Supporting Information

Tabernabovines A-C, Three Monoterpenoid Indole Alkaloids from the Leaves of

Tabernaemontana bovina.

Yang $\mathrm{Yu}^{\dagger}{ }^{\dagger}$, Mei-Fen Bao^{\dagger}, Jing $\mathrm{Wu}^{\dagger \ddagger}$, Jing Chen ${ }^{\dagger \ddagger}$, Yu-Rong Yang ${ }^{\dagger \S}$, Johann Schinnerl ${ }^{\|}$, and Xiang-Hai Cai** ${ }^{*+8}$
${ }^{\dagger}$ State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China \$University of Chinese Academy of Sciences, Beijing 100049, China ${ }^{\text {§ }}$ Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China ${ }^{\text {I }}$ Chemodiversity Research Group, Division of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria

Table of Contents	Page
S1-S3: Experimental part of compounds 1-5.	2-3
S4: X-ray diffractions of 1.	
S5-S10: 1D and 2D NMR (500 MHz, $\mathrm{CD}_{3} \mathrm{ODCD}_{3}$) of compound 1.	.4-9
S11: HRESIMS of compound 1	.. 10
S12: UV and CD of compound 1	.. 11
S13-S18: 1 D and 2D NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{ODCD}_{3}$) of compound 2	12-17
S19: HRESIMS of compound 2	.. 18
S20: UV and CD of compound 2	.. 19
S21-S26: 1D and 2D NMR (800 MHz, $\mathrm{CD}_{3} \mathrm{ODCD}_{3}$) of compound 3 .	20-25
S27: HRESIMS of compound 3	26
S28: UV and CD of compound 3.	. 27
S29: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic assignments of 4	28
S30-S34: 1D and 2D NMR (500 MHz, $\mathrm{CD}_{3} \mathrm{ODCD}_{3}$) of compound 4.	29-33
S35: CD of compound 4	. 34
S36-S37: 1D NMR (500 MHz, $\mathrm{CD}_{3} \mathrm{ODCD}_{3}$) of compound 5	35-36
S38: CD of compound 5	. 37
S39: ECD computational details of compound 1	... 38
S40: ECD computational details of compound 2 .	. 41
S41: ECD computational details of compound 3 44
S42: ECD computational details of compound 4..	... 46
S43: ECD computational details of compound 5....	... 49
S44: NMR computational details of compound 3 50

S1. General experimental procedures

Optical rotations were measured with a Horiba SEPA-300 polarimeter. UV spectra were recorded on a Shimadzu 2401A spectrophotometer. 1D and 2D NMR spectra were acquired on BrukerAvance III-600 and DRX-500 spectrometers with SiMe4 as an internal standard. MS data were obtained using a Shimadzu UPLC-IT-TOF. Column chromatography (CC) was performed on either silica gel (200-300 mesh, Qing-dao Haiyang Chemical Co., Ltd., Qingdao, China) or RP-18 silica gel (20-45 lm, Fuji Silysia Chemical Ltd., Japan). Fractions were monitored by TLC on silica gel plates (GF254, Qingdao Haiyang Chemical Co., Ltd., Qingdao, China), and spots were visualized with Dragendorff's reagent spray. MPLC was performed using a BÜCHI pump system coupled with RP- 18 silica gel-packed glass columns (15×230 and $26 \times 460 \mathrm{~mm}$, respectively). HPLC was performed using Waters 1525 E pumps coupled with analytical semi-preparative or preparative Sunfire C18 columns (4.6×150 and $19 \times 250 \mathrm{~mm}$, respectively). The HPLC system employed a Waters 2996 photodiode array detector and a Waters fraction collector II.

S2. Plant material and extraction and separation

Leaves of Tabernaemontana bovina Lour. were collected in Jun., 2017 in Hainan Province, P. R. China, and identified by Dr. Sheng-Zhuo Huang. A voucher specimen (No. Cai20170612) was deposited in the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences.

Air-dried leaves (75 kg) were powdered and extracted three times with MeOH at room temperature. The extract was partitioned between $0.5 \% \mathrm{HCl}$ solution and EtOAc, and the acidic layer was then adjusted to pH 8-9 with 15% ammonia solution and subsequently extracted with EtOAc to obtain crude alkaloid extract $(875 \mathrm{~g})$. The extract was subjected to column chromatography (CC) over silica gel and eluted with gradient $\mathrm{CHCl}_{3} / \mathrm{MeOH}(1: 0-1: 1, \mathrm{v} / \mathrm{v}$) to afford five fractions (I-VI). Fr. IV (107 g) was subjected to C18 MPLC again using $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ ($25-75 \%$, v/v) yielding six subfractions (IV1-6). Subfraction IV4 (18 g) was separated by reversed-phase MPLC column eluted with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(20-50 \%, \mathrm{v} / \mathrm{v})$ and was further purified on the HPLC preparative column with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(35-50 \%, \mathrm{v} / \mathrm{v}, 40 \mathrm{~min})$ to afford $2(2.7 \mathrm{mg}, \mathrm{Rt}=15.5 \mathrm{~min})$. Fr. V (52 g) was separated by reversed-phase MPLC column eluted with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(20-70 \%$, v/v) yielding five subfractions (V1-5). Fr.V4 (7 g) was chromatographed on Sephadex LH-20 (MeOH) and purified by reversed-phase preparative HPLC using $\mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{H}_{2} \mathrm{O}(45-60 \%$, $\mathrm{v} / \mathrm{v}, 40 \mathrm{~min}$) to give $\mathbf{4}$ ($20.6 \mathrm{mg}, \mathrm{Rt}=35 \mathrm{~min}$) and 5 ($46.8 \mathrm{mg}, \mathrm{Rt}=39 \mathrm{~min}$). Fr. VI (34 g) was subjected to C18 MPLC using MeOH- $\mathrm{H}_{2} \mathrm{O}(15-65 \%$, v/v) yielding four subfractions (Fr. VI1-4). Fr.V3 (5 g) was was chromatographed on Sephadex LH-20 (MeOH) and purified by reversed-phase preparative HPLC using $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(40-55 \%$, $\mathrm{v} / \mathrm{v}, 40 \mathrm{~min}$) to give $\mathbf{3}$ (1.1 $\mathrm{mg}, \mathrm{Rt}=25 \mathrm{~min})$ and $\mathbf{1}(9.8 \mathrm{mg}, \mathrm{Rt}=35 \mathrm{~min})$.

S3.Xanthine oxidase and NO inhibition activity

Alkaloids 1-3 were bio-assayed for inhibitory activity of xanthine oxidase. The uric acid production was calculated according to the increasing absorbance at 290 nm . Test solutions (final concentration $50 \mu \mathrm{~g} / \mathrm{ml}$) were prepared by adding xanthine (final concentration $29.2 \mu \mathrm{~g} / \mathrm{ml}$). The reaction was started by adding 40 $\mu \mathrm{L}$ of xanthine oxidase $(0.1 \mathrm{U} / \mathrm{mL})$ in a phosphate buffer solution $(\mathrm{pH}=7.50,0.2 \mathrm{mM})$. Alkaloids were dissolved in DMSO and immediately diluted with phosphate buffer solution to $0.5 \mathrm{mg} / \mathrm{ml}$. The mixture (total $100 \mu \mathrm{~L}$) was incubated at $37^{\circ} \mathrm{C}$. The uric acid production was calculated from the differential absorbance with a blank solution in which the xanthine oxidase was replaced by buffer solution. A test mixture containing no alkaloids was prepared to measure the total uric acid production. Different concentrations of alkaloids were analyzed, and then the half-maximal inhibitory concentration (IC50) was calculated by linear regression analysis. Different concentrations of allopurinol were measured in triplicate.

Murine macrophage cells line RAW164.7 was obtained from Cell Bank of Chinese Academy of Sciences. RAW164.7 cells were seeded in 96 -well cell culture plates (1.5×105 cells/well) and treated with serial dilutions of the compounds with a maximum concentration of $50 \mu \mathrm{M}$ in triplicate, followed by stimulation with $1 \mu \mathrm{~g} / \mathrm{ml}$ LPS (Sigma). NO production in the supernatant was assessed by Griess reagents (Sigma). The absorbance at 570 nm was measured with microplate reader, L-NMMA was used as a positive control, the viability of RAW164.7 cell was evaluated by the MTS assay simultaneously to exclude the interference of the cytotoxicity of the test compounds.

S4. \boldsymbol{X}-ray diffraction of 1

Crystal data for 1: $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{3}, M=496.59, a=7.6144(4) \AA, b=11.2458(6) \AA, c=15.4199(8) \AA, \alpha=$ $90^{\circ}, \beta=98.619(3)^{\circ}, \gamma=90^{\circ}, V=1305.49(12) \AA^{3}, T=100$.(2) K , space group $P 1211, Z=2, \mu(\mathrm{CuK} \alpha)=0.662$ $\mathrm{mm}^{-1}, 45047$ reflections measured, 5175 independent reflections ($R_{\text {int }}=0.0988$). The final R_{I} values were $0.0692(I>2 \sigma(I))$. The final $w R\left(F^{2}\right)$ values were $0.1929(I>2 \sigma(I))$. The final R_{l} values were 0.0782 (all data). The final $w R\left(F^{2}\right)$ values were 0.2040 (all data). The goodness of fit on F^{2} was 1.518 . Flack parameter $=$ 0.30 (17). The CCDC number is 1916676.

S5 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

S7 HSQC spectrum of compound $\mathbf{1}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

Data File: E:IDATAI201910116lwtol-218b.Icd

Elmt	Val.	Min	Max	Use Adduct												
H	1	10	100	F	1	0	0	S	2	0	0	Br	1	0	0	H
C	4	10	100	Na	1	0	0	Cl	1	0	0	Pd	2	0	0	Na
N	3	0	10	Mg	2	0	0	Cu	2	0	0	Ag	1	0	0	
O	2	0	30	Si	4	0	0	Se	2	0	0	I	3	0	0	

Error Margin (ppm):
HC Ratio: unlimited
Max Isotopes: all
MSn Iso RI (\%): 75.00

DBE Range: -2.0-100.0
Apply N Rule: yes
sotope RI (\%): 1.00
MSn Logic Mode: OR

Electron lons: both
Use MSn Info: yes
Isotope Res: 10000
Max Results: 20

Event\#: $1 \mathrm{MS}(\mathrm{E}+)$ Ret. Time : 0.400 -> 0.680 Scan\# : 61 -> 103

C30 H32 N4 O3 [M+H]+ : Predicted region for 497.2547 m/z

Formula (M)	lon	Meas. \mathbf{m} / \mathbf{z}	Pred. \mathbf{m} / \mathbf{z}	Df. (mDa)	Df. (ppm)	DBE
C30 H32 N4 O3	$[\mathrm{M}+\mathrm{H}]+$	497.2545	497.2547	-0.2	-0.40	17.0

S11 HRESIMS spectrum of compound 1

S12 UV and CD spectrum of compound $\mathbf{1}$ in MeOH

S13 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{ODCD}_{3}(500 \mathrm{MHz})$
wtol192a. 24.1.1
wtol192a c13 and dept cd3cocd

$\mathbf{S 1 4}{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{ODCD}_{3}(125 \mathrm{MHz})$

S15 HSQC spectrum of compound $\mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{ODCD}_{3}(500 \mathrm{MHz})$

S16 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound 2 in $\mathrm{CD}_{3} \mathrm{ODCD}_{3}(500 \mathrm{MHz})$

S18 ROESY spectrum of compound $\mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{ODCD}_{3}(500 \mathrm{MHz})$

Data File: E:IDATAI2018111141wtol-192a.Icd

Elmt	Val.	Min	Max	Use Adduct												
H	1	5	100	F	1	0	0	S	2	0	0	Br	1	0	0	H
C	4	5	50	Na	1	0	0	Cl	1	0	0	Pd	2	0	0	Na
N	3	0	10	Mg	2	0	0	Cu	2	0	0	Ag	1	0	0	
0	2	0	20	Si	4	0	0	Se	2	0	0	I	3	0	0	
Error Margin (ppm): 5						DBE Range: -2.0-100.0						Electron lons: both				
	HC	atio:	unlimit			Apply N Rule: yes						Use MSn Info: yes				
	x Isot	pes:				Isotope RI (\%): 1.00						Isotope Res: 10000				
	Iso R	(\%):	75.00			MSn Logic Mode: OR						Max Results: 20				

Event\#: 1 MS(E+) Ret. Time : 0.413 -> 0.440 Scan\# : 63 -> 67

Measured region for $359.1962 \mathrm{~m} / \mathrm{z}$

C20 H26 N2 O4 $[\mathrm{M}+\mathrm{H}]+$: Predicted region for $359.1965 \mathrm{~m} / \mathrm{z}$

S19 HRESIMS spectrum of compound 2

S20 UV and CD spectrum of compound $\mathbf{2}$ in MeOH

S21 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{ODCD}_{3}(800 \mathrm{MHz})$

S22 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{ODCD}_{3}(200 \mathrm{MHz})$

S23 HSQC spectrum of compound $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{ODCD}_{3}(800 \mathrm{MHz})$

S24 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{ODCD}_{3}(800 \mathrm{MHz})$

S25 HMBC spectrum of compound $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{ODCD}_{3}(800 \mathrm{MHz})$

S26 ROESY spectrum of compound $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{ODCD}_{3}(800 \mathrm{MHz})$

Data File: E:IDATAI2019101071wtol-209a.Icd

Elmt	Val.	Min	Max	Use Adduct												
H	1	5	100	F	1	0	0	S	2	0	0	Br	1	0	0	H
C	4	5	50	Na	1	0	0	Cl	1	0	0	Pd	2	0	0	Na
N	3	0	10	Mg	2	0	0	Cu	2	0	0	Ag	1	0	0	
0	2	0	20	Si	4	0	0	Se	2	0	0	I	3	0	0	
Error Margin (ppm): 5						DBE Range: -2.0-100.0						Electron lons: both				
HC Ratio: unlimited						Apply N Rule: yes						Use MSn Info: yes				
	x Iso	pes:				Isotope RI (\%): 1.00						Isotope Res: 10000				
	Iso R	(\%):	75.00			MSn Logic Mode: OR						Max Results: 20				

Event\#: 1 MS(E+) Ret. Time : 0.427 -> 0.453 Scan\# : 65 -> 69

Measured region for $349.1521 \mathrm{~m} / \mathrm{z}$

C19 H22 N2 O3 [M+Na]+ : Predicted region for $349.1523 \mathrm{~m} / \mathrm{z}$

Formula (M)	Ion	Meas. \mathbf{m} / \mathbf{z}	Pred. \mathbf{m} / \mathbf{z}	Df. (mDa)	Df. (ppm)	DBE
C19 H22 N2 O3	$[\mathrm{M}+\mathrm{Na}]+$	349.1521	349.1523	-0.2	-0.57	10.0

S27 HRESIMS spectrum of compound 3

Smooth (s):0

S28 UV and CD spectrum of compound $\mathbf{3}$ in MeOH

S29. Table S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic assignments of $\mathbf{4}$ (acetone- d_{6}) in 500 MHz and $125 \mathrm{MHz}(J$ in Hz).

No.	4	
	$\delta_{\text {H }}$	$\delta_{\text {C }}$
2		140.4 s
3	2.45 (m)	53.9 t
	2.88 (overlap)	
5	2.33 (overlap)	60.0 t
	2.40 m	
6	2.84 (overlap)	24.3 t
	2.95 m	
7		109.3 s
8		126.2 s
9	7.01 (d, 7.7)	111.1 s
10	6.85 (t, 7.7)	119.4 d
11	6.52 (d, 7.7)	101.4 d
12		146.6 s
$12-\mathrm{OCH}_{3}$	3.87 s	55.4 q
13		130.8 s
14	3.56 (m)	
15	3.51 (d, 4.9)	73.9 d
16	2.72 (m)	21.6 t
	3.15 m	
17	1.82 (dd, 10.8,	32.8 t
	5.2)	
	2.32 (overlap)	
18	0.81 (t, 7.5, 3H)	7.9 q
19	1.18 (m)	28.0 t
	1.33 (m)	
20		41.2 s
21	1.91 (d, 12.1)	54.6 t
	2.90 (overlap)	

S30 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4}$ in $\mathrm{CD}_{3} \mathrm{ODCD}_{3}(500 \mathrm{MHz})$

S31 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4}$ in $\mathrm{CD}_{3} \mathrm{ODCD}_{3}(125 \mathrm{MHz})$

$\mathbf{S 3 2}$ HSQC spectrum of compound $\mathbf{4}$ in $\mathrm{CD}_{3} \mathrm{ODCD}_{3}(500 \mathrm{MHz})$

S36 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5}$ in $\mathrm{CD}_{3} \mathrm{ODCD}_{3}(500 \mathrm{MHz})$
wtol20\%c. 24. 1. Ir
wtol207c c13 and dept

$\mathbf{S 3 7}{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5}$ in $\mathrm{CD}_{3} \mathrm{ODCD}_{3}(500 \mathrm{MHz})$

Smooth (s : : 0

S38 CD spectrum of compound $\mathbf{5}$ in MeOH

S39. ECD Computational details of compound 1.

The initial conformational analysis of the compounds $\mathbf{1 - 5}$ were executed by employing Monte Carlo searching algorithm via the MMFF94 molecular mechanics force field ${ }^{[1]}$, with the aid of the SPARTAN'16 program package, leading to afford a panel of relatively favored conformations in an energy range of 3 $\mathrm{kcal} / \mathrm{mol}$ above the global minimum. The force field minimum energy conformers thus obtained were subsequently optimized by applying the density functional theory (DFT) with the B3LYP/6-31G(d) level in vacuum, implemented in the Gaussian 09 software package ${ }^{[2]}$. Harmonic vibrational frequencies were also performed to confirm no imaginary frequencies of the finally optimized conformers. These predominant conformers were subjected to theoretical calculation of ECD by utilizing Time-dependent density functional theory (TDDFT) calculations at the B3LYP/6-311g (2d, p) level in MeOH using the Polarizable Continuum Model (PCM) solvent model. The energies, oscillator strengths, and rotational strengths of each conformers were carried out with Gaussian 09 software package. The oretical calculations of ECD spectra for each conformer were then approximated by the Gaussian distribution. The final ECD spectrum of the individual conformers was summed up on the basis of Boltzmann-weighed population contribution by the SpecDisv $1.64^{[3]}$.

1

1a

Figure S1. Experimental and calculated ECD spectra of 1 and $1 \mathbf{1 a}$ (green line, experimentally recorded in methanol; red line 1, calculated for $3 S, 15 S, 16 S, 19 S, 2^{\prime} S$, 7 'S.; black line $\mathbf{1 a}$, calculated for $3 R, 15 R, 16 R$, $19 R, 2^{\prime} R, 7^{\prime} R$; configuration in methanol $\sigma=0.30 \mathrm{ev}$, and UV shift 0 nm).

Table S2. B3LYP/6-311G (2d, p) optimized lowest energy 3D conformers and energy analysis for 1a-1f
NO.

Table S3. B3LYP/6-311G (2d, p) optimized lowest energy 3D conformers and energy analysis for 1aa-1ad
NO.

S40. ECD Computational details of compound 2

2

2a

Figure S2. Experimental and calculated ECD spectra of $\mathbf{2}$ and 2a (green line, experimentally recorded in methanol; red line 2, calculated for $2 R, 3 R, 7 R, 15 S, 20 S, 21 S$; blue line $\mathbf{2 a}$, calculated for $2 S, 3 S, 7 S, 15 R$, $20 R, 21 R$; configuration in methanol $\sigma=0.20 \mathrm{ev}$, and UV shift 0 nm).

Table S4. B3LYP/6-311G (2d, p) optimized lowest energy 3D conformers and energy analysis for 2a-2e
NO.
2 d

Table S5. B3LYP/6-311G (2d, p) optimized lowest energy 3D conformers and energy analysis for 2aa-2ah
NO.

2 ad

2 ae

2af

2 ag

2ah

-1188.107654
-1188.108036
-1188.107045
-1188.110524
16.00%

S41. ECD Computational details of compound 3

3a

Figure S3. Experimental and calculated ECD spectra of $\mathbf{3}$ and $\mathbf{3 a}$ (black line, experimentally recorded in methanol; red line 3, calculated for $3 S, 7 R, 14 S, 20 S$, blue line 3a, calculated for $3 R, 7 S, 14 R, 20 R$; configuration in methanol $\sigma=0.35 \mathrm{ev}$, and UV shift 10 nm).

Table S6. B3LYP/6-311G (2d, p) optimized lowest energy 3D conformers and energy analysis for 3a-3f
NO. Conformers
3e

Table S7. B3LYP/6-311G (2d, p) optimized lowest energy 3D conformers and energy analysis for 3aa-3ac
NO.

S42. ECD Computational details of compound 4

Figure S4. Experimental and calculated ECD spectra for the four candidate configurations of compound $4(4-4 c)$ (configuration in methanol $\sigma=0.2 \mathrm{ev}$, and UV shift 5 nm).

Table S8. B3LYP/6-311G (2d, p) optimized lowest energy 3D conformers and energy analysis for 4a-4f.
NO.

Table S9. B3LYP/6-311G (2d, p) optimized lowest energy 3D conformers and energy analysis for 4aa-4ad

	Conformers	Free energy	
NO.	3D conformers	E (Hartree)	Boltzmann distribution
4 aa		-1114.09437	48.59\%
4ab		-1114.093174	13.44\%
4 ac		-1114.094166	27.61\%
4ad		-1114.093225	10.37\%

Table S10. B3LYP/6-311G (2d, p) optimized lowest energy 3D conformers and energy analysis for 4ba-
4bd

| | Conformers | | Free energy |
| :--- | :---: | :--- | :---: | :---: |
| NO. | 3D conformers | E (Hartree) | Boltzmann distribution |
| 4ba | -1114.10312 | 43.57% | |

4bb

Table S11. B3LYP/6-311G (2d, p) optimized lowest energy 3D conformers and energy analysis for 4ca-
NO.

S43. ECD Computational details of compound 5

Figure S5. Experimental and calculated ECD spectra for 5 and 5^{\prime} (configuration in methanol $\sigma=0.3 \mathrm{ev}$, and UV shift -5 nm).

Table S12. B3LYP/6-311G (2d, p) optimized lowest energy 3D conformers and energy analysis for 5a-5e
NO. Conformers

S44. NMR computational details of compound 3

The initial conformational analysis of the compound $\mathbf{3}$ was executed by employing Monte Carlo searching algorithm via the MMFF94 molecular mechanics force field ${ }^{[1]}$, with the aid of the SPARTAN'16 program package, leading to afford a panel of relatively favored conformations in an energy range of $3 \mathrm{kcal} / \mathrm{mol}$ above the global minimum. The force field minimum energy conformers thus obtained were subsequently optimized by applying the density functional theory (DFT) with the B3LYP/6-31G(d) level in vacuum, implemented in the Gaussian 09 software package ${ }^{[2]}$. Harmonic vibrational frequencies were also performed to confirm no imaginary frequencies of the finally optimized conformers. Gauge-Independent Atomic Orbital (GIAO) calculations of NMR chemical shifts were accomplished by DFT at the mPW1PW91/6-311+g (d, p) level in Acetone with the PCM solvent model in Gaussian 09 software. NMR chemical shifts of TMS were calculated in the same level and used as the references. Regression analysis of calculated versus experimental NMR chemical shifts of $\mathbf{3}$ was carried out. Linear correlation coefficients $\left(\mathrm{R}^{2}\right)$ and Root-mean-square deviation (RMSD) were calculated for the evaluation of the results.

After Boltzmann weighing of the predicted chemical shift of each isomers, the DP4+ parameters were calculated using the excel file provided by Ariel M. Sarotti. ${ }^{[3]}$

Figure S6. Correlation plots of experimental and calculated ${ }^{13} \mathrm{C}-\mathrm{NMR}$ chemical shifts for 3 .

Table S13. Linear correlation coefficients (R^{2}) and root-mean-square deviation (RMSD) analyses of the calculated and experimental NMR data of $\mathbf{3}$ and its possible configurations.

Candidate configurations	R^{2}	RMSD
3	0.9983	2.1356
3 b	0.9976	2.5209
3 c	0.9954	3.4677
3 d	0.9934	4.1684

Table S14. Energy analyses of conformers $3 \alpha-3 \gamma$
NO.
3ϕ

3γ

-1072.132051
1.6610
1.61%

Table S15. Energy analyses of conformers 3ba-3bc

NO.	3D comformers	Free energy		
		E (Hartree)	$\Delta \mathrm{E}(\mathrm{Kcal} / \mathrm{mol})$	Boltzmann distribution
3 ba		-1072.136807	0.2290	34.72%
3 bc		-1072.137172	0	51.12\%
3 bc		-1072.135961	0.7599	14.16\%

Table S16. Energy analyses of conformers 3ca-3cc

NO. 3D comformers	Free energy		
	$\mathrm{E}($ Hartree $)$	$\Delta \mathrm{E}(\mathrm{Kcal} / \mathrm{mol})$	Boltzmann distribution

3ca

0
3 cc

-1072.133048 0.1060
3cc

-1072.133049 0.1054
31.31%

Table S17. Energy analyses of conformers 3da-3dc
NO 3D comformers

Table S18. DP4+ results of candidate configurations $\mathbf{3}$ (Isomer 1), 3b (Isomer 2), 3c (Isomer 3) and 3d (Isomer 4)

I	A B	C	D	E	F	G	H
1	Functional	Solvent?		Basis Set		Type of Data	
2	mPW1PW91	PCM		$6-311+G(d, p)$		Unscaled Shifts	
3							
4		Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	Isomer 6
5	sDP4+ (H data)	all 99.83%	0.00\%	0.02\%	0.15\%	-	-
6	sDP4+ (C data)	al 82.94\%	17.06\%	0.00\%	0.00\%	-	-
7	sDP4+ (all data)	性00.00\%	0.00\%	0.00\%	0.00\%	-	-
8	uDP4+ (H data)	all 199.02%	0.00\%	0.16\%	0.82\%	-	-
9	uDP4+ (C data)	, 19.50\%	al 80.45%	0.04\%	0.00\%	-	-
10	uDP4+ (all data)	dll 99.99%	0.01\%	0.00\%	0.00\%	-	-
11	DP4+ (H data)	all 00.00%) 0.00%	0.00\%	0.00\%	-	-
12	DP4+ (C data)	a) 54.11%	, 145.89%) 0.00\%	, 0.00\%	-	-
13	DP4+ (all data)	alli 00. 00\%	0.00\%	0.00\%	all 0.00\%	-	-

References

1. Halgren, T. A. J. Comput. Chem. 1999, 20, 730-748.
2. Gaussian 09, Revision C.01, M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, ; M. A. Robb, J. R. C., G. Scalmani, V. Barone, B. Mennucci, ; G. A. Petersson, H. N., M. Caricato, X. Li, H. P. Hratchian, ; A. F. Izmaylov, J. B., G. Zheng, J. L. Sonnenberg, M. Hada, ; M. Ehara, K. T., R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, ; Y. Honda, O. K., H. Nakai, T. Vreven, J. A. Montgomery, Jr., ; J. E. Peralta, F. O., M. Bearpark, J. J. Heyd, E. Brothers, ; K. N. Kudin, V. N. S., T. Keith, R. Kobayashi, J. Normand, ; K. Raghavachari, A. R., J. C. Burant, S. S. Iyengar, J. Tomasi, ; M. Cossi, N. R., J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, ; V. Bakken, C. A., J. Jaramillo, R. Gomperts, R. E. Stratmann, ; O. Yazyev, A. J. A., R. Cammi, C. Pomelli, J. W. Ochterski, ; R. L. Martin, K. M., V. G. Zakrzewski, G. A. Voth, ; P. Salvador, J. J. D., S. Dapprich, A. D. Daniels, ; O. Farkas, J. B. F., J. V. Ortiz, J. Cioslowski, ; and D. J. Fox, G., Inc., Wallingford CT, 2010.
3. Bruhn, T.; Schaumloffel, A.; Hemberger, Y.; Bringmann, G. Chirality 2013, 25, 243-249.
4. N. Grimblat, M.M. Zanardi, A.M. Sarotti, J. Org. Chem. 2015, 80, 12526-12534.
