Differentially expressed genes in three Brodmann areas in schizophrenia

Patric Ion Parii

Supervisor: Lars Eijssen

Introduction:

- Schizophrenia neurodegenerative psychiatric disorder;
- Positive and negative symptoms;
- Approximately 23 million affected individuals (World Health Organization, April 2019) [1]
- Exact mechanism of pathogenesis is unknown;
- Neurobiological paradigm of pre-synaptic dopaminergic circuitry dysfunctions;
- G x E interplay;

[1] https://www.who.int/news-room/fact-sheets/detail/schizophrenia

- Dopaminergic dysfunctions:
- 1) Striatum regions (limbic, associative, sensorimotor) -> dopamine overproduction;
- Limbic : reward motivation;
- Associative : behavioral flexibility;
- Sensorimotor : habit formation;
- Frontal lobe structures dysfunctions:
- Gray and white matter reduction;
- Constant communication with associative and limbic striatum;
- Impaired communication due to dysfunctions;

• Brain structures investigated:

- 1) Brodmann area 9 dorsolateral and medial prefrontal cortex;
- 2) Brodmann area 11 orbitofrontal cortex;
- 3) Brodmann area 24 anterior cingulate cortex;

https://www.nature.com/articles/s41398-017-0071-9/figures/5

https://www.pinterest.com/pin/532269249686058151/

Hypothesis:

- Different expression profiles of genes in the three Brodmann areas lead to abnormal gene product formation that play a role in schizophrenia symptoms manifestation:

• Aim:

- Establish the presence of differentially expressed genes in the three Brodmann areas, as well as their expression profiles;

• Expectations:

- Comparisons for all brain regions in diseased samples to yield genes with differential expression as an outcome;
- Due to reported deficits in the frontal lobe structures, mainly findings of underexpression;

Methods:

- RNA-seq with a count table;
- Schizophrenia samples;
- E-GEOD-78936;

- Sample information:
- 82 post-mortem brain tissues: 44 BA11, 19 BA9, 19 BA24;
- BA9 and BA24 come from the same individuals;
- Schizophrenia, bipolar disorder and control samples;

- R (version 3.5.2):
- DESeq2 package for differential expression analysis;
- DESeqDataSet object created from the count table, metadata and design formula;
- Count table: 27112 genes, 82 samples -> filtered to 23688 genes;
- Metadata modified and reordered to match count table;

> head (meta)

```
Name Disorder Area Individual
                                           Code
                                                 Group
BA11 1 BD BA11 1
BA11 2 BD BA11 2
                                   A I2 BAll 2 BD BAll
                      BD BAll.
BA11 3 BD BA11 3
                                   A I3 BA11 3 BD BA11
                      BD BAll
BA11 4 BD BA11 4
                      BD BAll
                                   A I4 BAll 4 BD BAll
BA11 5 BD BA11 5
                                   A I5 BAll 5 BD BAll
                      BD BAll
BAll 6 BD BAll 6
                      BD BAll
                                   A 16 BAll 6 BD BAll
```

DESeqDataSet:

```
    - dds <- DESeqDataSetFromMatrix(countData = cts,</li>
    colData = meta,
    design = ~ Group)
```

- Quality Control:
- 1) Raw Data;
- 2) Normalized Data;
- 3) Normalized without outliers;

- Statistics:
- results function of the DESeq2 package;
- Performed on the data with removed outliers;
- Six comparisons:

```
res <- results(dds_NO, contrast=c("Group","SZ_BA24","Control_BA24"))
resSig <- res[ which(res$padj < 0.05), ]
resSig <- resSig[ order( resSig$log2FoldChange ), ]
resSig
```

Comparison			
SZ BA24 vs			
Control BA24			
SZ BA11 vs			
Control_BA11			
SZ_BA9 vs			
Control BA9			
BD_BA24 vs			
Control BA24			
BD_BA11 vs			
Control_BA11			
BD_BA9 vs			
Control BA9			

Pathway analysis

- PathVisio (version 3.30)
- Comparison for SZ BA24 Control BA24 was used;
- Genes with Entrez and Ensembl ID's:

```
sysCodes <- rep("L",dim(res)[1])</pre>
sysCodes[grep("ENSG",rownames(res))] <- "En"</pre>
```

- Imported data mapped to Hs_Derby_Ensembl_91 (Homo Sapiens database)
- wikipathways Homo sapiens_Curation-AnalysisCollection pathway collection;

https://www.pathvisio.org/

Results:

Quality Control

Raw Data Boxplot

First Normalization boxplot

• First Normalization (1):

• First Normalization (2):

■ BD_BA11

• BD_BA24

• BD_BA9

• Control_BA11

+ Control_BA24

• Control_BA9

□ SZ_BA11

• SZ_BA24

△ SZ_BA9

Second Normalization with removed outliers:

• Statistics:

Comparison	Number of genes detected significantly (padj < 0.05)	Underexpressed	Overexpressed
SZ_BA24 vs Control BA24	2047	1276	771
SZ_BA11 vs Control_BA11	0	0	0
SZ_BA9 vs Control BA9	2	1	1
BD_BA24 vs Control BA24	2	0	2
BD_BA11 vs Control_BA11	400	169	231
BD_BA9 vs Control BA9	0	0	0

Pathway analysis:

Pathway	positive (r)	measured (n)	total	%	Z Score	p-value .
Glycolysis and Gluconeogenesis	18	44	69	40.91%	5.48	0.000
Synaptic Vesicle Pathway	19	51	59	37.25%	5.13	0.000
Brain-Derived Neurotrophic Factor (BDNF) signaling pathway	39	144	150	27.08%	5.02	0.000
Calcium Regulation in the Cardiac Cell	39	147	164	26.53%	4.87	0.000
Amino Acid metabolism	25	90	205	27.78%	4.15	0.000
Cori Cycle	7	14	53	50.00%	4.10	0.000
Splicing factor NOVA regulated synaptic proteins	14	41	44	34.15%	4.00	0.001
EGF/EGFR Signaling Pathway	37	161	163	22.98%	3.75	0.000
miRs in Muscle Cell Differentiation	10	27	42	37.04%	3.69	0.000
Urea cycle and associated pathways	8	21	78	38.10%	3.40	0.001
Myometrial Relaxation and Contraction Pathways	34	153	161	22.22%	3.37	0.002
GABA receptor Signaling	11	34	57	32.35%	3.33	0.006
Sudden Infant Death Syndrome (SIDS) Susceptibility Pathways	35	160	182	21.88%	3.32	0.000
Cell migration and invasion through p75NTR	10	30	31	33.33%	3.29	0.002
Pathogenic Escherichia coli infection	15	54	79	27.78%	3.21	0.001
Mechanoregulation and pathology of YAP/TAZ via Hippo and non-Hippo mechanisms	13	45	47	28.89%	3.15	0.003
Cholesterol Biosynthesis Pathway	6	15	32	40.00%	3.09	0.005
Common Pathways Underlying Drug Addiction	12	41	50	29.27%	3.08	0.003
BDNF-TrkB Signaling	10	33	38	30.30%	2.94	0.004
Pathways in clear cell renal cell carcinoma	20	84	92	23.81%	2.92	0.005
MAPK Signaling Pathway	47	245	259	19.18%	2.86	0.004
G Protein Signaling Pathways	21	91	97	23.08%	2.84	0.005
Dopamine metabolism	5	13	48	38.46%	2.71	0.008
Translation inhibitors in chronically activated PDGFRA cells	12	45	49	26.67%	2.71	0.006

Title: Synaptic Vesicle Pathway Last modified: 2/21/2013 Organism: Homo sapiens Neurotransmitter SLC25A4 SLC1A3 Glutamate padj (color set-1) CLN8 log2FoldChange (color set) SLC22A3 Early Vesicle Trafficking color set Dopamine PARK7 Neurotransmitter < SLC38A1 L-Glutamine Anterograde Transport from the Trans-Golgi SLC17A6 SLC18A1 Cytoskeleton Network color set-1 SLC6A4 Serotonin SLC18A2 SLC17A7 [padj] < 0.05 SLC17A8 SLC18A3 RAB3A [padj] >= 0.05 SLC32A1 SYN1 SLC32A1 Monoamines Color rule not met SYN2 No data found SYN3 Endocytosis Neurotransmitter Uptake VAMP2 SYT1 AP2A1 CLTA **NSF Attachment Proteins** UNC13A AP2A2 CLTC NAPA UNC13B AP2B1 RAB3A Vesicle CLTCL1 NSF UNC13C AP2M1 Release Priming AP2S1 Synapsin P+ CPLX1 STXBP1 Pore CPLX2 Formation Ca2+ ADP RAB3A CPLX3 STX1A DNM1 Docking DNM2 Fusion STX1B CACNATA DNMHL DNM3 Presynaptic membrane STX2 SNAP25 CACNA1B STX3 Active Zone T-SNARES Synaptic cleft Ca2+ (upon deplolarization)

Discussion:

- Synaptic Vesicle Pathway:
- 1) Early Vesicle Trafficking -> SYN2 and SYT1 underexpression;
- 2) Docking -> RAB3A underexpression;
- 3) Priming -> UNC13A underexpressed, UNC13C overexpressed;
- 4) Endocytosis following fusion -> AP2 adaptor protein genes show underexpressed profiles; (AP2A2, AP2B2, AP2M1, AP2S1)
- Inferred impairment of dopamine transport and release does not dismiss the overproduction dogma -> even with a deficit in these processes, overproduction can still gain the upper hand in the balance.

Title: Dopamine metabolism 1 Organism: Homo sapiens Homovanillic acid ROS Homovanillin DOPET DOPAC MAOB DOPAL N-Methylserotonin FAD **→** H2O2 **<** PRKACA P:S MAGA PPP2CA PRKACE FAD PPP2CB PRKACG TH H20 3-Methoxytyramine DDC iron(2+) 02 DDC Tetrahydrobiopterin 4a-Hydroxytetrahydrobiopterin COMT 1-chloro-2,4-dinitrobenzene C02 S-Adenosylhomocysteine L-Tyrosine L-Dopa Dopamine TYR S-Adenosylmethionine SOD1 Dopamine semiquinone Glutathione L-Dopa quinone Dopamine quinone Leukoaminochrome 5-glutathionyl dopamine Leucodopachrome NQ01 L-Dopachrome Dopaminochrome DHICA 5,6-Dihydroxyindole ICQA Polymerization Neuromelanin

- Dopamine Metabolism pathway:
- 1) Initializing the metabolic pathway: competitive loop between protein kinase A genes and PPP2CA, both underexpressed;
- 2) Monoamine Oxidase A -> overexpression

- 3) No in-depth literature has investigated this relationship; however certain speculations can be made:
- Decreased targeting for metabolism -> increased levels of active compound;
- Upregulated degradation by MAOA -> increased ROS levels and neurotoxicity;

- Study strengths:
- 1) Samples taken from direct sources of interest;
- 2) Researches gene expression of the anterior cingulate in relation to schizophrenia;
- Study limitations:
- 1) Samples coming from different cohorts;
- 2) No protein expression and activation investigation;

Conclusions:

- Differential gene expression analysis in three Brodmann regions;
- R and PathVisio tools;
- Two/Six comparisons returned substantial outputs, contrary to the initial expectations;
- The project findings suggest genetic changes in a multitude of pathways in neurons from the anterior cingulate cortex, with the main focus being on the Synaptic Vesicle Pathway;

Acknowledgements

- Lars Eijssen
- The BigCat department

Questions?