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Abstract

Knowledge of how ligands bind to their macromolecular targets is critical to rational drug

design. Most of structure-based drug design and efforts to optimize the binding affinity are performed

using only the final bound pose of a drug, however there is an increasing appreciation that the kinetics

of drug binding can directly impact its efficacy. Experimental methods can be used to determine the

bound pose of a drug (e.g. X-ray crystallography) or the on/off rates to that pose (e.g. surface plasmon

resonance), but these methods are not suitable for many target systems, and it is frequently necessary

to employ computational methods to augment experimental findings.

In this work, we conducted a homology modeling study and developed effective models of

the not-yet-crystallized muscarinic acetyl choline receptors based on an experimentally determined

structure of the β2 adrenergic receptor from another sub-family. We found that these homology 

models, trained with experimental knowledge, outperformed the crystal structures in virtual

screening. This study also reinforced the understanding that the predictive power of both the crystal

structures and models was limited to the immediate vicinity of the co-crystallized or training ligands.

It is Important to realize that drug binding is more than a two-state process. Ligands interact

with the receptor long before they reach the bound pose, often in well-defined metastable states.

These metastable states often exist for short timescales that are difficult to access experimentally,

and as such their impact on the greater binding process is poorly understood. To investigate the role

of metastable states in ligand binding, we conducted conventional molecular dynamics simulations to

observe the never before simulated binding pathways of the drugs clozapine and haloperidol to the

D2 and D3 dopamine receptors. For each ligand, we were able to identify metastable states, in addition

to an entire binding pathway. Transitions between these metastable states, as well as to and from the

final binding site itself, were rare events. Although we observed ligand binding, we were not able to

garner an appreciation for the kinetics involved or whether other binding pathways existed.

To better characterize the binding process, we employed Markov state models (MSMs). When

constructing a MSM, the molecular system being investigated, is broken down into discrete states,

and the metastability and kinetics of each of these states can then be estimated. MSMs are most

commonly applied to protein folding, so we developed a methodology more suitable to ligand binding.

This methodology was developed and applied to two very different targets, a G protein-coupled

receptor and a fatty acid-binding protein. Through the use of this methodology we were able to

identify multiple binding pathways and several metastable sites in each target, furthering our

understanding of the binding process.
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Chapter 1
Introduction

1.1 Ligand binding

Ligand binding is an extraordinarily complicated process that is the central focus for the fields

of medicinal chemistry and pharmacology. The ligand-binding process is not directly observable

experimentally and it is common to represent the approach with simple approximations of the time-

averaged behavior. The most frequently used of these approximations is to describe ligand binding

solely by binding affinity. Binding affinity is a thermodynamic property that quantifies the strength of

ligand binding, and is typically reported using the dissociation constant (Kd), which is inversely

proportional to the affinity. Kd is the ratio of concentrations of the reactants (ligand and receptor) and

products (the receptor-ligand complex) at an assumed equilibrium or, when examining an individual

complex over time, the ratio of time the system exists in each of those states. Binding affinity is well

illustrated by the simplest models of ligand binding (Figure 1), e.g. the lock-and-key model,1 in which

the drug and the orthosteric site of the receptor click together like a pair of rigid jigsaw pieces. This

model does not account for the flexibility and dynamics of the system, yet provides a workable

approximation for the time-averaged behavior of the complex. The induced fit model2 improves on

the lock-and-key model by accounting for the flexibility of the ligand and binding site, introducing the

concept that the conformation of the receptor can adapt to accommodate the ligand. Both of these

models present a bound and unbound state of the complex suitable for interpretation with binding

affinity.

Figure 1. The lock-and-key (top) and induced fit (bottom) models of ligand binding present an easy to
understand, but oversimplified, model of ligand binding.
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Binding affinity can also be expressed kinetically as the ratio between the rate constants of

binding and unbinding (kon and koff) as shown in Equation (1). It can be important to consider these

rates individually, rather than only consider Kd as a ratio, as the on- and off-rates individually affect

the characteristics of the drug. In the case of competitive antagonists, a slower off-rate, and therefore

longer residence time, allows for a more effective blockade of the receptor, which will in-turn

minimize the windows in which an agonist can bind.3 Long residence times have been shown in many

cases to correlate more strongly with the efficacy of a drug than the binding affinity does.4 Seow et al.

found in a comparison of 3 equipotent antagonists that, compared to 2 drug-like small molecules, the

peptide drug with negligible oral bioavailability was still the most orally efficacious due to its

significantly longer residence time. However, long residence times are not always desirable; when a

blockade is too effective due to a slow off-rate drug, the receptor can be prevented from performing

its biological function, leading to a more undesirable side-effect profile than a fast-on, fast-off drug,

which would allow the normal biological function to proceed, albeit at a reduced rate.3

� � =
� � � �

� � �
(1)

Whilst treating drug binding kinetically provides more insight into drug binding than using

binding affinity, the approximation is still being made that the receptor only exists in two states. In

reality, the ligand and receptor, both individually and as a complex, exist as an ensemble of

conformations. A ligand does not “toggle” between being bound and unbound, instead it must

traverse the space, both conformational and Euclidean, between these two states. A ligand can follow

multiple pathways between the bound and unbound conformations, with each pathway consisting of

a number of states and each state to state transition having an energy barrier that must be overcome

(Figure 2).5,6 The experimentally observed kinetics of ligand-binding arise from a combination of the

rates between all of the states that make up the binding landscape. In any binding pathway, some of

the intermediate states will be relatively long-lived compared to others and can be considered

metastable states. The concept of metastable states has been well demonstrated by Dror et al. in their

simulation of alprenolol binding to the β2-adrenoceptor7 where they observed the ligand passing

through several well-defined metastable states on the way to the bound pose and determined that

the largest barrier to drug binding was far-removed from the experimentally determined bound state8

utilized in structure-based drug design. Departing from the two-state model of drug binding and

considering metastable states opens up more avenues to drug design. An antagonist can be efficacious

while occupying metastable states prior to arriving at the bound pose if in these states it blocks the

binding pathways of an agonist,9,10 likewise it can be reasoned that an agonist cannot be distinguished

from an antagonist while outside of states that can induce activation of the receptor.
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The receptor conformation can be as important to drug binding as the conformation of the

drug and, compared to the drug, the receptor will typically explore its conformational space over a

much longer timescale. Drugs may be selective for specific conformations of the receptor, and the

receptor may only spend a fraction of the time in these amenable conformations.11 Reaching an

amenable conformation can be the rate-determining step to drug binding, and the conformational

changes required can be largely independent to the binding of a drug.12

There is now great interest in compounds that bind outside the orthosteric site, functioning

by allosteric modulation, or as bitopic ligands. Allosteric modulation occurs when an additional

molecule binds to an allosteric site on the receptor and, either through inducing conformational

change in the receptor or by blocking the unbinding pathway, alters the behavior of the orthosterically

bound drug. A wide range of protein targets have been shown to be susceptible to allosteric

modulation, including G protein-coupled receptors, ion channels, nuclear hormone receptors, and

kinases.13 The allosteric modulators themselves can range from small molecules to antibodies.14

Typically, only the highest affinity states of a complex can be observed experimentally, but the

existence of metastable states can often be indirectly observed in the case of allosteric modulators.

The existence of metastable states is particularly evident in the case of ago-allosteric modulators,15,16

agonists that also act as allosteric modulators, which most likely act by binding to both orthosteric and

allosteric sites. Metastable sites along the binding pathway have been shown to coincide with

allosteric sites; Kruse et al. performed long-timescale simulations of tiotropium binding to the M3

muscarinic acetylcholine receptor.17 In these simulations, they found that tiotropium paused at a

distinct metastable site as it bound to, or dissociated from, the receptor, and that this site had been

identified as an allosteric site through mutagenesis.18 This correlation with allosteric sites makes

metastable sites of interest as starting points for the design of allosteric or bitopic ligands.19 Similarly

to allosteric modulators, bitopic ligands also bind outside of the orthosteric site. The principle behind

bitopic ligands is to combine two pharmacophores, an orthosteric pharmacophore to provide affinity,

and a second pharmacophore, often allosteric, to provide selectivity.20 While bitopic ligands may

occupy an allosteric binding site, they do not necessarily act as allosteric modulators, and any

metastable site that differs between two receptors could be a useful target for the second

pharmacophore.
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Figure 2. The two-state approximation of ligand-binding (black arrow) obscures many of the
complexities of the binding pathway. The colored pathway provides a more realistic model of how a
ligand binds to a receptor.

Although treatment of drug binding using simple approximations has thus far proven sufficient

for drug development, subscribing to these approximations necessitates observing drug binding

through a narrow lens, effectively limiting the understanding of the binding process. Now that

computers are becoming powerful enough to make routine simulation of drug binding a possibility,

researchers should begin to consider the behavior of ligands outside of the bound state. This would

allow finer-tuning of the kinetic behavior of a drug and provide additional binding sites to target on

each receptor, which may allow for greater drug selectivity or control of drug behavior through

allosteric modulation. In order to investigate behavior outside of the bound state, we need to develop

the methodologies that can be used to efficiently explore the intricacies of drug binding and improve

our understanding of the ever-important issue of how drugs actually bind.

1.2 Target systems

1.2.1 G protein-coupled receptors

G protein-coupled receptors (GPCRs) are the largest and most diverse super-family of proteins

in the human body21 and are at the forefront of studies into the intricacies of ligand binding. GPCRs
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are membrane-spanning receptors that function by transducing chemical signals across the cell

membrane and then effecting an intracellular response by binding to intracellular G proteins and

beginning a signaling cascade.22 All GPCRs share a similar topology23 (Figure 3); a bundle of 7

transmembrane spanning helices that opens into an extracellular binding pocket. GPCRs are critical to

the senses of sight, smell, and taste, but the crux of their pharmaceutical relevance is their critical

intermediate roles in the control of the autonomic nervous system, the immune system, moods, and

behavior.24 These roles, widespread throughout the body, have led to GPCRs being the most targeted

receptors in drug development, with an estimated 33% of all small-molecule drugs targeting GPCRs.25

There are 5 families of GPCRs according to the GRAFS classification system:21 Glutamate,

Rhodopsin, Adhesion, Frizzled/Taste2, and Secretin. Of these classes, the rhodopsin family is the

largest, containing ~85% of all GPCRs, although the majority of these are predicted to relate to taste

or smell. Rhodopsin family GPCRs are the most investigated class, and the most druggable sub-family

are the biogenic amine receptors, including the muscarinic and dopamine receptors that are

investigated in this work. The most notable disease states related to dopamine receptors are

schizophrenia, addiction, and Parkinson’s disease.26 The biological functions of muscarinic receptors

is less clear due to a lack of selective drugs, but they have been found to be involved in heart disease,

Parkinson’s disease, and Alzheimer’s disease.27

The determination of the structure of the light-activated rhodopsin through X-ray

crystallography in the year 200028 resulted in a figurative explosion in structural studies of GPCRs. In

2007, the first crystal structure of a biogenic amine receptor, the β2 adrenergic receptor (β2AR), was

determined with the co-crystallized antagonist carazolol.29 In the following years, more structures

were determined including structures bound to agonists30 and those exhibiting an active conformation

of the receptor.31,32 The crystal structures we have focused on in this work are inactive conformations

of the D3 dopamine receptor (human), determined in 2010,33 and the M2 (human)18 and M3 (rat)17

muscarinic acetylcholine receptors, determined in 2012.

It is now understood that GPCRs, and other receptors, truly exist as an ensemble of states,

and through drug binding, these receptors are induced toward groups of conformations broadly

classified as active or inactive states. GPCRs are often constitutively active, exploring active

conformations even in the absence of an agonist, so that an inverse agonist, rather than an antagonist,

is required to limit their ensemble to inactive states.34 Important differences have been observed

within the group of states that forms the active ensemble; different agonists, binding to the same

general binding site, have been observed to bias the intracellular response towards different signaling

pathways.35,36 There are many states involved in the ligand binding ensemble, and the important states
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differ for each individual ligand. Despite the advances made in GPCR crystallography, it still remains a

challenging endeavor to crystallize membrane proteins, and isolating specific states relevant to ligand

binding is trickier still.

Figure 3. A cartoon representation of the D3 dopamine receptor (PDB ID: 3PBL). The receptor is colored
from the N-terminus (blue), through cyan, green, yellow, and orange, to the C-terminus (red) and the
co-crystalized ligand eticlopride is shown as spheres in the orthosteric binding site.

GPCRs within a family have a very high homology between their transmembrane domains,

especially in the region of the binding site. When targeting GPCRs in drug development, in many cases

the largest obstacle is selectivity. Amongst the biogenic amine receptors, it is common for one drug

to be active at multiple subtypes of receptor. In the case of muscarinic receptors, due to the lack of

selective drugs, the individual function of each subtype is unclear. The high homology between GPCRs

has led to an interest in the development of drugs that bind outside the highly conserved orthosteric

site, i.e. allosteric drugs or bitopic ligands that extend outside of the orthosteric site to interact at

another, often allosteric, location.

The dopamine receptor antagonists we have studied in this work are clozapine and

haloperidol (Figure 4), which are both classified as antipsychotics, a therapeutic class that was first

developed in the 1950s. The first generation of antipsychotics (later classified as typical antipsychotics)
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was found to cause problematic extrapyramidal side-effects,37 which led to the development of a

second generation of drugs, the atypical antipsychotics. Atypical antipsychotics have very similar side-

effects to typical antipsychotics, and it is unclear if they should be considered an improvement over

the first generation drugs.38,39 Despite their unfavorable side-effect profiles, haloperidol (a typical

antipsychotic) has been in use since the 1950s40 and clozapine (an atypical antipsychotic) since the

1970s.41 Both of these drugs are classified as WHO essential medicines.42 Each of these drugs

represents a basic scaffold from which many other antipsychotics have been developed,43,44 and every

antipsychotic has its own unique side-effect profile. The abundance of side-effects leaves much room

for improvement in antipsychotic drugs. Current trends focus on allosteric modulation and partial

agonism, but without an understanding of how these drugs bind, structural knowledge is tethered to

the limited available crystal structures.45

Figure 4. Haloperidol and Clozapine shown in their biologically relevant ionization states.

1.2.2 Fatty acid-binding proteins

Fatty acid-binding proteins (FABPs) are a class of small cytosolic transport proteins that are

primarily responsible for the transport of fatty acids within the cell, although they are capable of

binding many other lipophilic small molecules.46 FABP expression has been shown, through mouse

models, to be tied to insulin sensitivity and levels of glucose or cholesterol in the blood, making FABPs

drug targets for obesity, heart disease, and diabetes.47 The high expression levels of FABPs have also

made them useful as biomarkers for these disease states.48–50 FABPs have also been observed to cross

the nuclear membrane51 which, combined with their ability to bind lipophilic molecules, gives them a

potential application as drug transporters.52

There are 9 types of FABPs encoded in the human genome.53 These proteins are named

FABP1-9 or by the organ they were first, or are predominantly, found in. Each type of FABP can be

found in multiple organs, often alongside other types. All FABPs share the common topology of a 10-

strand β-barrel, capped on one side with a helix-turn-helix cap (Figure 5).54 Increased flexibility of the

β-strands on the capped side of the receptor results in this side of the β-barrel being considered the 
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open side through which ligands enter and exit.55 Fatty acids bind within the hydrophobic β-barrel, 

forming a salt-bridge with an arginine residue. In this work we investigate L-FABP (also known as

FABP1), which has a larger binding pocket than other FABPs and is capable of binding 2 fatty acids

simultaneously.56 Similar to GPCRs, the deep binding pocket within L-FABP necessitates a multiple-

step ligand-binding process. In this work, we chose to use FABPs as a model system to investigate

ligand binding in addition to GPCRs. Compared to GPCRs, the small size of FABPs and no need for a

membrane environment make them easier to work with.

Figure 5. NMR structure of the liver-fatty acid-binding protein (PDB ID: 2LKK56), showing two bound
oleic acids and the residues they form polar interactions with. The protein is colored from the N-
terminus (blue), through cyan, green, yellow, and orange, to the C-terminus (red). The two helices
form a cap to the binding pocket contained in the β-barrel.  
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1.3 Computational methods for studying ligand binding

1.3.1 Docking

Molecular docking is a tool used to predict the binding of existing or potentially new molecules

to a target (receptor).57 Docking involves conformational and orientational sampling and scoring to

predict energetically favorable poses of the ligand in a target receptor structure. Docking is

computationally efficient; high throughput docking methods such as virtual screening commonly

utilize a rigid receptor model that can be likened to the lock-and-key model of ligand binding, although

it is acknowledged that incorporating receptor flexibility can significantly improve the results.58

Docking requires a structure to dock into, and these structures are generally obtained through

crystallography or NMR experiments, which can limit the viable targets to the availability of specific

receptor structures.

The range of viable targets for docking can be expanded through homology modeling; based

on the knowledge of the homologies between a target receptor and a template crystal structure, it is

possible to use homology modeling to generate a “best-guess” model of the target.59,60 The most

important pre-requisite for a homology model is to have a template that closely resembles the target

receptor. The target and template sequences should have the highest level of homology possible,

especially in the regions of interest such as the binding site. The target sequence is fitted to the

template structure and any additional experimental information, such as secondary structure, is

included. The loop regions of the protein often have a very poor homology and are modelled

separately. Homology models inherit many of the weaknesses of the template crystal structures: they

are likely to preserve any errors or artifacts present in the template structure, and they are still a static

structure that poorly represents flexible regions. Homology modeling has proven very important in

GPCR research.61 While the number of crystal structures of GPCRs is steadily increasing,62 there are

still limited template crystal structures available, and crystallizing a single state from the receptor

ensemble is a non-trivial process that must be repeated for every receptor, state, and ligand of interest.

This leaves large holes in our structural knowledge that can be readily filled by homology models.

Once the initial homology model is available, it can be evaluated and trained for virtual

screening. Virtual screening is the process of docking large libraries of ligands into a target receptor

and is often performed for two main purposes.63 Prospective virtual screening attempts to predict hits

from a library of compounds of unknown activity, whilst retrospective virtual screening can be used

to assess the predictive qualities of a model by testing its ability to rank known actives over a library

of decoy compounds. Unless one is searching for ligands of a particular scaffold, it is important to

optimize the homology model to allow for the binding of a diverse range of ligands. The binding site
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of the template structure will likely be biased towards a particular ligand or, in the absence of a ligand,

the binding site may be closed and unreceptive to binding. In order to use a homology model built

from a template structure to predict ligand binding, the binding site will first need to be opened up. A

useful approach for this is to perform induced fit docking into the binding site with a training ligand,

thereby adjusting the conformation of the receptor to accommodate a more generic or larger ligand.

The bias introduced through the template structure also means that docking is typically only useful

for exploring known binding locations.

1.3.2 Molecular dynamics

Molecular dynamics (MD) is a computational method in which the time-dependent behavior

of a system is simulated using simple Newtonian physics, allowing an atomistic view of the system.64

In MD simulations, the forces affecting each atom are evaluated each time step, typically a 1-5 fs

interval, according to a force field. The position of the atoms is then updated and the forces are

evaluated at the new positions. Repeating this evaluation over many time steps allows access to the

dynamics of the system in nanosecond to microsecond timescales. Millisecond length atomic

simulations are possible only with highly specialized hardware.65 It is worth noting that, while it is also

possible to employ full, or hybrid, quantum mechanical MD, we will restrict discussion to “classical”

MD as only this approach was used in this work. MD simulations require a force field, which enables

the evaluation of forces at each individual time step, and also the algorithms that perform the

calculations, ensure the efficiency of this process, or control system properties such as temperature

and pressure.66

Molecular mechanics force fields describe the properties of each atom in the system and how

they interact with each other, allowing the calculation of the forces acting on each atom every time

step of a MD simulation. Force fields are generally parametrized to match experimental values. Many

different force fields have been created; in this work we have used 2 molecular dynamics force fields,

the CHARMM all-atom force field67,68 and the GROMOS united-atom force field.69 Both force fields

have both been extensively validated but were developed using different philosophies. The CHARMM

force field describes hundreds of different atom types, each reflecting the different behavior of each

element in subtly different environments. The GROMOS force field instead chooses to describe atoms

more generally, only describing a few additional atom types for larger changes in environment and

utilizing united-atom types to describe groups of bonded atoms. In general, the interactions in each

force field can be divided into two major components: bonded and non-bonded interactions.70–72

Bonded interactions include terms for the bonds, angles, and dihedrals present in a molecule (Figure

6). Bonds and angles are typically described with harmonic constraints, whilst dihedrals are described

using a cosine series. Non-bonded interactions include van der Waals (vdW) forces and electrostatics,
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which are calculated at short range using the Leonard-Jones equation and coulombic equations

respectively. It is standard practice to calculate these forces differently beyond a cut-off distance. In

this work, calculation of vdW forces switches to a rapidly converging function at the long-range cut-

off, whilst long-range electrostatic forces are approximated using particle mesh Ewald (PME).73

Figure 6. General equations for the GROMOS force field; the potential energy (U) of the system is
described by the energetic sum of all bonds, angles, dihedrals, Lennard-Jones (van der Waals)
interactions, and Coulombic (electrostatic) terms. � � , � � , � � are constants, � is the bond length, � � is

the ideal bond length, � is the angle, � � is the ideal angle, � is the dihedral angle, � is the periodicity,
� � is the phase shift angle, � � � is the Lennard-Jones well depth, � � � is the Lennard-Jones radius, � � � is

the distance between atoms, � � and � � are atomic charges, � � is the effective dielectric constant.

MD simulations apply several algorithms to better match experimental, or real world,

conditions. Most applications do not involve closed systems, and thus algorithms are required to

regulate the temperature and pressure of the system and the behavior of atoms as they reach the

systems boundary. Periodic boundary conditions (PBC) are used in MD simulations to avoid the

boundary effects caused by a finite system. PBCs are usually applied in 3 dimensions, infinitely

tessellating the molecular system, or unit cell, to better approximate the scale of a real world system.

The PBCs are usually defined such that atoms leaving the unit cell through one face, re-enter through

the opposite face. While using PBCs eliminates the most severe boundary artifacts, it does not

eliminate them entirely. In particular, long-range electrostatic interactions still occur between a

protein and its neighboring periodic image, thus it is essential to construct a system with a sufficient

divide of solvent atoms between periodic images (typically >15 Å) to dampen these interactions.

Another aspect of open systems is the ability to exchange energy with the surroundings. In MD

simulations, the surroundings are approximated by coupling the system to a thermostat. This is

commonly called temperature coupling. The temperature is computed from the system kinetic energy;

temperature coupling ensures that the size of temperature fluctuations are appropriate and that the
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average temperature of the system is maintained at the desired value. Calculating the forces in a

system over a discrete time step invariably leads to small errors that accumulate over millions of steps

causing energy drift. Temperature coupling also serves to prevent this energy drift. Commonly used

thermostats are the Berendsen thermostat74 (fastest, but does not produce the correct ensemble),

the velocity re-scaling thermostat75 (which includes a correction term on-top of the Berendsen

thermostat), or the Nosé–Hoover thermostat (most accurate, but more computationally

expensive).76,77 Pressure coupling is implemented similarly to temperature coupling; the system is

coupled to a barostat that allows fluctuations in the instantaneous pressure but maintains the average

pressure of the system over time by scaling the volume of the unit cell. Commonly used barostats

include the Berendsen barostat, and the Parrinello-Rahman barostat78 (equivalent to the Nosé–

Hoover thermostat).

Accessible simulations timescales are a major limitation of MD and simulation software

packages incorporate many algorithms to increase the efficiency of each calculation.79,80 Modern

computers have multiple processing cores that can perform sets of calculations in parallel. To take

advantage of this processing power, domain decomposition can be used to divide a system into

smaller cells that each contain a subset of the systems’ atoms. Each cell can then be assigned to an

individual core that performs the calculations for the atoms in that cell. A separate process is required

to control the communication between each cell, in order to calculate interactions that cross cell

boundaries. Because of the additional communication required, domain decomposition results in a

loss of efficiency, but the same algorithm allows calculations to be spread beyond an individual

machine to a cluster of computers, increasing the available computer power. In a similar manner,

algorithms can be designed so that specialized hardware like GPUs, which contain thousands of

individually less-powerful cores, can be used to rapidly calculate the thousands of interactions in a

system.

At the user level, a useful means to speed up a simulation is to increase the length of each

time step. The length of each time step is restricted by the most rapid movements in the system, and

increasing the time step commonly involves introducing approximations for these rapid movements.81

To allow the use of a longer time step, bonds can be fixed to the average bond length to eliminate

rapid bond vibrations (e.g. using the SHAKE,82 SETTLE,83 or LINCS84 algorithms), or mass can be

transferred to each hydrogen from its bonded heavy atom to slow its velocity while preserving its

momentum.81 Virtual sites can be used to avoid simulating hydrogen atoms entirely, instead

calculating their position from the simulated heavy atoms. United-atom force fields can be used to

represent groups of bonded atoms, such as methyl groups, as a single particle, thereby removing the

hydrogen atoms and reducing the total number of atoms required. The united-atom philosophy can
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be extended into coarse-grain methods which use single particles to approximate larger groups of

atoms, such as protein side chains (e.g. the MARTINI force field85).

Conventional MD simulations are generally poor at exploring conformational space and,

somewhat realistically, continually re-sample low-energy areas rather than crossing the energy

barriers that are necessary to observe a process of interest. There are many enhanced sampling

methods that exist to improve the ability of MD to explore conformational space, and each provides

a different balance of information, bias, and computational efficiency. Replica-exchange MD,86

accelerated MD,87 and metadynamics88 are all useful for exploring binding ensembles. For cases where

only the affinity is of interest, there are numerous free energy methods such as free-energy

perturbation, thermodynamic integration, or potential of mean force methods, that are commonly

used to determine affinity using a two-state approximation.89 These methods have a higher

computational cost than conventional MD and are best used with a simple binding model to determine

the free energy of a single bound state. The increased computational cost makes free energy methods

poor at exploring the conformational landscape.

1.4 Markov state models

1.4.1 Introduction

Markov state models (MSMs) are a variant of the Markov model, a stochastic model of a

system that moves sequentially between states and, in which, the probability of transitioning to a

future state depends only on the current state of the system. This history independence is also known

as the Markov property. Markov models are named after Andrey Markov who published on the theory

in the early 1900s,90 although mathematical studies of Markov chains exist from as early as the 1600s

and the theory was reinvented subsequent to Markov’s work. Markov models have been applied in a

diverse range of fields, including meteorology,91 search engine page ranking,92 and speech

recognition.93

Markov models are typically applied to systems with clearly defined states, a property that

high-dimensional molecular systems often lack. As part of the methodology of constructing a Markov

model for a molecular system a state definition needs to be determined, and the resultant model is

commonly referred to as a Markov state model. The key idea that enabled the advent of Markov state

models was the definition of a conformation, not as a point in continuous space, but as a kinetically

related area in space.94 This idea greatly reduced the dimensionality of the problem, allowing a finite

set of states that made the subsequent calculation of transition probabilities feasible.

We are interested in the application of Markov models to biomolecular simulations,

specifically as a means of improving the sampling of binding events and timescales accessible by ligand
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binding simulations. Practically, a Markov state model describes the behavior of a system of states by

gathering statistics on the transitions between those states over time.95,96 The MSM itself is the

network of transition probabilities between each pair of states. In MSMs constructed from molecular

simulations, these states typically correspond to the metastable and transition states of the system.

Prior to being illustrated as a network diagram, the MSM is represented as a 2D-matrix with

eigenvectors that describe the slowest processes in the system and associated eigenvalues that relate

to the timescale of those processes. The transition probabilities that comprise the MSM describe

events observed on relatively short timescales, such as the rotation of a functional group to interact

with another pocket or the breaking of an individual hydrogen bond. These probabilities can be

extrapolated to longer timescales and estimate, rather than observe, the kinetics of longer timescale

events such as the binding or unbinding of a ligand.

Each of the states in a MSM must be history independent (the Markov property), which means

that the probability of transitioning from state A to state B depends only on state A itself and not on

how the system arrived there. History independence leads to one of the major advantages of MSMs

in molecular simulation, namely that there is no need for a single long simulation of the system.

Instead, the observed transitions can instead be amassed from large numbers of short simulations

(Figure 7), allowing many simulations to be carried out concurrently and taking full advantage of the

parallel architecture available in high powered computing clusters.97

Figure 7. “Snapshots” of individual observations from multiple trajectories (left) can be stitched
together into a larger free energy landscape (right).
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1.4.2 Applications

The most extensive use of MSMs has been to solve protein folding problems96 and the

application of MSMs to ligand binding or conformational change in functional proteins has largely

been built off this work. A key driving force for the development of MSMs has been the Folding@home

project98 and the closely associated MSMbuilder software.99,100 Folding@home utilizes a distributed

computing network consisting of a large number of volunteered personal computers that are

individually able to perform only short MD simulations. The nature of this computing system results

in large volumes of data in the form of short MD simulations that need to be combined to create a

useful dataset, which is possible through the application of MSMs. pyEMMA101 is another publicly

available software package at the forefront of MSM development.

The same methods that can be used to study protein folding can be applied to study the

conformational change in functional proteins.102 Shukla et al. used MSMs and the Folding@Home

platform to identify the conformational changes involved in the activation of SRC Kinase and predicted

the existence of an allosteric pocket that might allow selective inhibition of kinase species.103

Malmstrom et al. built on this work in a study of the activation of protein kinase A while cAMP was

bound.104 This work was accompanied by an excellent review on the methodology employed and

challenges in studying functional proteins.105 Bowman et al. constructed a MSM of the conformational

ensemble of TEM-1 β-lactamase, identifying (and confirming with labelling experiments) the opening 

of novel pockets distal to the orthosteric site.106 Movement of residues in these pockets were shown

to correlate with movement in the orthosteric site and it was thus postulated that ligand binding to

these pockets would have an allosteric effect.

Studies of GPCRs with MSMs have focused on the activation mechanism of the proteins; a

phenomenon that occurs on a millisecond timescale. Kohlhoff et al. conducted a study of the

activation mechanism of the β2AR.107,108 This study was able to map out multiple activation pathways

and metastable states of the β2AR, and additionally, by performing simulations in the presence of both

an agonist and inverse agonist, was able to show that each ligand changed the preference of the

activation mechanism for a different pathway. Achieving simulations of this timescale was made

possible through use of the Google exacycle distributed computing network. The study also included

virtual screening at a number of metastable states along the activation pathway, showing that

different chemotypes preferred binding at different states of the GPCR ensemble. A second study of

GPCR activation, also of the β2AR, focused on the opening of the central water channel during

deactivation, but with more limited computational resources, this study only examined a single

inactivation event that occurred over 1 microsecond.109
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Many of the MSM studies of functional proteins described above were performed with a

ligand bound for the duration of the simulations, but only the effect of the ligand on the protein

ensemble was considered and not the ligand itself. Studies of ligand binding using MSMs have thus far

been limited and much of the method development of ligand-binding MSMs has been performed on

the benzamidine trypsin system.110–112 Individual studies have investigated a diverse range of targets:

Lawrenz et al. investigated the binding of a series of small molecule drugs to the FKBP12 protein,113

Choudhary et al. constructed a MSM of ATP binding to a voltage dependent anion channel,114 Silva et

al. constructed a MSM of lysine binding to the flexible LAO protein,115 and Huang et al. investigated

the unbinding of several weakly-binding fragments from the FK506 binding protein, and found that

the dissociation occurred through multiple pathways.116 These studies all describe the ligand position

using the raw ligand coordinates. In the benzamidine trypsin system, the ligand is approximated by a

single xyz coordinate.110 This simple approximation works because benzamidine is a small, rigid body

and easily rotates. In the studies by Lawrenz et al. and Choudhary et al., each determined that the

proteins were rigid enough that only the ligand coordinates needed to be considered.113,114 Huang et

al. incorporated protein flexibility into their model, but found the protein to be remarkably stable.116

A later study of the benzamidine trypsin system expanded the analysis to account for protein

flexibility111 which provides the additional complication of the vastly different timescales between

changes in protein conformation and ligand binding events. While this study provides excellent insight

into the ligand’s effect on protein conformation, the ligand itself was only considered to be bound or

unbound. Silva et al.’s study of ligand binding to the LAO protein provides an example of large protein

flexibility that can be described with simple descriptors. The clam-like domain movements of the LAO

protein were described using a twisting and a closing angle, although the authors had difficulty

featurizing the ligand using RMSD due to the large change in the movement of the ligand after it

ceased diffusing through the solvent and associated with the protein.115 A conclusion that can be

drawn from the studies described above is that the metrics, such as RMSD, that are generally used to

describe protein flexibility or simple ligands are not necessarily suitable for describing the motions of

more drug-like ligands, nor are these metrics suitable for dealing with the usually disparate timescales

between ligand and protein movements.

1.4.3 General methodology for MSM construction

A general method for building a MSM of a molecular system is detailed in Figure 8, the

components of this method are discussed in further detail in the sections below. Construction of the

MSM begins with conventional MD simulation of the system. The starting structures for these

simulations can be chosen in many ways; for ligand binding, a sensible approach is to start the initial

simulations with the ligand in the bulk solvent, this ensures the necessary overlap of states between
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simulations as the binding pathways are explored. There is also the potential to draw starting

structures from enhanced sampling techniques previously performed on the same system.96 Once

simulation data is obtained, the dataset needs to be featurized by reducing the dimensionality of the

system down from the set of raw atomic coordinates to a set of features that describe the processes

of interest in the system. The dimensionality of the system can be further reduced with time-structure

independent component analysis (tICA), producing a small set of dimensions that describe the most

significant kinetic events in the system. Once the dimensionality is reduced, clustering is used to assign

a set of states to the system. The transitions are then counted between these states to calculate the

transition network. The transition network can indicate states that are poorly sampled, and through

an adaptive sampling process, additional simulations can be performed to better sample these states.

Figure 8. Generalized process of Markov state model construction

1.4.4 Featurization

While in many applications of Markov models the states are known and clearly defined, in

molecular simulations the definition of the states is not known a priori. The raw coordinates of the

MD simulations represent the system in very high-dimensional space and, before suitable states can

be defined, it is necessary to choose a featurization of the system, i.e. a set of descriptors that describe

kinetically related (rapidly interchanging) regions of conformational space. Once featurized, the

system can be clustered to obtain the discrete states used to construct the MSM. The raw set of

coordinates for each frame can be used for clustering, but the raw data contains a large proportion of

redundant or highly correlated data and kinetically irrelevant noise. Practically, it is important to

establish a minimal set of descriptors that describe a significant portion of the kinetic variance over

the timescales of interest, for example the conformational changes in a small peptide are well

represented by the rotation of a few key dihedral angles.

Without prior knowledge of the pathways followed by a particular molecular system it is not

possible to devise complex featurization models, and therefore, recent MSMs117 make use of the same

simple featurization methods used in earlier models.97,118,119 The conformations of small peptides are

often described using the dihedral angles of the backbone and the presence or absence of hydrogen
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bonds native to the folded state.118 Folding of larger proteins is featurized primarily based on Cα RMSD 

from the folded state97 or distances between residues which make contact in the native structure.119

With an understanding of the kinetics of a target system it is possible to devise more sophisticated

featurizations, although this should be done cautiously. Sorin et al. used the presence of helix or coil

secondary structure to featurize a 16-residue peptide120 but a later study found the helix-coil

transitions in this peptide to be too close kinetically to warrant separate clusters.121

It is frequently useful to apply a dimensionality reduction to the featurization, as even a simple

featurization will have many correlated dimensions. Time-structure independent component analysis

(tICA)122 is a dimensionality reduction method that has proven useful in building MSMs.123,124 tICA is

similar to principal component analysis, which identifies sets of features that are related to the largest

geometric movement in the system. tICA instead identifies the sets of correlated features that are

responsible for the slowest events in the system and thus have the greatest kinetic relevance to the

process of interest. A free energy surface can be projected onto the resultant tICs (Figure 9), which

can indicate whether areas have been well sampled over a pair of dimensions and is a good indication

of dataset quality. The downside of the tICA analysis is that the tICs are largely abstract dimensions

and are difficult to map back to the original features. Nevertheless, tICA has proven highly effective

for the construction of MSMs as it can reduce a featurization down to a handful of dimensions and,

by eliminating large amounts of noise, increase the quality of the model.123–125

Figure 9. A free energy surface projected onto 2 tICA dimensions. Darker areas indicate a higher
population and thus lower free energy. Cluster centers are shown as yellow circles. An individual
trajectory is mapped onto the surface as a gradient line, changing from white to blue as the trajectory
progresses.
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Simple featurizations do not necessarily scale well to larger or more disordered proteins. In

the case of intrinsically disordered proteins, an RMSD featurization can be misleading due to large

changes regularly occurring between kinetically close states.126 For large proteins, the increased

dimensionality, due to the number of atoms and contacts to consider, leads to an increase in statistical

error, requiring more data to produce the same quality model. This scaling problem is largely solved

by tICA,124 which essentially identifies kinetically relevant dimensions from the simple featurization.

The use of tICA has quickly come to be considered best practice and has been shown to both reproduce

the results of previous MSMs using simple featurizations125 and to enable the construction of MSMs

for intrinsically disordered proteins.125,126

1.4.5 Clustering

With a suitable featurization method established, the featurized data is then clustered to

discretize the energy landscape into a set of states and to assign every MD trajectory frame to one of

those states. There are a large number of clustering algorithms to choose from, each with advantages

and disadvantages. The most frequently used clustering algorithms for MSMs are k-means

clustering,127,128 k-centers clustering,129 and hierarchical clustering.130 K-means clustering results in

more cluster centers in regions of high density, ensuring energy minima are well described, but data

in sparse areas is likely to be poorly assigned. The k-centers clustering method evenly distributes

cluster centers over the free energy surface, ensuring that all space is covered, but poorly describes

areas of high density. Hierarchical clustering is deterministic and maps out a dendrogram, relating

every data point through similarity and allowing the number of clusters to be chosen post-calculation

but at the cost of the increased computational complexity, which can make it impractical. For this

work we have primarily used k-means clustering due to its efficiency when working with large datasets.

Ideally, each state produced should correspond to an energy well on the real free energy surface.

Much of the earlier MSM work118,131 was performed using smaller, manually curated cluster

sets. The integration of clustering into the workflow of MSM specific software packages has allowed

the automated clustering of systems using any algorithm or metric for which a software

implementation is available.99,101 The majority of studies have utilized k-means clustering, which is

shown to generally outperform other commonly used algorithms, and surpassed only by the more

computationally expensive hierarchical clustering with Ward’s method.132

1.4.6 Calculating the transition network

Constructing the transition network for a Markov state model is more involved than simply

counting the transitions between each state. Practically, due to featurization and discretization

(clustering) error, each state is likely to have internal energy barriers which make the transitions out
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of the state history dependent, or non-Markovian. In order to determine the transition probability out

of a given state, the system must be given time to cross the intra-state energy barriers and reach an

equilibrium within that state, and by doing so, the transitions out of the state become history

independent. The time that is given to the system to reach an intra-state equilibrium is called the lag

time (τ).

To choose an appropriate lag time the timescale of the slowest processes in the system (and

therefore the most kinetically significant) are estimated for each of a series of lag times using Equation

(2):95

� � =
�

� �
(2)

where ti is the implied timescale of process i, λi is the eigenvalue of the transition matrix associated

with process i, and τ is the lag time. The estimated timescales of individual processes can then be

plotted as a function of the lag time as shown in Figure 10. Once a lag time that is sufficient for the

states in each process to reach equilibrium has been reached, the predicted timescales should remain

constant for any greater lag times and the curve will be seen to flatten out. The drawback of using a

lag time is that any events that occur faster than the chosen lag time will be “blurred” out in the

resultant model. Therefore, a decision can be made to sacrifice accuracy for an increased resolution

by choosing a lower lag time, although the resultant model may not be Markovian.

Figure 10. An implied timescale plot showing implied timescales of the 10 slowest processes in a
system (y) at a range of lag times (x). Implied timescales are shown on a logarithmic scale, and the
shaded area indicates the noise-dominated region where timescales are faster than the lag time.

Once the MSM states and lag time have been established, the probabilities of transitions

between individual states can be calculated. Transitions between states are counted using a sliding
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window approach (Figure 11), giving a set of raw counts for every state-to-state transition. If both the

forward and backward pathways have been simulated rigorously, these raw counts can be directly

converted into transition probabilities. More commonly, unbinding or unfolding occur on much slower

timescales than binding or folding, and the key transitions in these pathways are far less sampled than

the forward pathways. Maximum likelihood estimation can be used to better estimate the backwards

transitions by assuming an equilibrium between the forward and backward events,133 thereby

producing a set of modified counts that are used in place of the raw counts. The network of transition

probabilities produced is the MSM.

Figure 11. Transitions between states are counted using a sliding window approach; the fixed length
of the window is the lag time and a transition is counted between the state at the start and end of the
window as it slides along the trajectory 1 frame at a time. E.g. in this figure the first three transitions
counted are between state 0-2, 1-2, and 1-1.

The MSM resulting from the above clustering and analysis process often has far more states

than are human-readable, and while these are suitable for calculations using transition path theory, it

is generally useful to produce a coarser macrostate model. Several methods exist (e.g. PCCA+134 or

BACE135) to combine kinetically close states together into a smaller set of macrostates that is much

easier to interpret.

1.4.7 Adaptive sampling.

It is uncommon to construct a MSM from a set of trajectories produced in a single iteration.

More often, the MSM is iteratively assembled from batches of simulations through a process called

adaptive sampling.112,136 Adaptive sampling involves deriving and analyzing an incomplete transition

network after each batch of simulation to determine undersampled areas or other

interesting/problematic areas of the network so they can be explored with future batches of

simulations. Adaptive sampling provides a significant gain to efficiency by avoiding wasting effort

resampling already sufficiently sampled areas.137 Adaptive sampling is also critical to efforts to
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automate the Markov state modeling process. When running small batches of simulations manually,

the manual setup time can often exceed the simulation time.

With the choice of featurization and clustering algorithms left to the user, effort has been

directed towards developing automated methods of MSM construction, and the development of

adaptive sampling algorithms to efficiently generate a dataset. One of the early implementations of

adaptive sampling focused on improving the precision of the transition probabilities in pre-existing

MSMs.138 Applied to a model system, this adaptive sampling approach produced an order of

magnitude decrease in the number of samples required to reach a given precision when compared to

a naïve sampling algorithm. A later expansion of these methods, which based adaptive sampling on

the variance of the distributions of the eigenvalues and eigenvectors, produced a 3 orders of

magnitude gain in precision for the slowest timescale in the system.139 In order to apply adaptive

sampling to the sampling of a new model, it was found more useful to base the additional sampling

on connectivity based metrics, by identifying states with poor connectivity to the rest of the network

as candidates for further sampling.137 Doerr et al. were able to automate the entire process of

constructing their ligand binding MSM, from simulations through to the final model, by adaptively

sampling from the states with the longest mean first passage time (MFPT) from the bulk solvent,

reasoning that longer MFPTs likely indicated that states were both closer to the bound state and more

in need of additional sampling.112 They found that by using this adaptive sampling method, their

predicted ΔG of binding converged to the experimental value using an order of magnitude fewer 

simulations.

1.4.8 Hidden Markov models

Hidden Markov models (HMMs) are a cousin of MSMs.140,141 HMMs have seen widespread

application across many fields for their usefulness in pattern recognition.142,143 In terms of simulating

biological systems, HMMs are popular for their ability to greatly decrease discretization error by

interweaving the processes of clustering and transition network construction, resulting in far fewer

(but less errorful) states.144,145 As coarser states make it more difficult to isolate undersampled regions,

HMMs are less suitable for adaptive sampling and are typically produced from the final dataset, in

some cases using a MSM as an initial guess.146,147

The methods for generating HMMs are similar to those used for MSMs, up until the clustering

phase. Rather than discrete states, HMMs assign states as a Gaussian distribution in the featurization

dimensions. Thus every frame has a probability of belonging to multiple states.148 A transition network

is then constructed with every frame assigned to its most probable state and the entire network is

assigned a likelihood score. The Gaussians are then adjusted to increase the likelihood of the network
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by effectively adjusting the state assignments to better match the transition probabilities and a new

network is constructed. This process is continued for a specified number of iterations or until

termination criteria are met and the model with the highest likelihood is kept. Construction of an

HMM is illustrated in Figure 12 in which there are two states within an energy landscape (orange and

blue) and each frame (circle) has a probability of belonging to either state, based on its position in the

energy landscape. Frame A has a 75% probability of being orange and is observed to transition to

frame B, which is blue. Two models are created, model 1 which has frame A assigned to orange, and

model 2 with frame A assigned to blue. In model 1, frame A has a 75% chance of being orange and the

transition to blue has a 20% chance, giving a likelihood of 0.75 × 0.20 = 0.15. In model 2, frame A has

a 25% chance of being blue and the transition to blue has an 80% chance, giving a likelihood of 0.25 ×

0.80 = 0.20. Therefore the state assignment in model 2 has a higher likelihood. The likelihoods for all

observations are summed to generate a likelihood for the entire model. The state definitions are then

revised and a new set of transition probabilities is generated.

Figure 12. Two states (defined by Gaussians) on a free energy surface are represented by the orange
and blue ellipses. Individual frames are represented as circles on this landscape. The possible
transitions between states are shown as grey arrows with their associated probabilities, and the
observed transition between two frames (A and B) is shown with a black arrow.

1.5 Aims and scope of thesis

It has been known for many years that models used to describe the ligand-binding process

simplify the intricacies of ligand binding. The reason we rely on these models is that the commonly

used experimental methods for structure-based drug design, namely X-ray crystallography and NMR,

convey little information about the dynamics or events involved in ligand binding. In contrast,

computational methods allow modeling ligand-binding systems in a time- and structure-resolution

that is inaccessible to experimental methods, making computational methods particularly useful for

investigating experimentally challenging systems such as G protein-coupled receptors, where the
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available structural information covers only a small fraction of the known targets, and a smaller still

fraction of their dynamic ensembles. GPCRs are targets of immense pharmaceutical interest and are

priority targets for new methodologies in both computational and experimental fields. This thesis aims

to both expand the available structural and dynamic information for GPCRs, and their ligands, and

improve the computational methodologies that can be used to study the behavior of ligands binding

to GPCRs and other pharmaceutically important targets.

The overall aim of this work is to investigate the process of ligand binding, and its dynamics,

at the atomic level using computational methods.

In Chapter 2 we present a methodology for the homology modeling of GPCRs. To address gaps

in the structural knowledge of GPCRs, we develop homology models of 5 muscarinic acetylcholine

receptors using the crystal structure of the β2 adrenergic receptor as a template. In order to optimize

the binding site of our homology models and improve them over naïve homology models, we include

an extra step into our methodology, using induced-fit docking to include functional knowledge into

the model-building process. The ability of these models to select for known actives over decoy

compounds is evaluated through virtual screening and this ability is then compared to that of crystal

structures of the same receptors, as well as naïve homology models constructed from these crystal

structures.

In Chapter 3, we employ MD simulations to investigate the binding of haloperidol and

clozapine to the D2 and D3 dopamine receptors. The goal of this work is to predict the bound state of

these pharmaceutically important ligands and other metastable states that may be of use in drug

design. This is the first time the binding pathways of these ligands have been simulated. We improve

upon most studies in the literature by running simulations for a timescale long enough to examine the

pathways that each ligand follows to the bound state, and compare these pathways between the 2

dopamine receptors.

A primary limitation of computational methods is the timescales of the dynamics they can

access. The accessible timescale for a molecular simulation depends on the available hardware and

the level of approximation used in the computation. Markov state models present a new methodology

that not only makes more efficient use of the available hardware but also serves to extend the

accessible timescales further, without adding new approximations or bias to the simulations. While

much of the existing MSM methodology was developed to solve protein-folding problems, we devise

an improved workflow and implement new system descriptors that allow us to apply this promising

new method to investigate ligand-binding systems. During the process of developing the ligand-

binding MSM methodology, we switch our investigations to a model system, and in Chapter 4 we
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employ molecular dynamics simulations to investigate the binding of oleic acid to the liver fatty acid-

binding protein. We perform many simulations with an aggregate simulation time that is 2 orders of

magnitude longer than previous studies of an FABP system, thereby providing insight into the process

of ligand binding to FABPs. By introducing MSMs, we expand and improve on the methods employed

in Chapter 3, allowing us to further improve the sampling of molecular system and gather statistics on

the ligand-binding pathway.

Chapter 5 returns to our investigations of haloperidol binding to the D3 dopamine receptor.

We develop the Markov state modeling methodology presented in Chapter 4, greatly improving the

ability of the method to efficiently and robustly sample ligand-binding systems. We then apply this

methodology to the GPCR system and build upon our previous findings by expanding our sampling to

the entire binding ensemble and identifying novel binding pathways.

Finally, we present a brief conclusion to this thesis.
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Chapter 2
Homology Modeling of Human Muscarinic Acetylcholine Receptors

G protein-coupled receptors are targets of immense pharmaceutical interest, but often

GPCR-targeting drugs exhibit undesirable side-effect profiles due to a lack of selectivity between,

and within, receptor subfamilies. Although all GPCRs have a similar topology, small changes in the

binding site can lead to large changes in selectivity between ligands. Obtaining structures of GPCRs is

still a challenging process and experimental structures have only been determined for a limited

number of receptor subtypes. Homology modeling is an effective means of developing structures for

other subtypes where these structures could be used to predict the bound pose of ligands, identify

hits during prospective virtual screening, or as starting structures for molecular dynamics

simulations. When developing GPCR homology models, one needs to be careful to choose an

appropriate template structure and validate that the binding site is receptive to the appropriate

ligands.

At the time the work on this chapter began, there were no available crystal structures of

muscarinic acetylcholine receptors, so we set out to create a set of homology models of the 5

human muscarinic acetylcholine receptors (M1R – M5R) that could be used for drug design. We

refined the homology models by training the binding sites with induced-fit docking of known active

ligands. As work was nearing completion, crystal structures became available for the M2R (human)

and M3R (rat) variants, providing closer initial template structures than we had used for our models.

We expanded the work to demonstrate that, not only were our models suitable for prospective

virtual screening, but the training we had incorporated into our models made them superior to the

newly released crystal structures or a naïve homology model constructed from the closer templates.

This chapter is the published article:

Thomas, T.; McLean, K. C.; McRobb, F. M.; Manallack, D. T.; Chalmers, D. K.; Yuriev, E.

Homology Modeling of Human Muscarinic Acetylcholine Receptors. J. Chem. Inf. Model. 2014, 54,

243–253.
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ABSTRACT: We have developed homology models of the acetylcholine muscarinic receptors M1R−M5R,
based on the β2-adrenergic receptor crystal as the template. This is the first report of homology modeling of all
five subtypes of acetylcholine muscarinic receptors with binding sites optimized for ligand binding. The models
were evaluated for their ability to discriminate between muscarinic antagonists and decoy compounds using
virtual screening using enrichment factors, area under the ROC curve (AUC), and an early enrichment
measure, LogAUC. The models produce rational binding modes of docked ligands as well as good enrichment
capacity when tested against property-matched decoy libraries, which demonstrates their unbiased predictive
ability. To test the relative effects of homology model template selection and the binding site optimization
procedure, we generated and evaluated a naıv̈e M2R model, using the M3R crystal structure as a template. Our
results confirm previous findings that binding site optimization using ligand(s) active at a particular receptor,
i.e. including functional knowledge into the model building process, has a more pronounced effect on model quality than target−
template sequence similarity. The optimized M1R−M5R homology models are made available as part of the Supporting
Information to allow researchers to use these structures, compare them to their own results, and thus advance the development
of better modeling approaches.

■ INTRODUCTION
The use of structure-based design methods for G protein-
coupled receptors (GPCRs) is an active area of research.1−4 It
commenced in the early 2000s after the landmark report of the
crystal structure of bovine rhodopsin5 and accelerated after
2007, when the first crystal structures of ligand-infusible GPCR
complexes were solved.6−8 Technological advances have greatly
improved the success of GPCR crystallization7,9,10 and, at the
time of writing, over 30 crystal structures of GPCRs have been
solved.11 However, GPCR crystallization is still an area of
highly specialized expertise with most structures coming from a
limited number of research groups. As a result, the number of
available structures is still very small given the ∼800 GPCRs
present in the human genome, including 342 nonolfactory
receptors.12 Many GPCR families are still not covered by the
currently available high resolution structural information, and it
is accepted that, at present, solving structures for all members
of the GPCR superfamily is not a realistic goal.1,4

Consequently, in the absence of experimental structural data,
researchers who wish to use structure-based methods to target
GPCRs turn to homology models for docking and virtual
screening (VS).13 In several of these drug discovery campaigns,
GPCR homology models have proven useful for discovering
agents for a range of GPCR targets (Table 1).
While generally an established technique, generation of

GPCR homology models for virtual screening can be a
speculative exercise, relying on many assumptions and
suppositions. Therefore, careful consideration of several related
aspects is required when such an exercise is undertaken. (i)
Robustness of the computational protocol. This aspect
comprises quality of both homology modeling and docking

algorithms and should always be evaluated against relevant
targets for which experimental data is available: structural data
for validating homology modeling and activity data for
validating VS. The ultimate question that must be answered
is whether the combination of the evaluative model and the
protocol used can distinguish between known actives and drug-
like decoy molecules. (ii) Quality and appropriateness of the
input structural data; specifically the choice of template.
Choosing a template for GPCR homology modeling has been
previously evaluated;14−17 however, with the ever-increasing
number of available templates, this question cannot be resolved
once and for all and requires regular re-evaluation. (iii)
Predictive quality of the generated homology models. To
address this final issue, homology models should be evaluated
in a virtual screening scenario with a particular focus on decoy
selection. Because of the importance of these issues, there is
currently a considerable interest in evaluating homology
modeling and VS protocols as applied to GPCRs.18−20

In this study, we have addressed all of the above issues by
modeling the five subtypes of muscarinic acetylcholine
receptors (mAChRs) and evaluating them using virtual
screening. The mAChRs receptors (M1R−M5R) can be
subdivided into two functional classes based on their G protein
coupling preference.21 The M1R, M3R, and M5R selectively
couple to G proteins of the Gq/G11 family while the M2R and
M4R preferentially activate Gi/Go-type G proteins. Activation of
mAChRs leads to a wide range of biochemical and physiological
effects, primarily depending on the mAChR location and
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subtype. The M1R, M4R, and M5R subtypes are mainly
expressed in the central nervous system (CNS); whereas, the
M2R and M3R subtypes are widely distributed both in the CNS
and in peripheral tissues. Specifically, we have generated
homology models of mAChRs M1−M5, using the β2-adrenergic
receptor (β2AR) crystal structure (PDB ID: 2RH1)6 as the
template and have optimized their orthosteric binding sites
using the induced fit docking (IFD) procedure.22 (i) We have
demonstrated the robustness of our homology modeling/VS
protocol using the β2AR crystal structure in complex with the
inverse agonist carazolol and β2AR antagonist and inverse
agonist activity data. We have further verified the protocol by a
validation against the β2AR crystal structure in complex with
alprenolol.23 (ii) To assess the predictive quality of the M1R−
M5R models, we have carried out virtual screening inves-
tigations of all five homology models. The models have been
tested against property-matched decoy libraries to demonstrate
their unbiased predictive capacity. (iii) Furthermore, after the
M2R (human)24 and M3R (rat)25 crystal structures became
available, a naıv̈e (i.e., nonoptimized) M2R model was
generated using the M3R crystal structure as a template.
Evaluating VS performance allowed comparison between the
models: naıv̈e but based on a close-sequence template and
optimized but based on a more remote-sequence template. Our
results support previous findings that binding site optimization
using ligand(s) active at a particular receptor, i.e. including
functional knowledge into the model building process,26 has a
pronounced effect on model quality for virtual screening. It is
clear from our results that carefully designed and knowledge-
based homology structures, built with templates with greater
than 35% overall similarity in the trans-membrane region,1 are
at least as useful in VS as crystal structures. Finally, similar to
our previous work,27 we have released the coordinates of the
five optimized muscarinic receptor structures in the spirit of
open science research.

■ EXPERIMENTAL SECTION

Software. Molecular modeling was performed with the
Schrödinger software suite.40,41 Homology models of the five
muscarinic M1−M5 acetylcholine receptors were built in
Prime42 (v 3.0 and 3.1) from a multiple sequence alignment
generated in ClustalW43 using the Maestro interface (v 9.2 and
9.3). Ligand molecules were prepared using LigPrep44 (v 2.5),
and the binding site was optimized using the IFD protocol22

following the previously developed procedure.27 Ligands were
docked into the homology models using Glide45,46 (v 5.7 and
5.8). Default settings were used, unless otherwise stated.
Physical descriptors evaluated for comparison of the decoy sets
with the active compounds included molecular weight (MW),
number of rotatable bonds, number of hydrogen bond donor
and acceptor atoms, and calculated logP (ClogP). These
physical properties, along with polar surface area (PSA) and
vdW volume, were computed using the ChemAxon Marvin
Calculator (cxcalc) (http://www.chemaxon.com). The 2D
Tanimoto score (calculated using fragment sizes of 1−7
atoms, ignoring hydrogens) was measured to demonstrate the
diversity of the structures within the ligand sets.47 The
workflow followed in this study is shown in Figure 1 and
described in detail in the following sections.

Homology Modeling. The sequences of the human
dopamine, serotonin, α- and β-adrenergic, adenosine, hista-
mine, muscarinic, and bovine rhodopsin receptors were
obtained from the Universal Protein Resource (http://www.
uniprot.org/) and aligned using ClustalW. The multiple
sequence alignment generated was manually edited to remove
gaps in helices and to anchor highly conserved residues in each
transmembrane (TM) helix. Naıv̈e homology models for the
five human mAChRs were built in Prime v 3.0 from the
multiple sequence alignment, using the β2-adrenergic receptor
(PDB ID: 2RH1) crystal structure6 as the template. The human
muscarinic M2 acetylcholine receptor was also built in Prime v
3.1, using the rat muscarinic M3 acetylcholine receptor (PDB

Table 1. Prospective Virtual Screening Campaigns against GPCR Homology Models

targeta templatea

homology
modeling
program

docking/
screening
program screening library hit rateb affinity (number of compounds)c ref

D3R β2AR, β1AR MODELLER DOCK3.6 prefiltered ZINC28

(3000K+)
23%
(20%)

Ki = 0.2 − 3.1 μM (6) optimized Ki =
81 nM (1)

29

CXCR4 rhodopsin, β2AR,
β1AR, A2AR

MODELLER DOCK3.6 lead-like subset of ZINC
(3300K)

4%
(17%)

IC50 = 107 μM (1) 30

CXCR7 rhodopsin, β2AR,
β1AR, A2AR,
CXCR4

MOE CONSENSUS-
DOCK

3 proprietary collections
(187K, 402K, 196K)

3.3% IC50 = 1.29−11.4 μM (21) 31

S1PR1d rhodopsin GPCRgen Snooker diverse subset of MSD/
Organon library (50K)

NR pKi = 4.3−4.7 (3) 32,
33

A2AR β1AR MODELLER,
MOE

Glide CAP, BioFocus SoftFocus
(545K)

9% pKi = 7.5−9.0 (6) (13 to >100-fold
selective vs A1R)

34

5-HT7R
d rhodopsin MODELLER Glide Enamine Screening

Collection (730K)
NR Ki = 0.197 and 0.265 μM (2) 35,

36
5-HT2R β2AR MODELLER DOCK3.5, MM-

GBSA
FDA drug library, filtered
by MW (1430)

NR Ki = 1.959 mM (1) 37

MCH-1R β2AR MOE GOLD commercial vendor
catalogues (45K)

14% IC50 = 131 and 213 nM (2 most potent
out of 10 novel chemotypes)

38

CB2R β2AR CHARMM for
“activation”

GOLD filtered subset of ZINC
(273K)

12% Ki = 2.3 nM−71.43 μM (13) 39

aReceptor abbreviations: adenosine AX receptor, AXR; βX-adrenergic receptor, βXAR; cannabinoid receptor 2, CB2R; C−X−C chemokine receptor 4,
CXCR4; dopamine D3 receptor, D3R; melanin-concentrating hormone-1 receptor, MCH-1R; serotonin 5-HTX receptor, 5-HTXR; sphingosine 1-
phosphate receptor, S1PR1. bHit rates are estimated differently in various studies. Where available, we quote hit rates for VS against crystal structures
for comparison, in parentheses. NR = not reported. cReported as per original papers. dA combination of ligand-based and structure-based approaches
were used in this campaign.
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ID: 4DAJ) crystal structure25 as the template. Further details
are described in our previous work.27

Binding Site Optimization. The β2AR crystal structure
(PDB ID: 2RH1) and the mAChRs homology models were
treated by the Protein Preparation Wizard workflow,44 prior to
docking. Hydrogen atoms were added and minimized using the
OPLS_2005 force field. The side chain conformations of the
residues within the ligand binding site were refined by docking
an appropriate antagonist or inverse agonist into each of the
built muscarinic receptor homology models and the β2AR
crystal structure using the IFD protocol. The docking site was
centered upon the residues Asp 3.32, Trp 6.48, Phe 6.52, and
Tyr 7.43 (Ballesteros−Weinstein numbering48) and was
defined by a box of dimensions 28 × Å 28 Å × 28 Å. Up to
50 poses per ligand were collected in the initial Glide docking
step, with both the van der Waals (vdW) radii and the partial
atomic charges scaled to 0.5 in order to collect a more extensive
range of poses.
Prime was used to optimize residues within 5 Å of ligand

atoms, excluding Asp 3.32 and Trp 6.48, which play a critical
role in correctly orienting ligand molecules. Trp 6.48 is a key
residue of the aromatic cluster of TM5 and TM6, believed to
act as a “micro-switch”, important for receptor activation and
inactivation.49 The IFD protocol was found to consistently
cause Trp 6.48 to undergo a conformational “flip” during the
Prime step, forcing the bulky indole side chain down and away
from the binding pocket. For M1R−M5R models, when Trp
6.48 and Asp 3.32 were omitted from binding site optimization,
more credible ligand poses were obtained, which led to better
enrichment. Pala et al.16 report a similar observation for VS-
evaluated homology models of the MT2 melatonin receptor,

namely that residues known to form critical ligand contacts
tended to adopt a conformation not favorable to forming such
contacts. They have taken this observation as another reason
for “calibrating” models (e.g., by VS evaluation) to determine
the domain of their applicability.
Following optimization with Prime, the ligand was redocked

into the optimized receptor conformations with Glide, using
default vdW and charge scaling parameters. Multiple ligand−
receptor poses were generated for each model. Successful poses
were chosen on the basis of the position and orientation of the
ligand within the binding pocket, key hydrogen bonding and
vdW interactions, and the relative energy of interaction (a
composite of the protein and ligand energy scores: IFDScore =
GlideScore + 0.05 × PrimeEnergy). A maximum of 20 poses
were collected. During the IFD optimization of the binding
sites, we monitored the distance (ndist) between the ionizable
or quaternary nitrogen of the ligand (for simplicity we will just
refer to this atom as the “ionizable nitrogen”) and the closest
carboxylate oxygen of the conserved Asp 3.32 residue. This
residue has been determined by site-directed mutagenesis to be
crucial in the ligand-binding mode of all aminergic GPCRs.50

The term ndist is a quantitative measure of this important ionic
interaction, and receptors with ndist > 3.0 Å were excluded
from further analysis.

Virtual Screening Libraries. Active compounds known to
act at the β2-adrenergic and muscarinic receptors were used to
enrich the decoy compound databases (20 actives for β2AR and
48 actives for mAChRs; see Table S1 for the lists of actives and
ref 27 for chemical structures). The active compounds were
downloaded from the GLIDA database51 (http://pharminfo.
pharm.kyoto-u.ac.jp/services/glida/). Protonation states and
formal charges at physiological pH (pH 7.4 ± 2.0) for each
active ligand and decoy compound were assigned in LigPrep.
One structure per compound was selected for screening.
Three sets of decoy compounds were used in this study. Set

1, containing 1000 drug-like decoy compounds, was obtained
from Schrödinger (http://www.schrodinger.com). This set had
been randomly selected from a library of one million
compounds having properties characteristic of drug mole-
cules.45,46 We have analyzed the properties of the decoy ligands
and active compounds: molecular weight (g/mol), number of
rotatable bonds, polar surface area (Å2), calculated logP,
number of hydrogen bond donors and acceptors, solvent
accessible volume (Å3), and 2D Tanimoto score. Generally, the
properties of the active compounds were found to be similar to
those of the decoy library (Table 2). The molecular weights
varied from 151 to 645 g/mol, with an average of 360 g/mol.
These decoys were not specifically chosen to mimic muscarinic
antagonist compounds, as we first wanted to ascertain whether
our models were capable of identifying active ligands from
within a broad representation of drug-like compound space.
Decoy set 2 was derived from the ZINC database28 (7 233

297 compounds, database version 7) by a process of successive

Figure 1. Flowchart of homology modeling and model evaluation.

Table 2. Average Ligand Properties

ligand set MW (g/mol) rotatable bonds PSA (Å2) ClogP H-bond donor H-bond acceptor vdW volume (Å3) 2D Tanimoto score

M1R actives 324 5.1 31 3.03 1.4 1.6 318 0.233
decoy sets

1: Schrödinger 360 5.0 84 2.90 2.0 4.2 316 0.125
2: ZINC 320 4.3 38 3.43 1.4 1.7 302 0.185
3: refined Schrödinger 343 4.8 79 2.59 2.4 3.3 312 0.143
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eliminations, creating a subset of molecules that closely adhered
to the physical properties of the actives (Table 2). Specifically,
decoys were required to fall within a similar normal distribution
as the active compounds (265−434 g/mol; mean 322 g/mol;
standard deviation 40 g/mol). Decoys were also required to
contain an ionizable nitrogen and not to contain more than
three hydrogen bond donors or four hydrogen bond acceptors.
Finally, each decoy was required to have a Tanimoto score of
less than 0.8 with respect to all other molecules within the set
to ensure topological diversity. 1000 molecules were randomly
selected from a larger subset satisfying the applied criteria, so
that direct comparisons could be made between the screening
results using the Schrödinger and ZINC libraries, in terms of
enrichment factors and early hits. A carefully selected set of
1000 molecules seems to be sufficient to detect enrichment
trends. Huang et al. found that there was little size-dependent
behavior detected when screening with their entire Directory of
Useful Decoys (DUD)52 of 98 266 molecules compared to a
randomly selected subset of 1000 molecules.
Decoy set 3 (refined Schrödinger) was a subset of the decoy

set 1, with molecular weight limited to be consistent with that
of the active compounds (260−410 g/mol). All compounds
from the Schrödinger decoy library with a molecular weight
which fell outside the range of the active compounds were
removed. Furthermore, all decoy compounds which did not
contain an ionizable nitrogen were similarly removed to create
a more challenging decoy set of 261 compounds.
Enrichment Studies. Molecular docking studies were

performed using Glide, which flexibly docks ligands into a
rigid receptor model. The docking site was centered upon the
coordinates of carazolol (the inverse agonist present in the
β2AR crystal structure) and limited to accommodate ligands up
to 18 Å in length. The midpoint of each ligand was bound to an
inner box of 10 Å3. Postdocking minimization retained a single
pose per ligand. Both the Standard Precision (SP) and the
Extra Precision (XP) scoring functions were evaluated, and XP
gave marginally better results, which are presented here. Poses
were ranked using GlideScore. Following docking, models were
visually inspected to ensure that the ligands were well oriented
within the defined binding pocket and to ensure that important
expected interactions, based on mutagenesis studies,53 were
found between ligand and receptor molecules. Enrichment
factors (EF) were calculated at 2, 5, and 10% of the total
number of compounds (Ntotal) screened, according to EFx% =
(Hitssampled/Nsampled) ÷ (Hitstotal/Ntotal).

■ RESULTS
Method Evaluation: β2 Adrenergic Receptor Ligand

Docking. Our modeling protocol encompasses generating
multiple IFD complex structures and selecting final receptor
models. To evaluate the protocol, we used the β2AR as a test
case. Thirty-three structures of the β2AR/carazolol complex
were generated using IFD. To test the ability of our modeling
and VS evaluation workflow to preferentially retrieve known
actives, we docked 20 known β2AR antagonists (see Table S1 in
the Supporting Information) and the library of Schrödinger
decoys into all 33 receptor models. Higher enrichment factors
and area under the enrichment curve (AUC) values and lower
average distance between the ligand ionizable nitrogen and Asp
3.32 (ndist) correlated with greater model efficiency in
selecting active molecules early in the screen. The properties
of the top 5 highest ranked models are shown in Table 3, and a
complete list is provided in Supporting Information Table S2. A

detailed comparison between β2AR/carazolol IFD complexes
and carazalol- or alprenolol-bound crystal structures is
presented in the Supporting Information. This test case
shows that our protocol can retrieve correct binding modes
for β2AR/carazolol complexes (i.e., consistent with crystal
structures).

Homology Modeling of Muscarinic Receptors. Binding
Site Optimization by IFD. Clozapine and atropine were chosen
as the optimizing ligands for IFD since they have high affinity
for the M1−M5 receptors; reported clozapine Ki values vary
from 1.4−5.0 nM and atropine Ki values range between 0.2 and
1.5 nM.54 Following the VS procedure, described below, we
found that the atropine-optimized model for the M1R gave the
best enrichment, while the best M2R−M5R models were
optimized using clozapine.

Model Quality Evaluation by VS.We evaluated the ability of
the receptor models to prioritize active compounds over decoy
molecules. The decoy libraries, enriched with the respective
active compounds (see Table S1 in the Supporting
Information), were docked into the receptor models. The
IFD ligands, used for binding site optimization, were excluded
from virtual screening to remove any potential structural bias.
While enrichment plots and enrichment factors (EFs) are still
routinely used for evaluating VS performance (e.g., ref 18), they
are not ideal and do not account for several aspects of virtual
screening. ROC curves are superior to enrichment plots in that
they not only reflect the selection of actives, but also the
nonselection of decoys.55,56 The metric afforded by a ROC
curve is the area under the receiver operating characteristic
curve (ROC AUC), which gives an indication of the total
number of compounds successfully docked into the model and
is interpreted as the probability that a randomly chosen active
has a higher score than a randomly chosen inactive. Several
metrics, such as NSQ_AUC57 and LogAUC,58 have also been
developed to focus on early, rather than overall, enrichment.
ROC curves for the M1R−M5R models are shown in Figure

2. Enrichment plots and semilogarithmic ROC curves are
provided in the Supporting Information (Figures S2 and S3).
We also report the ROC AUC and LogAUC metrics, as
enrichment measures (Table 4). The LogAUC preferentially
weighs early enrichment by computing the percentage of the
ideal area under the semilog ROC curve.The results reveal
excellent enrichment capacity for M2R, M4R, and M5R models
with the latter having particularly good early enrichment.
Although, the M1R and, particularly, the M3R gave lower
enrichments using all three decoy sets, their enrichment metrics
are comparable to and sometimes better than those obtained in
recent reports. For example, homology models of the MT2
melatonin receptor,16 based on the β2AR and optimized for
antagonists gave EF2% = 3.1−18.7 and of antagonists against

Table 3. Five Top Ranked Models from Virtual Screening of
the β2AR Structures Generated by IFD Using Carazolol

enrichment factor

ranking 2% 5% 10% AUC

mean
ndist
(Å)

Carazolol
RMSD
(Å)

Alprenolol
RMSD (Å)

1 21.8 13.7 8.9 0.96 2.09 0.75 0.65
2 21.8 13.7 9.4 0.93 2.30 1.50 1.95
3 14.5 12.7 8.9 0.95 2.51 1.21 1.62
4 12.1 11.7 9.4 0.95 2.36 4.37 1.95
5 12.1 12.7 8.9 0.96 2.79 1.63 1.09
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multiple β2AR crystal structures gave EF2% = 0.3−11.7 and
EF10% = 1.5−3.9.59 While our results compare favorably with
the cited work, such comparisons should not be overinterpreted
given the studies used different actives, decoy sets, and receptor
types.

The main deficiencies of the models are the failure to dock
some of the actives, shown as a gap at the end of the ROC
curves, and in the inability of the M3R model to identify a
substantial fraction of actives, shown by the M3R plots
dropping down to the “random” line at approximately 60% of
the false positive rate when using the ZINC decoy set. The
properties of actives that either did not dock or produced
docked poses with a scoring energy greater than the set
acceptable cutoff are reported in the Supporting Information
(Table S3). This data suggests that the most likely reason for
docking failure is the large size of these compounds; thus a
better M3R model might be developed by using an alternative
bulkier IFD ligand.
As a simple evaluation of the binding geometries, we

calculated the distance between the ionizable nitrogen of the
actives and Asp 3.32 (ndist). Mean values for each set are
reported in Table 4. In the majority of cases, ndist fell within
the range exhibited by ligands in 22 GPCR crystal structures
(2.52 Å (PDB ID: 2Y01)−4.02 Å (PDB ID: 4DAJ); mean 2.92
Å). This salt bridge and other key receptor−ligand hydrogen
bonding and ionic interactions were observed among many of
the top-ranked poses of active compounds. This confirmed that
not only were the models capable of producing high
enrichment, they were also generating the expected contacts.
Figure 3 illustrates binding modes of three active ligands,
demonstrating interactions with binding site residues. It could
be therefore suggested that a requirement for ndist to be less
than 4 Å may serve as a useful pharmacophore filter in
prospective virtual screening against aminergic GPCRs.
However, it should be noted that recent work by Lin et al.

Figure 2. ROC curves for M1R−M5R models: (blue) set 1, Schrödinger; (green) set 2, ZINC; (red) set 3, refined Schrödinger. The dotted line
indicates random choice (no enrichment).

Table 4. Virtual Screening Evaluation of Muscarinic
Receptors

EF (at X % of ranked
database)

receptor
ROC
AUC LogAUC0.001

mean ndist
(Å) 2 5 10

set 1 (Schrödinger decoy set)
M1R 0.81 0.35 3.89 5.3 5.5 4.7
M2R 0.86 0.50 3.72 11.7 11.4 7.4
M3R 0.74 0.38 4.11 8.5 7.6 4.9
M4R 0.82 0.41 5.07 7.4 8.4 6.4
M5R 0.85 0.53 4.00 12.7 10.1 7.4

set 2 (ZINC decoy set)
M1R 0.64 0.22 3.92 3.2 2.1 1.3
M2R 0.79 0.36 3.57 3.2 5.9 5.3
M3R 0.62 0.26 4.81 3.2 5.5 4.2
M4R 0.76 0.35 5.10 6.4 5.5 5.7
M5R 0.81 0.40 4.02 8.5 5.5 5.3

set 3 (refined Schrödinger decoy set)
M1R 0.74 0.28 3.89 2.8 2.5 2.3
M2R 0.81 0.36 3.72 2.8 3.7 4.0
M3R 0.69 0.30 4.11 3.7 2.9 3.0
M4R 0.81 0.40 5.07 4.7 4.5 4.4
M5R 0.84 0.51 4.00 5.6 5.3 5.1
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has demonstrated that activity may be achieved without making
this contact.37

Due to the high similarity of the five subtypes M1R−M5R,
compounds which act at the M1R usually also have some
affinity for the other subtypes.21 A rigorous test of model
quality would be to dock compounds with a high level of
specificity for individual subtypes into all subtypes so that an
assessment of the selectivity of the homology models could be
made. However, a significant difficulty encountered in this
project has been to identify a sufficient number of compounds
that are generally agreed to be selective for one receptor over
the other four subtypes.
Comparison of Decoy Sets. The analysis of the VS data

obtained using the Schrödinger decoy set (set 1) revealed that
the results are biased toward low molecular weight compounds
(across both active and decoy sets), which is reasonable given
the characteristic small binding pocket of mAChRs.24,25 Recent
publications have given considerable attention to the develop-
ment of receptor-appropriate decoy libraries.15,59 Decoy sets,
where the physical properties of compounds differ substantially
from the corresponding active ligands, have been shown to lead
to biased virtual screening results and often artificially good
enrichment.52

Both the ZINC and refined Schrödinger decoy sets (sets 2
and 3) were matched to actives in terms of their physical
properties, including the requirement to contain only

compounds with an ionizable nitrogen at physiological pH.
This filter was based on one of the benchmarks for model
success, specifically their ability to generate the salt bridge
between the ionizable nitrogen of a ligand and the Asp 3.32
residue of the receptor. Thus, these challenging sets of decoys
were designed to investigate whether the docking and scoring
process could select for this interaction in actives ahead of
decoys that also contained an ionizable nitrogen.
The enrichment metrics (Table 4) and ROC and enrichment

curves (Figures 2, S2, and S3 (Supporting Information))
demonstrate that indeed these sets of decoys are more
challenging (particularly, for M1R and M3R). But encourag-
ingly, the models produced enrichment and early enrichment
values similar to that of nonproperty matched decoys
(particularly, for M4R and M5R). These results indicate that
our models are indeed capable of preferentially identifying
active compounds among property-matched decoys.

Template Selection vs Binding Site Optimization. The
choice of an appropriate template for GPCR homology
modeling is an area of long-standing debate.14−16 It has
recently been demonstrated that, while important, the choice of
template should be made while also considering issues such as
binding site optimization and knowledge-enhancement of
homology models. Specifically, Tropsha and co-workers26

have compared the VS effectiveness of β2AR crystal structures
with a range of historical β2AR models that were built before

Figure 3. Cartoon representation of the M2R model, showing the docked poses of the three highest ranked actives (A) and a close-up of
cyclopentolate surrounded by its interacting residues (B). Color coding: cyclopentolate (green), tolterodine (yellow), and methantheline (pink).
Binding site residues are blue.

Figure 4. ROC curves for the M2R naıv̈e model (left), the M2R optimized model (middle), and the M2R crystal structure (right): (blue) set 1,
Schrödinger; (green) set 2, ZINC; (red) set 3, refined Schrödinger. The dotted line indicates random choice (no enrichment).
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the crystal structures became available. They demonstrated that
several models produced VS enrichment comparable to and
even exceeding that of crystal structures.
Here we investigated the proposal that an optimized

homology model may approach the quality of a crystal
structure, even though it is based on a remote template.
Using the recently solved structure of the rat M3R

25 as a
template, we built a naıv̈e human M2R homology model, i.e. a
homology model that has not been optimized by IFD. This
naıv̈e model had an RMSD of 1.64 Å to the human M2R crystal
structure. It can be seen from the results of VS (Figures 4, S4,
and S5 (Supporting Information) and Table 5) that the

optimized model, based on the β2AR template, significantly
outperforms the naıv̈e M3R-based variant and produces results
close to those for the M2R crystal structure. These results
mirror those obtained in VS against the homology models of
the MT2 melatonin receptor where the EF2% increased from 0
to 5.2 for a crude model to 3.1−18.7 for an optimized model.16

Similar to the observations for other muscarinic models (Table
4), decoy sets 2 and 3 (ZINC and refined Schrödinger) make
discrimination of decoys and actives more difficult. However,
even with these demanding decoys, the optimized model still
outperforms the naıv̈e model in terms of enrichment, if not
early enrichment.
Binding site optimization takes into account the structural

plasticity of a binding site and its adjustment to the structural
demands of an active ligand. Our results demonstrate that the
optimized M2R model, based on the remote sequence template,
was better at distinguishing actives from decoys than the naıv̈e
M2R model, based on the close sequence template. Thus, it is
clear that the choice of IFD ligand and the robustness of the
IFD protocol could be as important for the production of a
useful receptor model as the extent of target−template
sequence similarity.

■ DISCUSSION

Several muscarinic receptor models have been generated over
the past few years (summarized in Table 6), with the majority
being of the M1R.

60−69 Two models each of the M3R
70,71 and

the M2R
72−74 and one model of the M5R

75 have been also
reported. These models were generally constructed in the
course of molecular pharmacology studies to address issues of
receptor activation and selectivity, allosterism, and bitopic
binding, or receptor dimerization, although some groups have
used predominantly modeling approaches to investigate the
structural mechanisms of antagonist binding, receptor activa-

Table 5. Virtual Screening Evaluation of M2 Muscarinic
Receptors

EF (at X % of ranked
database)

receptor
ROC
AUC LogAUC0.001 ndist 2 5 10

set 1 (Schrödinger decoy set)
optimized
model

0.86 0.47 3.72 11.7 11.4 7.4

naıv̈e model 0.80 0.38 6.28 9.6 5.9 4.2
crystal structure 0.85 0.55 4.82 15.9 10.9 7.9

set 2 (ZINC decoy set)
optimized
model

0.79 0.36 3.57 3.2 5.9 5.3

naıv̈e model 0.74 0.33 6.02 8.5 4.2 3.4
crystal structure 0.80 0.42 5.16 8.5 8.0 5.3

set 3 (refined Schrödinger decoy set)
optimized
model

0.81 0.36 3.72 2.8 3.7 4.0

naıv̈e model 0.84 0.40 6.28 5.6 4.1 3.6
crystal structure 0.84 0.47 4.82 6.6 4.9 4.2

Table 6. Muscarinic Receptor Modeling Studies

receptor template
homology modeling

program purpose additional techniques used ref

M1R rhodopsin MODELLER molecular pharmacology of allosteric modulation by a
peptide ligand

loop modeling, MD, protein−protein docking 65

Prime molecular pharmacology of allosteric potentiation 62
VEGA modeling study to investigate receptor activation MD in hydrated lipid bilayer 60

β2AR MOE modeling study to investigate allosteric modulation by
a peptide ligand

MD in hydrated lipid bilayer, protein−protein
docking

67

QUANTA,
MODELLER

molecular pharmacology of activation and selectivity loop modeling 61,
76

molecular pharmacology of allosterism and bitopic
binding

loop modeling 63,
76

molecular pharmacology of activation loop modeling 64
D3R MOE molecular pharmacology of allosterism and bitopic

binding
loop modeling 66

M3R Prime modeling study to investigate receptor activation binding site refinement 77
M3R MOE molecular pharmacology of allosterism and bitopic

binding
68

M2R MOE homology modeling 69
M2R M3R Prime, MODELLER,

YASARA
modeling study to investigate the effect of template
choice

IFD 72

β2AR ICM molecular pharmacology of allosterism and bitopic
binding

flexible receptor docking of two agonists using
BDMC algorithm

73,
74

M3R rhodopsin MODELLER modeling study to investigate structural mechanism of
antagonist binding

MD in hydrated lipid bilayer 71

β1AR Prime molecular pharmacology of dimerization 70
M5R β1AR MODELLER modeling study to investigate structural mechanism of

antagonist binding
MD in hydrated lipid bilayer 75
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tion, and allosteric modulation. A range of templates were used
in these studies: rhodopsin, β1AR and β2AR, as well as the more
recently solved D3R, M2R, and M3R. Models were constructed
using QUANTA/MODELLER, Prime, MOE, ICM, VEGA, and
YASARA. Several approaches to additional model refinement
were also implemented including MD in a hydrated lipid
bilayer, loop modeling, and protein−protein docking. Signifi-
cantly, the majority of the reported mAChR models were not
optimized to generate knowledge-based models. In this study,
we have developed such knowledge-based homology models of
the muscarinic acetylcholine receptors M1R−M5R.
Binding site optimization has gained significant traction in

the GPCR modeling field as an important way of using
experimental knowledge (such as SAR and/or site-directed
mutagenesis) to improve the quality and predictive power of
naıv̈e, or crude, homology models. Using 5-HT2AR as a test-
case,27 we have previously demonstrated the importance of
loop refinement and, particularly, binding site optimization for
improving model quality and VS performance. Such improve-
ments have been also achieved for GPCR models in a number
of studies focused on what has been termed ligand-steered,78

ligand-guided,79,80 ligand-adapted,16 or ligand-optimized15

homology modeling (Table 7). Binding site optimization via

a variety of methodsparticularly those utilizing available
experimental data about a target and its ligandshave been
commonly used and shown to be successful in GPCR Dock
assessments.19,20

Ideally, an optimized model, based on a close sequence
template, would be the best choice for virtual screening.69,72

However, close sequence templates are not always available. In
such cases, knowledge-based optimization, e.g. by using
established actives, can improve a model (Table 7). Using
the M2R as a case study, we compared a naıv̈e model, based on
a close sequence template (M3R), and an optimized model,
based on a more remote template (β2AR). The IFD optimized
model outperformed the naıv̈e model in virtual screening. This
observation parallels that of Kolaczkowski et al.15 who
generated ligand-optimized homology models of the D1 and
D2 dopamine receptors using IFD and tested them in VS
against ZINC- and Schrödinger-based decoy libraries spiked
with ligands specific for dopamine receptors. They found that
binding site optimization significantly improved VS perform-
ance, while observing no advantage in using a D3R-based D2R
model compared to a model based on the more evolutionary
distant β2AR. Our findings are also in agreement with those of
Tropsha and co-workers,26 who suggest that such knowledge-
based models “may be even more useful for practical structure-
based drug discovery than X-ray structures”.26 Thus, our results
and those of others15,17,26 provide evidence that binding site
optimization greatly improves homology models for VS. Future

work is required to evaluate homology models in a flexible
receptor scenario: by on-the-fly receptor flexibility,81,82

molecular dynamics,83 or using receptor ensembles.84,85

Finally, we tested the M1R−M5R models against increasingly
demanding decoy sets. Specifically, to avoid artificial enrich-
ment due to active-favoring biases, we have matched
physicochemical decoy properties to those of ligands active at
muscarinic receptors. The results showed that indeed these sets
of decoys were more challenging. However, even using our
matched decoy sets, the models produced enrichment
(including early enrichment), similar to that obtained using
nonproperty matched decoys. Recently, Gatica and Cavasotto
have published a GPCR decoy database, where 39 decoy
molecules were selected for each GPCR ligand.59 Similar to our
findings, they observed a marked decrease in enrichment for
matched decoys compared to bias-uncorrected decoys.

■ CONCLUSIONS

In this work, we have developed homology models of the
muscarinic acetylcholine receptors M1R−M5R and evaluated
them in VS for the identification of antagonists. The models
were generated by Prime and optimized using IFD (Glide +
Prime). Model refinement was guided by experimental
knowledge of active compounds and critical binding site
residues. The refinement resulted in ligand-induced adaptation
of the receptor binding sites, which optimized them for
antagonist recognition. The homology models were evaluated
in retrospective VS using Glide and were capable of
distinguishing known antagonists from matched decoy
compounds. These results bolster confidence for prospective
virtual screening using these receptor models. Even more
significantly, our results support the following suppositions
about homology modeling of GPCRs: (i) binding site
optimization is a crucial step in model generation, (ii)
knowledge-based homology models of GPCRs are appropriate
for prospective VS, and (iii) property-matched decoys should
be used in VS evaluation of homology models. In line with our
past practice, we make the optimized M1R−M5R homology
models freely available as part of the Supporting Information.
We consider such open access as crucial in our field since it
allows researchers to use these structures, compare them to
their own results,37,69 and thus advance the development of
better modeling methods.
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properties of actives that either did not dock into M1R−M5R
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Chapter 3
Ligand Binding Pathways of Clozapine and Haloperidol in the Dopamine

D2 and D3 Receptors

The dopamine receptors attract considerable interest in the drug-design community due to

their involvement in several high impact disease states, such as addiction, Parkinson’s disease, and

schizophrenia. At the time of writing, there is only one available experimentally determined

structure of a dopamine receptor (D3R) and the co-crystallized ligand (eticlopride) bears little

resemblance to most antipsychotic compounds. This leaves a pressing need for predicted binding

modes of relevant antipsychotic drugs. Antipsychotics have problematic side-effect profiles due to

poor selectivity between many GPCRs. Differences in the selectivity of drugs for the D2R and D3R are

poorly explained by comparing static models of their orthosteric binding sites, leading to a need to

understand the dynamics of the receptor and behavior of the ligand outside of the bound pose.

To both predict the bound poses of haloperidol and clozapine in the D3R and to investigate

the behaviors of these ligands during binding, we performed a series of unbiased simulations of

clozapine or haloperidol binding to the dopamine receptors. These simulations enabled us to

observe, for the first time, complete binding pathways for each of these pharmaceutically important

ligands, to infer metastable binding states, and to identify common binding mechanisms between

these two significantly different ligands. The bound poses of these drugs have not been

experimentally determined, and our simulations predict the bound poses with a level of

sophistication above the docking methods employed in the literature.

Our attempts to simulate the binding pathways of clozapine and haloperidol in this work

were met with early success. The two complete binding simulations presented in this chapter were

amongst the first simulations performed and we were inspired by the ease of this victory to run

many more simulations to better describe the binding process. However, we found that

conventional MD simulations of GPCR systems were too slow to efficiently explore the binding

ensemble and much longer timescales were required to access unbinding pathways or protein

dynamics. This was our first experience with the inefficiency of conventional molecular dynamics

simulations and led to our use of Markov state models in future work.

This chapter is the published article:

Thomas, T.; Fang, Y.; Yuriev, E.; Chalmers, D. K. Ligand Binding Pathways of Clozapine and

Haloperidol in the Dopamine D2 and D3 Receptors. J. Chem. Inf. Model. 2015, 56, 308–321.



Ligand Binding Pathways of Clozapine and Haloperidol in the
Dopamine D2 and D3 Receptors
Trayder Thomas, Yu Fang, Elizabeth Yuriev,* and David K. Chalmers*

Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, Victoria 3052,
Australia

*S Supporting Information

ABSTRACT: The binding of a small molecule ligand to its protein target is most
often characterized by binding affinity and is typically viewed as an on/off switch.
The more complex reality is that binding involves the ligand passing through a
series of intermediate states between the solution phase and the fully bound pose.
We have performed a set of 29 unbiased molecular dynamics simulations to model
the binding pathways of the dopamine receptor antagonists clozapine and
haloperidol binding to the D2 and D3 dopamine receptors. Through these simu-
lations we have captured the binding pathways of clozapine and haloperidol from
the extracellular vestibule to the orthosteric binding site and thereby, we also
predict the bound pose of each ligand. These are the first long time scale
simulations of haloperidol or clozapine binding to dopamine receptors. From these
simulations, we have identified several important stages in the binding pathway,
including the involvement of Tyr7.35 in a “handover” mechanism that transfers the
ligand between the extracellular vestibule and Asp3.32. We have also performed
interaction and cluster analyses to determine differences in binding pathways between the D2 and D3 receptors and identified
metastable states that may be of use in drug design.

■ INTRODUCTION

The binding of a small molecule ligand to its protein target is
often viewed as an “all or none” process; the ligand is either free
in solution, or bound to a high-affinity binding site on the
protein. This two-state model is clearly a simplification. On its
way from solution to the high-affinity site, the ligand must
actually traverse some pathway that likely consists of a number
of intermediate lower energy states separated by higher
energy transition states. Over the past few years, there has
been increasing interest in characterizing ligand binding
pathways for a number of reasons; first, knowledge of the
binding pathway is the key to a detailed understanding of ligand
binding kinetics,1 and second, it has become apparent that
intermediate states in the pathway of a ligand may themselves
be additional binding sites that can be exploited in drug
development.2 Our group is particularly interested in ligand
binding to G protein-coupled receptors (GPCRs),3−7 and this
study explores ligand binding pathways in the pharmaceutically
important dopamine D2 and D3 receptors (D2R, D3R) using
molecular dynamics (MD) simulations.
Binding pathways are difficult to investigate experimentally,

but simulations can provide useful insight into the binding
process for a wide range of systems. For example, an MD inves-
tigation of phosphate binding to GlpT revealed the mechanism
by which the enzyme recruited the substrate, directed it to the
binding site, and stabilized the bound pose.8 In another study,
an investigation of fatty acids binding to β-lactoglobulin
revealed that specific residues aided the desolvation of the

ligand,9 and a study of ligand binding to the cannabinoid CB2
receptor found that the ligand passed from the lipid bilayer into
the binding pocket through a specific transfer between two
helices.10 For GPCRs, many MD simulations described in
the literature focus on the receptor activation mechanism.11,12

Paired with experimental studies, these simulations have
revealed that switching between the receptors’ “active” and
“inactive” states is not simply an on/off process but rather the
selection of families of states that are capable of activating a
range of cellular pathways from an extensive ensemble of states
that are available to the receptor.13 MD on short time scales has
also been used as a tool to refine docked structures, accounting
for receptor flexibility, and improving the prediction of the
ligand bound state.14,15

We are most interested in the behavior of the ligand
throughout the binding process, particularly for GPCR-binding
ligands. One of the most interesting observations made from
long time scale MD simulations of ligand binding to GPCRs2,16

is the identification of “metastable binding sites” that are
present along the binding pathway, where the ligand pauses for
a significant amount of time before resuming its journey. Some
of these sites have also been found to correspond to known
allosteric sites. Specifically, in an MD study of tiotropium bind-
ing to the M2 muscarinic acetylcholine receptor (M2R), the
ligand paused at a previously established allosteric site.16 As the
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residues making up the metastable binding sites are commonly
less conserved than the orthosteric site itself, they represent
intriguing potential targets for structure-based drug design. In
an investigation of the binding of allosteric modulators to the
M2R, Dror et al. were able to use MD to predict the binding
sites of a set of both positive and negative allosteric modulators,
as well as the mechanism by which they functioned.17

It is being increasingly realized that in many cases the
kinetics of binding, rather than the binding affinity, are more
closely related to the efficacy of a drug18−22 and that an under-
standing of the process by which a ligand binds or unbinds can
assist the rational design of ligands. Detailed binding
information is not provided by most experimental methods,
which give static or averaged pictures of ligand binding.
However, fine-grained temporal and spatial information can be
gained from MD simulations. In this study, we investigate the
association of the dopamine receptor antagonists clozapine and
haloperidol with dopamine D2 and D3 receptors. Clozapine and
haloperidol are representative of two common drug scaffolds
from which many other antipsychotics are built (Figure 1).
Both ligands bind to the dopamine D2 and D3 receptors with
nanomolar affinity (0.12−960 nM) but have no appreciable
selectivity for either receptor.23−25 Haloperidol belongs to the
broader butyrophenone-like class, containing two aromatic
systems separated by a protonated amine containing linker.
Clozapine is a dibenzodiazapine and is structurally similar to

other tricyclic antipsychotics that contain a protonated amine
located 3−4 bonds away from various tricyclic systems. These
drugs have been in clinical use for over 40 years and are two of
the most studied antipsychotic compounds but, despite their
clinical importance, there are no reported MD studies that
investigate the binding pathways of either ligand.
The only reported experimental structure of a ligand bound

to a dopamine receptor is that of eticlopride (Figure 1) bound
to the D3R.

26 Eticlopride is smaller than clozapine and halo-
peridol and has a notably different chemical scaffold, which
means that the detailed binding orientations of compounds
similar to clozapine or haloperidol cannot be inferred from
the eticlopride crystal structure and are currently unknown.
In the absence of crystallographic information, a number of
researchers have used molecular docking to predict the binding
orientations of clozapine-like27−29 and haloperidol-like29−32

compounds. The docking studies of clozapine are in broad
agreement on the overall features of the bound pose, predicting
a salt-bridge between the ligand protonated amine and Asp3.32
and interactions between the tricyclic system and trans-
membrane helices 5 and 6 (TM5,6), but there is disagreement
on the orientation of the tricyclic system, which is predicted to
bind in two very similar poses that differ by a 180° rotation of
the tricyclic system and correspondingly whether the A- or
B-ring is buried more deeply within the receptor. The structural
similarity of the two predicted clozapine poses means that the

Figure 1. Structures of clozapine and haloperidol (shown in their protonated states) have scaffolds that are similar to many other antipsychotics.
Eticlopride is present in the crystal structure of the D3 receptor.

26 Aromatic rings in clozapine and haloperidol have been labeled A or B and will be
referred to by these labels in the text. aAsenapine is a racemic mixture; one enantiomer is shown here.
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correct bound orientation cannot be determined through
docking alone. In an effort to determine the correct bound
orientation, Selent et al. compared the measured binding
affinities of clozapine and the structurally similar olanzapine
(Figure 1) in a mutagenesis study.28 They concluded that
the favored pose is where the B-ring is buried more deeply.
Docking studies of haloperidol29−31 agree on the geometric
space occupied by the ligand but again differ on the gross ligand
orientation. Most studies predict that the B-ring is buried more
deeply in the receptor, although there is a more robust QM
case that predicts the A-ring end of haloperidol is the deeper
binding moiety.32 While such docking studies attempt to
predict the most stable pose in each ligand−receptor complex,
they are unable to provide insight into the dynamics of the
system. Similarly, experimental structures are unlikely to exist in
the conformations that correspond to metastable states, and the
binding pathway cannot be predicted from the experimentally
determined ligand pose.
In this paper we conduct extensive unbiased simulations of

clozapine and haloperidol binding to the D2 and D3 dopamine
receptors with the aim of identifying the intermediate states on
the binding pathway. These simulations have allowed us to
identify metastable and bound states for ligands of these
commonly employed scaffolds, which have not been identified
by experimental methods. We have identified key residues
involved in the recognition of these ligands and we propose a
mechanism that transfers the ligand from the extracellular
vestibule to the interior of the receptor, leading to the forma-
tion of the Asp3.32 salt-bridge and orthosteric binding. We
expect that the knowledge gained here will assist in the rational
drug design of dopamine receptor targeting ligands.

■ METHODS
The high sequence conservation in the transmembrane region
of GPCRs allows residues to be commonly referred to using the
Ballesteros−Weinstein numbering scheme,33 in which the most
conserved residue in each helix is numbered 50 and other
residues in the helix are numbered relative to it. For example,
Trp6.48 is located in TM6, two residues prior to the most
conserved residue, Pro6.50. We have used the D3R crystal
structure as a reference for helical ranges and loop residues are
referred to using the residue numbers, according to sequences
from UniProt.34

System Construction. The Silico scripts package v1.0135

was used for the initial construction of lipid bilayers. PyMol
v1.5.0.436 was used for protein sequence alignment. Maestro
v9.337 was used for protein preparation, positioning of ligands,
removing clashes, and otherwise editing the system.
The D2 and D3 receptor models were constructed based on

the A-chain of the D3R crystal structure26 (PDB ID: 3PBL).
The initial D2R homology model was that developed by our
group in previous work.38 To create the D3R model, the T4
lysozyme, water, and ligands were deleted from the PDB
structure. Side-chains that were missing in intracellular loop 2
(ICL2) and extracellular loop 3 (ECL3) of the crystal structure
were added using the Maestro protein preparation wizard
workflow.39−46 The mutation L119W on the external side of
TM3 was reverted to wild-type. ICL3 was not included in
either structure, and the ICL3 termini were instead capped
with neutral groups (N-terminus acetyl, C-terminus N-methyl
amide) or joined together (simulation 28). Joining the two
ICL3 termini was possible without perturbation of either TM5
or TM6, and a similar approach in the β2 adrenergic receptor

showed no resulting conformation changes.47 In the D2R,
disulfide bonds were formed between C107−C182 and
C399−C401. Disulfide bonds in D3R were included between
C103−C181 and C355−C358. Asp2.50 was protonated except
in simulation 28. All histidines were protonated on the delta
nitrogen.
Each simulation system was constructed by embedding the

receptor in a united-atom POPC bilayer48 consisting of 40
lipids in each layer. The system was solvated with 4000 TIP3
water molecules, packed randomly outside the bilayer plane, no
salt or counterions were included. The resulting system was not
neutral, but due to the implementation of PME in NAMD2
packages there is no buildup of charge between periodic
images.49 The final dimensions of the system were 64 Å × 64 Å ×
78 Å and the system contained approximately 21 900 atoms.
Each protein-bilayer system was allowed to relax over a total

of 100 ns, according to the following protocol. At the start of
the simulations, clozapine or haloperidol were placed by hand
in various orientations at the entrance of the extracellular vesti-
bule, taking care to avoid steric clashes with the protein. Water
molecules within 2 Å of the ligand were deleted. From the
onset of simulations, ligands were allowed to move freely; no
biasing forces were used. The resulting equilibrated bilayers
were used as the starting points for all other simulations.

Ligand Parametrization. Force field parameters for each
ligand were developed through a combination of charge fitting
for partial charges and by analogy to the CGenFF 2b6/7 force
fields50,51 for bonded interactions. Both ligands contain an
amine that is protonated under biological conditions and is
essential for binding; this protonation state was used for all
following steps.
To assign atomic charges, a conformational search was first

performed using MacroModel v9.952 to produce a representa-
tive set of low-energy conformations of each ligand. Gaussian
98 vA.753 (Hartree−Fock, 6-31G*) was used to calculate the
electronic distribution for each conformation and RED-III.5154

was then used to assign partial charges with the RESP-A1
charge derivation model,55 generating point charges as an
average across all conformations. ParamChem56,57 was used to
generate an initial set of bonded parameters by analogy.
The haloperidol model was built with both aryl-containing

substituents positioned equatorially off the piperidine ring
based on the findings of a study by Sikazwe et al.58 which
compared binding data for a series of ring-locked haloperidol
analogs. Clozapine required several steps to parametrize due to
its complex conformational behavior. The diazepine ring is
nonplanar and undergoes a butterfly-like nitrogen inversion,
and the rotation of the piperazine ring is also restricted due to
conjugation with the diazepine ring. No suitable parameters
were available so we derived them by fitting to QM energy
profiles calculated using Jaguar v7.959 (DFT, B3LYP,
6-31G**). The high barrier to diazepine inversion (calculated
as ∼6 kcal/mol) prevented clozapine molecules from inverting
during individual simulations, restricting sampling of their
entire conformational space on the time scale of these simu-
lations. Both inversions of the dibenzodiazepine moiety were
therefore used as starting structures. Based on QM calculations
and docking, the rotation of the piperazine ring was chosen
such that the hydrogen of the protonated amine was axial on
the convex side of the dibenzodiazepine moiety.

MD Protocol. MD simulations were performed with NAMD
2.7−2.960 using the CHARMM2261,62 and CGenFF50,51 v. 2b6/7
force fields. Simulations used 2 fs time step with full electrostatic
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interactions calculated every 6 fs. The particle mesh Ewald63

method with a grid spacing of 1 Å was used to treat long-range
electrostatics. Langevin dynamics was used as a thermostat to
maintain the temperature at a constant 310 K with a damping
coefficient of 5 ps−1. The Nose−́Hoover Langevin piston
barostat was used to maintain pressure at 1 atm, period 100 fs,
decay 50 fs. The unit cell was treated semi-isotropically, main-
taining the cell dimensions in the plane of the bilayer at a
constant ratio. The SHAKE algorithm was used to constrain all
bonds to hydrogen atoms. vdW forces were calculated using a
switching algorithm between 10 and 12 Å. Structures were output
every 10 ps. Each simulation was initiated with a 5000-step
steepest descent minimization, followed by 10 ns of dynamics
with the protein constrained, and a further 10 ns with only the
protein backbone constrained. The final unconstrained MD
simulations were run from this point onward for durations
ranging from 200 to 1000 ns. As our goal was to discover the
binding pathways, simulations in which the ligand pose was
stable for 50−100 ns were terminated to redistribute resources
to the remaining simulations.
Analysis. VMD v1.9.164 was used for the visualization and

analysis of the system. Analysis procedures were performed
within VMD using in-house scripts. All graphs were generated
using Gnuplot. Residue−ligand contacts through the course of
each simulation were calculated using VMD. Contact between
the ligand and protein residues was defined as when heavy
atoms in each were within 3.5 Å of each other. When con-
structing ligand-residue contact graphs, residues were consid-
ered to be interacting with the ligand if they were in contact
with the ligand for >5% of simulation time. Clusters were
generated for each trajectory with MSMBuilder 2.765

(LPRMSD module) using the hybrid k-centers/k-medoids
method. One structure per one nanosecond was aligned by the
backbone of the protein, the ligand position was then clustered
by RMSD with a maximum intracluster distance of 5 Å and 10
iterations of k-medoids.

■ RESULTS AND DISCUSSION
We conducted a series of 29 unconstrained MD simulations of
clozapine and haloperidol binding to the dopamine D2 and D3
receptors (Table 1) ranging in duration from 250 to 1145 ns,
with an average length of 698 ns. Each simulation commenced
with the drug placed in an arbitrary starting position in the
extracellular vestibule of the receptor (Figure 2). Although this
procedure omits the initial ligand contact step, the ligands still
demonstrated an ability to explore the extracellular vestibule
and the occasional disassociation/reassociation event was
observed. Most simulations produced only partial binding
trajectories, however the ligands in two simulations, 28
(clozapine) and 29 (haloperidol), proceeded to a stable
bound pose, deep in the orthosteric binding site. Table 1 lists
all of the simulations performed and classifies them based on
the pose observed in the final frame of the simulation: Group 1
proceeded only as far as the initial receptor recognition event.
Group 2 bound in a secondary binding pocket, making
interactions with Glu2.65. Group 3 ligands proceeded further
into the receptor with their protonated amines oriented toward
Asp3.32. Group 4 formed a salt-bridge to Asp3.32. Group 5
followed a full binding pathway making a salt-bridge to Asp3.32
and remained in a stable bound pose. Taken as a set, groups 1,
3, 4, and 5 reveal a linear sequence of events starting in the
vestibule and ending deep within the receptor, constituting
a binding pathway. In this progression, ligands occasionally

stepped backward through this pathway and only stages which
were stable at the end of the simulation have been tabulated.

Full Binding Simulations. In two simulations, one of
clozapine (28) and one of haloperidol (29), both binding to
the D3R, the ligand proceeded from initial contact to a bound
pose in the orthosteric site. The progression of these simu-
lations is illustrated in Figures 3 and 4 and in the Supporting
Information. The binding of haloperidol to the orthosteric site
of the D3R observed in simulation 29 is detailed in Figure 3.
Panel A shows the distances between the protonated nitrogen
of the ligand and residues Asp3.32 and Tyr7.35. Panel B shows
the interactions between the ligand and the receptor residues at
each nanosecond of simulation. Panels C−F show snapshots of
the binding pathway at key points enroute to the orthosteric
binding site. At the beginning of the simulation, the A-ring
of haloperidol π-stacks with Tyr7.35 while the bulk of the
ligand projects into the solvent. At 40 ns, haloperidol briefly
dissociates completely from the receptor, tumbling around in
the solvent before reassociating with the receptor and re-
establishing the π-stacking interaction between the A-ring and
Tyr7.35 (Figure 3C). From here, haloperidol draws closer to
Asp3.32 in a series of steps, most easily visible in Figure 3A.
First, the A-ring slides into the polar region around TM5,6 and
ECL2 (Figure 3D, 65 ns) before shifting further, at 95 ns, to

Table 1. Simulations Categorized by the Ligand Position
Reached at the End of the Simulation

No. ligand receptor duration (ns)

Group 1. Ligands Making Initial Interactions with Tyr7.35
1 clozapine D2 294
2 clozapine D2 500
3 clozapine D2 500
4 clozapine D3 500
5 haloperidol D2 896
6 haloperidol D2 916
7 haloperidol D3 898
8 haloperidol D3 855
Group 2. Ligands Interacting with Glu2.65 in the Secondary Binding Pocket
9 clozapine D2 246
10 clozapine D2 970
11 clozapine D3 500
12 clozapine D3 400
13 haloperidol D2 907
14 haloperidol D2 988
Group 3. Protonated Amine Orienting Deeper into the Receptor
15 clozapine D2 250
16 clozapine D3 500
17 clozapine D3 500
18 haloperidol D2 974
19 haloperidol D2 1089
20 haloperidol D2 1145
21 haloperidol D2 1067
22 haloperidol D3 250
23 haloperidol D3 606
Group 4. Ligands Forming Salt-Bridge with Asp3.32
24 clozapine D2 994
25 clozapine D2 400
26 clozapine D3 500
27 haloperidol D2 1067
Group 5. Ligands Adopting the Final Bound Pose
28 clozapine D3 1002
29 haloperidol D3 516
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intercalate between TM5,6 (Figure 3E), allowing the pro-
tonated amine to draw closer to Asp3.32. The salt-bridge finally
snaps together at 115 ns, drawing the A-ring back into the
receptor where it drops down into the orthosteric site adjacent
to Trp6.48. This bound pose remains stable for the final 400 ns
of simulation (Figure 3F). The final pose makes few polar inter-
actions, aside from the salt-bridge to Asp3.32. The carbonyl and
hydroxyl groups as well as the B-ring remain solvent accessible,
while the buried A-ring sits alongside Trp6.48 with the fluorine
located in a hydrophobic pocket and pointed toward Ile3.40.
This binding process can be viewed in Supporting Information
movie 1.
The final stable pose of haloperidol occupies the same space

as predicted in a number of docking studies29−31 but the
molecular orientation is rotated by 180°. In our model, the
butyrophenone moiety is buried most deeply in the receptor,
leaving the piperazine moiety and B-ring in the extracellular
vestibule, similar to the pose observed in a QM optimized
study.32 Although this result disagrees with most docking
studies, the pose is well supported by experimental evidence.
Barton et al.66 performed a study in which they attached
a number of bulky fluorescent tags to the compound N-p-
aminophenethylspiperone (containing the same butyrophe-
none fragment as haloperidol. Refer to spiperone, Figure 1).
Upon measuring the compound binding at the D2R they found
that the attachment of bulky fluorophores resulted inat
mostonly a 10-fold reduction in affinity, suggesting that the
butyrophenone moiety must be the end that binds deep into
the binding pocket. Supporting the same hypothesis but from a
different approach, Vangveravong et al.67 performed a study in
which they replaced the orthosteric fragment of aripiprazole
with the piperazine half of haloperidol and found a > 200 fold

reduction in affinity, again suggesting that the butyrophenone
binds more deeply in the receptor.
The binding of clozapine to the orthosteric site of the D3R

observed in simulation 28 is detailed in Figure 4, in the same
manner as Figure 3 does for haloperidol. In this simulation,
clozapine first becomes wedged between Tyr7.35 and ECL2.
The protonated amine then rapidly orients downward into the
receptor at 40 ns (Figure 4C). From here clozapine dips down
to form a tentative salt-bridge with Asp3.32 several times (best
seen in Figure 4A) until, at 240 ns, the ligand plunges to the
bottom of the orthosteric site (Figure 4D) before bobbing back
up at 265 ns to form the salt-bridge with Asp3.32 (Figure 4E).
During this event, clozapine rotates toward TM5,6 with the
tricyclic system tucking under ECL2. At 315 ns, clozapine
rotates further around the axis of the newly formed salt-bridge
with the tricyclic system dropping deeper into the orthosteric
site and then deeper again at 335 ns to reach a stable pose
(Figure 4F) which is maintained for the remaining 650 ns of
the simulation. Similar to haloperidol, the final pose includes
few direct polar contacts aside from the salt-bridge to Asp3.32.
The diazepine N−H forms a hydrogen bond with a trapped
water molecule at the bottom of the orthosteric site and the
B-ring interacts with Trp6.48. This binding process can be
viewed in Supporting Information movie 2.
The MD bound pose of clozapine overlaid on the crystal

structures of doxepin bound to the histamine H1 receptor
68 and

carazolol bound to the β2-adrenergic receptor69 is shown in
Figure 5A. Both compounds are tricyclics with a general
structural resemblance to clozapine, although doxepin has an
arched shape, similar to clozapine whereas carazolol is planar.
In the MD-generated pose of clozapine, the chlorine and sp2

nitrogen remain solvent accessible in the extracellular vestibule
while the tricyclic system sits deep in the orthosteric site
adjacent to Trp6.48, similarly positioned to doxepin. Prior to
clozapine binding in simulation 28, Trp6.48 rotated to its
“downward” rotamer and consequently was pinned in this
position by the ligand (Figure 5B). While the rotation of
Trp6.48 is important to the activation of many GPCRs, its
rotameric state has not been found to correlate to the func-
tional state of the receptor.70 In contrast to reported docked
structures,28 the diazepine N−H in the MD structure does not
make hydrogen bonds to Ser5.42, Ser5.43, or Ser5.46. Instead it
angles deeper into the receptor, allowing the clozapine and
haloperidol pharmacophores to overlap (Figure5B), and makes
a hydrogen bond to a water molecule that is trapped below the
ligand and is unable to exchange with the bulk solvent. To
investigate the effect of the rotation of Trp6.48 on ligand
binding, an additional simulation was performed beginning
from a docked pose of clozapine in the D3R crystal structure.
The docked pose was similar to clozapine in Figure 4E but with
the tryptophan switch still in the crystallographic rotamer. In
this simulation, the clozapine dropped deeper into the receptor
as soon as backbone constraints were released, matching the
behavior of clozapine binding in simulation 28. The resulting
pose was angled closer to TM3 (RMSD 1.37 Å), allowing a
better overlap with the haloperidol pharmacophore and there
was no trapped water molecule. It should also be noted that
the conformational space of the region surrounding the most
deeply buried rings of clozapine and haloperidol was most likely
more rigorously explored in the current MD simulations than
in the reported docking studies, resulting in extension of the
binding cavity.

Figure 2. Overlayed starting positions of the ligand in each simulation
for clozapine (A) and haloperidol (B). Starting positions for full
binding simulations 28 and 29 are shown in blue.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.5b00457
J. Chem. Inf. Model. 2016, 56, 308−321

312



Interactions Analysis. Although the complete binding
simulations 28 and 29 provide insight into entire binding path-
ways, these pathways are not necessarily the dominant ones,

and there are still potentially many other binding pathways that
remain unexplored. By looking at ligand−receptor interactions
over the entire set of simulations, the trends in behavior for

Figure 3. Graphical representations of the binding pathway of haloperidol in simulation 29. (A) Distance between the protonated nitrogen of
haloperidol and Asp3.32 or Tyr7.35. (B) Barcode graph showing which residues are interacting with the ligand. The time-points of simulation
snapshots C−F are indicated by red lines. (C−F) Snapshots of the binding pathway of haloperidol showing (C) the initial recognition event
involving Tyr7.35, (D) interactions with the polar region surrounding ECL2, (E) intercalation of the haloperidol A-ring into the aromatic network
between TM5,6, and (F) the final bound pose.
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each ligand or each receptor can be characterized, and the
residues most involved in metastable states or critical mecha-
nisms can be identified.

To determine the most frequent ligand−receptor inter-
actions present across the entire series of simulations, we con-
ducted a residue interaction analysis using heavy-atom

Figure 4. Graphical representations of the binding pathway of clozapine in simulation 28. (A) Distance between the protonated nitrogen and
Asp3.32 or Tyr7.35. (B) Barcode graph showing which residues are interacting with the ligand over the course of the simulation. The time-points of
simulation snapshots C−F are indicated by red lines. (C−F) Snapshots of the binding pathway of clozapine showing (C) the initial interaction of the
clozapine protonated amine with Asp3.32, (D) the pose following a plunge into the orthosteric site, (E) formation the salt-bridge with Asp3.32, and
(F) the final pose following ligand rotation around the salt-bridge axis.
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proximity (Table 2). Contact between the ligand and protein
residues was defined as when heavy atoms in each were within
3.5 Å. In addition to having large standard deviations, these
interaction frequencies are weighted toward early stages in the
binding pathway and, without further investigation, should be
considered qualitatively.
The most prevalent protein−ligand interaction observed in

both receptors was with Tyr7.35, which was observed to
interact with the ligands for 30−50% of all simulation time
(Table 2), often by π-stacking. After initially π-stacking with the
ligands, Tyr7.35 then acts as a pivot point from which the
ligands can explore the extracellular vestibule (Figure 6) with
the protonated amine extending toward the nearby polar
residues present in TM1,2,7 or TM5,6 and ECL2. The inter-
action with Tyr7.35 typically only ceased once formation of a
salt-bridge between the ligand protonated amine and Asp3.32
drew the ligand out of range of Tyr7.35, a process that we
denote as a “handover” mechanism. Once the salt-bridge with

Asp3.32 has formed, the ligand could then rotate to explore
deeper in the receptor. This mechanism was observed in the
binding of both clozapine and haloperidol, and can be clearly
seen in the swap-over of distances between the protonated
nitrogen and Asp3.32 or Tyr7.35 shown in Figures 3A and 4A.
We propose that the handover mechanism is dependent on

the structure of the ligand, particularly on the intramolecular
distance between the A-ring in each ligand and the protonated
amine (clozapine 7.76 Å, haloperidol 7.89 Å). These distances
are well conserved in the pharmacophores of antipsychotic
compounds.71,72 The simulations presented here suggest
that maintaining a specific distance between the A-ring and
protonated-amine moieties is not only required for the ligand
to bind to the orthosteric site (Figure 5) but is also important
in the handover mechanism that leads to orthosteric binding.
Thus, we would expect ligand interaction with Tyr7.35 to
contribute to the on-rate of antipsychotic compounds matching
this pharmacophore.
The region surrounding ECL2 and TM5,6 was also observed

to be a hotspot for ligand interactions. Both ligands in both
receptors made contacts in the polar residue-rich region sur-
rounding His6.55, Asn6.58, and residues at the end of ECL2. In
D3R simulations, interactions were most prominently observed
with the partially buried His6.55, while in D2R simulations
contact with the shallower Asn6.58 predominated (Table 2).
This was likely due to the pronounced difference in polarity of
the ECL2 motifs surrounding this region (D3, Ser-Ile-Ser; D2,
Ile-Ile-Ala). Ligands in the D2 receptor also displayed a greater
tendency to make interactions with Glu2.65 at the opposite end
of the extracellular vestibule (Table 2, bold). The differences in
interaction frequency between the D2 and D3 receptors suggest
that the environment outside the orthosteric site in each

Figure 5. (A) Crystal structure bound pose of carazolol from a
complex with the β2-adrenergic receptor (blue), the two poses of
doxepin resolved in the histamine H1 receptor (yellow), and our MD
bound pose of clozapine (green) superimposed onto the D3R crystal
structure. (B) Overlay of bound poses for the clozapine (blue) and
haloperidol (yellow) complexes formed in MD simulations 28 and 29,
showing the well conserved pharmacophore. Tyr7.35, Trp6.48, and a
trapped water molecule are also shown, colored according to the
complex to which they belong. (inset) 2D representation of the
overlap of pharmacophore elements, protonated amine (blue),
aromatic rings (green), and electronegative elements (red).

Table 2. Interaction Frequency for Simulations of Each
Complexa

Most Frequent Interactions Across All Clozapine Simulations

D2 av interaction freq D3 av interaction freq

Tyr7.35 0.41 ± 0.19 Tyr7.35 0.47 ± 0.17
Asn6.58 0.37 ± 0.17 Asp3.32 0.30 ± 0.29
Ile403ECL2 0.24 ± 0.10 Gly94ECL1 0.24 ± 0.22
Glu2.65 0.20 ± 0.26 Ser182ECL2 0.22 ± 0.13
Ile183ECL2 0.18 ± 0.09 Thr7.39 0.17 ± 0.13
Ser7.36 0.16 ± 0.17 His6.55 0.16 ± 0.08
Ile184ECL2 0.15 ± 0.14 Val2.66 0.11 ± 0.10
Asp3.32 0.15 ± 0.21 Phe6.51 0.11 ± 0.14
His6.55 0.13 ± 0.15 Glu2.65 0.09 ± 0.12
Thr7.39 0.11 ± 0.06 Ser184ECL2 0.08 ± 0.09

Most Frequent Interactions Across All Haloperidol Simulations

D2 av interaction freq D3 av interaction freq

Tyr7.35 0.49 ± 0.14 His6.55 0.44 ± 0.30
Ile184ECL2 0.31 ± 0.22 Tyr7.35 0.33 ± 0.18
Asn6.58 0.31 ± 0.15 Ser182ECL2 0.28 ± 0.23
Phe3.28 0.25 ± 0.23 Ser184ECL2 0.20 ± 0.11
Ser7.36 0.24 ± 0.15 Ile183ECL2 0.18 ± 0.14
Ile183ECL2 0.22 ± 0.14 Gly94ECL1 0.16 ± 0.13
Glu2.65 0.22 ± 0.23 Asp3.32 0.15 ± 0.27
Thr7.39 0.21 ± 0.08 Asn6.58 0.15 ± 0.13
His6.55 0.18 ± 0.15 Ser7.36 0.15 ± 0.13
Val2.66 0.16 ± 0.07 Thr7.39 0.14 ± 0.08

aValues are the frequency of simulated interactions ± one standard
deviation. The residues Asn6.58, His6.55, and Glu2.65, which are
discussed in the text, have been highlighted in bold.
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receptor can affect the binding pathway, even of nonselective
ligands. In this case, the observed effect is weak but it does
suggest that modifications to the ligands could direct the
ligands toward either end of the extracellular vestibule.
The ligands in several simulations (Group 2, Table 1) were

observed to interact with a secondary binding pocket located
between TM1,2,7 where they formed polar interactions with
Glu2.65 (Figure 7). All clozapine poses in this region (simu-
lations 9, 10 in the D2R; 11, 12 in the D3R) formed a salt-
bridge to Glu2.65 and were largely stable, due to the ligand
nestling in the extracellular loops. Haloperidol (simulation
13,14 D2R) occupied a much larger variety of poses that were
generally less stable than those observed for clozapine. In the
most stable haloperidol poses, the B-ring was typically buried in
the secondary pocket while either the amine or hydroxyl group
interacted with Glu2.65, disrupting the native hydrogen
bonding to Ser7.36. Clozapine did not disrupt the hydrogen
bonding between Ser7.36 and Glu2.65. This pocket between
TM1,2,7 has been previously identified as the location at which
bitopic ligands interact,26 making it a focal point for the design
of allosteric or bitopic ligands.73 Although clozapine and halo-
peridol are neither bitopic nor allosteric, the simulations
suggest that they both bind transiently to this site. Clozapine
and haloperidol scaffolds differently affect the hydrogen-
bonding networks of Ser7.36 and Glu2.65 within this pocket
and potentially represent starting points for development of a
pharmacophore for this location. Longer simulations would
need to be performed to determine whether the disruption of
the Glu2.65-Ser7.36 hydrogen bond propagates any effect to
the intracellular side of the receptor.
Having traversed the outer portion of the binding pocket

(Groups 3 and 4, Table 1), both clozapine and haloperidol
initially form a salt-bridge to Asp3.32 and bind deeper in the
orthosteric pocket. The observed pathway for these processes
differed between the two ligands. Haloperidol was able to
draw close enough to form the salt-bridge by inserting either of
its own aromatic rings into the aromatic networks between
TM2,3, TM4,5 or TM5,6 (Figure 8A,B). In contrast, clozapine,

being a much shorter ligand, was able to form the salt-bridge by
simply dropping deeper into the receptor from a central
position adjacent to Tyr7.35. Once the salt-bridge was formed,
clozapine either remained in place or rotated toward TM1,2,7
(Figure 8C,D). Unlike the complete clozapine binding in
simulation 28, these events did not involve clozapine plunging
to the bottom of the orthosteric site prior to formation of
the salt-bridge. The ability of clozapine to drop deeper into the

Figure 6. Haloperidol (simulation 5) exploring the extracellular vestibule from the Tyr7.35 pivot point: (A) Oriented toward the secondary binding
pocket. (B) Oriented toward ECL2. The same can be seen with clozapine (simulation 3) oriented toward (C) the secondary binding pocket or
(D) toward ECL2.

Figure 7. Poses of clozapine (A) and haloperidol (B) in the secondary
binding pocket formed by TM1,2 and 7. The side chains of Glu 2.65,
Ser 7.36, and Tyr 7.35 are shown.
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receptor did not appear to be affected by the inversion of the
dibenzodiazepine moiety.
Cluster Analysis of Ligand Binding. Ligand binding can

be rationalized as a series of metastable states and, as such,
these states are the key descriptors of the binding pathway.
Metastable states have been seen to coincide with known
allosteric sites,16 and they are the most likely locations from
which to influence the kinetics of drug binding. In an effort to
identify potential metastable sites within the ligand binding
pathway, we performed a cluster analysis of the complete set of
29 simulations. The most extensive sampling occurred in the
extracellular vestibule region, and thus, the observed metastable
states are weighted toward this area.
Figure 9 shows representative molecules from the five most

populated clusters in each ligand−receptor combination. In
clozapine simulations, we generally observed clusters where
the aromatic system of the ligand is inserted between the
extracellular loops. Formation of salt-bridges to Glu2.65 and
Asp3.32 also led to stable poses. The D2R-clozapine simulations
(Figure 9A) produced two clusters with the ligand protonated
amine located in a pocket between TM1,2,7 (orange, pink) but
only one (pink) forms a salt-bridge with Glu2.65. In the other
cluster (orange), the dibenzodiazepine moiety is inverted from
the previous cluster and the protonated amine points away
from Glu2.65, this suggests that the tight fit of the loop region
makes a significant contribution to the stability of this pose.
Two more clusters of clozapine in the D2R show stable posi-
tions of the ligand in the vicinity of ECL2 and Tyr7.35 before
(yellow) and after (green) alignment of the protonated amine
toward Asp3.32. The final cluster (blue) shows the initial
formation of the Asp3.32 salt-bridge, in this case with the
clozapine ring system leaning toward the TM1,2,7 binding
pocket. The clusters arising from the D3R-clozapine simulations
(Figure 9B) follow a similar pattern to the D2R clusters, two of
them (green, pink) showing similar positions of clozapine in the

TM1,2,7 pocket while another (blue) shows the initial formation
of the Asp3.32 salt-bridge. A fourth cluster (orange) represents a
pose in which the tricyclic system of clozapine is wedged between
ECL1−2 and is unable to rotate to close the distance to Glu2.65.
The final (yellow) cluster shows the final bound pose.
Clustering of the haloperidol simulations revealed large

differences in ligand behavior between the D2 and D3 receptors.
In the D2R-simulations, ligands generally favored orienting
toward TM2,3 while the D3R-simulation ligands favored
orienting toward TM5,6. Four of the five most populated
D2R-haloperidol clusters (Figure 9C and E; yellow, green, pink,
orange) resulted from insertion of the haloperidol aromatic
rings A and B between TM2,3 with the remainder of the
molecule extending toward ECL3. In the remaining cluster
(blue), the B-ring is buried in the TM1,2,7 pocket while the
hydroxy group interacts with Glu2.65. In the D3R-haloperidol
clustering (Figure 9D and F), one end of the ligand was always
oriented toward TM5,6 and, similar to the clusters found in the
D2R, there was no preference for either aromatic ring. Four
clusters (yellow, blue, green, orange) show haloperidol binding
shallowly to the receptor in the polar region surrounding ECL2.
The remaining cluster (pink) shows the deepest binding
haloperidol, with the A-ring tucked under ECL1 allowing the
initial formation of the Asp3.32 salt-bridge. These metastable
states might be useful to consider when designing any ligand
expected to interact in the extracellular vestibule, whether
extending an orthosteric ligand into this region or developing
an allosteric one. Due to the differences in the metastable
binding sites for haloperidol binding to each receptor, these
sites would be particularly interesting for the design of selective
butyrophenone-like compounds.

■ CONCLUSION

In this work, we present a large set of extensive unbiased MD
simulations that model the binding of the antipsychotic drugs

Figure 8. Positions of clozapine and haloperidol at the point of salt-bridge formation. (A) Side and (B) top view of haloperidol intercalating helices
to close the distance to the salt-bridge in simulation 19 (blue), 27 (green), and 29 (yellow). (C) Clozapine, having formed the salt-bridge, leaning
toward TM1,2,7 (simulation 24) and (D) remaining around TM5,6 (simulation 25).
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haloperidol and clozapine to the D2 and D3 dopamine
receptors. Two of the simulations follow a complete binding
trajectory from the extracellular vestibule to a pose buried deep
within the receptor, predicting the ultimate binding pose of
each ligand. These are the first simulations to show an unbiased
binding pathway for clozapine or haloperidol. Although most of
the simulations do not produce complete binding trajectories,
they capture ligand binding events in the early stages of binding
while the ligand is within the extracellular vestibule.
As a set, the simulations reveal common processes that occur

in the ligand binding pathways of both clozapine and halo-
peridol to dopamine receptors. In all simulations, Tyr7.35 was
observed to play a central role in the early phases of ligand
binding. Furthermore, we observed a common handover mech-
anism which transferred the ligand from Tyr7.35 to form the
key salt-bridge to Asp3.32. This handover mechanism takes
advantage of the amine-to-aromatic distance in the well-established
pharmacophore of antipsychotic compounds.
Although the D2 and D3 receptors are not selective for either

clozapine or haloperidol, we observed differences in the binding
pathways of ligands in these receptors, particularly for haloperidol.

In the early stages of binding, there were only minor differences in
ligand behavior between receptors with both ligands preferring to
be in the vicinity of ECL2 in the D3R and toward TM1,2,7 in the
D2R. More pronounced differences were observed once the
ligands proceeded to salt-bridge formation, with haloperidol
occupying two dominant metastable binding sites in the extra-
cellular vestibule. The first site was with either aromatic ring
inserted between TM2,3 (most prevalent in the D2R). The second
state involved one of the aromatic rings of haloperidol positioned
near TM5,6 while the remainder of the ligand interacted with the
residues around ECL2 (most prevalent in the D3R).
A cluster analysis of the entire simulation data set revealed a

number of metastable states within the binding process. Both
haloperidol and clozapine occupied a secondary binding pocket
between TM1,2,7, making interactions with Glu2.65, an area
implicated in the binding of bitopic and allosteric ligands.73 A
metastable state in the binding of clozapine was also found on
the initial formation of the salt-bridge, where the tricyclic
system is still making interactions in the extracellular vestibule
and prior to rotation of the ligand and deeper binding. This
state was observed similarly in both D2 and D3 receptors.

Figure 9. Cluster analysis of each receptor−ligand combination showing representative structures from each of the five most populated clusters for
each ligand−receptor combination (A−D). Inset values are the percentage of the total population attributed to each cluster. Additional “top-down”
views are shown for haloperidol (E and F). These clusters indicate the location of metastable states.
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This work is an initial study of the binding pathways of these
ligands. As such, there is still much to investigate, particularly
with regard to the later stages of the binding pathway that occur
after salt-bridge formation. The analysis of metastable states in
particular would benefit from a more quantitative approach
in order to properly evaluate their usefulness as targets for
structure-based drug design. We are currently pursuing further
investigations in these areas.
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Chapter 4
Ligand Binding of Oleic Acid to Liver Fatty Acid-Binding Protein

The work presented in Chapter 3 showed that, although conventional molecular dynamics

simulations are able to illuminate ligand-binding processes, they are too slow and inefficient to be

applied routinely to ligand binding in G protein-coupled receptors. We thus identified a need to

employ new methods in our investigations of ligand binding. We used Markov state models to

enhance the sampling of ligand-receptor complexes and to obtain statistics that could be used to

compare metastable states and binding pathways.

To develop a method for applying MSMs to ligand binding, we sought a smaller ligand-binding

system that could be simulated faster than GPCR systems but had binding pathways that still bore

some resemblance to binding in GPCRs. The model system we chose to work with was oleic acid

binding to the liver fatty acid-binding protein (FABP), for which large amounts of conventional MD

data could be generated very efficiently. We performed long-timescale conventional MD for

significantly longer simulation time than any previous study, providing an understanding of how

ligands bind to fatty acid-binding proteins and identifying a novel metastable site. We then proceeded

to construct a MSM of the system.

At the time this work was begun, the only publically available MSM programs were still in early

and very active development, providing only token support for doing anything other than protein

folding. The available system descriptors and clustering methods were designed and implemented

with protein folding in mind and we had to select methods that could also reasonably apply to ligand-

binding systems. Even once a suitable method had been chosen, persuading the software to deal with

a ligand-binding problem required frequent forays into the source code.

During construction of MSMs, we quickly learned that the flexibility of both the fatty acid

ligand and the protein itself made constructing an MSM a challenging task, and we had to limit the

scope of the MSM to the post-association phases of the ligand-binding ensemble. Taken together, the

conventional MD simulations and the dataset for the MSM provided 2 orders of magnitude more

simulation time than any previous study of FAPBs. The final MSM identified novel binding pathways

not observed by conventional simulations and advances our understanding of ligand binding to FABPs.

In hindsight, our chosen model system was more difficult to work with than the GPCR system we had

sought to avoid.



4.1 Introduction 67

4.1 Introduction

4.1.1 Kinetics of ligand binding

Structure-based drug design is a growing field that relies on the 3D structure of the biological

target to develop the effectiveness of a drug. The aim is to use this structural information as a guide

to design more potent compounds. This is usually done by modifying the drug to increase binding

affinity. Binding affinity is described by the equilibrium dissociation constant Kd and related to the

kinetics of drug binding by Equation 1, where koff and kon are the rate constants for dissociation and

association respectively:

� � =
� � � �

� � �
(1)

This approach of optimizing Kd, although it has seen much success, is largely reliant on two

approximations: that drug binding is occurring under equilibrium conditions, and that drug binding

follows a simple two-state model. In reality, the concentration of a drug in vivo varies over time as it

is metabolized or absorbed, and drug binding often involves many states each separated by their own

kinetic barriers. Thus, studies have shown that koff and kon are often more closely related to the

effectiveness of a drug than binding affinity alone.1,2

While, in theory, either kon or koff can be modified to optimize the binding of a ligand,

practically, the approaches to do so are limited. Optimizing kon is useful for slow-binding ligands, where

binding may be gated by conformational rearrangement, but an already fast on-rate can only be

increased up to the rate of diffusion. Additionally, experimental structures usually do not provide

information that can be used to optimize kon. When considering koff in structure-based drug design,

the available information is often limited to the single bound pose of the ligand provided by

experimental structures. For these reasons, structure-based drug design is usually focused on

decreasing the koff using only the final bound state of the ligand. Focusing on this single state of the

ligand is not always sufficient; targeting regions outside the binding site, by extending the ligand into

nearby pockets or designing ligands that bind to allosteric sites, is a useful means for engineering

selectivity or fine-tuning the behavior of a ligand. However, designing ligands to bind outside the

binding site often proves far from simple because the static structures produced by experimental

methods (e.g. X-ray crystallography) can be inadequate for studying these often more dynamic

regions. The very nature of crystal structures denies us access to the dynamics of a ligand or flexibility

of a receptor beyond the vicinity of the co-crystalized ligand, and the static structures betray no

indication of how the ligand arrived. Only computational methods have sufficient temporal- and
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structural-resolution to investigate the trajectory of a ligand en route to its binding site in the atomic

detail necessary to understand the binding pathway.

MD simulations provide a view of conformational changes and molecular interactions that is

updated on the order of femtoseconds, making them particularly useful for studying the binding of

ligands.3 Modeling the dynamic behavior of a system allows simulations to overcome many of the

limitations inherent in experimental structures. By using MD to predict and visualize the entire binding

pathway we can, in principle, identify specific residues that facilitate the binding of ligands, ensuring

that we propagate these essential interactions through the drug design process. MD simulations can

also identify “metastable binding sites” where ligands pause for a significant amount of time before

resuming their journey.4 These sites have been found to correspond to known allosteric sites5 and

being far less conserved than the binding site itself are of particular interest to structure-based drug

design.

4.1.2 Markov state models

Markov state models (MSMs) are an old statistical method that have only recently been

applied to molecular simulations,6 and that describes the behavior of a system of states based on the

transition probabilities between those states (see Chapter 1). MSMs have seen great success in the

investigation of protein folding7 and the development of programs, such as MSMBuilder8 and

pyEMMA9, that assist MSM construction has fostered interest in this method.10 MSMs are able to

simultaneously identify and characterize the entire binding ensemble and assume no prior knowledge

of the system.

Practically, constructing MSMs rather than using more traditional MD investigation methods

has a number of advantages. By breaking a molecular process into discrete states, any simulation only

has to be long enough to encompass a single transition in order to provide useful data. Thus, instead

of running simulations on the microsecond scale that is usually required to observe entire binding

pathways, hundreds of shorter simulations can be used to take full advantage of parallel computers.

These short simulations can then be stitched together into a transition network, based on the overlap

of the discrete states they have in common, and the transition network can then be used to predict

events beyond the timescales of the individual simulations. Nevertheless, the construction of a MSM

still requires copious amounts of data to produce a statistically reliable model and care needs to be

taken to ensure that all of the important state space is explored. In many cases, additional simulations

may need to be performed to sample transitions where data may be scarce.
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4.1.3 Fatty acid-binding proteins

Fatty acid-binding proteins (FABPs) are small cytosolic proteins that are strongly linked to

metabolic and inflammatory pathways through their role as chaperones for the transport of lipophilic

compounds towards sites of metabolism and signaling.11 FABPs are known to carry drugs across the

nuclear membrane12 and FABP expression has been tied to insulin sensitivity and blood glucose and

cholesterol levels.13 The current work is centered on liver fatty acid-binding protein (L-FABP) of which

both X-ray crystal and NMR structures of the human orthologue have been solved.14,15 Both structures

reveal L-FABP to have a larger binding pocket than other FABPs, allowing it to bind 2 fatty acids

simultaneously in distinct high- and low-affinity binding sites (Figure 1). Similar to GPCRs, FABPs have

a deep binding pocket formed by a β-barrel that consists of 10 β-strands (A-J) in 2, anti-parallel, β-

sheets. The β-barrel is capped on one side by 2 α-helices (H1, H2) and it is this side of the barrel, 

commonly referred to as the portal region, that is thought to allow the entry and exit of ligands.16

Once in the binding pocket of L-FABP, fatty acid head-groups form a salt-bridge with Arg122,

reinforced by hydrogen bonds to Ser39 and Ser124. The deep binding pocket of L-FABP guarantees a

multiple step binding pathway that is needed for method and analytical development that can later

be scaled up to GPCRs. Their small size and the absence of a membrane environment make FABPs

optimal for MD simulations.

Molecular dynamics simulations of ligand binding to FABPs were first performed decades ago

and simulation lengths range from the picosecond17 to microsecond18 timescales. Access to the

nanosecond timescale enabled individual simulations to begin investigating the ligand binding

pathway; Friedman et al. found that in their 3 initial simulations of up to 10 ns, the hydrophobic tail

of their fatty acid ligand penetrated into the anti-portal region of the FABP, the end of the barrel

opposite the helical cap.19 This binding pathway was unsupported by experimental data and is likely

to be an artefact of the limited sampling. Binding to this region was observed in later simulations,20

but it was calculated that egress through the anti-portal required much larger conformational re-

arrangement of the protein than during portal binding.21 The improved sampling provided by longer

timescale MD simulations produced results that are in agreement with the portal hypothesis of ligand

binding.22,23 Most notably, Li et al. conducted simulations of 5 different ligands binding to adipocyte

FABP. For each ligand they performed two 1.2 µs simulations and found several distinct binding modes

within the portal region.

In this study we have investigated the binding of oleic acid to L-FABP; first by performing a

series of conventional MD simulations to examine the binding pathways of oleic acid from the bulk

solvent to the high-affinity binding site, then, adding an additional set of simulations, by constructing
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a MSM to thoroughly explore the binding ensemble of oleic acid in the portal region of the receptor.

With these two approaches combined we have simulated the L-FABP-oleic acid system for a total of

215 µs.

Figure 1. Cartoon representation of L-FABP (PDB ID: 2LKK) highlighting key areas and interactions: H2
(cyan), loopCD (green), and loopEF (yellow). Oleic acid is shown in the structure as brown and shown
as a 2D structure in the upper-left. The ligand in the high-affinity binding site interacting with Arg122,
Ser39 and Ser124 and the ligand in the low-affinity binding site interacting with Ser56 and Lys31.

4.2 Method

All Simulations were run on the MASSIVE, VLSCI and NCI clusters using Gromacs 4.6.224 with

the GROMOS 54a725 force field and the TIP3P water model. Oleic acid parameters were united-atom,

modified from the GROMOS 54a7 force field according to Bachar et al.26,27 VMD28 was used for the

visualization and analysis of systems. Analysis procedures were augmented by in-house scripts written

using the Perl and TCL scripting languages. All graphs were generated using gnuplot.
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4.2.1 System preparation

Systems were constructed to model the spontaneous binding of oleic acid to L-FABP, from the

solvent to the experimentally determined binding site. Each system consisted of a single protein,

explicit solvent, and 1 or 2 oleic acid molecules. The protein model was based on the NMR structure

of the human L-FABP-oleic acid complex (PDB ID: 2LKK).15 The first conformation within the ensemble

of PDB structures was used; all conformations were similar enough to be considered representative

(Maximum RMSD 0.074 Å). Periodic boundary conditions were used with an orthorhombic

dodecahedron unit cell, constructed such that there was a minimum of a 5 Å distance between the

solute and the periodic boundary, which resulted in a minimum distance between solute atoms of

neighboring images of approximately 25 Å. A two ligand model was constructed by placing 2 oleic acid

molecules randomly in the periodic cell (closest distance to solute 6.5 Å). The resulting system was

then solvated with the Gromacs gen_box script to a default density (4,326 water molecules), allowing

solvation of the binding site. Sodium and chloride ions were added to a concentration of 150mM NaCl

and ensuring that the model system was electrically neutral. A single-ligand model was created by

deleting 1 Na+ ion and 1 ligand. The entire system was represented by the GROMOS 54a7 united-atom

force field.

4.2.2 Long-timescale molecular dynamics

The first set of simulations was conducted using a conventional, unbiased MD approach using

simulations of 1-2 µs in length, commencing from the same starting structure but assigned different

initial velocities. Each simulation sought to capture an entire binding event of oleic acid, from the

solvent to the high-affinity binding site. Simulations used the Verlet cut-off scheme, in order to utilize

GPU architecture. The cut-off for van der Waals and short-range electrostatics was 9 Å. The particle

mesh Ewald method was used to calculate long-range electrostatics.29 All bond lengths were

constrained with the LINCS algorithm.30 Equilibration simulations were performed with a 2 fs time

step, which was increased to a 5 fs time step for production runs.

All long time-scale simulations were set up using a 5-step procedure, with each preliminary

MD step being performed for 1 ns followed by the production run. The steps are as follows: (1) A

steepest descent minimization was performed for up to 2000 steps. (2) Initial velocities were

generated with a unique random seed, protein and ligand atoms were restrained, and the Berendsen

thermostat was applied to the entire system (310 K, 0.1 ps time constant). (3) Temperature coupling

was applied separately to protein and non-protein atoms, Berendsen pressure coupling was

introduced (1 atm, 20 ps time constant). (4) Restraints on protein side chains were released,

temperature coupling was switched to the v-rescale thermostat, and pressure coupling was switched
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to the Parrinello-Rahman method31 (time constant adjusted to 2 ps). (5) The remaining restraints on

the protein backbone and ligand were released. (6) In the production run, the time step was increased

to 5 fs and the pressure coupling frequency was doubled to compensate. Simulation coordinates were

saved every 50 ps.

Analysis was performed on a subset of production run data such that RMSDs and interactions

were calculated every 1 ns. RMSDs were calculated relative to the experimental structure (PDB ID:

2LKK), the RMSD of each ligand was calculated to each of the 2 poses present in this structure.

4.2.3 Markov state models

MSMs were constructed with MSMbuilder 2.6,8 and MSMexplorer 0.932 was used to visualize

transition networks. Insight from the long-timescale simulations was used to identify metastable sites

to use as starting structures for hundreds of shorter simulations that were used to construct MSMs.

Within the metastable sites, starting structures were selected such that they had a low backbone

RMSD to the experimental structure. In total, 3 structures were selected from each of the high-affinity

binding site, the low-affinity binding site, and the metastable site at loopEF. Initially 50 simulations

were performed from each starting structure, totalling 450 simulations. The starting structures were

minimized, then the production run was performed, as described above, for 200 ns. One batch of 50

simulations from each starting point was extended to 400 ns. An initial MSM was constructed from

these initial 450 simulations and it was determined that transitions into the high-affinity binding site

required further sampling. To address this, 4 additional starting structures were chosen around

transitions into the high-affinity binding site and an additional 50 simulations were performed from

each structure to better sample this transition, resulting in a total of 650 simulations which were used

to construct the final MSM.

MSMs of the binding pathway were constructed according to a modified version of the

workflow described by Bowman for protein folding simulations.33 As the first step in constructing the

model, trajectories were aligned by the protein backbone residues. Data was then clustered according

to the RMSD of all ligand atoms using the hybrid k-centers/k-medoids method implemented within

MSMbuilder with a maximum intra-cluster distance of 2 Å. This process generated a total of 2941

clusters (microstates). A transition network was calculated for this set of microstates and the Bayesian

agglomerative clustering engine (BACE)34 algorithm was used to coarse-grain them into macrostates.

The BACE algorithm works by iteratively merging the most kinetically similar (rapidly interconverting)

states, and the Bayes factors produced indicate how well each step preserves the behavior of the

original microstate model. From these Bayes factors it was determined that less than 16 states would

result in a sharp decline in the ability of the macrostate model to preserve the behavior of the
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microstate mode, so a 16-state model was generated with a lag time of 5 ns. It was found that 4 states

in this model were poorly connected, with an equilibrium population below 0.001% and these states

were excised from the final model.

4.3 Results and discussion

4.3.1 Analysis of oleic acid binding to L-FABP using long timescale simulations

While it is known from the experimental X-ray and NMR structures that L-FABP is capable of

binding two ligands, little is known about how the ligands arrive or depart. Such knowledge is

important for the design, or tuning the kinetics, of ligands that bind to L-FABP. For example, if the

intent is to use L-FABP to transport a drug to the nucleus, the drug needs to be able to unbind from L-

FABP at an appropriate timescale to dissociate from the receptor in the nucleus. To this end we

simulated the binding of oleic acid molecules to L-FABP, 1 or 2 at a time. In total, we simulated

unbiased binding of oleic acid to liver fatty acid-binding protein for a total of 55 µs across 30

simulations (Table 1), with 15 simulations containing a single ligand (designated 1-1 to 1-15) and 15

containing two (designated 2-1 to 2-15). Of the 30 long-timescale simulations conducted, 5 showed

the ligand spontaneously traversing from solution to the high-affinity binding site and 3 of these gave

structures where the ligand was within 3 Å of the experimentally determined structure. One

simulation (2-13) reproduced the experimental structure for both ligands and protein with an RMSD

< 2 Å (Figure 2).



Chapter 4 - Ligand Binding of Oleic Acid to Liver Fatty Acid-Binding Protein 74

Ligand RMSD (Å)

Final
protein

RMSD (Å)

Interactions
To high-affinity To low-affinity A
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e
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M
e
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4

Single oleic acid simulations
1-1 A 8.7 5.3 8.7 6.2 3.6 H
1-2 A 17.8 9.8 28.8 21.0 2.7 A
1-3 A 16.1 8.7 25.5 19.8 2.9 A

1-4
A 12.4 8.6 9.6 2.3

2.8
P 




1-5 A 13.8 7.9 24.6 18.5 3.6 A
1-6 A 9.1 8.5 10.1 6.3 3.0 P  
1-7 A 13.2 8.9 10.8 7.7 4.2 P 
1-8 A 11.4 9.0 9.7 5.6 3.9 P  
1-9 A 7.6 5.6 9.5 2.3 3.0 P   

1-10 A 11.4 8.8 9.4 7.4 2.8 P  
1-11 A 15.3 10.6 14.5 8.1 6.2 A-P 
1-12 A 8.4 4.9 12.1 3.1 3.4 P  
1-13 A 18.4 9.8 28.0 21.5 2.5 A
1-14 A 11.4 8.6 9.2 3.5 2.7 P  
1-15 A 13.5 7.3 12.0 7.2 3.3 P 

Two oleic acid simulations

2-1
A 8.1 6.0 19.3 17.8 3.4 A
B 10.3 7.4 22.3 19.3 A

2-2
A 7.3 2.2 13.1 7.5 3.2 P 
B 12.9 9.7 3.6 2.4 P  

2-3
A 17.9 13.5 28.3 22.5 4.8 A
B 13.2 9.1 24.0 10.5 A

2-4
A 13.8 8.7 13.2 2.0 4.2 P  
B 13.2 9.6 5.6 3.1 P  

2-5
A 7.4 6.0 11.3 6.5 4.7 P 
B 10.4 8.9 8.8 6.4 P 

2-6
A 13.8 9.8 13.4 7.6 3.1 P 
B 10.3 8.1 9.3 1.8 P  

2-7
A 11.0 5.9 21.5 16.9 4.5 A
B 11.2 8.4 7.6 1.7 P  

2-8
A 24.9 10.5 23.1 5.5 5.0 H
B 4.3 3.5 12.5 2.9 P  

2-9
A 11.1 7.2 12.0 9.2 4.3 P 
B 9.3 7.9 9.5 6.3 H 

2-10
A 11.3 6.4 11.2 4.1 3.9 P  
B 8.1 5.7 9.2 6.4 H 

2-11
A 13.3 11.2 6.1 2.2 3.1 P  
B 16.7 8.8 16.1 8.8 P 

2-12
A 10.2 7.6 7.2 5.2 4.2 P 
B 11.1 9.9 11.9 8.6 P

2-13
A 13.2 9.9 2.8 1.7 1.9 P 
B 2.3 1.6 13.0 8.5 P 

2-14
A 12.2 8.4 11.5 7.3 2.6 P 
B 2.8 2.0 13.0 2.1 P  

2-15
A 11.5 8.5 6.3 2.3 3.3 P  
B 14.4 8.5 10.7 7.9 P 

Table 1. A summary of long-timescale FABP simulations. All RMSD values are given in Angstroms.
Ligand regions A, H, or P indicate whether the ligand entered the anti-portal, helical cap, or portal
regions respectively. Simulation 2-13 (highlighted) accurately reproduced the experimental structure.
Ligand RMSDs are reported for the minimum reached and for the final frame of the simulation.
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Figure 2. Simulation 2-13 (brown) reproduced the experimentally determined pose (white) within 2 Å
RMSD.

Although all binding simulations were started from the same initial placement of ligands, the

initial velocities of each simulation were set using a random seed unique to that simulation, causing

simulations to diverge at the first simulation step. Ligands were seen to adsorb to the protein during

the opening nanoseconds of simulation and roamed around the protein surface before settling in 1 of

3 regions: the portal, anti-portal, and helical cap regions (Figure 3). Of the 45 total ligands simulated,

31 arrived in the portal region, 4 inserted between the two helices in the cap, and 10 adhered to the

anti-portal region (1 of which subsequently dissociated from the anti-portal late in the simulation and

migrated to the portal region). These observations are in good agreement with previous MD studies

of a much shorter duration that studied the locations of adsorption of fatty acids to FABPs.20
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Figure 3. Three distinct ligand binding regions were observed: (A) portal, (B) anti-portal, and (C) helical
cap regions.

A key finding from our long-timescale ligand-binding simulations was the observation of a

metastable binding arrangement in which the ligand head-group interacts with the backbone of

residues in loopEF, whilst the ligand tail-group was buried in the β-barrel (Figure 4). This binding site 

is not occupied in the experimental structure and presents a new location to consider when designing

ligands that bind to L-FABP. A potential involvement of this loop in ligand binding was postulated by

Sharma et al.14 Based on a set of 3 crystal structures (apo, containing 1 ligand, and containing 2

ligands), they identified an interaction between the side chains of Met74 (in loopEF) and Arg122 that

effectively closed the binding site in the apo structure, but which opened upon ligand binding to the

high-affinity site. Combined with the observation that there are minimal differences in protein

conformation between the 1-ligand and 2-ligand structures, they reasoned that the first ligand binds

to the high-affinity site and changes conformation of the receptor to facilitate the binding of the

second ligand. The simulations performed in the current work began with the holo conformation of

the receptor and the Met74 to Arg122 interaction was only observed transiently prior to obstruction

by a ligand. However, evidence from our long-timescale simulations is in general agreement,

suggesting that the first ligand proceeds through the low-affinity binding site en route to the high-

affinity site, paving the way for a second ligand.
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Figure 4. A representative structure of the metastable binding site at loopEF taken from the early part
of simulation 2-14. Ligand A is shown interacting with Thr73, Met74, and Thr75.

Across all simulations, a total of 10 simulations showed fatty acids binding to the anti-portal

region of the receptor. Binding in this region occurred through initial interaction of the ligand head-

group with polar residues Ser2, Phe3, and Ser4 on the N-terminus. This interaction was followed by

the hydrophobic tail inserting into the β-barrel. That such a significant number of ligands adhered to 

the anti-portal region is an unexpected finding. The ability of the fatty acid tails to regularly insert into

the β-barrel even more so. However, the residence time of fatty acids in the anti-portal region appears 

to be brief, with a dissociation event observed within 1 µs (c.f. dissociation time from binding site on

the timescale of seconds35), and the interactions with Ser2, Phe3, and Ser4, that were observed across

multiple simulations (Figure 3B), were frequently broken. Although the anti-portal region seems

unrelated to the binding pathways we are investigating, it is worth noting that, similar to the high

affinity binding site, the anti-portal region has an Arg+2×Ser motif in a similar arrangement to the
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motif present in the high-affinity binding site (flexible termini allowing), which lends itself well to the

binding of carboxylic groups. In the simulations performed here, once the ligand tail-group retreats

into the β-barrel, the head-group loses contact with this motif, but other, perhaps longer, fatty acids 

may be able to maintain contact.

Across all simulations, 4 ligands were observed to bind by insertion of their tail-group between

the helices of the helical cap (Figure 3C). In all cases of ‘cap’ binding, intercalation between the helices

proved destructive to the secondary structure by causing the helices to uncoil. Of the 4 cap binding

ligands, only the tail-groups were able to enter the β-barrel while the head-groups remained above 

the cap. The stability of this pose must also be called to question due to the substantial disruption of

helical structure; one ligand was observed to dissociate shortly after the helices unwound. While this

observation sheds doubt on the relevance of this helical location to ligand binding from solution,

evidence suggests that the helical region interfaces with cell membranes as a key step in fatty acid

transfer to membranes or vesicles.36 Disruption of the helices would likely accelerate this process.37

As expected, the majority of ligands proceeded from solution to the portal region, where their

head-groups interacted with polar residues in the portal-region loops while the hydrophobic tails were

buried in the β-barrel (Figure 3A). The interaction of the fatty acid head-group with loopEF was 

observed in the majority of simulations. In total, 25/32 portal region ligands interacted with loopEF

for over 5% of the simulation time. The 7 portal-region ligands that do not interact with loopEF include

all 5 salt-bridge forming ligands, which skip interacting with Met74 by binding prior to 5% of simulation

time or making initial contact with Ser56. The remaining 2 portal-region ligands are from simulations

in which loopEF is already occupied by another ligand that is unable to contact Ser56 as the low-affinity

site is obstructed by a downward shift in H2.

A downward shift in H2 (Figure 5) was an interesting phenomenon observed in many

simulations. The movement in H2 typically forced loopCD outwards, where Ser56 maintained a

hydrogen bond with the outward facing Lys31 in H2. This conformational change proved either

conducive or detrimental to ligand binding depending on the location of the individual ligand. In the

majority of cases the outward displacement of loopCD made Ser56 inaccessible to ligands occupying

the site at loopEF. This conformational change can be observed in the interactions of the 2 portal

binding ligands in simulation 2-15 (Figure 6) – at 1000 ns a change in the protein RMSD can be

observed, indicating the return of H2 to the experimentally determined pose. This movement leads to

a shift in ligand interactions as they shuffle around from loopEF and loopGH to occupy the low-affinity

binding site (loopCD) and loopEF respectively. In cases where the low-affinity binding site was already

occupied when the downward shift occurred, the ligand was pushed deeper into the receptor via the
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gap between strands B and C. In 2 simulations (1-9, 1-12, 2-14) the downward shift resulted in the

low-affinity bound ligand making contact with Arg122. This is shown for simulation 2-14 in Figure 5

and Figure 7 – a change in the backbone RMSD at 200 ns indicates the downward movement of H2,

pushing the ligand head-group into the β-barrel where it forms a salt-bridge with Arg122, eventually 

assuming the high-affinity pose. Similar motions were observed in simulation 2-13, but with the high-

affinity binding site already occupied, the ligand in the low-affinity pose was able to stand its ground.

Figure 5. Two overlaid frames of simulation 2-14 showing the conformation of the protein and ligand
B before (green) and after (blue) the downward movement of H2. The new position of H2 in blue can
be seen to occupy the space previously occupied by the ligand in the low-affinity binding site (green).
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Figure 6. Interaction map representing the movements of the two ligands in simulation 2-15. The top
2 panels show the RMSD of the protein backbone from the experimental pose (red) and the RMSD of
ligand A from the low-affinity pose (blue). The lower ‘barcode’ panes show contacts between the
ligands and protein residues (ligand oxygen to protein heavy atom distance of <3.5 Å). Darker barcode
lines indicate closer contact. Residues that interacted for less than 5% of the simulation time have
been omitted. Residues are shaded based on their affiliation with the low-affinity binding site (green),
loopEF (yellow), or loopGH (red).
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Figure 7. Interaction map of simulation 2-14, ligand B. The top two panels show RMSD of the ligand
from the high-affinity pose (blue) and the RMSD of the protein backbone from the experimental pose
(red). The lower ‘barcode’ panel shows contacts between the ligand and protein residues (ligand
oxygen to protein heavy atom distance of <3.5 Å). Darker barcode lines indicate closer contact.
Residues that interacted for less than 5% of the simulation time have been omitted. Residues are
shaded based on their affiliation with the low-affinity binding site (green), or high-affinity binding site
(blue).

Despite the frequency of ligand interactions at loopEF, there was no observed case of a ligand

first interacting with loopEF and then proceeding to binding. Instead, individual simulations showed

ligands proceeding from loopEF to loopCD or loopCD to the high-affinity binding site but never both.

From analysis of the 2-ligand simulations, it was apparent that ligands preferred to interact at the

‘earlier’ loops: the low affinity binding site at loopCD and metastable site at loopEF, rather than the

rarely occupied loopGH. Whilst the site at loopEF was the most frequently occupied, the site at loopCD

seemed preferred when it was unobstructed by H2 (Figure 5). Similarly the position at loopGH was
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only occupied when the site at loopEF was unavailable. Thus preliminary observations suggest an

order of site preference or a plausible binding pathway (Figure 8).

Figure 8. Proposed binding pathway for oleic acid to L-FABP based on long-timescale conventional MD
simulations. The ligand begins interacting with loopGH (orange) and proceeds through loopEF (yellow),
and the low-affinity binding site at loopCD (green), before forming a salt-bridge with Arg122 at the
high-affinity binding site (blue).

Using a set of 30 long-timescale simulations we have been able to identify the key metastable

states and transitions that occur on the binding pathway of oleic acid from solution to the high-affinity

bound pose in L-FABP and we have used this information to propose a binding pathway. The

simulations were able to reproduce the experimental structure of both the protein and the bound

ligand to within 2 Å RMSD. We have performed a total of 55 µs of simulations, and the insight this

data has provided us presents a significant advancement over previous simulations of ligand binding

to L-FABP.

4.3.2 Markov state model for oleic acid binding to L-FABP

Although the long-timescale conventional MD simulations have provided us with great insight

into ligand binding to L-FABP, many of the important transitions in binding are still rarely sampled and

our proposed binding pathway is never observed in its entirety. To obtain a more detailed

understanding of oleic acid binding to L-FABP we have developed a Markov state model that more

completely characterizes the ligand-binding process. Expanding on the 2 µs of portal region-binding

simulations discussed above, we performed 650 additional shorter simulations (each 200-400 ns)

commencing from the high- and low-affinity binding sites and the metastable site and loopEF. These

simulations total 160 µs of simulation time. An MSM was constructed from these new simulations as
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a transition network of 3000 states. Kinetically related states were then lumped together to produce

a macrostate model, and poorly connected states were excised to produce a final 12-state MSM

(Figure 9). The key metastable states shown in this MSM are the low-affinity binding site (green, states

1-3), the metastable site at loopEF (orange, states 10-12), and the high-affinity binding site (blue, state

5).

Figure 9. A 12 state MSM. Colored backgrounds indicate states affiliated with the low-affinity binding
site (green), loopEF (orange), and high-affinity binding site (blue). Thicker arrows indicate a higher
transition probability. States are numbered as they are referred to in the text.

The MSM identifies clearly defined states for the low-affinity binding site (green) as well as

the metastable binding site at loopEF (orange). The model reproduces the previously observed

transitions between the low-affinity binding site and loopEF, and shows that this transition does not

proceed via any specific intermediate but rather proceeds through a loosely clustered state (state 6)

where the ligand head group diffuses throughout the portal region while the tail-group remains buried

within the β-barrel. In addition to the binding pathway revealed by the long-timescale simulations 

(states 1-3 > 4 > 5), the MSM also reveals a second major binding pathway, in which the ligand

proceeds to salt-bridge formation from the metastable site at loopEF (states 10-12 > 7 > 8 > 5). The
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first step on both pathways is formation of the salt-bridge to Arg122 via state 4 or 7. The salt-bridge

formation from the low-affinity binding site commonly only passes through state 4 on the way to the

high-affinity binding site. Salt-bridge formation from loopEF requires additional steps of re-

arrangement via state 7 and 8 before the ligand head-group arrives at the high-affinity pose.

Equilibrium populations can be estimated from the MSM, although the rarity of transitions

between the states involved in the key step of salt-bridge formation leads to a poor estimate of the

population of the high-affinity state. The MSM estimates the populations of the low-affinity and

metastable site at loopEF to be equal, at 24% each, whilst the population of salt-bridge containing

states is estimated to be only 42%. The low estimate of the bound population at the high affinity site

is likely because the current model is the product of only 2 iterations of simulations.

4.4 Conclusion

We have conducted an investigation of ligand binding of oleic acid to the liver fatty acid-

binding protein using conventional molecular dynamics simulations totaling 55 µs and extended this

work to develop the first MSM of ligand binding to FABPs. Through our initial long-timescale

simulations we identified several metastable binding sites in the portal and anti-portal regions of L-

FABP. We also identified a plausible binding pathway in which the ligand head-group proceeds from a

metastable site at loopEF, through the low-affinity binding site, enters the β-barrel, and forms a salt-

bridge with Arg122, from which the ligand adopts the high-affinity pose. The metastable binding site

at loopEF presents a novel bound mode that has not been observed experimentally and that may,

through disruption of the interaction between Met74 in loopEF and Arg122, facilitate the transition of

the receptor to the holo conformation required for ligand binding. This site provides an intriguing

target to consider for structure-based drug design and could be used to optimize the kinetics of ligand

transport by FABPs, thereby controlling the delivery of nuclear receptor targeting drugs.

Starting from the metastable binding sites identified in the long-timescale simulations, we

performed an addition 160 µs of simulations and used this data to construct a Markov state model of

oleic acid binding to L-FABP. This MSM supported the binding pathway proposed from the

conventional simulations and also revealed a second major binding pathway, proceeding from the

metastable site at loopEF. This MSM is an advance over conventional simulations. It clearly shows the

series of transitions that form the binding pathways and enables us to estimate the relative

populations of each metastable state, furthering our understanding of the ligand binding of oleic acid

to the L-FABP.
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The current MSM suffers from two limitations. The first of these limitations is that the model

only covers the portion of the binding pathway after the ligand has associated with the portal region

of the receptor. It was necessary to exclude the pre-association states of the ligand (where the ligand

was freely diffusing in the solvent) from the MSM as these states cover far more geometric space than

the bound state. In order to cluster freely diffusing states with a maximum intra-cluster size of 2 Å and

adequately sample transitions between them, there would need to be multiple orders of magnitude

more clusters and data. This could instead be handled by manually grouping these freely diffusing

states into a single state, or identifying a more suitable metric for clustering. The second limitation of

the model is that the rare transitions surrounding salt-bridge formation are undersampled. Additional

sampling around the salt-bridge formation transitions is required to better model the kinetics of the

high-affinity bound state. In this study we only performed one iteration of adaptive sampling. A third

batch of simulations may solve this issue, but running several more iterations – with fewer simulations

per batch – should be able to more efficiently produce a better model. Both of these limitations are

specifically addressed in our subsequent work on the development of an MSM for the binding of

haloperidol to the dopamine D3 receptor.
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Chapter 5
Markov State Model Analysis of Haloperidol Binding to the D3 Dopamine

Receptor

Having previously developed an understanding of the behavior of haloperidol binding to the

D3R (in Chapter 3) and a methodology for constructing ligand-binding Markov state models (in Chapter

4), we set out to construct an MSM of the D3R-haloperidol system. Ligand binding MSMs had

previously only been constructed for relatively simple systems and, although MSMs had previously

been used to study the activation dynamics of GPCRs, they had never been used to study the binding

pathway of a GPCR ligand. The construction of a Markov state model of ligand binding to a challenging

GPCR system, and the development of the required methodology, would present a significant

advancement in the field.

The beginning of this work coincided with significant improvements to the available MSM

software, and we were able to far more easily implement our own code and further develop our

methodology. We developed effective descriptors of the system that allowed us to account for the

flexibility and hydrogen-bonding character of our ligand and developed an adaptive sampling

methodology that enabled each iterative batch of simulations to reduce errors in undersampled

transitions and to further the exploration of the binding ensemble. This work presents the final MSM

produced, but the methodology was developed over a long series of datasets, in which we identified

flaws in the methodology and solved them for the next iteration.

In Chapter 4 we encountered difficulties in describing the flexibility of the system and only

implemented a minimal adaptive sampling methodology, which was not able to correct the most

undersampled transitions. The methodology presented here is a significant advancement over our

earlier work and is suitable for application to other complicated ligand-binding systems, providing a

significant advancement to the field. Using MSMs we were able to explore the ligand binding pathways

of haloperidol and support our findings with robust statistics. Where in Chapter 3 we were able to

produce a binding pathway for haloperidol, here we improve upon that work by exploring the

ensemble of the binding complex and predicting the relative importance of the many metastable

states.

This chapter is a manuscript to be submitted for publication.
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Introduction

It has long been recognized that drug-binding involves more than

just the endogenous binding site and that drugs must first undergo

association and recognition steps prior to reaching the high affinity

bound state. The early stages of binding typically occur too fast to

observe experimentally, leading to the use of the general

approximation that drug binding is a one-step ‘on or off’ process.

This simplification to a single parameter is, surprisingly, often

adequate for drug development, but for many targets the off-rate of

a drug has proven more important than the affinity as a whole (1–3).

In reality there are a multitude of steps to the binding process any of

which could be the rate determining step. An agonist may have no

effect prior to arriving at its final bound pose, yet an antagonist can

block access to a binding site prior to its own arrival, and either could

have additional allosteric modes of action. There is simply not

enough information in a two-step approximation to explain the

complexities of the binding pathway that may result in unique ligand

behaviors.

In contrast to laboratory experiments, molecular dynamics (MD)

simulations can expose drug binding processes in atomic detail,

revealing metastable binding sites along the drug-binding pathway

where the drug pauses during the binding process. Using a series

of microsecond timescale simulations, Dror et al. investigated the

binding of 3 antagonists, and 1 agonist to the β2AR, and observed

that the binding pathways were characterized by a common series

of metastable states (4). Additionally, they also found that the

primary barrier to binding was located far outside the binding pocket

and involved the dewetting of the binding site so the key salt-bridge

could form. A similar investigation of tiotropium binding to the M2/M3

muscarinic receptors found an analogous barrier and suggested that

the difference in the rate of tiotropium dissociation from the two

receptors was due to differences in this energy barrier rather than

the highly homologous orthosteric sites (5). Conversely, our own

studies of haloperidol binding to the D2 and D3 dopamine receptors

suggested that different binding pathways are present in the two

receptors despite the fact that haloperidol is non-selective (6).

Studying drug binding through unbiased simulation can be

considered a brute force approach due to their lack of efficiency and

often requires computational power that is still out of reach of most

researchers (7).

Markov state models (MSMs) are general statistical models which

estimate the transition probabilities in a system of states by

observing the behavior of that system over time. When applied to

large sets of conventional, unbiased MD simulations, MSMs can

increase both the computational efficiency and accessible

timescales. By running many shorter – and therefore efficiently

parallelizable – simulations, MSMs can predict a transition

probability that can be extrapolated to longer, otherwise inaccessible

timescales.

MSMs are at their simplest (8, 9) a network of transition probabilities

between a set of discrete states. These states can be imagined as

the local minima in an n-dimensional energy landscape that are

separated by energy barriers of various heights. The probability of

transition between two adjacent states is governed by the height of

the energy barrier and conversely, the height of the barrier can be

determined by measuring the frequency of transitions between pairs

of states. The theory of MSMs depends on the Markov property of

history independence. In order to determine the height of an energy

barrier to transition out of a state, the system must be allowed to

reach an equilibrium within that state, thereby ‘forgetting’ where in

the state it entered. For this reason, transitions between states are

counted after a “lag time” that allows the system to equilibrate, and

these counts are used to calculate the transition probabilities from

which the kinetics are derived. For more detailed theory on MSMs

the reader is recommended references (10, 11).

MSMs have been extensively applied in computational biology to

elucidate protein folding pathways, an area in which they have had

an impressive impact (12). The use of MSMs in studying ligand

binding pathways has been far more limited, due to both the

increased complexity of treating the ligand and protein separately,

and the disparate timescales on which ligand-binding and protein

conformational changes occur. The key to overcoming these

difficulties is in the methodology used to discretize the coordinate

space of the molecular system into individual states. If the system is

discretized too coarsely, intra-state energy barriers prevent the

equilibration of the system within a reasonable lag time. If the system

is discretized too finely, a prohibitive amount of data is needed to

reach a statistical certainty for each transition probability.

Discretizing the coordinate space then becomes an optimization

problem, a set of arbitrary dimensions must be combined to form an

energy landscape that eliminates noise whilst clearly representing

the important minima.

Once a suitable set of features has been chosen, dimensionality

reduction algorithms can be used to reduce the large volume of data

and focus the system on the kinetically relevant movements of the

protein or ligand. Time-structure independent component analysis

(tICA) is a dimensionality reduction recently applied to useful effect

in several MSM studies (13–15). tICA identifies the combinations of

correlated components that result in the longest time-scale

movements of the system, essentially decoupling geometrically

large yet kinetically irrelevant movements such as the diffusion of

the ligand through the solvent, or the flapping of protein termini. In

this way, the raw MD data, a set of coordinates for every atom, most

of which are redundant, or irrelevant to this ligand binding pathway,

can be efficiently denoised. It is possible, through a combination of
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feature selection and further dimensionality reduction, to usefully

represent the states of system composed of many thousands of

atoms using a handful of carefully chosen dimensions.

To date, most of the methodology developed for ligand binding

MSMs has been confined to systems that are adequately described

using just one or two simple descriptors. The benzamidine-trypsin

complex has been used extensively as a test case. This system was

initially studied by approximating the receptor as a rigid body and

representing the ligand position with a single atom (16). It was

subsequently used as a test case for developing adaptive sampling

methodology (17) and later re-investigated on much longer

timescales to observe protein motions (18). The binding of

phosphate to phosphate binding protein has also been studied using

similar approximations (19). More flexible systems also benefit from

simple descriptors. It was found that the large-scale “clam-like”

domain movements of the LAO protein during L-arginine binding

were able to be simply approximated with two angles to describe the

opening and twisting of the two domains (20).

While simple descriptors are ideal for simple systems, they lack the

descriptive power to adequately describe more complex complexes.

Representation of the ligand as a single atom or rigid body is

unsuitable for flexible ligands, where the orientation and

conformation of the ligand have a greater impact on the kinetics.

Similarly the approximation of the protein as a rigid body is blind to

energetic barriers due to protein flexibility. In order to construct a

ligand-binding MSM of a relatively complicated G protein-coupled

receptor (GPCR) system, we have found that more sophisticated

descriptors are required.

G protein-coupled receptors are major pharmaceutical targets, and

are amongst the most-studied classes of proteins. GPCRs consist

of a bundle of 7 trans-membrane helices which bind to small-

molecule ligands in their extra-cellular binding pockets and

transduce signals through binding with intra-cellular G proteins.

Whilst MSMs have been used to explore the conformational

ensemble of the β2AR receptor (21), there have been no similar

studies of dopamine receptors nor any studies focusing on the

behavior of the ligand during the binding process. Thus we have

conducted a study of the inverse-agonist haloperidol (Figure 1)

binding to the inactive state of the D3 dopamine receptor.

Haloperidol has a residence time of 58 minutes in the highly

homologous D2R (22), which leads to a challenging system to

model. This study greatly extends from our previous work, where we

simulated a binding pathway for haloperidol through conventional

MD approaches (6).

Figure 1. Haloperidol. The atoms used to define the ligand position

during analysis are highlighted in blue.

In this work we demonstrate the application of MSMs to create a

model for ligand binding to a GPCR that incorporates both protein

and ligand flexibility, revealing the ligand binding pathways and

identifying intermediate metastable sites. Our methodology utilizes

adaptive sampling to increase the computational efficiency, and

decrease the statistical error. This is the first MSM of ligand-binding

to a GPCR that focuses on the behavior of the ligand and we

anticipate that this methodology will be useful for a wide range of

systems.

Methods

Molecular Dynamics Simulations.
Molecular simulations were performed with GROMACS 5.0 (23)

using the GROMOS 54a7 force field (24, 25). Parameters for

haloperidol were calculated using Automated Topology Builder (26–

28) with additional symmetry corrections. The coordinates of the

initial system were those of the pre-equilibrated D3 dopamine

receptor embedded in a POPC lipid bilayer developed in our

previous work (6). The protein termini, including those created by

truncating loop ICL3, were charged and heavy hydrogens were used

to allow a 5 fs time step (29). The bilayer and protein were resolvated

into an orthorhombic dodecahedron unit cell with the insane script

(30) such that there was a distance of 30 Å between bilayers. The

initial position of haloperidol was as far from the protein as possible.

The resultant system contained ~5000 water molecules, 0.15 M salt,

and 80 lipids. The temperature of all simulations was 310 K.

Following an initial 2000 step minimization the system was

equilibrated for 1 ns using the NVT ensemble with the Berendsen

thermostat, for 1 ns using the NPT ensemble with Berendsen

thermostat and barostat, and 20 ns with the NPT ensemble using v-

rescale thermostat and Parrinello-Rahman barostat. The protein

backbone and ligand were restrained during all equilibration steps.

The initial simulations began from this equilibrated system.

Production simulations commenced with a 2000 step minimization.

Random initial velocities were applied and each simulation was

performed for 200 ns with an unbiased NPT ensemble using the v-

rescale thermostat, Parinello-Rahman barostat.

Development of Markov State Models

Using Adaptive Sampling.
Markov state models were constructed using MSMBuilder (31). The

final models were developed using an iterative, adaptive sampling

process using a total of 519 production runs totaling 121800 ns.

Adaptive sampling utilized an exploration phase and a refinement

phase, each phase was achieved using the process outlined in

Figure 2.

(A) An initial batch of 100 simulations was performed each starting

with the ligand located in the solvent. Of these simulations, 53

finished with the ligand in the extracellular vestibule. The final

frames of these trajectories were used as the starting structures

for the first iteration of simulations. The initial set of 100

simulations was then put aside and only re-incorporated at the

refinement stage, to avoid cases where the ligand explored the

solvent or bilayer excessively.

(B) Following the initial simulations from the solvent, iterations were

performed using sets of 20-30 concurrent simulations. The

starting frames were selected according to the adaptive

sampling criteria given below.

(C) The high-dimension system coordinates were reduced by

treating the protein and ligand separately, creating a set of

features for each of the protein and ligand. The protein was

featurized based on the coordinates of each α-carbon. The 

ligand was featurized as a binary protein contact fingerprint with

additional bits for hydrogen bonds. The ligand location was first

simplified using the 3 atoms highlighted in Figure 1: the 2

carbons attached to halogens and the central nitrogen atom.

One bit (true or false) of the fingerprint was assigned for each

of these three atoms to each residue in the extra-cellular half of
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the receptor (483 bits). Where the ligand atom was within 6 Å

of a protein residue heavy atom, the corresponding bit was

assigned as true. An additional 54 bits were used to encode the

presence of every possible hydrogen bond between the ligand

and every non-loop residue in the extracellular vestibule. All –

NH and –OH groups were treated as both acceptor and donor,

and both backbone and sidechains were considered for the

protein. A hydrogen bond was defined as being within 2.5 Å and

120° (Baker-Hubbard definition) (32).

(D) To further reduce the dimensionality of the system, tICA (lag

time 500 ps) was applied separately to the protein and ligand

featurizations, 3 dimensions were retained from the protein and

7 from the ligand. The reduced protein and ligand coordinates

were then combined to describe the protein-ligand complex in

10-dimensional space.

(E) The tICA dimensions were clustered coarsely with k-means

clustering (initially with 50 clusters), assigning each frame of

data to a cluster. As more space was explored, additional

clusters were added, totaling 200 clusters at the end of the

exploration phase.

(F) An MSM with a lag time of 1 frame (50 ps) was constructed from

the clustered data to estimate the transition network. This

transition network was analyzed to determine appropriate

starting structures for the next iteration. The contribution of each

state to the uncertainty of each eigenvalue was calculated and

the three states with the highest contributions to the first ten

eigenvalues were selected as starting states for the next

iteration. States contributing to the uncertainty of multiple

eigenvalues were selected only once and this typically led to

around 20 unique states. This procedure effectively selects

under-sampled states that are related to the slowest processes.

Starting structures for the subsequent iteration were selected

from each of the under-sampled states by randomly picking

conformations that were closer to the cluster center than the

mean distance of all cluster members, ensuring that the

selected conformations are representative of the cluster and

preventing the selection of outliers as a starting point for the

next iteration. As k-means clustering tends to place cluster

centers in densely sampled regions, and the exploration of new

space is a relatively rare event, additional starting

conformations were manually selected following visual

inspection of the trajectories. Where a trajectory transitioned to

new space, the last frame of the trajectory was used in triplicate

as a starting conformation in the next iteration.

Figure 2. Flowchart illustrating the key processes in the development

of Markov state and hidden Markov models for the binding of

haloperidol to the dopamine D3 receptor.

The exploration phase of adaptive sampling was continued until no

new conformational space was being discovered (7 iterations). At

this point, the focus of each iteration was switched to refinement of

the model. In the subsequent 4 iterations, the number of clusters

used in step E was increased to 300, 500, 1000 and 1500, allowing

the identification of tighter clusters with few non-self transitions. In

the refinement phase, as in the exploration phase, the starting

conformations for the subsequent iteration were selected based on

each state’s contribution to the overall model uncertainty. Additional

starting conformations were selected from the states with the lowest

number of non-self transitions.

Hidden Markov Model
Following the adaptive sampling procedure, we used the entire set

of MD trajectories to construct a Hidden Markov Model (HMM).

HMMs use many fewer clusters than MSMs and produce a coarser,

macrostate model. They also reduce the discretization error during

clustering by interlinking the clustering and construction of the

transition network into a single iterative step. The HMM was

generated using a 30 ns lag time and the best model, in terms of log

probability, was chosen from 100 trial models, each generated from

different initial k-means clustering, and each trial using 50 iterations

of the expectation-maximization algorithm.

Analysis of our initial HMM revealed problems that had not been

identifiable in the MSM. Groups of states were found that, although

internally well connected, were not well connected to the rest of the
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network. To address these problems, additional simulations were

performed to improve sampling of transitions between the poorly

connected regions of the transition network. The least connected

states were identified by sequentially merging the most connected

pairs of states together until only one state remained. A connectivity

score was assigned to each pair of states which was defined as the

lower value of the forward or backward transition probability. States

with the highest connectivity score were merged first. The 3 least

connected groups of states were identified and sets of 10 additional

simulations were performed from the poorly connected states using

starting structures that were drawn from the cluster in each group

that was most connected to the rest of the network. This refinement

process was repeated for 2 further iterations, after which one group

of states still remained poorly connected. This poorly connected

group of states was estimated by a HMM to contain >95% of the total

population, vastly overwhelming our expected bound state.

Therefore, to better establish the true populations of each state, 5

new starting structures were drawn from the expected bound state

(state A), and the poorly connected group of states (state B). The

ligand in both of these states formed a salt-bridge with Asp3.32 but

each state arose from an opposite alignments of the ligand in the

extracellular vestibule. A set of 2 µs simulations was performed from

each state and the resultant 2 µs trajectories were added to create

an expanded dataset.

Our final HMM model was selected from a set of 30-state HMMs

generated using 30, 60, and 120 ns lag times. State B remained the

dominant state in each model, although state A still retained a

significant share of the population (75% to 14% in the 120 ns lag

time model). The most likely state assignment from the 120 ns lag

time HMM was used to generate a series of MSMs, and the resultant

implied timescales for the slowest processes in the system are

shown in Figure S1. To further characterize the populations of the 2

states, 10 bootstrapped datasets were generated for each model by

randomly drawing entire trajectories with replacement from the full

dataset until each bootstrapped dataset matched the size of the

original dataset. A new HMM was constructed for each bootstrapped

dataset, 10 initial seeds of k-means clustering were used, each with

30 iterations of the expectation-maximization algorithm.

Results and Discussion

Markov state models are an effective tool for exploring complex

molecular processes but, to date, their use in studies of ligand

binding have been limited to simple ligand binding processes. In this

work, we have constructed a series of hidden Markov models for the

more complex binding of haloperidol to the deeply buried binding

pocket of the dopamine D3 receptor. The models were built from a

dataset of 509 individual 200 ns MD simulations of haloperidol

binding to the D3R, augmented with a further ten 2 µs simulations

and assign the ligand-protein system into 30 states. As part of this

process, we built models using 30, 60 and 120 ns lag times to

investigate the impact of this parameter on the HMM. In general,

shorter lag times provide more structural detail about the binding,

but can underestimate the populations of important states, while

simulations with longer lag times obscure intermediate states but

provide better population estimates. Accordingly the populations

and bootstrapped data presented here are for the 120 ns HMM and

the network diagram presented in Figure 3 is for the 30 ns lag time

HMM. The network diagram for the 120 ns model is presented in

Figure S2.

Figure 3 maps the system ensemble, showing the 30 states of the

HMM, color coded into kinetically related groupings. The binding

process begins with the ligand in free and loosely bound ‘solvent’

states (cyan) which then progress to a set of states where the ligand

occupies the extracellcular vestibule, these states rapidly

intertransition and remain uncolored in the network. From the

vestibule, productive binding can be grouped into two broad

pathways which depend on the orientation of the ligand; when the

haloperidol F-ring is directed towards TM 5 or 6, haloperidol follows

pathway A (orange) to deeply buried state A; when the F-ring is

oriented towards TM 1, 2 and 7, haloperidol follows pathway B (blue)

to buried state B. State C is also present near the end of pathway B

and, although very closely related to state B, exhibits a notably

different conformation of haloperidol. States that do not lead to deep

binding are also observed (kinetic traps) denoted as trap 1 (red) and

trap 2 (green). A group of states was also observed where

haloperidol interacts in the secondary binding pocket (pink).

The most important states in this model, from a drug design

perspective, are state A and state B. These states are metastable

beyond a microsecond timescale, whereas other states in the model

have a lifetime of nanoseconds. To estimate the metastability of

states A and B, we performed a batch of five 2 µs simulations

beginning from each state. In these 20 cumulative microseconds of

simulation, no transitions away from state A or state B were

observed, suggesting that both of these states make a significant

contribution to the residence time of haloperidol. Longer timescales

would be required to determine which of these states contribute to

haloperidol’s efficacy as an inverse agonist.
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Figure 3. Transition network of the final HMM built using a 30 ns lag time, showing the progress of the ligand from the solvent state (left) to

the bound states (right). Images for each state show ten, randomly selected, representative ligand conformations. Thicker arrows indicate a

higher transition probabilities. States in pathway A and B are ordered based on their committor probability towards each bound state.

Figure 4 shows representative bound conformations of key states.

In deeply bound state A, the haloperidol nitrogen forms a salt bridge

with Asp3.32 while the F-ring sits deep in the receptor alongside

Trp6.42, the Cl-ring rests between TM 2-3 while the hydroxyl group

remains exposed to the solvent in the vestibule. This state was

identified in our previous unbiased MD study of haloperidol binding

(6). State B is a novel bound state that has the highest equilibrium

population in each HMM. Here haloperidol lies horizontally across

the top of Asp3.32 with the hydroxyl group forming hydrogen bonds

to ECL2 whilst the F-ring dips into a pocket formed by TMs 1, 2 and

7, the Cl-ring stacks with His6.55, and the F-ring sits alongside

Tyr7.43, which maintains a hydrogen bond with Asp3.32. State C is

very closely kinetically related to State B but the F-ring sits deeper

in the receptor, and haloperidol straightens out to adopt a

conformation that more closely resembles state A.

Additional metastable states were identified in the form of kinetic

traps 1 and 2, and a group of states in the secondary binding pocket.

In trap 1, the hydroxyl group of haloperidol is hydrogen bonded with

Asp3.32 while the Cl-ring sits in the pocket between TM 1, 2, and 7

and the F-ring points into the vestibule entrance. In kinetic trap 2 the

hydroxyl group makes interactions with Asp3.32 and haloperidol sits

nearly parallel with TM5 whilst the F-ring interacts with ECL2. In the

secondary binding pocket haloperidol adopted 2 kinetically distinct

orientations, either interacting with Glu2.65 from within the vestibule

with the F-ring projecting into the bilayer between TM 1 and 7, or

interacting with Glu2.65 from above with the Cl-ring directed towards

TM 1.

In addition to identifying kinetically distinct states, Markov models

also calculate the flux between states, allowing the characterization

of binding pathways. Figure 3 reveals distinct pathways from the

solvent to the deeply bound states A and B. Pathway A commonly

starts with haloperidol in the vestibule, located within the polar region

formed by ECL2, His6.55, and Asn6.58 and with the F-ring of

haloperidol directed towards TM 5 and 6. From here, haloperidol

drops deeper into the receptor forming the well-known salt-bridge

with Asp3.32. The F-ring briefly interacts with the aromatic network

between TM 5 and 6 before haloperidol swivels deeper into the

receptor and arrives at state A. Pathway B typically begins with

haloperidol aligned opposite to the starting orientation for pathway

A, with the F-ring pointed towards TM 1, 2 and 7. Haloperidol then

drops deeper into the receptor, taking up a seesaw-like position

above Asp3.32. When the Cl-ring drops deeper into the receptor

haloperidol enters kinetic trap 2, whereas when the F-ring drops

deeper into the receptor haloperidol enters state B.
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Figure 4. Representative structures drawn from the key states

presented in Figure 3. (A) State A, (B) state B, (C) state C (cyan)

compared to similar conformations from pathway A (yellow), (D)

conformations of haloperidol from each state in the secondary

binding pocket, (E) trap 1, (F) trap 2.

The kinetic data also provides information about the equilibrium

populations of each state. The 120 ns lag time HMM predicts the

equilibrium populations of the deeply bound states A and B to be

14% and 75% of the total population respectively. State C, being

closely related to state B, is predicted to have an equilibrium

population of 10%. To assess the robustness of these predictions,

we conducted a bootstrap analysis, creating synthetic datasets by

resampling from the full dataset which results in the omission of

some trajectories. Because the HMM produced using each synthetic

dataset has a unique discretization, the set of substates that form

each bound state differs in every bootstrapped model. Accordingly,

we made a manual comparison between bootstrapped models

where we identified states A and B based on formation of the ligand

salt-bridge and the positions of the ligand aromatic rings, because

state C was not always separated from state B the two populations

were combined. A summary of the bootstrapped data is given in

Table 1, and the full set can be found in SI Table 1. The bootstrap

analysis confirmed that the model is robust. All but one bootstrapped

model assign most of the population to states A and B and, in the

majority of models, state B is the highest population state. This

analysis also reveals a sensitivity to omitted trajectories that can

lead to state A being predicted as the highest population state,

suggesting that, although a healthy number of transitions into each

state were observed, these only occurred in a small number of

trajectories. Using shorter trajectories would reduce this sensitivity,

however this would also reduce the length of the lag times that could

be used.

Populations

State A State B

All data 23.3% 74.7%

Bootstrap 1 0.0% 88.4%

2 3.2% 61.2%

3 28.2% 49.5%

4 42.3% 32.0%

5 32.2% 53.0%

6 60.0% 36.3%

7 40.5% 47.6%

8 16.2% 2.9%

9 17.0% 57.0%

10 46.6% 24.6%

Mean 28.6% 45.2%

Std EOM 18.5% 21.9%

Std dev 6.2% 7.3%

Table 1. Populations of states A and B for 120 ns lag time HMMs

generated from all data and 10 bootstrap datasets. Only

bootstrapped datasets are used to calculate mean and errors.

Free energy surfaces are a useful way to visualize the state

decomposition and general connectivity of the data. The free energy

surfaces for the slowest tICs are shown in Figure 5 and free energy

surfaces for the remaining tICs are shown in Figure S3. These

surfaces show a good connectivity between the data for any given

pair of tICA dimensions. The centroid of each state in the 30 ns HMM

is shown on the free energy surface and colored as per Figure 3. An

examination of the ligand tICs shows that the 2 slowest tICs loosely

correlate to pathway A and pathway B respectively. The free energy

surface also gives a good indication of correlation between the

slowest modes of the system. Figure 5 shows that, as we would

expect, pathway A and B are largely uncorrelated and mutually

exclusive. The slowest-protein and slowest-ligand tICs are also

shown to be largely uncorrelated, but the slowest protein motions

appear to occur during, but independent of, ligand binding. Because

haloperidol is an inverse agonist and the initial conformation of the

receptor was an inactive state we would not expect to see the long

timescale protein conformational changes that would be expected to

accompany activation of the receptor.

In this work we have developed a protocol that improves the

construction of MSMs for protein ligand binding. Specifically, we

address the issues of ligand featurization and adaptive sampling. In

developing the protocol, we found that binary contact featurization

of the ligand to be superior to RMSD based featurizations or contact

distances, which have been used previously. The use of binary

contacts prevents kinetically close states from being separated due

to noise caused by uncorrelated movements beyond the 6 Å cutoff.

Importantly, use of binary contacts produces in a well-defined

solvent state where the ligand makes no contacts with the protein.

A contact distance of 6 Å provided the best balance between

reducing noise and information loss. Inclusion of hydrogen-bonding

information in the fingerprint enabled us to describe situations where

the ligand could rotate around its principle axis whilst occupying the

same geometric volume, which is particularly important during the

formation of the salt-bridge. Incorporation of, at the very least, salt-

bridge formation into the featurization is likely to be especially

important for aminergic GPCRs due to the highly conserved

Asp3.32. There is further scope for improvement of the protein and

ligand featurization; models encoding protein side chain rotamers

may be useful to investigate ‘gating’ processes during binding while

solvent descriptors may be useful to understand dewetting of the

orthosteric site.
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Figure 5, Free energy surface between (top) the slowest two ligand

tICs and (bottom) the slowest ligand and slowest protein tICs. Means

are shown as dots and colored according to the groupings in Figure

3. The positions of state A and state B are labelled.

A great advantage of applying MSMs to ligand binding is that

adaptive methods can be used to direct sampling, increasing the

computational efficiency. We used two protocols to direct sampling.

In the early stages we chose to further sample states based on their

contribution to model error and few non-self transitions. This protocol

effectively determines under-sampled states and produces a well-

connected MSM, but one that contains groups of highly

interconnected states with poor connection to the rest of the

network. We subsequently used a HMM to identify the states close

to the under-sampled transitions and performed additional

simulations to solve this issue. We recommend the occasional

construction of a HMM throughout the adaptive sampling process to

identify if discretization error is causing such a problem.

During construction of the Markov model for ligand binding, we also

identified a number of issues associated with the use of k-means

clustering. K-means clustering proved to be adequate but its

tendency to produce more clusters in regions of high sampling

density leads to poor assignment of outliers into appropriate

clusters, including those that arise from the exploration of new,

relevant conformational space. To solve this issue, we included

manual selection of starting points as part of the adaptive sampling

process, and when randomly drawing from clusters we avoided

outliers by drawing from the half of the population closest to the

cluster mean. We considered agglomerative hierarchical clustering

as a superior clustering algorithm, however the size of MSM

datasets limits the application of this method. Hierarchical clustering

also suffers from the opposite problem to k-means, outlier clusters

would lead to exploration of uninteresting areas such as bilayer

binding, requiring a different selection process during adaptive

sampling. The ability of k-means clustering to quickly and efficiently

handle large volumes of data is greatly in its favor.

This study makes many advances over our previous study of

haloperidol binding to the D3R (6) in which we performed 14

conventional long-timescale MD simulations of haloperidol with the

D2R or D3R but observed only a single complete binding event. In

the previous work we identified the bound orthosteric pose to be

state A. The RMSD of ligand position between state A and the earlier

study is 2.9 Å. This pose itself was well supported by the overlap of

the haloperidol pharmacophore with other D3R antagonists, as well

as being in agreement with other reported modeling studies. Binding

pathway A of our current model is consistent with that previous work,

although there are some minor differences. In this current work we

observe shallower insertion of the aromatic ring between TM5-6 and

a greater involvement of the alcohol group interacting with Asp3.32

prior to salt-bridge formation. Although these differences could be

due to the poorly-sampled nature of the previous work, it should also

be noted that these studies have used different force fields. The

GROMOS force field is used here, while the previous study used the

CHARMM force field.

In addition to the bound states of the ligand, our model also identified

kinetic traps, metastable binding sites that are unconducive to the

ligand reaching the orthosteric binding site. Traps 1 and 2 are of

primary interest, as they represent metastable bound states where

haloperidol is in close proximity with Asp3.32 and able to obstruct

binding to the orthosteric site. Whilst our model suggests that

binding to these sites is too short-lived to compete effectively as an

antagonist, the pose of haloperidol in these sites presents a potential

starting point for structure-based drug design.

Whilst there is no experimental evidence that suggests haloperidol

acts an allosteric inhibitor, we do observe metastable binding in a

secondary binding pocket located between TMs 1, 2, and 7 (Figure

4D). Glu2.65 in this secondary binding pocket is complimentary to

the conserved amino group present in dopamine receptor targeting

drugs and has been a chief focus in the exploration of allosterically

or bitopically acting compounds in dopamine receptors (33). A

structure-activity study of the “SB” series of compounds found that

hydrogen bonding to Glu2.65 (in the D2R) was able to induce an

allosteric effect (34). Our model contains 2 kinetically distinct pairs

of states of haloperidol bound in this pocket; in both states the ligand

interacts with Glu2.65 but each state has an antiparallel orientation

compared to the other. Despite the two orientations of haloperidol in

this pocket, both pairs of states only feed into pathway B. The

haloperidol conformations in these kinetic groupings are quite

variable, likely due to solvent exposure. While the ligand maintains

either a salt-bridge or hydrogen-bond with Glu2.65, the aromatic

rings flit about the vestibule, interacting with Tyr7.35 or aromatic

rings in ECL1. We proposed in our previous work that this secondary

binding pocket appeared to favor the same pharmacophore as the

orthosteric site (similar distances between aromatic and charged

acidic residues) and we repeat that observation in this study,

although the HMM also suggests that these poses are not stable

over longer timescales. Nevertheless, drugs based on a haloperidol

scaffold may have a potential allosteric effect through salt-bridge

formation, or hydrogen bonding of the alcohol to Glu2.65.

Conclusion

We have developed an improved protocol for the construction of

MSMs and HMMs for the binding of complex, flexible ligands to

deeply buried binding sites, such as those present in GPCRs. This

protocol utilizes a minimal set of descriptors, combining: binary
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contact fingerprints, hydrogen bonding, and Cα RMSD. The protocol

provides an adaptive sampling approach that effectively explores

conformational space simultaneously with error reduction. This

methodology is applicable to a wide range of systems.

In this particular application we have built a MSM of haloperidol

binding to the D3 dopamine receptor which reveals multiple binding

pathways, and several distinct metastable states. These metastable

states include 2 bound states and 2 kinetic traps that could be

considered in structure based drug design. Additional metastable

sites in the secondary binding pocket might also be interesting from

an allosteric-ligand design perspective.

We also raise questions on how these metastable states would

affect the ligand’s ability to act in its primary mechanism of action (in

this case antagonism versus inverse agonism). A question that to

answer properly, at least in terms of GPCRs, is left to a future in

which we can explore the receptor ensemble.

Perhaps the most unexpected revelation of our model was the co-

existence of state B, predicted to be the highest affinity bound state,

with state A, the bound pose predicted in our previous work. Both of

these states appear to exhibit kinetics on timescales longer than we

can practically simulate, and while we therefore cannot be certain of

their role in haloperidol’s pharmacology, they both appear to be

significant kinetically.
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Conclusion
Ligand binding is commonly modeled as a two-state process but, in reality, ligands must

traverse the space between the solvent and the binding site. There are many metastable states along

the binding and unbinding pathways and each can be important for drug design, either through its

influence on the rates of binding/unbinding or as a separate target for allosteric or bitopic ligands. Our

goal in this work was to develop methods that would allow us to better understand the behavior of

ligands during binding and apply those methods to pharmaceutically important systems. To that end,

we have presented various ways of investigating the ligand-binding process: we have constructed

homology models to allow prediction of bound poses, conducted molecular dynamics simulations to

investigate binding pathways, and constructed Markov state models to map out the entire binding

ensemble.

GPCRs are receptors of great pharmaceutical interest but, due to the challenging nature of

structure determination for these receptors, there are many important receptor subtypes without

available crystal structures. To address the lack of crystal structures for the M1R-M5R muscarinic

receptors, we constructed a series of homology models of these subtypes based on a β2AR template

(Chapter 2). Functional knowledge was incorporated into the model building process to produce

optimized homology models that would be more useful in drug design. Crystal structures of the M2R

(human) and M3R (rat) later became available and we developed a naïve homology model of the M3R

based on the closer rat M3R template. We then used virtual screening to evaluate our optimized

homology models alongside this M2R crystal structure and M3R naïve homology model, testing the

ability of these structures to distinguish between known antagonists and decoy compounds. We found

that our optimized homology models were a significant improvement over the untrained models, and

therefore a better choice for future drug design projects. Homology modeling continues to be a useful

tool to fill gaps in structural knowledge amongst families of receptors, and the development of novel

homology models is often the first step in opening a target up to more advanced computational

investigation. As we gain more knowledge of ligand binding to GPCRs, it is becoming increasingly

apparent that the receptors need to be treated as an ensemble, and users of homology models will

need to adapt to this new paradigm.

While homology models are useful for virtual screening and structure-based drug design, they

are based on static experimental structures that do not convey the dynamics of the receptor,

especially in the often more flexible regions outside of the binding site, and nor are they suitable for

locating metastable states. To investigate the behavior of drugs outside of the orthosteric binding site,

we employed molecular dynamics simulations. Molecular dynamics models can, like docking methods,
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predict the bound pose of a ligand, but they are also able to predict the binding pathway of a drug,

and capture the dynamics of the receptor in atomic resolution. We chose to perform such a simulation

study on the D2 and D3 dopamine receptors, which are important targets in the treatment of

schizophrenia, Parkinson’s disease, and addiction (Chapter 3). The D2R and D3R have extremely high

homology in the orthosteric binding site, so understanding the behavior of ligands outside of this site

is critical for the understanding of the factors that contribute to the selectivity of dopaminergic ligands,

and for reducing the serious side-effects that afflict this important class of drugs. We performed the

first MD simulations of the binding pathway of the clinically important antipsychotic ligands clozapine

and haloperidol binding to the D2 and D3 dopamine receptors. This set of simulation data accessed

timescales that are much longer than most other studies in the literature, allowing the simulations to

not only predict the bound pose of the 2 ligands, but also revealing the pathway of each ligand takes

from the extracellular vestibule of the receptor to the orthosteric site. A cluster analysis was

performed on this simulation data for each receptor, and we identified differences between the

metastable binding states in the D2R and D3R, despite the non-selective nature of our ligands. These

metastable sites are therefore points of interest to consider in simulation or design of selective

dopaminergic antagonists.

Of the long-timescale MD simulations performed on the dopamine receptors, most only

revealed partial binding pathways, and the complete binding pathways were not replicated. This

presented 2 problems, we needed to access longer timescales so that we could observe more binding

events, and we needed to support our findings with statistics so that we could have confidence in our

observations. To solve both of these problems, we turned to the construction of Markov state models.

While there is specialized hardware that makes running MD simulations without enhanced sampling

techniques feasible for many targets of interest, there is always a larger, more complicated target that

is of interest. MSMs extend the timescales reachable by current conventional MD simulations and

provide a useful framework for analyzing the resulting data. MSMs have been largely developed for

the analysis of protein folding simulations and have seen little use in ligand binding. A more

widespread application of MSMs would greatly benefit the MSM methodology as well as our

knowledge of the systems being studied.

We began our work on MSMs using oleic acid binding to the liver fatty acid-binding protein as

a model system that would still present a more challenging ligand-binding scenario than the systems

used in the ligand binding MSM literature. In the initial studies of the L-FABP-oleic acid complex, we

performed an extensive set of conventional molecular dynamics simulations on this system (Chapter

4). This set of simulations suffered from the same limitations as our initial simulations of the dopamine

receptor but, because of the smaller system, we were able to access longer timescales and observe
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many more binding events. From these simulations, we observed complete trajectories of oleic acid

to the L-FABP and reproduced the experimentally determined complex. In addition, we identified a

novel metastable site at the entrance to the binding pocket. L-FABP binds 2 ligands simultaneously,

and this metastable site appeared to be more occupied than the experimentally-determined low-

affinity binding site, suggesting that it was important in the bound ensemble. We then began a larger

set of shorter simulations from which to construct a MSM. The size of the resultant dataset was 2

orders of magnitude larger than any previous study on FABPs. To construct a MSM from this data we

borrowed methodology from protein folding MSMs and modified the algorithms to apply them to our

ligand-binding system. We used the coordinates of the ligand relative to the protein to describe the

system and implemented basic adaptive sampling by performing the simulations in two batches. The

first batch identified areas that needed additional sampling, and the second batch further sampled

those areas. The resultant MSM predicted a new binding pathway involving our previously identified

metastable state, which was not observed in the conventional MD simulations. The model also

predicted that this metastable state and the low-affinity binding site were approximately equal in

population. There were 2 main flaws in the MSM methodology applied to the FABP system: firstly, the

RMSD descriptor poorly handled describing both the flexibility of the system and the behavior of the

ligand in the solvent and, secondly, the minimal adaptive sampling used was not enough to correct

undersampling of the slowest transitions.

Continuing the development of our MSM methodology, we returned to the D3R-haloperidol

system, where updates to the available MSM software allowed us to implement our own code and

make significant improvements to our approach. We developed an MSM methodology using the D3R-

haloperidol system, primarily by incorporating an improved adaptive sampling process and developing

a set of improved descriptors for the system (Chapter 5). In the adaptive sampling regime, we

performed many small batches of simulations and after each constructed a transition network. We

then analyzed the transition network to identify the states that had the highest contribution to the

error and the states that were exploring new space, and used these states to launch the next batch of

simulations. This adaptive sampling methodology was a significant improvement over our earlier FABP

work. However, where other adaptive sampling methods attempt to fully automate the sampling

process, our methodology still requires a manual selection of states. Manual selection was necessary

to avoid sampling binding to the membrane environment of the GPCR system, but in other proteins

the method could be automated alongside an appropriate clustering algorithm. We also devised a set

of improved descriptors for the location of haloperidol in the system, describing the position of the

ligand by the residues it contacted and the hydrogen bonds that it formed. These descriptors are

applicable to other ligand-binding systems, and their ability to efficiently describe the binding behavior
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of a drug-like ligand makes them a useful addition to the field. This combined methodology presents

a means to investigate the binding of drug-like ligands with MSMs, where previously only the binding

of relatively simple ligands could be studied.

We used our new methodology to construct a MSM of haloperidol binding to the D3R. The

resultant MSM is a significant advancement from our previous work on the D3R-haloperidol system,

and provides a more sophisticated model of the behavior of a ligand binding to a GPCR than methods

employed in the literature. In addition to replicating our previously predicted binding pathways, we

were able to further explore the binding ensemble and identify additional binding pathways, as well

as support our observations with statistics. We were also able to identify a variety of metastable states

and predict their importance in drug binding.

MSMs, combined with the methodology developed in this work, are capable of mapping the

ligand-binding ensembles of a diverse range of targets. However it is still unclear to what extent

knowledge of the ligand-binding ensemble allows drug binding to be manipulated experimentally.

Metastable states already present targets for the design of allosteric or bitopic ligands, but there are

not yet any studies in which a metastable state is used to modify the kinetics of a drug. Such a study

would greatly increase the tools available for drug design.

Improvements to computer hardware continually push computationally accessible timescales

and increase the complexity of the systems that can be simulated. Now that simulating on the

timescales of ligand binding is becoming a routine possibility, there is a need for methodologies that

can both further improve the efficiency of these simulations, and scale to more complex systems. As

computer power increases even further, the limits to the size and detail of systems that we can

simulate will increase too. In this work we have simulated GPCRs on timescales that can capture the

binding of a ligand, and simulations in the literature have begun to capture the conformational

ensemble of these receptors. It will eventually be possible to simulate GPCRs in much larger systems

that can model their association with G proteins, or model their interactions with other proteins in

the cell membrane. Rather than examine larger systems, it will also be possible to study current

systems in increased detail. Where in this work we have studied the binding of ligands in atomic detail,

eventually it will be possible to study ligand-binding pathways on a quantum level. Much as the work

we have presented here has improved the existing methods and advanced the ligand binding field,

future work will need to improve upon these methods to tackle ever-larger volumes of data, and

describe the behavior of increasingly complicated systems.




