.

For all VH areas, Table 5.6 shows that the proposed building detection technique of-

fers significantly better per-object level completeness and similar correctness compared

with the alternative methods. For buildings larger than 50 m2, our technique achieved

100% accuracy in terms of completeness and correctness in contrast to VSK, which was

unsuccessful in detecting large buildings in VH1, as indicated by the low Cm,50 in Table

5.6. In terms of per-area accuracy, HKP and MA obtained slightly more per-area com-

pleteness in VH1 and VH3, since our method missed some carports below the height

threshold. In terms of the planimetric accuracy of extracted polygons, the proposed
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Methods Cm Cr Cm,50 Cr,50 Cmp Crp RMSE

VH1: 3.5 laser points/m2

HKP [157] 83.8 100.0 100.0 100.0 92.0 97.4 0.9
Yang [85] 81.1 96.8 100.0 96.6 87.9 91.2 0.9
MA [37] 83.8 96.9 100.0 100.0 92.7 88.7 1.11

VSK [158] 78.4 100.0 96.4 100.0 85.7 98.1 0.8
Proposed 91.9 97.1 100.0 100.0 89.0 90.2 0.9

VH2: 3.9 laser points/m2

HKP [157] 78.6 91.7 100.0 100.0 93.0 98.4 0.6
Yang [85] 78.6 100.0 100.0 100.0 88.8 94.0 0.8
MA [37] 85.7 84.6 100.0 100.0 91.5 91 0.83

VSK [158] 85.7 100.0 100.0 100.0 85.4 98.4 0.9
Proposed 92.9 100.0 100.0 100.0 91.1 92.8 0.8

VH3: 3.5 laser points/m2

HKP [157] 76.8 97.8 97.4 100.0 89.2 97.7 0.7
Yang [85] 73.2 97.6 97.6 92.1 85.2 89.5 0.8
MA [37] 78.6 97.8 97.4 100.0 93.9 86.3 0.89

VSK [158] 75.0 100.0 97.4 100.0 86.3 98.7 1.0
Proposed 83.9 91.7 97.4 100.0 89.7 87.9 0.7

Table 5.6 Comparison of building detection results for the VH dataset. Object-based
Cm = completeness, Cr = correctness (Cm,50 and Cr,50 are for buildings over 50 m2) and pixel-
based Cmp = completeness and Crp = correctness are in percentages. RMSE = planimetric
accuracy in metres.

technique obtained better or slightly lower performance than the counterparts in all

three areas.

The proposed roof plane extraction method, in all areas of VH dataset, offers better

per-object completeness and correctness than the VSK and TUD, as shown in Table

5.7. However, MA remains slightly better when all the planes are considered in VH1

and VH2. Concerning planes larger than 10 m2, Table 5.7 shows that our technique

achieves better correctness but has performs slightly more poorly than MA on the VH2

and VH3 in terms of completeness. Nevertheless, it performs better than VSK and TUD

on the VH1 and VH3 when performance is quantified as completeness (Cm,10). The

planimetric accuracy (RMSE) and height error (RMSZ) of the proposed technique do

not much differ much from the counterparts but the RMSZ difference in VH2 is larger

because the proposed technique do not remove noise to avoid reducing point density

of the data.
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Methods Cm Cr Cm,10 Cr,10 M/N/B RMSE RMSZ

VH1: 3.5 laser points/m2

MA [37] 76.4 83.3 84.4 84.9 6/42/7 1.05 0.41
VSK [158] 72.2 96.7 80.3 95.9 7/42/6 0.9 0.3
TUD [159] 67.4 96.2 68.0 97.8 1/33/1 0.8 0.2
Proposed 74.3 98.7 89.8 100.0 15/32/10 0.8 0.3

VH2: 3.9 laser points/m2

MA [37] 73.9 91.9 93.8 92.6 7/3/1 0.74 0.37
VSK [158] 73.9 100.0 91.7 100.0 3/5/1 0.7 0.3
TUD [159] 68.1 98.1 85.4 100.0 5/3/0 0.6 0.3
Proposed 73.9 94.8 89.6 100.0 27/1/2 1.06 1.40

VH3: 3.5 laser points/m2

MA [37] 82.1 93.9 92.7 96.7 5/45/0 0.89 0.27
VSK [158] 76.6 99.1 86.3 100.0 3/50/0 0.8 0.1
TUD [159] 74.5 93.0 83.1 98.0 0/42/1 0.7 0.1
Proposed 80.9 99.3 91.1 99.1 7/36/4 0.8 0.2

Table 5.7 Comparison of plane results for the VH dataset. Object-based Cm = completeness,
Cr = correctness (Cm,10 and Cr,10 are for buildings over 10 m2). M = over-segmentation, N
= under-segmentation, and B = both over- and under-segmentation in number of buildings;
RMSE = planimetric accuracy; RMSZ = height accuracy; in metres.

5.4 Summary

This chapter focuses on the automatic detection of buildings and their roof planes, and

defines the three steps: feature preservation, surface growing, and false plane elimi-

nation. The proposed technique is data-driven and introduces a feature preservation-

based segmentation algorithm. This method uses robust saliency features, which are

less sensitive to noise and avoids over- and under-segmentation, for the extraction

of roof planes. A boundary tracing algorithm is also proposed, which approximates

boundary of objects using LiDAR points.

The proposed segmentation technique achieves high building detection and roof

extraction performance on several datasets of variable point densities, terrains, and

surrounding complexities. The use of robust saliency features enables the proposed

method to separate buildings and roofs from connected vegetation. The results show

that the proposed technique is capable of detecting small roof planes as well as build-

ings. This technique since extracts rooftops and buildings directly using LiDAR data,
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the planimetric accuracy of the detected polygons is limited by its horizontal point spac-

ing. In the next chapter, we propose a building reconstruction technique that utilises

the extracted roof planes for the development of 3-D building models.



Chapter 6

Reconstruction of 3-D Building
Models

“It’s not what other people believe you

can do; it’s what you believe you can

do.”

Gail Devers

6.1 Introduction

3-D building roof reconstruction i.e., the fourth research object RO4, has been a topic

of active research for more than a decade. Most early roof reconstruction methods were

semi-automatic, with the involvement of a trained human operator who performed ac-

curate measurements. However, human intervention reduces the speed of execution in

achieving high productivity and in processing large datasets. Recently, several build-

ing reconstruction systems have been developed and reviewed in Section 3.5 which

show the construction of definitive models to be a non-trivial task due to variations in

geometric and functional descriptions of buildings. We also noted that some methods

suffer from high reconstruction errors, while others are able reconstruct only a certain

type of building.

The previous chapter introduced the main aspects of point cloud segmentation and

discussed the reasons and methodology used in low-level processes to recognise and

extract building rooftops, which have meaningful correspondence with the buildings

actually present in a scene. It is now time to move to more model-oriented represen-

tation of buildings, which is carried out here in the reconstruction part of the thesis.

This chapter utilises the roof planes from Chapter 5 for the development of 3-D build-

ing models. The proposed technique is entirely data-driven and constructs buildings

123
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represented at lower levels with coarse boundaries (3-D roof-planes) to higher levels

(3-D building models). The method is tested on two benchmark datasets consisting of

many complex buildings, and the outcome confirms the applicability of the proposed

method on more heterogeneous areas. The reconstruction strategy consists of a num-

ber of intermediate, interrelated processes to form a framework in such a way that

every process provides more object-related information to its immediate higher level

process.

Section 6.2 describes the complexities involved in reconstruction of building mod-

els. The proposed building modelling technique is presented in Section 6.3: identifica-

tion of local neighbouring roof planes is described in Section 6.3.1, and both approxi-

mation of missing planes and extraction of 3-D intersection lines among roof planes are

introduced in Section 6.3.2. Section 6.4 provides details of building rooftop adjacency

relationship and roof model generation processes. Section 6.5 presents a visual assess-

ment of the proposed method using two datasets and its applicability in reconstructing

polyhedral buildings. Section 6.6 concludes the chapter.

6.2 Complexity of 3-D Modelling

3-D building modelling techniques differ significantly, based on the primitive shapes

used and the input data sources [160]. Nonetheless, the vast majority of reported

methodologies for 3-D building modelling follow a specific succession of processing

steps: segmentation, building recognition, roof extraction, and 3-D geometric mod-

elling. Irrespective of the methodology, the complexity of building reconstruction is

heavily dependent on several factors, including the resolution of the input data source,

the algorithms adopted and the specific requirements of the application. Therefore,

it is essential to choose an appropriate model complexity, because buildings in urban

regions have a diversity of shapes and levels of detail. For example, applications for

flood and disaster management or city planning focus on terrain shape, while those

for the assessment of solar potential are more concerned with the orientation of roof

planes.

The Open Geospatial Consortium has developed the international Level of Detail

(LoD) standard described in OpenGIS City Geographic Markup Language (CityGML),
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with the aim of not only providing visualisation of the geometric characteristics of city

models, but also enabling the analysis of the same entity at different degrees of reso-

lution [29, 161]. Therefore, CityGML supports five different well-defined consecutive

LoDs (from LoD0 to LoD4) for the multiscale representation of city entities, where a

higher level corresponds to more detail of the building model. Figure 6.1 illustrates

the consecutive levels of detail of a real building.

CityGML LoD0 CityGML LoD1 CityGML LoD2 CityGML LoD3 CityGML LoD4

Figure 6.1 Representation of a real detached house using LoD0–LoD4 [162,163]

The coarsest level of detail (LoD0) is essentially a DTM by which a building is

described by its footprint or roof outline. It further shows that there is no immediate

association of the LoD with different building structures. The first level of detail (LoD1)

represents a building as a block model i.e., a vertical extruded solid from DTM to a

certain height of LiDAR points without any semantic structuring. In comparison, a

building with the second level of detail (LoD2) has a more differentiated rooftop and

thematically-separated boundary surfaces. The region of a building is represented by

a geometrically simplified exterior shell/wall. LoD3 is characterised by the inclusion of

architectural components with detailed wall and roof structures e.g., doors, windows,

balconies, bays, and projections. In addition, image textures can be mapped onto these

structures of the constructed model. Finally, in addition to LoD3 representation of the

building, LoD4 adds the interior structures of 3-D objects such as rooms, stairs, interior
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doors, and even furniture.

The LoD attribute of a model is actually a sign of quality, the LoDs describe vary-

ing levels of accuracy. In other words, LoD is a measure of the consistency between

real world features and modelled features, both geometrically and semantically. Fur-

thermore, the transition of detail of a model from LoD0 to LoD2 indicates the 2.5 di-

mensional characteristics that are mainly the result of the use of airborne LiDAR or

multispectral images. In contrast, LoD3 and LoD4 exhibit complete 3-D representations

of city objects, indicating a need for more data sources to obtain the information on the

façades and interiors of buildings. In relation to data sources, Elberink et al. [65] rea-

soned that the resolution of LiDAR data limits the detailed representation of modelling

objects which cannot be detected and hence be approximated during the modelling

phases. They further argued that point density of less than 1∼2 points/m2 is often

insufficient for the development of a detailed 3-D building model, and the only viable

representation left in this scenario is to reconstruct buildings using a simple box (i.e.,

LoD1).

In the context of data resolution, the level of detail of a 3-D model is leveraged by

the level of detail achievable with LiDAR data. Therefore, only rough and generalised

features can be reconstructed, since small structures cannot be determined if the data

source has low resolution. We further observed (and discussed earlier in Section 2.2.3)

that the use of input data sources plays a key role in attaining the desired level of

detail for 3-D building reconstruction. Theoretically, no single level of detail exist that

can fulfil the requirements of all the applications using different data sources and their

constituent properties.

6.3 Proposed Methodology

In the context of model generation, it is essential to choose an appropriate model com-

plexity because urban objects have a diversity of shapes and details. In addition, it

needs to be taken into account that the LoD within a 3-D model is subject to the reso-

lution of the input LiDAR data. When given data have large point spacing, only rough

and generalised features can be extracted since tiny structures cannot be measured.
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The proposed automatic 3-D building modelling technique utilises the roof planes

extracted previously in Chapter 5 and the corresponding DTM as the input data. We

use the initial version of the technique [164] that could not extract small roof planes

instead of the final results. The reason for this is to comprehensively test the ability of

the proposed modelling technique to approximate missing roof planes for the successful

reconstruction of building models. As we do not use a model-driven approach, the

proposed technique does not rely on pre-defined building models. Figure 6.2 shows

the workflow of the proposed 3-D building modelling technique.

Detected roof planes 
& DTM

Missing plane insertion

Building regularisation

Finding intersections of 
the interconnected roofs

Finding intersections of roofs 
to the building boundary

3D building 
models 

Local plane identification 
& building regularisation

Input Output

Rooftop adjacency 
relationship

Figure 6.2 Workflow of the proposed 3-D building modelling and scene reconstruction tech-
nique.

Our technique relies entirely on airborne LiDAR data, and the building models that

can be developed while providing a good level of detail is LoD2. Therefore, we first

need to find any possible missing roof plane, since we know that the roof plane ex-

traction procedure generally rejects planes smaller than a user-defined specification

and often do not segment the LiDAR points which do not meet the segmentation crite-

ria. The boundary of each building object is then approximated using the information

of the extracted roof planes and the boundary is regularised to develop its building

footprint. The subsequent procedure determines the interrelations between the inter-

connected roof planes and the building periphery. Finally, these intersection points are

used to reconstruct a building model. The following sections provide more detail on

these intermediate processes and illustrate the concepts with appropriate figures.

6.3.1 Adjacency of Roof Planes

The primary elements for the generation of building models are the roof planes which

are input to the proposed technique. In the context of 3-D objects, a building can gener-

ally be perceived as a complex arrangement of different roof planes which are mutually
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interconnected. Information about the interconnection needs to be ascertained before

we actually model a building using only the available information i.e., the roof planes.

Therefore, we establish a neighbourhood relation matrix among the roof planes to de-

termine the topological relations between these 3-D roof primitives, which is originally

an adjacency matrix and stores the records of the neighbours of each roof plane. Fig-

ure 6.3(a) presents the AV1 dataset for the demonstration of different stages of the

proposed methodology and the construction of a neighbourhood adjacency matrix.

(a) (b) (c)

Figure 6.3 Steps for generation of neighbourhood adjacency matrix: (a) Image of the test
dataset; (b) Identification of neighbouring planes - input plane (cyan) enclosed in a rectangular
region; and (c) LiDAR representation of input planes and rectangular regions for selection of
neighbouring roofs for entire dataset.

Generally, the roof planes extracted using LiDAR data have low horizontal accuracy,

due to the sparsity and irregularity of the laser pulses around the edges, as discussed

previously in Sections 2.2.3 and 4.2.2.4. Therefore, the resolution of LiDAR data is kept

in consideration for the determination of neighbouring planes and the construction of

the neighbourhood matrix. Consider Rp = {rp1
,rp2

, ...,rpn
} is a set of n input roof planes

and an adjacency matrix M of the same size is instantiated i.e., Mn×n. The roof planes

that remain within the Euclidean distance distp of a source plane rpi
, are considered

its neighbours and the corresponding rows and columns of M are updated accordingly

with the roof plane’s ID. The value of distp is chosen as twice the maximum point-to-

point distance (dmax) of the input LiDAR point cloud. To speed up the generation of

M, we first determine the planes within the imaginary rectangular region around the



§6.3 Proposed Methodology 129

source plane rpi
(see Figure 6.3(b)) rather than computing the distances of rpi

from

the rest of the input roof planes rpn−i
. Next, the distances between the boundary points

of rpi
and the planes within the rectangular regions are determined. The particular

records of the roof planes against the ith row and column of M are updated which lie

within the distp. The procedure continues and all the input roof planes are processed

iteratively to establish the interrelations among them, as shown in Figure 6.3(c).

6.3.2 Identification of Intersection Lines

The procedure to determine the roof topology and the intersection lines between the

adjacent planes is demonstrated in Figure 6.4. The multispectral image of the sam-

ple building and its corresponding input roof planes are shown in Figures 6.4(a) and

6.4(b), respectively. For a roof plane P1, its adjacent plane(s) are determined from M,

which in our example is single plane i.e., P2. Next, the process uses the plane equations

of both P1 and P2 to assess whether or not these planes mutually intersect in 3-D space.

If they do, we obtain a point called the intersection point Ipnt and a direction vector n̂

in 3-D space. Subsequently, straight lines are approximated using the roof boundary

points which face each other, as shown in Figure 6.4(c). We used Matlab’s polyfit

built-in function for the approximation of line segments. Following the concepts of 3-D

coordinate geometry and using the approximated straight lines, Ipnt , and n̂ altogether,

we estimate 3-D intersection lines between the adjacent roof planes, as shown in Figure

6.4(d).

Success in extracting the intersection lines is entirely governed by the user-defined

threshold of the parameter Ipnt . To understand how, imagine a building that has two

multistorey (superimposed) roof planes, such that both are adjacent in 2-D space but

reasonably distant because of their different heights in 3-D space. These planes, when

a vertical plane joining them is not present, will definitely intersect each other (follow-

ing the above mentioned principles), but the location of Ipnt will be irrational compared

to their real intersection point. Therefore, the value of Ipnt is chosen entirely according

to the resolution of the input LiDAR data, which is 2dmax. The plane insertion proce-

dure first assesses the value of Ipnt of any two adjacent planes, which if it exceeds the

user-defined threshold, will potentially indicate either of two general possibilities: 1)
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(c) (d)

(b)(a)

LiDAR points of the two planes facing each 
other (Brown for P1 and Magenta for P2)

3D intersection line between 
P1 and P2

P1

P2

P1

P2

P1

P2

Figure 6.4 (a) Test building image for demonstration; (b) Input roof planes for the corre-
sponding building; (c) Highlighted LiDAR points of roof planes intersecting each other; and
(d) Intersection line between two neighbouring planes.

a missing LiDAR-based plane or 2) a missing vertical plane, between these adjacent

roof planes. Both of these two possible scenarios are described using diagrams in the

following sections.

6.3.3 Detection of Missing Roof Planes

Recall that in the segmentation procedure describe in Section 5.2.2, point cloud data

were segmented following the similarity criterion for the extraction of roof planes.

Since the proposed segmentation method prefers buildings with planar surfaces, some

small planes intersecting in a close proximity, e.g., hexagonal gazebo dormers and

other non-building structures, were eliminated as invalid roof planes. In addition,

planes with an area less than 1 m2 were also removed by the refinement procedure
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described in Section 5.2.3. An accurate building model in cases of missing planes

cannot be reconstructed because of the erroneous and inconsistent roof topological

relationship. Therefore, the identification of any prospective missing building primitive

is imperative before we move on to any procedure for the construction of 3-D building

models.

6.3.3.1 LiDAR-based Roof Plane Insertion

The proposed modelling technique iteratively takes a plane and its neighbours to ap-

proximate their intersection lines. However, if the value of Ipnt is more than the user-

defined threshold, the plane insertion process attempts to search for any unsegmented

LiDAR points between the participating roof planes. If such points are found, the pro-

cess infers the presence of a plane or at least a non-planar surface between these roof

planes. LiDAR-based roof plane insertion (scenario 1) is graphically explained with

reference to Figure 6.5, and the sample building, all the roof planes, the location of

missing plane, and the participant planes P1 and P2 are sketched in 6.5(a) and (b).

The process invokes a region-growing segmentation technique to extract a planar

region using the unsegmented LiDAR points (see the green points in Figure 6.5(c)).

In addition to the available points, the segmentation process uses points of the neigh-

bouring planes (P1, P2, and P3) for the extraction of new planes assuming these points

might have been added wrongly to neighbouring planes due to different settings of

the algorithm. Therefore, each iteration of the region-growing technique computes a

plane-fitting residual of new and neighbouring planes. If the new plane results in a

height error smaller than those of the neighbouring planes’ errors, the LiDAR points of

the neighbouring planes are removed from their respective regions.

The segmentation process continues growing the region until it finds points com-

plying with the height residual criterion. After the segmentation process stops, the

proposed technique estimates the boundary of the new plane and updates the bound-

ary information of the neighbouring planes, as shown in Figure 6.5(c). The process

also updates the neighborhood matrix M with the information on the new plane and

new neighbouring relations. Subsequently, the intersection lines between the identi-

fied plane and the participating planes are estimated using their boundary points, as
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(c) (d)

(b)(a)

Missing plane

New plane

P1

P2

P1

P2P3

P3

Small roof 

plane

Figure 6.5 (a) Test building image for demonstration; (b) Input roof planes for corresponding
building and the location of a missing plane; (c) New roof plane using unsegmented LiDAR
points (green) and points from neighbours; and (d) 3-D intersection lines between roof planes.

explained in Section 6.3.2. These intersection lines are also recorded against their ad-

jacent roof planes. Figure 6.5(d) shows all the roof planes of the sample building and

the intersection lines between them.
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6.3.3.2 Vertical Roof Plane Insertion

Section 2.2.2 outlines that airborne LiDAR data is collected by an aircraft emitting

laser pulses that hit different features on the earth. However, these pulses do not

directly hit the hidden vertical surfaces and hence no laser returns are captured for a

surface joining two parallel roof planes and the building walls. As a result, the point

cloud segmentation procedure cannot detect the presence of such surfaces. Therefore,

a possible way to recover the roof topology that addresses scenario 2 is through the

insertion of a vertical plane. This phenomenon is explained using a building model

shown in Figure 6.6(a) which has two adjacent roofs (P1 and P2) and a vertical plane

joining them.

The plane insertion process uses the boundary points of the participating planes

P1 and P2, which face each other, to approximate a hypothetical vertical plane, as

shown in Figure 6.6(b). It then determines the intersection lines between the vertical

plane and both the planes P1 and P2, as shown in Figure 6.6(c), using the procedure

explained in Section 6.3.2. The height of the approximated vertical plane is determined

by these intersection lines, as shown in Figure 6.6(d). The plane insertion procedure

also records the newly-inserted plane and the plane adjacency information in M. To

further demonstrate the applicability of the entire procedure on real-world data, we

take a sample building from the HB dataset that has LiDAR density of 12 points/m2.

Figure 6.7(a) shows a sample building, a small slanted plane that locates between

two adjacent roof planes labelled P1 and P2 in Figure 6.7(b). This plane was not de-

tected by the proposed segmentation technique due to the unavailability of LiDAR

points, as shown in Figure 6.7(b). Therefore, we use the plane insertion procedure

that takes the boundary points of P1 and P2 to determine the intersection lines and

approximate a new plane P4, as shown in Figure 6.7(c). The procedure not only keeps

track of new planes, but also maintains the correct neighbourhood information in M.

Therefore, even after the insertion of P4, we find through the neighbourhood selection

method (described in Section 6.3.1) that P4 has a new neighbouring plane i.e., P3 as

can be seen visually in Figures 6.7(b) and (d). There is a dire need to determine the in-

tersection between P3 and P4 to precisely establish the topological relationships among

the building roofs and reconstruct a model with a good LoD.
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Vertical plane

(a)
(b)

(c) (d)

Intersection 

between roof planes 

and the vertical  

plane

New vertical 

plane

Plane to 

identify

P1

P2

P1

P2

Figure 6.6 Pipeline for inserting a hypothetical vertical plane. (a) Virtual 3-D building model;
(b) Visualisation of a hypothetical vertical plane between adjacent roof planes; (c) Identifica-
tion of intersection lines between vertical plane and adjacent roof planes; and (d) 3-D intersec-
tion lines and inserted vertical plane.

The plane insertion procedure is executed following the similar steps and inserts

a new vertical plane between P3 and P4 using their boundary points. The procedure

further approximates the intersection lines between the participating roof planes and

the new vertical plane in 3-D space, as shown in Figure 6.7(e). The procedure stops

once all the roof planes are processed. Figure 6.7(f) shows all the building roof planes

and their intersection lines in 3-D space for better visualisation.
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Figure 6.7 (a) Test building image for demonstration; (b) Input roof planes for corresponding
building and location of missing plane; (c) Insertion of vertical plane; (d) Adjacency of vertical
plane to other roof planes; (e) Insertion of vertical plane between LiDAR-based plane and
approximated vertical plane; and (f) 3-D view of building roof planes and insertion lines for
construction of interrelation between roofs.
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6.3.4 Building Regularisation

All the intersection lines can be regarded as structural lines defining the interconnec-

tion of the roof planes of a real building. We call these intersection lines the ridge lines.

However, for the construction of a 3-D building model, information on the building

periphery is as important as that on the roof planes’. By using the information on all

the input roof planes and those which are approximated, we determine the boundary

of the building and then regularise to develop its footprint. Recall that in the bound-

ary tracing procedure described in Section 5.2.1, the LiDAR data corresponding to all

the roof planes are collected and the number of buildings and their respective bound-

aries are estimated using Delaunay triangularisation. It is worth remembering that

the building boundaries extracted from the LiDAR point cloud are ragged and have

low horizontal accuracy. However, the regularisation of the building boundaries using

the extracted buildings and the construction of their footprints are obtained using the

technique proposed by Awrangjeb [165]. The entire process of footprint generation is

explained using a sample image from the AV1 dataset, as shown in Figure 6.8.

Figure 6.8(a) shows the input building roof planes drawn over the corresponding

building’s image for demonstration purpose. The following Figure 6.8(b) shows the

extracted building boundary plotted in magenta. The footprint generation process first

applies the Gaussian smoothing function with a scale of σ = 3 to the extracted building

boundary, which results in a boundary that is smooth and has a reduced ragged effect,

as displayed in Figure 6.8(b). Next, the contour-based corner detector [166] is em-

ployed to obtain the curvature peaks along the smoothed boundary as corner points.

We can see these corners in Figure 6.8(b), which actually split the smooth boundary

into different curve segments. The regularisation technique then fits straight lines into

each segment using a least-squares technique. These estimated lines (in green) are

shown in Figure 6.8(c). The procedure next chooses a line that has the least perpen-

dicular error from its corresponding boundary points and considers it a fixed line. All

the other lines are then adjusted by making them either parallel or perpendicular to

the fixed line. Finally, a building footprint is obtained after inserting perpendicular

lines where needed between any two successive parallel lines. Figure 6.8(d) shows the

building footprint approximated using only the LiDAR points.
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6.4 Rooftop Adjacency Relationships and Roof Modelling

The fundamental concept of geometric modelling is to combine adjacent building roofs

to develop a building model. The approach is to stitch the adjacent roofs along their

common ridges. These ridges, which are actually 3-D intersection lines, here play a

major role in gluing the interrelated roofs and the construction of complex building

models, which require considerable attention to their topology. Therefore, the prime

focus is to establish connectivity and dimensional continuity among the adjacent build-

ing roof planes in the context of topology. At this juncture, we have the information

about the buildings, all their possible roof planes, intersection lines, and the adjacency

relationship. This procedure is executed in two stages where the first stage determines

(a) (b)

(c) (d)

Curvature 

peaks

Building boundary 

(Magenta)

Smooth 

boundary 

(Black)

Estimated 

straight lines 

(Green)

Regularised 

building 

boundary (Yellow)

Detected roof 

planes (Cyan)

Figure 6.8 (a) Test building image for demonstration and input roof planes; (b) Approximation
of building boundary and corner points; (c) Representation of boundary segments with straight
lines; and (d) Building footprint.
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the intersection points among the connecting roofs using the ridge lines, while the sec-

ond stage determines the intersection points of the ridges to the building periphery and

the edge points.

The end vertices of the ridge lines approximate the locations of internal vertices

and each successive ridge often has a small gap from the preceding vertex, as shown

in Figure 6.9(a). To fill the gaps and establish connectivity among the adjacent roof

planes, we use the Roof Topology Graph (RTG) following the principles proposed by

Verma et al. [167] to identify the intersection points of the ridge lines. A topology

graph is an undirected graph that is used to describe the adjacency relationships among

the building rooftops. As shown in Figure 6.9(b), each rooftop is represented as a

vertex in RTG and two adjacent building roofs are connected through an edge. These

rooftops are labelled with their vertex numbers in Figure 6.9(a).

In the context of RTG, a basic cycle indicates an internal vertex that belongs to

ridges [168]. For instance, the roof planes P1, P4, and P5 form a basic cycle and the

intersection of the corresponding ridge lines determines a ridge intersection point. We

also update the corresponding vertices of the ridge lines participating in the intersec-

tion determination process. These points can also be referred as inner or ridge points

and will be helpful at the later stage to approximate the model shape. An RTG can also

be represented as a composition of several basic cycles, as shown in Figure 6.9(c). The

building rooftop shown in Figure 6.9(a) has six basic cycles and so does the ridge in-

tersection points. We apply the least squares approach to approximate the intersection

between the ridge lines of the participating roof planes, as shown in Figure 6.9(d).

During the first stage, both the vertices of most of the ridge lines are updated and

all the gaps are covered with the updated intersection points. However, in the second

stage, for ridges which have one of their vertices not updated, the adjacency relation-

ship procedure determines the intersections with the building periphery in 3-D space.

These vertices are recorded as outer or edge points and are used for approximating

the wall planes to develop a building model from a roof model. Figures 6.10(a) and

(b) show the ridges to boundary intersections i.e., the edge points, in two different

perspective views.

At this stage, we have an adjacency plane relationship, a regularised building

boundary, and two groups of 3-D intersection points: inner and outer junction points.
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Figure 6.9 Determination of ridge intersection points: (a) Roof planes and intersection ridges;
(b) Roof topology graph; (c) Closed cycles; and (d) Corresponding ridge intersection i.e., in-
ner/ridge points.
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Figure 6.10 Determination of edge intersection points: (a) Edge points (ridge to building
boundary intersection points) and (b) 3-D view of building showing edge points.

It is time to develop a building roof model before we actually develop a 3-D building

model. The roof modelling mechanism is explained graphically in the following Figure

6.11. For roof modelling, each building is processed separately, and the procedure first

finds the 3-D points around each plane boundary and extracts each roof segment. To

do this, 3-D intersection lines whose junction points (red ovals) have been updated are

recalled. Then, the junction points (edge or ridge points) of 3-D intersection lines are

re-ordered in succession around the plane using the information on the correspond-

ing LiDAR-based building boundary points. This is shown in Figure 6.11(a), where

the junction points are labelled as N1 to N5 terminating at the starting point i.e., the

start and end intersection points are the edge points. All the roof planes of each build-

ing are processed iteratively and the corresponding roof model is generated that has

regularised plane boundaries, as shown in Figure 6.11(b).
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Figure 6.11 (a) Identification of roof segments and (b) Roof model of sample building.

6.5 3-D Building Modelling

For building model generation, it is necessary to generate walls from the periphery

of the roof model to its floor. In this regard, we use the edge points to generate the

approximated building floor first. The ground height of each edge point is determined

from the DTM so that the model is a replica of its respective real building. All the con-

secutive ground points are connected to obtain the building floor. Finally, the building

walls are determined by extruding the edge points to their corresponding floor points.

Figure 6.12 presents the real building and its 3-D reconstructed model, where the walls

are represented in a transparent grey colour.
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(a) (b)

Figure 6.12 (a) aerial image and (b) 3-D sample building.

The proposed geometric modelling technique relies entirely on LiDAR data, while

images are used throughout the chapter for the purpose of visual inspection. We

tested the proposed data-driven modelling technique using two Australian benchmark

datasets: AV1 and HB, and the scene reconstruction results are presented in Figures

6.13 and 6.14, respectively.

Little work has been carried out which has used the angular difference between

the reference and reconstructed buildings to measure the accuracy [117, 169], which

is very dependent on the dataset used. However, to date, there is no standard perfor-

mance evaluation criterion for measuring the performance of building reconstruction.

In addition to the absence of a standard evaluation system, 3-D reference polygons of

the benchmark datasets are not available to quantitatively analyse and compare the

performance of the proposed 3-D modelling technique. Therefore the performance can

only be assessed qualitatively through visual inspection by inspecting solutions to the

limitations addressed. The evaluation of existing techniques in Section 3.5 shows that

most building modelling strategies have high reconstruction error mainly because of

missing roof planes, failure to assess roof topology, variations in geometric descrip-
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(c) (d)

(a) (b)

Figure 6.13 (a) Australian benchmark site image; (b) LiDAR points of input roof planes; (c)
Building roof model; and (d) 3-D modelled buildings and reconstructed scene.

tions of the buildings, and the inability to detect step edges that often limit them to

the reconstruction of only certain type of buildings. In contrast, the proposed tech-

nique addresses these issues, as demonstrated using real building samples (in Section

6.3.2). The proposed modelling technique is data-driven and does not rely on any pre-

defined shape or model, it can detect and approximate missing planes and reconstruct
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(c) (d)

(a) (b)

Figure 6.14 (a) Australian benchmark site image; (b) LiDAR points of input roof planes; (c)
Building roof model; and (d) 3-D modelled buildings and reconstructed scene.

models of heterogeneous building types. Figure 6.15, for instance, shows some results

of slopping, gable, and pitched roofs, which validate the application of the proposed

modelling technique on other datasets and its ability to reconstruct complex buildings.

The first column of Figure 6.15 shows the LiDAR points of the input roof planes, and

the second column presents the reconstructed building models.
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Figure 6.15 Highlighted building models. The first column shows building roof results and the
second column illustrates reconstruction building models.
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6.6 Summary

In this chapter, reconstruction of 3-D building modelling technique has been presented.

The proposed technique uses LiDAR’s extracted roof planes as the only information for

the construction of building models. This chapter describes the robust procedure to

approximate the missing roof planes that are not extracted due to low point density,

noisy data or the vertical nature of the planes. The proposed technique develops an in-

terrelation among the building roof planes and identifies their interconnections, which

are later used for the construction of building models. The method is unsupervised and

data-driven, the roof types are not restricted to a pre-existing model catalogue, which

can never have all possible models due to building shape variability. We have noted

that since the roof boundaries used in this chapter are extracted based on alpha-shaped

objects, both convex and concave building roof planes can be reconstructed.



Chapter 7

Automatic Assessment of Solar
Potential

“At its heart, engineering is about

using science to find creative, practical

solutions. It is a noble profession.”

Queen Elizabeth II

7.1 Introduction

The previous chapters introduced the main aspects of 3-D modelling task, including

building detection, vegetation elimination, building footprint generation, roof extrac-

tion, and geometric reconstruction. This chapter focuses on RO5 and aims to develop

an application for the installation of photo voltaic (PV) systems using building roofs

and other geometrical information produced in Chapters 5 and 6. The study presented

here was carried out by the author at the Collaborative Research Centre for Spatial

Information (CRCSI)1. It is an international research and development centre, which

conducts user-driven research in spatial information. The CRCSI provides essential

services in health, energy provision, agriculture, defence, and urban planning.

According to the Australian photovoltaic Institute (APVI), the growth in the market

for solar PV panels in Australia was only around 15% between 2001 and 2010, but

a period of extremely rapid growth occurred from 2010 to 2013, when the reported

installed PV capacity has increased from 137 megawatts (MW) to 3,897 MW [170].

Over recent years, the PV system installation price has steadily decreased, which has

1
http://www.crcsi.com.au/
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increased the average size of installations. Most PV systems in Australia are small-

scale rooftop installations, most of which have been installed on residential building

rooftops [170].

Since building rooftops in urban areas are interesting locations for PV system instal-

lation, an effective assessment (in both low and high level detail) for solar PV deploy-

ment on rooftops is important for both local and state governments and solar energy

companies. A low level of detailed information for large areas, e.g., an administrative

district, is necessary for dissemination, marketing, and sales purposes. A high level

of detailed information is also crucial to energy companies, house owners and other

individuals, in order to identify suitable roof surfaces and estimate the solar potential

and gauge the annual return on investment for individual buildings.

Previously, the application of PV deployment assessment was limited to small areas

with a limited number of buildings due to the manual or semi-automatic extraction of

building rooftops. However, a high success rate in automated extraction of buildings

and roof planes [40, 87, 164] has made the investigation of PV deployment in large

areas possible. The proposed project investigates the application of extracted building

information in PV deployment for large-scale assessment of solar potential. The project

uses extracted roof planes and their boundaries (from Chapter 5) and plane equations

(from Chapter 6) and calculates the area, slope (tilt), and azimuth (orientation) for all

rooftops and approximate shadowing for the estimation of solar potential for individual

roof planes and buildings. The development has the following aims:

1. Automatic estimation of building roof parameters, e.g., area, slope, azimuth,

2. Estimation of shadowing effects on buildings by surroundings, including build-

ings and trees, and

3. Estimation of annual solar potential for individual roof planes and buildings.

The following sections present a summary of the sun-earth geometry, solar angles,

factors influencing solar energy, and different processes involved in shadow estimation

and solar potential calculation.
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7.2 Solar Potential Estimation and Basic Principles

The sun is the largest star in the earth’s solar system and the source of energy. This

energy, also known as the solar radiation, strikes the earth and heats the air, water, and

soil. Before discussing solar potential, it is essential to know the relationship between

the sun and the earth and the effect of incident radiation striking a surface over a

specified period of time.

7.2.1 Sun Position

Solar energy applications need reasonably accurate predictions of where the sun is in

the sky at a given time of day and year. Sun-earth geometry involves the study of

the earth’s rotation and revolution as well as the tilt angle of the earth’s axis. As the

earth rotates and revolves around the sun, there are significant seasonal and hourly

positional changes of the sun and the length of day. The relative position of the sun

is a major factor in the performance of PV systems. The sun’s position with respect to

an observer on the earth can be fully described by means of two astronomical angles,

the solar altitude and the solar azimuth. Figure 7.1 describes the sun-earth geometry

[171, 172], different weathers and the angles between the sun and the earth. Before

providing the equations for solar altitude and azimuth angles, the solar declination

and hour angle need to be defined first. These are required in all other solar angle

formulations.

7.2.1.1 Basic Earth-Sun Angles

The declination angle δ is the angle between a line connecting the centre of the sun

and the earth and the projection of that line on the equatorial plane. This angle varies

from +23.45◦ to −23.45◦ throughout the year. The following equation (developed from

work by Spencer [173]) describes this angle, depending of the day of the year:

δ = 23.45◦× sin
[

360
365
× (n+284)

]
(7.1)
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Figure 7.1 Annual orbital motion and sun-earth geometry. NH and SH stands for northern and
southern hemispheres, respectively. [171,172]

In Equation 7.1, n is the day number i.e., 1 ≤ n ≤ 365 (e.g., n = 1 means January

1st). The other requisite parameter, the hour angle, depends on the longitude and

the time of day. It is the angle through which the earth rotates since solar noon and

is defined as the angular distance between the meridian of the observer and and the

meridian whose plane is parallel to the sun’s rays. Since the earth rotates at 360◦/24

hours, i.e., 15◦/hour, the hour angle ω is positive in the evening and negative in the

morning, and is given by [171,172,174]:

ω = (localtime−12)×15◦ (7.2)

7.2.1.2 Factors influencing Solar Irradiance

The quantity of solar radiation that reaches a surface is influenced by several factors,

including the position of the sun in the sky and the clearness of the atmosphere, as well

as the nature and the orientation of the surface. As shown in Figure 7.2, part of the in-

cident energy is scattered and absorbed by air molecules, clouds, and other particles in

the atmosphere. The radiation that is not reflected or scattered and reaches the surface

directly is called direct irradiation Ib. The scattered radiation which reaches the ground

is called diffuse irradiation Id . Some of the radiation is reflected from the ground onto
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the receiver; this is called reflected irradiation Ir. The total irradiation I that strikes

an absorber is the summation of these components. The term solar irradiance is also

referred to as solar insolation and both are used interchangeably throughout the liter-

ature and the unit of estimation is watts per square metre (W/m2). In this project, we

do not consider Ir because its impact on urban areas is negligible [172,175,176].

Scattered

Diffuse (Id)

Reflected (Ir)

Direct (Ib)

Roof surface

C6_03_RadiationParts

Figure 7.2 Components of solar radiation.

7.2.2 Solar Potential Estimation

The solar potential estimation technique in this chapter is based on several research

studies and closely follows two recent methods [175,176] for the calculation of build-

ing roof parameters and solar irradiance approximation. The solar position as observed

from a point on the earth can be defined by two angles, the solar altitude α and az-

imuth z [171,177]. The solar altitude or elevation is the angle between the horizontal

plane and the central ray from the sun. The solar azimuth is the angle produced by the

projection of the central ray from the sun on the horizontal plane and the south axis.

The two angles can be expressed as functions of the location latitude, solar declination

angle, and the hour angle [171,172,175].

The estimation of solar potential requires a normalised azimuth angle for each

building surface/plane. Therefore, the azimuth angles calculated are normalised with

respect to true north following the template shown in Figure 7.3. The azimuth an-

gle/orientation of the roof plane increases in clockwise direction.
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Figure 7.3 Estimation of azimuth angle of the roof planes.

In addition to solar angles, an accurate estimation of the roof parameters is crucial

for the good approximation of solar potential. These parameters are estimated follow-

ing Figure 7.4 which shows a roof’s normal vector −→np, the normal vector for horizontal

surface −→nz , slope βp, aspect/orientation γp, angles of incidence for tilted surface θp, the

horizontal surface θpz
, and solar irradiance (Ib and Id).

 𝑛𝑝

θp

βp

p

θpz

Ipb

Id

Ib
SUN

γp

C6_01_SolarRadiance

𝑛𝑝
𝑛𝑧

Figure 7.4 Illustration of solar irradiance on a building plane that has LiDAR points.

Beyond the earth’s atmosphere, solar irradiation is almost constant [171]. Equation

7.3 shows the value for the solar constant sc outside the atmosphere:
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sc = 1367 (7.3)

There are several factors which affect the incident radiations striking buildings and

other objects on the earth. Generally, a pyranometer is used for the measurement of

solar radiation at a given location [175, 176]. This device collects data over several

years which are then utilised for the production of solar energy applications. The

measured data are usually available as hourly average values and contain the influence

of atmospheric scattering, air thickness (air mass) within the atmosphere, and cloud

cover.

The data for direct and diffuse radiation are not available for our study and, there-

fore, these data are generated empirically, for both the horizontal and the tilted planes,

following the formulas in [172, 175–177]. The estimation requires to use theoretical

values for transmittance (t = 0.75 unit-less), air pressure, and optical air mass, which

are adopted from the study of Campbell and Norman [178]. As part of this study, the

sun position throughout the day at different time intervals was estimated using the

Solar Position Algorithm (SPA) [179] by the National Renewable Energy Laboratory

(NREL), which offers accuracy up to 0.0003◦. The terrestrial direct irradiance Ipb
for

each roof plane is estimated as:

Ipb
= Ib× Rpb

(7.4)

where Rpb
is the correction factor for Ib, the ratio between the angles of incidence

for the point’s horizontal surface θpz
(i.e., the zenith angle) and its tilted surface θp

[180], in order to compensate for Ib, which is only measured for horizontal surfaces,

as illustrated in Figure 7.4.
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Rpb
=

cos(θp)

cos(θpz
)

cos(θpz
) = cos(δ)cos(ϕp)cos(ω)+ sin(δ)sin(ϕp)

cos(θp) = sin(δ)sin(ϕp)cos(βp)− sin(δ)cos(ϕp)sin(βp)× cos(γp)

+ cos(δ)cos(ϕp)cos(βp)cos(ω)+ cos(δ)

× sin(ϕp)sin(βp)cos(γp)cos(ω)

+ cos(δ)sin(ϕp)× sin(γp)sin(ω)

(7.5)

where, ϕp is latitude of a plane’s location (i.e., centre of the roof plane), βp is slope of

the plane, and γp is aspect/orientation of the plane. The hour angle depends on the

solar time (e.g., 10:00 is equal to −30◦, and 14:00 to +30◦). These equations give us

the value for Rpb
(a ratio between horizontal and tilted planes) but Ib is unavailable.

Therefore, direct irradiance for the horizontal and tilted planes for an hour is calculated

as [178]:

Ib = cos(θpz
)× sc× tm

Id = 0.3× (1.0− tm)× sc× cos(θpz
)

where airmass m is estimated as:

m =
(air pressure)

(101.3× cos(θpz
))

(7.6)

The terrestrial diffuse irradiance Ipd
for a given location is:

Ipd
= Id× Rpd

(7.7)

where, Rpd
is the correction factor for Id; only the slope angle βp is considered, and the

diffuse irradiance is assumed to be isotropic [180].

Rpd
= cos2 βp

2
(7.8)
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The total irradiance I on each planar surface is simply the addition of both these

irradiance components i.e.,

I = Ipb
+ Ipd

(7.9)

Most studies reported in the literature are optimised for the northern hemisphere

for the estimation of solar potential. To optimise the solar potential formulas for the

southern hemisphere, the equation to approximate the incident angle is corrected fol-

lowing Figure 7.5 [174]. The incidence angle of the sun with respect to the tilted

surface, i.e., cos(θp) is modified, such that the aspect/azimuth angle of the surface

cos(γp) is replaced with cos(γp−180◦).
(a) (b)

North

South

West

East

Min incident 

radiation

Max incident 

radiation

Min incident 

radiation

Max incident 

radiation

0o 180o 360o

Folded aspect  = 180o – (Aspect – 180o)                                          (Aspect – 180o)

180o 180o

(a) (b)

C6_04_FoldedExpect

0o 180o 360o

Figure 7.5 Illustration of angle calculation for incident radiation due to folded aspect: (a)
Northern hemisphere and (b) Southern hemisphere.

7.2.3 Solar Potential Demonstration

The test area used to demonstrate the solar potential is situated in Aitkenvale, Queens-

land, Australia. It is located at latitude -19.30052680 and longitude: 146.7656440.

This area has 5 non-occluded buildings with 22 roof planes and a LiDAR density of 35

points/m2. Figure 7.6 shows the test area with marked roof planes. The information on

each plane p including its boundary, centre, normal (−→np), and slope (βp) were supplied

by our roof plane extraction technique [164]. However, the aspect γp for each roof

plane is measured as the angle between the plane’s normal vector
−→
n′p on the horizontal

plane and the vector to the geographical north.
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Figure 7.6 Test area for demonstration of solar potential assessment.

The total solar potential (I) per day is calculated between 7:00 am – 05:00 pm with

1 hour time difference. Ipb
and Ipd

for each plane on the described time intervals are

computed per square-metre area and per plane as well for all the buildings. We used

different graphs to represent the estimated solar potential without considering shad-

ows to determine the applicability and optimisation of the formulas for the Australian

region.

7.2.3.1 Annual Insolation

Figure 7.7(a) shows the total irradiance for all five buildings with their total area and

number of planes in the following graph (in watts). For example, Building # 3 has

7 roof planes with an area of 193.41 m2 and produces nearly 5× 108 watts insolation

annually.
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C6_10_SolarPotential
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Figure 7.7 (a) Annual Insolation per building and (b) Irradiance within different azimuth bins.
(NW = north west)
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7.2.3.2 Irradiance within different Azimuth Bins

The roof planes of the current area face in different directions and have different orien-

tations. The azimuth angles (0◦−360◦) are separated into 16 bins, and each bin covers

22.5◦ angles following Figure 7.3. Different azimuth bins/directions are shown on the

x-axis while planes pointing in these directions are plotted on top of each bar. Figure

7.7(b) shows the annual solar irradiance on all the planes within a bin, whilst, for the

estimation of insolation, the real slopes of all the planes are kept intact. Figure 7.7(c)

shows the annual solar irradiance per m2 of each plane in these bins, which indicates

that the north-facing planes can produce more solar energy. For example, three planes

(Planes 2, 7, and 14) face north and produce 4×108 watts insolation annually.

7.2.3.3 Slope Variation Effect on Annual Solar Potential

This is a simulation where the slopes of all extracted planes are changed between 0◦

and 90◦ and the insolation on all the planes is estimated. Figure 7.8(a) shows the

effect of slope variation on annual insolation for all planes facing north, east, south,

and west. For example, maximum insolation of around 2.7× 106 watts/m2 annually

can be obtained from a north-facing plane with a slope of 20◦.

7.2.3.4 Effect of Orientation Variation on Annual Solar Potential

Note that the azimuth of a plane is calculated in clock-wise direction from true north,

as shown previously in Figure 7.3. For this simulation, the azimuths of all the extracted

planes are changed between 0◦ – 360◦ (North–East–West–South–North) at 22.5◦ inter-

vals and the annual solar insolation on all the planes is estimated while keeping their

natural tilt unchanged, as shown in Figure 7.8(b). For example, the summer and win-

ter bars in the north (0◦ from North) azimuth shows irradiances computed on all the

planes (22) are around 5.9×108 and 4.6×108 watts for the entire year, respectively.

7.3 Shadowing and Shadow Path

The solar potential results presented in the previous section do not take any shadows

into account. The purpose of the experiments was to estimate the solar potential accu-
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(a)

(b)

C6_11_SolarPotential

Figure 7.8 (a) Slope variation effect of planes on Irradiation and (b) Azimuth variation effect
of planes on annual solar potential. N - North, S - South, E - East, and W - West.
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rately and optimise the formulations for the Australian environment. The results were

calculated using available real data and experts at the CRCSI verified that north-facing

surfaces produce more solar potential than others in Australia.

Shadows continuously change throughout the day and year due to movement of

the sun in the sky and this affects the performance of any PV system. A more realistic

estimation of solar irradiance can be achieved only when shadowing is not ignored.

A building’s roof can be shadowed by surrounding buildings, vegetation, and other

objects on the roof. In order to determine shadows quickly and efficiently, shadowing

is proposed to be performed using a sundial and the sun’s position in this research

study. Since sunlight travels in straight lines, the projection of an obscuring point onto

the ground (or any other surface) can be described in terms of simple geometry.

A good estimate of the sun’s spherical position at a given time can be calculated

using the SPA method [179]. It has an uncertainty of ≈ 0.0003◦, and is several times

more precise than other solar positional algorithms. A sundial is constructed following

the Gnomon principles for the estimation of shadow direction [181]. Consider the

shadow of a gnomon point (the latitude of a given plane) caste on to a horizontal

plane, as shown in Figure 7.9.

East
zd

yd

F

𝛼

𝛽

G`

s

G

xd
North

C6_05_SunDialCordSys

Figure 7.9 Coordinate system of a sundial.

The direction of a gnomon point can be expressed as a vector s in the following

coordinate system. Its origin is at the foot F of the perpendicular from the gnomon
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point G onto the plane. The xd-axis points to the north, the yd-axis to the east and

zd-axis in the direction of the perpendicular. In this coordinate system, the vector s is

given as:

sd =


cos(α)cos(z)

cos(α)sin(z)

sin(α)

 · (7.10)

where, z and α denote azimuth and altitude, respectively. Further, the shadow Ǵ of the

gnomon point on the plane has the coordinates:

g′1 =
s1

s3
g, g′2 =

s2

s3
g, g′3 = 0,

where, g denotes the length of the gnomon, i.e., the distance GF . Using the horizontal

coordinate system, the vector s can be expressed as:

sh =


cos(α)cos(z)

cos(α)sin(z)

sin(α)

=−Sd · (7.11)

Consider now the task to determine the shadow of the gnomon point on the dial if

the position of the sun is given in the equatorial coordinate system. The sun’s position

v depending on the declination δ and the hour angle ω is:

Vq =


cos(δ)cos(ω)

cos(δ)sin(ω)

sin(δ)

 · (7.12)

A plane rotation is necessary to transform equatorial coordinates into horizontal

coordinates. We have
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Vh =


cos(ρ) 0 −sin(ρ)

0 1 0

sin(ρ) 0 cos(ρ)

×Vq , (7.13)

where, ρ = 90◦−ϕ and ϕ is the observer’s latitude. Therefore, given the ω (hour angle)

and δ (declination) of the sun, ϕ (the observer’s latitude) and g (gnomon length), we

can calculate the shadow throughout the day at different hour stamps. The calculation

of shadow points (G′) represents a point-wise mapping of the upper hemisphere onto

the horizontal plane. This mapping is called gnomonical projection.

7.3.1 Shadow Length

Shadow length measurement gives the shadow cast of a vertical object according to

its geographic location and the position of the sun using simple trigonometry. The

length of the shadow map is normalised (changed with the magnification/zoom) and

the direction is the opposite azimuth. The measurement of the length of the shadow

depends on the height of the obstacle and the elevation of the sun. The following Figure

7.10 describes the shadow length of the Faisalabad clock-tower2 and the formula to

calculate shadow in Equation 7.14 is:

L =
h

tan(α)
(7.14)

where, L corresponds to shadow length, h is the object height, and α denotes the angle

between the sun and the horizon (sun altitude). We can use gnomon principles to

not only estimate the direction but also the length of the shadow. In this regard, we

need to determine the length of the gnomon’s shadow at solar noon (12:00 pm) on the

summer solstice when the sun is at its maximum altitude, knowing that the shadow

cast by the gnomon of a horizontal sundial is the shortest. At any other time and date

the shadow will be longer.

2One of the oldest monuments in Pakistan still standing in its original state from the period of British
rule over the subcontinent. https://en.wikipedia.org/wiki/Clock_Tower,_Faisalabad

https://en.wikipedia.org/wiki/Clock_Tower,_Faisalabad
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𝛼 ℎ

𝐿

Figure 7.10 Description of shadow length measurement for clock tower situated in Faisalabad,
Pakistan.

The shadow length formula is slightly changed from the object’s height with the

height of the gnomon i.e., 1 metre. Later, the height of the object is multiplied by this

unit height to obtain the exact shadow length.

L =
Gnomon height

tan(α)
×object height (7.15)

7.3.2 Shadowing Path and Demonstration of Shadow Estimation

Shadow direction and shadow length are estimated using the gnomon principle and

the accuracy is verified against the available online sun positioning and shadowing

tools [182–184]. The shadow of each building’s plane and its length are estimated

throughout the entire year and shadowing regions for each building are approximated.

Figure 7.11 shows the direction of the shadows between 7:00 am – 6:00 pm on

February 23, 2016 for an observer located at latitude -19.3002 at 1 m height. Its
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shadow lengths are shown in grey lines and time on top of the shadow location whereas

the direction of the shadow is from the observer’s location to the shadow points (blue

solid circles on the curvy line). The curve shows the shadow path of the object over

the entire day.

Shadow direction 

and shadow length

Observer’s location 

(Gnomon point)

Shadow path

Figure 7.11 Shadow path and its length during the day.

Throughout the year, the shadow path changes due to the movement of the sun in

the sky. The sun’s position is determined using the SPA method at different intervals

of the day. It can be clearly seen that at solar noon on the day of the summer solstice

the shadow cast by the gnomon of a horizontal sundial is the shortest. For the same

location, we took a day in a month and plot the shadow path between 8:00 am – 4:00

pm, as shown in the following Figure 7.12.

Following the gnomon principles, we estimate the shadow direction and the shadow

length for each plane of the building. In Figure 7.13, the building roof plane is high-

lighted in cyan while the estimated shadow path is shown in blue line with blue dots

showing the time intervals labelled with the time of the day. Each line (grey) between

the gnomon location (centre of the plane) towards each blue dot shows the length of

the shadow at that particular time. This shadow length indicates the shadow of the

plane on the flat surface (ground) and not on any elevated objects in the surroundings.

Since we are using the centre of the plane as the gnomon’s location, a plane’s
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Figure 7.12 Shadow growth throughout the year.

geometry is replicated on the shadowed position i.e., between 8:00 am – 4:00 pm for

each day. Figure 7.14 shows placements of the plane’s boundary at different shadow

locations throughout the entire day between 8:00 am – 4:00 pm on March 18, 2016.

To find a building object under a shadow cast by a building plane, its shadowing re-

gion needs to be determined. Figure 7.15 shows the shadow location for Plane 1 (green

in colour) at different times of the day while the magenta colour boundary shows the

shadowing region of a plane for the whole day. In other words, the shadow cast by

Plane 1 remains within the region bounded by the magenta colour boundary. Similarly,

we repeat the same process for all other planes and approximate the shadowed region

on March 18, 2016 between 8:00 am - 4:00 pm, as shown in Figure 7.16.

As shown in Figure 7.12, the shadow of gnomon pin grows throughout the year

due to the varying position of the sun in the sky. The building planes which never

appear under the shadows cast by another building throughout the whole year are the

most suitable planes for harnessing solar potential. Therefore, it is necessary not only

to determine the shadowing regions of a building plane in a day but also the shadow

region for the entire year. Figure 7.17 shows the shadow path and shadow position of

Plane 1 during the time intervals of a day each month. Rather than taking 365 days, a
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Figure 7.13 Shadow path of Plane 1 on March 18, 2016 between 8:00 am − 4:00 pm.

single day of each month is considered at 30 days difference for the estimation of the

shadowing region throughout the year. The entire process is quite fast and enables the

rapid estimate of the shadow cast by all the planes of the buildings present in the given

dataset.

For all the shadowing measurements, the gnomon is positioned at the centre of the

plane and kept stationary for the entire year. We can see different shadow paths, based

on different positions of the sun in the sky. Each red dot in Figure 7.17 indicates the

time interval, the blue line represents the shadow path and the green shows the plane

stacked at the position of the shadow, i.e., the red dot.

Figure 7.18 shows the shadowing region of Plane 1 over the entire year. In other

words, it shows that the shadow of Plane 1 will remain within the region sketched in
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C6_16_ShadowLengthDifferentTimes1

Figure 7.14 Shadow of Plane 1 on flat ground during the entire day along the shadow path.

magenta colour during any time the year. It should be noted that this shadow region

is on the flat surface. We repeated the above process and estimated the shadowing

region for each building plane over the whole year. The shadowing region for a day in

each month is accumulated to approximate the shadowing region for the whole year.

Figure 7.19 shows the annual shadowing region of each plane sketched using different

colours.

Next, the building planes under the shadowing region are determined and marked

as unsuitable for production of solar potential. We, therefore, utilise the altitude dif-

ference and the distance of the planes from the source plane’s shadowing region to

decide a plane’s suitability for generation of solar potential. This is an iterative process

in which all the planes under the shadowing region of another plane are determined
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C6_18_ShadowingRegion

Figure 7.15 Shadowed region of FULL day for Plane 1 on March 18, 2016.

C6_19_ShadowingRegion1

Figure 7.16 Shadowed region of FULL day for all planes on March 18, 2016.
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C6_20_shadowChangeEffect

Figure 7.17 Shadow change effect for Plane 1 throughout the year. The difference between
any two successive shadowing time intervals is 30 days from January to December.

Figure 7.18 Shadowing region estimation for Plane 1 on flat earth surface based on shadow
paths between different days of entire year.
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C6_22_ShadowingRegion4AllBuildings

Figure 7.19 The shadowing region for all the buildings’ planes on flat ground for entire year.

using the defined criteria. Finally, the planes highlighted in magenta in Figure 7.20

show the planes which are shadowed due to self-occlusion (a roof under the shadow of

another roof) and not suitable for harnessing solar energy, whereas the planes shown

in cyan are unshadowed and suitable for the installation of solar systems.

The next section provides information on how to estimate the shadow cast by sur-

rounding vegetation following the same principles and determine the building planes

which are suitable for harnessing solar potential. This task requires the identification

of vegetation regions and also approximates the tree canopies.

7.3.3 Tree Canopy and Shadowing Approximation

Tree canopy estimation is one of the most challenging activities, as trees grow leaves

which drop in different seasons. The shadows cast by trees can be determined only

if the tree canopy region can be identified and its corresponding boundary can be
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Figure 7.20 Suitable and unsuitable planes for solar potential estimation (cyan colour shows
suitable planes while magenta shows unsuitable planes due to shadowing effect).

estimated. Then, following the gnomon principles, the shadow path of the trees and the

shadowing region can then be approximated. Concerning the solar potential estimation

and the nature of trees, precise and accurate detection of tree regions is not considered

mandatory in this study. Therefore, we use a height threshold window to segregate the

tree LiDAR points on vegetation into different height segments.

We propose a region-growing technique that uses an adaptive height threshold

(height window) and a fixed-neighbourhood approach for the estimation of tree canopies.

The height threshold is user-defined which specifies the separation of the LiDAR points

from the highest unsegmented point to the points not below the minimum limit of win-
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dow size. Similarly, the LiDAR points which are left in the first iteration are considered

in the following iterations, which are then aggregated in other layers at lower height

levels. In our study, we chose a height threshold of 6 m. As a result, the LiDAR points

on vegetation are segmented into multiple elevation groups.

Figure 7.21(a) shows the LiDAR points corresponding to the tree regions present

at the test site. The proposed segmentation technique divides the entire point cloud

into two separate vegetation layers (green and purple), as shown in Figure 7.21(b). Fi-

nally, contiguous LiDAR points are accumulated to identify the tree canopies. Next, the

boundary tracing algorithm discussed in Section 5.2.1 is applied to the segmented data

for the boundary approximation of the regions, in order to extract the individual tree

regions. Figures 7.21(c) and 7.21(d) show the estimated boundaries of tree canopies

extracted from the segmented LiDAR points presented in different colours.



§7.3 Shadowing and Shadow Path 173

  

  

(a)  (b)  

(c)  (d)  

Figure 7.21 Tree LiDAR points segmentation and canopy approximation: (a) Un-clustered
tree LiDAR points; (b) Segmented LiDAR points based on height and local neighbourhood
(two height groups are formed here); (c) Boundary approximation of tree canopies (using
purple LiDAR points from first height window shown in sub-figure (b)); and (d) Boundary
approximation of tree canopies (using light green LiDAR points of the following height window
shown in sub-figure (b)).
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Figure 7.22(a) shows the estimated boundaries for all the tree canopies extracted

at different levels of height. Using the user-defined area threshold, which is 3 m2 in

our current study, all the superfluous trees with an area less than the threshold value

are eliminated and the final results are shown in Figure 7.22(b).

  
(a) (b)

Figure 7.22 Elimination of superfluous trees and estimation of tree boundaries: (a) All possible
trees and (b) Trees after removal of small ones.

7.3.3.1 Estimation of Shadowing Regions

Shadowing considerably reduces solar irradiance when building roof planes remain

in shade during the day, especially at solar noon. Before shadow approximation, so-

lar potential estimation can be performed, but it would not be a realistic estimation.

Therefore, shadows cast by trees and buildings (self-occlusion) are estimated during

the daytime only, since there is no solar irradiance to be considered at night. We use

the gnomon principles and the sun position algorithm to determine the direction of the

sun and the length of the shadow with respect to the sun’s position in the sky. The tech-

nical details of the gnomon principles and the estimation of shadow have been covered

in previous sections. Previously, we chose a day in each month to find the position of
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the sun at different time intervals and estimate the shadowing region of a building roof

for the entire year. Here instead, we divide a year into four weather seasons: Summer

(Dec – Feb), Autumn (Mar – May), Winter (Jun – Aug), and Spring (Sep – Nov) for the

estimation of shadowing regions of vegetation and buildings. We consider a single day

from each week (approximately four days a month) and determine the sun position

from 10:00 am to 3:00 pm, since most energy in a day is produced around solar noon

(12:00 pm). Figure 7.23 shows the shadowing region of a tree canopy. The bound-

ary of the tree canopy is sketched in cyan colour and the shadowing regions for the

Summer, Autumn, Winter, and Spring seasons are plotted in red, magenta, blue, and

yellow, respectively.

Figure 7.23 Shadowing region of tree canopy in different seasons.

Similarly, using the gnomon principle, we estimate the shadowing regions of a

building plane in four seasons, as shown in Figure 7.24. The building roof plane is

shown in cyan colour whereas shadowing regions in Summer, Autumn, Winter, and
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Spring are shown in red, magenta, blue, and yellow, respectively.

Figure 7.24 Shadowing region of a building roof in different seasons.

7.3.3.2 Estimation of Shadowed Roofs by Trees

In order to determine suitable planes for the production of solar potential, we itera-

tively consider the shadowing region of a tree canopy in each season and determine

whether a building roof falls under the shadow. Figure 7.25 demonstrates the proce-

dure graphically. We use a tree canopy in a particular season and determine whether

the area (60% in our case) of a neighbouring building plane is covered by its shadow.

The height difference between the tree and the neighbouring building plane and their

mutual Euclidian distance are also considered to decide a shadowed plane. The tree

canopy is plotted in red broken lines with its shadowing regions in red solid lines

whereas the building roof planes are shown in cyan.

This is an iterative procedure that identifies the building roof planes, of which 60%

of the area are covered by shadows in a particular season. The Figures 7.26(a)–(d)
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C6_28_ShadowedRoofPlanes

Figure 7.25 Graphical illustration showing shadowing roof planes because of trees.

show the building planes suitable for the production of solar energy and the shad-

owed planes in different seasons. The Summer, Autumn, Winter, and Spring shadowed

planes due to trees are shown in red, magenta, blue, and yellow, respectively. The roof

planes suitable for solar potential are plotted in cyan.

7.3.3.3 Estimation of Self-shadowing Roofs

We repeated the same iterative procedure explained in the last section to determine the

self-shadowing planes, i.e., a building roof under a shadow cast by another neighbour-

ing roof. The aim is to identify a building roof plane of which 60% of the area is covered

by the shadow of a neighbouring building in each season. Figures 7.27(a)-(d) show the

building planes suitable for the production of solar energy and the shadowed planes

due to nearby buildings in each season. For Summer, Autumn, Winter, and Spring, the

shadowed planes are shown in red, magenta, blue, and yellow, respectively. The roof

planes suitable for solar potential are plotted in cyan.
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 7.26 Shadowed building roofs in different seasons due to surrounding trees: (a) Sum-
mer; (b) Autumn; (c) Winter; and (d) Spring.
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(a) (b)

(c) (d)

Figure 7.27 Shadowed building roofs due to neighbouring tall roof planes (self-occlusion) in
different seasons: (a) Summer; (b) Autumn; (c) Winter; and (d) Spring.

7.4 Solar Potential Estimation on non-shadowed Roofs

The previous sections described various forms of radiation, estimation of sun angles,

and how solar potential is estimated on a particular roof plane. The solar radiation
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striking building roofs and other features is generally affected by a number of mecha-

nisms. Part of the incident energy is scattered and absorbed by air molecules, clouds

and other particles in the atmosphere. Part of the radiation that is not reflected or

scattered reaches the surface directly, which is direct irradiation. The other type of ra-

diation, which reaches the ground is referred to as diffuse irradiation. Some radiations

reach the receiver after being reflected from the ground, which is known as reflected

irradiation. Therefore, the total irradiation a roof plane can have is the sum of these

three components. In this study, we do not consider reflected irradiance, because its

impact on urban areas is negligible.

Figures 7.28(a)–(d) and the numerical results in Figure 7.29 show the approximate

solar potential in watts for each building plane in different seasons. The roof planes

which are marked as shadowed due to trees and/or neighbouring tall roofs are com-

bined to represent roof surfaces under shadow in a particular season. The building

roof surfaces which remain under shadow are shown in red. However, roof surfaces

feasible for the estimation of solar potential are plotted in cyan with their respective

seasonal solar potential in watts.

(b)(a)

(c) (d)
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C6_31_TotalSolarPotential

(b)(a)

(c) (d)

Figure 7.28 Unshadowed roofs and total solar potential in different seasons: (a) Summer; (b)
Autumn; (c) Winter; and (d) Spring.

7.5 Summary

This chapter discusses a practical application of the research work carried out in the

thesis. The assessment of the solar potential project covered in this chapter was sup-

ported by the CRCSI, Australia, in an effort to support both local and state govern-

ments and solar energy companies. We studied several topics including a study of the

automatic estimation of building roof parameters, a mathematical formulation for the

estimation of shadows and their effect on solar potential estimation, different types

of radiation, the sun-earth relationship, and finally, the estimation of annual solar po-

tential for individual roof planes and buildings. This work is planned to be extended

to identify the unshadowed parts of roof planes which can be used for the generation

of solar energy. In addition, the creation of robust displays showing thermal affects

is under consideration, to better represent the potential of solar energy for the entire

area apart from the numerical measurement of energy.
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Figure 7.29 Annual solar insolation in different seasons.
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Chapter 8

Conclusion and Future Directions

“Success is no accident. It is hard

work, perseverance, learning,

studying, sacrifice and most of all,

love of what you are doing or

learning to do.”

Pele

In this chapter, we conclude the work presented in this thesis (Section 8.1) and

recommend some possible future research directions (Section 8.2).

8.1 Contributions and Conclusion

The main objective of this research was to enhance the robustness of detection and

reconstruction of 3-D buildings. To this end, we have proposed a framework that

performs building detection, roof plane extraction, and 3-D modelling as sub-tasks. The

proposed methods exploit the benefits of both LiDAR data and multispectral images.

Since multispectral images are not always available, spatial and geometric features of

LiDAR data were primarily used in this research.

In this thesis, the proposed framework has addressed problems of uncertainties in

point cloud data, heterogeneity in appearance, the unavoidable noise due to the envi-

ronment, terrain complexities, and the indefinite possibilities of different structures in

building modelling. The contributions of our work to achieve the research objectives

of this thesis are listed below:

• To address research objective RO1, i.e., identify the limitations of existing tech-

niques for detection, roof plane recognition, and 3-D modelling of buildings, in

184
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Chapter 3 we conducted a comprehensive review of several techniques published

in the last two decades. In addition to the spectral and spatial limitations of the

data, several challenges, including shape variability, occlusion, shadows, object

size, and height, were identified which were mainly due to point cloud spar-

sity, urban object differences, surrounding complexity, and data misalignment.

We observed that the detection and reconstruction strategies for buildings and

roof planes are not fully automatic and they use a set of parameters to perform

their activities which make them subjective to particular datasets. These methods

were further found to face difficulties in extracting and modelling buildings and

their constituent roof planes which are small, partially occluded or shadowed.

In addition, the effect of vegetation was either ignored altogether or resolved by

eliminating the vegetation using a high height threshold value to separate the

regions of interest from other objects.

• In Chapter 4, we addressed RO2 and developed a methodology for the extraction

and regularisation of buildings. Given the complementary advantages of LiDAR

and image data, the fusion of two sources was chosen as a promising strategy to

increase the building detection rate and the planimetric accuracy of building re-

gions. The proposed technique is fully data-driven and automatic. The building

delineation process is carried out by identifying the candidate building regions

using connected component analysis. Next, the buildings are extracted, including

partly occluded and shadowed buildings, after vegetation removal using the grid

index structure and multisource data. Finally, the detected buildings are regu-

larised by exploiting the image lines in the building regularisation process. These

footprints represent the buildings at complexity level of LoD1. The performance

of the proposed technique was tested on the ISPRS benchmark and four Aus-

tralian datasets introduced in Section 2.6. The results showed that our technique

is not only able to extract small, partially occluded and shadowed buildings, but

also to generate footprints irrespective of the surrounding complexity. The pro-

posed method achieves a high detection rate even in the presence of a moderate

registration error between the LiDAR data and the image.

• Since both LiDAR data and images are not always available, a robust segmen-
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tation technique using only LiDAR data, particularly focusing on the automatic

detection of buildings and their roof planes, is proposed in Chapter 5 to address

RO3. The set objectives were met by following three steps: feature preservation,

surface growing, and false plane elimination. The proposed technique is data-

driven and introduces a feature preservation-based segmentation algorithm that

effectively utilises robust saliency features for roof extraction, which is less sen-

sitive to noise and avoids over- and under-segmentation errors. Furthermore, a

boundary extraction technique is presented that seamlessly extracts the boundary

of an object and approximates the outline of any inner hole using only the LiDAR

points. Based on experiments, it was demonstrated that the proposed technique

achieves a high building detection rate and roof plane extraction performance

on several datasets of variable point densities, terrain, and surrounding complex-

ities. The technique is equally capable of detecting small buildings as well as

small roof planes. Moreover, in most cases, the proposed technique is able to

separate buildings and non-occluded parts from connected vegetation.

• Chapter 6 addressed the core research objective, RO4, using the roof planes

extracted in the previous chapter for automatic reconstruction of 3-D building

models. As the modelling task is performed in unsupervised and data-driven

fashion, the roof types are not restricted to a pre-existing model catalogue, as is

the case in model-driven techniques. The roof planes, which are not extracted

due to low point density, noise, and/or the vertical nature of the structures, are

hypothesised using the roof topology assumption. As part of the modelling pro-

cess, interrelations and interconnections among the building roof planes are used

for the reconstruction of building models. Due to the effectiveness of the bound-

ary tracing algorithm introduced in Chapter 5, building roofs of both the convex

and concave types are reconstructed successfully. It was demonstrated that the

buildings at higher levels of detail (LoD3) are reconstructed by using individual

roof planes and their interconnections based on their spatial adjacency.

• Chapter 7 addressed RO5 and introduced an industrial application for large-scale

assessment of solar potential. The proposed application utilised the extracted

roofs and their geometrical information produced in Chapters 5 and 6 for the
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estimation of solar potential of individual buildings and their roof planes.

8.2 Directions for Further Research

As mentioned in the previous section, this research has covered several potential issues,

particularly in the detection and reconstruction of building models. All the proposed

techniques have been implemented and rigorously tested on a variety of datasets, and it

can be concluded that the research objectives set out in this thesis have been achieved.

However, from the viewpoint of the creation of a true 3-D building modelling frame-

work, there are issues still left unattended that need to be investigated, some of which

were highlighted in the literature review chapter. Below are some areas in which fur-

ther research may be carried out:

• The quality of DTM plays a critical role in the accurate processing of input data, in

particular, filtering the LiDAR data to separate the LiDAR points corresponding to

the region of interest. Improvement in the generation of DTM and DSM will cer-

tainly increase the effectiveness of detection strategies which will subsequently

improve reconstruction performance.

• Buildings made of transparent materials which allow lasers to penetrate through

to the ground or below a certain threshold in height (1 m in this thesis) were

generally neglected and therefore, such objects were not extracted. To overcome

these limitations, the use of adaptive heights for LiDAR point cloud filtering,

and both LiDAR intensity and image gradient for the extraction of low height

and transparent buildings, respectively will be interesting to further improve the

robustness of the detection strategies.

• The planimetric accuracy of the boundary was affected because of the registration

error between LiDAR and image and the low horizontal accuracy of the LiDAR

data. The resultant accuracy was also often affected by severe occlusion. Hence,

further to the use of both radiometric and geometric clues, the planarity principle,

which states the flatness of the planar segment while a tree does not, can be

investigated to acquire high per-area and planimetric accuracy and high detection

and reconstruction rates in complex areas.



• The proposed point cloud segmentation technique prefers planar surfaces which

are common in urban environments. However, this assumption is not always

correct. Therefore, the use of non-planar structures for point cloud segmenta-

tion should be investigated, in order to detect and model irregular surfaces e.g.,

spheres, cylinders, and cones.

• The proposed building modelling technique relies entirely on LiDAR data that

sometimes fail to extract height discontinuities (step edges) due to the sparsity

of the data points and the under-detected sides of roof planes. Therefore, recov-

ery of intersection points between planes is difficult. These shortcomings can be

overcome by using additional features e.g., the coplanarity of the neighbouring

planes, the location of adjacent intersection points, or the use of more constraints.

Another possible solution is to integrate the spectral features extracted from the

corresponding aerial imagery. The information on lines extracted from images

can also be used in conjunction with the LiDAR-based approximated intersec-

tion lines, in order to obtain accurate building models and reduce reconstruction

errors.

• Some aspects e.g., buildings in close proximity, small and non-planar objects,

vegetation on roofs, trees beside or overlapping roof planes, small roof surfaces,

shadows, and occlusions, are covered in this research but these issues remain

ongoing research challenges that need further investigation.

• The proposed techniques have been tested with a particular emphasis on complex

scenes with a perfect blend of variable building structures, vegetation, shadows,

and occlusions, which are common in suburban areas. Future work should test

the applicability of the proposed detection and reconstruction techniques on city

areas which are characterised by high-rise buildings.

This research has made progress on the creation of a robust and fully automatic

modelling process for real-world complex objects. The modular approach of the pro-

posed framework allows it to expand its functionalities at higher levels of detail for

virtual reality applications, including precise mapping and monitoring of urban areas,

while ensuring the consistency, accuracy, and reliability of the reconstructed models.
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Bayerischen Akademie der Wissenschaften, 1996, phd Thesis. (page 12, 54, 60)

[31] H. Sportouche, F. Tupin, and L. Denise, “Extraction and three-dimensional re-

construction of isolated buildings in urban scenes from high-resolution optical

and sar spaceborne images,” IEEE Transactions on Geoscience and Remote Sens-

ing, vol. 49, no. 10, pp. 3932–3946, 2011. (page 12, 54, 59)

[32] A. Ferro, D. Brunner, and L. Bruzzone, “Automatic detection and reconstruction

of building radar footprints from single vhr sar images,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 51, no. 2, pp. 935–952, 2013. (page 12,

14)

[33] Q. Yu, P. Helmholz, and D. Belton, “Semantically enhanced 3d building model

reconstruction from terrestrial laser-scanning data,” Journal of Surveying Engi-

neering, vol. 143, no. 4, p. 04017015, 2017. (page 12, 60)

[34] P. Dorninger and N. Pfeifer, “A comprehensive automated 3d approach for build-

ing extraction, reconstruction, and regularization from airborne laser scanning

point clouds,” Sensors, vol. 8, no. 11, pp. 7323–7343, 2008. (page 12, 51)

https://tex.stackexchange.com/questions/3587/how-can-i-use-bibtex-to-cite-a-web-page
https://tex.stackexchange.com/questions/3587/how-can-i-use-bibtex-to-cite-a-web-page


Bibliography 194

[35] A. Sampath and J. Shan, “Segmentation and reconstruction of polyhedral build-

ing roofs from aerial LiDAR point clouds,” IEEE Transactions on geoscience and

remote sensing, vol. 48, no. 3, pp. 1554–1567, 2010. (page 12, 51, 54)

[36] D. Kong, L. Xu, X. Li, and S. Li, “K-plane-based classification of airborne lidar

data for accurate building roof measurement,” IEEE Transactions on Instrumen-

tation and Measurement, vol. 63, no. 5, pp. 1200–1214, 2014. (page 12, 56)

[37] M. Awrangjeb and C. S. Fraser, “Automatic segmentation of raw lidar data for

extraction of building roofs,” Remote Sensing, vol. 6, no. 5, pp. 3716 – 3751,

2014. (page 12, 70, 76, 91, 105, 107, 109, 119, 120, 121)

[38] S. Gilani, M. Awrangjeb, and G. Lu, “Fusion of lidar data and multispectral im-

agery for effective building detection based on graph and connected component

analysis,” International Archives of the Photogrammetry, Remote Sensing and Spa-

tial Information Sciences, vol. I, pp. 65 – 72, 2015. (page 12)

[39] S. Gilani, M. Awrangjeb, and G. Lu, “An automatic building extraction and reg-

ularisation technique using LiDAR point cloud data and orthoimage,” Remote

Sensing, vol. 8, no. 3, p. 258, 2016. (page 12)

[40] S. A. N. Gilani, M. Awrangjeb, and G. Lu, “Segmentation of airborne point cloud

data for automatic building roof extraction,” GIScience & Remote Sensing, vol. 55,

no. 1, pp. 63–89, 2018. (page 12, 148)

[41] M. Awrangjeb, M. Ravanbakhsh, and C. S. Fraser, “Automatic detection of res-

idential buildings using lidar data and multispectral imagery,” ISPRS Journal

of photogrammetry and remote sensing, vol. 65, no. 5, pp. 457 – 467, 2010.

(page 12, 48)

[42] M. Gerke and J. Xiao, “Fusion of airborne laserscanning point clouds and im-

ages for supervised and unsupervised scene classification,” ISPRS Journal of Pho-

togrammetry and Remote Sensing, vol. 87, pp. 78 – 92, 2014. (page 12, 16, 71)

[43] W. Zhang, H. Wang, Y. Chen, K. Yan, and M. Chen, “3d building roof modeling

by optimizing primitives parameters using constraints from lidar data and aerial

imagery,” Remote Sensing, vol. 6, no. 9, pp. 8107–8133, 2014. (page 12, 62)



Bibliography 195

[44] E. Kwak, “Automatic 3d building model generation by integrating lidar and

aerial images using a hybrid approach,” Ph.D. dissertation, University of Cal-

gary, 2013. (page 12, 62)

[45] P. R. Wolf and B. A. Dewitt, Elements of Photogrammetry: with applications in

GIS. McGraw-Hill New York, 2000, vol. 3. (page 12)

[46] L. Zhao, X. Zhou, and G. Kuang, “Building detection from urban sar image us-

ing building characteristics and contextual information,” EURASIP Journal on

Advances in Signal Processing, vol. 2013, no. 1, p. 56, 2013. (page 13)

[47] A. Huertas and R. Nevatia, “Detecting buildings in aerial images,” Computer

Vision, Graphics, and Image Processing, vol. 41, no. 2, pp. 131–152, 1988.

(page 13)

[48] X. Huang and L. Zhang, “A multidirectional and multiscale morphological index

for automatic building extraction from multispectral geoeye-1 imagery,” Pho-

togrammetric Engineering & Remote Sensing, vol. 77, no. 7, pp. 721–732, 2011.

(page 14)

[49] F. Rottensteiner, J. Trinder, S. Clode, and K. Kubik, “Building detection using

LiDAR data and multispectral images,” Digital Image Computing Techniques and

Applications, vol. 2, pp. 673–682, 2003. (page 14, 16, 47, 71)

[50] K. Navulur, Multispectral image analysis using the object-oriented paradigm. CRC

press, 2006. (page 14)

[51] Expanding your point of view. https://learn.arcgis.com/en/arcgis-imagery-

book/chapter4/. Last accessed: 09-08-2017. (page 15)

[52] A. Novacheva, “Building roof reconstruction from lidar data and aerial images

through plane extraction and colour edge detection,” International Archives

of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.

XXXVII, pp. 53–57, 2008. (page 14, 51, 54)

[53] H. Mayer, “Automatic object extraction from aerial imagery - a survey focusing

on buildings,” Computer Vision and Image Understanding, vol. 74, no. 2, pp.

https://learn.arcgis.com/en/arcgis-imagery-book/chapter4/
https://learn.arcgis.com/en/arcgis-imagery-book/chapter4/


Bibliography 196

138–149, 1999. (page 14)

[54] M. Awrangjeb, M. Ravanbakhsh, and C. Fraser, “Automatic building detection

using lidar data and multispectral imagery,” Digital Image Computing Techniques

and Applications, pp. 45–51, 2010. (page 16, 72)

[55] D. Grigillo and U. Kanjir, “Urban object extraction from digital surface model

and digital aerial images,” ISPRS Annals of the Photogrammetry, Remote Sensing

and Spatial Information Sciences, vol. I, no. 3, pp. 215 – 220, 2012. (page 16,

47, 71)

[56] The leaffest line. https://publiclab.org/notes/cfastie/09-04-2014/the-leaffest-

line. Last accessed: 11-08-2017. (page 16)

[57] Dital elevation model. http://www.blograf.com/dem-dtm-ve-dsm-nedir/. Last

accessed: 11-08-2017. (page 19)

[58] Z. Li, C. Zhu, and C. Gold, Digital terrain modeling: principles and methodology.

CRC press, 2004. (page 19)

[59] P. Gueudet, G. Wells, D. Maidment, and A. Neuenschwander, “Influence of the

postspacing density of the lidar-derived dem on flood modeling,” in Geographic

Information Systems and Water Resources III–AWRA Spring Specialty Conference.

AWRA, Nashville, Tennessee, 2004. (page 20)

[60] F. EarthData, “Inc., lidar mapping fact sheet, white paper published in the com-

pany web-site.” (page 20)

[61] J. Carter, K. Schmid, K. Waters, L. Betzhold, B. Hadley, R. Mataosky, and

J. Halleran, “Lidar 101: An introduction to lidar technology, data, and applica-

tions,” National Oceanic and Atmospheric Administration (NOAA) Coastal Services

Center, pp. 7–11, 2012. (page 20, 21)

[62] S. S. Stevens et al., On the theory of scales of measurement. Bobbs-Merrill,

College Division, 1946. (page 20)

https://publiclab.org/notes/cfastie/09-04-2014/the-leaffest-line
https://publiclab.org/notes/cfastie/09-04-2014/the-leaffest-line
http://www.blograf.com/dem-dtm-ve-dsm-nedir/


Bibliography 197

[63] F. Robert A., A. Samberg, F. Martin, and T. Greaves, Topographic and Terrestrial

Lidar. American Society for Photogrammetry and Remote Sensing Bethesda,

2007. (page 21)

[64] F. Leberl, A. Irschara, T. Pock, P. Meixner, M. Gruber, S. Scholz, and A. Wiechert,

“Point clouds,” Photogrammetric Engineering & Remote Sensing, vol. 76, no. 10,

pp. 1123–1134, 2010. (page 21)

[65] S. O. Elberink and G. Vosselman, “Quality analysis on 3d building models recon-

structed from airborne laser scanning data,” ISPRS Journal of Photogrammetry

and Remote Sensing, vol. 66, no. 2, pp. 157–165, 2011. (page 22, 54, 64, 96,

126)

[66] Delaunay triangulation from wikipedia. https://en.wikipedia.org/wiki/

Delaunay triangulation. Last accessed: 14-08-2017. (page 22)

[67] I. T. Jolliffe, “Principal component analysis and factor analysis,” in Principal

component analysis. Springer, 1986, pp. 115–128. (page 22)

[68] D. C. Lay, S. R. Lay, and J. J. McDonald, Linear Algebra and Its Applications, 5th

Edition. Pearson, 2012. (page 23)

[69] A. Nurunnabi, D. Belton, and G. West, “Robust segmentation in laser scanning

3d point cloud data,” in Digital Image Computing Techniques and Applications,

2012, pp. 1–8. (page 23, 25, 102, 103, 105)

[70] M. Rutzinger, F. Rottensteiner, and N. Pfeifer, “A comparison of evaluation tech-

niques for building extraction from airborne laser scanning,” IEEE Journal of

Selected Topics in Applied Earth Observations and Remote Sensing, vol. 2, no. 1,

pp. 11 – 20, 2009. (page 27, 28, 29, 30)

[71] M. Cramer, “The DGPF-test on digital airborne camera evaluation–overview and

test design,” Photogrammetrie Fernerkundung Geoinformatics, vol. 2010, no. 2,

pp. 73–82, 2010. (page 27, 32)

[72] M. Awrangjeb and C. Fraser, “An automatic and threshold-free performance

evaluation system for building extraction techniques from airborne LiDAR data,”

https://en.wikipedia.org/wiki/Delaunay_triangulation
https://en.wikipedia.org/wiki/Delaunay_triangulation


Bibliography 198

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,

vol. 7, no. 10, pp. 4184–4198, 2014. (page 27, 29, 30, 31, 91)

[73] W. Song and T. L. Haithcoat, “Development of comprehensive accuracy assess-

ment indexes for building footprint extraction,” IEEE Transactions on Geoscience

and Remote Sensing, vol. 43, no. 2, pp. 402–404, 2005. (page 31)

[74] A. Sampath and J. Shan, “Building boundary tracing and regularization from

airborne LiDAR point clouds,” Photogrammetric Engineering & Remote Sensing,

vol. 73, no. 7, pp. 805–812, 2007. (page 39, 49)

[75] A. Habib, E. Kwak, and M. Al-Durgham, “Model-based automatic 3d building

model generation by integrating lidar and aerial images,” Archives of Photogram-

metry, Cartography and Remote Sensing, vol. 22, pp. 187–200, 2011. (page 39)

[76] H. Wiman, Least Squares Matching for Three Dimensional Building Reconstruc-

tion. Springer, 1997, pp. 223–232. (page 40)

[77] A. Brunn, “Techniques for automatic building extraction,” Third Course in Digital

Photogrammetry, Institute for Photogrammetry at Bonn University and Landesver-

messungsamt Nordrhein-Westfalen, Bonn, Germany, 1998. (page 42)

[78] D. H. Al-Khudhairy, “Geo-spatial information and technologies in support of eu

crisis management,” International Journal of Digital Earth, vol. 3, no. 1, pp. 16

– 30, 2010. (page 42)

[79] L. Sahar and A. Krupnik, “Semiautomatic extraction of building outlines from

large-scale aerial images,” Photogrammetric Engineering & Remote Sensing,

vol. 65, pp. 459 – 466, 1999. (page 42)

[80] Z. Song, C. Pan, Q. Yang, F. Li, and W. Li, “Building roof detection from a sin-

gle high-resolution satellite image in dense urban area,” in Proceeding of ISPRS

Congress, 2008, pp. 271–277. (page 43)

[81] W. Liu and V. Prinet, “Building detection from high-resolution satellite image

using probability model,” in Proceedings of IEEE International Geoscience and

Remote Sensing Symposium, vol. 6, 2005, pp. 3888–3891. (page 43)



Bibliography 199

[82] M. Izadi and P. Saeedi, “Automatic building detection in aerial images using a

hierarchical feature based image segmentation,” in International Conference on

Pattern Recognition, 2010, pp. 472–475. (page 44)

[83] B. Sirmacek and C. Unsalan, “A probabilistic framework to detect buildings in

aerial and satellite images,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 49, no. 1, pp. 211–221, 2011. (page 44)

[84] L. Cheng, J. Gong, M. Li, and Y. Liu, “3d building model reconstruction from

multi-view aerial imagery and LiDAR data,” Photogrammetric Engineering & Re-

mote Sensing, vol. 77, no. 2, pp. 125–139, 2011. (page 45)

[85] B. Yang, W. Xu, and Z. Dong, “Automated extraction of building outlines from

airborne laser scanning point clouds,” IEEE Geoscience and Remote Sensing Let-

ters, vol. 10, no. 6, pp. 1399 – 1403, 2013. (page 45, 91, 119, 120)

[86] D. Mongus, N. Lukac, D. Obrul, and B. Zalik, “Detection of planar points for

building extraction from lidar data based on differential morphological and at-

tribute profiles,” ISPRS Annals of the Photogrammetry, Remote Sensing and Spa-

tial Information Sciences, vol. 1, pp. 21–26, 2013. (page 46)

[87] M. Awrangjeb and C. S. Fraser, “Automatic segmentation of raw LiDAR data

for extraction of building roofs,” Remote Sensing, vol. 6, no. 5, pp. 3716–3751,

2014. (page 46, 50, 148)

[88] N. Haala and V. Walter, “Automatic classification of urban environments for

database revision using lidar and color aerial imagery,” International Archives

of Photogrammetry and Remote Sensing, vol. XXXII, no. Part 7, pp. 4 – 3, 1999.

(page 46)

[89] N. Demir, D. Poli, and E. Baltsavias, “Extraction of buildings using images &

LiDAR data and a combination of various methods,” International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII,

no. part 3/W4, pp. 71 – 76, 2009. (page 46)

[90] T. Vu, F. Yamazaki, and M. Matsuoka., “Multi-scale solution for building ex-

traction from LiDAR and image data,” International Journal of Applied Earth



Bibliography 200

Observation and Geoinformation, vol. 11, no. 4, pp. 281–289, 2009. (page 47)

[91] K. Khoshelham, S. Nedkov, and C. Nardinocchi, “A comparison of bayesian and

evidence-based fusion methods for automated building detection in aerial data,”

International Archives of the Photogrammetry, Remote Sensing and Spatial Infor-

mation Sciences, vol. XXXVII, no. part B7, pp. 1183 – 1188, 2008. (page 48,

53)

[92] A. Alharthy and J. Bethel, “Heuristic filtering and 3d feature extraction from

lidar data,” International Archives of Photogrammetry Remote Sensing and Spatial

Information Sciences, vol. XXXIV, no. 3/A, pp. 29 – 34, 2002. (page 49)

[93] C.-S. Fu and J. Shan, “3-d building reconstruction from unstructured distinct

points,” International Archives of Photogrammetry and Remote Sensing, vol.

XXXV, pp. 553 – 558, 2004. (page 49)

[94] R. Ma, “Dem generation and building detection from lidar data,” Photogrammet-

ric Engineering & Remote Sensing, vol. 71, no. 7, pp. 847 – 854, 2005. (page 49)

[95] S. R. Lach and J. P. Kerekes, “Robust extraction of exterior building boundaries

from topographic lidar data,” IEEE International Geoscience and Remote Sensing

Symposium, vol. 2, pp. II – 85, 2008. (page 49)

[96] G. Sohn, X. Huang, and V. Tao, “Using a binary space partitioning tree for re-

constructing polyhedral building models from airborne lidar data,” Photogram-

metric Engineering & Remote Sensing, vol. 74, no. 11, pp. 1425 – 1438, 2008.

(page 49)

[97] S. Wei, “Building boundary extraction based on lidar point clouds data,” In-

ternational Archives of Photogrammetry Remote Sensing and Spatial Information

Sciences, vol. XXXVII, pp. 157 – 161, 2008. (page 49)

[98] S. Abdullah, “Height adaptive lidar segmentation for building extraction and

roof reconstruction,” Ph.D. dissertation, School of Information Technology,

Monash University, 2014. (page 50)



Bibliography 201

[99] A. Boulch and R. Marlet, “Fast and robust normal estimation for point clouds

with sharp features,” in Computer graphics forum, vol. 31, no. 5, 2012, pp. 1765–

1774. (page 50, 102)

[100] H. Huang and C. Brenner, “Rule-based roof plane detection and segmentation

from laser point clouds,” in Joint Urban Remote Sensing Event, 2011, pp. 293–

296. (page 50)

[101] G. Vosselman and R. Klein, “Visualisation and structuring of point clouds,” Air-

borne and Terrestrial Laser Scanning, vol. 1, pp. 43–79, 2010. (page 50)

[102] R. Schnabel, R. Wahl, and R. Klein, “Efficient ransac for point-cloud shape detec-

tion,” in Computer graphics forum, vol. 26, no. 2, 2007, pp. 214–226. (page 50)

[103] J.-E. Deschaud and F. Goulette, “A fast and accurate plane detection algorithm

for large noisy point clouds using filtered normals and voxel growing,” in In-

ternational Symposium on 3D Data Processing, Visualization and Transformation,

2010. (page 50)

[104] Y. Liu and Y. Xiong, “Automatic segmentation of unorganized noisy point clouds

based on the gaussian map,” Computer-Aided Design, vol. 40, no. 5, pp. 576–594,

2008. (page 50)

[105] G. Vosselman, “Slope based filtering of laser altimetry data,” International

Archives of Photogrammetry and Remote Sensing, vol. XXXIII, pp. 935–942, 2000.

(page 51)

[106] M. Arastounia and D. Lichti, “Automatic extraction of insulators from 3d lidar

data of an electrical substation,” ISPRS Annals of the Photogrammetry, Remote

Sensing and Spatial Information Sciences, vol. 2, no. 5/W2, pp. 19–24, 2013.

(page 51)

[107] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM com-

puting surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999. (page 51)

[108] Q.-Y. Zhou and U. Neumann, “Fast and extensible building modeling from air-

borne LiDAR data,” in Proceedings of SIGSPATIAL international conference on Ad-



Bibliography 202

vances in geographic information systems, 2008, p. 7. (page 52)

[109] M. Awrangjeb and C. S. Fraser, “Rule-based segmentation of lidar point cloud for

automatic extraction of building roof planes,” ISPRS Annals of the Photogramme-

try, Remote Sensing and Spatial Information Sciences, vol. 2, no. 3/W1, pp. 1–6,

2013. (page 52)
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[175] N. Lukač and B. Žalik, “Gpu-based roofs’ solar potential estimation using lidar

data,” Computers & Geosciences, vol. 52, pp. 34–41, 2013. (page 151, 153)
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